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ABSTRACT OF THESIS 
 
 
 
 

FRACTIONATION OF LIGNIN DERIVED COMPOUNDS FROM  
THERMOCHEMICALLY PROCESSED LIGNIN TOWARDS ANTIMICROBIAL 

PROPERTIES 
 
 

The overuse of antibiotics in agriculture is an emerging concern, due to their 
potential detrimental impact to the environment. This study focuses on exploring 
antimicrobial properties of lignin derived compounds. Lignin is of interest as a feedstock 
to replacing some petroleum-based chemicals and products because it is the most 
abundant source of renewable aromatic compounds on the planet. Two lignin rich 
streams, residues from the enzymatic hydrolysis of dilute acid and alkaline pretreated 
corn stover, were decomposed via pyrolysis and hydrogenolysis, respectively. The 
resulting liquid oils were subjected to sequential extractions using a series of solvents 
with different polarities. Chemical compositions of the extracted fractions were 
characterized through HPLC and GC/MS. These extracted compounds were screened 
against Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli, and Lactobacillus 
amylovorus for antimicrobial properties. Six lignin model monomers: guaiacol, vanillin, 
vanillic acid, syringaldehyde, 2,6-dimethoxyphenol, and syringic acid were compared to 
the oils and extracted fractions for antimicrobial properties.  Development of lignin-
derived chemicals with antimicrobial properties could provide a novel use for this 
underutilized natural resource. 
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Fractionation of Lignin Derived Compounds from Thermochemically 

Processed Lignin towards Antimicrobial Properties 

CHAPTER 1: INTRODUCTION 

 Introduction 

 The goal of this chapter is to review previous studies to establish what research 

has been accomplished in the past and where the gap in research lies. This literature 

review focused primarily on the topics of lignocellulosic biomass, lignin, thermochemical 

lignin decomposition, sequential extraction, lignin derived antimicrobials, and their 

potential applications in a biorefinery. The objectives, research approach, and research 

questions were also laid out in this chapter.  

1.1 Literature Review 

1.1.2 Lignin 

 Lignin, which accounts for 15-25% of a plant biomass, is one of the major 

components, apart from cellulose and hemicelluloses, in the lignocellulosic matrix. 

Lignin is a three dimensional amorphous polymer consisting of methoxylated 

phenylpropane units. Lignin plays biological roles essential to the life of vascular plants. 

Lignin is responsible for the plants’ rigid structure and water transport due to its 

hydrophobic nature (Biology 2017). Despite extensive studies on lignin its exact form is 

unknown. It is believed that lignin is formed by the polymerization of three major 

monomers: p-coumaryl (H), coniferyl (G), and sinapyl (S) alcohols. Different plants have 

different ratios of these three monolignols. For example, rye straw has an G:S:H ratio of 

43:53:1 whereas rice straw has a ratio of 45:40:15 (Sun, Fang et al. 2000).  In recent 
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years, the idea that lignin could have antimicrobial properties has emerged as a research 

interest. There are several other potential applications of lignin: including but not limited 

to, bio-dispersants, epoxy resins for circuit boards, adhesives, wood panel products, and 

cement additives (Ten and Vermerris 2015).  

Table 1: Predominant linkages (Santos et al., 2013; Chakar and ragauskas, 2004) 

Linkage Type Dimer Structure % linkages in 
soft wood 

% linkages in 
hard wood 

β-O-4 Phenylpropane β-aryl ether 45-50 60 
5-5 Biphenyl and 

dibenzodioxocin 
18-25 20-25 

β-5 Phenylcoumaran 9-12 6 
β-1 1,2-Diaryl propane 7-10 7 

α-O-4 Phenylpropane α-aryl ether 6-8 7 
4-O-5 Diaryl ether 4-8 7 

β-β β-β-Linked structures 3 3 
 

 As the most abundant source of renewable aromatic compounds on the planet, 

lignin is gaining interest as a feedstock in replacing petroleum-based chemicals and 

products. It is however an under-utilized natural resource due to its structural 

heterogeneities (Zhao, Simmons et al. 2016). The challenge is that the 5-5 and β-5 carbon 

bonds are difficult to cleave and constitute a significant portion of the lignin’s linkages 

(Table 1). Unless scientists can determine a way to use the whole lignocellulose 

feedstock including lignin, the cellulosic biofuel industry will remain stagnant (Zeng, 

Zhao et al. 2014). 

1.1.3 Thermochemical Lignin Decomposition 

In its raw form, lignin does not have many uses. Currently, most of the lignin is 

burned to produce heat and power. The breakdown of lignin helps to access desirable 

functions that are not achievable when lignin is a polymer. Once lignin polymers are 
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broken down, the low molecule compounds become suitable for upgrading to fuel and 

chemicals. Several lignin depolymerization pathways are being developed, including 

pyrolysis, catalytic oxidation, catalytic transfer hydrogenolysis, ionic liquid-based 

catalysis, and biological depolymerization. Pyrolysis and catalytic transfer 

hydrogenolysis (CTH) are the two thermochemical breakdown methods that will be 

discussed here. 

 Pyrolysis is the breakdown of large molecules into smaller ones by the application 

of heat in the absence of oxygen. During pyrolysis, lignin is heated to temperatures 

between 160-900°C where cleavage of the ether (C-O) and C-C linkages takes place 

(Yang, Yan et al. 2007). Lignin pyrolysis produces a range of pyrolytic aromatic 

compounds in oil form in addition to gas products and residual char. The yield and 

composition of pyrolytic oil are influenced by many factors, including lignin type and 

operation conditions (Mullen, Boateng et al. 2010).  

 Research has shown that CTH is an attractive alternative to traditional 

hydrogenation. With CTH using an alcohol as a liquid hydrogen donor, as compared to 

gaseous hydrogen in traditional hydrogenation, CTH is safer. During CTH of lignin, 

hydrogen-donating solvents, such as formic acid, methanol, ethanol, isopropyl alcohol 

(IPA), and tetralin etc., release hydrogen molecules at elevated temperatures usually with 

help of a catalysts. The hydrogen is transferred in-situ for hydrogenation reactions 

between the lignin bonds, causing them to breakdown and thus leading to lignin 

depolymerization  (Toledano, Serrano et al. 2013). IPA remains popular choice due to its 

relative low cost and easy subsequent separation from the reaction mixture (Kim, 

Simmons et al. 2017). 
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1.1.4 Sequential Extraction  

 Lignin depolymerization products are usually a mixture of aromatic compounds. 

In order to find the best use of these compounds, it is necessary to investigate a 

separation method that is cost effective and efficient in recovering specific aromatic 

compounds.  Several separation techniques can be applied, including chromatography, 

evaporation, and filtration, etc. These methods present their own challenges: time, 

effectiveness, cost, and recyclability after the extraction.  Liquid-liquid extraction (LLE), 

commonly known as solvent extraction and partitioning, is a method to separate 

compounds based on their relative solubilities in two different immiscible liquids. The 

two liquid phases usually have different polarities, so the compounds partition into two 

phases depending on the polarities of the molecules.  

 LLE has been applied to fractionate bio-oil recovered from pyrolysis of 

lignocellulosic biomass (Ren, Ye et al. 2017). In such a process, a series of organic 

solvents were used to extract groups of lignin derived compounds. Results show the 

molecular weight of the recovered fraction decreased and the total phenolic and methoxyl 

concentrations increased after LLE (An, Wang et al. 2017). The authors also conducted a 

DPPH (2, 2- diphenyl-1-picryl-hydrazyl-hydrate) assay to determine a positive or 

negative antimicrobial effect. With the ability to separate out different groups of lignin 

derived compounds, the possibility of better understanding how certain organically 

derived lignin compounds can have antioxidant properties can be examined and more 

precise testing for antioxidant properties can be achieved. A research group at the 

University of Tennessee in 2017 looked at how to optimize the sequential extraction 

process using organic solvents. Optimal ratios of organic solvent to water mixtures were 
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established in order to ensure that one step of the sequential extraction did not extract 

everything (Ren, Ye et al. 2017). It should be noted that the optimal order for the organic 

solvents is least polar to most polar. Once separated, the isolated groups of compounds 

can then be used for different applications based on the properties exhibited by the 

specific groups. This study done by Tennessee tested switchgrass pyrolysis. However, it 

is not clear whether the same protocol can be used for other biomass feedstocks, such as 

corn stover. Nor is it clear if the same protocol can be used with bio-oil derived from 

other lignin depolymerization methods such as CTH.  

1.1.5 Lignin Derived Antimicrobials 

 A study was published in 1979 about the antimicrobial properties of several lignin 

derived compounds (Zemek, Košíková et al. 1979). In this study they looked at how 

certain compounds, such as eugenol, isoeugenol, syringaldehyde, ferulic acid, etc. 

affected the growth of certain microbes such as Saccharomyces cerevisiae, Candida 

albicans, Escherichia coli, Bacillus licheniformis, and Aspergilus niger. This study found 

that the side chains on these compounds played a significant role in antimicrobial 

activity. In contrast, it was noted that groups with oxygen (-OH, -CO, -COOH) in the side 

chains were less effective. Results from the earlier literature demonstrated antimicrobial 

properties of lignin; however, more mechanistic understanding is needed before a 

transition from using petroleum based antibiotics to lignin derived ones can occur.   

 First, the antimicrobial effects of lignin derivatives on microorganisms must be 

determined.  It is thought that some simple organic compounds, such as phenols, exhibit 

ionophoric properties; which allows the transportation of particular ions across the cell 

membrane either through a carrier or a channel (Tsukube, Yamashita et al. 1991). 



6 
 

Exposing certain microorganisms to ionophoric compounds may disrupt cell membrane 

causing leakage or complete cell lysis. It is hypothesized that lignin derived compounds 

could possibly function in a similar way, as lignin can be broken down to produce a 

variety of phenolic compounds. This is an area that is not fully understood and additional 

research still needs to be conducted to understand the extent of phenolic compounds that 

can be produced from lignin (Fache, Boutevin et al. 2015). 

 

 

Figure 1: Carrier and channel ionophores (David and Rajasekaran 2015). 

 In order to better utilize lignin’s antimicrobial activity, it is essential to explore 

the selectivity against different microorganisms. Cell wall structure and cell wall 

composition are one of the main factors differentiating one microorganism from another 

(Figure 1). A gram-negative bacterial cell wall contains a thin layer of peptidoglycan in 

its periplasmic space between the two lipid membranes, the inner and outer. The leaflets 

on the outer membrane contain lipopolysaccharides and facilitate non-vesicle-mediated 

transport through channels. Gram-positive bacteria, mycobacteria, and fungi all lack the 

presence of an outer membrane and have a thin cell wall. Gram-positive bacteria are 

made up of a single lipid membrane surrounded by a cell wall composed of a thick layer 

of peptidoglycan and lipoteichoic acid. Glycolipids and porins are also found in gram-

positive cell walls which are anchored to the cell membrane by diacylglycerol. This is 
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important because it has been hypothesized that ionophore resistance relies on 

extracellular polysaccharides which can bar ionophores from the cell membrane (Russell 

and Houlihan 2003). Fungi contain a single plasma membrane surrounded by a cell wall. 

This cell wall is made up of various layers of the polysaccharides chitin, β-glucan and 

mannan (Brown, Wolf et al. 2015). 

 

Figure 2: Illustrations of the cell wall of a) Gram-negative bacteria, b) Gram-positive 
bacteria, c) mycobacteria, and d) fungi. Adapted from (Brown et al., 2015) 

E.coli is gram negative and L. amylovorus is gram positive. This means that these two 

bacteria should behave differently when subjected to antimicrobial compounds due to 

their difference in cell wall structure and composition. Table 2 shows some of the major 

differences between gram positive and gram negative microorganisms. 
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Table 2: Comparison of gram positive and gram negative bacteria  (Diffen 2014, Brown, 
Wolf et al. 2015) 

 Gram Positive Gram Negative 

Gram Reaction Retain crystal violet dye and 

stain dark purple. Retain stain 

when washed with alcohol or 

water.   

Can be decolorized to accept 

counter stain, stain ted or pink. 

Does not retain stain when 

washed with alcohol or 

acetone.  

Peptidoglycan 

Layer 

thick multilayered thin single layer 

Periplasmic Space 

 

absent present 

Outer Membrane 

 

absent  present 

Flagellar Structure 

 

2 rings 4 rings 

Resistance To 

Physical Disruption 

high low 

Cell Wall 

Composition 

100-120 Å (angstrom) thick 

lipid content is low 

murein content is high 

70-120 Å thick  

lipid content is high 

murein content is low 

 

S. cerevisiae is the fungus that is widely used in fermentation, and thus, it is important to 

also understand how single-celled fungi are different from bacteria. To start, fungi are 

eukaryotes while bacteria are prokaryotes. Bacteria are single celled while fungi are 

multicellular, with S. cerevisiae being an exception. The shape of fungi varies from one 

to another, while bacteria have three different shapes. Lastly, fungi reproduce both 

sexually and asexually, where bacteria reproduce sexually via binary fission (Golden 
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2011). Hopefully by understanding the differences between fungi, gram-negative, and 

gram-positive bacteria, it will help understand whether and why certain lignin derived 

compounds have a selective inhibition properties.  

1.1.6 Applications in a Biorefinery 

 There are many potential applications to which lignin derived compounds can be 

applied, but this study is positioned on the potential use of lignin compounds to improve 

ethanol fermentations. The ethanol formation process is vulnerable to microbial 

contamination. L. amylovorus contamination at a minimum can lower the efficiency of an 

ethanol fermentation process and at its worst, it can lead to no alcohol production. Some 

of the E. coli species are health-harmful varieties rather than spoilage microorganisms, 

like lactic acid bacteria. L. amylovorus is a dominant contaminant because this bacteria is 

well adapted to survive under low pH, low oxygen, and under high ethanol 

concentrations (Beckner, Ivey et al. 2011). L. amylovorus inhibits S. cerevisiae in two 

main ways: it competes for the same nutrients that S. cerevisiae needs, and/or it produces 

lactic and acetic acids that shift in the pH to an uncomfortable zone for yeast. Currently, 

penicillin is commonly used to control contamination by L. amylovorus (Bayrock, 

Thomas et al. 2003). A study done in 2003 found that using 2,475 U/l of penicillin 

increased the S. cerevisiae growth by two fold and allowed for an increase in ethanol 

production. They also looked at pulsed and continuous addition of the penicillin and 

found no major difference (Bayrock, Thomas et al. 2003). Although penicillin helps the 

ethanol production process, it is not a sustainable solution. The overuse of antibiotics in 

agriculture, including biorefineries, is an emerging concern due to their potential 

detrimental impact to the environment and ecosystems.  
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If an antimicrobial product can be formed from lignin and applied to the ethanol 

fermentation, then the corn or cellulosic ethanol production process would become more 

environmental friendly and profitable. Lignin taking up roughly 20% of the 

lignocellulosic biomass. Turning a portion of lignin into antimicrobials that are 

biodegradagle can be advantageous since the footprint of antibiotics will be reduced in 

Dried Distillers Grains and Solids (DDGS). With a big concern being how many 

antibiotics both humans and animals consume, the ability of these antibiotics to degrade 

naturally would prevent them from continuing to build up in the environment.  

 It is hypothesized that some of the lignin derived compounds have selective 

inhibition properties that will allow S. cerevisiae to grow and prevent contamination by 

other microbes. One potential advantage of lignin-based antimicrobials is their 

biocompatibility because the antimicrobial compound would degrade in the environment 

just like lignin does naturally. As an added bonus, the leftover grain from the 

fermentation would not contain harmful compounds, besides lignin, and thus, making the 

DDGS safe for animal consumption and the antibiotics that pass through cattle would 

degrade in the environment. 

1.2 Research Motivations 

 The overarching research goal is to explore the antimicrobial activity of lignin-

derived molecules as a means of finding a potential application in the biofuel industry; 

such as replacing the antibiotics currently applied to ethanol fermentation. If a renewable 

resource, like lignin, can be used to make chemicals that have similar effects to current 

antibiotics, then the spent grains would be safe for animals and would be more 

biocompatible in the natural environment. However, there is a gap in research about 
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whether it is possible to turn lignin into antimicrobial compounds and whether these 

compounds have selectivity on microorganisms of interest.   

1.3 Objectives 

 This study focuses on antimicrobial properties within lignin depolymerization 

products derived from two types of lignin streams. Two thermochemical processes will 

be used to depolymerize the lignin streams and the oil will be sequentially extracted using 

a prescribed sequence of solvents. These extracted fractions and commercial monolignols 

will be screened against Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. 

coli), and Lactobacillus amylovorus (L. amylovorus).  The specific objectives are to: 

1) Identify major lignin degradation compounds in the byproduct of two different 

thermochemical treatment methods: pyrolysis and catalytic transfer 

hydrogenolysis (Chapter 2) 

2) Identify fractions of lignin degradation compounds sequentially extracted from 

pyrolysis and catalytic transfer hydrogenolysis oil by a prescribed sequence of 

organic solvents (hexane, petroleum ether, chloroform, and ethyl acetate). 

(Chapter 2) 

3) Screen commercial mono-lignols, guaiacol, vanillin, vanillic acid, syringaldehyde, 

2,6-dimethoxyphenol, syringic acid, and sequentially extracted lignin fractions for 

microbial inhibitory properties (Chapter 3). 

1.4 Research Approach and Research Questions 

1.4.1 Research Approach: 

Lignin was extracted from corn stover pretreated by two different methods, i.e., 

dilute acid (DA) and alkaline (AL), representing two common technologies used in 
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today’s cellulosic biorefineries. The pretreatment was followed by enzymatic hydrolysis 

to remove fermentable sugars.  The remaining lignin-rich materials will be further 

decomposed using pyrolysis and catalytic transfer hydrogenolysis (CTH). These different 

compound mixtures will be analyzed by gas chromatography – mass spectrometry (GC-

MS) to determine what percentage of different lignin compounds are present in each. 

Sequential extraction will be used to fractionate the lignin compounds based on the 

solvent’s polarity.  

1.4.2 Research Questions: 

The goal is to answer the following questions through this research project.  

Q1: How do the lignin oils differ when the starting lignin-rich residue (dilute acid 

vs. alkaline pretreated, enzymatically hydrolyzed) after undergoing depolymerization 

through pyrolysis and CTH? 

Q2: Can compounds be extracted from lignin oil derived from pyrolysis and CTH 

using solvents of different polarity to generate a range of different fractions of lignin 

derived compounds? 

Q3: What is the tolerance of S. cerevisiae, E. coli, and L. amylovorus to lignin 

monomers and lignin oil derived fractions? 

  



13 
 

CHAPTER 2: FRACTIONATION AND CHARACTERIZATION OF LIGNIN 

DERIVED COMPOUNDS FROM THERMOCHEMICALLY 

PROCESSED LIGNIN 

Introduction 

A composition analysis was conducted to establish the percentage breakdown of 

lignin, glucose, and xylose in the two different samples. FTIR was run to help confirm 

the composition analysis results. The DA and AL samples were broken down using 

pyrolysis and CTH. These resulting oils were then subjected to a sequential extractions 

using four solvents with different polarities: hexane, petroleum ether, chloroform, and 

ethyl acetate. The chemical compositions of the extracted fractions were characterized 

using GC/MS. GPC was used to examine the size distribution of untreated and processed 

lignin samples and the results demonstrated the effectiveness of the two breakdown 

methods on lignin depolymerization.  

2.1. Experimental 

2.1.1 Materials 

The two lignin samples were provided by National Renewable Energy Laboratory 

(NREL) with more details provided in section 2.1.2. The organic solvents: hexane, 

petroleum ether, chloroform, ethyl acetate, isopropyl alcohol, and palladium activated 

charcoal were purchased from Sigma-Aldrich.  

2.1.2 Lignin Sample Preparation 

Corn stover were pretreated by dilute acid (DA) and alkaline (AL) at NREL. The 

DA pretreatment was conducted at 175°C, 30g H2SO4/kg of dry biomass, 30% solids 

loading, and residence time of 8 minutes. The AL pretreatment used 0.1g NaOH/ g 
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biomass with 15% solid loading at 80°C for two hours. The pretreated biomass was 

hydrolyzed by NREL with cellulase enzymes and the solid residues retained as the lignin 

streams for this study. Enzymatic hydrolysis following both pretreatments was conducted 

at 15% solids loading, 64 mg CTec2/g dry biomass HTec2 was loaded with 8:1 ratio 

(Chen, Kuhn et al. 2016). The two lignin samples were denoted as “DA” and “AL” lignin 

as shorthand notation for the lignin rich residues collected after dilute acid and alkaline 

pretreated corn stover followed by enzymatic hydrolysis. Upon receiving the DA and AL 

lignin samples, they were washed with DI water and dried at 105°C overnight and then 

ground using a mortar and pestle.  

2.1.3 Pyrolysis Protocol 

Pyrolysis of DA and AL lignin samples was performed at Dr. Boldor’s lab at 

Louisiana State University (LSU). Approximately 7.5g of each pretreated sample was 

added directly to a custom pipe reactor (SS-316, 20” length, 3/8” I.D., 1/2” O.D.).  The 

biomass was distributed over the 8.0” length of the reactor. Pieces of cotton were loaded 

into both ends of the reactor to keep the biomass within the reactor. The reactor was then 

placed inside a horizontal induction coil (6 turns, 9” length, 2.0” I.D.) such that the 

biomass inside the reactor was positioned within the coil. One end of the reactor was 

attached to a N2 source by way of high-temp tubing and the flow rate was regulated by a 

MC-50SLPM-D Mass Flow Controller (Alicat Scientific, Tucson, Arizona). The other 

end of the reactor was attached to cold trap collection system using high-temperature 

plastic tubing (~2.5”, 0.2” I.D.). The tubing was attached to a 1/8” steel tube that 

travelled through the interior and ended at the bottom of a collection vial. The cold trap 

collection system consisted of this collection vial placed inside a larger beaker containing 
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both dry ice and acetone. Gaseous products produced by the pyrolysis of the biomass 

entered the cold trap system through the 1/8” pipe connected to the reactor.  

Prior to each pyrolysis experiment, N2 gas flowed through the custom-designed 

reactor at a rate of 0.45 L/min for a minimum of 20 minutes in order to purge the system 

of any excess O2. When the purging session was completed, the N2 flow rate was 

adjusted to 0.15 L/min and the induction heater was turned on. The PID portion of the 

IR2 Supermeter was programmed to the desired set point temperature (500 °C) and was 

configured to send voltage changes to the HFI model induction heater (RDO Induction 

L.L.C., Washington, New Jersey) in order to increase or decrease the power of the 

induction heater such that the reactor would be stabilized at 500 °C. The experiment ran 

for 50 minutes during which time gaseous products condensed into the cold trap system.  

The masses collected before and after the experiment and were used to determine the 

liquid yield percent.  

2.1.4 Catalytic Transfer-Hydrogenolysis (CTH) Protocol 

CTH was run using a Parr Reactor (Moline, IL, Series 4560 Mini Reactor) at a set 

temperature of 270±5 °C for 1 hour. The CTH was preheated for 45 minutes to reach the 

set temperature. The solvent, isopropyl alcohol (IPA), was used at 15.7g and 2g of 

sample was added to the reactor. The catalyst, palladium on activated charcoal (Pd/C), 

was used at 10% of the sample concentration (0.2g) (Kim, Simmons et al. 2017). After 

the reaction was finished, air was used to quickly cool the reactor to 100°C, then ice was 

used to cool the reactor to 25°C. The contents in the reactor was then recovered by 

rinsing with acetone. The collected liquid and suspended solids was separated by 
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centrifuging at 4000 rpm for 10 minutes and the liquid part was dried in a vacuum oven 

at room temperature for 48 hours to remove the acetone and IPA.  

2.1.5 Gas Chromatography-Mass Spectrometry (GC/MS) Protocol 

Dichloromethane (1ml) was added to re-suspend the lignin derived oil from 

pyrolysis and CTH. This oil/ dichloromethane suspension was filtered using a 0.2 micron 

syringe filter and then injected into the GC/MS for analysis. A 70 minute, GC/MS 

method was adapted to identify the lignin depolymerization products from the CTH and 

pyrolysis reactions. The analysis was performed on Agilent 7890B GC coupled 5977B 

MS (Santa Clara, CA) with a HP-5MS (60 m × 0.32 mm) capillary column. The 

temperature program started at 40 °C with a holding time of 6 minutes and increased to 

240 °C at 4 °C minutes-1 with a holding time of 7 minutes; then the temperature was 

raised to 280 °C at 20 °C minutes-1 with a holding time of 8 minutes. Helium was used as 

a carrier gas with a flow rate of 1.2 mL minutes-1. Peaks were identified using the MS 

library of compounds. Compounds with the highest probability that were also derivatives 

of lignin were selected. The area of each peak was compared to the total peak area of a 

total sample, to determine the percentages of each compound. The detection limitation of 

MS detector is 800 g/mol. Compounds with a molecular weight larger than 800 g/mol 

were unable to be identified however, they can be tested using GPC analysis.   

2.1.6 Gel Permeation Chromatography (GPC) Protocol 

The weight-average molecular weight (Mw) and the number-average molecular 

weight (Mn) of the raw, processed, and residue lignin samples were determined using 

GPC (McClelland, Motagamwala et al. 2017). An Ultimate3000 HPLC system equipped 

with an Ultra Violet (UV) detector was used. Separation was accomplished in a mobile 
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phase of tetrahydrofuran (THF) at a flow rate of 0.5 ml minutes-1, using a Mixed-D PLgel 

column (5 μm particle size, 300 mm x 7.5 mm i.d., linear molecular weight range of 200 

to 400,000 u, Polymer Laboratories, Amherst, MA) at 50°C. Elution profiles of materials 

eluting from the column were calibrated using low molecular weight polystyrene 

standards (Product No. 48937, Sigma-Aldrich) a at UV absorbance of 280 nm. Mw is the 

weight average molecular weight. Mn is the number average molecular weight. 

Polydispersity Index (PDI) was calculated using the equation: PDI= Mw/Mn 

(McClelland, Motagamwala et al.). 

2.1.7 Sequential Extraction Protocol 

In order to better determine the lignin derived compounds produced, a sequential 

extraction was performed to separate the compounds based on polarity. These groups 

would then be tested to see which compounds have an inhibitory effect on different 

microbes.  A water-isopropanol mixture (80:20 v/v) and four solvents with different 

polarities were used: from most polar to least polar, water, ethyl acetate, chloroform, 

petroleum ether, and hexane (Miller 1998). Normal value in Table 3 were calculated by 

dividing the solvent polarity by water’s polarity.  
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Table 3: Organic Solvents Polarity (Harris 2015) 

Solvent Solvent Polarity Normal Value 

Hexane 0.1 0.009 

Petroleum Ether 0.1 0.009 

Chloroform 2.7 0.265 

Ethyl Acetate 4.4 0.431 

Water 10.2 1.000 

 Each of these solvents has a different extraction efficiency for different 

compounds based on the solvents polarity. For example, chloroform has a high extraction 

efficiency for furans, phenolics, and ketones. Ethyl acetate, on the other hand, has a high 

extraction efficiency for organic acids. A study by Ren et al. in 2017 found the optimal 

order to use these solvents for lignin compound extraction was water, hexane, petroleum 

ether, chloroform, and ethyl acetate (Ren, Ye et al. 2017). The flow chart for this 

extraction protocol is shown below in Figure 3.  
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Figure 3: Sequential extraction flow chart (BOAP stands for bio-oil aqueous phase) 

2.1.8 Fourier-transform Infrared Spectroscopy (FTIR) 

 FT-IR spectra were generated using a FTIR spectrometer (Waltham, MA, 

Thermo-Nicolet Nexus 670 FTIR). All spectra were generated over accumulative 64 

scans with a resolution of 4cm-1 in the range of 700-4000 cm-1.  A spectrum was 

generated without any sample (blank) to account for background noise.  

2.1.9 Statistical Analysis 

All experiments were conducted in duplicates or triplicates and the data are 

presented as means and standard deviations. The statistical analysis, ANOVA and two-
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ways Tukey’s test, was performed by SAS® 9.4 (SAS Institute, Cary, NC, US), with a 

significance level of P<0.05 for all the data obtained from experiments. 

2.2. Results and Discussion 

2.2.1 Composition Analysis on the Raw Lignin Samples 

A composition analysis was conducted to establish the makeup of the DA and AL 

lignin samples prior to thermochemical depolymerization. The results are shown in Table 

4. This composition analysis of the two lignin starting materials will also help explain 

why the oil yields from pyrolysis and catalytic transfer hydrogenolysis were lower than 

the typical yield from Kraft lignin. The DA lignin sample had a lignin content of 62.83% 

as compared to the AL lignin sample at 58.91% (having a P-value of 0.45). The glucan 

content for the DA and AL lignin samples were 27.54% and 18.63% respectively with a 

P-value of 0.02. The xylan content for the DA and AL lignin samples were 6.04% and 

7.58% respectively with a P-value of 0.09.  A composition analysis published in 2007 on 

raw corn stover found a glucan content of roughly 36% (Öhgren, Bura et al. 2007). It is 

common that the biomass derived lignin contains large portion of glucan and xylan due to 

the incomplete enzymatic hydrolysis (Chen, Guo et al. 2009). The carbohydrate impurity 

in the DA and AL lignin samples could explain why the lignin oil yields were found to be 

lower in this study than reported with pure Kraft lignin. However, any further purification 

step on the lignin samples would add extra cost in chemicals and energy. Thus in this 

study, the received lignin samples were used directly because they represent the real 

lignin samples one could recover from a biorefinery. In order to gain more insights about 

the composition and chemistry, FTIR was run on the lignin samples and results correlated 

to composition analysis.  
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Table 4: Composition of DA and AL pretreated lignin samples 
 

Lignin  Glucan Xylan Total Unknown 

DA Lignin 62.83 ± 1.81 27.54 ± 0.24 6.04± 0.02 96.41 ± 2.07 3.60 ± 2.07 

AL Lignin 58.91 ± 5.67 18.63 ± 1.68 7.58 ± 0.71 85.12 ± 8.06 14.88 ± 8.06 

 

2.2.2 FTIR Spectra of Raw Lignin Samples 

The chemical and structural changes in NREL DA and AL lignin samples as 

compared to Kraft lignin were examined by FTIR. The FTIR spectra shows that the 

lignin received from the NREL was very different from Kraft lignin (figure 4). All three 

lignin samples display an absorption band at 3,400 cm-1, which represents aliphatic and 

aromatic O-H groups (Faix 1991). The band at 2,930 and 2,840 cm-1 can be designated 

with the vibrations of C-H from the CH2 and CH3 groups (Cachet, Camy et al. 2014).The 

C=C of aromatic skeletal vibrations were imitated by the peaks at 1,595 and 1,510 cm-1 

(Prado, Erdocia et al. 2016). These peaks were significantly lower in intensity with the 

DA and AL lignin as compared to the Kraft lignin. The bands associated with 1,460 and 

1,420 cm-1 can be accredited to the C-H deformations in CH2 and CH3 groups and C-H 

aromatic ring. A significant decreases in peak intensity at 1,420 cm-1 for DA and AL 

lignin was noticed when compared to the Kraft lignin, demonstrating possible breakdown 

of the CH2 and CH3 groups. The bands linked to guaiacyl (G) and syringyl (S) lignin 

units were detected at 1,220 and 1,110 cm-1 (García, Erdocia et al. 2012, Gordobil, 

Moriana et al. 2016). The band at 1,220 cm-1 is akin to C-C, C-O, and C=O stretching (G) 

showing decrease in intensity when DA and AL lignin was compared to Kraft lignin 

(U.S. Department of Energy 2016). The band at 1,110 cm-1 assigned to aromatic C-H in 

plane deformation (S) from DA and AL lignin also showing a decrease in intensity when 

compared to Kraft lignin. The peak at 1,050 cm-1 refers to C-O vibrations of the 
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crystalline cellulose region. With DA and AL lignin having a main peak at 1,050 cm-1 this 

indicates that both of these lignin samples have a higher cellulose content than the Kraft 

lignin (Li, Knierim et al. 2010). These FTIR results are in agreement with the 

composition analysis results that were obtained from the DA and AL lignin streams. Both 

DA and AL lignin sources were much less pure than the Kraft lignin. The higher impurity 

is probably contributing to the decrease in oil yield from the thermochemical 

depolymerization of these two lignin streams. 

 

Figure 4: FTIR spectra of DA and AL lignin as compared to a commercial Kraft lignin 

 2.2.3 Products Distribution after Pyrolysis and CTH of DA and AL Lignin 

A mass balance was attempted to determine where DA and AL lignin ended up 

after the pyrolysis and CTH reaction. Table 5 shows the oil, solids, and gas percentages 

from the mass balance of the lignin streams. Pyrolysis produced more lignin oil in both 

DA and AL lignin streams than the CTH did. DA lignin pyrolysis produce a higher 

percentage of lignin oil as compared to the CTH with 15.34% and 8.27% respectively. 
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This same trend can be observed in the AL lignin. With the pyrolysis producing a higher 

percentage of lignin oil as the CTH with 20.76% and 9.92% respectively. Only the oil 

percentages of this mass balance should be considered because solids from pyrolysis 

were not collected. Also, no gas for either set of sample was collected. Therefore, it 

cannot be determined how much solids were lost due to vessel transfer and user error. 

Figure 5 shows only the oil yields and their standard deviations. It is thought that 

because these lignin samples have a relative large sugar content that a lower oil yield is 

observed. A statistical analysis was performed on the lignin oil samples. An ANOVA 

was performed and displayed that one of the samples exhibited a statistical difference. 

With the ANOVA, AL CTH lignin had a P-value of 0.04. A T-test was then performed to 

establish which combination of pretreatment and thermochemical breakdown process was 

statistically different. A comparison was run within and between treatments. It was found 

that the DA CTH and DA Pyrolysis was the only statistical different with respective P-

values of 0.03.  

The results from this statistical analysis can be found in Appendices I. A study 

completed in 2007 which explored pyrolysis reactions for a variety of different 

feedstocks found an oil yield of 22-55% depending on the feedstock. They also found 

that the lower the ash content in a sample, the more oil yield they were able to collect 

(Fahmi, Bridgwater et al. 2008). In both lignin streams, pyrolysis produced a larger 

percentage of lignin oil than CTH, but only DA pyrolysis was the only statistical 

different. Within treatments, neither CTH nor pyrolysis was statistical different.  
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Table 5: Oil, solid, and gas products from pyrolysis and CTH of DA and AL lignin 
 

Pyrolysis CTH 

 % oil % solid  % gas  % oil % solid  % gas  

DA lignin 15.34 ± 0.96 - - 8.27 ± 1.48 37.28 ± 0.53 54.46 ± 2.02 

AL lignin 20.76 ± 5.67 - - 9.92 ± 1.34 44.22 ± 1.51 45.87 ± 0.17 

 

 

Figure 5: CTH and pyrolysis bio oil yields for Da and AL lignin 
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Figure 6: GC/MS chromatography of liquid lignin oils   

A GC/MS was run on the different lignin oils. These results are shown in Figure 

6. One key distinction here is that different methods do not produce different compounds, 

but the ratios of compounds produced is different for different methods. All peaks are 

relative and only the percentages of the peaks can be compared. Comparing the CTH DA 

and the CTH AL peak for 4-ethyl-phenol, it is observed from Table 7 and Appendices A 

that the DA’s peak represents 20% of the total products while AL has a peak of only 

12%. Comparing the pyrolysis DA and AL peak for 4-ethyl-2met-phenol, it was shown 

that the DA has a 6% concentration while the AL has a 14%. A study published in 2011 

ran pyrolysis on raw corn stover and found four major monomeric phenolic compounds 

produced: phenol, 4-vinyl phenol, 2-methoxy-4-vinyl phenol, and 2,6-dimethoxy phenol, 

with yields ranging from 1-4% (Patwardhan, Brown et al. 2011). Patwardhan et al. 2011 

also found that the total yield of phenolic compounds was 18 wt%. Results from our 

study indicate that it is possible to tune the thermochemical depolymerization process to 
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produce desirable compounds; in other words, a few steps can be taken to depolymerize 

lignin to produce a higher concentration of the desired compound. This is achieved by 

different combinations of pretreatment and thermochemical break down process. Both 

lignin streams can produce a variety of compounds, and there are some differences in the 

amount of compound produced based on the type of lignin samples and the breakdown 

process that was performed.  

2.2.4 Sequential Extraction and GC/MS Characterization of Extracted Fractions 

 In order to see the compounds in the lignin oil separated, a sequential extraction 

was performed. The mass fractions of the lignin oil separated by each solvent extracts are 

presented in Table 6. Most lignin compounds were extracted into the less polar solvent. 

Hexane has a relative polarity of 0.009 which is less polar when compared to water at 1 

(Miller 1998). For CTH of both DA and AL lignin, the sequential extraction extracted a 

lower percentage of compounds further down the process; with the exception for 

chloroform. The same trend was seen for sequential extraction of pyrolytic lignin oils 

from DA and AL lignin. Chloroform for all sequential extractions extracts a higher 

percentage of oil than the previous step. This is most likely due to chloroform having a 

relative polarity of 0.259 compared to petroleum ether with a relative polarity of 0.009 

(Miller 1998). Both hexane and petroleum ether have relative polarities that are roughly 

the same. The water + IPA mix for CTH DA and CTH AL extracted a relatively low 

percentage, <5%, and thus, it can be said that roughly all, >95%, of the stating lignin 

derived compounds for CTH were extracted into a more non-polar environment than 

water + IPA Mix. The pyrolysis extraction had less of the oils extracted into hexane than 

the CTH oil. With both pyrolysis DA and pyrolysis AL having 20% in the water + IPA 
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mix stage, it can be observed that roughly 80% of the pyrolysis starting compounds were 

extracted with the solvents. There is a difference in the polarity preference between the 

two break down methods: with CTH preferring a more non-polar environment than 

pyrolysis. Meaning that CTH allowed more compounds to be sequentially extracted. This 

is not surprising given that with CTH these is the addition of hydrogen and thus more 

hydrophobic compounds are produced in CTH than compared to pyrolysis.   

Table 6: Mass fractions from different organic phases during sequential extractions 

Sequential Extraction Breakdown 

 
CTH DA 
Lignin 

CTH AL 
Lignin 

Pyro DA 
Lignin 

Pyro AL 
Lignin 

Hexane' 57.66% 29.17% 23.68% 22.78% 
Petroleum Ether' 10.80% 9.29% 19.48% 13.19% 

Chloroform' 19.89% 46.15% 27.97% 29.21% 
Ethyl Acetate' 10.80% 10.58% 10.37% 15.56% 

Water + IPA Mix' 0.85% 4.81% 18.50% 19.26% 
 

An extraction fractionation GC/MS is shown in Figure 6. Hexane extracted lignin 

oil showed peaks in line with the lignin oil at earlier elution times while chloroform  

extracted lignin oil has peaks in line with later elution times. The ethyl acetate and water 

+ IPA mix phase had no identifiable compounds.  
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Figure 7: GC/MS chromatography of extracted fractions from CTH AL lignin oil 

 Table 7 shows the percentage results of the GC/MS compounds. Ethyl Acetate 

and the Water + IPA mix phases were left out as no compounds were identified in either. 

The compounds listed in Table 7 are the compounds that were able to be identified and 

quantified by the GC/MS. The start lignin oil is made up of many different compounds 

but, it has a few phenols that are present in high concentrations: 4-ethyl-phenol (12%), 4-

ethyl-2-methoxy-phenol (8%), and 2,6-dimethoxy-phenol (13%). As the sequential 

extraction takes place, only specific compounds were pulled out at each step and because 

of this their relative concentrations increased. It is speculated that some of the oil’s main 

compounds persist in both hexane and petroleum ether because the solute have reached 

their saturation point. Further calculations and/or research are required to establish the 

solubility of these lignin compounds. Petroleum Ether has a very similar polarity to 

hexane, which could explain why these lignin derived compounds, not picked up by 

hexane, want to move into the petroleum ether. Chloroform is observed to extract 
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different compounds from hexane and petroleum ether. This is mostly likely due to the 

increase in polarity. With chloroform having a relative polarity of 0.259 it still attracts 

non-polar compounds but is attracting compounds that are slightly more polar than the 

previous steps. Performing a sequential extraction is beneficial when it is performed 

using solvents in order of increasing polarity.  
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Table 7: Percentage of compounds in fractions sequentially extracted from CTH of AL 
lignin 

Time  
(Minutes) Compound Name 

 Bio 
Oil' Hexane' 

Petroleum 
Ether' Chloroform' 

10.5 Phenol, 4-ethyl- 12.04% 23.68% 9.53%  
13.8 Phenol, 4-ethyl-2-methoxy- 7.74% 18.90% 3.80%  
16.0 Phenol, 2,6-dimethoxy 13.15% 5.85% 33.23% 31.47% 

17.6 Phenol, 4-methoxy-3-
(methoxymethyl)- 3.63% 3.60% 11.03%  

19 Benzene, 1,2,3-trimet 6.82%    
19.5 5-Sec-butylpyrogallol 4.48%    
20.3 3,5-Dimethoxy-4-hydro 12.52%    
25.4 Creosol  4.54%   
21.2 Phenol, 2-methoxy-  2.29%   
31.6 Phenol, 2-methoxy-4-propyl-  8.78%   
36.7 Benzoic acid, 3,4-dimethoxy-  8.58%   
37 4-Ethoxy-3-methoxybenzyl 

alcohol  2.91%   
39.2 Benzeneacetic acid, 4-

hydroxy-3,5-dimethoxy-  12.92%   
32.6 4-Ethylcatechol   2.32%  
34.2 Benzoic acid, 4-hydroxy-3-

methoxy-   8.56% 17.33% 
35.8 Phenol, 5-methoxy-2,3-

dimethyl-   2.80%  
36.5 Benzene, 1,2,3-trimethoxy-5-

methyl-   12.86%  
36.9 3-Ethoxy-4-methoxybenzyl 

alcohol   9.74%  
38.9 Benzeneacetic acid, 4-

hydroxy-3,5-dimethoxy-   6.12%  
28.2 1,2-Benzenediol, 3-methoxy-    22.21% 
29.9 1,2-Benzenediol, 4-methyl-    4.53% 
31.5 Phenol, 3,4-dimethoxy-    14.39% 
37 2-Propanone, 1-(4-hydroxy-3-

methoxyphenyl)-    4.01% 
42.7 Ethanone, 1-(4-hydroxy-3,5-

dimethoxyphenyl)-    6.07% 
 >2% concentrations 60.39% 92.04% 100.00% 100.00% 

 

2.2.5 Molecular Weight Distribution of Lignin Fractions 

 In order to better understand changes in the molecular weights distribution, the 

weight-average molecular weight (Mw) and number-average molecular weight (Mn) of 

the untreated lignin and the oil recovered from the sequential extraction are shown in 
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Table 8. In addition, the molecular weight distribution (MWD) profiles are illustrated in 

Figure 8. Comparing the MWD profiles of the unreacted lignin with CTH and pyrolysis 

lignin, the MWD curves shifted to later retention times (correspond to lower Mw as 

shown in Figure 8 A & B), confirms lignin depolymerization via CTH and Pyrolysis. The 

Mw of the DA lignin is 3,483 g/mol, while the CTH DA is 1,181 g/mol and the pyrolysis 

DA is 822 g/mol, indicating greater extent of lignin depolymerization caused by 

pyrolysis. The Mw of the AL lignin is 4,347 g/mol, while the CTH and pyrolysis AL were 

1,157 g/mol and 874 g/mol, respectively, illustrating the affinity of lignin 

depolymerization towards pyrolysis.  

 The Mw slightly increase through the sequential extraction process for the DA. 

There are a few mechanics that could explain this. One is that the earlier solvents could 

be extracting compounds with lower Mw. It is also speculated that this Mw increase 

through the process for DA could be lignin molecules are starting to re-polymerize. 

Pyrolysis reduced the average molecular weight of the lignin more than CTH. This 

finding is backed by a recent study showing that pyrolysis degraded the lignin fivefold 

compared to the starting corn stover sample  (McClelland, Motagamwala et al. 2017).  

Untreated AL lignin had a PDI value of 2.56; after being subjected to CTH, or pyrolysis, 

the PDI value for the lignin oil dropped to 1.94 and 1.70 respectively. A lower PDI 

indicates greater uniformity for molecular weight within the mixture. The increase in PDI 

for DA demonstrated a wider span of Mw after CTH and pyrolysis reaction, suggesting 
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that lignin depolymerization and re-condensation may occur in the same process.  
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Figure 8: GPC spectra of raw and thermochemically processed A) DA and B) AL lignin 
and C) DA lignin’s sequentially extracted fractions and D) AL lignin’s sequentially 
extracted fractions resulted from CTH 
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Table 8: The molecular weight distribution of raw lignin and the lignin oils derived from 
CTH and pyrolysis and their sequentially extracted fractions 

  Mn (g/mol) Mw (g/mol) PDI 
Raw lignin DA 1525.4 3483.2 2.28 

 AL 1701.1 4347.1 2.56 

     
CTH DA Bio Oil 389.4 1181.6 3.03 

 Hexane 501.9 1018.1 2.03 

 Petroleum Ether 620.7 1035.2 1.67 

 Chloroform 454.2 1047.6 2.31 

 Ethyl Acetate 452.6 1218.4 2.69 
 Water + IPA Mix ND ND ND 
     

CTH AL Bio Oil 597.0 1157.1 1.94 

 Hexane 579.2 946.1 1.63 

 Petroleum Ether 540.4 831.6 1.54 

 Chloroform 527.4 933.0 1.77 

 Ethyl Acetate 379.5 657.1 1.73 
 Water + IPA Mix ND ND ND 

     
Pyro DA Bio Oil 468.9 822.7 1.75 

 Hexane 576.6 821.1 1.42 

 Petroleum Ether 525.2 850.8 1.62 

 Chloroform 519.8 896.4 1.72 

 Ethyl Acetate 390.8 925.5 2.37 
 Water + IPA Mix ND ND ND 

     
Pyro AL Bio Oil 513.9 874.0 1.70 

 Hexane 608.9 854.5 1.40 

 Petroleum Ether 578.8 844.8 1.46 
 Chloroform 553.5 904.5 1.63 
 Ethyl Acetate 466.9 836.6 1.79 
 Water + IPA Mix ND ND ND 

ND= not determined  

2.4. Conclusions 

From the composition analysis, glucan and xylan were observed in the DA and 

AL lignin samples and the lignin content was found to be lower than that of Kraft lignin. 
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FTIR results confirm that both DA and AL lignin samples have a more complex 

composition than Kraft lignin. This low lignin content in the samples is probably 

contributing to the decreased oil yields after pyrolysis and CTH. Differences in 

compound concentrations from GC/MS analysis suggest that lignin depolymerization 

products are affected by the pretreatment method and the breakdown process performed. 

For both lignin streams, pyrolysis produced a larger percentage of lignin oil yet, the only 

statistically significant difference was between the CTH and pyrolysis of DA lignin. CTH 

lignin oil was less polar compared to pyrolysis lignin oil, probably due to saturation of 

the derived compounds as a result of hydrogen. Given the polarity preferences, there is 

promise to design a better sequential extraction process extracting different compounds 

using solvents with an increasing polarity. Pyrolysis and CTH were both shown 

effectively reducing the average molecular weight of the lignin samples, but pyrolysis is 

more effective.  
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CHAPTER 3: SCREENING ON LIGNIN MODEL COMPOUNDS 

AND EXTRACTED LIGNIN FRACTIONS FOR 

ANTIMICROBIAL PROPERTIES 

Introduction 

 The antimicrobial potentials of six model lignin compounds as well as the dilute 

acid and alkaline pretreatments lignin oils and their sequential extractives, were tested 

using a bioassay. The samples were assayed with three different microbes: S. cerevisiae, 

E. coli, and L. amylovorus. A plate reader was used to track the growth of the microbes 

by monitoring the OD 600 in the wells over the course of 36 hours. The OD 600 at 

maximal growth was compiled into heat-maps to compare antimicrobial effectiveness of 

different concentrations of model lignin compounds and the DA and AL lignin oil and the 

extractives.  

3.1 Experimental 

3.1.1 Materials 

 The samples derived from enzymatic hydrolysis as well as the dilute acid and 

alkaline pretreatments on corn stover were provided by National Renewable Energy 

Laboratory (NREL). Guaiacol, vanillin, syringaldehyde, and 2,6-dimethoxyphenol were 

purchased from Sigma Aldrich. Vanillic acid and syringic acid were purchased from TCI 

America. The pyrolysis reaction oil came from Louisiana State University (LSU). NRRL, 

in Golden Colorado, Culture Collection provided the Escherichia coli (E. coli) (NRRL B-

409), Lactobacillus Amylovorus (L. amylovorus) (B-4540), and the Saccharomyces 

cerevisiae (S. cerevisiae) (NRRL Y-567). The L. amylovorus broth was purchased from 
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BD. Fishersci supplied typtone, S. cerevisiae extract, and the D-Glucose. KH2PO4 was 

purchased from Sigma Aldrich and the peptone came from Alfa Aesar.  

 Monensin is an ionophore antibiotic mainly used in cattle feed. This study used 

Monensin as a control to see how it compares to lignin derived compounds.  

3.1.2 Preparation of Inoculum 

 All three microbes were propagated in liquid cultures for inoculating the well-

plate culture. L. amylovorus was grown with a L. amylovorus MRS Broth at 37°C for 12 

hours while stirred at 180 rpm. S. cerevisiae was grown using YPD medium and was 

incubated at 32°C for 12 hours at 180 rpm shaking speed. E.coli was grown in TGY 

medium for 12 hours and incubated at 37 °C and 180 rpm. The cultures were harvested 

using centrifugation at 4000 rpm for 10 minutes and re-suspended in a small amount of 

growth media and used as inoculum.  

3.1.3 Cultivation in 48-well Plate 

 Four concentrations on each mono-lignol compound were used to test for 

inhibitoy effects on the three different microbes: S. cerevisiae, E. coli, and L. amylovorus. 

These four concentrations were: 0 mg/mL, 0.1 mg/mL, 0.4 mg/mL, and 1.5 mg/mL. 

These concentrations were chosen to give a broad range that would aid in antimicrobial 

threshold predictions. These concentrations were based on of previous findings. A study 

done in 1979 tested eleven different compounds against a variety of microbes, including 

S. cerevisiae and E. coli. Depending on the compound, the range for antimicrobial effects 

were between 0.09 to 3 mg/mL for the S. cerevisiae and E. coli (Zemek, Košíková et al. 

1979). All compounds at the four concentrations were dissolvable in ethanol and DMSO. 

Because the end application for these compounds is to be used in ethanol fermentation, 
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we chose to use ethanol. Each plate was cultured for 36 hours and at a set temperature of 

32°C. The plates were stirred every 15 minutes for 30 seconds. The plate reader (Spectra 

Max M2 from Molecular Devices) took an optical density reading every 30 minutes at a 

wavelength of 600nm (Greenwood 1997). 

 

Figure 9: 48-well plate containing S. cerevisiae culture after 36 hours 

3.1.4 Heat-map and Antimicrobial Effect 

 In order to create a heat-map, the 36-hour data from the plate reader were used. 

The change in OD was calculated for each well in duplicate. The control had the solvent 

ethanol and organism present. All three concentrations: 0.1 mg/mL, 0.4 mg/mL, and 1.5 

mg/mL, were compared to the control, 0 mg/ml. This gave a percentage difference that 

was used to classify the strength of the antimicrobial effect. The heat-maps report the 

change in OD in in comparison to the control within each group of tested compounds. 

The dark green band, 1.00, represents no difference from control or, no antimicrobial 

effect. Moving down to the lighter green band, 0.80 - 0.99, which represents 80% - 99% 
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growth as compared to the control, or almost no antimicrobial effect. The bright yellow 

band, 0.60 – 0.79, represents a 60% - 79% growth as compared to the control or, a slight 

antimicrobial effect. The dark yellow band, 0.40 – 0.59, represents 40% - 59% growth as 

compared to the control or, stronger antimicrobial effect. The orange band, 0.20 – 0.39, 

represents 20% - 39% growth as compared to the control or, an antimicrobial effect. 

Lastly, the red band, 0.00 – 0.19, represents 0% to 19% growth as compared to the 

control, or a severe antimicrobial effect.   

3.1.5 Statistical Analysis 

All experiments were conducted in duplicates or triplicates and the data are 

presented with means and standard deviations. The statistical analysis was performed by 

SAS® 9.4 (SAS Institute, Cary, NC, US), with a significance level of P<0.05 for all the 

data obtained from experiments. 

3.2 Results and Discussion 

3.2.1 Growth Curves for Pure Lignin Model Compounds 

 Figures 10 A-C show typical growth curves for the three microbes with the 

addition of a lignin mono compound guaiacol. As the concentration of guaiacol 

increased, its inhibitory factor also increased. With a concentration of 1.5 mg/ml of 

guaiacol the S. cerevisiae had almost no growth at all (0 – 19% growth). Whereas the 

inhibitor factor of 0.4 mg/mL was between 40-59%.  

L. amylovorus is to be more resistant than S. cerevisiae to guaiacol. The first three 

concentrations (0.0-0.4 mg/mL) of guaiacol had no noticeable effect on the growth of L. 

amylovorus. It is not until a concentration of 1.5 mg/ml was reached that any inhibitory 
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effect was observed. A heat-map displaying all the pure model lignin compounds tested 

against: S. cerevisiae, E. coli, and L. amylovorus is displayed in Figure 9.  
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Figure 10: Growth curves for A) S. cerevisiae, B) E. coli, and C) L. amylovorus growth 
incubated at different concentrations of guaiacol 

3.2.2 Heat-maps for Pure Model Lignin Compounds 

 

Guaiacol                              0.00-0.19 

Vanillin                              0.20-0.39 

Vanillic Acid                              0.40-0.59 

Syringaldehyde                              0.60-.079 

Syringic Acid                              0.80-0.99 

2,6-Dimethoxyphenol                              1.00- 

   S. cerevisiae  E. coli  L. amylovorus    
Figure 11: Heat-maps showing the inhibition of 6 lignin model compounds on the 
growth of S. cerevisiae, E. coli, and L. amylovorus 

 The heat-maps in Figure 11 were constructed to better show how each of the 

model compounds inhibits the growth of microbes. Looking at these heat-maps, it was 

not expected that L. amylovorus would be so robust, nor was it expected that E.coli would 

be so susceptible to the lignin derived compounds.  
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Some compounds had an inhibitory effect on E.coli and did not exhibit that same 

effect on S. cerevisiae: syringaldehyde or syringic acid. 1.5 g/L of syringaldehyde 

showed some inhibitory effect on L. amylovorus. At that loading syringaldehyde also 

inhibited the growth of S. cerevisiae. Model lignin compounds syringaldehyde and 

syringic acid have the best selective inhibit against E. coli compared to S. cerevisiae. 

None of the model lignin compounds investigated had inhibitory effects on L. 

amylovorus when compared to S. cerevisiae. The data for the heat-maps and the 

additional growth curves for model lignin compounds can be found in Appendix E and G.  

Monensin has been shown to have selectivity inhibition against L. amylovorus but 

does not inhibit the growth of S. cerevisiae (Oliva Neto, Lima et al. 2014). An 

experiment to confirm this claim was conducted and data are shown in Appendices D. 

Our test revealed that Monensin at the lowest concentrations exhibited the maximum 

amount of growth inhibition against L. amylovorus.  Increasing concentration did inhibit 

yeast growth until the maximum concentration was reached. It is unsure as to why yeast 

had no inhibition at the maximum concentration of Monensin. 

3.2.3 Growth Curves for Sequentially Extracted Lignin Fractions 

 Figures 12 A and B show the growth curves for E. coli with the addition of CTH 

DA and AL lignin oils. For DA lignin oil, an inhibitory effect began to take effect at the 

lowest concentration of 0.1 mg/ml. The other two concentrations, 0.4 mg/ml and 1.5 

mg/ml, do not show much difference from the lowest concentration. For AL lignin oil, no 

inhibitor factor is present for any of the concentrations. When comparing the CTH DA 

and AL oils, only DA pretreated lignin shows any potential to have antimicrobial 
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properties. The data for the heat-maps and the additional growth curves for extracted 

fractionations can be found in Appendix C and D  

 

 

Figure 12: Growth curves for E. coli incubated at different concentrations of CTH A) 
DA and B) AL lignin oil 
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3.2.4 Heat-maps from Sequentially Extracted Lignin Fractions 

 

             
Bio Oil                     0.00-0.19 

Hexane                     0.20-0.39 

Petroleum Ether                     0.40-0.59 

Chloroform                     0.60-0.79 

Ethyl Acetate                     0.80-0.99 

Water + IPA Mix                     1.00- 

 

DA 
Lignin  

AL 
Lignin    

Figure 13: Heat-maps showing the inhibition of E.coli against CTH fractionations  

 The heat-maps in Figure 13 were assembled to better represent how each of the 

fractions from the sequential extraction process inhibits the growth of a microbe. It was 

not expected that DA lignin and AL lignin would be different, although these two lignin 

streams have the chloroform fraction exhibiting the same antimicrobial effect. 

Chloroform for both DA and AL lignin stunts the growth of E. coli to between 0.60 – 

0.79 of its control growth at 0.4 gm/ml and 1.5 mg/ml. None of the fractionations for 

either lignin stunted the growth of E. coli below 0.60. Looking at the DA lignin bio oil, it 

can be observed that all three concentrations performed just as well as the sequential 

extraction concentrations, so the sequential extraction is not necessary if antimicrobial 

properties are desired. From this pilot data, CTH fractionations for both DA and AL 

lignin do not exhibit a noticeable antimicrobial properties against E. coli. Further research 

needs to be conducted to determine if DA and AL lignin have any antimicrobial effect 

against S. cerevisiae and L. amylovorus.  
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3.3 Conclusions 

 The model lignin compounds had no effect on the growth of L. amylovorus. Yet, 

all of the model lignin compounds showed effects on the growth of E. coli. This is most 

likely attributed to the differences in cell wall structure and cell wall composition 

between the two microbes. The inhibitory effect on S. cerevisiae was dependent on the 

type on model lignin compound. With the S lignin derived model compounds, 

syringakdehyde, syringic acid, and 2,6-dimethoxyphenol, visually showing less inhibitory 

effects compared to model compounds derived from G lignin. S lignin model compounds 

show a selective effect for S. cerevisiae compared to E. coli.  Inhibiting the growth of E. 

coli more than the growth of S. cerevisiae. Syringic acid shows the best selective 

antimicrobial property when comparing S. cerevisiae to E. coli.  

When comparing the CTH DA and CTH AL oils, DA lignin oils performs better 

for antimicrobial properties against E. coli. CTH DA has the oil as well as three 

fractionation phases, chloroform, ethyl acetate, and water + IPA mix that all show an 

inhibitory factor of 60-79% at the 0.4 and 1.5 mg/mL. On the other hand, CTH AL only 

shows two fractionation phases, petroleum ether and chloroform, that show an inhibitory 

factor of 60-79% at the concentrations of 0.4 and 1.5 mg/ mL. Further research needs to 

be conducted to fully understand the effect of fractionation on the antimicrobial 

properties of lignin.  
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4. FURTHER RESEARCH 

4.1 Pyrolysis and Catalytic Transfer Hydrogenolysis 

 There are a few areas of further research within these two breakdown areas that 

should be examined. A full mass balance should be conducted. The attempted mass 

balance in this study is not sufficient. Tracking how much lignin went into one of these 

processes and where it ended up could help with research in establishing better 

breakdown methods. How the percentage of glucose in the lignin sample affects the 

efficiency of the process should be experimented to see if glucose is a factor that leads to 

more or less oil yields.  

 More experiments of both pyrolysis and CTH need to be conducted to establish if 

there is a statistical difference between the different lignin streams and/or the breakdown 

processed themselves. Further calculations and/or research should be conducted to 

establish solubility of the lignin fractionations.  

Scaled-up versions of these thermochemical process should undergo more testing. 

This would help to establish if these processes are even feasible for commercial use. 

Larger qualities of lignin should be run to see how the heat transfer of these process is 

effected when the quality of lignin used is larger than eight grams. Conducting an energy 

analysis on these two processes would provide valuable information. This would help to 

determine how much work it takes to break down a set amount of lignin and to see if this 

relationship is linear or exponential when scaling up.  

4.2 Antimicrobial Testing 

 These results from this testing are interesting and should spark further research. 

Further experiments need to be conducted to establish if an antimicrobial relationship 
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between the lignin streams after sequential extraction and the microbes of S. cerevisiae 

and L. amylovorus exists. All microbial tests in this study should be repeated with smaller 

intervals between the concentrations. This would help to establish exactly which 

concentration is the most effective and establish a threshold concentration that each 

microbe would still grow normally. Other microbes should also be explored to see if 

there are other applications for the fractionations of lignin.  

 Batch testing of different microbes should be explored to see how the selective 

antimicrobial properties of lignin play out in the presences of more than one microbe.  
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APPENDICES 

Appendices A. Sequential Extraction Solvent Percentages 

CTH-DA 

Compound Name Bio Oil' Hexane' 
Petroleum 

Ether' Chloroform' 
Ethyl 

Acetate' 

Water+ 
IPA 
Mix 

Phenol 4.52%      
Phenol, 3-methyl- 4.31%      
Phenol, 2-methoxy- 3.51% 2.34%     
Phenol, 4-ethyl- 19.39% 36.47%     
Phenol, 3-ethyl-5-
methyl- 2.15%      
Phenol, 4-ethyl-2-met 7.12% 17.94%     
Phenol, 2-methoxy-4-
propyl- 2.05% 14.70%     
Phenethylamine, 
2,4,5-trimethoxy-a-
methyl- 2.35%      
Phenol, 4-(3-hydroxy-
1-propenyl)-2-
methoxy- 2.03%      
p-Cresol  2.79%     
Phenol, 2,3-dimethyl-  2.20%     
Creosol  2.83%     
Phenol, 2,6-
dimethoxy  12.84%     
Benzene, 1,2,3-trimet  3.54%     

Total 47.42% 95.64% 0% 0% 0% 0% 
 

Pyrolysis-DA 

Compound Name Bio Oil' Hexane' 
Petroleum 

Ether' Chloroform' 
Ethyl 

Acetate' 

Water 
+ IPA 
Mix 

Furfural  6.52%       
Phenol 8.19%       
Phenol, 2-methoxy- 18.33%       
Phenol, 4-ethyl- 10.03%       
Benzaldehyde, 2-methy 18.04%       
Phenol, 4-ethyl-2-met 5.70%       
2-Methoxy-4-
vinylphenol 16.46% 30.10%      
Phenol, 2,6-dimethoxy- 16.74% 34.43%      
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Benzofuran, 2,3-dihydro   35.47%      
Total 100% 100% 0% 0% 0%  0% 

 

Pyrolysis-AL 

Compound Name Bio Oil' Hexane' 
Petroleum 

Ether' Chloroform' 
Ethyl 

Acetate' 

Water 
+ IPA 
Mix 

Phenol, 2-methoxy- 15.60%       
Phenol, 4-ethyl-2-
methoxy- 14.12%       
2-Methoxy-4-
vinylphenol 22.06% 23.82%      
Phenol, 2,6-
dimethoxy- 16.72% 17.88%      
Phenol, 4-methoxy-
3-(methoxymethyl)- 14.82% 18.91%      
Phenol, 2,6-
dimethoxy-4-(2-
propenyl)- 10.60%       
Phenol, 2-methoxy-
4-(1-propenyl)-  13.34%      
Benzene, 1,2,3-
trimethoxy-5-methyl-  11.06%      
Ethanone, 1-(4-
hydroxy-3,5-
dimethoxyphenyl)-   100%     

Total 93.91% 85.01% 100% 0% 0%  0% 
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Appendices B. GC/MS Chromatography of Extracted Fractionations 
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Appendices C. GPC Spectra of Extracted Fractionations 
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Appendices D. Data and Heat-maps for Monensin 

 

5% 
EtOH 0.0004 0.0008 0.0016 0.0032 0.0064 

S. cerevisiae 0.3731 0.4157 0.2728 0.2542 0.2301 0.5665 
S. cerevisiae 0.3586 0.2421 0.1905 0.1165 0.1679 0.4746 
S. cerevisiae Avg. 0.36585 0.3289 0.23165 0.18535 0.199 0.52055 
S. cerevisiae % 1.000 0.899 0.633 0.507 0.544 1.423 
E.Coli 0.2345 0.2714 0.2806 0.2708 0.277 0.3748 
E.Coli 0.2437 0.2723 0.2765 0.2721 0.2858 0.291 
E.Coli Avg. 0.2391 0.27185 0.27855 0.27145 0.2814 0.3329 
E.Coli % 1.000 1.137 1.165 1.135 1.177 1.392 
L. amylovorus 1.2493 0.0883 0.0911 0.2321 0.0855 0.1139 
L. amylovorus 1.2644 0.0881 0.0527 0.0957 0.0643 0.1182 
L. amylovorus Avg. 1.25685 0.0882 0.0719 0.1639 0.0749 0.11605 
Lacto % 1.000 0.070 0.057 0.130 0.060 0.092 

  

5% Et OH          0.00-0.19 

0.0004 mg/mL          0.20-0.39 

0.0008 mg/mL          0.40-0.59 

0.0016 mg/mL          0.60-0.79 

0.0032 mg/mL          0.80-0.99 

0.0064 mg/mL          1.00- 

 S. cerevisiae E. coli L. amylovorus    
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Appendices E. Data from Microbes against Model Lignin Compounds 

S. cerevisiae incubation with model lignin compounds 

 0 mg/ml 0.1 mg/ml 0.4 mg/ml 1.5 mg/ml 
Guaiacol 0.4354 0.2868 0.2529 0.0998 
Guaiacol 0.3054 0.2683 0.1726 0.0287 
Guaiacol Avg. 0.3704 0.27755 0.21275 0.06425 
Guaiacol % 1.000 0.749 0.574 0.173 
Vanillin 0.2598 0.2118 0.1839 0 
Vanillin 0.3642 0.2112 0.224 0.0179 
Vanillin Avg.  0.312 0.2115 0.20395 0.00895 
Vanillin % 1.000 0.678 0.654 0.029 
Vanillic acid 0.309 0.2236 0.1165 0.3826 
Vanillic acid 0.8484 0.2496 0.1418 0.1072 
Vanillic acid Avg. 0.5787 0.2366 0.12915 0.2449 
Vanillic acid % 1.000 0.409 0.223 0.423 
Syringaldehyde 0.2988 0.3894 0.2885 0.1237 
Syringaldehyde 0.6554 0.5757 0.444 0.0852 
Syringaldehyde Avg. 0.4771 0.48255 0.36625 0.10445 
Syringaldehyde % 1.000 1.011 0.768 0.219 
2,6-dimethoxyphenol 0.4165 0.2464 0.2751 0.1812 
2,6-dimethoxyphenol 0.9671 0.4505 0.4563 0.3858 
2,6-dimethoxyphenol Avg. 0.6918 0.34845 0.3657 0.2835 
2,6-dimethoxyphenol % 1.000 0.504 0.529 0.410 
Syringic acid 0.3303 0.2391 0.3248 0.3925 
Syringic acid 0.5564 0.4316 0.5302 0.5311 
Syringic acid Av.g 0.44335 0.33535 0.4275 0.4618 
Syringic acid % 1.000 0.756 0.964 1.042 

 

E. coli incubation with model lignin compounds 

 0 mg/ml 0.1 mg/ml 0.4 mg/ml 1.5 mg/ml 
Syringaldehyde 0.9829 0.2471 0.1997 0.1303 
Syringaldehyde 0.9557 0.2972 0.2352 0.15 
Syringaldehyde Avg. 0.9693 0.27215 0.21745 0.14015 
Syringaldehyde % 1.000 0.281 0.224 0.145 
Syringic acid 0.9777 0.3209 0.19 0.1735 
Syringic acid 0.9468 0.882 0.1821 0.1048 
Syringic acid Av.g 0.96225 0.60145 0.18605 0.13915 
Syringic acid % 1.000 0.625 0.193 0.145 
2,6-dimethoxyphenol 0.9739 0.3384 0.1837 0.069 
2,6-dimethoxyphenol 0.9683 0.2518 0.2079 0.1604 
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2,6-dimethoxyphenol Avg. 0.9711 0.2951 0.1958 0.1147 
2,6-dimethoxyphenol % 1.000 0.304 0.202 0.118 
Vanillic acid 0.9841 0.4362 0.2518 0.0656 
Vanillic acid 0.9612 0.3355 0.2088 0.0335 
Vanillic acid Avg. 0.97265 0.38585 0.2303 0.04955 
Vanillic acid % 1.000 0.397 0.237 0.051 
Vanillin 0.9857 0.3187 0.2446 0.4193 
Vanillin 0.9862 0.313 0.217 0.1219 
Vanillin Avg.  0.98595 0.31585 0.2308 0.2706 
Vanillin % 1.000 0.320 0.234 0.274 
Guaiacol 0.7603 0.2287 0.2009 0.1281 
Guaiacol 0.8992 0.3 0.176 0.1411 
Guaiacol Avg. 0.82975 0.26435 0.18845 0.1346 
Guaiacol % 1.000 0.319 0.227 0.162 

 

L. amylovorus incubation with model lignin compounds 

 0 mg/ml 0.1 mg/ml 0.4 mg/ml 1.5 mg/ml 
Syringaldehyde 1.124 1.2116 1.1243 0.247 
Syringaldehyde 1.0957 1.2557 1.2224 1.0907 
Syringaldehyde Avg. 1.10985 1.23365 1.17335 0.66885 
Syringaldehyde % 1 1.111547 1.057215 0.602649 
Syringic acid 1.0557 1.331 1.3309 1.3769 
Syringic acid 1.1495 1.2682 1.1985 1.2998 
Syringic acid Av.g 1.1026 1.2996 1.2647 1.33835 
Syringic acid % 1 1.178669 1.147016 1.213813 
2,6-dimethoxyphenol 1.0958 1.3561 1.2161 1.2175 
2,6-dimethoxyphenol 1.1474 1.1786 1.2426 1.2492 
2,6-dimethoxyphenol Avg. 1.1216 1.26735 1.22935 1.23335 
2,6-dimethoxyphenol % 1 1.129948 1.096068 1.099634 
Vanillic acid 1.0585 1.3338 1.2803 1.339 
Vanillic acid 1.1801 1.2899 1.3746 1.3093 
Vanillic acid Avg. 1.1193 1.31185 1.32745 1.32415 
Vanillic acid % 1 1.172027 1.185964 1.183016 
Vanillin 1.1886 1.1963 1.2284 1.2248 
Vanillin 1.2296 1.2715 1.2125 1.1578 
Vanillin Avg.  1.2091 1.2339 1.22045 1.1913 
Vanillin % 1 1.020511 1.009387 0.985278 
Guaiacol 1.2772 1.4046 1.2196 1.2077 
Guaiacol 1.1826 1.1121 0.977 0.8567 
Guaiacol Avg. 1.2299 1.25835 1.0983 1.0322 
Guaiacol % 1 1.023132 0.892999 0.839255 
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Appendices F. Data from Microbes against Lignin Fractionations 

E. coli incubation with CTH DA fractionation 

 0 mg/ml 0.1 mg/ml 0.4 mg/ml 1.5 mg/ml 
Hexane 0.3223 0.3975 0.4316 0.4227 
Hexane 0.4701 0.4123 0.3675 0.369 
Hexane Avg. 0.3962 0.4049 0.39955 0.39585 
Hexane % 1.000 1.022 1.008 0.999 
Petroleum Ether 0.3987 0.3407 0.3419 0.3522 
Petroleum Ether 0.3705 0.3636 0.3311 0.3502 
Petroleum Ether 
Avg. 0.3846 0.35215 0.3365 0.3512 
Petroleum Ether % 1.000 0.916 0.875 0.913 
Chloroform 0.372 0.3644 0.3415 0.3673 
Chloroform 0.4572 0.3807 0.3196 0.2938 
Chloroform Avg. 0.4146 0.37255 0.33055 0.33055 
Chloroform % 1.000 0.899 0.797 0.797 
Ethyl Acetate 0.4495 0.3773 0.3306 0.3195 
Ethyl Acetate 0.4543 0.3648 0.3716 0.3361 
Ethyl Acetate Avg. 0.4519 0.37105 0.3511 0.3278 
Ethyl Acetate % 1.000 0.821 0.777 0.725 
Water + IPA Mix 0.575 0.4166 0.3868 0.385 
Water + IPA Mix 0.4649 0.4217 0.4127 0.3761 
Water + IPA Mix 
Avg. 0.51995 0.41915 0.39975 0.38055 
Water + IPA Mix % 1.000 0.806 0.769 0.732 
CTH DA Oil 0.5593 0.382 0.3392 0.3347 
CTH DA Oil 0.5448 0.3602 0.3435 0.3448 
CTH DA Oil Avg. 0.55205 0.3711 0.34135 0.33975 
CTH DA Oil % 1.000 0.672 0.618 0.615 

 

E.coli incubation with CTH AL fractionations 

 0 mg/ml 0.1 mg/ml 0.4 mg/ml 1.5 mg/ml 
Hexane 0.3123 0.2494 0.3449 0.3481 
Hexane 0.3706 0.2978 0.2651 0.2726 
Hexane Avg. 0.34145 0.2736 0.305 0.31035 
Hexane % 1.000 0.801 0.893 0.909 
Petroleum Ether 0.3221 0.3121 0.251 0.2866 
Petroleum Ether 0.3323 0.2944 0.2507 0.2229 
Petroleum Ether 
Avg. 0.3272 0.30325 0.25085 0.25475 
Petroleum Ether % 1.000 0.927 0.767 0.779 
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Chloroform 0.3211 0.2785 0.2494 0.2591 
Chloroform 0.3587 0.2915 0.2586 0.2362 
Chloroform Avg. 0.3399 0.285 0.254 0.24765 
Chloroform % 1.000 0.838 0.747 0.729 
Ethyl Acetate 0.3156 0.3001 0.2655 0.2673 
Ethyl Acetate 0.3384 0.3652 0.3193 0.3021 
Ethyl Acetate Avg. 0.327 0.33265 0.2924 0.2847 
Ethyl Acetate % 1.000 1.017 0.894 0.871 
Water + IPA Mix 0.3447 0.2932 0.2907 0.2643 
Water + IPA Mix 0.3798 0.3193 0.3239 0.3082 
Water + IPA Mix Avg. 0.36225 0.30625 0.3073 0.28625 
Water + IPA Mix % 1.000 0.845 0.848 0.790 
CTH DA Oil 0.2847 0.2868 0.2864 0.3025 
CTH DA Oil 0.3354 0.3036 0.3424 0.3146 
CTH DA Oil Avg. 0.31005 0.2952 0.3144 0.30855 
CTH DA Oil % 1.000 0.952 1.014 0.995 
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Appendices G. Growth Curves of Microbes with Lignin Compounds  
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Appendices H. Growth Curves of E. coli with CTH Lignin Oil and Fractionations  
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Appendices I. SAS Code and Outputs 

SAS Code for Oils ANOVA 
data OilYield; 
input Block Treatments $ Oil; 
datalines; 
1 A 16.02 
1 B 14.67 
2 A 24.77 
2 B 16.76 
3 A 9.32 
3 B 7.22 
4 A 10.87 
4 B 8.97 
; 
/* DA Lignin to AL Lignin*/ 
proc anova data=OilYield;  
class Block Treatments; 
model Oil=Block Treatments; 
run; 

SAS Output from Oils ANOVA 
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SAS Code for Oils T-test 
data oil2; 
input TRT $ Hydro_Acid_to_Alk; 
datalines; 
Acid  0.0932 
Acid  0.0722 
Alkaline  0.1087 
Alkaline  0.0897 
; 
/* Hydro Acid to Alk... LDAS*/ 
proc ttest data=oil2  
H0=0 SIDES=2; 
class TRT; 
var Hydro_Acid_to_Alk; 
run; 
 
data oil3; 
input TRT $ Pyrolysis_Acid_to_Alkaline; 
datalines; 
Acid 0.1602 
Acid 0.1467 
Alkaline 0.2477 
Alkaline 0.1676 
; 
/* Pyrolysis Acid to Alkaline */ 
proc ttest data=oil3  
H0=0 SIDES=2; 
class TRT; 
var Pyrolysis_Acid_to_Alkaline; 
run; 
 
data oil4; 
input TRT $ DA_Pyro_to_Hydro; 
datalines; 
pyro 0.1602 
pyro 0.1467 
CTH 0.0932 
CTH 0.0722 
; 
/*DA Pyro to Hydro */ 
proc ttest data=oil4  
H0=0 SIDES=2; 
class TRT; 
var DA_Pyro_to_Hydro; 
run; 
data oil5; 
input TRT $ AL_Pyro_to_Hydro; 
datalines; 
pyro 0.2477 
pyro 0.1676 
CTH 0.1087 
CTH 0.0897 
; 
/*AL Pyro to Hydro */ 
proc ttest data=oil5  
H0=0 SIDES=2; 
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class TRT; 
var AL_Pyro_to_Hydro; 
run; 

SAS Output from Oil T-test 
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SAS Code for Lignin, Glucan, and Xylan comparison 

data comp; 
input Lignin $ Lignin_Comparison; 
datalines; 
DA 61.55 
DA 64.11 
AL 54.90 
AL 62.92 
; 
/* DA Lignin to AL Lignin*/ 
proc ttest data=comp  
H0=0 SIDES=2; 
class Lignin; 
var Lignin_Comparison; 
run; 
/*DA Glucan to AL Glucan */ 
data comp; 
input Glucan $ Glucan_Comparison; 
datalines; 
DA 27.37 
DA 27.71 
AL 17.44 
AL 19.82 
; 
/* DA Lignin to AL Lignin*/ 
proc ttest data=comp  
H0=0 SIDES=2; 
class Glucan; 
var Glucan_Comparison; 
run; 
/*DA Xylan to AL Xylan */ 
data comp; 
input Xylan $ Xylan_Comparison; 
datalines; 
DA 6.02 
DA 6.05 
AL 7.08 
AL 8.08 
; 
/* DA Lignin to AL Lignin*/ 
proc ttest data=comp  
H0=0 SIDES=2; 
class Xylan; 
var Xylan_Comparison; 
run; 

SAS Output for Lignin, Glucan, and Xylan comparison 
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