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ABSTRACT OF THESIS 

 

 

EVALUATING SAMPLING STRATEGIES FOR RAINFALL SIMULATION 

STUDIES AND SURFACE TRANSPORT OF ANTIBIOTICS FROM SWINE 

MANURE APPLIED TO FESCUE PLOTS 

 

Antibiotics are commonly used in animal agriculture to treat and prevent diseases 

and promote growth.  Unfortunately, large amounts of antibiotics are not metabolized, 

but instead are excreted in urine and feces.  Rainfall simulation studies were used to 

investigate the transport of the antibiotic oxytetracycline and various constituents in 

runoff and the ability of alum to reduce pollutant transport.  Runoff samples were 

collected at several points during the simulated storm event from each of four treatments: 

control (C), manure only (M), manure and antibiotics (MA), and manure, antibiotics and 

alum (MAA).  Flow-weighted composite samples were created and compared to the flow 

weighted mean concentration (FWMC).  Constituents with concentrations well-above the 

detection limits (E. coli, NH4-N, turbidity, TSS, TOC, and EC) showed a strong 

correlation between flow-weighted composite samples and FWMC.  When constituent 

concentrations were at or near the detection limits, errors associated with the composite 

samples were magnified.  Oxytetracycline concentrations had the strong correlation to E. 

coli, Cl, TOC, TSS, and turbidity suggesting that a BMP effective at trapping sediment or 

particulates may work best for reducing oxytetracycline concentrations in runoff.  Alum 

(1%) did not reduce levels of oxytetracycline in runoff.  It is recommended that higher 

doses of alum be tested. 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION 

Animal agriculture generates over $154 billion in sales annually in the United 

States (USDA, 2009).  Though the number of livestock and poultry operations in the U.S. 

has decreased by 80% since the 1950’s, production has more than doubled (USEPA, 

2013).  Livestock operations are now larger in size and are more geographically 

concentrated in the central portion of the U.S. (Figure 1.1).  Over half of swine facilities, 

for example, are located within one mile of another animal agriculture operation (USDA, 

2001).  Table 1.1 contains top livestock producing states for each livestock category as 

well as total livestock production.  The greatest numbers of animal units (1 animal unit, 

AU, equals 454 kg) are associated with beef cattle with Texas, Missouri and Oklahoma 

producing a combined total of over 9.4 million AUs.  Iowa, North Carolina, and 

Minnesota are the top three swine producing states with nearly 4.8 million AUs.  

California, Wisconsin, and New York are the leading dairy production states, and North 

Carolina, Arkansas and Georgia are the leading poultry production states. Considering 

beef, swine, dairy and poultry together, the largest livestock producing states are Texas, 

Iowa, Nebraska, California, and Kansas; hence four of the top five states are located in 

the central U.S.  

The USEPA (2013) estimated that livestock and poultry operations in the U.S. 

generate over 1.1 billion tons of manure on an annual basis.  High concentrations of 

livestock, as seen in Figure 1.1, means producers must manage large amounts of manure 

oftentimes with insufficient amounts of cropland on which to apply this manure.  Ideally, 

agricultural operations would utilize integrated crops and livestock production methods 

whereby animal manure serves as a fertilizer for nearby croplands.  But because these 

more concentrated livestock operations generate large quantities of manure, and nutrients 

in greater volumes than those required by crops, developing a sound and sustainable 

manure management plan with limited land resources is quite challenging.  This is 

especially true as nutrient management systems shift towards basing manure application 

rates on phosphorus levels rather than nitrogen levels (Higgins et al., 2013).  As noted by 

Eghball and Power (1999), crops require less phosphorus as compared to nitrogen; hence 
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Figure 1.1. Production of Animal Units for All Livestock (Beef, Dairy, Swine, and Poultry) per State (USDA, 2009; USEPA, 2013).
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Table 1.1. Top Producing States for Each Category of Livestock and Total Production. 

State Rank 

Beef Swine Dairy Poultry Total Livestock 

State Total AU
1
  State Total AU State Total AU State Total AU State Total AU 

1 TX 5,259 IA 2,409 CA 2,487 NC 647 TX 11,109 

2 MO 2,089 NC 1,382 WI 1,688 AR 642 IA 5,587 

3 OK 2,063 MN 999 NY          847  GA 594 NE 5,236 

4 NE 1,889 IL 607 PA 748 AL 431 CA 5,235 

5 SD 1,649 IN 486 ID          725  TX 367 KS 4,933 

6 MT 1,522 NE 462 MN 621 MS 356 OK 4,571 

7 KS 1,516 MO 435 TX 546 MN 335 MO 4,179 

8 TN 1,179 OK 367 MI 465 CA 282 MN 3,269 

9 KY 1,166 KS 256 NM 441 IA 279 WI 3,213 

10 AR 947 OH 243 OH 367 MO 260 SD            3,180 

11 FL 942 SD 207 WA 329 VA 203 NC 2,704 

12 ND 930 PA 160 IA 291 SC 201 CO 2,183 

13 IA 904 TX 152 AZ 248 PA 201 MT 2,172 

14 CO 735 MI 141 IN 225 IN 198 AR 2,164 

15 WY 732 CO 141 VT 189 OH   161 KY 2,143 
Source: (USDA, 2009) 
1
AU= 1 animal unit=454 kg of live weight or one beef cattle. Numbers are in 1000’s of AUs. 
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lesser amount of manure should be applied to the land to help prevent water quality 

impairment. 

Presently, manure management systems for large livestock operations are 

designed to store manure in lagoons or pit systems before periodic land application.  And 

while contaminants can enter surface and ground waters through spills and leaks from 

these storage systems, land application of manure is the primary pathway in which 

pollutants enter our nation’s streams, rivers, lakes and estuaries.  Ideally, operators base 

manure application rates on crop requirements of nitrogen and/or phosphorus (USEPA 

2013, NRCS 2012); however, this is not always the case.  Nutrients, pathogens and other 

such constituents not captured in croplands either through plant uptake, soil sorption, or 

the like are transported via runoff to surface waters or infiltrated into shallow ground 

waters (NSTC-CENR 2000; Campagnolo et al., 2002).  Alexander et al. (2008) 

concluded that agricultural sources, largely manure, contributed 70% of the nitrogen and 

80% of the phosphorus found in the Gulf of Mexico.  The authors noted that these 

nutrients, of which Kentucky is a significant contributor, were largely transported to the 

Gulf of Mexico via small and midsized streams.  Currently, Kentucky currently ranks 15
th

 

in the nation in total livestock production and 13
th

 in manure production (USDA, 2009).  

Additionally, Kentucky has over 148,000 km of stream, many of which are first- or 

second-order systems (KDOW, 2010). 

While much research has been conducted on the environmental impacts of animal 

agriculture as it relates to nutrients (Moore and Miller, 1994; Edwards et al., 2000; Smith 

et al., 2001; Penn and Bryant, 2006; Alexander et al., 2008; USEPA, 2013) and 

pathogens (Khaleel et al., 1980;  Mawdsley  et al., 1995; Gerba and Smith, 2005; 

USEPA, 2013), far fewer studies have examined other contaminants such as hormones 

and antibiotics (Kay et al.,  2005; Chee-Sanford et al., 2009; LaShore and Pruden, 2009; 

Kim et al., 2010; DeLuane and Moore, 2013).  Antibiotic use is widespread in animal 

agriculture as a means of combating diseases and infections in order help ensure the meat 

supply is safe for human consumption.  Unfortunately, it has become more common for 

livestock operations to use antibiotics as a preventative tool against illness and as a 

growth additive, particularly in large concentrated animal feeding operations or CAFOs 

where living conditions are crowded (LaShore and Pruden, 2009).  Oftentimes, feed is 
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supplemented with antibiotics to limit nutrient absorption by gastrointestinal microbes 

thus ensuring more nutrients are available for absorption by the animal in order to 

achieve more rapid weight gain (Kumar et al., 2005).  Davis et al. (2006) estimated that 

over 11 million kg of veterinary antibiotics were used for nontherapeutic uses in 2002 

alone.   

Large amounts of these administered antibiotics are not metabolized by livestock 

but instead are excreted in manure.  Tetracyclines, for example, which are one of the 

most commonly used groups of antibiotics due to their broad spectrum applicability, are 

excreted a rate of about 70 to 90 % (Kumar et al., 2005).  Concentrations of antibiotics in 

manure can range from 1-10 mg L
-1

 though concentrations as high as 200 mg L
-1

 have 

been measured (Kumar et al., 2005).  A typical daily dose of antibiotics for adult humans 

ranges from 80 to 6,000 mg depending on the antibiotic and intended treatment (Hirsch et 

al., 1999).  Oxytetracyline is often administered at 1 to 2 g d
-1

 for a typical adult (NLM, 

2005).  The rate of excretion for other types of antibiotics (non-tetracyclines) ranges from 

25-75% (Chee-Sanford et al., 2001).  Table 1.2 contains excretion rates for commonly 

used veterinary antibiotics.  The large rate of excretion for tetracycline is of particular 

concern because it is a widely used antibiotic, and land application of manure has been 

attributed as the primary means by which veterinary antibiotics are introduced into the 

terrestrial and subsequently aquatic environments (Baguer et al., 2000).   

 Because of these and other findings, the U.S. Environmental Protection Agency 

(USEPA) classifies antibiotics as a contaminant of emerging concern (CEC) (USEPA, 

2007).  A CEC is one that is now being detected in the environment and/or is at higher 

than expected levels, meaning it was not previously present in the environment or was 

present at undetectable or very low levels (USEPA, 2007).  The risk that CEC’s pose to 

human health is often unknown as in the case of antibiotics.  Surface and ground waters 

are not routinely tested for antibiotics; therefore their impact on the health of humans, as 

well as other biota, is largely unknown.  Since antibiotics are designed to combat 

bacteria, it is expected that the presence of antibiotics in the soil and water would have a 

negative impact on microorganisms living in these environments (Kay et al., 2005).  The 

primary concern with the wide-spread release of antibiotics into the environment is the 

development of strains of antibiotic-resistant bacteria.  It is feared that the accumulation  
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Table 1.2. Excretion Rates of Commonly used Veterinary Antibiotics. 

Antibiotic 

Amount 

Excreted in 

Urine and 

Feces (%)
1
 

Animal
1,2

 Common Uses
2
 

Tetracycline 80 

Beef, dairy, 

poultry, sheep, 

swine, humans 

Bacterial pneumonia, bacterial 

enteritis, foot rot, jowl abscesses, 

mastitis, growth Promotion 

Chlortetracycline 75 

Beef, dairy, 

swine, poultry, 

sheep 

Bacterial pneumonia, bacterial 

enteritis, foot rot, jowl abscesses, 

mastitis, growth promotion 

Oxytetracycline 80 

Beef, dairy, 

poultry, sheep, 

swine, fish, 

humans 

Bacterial pneumonia, bacterial 

enteritis, foot rot, jowl abscesses, 

mastitis, growth promotion 

Lincomycin 60 
Swine, poultry, 

humans 

Bacterial enteritis, infectious 

arthritis, dysentery, mycoplasmal 

pneumonia, growth promotion 

Tylosin 50-90 
Beef, dairy, 

swine, sheep 

Foot rot, liver abscesses, 

respiratory disease, infectious 

arthritis, growth promotion 

Erythromycin 50-90 

Beef, dairy, 

poultry, sheep, 

swine, humans 

Foot rot, liver abscesses, 

respiratory disease, bacterial 

enteritis, infectious arthritis, 

growth promotion 

Monensin 50-90 Beef, dairy 
Liver abscesses, coccidiosis, 

growth promotion 
Source: Kumar (2005)

1
 and USEPA (2013)

2
 

 

of antibiotics in human-consumed plants and animals may lead to the introduction of 

antibiotic-resistant bacteria into the food and water supply hence threatening human 

health (Kemper, 2007).  Likewise, the presence of antibiotics such as penicillin, which is 

the most commonly reported allergy inducing antibiotic (ACAAI, 2013), in the food and 

water supply could result in potentially fatal allergic reactions (Kummerer, 2003). 

Research into the transport of antibiotics to surface waters via runoff is limited.  

Arikan et al. (2008) sampled streams in a predominately agricultural watershed and 

analyzed the water samples for several different types of antibiotics.  Chlortetracycline 

and oxytetracycline were the most commonly identified antibiotics in the samples with 

concentrations of 0.016 µg L
-1

. The authors concluded that the antibiotics were 
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transported in runoff from nearby manure-amended fields, as no other potential sources 

of antibiotics were identified.  Dolliver and Gupta (2008a) collected runoff samples from 

manure amended land over the course of three years.  Peak antibiotic concentrations of 

0.5, 57.5 and 6.0 µg L
-1

were found for chlortetracycline, monesin, and tysolin, 

respectively.  Dolliver and Gupta (2008a) found the greatest period for antibiotic losses 

occurred during the non-growing season after fall application of manure.  In another 

study, Dolliver and Gupta (2008b) measured peak concentrations of 210, 3175, and 2544 

µg L
-1 

for chlortetracycline, monensin, and tysolin, respectively, in runoff from 

unprotected manure stockpiles suggesting that manure storage is also a significant 

contributor to the presence of antibiotics in the aquatic environment.  Kay et al. (2005) 

spiked liquid hog manure to levels of 18.9 mg L
-1

 for oxytetracycline and 25.6 mg L
-1

 for 

sulphachloropyridazine and applied this mixture to runoff plots.  Runoff samples were 

analyzed for the two antibiotics with peak concentrations determined to be 32 µg L
-1 

for 

oxytetracycline and 415.5 µg L
-1

 for sulphachloropyridazine, which corresponds to a 

mass loss of 0.074% and 0.418%, respectively. This study concluded that overland flow 

has the potential to transport veterinary antibiotics to surface waters.  Davis et al. (2006) 

applied seven antibiotics at concentrations of 1 mg L
-1

 to plots prior to rainfall 

simulation.  Tetracycline concentrations in runoff were determined to be 0.03 µg L
-1

 

which corresponds to a 0.002% antibiotic loss. However, 65% of this loss was associated 

with sediment suggesting that erosion control practices could help reduce antibiotic 

transport. Studies have shown antibiotics at levels of 50 µg L
-1

 for tysolin and 34 µg L
-1 

for chlortetracycline can be toxic to some algal species (Halling-Sørensen, 2000).  While 

it is not known at what levels antibiotics have a significant impact on other aquatic life, 

hormones have been shown to have adverse effects, such as defeminization or 

demasculinization, on fish at levels as low as 10-120 ng L
-1

 (Durhan et al., 2006). 

Only a few studies have examined methods to reduce the transport of runoff to 

surface waters.  Lin (2011) examined three veterinary antibiotics (sulfamethazine, 

tysolin, and enrofloxacin) and found that vegetated buffer strips reduced antibiotic 

transport by 40% for sulfamethazine and 75% for both tylosin and enrofloxacin 

suggesting that vegetated buffer strips can provide reductions in antibiotic transport.  It is 

important to note that the degree of mobility differs between antibiotics.  Sulfonamides, 
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such as sulfamethazine, are more mobile in an aqueous phase than antibiotics such as 

tylosin and enrofloxacin which are more likely to bind to the soil. Tetracyclines also have 

a stronger affinity for binding to the soil (Tolls, 2001).  Other methods from wastewater 

treatment engineering hold promise in reducing antibiotic transport.  Stackelberg et al. 

(2007) found that conventional water treatment methods such as clarification, 

disinfection, and granular activated carbon filtration reduced the concentration of several 

antimicrobials, including erythromycin, linconycine, sulfamethazine, sulfathiazole, and 

sulfamethoxazole, in water from 0.1 µg L
-1

 to levels below detection.  Aluminum sulfate 

or alum, which is a flocculating agent commonly used in wastewater treatment to settle 

out solids, is effective at reducing the transport of phosphorus, hormones, and some 

metals (Edwards and Daniel, 1992; Moore and Miller, 1994; Moore et al., 1998; Edwards 

et al., 1999; Smith et al., 2001; Penn and Bryant, 2006; DeLaune and Moore 2013).  

Smith et al. (2001) used rainfall simulators to observe the surface transport of phosphorus 

and noted an 84% reduction in phosphorus levels following the addition of alum to swine 

manure.  Alum has also been shown to reduce levels of hormones (17β-estradiol) in 

runoff from plots amended with poultry litter by up to 40% (Delaune and Moore, 2013). 

Tetracycline antibiotics bind strongly to manure particles suggesting that a process used 

to flocculate manure particles might reduce the transport of tetracyclines as well.  Based 

on the results by Smith et al. (2001) and DeLaune and Moore (2013), it is possible that 

alum, if used as a manure amendment, could reduce concentrations of antibiotics in 

runoff.  

 Due to the uncontrollability and unpredictability of weather patterns, investigating 

the transport of contaminants in overland flow is challenging.  Hence, rainfall simulation 

studies are often used (Miller, 1987; Bushee et al., 1998; Edwards et al., 1999; Edwards 

et al., 2000; Smith et al., 2001; Sharpley and Kleinman, 2003; Davis et al., 2006; Kim et 

al., 2010).  One challenge with rainfall simulation studies is managing the large number 

of samples generated as runoff samples are typically collected at several points during the 

simulated storm event.  To reduce analysis expenses and better manage sample analysis 

time constraints, a single flow-weighted composite sample is created and analyzed in lieu 

of analyzing each collected sample individually.  It is thought that this single composite 

sample will provide the same constituent values as analyzing multiple samples from a 
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single storm event and computing the flow-weighted mean concentration (FWMC), 

which is a representation of a constituent’s concentration across the entire storm event 

(Agouridis and Edwards, 2003) though the accuracy of this assumption for rainfall 

simulation studies has not been tested. 

1.2 OBJECTIVES 

 Research was conducted to examine the error associated with composite sampling 

and to evaluate techniques antibiotic transport, specifically oxytetracycline, via runoff. 

Rainfall simulators and fescue plots, located at the University of Kentucky’s Maine 

Chance Research Farm, were used to achieve the following objectives: 

1. Determine the error associated creating a single flow-weighted composite sample 

as it relates to rainfall simulation studies. 

2. Evaluate the relationship between oxytetracyline and E. coli, NO3-N, NH4-N, 

PO4, pH, EC, TSS, Cl, TOC and turbidity levels. 

3. Evaluate the effect of aluminum sulfate (alum) as a manure amendment on the 

reduction of oxytetracycline levels in runoff. 

1.3 ORGANIZATION OF THESIS 

 An overview of the research problem and objectives is described in Chapter 1. 

Chapters 2-4 give detailed descriptions of the work done to accomplish the objectives of 

this thesis.  Chapter 5 discusses conclusions of the research, and Chapter 6 describes 

potential future work.  
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CHAPTER 2: COMPARISON OF WATER QUALITY SAMPLING 

TECHNIQUES FOR RAINFALL SIMULATION STUDIES 

2.1 INTRODUCTION 

Increases in discharge can affect water quality constituent concentrations 

differently.  While discharge can have an inverse relationship with dissolved pollutants 

meaning higher discharge rates often result in lower concentrations via dilution, the 

opposite is often seen with other pollutants such as suspended sediments and total metals 

(Rickert, 1985).  To account for this discharge-associated variation, the flow weighted 

mean concentration (FWMC) is often used (Hoos et al., 2000; Agouridis and Edwards, 

2003).  The FWMC is defined as the total mass load of a constituent divided by the total 

flow volume of an event (Huber, 1993; Cooke et al., 2000) and is presented in Agouridis 

and Edwards (2003) as  

     
∫  ( ) ( )  

∫ ( )  
 
∑ (

       
 )(

       
 )   

   

∑ (
       

 ) 
     

 (2.1) 

 

In equation 2.1, the variable c represents concentration, Q represents flow, and t 

represents time.  As the FWMC is a single value that represents the concentration of a 

constituent during a storm event (Agouridis and Edwards, 2003), it is important that this 

value is computed using samples collected throughout the entire storm event to minimize 

error (EPA, 1973; Mueller and Stone, 1998).  Thus while the FWMC reduces a 

constituent’s concentration for a storm event to a single value, it does not reduce the 

number of samples one must analyze, and hence the costs one must incur. 

Creating a composite sample is one method of reducing laboratory costs while 

striving to maintain accuracy (i.e. minimizing error).  With composite sampling, a single 

sample is created by mixing defined portions of discrete samples (USEPA, 1982).  These 

defined portions are based on time (time compositing) or flow (flow-weighted 

compositing).  Discrete samples for time compositing are collected at uniform times, such 

as every 20 minutes throughout the storm event, or at variable time increments 

considering the first flush phenomenon.  With variable time increments, samples are 

collected at closer time increments at the start of the storm in an effort to capture the 
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rising limb and peak of the hydrograph as compared to later in the storm (Harmel and 

King, 2005).  

A number of studies have evaluated the accuracy of composite sampling 

techniques when used to collect samples from streams.  Aulenbach and Hooper (2005) 

collected samples from mountain streams near Atlanta, Georgia using different sampling 

scenarios, including weekly grab samples and flow-weighted and time-weighted samples, 

for storm events. Alkalinity concentrations in the samples were used to predict the error 

of a composite sampling strategy to determine stream loads.  The study concluded 

composite sampling produced a bias of ±0.8% which was within the error associated with 

flow measurements and analytical chemistry.  The study also noted that errors with time-

weighted and flow-weighted composite sampling were dependent on sampling design.  

More frequent and a longer time interval for sampling produced more accurate results.  

Even with some bias, flow-weighted composite sampling produced more accurate results 

than the other sampling techniques, such as a time-weighted approach, which tended to 

underestimate stream loads by 0.5% to 7.6%.  Harmel et al. (2006) explored the 

uncertainty in each stage of water quality data collection: streamflow measurement, 

sample collection, sample storage, and laboratory analysis by compiling water quality 

data on dissolved N and P, total N and P, and TSS, as well as streamflow measurements 

from several other studies.  When looking at the error for sampling strategies, this Harmel 

et al. (2006) found an expected error for flow-weighted sampling of -6% to +17% 

compared to an error associated with grab sampling of ±25% for dissolved constituents 

and ±50% for sediment.  Stone et al. (2000) also examined the differences between flow-

composited, time-composited, and grab sampling methods using the constituents nitrate 

(NO3), ammonia (NH4), and total kjeldahl nitrogen (TKN).  The authors concluded that 

flow-weighting puts a greater emphasis on storm events rather than base flow conditions 

in streams, which could result in an over-prediction of actual stream loadings due to the 

more intensive monitoring that occurs during storm events.  Stone et al. (2000) also noted 

that if a grab sampling strategy is used, samples must be collected frequently, such as at 

least twice a month, and at varying flow rates for data to be representative of actual 

stream loadings.  
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While flow-weighted compositing may over-predict total stream loading, it is 

better for characterizing runoff events.  Harmel and King (2005) sampled sediment, 

nitrate, and phosphate concentrations in twenty storm events in two small agricultural 

watersheds in Texas.  The authors determined that flow proportional sampling resulted in 

an error of ±10% and represented storm loads better than time composited samples. 

Harmel and King (2005) concluded that flow-weighted composite sampling was the 

optimal way to balance data accuracy with limited resources. 

Rainfall simulation studies are another means of investigation into contaminant 

transport that is often used because of the ability to control rainfall amounts and patterns.  

Rainfall simulators have been used to examine nutrient transport (Edwards et al. 1999; 

Edwards et al., 2000; Smith et al.,2001; Sharpley and Kleinman, 2003), veterinary 

pharmaceutical transport (Bushee et al., 1998; Davis et al., 2006; Kim et al., 2010), and 

best management practice effectiveness (Edwards et al. 1999; Smith et al., 2001; Lin et 

al., 2011).  As with storm event sampling in streams, rainfall simulation studies generate 

large numbers of samples as runoff is collected at several points during the simulated 

storm event for multiple treatments and replications.  To reduce analysis expenses and 

better manage sample analysis time constraints, such as with Escherichia coli, oftentimes 

a single flow-weighted composite sample is created and analyzed in lieu of analyzing 

each collected sample individually and then computing the FWMC.  It is hypothesized 

that for rainfall simulation studies a single flow-weighted composite sample will provide 

the same constituent values as the FWMC.   

2.2 MATERIALS AND METHODS 

2.2.1 Study Site 

The study was performed at the rainfall simulation facility at the University of 

Kentucky’s Maine Chance Research Farm (latitude: 38.1164°N; longitude: 84.4903W). 

Edwards et al. (2000) thoroughly described the rainfall simulation facility, but briefly, the 

facility consists of 75 plots with dimensions of 2.4 m by 6.1 m.  Thirty of the plots are 

individual while the remaining 45 are grouped linearly in six sets of five (Appendix A).  

The five plots in each group can be hydrologically separated or combined to create a 

longer flow path of 30.5 m.  The plots have a 3% slope and are planted in Kentucky 31 
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fescue.  The soil underlying the plots is a Maury silt loam (fine, mixed, mesic Typic 

Paleudalf) (NRCS, 2013).  Each plot is bordered with galvanized steel to ensure that 

runoff does not leave the plot but is instead directed to a collection system located at the 

most down-gradient end of the plot.   

2.2.2 Plot Selection 

In an attempt to minimize the variation associated with possible plot differences, 

curve numbers (CN) were computed for 48 plots prior to the start of the study, as 

described in Appendix A.  Curve numbers were calculated for each of the thirty 

individual plots as well as the uppermost and middle plots (sections) of the five plot sets.  

Adjacent plots in the sets were not used to ensure rainfall from the simulators did not spill 

over (i.e. edge effect).   Based on these results, sixteen plots were identified for use in the 

study (Table 2.1).  Plots used in this study had a mean curve number of 83 ±4. 

 

Table 2.1. Curve Numbers (CN) of Plots Used in the Study. 

Plot CN Plot CN 

B1 82 C5 89 

B4 82 C6 77 

B5 88 D1 86 

B6 90 D5 84 

B10 82 L1 84 

C2 89 L3 79 

C3 82 N2 77 

C4 80 N9 81 

 

2.2.3 Treatments 

The treatments consisted of control (C), swine manure (M), swine manure plus an 

antibiotic (MA), and swine manure plus an antibiotic and alum (MAA).  The manure was 

obtained from a hog facility in Bardstown, Kentucky.  The facility did not administer 

antibiotics to the hogs which were the source of the manure.  The manure had a slurry 

consistency, and it was stored in a pit prior to collection for this study.  Collected manure 

was stored in a 1,040 L polyethylene intermediate bulk container (IBC) tote at the 

University of Kentucky Biosystems and Agricultural Engineering Department.   For 
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mixing and transport to the study site, 55 L of manure was then transferred to a 208 L 

plastic barrel.  One plastic barrel was used for each treatment to prevent cross-

contamination.   

For the MA and MAA treatments, the antibiotic oxytetracycline (300 mg mL
-1

), 

which was sold under the brand name Noromycin 300 LA (Norbrook, Lenexa, KS), was 

added the manure in each respective barrel to produce a final concentration of 20 mg L
-1

.  

For the MAA treatment, liquid alum (Al2SO4, 48.5% solution) was added to the manure 

in the respective barrel to produce a final concentration of 1.2 g L
-1

 (Bushee-Bullock, 

1999).  Uniform mixing was achieved using a custom mixer attached to a cordless drill.  

The custom mixer, which was constructed in the Biosystems and Agricultural 

Engineering Department, was approximately 1.5 m in length and had two 30 cm long fins 

at a distance of 0 cm and 30 cm from the bottom.  Once thoroughly mixed,the manure 

mixtures (M, MA, or MAA) were applied to the respective plots at an application rate of 

3 L m
-2

, immediately prior to the start of simulated rainfall. This application rate 

corresponded to 45L per plot. The target application rate was 112 kg N ha
-1

 as 

recommended by AGR-1 (UK, 2012) and as done in Bushee-Bullock (1999).  However, 

based on laboratory results from the University of Kentucky Regulatory Services, the 

actual application rate was about 150 kg N ha
-1

.    Treatments, which were part of a larger 

study into antibiotic transport, were randomly assigned to the sixteen plots (Table 2.2).   

 

Table 2.2. Assignment of Treatments to Plots. 

Treatment
1
 Plots 

C C2, C6, D1
2
, D5 

M B4, B8
3
,C5, L1 

MA B6, B10, C3, L3 

MAA B1, B5, C4, N9 
1
 C=control; M =manure only; MA=manure plus antibiotics; MAA=manure plus antibiotics and alum 

2
D1 was not used in the E. coli analysis due to sampling error. 

3
B8 was not used in the analysis because it did not produce runoff 

 

Three days prior to manure application, each plot was mowed resulting in a sward 

height of 10 cm.  Immediately prior to manure application, soil samples were collected 

from each plot and manure samples were collected from the barrel for each treatment.  
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Soil samples were analyzed for P, K, Ca, Mg, Zn, pH, buffer pH, total nitrogen, and soil 

texture at the University of Kentucky Regulatory Service laboratory while manure 

samples were analyzed for N, P, K, Ca, Mg, Zn, Cu, Fe, and Mn.  

2.2.4 Rainfall 

Rainfall simulation began 30 minutes following manure application in order to 

represent a worst-case scenario.  Simulated rainfall was applied to the plots at a rate of 

102 mm hr
-1

 and continued until 30 minutes following the start of runoff, after which 

rainfall was stopped.  Appendix A contains the calibration curves for the rainfall 

simulators used in the study. 

2.2.5 Runoff Sample Collection 

Runoff samples were collected in 1 L autoclaved polyethylene bottles at intervals 

of 2, 4, 6, 8, 16, 24 and 30 minutes after the start of runoff.  A stopwatch was used to 

record the time required to fill the sample bottle at each time interval.  Using the time (t) 

required to fill a sample bottle along with the volume (V) of each sample, flow rates (Q) 

for each time interval were computed.   

Composite samples were made by placing a defined volume of sample (SV) from 

each time interval into a single bottle.  The SV for each of the seven time intervals was 

calculated using equation 2.2. 

         
                  

            
       

 
 
(       )  

∑ (
 
 
(       )  )

 
   

 

 

(2.2) 

The variable Vcomp represents the volume of the composite sample.  Appendix B contains 

the data used to create the composite samples.  Because of the need to analyze water 

samples within 24 hours when measuring E. coli, two composite samples were created.  

One was used to analyze E. coli levels while the other was used for the remaining 

constituents.  Following collection samples were placed in coolers and transported to the 

University of Kentucky Biosystems and Agricultural Engineering Department.  Samples 

were stored at 4°C until analyzed. 
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 Flow weighted mean concentration samples were computed for each constituent 

and each plot using equation 2.1.  All of the individual samples (e.g. 2, 4, 6, 8, 16, 24, 

and 30 minutes after the start of runoff) for simulated rainfall event were used. 

2.2.6 Laboratory Analysis 

 Samples were analyzed for E. coli, oxytetracycline, NO3-N, NH4-N, 

orthophosphate (PO4), pH, electrical conductivity (EC), total suspended solids (TSS), 

chloride (Cl), total organic carbon (TOC) and turbidity.  Chemical analyses for NO3-N, 

NH4-N, PO4, Cl, and TOC were done at the University of Kentucky’s Forestry 

Department using a Bran-Luebbe Auto-Analyzer III (Norderstedt, Germany) for the 

analysis of NO3-N and NH4-N; a Dionex Ion Chromatograph (Sunnyvale, California) for 

the analysis of PO4-P, Cl, and NO2-N; and a Shimadzu Total Orgainic Carbon Analyzer 

(Kyoto, Japan) for the analysis of TOC.  Analyses of samples for E. coli, oxytetracycline, 

pH, EC, TSS, and turbidity were performed at the Biosystems and Agricultural 

Engineering Department using an EcoTestr- EC Low (Vernon Hills, Illinois) for analysis 

of EC; a Thermo Electron Corporation Orion 520A+ (Waltham, Massachusetts) for 

analysis of pH; a LaMotte 2020 turbidimeter (Chestertown, Maryland) for analysis of 

turbidity; and a Sequoia Scientific LISST-Portable|XR (Bellevue, Washington) for the 

analysis of TSS.  E. coli analyses were performed within 6 hours of sample collection 

using IDEXX Laboratories Coliert-18 (Westbrook, Maine) (Appendix C).  All analyses 

were conducted per standard methods (APHA et al., 1998).  If a constituent concentration 

was below the detectable limit, a value of half the detectable limit was used (USEPA, 

1991). 

2.2.6.1 Antibiotic Analysis 

Samples were analyzed for antibiotics using a methodology developed in the 

Biosystems and Agricultural Engineering Department by Dr. Manish Kulshrestha.  

Appendix D contains a summary of that methodology.  The purpose of the methodology 

was to concentrate the level of antibiotics in the sample for better detection.  Briefly, each 

sample was centrifuged in Thermo Scientific Survall Legend XTR Centrifuge (Waltham, 

Massachusetts) at 3,500 rpm for 20 minutes.  Then, 45 mL of supernatant was pipetted 

into a 50 mL glass test tube. The test tube was covered with a kimwipe and placed in a SP 
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Scientific VirTis Wizard 2.0 lyophilzer (Gardiner, New York) until dry (approximately 3 

days).  The dry residue was dissolved in 900 µL of 50% methanol solution resulting in a 

50x concentration.  The solution was transferred to microcentrifuge tubes and centrifuged 

with a Fisher Scientific Marathon 21000 (Waltham, Massachusetts) at 4,000 rpm for 10 

minutes.  Then, 100 µL of the concentrated solution was spiked with 100 µL of a 2 µg 

mL
-1

 oxytetracycline solution resulting in a 25x greater concentration of oxytetracycline 

as compared to the original sample.  This step was done in order to develop a more 

defined peak on the HPLC.    

Analytes within a 20 µL sample volume were separated using a Dionex Ultimate 

3000 HPLC with an Acclaim 120 (C18) column (Sunnyvale, California) along with an 

Ultimate 3000RS Variable Wavelength detector (Sunnyvale, California) which was set to 

a wavelength of 290 nm (Kay et al., 2005).  Separation in the HPLC was accomplished 

using a gradient mobile phase of 0.5% acetic acid in methanol and 0.5% acetic acid in 

deionized water; a pumping rate of 0.400 mL min
-1

 was used.  Four standards (10, 20, 

100 and 200 µg mL
-1

) were used for calibration.  

2.2.7 Data Analysis 

 Constituent concentrations from FWMC (x) and flow-weighted composite (y) 

samples were compared using linear regression models (y=x) in SigmaPlot 12.0, as 

described in Agouridis and Edwards (2003).  Student’s t-tests were performed to test the 

null hypothesis that the slope equaled one, since the null hypothesis tested in the linear 

regression model was that the slope equaled zero (Zar, 1999).  The linear regression 

model tested the null hypothesis that the intercept equaled zero.  All data were ln 

transformed to normalize the data. 

2.3 RESULTS AND DISCUSSION 

Results indicated that constituent concentrations for FWMC and flow-weighted 

composite samples (slopes) did not differ for ln E. coli, ln NO3-N, ln NH4-N, ln PO4, ln 

pH, ln EC, ln TSS, ln TOC, and ln turbidity (Table 2.3, Figures 2.1-2.9). Strong 

relationships (R
2
 values >0.9) were seen for ln E. coli, ln NH4-N, ln EC, ln TSS, ln TOC 

and ln turbidity. 
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Table 2.3. Results of Regressing FWMC vs. Flow-Weighted Composite Concentration. 

Constituent
1
 Slope Intercept R

2
 

ln E. coli 1.012 -0.383
R
 0.995 

ln oxytetracycline
2
 0.617

 R
 1.356

R
 0.641 

ln NO3-N 0.792 -1.655
R
 0.448 

ln NH4-N 0.898 -0.044 0.962 

ln PO4 0.931 -1.039 0.716 

ln pH 1.018 -0.074 0.655 

ln EC 0.976 0.174 0.956 

ln TSS 1.000 -0.038 0.978 

ln Cl
- 3

 1.292
 R

 -0.924
 R

 0.964 

ln TOC 1.003 0.224 0.911 

ln turbidity 1.099 -0.680
 R

 0.952 
1
Null hypothesis that the slope equaled one and the intercept equaled zero for the linear regression models.  

The superscript R indicated the null hypothesis was rejected at the α=0.05 level of significance. 
2
All values included.  If  C2 is removed, slope=0.803, intercept=0.635, R

2
=0.688; null hypotheses, for slope 

and intercept, accepted. 
3
All values included.  If B6 and C5,  are removed, slope=1.137, intercept=-0.438, R

2
=0.907; null 

hypotheses, for slope and intercept, accepted. 

 

Constituent concentrations for FWMC and flow-weighted composite samples 

differed for only two of the evaluated constituents: ln oxytetracylcine and ln Cl
-
.  Figures 

2.10 and 2.11 show the results of regressing values of flow-weighted composite sampling 

against FWMC for these two constituents.  For ln oxytetracycline, flow-weighted 

composite sampling was greater than the FWMC at lower levels (ln oxytetracycline < 2 

μg L
-1

).  As seen in Figure 2.10, one plot largely accounted for this variation.  For one C 

plot (C2, refer to Appendix A), four of the seven samples had non-detectable 

oxytetracycline values, plus, these four samples accounted for nearly 93% of the runoff.  

By removing this sample from the data set, values for FWMC and flow-weighted 

composite sampling do not significantly differ (slope=0.803, intercept=0.635, R
2
=0.688). 
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Figure 2.1. Comparison of FWMC and Flow-weighted Composite for ln E. coli.
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Figure 2.2. Comparison of FWMC and Flow-weighted Composite for ln NO
3
.
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Figure 2.3. Comparison of FWMC and Flow-weighted Composite for ln NH4.
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Figure 2.4. Comparison of FWMC and Flow-weighted Composite for ln PO4.
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 Figure 2.5. Comparison of FWMC and Flow-weighted Composite for ln pH.
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Figure 2.6. Comparison of FWMC and Flow-weighted Composite for ln EC.
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Figure 2.7. Comparison of FWMC and Flow-weighted Composite for ln TSS.
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Figure 2.8. Comparison of FWMC and Flow-weighted Composite for ln TOC.



 

27 

 

FWMC ln Turbidity (NTU)

0 1 2 3 4 5 6 7

F
lo

w
-w

e
ig

h
te

d
 C

o
m

p
o

s
it
e

 ln
 T

u
rb

id
it
y 

(N
T

U
)

0

1

2

3

4

5

6

7

1:1 line

 

 

Figure 2.9. Comparison of FWMC and Flow-weighted Composite for ln Turbidity.
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Figure 2.10. Comparison of FWMC and Flow-weighted Composite for ln 

Oxytetracycline.



 

29 

 

FWMC ln Cl (mg L
-1

)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

F
lo

w
-w

e
ig

h
te

d
 C

o
m

p
o

s
it
e

 C
l-  (

m
g

 L
-1

)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1:1 line

 

 

Figure 2.11. Comparison of FWMC and Flow-weighted Composite for ln C1.
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The differences between the flow-weighted composite and FWMC values at these 

low levels (ln oxytetracycline < 2 μg L
-1

) may be due in part to (1) the error associated 

with measuring the antibiotic levels, and (2) the magnification of this error when a large 

number of samples from the runoff event have low to non-detectable oxytetracycline 

levels, particularly if those samples are associated with relatively high proportions of 

flow.  Measuring antibiotics in water samples is challenging as antibiotics concentrations  

are often low and numerous factors such as solubility, polarity, pH, presence of chlorine, 

and organic matter can interfere with extraction and analysis (Lindsey et al., 2001; Yang 

et al., 2005; Ye et al., 2007).  Such factors affect the amount of antibiotic recovered, and 

hence error.  For tetracylcines, Yang et al. (2005) noted recovery rates of about 80% from 

wastewater treatment plant influent and effluent with decreased recovery (~5%) 

associated with higher levels of organic matter or TOC.  With their methodology, the 

authors noted accuracies ranging from -9.5 to 13.2% and precisions, relative to standard 

deviations, of 7.6 to 15.5%; no tetracycline concentration dependence with recovery 

precision was found. While the accuracy and precision of the antibiotic extraction and 

analysis methodology used in this study was not specifically examined, results of the 

calibration curves, where defined amounts of antibiotic were added to deionized water 

and measured, indicate the procedure works well under these controlled conditions.  

Challenges were noted with achieving peak separations when samples originated from 

plots containing manure. Since manure contains many organic contaminants, it was 

difficult to separate the oxytetracyline peak from the peaks created by the other organic 

contaminants at low levels.  A similar lyophilization technique, as used in this study, was 

described by Hirsch et al. (1998).  The authors found oxytetracyline recoveries average 

108% for spiked spring water, but decreased to 49% in the presence of high organic 

matter.   

Also, as seen in equation 2.1, samples for which no (or very little) oxytetracycline 

was detected do not contribute (or significantly contribute) to the FWMC.  For the C 

plots, 11 samples out of 28 or nearly 36% had oxytetracycline values <2 μg L
-1

.  With the 

M plots, 11 samples out of 28 or nearly 40% had oxytetracycline values <2 μg L
-1

.  

However, these non-detect samples accounted for 31 and 51% of the flow with the C and 

M plots, respectively.  Hence, it is quite possible, at such low levels, that the subsamples 
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collected to form the flow-weighted composites could have low but measureable levels of 

oxytetracycline, particularly considering the potential error of the antibiotic extraction 

and analysis methodology used in this study.   

With regards to ln Cl, the opposite trend was found with oxytetracycline.  FWMC 

and flow-weighted composite values were quite similar at values <4.0; however at values 

>4.0, flow-weighted composite sampling over-predicted the FWMC.  These higher 

FWMC values occurred at plots B6 (MA), and C5 (M), which both produced runoff in 

about six minutes or less (only one other plot produced runoff as quickly, B5 (MAA)).  It 

is possible that the quicker response rates at these two plots influenced Cl transport, but 

why this would result in differences between FWMC and flow-weighted composite 

values is not known.  If the data points for these two plots are removed, then values for 

FWMC and flow-weighted composite sampling do not significantly differ (slope=1.137, 

intercept=-0.438, R
2
=0.907).  

A similar issue can be seen with NO3-N and PO4 (Figures 2.2 and 2.4) as with 

oxytetracycline. While the FWMC and flow-weighted composite concentrations were 

statistically the same for these constituents, the relationship was not very strong 

(R
2
=0.382 for NO3-N and 0.730 for PO4). Several samples showed concentrations below 

detectable limits for at least one of these constituents which could account for the error 

associated with these constituents.    

2.4 CONCLUSIONS 

A strong correlation was found between FWMC and flow-weighted composite 

concentrations for the majority of constituents analyzed including ln E.coli, ln turbidity, 

ln TOC, ln TSS, ln NH4-N, and ln EC.  All of these constituents had values well above 

the detection limits.  The parameter ln E.coli, which can be quite expensive and time 

consuming to test for depending on the number of dilutions needed, exhibited the 

strongest correlation (R
2
=0.995).  When samples contained constituent concentrations 

close to the detection limits, larger errors were noted with the flow-weighted composite 

samples such as seen with PO4, NO3-N, and oxytetracycline.  These findings suggest that 

the flow-weighted composite sampling technique is more reliable for higher constituent 

concentrations as compared to lower ones that are near the detection limits of the 
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analytical procedures.  The precision of the oxytetracycline analysis technique used in 

this study coupled with the low levels of oxytetracycline found in water samples could 

account for the error in these flow-weighted composite samples.  The reason for 

differences between the FWMC and flow-weighted composite concentrations, which 

were more prominent at higher Cl concentrations, was not known.  

The analysis of water quality constituents can be time-consuming and cost 

prohibitive.  For this study, 112 individual samples and 16 composite samples were 

analyzed at a cost of approximately $5,125 for the individual samples and $736 for the 

composite samples.  Flow-weighted composites can be a cheaper option for water quality 

sampling, without sacrificing the quality of data for many constituents.  However, when 

constituent concentrations are close to or below detection limits, errors in flow-weighted 

composite samples can be magnified, especially at higher flows.  Thus in cases where 

constituent concentrations are low, it is recommended that FWMC are used, if possible, 

to minimize error. 
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CHAPTER 3: RELATIONSHIPS BETWEEN OXYTETRACYCLINE AND 

OTHER WATER QUALITY CONSTITUENTS 

3.1 INTRODUCTION 

Veterinary antibiotics have a variety of uses in animal agriculture, the main 

purpose being the treatment of diseases and infections.  Oftentimes though, antibiotics are 

used for sub-therapeutic reasons such as disease prevention and growth promotion via 

increased feed efficiency.  Antibiotics can increase the absorption of feed by inhibiting 

bacteria, thereby creating a higher feed conversion ratio and more rapid weight gains 

(Kumar et al., 2005).  Because of these benefits, concentrated animal feeding operations 

(CAFOs) administer antibiotics to livestock through feed, water injections, and/or 

external applications in order to offset the negative effects that crowded living conditions 

have on livestock health.  While the use of veterinary antibiotics is not well documented, 

the USEPA (2013) estimates that 60-80% of livestock and poultry routinely receive 

antibiotics.  For example, a 1996 survey conducted by the USDA revealed that 93% of 

hogs were administered antibiotics at some point during the grower/finisher period with a 

significant portion (25%) receiving higher than recommended doses (Dewey et al., 1997).  

Several classes of antibiotics are approved for use in livestock with tetracyclines and 

ionophores accounting for 70% of all livestock and poultry antimicrobials (USEPA, 

2013). 

Unfortunately, significant portions of antibiotics administered to livestock are not 

metabolized by the animal but instead are excreted in urine and feces.  Antibiotics are 

excreted at rates of 30-90%, and the form that is excreted is virtually unchanged from the 

parent compound (Sarmah et al., 2006).  Concentrations of antibiotics have been found in 

manure ranging from trace amounts to 200 mg L
-1

 (Kumar et al., 2005).  One of the most 

commonly used classes of antibiotics, tetracyclines, are excreted at rates as much as 70-

90%.  The land application of manure, or even the direct deposition of manure on 

pasturelands and rangelands via grazing livestock, has thus become the primary pathway 

in which veterinary antibiotics enter the environment (Baguer et al., 2000).   It is 

estimated that 50% of surface waters contain antibiotics (Koplin et al., 2002). 

Campagnolo et al. (2002) found antibiotics in 31% of surface and groundwater samples 
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near swine farms and 67% of surface and groundwater samples collected on or adjacent 

to poultry farms.  While sampling streams in an agricultural watershed dominated by 

poultry production, Arikan et al. (2008) found that tetracyclines (chlortetracycline and 

oxytetracyline) were the two most commonly identified antibiotics with concentrations of 

0.016 µg L
-1

.  The authors concluded the antibiotics were transported via runoff from 

nearby manure-amended fields, as no other potential sources of antibiotics were 

identified in the watershed. While it is not known at what levels antibiotics have a 

significant impact on aquatic life, hormones levels as low as 10-120 ng L
-1

 have been 

shown to have adverse effects such as defeminization or demasculinization in fish 

(Durhan et al., 2006). 

 While many antibiotics are soluble in water, others bind to soil particles and are 

transported with eroded sediments, while some remain in the soil profile. The method of 

transport varies with the physical and chemical properties of the antibiotic, such as 

solubility and attraction to soil particles (Sarmah et al., 2006).  The attraction to manure 

or soil particles is given by the partition coefficient, Kd, which is a ratio of a chemical 

sorbed to soil to the amount which remains in solution (Brady and Weil, 2008) and can 

range in values from 0.6 to 6,000 for different antibiotics (Tolls, 2001).  Macrolide 

antibiotics, like tysolin, are highly soluble (5 g L
-1

) (Chee-Sanford et al., 2009) indicating 

that such antibiotics are relatively hydrophilic (e.g. water loving).  However, tysolin has a 

Kd value between 8.3-240 (Tolls, 2001), suggesting that mobility may be limited to 

transport largely by soil.  Sulfamethazine, on the other hand, has a lower solubility in 

water (0.6 g L
-1

) (Chee-Sanford et al., 2009) coupled with a very low Kd (4.9) (Tolls, 

2001) thus making it more susceptible to transport via water.  Though tetracycline 

antibiotics have moderate solubilities (0.6-1.7 g L
-1

), they have extremely high Kd values 

(282-2,608) thus making them relatively immobile in water.  

Due to the high excretion rates and recorded presence of antibiotics in surface 

waters, the USEPA (2007) has identified antibiotics as a contaminant of emerging 

concern (CEC).  A CEC is a contaminant that is now being detected in the environment 

and/or is at higher than expected levels, meaning it was not previously present in the 

environment or was present at undetectable or very low levels.  Plus, as is the case with 

antibiotics, the impact of their presence in the environment on human health is not well-
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known as research in this area is quite sparse.  In evaluating ecological impacts, Baguer 

et al. (2000) found that two antibiotics, oxytetracyline and tylosin, exhibited low levels of 

toxicity to soil fauna and moderate levels of toxicity to aquatic invertebrates.  Thus, the 

potential exists for these organisms, particularly bacteria, to develop a survival response 

and hence develop a resistance to antibiotics.  Mckeon et al. (1995) collected water 

samples from 44 untreated, rural, private groundwater wells over the course of three 

years.  Bacteria samples were isolated and tested for resistance to several antibiotics. 

Over 250 coliform and non-coliform bacteria strains were isolated, with 90% showing 

resistance to at least one antibiotic and 78% demonstrating multiple antibiotic resistances. 

Of the bacteria isolated, 32% were resistant to tetracyclines.  And while antibiotic 

resistant bacteria have limited viability outside of the gastrointestinal tract of livestock, 

the potential exists for such bacteria to transfer the genes for antibiotic resistance to other 

bacteria.  Chee-Sanford et al. (2001) examined the dispersion of antibiotic resistant genes 

in bacteria that originated from a swine waste storage lagoon.  The authors found 

tetracycline resistant genes in bacteria sampled from groundwater wells more 250 m 

downstream of the swine facility.  

One means of reducing antibiotics in waterbodies is via source reduction whereby 

fewer antibiotics are administered to livestock.  For example, the Food and Drug 

Administration is beginning to work with pharmaceutical companies to voluntarily 

modify labeling on antibiotics such that those used to treat human infections would not be 

labeled for use for growth promotion in livestock (Jalonick, 2013).  However, since 

antibiotics are an important component of animal agriculture, a complete ban on their use 

for growth promotion is unlikely, particularly in the near future.  McEwen and Fedorka-

Cray (2002) stated that such a ban could have unwanted consequences such as decreased 

motivation by pharmaceutical companies for new drug development, reduced livestock 

production efficiencies, and the increased therapeutic uses as the rate of infectious 

diseases is likely to rise.  Another concern is that banning antibiotic use for growth 

promotion could be extremely costly to the industry.  Brorsen et al. (2002) estimated that 

such a ban would result in an annual loss of $242.5 million for the industry.  Thus, with 

the increased presence of antibiotics in the environment coupled with the unlikelihood of 

a substantial decrease in antibiotic use in livestock, determining ways to reduce antibiotic 
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transport in the environment has become more critical.  The first step in reducing 

antibiotic transport is gaining a better understanding how antibiotics behave in the natural 

environment.  Such knowledge can aid in the development and/or selection of best 

management practice (BMP) for reducing antibiotic transport to waterbodies.   

Presently, several antibiotics are approved for use in both humans and livestock.  

Oxytetracycline, because of its use in all types of livestock – it is a registered growth 

promoter for cattle and swine in the U.S. (Sarmah et al., 2006) - as well as it use in 

humans, was selected for this study.  Oxytetracylcine has solubility in water of 1,000 mg 

L
-1

 , which is less soluble than other commonly used antibiotics such as tylosin (5 g L
-1

) 

or penicillin (4 g L
-1

) (Chee-Sanford et al., 2009).  The objective of this study was to 

compare the concentrations of oxytetracyline in simulated runoff to those of other 

constituents to determine whether oxytetracycline behaves more like a dissolved (e.g. 

NO3) or particulate (e.g. TSS) constituent.  The results of this study could provide insight 

on which BMPs are likely most suitable for evaluation in reducing antibiotic transport to 

surface waters. 

3.2 MATERIALS AND METHODS 

3.2.1 Study Site 

 Rainfall simulators and fescue runoff plots at the University of Kentucky’s Maine 

Chance Research Farm (latitude: 38.1164°N; longitude: 84.4903W) were used for this 

study. Plots (2.44 m by 6.10 m) were constructed on Maury silt loam (fine, mixed, mesic 

Typic Paleufalf) (NRCS, 2013) at a 3% slope as described by Edwards et al. (2000).  

Plots were planted with Kentucky 31 fescue and bordered with galvanized steel to ensure 

runoff stayed on the plots during simulation. Each plot was equipped with a gutter that 

diverted runoff into a PVC pipe that then discharged it into a sump where samples were 

collected.  A wood cover was placed over each gutter during simulation to ensure only 

runoff was collected.  

3.2.2 Plot Selection 

Curve numbers (CN) were computed for each plot in May 2013, as described in 

Appendix A.  Twelve plots with similar CNs were selected for this study.  These plots 
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and their corresponding CNs are provided in Table 3.1. Plots selected for this study had a 

mean curve number of 83 ±4. 

3.2.3 Experimental Treatments 

 Manure was obtained from feeder pigs at a private hog farm in Bardstown, 

Kentucky.  The farm had not administered antibiotics to the hogs since their birth.  

Manure, which had a slurry consistency, was stored in a pit before collection.  Manure 

was transported to and stored in a 1,041 L polyethylene intermediate bulk container 

(IBC) tote at the University of Kentucky Biosystems and Agricultural Engineering 

Department.  Three treatments were randomly assigned to the plots. The treatments 

consisted of a control (manure was not applied) (C), manure only (M), and manure and 

antibiotics (MA).  Table 3.2 details which treatments were assigned to which plost. 

Manure (55 L) was placed in separate 208 L barrels for each treatment the night before 

each application.  Note that one plastic barrel was used for each treatment to prevent 

cross-contamination.   

 

Table 3.1. Curve Numbers of Plots Used in the Study. 

Plot CN Plot CN 

B4 82 C6 77 

B6 90 D1 86 

B10 82 D5 84 

C2 89 L1 84 

C3 82 L3 79 

C5 89 B8 81 

 

Table 3.2. Treatment Associated with Each Plot. 

Treatment
1
 Plots 

C C2, C6, D1
2
, D5 

M B4, B8
3
, C5, L1 

MA B6, B10, C3, L3 
1
C=control, M=manure only, and MA=manure and antibiotics. 

2
D1 was not used in the E. coli analysis due to sampling error. 

3
B8 was not used in the analysis because it did not produce runoff 
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Commercially available, injectable antibiotics (Noromycin 300 LA, Norbrook, 

Lenexa, KS) were obtained from the local feed store.   The antibiotics contained 300 mg 

of oxytetracycline per mL in suspension. To each manure container, 3.67 mL of 

oxytetracycline suspension was injected, spiking the manure to an antibiotic 

concentration of 20 mg L
-1

 of manure.  Uniform mixing was achieved using a custom 

mixer attached to a cordless drill.  The custom mixer, which was constructed in the 

Biosystems and Agricultural Engineering Department, was approximately 1.5 m in length 

and had two 30 cm long fins at a distance of 0 cm and 30 cm from the bottom.  Manure 

was applied to the M and MA plots, with an application rate of 3 L m
-2

, immediately 

prior to the start of simulated rainfall. This application rate corresponded to 45 L per plot, 

as previously done by Bushee-Bullock (1999).  The target application rate was 112 kg N 

ha
-1

 as recommended by AGR-1 (UK, 2012) and as done in Bushee-Bullock (1999).  

However, based on laboratory results from the University of Kentucky Regulatory 

Services, the actual application rate was about 150 kg N ha
-1

.   Plots were mowed to an 

approximate sward height of 10 cm within three days before manure application. Soil 

samples and manure samples were collected for each plot immediately before manure 

application. Soil and manure samples were analyzed at the University of Kentucky 

Regulatory Service Laboratory (Appendix E). Soil samples were analyzed for P, K, Ca, 

Mg, Zn, pH, total nitrogen, and soil texture while manure samples were analyzed for N, 

P, K, Ca, Mg, Zn, Cu, Fe, and Mn.  Soil moisture was determined at the Biosystems and 

Agricultural Engineering Department.  

3.2.4 Rainfall 

 Rainfall simulators were programmed to produce a constant rainfall of 102 mm 

hr
-1 

(refer to Appendix A for calibration curves).  To represent a worst-case scenario, 

rainfall simulation began 30 minutes after manure application and continued until 30 

minutes after runoff began. Time to runoff was recorded for each plot.  

3.2.5 Runoff Sample Collection 

Runoff samples were collected from the PVC pipe attached to the gutter at 

intervals of 2, 4, 6, 8, 16, 24 and 30 minutes after runoff began. Two 1-L samples were 

collected in clean, autoclaved polyethylene bottles at each time interval. Samples were 
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collected for 60 seconds or until the bottle was filled, whichever came first.  The time 

required to fill each bottle and the bottle’s weight were recorded.  An average tare weight 

was obtained for all bottles prior to sample collection. These values were used to create 

two flow-weighted composite samples for each plot. One sample was created for 

bacterial analysis while the other was used for the remaining constituents.  The data 

collected and volumes of each timed sample were used to create the composite samples 

(Appendix B). 

3.2.6 Laboratory Analysis 

 All eight samples collected from each plot (seven timed intervals and one 

composite) were tested for the following constituents: E. coli, oxytetracycline, NO3-N, 

NH4-N, PO4-P, pH, EC, TSS, Cl, TOC and turbidity.  Samples were stored at 

approximately 4°C until analysis. The University of Kentucky’s Forestry Department 

analyzed samples for NO2-N, NO3-N, NH4-N, PO4-P, Cl, and TOC.  A Bran-Luebbe 

Auto-Analyzer III (Norderstedt, Germany) was used for the analysis of NO3-N and NH4-

N. A Dionex Ion Chromatograph (Sunnyvale, California) was used for PO4-P, Cl, and 

NO2-N.  Total organic carbon (TOC) was analyzed using a Shimadzu Total Orgainic 

Carbon Analyzer (Kyoto, Japan). 

 Analysis for E.coli, oxytetracycline, pH, EC, turbidity and TSS occurred at the 

Biosystems and Agricultural Engineering Department.  E.Coli analysis was conducted 

within 6 hours of sample collection. Coliert-18 was purchased from IDEXX laboratories 

(Westbrook, Maine).  Each sample from plots receiving manure was diluted three times 

using sterile deionized (DI) water and buffer water.  Instructions for buffer water 

preparation and dilution can be found in Appendix C.  Samples from control plots were 

only diluted once.  All dilutions were analyzed for E.coli by dissolving one packet of 

Coliert-18 and two drops of anti-foaming agent in the sample.  The samples were poured 

into a Quanti-Trays*/2000 and sealed using an IDEXX Quanti-Tray* Sealer.  Trays were 

placed in an incubator at 35°C±0.5°C for 18-22 hrs.  A UV-light was used after 

incubation to determine the number of cells that fluoresced and turned yellow, indicating 

the presence of E.coli.  Software provided by IDEXX was used to determine the most 
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probable number of E.coli in each sample based on the number of cells that were 

positive. Averages of the values for each dilution of each sample were computed.  

An EcoTestr-EC Low (Vernon Hills, Illinois) was used for EC analysis. A 

Thermo Electron Corporation Orion 520A+ (Waltham, Massachusetts) was used for pH 

determination and a LaMotte 2020 turbidimeter (Chestertown, Maryland) was used for 

turbidity.  If the sample was too turbid, a 1/10 dilution was done by adding 1 mL of 

sample to 9 mL of DI water.  TSS analysis was conducted using a Sequoia Scientific 

LISST-Portable|XR (Bellevue, Washington).  Samples (175 mL) were separately added 

to the mixing chamber and the mixer turned on.  If sample was to turbid, 100 ml was 

removed and the remaining sample was diluted with100 mL of DI water.  All analyses 

were conducted per standard methods (APHA et al., 1998).   

3.2.6.1 Antibiotic Analysis 

 Samples were analyzed for antibiotics using the methodology described in 

Appendix D that was developed in the Biosystems and Agricultural Engineering 

Department by Dr. Manish Kulshrestha.  Samples were centrifuged at 3,500 rpm for 20 

minutes on Thermo Scientific Survall Legend XTR Centrifuge (Waltham, Massachusetts) 

before adding 45 mL to a 50 ml glass test tube.  Each test tube was covered with a 

kimwipe and placed in SP Scientific VirTis Wizard 2.0 lyophilzer (Gardiner, New York) 

until dry (approximately 3 days).  The remaining residue was dissolved in 900 µL of 50% 

methanol solution, giving a 50X concentration from the original sample.  The solution 

was centrifuged again at 4,000 rpm for 10 minutes.  A known amount of oxytetracycline 

was added to the solution to give a better defined peak on the HPLC. A 25X concentrated 

sample was achieved by adding 100µL of 2 µg mL
-1

 oxytetracycline solution to 100 µL 

of concentrated solution. 

 High-Pressure Liquid Chromatography (HPLC) was used to separate the analytes. 

A gradient mobile phase of 0.5% acetic acid in water and 0.5% acetic acid in methanol 

was used. A Dionex Ultimate 3000 HPLC (Sunnyvale, California) along with an Ultimate 

3000RS Variable Wavelength detector set at 290 nm was used for this analysis.  The 

HPLC used a pumping rate of 0.400 mL min
-1

 and injected 20µL of sample through a 
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Dionex Acclaim 120 (C18) column (Sunnyvale, California). Four standards (10, 20, 100 

and 200 µg mL
-1

) were used for calibration. 

3.2.7 Data Analysis 

Runoff flow rates from each plot were variable; therefore, constituent 

concentrations were normalized by flow rate.  Differences between treatments were 

assessed for oxytetracycline using linear mixed models (PROC MIXED) and least square 

means (LSMEANS) in SAS 9.3.  Pearson correlation coefficients (r) between 

concentrations of oxytetracycline in runoff samples and the other constituents were 

determined for each treatment using the PROC CORR. The Pearson correlation 

coefficient measures the linear correlation between two variables and ranges between -1 

and 1. Negative values indicate a negative correlation while positive indicate a positive 

relationship. A significance level of α=0.05 was used fo all analyses.  

3.3 RESULTS AND DISCUSSION 

3.3.1 Manure and Soil Sampling 

Table 3.3 contains the manure sampling results for each treatment.  Values for N 

and P were similar to those reported by ASABE (2005) for flush building.  Table 3.4 

contains the soil sampling results for each treatment. Values for organic matter (OM) and 

N differed between C and MA; P did not differ between the treatments.  Results for OM 

were similar to those reported by Edwards et al. (2000) who used plots at the same 

rainfall facility.  However, N and P levels in this study were much lower than those 

reported by Edwards et al. (2000). Values of N and P in this study ranged between 827 to 

1,009 mg kg
-1

 and 37 to 47 mg kg
-1

 for N and P, respectively while Edwards et al. (2000) 

recorded mean N and P values of 3,547 mg kg
-1

 for N and 169 mg kg
-1

 for P from soils 

prior to manure and urine application.  The differences may be due to the lengthy fallow 

period (~10 years) experienced by the plots. 
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Table 3.3. Manure Sampling Results. 

Treatment
1 

C (%)
2
 N (%) P (%) 

M
 

2.0±0.0 a 0.5±0.0 a 0.1±0.0 a 

MA
 

2.0±0.2 a 0.5±0.0 a 0.1±0.0 a 
1
C=control, M=manure only, and MA=manure and antibiotics. 

2
C=carbon, N=nitrogen, P=phosphorus 

3
Within column means followed by the same letter are not significantly different (α=0.05). 

 

Table 3.4. Soil Sampling Results. 

Treatment
1 

OM (%)
2
 N (mg kg

-1
) P (mg kg

-1
) 

C
 

2.8±0.2a
3
 824±52 a 43±12 a 

M
 

3.3±0.2 ab 947±44 ab 53±11 a 

MA
 

3.5±0.4 b 1,009±108 b 47±11 a 
1
C=control, M=manure only, and MA=manure and antibiotics. 

2
OM=organic matter, N=nitrogen, P=phosphorus 

3
Within column means followed by the same letter are not significantly different (α=0.05). 

 

3.3.2 Antibiotic Losses via Runoff 

Treatment (p<0.0001) and sampling interval (p=0.0113) had significant effects on 

oxytetracyline concentrations while replication (p=0.4286) did not.  As expected, 

oxytetracycline concentrations for the MA treatment differed significantly from the M 

and the C plots (Table 3.5).  For all plots, oxytetracycline concentrations were highest at 

the time intervals 2, 4 and 6 minutes after the start of runoff; concentrations decreased as 

the simulated storm continued (Figure 3.1).  Oxytetracycline, as well as most of the other 

constituents, exhibited the first flush phenomenon, which refers to a disproportionally 

high concentration of a constituent in runoff during the first part of a storm (Sansalone 

and Buchberger, 1997).  This first-flush phenomenon is often seen in runoff events with  

 

Table 3.5 Flow Normalized Oxytetracylcine Levels per Treatment. 

Treatment
1 

Mean Concentration (µg·s L
-2

)
2,3

 

C
 

378.2
b
 

M
 

421.7
b
 

MA
 

1897.3
a
 

1
C=control, M=manure only, and MA=manure and antibiotics. 

2
Treatments with the same superscript indicate the means were not significantly different (p<0.05). 

3
Non-normalized means are as follows: C= 15.6 µg L

-1
, M= 22.5 µg L

-1
, and MA=129.7 µg L

-1
.
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Figure 3.1. Oxytetracycline Concentrations Normalized by Flowrate for a MA Plot (B6). 
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both suspended and dissolved constituents (Sansalone and Buchberger, 1997; Braskerud, 

2002).  

While it was expected that the C and M plots would not have detectable 

oxytetracycline levels, this was not the case.  The initial time intervals (2, 4 and 6 

minutes) for the C and M plots produced higher than expected means (Figures 3.2 and 

3.3).  At the 8 minute and subsequent intervals, oxytetracycline levels plateaued, 

approaching zero or nearly zero for most plots.  The higher oxytetracylcine 

concentrations in the C and M plots, at the beginning of the simulated storm events, were 

attributed to difficulties in achieving peak separation in the chromatograms produced by 

the HPLC at these low concentrations.  Challenges in achieving peak separations in 

samples could account for a portion of the oxytetracycline levels as concentrations are 

computed based on the areas under the curves.  Also important to note is that the samples 

from the M, as well as MA, plots contained manure particles and hence organic matter.  

The presence of organic matter has been shown to negatively impact oxytetracycline 

recovery rates (Yang et al., 2005).  In the runoff samples, another unknown pollutant was 

detected near the peak of oxytetracycline thus preventing the return of the measurement 

line to the datum. This had a greater impact on the samples from the M plots.  This 

interference made quantification of low levels of oxytetracycline difficult.  It is possible 

that concentrating the samples via lyophilization did not allow for the removal of the 

interfering pollutant.  Hirsch et al. (1998) found an average oxytetracyline recovery rate 

of 108% for spiked spring water when using a similar lyophilization technique; however, 

recovery rates decreased to 49% in the presence of high organic matter.   

 The peak (unnormalized) concentrations of oxytetracycline ranged between 62 and 549 

µg L
-1

 for the four MA plots.  Three of the four peaks (144, 408, and 549 µg L
-1

) were 

much higher than those found in other runoff studies.  Kay et al. (2005) in the United 

Kingdom, applied swine manure with an oxytetracycline concentration of 18.85 mg L
-1

 to 

runoff plots and measured a peak runoff concentration of 71.7 µg L
-1

.  Manure was 

applied 24 hrs before irrigation, which would have allowed the antibiotics to infiltrate 

into the soil before the simulated storm event.  The plots only received 15 mm of rain 

over the course of two days, which did not allow for as much runoff to be generated as 

quickly as in this study.   Dolliver and Gupta (2007) measured antibiotic losses
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Figure 3.2. Oxytetracycline Concentrations Normalized by Flowrate for a C Plot (C2).



 

46 

 

Time Since Start of Runoff (min)

0 5 10 15 20 25 30 35

O
xy

te
tr

a
c
yc

lin
e

 (
g

·s
 L

-2
)

50

60

70

80

90

100

110

120

 

 

Figure 3.3. Oxytetracycline Concentrations Normalized by Flowrate at M Plot (B4).
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from a manure storage facility and found a peak concentration of 210 µg L
-1 

of 

chlortetracycline. However, the first rainfall event was several days after manure 

application, which could have allowed for antibiotic degradation or losses due to 

leaching.  Davis et al. (2006) applied seven different antibiotics, including tetracycline 

and chlortetracycline, to plots at a concentration of 1 mg L
-1

 in water rather than manure.  

The authors measured concentrations in runoff of 0.03 µg L
-1

 for tetracycline and 0.04 µg 

L
-1 

for chlortetracycline.  Only small amount of solids were found in runoff samples from 

this study. 

The studies by Kay et al. (2005) and Davis et al. (2006) found antibiotic losses via 

runoff of less than 0.1%; however Davis et al. (2006) noted very little solids in runoff.  

Greater losses (2.5%) were found by Burkhardt et al. (2005) and Krezig et al. (2005) for 

sulfonamide antibiotics.  The percent losses in this study (Table 3.6) were more 

consistent with the findings of Burkhardt et al. (2005) and Krezig et al. (2005).  As 

tetracyclines tend to bind to manure or sediment particles (Lee et al., 2007; Chee-Sanford 

et al., 2009), it is possible that the transport of manure particles in runoff resulted in the 

greater antibiotic losses found in this study.  Note that high levels of TSS were seen in all 

plots receiving manure treatments (C=215.2 mg L
-1

, M=932.1 mg L
-1

, and MA=638.6 mg 

L
-1

). 

3.3.3 Oxytetracycline and Constituent Correlations 

Table 3.7 contains the correlation coefficients (r) for the C, M, and MA 

treatments.  For the C and M treatments, nearly all r values were less than 0.2 indicating 

no correlation existed between oxytetracycline and the other constituents for these 

treatments.  These results were as expected since no oxytetracycline was added to the C  

 

Table 3.6. Oxytetracyline Losses (%) via Runoff from MA Plots. 

Plot Oxytetracycline Losses (%) 

L3 0.03 

C3 0.02 

B10 4.21 

B6 3.5 

Mean±Std. Dev. 2.06±1.93 
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Table 3.7. Pearson Correlation Coefficients (r) between Oxytetracycline Concentrations 

and Constituent Concentrations for C and M Treatments.
1
   

Constituents 
Plots 

C M MA 

E.coli -0.199 0.112 0.690
2
 

Cl
-
 0.026 -0.025 0.717

2
 

PO4 0.273 0.029 0.192 

NO3-N 0.024 -0.065 -0.006 

NH4-N 0.126 -0.144 0.671
2
 

TOC 0.180 -0.122 0.593
2
 

pH 0.107 0.659
2
 0.298 

EC 0.167 0.110 0.586
2
 

Turbidity  -0.018 -0.192 0.503
2
 

TSS 0.179 0.377
2
 0.515

2
 

1
 All concentrations were flow-normalized.

 

2
Significant at α=0.05 level. 

 

and M plots.  For the M plots, the correlation coefficients between oxytetracycline and 

pH and TSS were substantially higher.  With regards to TSS, this finding could indicate 

that higher levels of manure particles, and therefore organic matter and pH, could have 

effected oxytetracycline levels (Yang et al., 2005).   

For the MA plots, the majority of the measured constituents were significantly 

correlated to oxytetracycline (Table 3.5).  As seen in Figures 3.4 to 3.6, pH, NO3-N, and 

PO4, respectively, exhibited no relationship with oxytetracycline.  With regards to pH, the 

range of recorded values was small (7.0-7.7), and the presence of manure in the MA plots 

did not affect pH levels.  For NO3-N, several samples (71%) with levels below the 

detection limit, an aspect that could have accounted in part for the lack of correlation with 

oxytetracycline, occurred in the MA plots.  PO4 also had a number of samples with non-

detectable values (43%) in the MA plots. 

For the MA plots, all other constituents were significantly and positively 

correlated with oxytetracycline (Table 3.5).  In all instances, correlation coefficients were 

above 0.5.  Chloride exhibited the strongest correlation to oxytetracycline (r=0.72), as 

seen Figure 3.7.  The reason for this strong relationship is unclear.  The label for  
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Figure 3.4. Relationship between Oxytetracycline and pH for the MA Plots. 
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Figure 3.5. Relationship between Oxytetracycline and NO3-N for the MA Plots. 
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Figure 3.6.  Relationship between Oxytetracycline and PO4 for MA Plots. 
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Figure 3.7.  E. coli Concentrations for M and MA Plots During the Simulated Storm 

Events.
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Noromycin 300 LA indicates that hydrochloric acid could have been used in production 

of the antibiotic to adjust the pH.  Interestingly, the correlation coefficient between  

oxytetracycline and E.coli indicates a strong positive correlation (r=0.69).  Since 

oxytetracycline is used to kill bacteria such as E. coli, it was theorized that higher levels 

of oxytetracycline in runoff would result in lower levels of E. coli; however, this was not 

the case (Figure 3.7).   

The constituents TOC, EC, TSS and NH4-N also displayed strong positive 

correlations with oxytetracylcine concentrations (Figures 3.8-3.11).  The relationship 

between TOC and oxytetracycline was expected as both are organic compounds.  The 

relationships between TSS and oxytetracycline and turbidity and oxytetracycline indicate 

that the antibiotics are correlated with the amount of solids in the samples, a phenomenon 

noted by Loke et al. (2002).  Kulthrestha et al. (2004) noted the likelihood of 

oxytetracycline to bind to clays with high ammonium content, which could account for 

the strong correlation between ammonia and oxytetracycline seen in this study. 

3.3.4. Best Management Practice Selection 

Due to the common usage of antibiotics in livestock coupled with the 

unlikelihood that significant forms of source reduction will occur in the foreseeable 

future, other types of BMPs (e.g. structural) are needed to reduce the transport of 

antibiotics to waterways.  The results of this study suggest that BMPs which target 

particulates or sediments may be more appropriate for reducing the transport of 

oxytetracycline and potentially other antibiotics.  Davis et al. (2006) concluded erosion 

control practices could aid in the reduction of antibiotics in runoff.  A similar sentiment 

was echoed by Lin et al. (2011) who measured a 75% reduction in the transport of two 

antibiotics, tysolin and enrofloxacin, with the use of a 4 m vegetative buffer strip. Other 

BMPs such as composting and chemical additives could also aid in the reduction of off-

field transport of antibiotics.  Arikan et al. (2007) showed a 99% removal of extractable 

oxytetracycline in cattle manure after composting for 35 days.  Chemical additives are 

commonly used by the wastewater treatment industry, but their potential for reducing 

antibiotic transport has received little research.  Punamiya et al. (2013) found that 

aluminum-based water treatment residuals have high potential to bind to tetracycline  
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Figure 3.8. Relationship between Oxytetracyline and Cl
-
 for MA Plots.



 

55 

 

Oxytetracycline ( g·s L
-2

)

0 2000 4000 6000 8000

T
O

C
 (

m
g

·s
 L

-2
)

0

1000

2000

3000

4000

5000

 

 

Figure 3.9. Relationship between Oxytetracycline and TOC for MA Plots.



 

56 

 

 

Oxytetracycline ( g·s L
-2

)

0 2000 4000 6000 8000

E
C

0

5000

10000

15000

20000

25000

30000

35000

 

 

Figure 3.10. Relationship between Oxytetracycline and EC for MA Plots. 
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Figure 3.11. Relationship between Oxytetracycline and Turbidity MA Plots. 
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antibiotics.  Another aluminum-based compound, aluminum sulfate or alum, has been 

used for a number of years as a flocculent to settle out solids and remove organic 

compounds from wastewater.  Alum is also used by the livestock industry, particularly 

poultry producers, to reduce the transport of phosphorus (DeLuane and Moore, 2013).  

The strong correlation between oxytetracycline and the constituents TSS, turbidity and 

TOC suggests a BMP, such as a vegetative buffer strip or alum, may be a viable method 

for reducing the transport of this antibiotic.  

3.4 CONCLUSIONS  

  Veterinary antibiotics such as oxytetracycline can be transported to waterbodies 

via overland flow.  Studies have shown that oxytetracycline can undergo 

photodegradation (Doi and Stoskopf, 2000; Xuan et al., 2010), however, for this to occur, 

the transport rate of oxytetracyline must be reduced so that the exposure time to sunlight 

is maximized.  Results from this study show that the presence of oxytetracycline is 

strongly correlated to the presence of other water quality constituents such as E.coli, Cl, 

TOC, turbidity, and TSS.  The strong correlation between oxytetracycline and measures 

of suspended sediment, namely turbidity and TSS, coupled with the likelihood of 

oxytetracycline binding to manure particles suggests that BMPs used to reduce solids in 

runoff, such as vegetative buffer strips and flocculants, could potentially reduce the 

transport of oxytetracycline as well.   
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CHAPTER 4: EFFECT OF ALUM ON SURFACE TRANSPORT OF 

OXYTETRACYCLINE 

4.1 INTRODUCTION 

Antibiotics are used in livestock production for both therapeutic and subtherapeutic 

uses.  Subtherapeutic uses are mainly the prevention of the spread of diseases and the 

promotion of livestock growth through the increased nutrient absorption by the animal 

and less by gastrointestinal bacteria (LaShore and Pruden, 2009).  The USEPA (2013) 

estimates that 60-80% of livestock and poultry routinely receive antimicrobials through 

feed, water, injections or external applications.  An estimated 93% of grower/finisher 

hogs were administered antibiotics at some point during the grower/finisher time (USDA, 

1996) with 25% of swine facilities administering antibiotics as levels higher than 

recommended (Dewey et al., 1997).  One of the challenges associated with frequently 

dosing  livestock with antibiotics is that livestock can only partially metabolize the 

antibiotics they are administered.  Thus, livestock excrete antibiotics at high rates (30%-

90%) and in virtually unchanged forms from the parent compounds (Sarmah et al., 2006).  

Antibiotics have been found in manures at concentrations ranging from trace levels to as 

much as 200 mg L
-1

 (Kumar et al., 2005).   

Many of the antibiotics approved for use in livestock are used in humans as well.  

Oxytertracycline, a tetracycline class antibiotic, is approved by the Food and Drug 

Administration for therapeutic uses in humans as well as livestock, and it is approved for 

subtherapeutic uses in cattle and swine as a growth promoter.  Tetracyclines are one of 

the largest classes of antibiotics used in livestock and poultry.  Over 70% of the 

antibiotics administered to livestock and poultry are of the classes of tetracyclines and 

ionophores (USEPA, 2013).   

The main concern with such high rates of antibiotic administration to livestock is the 

potential for the development of antibiotic-resistant strains of bacteria. While sampling 

private groundwater supplies, McKeon et al. (1995) found that 90% of the over 250 

coliforms and non-coliforms samples were resistant to at least one antibiotic with 78% of 

these coliforms displaying resistance to multiple antibiotics.  Chee-Sanford et al. (2001) 

found tetracycline resistant genes in bacteria in groundwater sampled more than 250 m 
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downstream of a swine waste storage lagoon indicating that such bacteria are readily 

transported. 

Because of the frequent dual usage between humans and livestock coupled with the 

fact that detection of antiobiotics in the environment is occurring more frequently 

(USEPA, 2007), the USEPA has classified antibiotic as a contaminant of emerging 

concern (CEC).  A CEC is one that is now being detected in the environment and/or is at 

higher than expected levels, meaning it was not previously present in the environment or 

was present at undetectable or very low levels (USEPA, 2007).  Land application of 

manure, which is common with livestock operations, serves as the primary pathway for 

antibiotics to enter waterbodies (Baguer et al., 2000; Arikan et al., 2008).  Approximately 

50% of surface waters may contain antibiotics (Koplin et al., 2002).  But, as seen with 

Chee-Sandford et al. (2001), antibiotics are not found in surface waters alone.  

Campagnolo et al. (2002) also found antibiotics in groundwater near swine farms in Iowa 

– a state with large amounts of karst (Veni et al., 2001).  The authors noted that 31% of 

ground and surface water samples collected near swine operations and 67% of ground 

and surface water samples near poultry operations contained antibiotics.  Such findings 

are of particular importance in karstic environment where surface water and ground water 

connections are strong meaning pollutants applied to the land can readily access aquifers.   

Aluminum sulfate, or alum, is a non-toxic flocculent used in the wastewater industry 

(Tchobanoglous et al., 2003; Mason et al., 2005) and the poultry industry (Moore and 

Miller, 1994; DeLuane and Moore, 2013).  Numerous studies have demonstrated the 

effectiveness of alum to reduce phosphorus levels in runoff (Moore and Miller, 1994; 

Edwards and Daniel, 1993; Edwards et al., 1999; Smith et al., 2001; Penn and Bryant, 

2006).  Essentially, soluble forms of phosphorus are converted to insoluble ones which 

are then precipitated out.  Alum can also reduce concentrations of arsenic (56%), copper 

(44%), and zinc (36%) (Moore et al., 1998) as well as the hormone 17β-estradiol 

(DeLaune and Moore, 2013).  Only one study has examined the potential use of alum to 

reduce antibiotic transport.  Adams et al. (2002), in a lab-scale study, examined the 

effectiveness of alum to reduce antibiotic concentrations in river water.  The authors 

examined seven antibiotics, six of which were sulfidimides class of antibiotics; the other 

was in the carbadox class.  Results of the study indicated that alum did not remove a 
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significant amount of antibiotics from the river water.  Tetracyclines, however, behave 

differently than sulfidimides and carbadox classes of antibiotics as tetracyclines have a 

higher tendency to bind to manure particles (Loke et al., 2002).  The tendency of a 

pollutant to bind to soil particles is described by the sorption coefficient, Kd, which is a 

ratio of the amount of chemical sorbed to soil to the amount that is still in solution (Brady 

and Weil, 2008).  Higher Kd values mean the pollutant is more likely to bind to soil 

particles.  Sulfidimides, such as those studied by Adams et al. (2002, have low Kd values 

(0.6-4.9) as compared to tetracyclines which have high Kd values (420-1030) (Tolls, 

2001).  Punamiva et al. (2013) noted that aluminum water treatment residuals, part of the 

waste product from the water purification process, can sorb to tetracyclines thus 

removing them from aqueous solution.  The authors found a removal rate of 98% for 

tetracycline and a 96% for oxytetracycline.  Thus, the objective of this study was to 

examine the effectiveness of alum for reducing concentrations of tetracycline antibiotic 

(oxytetracycline) in simulated runoff. 

4.2 MATERIALS AND METHODS 

4.2.1 Study Site 

 This study was conducted at the rainfall simulation facility at the University of 

Kentucky’s Maine Chance Research farm (latitude: 38.1164°N; longitude: 84.4903W).  

The facility consists of three rainfall simulators, which were constructed as described in 

Miller (1987).  Fescue plots measuring 2.44 m by 6.10 m were constructed on Maury silt 

loam (fine, mixed, mesic Typic Paleufalf) (NRCS, 2013) as described by Edwards et al. 

(2000) and planted with Kentucky 31 fescue.  Each plot was bordered by galvanized steel 

and was equipped with a gutter at the base that diverted runoff in to a PVC pipe located 

in a sump.  A wood cover was placed over the gutter to ensure that only runoff was 

collected during the sampling events.   

4.2.2 Plot Selection 

Rainfall simulators were used to generate curve numbers (CNs) for each plot 

(Appendix A).  Sixteen plots with similar CNs were selected for use in this study (Table 

4.1).  Plots selected for this study had a mean curve number of 83 ±4. 
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Table 4.1 Curve Numbers of Plots Used in the Study. 

Plot CN Plot CN 

B1 82 C5 89 

B4 82 C6 77 

B5 88 D1 86 

B6 90 D5 84 

B10 82 L1 84 

C2 89 L3 79 

C3 82 N2 77 

C4 80 N9 81 

 

4.2.3 Experimental Treatments 

 Liquid swine manure was obtained from a private hog farm in Bardstown, KY. 

Manure was collected from hogs that had not been administered antibiotics since birth.  

The manure had a slurry consistency, and it was stored in a pit prior to collection for this 

study.  Collected manure was stored in a 1,040 L polyethylene intermediate bulk 

container (IBC) tote at the University of Kentucky Biosystems and Agricultural 

Engineering Department.  

Four treatments were randomly assigned to the plots (Table 4.2).  Treatments 

included a control (manure was not applied) (C), manure only (M), manure plus 

antibiotics (MA), and manure plus antibiotics and alum (MAA).  Manure (55L) was 

placed in separate 208 L barrels which were designated in accordance with treatment to 

prevent cross-contamination.  Manure for each treatment receiving antibiotics was spiked 

to a concentration of 20 mg L
-1

 by adding 3.67 mL of oxytetracycline to the 55 L of 

manure.  The oxytetracycline (Noromycin 300 LA, Norbrook, Lenexa, KS) was a 

commercially available, injectable form containing 300 mg of antibiotic per mL in 

suspension.  For the MAA treatment, 1.13 L of liquid alum (48.5% solution) was added 

to the manure and antibiotics resulting in a 1% alum concentration (Bushee-Bullock, 

1999; Smith et al., 2001).  Prior to application to the plots, manure was mixed for 5 

minutes using a custom built mixer attached to a drill.  The custom mixer, which was 

constructed in the Biosystems and Agricultural Engineering Department, was 

approximately 1.5 m in length and had two 30 cm long fins at a distance of 0 cm and 30 

cm from the bottom. 
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Table 4.2 Treatment Associate with Each Plot. 

Treatment
1
 Plots 

C C2, C6, D1
2
, D5 

M B4, B8
3
 C5, L1 

MA B6, B10, C3, L3 

MAA B1, B5, C4, N9  
1
C=control, M=manure only, MA=manure and antibiotics, and MAA=manure, antibiotics, and alum. 

2
D1 was not used in the E. coli analysis due to sampling error. 

3
B8 was not used in the analysis because it did not produce runoff. 

 

 With the exception of the C plots, 45 L of manure (3 L m
-2

) was applied to each 

plot as done by Bushee-Bullock (1999) immediately prior to the start of the simulated 

rainfall.  The target application rate was 112 kg N ha
-1

, as recommended by AGR-1, but 

laboratory results (Appendix E) from University of Kentucky Regulatory Services 

indicate that the actual application rate was about 150 kg N ha
-1

.  Each MA and MAA 

plot received 900 mg of oxytetracycline, and each of MAA plot also received 54 g of 

Al2(SO4)3.  Plots were mowed within three days prior to manure application. Soil and 

manure samples were taken for each plot and sent to the University of Kentucky 

Regulatory Service Laboratory for analysis. A second soil sample from each plot was 

analyzed for moisture content at the Biosystems and Agricultural Engineering 

Department. Soil samples were analyzed for P, K, Ca, Mg, Zn, pH, total nitrogen, and 

soil texture, while manure samples were analyzed for N, P, K, Ca, Mg, Zn, Cu, Fe, and 

Mn. 

4.2.4 Rainfall 

Each rainfall simulator was programmed to produce a rainfall intensity of 102 mm 

hr
-1 

(Appendix A).  To represent a worst-case scenario, rainfall simulation was started 30 

minutes after manure application and was continued until 30 minutes after runoff began. 

4.2.5 Runoff Sample Collection  

 Runoff samples were collected from the PVC pipe connected to the gutter at time 

intervals of 2, 4, 6, 8, 16, 24 and 30 minutes after runoff began.  Clean, sterile 

polyethylene bottles were used for sample collection.  Samples were collected for 1 min 

or until the bottle was full.  Data pertaining to the time to runoff, time to fill each bottle, 
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and weight of each bottle were recorded (Appendix B).  All bottles were weighed before 

sample collection and an average tare weight was calculated.  Two flow-weighted 

composite samples, one for bacterial analysis and one for the analysis of all other 

constituents, were created using the weight of each sample along with the respective 

sample bottle fill times.  The data used to create the composite samples are presented in 

Appendix B. 

4.2.6 Laboratory Analysis 

 For each plot, samples from the seven time intervals along with a composite were 

analyzed for E. coli, oxytetracycline, NO3-N, NH4-N, PO4-P, pH, EC, TSS, Cl, TOC and 

turbidity.  Samples were stored at approximately 4°C until analysis. Analysis for NO3-N, 

NH4-N, PO4-P, Cl, and TOC occurred at the University of Kentucky’s Forestry 

Department.  A Bran-Luebbe Auto-Analyzer III (Norderstedt, Germany) was used for the 

analysis of NO3-N and NH4-N.  A Dionex Ion Chromatograph (Sunnyvale, California) 

was used for PO4-P, Cl, and NO2-N.  Total Organic Carbon (TOC) was analyzed using a 

Shimadzu Total Orgainic Carbon Analyzer (Kyoto, Japan).  

 Samples were analyzed for E. coli, oxytetracycline, pH, EC, turbidity, and TSS at 

the University of Kentucky’s Biosystems and Agricultural Engineering Department. E. 

coli analysis was conducted within 6 hours of sample collection using Coliert-18 

purchased from IDEXX laboratories (Westbrooke, Maine) (Appendix C).   EC was 

determined using an EcoTestr-EC Low (Vernon Hills, Illinois).  A Thermo Electron 

Corporation Orion 520A+ (Waltham, Massachusetts) was used for pH determination, and 

a LaMotte 2020 turbidimeter (Chestertown, Maryland) was used for turbidity.  TSS 

analysis was conducted using a Sequoia Scientific LISST-Portable|XR (Bellevue, 

Washington).  All analyses were conducted per standard methods (APHA et al., 1998).   

4.2.6.1 Antibiotic Analysis 

 Samples were analyzed for antibiotics using a methodology developed in the 

Biosystems and Agricultural Engineering Department by Dr. Manish Kulshrestha.  A 

detailed description of antibiotic analysis can be found in Appendix D. Approximately 50 

mL of sample was centrifuged at 3,500 rpm for 20 minutes in a Thermo Scientific Survall 

Legend XTR Centrifuge (Waltham, Massachusetts), and 45 mL was added to a glass test 
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tube. Kimwipes were uses to cover the test tubes, before placing the samples in a SP 

Scientific VirTis Wizard 2.0 lyophilzer (Gardiner, New York) until dry.  After 

approximately three days, the test tubes were removed from the lyophilizer and the dry 

residue was dissolved in 900 µL of 50% methanol solution.  This concentrated the 

original sample 50X. The solution was transferred to microcentrifuge tubes and 

centrifuged again at 4,000 rpm for 10 minutes with a Fisher Scientific Marathon 21000 

(Waltham, Massachusetts).  In order to achieve a better defined peak and to ensure the 

right peak was selected, a known amount of oxytetracycline was added to each sample.  

A 25X concentrated sample was achieved by adding 100 µL of 2 µg/mL oxytetracycline 

solution to 100 µL of concentrated solution. 

 High-pressure liquid chromatography (HPLC) was used to separate the analytes.  

A Dionex Ultimate 3000 HPLC (Sunnyvale, California) along with an Ultimate 3000RS 

Variable Wavelength detector set at 290 nm (Kay et al., 2005) was used for this analysis.  

Using a gradient mobile phase of 0.5% acetic acid in water and 0.5% acetic acid in 

methanol, samples were ran through a Dionex Acclaim 120 (C18) column (Sunnyvale, 

California).  The HPLC injected 20µL of sample through the column and used a pumping 

rate of 0.400 mL/min. Four calibration standards ranging from 10µg mL
-1

 to 200µg mL
-1

 

were used. 

4.2.7 Data Analysis 

Runoff flow rates from each plot were variable; therefore, constituent 

concentrations were normalized by flow rate.  Differences between treatments and time 

intervals were assessed using linear mixed models (PROC MIXED) and least square 

means (LSMEANS) in SAS 9.3.  All data were ln transformed to normalize the data. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Treatment Effects 

Treatments did not significantly affect constituent concentrations for Cl, TOC, 

pH, EC, turbidity, and TSS, but significant treatment effects were noted for E. coli, NO3-

N, NH4-N, PO4, and oxytetracycline (Table 4.3). The lack of significance with regards to  
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Table 4.3. Statistics for Runoff Variables (Mean ± Standard Deviation).  

Constituent 
Treatment

1,2
 

C M MA MAA 

ln E. coli (cfu·s L
-2

) 7.9±1.9
b 3 

14.4±1.6
a 

14.5±2.0
a 

13.1±3.2
a 

ln Cl (mg·s L
-2

) 6.4±1.4
a 

6.9±0.7
a 

6.9±0.6
a 

6.6±1.3
a 

ln NO3-N (mg·s L
-2

) 1.9±1.5
a 

-1.7±1.9
b 

-1.5±2.3
b 

0.5±3.9
ab 

ln NH4-N (mg·s L
-2

) 2.9±1.4
b 

5.7±0.8
a 

5.2±0.8
a 

5.2±0.9
a 

ln PO4 (mg·s L
-2

) -4.0±1.8
b 

-0.8±2.6
a 

-1.6±2.4
a 

-1.9±1.9
a 

ln TOC (mg·s L
-2

) 5.5±1.2
a 

6.6±1.0
a 

6.2±0.7
a 

6.4±1.2
a 

ln Oxytetracycline (µg·s L-
2
)

 
5.8±1.0

b 
5.6±1.1

b 
7.1±0.9

a 
7.7±1.0

a 2 

ln pH (pH units·s L
-1

) 5.4±1.3
a 

4.7±0.9
a 

4.8±0.8
a 

5.5±1.7
a 

ln EC (µS·s L
-1

) 9.4±1.1
a 

9.4±0.7
a 

9.3±0.6
a 

9.9±1.3
a 

ln Turbidity (NTU·s L
-1

) 5.7±1.7
a 

7.7±1.1
a 

6.9±1.1
a 

7.2±0.8
a 

ln TSS (mg·s L
-2

) 8.5±1.3
a 

9.4±1.0
a 

9.1±0.8
a 

9.6±0.8
a 

1
C=control, M=manure only, MA=manure and antibiotics, and MAA=manure, antibiotics, and alum. 

2
Values computed for all time intervals and repetitions.  All reported values were normalized by flow and 

ln transformed. 
3
Different letters within rows indicated means differed statistically at α=0.05.   

4
At α=0.10 means for flow-normalized oxytetracyline were statistically greater for the MAA treatment than 

for the MA (p=0.062). 

 

the constituents Cl, TOC, EC, turbidity, and TSS was surprising as it was expected that 

constituent levels would be highest for the M, MA and MAA plots and lowest for the C 

plots.  This lack of significance is due in part to the large amount of variation amongst the  

plots and across the time intervals.  While no significant repetition differences were 

noted, significant time interval differences were found. 

4.3.1.1 Non-significant Constituents 

Levels of Cl were the same across all treatments considering all time intervals and 

repetitions (Figure 4.1).  This result was surprising considering that swine manure has 

been shown to have Cl levels above 1,700 mg L
-1

 (Krapac et al., 2002).  Only three of the 

samples collected during the study had Cl levels above secondary drinking water 

standards (250 mg L
-1

), and all of these samples occurred in the M plots within the 2 and 

4 minute time intervals.  The use of chlorinated water from a municipal water supply as 

the simulated rain consisted could have influenced Cl levels in runoff to some degree.   

The lack of difference between treatments regarding TOC was also surprising 

given the high levels of TOC in swine manure.  Huang et al. (2006) noted that TOC  
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Figure 4.1. Flow Normalized ln Cl Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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accounted for about 37% of swine manure from a swine facility in Hong Kong.  As such, 

it was expected that the application of swine manure to the non-C plots would increase 

TOC levels in runoff.  Though not significantly different, TOC values for the C plots 

were less than the M, MA and MAA plots for the first half of the simulated storm event 

(Figure 4.2). 

With regards to pH and EC, it was expected that the addition of manure would 

increase pH and EC levels; however, this was not the case (Figures 4.3 and 4.4).  

Edwards and Daniel (1993) recorded a pH from swine manure of 8.4 while Huang et al. 

(2006) recorded an average value of 8.1.  The average pH of runoff from this study was 

lower for all treatments (7.4-7.6) than those values.  The average pH level of 7.3 reported 

by the municipal water supplier indicated that the rainfall used in this study was a greater 

influence on runoff pH then the addition of manure, antibiotics and/or alum.  And like 

pH, average EC levels in runoff (429-890 µS cm
-1

) largely reflected the values consistent 

with those expected from the municipal water supplier given the limestone geology of the 

region.  Edwards and Daniel (1993) recorded EC values for swine manure of 19,500 µS 

cm
-1

 while Krapac et al. (2002) recorded EC values over 30,000 µS cm
-1

 

Sediment measures, TSS and turbidity were also not significantly different among 

treatments though mean values for the C plot time intervals were lowest (Figures 4.5 and 

4.6).  Mean TSS values for the treatments ranged from 194 to 920 mg L
-1

, across all 

repetitions and time intervals, while for turbidity those values ranged from 12 to 381 

NTU.  These values were notably higher than those reported by Edwards and Daniel 

(1993) who measured TSS values between 8 and 74 mg L
-1

 for a simulated rainfall study 

with swine manure.  The rainfall intensity used by the authors of 10 cm h
-1

 is the same 

rate used in this study.  The authors found that greater application rates of swine manure 

resulted in higher levels of TSS in runoff.  A similar trend was noted in this study 

between the C plots and the M, MA and MAA plots though the trend was not significant. 

4.3.1.2 Significant Constituents 

Levels of E. coli were significantly lower for the C plots as compared to the M, 

MA and MAA plots (Figure 4.7).  The addition of manure to these plots increased E. coli 

levels in runoff, as expected.  Though the values for the MAA plots were lower than the  
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Figure 4.2. Flow Normalized ln TOC Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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Figure 4.3. Flow Normalized ln pH Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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Figure 4.4. Flow Normalized ln EC Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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Figure 4.5. Flow Normalized ln TSS Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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Figure 4.6. Flow Normalized ln Turbidity Concentrations for Each Treatment.  

C=Control, M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, 

Antibiotics and Alum. 
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Figure 4.7. Flow Normalized ln E. coli Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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M and MA plots, the addition of alum did not significantly decrease E. coli levels.  The 

lack of significant effect of alum on E. coli levels is surprising given that alum has been 

used as a flocculent to remove bacteria from water.  Bulson et al. (1984) reported that 

over 90% of E. coli in lake water were removed by the addition of 15 mg L
-1

 of alum.  

While the study by Bulson et al. (1984) allowed for a longer flocculation time than this 

study (30 h vs 12-24 h), it was expected that the addition of alum, which was at a much 

greater concentration (1 g L
-1

) in this study, would reduce E. coli levels.   

With regards to NO3-N, mean levels were highest for the C and MAA plot and 

lowest for the M and MA plots (Figure 4.8).  The reason for these differences is not 

known.  Krupac et al. (2002) noted that the swine manure used in their study had NO3-N 

levels less than 0.2 mg L
-1

 with the majority of N in the form of NH3-N and organic N.  

Edwards and Daniel (1993) measured low levels (0.1 mg L
-1

) of NO3-N in runoff from 

plots with swine manure.  Hence the addition of swine manure to the plots was not 

expected to increase NO3-N levels substantially.  For NH4-N, mean concentrations were 

lowest with the C plots as compared to the M, MA and MAA plots (Figure 4.9).  Edwards 

and Daniel (1993) noted a similar trend between control plots and those to which 

manure was applied.  The addition of manure to the plots in this study significantly 

increased NH4-N levels, as expected since the swine manure used in this study contained 

about 0.5% N (Appendix E).  ASABE (2005) indicates that swine manure, such as that 

used in this study, generally contains 0.14% NH3-N.  Krupac et al. (2002) measured 

average NH3-N levels of 4,380 mg L
-1

 in swine manure.   

Levels of PO4 were lowest in the C plots as compared to the M, MA and MAA 

plots (Figure 4.10).  The addition of manure increased PO4 levels in runoff; however, the 

addition of alum did not decrease PO4 levels as expected based upon prior alum research 

related to poultry litter and phosphorus reductions in runoff (Moore and Miller, 1994; 

Moore et al., 1999; Smith et al. 2001).  The pH of the runoff (7.4-7.6) was within the 

range of Al(OH)3 floc formations whereby PO4 is sorbed to the floc (Cooke et al., 1986; 

Moore and Miller, 1994).  It is possible that the alum dosage (1%) was too low to 

promote significant PO4-P removal or that the Al(OH)3 flocs were transported with the 

runoff. 
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Figure 4.8. Flow Normalized ln NO3-N Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 



 

77 

 

Time Since Runoff (min)

0 5 10 15 20 25 30 35

ln
 N

H
4
-N

 (
m

g
·s

 L
-2

)

1

2

3

4

5

6

7

8

 M 

 MA  

 MAA

 C  
 

 

Figure 4.9. Flow Normalized ln NH4-N Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 



 

78 

 

Time Since Runoff (min)

0 5 10 15 20 25 30 35

ln
 P

O
4
 (

m
g

·s
 L

-2
)

-10

-8

-6

-4

-2

0

2

4

 M  

 MA 

 MAA 

 C  
 

 

Figure 4.10. Flow Normalized ln PO4-P Concentrations for Each Treatment.  C=Control, 

M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, Antibiotics and 

Alum. 
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A significant treatment effect was found for oxytetracycline.  Both C and M plots 

had lower concentrations of oxytetracycline as compared to MA and MAA plots (Figure 

4.11).  While MA and MAA plots did not differ at α=0.05, a significant difference was 

noted at α=0.10.  At this level of significance, MAA plots had higher concentrations of 

oxytetracycline than MA plots.  It was hypothesized that the alum may have precipitated 

oxytetracycline, but that the particles were transported in runoff.  If such were the case, a 

second BMP such as a vegetated filter strip would be required.  However, the lack of 

significance, even at α=0.10 for the other constituents measured in this study suggests 

that this was not the case.  The ineffectiveness of alum in this study may have been 

related to the alum dosage.  Bushee-Bullock (1999) found no reduction in the transport of 

the hormone 17β-estradiol at a 1% alum dosage; however, DeLuane and Moore (2013) 

found reductions in 17β-estradiol using alum doses of 5%, 10% and 20%.  On the other 

hand, other contaminants in the swine manure may inhibit alum regardless of the dosage.  

Choi et al. (2008) found that organic matter interfered in the removal efficiency of poly-

aluminum-chloride in the reduction of oxytetracycline in river water.  Removal 

efficiencies were reduced by 40% when river water samples had high organic matter 

contents.  The high organic matter contents of manure will likely require consideration if 

alum is to be further explored for oxytetracycline removal. 

4.3.2 Time Effects 

 A significant difference was noted with respect to time interval for all of the 

examined constituents except NO3, PO4, and oxytetracycline (Table 4.4).  The first flush 

phenomenon, whereby a disproportionally high concentration occurs in runoff during the 

first part of a storm (Sansalone and Buchberger, 1997; Braskerud, 2002), was seen with 

the majority of examined constituents.  The time interval 2 min had the highest 

concentrations for all constituents.  For the most part, constituent concentrations reached 

a minimum level after either 16 to 24 min since the start of runoff.  These results point to 

the importance of the first 15 minutes of a storm event as this period of time is when the 

greatest amounts of contaminants are typically transported to waterbodies (Soupir et al., 

2006; Kato et al., 2009; Delpla et al., 2011).  As such, BMP selection should target 

reductions of constituent losses during the early parts of the storm (Moore and Miller,  
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Figure 4.11. Flow Normalized ln Oxytetracycline Concentrations for Each Treatment.  

C=Control, M=Manure Only, MA=Manure and Antibiotics, and MAA=Manure, 

Antibiotics and Alum. 
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Table 4.4 Statistics for Constituent Concentrations at Time Intervals (Mean ± Standard Deviation). 

Time 

Interval 

(min) E. coli  Cl  NO3-N  NH4-N PO4-N  TOC 

Oxytetrac

ycline pH EC 

Turbidit

y TSS  

2 13.8±5.1
a
 7.4±0.8

a
 0.5±2.6

a
 5.5±1.4

a
 -0.8±2.7

a
 7.1±1.1

a
 7.1±1.3

a
 5.4±1.0

a
 10.1±0.6

a
 7.8±1.5

a
 10.0±0.8

a
 

4 13.3±4.9
b
 7.1±0.9

b
 -0.2±2.8

a
 5.2±1.4

b
 -1.4±2.5

a
 6.7±1.0

b
 6.6±1.6

a
 5.2±1.1

b
 9.8±0.8

b
 7.5±1.4

b
 9.5± 0.8

b
 

6 13.0±5.0
b
 6.9±1.0

b
 -0.2±2.7

a
 5.0±1.5

c
 -2.0±2.3

a
 6.5±1.0

c
 6.8±1.2

a
 5.1±1.2

c
 9.7±0.9

c
 7.3±1.6

c
 9.3±0.9

c
 

8 12.8±4.7
b
 6.7±1.3

c
 -0.8±3.2

a
 4.9±1.5

c
 -2.3±2.7

a
 6.3±1.0

d
 6.5±1.4

a
 5.1±1.3

c
 9.6±1.0

c
 7.1±1.5

d
 9.2±1.0

c
 

16 12.0±4.6
c
 6.4±1.1

c
 -0.7±3.3

a
 4.4±1.6

d
 -2.4±2.1

a
 5.7±1.0

e
 6.4±1.4

a
 4.9±1.3

c
 9.2±1.1

d
 6.5±1.3

e
 8.7±1.1

d
 

24 11.5±4.4
cd

 6.3±1.2
c
 -0.2±3.5

a
 4.2±1.7

d
 -2.4±2.5

a
 5.6±1.2

e
 6.4±1.3

a
 4.9±1.3

c
 9.1±1.1

d
 6.0±1.3

f
 8.7±1.2

d
 

30 11.0±3.9
d
 6.2±1.3

c
 0.4±3.5

a
 4.1±1.6

d
 -3.4±2.5

a
 5.5±1.2

e
 5.9±1.5

a
 5.0±1.4

c
 9.1±1.3

d
 5.9±1.4

f
 8.6±1.3

d
 

1
C=control, M=manure only, MA=manure and antibiotics, and MAA=manure, antibiotics, and alum. 

2
Values computed for all treatments and repetitions.  All reported values were normalized by flow and log transformed. 

3
Different letters within columns indicated means differed statistically at α=0.05.   
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1994) and care should be exercised in timing of manure application in relation to 

anticipated storm events (Edwards and Daniel, 1993). 

4.4 CONCLUSIONS 

Antibiotics use in livestock is extensive with permitted applications extending 

beyond therapeutic needs such as disease treatment to subtherapeutic ones such as growth 

promotion.  Such pervasive use of antibiotics coupled with high excretion rates of the 

substances from livestock has resulted in an increased presence of antibiotics in surface 

waters and groundwaters, and unfortunately, a greater likelihood of the presence of 

antibiotic-resistant bacteria in the environment.  As land application of manure is one of 

the main pathways for introducing antibiotics to waterbodies, it is important to identify 

BMPs for reducing antibiotic transport in runoff.  For antibiotics with high sorption 

coefficients, and hence a greater tendency to bind to soil particles, BMPs that target 

sediments or constituents with similar tendencies (e.g. phosphorus) may be ideal for 

antibiotic removal.  Prior research examining the effectiveness of alum to reduce 

phosphorus transport in runoff from poultry litter applied lands suggests that this BMP 

may serve to reduce oxytetracycline transport in runoff as well.  If effective, alum could 

be added to swine manure prior to land application.    

Results of this study, however, demonstrated that the addition of alum (1% 

concentration) to liquid swine manure did not significantly reduce the concentration of 

any of the examined constituents (E. coli, oxytetracycline, NO3-N, NH4-N, PO4-P, pH, 

EC, TSS, Cl, TOC and turbidity) in simulated runoff.  The reason for the lack of 

reduction with alum addition could be related to the concentration used, as indicated by 

results from studies on the use of alum to reduce the hormone 17β-estradiol (Bushee-

Bullock, 1999; DeLuane and Moore, 2013).  The lack of reduction in PO4-P transport, for 

instance, also suggests the alum dosage was too low.  For oxytetracycline, the primary 

constituent of interest in this study, the lack of reduction in runoff could also be linked to 

the high organic matter contents present in swine manure (Choi et al., 2008).  Further 

research is needed to examine a range of alum doses and organic matter concentrations to 

better assess its potential as a BMP for reducing antibiotic transport.  Consideration 

should also be given to the use of a secondary BMP (e.g. treatment train), such as a 
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vegetated filter strip, for filtering sediment-bound constituents and flocculants from 

runoff. 

Lastly, constituent concentrations were at their highest in runoff typically during 

the first 15 minutes of the storm event after which they reached a minimum level.  Thus, 

BMPs should target this first flush (e.g. water quality volume) whereby contaminant 

transport to waterbodies is the greatest.  Likewise, care should be taken in timing manure 

applications such that they do not precede eminent storm events.
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CHAPTER 5: SUMMARY OF CONCLUSIONS 

The objectives of this study were to (1) determine the error associated with flow-

weighted composite sampling for rainfall simulation studies, (2) evaluate the relationship 

between the veterinary antibiotic oxytetracycline and other water quality constituents, 

and (3) evaluate the ability of alum, as a manure amendment, on the reducing antibiotic 

transport.  Rainfall simulation experiments at the University of Kentucky’s Maine 

Chance Research Farm were performed to evaluate these objectives.  Runoff samples 

were collected from fescue plots over the course of a simulated storm (102 mm h
-1

) and 

analyzed for the water quality constituents E. coli, oxytetracycline, NO3-N, NH4-N, PO4-

P, pH, EC, TSS, Cl, TOC and turbidity.  All samples at each time interval (2, 4, 6, 8, 16, 

24 and 30 min) were analyzed; additionally, flow-weighted composite samples were 

created using each time interval sample, and the flow-weighted composites were also 

analyzed.  The flow-weighted composite concentrations were compared to the calculated 

flow-weighted mean concentrations (FWMC).  A methodology (Appendix D) was 

developed to analyze water samples for oxytetracycline in order to compare the 

concentrations to other water quality constituents to better focus treatment efforts and 

evaluate the effect of alum on reducing oxytetracycline transport as well as transport of 

the other constituents. 

In Chapter 2, a flow-weighted composite sampling strategy was compared to the 

standard use of the FWMC.  For constituents concentrations well above the detection 

limits (E. coli, turbidity, TOC, TSS, NH4-N and EC), a strong correlation was seen 

between FWMC and flow-weighted composite concentrations.  This finding indicates 

that flow-weighted composite sampling more closely represents the FWMC at higher 

concentrations.  Larger errors were noted when constituent concentrations were close to 

the detection limits (PO4, NO3-N, and oxytetracycline).  When constituent concentrations 

were close to the detection limits, larger differences between the flow-weighted 

composites and FWMCs were noted.  For oxytetracycline, it is suspected that the high 

presence of organic matter in the samples caused some interference with the developed 

oxytetracycline analysis methodology; as such, refinements to the methodology were 

suggested.  Also, the presence of a number of samples, mainly with the C and M plots, 
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having low detections could also account for some of the error seen with oxytetracycline. 

For unknown reasons, the flow-weighted composite samples consistently over predicted 

the FWMCs for Cl. 

Chapter 3 evaluated the potential for oxytetracycline to be transported via 

overland flow and the relationship between oxytetracycline concentrations and the 

concentrations of other constituents.  The goal of this study was to identify best 

management practices, based on their ability to reduce the transport of constituents with 

which oxytetracycline was related, for further study in the reduction of antibiotic 

transport. Oxytetracycline concentrations were found in the µg L
-1

 range, which is 

difficult to accurately quantify.  Results of the study showed that oxytetracycline 

concentrations were strongly correlated to E. coli, Cl, TOC, turbidity, and TSS.  Due to 

the strong correlation of oxytetracycline to TSS and turbidity and the likelihood of 

oxytetracycline to bind to manure particles based on the literature, it was determined that 

a BMP that reduces solids in runoff, such as a flocculants or vegetative buffer strips, may 

also reduce oxytetracycline transport.  

The effectiveness of amending manure with alum was evaluated in Chapter 4.  

The addition of alum, at a 1% dosage, showed no decrease in the concentrations of any of 

the examined constituents in runoff.  The reason for the lack of reduction with the alum 

addition could be related to the concentration used.  Studies with the hormone 17β-

estradiol found reductions using alum but at higher concentrations (5, 10 and 20%).  For 

oxytetracycline, the primary constituent of interest in this study, the lack of reduction in 

runoff could also be linked to the high organic matter contents present in swine manure.  

Because oxytetracycline concentrations increased slightly with the addition of alum 

(α=0.10), it is possible that the alum may resulted in an increase in antibiotic mobility.  

While oxytetracycline may have formed flocs with the addition of alum, these flocs may 

not have been large enough to settle out of the runoff.   If such is the case, then using a 

second BMP in addition to alum would be necessary to reduce oxytetracycline transport. 

Lastly, a first flush phenomenon was seen with higher concentrations of all constituents 

occurring at the beginning of the simulated storm for all treatments.  This result points to 

the need of a BMP to target the reduction of pollutants during the first part of the storm 

(e.g. water quality volume). 
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CHAPTER 6: FUTURE WORK 

 In order to understand the mobility of oxytetracycline in the environment, a more 

precise analytical procedure for oxytetracycline is necessary.  The recovery rate of the 

extraction procedure should undergo further exploration to improve the separation 

between the oxytetracycline peak and the peaks of other organic contaminants using 

HPLC, particularly for lower levels of oxytetracycline.   The use of solid phase extraction 

for the concentration of oxytetracycline should also be explored and compared to the 

methodology used in this study.  Improved accuracy of the oxytetracylcine analysis 

methodology will be an important tool in the continued research of antibiotic transport.  

Continued research on the behavior of oxytetracycline in the environment and the 

effectiveness of BMPs on the concentrations of other constituents will assist with the 

selection of a more effective BMP for oxytetracycline.  Higher alum doses should be 

examined for effectiveness in reducing antibiotic transport, possibly in a bench-scale 

study first before proceeding to a rainfall simulated study.  Also, the effectiveness of 

vegetative buffer strips (e.g. vegetation heights), either by themselves or forming a 

treatment train with alum, in reducing the transport of oxytetracycline should be 

explored.  
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APPENDIX A: RAINFALL SIMULATOR CALIBRATION AND PLOT 

CURVE NUMBER DETERMINATION
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A.1.1 RAINFALL SIMULATOR CALIBRATION 

Each of the three rainfall simulators was calibrated individually using five duty 

cycles: 10, 30, 50, 75 and 100%.  Percentages indicate the percentage of time the valves 

were open. Sixty-four Tru-Chek rain gauges (Edwards Manufacturing Company, Albert 

Lea, MN) were evenly distributed underneath the rainfall simulators. Simulators ran for 

15 minutes on the 10% duty cycle, 12 minutes on the 30 and 50% duty cycles, and 10 

minutes on the 75 and 100% duty cycles.  Longer time periods were used at the lower 

duty cycles to ensure the rain gauges collected a sufficient amount of water to accurately 

read the gradations on the gauges.  Water levels in each rain gauge were recorded at the 

completion of each duty cycle.  For each rainfall simulator and each duty cycle, an 

average water level was computed using the 64 rain gauges.  Based on the average water 

level or rain fall depth and the duration of rainfall, average intensities were computed.  

Figures A.1-A.3 show the calibration curves obtained for rainfall simulators 2-4.  Note: 

that rainfall simulator 1 was out of commission, and as such, was not used in this study.
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Figure A.1: Simulator 2 Calibration Curve.
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Figure A.2. Simulator 3 Calibration Curve.
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Figure A.3. Simulator 4 Calibration Curve. 
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A.1.2 PLOT CURVE NUMBER DETERMINATION 

Rainfall simulators were programed to a 100% duty cycle, which produced 

rainfall intensities between 127 and 152.4 mm hr
-1

.  Plots received simulated rainfall until 

the point of saturation (i.e. start of runoff) at which point the rainfall simulators were 

turned off.  Plots were then allowed to equilibrate for 30 minutes to ensure that runoff, 

from this saturation, had ceased.  After this 30-minute period, rainfall was recommenced, 

and the time required to produce runoff was recorded.  After runoff started, it was 

collected in 1 L bottles every two minutes until a constant flow rate was reached.  Once a 

constant flow rate was reached, rainfall was stopped; however, runoff was collected at 

one minute intervals until its cessation.  Flow rates were computed by dividing the weight 

of the collected water (full bottle minus tare weight of bottle) by the time required to fill a 

bottle. 

Hydrographs were developed for each plot.  Total runoff, Vrunoff, was computed 

by integrating the area under the hydrograph.  Runoff depth, Q, was determined using 

equation A.1 where Aplot represents the area of the plot or 14.86 m
2
. 

 

  
       
     

 (A.1) 

 

Precipitation depth, P, was computed by multiplying rainfall intensity by the total time of 

the simulated rainfall. The curve number (CN) for each plot was determined using 

equations A.2 and A.3 where the variable S represents storage. 

 

   (     (       )    (A.2) 

 

   
      

     
 (A.3) 

 

If runoff was not achieved within one hour, the CN was not calculated and the plot was 

not used in the study.  Table A.1 contains the CNs for each plot.  Figure A.2 is a map of 

plot locations, for reference. 



 

93 

 

Table A.1. Curve Numbers (CN) for All Plots Evaluate for Use in the Study. 

Plot Curve Number 

B1 82 

B2 96 

B3 55 

B4 82 

B5 88 

B6 90 

B7 74 

B8 81 

B9 65 

B10 82 

C1 90 

C2 89 

C3 82 

C4 80 

C5 89 

C6 77 

C7 68 

C8 --
1
 

C9 82 

C10 78 

D1 86 

D2 82 

D3 -- 

D4 -- 

D5 84 

D6 -- 

D7 -- 

D8 -- 
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Table A.1 continued. 

Plot Curve Number 

D9 84 

D10 69 

L1 84 

L2 70 

L3 79 

L4 -- 

L5 -- 

L6 75 

L7 -- 

L8 -- 

L9 -- 

N1 77 

N2 76 

N3 86 

N4 -- 

N5 85 

N6 79 

N7 77 

N8 75 

N9 81 

1
No runoff produced after one hour of simulated rain. 



 

 

 

9
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Figure A.4. Plot Location Map. 
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APPENDIX B: FLOW-WEIGHTED COMPOSITE SAMPLE DATA
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Date 6/18/2013       

   Plot N2 

  

  

   Simulator 3 

  

  

   Bottle Tare Weight 98.7 g 

 

  

   Time to Runoff 3 min 21 sec 

   Rainfall Intensity 4 in/hr     

   

        

     

Composite Volume 

Time since Runoff 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 29.72 890.8 792.1 26.7 1.6 3 22 

4 29.69 1003.1 904.4 30.5 3.4 6 48 

6 27.21 1044.3 945.6 34.8 3.9 7 55 

8 26.14 1066.1 967.4 37.0 4.3 7 60 

16 23.53 1073.8 975.1 41.4 18.8 31 262 

24 20.74 1105.6 1006.9 48.5 21.6 36 301 

30 19.45 1107.6 1008.9 51.9 18.1 30 252 

    

Sum 71.7 120 1000 

        CN 64   

     Total Rainfall 56.5 mm 

     Runoff Depth 4.8 mm 
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Date 6/24/2013       

   Plot L1 

  

  

   Simulator 3 

  

  

   Bottle Tare Weight 98.7 g 

 

  

   Time to Runoff 9 min 51 sec 

   Rainfall Intensity  4 in/hr     

   

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 65.71 890.8 998.2 15.2 0.9 2 16 

4 44.94 1003.1 707.2 15.7 1.9 4 33 

6 46.38 1044.3 904.7 19.5 2.1 5 38 

8 44.73 1066.1 958.0 21.4 2.5 5 44 

16 28.21 1073.8 978.4 34.7 13.5 29 240 

24 24.07 1105.6 1082.0 45.0 19.1 41 340 

30 22.69 1107.6 1031.2 45.4 16.3 35 290 

    

Sum 56.2 120 1000 

        CN 57   

     Total Rainfall 67.5 mm 

     Runoff Depth 3.8 mm 
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Date 6/24/2013       

   Plot L3 

  

  

   Simulator 2 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 27 min 

 

  

   Rainfall Intensity  4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 45.32 962.4 863.7 19.1 1.1 3 27 

4 39.47 966.2 867.5 22.0 2.5 7 58 

6 40.49 990.2 891.5 22.0 2.6 7 62 

8 38.48 1013.1 914.4 23.8 2.7 8 64 

16 30.93 1011.5 912.8 29.5 12.8 36 299 

24 39.48 950.9 852.2 21.6 12.3 34 287 

30 30.86 932.2 833.5 27.0 8.7 25 204 

    

Sum 42.8 120 1000 

        CN 44   

     Total Rainfall 96.5 mm 

     Runoff Depth 2.9 mm 
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Date 6/24/2013       

   Plot N9 

  

  

   Simulator 4 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 51 min 27 sec 

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) Mass (g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 60.80 575.3 476.6 7.8 0.5 4 23 

4 61.65 609.9 511.2 8.3 1.0 7 47 

6 59.66 681.0 582.3 9.8 1.1 8 52 

8 55.66 706.0 607.3 10.9 1.2 10 60 

16 101.59 931.7 833.0 8.2 4.6 35 222 

24 92.98 862.4 763.7 8.2 3.9 30 191 

30 90.31 972.3 873.6 9.7 3.2 25 156 

    

Sum 15.5 120 750 

        CN 31   

     Total Rainfall 137.9 mm 

     Runoff Depth 1.0 mm 
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Date 6/25/2013       

   Plot C3 

  

  

   Simulator 3 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 43 min 30 sec 

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 43.66 1072.6 973.9 22.3 1.3 3 23 

4 35.24 1029.8 931.1 26.4 2.9 6 50 

6 32.01 1023.5 924.8 28.9 3.3 7 57 

8 29.35 1028.3 929.6 31.7 3.6 7 62 

16 27.43 1005.7 907 33.1 15.5 32 265 

24 22.21 1008.8 910.1 41.0 17.8 36 303 

30 25.68 1068 969.3 37.7 14.2 29 241 

    

Sum 58.7 120 1000 

        CN 38   

     Total Rainfall 124.5 mm 

     Runoff Depth 3.9 mm 
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Date 6/25/2013       

   Plot C4 

  

  

   Simulator 3 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 70 min 

 

  

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) Mass (g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 55.36 674.5 575.8 10.4 0.6 10 62 

4 54.83 574.1 475.4 8.7 1.1 18 113 

6 53.97 416.1 317.4 5.9 0.9 14 86 

8 220.54 823.8 725.1 3.3 0.6 9 54 

16 224.74 814.1 715.4 3.2 1.6 25 154 

24 171.66 754.1 655.4 3.8 1.7 27 166 

30 210.74 653.3 554.6 2.6 1.2 18 115 

    

Sum 7.6 120 750 

        CN 25   

     Total Rainfall 169.3 mm 

     Runoff Depth 0.5 mm 
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Date 6/25/2013       

   Plot D5 

  

  

   Simulator 2 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 35 min 

 

  

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 55.25 898.5 799.8 14.5 0.9 3 26 

4 55.02 915.9 817.2 14.9 1.8 6 53 

6 46.55 1037.2 938.5 20.2 2.1 8 63 

8 55.13 732.7 634 11.5 1.9 7 57 

16 37.18 1012.2 913.5 24.6 8.7 31 260 

24 46.56 1010 911.3 19.6 10.6 38 318 

30 45.21 1085.4 986.7 21.8 7.5 27 224 

    

Sum 33.3 120 1000 

        CN 39   

     Total Rainfall 110.1 mm 

     Runoff Depth 2.2 mm 
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Date 6/26/2013       

   Plot B1 

  

  

   Simulator 2 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 11 min 

 

  

   Rainfall Intensity  4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume 
Bacteria 

(mL) 

Antibiotics 

(mL) 

2 12.00 1004.8 906.1 75.5 4.5 2 15 

4 9.34 1142.8 1044.1 111.8 11.2 5 38 

6 6.81 1038.6 939.9 138.0 15.0 6 50 

8 5.97 1067.4 968.7 162.3 18.0 7 60 

16 5.18 1147.3 1048.6 202.4 87.5 35 292 

24 4.99 1047.1 948.4 190.1 94.2 38 315 

30 4.66 994.6 895.9 192.3 68.8 28 230 

    

Sum 299.3 120 1000 

        CN 75   

     Total Rainfall 69.4 mm 

     Runoff Depth 20.1 mm 
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Date 6/26/2013       

   Plot B4 

  

  

   Simulator 2 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 10 min 

 

  

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 14.22 1042.1 943.4 66.3 4.0 3 22 

4 11.55 1030.8 932.1 80.7 8.8 6 48 

6 10.85 1088.5 989.8 91.2 10.3 7 56 

8 9.05 1016.1 917.4 101.4 11.6 8 63 

16 8.08 1075.6 976.9 120.9 53.3 35 290 

24 8.11 1012.9 914.2 112.7 56.1 37 305 

30 8.65 1044.0 945.3 109.3 40.0 26 217 

    

Sum 184.1 120 1000 

        CN 69   

     Total Rainfall 67.7 mm 

     Runoff Depth 12.4 mm 
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Date 6/26/2013       

   Plot B10 

  

  

   Simulator 4 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 11 min 

 

  

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) Mass (g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 8.50 1020.1 921.4 108.4 6.5 3 27 

4 6.71 990.9 892.2 133.0 14.5 7 59 

6 6.36 1015.1 916.4 144.1 16.6 8 68 

8 6.12 996.6 897.9 146.7 17.4 9 71 

16 6.71 1096.2 997.5 148.7 70.9 35 290 

24 6.76 1051.4 952.7 140.9 69.5 34 284 

30 6.75 997.2 898.5 133.1 49.3 24 202 

    

Sum 244.8 120 1000 

        CN 72   

     Total Rainfall 69.4 mm 

     Runoff Depth 16.5 mm 
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Date 6/26/2013       

   Plot C2 

  

  

   Simulator 3 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 30 min 

 

  

   Rainfall Intensity  4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 38.19 1025.4 926.7 24.3 1.5 1 10 

4 28.66 1076.2 977.5 34.1 3.5 3 24 

6 22.28 1004.1 905.4 40.6 4.5 4 31 

8 17.69 1096.3 997.6 56.4 5.8 5 40 

16 10.09 1036.6 937.9 93.0 35.8 30 247 

24 8.33 1059.4 960.7 115.3 50.0 41 345 

30 7.39 1051.1 952.4 128.9 44.0 36 303 

    

Sum 145.1 120 1000 

        CN 51   

     Total Rainfall 101.6 mm 

     Runoff Depth 9.8 mm 
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Date 6/28/2013       

   Plot D1 

  

  

   Simulator 3 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 10 min 

 

  

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 11.36 1065.7 967 85.1 5.1 1 12 

4 5.95 1050.5 951.8 160.0 14.7 4 35 

6 4.80 1103 1004.3 209.2 22.2 6 53 

8 4.04 1039.7 941 232.9 26.5 8 63 

16 3.54 1036.6 937.9 264.9 119.5 34 285 

24 3.54 1129.9 1031.2 291.3 133.5 38 318 

30 4.13 1143 1044.3 252.9 97.9 28 234 

    

Sum 419.4 120 1000 

        CN 82   

     Total Rainfall 67.7 mm 

     Runoff Depth 28.2 mm 
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Date 7/2/2013       

   Plot C5 

  

  

   Simulator 2 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 5 min 26 sec 

   Rainfall Intensity  4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) Mass (g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 6.97 1103.9 1005.2 144.2 8.7 3 28 

4 5.27 1007.7 909.0 172.5 19.0 7 62 

6 5.27 1037.2 938.5 178.1 21.0 8 69 

8 5.30 1105.4 1006.7 189.9 22.1 9 72 

16 5.47 1049.6 950.9 173.8 87.3 34 285 

24 5.45 1019.7 921.0 169.0 82.3 32 269 

30 4.87 1049.4 950.7 195.2 65.6 26 214 

    

Sum 305.9 120 1000 

        CN 80   

     Total Rainfall 60.0 mm 

     Runoff Depth 20.6 mm 
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Date 7/2/2013       

   Plot B6 

  

  

   Simulator 4 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 6 min 18 sec 

   Rainfall Intensity  4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) Mass (g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 9.08 1043.3 944.6 104.0 6.2 3 25 

4 8.18 1048.6 949.9 116.1 13.2 6 53 

6 7.64 1088.1 989.4 129.5 14.7 7 60 

8 7.54 1094.7 996.0 132.1 15.7 8 64 

16 6.41 1069.8 971.1 151.5 68.1 33 276 

24 5.95 1012.9 914.2 153.6 73.2 36 297 

30 6.47 1110.2 1011.5 156.3 55.8 27 226 

    

Sum 247.0 120 1000 

        CN 76   

     Total Rainfall 61.5 mm 

     Runoff Depth 16.6 mm 
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Date 7/2/2013       

   Plot B5 

  

  

   Simulator 2 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 4 min 

 

  

   Rainfall Intensity 4 in/hr     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) Mass (g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume (L) 

Bacteria 

(mL) 

Antibiotics 

(mL) 

2 15.88 1037.6 938.9 59.1 3.5 2 13 

4 9.24 1062.5 963.8 104.3 9.8 4 35 

6 6.27 1066.7 968.0 154.4 15.5 7 55 

8 5.68 1086.0 987.3 173.8 19.7 8 70 

16 5.69 1132.9 1034.2 181.8 85.3 36 301 

24 6.15 1119.7 1021.0 166.0 83.5 35 295 

30 4.82 1057.8 959.1 199.0 65.7 28 232 

    

Sum 283.1 120 1000 

        CN 80   

     Total Rainfall 57.6 mm 

     Runoff Depth 19.0 mm 
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Date 7/2/2013       

   Plot C6 

  

  

   Simulator 4 

  

  

   Bottle Tare Weight 98.7 

  

  

   Time to Runoff 11 min 

 

  

   

Rainfall Intensity  4 

in/h

r     

   

        

        

     

Composite Volume 

Time since Runoff 

(min) 

Time to 

fill (s) 

Mass 

(g) 

Sample 

(g) 

Flowrate 

(mL/sec) 

Incremental 

Volume(mL) 

Bacteri

a (mL) 

Antibiotic

s (mL) 

2 53.02 569.2 470.5 8.9 0.5 3 27 

4 53.92 659.2 560.5 10.4 1.2 7 58 

6 54.53 699.3 600.6 11.0 1.3 8 64 

8 55.02 733.5 634.8 11.5 1.4 8 68 

16 76.41 1110.9 1012.2 13.2 5.9 36 297 

24 72.4 1065.4 966.7 13.4 6.4 38 319 

30 196.06 1118.0 1019.3 5.2 3.3 20 167 

    

Sum 20.0 120 1000 

        CN 50   

     Total Rainfall 69.4 mm 

     Runoff Depth 1.3 mm 
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APPENDIX C: METHODOLOGY FOR E.COLI ANALYSIS
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Coliert-18, 120 mL IDEXX sample bottles (pre-sterilized) with sodium thiosulfate 

(de-chlorinating agent), and Quanti-Tray*/2000 were purchase from IDEXX Laboratories 

(Westbrook, ME).  Dilutions (1:10, 1:100, and 1:1000) were made using sterilized 

deionized water (DI H2O) and sterilized buffer water prepared by the following 

instructions.  

C.1 BUFFER WATER AND DI WATER PREPARATION 

C.1.1 Prepare Solutions 

1. Add 50g of MgSO4∙7H2O to 1 L flask of DI H2O. 

2. Add 34g of KH2PO4 to a second 1 L flask of DI H2O and adjust pH to 7.2 with 1 

N NaOH. 

C.1.2 Prepare Buffer Water 

3. Add 10 mL of MgSO4∙7H2O solution to a 2 L flask. 

4. Add 2.5 mL of KH2PO4 solution to the same 2 L flask as in step 3. 

5. Fill the remaining volume of the 2 L flask with DI H2O. 

6. Securely place a lid on the 2 L flask.  Mix the 2 L flask by inversion. Once mixing 

is complete, loosen lid (e.g. enough to rattle), but such that it remains on the 

threads. 

C1.3 Prepare DI H2O 

7. Fill a second 2 L flask with DI H2O.  Place a lid on this 2 L flask.  The lid should 

be loose enough to rattle but still catch on threads. 

C.1.4 Autoclave 

8. Place autoclave tape on each lid (2 L flask of buffer water and 2 L flask of DI 

H2O ) and check for proper looseness.  

9. Autoclave on liquid cycle with the flasks in plastic trays. 

10. Wait 10 minutes after cycle is complete before removing flasks. 

11. Wait until the flasks are at room temperature before tightening the lids. 
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C.2 DILUTION BOTTLE PREPARATION 

1. Place dilution bottles in plastic trays to prevent tipping.  Lids should remain on 

the sample bottles, but be loosened (e.g. still caught on the threads).  Glass or 

plastic 100-200 mL bottles are recommended. 

2. Autoclave dilution bottles on labwares cycle. 

3. Allow dilution bottles cool to room temperature before tightening lids. 

C.3 DILUTIONS 

1. Put 90 mL of buffer water into a sterilized dilution bottle (100-200 mL) to be used 

for dilution series. When making three dilutions, as done in this study, two 

sterilized dilution bottles with buffer are needed for each sample. See Figure C.1.  

2. Put 90 mL of sterile DI H2O into the three sterilized dilution bottles to be used for 

Coliert-18. One bottle for each dilution of each sample is needed for this step, 

hence three dilutions require three bottles. 

3. Add one packet of Coliert-18 to each sterilized dilution bottle containing DI H2O. 

4. Add two drops of anti-foaming agent to each sterilized dilution bottle containing 

DI H2O. 

5. Put 10 mL of sample into 90 mL of DI H2O for the 1:10 Dilution. Empty all 100 

mL into a Quanti-Tray. 

6. Put 10 mL of sample into 90 mL of buffer water (dilution bottle prepared in step 

1).  This is the 1:10 buffer water and sample mixture.   

7. Put 10 mL of the 1:10 buffer water and sample mixture (step 6) into 90 mL of DI 

H2O and empty all 100 mL into a Quanti-Tray. This is the 1:100 dilution.  

8. Add 10 mL of the 1:10 buffer water and sample mixture (step 6) to 90 mL of 

buffer water. This is the 1:100 buffer water. 

9. Put 10 mL of the 1:100 buffer water and sample mixture (step 8) in 90 mL of DI 

H2O for the 1:1000 dilution and empty all 100 mL into a Quanti-Tray. 

10. Continue this process for each subsequent dilution needed. 

 

After emptying each dilution into its respective tray, seal using the IDEXX sealer.  Place 

the sealed tray in an incubator for 18-22 hours at 35°C±0.5°C.  After the incubation 
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period, use a UV-light to determine which cells tested positive for E. coli.  Cells must 

turn yellow and fluoresce to be considered positive.  If unsure, use the IDEXX 

comparator tray to compare samples to the standard.  

 

 

 

 



 

 

 

1
1
7

 

 

Figure C.1. E. coli Dilution Series. 
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APPENDIX D: METHODOLOGY FOR ANTIBIOTIC EXTRACTION AND 

ANALYSIS
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The first step in antibiotic analysis is sample concentration.  This step is necessary 

due to the low concentrations (mg) typicaly found in water samples.  Typically, this 

concentration step is performed via solid phase extraction.  However, the method of solid 

phase extraction is quite time consuming and often results in low recovery rates of 

antibiotics (Yang et al., 2005; Zhu et al,. 2001).  As such, a new methodology was 

developed whereby the process of lyophilization (freeze-drying), similar to that described 

by Hirsh et al. (1998), was used. 

D.1 SAMPLE PREPARATION 

Approximately, 50 mL of sample was added to a 50 mL centrifuge tube.  The 

sample, in the centrifuge tube, was then centrifuged at 3,500 rpm for 20 minutes. Next, 

45 mL of supernatant was pipetted into a 50 mL glass test tube.  The test tube was then 

covered with a kimwipe that was secured in place with tape.  Note that filtering sample 

through a 0.45 µm filter prior to its placement in a glass test tube would likely help refine 

the chromatogram.   

D.2 LYOPHILIZATION 

 Samples were placed in a freezer (-4°C) for 12 hours prior to placement in a          

-40°C freezer for about 2 hours to further lower the temperature.  An SP Scientific VirTis 

Wizard 2.0 lyophilzer (Gardiner, New York) was turned on to the freeze cycle until the 

shelf temperature reached approximately -20°C.  Samples were then removed from the -

40°C freezer and placed in the lyophilizer.  Note that while samples can be frozen in the 

lyophilzer, a greater potential exists for the test tubes to break due to the rapidness of 

freezing; hence the reason for using the freezer.   

The lyophilizer condenser was turned on and allowed to reach a temperature between -

40°C and -60°C. The lyophilizer vacuum was turned on and allowed to reach less than 

500 mTorr. Shelf control for the lyophilizer was turned on and began heating the shelf to 

10°C. Samples were left in the lyophilizer until dry (approximately 3 days). 

D.3 SAMPLE CONCENTRATION 

 Dry residue in the test tubes was re-dissolved in 900 µL of 50% methanol solution 

by rinsing the test tube with 300 µL of methanol three times.  The solution was then 
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transferred to micro-centrifuge tubes and centrifuged at 4,000 rpm for 10 minutes. 

Approximately, 600 µL of supernatant was then transferred to HPLC vials.   

A solution containing an oxytetratcycline concentration of 2 µg mL
-1

 was made 

by diluting a 1 mg mL
-1

 oxytetracycline solution.  A 300 µL glass insert was then placed 

in an HPLC vial and 100 µL of concentrated sample was added to 100 µL of the 2 µg 

mL
-1

 solution. This resulted in a 25X concentration from the original sample and a 

concentration of at least 1 µg L
-1

 of oxytetracycline. 

D.4 HPLC 

A Dionex Ultimate 3000 HPLC along with an Ultimate 3000RS Variable 

Wavelength detector (Sunnyvale, California) set was used for this analysis.  The variable 

wavelength detector was set at a wave length of 290 nm (Kay et al., 2005).  A Dionex 

Acclaim 120 (C18) column with an inner diameter of 3 µm and length of 250 mm was 

used.  The pumping rate was set to 0.400 mL min
-1

 with a gradient mobile phase of 0.5% 

acetic acid in water and 0.5% acetic acid in methanol.  The gradient can be seen in Table 

D.1.  The HPLC injected 20 µL of 25X concentrated sample and ran for 12 minutes per 

sample.  

 

Table D.1. HPLC Gradient used in Oxytetracycline Analysis. 

Time (min) 
HPLC Gradients

1
 

A (%) B (%) 

1 60 40 

4 10 90 

7 10 90 

9 40 60 

10 60 40 
1
A is DI water with 0.5% acetic acid; B is HPLC grade MeOH with 0.5% acetic acid. 
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APPENDIX E: MANURE AND SOIL SAMPLING RESULTS



 

 

 

1
2
2

 

Table E.1. Results of Manure Analysis. 

Plot
1
 C (%) N (%) P (%) K (%) Ca (%) Mg (%) Zn (mg L

-1
) Cu (mg L

-1
) Mn (mg L

-1
) Fe (mg L

-1
) 

-----------------------M----------------------- 

B4 1.99 0.49 0.09 0.24 0.11 0.04 34.62 3.46 13.85 103.86 

C5 1.95 0.49 0.09 0.23 0.12 0.04 37.80 3.78 15.12 98.28 

L1 1.99 0.49 0.08 0.25 0.11 0.03 35.71 3.57 14.28 85.70 

-----------------------MA------------------------ 

B6 1.72 0.45 0.08 0.25 0.13 0.04 60.67 3.79 15.17 75.84 

B10 2.03 0.49 0.09 0.25 0.11 0.04 39.08 3.55 14.21 95.94 

C3 2.10 0.49 0.09 0.25 0.11 0.04 36.78 3.68 14.71 114.00 

L3 2.06 0.49 0.08 0.25 0.11 0.04 37.07 3.71 14.83 70.43 

-----------------------MAA------------------------ 

B1 2.07 0.50 0.09 0.29 0.12 0.04 47.01 7.23 14.46 86.78 

B5 2.17 0.53 0.10 0.30 0.12 0.04 52.75 12.17 16.23 93.33 

C4 1.79 0.48 0.09 0.27 0.12 0.04 44.14 8.03 16.05 112.36 

N9 1.94 0.52 0.10 0.30 0.11 0.04 49.04 12.26 16.35 93.98 
1
M=manure only, MA=manure and antibiotics, MAA=manure, antibiotics, and alum. 
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Table E.2. Results of Soil Analysis. 

Plot
1
 

P (lb 

ac
-1

) 

K (lb 

ac
-1

) pH 

Ca 

(lb 

ac
-1

) 

Mg 

(lb 

ac
-1

) 

Zn 

(lb 

ac
-1

) 

Total 

N 

(%) 

Total 

C 

(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Moisture 

(%) 

-----------------------C----------------------- 

C2 160 439 5.08 4,147 326 7.8 0.18 1.63 10.04 70.11 19.85 22.6 

C6 169 520 4.95 2,989 338 10.8 0.20 1.79 10.01 72.96 17.03 29.9 

D1 269 554 5.91 4,895 548 7.8 0.18 1.51 9.91 74.28 15.81 24.2 

D5 164 384 5.17 3,913 298 9.0 0.17 1.64 12.14 62.75 25.11 23.8 

-----------------------M----------------------- 

B4 233 484 5.03 2,517 597 10.7 0.22 2.03 11.75 73.18 15.07 32.6 

C5 184 584 5.28 3,755 317 35.6 0.21 2.00 13.21 69.33 17.46 29.8 

L1 282 542 5.26 3,181 699 5.6 0.20 1.77 9.67 73.57 16.76 29.5 

-----------------------MA----------------------- 

B6 194 901 5.09 3,024 377 8.7 0.25 2.15 10.82 72.31 16.87 30.6 

B10 149 587 5.25 3,297 832 5.0 0.20 1.80 10.37 70.41 19.21 30.3 

C3 258 419 5.57 3,809 822 13.8 0.24 2.25 11.01 74.94 14.05 29.1 

L3 234 519 5.32 3,540 850 6.4 0.20 1.89 14.25 62.01 23.71 30.0 

-----------------------MAA----------------------- 

B1 200 506 5.39 2,958 596 8.0 0.20 1.91 10.67 74.60 14.73 31.3 

B5 175 601 5.1 3,427 421 23.6 0.21 1.90 11.67 70.76 17.57 29.0 

C4 353 850 5.66 4,579 810 25.8 0.30 3.12 13.75 70.44 15.81 29.5 

N9 137 264 5.28 2,972 729 4.2 0.17 1.48 7.95 75.16 16.88 29.0 
1
M=manure only, MA=manure and antibiotics, MAA=manure, antibiotics, and alum. 
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