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ABSTRACT OF DISSERTATION 
 
 
 

A Continuous Mathematical Model of the One-Dimensional Sedimentation Process of 
Flocculated Sediment Particles 

 
A new continuous one-dimensional sedimentation model incorporating a new continuous 
flocculation model that considers aggregation and fragmentation processes was derived 
and tested. Additionally, a new procedure to model sediment particle size distribution 
(PSD) was derived. Basic to this development were three different parametric models: 
Jaky, Fredlund and the Gamma probability distribution (GPD) were chosen to fit three 
different glass micro-spheres PSDs having average particle sizes of 7, 25 and 35 microns. 
The GPD provided the best fit with the least parameters. The bimodal GPD was used to 
fit ten sediment samples with excellent results (< 5% average error).  A continuous 
flocculation model was derived using the method of moments for solving the continuous 
Smoluchowski coagulation equation with fragmentation. The initial sediment PSD was 
modeled using a bimodal GPD. This new flocculation model resulted in a new general 
moments’ equation that considers aggregation and fragmentation processes, which is 
represented by a system of ordinary differential equations. The model was calibrated 
using a genetic algorithm with initial and flocculated PSDs of four sediment samples and 
four anionic polyacrylamides flocculants. The results show excellent correlation between 
predicted and observed values (R2 > 0.9878). A new continuous one-dimensional 
sedimentation model that resulted in a scalar hyperbolic conservation law was derived 
from the well-known Kynch kinematic sedimentation model. The model was calibrated 
using column tests results with glass micro-spheres particles. Two different glass micro-
spheres particle size distributions (PSDs) were used with average diameters of 7 and 37 
microns. Excellent values of coefficient of determination (R2 > 0.89, except for one test 
replicate) were obtained for both the small and large glass micro-spheres PSDs. These 
results suggest that the proposed sedimentation model can be expanded to model the 
sedimentation process inside a sediment pond. 
 
KEYWORDS: mathematical representation of particle size distribution, sedimentation 
theory, aggregation and fragmentation, flocculation model, sediment pond design. 
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CHAPTER 1: Introduction 

 

Construction, commercial forestry, agriculture and surface mining activities have the 

potential to cause surface water pollution if not sufficiently controlled.  Traditionally 

erosion and sediment transport has been addressed through application of Best 

Management Practices (BMPs). A sediment pond is a frequently used BMP designed to 

retain sediment. The performance of a sediment pond depends on various factors such as 

physical and chemical sediment characteristics, inflow hydrograph and sedimentgraph, 

and pond geometry. Sediment ponds in general are capable of retaining sediment 

particles larger than fine sands (0.02 mm in diameter) leaving the smaller particles such 

as silts and clays partially treated. Recently published environmental regulations replace 

simply providing BMPs at construction sites with a defined turbidity limit [1.1].  

Sediment ponds are expected to require flocculation to meet new effluent regulations.  

Modeling of the performance of sediment ponds needs to be improved to accommodate 

flocculated sediments.  Sedimentation modeling based on physically-based processes 

should extend predictive capabilities. 

 

A primary factor controlling the performance of a sediment pond is the particle size 

distribution (PSD) of the incoming sediment. Existing techniques that are used to 

enhance the performance of a sediment pond vary from inserting baffles and turbidity 

curtains that increase the residence time and reduce the dead space to the recent 

introduction of flocculation. The least common yet potentially the most efficient method 

to remove fine sediments is flocculation. Flocculation is the process where larger 
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particles or flocs are formed from binding smaller particles. The binding mechanism can 

be of natural origin or artificially induced through the use of a chemical flocculant. Even 

though chemically induced flocculation is a common practice in the water treatment 

industry to remove water borne sediments it has seen very limited applications to 

sediment ponds. Induced flocculation is still considered a novel approach to enhancing 

sediment pond performance. Through flocculation the sediment particle size distribution 

(PSD) is shifted to the coarser side thus increasing particle settling velocities. No known 

successful flocculation model has been developed that can be used to design and predict 

the performance of a sediment pond employing induced flocculation.  

 

 Few cases can be found in the literature where sediment pond flocculation has been 

modeled ([1.2] [1.3] [1.4]).  These approaches however use a discrete binary system of 

differential equations derived from the well-known Smoluchowski coagulation equation 

that requires a numerical method to approximate the solution. Obtaining an approximate 

solution to these type of models requires extensive computational time since each 

equation in the system tracks the changes in the initial PSD. To increase predictive 

accuracy the number of particle sizes modeled needs to be increased which increases the 

required computational time.  There is a yet to be determined the tradeoff among 

modeling accuracy, number of modeled particle and computations time.   Furthermore, 

each approximate solution of the flocculation model needs to be updated at each 

incremental time and space step of the numerical solution of the sediment pond model. 
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In an effort to develop the foundation of a comprehensive sediment pond model that 

includes flocculation, first a new flocculation model that requires less computational 

effort and yet provides the same or better degree of accuracy is needed. Secondly, a 

physically-based sediment pond model also needs to be developed that is computationally 

efficient while supplying accurate results, especially when combining with the 

flocculation model. Developing the framework of a new sedimentation/flocculation 

model was the primary objective of this  research. Three interrelated research areas, 

addressed in this research are:  

 

1. Mathematical representation of the particle size distribution (PSD) of sediment 

particles,  

2. Flocculation model, and  

3. Sedimentation model.  

 

The dissertation is divided into the following chapters: 

 

Chapter 2 provides a brief introduction to the mathematical representation of the PSD of 

sediment. This chapter also compares the performance of three different unimodal models 

to fit glass micro-spheres’ PSDs. The Gamma probability distribution was introduced as a 

unimodal and bimodal model to represent the PSD of sediments providing excellent 

results.  

 



4 
 

Chapter 3 presents the Smoluchowski coagulation equation and the extensions to 

fragmentation and its continuous moments’ representation. The moments’ representation 

of the continuous aggregation and fragmentation equation was used in conjunction with 

the Gamma multimodal distribution to derive a new flocculation model. The primary 

advantage of this new model is that the mathematical problem is reduced to a scalar 

continuous form that is readily solved in a computationally efficient manner. 

 

In Chapter 4 the flocculation model presented in Chapter 3 was calibrated using 

flocculated PSD obtained from four different sediment samples with anionic 

polyacrylamides flocculants from four different manufacturers.  

 

Chapter 5 first provides an introduction of the Kynch sedimentation theory that is used to 

derive the sedimentation model of a polydispersed system of sediment particles. The 

resulting model is a system of conservation laws, where each equation representing a 

different particle size specie. Using this approach a new one-dimensional sedimentation 

model was developed using the continuous representation of the PSD instead of the 

discrete form. The result is a scalar conservation law that is more cost-effective to solve 

than the system of equations alternative.  

 

Finally, Chapter 6 lists possible future research ideas that can extend the presented 

research. 

 

Copyright © Sebastian Fernando Torrealba
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CHAPTER 2:  Multimodal Model Representation of the 

Sediment Particle Size Distribution Using the Gamma 

Probability Distribution 

 

Abstract 

 

Particle size distribution information is needed to model the sedimentation process. The 

accuracy of sedimentation models that consider particle-to-particle interaction is 

enhanced with a continuous representation of the PSD. Three different parametric models 

use to mathematically represent PSD data: Jaky, Fredlund and Gamma distributions were 

chosen to fit three different glass micro-spheres PSDs having average particle sizes of 7, 

25 and 35 μm. An X-Ray particle size analyzer, that employs the sedimentation theory, 

provided a total of 117 data points for each PSD. The square root of the average sum of 

square errors was used to evaluate the goodness of fit of the three tested models. The 

Gamma distribution provided the best fit and had the least parameters. A multimodal 

form of the Gamma distribution was used which followed Durner’s approach and 

Fredlund’s bimodal formula. The Gamma multimodal form was validated by fitting it to 

bimodal and trimodal PSD data created from combining two and three different glass 

micro-spheres samples for various mass proportions. The projected mass proportions 

were obtained using multi-linear regression analysis that yielded coefficient of 

determination (R2) over 0.993 and 0.9667 for the bimodal and trimodal tests; 
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respectively. The relative average errors between the observed and projected mass 

proportions were within 7% to 8% in average, which is normal considering the systematic 

errors embedded in sample preparation, equipment precision and error propagation.  Ten 

soil samples were used to determine the efficacy of the unimodal and bimodal forms of 

the GPD.  Model performance, based on the average error or deviation, was below 

14.72% and 4.84% for the unimodal and bimodal forms, respectively.  
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2.1 Introduction 

 

The Particle Size Distribution (PSD) can be used to predict numerous physical 

properties of a soil. Through mathematical relationships the PSD can be used to 

accurately represent the hydraulic conductivity of a soil.  PSD data is also used for soil 

classification purposes, the most simple being the USDA textural triangle where only the 

silt, sand and clay fractions are needed. The USCS requires a more complete sieve 

analysis in addition to Atterberg limits.  

 

The PSD of a sediment sample is a relevant input in the design of a sediment 

detention pond where the fine fraction (silt and finer fraction) of the PSD determines the 

performance or sediment trapping efficiency. Different methods exist to obtain the PSD 

of a sediment sample (finer fraction generally passing sieve #200, 0.075 mm in size 

opening), which are based on sedimentation techniques using Stokes’ law and optical 

methods (laser diffraction). Sedimentation techniques provide the distribution of Stokes’ 

diameters whereas optical methods provide the distribution of geometric sizes. The most 

common sedimentation procedure is the hydrometer method, where the size distribution 

of silts and clays is determined through variations of the density of the sediment and 

water solution over time. The hydrometer test is a simple and inexpensive test; however it 

requires a great amount of time to measure the mass fraction of small clay particles 

(diameter smaller than 0.002 mm) and the resolution of the resulting curve is low (small 

amount of points are obtained based on the precision of the equipment). New and more 

advanced lab equipment are available that obtain the PSD by measuring the radiation 
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absorption of particles suspended in a solution. This type of equipment provides a much 

higher resolution and accuracy of the finer fraction than the more traditional tests, and in 

a fraction of the time.   

 

Numerous benefits can be found from mathematically representing the PSD of a soil. 

The mathematical expression describing the PSD can provide an easier and more 

effective way of classifying soils. Other benefits include having more rigorous tools for 

the statistical analysis of the PSD. The hydraulic properties of a partially saturated soil, 

the pore size distribution (the complement of the PSD), can be mathematically analyzed 

to determine the flow properties of water through the void structure of the soil. Many 

authors have provided different models relating PSD to hydraulic conductivity of 

partially saturated soils, and a limited list can be found in Fredlund et al. (2000) [2.7].  

 

Durner (1994) [2.6] represented the hydraulic conductivity function by superimposing 

unimodal retention curves which are equivalent to the pore size distribution curves. 

Durner provided the concept behind the multimodal model that will be discussed later in 

this paper. In sedimentation theory, mathematically representing the PSD of sediments 

can lead to the development of particle-to-particle interaction models such as based on an 

eroded PSD model or a flocculated PSD model. 
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2.2 Background 
 

There are several possible approaches one can use to mathematically represent the 

PSD of soil particles. The simplest method is to fit a certain parametric function to the 

PSD data (e.g. a probability distribution). Given the analogy between the PSD and a 

theoretical probability distribution (e.g. a normal distribution), the PSD can be 

represented using a cumulative probability distribution (CPD) F(x) or using a probability 

density function (PDF) f(x), where:  

 

∫
∞−

=
x

dfxF ττ )()(  (2.1)

 

In soil mechanics it is common to use the cumulative representation plotted in a semi-log 

scale (Figure 2 – 1). 

 

Soils can have a uniform, well graded or gap graded PSD. The PSD of a uniform and 

well graded soil has one mode (unimodal) determined by the inflexion point in the CPD 

or global maxima in the PDF whereas a gap graded soil has a PSD with two (bimodal) or 

more modes (multimodal). The difference between a well graded and a uniform soil is 

that the latter possesses PSD data with smaller variance. A multimodal PSD is centered 

around multiple size classes and thus revealing multiple inflexion points (Figure 2 - 1). 
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Figure 2 - 1: Example of a multi-modal PSD having three inflexion points (marked with red circles). 

2.2.1 Unimodal PSD Models 

Various parametrical unimodal models have been proposed in the literature, most of 

which were reviewed and summarized in [2.7], [2.8], and [2.13]. One of the initial 

approaches to mathematically represent the PSD without using a known probability 

distribution was conducted by Jaky [2.9], where a single parameter exponential function 

was proposed: 

 

,ln1exp)(
2

max
2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

x
x

k
xFJ  (2.2)
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where: k is a parameter, x is the particle diameter and xmax is the maximum diameter. 

Jaky’s model provides good results when fitting a PSD with few data points [2.9]. For 

PSD data with higher degree of resolution it is necessary to increase the number of fitting 

parameters. Buchan [2.4] studied the validity of the simple two-parameter lognormal 

distribution (LND) in fitting soil PSD data and concluded that the LND would yield good 

approximations on about half of the USDA soil textural classes, namely for soils with 

low clay content. The lack of compatibility with the higher clay content soils is due to the 

fact that the LND is symmetrical and thus would not perform well with soils having PSD 

with heavy tails (skewed distribution). Thus, for sediments where the PSD tends to tail 

heavily towards the fine fraction, the use of the LND would not be recommended.  

 

Another theoretical probability distribution function that has been used to fit PSD 

data is the Weibull distribution [2.15], in which the modified [2.1] expression is given by 

the following three-parameter formula: 

 

( ){ )(exp1)1()( 3
211

c
MW xDcccxF −−−+=

 
(2.3)

 

where ),/()()( minmaxmin xxxxxD −−=  ci (i = 1,2,3) are parameters and xmin and xmax are 

the lower and upper bound of the particles sizes; respectively. 

 

Fredlund, et. al. [2.7] developed an empirical formula that uses four parameters to fit 

unimodal PSD data. Fredlund’s PSD formula is given by: 
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(2.4)

 

where: FFr represents the cumulative PSD function given in percent finer by mass,  

x the particle’s diameter,  

agr a parameter designating the inflection point on the curve,  

ngr a parameter related to the steepest slope on the curve, 

mgr a parameter related to the shape of the curve as it approaches the fines region, 

drgr a parameter related to the amount of fines, and dm the minimum allowable 

particle diameter.  

 

Another approach is to model the PSD using fractal theory [2.12]. The rationale 

behind this approach lies in the process of fragmentation where soils and sediments result 

from the weathering of rock over time. A rock fragments into smaller pieces due to 

weathering and those smaller pieces fragment in even smaller pieces and the process 

continues until a soil is formed. Therefore it is expected that the PSD of a soil can be 

represented using fractal theory. In mathematical terms the cumulative number of 

particles N of sizes larger that x is given by a power law,  

 

,~)( κ−xxN  (2.5)
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where κ is a parameter that is related to the fractal dimension D. A variation of (2.5) was 

developed by Kravchenko and Zank [2.11] to characterize the hydraulic conductivity of 

soils using a fractal model of the PSD, 

 

,)(
1

45
14133

2

2
+

+−

+−

= δδ
δδ

η xxFKZ  (2.6)

 

where η  and δ  are fitting parameters.  

2.2.2 Multimodal PSD Models 

A PSD having a multimodal form or shape has multiple inflexion points or modes 

(Figure 2 – 1). Using a simple unimodal model may lead to significant errors when trying 

to fit a multimodal PSD curve.  

 

One approach to fitting a multimodal PSD can be achieved by splitting the curve into 

segments, and using for example Spline polynomials as an approximation for each 

segment. In mathematical terms the PSD data is fitted using a function of the form: 

 

  

F(x) =

F1(x), xmax ≥ x > x1

F2(x), x1 ≥ x > x2

Fn (x), xn−1 ≥ x ≥ xmin

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (2.7)

 

where: n is the number of segments and xi (i = 1...n-1) are the segment boundaries. 

The difficulty with fitting the PSD data by segments is to construct a continuous function 



14 
 

by eliminating the discontinuities at the boundaries. The fitting process does not end after 

calibrating the parameters of each function Fi (i = 1…n) but when all the discontinuities 

are smoothen out, which translate into solving another set of equations involving the 

entire set of fitting parameters. This method can become quite difficult and time 

consuming. 

 

The most logical approach to fit multimodal PSD data would then be to use a 

superposition of unimodal models since the sum of unimodal functions is multimodal. 

Let F(x) be the finite sum of unimodal functions Fi (x) (i = 1…n) and iω  weighing 

functions with∑
=

=
n

i
i

1
1ω , then 

 

∑
=

=
n

i
ii xFxF

1
)()( ω  (2.8)

 

is multimodal.  

 

Fredlund proposed a multimodal form of his unimodal formula (2.4) based on 

Durner’s [2.6] modeling approach of a gap-graded soil as the linear combination of a 

finite number of his empirical unimodal model. In summary any gap-graded soil PSD can 

be fitted using the superposition of multiple weighed unimodal models. 
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2.3 Experimental Procedure 

 

Soda-lime glass micro-spheres with a density of 2.50 g/cm3 fabricated by Potters 

Industries were used in the experiment. Micro-spheres were chosen since they do not 

form aggregates thus particle-to-particle interactions are not existent. Moreover, the glass 

micro-spheres are industrially fabricated under high quality control levels resulting in a 

PSD will less standard deviation with respect to the mean diameter. Particles with mean 

diameter of 35, 25 and 7 microns were designated as Large, Medium and Small, 

respectively.  

 

The individual (small, medium and large) PSDs of the glass micro-spheres were 

obtained by conducting three replicates using an X-Ray particle size analyzer (Appendix 

B). The particle size analyzer was a model Sedigraph 5100 built by Micromeritics. This 

particle size analyzer uses the sedimentation technique, which measures the gravity-

induced settling rates of different size particles in a liquid of known properties. The 

SediGraph 5100 uses a narrow, horizontally collimated beam of X-rays to directly 

measure the relative mass concentration of particles in the liquid medium. This is 

accomplished by first measuring the intensity of a reference X-ray beam which is 

projected through the clear liquid medium prior to the introduction of the sample. A 

homogeneously dispersed mixture of a sediment sample and liquid is next circulated 

through the cell. The solid particles absorb some of the X-ray energy, which again is 

measured, this time to establish a value for full scale attenuation. Afterwards, the 

agitation of the mixture is stopped and the dispersion is allowed to settle while X-ray 
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intensity is monitored. The SediGraph 5100 can measure particle diameters ranging from 

300 to 0.10 microns. A minimum mass of 4 grams is needed for each sample to operate 

the particle size analyzer. The X-Ray particle size distribution provided a total of 117 

data points for particle sizes ranging from 150 microns through 0.18 micron. 
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2.4 Results 
 

2.4.1 Unimodal PSD Model Selection 

The individual glass micro-spheres’ PSD can be modeled using a unimodal PSD due 

to the small standard deviation of the manufactured spheres. To model the three 

individual micro-spheres PSDs two different unimodal models, described in Section 

2.2.1, were used, namely the Jacky and Fredlund models. The Jaky PSD model was 

selected since it only uses one parameter and thus is the simplest model considered. The 

Fredlund model was chosen based on its documented performance [2.8]. In addition to 

these models, the two parameter Gamma cumulative probability distribution (GPD) was 

also selected to fit the glass micro-spheres individual samples. The main reason for 

choosing the GPD as a PSD model is its non-symmetrical shape, which is expected to fit 

fine PSD data more accurately. It may prove to be insightful to compare these three 

unimodal models.  The mathematical expression of the GPD is given by: 

 

FΓ(x) = τ α−1 exp(−τ /β)
βαΓ(α)

dτ,
0

x

∫  (2.9)

 

with ;0, >βα where α  is the shape parameter, β  is the scaling parameter and Γ(α)  is 

the Gamma function.  

 

The model parameters were estimated using the least squares regression method 

(LSRM). The results are shown in Figures 2 - 2 through 2 - 4 for the Jaky, Fredlund and 

GPD unimodal models, respectively.  
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Figure 2 - 2: Jaky model fit to the glass micro-sphere PSD data 

  



19 
 

0

10

20

30

40

50

60

70

80

90

100

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed
data
FM

Small

Large

Medium

 

Figure 2 - 3: Fredlund model fit to glass micro-spheres PSD data 
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Figure 2 - 4: GPD model fit to glass micro-sphere PSD data 
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Since the coefficient of determination (R2) is not applicable to non-linear regression 

(its interpretation may lead to significant errors), the performance of each model was 

evaluated by comparing the square root of the average sum of least squares of errors: 

  

( )( )2,1minmin ⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−== ∑
i

ii xfy
N

SSE θε
θθ

 

(2.10)

 

where: SSE  is the mean sum of least squares of errors, N is the number of data points 

(117 for each PSD), yi are the observed values, ( )θ,ixf  are the projected values and 

( )T
pθθθθ ,,, 21 …= are the model parameters. The parameters were estimated using the 

SOLVER search tool found in Excel and the resulting ε  are presented in Table 2 - 1. 

 

Table 2 - 1: Values ofε  (2.10), which resulted from the non-linear regression method. 

Sample Jaky FM GPD 

Small 

(7 μm) 
13.195 0.777 0.285 

Medium 

(25 μm) 
1.838 1.209 0.547 

Large 

(35 μm) 
8.241 0.622 1.060 

Average 7.758 0.869 0.631 
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The Gamma distribution and the Fredlund model provided similar overall 

performance when fitting the three initial glass micro-spheres PSDs. The GPD performed 

better for the finer mean diameter PSDs (small and medium) compared to the Fredlund 

model and since the performance of many sediment ponds is predominantly based on 

particle sizes in the range of 10 to 25 μm the GPD was selected for multimodal model 

development.  Furthermore; the GPD model distribution has two important advantages 

when compared to the FM. Firstly, it only has two parameters compared to four of the 

FM and secondly, the GPD is a theoretical probability distribution and thus its 

corresponding statistics (e.g. mode, mean, variance, etc.) are known (Table 2 - 2).  

 

Table 2 - 2: Simple forms of the Gamma distribution statistical parameters. 

Statistical Parameter Formula 

Mean αβ  

Mode ( )βα 1−  

Variance 2αβ  

Skewness 
α
2  

 

2.4.2 Multimodal PSD Model 

Soils in nature are a combination of clays, silts, sands and gravels, which represent 

different particle size classes or ranges. Intuitively if the PSD of each size class could be 

obtained separately, the final or composite PSD would simply be the linear combination 
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of the entire PSD set, (2.8). The weighing factors ( iω ) would then be the mass 

proportions of the different size classes. This is true however only if no particle-to-

particle interaction occurs during the mixing process (no aggregation or breakup). The 

proof by induction over the number of size classes n is presented in Appendix A.  

 

Procedure: 

 

The small (7 μm), medium (25 μm) and large (35 μm) glass micro-spheres samples 

were combined to create composite PSDs by mixing two and three different individual 

glass micro-spheres’ samples; respectively. By the previous definition these combined 

samples are predominantly bimodal and trimodal in nature. The mass proportions ( iω ) 

used in the composite PSDs (bimodal and trimodal) are defined and designated as 

targeted mass proportions. The targeted mass proportions for the composite samples 

created by mixing two (bimodal) and three (trimodal) tests are listed in Table 2 – 3 and 

Table 2 – 4, respectively.  
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Table 2 - 3: Targeted mass proportions ( iω ) for bimodal tests (combining two PSDs). 

Sediment 

Type 

Test Number 

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 

Small 

(7 μm) 
0.50 - 0.50 0.20 - 0.20 0.80 - 

Medium 

(25 μm) 
0.50 0.50 - 0.80 0.20 - 0.20 0.80 

 Large 

(35 μm) 
- 0.50 0.50 - 0.80 0.80 - 0.20 

Sediment 

Type 

Test Number  

1-9 1-10 1-11 1-12 1-13 1-14 1-15  

Small 

(7 μm) 
0.80 0.35 - 0.35 0.65 - 0.65 

 

Medium 

(25 μm) 
- 0.65 0.35 - 0.35 0.65 - 

 

 Large 

(35 μm) 
0.20 - 0.65 0.65 - 0.35 0.35 
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Table 2 - 4: Targeted mass proportions ( iω ) for trimodal tests (combining three PSDs) 

Sediment 

Type 

Test Number 

2-1 2-2 2-3 2-4 2-5 2-6 2-7 

Small 

(7 μm) 
0.33 0.15 0.15 0.30 0.30 0.55 0.55 

Medium 

(25 μm) 
0.33 0.30 0.55 0.15 0.55 0.15 0.30 

 Large 

(35 μm) 
0.33 0.55 0.30 0.55 0.15 0.30 0.15 

Sediment 

Type 

Test Number  

2-8 2-9 2-10 2-11 2-12 2-13  

Small 

(7 μm) 
0.10 0.45 0.45 0.20 0.20 0.60 

 

Medium 

(25 μm) 
0.45 0.10 0.45 0.20 0.60 0.20 

 

 Large 

(35 μm) 
0.45 0.45 0.10 0.60 0.20 0.20 

 

 

The observed mass proportions are obtained from the weighting process of the 

individual samples. The observed mass proportions are expected to be very similar or 

equal to the targeted mass proportions. Finally, the projected mass proportions ( p
iω ) are 

obtained using a multi-linear regression method: 

 

ixFxFxFxy iin
p
ni

p
i

p
i …… 1,)()()()( ,2,21,1 =++++= ΓΓΓ εωωω

 
(2.11)

 



25 
 

where: )( ixy  is the observed percent finer than size xi, N is the number of PSD data 

points, Γ,jF  is the jth GPD given by (2.9), with j = 1…n, and iε  is the error or residual 

associated to particle size xi. In matrix notation: 

 

,εwFy += Γ  (2.12)

 

where: 
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The solution to the multi-linear regression is given by solving the normal equations: 

 

( ) .yFwFF TT
ΓΓΓ =  (2.13)
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Results: 

 

The linear regression problem (2.13) is solved using the Excel Solver tool and the 

results (projected mass proportions) are presented in Tables 2 - 5, 2 - 6 and 2 - 7 for the 

bimodal tests and in Tables 2 - 8, 2 - 9 and 2 - 10 for the trimodal tests. The goodness of 

fitting is evaluated through the coefficient of determination (R2). 

 

Table 2 - 5: Mass proportions for repetition #1 of the bimodal test group 

 Test 1 2 3 4 5 

w1 0.502   0.546 0.190   

w2 0.498 0.505   0.810 0.210 

w3   0.495 0.454   0.790 

R2 0.999942 0.999869 0.999931 0.999819 0.999728 

 Test 6 7 8 9 10 

w1 0.235 0.828   0.832 0.363 

w2   0.172 0.835   0.637 

w3 0.765   0.165 0.168   

R2 0.999961 0.999780 0.999889 0.999906 0.999824 

 Test 11 12 13 14 15 

w1   0.404 0.675   0.691 

w2 0.376   0.325 0.693   

w3 0.624 0.596   0.307 0.309 

R2 0.999829 0.999946 0.999828 0.999789 0.999867 
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Table 2 - 6: Mass proportions for repetition #2 of the bimodal test group 

 Test 1 2 3 4 5 

w1 0.509   0.537 0.187   

w2 0.491 0.477   0.813 0.164 

w3   0.523 0.463   0.836 

R2 0.999687 0.999775 0.999670 0.999914 0.999566 

 Test 6 7 8 9 10 

w1 0.207 0.860   0.802 0.380 

w2   0.140 0.807   0.620 

w3 0.793   0.193 0.198   

R2 0.999527 0.999772 0.999832 0.999328 0.999762 

 Test 11 12 13 14 15 

w1   0.396 0.636   0.673 

w2 0.304   0.364 0.631   

w3 0.696 0.604   0.369 0.327 

R2 0.999704 0.999647 0.999834 0.999942 0.999461 
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Table 2 - 7: Mass proportions for repetition #3 of the bimodal test group 

 Test 1 2 3 4 5 

w1 0.512   0.570 0.203   

w2 0.488 0.503   0.797 0.189 

w3   0.497 0.430   0.811 

R2 0.999932 0.999791 0.999846 0.999768 0.999514 

 Test 6 7 8 9 10 

w1 0.249 0.881   0.820 0.420 

w2   0.119 0.805   0.580 

w3 0.751   0.195 0.180   

R2 0.999885 0.999645 0.999649 0.999936 0.999893 

 Test 11 12 13 14 15 

w1   0.420 0.670   0.726 

w2 0.350   0.330 0.651   

w3 0.650 0.580   0.349 0.274 

R2 0.999809 0.999601 0.999948 0.999572 0.999879 
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Table 2 - 8: Mass proportions for repetition #1 of the trimodal test group 

 Test 1 2 3 4 5 

w1 0.307 0.117 0.184 0.289 0.338 

w2 0.339 0.300 0.550 0.174 0.535 

w3 0.354 0.583 0.266 0.537 0.128 

R2 0.997315 0.991525 0.998616 0.995439 0.996603 

 Test 6 7 8 9 10 

w1 0.509 0.539 0.071 0.487 0.486 

w2 0.154 0.294 0.456 0.062 0.411 

w3 0.337 0.168 0.473 0.452 0.103 

R2 0.996324 0.993583 0.989642 0.998901 0.991934 

 Test 11 12 13   

w1 0.206 0.178 0.574   

w2 0.162 0.601 0.198   

w3 0.631 0.221 0.228   

R2 0.988067 0.991680 0.997625   
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Table 2 - 9: Mass proportions for repetition #2 of the trimodal test group 

 Test 1 2 3 4 5 

w1 0.378 0.196 0.145 0.327 0.309 

w2 0.325 0.279 0.532 0.156 0.558 

w3 0.297 0.526 0.323 0.517 0.134 

R2 0.990997 0.996021 0.997197 0.989164 0.999217 

 Test 6 7 8 9 10 

w1 0.544 0.546 0.076 0.497 0.469 

w2 0.162 0.281 0.437 0.051 0.449 

w3 0.294 0.173 0.487 0.452 0.081 

R2 0.977761 0.991406 0.986632 0.996643 0.993420 

 Test 11 12 13   

w1 0.210 0.227 0.628   

w2 0.231 0.579 0.174   

w3 0.559 0.194 0.198   

R2 0.991132 0.998383 0.992098   
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Table 2 - 10: Mass proportions for repetition #3 of the trimodal test group 

 Test 1 2 3 4 5 

w1 0.301 0.133 0.162 0.327 0.323 

w2 0.346 0.300 0.527 0.133 0.536 

w3 0.353 0.567 0.311 0.540 0.141 

R2 0.999103 0.994023 0.997845 0.998721 0.996580 

 Test 6 7 8 9 10 

w1 0.501 0.606 0.144 0.422 0.495 

w2 0.150 0.261 0.450 0.118 0.403 

w3 0.349 0.133 0.406 0.460 0.102 

R2 0.966756 0.993482 0.985729 0.997475 0.994498 

 Test 11 12 13   

w1 0.207 0.218 0.600   

w2 0.225 0.628 0.173   

w3 0.568 0.153 0.227   

R2 0.989990 0.991789 0.990690   

 

The multimodal GPD provided an excellent fit to observed bimodal and trimodal 

PSDs with R2 exceeding 0.977 and 0.967 for the bimodal and trimodal tests, respectively. 

The observed and projected PSD graphs are illustrated in Appendix C and D for the 

bimodal and trimodal tests; respectively. 
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2.5 Fitting the GPD to Soil PSD Data 

 

In the previous section the hypothesis that the PSD of a combined set of individual 

PSDs is the linear combination of the individual PSDs was tested and accepted for a 

combination of glass micro-sphere PSDs. Therefore, the statement described by (2.8) was 

validated for glass micro-spheres.  

 

To determine if the GPD model is also applicable to sediment PSDs the GPD model 

was tested on ten soil PSDs. Soils’ PSDs are multimodal by nature and thus the 

multimodal form of the GPD is recommended to fit the PSD of sediments; however this 

depends on the shape of the observed PSD and on the degree of targeted accuracy. To 

illustrate this concept, ten different sediment PSDs have been selected to use the GPD to 

fit the PSD data. The goodness of fit was evaluated using the average error, given by: 

 

∑ −=
i

iobsipred FF
N

,1
,,ε  (2.14)

 

where: N is the number of data points, 

 predF  is the predicted PSD value obtained using the GPD model, and 

 obsF  is the observed PSD value obtained using the X-Ray particle size 

distribution. 
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Two cases were analyzed and compared: 1) using the unimodal form of the GPD and 

2) using the bimodal form of the GPD. The curve fitting was conducted using the least 

sum of squares regression method with the help of the Excel Solver tool. The resulting 

average errors are presented in Table 2 – 11 for both unimodal and bimodal GPD models 

for the ten different sediment PSDs. The observed and predicted PSD curves are 

illustrated in Appendix E.  

 

Table 2 - 11: Average error results after fitting the unimodal and bimodal GPD model on 

10 different sediment samples. 

Sediment 

Sample 

Average Error (%) Percent 

Reduction(a) Unimodal Bimodal

S1 14.72 1.61 89.06 

S2 13.35 1.98 85.17 

S3 10.66 4.84 54.60 

S4 12.17 0.62 94.91 

S5 0.60 0.18 70.00 

S6 0.71 0.61 14.08 

S7 3.97 1.13 71.54 

S8 5.08 1.16 77.17 

S9 5.46 0.25 95.42 

S10 3.40 0.23 93.24 

Notes: (a) Percent reduction of the average error from the unimodal to the bimodal form  
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As it can be inferred from the above results the improvements of fitting sediment PSD 

using a bimodal GPD instead of the unimodal form are substantial. The average reduction 

in the average error is approximately 75% for the 10 sediment PSDs tested. It is therefore 

recommended to use a bimodal GPD to fit sediment PSD.    
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2.6 Summary and Conclusions 

 

1. Three industrially manufactured glass micro-sphere samples having mean particle 

sizes of 7, 25 and 35 μm were selected to fit the unimodal Jaky, Fredlund and Gamma 

models. Results revealed that the Fredlund model and the Gamma distribution fitted 

the 117 PSD data points accurately (average square root of sum of square errors of 

0.631 and 0.869; respectively). 

2. The Gamma distribution was selected for multimodal PSD testing since it performed 

slightly better than the Fredlund model and because it required only 2 parameters 

versus the four parameters required for the Fredlund model. 

3. A multimodal form was presented as a linear combination of Gamma distributions 

following Durner’s approach and extending the principle behind Fredlund’s bimodal 

formula. 

4. The validation of the multimodal hypothesis was conducted using bimodal and 

trimodal PSD data created from individual glass micro-spheres’ PSD. The 

multimodal Gamma model was fitted to bimodal and trimodal glass micro-spheres 

PSD created by combining two and three different glass micro-spheres PSD samples; 

respectively, at varying mass proportions.  

5. Results showed excellent correlation between the multimodal form (2.8) of the 

Gamma distribution and the observed PSD data with a coefficient of determination 

(R2) of greater than 0.9993 and 0.9667 for the bimodal and trimodal test PSDs; 

respectively.  
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6. It was proven theoretically and empirically that a combination of two or more PSDs 

can be modeled by the linear combination of the individual PSDs. 

7. The multimodal Gamma model was extended to fit sediment PSDs. Ten different 

sediment samples were selected to fit the unimodal and bimodal Gamma distribution 

models to the data. Results showed that the bimodal Gamma distribution model is an 

excellent (average error < 5%) model to fit sediment PSD data and that the bimodal 

representation resulted in a significant lower average error than the unimodal 

modeling approach.  
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CHAPTER 3: Modeling the Flocculation of Fine 

Sediments using the Method of Moments to Solve the 

Coagulation Equation – Theory 

 
Abstract 

 

The method of moments for solving the coagulation equation of fine sediment particles 

was investigated when the initial particle size distribution (PSD) was modeled using a 

Gamma probability distribution. General mathematical representations of the aggregation 

and fragmentation kernels when turbulent shear forces induce the particle aggregation 

and fragmentation were addressed in this analysis. A general moments’ equation was 

derived that considers aggregation and fragmentation, which has the form of an integro-

differential equation. The general moments’ equation was applied to four different cases: 

1) coagulation with initial unimodal Gamma PSD function, 2) coagulation with initial 

multimodal Gamma PSD function, 3) coagulation and fragmentation with initial 

unimodal Gamma PSD function and 4) coagulation and fragmentation with initial 

multimodal Gamma PSD function. For the aggregation cases only an analytical solution 

to the moments’ change rate over time dtdM k /  was found. In the case of pure 

fragmentation the moments’ change rate was simplified to an indefinite integral that can 

be easily evaluated numerically. Finally, expressions of the time derivative of the PSD 

Gamma parameters are presented for each case.  
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3.1 Introduction 

 

The study of aggregation of fine sediment particles is of importance in surface water 

treatment. Fine sediment particles such as silts and clays are difficult to retain due to the 

large amount of time required to settle. Sediment from agricultural, construction and 

mining activities is considered one of the most important sources of contamination of 

surface water bodies; therefore, controlling the amount of sediment that reaches the 

natural water corridors is critical. 

 

Once sediment particles are transported through runoff, only the coarser particles 

such as sands and coarse to medium silt can be efficiently trapped inside sediment control 

structures (e.g. sediment pond). The settling velocity of sediment particles can be 

considerably increased through aggregation or flocculation where particles bind together 

after contact to form a larger particle. The efficiency of a sediment control structure can 

be greatly improved through flocculation. An advanced sedimentation model should 

consider the changes in particle size distribution when flocculation occurs. 

 

The theory of changes in particle size distribution due to aggregation is described and 

advanced employing the method of moments when a Gamma probability distribution is 

used to model the initial particle size distribution. Firstly, a brief background of the 

Smoluchowski’s coagulation equation for binary aggregation is described. Furthermore, 

both aggregation and fragmentation processes are discussed and general expressions for 

their modeling are obtained through the use of the method of moments. Formulas are 
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derived where the PSD parameters are expressed as ordinary differential equation with 

respect to time when a Gamma distribution is used to model the initial particle size 

distribution.  
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3.2 Background 
 

3.2.1 Coagulation Equation 

The Smoluchowski’s coagulation equation (SCE), also referred as the population 

balance equation, models the coalescence between particles over time [3.19]. This 

equation finds its use in a large spectrum of applications: chemistry (polymerization), 

astrophysics (creation of planets), statistical physics (particle aggregation), environmental 

engineering (water-solid separation), aerosol science and mining (thickening), to name a 

few. The primary focus of this chapter is developing a flocculation model for fine 

sediment particles. The term aggregation of sediment particles is equivalent to the 

flocculation term and an aggregate represents a composite particle made from a finite set 

of smaller particles bounded together. Both terms will be used interchangeably within the 

literature.  

 

Consider a set of particles of the same mass and same volume suspended in a liquid 

medium. This type of suspension is a monodisperse system since particles are of the same 

size and have the same physical properties. Let xi (i = 1,2,…) be the mass of the 

aggregate formed by i particles then ,1ixxi =  where 1x  is the mass of 1 particle (i.e. a 

mono-aggregate). The i-th particle number concentration is given by the number of 

aggregates having mass ix  per unit mass and will be denoted by )(),( tntxn ii ≡ . An 

aggregate having mass ix  coming in contact with another aggregate of mass jx  will form 

a new aggregate of mass jix + at a rate given by the aggregation Kernel jiji KxxK ,),( ≡ . 

Obviously, this process rends the particle size distribution coarser in time. The 
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Smoluchowski theory of rapid coagulation results in the following initial value problem 

described by an infinite set of nonlinear differential equations: 
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where: 0n  is the initial particle number concentration of .1x   

 

Monodisperse systems are rare in nature. Sediment particles for example come in a 

range of different sizes and shapes and therefore represent a polydisperse system of 

particles. The SCE is not valid to model rapid coagulation of a polydisperse system; 

however, an extended version of (3.1) that includes the case of polydisperse particles (i.e. 

particles of different sizes) having a continuous particle mass distribution was described 

in [3.8]. The number concentration per unit volume for a certain time where the mass 

varies between ix  and ii xx Δ+  is given by iii xtxnn Δ= ),( . The term ),( txn i  is the 

continuous particle number concentration. Replacing the continuous approximation of in  

in (1) (for i, j and i – j) then dividing by ixΔ  and taking the limit of the Riemann sums 

over all i's yields the continuous representation of the Smoluchowski’s coagulations 

equation:    
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where: x  and y denote the continuous variables representing the mass of the particles 

and )(0 xn  is a continuous function that represent the initial particle number distribution. 

The first integral on the right-hand side of (3.2) represents the increase in the particle 

number concentration of particles of mass x when a particle of mass x – y (with y < x) 

comes in contact with a particle of mass y. The constant ½ accounts for the symmetry of 

the aggregation kernel (i.e. )),(),( xyKyxK =  and the second integral represents the 

decrease in particle number concentration of particles of mass x when they aggregate 

with other particles. Since the scope of this chapter is to model changes in PSD of 

sediment particles due to aggregation, only the continuous representation of the SCE will 

be used. 

 

The stability of the structure of a given aggregate can be impaired when the shear 

forces acting on said aggregate becomes larger than the resistance provided by the bond 

strength between the particles. When this happens fragmentation starts and a 

reorganization of the particle number concentration occurs. In other words if an aggregate 

fragments then the number concentration of each one of the resulting fragments will 

increase. The SCE only considers aggregation between particles without taking 

fragmentation of aggregates into account. Melzak [3.15] extended the continuous 

coagulation equation (3.2) by including particle fragmentation for the case of droplets, 

thus obtaining the scalar transport equation, given by: 
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(3.3)

 

where: ),( xyφ is the fragmentation kernel that accounts for the rate of particle 

fragmentation occurring in a unit volume. The fragmentation kernel is also symmetric, 

i.e. ),(),( xyyx φφ = . The third integral on the right-hand side of (3.3) represents the 

increase of the number concentration of particles of mass x due to fragmentation of 

particles of mass y > x and the fourth integral accounts for the decrease of particles of 

mass x fragmenting into particles of smaller mass.  

 

Using a mathematical representation of the fragmentation kernel that considers 

laminar and/or turbulent shear forces, equation (3.3) can be used, for example, to model 

the aggregation and fragmentation of sediment particles within a sediment pond.  

 

Another commonly used form of the coagulation-fragmentation equation (e.g. [3.3], 

[3.4], [3.13] and [3.16]) is the linear kinetic fragmentation equation, which in its 

continuous form is given by: 

 

∫

∫ ∫
∞

∞

+

−−=
∂

∂

x

x

dyyxPytyntxnx

dytynyxKtxndytxntynyxyK
t

txn

,),()(),(),()(

),(),(),(),(),(),(
2
1),(

0 0

ϕϕ

(3.4)



Page 44 

 

where:  )(xϕ is the overall rate of fragmentation, and  

),( yxP  is the particle number distribution of the fragments formed from an 

aggregate of mass y.  

 

There is little known about the particle number distribution of the fragments [3.13]. 

Peterson [3.16] provides a list of the most common fragments’ distributions found in the 

literature. Peterson also presents a simpler general mathematical representation of this 

distribution that has been used by other authors ([3.3] and [3.13]) to solve the 

fragmentation equation for specific cases. He expressed the fragments’ distribution as  

xxypyxP /)/(),( =  where )/( xyp  is the probability that a particle of mass x will result 

from the fragmentation of a particle of mass y and is divided by x to obtain the number 

concentration of fragments. 

 

The third term in (3.4) accounts for the loss of particles of mass x due to 

fragmentation and the fourth term represents the gain of particles of mass x due to 

fragmentation of particles having mass larger than x.  

 

Both coagulation-fragmentation models described previously are similar in the sense 

that they model the evolution of the particle number concentration over time due to 

effects of aggregation and fragmentation. Either equation is therefore valid when an 

appropriate choice of the analytical representation of the fragmentation kernel(s) ),( yxφ  

for (3.3) and )(xϕ and ),( yxP  for (3.4), are employed.  
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3.2.2 Aggregation Kernel 

The rate by which aggregates form depends on various factors such as particle size 

distribution, dynamic properties of the liquid medium (e.g. gravitational effects, laminar 

or turbulent flow), electrochemical forces acting between particles, pH, temperature, etc. 

These factors can be divided in two groups: factors arising from the probability of 

particles colliding and factors accounting for the probability that two particles will 

aggregate after colliding. The aggregation Kernel is the mathematical representation of 

the aggregation factors and identifies the coagulation process. 

 

Several authors (see [3.1] for a detailed list) have provided analytical expressions of the 

aggregation kernel K.  In particular, Smoluchowski proposed an expression for the 

aggregation kernel in monodisperse systems where coagulation is controlled by Brownian 

motion: 

 

( )( ),),( 3/13/13/13/1
1

−− ++= yxyxcyxK  (3.5)

 

where: 1c  is a coefficient that depends on the medium temperature and viscosity and thus 

is a function of the Brownian diffusion coefficient. 

  

In natural systems, sediment aggregation occurs due to a combination of Brownian 

motion, and laminar and turbulent flow regimes. A sediment pond is a structure designed 

to trap sediment particles transported from up-gradient areas through water flow. In this 

type of system three zones where particle-to-particle aggregation occurs are identified. 
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Starting from up-gradient areas, the first zone includes all the overland flow areas where 

laminar flow is dominant, except for concentrated flow in rills. The second zone consists 

of streams and/or channels (concentrated flow) where turbulent flow occurs due to high 

velocities. The third zone is located inside the sediment pond where Brownian motion 

and laminar flow occur enabling sediment particles to settle. The highest rate of 

aggregation occurs in the second zone since higher mixing energy increase the 

probability of particle-to-particle collisions. It is thus expected that laminar kernels 

should have smaller values than turbulent kernels for the same ),( yx  pair. 

 

Saffman and Turner [3.17] derived a formula for the aggregation kernel that accounts 

for the aggregation rate under homogeneous turbulent shear:  

 

( ) ,),( 33/13/1
2 yxcyxK +=  (3.6)

             

where: 2c  is a coefficient that depends on the turbulent energy dissipation and on the 

medium’s viscosity. Other authors (e.g. [3.13], [3.18]) used the following aggregation 

Kernel due to turbulent shear forces: 

 

( ) ,),( 3/1/1
3
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where:  3c  is a coefficient that depends on the physical properties of the problem, and 
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D is the fractal dimension of the aggregate, i.e. that the size distribution of the 

aggregate follows a power law ( Drrf ∝)( , where D is the fractal dimension).  

 

After analyzing the turbulent aggregation kernels given in (3.6) and (3.7) it is logical 

to conclude that a general mathematical representation of the aggregation kernel 

accounting for turbulent shear forces can be expressed by: 

 

( ) ,,,),( NR ∈∈+= + prAyxAyxK prr

 
(3.8)

      

where:  +R  is the set of positive real numbers,  

N  is the set of positive integers, and 

A, r, and p are coefficients that depend on the physical properties of the flow 

regime and on the physical and chemical properties of the particles. 

3.2.3 Fragmentation Kernel 

Fragmentation of sediment particle aggregates arises mainly due to viscous shear 

forces. The probability of a given aggregate breaking up into smaller particles increases 

with the size of the aggregate and decreases with the strength of the bond. The most 

commonly used fragmentation kernel is a power law relationship (e.g. [3.13], [3.18] and 

[3.4]): 

   

λϕ Bxx =)(  or ),('),( ννφ yxByx +=  (3.9)
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where: B, B’, λ  and ν  are coefficients that depend on the physical properties of the 

problem.  

3.2.4 Initial PSD Function 

The coagulation equation (with or without fragmentation) consists of initial value 

problems that require identifying an initial particle number concentration distribution or 

particle size distribution (PSD) data. In Chapter 2 a new method of mathematically 

representing the initial PSD data was presented. Results showed that a multimodal 

representation using the Gamma distribution was an excellent option to mathematically 

model sediment PSD. If the ‘probability’ mass density function is used instead of the 

cumulative distribution, then the multimodal PSD function can be written as:   

 

∑
=

=
n

i
ii xfxf

1
),()( ω  (3.10)

 

where:  n represent the number of modes of the PSD function 

  iω  represents the mass proportion for each mode with ∑
=

=
n

i
i

1
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if  is the associated PSD function.  

 

The Gamma probability density function is given by: 
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where:  x is the particle size variable 

α is the shape factor  

β  is the scale factor.  

 

By replacing (3.11) into (3.10), the multimodal Gamma PSD function is obtained: 
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In (3.12) the particle size corresponds to either the geometrical radius of the particle 

obtained through optical methods or the hydraulic radius measured through sedimentation 

techniques that employ Stokes’ Law. The latter radius is the one considered in the 

following expression for the terminal settling velocity of a sphere suspended in an infinite 

fluid medium: 
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ρρ −
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where:  ∞u  is the terminal settling velocity of a sphere of radius r  

sρ  is the mass density  

fρ  is the mass density of the infinite fluid medium  

μ  is the fluid’s viscosity  

 g is the acceleration of gravity.  
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The hydraulic radius of a particle is therefore the equivalent radius of a sphere settling 

at the same terminal velocity given by (3.13).  The advantage of using the hydraulic 

radius instead of the ‘geometrical’ radius is that fluctuations in the mass density of flocs 

and particles that are extremely difficult to measure are avoided. 

 

If the total mass of the particles in the medium ∫
∞

⋅=
0

),( dxtxnxmT  is normalized, 

then the PSD function of the aggregated particles ),( txf  is equivalent to ),( txnx  and: 
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3.2.5 Solutions to the Coagulation Equation using the Method of 
Moments 
 

Solving the coagulation-fragmentation equation represents an important challenge 

due to the fact that it is a complex integro-differential equation. There are different 

solution techniques that can be used [3.8], such as an analytical or exact solution to the 

coagulation equation or by approximations or numerical methods (deterministic and 

stochastic). Exact solutions to the coagulation equation in both discrete (3.1) and 

continuous (3.2) forms have been found for three simple types of kernels: constant 

( cyxK =),( ), additive ( )yxyxK +=),(  and multiplicative ( )xyyxK =),( . Other 

analytical solutions have been found for the kernel CxyyxBAyxK +++= )(),(  through 

the use of power series ([3.1] and [3.6]). 

 

An alternate approach is to solve Smoluchowski’s coagulation equation for the 

moments of the PSD function ([3.8], [3.9], and [3.24]).  Obtaining the moments of the 

PSD function or the particle number concentration offers only a general image of the true 

shape of ),( txf  or ),( txn since in most cases it is difficult to link them directly.  

However, in some cases it is possible to retrieve the PSD from a finite number of 

moments for a given point in time. The kth moment ( )kM  of the PSD function is defined 

as: 
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with ∫
∞

==
00 .1),( dxtxfM Since the particle number concentration is equivalent to the 

PSD function when the total mass is normalized, the coagulation equation can be applied 

to the PSD function in the same manner. The only difference that occurs when applying 

the equivalency between the PSD and the number concentration is in the moments. In the 

case of the particle size distribution 1M  represents the average size particle and in the 

case of the number concentration it represents the total mass of particles per unit volume. 

This equivalency can easily be understood since the rate of aggregation and 

fragmentation must be the same when either the PSD ),( txf  or the number concentration 

),( txn is used. By replacing ),( txn in (3.2) with the PSD function ),( txf  and calculating 

the corresponding kth moment, we obtain: 
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Introducing the step function )( yxH −  defined as: 

0)( =− yxH  if x < y,  

1)( =xH  otherwise then (3.16) is equivalent to: 
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(3.17)

 

Switching the order of integration and substituting xyx −='  on the first integral of the 

right-hand side of (3.17) yields the general form of the moments’ equation [3.9] for the 

case of aggregation only: 
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The variable 'x  was replaced by y in (3.18) without loss of generality.  

 

In a similar fashion for the first fragmentation equation, (3.3) is multiplied by kx  and 

integrated between 0 and infinity, the moment equation for aggregation and 

fragmentation is obtained: 
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(3.19)
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Let 1G  and 2G  be the second and third double integrals of the right-hand side of (3.19), 

respectively: 
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Introducing the step function )(xH  into 1G  where:   

0)( =xH  if x < 0, 

1)( =xH  otherwise, then: 
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By substituting u by y – x and switching the order of integration we obtain: 
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where u was replaced by y without loss of generality. Similarly, the third double integral 

of the right-hand side of (3.19) results in: 
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The final general form of the moment equation results from combining (3.21) and (3.22) 

with (3.19): 
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(3.23)

 

Finally, adopting the alternate representation provided in (3.4), the general moment 

equation for aggregation and fragmentation can also be written as: 
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(3.24)

 

Both (3.23) and (3.24) are valid representations of the general moments’ equation for 

aggregation and fragmentation. 
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3.3 Model Development 

 

Sediment PSD can be modeled using a multimodal Gamma distribution. The moment 

method presented in Section 3.2.5 will be used to solve the coagulation equation when 

the PSD function is a multimodal Gamma probability density function. Four different 

cases will be analyzed:  

1) coagulation with initial unimodal Gamma PSD function,  

2) coagulation with initial multimodal Gamma PSD function  

3) coagulation and fragmentation with initial unimodal Gamma PSD function   

4) coagulation and fragmentation with initial multimodal Gamma PSD function. 

3.3.1 Case 1: Coagulation with Initial Unimodal Gamma PSD Function 

Replacing the general aggregation kernel for turbulent flow regime (3.8) and the 

Gamma unimodal probability function (3.11) into (3.18) yields: 
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where: 
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and 
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Using the binomial theorem to calculate ( )prr yx + , and adopting the variables 

substitutions β/xu =  and ,/ βyv =  (3.26) results in: 
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In addition, the Gamma function is defined by: 
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Moving the integrals inside the double sum and applying (3.29) yields: 
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The second integral kI ,2  is obtained in similar fashion: 
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Note that in the two previous equations the parameters of the Gamma are a function of 

time due to the aggregation process: )(tαα ≡ and )(tββ ≡ . A more detailed description 

of above equations derivation is provided in Appendix F. 

 

Using the definition of the kth moment (3.15), the left-hand side of (3.18) can be 

expanded to obtain a system of ODEs that only depend on the Gamma parameters )(tα  

and :)(tβ  
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Substituting u by β/x  and using the definition of the Gamma distribution (3.29), the 

above equation results in: 
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where the relationship )()1( zzz Γ=+Γ was used. Applying the chain rule on the right-

hand side of (3.33): 
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then the moments’ equations results in: 
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where kI ,1  and kI ,2  are given by (3.30) and (3.31), respectively. Obtaining )(tα  and )(tβ  

enables to determining the PSD function and its cumulative distribution assuming that the 

PSD remains unimodal over time. In reality sediments are multimodal in nature and thus 

it is necessary to expand the previous analysis to PSD functions having more than one 

mode. 

3.3.2 Case 2: Coagulation with initial Multimodal Gamma PSD 

Function 

The unimodal case derived in the previous section was expanded to include the 

multimodal form of the PSD function (3.10). Replacing (3.10) into the general moment 

equation (3.18) results in: 
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The moments in multimodal form are given by: 
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and by applying the chain rule and differentiating each term yields: 
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Finally, the above equation provides a system of ODEs of the functions ),(tiα  

)(tiβ and ),(tiω  for i = 1...n. For each mode a set of three ODEs is therefore needed and 

hence the total required number of ODEs to solve the problem is 3n = k.  Note that if n = 

1 we obtain the unimodal equation (35) with ,11 =ω  and 0/1 =dtdω . 

3.3.3 Case 3: Coagulation and Fragmentation with Initial Unimodal 

Gamma PSD Function 

The aggregation-fragmentation model for both the unimodal and multimodal cases 

will be developed using the equation given by (3.24). Since the first double integral of the 

right-hand side of (3.24) (namely the aggregation term) has already been solved in 

Section 3.3.1, it is only necessary to consider the solution of the second and third double 

integrals (namely the fragmentation term) in this analysis. Denote by kJ ,1  and kJ ,2  the 

two fragmentation double integrals: 

 

∫ ∫
∞ ∞

=
x

k
k dxdyyxPytyfxJ ,),()(),(

0
,1 ϕ  (3.41)



Page 62 

 

and 

 

∫
∞

=
0

,2 .)(),( dxxtxfxJ k
k ϕ  (3.42)

 

The overall fragmentation rate )(xϕ is given in (3.9) where the coefficients +∈ Rλ,B . 

There is no defined expression for the fragmentation distribution ),( yxP . Since the 

Gamma distribution model provide an excellent fit of the PSD of sediment particles, it is 

reasonable to assume that the PSD of the fragments should also follow a Gamma 

distribution however with different parameters (e.g. a and b instead of α  and β , 

respectively). Therefore the fragments’ PSD is given by: 
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Clearly 0),( ≥yxP  and 1),(
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where ∫
∞
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za dzezxa 1),(  is the incomplete Gamma function and 
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The first term of the fragmentation moment equation 1J  can’t be solved analytically and 

thus a numerical method is needed. There are several numerical integration methods 

available to solve the indefinite integral in (3.44). Finally the moment equation for 

aggregation and fragmentation considering a unimodal Gamma initial PSD is given by: 
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where kI ,1  and kI ,2  are given by (3.30) and (3.31) respectively and kJ,1  and kJ ,2  are given 

by (3.44) and (3.45), respectively. The derivative of the Moments’ equation with respect 

to time, 
dt

dM k , is obtained by the chain rule: 
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3.3.4 Case 4: Coagulation and Fragmentation with Initial Multimodal 

Gamma PSD Function  

Following the approach from Section 3.3.2 let ikik JJ ,2,1 −  be the fragmentation rate of 

the moment equation for the multimodal case:   
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and 
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The moments’ change rate 
dt

dM k  in its multimodal form is given by (3.40). The complete 

development of the fragmentation terms is presented in Appendix G. 
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3.4 Summary and Concluding Remarks 

 

The Smoluchowski’s continuous coagulation equation was introduced to model the 

binary rate of aggregation between sediment particles of different sizes. Attempting to 

find an exact solution for this integro-differential equation for a specific problem can be 

arduous. Analytical solutions only exist for a reduced set of expressions for the 

aggregation kernels which don’t usually have a practical realistic application. 

Furthermore, these exact solutions assume an initial PSD which is uniform (small 

differences in particle sizes). Due to these limitations it is necessary to apply other 

techniques to solve the coagulation equation: these include numerical methods, power 

series, and the method of moments.  

 

The method of moments was chosen because it provides an alternate approach to the 

coagulation problem instead of solving directly for the PSD function. To interpret the 

solutions of the moments’ equation to the PSD as a function of time, it was first 

necessary to develop a ‘general’ moment equation in which the limits of the integrals 

remained between [0, )∞  (which is consistent with a time variable). This new expression 

for the moments’ equation combined with the assumption that the initial PSD follows a 

Gamma distribution and using a general expression for the coagulation kernel enabled 

obtaining an analytical expression of the integrals and therefore reducing the moments’ 

equations to a simple system of ODE’s. 
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In Chapter 2 the multimodal Gamma distribution was used to model the PSD of 

sediment particles with excellent results. Using this mathematical representation of the 

initial PSD (before coagulation) it was possible to analytically solve the integrals of the 

right-hand side of the general moments’ equation for the unimodal case. The multimodal 

case was a simple extension of the unimodal case due to the linearity of the problem.  

 

The next step in this investigation was to include the fragmentation of aggregates. 

Two equivalent models were described and only one was chosen to be included in the 

moment equation. The approach mentioned in [3.9] was used to obtain an expression for 

the general moment equation when considering fragmentation. A general expression for 

the overall fragmentation rate was developed based on the fragmentation kernels in the 

presence of turbulent shear forced obtained from the literature.  

 

It is extremely difficult to accurately determine the joint probability of two random 

variables representing the size of the particle that has been created by the fragmentation 

of the second particle. Since this joint probability function is needed to solve the general 

moments’ equation, it was necessary to assume a simplifying hypothesis (namely that 

both random variables are independent from each other). The same analysis conducted 

for the cases that considered only coagulation was applied for the case where the 

fragmentation was added. 

 

The results of the moment equation considering aggregation and fragmentation for 

both the unimodal and multimodal cases are presented in Table 3 - 1.   



67 

Table 3 - 1: Solutions to the integrals of the moments’ equation 
Case 1: Coagulation with initial unimodal Gamma PSD function(a)
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Case 2: Coagulation with initial multimodal Gamma PSD function(a) 
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Case 3: Coagulation and Fragmentation with initial unimodal Gamma PSD function(b)
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Table 3 - 1 (cont.): 
Case 4: Coagulation and Fragmentation with initial multimodal Gamma PSD function(b)
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Notes: (a) See Appendix F for derivation details. 

 (b) See Appendix G for derivation details. 
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CHAPTER 4: Modeling the Flocculation of Fine 

Sediments using the Method of Moments to Solve the 

Coagulation Equation – Numerical Results 

 

Abstract 

 

The use of a Gamma distribution as a mathematical model to represent the particle size 

distribution (PSD) of fine sediment particles enables representing the changes in PSD due 

to flocculation through a system of ordinary differential equations (ODE). This simple 

system of ODEs was solved numerically for both aggregation and fragmentation 

processes in an effort to model the rapid flocculation of fine sediment particles using 

different anionic polyacrylamide (APAM) flocculants. For this purpose, a set of 4 

different sediment samples were used to obtain the initial PSD data (no APAM was 

added) and for each sediment sample 4 different APAM flocculants were used to obtain 

the flocculated PSDs after applying 2 minutes of turbulent mixing. Both the initial (non-

flocculated) and flocculated PSD data points were obtained through the use of an X-Ray 

particle size analyzer that utilizes the sedimentation technique. The initial PSD was 

modeled using a bimodal Gamma distribution. A simple genetic algorithm was developed 

to calibrate the aggregation-fragmentation parameters to the observed flocculated PSDs 

for the bimodal case and the results show excellent correlation between predicted and 

observed PSDs (R2 > 0.9878).  
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4.1 Introduction 

 

Induced aggregation of fine solid particles through the use of chemical flocculation is 

of major importance in the treatment of water for human consumption (e.g. water 

treatment plants) and it is gradually being considered for the treatment of surface water 

systems (e.g. runoff from construction/mining activities). Mining and construction 

activities require that a sizeable area be stripped from its natural vegetative cover 

enabling surface water runoff to erode and transport the fine sediment particles towards 

natural water bodies. If sediment is not treated it can cause detrimental effects to the 

aquatic bio-environment.   

 

The most common sediment control system encountered in construction and mining 

activities is the use of a sediment pond where flow velocities through the structure are 

considerably reduced enabling for the coarser particles to settle and be trapped. The 

trapping efficiency of a sediment pond depends mainly on two factors: flow velocity 

through the structure and particle size distribution (PSD) of the incoming sediment. To 

improve the trapping efficiency, it is therefore necessary to alter one or both of these 

factors.  

 

The anionic version of polyacrylamides (PAM) is used in natural environments since 

it is considered to be environmentally safe compared to its cationic counterpart. Anionic 

polyacrylamides (APAM) are long chain polymers used for flocculation of fine solid 

particles. Nowadays, APAM flocculants are mainly used in large agricultural areas to 
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reduce erosion by scattering water-soluble APAM across the surface through irrigation 

sprinklers. When runoff starts eroding the upper soil layer (topsoil) the APAM flocculant 

intervenes forming larger particles (flocs) that remain on-site. Recommended by the 

United States Natural Resources Conservation System [4.14] as a soil conservation 

practice, the application of APAM over the land surface not only reduces soil migration 

from the agricultural land, but also reduces the sediment concentrations in runoff; thus 

protecting the surrounding natural aquatic environment. Roa-Espinosa et al. [4.16] 

conducted a series of experiments where a PAM flocculant was applied on the surface of 

small soil plots and found that sediment yield was considerably reduced. Even though the 

land application of APAM flocculants has seen an increase in the past recent years in soil 

conservation and erosion control practices, its use is still minimal.  

 

Another important aspect in flocculation processes is fragmentation or floc breakup. 

A floc will continue growing (adhering to other particles or flocs) up to a point where the 

resistant forces of the floc structure become inferior to the shear forces in the fluid. 

Therefore, excessively increasing the turbulent mixing energy could be detrimental to the 

flocculation process even though the probability of particle-to-particle collision increases.  
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4.2 Theory 

 

In a turbulent mixing zone the aggregation of particles induced by fluid shear forces 

is the dominant factor progressing the PSD to the coarser side and the average particle 

diameter increases.  

 

When particle-to-particle coagulation is enhanced by the use of an APAM flocculant 

the aggregation process is significantly accelerated: flocs are formed in a matter of a few 

minutes time. The rate of change of the particle number concentration, n, is given by the 

continuous form of the Smoluchowski coagulation equation [4.6]: 
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(4.1)

  

where x  and y denote the continuous variables representing the mass of the particles, 

),( yxK  is the aggregation kernel, and )(0 xn  is a continuous function that represents the 

initial particle number distribution. The first integral on the right-hand side of (4.1) 

represents the increase in the particle number concentration of particles of mass x when a 

particle of mass x – y (with y < x) comes in contact with a particle of mass y. The constant 

½ accounts for the symmetry of the aggregation kernel (i.e. )),(),( xyKyxK =  and the 

second integral represents the decrease in the number concentration of particles of mass x 

when they aggregate with other particles.  
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A floc is formed when two particles bind together. In turn, this floc can also grow, 

since this binding process can repeat itself many times over; however, a point in time is 

reached where the floc is no longer stable due to its attained size and fragmentation 

commences. To correctly model the fragmentation process, a new term describing the 

changes in the PSD due to floc breakup must be inserted to (4.1). The fragmentation 

process is represented by the following resulting expression: 
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(4.2)

 

where the first integral on the right-hand side of (4.2) represents the gain in number 

concentration when a particle larger than x (in mass) breaks up into fragments of mass x 

and the second term represents the loss in number concentration when a particle x 

segments into smaller fragments. The fragmentation kernel )(xϕ  accounts for the rate of 

segmentation of particles of mass x and ),( yxP represents the distribution of the 

fragmented particles. 

 

The general aggregation-fragmentation equation results when both (4.1) and (4.2) are 

combined. If the number concentration is normalized, the obtained expression is 

analogous to the PSD in mass )(xf , and therefore the general aggregation-fragmentation 

equation can be written in terms of the PSD as: 
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Solving the above equation is no easy task and depends on the chosen expressions for 

the aggregation and fragmentation Kernels. The most common technique is to use a 

numerical method (e.g. [4.12]). Another approach to solve (4.3) is to use the moments’ 

representation of the PSD where the kth moment of the PSD is given by: 
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.)( dxxfxM k
k  (4.4)

 

For k = 1, 11 =M  since the PSD function is analogous to a probability distribution 

density function. For k = 2, the second moment 2M  represents the average particle size.  

 

Multiplying (4.3) by kx  on both sides and integrating between 0 and ∞+  the general 

moments’ equation for both aggregation and fragmentation processes is obtained 

(Chapter 3): 
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(4.5)

  

When collision between two particles is driven by homogeneous turbulent shear 

forces in the fluid the aggregation Kernel takes the following form [4.17]: 

 

( ) ,),( 33/13/1 yxAyxK +=  (4.6)

 

where A is a coefficient that depends on the physical problem. In Chapter 3 the use of a 

more generalized aggregation kernel was proposed and is given by: 

 

( ) ,),( prr yxAyxK +=  (4.7)

 

where r > 0 and p =1,2… In addition, imposing that the aggregation kernel is a 

homogeneous function of degree κ : 

 

),,(),( yxKccycxK κ=  (4.8)

 

 yields .rp=κ  

 

The fragmentation rate or kernel takes the following general expression (e.g. [3.11]): 
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,)( λϕ Bxx =  (4.9)

 

where B and λ  are coefficients that depend on the physics of the problem. There is no 

defined expression for the distribution of fragmented particles based on the original 

aggregate size; however most authors agree that it should be a function of the particle 

size distribution of the particles defined by the quotient between the original aggregate 

and the size of the fragments: 

 

)./(),( yxfyxP ∝  (4.10)
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4.3 Solutions to the General Moments’ Equation 

 

The general moments’ equation (4.5) was solved in Chapter 3 assuming that the PSD 

follows a multimodal Gamma distribution. This assumption is founded on results 

obtained from comparing several different sediment PSD data with unimodal, bimodal 

and trimodal Gamma distributions (Chapter 2). These results showed that the use of a 

bimodal gamma distribution was an accurate model to fit sediment PSD.  The multimodal 

Gamma distribution is given by: 
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where: n is the number of modes, 

 x is the particle’s hydraulic diameter, 

 0>iα  is the shape parameter of the Gamma distribution of mode i, 

 0>iβ  is the scale parameter of the Gamma distribution of mode i, 

 ∫
∞

−−=Γ
0

1)( dxexs xs  is the Gamma function, and 

 0>iω  is the mass proportion of mode i, with ∑
=

=
n

i
i

1

.1ω  

Note that since the PSD changes over time due to flocculation, the multimodal Gamma 

distribution presented in (4.11) and therefore all of the parameters 

),2,1,,,( niiii …=βαω  are time-dependent. 
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4.3.1 Aggregation 

The aggregation term is given by the first double integral on the right-hand side of the 

general moments’ equation (4.5). Using the aggregation kernel described in (4.7) and 

assuming that a multimodal Gamma PSD represents the initial condition of the 

aggregation process, the following system of ordinary differential equation (ODE) is 

obtained: 
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where n is the number of modes in the PSD, 
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and 
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The right-hand side of (4.12) is a positive monotonic increasing function, which 

represents the rate of aggregation changes of the moments of the multimodal Gamma 

distribution function. These moments have been previously expressed in function of the 

parameters ),,( iii βαω  transforming the moments’ equation into a system of ODEs. The 

solution of this resulting system provides an expression for the evolution over time of the 

parameters that define the PSD of the aggregated particles. 

4.3.2 Aggregation and Fragmentation 

The second and third terms of the right-hand side of (4.5) define the fragmentation 

terms of the general moments’ equation. Introducing a step function:  

1)( =− xyH  if x > y  

and 0)( =− xyH  otherwise, the first fragmentation term results in: 
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Substituting xy −  by v yields: 

 

∫ ∫

∫ ∫∫ ∫
∞ ∞

∞

−

∞∞ ∞

+++=

+++=

0 0

00

,),(),()(

),(),()()(),(),()(

dxdytyxfyxxPyxx

dxdtvxfvxxPvxxvHdxdytyfyxPyx

k

x

k

x

k

ϕ

ϕϕ

 

(4.16)

 



80 

where v was replaced by y without any loss of generality. 

 

An expression for the distribution of the fragments was provided in Chapter 3; 

however the first fragmentation term (4.16) resulted in an integro-differential equation, 

the solution of which requires to numerically solving the integral. In other to avoid this 

problem the following simplifying expression for ),( yxxP + is introduced: 

 

)(
)(),(

/1τ

⎠

⎞
⎜⎜
⎝

⎛
+Γ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+
−−

yx
y

ab
ex

yx
yxfyxxP a

bxa

 
(4.17)

 

where a and b are the average scale and shape parameters, respectively and thus: 
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Introducing (4.18) into (4.16) and replacing the exponent τ  by 1−+ iαλ  yields: 
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The second and last fragmentation term is given by: 
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Finally, the multimodal aggregation-fragmentation moments’ equation is given by the 

following system of ODEs: 
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where ijkI ,1  and ijkI ,2  are given by (4.13) and (4.14), respectively and ikJ ,1  and ikJ ,2 are 

given by (4.19) and (4.20), respectively. Note finally that the fragmentation function 

( ) nkJJ
n

i
ikiki 31,

1
,2,1 …=−∑

=

ω  is a monotonous decreasing function of k. 
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4.4 Time Evolution of the General Moments’ Equation 

 

The general moments’ equation (4.21) represents a system of ODEs, which is difficult 

to solve analytically due to complex expressions of the considered functions; therefore 

the use of a numerical method suggests itself as a practical approach. The most 

widespread numerical methods for solving ODEs are perhaps the family of Runge-Kutta 

methods, with explicit and implicit forms depending on the desired accuracy. The 

common forth order Runge-Kutta method (RK4) will be used to obtain the expression for 

the evolution over time of the general moments’ equation. 

4.4.1 Multivariate Fourth Order Runge-Kutta (RK4) Algorithm 

The motivation is to numerically solve the system of ODEs (4.21) that represent the 

general moments’ equation of the aggregation and fragmentation rates involved in the 

flocculation of sediment particles.  

 

Assume that the following system of ODEs needs to be solved numerically: 

 

0)0(),( vvvfv === t  (4.22)

 

where  ( )T
21 ,, mvvv …=v , with RR →+:iv  a function of time, 

( )T
21 )(),(),()( vvvvf mfff …= , with RR →m

if : , and 

m denotes the number of ODEs in the system (m = 3n). 
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The over-dot denotes the time derivative: dtdxx /= . The time evolution of the RK4 

algorithm for the multivariate case is:  
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where h denotes the time increment, i.e. htt ii +=+1 . 

 

Let ( )T
21 ,, nvvv …=v  be the vector containing the multimodal Gamma parameters 

and mass proportions which are time-dependent, and are needed to obtain the flocculated 

PSD. The general moments’ equation (4.21) can then be written as: 
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where M is a square matrix containing all the derivative coefficients shown in the left-

hand side of (4.21), thus 
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Applying the multivariate RK4 method (4.23) to the system of ODEs (4.24) results in 

the time evolution of the multimodal Gamma parameters and mass proportions that 

define the PSD changes throughout the flocculation process. 
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4.4.2 An Example of the Time Evolution of the General Moments’ 

Equation with Bimodal Gamma Initial PSD 

To illustrate the multivariate RK4 method presented in the previous section, the time 

evolution of the bimodal Gamma parameters and mass proportions will be obtained using 

an initial PSD calibrated with a given sediment sample (see Figure 4 - 1). The initial PSD 

was obtained using an X-Ray particle size analyzer that utilizes the sedimentation theory 

to obtain the mass percentages finer than a defined set of values (each value provides a 

data point of the entire PSD). The optimum bimodal initial Gamma parameters as well as 

the mass proportions were estimated using the least squares method. The time evolution 

of the flocculated PSD was then obtained by solving the system of ODEs (4.24) using the 

multivariate RK4 method explained in Section 4.4.1.  Two different time periods are 

illustrated (t = 60 and t = 120) in Figure 4 - 2 where the effects are clearly evident of the 

flocculation that shifts the PSD curve to the coarser side as time increases. 

 



86 

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 F
in

er

 

Figure 4 - 1: Initial PSD curve used to obtain the time evolution of flocculation 
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Figure 4 - 2: Example of the time evolution results of the PSD using a bimodal Gamma PSD 
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4.5 Model Calibration 

 

The flocculation model presented in Section 4.3 was calibrated using experimental 

PSD data obtained from real sediment samples for the case of several different APAM 

flocculants. The model calibration was conducted using a simple genetic algorithm that 

enables finding the optimum aggregation and fragmentation parameters based on a set of 

assumptions that will be detailed further on. 

4.5.1 Experimental Setup 

Four different composite sediment samples, labeled A1 to A4 were chosen for the 

experimental analysis. These composite samples were assembled using sediment samples 

having particles smaller than 300 microns and gathered from different land uses and 

watersheds that drain to a sediment pond. Four APAM flocculants were obtained from 

different manufacturers labeled MF, FP, TF and HF. The optimum dosages of the 

flocculants for a sediment concentration of approximately 40,000 mg/L (required to run 

the particle size analyzer) were provided by the respective manufacturers. The PSD data 

for both the initial (control) and flocculated cases were obtained using a Micromeritics X-

Ray particle size analyzer that uses the sedimentation technique to obtain the percent 

finer in mass of 130 particle diameters ranging from 0.2 to 300 microns. A total of 4 

initial/control and 16 flocculated PSDs (4 for each initial sediment PSD) were obtained. 

In addition, the Micromeritics X-Ray particle size analyzer utilizes a propeller mixer 

producing a vortex that flocculates the sediment particles through turbulent shear forces. 

The rapid mixing apparatus was set for 120 seconds. 
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The bimodal Gamma parameters and mass proportions were calibrated using the least 

square method (Table 4 – 1). The average error, last column of Table 4 – 1, is calculated 

as: 

 

∑
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i
ii FF

N 1
predicted,observed, ,1ε  (4.26)

 

where: N is the number of data points (N = 130),  

observed,iF  are the PSD data points obtained from the X-Ray particle size analyzer, 

predicted,iF  are the PSD data points modeled using a bimodal Gamma distribution 

obtained from (4.11) 

 

Finally, the initial and flocculated PSD graphs are illustrated in Appendix H.  
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Table 4 - 1: Calibrated bimodal Gamma parameters and mass proportions for the PSD 

data 

Soil Flocculant 1ω  1α  1β  2ω  2α  2β  
Average
Error (a) 

(%) 

A1 

Control 0.600 2.718 9.594 0.400 0.273 6.233 0.150 
MF 0.701 3.910 7.160 0.299 0.533 16.378 0.710 
FP 0.723 3.584 7.953 0.277 0.140 24.384 0.613 
TF 0.736 5.684 5.848 0.264 1.366 8.526 0.120 
HF 0.878 5.113 7.314 0.122 3.048 2.480 0.102 

A2 

Control 0.266 1.239 1.680 0.734 0.343 9.280 0.067 
MF 0.542 14.257 1.881 0.458 2.084 12.730 0.518 
FP 0.894 13.768 1.578 0.106 0.119 58.414 0.320 
TF 0.716 12.845 1.822 0.284 1.348 14.736 0.264 
HF 0.880 14.690 1.561 0.120 1.245 17.003 0.254 

A3 

Control 0.148 1.478 1.680 0.852 0.369 9.280 1.307 
MF 0.587 13.828 2.227 0.413 2.106 13.230 0.356 
FP 0.853 11.146 2.458 0.147 0.166 43.257 0.628 
TF 0.759 13.095 2.102 0.241 1.178 21.457 0.253 
HF 0.760 14.013 1.948 0.240 1.403 18.001 0.271 

A4 

Control 0.452 2.496 10.886 0.548 0.467 4.366 0.244 
MF 0.557 10.727 2.766 0.443 1.567 13.491 0.402 
FP 0.614 2.966 8.236 0.386 0.274 28.329 0.597 
TF 0.809 5.328 5.982 0.191 1.970 4.439 0.389 
HF 0.870 6.348 4.840 0.130 3.729 1.476 0.176 

  Notes:  (a) The average error is given by (4.26) 
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4.5.2 Calibration of the Model Parameters using a Simple Genetic 

Algorithm 

The model parameters are divided in two groups: the aggregation and fragmentation 

parameters. The aggregation parameters consist of the kernel’s parameters A, r and p, and 

the fragmentation parameters consist of the parameters B and λ  included in the 

fragmentation kernel. Through a sensitivity analysis it was concluded that the parameters 

A and B are the most sensitive parameters for the aggregation and fragmentation 

processes, respectively. Therefore, in order to simplify the calibration process, only these 

two parameters were considered.  

 

Additionally, it is necessary to assume certain values for the remaining parameters. 

The aggregation kernel (4.7) used in the present analysis shows a weak influence on the 

finite maximum particle diameter when the product given by rp is less or equal than 1 

[4.12]. The analytical results described in Section 4.3 were based on an infinite maximum 

particle diameter (the integrals on the right-hand of the moments’ equation are form 0 to 

∞+ ); however the asymptotic behavior of the Gamma distribution makes this difference 

almost negligible: therefore the choice of 1<rp  is suitable for the present analysis. 

Moreover, when p > 1, the difference of the aggregation rate with respect to the 

fragmentation counterpart is much larger, and unrealistic results start arising when (4.21) 

is used based on a non-asymptotic behavior. Setting the value of p to p = 1 forces setting 

the value of r < 1: for the present analysis, a value of 0.1 was deemed suitable. Finally, 

the parameter λ  needs to satisfy the condition: 01 >−+ iαλ , since from (4.17) the 
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exponent κ needs to be positive (otherwise the distribution of the fragmented particles 

),( yxP  could experience a non-asymptotic behavior): therefore, a suitable value for λ  is 

set to  λ  =  1.   

 

The system of ODEs that describe the rate of the PSD’s moment variations over time 

can therefore be written as: 

 

( ))(')(' vJvIMv 1 ⋅+⋅= − BA  (4.27)

 

where I’ and J’ are the aggregation and fragmentation rate vectors, which elements have 

been normalized dividing by the parameters A and B, respectively.  

 

To provide more flexibility for the calibration process and also better results, the 

parameters A and B are replaced by diagonal matrices A and B; respectively, having the 

dimension of the number of ODEs in the system, i.e. 3n. To calibrate all the values of the 

diagonal A and B matrices a simple genetic algorithm was used. The objective is to 

perform a least squares method on the observed flocculated PSD, i.e. to minimize the 

sum of squares error between the observed PSD data obtained from the experiments (see 

Section 4.5.1) and the predicted PSD values obtained through the flocculation model 

described in Section 4.3. 

 

A genetic algorithm (GA) is a guided search algorithm used to solve non-linear 

optimization problems that was developed from genetic science. This analogy resides in 
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the selection mechanism that nature implements where only the fittest and stronger 

species survive and thus they need to change and improve in order to endure. The main 

difference of this technique compared to other non-linear optimization methods is that it 

considers the use of a set of potential solutions instead of a single evaluation per iteration. 

This larger set of potential solutions enables the GA method to deviate away from a local 

minima or maxima and continue the search towards the global minimum/maximum if 

such a global optimum exists.  

 

The set of potential solutions is called a population and each member of the 

population is denoted a chromosome. The selection process of the best sub-set of 

chromosomes within a population is conducted via evaluating a fitness function that 

provides a measure of error or deviation with respect to the objective the method is 

seeking. The fitness measure that was selected for the calibration process is the sum of 

square errors: 
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(4.28)

 

where: N is the number of data points in the PSD curve (N = 130), 

 observed,iF  are the empirically obtained values of the flocculated PSD, and 

 predicted,iF  are the predicted (modeled) values of the flocculated PSD. 

 

The simple genetic algorithm is as follows: 
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1. A sub-set of the population is selected having the maximum value of the fitness 

measure (4.28), 

2. The sub-set of the population that was not selected is eliminated and replaced 

with ‘improved’ chromosomes that have been ‘bred’ using the previously selected 

chromosomes., 

3. The breeding process of the new chromosomes is conducted through a sequence 

of mutation and cross-over techniques, 

4. The mutation is a random modification of the elements of a chromosome and 

5. The cross-over is the exchange within the elements of two ‘parent’ chromosomes 

to form a son (new chromosome). 

6. Other improvement techniques include averaging between parents. 

7. A new population is created (improved population) and the process continues 

until a stop criterion has been met.  

 

The flow chart of this algorithm is illustrated in Figure 4 - 3. The goodness of fit 

between the observed flocculated PSD data points and the predicted values was 

conducted using the coefficient of determination (R2), given by: 
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where: N is the number of data points, 

 oY  are the observed values, and 

 pY  are the predicted values. 

 

The R2 values obtained from the genetic algorithm on the flocculated PSDs of 

samples A1 to A4 along with the calibrated (optimum) aggregation and fragmentation 

parameters (Ai and Bi) are presented in Tables 4- 2 to 4 - 5; respectively. 

 

 

Figure 4 - 3: Flow chart of the genetic algorithm 
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The genetic algorithm was programmed using the C# computer language and the 

resulting code is included in Appendix I. 

 

The predicted versus the observed flocculated PSD for the four different sediment 

samples (A1 to A4) using the four different flocculants are illustrated in Appendix J.  

 



 

 

Table 4 - 2: Calibrated Aggregation and Fragmentation Parameters (A and B) for Sediment Sample A1 

Flocculant  1ω  1α  1β  2ω  2α  2β  R2 

MF 
Ai (x 10-10) 1.721 1.721 1.721 4.289 4.289 4.289 

0.9973 
Bi (x 10-10) 1.623 1.623 1.623 4.044 4.044 4.044 

FP 
Ai (x 10-9) 1.157 13.910 13.910 13.910 13.910 13.910 

0.9955 
Bi (x 10-9) 115.578 115.578 115.578 115.578 115.578 115.578 

TF 
Ai (x 10-10) 107.489 107.489 107.489 436.386 436.386 436.386 

0.9969 
Bi (x 10-10) 3.132 3.132 3.132 12.715 12.715 12.715 

HF 
Ai (x 10-11) 350.331 892.909 892.909 302.558 302.558 302.558 

0.9878 
Bi (x 10-11) 26.016 26.016 26.016 8.816 8.816 8.816 

 



 

 

Table 4 - 3: Calibrated Aggregation and Fragmentation Parameters (A and B) for Sediment Sample A2 

Flocculant  1ω  1α  1β  2ω  2α  2β  R2 

MF 
Ai (x 10-9) 328.664 77.777 77.777 2.504 2.504 2.504 

0.9976 
Bi (x 10-9) 69.993 69.993 69.993 2.253 2.253 2.253 

FP 
Ai (x 10-9) 2295.921 79.070 79.070 3.221 3.221 3.221 

0.9935 
Bi (x 10-9) 71.157 71.157 71.157 2.899 2.899 2.899 

TF Ai (x 10-10) 247.977 9.727 9.727 7.221 722.127 722.127 
0.9968 

Bi (x 10-10) 8.753 8.753 8.753 649.857 649.857 649.857 

HF 
Ai (x 10-9) 5513.940 82.456 82.456 5.658 5.658 5.658 

0.9952 
Bi (x 10-9) 74.204 74.204 74.204 5.091 5.091 5.091 

 

 



 

 

Table 4 - 4: Calibrated Aggregation and Fragmentation Parameters (A and B) for Sediment Sample A3 

Flocculant   1ω  1α  1β  2ω  2α  2β  R2 

MF 
Ai (x 10-8) 3.649 3.649 3.649 2.161 2.161 2.161 

0.9992 
Bi (x 10-8) 3.284 3.284 3.284 1.945 1.945 1.945 

FP 
Ai (x 10-9) 1.698 1.698 1.698 82.514 82.514 82.514 

0.9956 
Bi (x 10-9) 1.528 1.528 1.528 74.256 74.256 74.256 

TF Ai (x 10-9) 21.234 21.234 21.234 6.418 6.418 6.418 
0.9968 

Bi (x 10-9) 19.109 19.109 19.109 5.776 5.776 5.776 

HF 
Ai (x 10-9) 21.234 21.234 21.234 6.418 6.418 6.418 

0.9962 
Bi (x 10-9) 19.109 19.109 19.109 5.776 5.776 5.776 

 



 

 

Table 4 - 5: Calibrated Aggregation and Fragmentation Parameters (A and B) for Sediment Sample A4 

Flocculant   1ω  1α  1β  2ω  2α  2β  R2 

MF 
Ai (x 10-10) 18.181 18.181 18.181 1.320 1.320 1.320 

0.9966 
Bi (x 10-10) 16.361 16.361 16.361 1.188 1.188 1.188 

FP 
Ai (x 10-9) 2.642 31.762 31.762 31.762 31.762 31.762 

0.9958 
Bi (x 10-9) 263.909 263.909 263.909 263.909 263.909 263.909 

TF Ai (x 10-10) 18.261 18.261 18.261 1.199 1.199 1.199 
0.9985 

Bi (x 10-10) 16.434 16.434 16.434 1.079 1.079 1.079 

HF 
Ai (x 10-11) 29.118 242.825 242.825 9.480 9.480 9.480 

0.9967 
Bi (x 10-11) 218.523 218.523 218.523 8.532 8.532 8.532 
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4.6 Conclusions 

 

A new simple method to model the changes in PSD of fine sediment particles caused 

by aggregation and fragmentation processes when APAM flocculants are employed was 

presented. Expressing the initial PSD as a multimodal Gamma distribution enabled 

representing the aggregation and fragmentation general moments’ equation as a system of 

ODEs that can easily be solved by a numerical method such as the Runge-Kutta method. 

The bimodal Gamma distribution was used to model the PSD of four different composite 

sediment samples without flocculation yielding excellent results (average error less than 

1.4%). Four different APAM flocculants were used on each of the four different sediment 

samples and the resulting flocculated PSDs were compared with the calibrated PSDs 

obtained from the model. Calibration of the flocculated PSD data was conducted using a 

genetic algorithm. Results show that the average error for the flocculated PSDs were less 

than 1.7% for flocculants MF, TF and HF and less than 5.8% for flocculant FP. 

Interestingly, it can be inferred that this difference is due to the fact that FP flocculant 

failed to completely aggregate the fine clay fraction (< 2 microns).  

 

From the results it can be inferred that the Ai and Bi values are identical for each 

mode except for a few tests and thus it may only be necessary to calibrate n pairs (Ai, Bi) 

instead of calibrating 3n pairs, where n is the number of modes. The values Ai represent 

the calibration parameters for the aggregation part of the flocculation model. Conversely, 

the Bi parameters account for the fragmentation contribution of the model. It is expected 

that flocculants presenting higher Ai with lower Bi values would perform better; however 
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it is difficult to conclude this since the values of the other parameters have been assumed 

to simplify the problem and thus more work is needed in this regard.  

 

Finally, the results show that the proposed approach can be used to accurately model 

the changes in PSD of fine sediment particles when flocculated using an APAM 

flocculant. The main advantage of this approach is that it does not induce high 

computational costs to numerically solve the continuous aggregation-fragmentation 

equation. 

 

Copyright © Sebastian Fernando Torrealba 
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CHAPTER 5: Continuous One Dimensional 

Sedimentation Model of a Poly-dispersed Suspension of 

Particles having a Continuous Particle Size Distribution 

 

Abstract 

 

The Kynch kinematic theory of sedimentation can be extended to mathematically model 

the one-dimensional settling of a poly-disperse suspension of non-compressible particles 

in a liquid medium. This results in a system of hyperbolic conservation laws that require 

extensive computational time when a large number of particle sizes are considered (e.g. 

naturally occurring sediment particles). A continuous one dimensional sedimentation 

model that resulted in a scalar hyperbolic conservation law was derived from the well-

known Kynch kinematic sedimentation model. This new continuous model tracks the 

changes in depth and time of the total concentration of suspended particles in a fluid 

settling in a one dimensional space where gravity is the only external force and where no 

wall effects are present. In addition, a continuous representation of the Batchelor, 

modified Batchelor and Richardson and Zaki settling velocity models were derived. The 

developed continuous one dimensional sedimentation model was calibrated using column 

tests results with glass micro-spheres particles to limit flocculation effects during 

sedimentation and compression near the bottom layer. Two different glass micro-spheres 

particle size distributions (PSDs) were used: a small and a large average size particle with 

average diameters of 7 and 37 microns; respectively. The Batchelor settling velocity 
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model was selected for calibration due to its simplicity and since it theoretically applies 

to diluted poly-dispersed suspensions such that exists in sedimentation ponds. Parameter 

estimation was achieved through the implementation of a genetic algorithm that 

employed a non-oscillatory, shock-absorbing numerical scheme to solve the continuous 

sedimentation model. Excellent values of coefficient of determination (R2 > 0.89, except 

for one test replicate) were obtained for both the small and large glass micro-spheres 

PSDs. 
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5.1 Introduction 

 

Mathematical modeling of the settling process of fine particles of different sizes 

(poly-dispersed suspension) inside a vertical column is of special interest in several 

diverse areas of science: separation of solids in waste water treatment plants, polymer 

science, thickening in mineralogy, sediment pond design in environmental engineering, 

etc. The well-known kinematic sedimentation model, based on the Kynch theory of 

sedimentation [5.6], is a discrete model that tracks the changes in concentration of a 

mono-dispersed (one single size particle) suspension in a one dimensional fluid with no 

wall effects. The extension of the mono-dispersed Kynch model to the poly-dispersed 

case result in a system of hyperbolic conservation laws [5.3]. The solution to this system 

of hyperbolic conservation laws requires the use of a numerical method since no 

analytical solution is available (the flux function is dependent on the concentration of 

particles). Furthermore, discontinuities also called shocks (from the collision of the 

characteristic lines) arise in the solution of such type of partial differential equations [5.4] 

and thus a numerical scheme that can capture these shocks is needed. There are many 

different numerical schemes that have been developed for this matter [5.8]; however, the 

most cost-effective (balancing computational efficiency with accuracy) numerical scheme 

should be selected. This efficiency consideration is especially critical when extending the 

sedimentation model to more than one dimension, which is the case for modeling 

sedimentation ponds. An alternative option to decrease the numerical method 

computational time would be to reduce the number of discrete particle sizes chosen from 

the PSD. However, reducing the number of particle sizes that are modeled may lead to 
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significant accuracy problems. The proposed model enhances analysis efficiency by 

simplifying the system of conservation laws to a scalar problem by grouping all the 

particles into a single continuous model that can track the concentration changes of the 

total particle spectrum instead of a finite number of particles.   

 

The findings presented in this Chapter can be considered as the first step in 

developing a theoretical sediment pond design tool. The proposed continuous model can 

easily be expanded to two or three dimensions at no extensive additional computational 

cost. Note however when applying an expanded two or three dimensional model to a 

sedimentation pond several other factor need to be considered, such as: turbulent zones, 

dead zones, resuspension and density currents.  
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5.2 Background 
 

5.2.1 Kynch Model of Sedimentation (KMS) of a Poly-disperse 

Suspension 

The KMS is obtained through the mass conservation of sediment particles settling 

through a control volume of fluid [5.11]. Assume that a set of solid spheres of N different 

size classes having the same density, are settling in a column filled with a fluid of known 

properties, Figure 5 - 1. The only external force applied to the sediment suspension is 

gravity and no wall effects are considered. Furthermore, no compression effects are 

present near the bottom layer and thus the particles are considered non-compressible. Let 

vi be the settling velocity of spherical particles of size class (species) i and let iξ  be the 

mass concentration of such particles as a function of time and depth, i.e. 

Niztii …,1),,( =≡ ξξ , then the mass balances of the solid particles can be written as: 
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where: iii vf ⋅= ξ  is the mass flux of particles through a depth z at time t and has units of 

mass per area per time,  

 z is the depth measured from the top, Figure 5 - 1, and  

 )(0 ziξ  is the initial mass concentration profile. 
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The system of partial differential equations (PDEs) described by (5.1) is the discrete 

representation of the kinematic model of sedimentation of a poly-dispersed suspension of 

non-compressible particles based on the Kynch theory of sedimentation. The KSM is 

totally defined by the settling velocity iv , which depends on the type of settling the 

particles are experiencing. 

5.2.2 Types of Settling 

Inside a settling column a combination of different types of settlings occurs based on 

initial and changes in sediment concentration and depth approaching the bottom of the 

column. Based on the mass concentration of particles inside the column, four different 

types of settling can occur simultaneously or separately. The simplest is the discrete 

particle settling where particles settle independently of each other, i.e. no interaction 

between particles occurs. This type of settling only happens at extremely low 

concentrations. It is more probable to find this type of settling at the top portion of the 

column after considerable settling time has elapsed. The second type of settling is the 

transition settling where particle-to-particle interaction start occurring and where contact 

between particles could increase the settling velocity by creating flocs (aggregation) or 

reduce the settling velocity by repelling forces. As the concentration of particles further 

increases, particle-to-particle interaction increases and settling of particles becomes 

hindered. The hindered settling or third type of settling refers to settling in which 

concentration is high enough that interaction between particles interferes with the settling 

of the above particles. The final type of settling is the compression settling that occurs 

after the particles have been deposited at the bottom of the column. The weight of 
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additional particles compresses the deposited sediment decreasing the voids therefore 

increasing their concentration. 

 

 

Figure 5 - 1: 1-D Sedimentation through a Vertical Column 

 

In a sediment pond all four types of settling can occur. A comprehensive model 

would then take into consideration all of these types of settling; however the transition 

type is the most important inside a sediment pond since concentrations are large enough 

that discrete settling is rare to occur and small enough that hindered settling is unlikely to 

happen except when the bottom layer is approached.  
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5.2.3 Settling Velocity Models 

The flux function associated to settling particles passing through a unit sectional area 

depends on the settling velocities. In a suspension of sediment particles it is expected that 

particles interacting with each other influences the settling velocity. As the total mass 

concentration increases it becomes more difficult for particles to settle since higher 

degree of particle-to-particle interaction takes place and thus smaller velocities are 

encountered. In general the settling velocity of a particle will be a function of the total 

solids mass concentration ∑
=

=
N

i
i

1

ξξ  of particles and the terminal velocity iv ,∞ : 

 

),(, ξVvv ii ∞=  (5.2)

 

where: iv  is the  settling velocity of particle species i, 

 ∞,iv  is the terminal settling velocity of particle species i, and 

 )(ξV  is the settling function that depends on the total particle concentration, with 

1)0( =V . 

 

The terminal settling velocity represents the settling velocity of a single particle 

( 0=ξ ) settling in an infinite fluid medium and is given by Stokes Law: 
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111 

where: g is the acceleration of gravity, 

 ,fs ρρρ −=Δ is the difference in density between the suspended solids ( sρ ) and 

the fluid ( fρ ), 

 fμ  is the fluid dynamic viscosity, and 

 ix  is the equivalent hydraulic diameter of particle specie i. 

 

Batchelor Settling Velocity Model 

 

Batchelor [5.1] derived a theoretical model for the settling velocity of a particle 

settling in a diluted polydisperse solution of N class species, which is given by: 
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where: B
iv  is the Batchelor  settling velocity of particle specie i, 

∞,iv  is the terminal settling velocity given by Stokes Law (5.3). 

 

ijS  are sedimentation coefficients of particle species i and j that are defined as: 

 

NjiSSSS B
ij

I
ij

G
ijij …1,,)()()( =++=  (5.5)
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where )(G
ijS  accounts for the contribution of gravity, )( I

ijS  represents the particle-to-

particle interaction and )(B
ijS  accounts for the Brownian motion contribution. These three 

terms make use of the pair-distribution function )(rpij  that returns the probability that a 

particle of specie j is within a distance r of the particle of specie i.  

 

Batchelor’s settling velocity equation in theory applies to a dilute dispersion of 

particles where particle-to-particle interaction occurs; however, the range of particles 

mass concentration is not defined. Discrete settling can also be modeled using 

Batchelor’s settling velocity equation: simply set the sedimentation coefficients to 0 such 

that the settling velocity equals the terminal velocity. The definition of the sedimentation 

coefficients used in the model does not consider the case where flocs are formed. Another 

constrain of the Batchelor’s equation is that when the concentration reaches its maximum 

value ( maxξξ = , usually at the bottom of the column) the settling velocity doesn’t vanish. 

To this end Hofler and Schwarzer [5.5] modified Batchelor’s equation resulting in the 

following expression: 
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which vanishes for maxξξ =  and has the same partial derivatives for 0=ξ .  

 



 

113 

The main difficulty of the Batchelor model is to determine the coefficients ijS  for a 

specific polydisperse solution. These coefficients depend on the pair-distribution function 

that contains a high degree of solution complexity. Batchelor and Wen [5.2] successfully 

numerically solved the integrals that define the ijS  parameters. They concluded that the 

simple empirical relation: 
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where: ij xx /=λ  and )/()( fifj ρρρργ −−= is accurate to the first decimal place. 

In general terms, the above equation can be written as: 
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where: kc  are coefficients that can be obtained directly from (5.7). 

 

Richardson and Zaki  Settling Velocity Model 

 

The well-known Richardson and Zaki [5.10] formula for the settling velocity is given 

by the following expression: 

 

( ) ,1,1, ≥−= ∞ ηξ η
i

RZ
i vv  (5.9)
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where: RZ
iv  is the Richardson and Zaki  settling velocity of particle specie i, 

 ∞,iv  is the terminal settling velocity given by Stokes Law (5.3), and 

 η  is an exponent that depends on the physical properties of the problem. 

 

If a particle is settling under conditions where the Stokes’ Law is valid (Reynold’s 

number < 0.2) the exponent η  takes the value of 4.65. The Richardson and Zaki model 

was developed under hindered settling conditions where mass concentrations are very 

high and thus it can be expected that this formula does not provide accurate results when 

dealing with dilute or transitional sediment concentrations. Therefore, this model can 

only be applied to conditions where very high sediment concentrations are present, which 

occur near the bottom layer. 
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5.3 Continuous Representation of the KMS 

 

The KMS presented in Section 5.2.1 only applies to a discrete representation of the 

PSD. Sediment particles entering a sediment pond usually embody a wide spectrum of 

size species ranging from fine clays to coarse sands. There is no analytical solution to the 

KMS when using the settling velocity models described previously and thus a numerical 

method is needed to obtain an approximate solution. The accuracy of this approximate 

solution will depend on the number of particle size species chosen from the entire PSD 

spectrum. The higher the number of particle size species the more accurate the solution 

becomes; however, the more computational time is required. In other words, the selection 

of the number of particle species from the PSD to be modeled needs to be large enough to 

obtain a desired degree of accuracy yet small enough to have an acceptable 

computational efficiency. The appropriate number of particle species to achieve this 

balance is currently unknown.  Another approach taken is this research, that resolves this 

problem, was to develop a continuous representation of the KMS that is derived from the 

discrete form simplifying the sedimentation model to a scalar hyperbolic conservation 

law. 

 

If the discrete size of particle species i is replaced by the continuous size variable x 

then a continuous representation of the KMS can be obtained. Writing ),,( zxtx ξξ =  the 

mass concentration of a sediment particle of size x at time t and depth z then (5.1) 

becomes: 
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The PSD of sediment particles can be modeled using a continuous distribution 

function )(xp , such as for example a Gamma probability distribution (Chapter 2), and 

thus for the multimodal case: 
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where: n is the number of modes, 

iω  is the mass proportion of mode i, and 

)(xpi  is the continuous (unimodal) distribution function used to model the PSD. 

 

In addition, the concentration of the particle size x can be defined by the following 

expression: 

 

),(xpx ⋅= ξξ  (5.12)

 

where: ∫
∞

=
0

dxxξξ  is the total mass concentration at time t and at depth z, and )(xp  is the 

multimodal PSD function given by (3.10). If the Gamma probability distribution is used 

then: 
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where: iα  is the shape parameter of the Gamma distribution for mode i, and 

 iβ  is the scale parameter of the Gamma distribution for mode i. 

 

To extend the discrete results to a continuous model of a well-mixed suspension when 

considering fine sediment particles settling under gravitational forces, a settling velocity 

function is required.  

5.3.1 Continuous Representation of the Settling Velocity Models 

There is no known continuous form of the settling velocity presented in Section 5.2.3. 

Continuing with the derivation of the CKSM introduced in the previous section, a 

continuous mathematical representation of the settling velocity is needed. This 

continuous representation will be developed for the three different settling velocity 

models presented in Section 5.2.3: Batchelor, modified Batchelor and Richardson and 

Zaki. 

 

If the equivalent hydraulic diameter of a particle is represented by the continuous 

variable x then the following equivalent continuous expression for the settling velocity is 

obtained: 
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)()(),( ξξ Vxvxv ∞= , (5.14)

 

where: the settling function )(ξV  can also be a function of the particle size x.  

 

Continuous Representation of the Batchelor Settling Velocity Model 

 

Let ),( yxS  be Batchelor’s sedimentation coefficients represented by a continuous 

function that accounts for interactions between particles of size x and particles of size y, 

then (5.4) results in: 
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Using the polynomial approximation of Batchelor’s settling function (5.8), i.e. 
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and using (5.3), (5.11) and (5.12) into (5.15) yields: 
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where 
f

g
μ
ρμ

18
Δ

=∞ . Regrouping terms in the right-hand side of the above equation results 

in: 
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The kth moment of the multimodal PSD function is given by: 
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and thus the continuous representation of the Batchelor’s settling velocity model is finally 

given by: 
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Continuous Representation of the Modified Batchelor Settling Velocity Model 

 

Following along the lines of the previous analysis, the modified continuous Batchelor 

velocity results in: 
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(5.21)

  

 

Continuous Representation of the Richardson and Zaki Settling Velocity 

 

Similarly, by replacing the Stokes terminal velocity by its continuous form, the 

Richardson and Zaki continuous representation of the settling velocity is obtained: 

 

( ) .1),( 2 ηξμξ −=≡ ∞ xxvv RZRZ
x  (5.22)

 

5.3.2 Continuous Kinematic Sedimentation Model (CKSM) 

In the effort of trying to use the discrete KMS to model the sedimentation of fine 

sediment particles it is necessary to divide the PSD curve in intervals and for each 

interval an average particle size is chosen. The degree of accuracy of the model will 

depend on the number of intervals selected. Let ixΔ , i = 1…N, be the interval around the 

particle size ix   then (5.1) can be written as: 
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Taking the limit ∞→N  ( 0→Δ⇒ ix ) yields:   
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and defining ∫
∞

≡
0

)()( dxfF xξξ  as the total flux function, the CKMS is finally obtained: 
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where: )(0 zξ  is the initial total concentration profile and maxξ  is the maximum possible 

mass concentration inside the settling column. Next the expressions for )(ξF  will be 

provided for each of the different settling velocity models described previously. 

 

Total Flux Function using the Batchelor’s Settling Velocity Model 
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The continuous Batchelor settling velocity was derived in the previous section and is 

given by (5.20). Using (5.12) and (5.20) the total flux function then becomes: 
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By further developing the right-hand side of the above equation the following result is 

obtained: 
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It is easy to infer from the above result that the maximum possible value that the index m 

can take is 2, which is the same value for the discrete case (see (5.8)). By replacing the 

value of m = 2 in the above equation, the Batchelor total flux equation is obtained: 
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Finally, replacing 10 cd =  and 201 ccd +=  results in: 
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Total Flux Function using the Modified Batchelor’s Settling Velocity Model 

 

In the case of the modified Batchelor model, the continuous settling velocity is given 

by (5.21) and thus multiplying by xξ  and integrating over the entire size spectrum results 

in: 
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 Expanding the right-hand side of the above equation by replacing the exponential 

function by its series expansion ( ∑
∞
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The above equation is valid only when 0)1(2 ≥−− jk ; which results in the set of values 

defined by k  = 0 and }2,1,0{=j . Finally, the final total flux function for the modified 

Batchelor case results in: 
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Richardson and Zaki 

 

The continuous expression of the settling velocity for the Richardson and Zaki model 

is given by (5.22). Multiplying the settling velocity by xξ  and integrating within the 

entire possible set of particle sizes x results in the total flux function for the Richardson 

and Zaki model and is given by: 

 

( ) 21)( MF RZ ηξξμξ −= ∞  (5.33)

 

5.3.3 Flocculation 

During the settling process inside the column particles can be attracted and aggregate 

to form flocs. When this happens the settling velocity increases, which also increases the 

total flux function. To consider this effect the PSD need to be defined as a function of 

time. In Chapter 3 a new continuous aggregation and fragmentation model was derived 
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that tracks the changes of the PSD over time due to flocculation when a multimodal 

Gamma distribution is used to model the particles’ initial PSD. The aggregation and 

fragmentation model is given by: 
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where the multimodal Gamma distribution representing the PSD function is given by 

(5.13). The aggregation terms are given by: 
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where: A is a constant that depend on the aggregation conditions. The fragmentation 

terms are given by: 

 



 

126 

∑
=

+

++

−+Γ
Γ+Γ

−+Γ
=

n

i
i

i
ak

i

ak
i

i

k

ik ba
akBbJ

1
,1 (

)()()(
)1( αλ

αβ
β

ω
λ

 
(5.37)
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where: B is a constant that depend on the fragmentation conditions.  

 

Combining the scalar conservation law given by (5.25) with one of the total flux 

functions, previously derived with the above aggregation-fragmentation equations, yields 

the continuous kinematic sedimentation model that considers flocculation. Since no 

analytical solution exist for this type of conservation law a numerical method needs to be 

used. For each time step in the numerical method, the multimodal Gamma parameters 

that define the PSD of the sediment particles needs to be updated using the aggregation-

fragmentation equations presented above. With the updated parameters the new moments 

1M  and 2M  are obtained for the total flux function. 

 

If flocculation occurs before the settling process commences (e.g. when flocculation 

is induced through a chemical flocculant prior to entering the sediment pond) the 

aggregation-fragmentation model described previously need to be implemented before 

solving the conservation law. The only difference with the non-flocculated case is that the 
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initial PSD has been updated prior to the sedimentation process to account for the 

induced flocculation. 
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5.4 Settling Column Tests 
 

5.4.1 Description 

A column test uses a vertical settling column as a surrogate to mimic sediment-

settling processes within a sediment pond. The settling column used in the experimental 

design consists of a vertical cylindrical PVC pipe fitted with six sampling ports located at 

30 cm intervals along the column.  

 

The column was filled with various concentrations of particles in water where pH and 

temperature were controlled. After mixing and achieving a relatively homogenous 

suspension, the sedimentation process begins. At pre-designated time intervals samples 

were withdrawn from each port and subsequently tested for total solids concentration. 

The concentration profiles along the column were then obtained as a function of time and 

initial sediment concentration. Figure 5 - 2 shows a sketch of the type of column used in 

the experiments. 
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Figure 5 - 2: Cross Section of Sedimentation Column 

 

Three cylindrical columns with 6 sampling ports each were fabricated for this 

research. Column dimensions are 2 m in height and an internal diameter of 25 cm. A 

drainage line, controlled by a valve, was inserted at the bottom of each column to drain 

and clean the columns after completing each experiment. The columns are equipped with 

solenoid valves located at each port that open at the touch of a button. The use of the 

solenoid valves provides withdrawal of consistent sample volumes since the entire set of 

samples (6) are initiated at the same time with slight differences in sampling durations 

based on the head of water above the respective valves. 
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5.4.2 Particle Size Distributions 

The sediment samples were obtained using glass micro-spheres to limit flocculation 

effects during the sedimentation process and to avoid compression effects at the bottom 

layer (non-compressible particles).  Two PSDs of glass micro-spheres were used having 

average diameters of 7 μm (small) and 35 μm (large) and their PSD curves are listed in 

Chapter 2, Section 2.3. The PSD of the small and large glass micro-spheres were 

obtained using an X-Ray particle size analyzer that used the sedimentation theory 

(Stokes’ Law).  

 

A bimodal Gamma distribution was shown in Chapter 2 to provide the most accurate 

representation and therefore was used to fit the PSD curves of the small and large 

distributions.  The obtained Bimodal Gamma parameters are presented in Table 5 - 1.  

 

Table 5 - 1: Bimodal Gamma Parameters, fist and second moments of the two Glass 

Micro-spheres’ PSDs. 

Glass 

Micro-

Sphere 

1ω  2ω  1α  2α  1β  2β  1M (a) 
2M (a) 

Small 0.028 0.972 0.429 5.102 62.987 1.235 6.878 113.922 

Large 0.046 0.954 0.316 8.685 326.122 3.930 37.280 3260.523

Notes: (a) M1 and M2 are obtained analytically from (5.19). 

 

For each tested PSD three different total solids concentrations were used: small, 

medium and high concentrations with target values of 5,000 mg/L, 15,000 mg/L and 
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45,000 mg/L; respectively. The mass of glass micro-spheres that needed to be introduced 

in the columns for each test were derived from the targeted total solids concentrations 

since the initial volume of water was known. Three replicates of each column test were 

conducted giving a total of (2 PSDs x 3 concentrations x 3 replicates) 18 column tests.  

 

5.4.3 Procedure 

Calculated amounts of glass micro-spheres and tap water were placed inside the 

column to obtain the desired initial concentrations. The solution was then thoroughly 

mixed using compressed air delivered at the bottom of the column through dispersal 

heads to distribute the air flow throughout the entire column height and cross-sectional 

area. The mixing of the sediment slurry was conducted for 5 minutes and the first set of 

samples was taken while the mixing apparatus continued to operate. These samples 

represent the initial concentration profile. After initial sampling was completed mixing 

stops and the sedimentation process begins. The clock is set to 0 and sampling at each 

port was conducted at 5, 10, 15, 20, 30, 45, 60 and 90 minutes. Sampling occurred 

concurrently from all ports with an average sampling time of 2.0 seconds. The initial and 

final water heights were recorded for each sampling time interval. 

 

The initial column water height (L) was set at 1.75 m to avoid any spillage during the 

mixing process. Ph was set at a neutral level (pH between 6.5 and 7.5) and the water 

temperature was set at 20 ± 2 °C. Every time a set of samples was taken the total depth 

decreases and the relative depth between ports is adjusted accordingly. Consequently an 

overall correction was made to each depth such that the final calculated depth matched 
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the final recorded depth. Finally the total solids concentration was obtained for each 

sample and the concentration profile along the column was determined for each sampling 

time. 
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5.5 Model Calibration 

 

The CKSM was calibrated considering a time frame that is representative of the 

retention time of a typical sediment pond. A time interval of 60 minutes was selected to 

conduct the calibration. It is important to note however that if induced flocculation had 

been applied to the sediment-laden flow entering the sediment pond then smaller settling 

times are applicable and thus calibration should be conducted for time intervals of 

approximately 10 to 30 minutes or smaller. Note that this case only applies when 

flocculation has been induced prior to sedimentation and that the sediment pond’s 

retention time is small. 

 

Typically, in a sediment pond sediment concentrations vary in the range where 

particle-to-particle interactions (transitional settling) are expected and thus the Batchelor 

settling velocity model is more applicable than the Richardson and Zaki model. This is 

especially true where effluent withdrawals occur throughout a vertical portion of the 

spillway such as when utilizing a perforated riser or when withdrawals occur from a 

single elevation such as a fixed siphon. No hindered settling is modeled in the 

Batchelor’s model. Furthermore, for simplification purposes the non-modified 

Batchelor’s model was used for calibration. The parameters that need to be estimated are 

therefore the 0d  and 1d  sedimentation coefficients. 

 

The CKSM described by (5.25) in combination with the total flux function (5.29) 

derived from the Batchelor’s settling velocity model needs to be solved using a numerical 
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method. Based on the nature of hyperbolic conservation laws, discontinuities in the 

solution (shocks) are expected to occur and therefore a shock-absorbing numerical 

scheme is required. In addition, oscillations may also arise with high-viscosity schemes 

and thus it also needs to be treated accordingly. The selection of the numerical method 

should rely on a combination of accuracy and computational cost while addressing the 

shock-absorbing and non-oscillatory conditions. The second order central scheme 

developed by Nessyahu and Tadmor [5.9] has been chosen as the numerical method to 

calibrate the CKSM mainly due to its operational efficiency. Moreover, the non-

staggered grid version presented in [5.6] was used.  Note that the calibration process 

being an optimization based problem requires a thorough iteration process to find an 

accurate solution that may take extensive amount of time and thus a less computational 

expensive numerical method is desired. Finally, the CKSM is a scalar hyperbolic 

conservation law and thus the scalar version of the numerical method will be presented 

next. 

5.5.1 High-Resolution Non-Oscillatory Central Scheme with Non-

Staggered Grid 

A brief description of the numerical method that was used to calibrate the model will 

be presented in this section. For further details refer to [5.9] and [5.6]. 

  

The z-t space and time plane is represented by discrete pairs labeled ),,( n
j tz  for j = 

0….J and t = 0…T. The space and time finite differences zΔ  and ;tΔ  respectively, are 
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defined such that jzzj =Δ  and nttn =Δ . The boundary conditions are defined by: 

LzJ =Δ  and .maxttT =Δ  

 

The purpose of using a numerical method is to find an approximate solution of the 

total solids concentration function ),( tzξ  at the grid points ),( n
j tz . This approximate 

solution is depicted by ),( n
j

n
j tzξζ ≈ . The objective of the central scheme is to find an 

approximate solution of the average of the function at the associated cell or z interval of 

the grid at a given time. The central scheme approach limits the formation of shocks or 

discontinuities that usually arise with these types of partial differential equations. 

 

The Nessyahu and Tadmor numerical scheme (NT) is based on the well celebrated 

Lax-Friedrich 1st order scheme (LxF) that is given by: 
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where 
n
jζ  is the approximate average solution of the associated cell (interval) 

⎭
⎬
⎫

⎩
⎨
⎧ Δ

≤−=
2
zzzI jj  at the time step tnt n Δ= , and 

z
t

Δ
Δ

=λ . The LxF besides being a 1st-

order numerical method, it has the inconvenient that it suffers from excessive numerical 

viscosity and thus high level of oscillations arises at the neighborhood of the 

discontinuities. This is due mainly by the discrete representation of the flux derivative in 
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(5.39). To solve this problem Nessyahu and Tadmor suggested the use of the MinMod 

delimiter to numerically calculate the derivatives. The MinMod (MM) delimiter is given 

by: 
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The non-oscillatory numerical derivatives are given by:  
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The first step in the method is to calculate a predictor step in the time evolution process, 
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where 
ξ∂

∂F  is obtained analytically and j'ζ  is given by (5.41).  

 

Finally, the NT scheme is given by the corrector step: 
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The non-staggered scheme is obtained by first calculating the staggered cell-averages 

at time 1+nt  using a piece-wise linear interpolant (to maintain the second-order accuracy) 

and second, the non-staggered cell-averages are obtained by averaging the linear 

interpolant at the cell-averages for the next time step. The resulting non-staggered NT 

scheme is given by: 

 

( ) ( )

,''
8
1

2

''
16
12

4
1

2
1

2
1

2
1

1
2
1

1111

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−++=

−+

+

−

+

+

−++−

+

jj

nn

jj

n

j

n

j

n

j

n

j

FF ζζζζλ

ζζζζζζ

j1j

(5.45)

 

where: 
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and 
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The code for the above numerical scheme was written in C# programming language 

and is presented in Appendix M. 

5.5.2 Initial Condition 

The CKSM is an initial value problem and thus the accuracy of its results is highly 

dependent on the accuracy of the mathematical representation (interpolation) of the initial 

concentration profile (at time t = 0). The column tests provide 6 observed points for the 

initial concentration profile since the column only has 6 ports to withdraw samples. 

Evidently that the grid used in the numerical method described in Section 5.5.1 requires a 

larger amount of points along the z-axis (i.e. J > 6) to obtain accurate results.  

 

To populate the grid with an accurate initial concentration profile )0,( =tzζ  it is 

necessary to interpolate between the six different initial condition points obtained from 

the columns tests. A simple piece-wise linear interpolation between the observed points is 

not adequate since discontinuities are induced directly at each of the six initial condition 

points that could cause instability in the solution when a coarse grid configuration is 

used. To avoid potential oscillations while keeping the number of grid points small, a 
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cubic Spline interpolation method was used (see Appendix N for the C# code 

implementation). The cubic Spline method has the advantage of providing a continuous 

interface and continuous derivatives between the interpolated segments. The segments at 

the boundaries were extrapolated also using the cubic Spline method. 

 

The columns tests however did not provide changes in PSD along the depth of the 

column for the initial concentration profile. This is due to the fact that the amount of 

sediment withdrawn from the column’s ports was not sufficient to run a valid PSD 

through the X-Ray particle size analyzer. Withdrawing larger samples for the initial 

condition would have depleted the total volume of water inside the column to a point that 

the level of water is too close or pass the first (top) sampling port. Therefore, a constant 

PSD along the depth of the column was assumed with the Spline-adjusted sediment 

concentrations. This assumption however may lead to important errors that will be 

discussed later. 

5.5.3 Boundary Conditions 

The boundary conditions at the top and bottom of the column need to be defined. The 

initial concentrations at the boundaries are not known and can’t be assumed 0 and maxξ at 

the top and bottom layers; respectively. The only boundary conditions that can be 

imposed are with respect to the flux function. Since the column remains closed during the 

duration of the test, no particles enter (at the top) or leave (at the bottom) the column at 

any time. This can be interpreted as no flux enters or leaves the column and thus: 
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5.5.4 Parameter Estimation (Inverse Value Problem) 

Once a continuous approximation of the initial condition concentration profile has 

been created, the NT numerical method can be used to obtain an approximate solution of 

the second order. To obtain an estimate of the optimum 0d  and 1d  sedimentation 

coefficients, it is necessary to use an optimization tool. Given that the NT numerical 

scheme needs to be implemented for each iteration of the optimization process, a random 

search algorithm is necessary to solve the inverse value problem.  The genetic algorithm 

presented in Chapter 4, Section 4.5.2 will be used for parameter estimation.   
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5.6 Results 

 

The genetic algorithm was used to obtain an approximation of the optimum 0d  and 

1d  sedimentation coefficients for each of the column tests listed in Appendices 5.A and 

5.B, based on the time interval of 60 minutes. The goodness of fit is given by the 

coefficient of determination (R2): 
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where N is the number of observed data points ( 6=N  in this case), oξ  are the observed 

concentration data points obtained directly from the column tests and pξ  are the 

predicted concentration data points obtained from the calibration process. 

 

Nine column tests were conducted using the small and large micro-spheres PSDs: 

three initial concentrations with three replicates, resulting in 18 total experiments. Data 

was incomplete for one of the replicates (replicate 1) of the large micro-spheres for the 

low initial concentration. The resulting R2 values for both particles size distributions 

(small and large), Table 5 - 1 and the observed and predicted concentration profiles 

obtained after 60 minutes of settling time has elapsed for small and large micro-spheres 

are illustrated in Appendix O and Appendix P; respectively.   
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Table 5 - 2: R2 values obtained from the calibration process 

Glass Micro-

Sphere 

Low Initial Concentration (5,000mg/L) 

Rep. 1 Rep. 2 Rep. 3 

Small 0.972 0.929 0.915 

Large NA 0.556 0.957 

Glass Micro-

Sphere 

Medium Initial Concentration (15,000 mg/L) 

Rep. 1 Rep. 2 Rep. 3 

Small 0.966 0.968 0.960 

Large 0.971 0.914 0.927 

Glass Micro-

Sphere 

High Initial Concentration (45,000 mg/L) 

Rep. 1 Rep. 2 Rep. 3 

Small 0.896 0.973 0.968 

Large 0.927 0.915 0.923 

 

The sedimentation coefficients 0d  and 1d  that resulted from the calibration process 

are listed in Tables 5 - 3 and 5 - 4 for the small and large glass micro-spheres, 

respectively. 
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Table 5 - 3: Calibrated sedimentation coefficients for the small glass micro-spheres  

Initial 

Concentration 

Replicate 1 Replicate 2 Replicate 3 

0d∞μ  1d∞μ  0d∞μ  1d∞μ  0d∞μ  1d∞μ  

Low  

(5,000 mg/L) 
0.0215 2.939E-09 0.0765 8.283E-09 0.00141 1.932E-10 

Medium 

(15,000 mg/L) 
0.00738 1.714E-09 0.0105 1.448E-09 0.0502 3.254E-09 

High 

(45,000 mg/L) 
0.000711 2.605E-11 0.000335 6.562E-11 0.000458 2.684E-10 

 

Table 5 - 4: Calibrated sedimentation coefficients for the large glass micro-spheres 

Initial 

Concentration 

Replicate 1 Replicate 2 Replicate 3 

0d∞μ  1d∞μ  0d∞μ  1d∞μ  0d∞μ  1d∞μ  

Low  

(5,000 mg/L) 
N/A N/A -0.000766 -2.959E-11 -0.00136 -6.574E-10 

Medium 

(15,000 mg/L) 
-0.000493 -4.431E-11 -0.000285 -2.604E-11 -0.000289 -1.398E-11 

High 

(45,000 mg/L) 
-0.000178 -3.702E-10 -0.000112 -9.712E-11 -0.000133 -1.162E-10 

 

For the small glass micro-spheres the resulting sedimentation coefficients values were 

all positive, which implies that the settling velocities of the particles settling inside the 

column were larger than the respective terminal velocities of particles without particle-to-
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particle interactions. This result was maintained even for high concentration; however 

with smaller coefficient values. One possible explanation is that the Batchelor’s settling 

velocity equation may not be adequate to model the sedimentation process of fine 

particles (7 microns in diameter) when using the CKSM. Conversely, for the large micro-

spheres calibrated sedimentation coefficients yielded the expected behavior where the 

influence of particle-to-particle interactions on the settling velocity is smaller that the 

terminal velocity.  

 

The observed 60 minutes concentration profile depicted in Figure 5 - 26 in Appendix 

L (replicate 1 with small glass micro-spheres and high initial concentration) shows an 

atypical behavior where the concentration near the bottom of the column is much smaller 

than the up-gradient concentration. This atypical behavior may be due to the fact that the 

PSD is not known at the different depth in the column and thus it is expected that the 

initial concentration profile may have had larger size particles near the bottom of the 

column before settling started.  
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5.7 Summary and Concluding Remarks 

 

A new one dimensional scalar continuous sedimentation model was developed from 

the well-known discrete kinematic sedimentation model based on the Kynch theory of 

sedimentation. A total flux function was defined as the integral of the flux for the entire 

particle size spectrum. Using this definition, an analytical continuous representation of 

the total flux function was derived for the three different settling velocity models 

presented in this chapter: Batchelor, Modified Batchelor and Richardson and Zaki. Table 

5 - 5 summarizes the total flux functions for the different settling velocity models. 

 

Table 5 - 5: Total flux functions for the three different settling velocity models 

 Settling Velocity 

Model 

Total Flux Function )(ξF  

Batchelor ( )[ ]21
2

102)( MdMdMF B ++= ∞ ξξμξ  

Modified Batchelor 
( )( )21
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⎛
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ξ
ξ

ξ
ξξμξ

Richardson and Zaki ( ) 21)( MF RZ ηξξμξ −= ∞  

 

The PSD of natural occurring sediment particles covers a large spectrum of sizes, 

ranging from large sand to fine clay particles. This imposes an important limitation when 

using the discrete KSM since the number of particle size species that need to be used to 

have a representative discrete PSD to obtain accurate results is extremely difficult to 
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estimate. The larger the number of size species used the larger is the computational cost 

embedded in trying to obtain an accurate solution through a numerical method since there 

is no analytical solution to these types of systems of hyperbolic conservation laws. The 

continuous representation of the sedimentation model presented in this Chapter simplifies 

the model to a scalar (single) conservation law and thus the computational cost is 

considerably reduced. Furthermore, calibration of a scalar model is quite less complex 

than calibration of a system of conservation laws since there are only two parameters to 

calibrate.  

 

The continuous sedimentation model provides a prediction of the total concentration 

as a function of depth and time.  Most sediment regulations are based on the effluent 

sediment concentration.  The prediction of total sediment concentration, for depth and 

time, is sufficient to estimate effluent concentration and thus determine if a defined 

effluent sediment concentration is achieved for a single sediment pond.  At most 

construction sites (approximately 90%) only a single pond is used within a watershed for 

sediment control.  A disadvantage of this model is that it does not predict the 

concentration of each particle species separately.  Not predicting the specific 

concentration of each particle size, as a function of depth and time, restricts the use of 

this model to a single sediment pond since for a system of ponds in series the PSD 

information as a function of depth of the outlet flow of the previous sediment pond will 

influence the performance of the next. An expanded model needs to be developed that 

considers shifts of the PSD due to the sedimentation process, Chapter 6. 
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Calibration of the CKSM was conducted employing two primary procedures. The 

first procedure was to select a numerical method that is both non-oscillatory and shock-

absorbing while having a small computational cost (computationally efficient). Under 

these circumstances the non-staggered version of the NT central scheme was selected to 

solve the CKSM. The second step is to obtain an approximation of the optimum 

sedimentation coefficients (parameters) using the genetic algorithm that was presented in 

Chapter 4, Section 4.5.2. The CKSM is an initial value problem and thus the predictive 

capability is driven by an accurate representation of the initial concentration profile. The 

initial concentration profile for every point in the grid was estimated from the 6 available 

observed points using the cubic Spline interpolation method to avoid discontinuities 

within the initial concentration profile that can otherwise lead to instabilities.  

 

The calibration process revealed that the proposed continuous model fits the glass 

micro-sphere data well (R2 > 0.89 except for one test replicate) and therefore it represents 

an excellent mathematical tool to model the sedimentation process. It is important 

however to note that not having the initial variation of the PSD along the depth (z-axis) of 

the column may result in significant error levels when larger particles are present in the 

PSD (silts and sands). Larger particles are usually at the bottom layers of the column 

since it requires a higher mixing energy to re-suspend them to the top. Conversely, 

smaller particles are usually distributed homogenously along the depth, which explains 

the excellent results of this study. 

 



 

148 

In conclusion, the CKSM is a theoretically rigorous, yet computationally efficient 

sedimentation model that is also readily applicable and expandable to two or three 

dimensions. However, this model requires additional development specifically addressing 

the defined initial concentration profile that incorporates variations in depth of the PSD to 

obtain accurate results when modeling sediment PSDs. 
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CHAPTER 6: Future Research 

 

The research presented in the previous chapters provided new developments in the 

area of flocculation and sedimentation modeling. These new developments are 

considered as a first step to obtaining a comprehensive physically based sedimentation 

model that can be applied to a sediment pond. Logically, this leads to further research 

suggestions.  

 

A new continuous aggregation and fragmentation model derived from the well-known 

Smoluchowski coagulation equation using the Gamma distribution was developed and 

presented in Chapter 3. The proposed flocculation model was calibrated using limited 

sediment and flocculent data. Results are very promising.  It is recommended that this 

modeling approach be extended through testing with additional soils and flocculants to 

statistically establish calibrated parameters with associated soil type and flocculent 

products.  

 

The continuous kinematic sedimentation model (CKSM) presented in Chapter 5 is a 

completely new approach to modeling the settling process of particles in one dimension; 

however it is only the first step in obtaining a comprehensive sediment pond design 

model. The CKSM therefore opens new opportunities for research. Results in Chapter 5 

showed that the Batchelor’s equation needs to be modified in order to improve modeling 

the settling velocities of fine particles (7 microns in diameter) when using the CKSM; 

however it showed promising results with larger particles (25 microns in diameter). Thus 
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it may be necessary to explore a new settling velocity model that will better 

accommodate the smaller size fraction of sediments.  Additionally, the CKSM was 

calibrated using glass micro-spheres only and thus calibration and validation of the model 

using column test data obtained using sediment is recommended. Calibration using 

sediment will also need to be conducted considering the use of flocculation (combining 

the CKSM with the flocculation model proposed in Chapter 3). 

 

Obtaining the PSD of samples withdrawn from the column tests was extremely 

difficult since the amount of volume and the concentration were too small to test using 

the X-Ray particle size analyzer. No PSD data was available from the column tests and 

thus to calibrate the CKSM it was necessary to assume that the initial concentration 

profile had a constant PSD along the entire depth of the column. This is obviously a 

restriction to the CKSM. To withdraw larger samples from the column a larger diameter 

column would need to be used to reduce the water level drop inside the column during 

the test. A larger column however would require larger mixing energy to obtain a 

homogeneous initial concentration profile and sampling procedures may need to be 

modified to ensure a representative sample being drawn.   

 

The settling velocity expressions associated with the CKSM utilize the first two 

moments of the PSD. Assuming the PSD is available for the entire set of concentration 

profiles, a relationship that relates the moments of the initial PSD (before settling occurs, 

i.e. from the original PSD) to the changes in PSD as a function of depth and time can be 

obtained. Using this relationship it could also be possible in conjunction with the CKSM 
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to obtain the PSD as a function of time and depth. This relationship however needs to 

obey the following two conditions: 

 

1) initial condition: )(),0( 0 zMzM kk =  is known, and 

2) terminal condition: 0)0(lim ==
∞→

zM kt
, and ,)(lim max,kkt

MLzM ==
∞→

 k  = 1,2. 

 

The two moments posses minimum and maximum values that depend on the physics 

of the problem. The minimum value is attained at the top of the column when a large 

amount of time has elapsed. A first order decay model can be used for example to 

describe the decrease in the average size diameter at the top of the column:  
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Finally, to provide more flexibility to the CKSM the sedimentation coefficients can 

be set as a function of depth, i.e. )(00 zdd =  and )(11 zdd = . The numerical method used 

to solve the CKSM needs to update the values of 021 ,, dMM  and 1d  at each time step.  
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APPENDIX A: Multimodal Form – proof by 

induction 

 

The multimodal approach states that the PSD of a sediment resulting from completely 

mixing a finite number of sediments with known PSDs can be written as the 

superposition (linear combination) of the known PSDs functions (2.8), assuming that no 

particle-to-particle interaction occur. This will proven by induction.  

 

For n = 1 the result is trivially obtained by replacing 11 =ω . Therefore assume that 

the result holds for n-1 and then it will be proven it holds for n. 

 

Let M n-1 be the mass of sediment of the n-1 original combined sediment samples, 

thus ∑
−

=

− =
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n MM  and let Mn be the mass of the added sediment material that complete 

the n different portions of the final sediment sample. The total mass of the final sample is 

then ∑
=

− =+
n

i
in

n MMM
1

1 .  The cumulative PSD functions for the n-1 composite sediment 

and the n sediment portion are )()(
1
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1 xFxF
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Similarly, the percent finer than 'x  of the final combined sediment sample is given by 
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Thus, 
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The above result is true for all ,' Ω∈x  thus concluding the result (2.8). Finally, only 
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End of proof
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APPENDIX B: Glass Micro-spheres PSD Data Curves 
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Figure 2 - 5: Small (7 μm) glass micro-spheres PSD curves obtained using the X-Ray particle size 

analyzer. 
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Figure 2 - 6: Average PSD curve for small (7 μm) glass micro-spheres. 
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Figure 2 - 7: Medium (25 μm) glass micro-spheres PSD curves obtained using the X-Ray particle size 

analyzer. 
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Figure 2 - 8: Average PSD curve for medium (25 μm) glass micro-spheres. 
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Figure 2 - 9: Large (35 μm) glass micro-spheres PSD curves obtained using the X-Ray particle size 

analyzer. 
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Figure 2 - 10: Average PSD curve for large (35 μm) glass micro-spheres.
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APPENDIX C: Bimodal PSD Test Results 
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Figure 2 - 11: Bimodal PSD test # 1, replicate # 1. 
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Figure 2 - 12: Bimodal PSD test # 1, replicate # 2. 
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Figure 2 - 13: Bimodal PSD test # 1, replicate # 3. 
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Figure 2 - 14: Bimodal PSD test # 2, replicate # 1. 
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Figure 2 - 15: Bimodal PSD test # 2, replicate # 2. 
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Figure 2 - 16: Bimodal PSD test # 2, replicate # 3. 
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Figure 2 - 17: Bimodal PSD test # 3, replicate # 1. 
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Figure 2 - 18: Bimodal PSD test # 3, replicate # 2. 
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Figure 2 - 19: Bimodal PSD test # 3, replicate # 3. 
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Figure 2 - 20: Bimodal PSD test # 4, replicate # 1. 
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Figure 2 - 21: Bimodal PSD test # 4, replicate # 2. 

 

0

10

20

30

40

50

60

70

80

90

100

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed

Model
w 1  = 0.203
w 2  = 0.797
R 2  = 0.999768

 
Figure 2 - 22: Bimodal PSD test # 4, replicate # 3. 
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Figure 2 - 23: Bimodal PSD test # 5, replicate # 1. 
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Figure 2 - 24: Bimodal PSD test # 5, replicate # 2. 
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Figure 2 - 25: Bimodal PSD test # 5, replicate # 3. 
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Figure 2 - 26: Bimodal PSD test # 6, replicate # 1. 
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Figure 2 - 27: Bimodal PSD test # 6, replicate # 2. 
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Figure 2 - 28: Bimodal PSD test # 6, replicate # 3. 
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Figure 2 - 29: Bimodal PSD test # 7, replicate # 1. 
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Figure 2 - 30: Bimodal PSD test # 7, replicate # 2. 
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Figure 2 - 31: Bimodal PSD test # 7, replicate # 3. 
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Figure 2 - 32: Bimodal PSD test # 8, replicate # 1. 
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Figure 2 - 33: Bimodal PSD test # 8, replicate # 2. 
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Figure 2 - 34: Bimodal PSD test # 8, replicate # 3. 
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Figure 2 - 35: Bimodal PSD test # 9, replicate # 1. 
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Figure 2 - 36: Bimodal PSD test # 9, replicate # 2. 
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Figure 2 - 37: Bimodal PSD test # 9, replicate # 3. 
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Figure 2 - 38: Bimodal PSD test # 10, replicate # 1. 
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Figure 2 - 39: Bimodal PSD test # 10, replicate # 2. 
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Figure 2 - 40: Bimodal PSD test # 10, replicate # 3. 
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Figure 2 - 41: Bimodal PSD test # 11, replicate # 1. 
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Figure 2 - 42: Bimodal PSD test # 11, replicate # 2. 
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Figure 2 - 43: Bimodal PSD test # 11, replicate # 3. 
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Figure 2 - 44: Bimodal PSD test # 12, replicate # 1. 
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Figure 2 - 45: Bimodal PSD test # 12, replicate # 2. 
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Figure 2 - 46: Bimodal PSD test # 12, replicate # 3. 
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Figure 2 - 47: Bimodal PSD test # 13, replicate # 1. 
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Figure 2 - 48: Bimodal PSD test # 13, replicate # 2. 
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Figure 2 - 49: Bimodal PSD test # 13, replicate # 3. 
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Figure 2 - 50: Bimodal PSD test # 14, replicate # 1. 
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Figure 2 - 51: Bimodal PSD test # 14, replicate # 2. 
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Figure 2 - 52: Bimodal PSD test # 14, replicate # 3. 
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Figure 2 - 53: Bimodal PSD test # 15, replicate # 1. 
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Figure 2 - 54: Bimodal PSD test # 15, replicate # 2. 
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Figure 2 - 55: Bimodal PSD test # 15, replicate # 3. 
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Figure 2 - 56: Trimodal PSD test # 1, replicate # 1. 
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Figure 2 - 57: Trimodal PSD test # 1, replicate # 2. 



 

185 

0

10

20

30

40

50

60

70

80

90

100

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed

Model
w 1  = 0.301
w 2  = 0.346
w 3  =  0.353
R 2  = 0.999103

 
Figure 2 - 58: Trimodal PSD test # 1, replicate # 3. 
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Figure 2 - 59: Trimodal PSD test # 2, replicate # 1. 
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Figure 2 - 60: Trimodal PSD test # 2, replicate # 2. 
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Figure 2 - 61: Trimodal PSD test # 2, replicate # 3. 
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Figure 2 - 62: Trimodal PSD test # 3, replicate # 1. 
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Figure 2 - 63: Trimodal PSD test # 3, replicate # 2. 
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Figure 2 - 64: Trimodal PSD test # 3, replicate # 3. 
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Figure 2 - 65: Trimodal PSD test # 4, replicate # 1. 
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Figure 2 - 66: Trimodal PSD test # 4, replicate # 2. 
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Figure 2 - 67: Trimodal PSD test # 4, replicate # 3. 

 



 

190 

0

10

20

30

40

50

60

70

80

90

100

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed

Modelw 1  = 0.338
w 2  = 0.535
w 3  =  0.128
R 2  = 0.996603

 
Figure 2 - 68: Trimodal PSD test # 5, replicate # 1. 
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Figure 2 - 69: Trimodal PSD test # 5, replicate # 2. 
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Figure 2 - 70: Trimodal PSD test # 5, replicate # 3. 
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Figure 2 - 71: Trimodal PSD test # 6, replicate # 1. 
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Figure 2 - 72: Trimodal PSD test # 6, replicate # 2. 
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Figure 2 - 73: Trimodal PSD test # 7, replicate # 3. 
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Figure 2 - 74: Trimodal PSD test # 7, replicate # 1. 
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Figure 2 - 75: Trimodal PSD test # 7, replicate # 2. 
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Figure 2 - 76: Trimodal PSD test # 7, replicate # 3. 
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Figure 2 - 77: Trimodal PSD test # 8, replicate # 1. 
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Figure 2 - 78: Trimodal PSD test # 8, replicate # 2. 
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Figure 2 - 79: Trimodal PSD test # 8, replicate # 3. 
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Figure 2 - 80: Trimodal PSD test # 9, replicate # 1. 
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Figure 2 - 81: Trimodal PSD test # 9, replicate # 2. 

 



 

197 

0

10

20

30

40

50

60

70

80

90

100

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed

Modelw 1  = 0.422
w 2  = 0.118
w 3  =  0.460
R 2  = 0.997475

 
Figure 2 - 82: Trimodal PSD test # 9, replicate # 3. 

 

0

10

20

30

40

50

60

70

80

90

100

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed

Modelw 1  = 0.486
w 2  = 0.411
w 3  =  0.103
R 2  = 0.991934

 
Figure 2 - 83: Trimodal PSD test # 10, replicate # 1. 
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Figure 2 - 84: Trimodal PSD test # 10, replicate # 2. 
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Figure 2 - 85: Trimodal PSD test # 10, replicate # 3. 
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Figure 2 - 86: Trimodal PSD test # 11, replicate # 1. 
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Figure 2 - 87: Trimodal PSD test # 11, replicate # 2. 
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Figure 2 - 88: Trimodal PSD test # 11, replicate # 3. 
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Figure 2 - 89: Trimodal PSD test # 12, replicate # 1. 
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Figure 2 - 90: Trimodal PSD test # 12, replicate # 2. 
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Figure 2 - 91: Trimodal PSD test # 12, replicate # 3. 
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Figure 2 - 92: Trimodal PSD test # 13, replicate # 1. 
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Figure 2 - 93: Trimodal PSD test # 13, replicate # 2. 
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Figure 2 - 94: Trimodal PSD test # 13, replicate # 3. 
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APPENDIX E: Observed and Predicted PSD Curves 

Using Sediment Data 
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Figure 2 - 95: Observed vs. Predicted PSD data for Sediment Sample 1. 
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Figure 2 - 96: Observed vs. Predicted PSD data for Sediment Sample 2. 
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Figure 2 - 97: Observed vs. Predicted PSD data for Sediment Sample 3. 
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Figure 2 - 98: Observed vs. Predicted PSD data for Sediment Sample 4. 
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Figure 2 - 99: Observed vs. Predicted PSD data for Sediment Sample 5. 
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Figure 2 - 100: Observed vs. Predicted PSD data for Sediment Sample 6. 
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Figure 2 - 101: Observed vs. Predicted PSD data for Sediment Sample 7. 
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Figure 2 - 102: Observed vs. Predicted PSD data for Sediment Sample 8. 
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Figure 2 - 103: Observed vs. Predicted PSD data for Sediment Sample 9. 
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Figure 2 - 104: Observed vs. Predicted PSD data for Sediment Sample 10.



 

210 

APPENDIX F: Derivation of the Aggregation Terms of the 

General Moments’ Equation 

 

1) Unimodal Case: 

 

The first aggregation term of the general moments’ equation is given by the following 

double integral:  
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Inserting the aggregation kernel given by (3.8) and the unimodal Gamma PSD, the above 

equation results in: 
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Applying the variable substitutions β/xu =  and β/yv =  yields: 
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 after using the definition of the Gamma function.  

 

Solving for the second term of (3.18): 
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Similarly, applying the substitutions β/xu −=  and β/yv −=  results in: 
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after using the definition of the Gamma function. 
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2) Multimodal Case: 
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 Following the same steps conducted for unimodal case: 

 

( ) ( )

.                                                                        

)()(2

)()(2

0

/1

1 1 0

/1)(

0 0

/1/1

1 1 0 0
,1

∫

∑∑ ∫∑∑

∑∑ ∫ ∫

∞
−−++

= =

∞
−−+−+−

= =

−−−−

= =

∞ ∞

⋅

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ΓΓ
=

ΓΓ
++=

dyey

dxex
m
p

l
kA

dxdyeyexyxyxAI

jj

ii

ji

j

jj

i

ii

yrml

n

i

n

j

xmprlk
k

l

p

mjiji

ji

jj

y

ii

xn

i

n

j

prrk
jik

βα

βα
αα

α

βα

α

βα

ααββ

ωω

αβαβ
ωω

 (F.7)

 

Applying the variable substitutions ixu β/=  and jyv β/=  yields: 
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The second aggregation term using a multimodal Gamma distribution as the initial PSD 

is given by: 

 

( )

∑∑ ∑ ∫∫

∫ ∫ ∑∑

= = =

∞
−−+

∞
−−+−+

∞ ∞

=

−−

=

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ΓΓ
=

ΓΓ
+=

n

i

n

j

p

m

xrmxmprk

jiji

ji

n

j jj

y

j

n

i ii

x

i
prrk

k

dyeydxex
m
p

A

dxdyeyexyxxAI

jjii

ji

j

jj

i

ii

1 1 0 0

/1

0

/1)(

0 0 1

/1

1

/1

,2

.
)()(

)()(

βαβα
αα

α

βα

α

βα

βαββ

ωω

αβ
ω

αβ
ω

(F.9)

 

Once again applying the substitutions ixu β/−=  and iyv β/−=  results in: 

 

∑∑∑

∑∑ ∑ ∫∫

=

−+

= =

= = =

∞
−−+

∞
−−+−+−+

+Γ+−+Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΓΓ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΓΓ

=

p

m

rm
j

mprk
i

n

i

n

j ji

ji

n

i

n

j

p

m

vrmumprkrm
j

mprk
i

ji

ji
k

rmmprk
m
p

A

dvevdueu
m
p

AI

0

)(

1 1

1 1 0 0

1

0

1)()(
,2

),())((
)()(

)()(

ααββ
αα

ωω

ββ
αα

ωω αα

 (F.10)

 

after using the definition of the Gamma function.  
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APPENDIX G: Derivation of the Fragmentation Terms of 

the General Moments’ Equation 

 

1) Unimodal Case: 

 

The two terms of the moments’ equation (3.24) related to fragmentation only are 

given by the following expressions: 
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where .)( λϕ Bxx =  The fragmentation PSD is assumed to also follow a Gamma 

distribution; however the parameters are different. Expanding (3.B.1) results in: 
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For the second term kJ ,2 : 
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after substitution of β/xu =  was made. Using the definition of the Gamma function, one 

finally obtains: 
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2) Multimodal Case: 

 

It was assumed for the multimodal case that the PSD of the fragments follows a 

unimodal Gamma distribution since little knowledge exist on the shape of this 

distribution and also to simplify the equations. The first term of the fragmentation is 

given by: 
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Using the multimodal Gamma distribution for ),( tyf  yields: 
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For the second term kJ ,2 : 
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after substitution of ixu β/=  was made. Using the definition of the Gamma function, 

one finally obtains: 
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APPENDIX H: Initial and Flocculated PSD Curves  



 

219 

0

10

20

30

40

50

60

70

80

90

100

110

0.1110100

Diamter (microns)

Pe
rc

en
t F

in
er

A1

A2

A3

A4

 
Figure 4 - 4: Initial PSD for Sediment Samples A1 through A6 
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Figure 4 - 5: Flocculated PSD curves of the A1 sediment sample and the four different flocculated 

cases 
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Figure 4 - 6: Flocculated PSD curves of the A2 sediment sample and the four different flocculated 

cases 
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Figure 4 - 7: Flocculated PSD curves of the A3 sediment sample and the four different flocculated 
cases 
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Figure 4 - 8: Flocculated PSD curves of the A4 sediment sample and the four different flocculated 

cases 
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APPENDIX I: Computer Code of the Genetic Algorithm 

 
 
Note: The Meta Numeric library was used in this program (www.meta-numerics.net). 
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1) The Multimodal Aggregation and Fragmentation Model 
 
 
namespace Chapter4_Code_Multimodal 
{ 
    class Multimodal 
    { 
        /// <summary> 
        /// Class attributes/members 
        /// <summary> 
        int nmodes; 
        double A; 
        double r; 
        int p; 
        double B; 
        double lambda; 
        double a; 
        double b; 
        ColumnVector IniVec; 
 
        /// <summary> 
        /// Constructor 
        /// <summary> 
        public Multimodal(int num_modes, double A_coeff, double 
r_coeff, int p_coeff, double B_coeff, double lambda_coeff, double 
a_coeff, double b_coeff, ColumnVector Initial_Vector) 
        { 
            nmodes = num_modes; 
            A = A_coeff; 
            r = r_coeff; 
            p = p_coeff; 
            B = B_coeff; 
            lambda = lambda_coeff; 
            a = a_coeff; 
            b = b_coeff; 
            IniVec = Initial_Vector.Clone(); 
        } 
 
        /// <summary> 
        /// Properties 
        /// <summary> 
        public double A_coefficient 
        { 
            get { return A; } 
        } 
        public double r_coefficient 
        { 
            get { return r; } 
        } 
        public int p_coefficient 
        { 
            get { return p; } 
        } 
        public double B_coefficient 
        { 
            get { return B; } 



 

224 

        } 
        public double lambda_coefficient 
        { 
            get { return lambda; } 
        } 
        public double a_coefficient 
        { 
            get { return a; } 
        } 
        public double b_coefficient 
        { 
            get { return b; } 
        } 
 
        /// <summary> 
        /// Static Method that is equivalent to the product of a 
diagonal matrix 
        /// and a column vector. This method reduces considerably the 
computational 
        /// cost by replacing the diagonal with its equivalent column 
vector 
        /// <summary> 
        public static ColumnVector Mult(ColumnVector Vector1, 
ColumnVector Vector2) 
        { 
            ColumnVector theProduct = new 
ColumnVector(Vector1.Dimension); 
            for (int i = 0; i < Vector1.Dimension; i++) 
            { 
                theProduct[i] = Vector1[i] * Vector2[i]; 
            } 
            return theProduct; 
        } 
 
        /// <summary> 
        /// Public method that returns the first aggregation term of 
the 
        /// continuous Smoluchowski coagulation equation 
        /// <summary> 
        public double I1k(int k, int i, int j, ColumnVector Pvec) 
        { 
            double sum = 0; 
 
            double c1 = A / (2 * AdvancedMath.Gamma(Pvec[i + nmodes]) * 
AdvancedMath.Gamma(Pvec[j + nmodes])); 
 
            for (int l = 0; l <= k; l++) 
            { 
                for (int m = 0; m <= p; m++) 
                { 
                    double i1 = k - l + r * (p - m); 
                    double i2 = l + r * m; 
                    double bc = 
AdvancedIntegerMath.BinomialCoefficient(k, l) * 
AdvancedIntegerMath.BinomialCoefficient(p, m); 
                    double c2 = Math.Pow(Pvec[i + 2 * nmodes], i1) * 
Math.Pow(Pvec[j + 2 * nmodes], i2); 
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                    double c3 = AdvancedMath.Gamma(i1 + Pvec[i + 
nmodes]) * AdvancedMath.Gamma(i2 + Pvec[j + nmodes]); 
                    sum += bc * c2 * c3; 
                } 
            } 
            return c1 * sum; 
        } 
 
        /// <summary> 
        /// Public method that returns the second aggregation term of 
the 
        /// continuous Smoluchowski coagulation equation 
        /// <summary> 
        public double I2k(int k, int i, int j, ColumnVector Pvec) 
        { 
            double sum = 0; 
 
            double c1 = A / (AdvancedMath.Gamma(Pvec[i + nmodes]) * 
AdvancedMath.Gamma(Pvec[j + nmodes])); 
 
            for (int m = 0; m <= p; m++) 
            { 
                double i1 = k + r * (p - m); 
                double i2 = r * m; 
                double bc = AdvancedIntegerMath.BinomialCoefficient(p, 
m); 
                double c2 = Math.Pow(Pvec[i + 2 * nmodes], i1) * 
Math.Pow(Pvec[j + 2 * nmodes], i2); 
                double c3 = AdvancedMath.Gamma(i1 + Pvec[i + nmodes]) * 
AdvancedMath.Gamma(i2 + Pvec[j + nmodes]); 
                sum += bc * c2 * c3; 
            } 
            return c1 * sum; 
        } 
 
        /// <summary> 
        /// Public method that returns the first fragmentation term of 
the 
        /// continuous Smoluchowski coagulation equation 
        /// <summary> 
        public double J1k(int k, int i, ColumnVector Pvec) 
        { 
            double alpha = Pvec[i + nmodes]; 
            double beta = Pvec[i + 2 * nmodes]; 
            double c1 = B * Math.Pow(beta, lambda + k + a) * 
Math.Pow(b, k); 
            double c2 = Math.Pow(beta + b, k + a) * 
AdvancedMath.Gamma(a) * AdvancedMath.Gamma(alpha); 
            double c3 = AdvancedMath.Gamma(lambda + alpha - 1) * 
AdvancedMath.Gamma(k + a - 1); 
 
            return c1 * c3 / c2; 
        } 
 
        /// <summary> 
        /// Public method that returns the second fragmentation term of 
the 
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        /// continuous Smoluchowski coagulation equation 
        /// <summary> 
        public double J2k(int k, int i, ColumnVector Pvec) 
        { 
            double alpha = Pvec[i + nmodes]; 
            double beta = Pvec[i + 2 * nmodes]; 
            double c1 = B * Math.Pow(beta, k + lambda) / 
(AdvancedMath.Gamma(alpha)); 
            double c2 = AdvancedMath.Gamma(k + lambda + alpha); 
 
            return c1 * c2; 
        } 
 
        /// <summary> 
        /// Private method that returns the derivative coefficients 
        /// of the moments of the d_w/dt term 
        /// <summary> 
        private double Wi_Derivk(int k, int i, ColumnVector Pvec) 
        { 
            double product = 1; 
            double c1 = Math.Pow(Pvec[i + 2 * nmodes], k - 1); 
 
            for (int j = 2; j <= k; j++) 
            { 
                product = product * (k - j + Pvec[i + nmodes]); 
            } 
            return c1 * product; 
        } 
        /// <summary> 
        /// Private method that returns the derivative coefficients 
        /// of the moments of the d_alpha/dt term 
        /// <summary> 
        private double Alpha_Derivk(int k, int i, ColumnVector Pvec) 
        { 
            double sum = 0; 
            double product = 1; 
            double c1 = Pvec[i] * Math.Pow(Pvec[i + 2 * nmodes], k - 
1); 
 
            for (int q = 2; q <= k; q++) 
            { 
                product = 1; 
                for (int j = 2; j <= k; j++) 
                { 
                    if (j != q) 
                        product = product * (k - j + Pvec[i + nmodes]); 
                } 
                sum += product; 
            } 
            return c1 * sum; 
        } 
 
        /// <summary> 
        /// Private method that returns the derivative coefficients 
        /// of the moments of the d_beta/dt term 
        /// <summary> 
        private double Beta_Derivk(int k, int i, ColumnVector Pvec) 
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        { 
            double product = 1; 
            double c1 = (k - 1) * Pvec[i] * Math.Pow(Pvec[i + 2 * 
nmodes], k - 2); 
 
            for (int j = 2; j <= k; j++) 
            { 
                product = product * (k - j + Pvec[i + nmodes]); 
            } 
 
            return c1 * product; 
        } 
 
        /// <summary> 
        /// Private method that returns the matrix containing 
        /// the derivate coefficients of the moments 
        /// <summary> 
        private SquareMatrix Matrix_Deriv(ColumnVector Pvec) 
        { 
            SquareMatrix Deriv_Coeff_Mat = new SquareMatrix(3 * 
nmodes); 
 
            for (int rows = 0; rows < 3 * nmodes; rows++) 
            { 
                for (int cols = 0; cols < nmodes; cols++) 
                { 
                    Deriv_Coeff_Mat[rows, cols] = Wi_Derivk(rows + 2, 
cols, Pvec); 
                    Deriv_Coeff_Mat[rows, cols + nmodes] = 
Alpha_Derivk(rows + 2, cols, Pvec); 
                    Deriv_Coeff_Mat[rows, cols + 2 * nmodes] = 
Beta_Derivk(rows + 2, cols, Pvec); 
                } 
            } 
            return Deriv_Coeff_Mat; 
        } 
 
        /// <summary> 
        /// Public method that returns the right hand side 
        /// of the coagulation equation 
        /// <summary> 
        public ColumnVector RHS(ColumnVector VI, ColumnVector VJ, 
ColumnVector Pvec) 
        { 
            ColumnVector I = new ColumnVector(3 * nmodes); 
            ColumnVector J = new ColumnVector(3 * nmodes); 
 
            for (int rows = 0; rows < 3 * nmodes; rows++) 
            { 
                double I_sum = 0; 
                double J_sum = 0; 
                for (int i = 0; i < nmodes; i++) 
                { 
                    for (int j = 0; j < nmodes; j++) 
                    { 
                        double I1ijk = I1k(rows + 2, i, j, Pvec); 
                        double I2ijk = I2k(rows + 2, i, j, Pvec); 
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                        I_sum += Pvec[i] * Pvec[j] * (I1ijk - I2ijk); 
                    } 
                    double J1ik = J1k(rows + 2, i, Pvec); 
                    double J2ik = J2k(rows + 2, i, Pvec); 
                    J_sum += Pvec[i] * (J1ik - J2ik); 
                } 
                I[rows] = I_sum; 
                J[rows] = J_sum; 
            } 
            return Mult(VI, I) + Mult(VJ, J); 
        } 
 
        /// <summary> 
        /// Public method that returns the results from the 
        /// RK4 method 
        /// <summary> 
        private ColumnVector RK4(SquareMatrix DerivCoeffs, ColumnVector 
PreviousVector, ColumnVector Vi, ColumnVector Vj, double h, 
ColumnVector Signs) 
        { 
            ColumnVector NextVector = new ColumnVector(3 * nmodes); 
            ColumnVector k1 = new ColumnVector(3 * nmodes); 
            ColumnVector k2 = new ColumnVector(3 * nmodes); 
            ColumnVector k3 = new ColumnVector(3 * nmodes); 
            ColumnVector k4 = new ColumnVector(3 * nmodes); 
            ColumnVector slope = new ColumnVector(3 * nmodes); 
            SquareMatrix Minv = DerivCoeffs.Inverse(); 
 
            k1 = Minv * RHS(Vi, Vj, PreviousVector); 
            k2 = Minv * RHS(Vi, Vj, PreviousVector + 0.5 * h * k1); 
            k3 = Minv * RHS(Vi, Vj, PreviousVector + 0.5 * h * k2); 
            k4 = Minv * RHS(Vi, Vj, PreviousVector + h * k3); 
 
            slope = (h / 6) * (k1 + 2 * k2 + 2 * k3 + k4); 
 
            for (int i = 0; i < 3 * nmodes; i++) 
            { 
                if (Signs[i] * slope[i] < 0) 
                    slope[i] = -slope[i]; 
                else if (Signs[i] * slope[i] == 0) 
                    slope[i] = 0; 
            } 
 
            NextVector = PreviousVector + slope; 
 
            return NextVector; 
        } 
 
        /// <summary> 
        /// Internal function that provides the time evolution of the  
        /// w, alpha and beta variables through the use of the RK4 
method. 
        /// <summary> 
        private void Normalize(ColumnVector Pvec) 
        { 
            double sumwi = 0; 
            for (int i = 0; i < nmodes; i++) 
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                sumwi += Pvec[i]; 
             
            if (sumwi != 1) 
            { 
                for (int i = 0; i < nmodes; i++) 
                    Pvec[i] = Math.Pow(sumwi, -1) * Pvec[i]; 
            } 
        } 
 
        /// <summary> 
        /// Public method that returns the time evolution 
        /// of the coagulation equation 
        /// <summary> 
        public List<ColumnVector> TimeEvolution(ColumnVector Vi, 
ColumnVector Vj, double h, int timesteps, ColumnVector Signs) 
        { 
            ColumnVector Vn = IniVec.Clone(); 
            List<ColumnVector> TEv = new List<ColumnVector>(); 
            TEv.Add(Vn); 
 
            for (int t = 1; t <= timesteps; t++) 
            { 
                ColumnVector Vnp1 = new ColumnVector(3*nmodes); 
                SquareMatrix Mderivs = new SquareMatrix(3*nmodes); 
                Mderivs = Matrix_Deriv(Vn); 
                Vnp1 = RK4(Mderivs, Vn, Vi, Vj, h, Signs); 
                Normalize(Vnp1); 
                TEv.Add(Vnp1); 
                Vn = Vnp1.Clone(); 
            } 
            return TEv; 
        } 
        /// <summary> 
        /// Public method that returns the cumulative gamma 
        /// distribution function 
        /// <summary> 
        public double GammaCFD(double Diameter, ColumnVector Pvec) 
        { 
            double CDF = 0; 
 
            for (int i = 0; i < nmodes; i++) 
            { 
                double cdfi = AdvancedMath.LeftGamma(Pvec[i + nmodes], 
Diameter / Pvec[i + 2 * nmodes]); 
                CDF += Pvec[i] * cdfi; 
            } 
            return 100 * CDF; 
        } 
 
        //End of Multimodal Class_______________ 
    } 
}
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2) The Genetic Algorithm 
 
namespace Chapter4_Code_Multimodal 
{ 
    class Multimodal_GA 
    { 
        /// <summary> 
        /// Static function that returns the index of the 
        /// maximum value of a column vector 
        /// </summary> 
        public static int IndexofMax(ColumnVector theVec) 
        { 
            int max = 0; 
            int rows = theVec.Dimension - 1; 
            int j = 1; 
 
            while (j <= rows) 
            { 
                if (theVec[j] > theVec[max]) 
                { 
                    max = j; 
                    j += 1; 
                } 
                else 
                    j += 1; 
            } 
            return max; 
        } 
 
        /// <summary> 
        /// Static function that returns the index of the 
        /// minimum value of a column vector 
        /// </summary> 
        public static int IndexofMin(ColumnVector theVec) 
        { 
            int min = 0; 
            int rows = theVec.Dimension - 1; 
            int j = 1; 
 
            while (j <= rows) 
            { 
                if (theVec[j] < theVec[min]) 
                { 
                    min = j; 
                    j += 1; 
                } 
                else 
                    j += 1; 
            } 
            return min; 
        } 
 
        /// <summary> 
        /// A class that defines the Chromosome type 
        /// </summary> 
        public class Chromosome 
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        { 
            /// <summary> 
            /// Members 
            /// </summary> 
            ColumnVector[] Chrom; 
 
            /// <summary> 
            /// Constructors 
            /// </summary> 
            public Chromosome(ColumnVector AggregationVector, 
ColumnVector FragmentationVector) 
            { 
                Chrom = new ColumnVector[2]; 
                Chrom[0] = AggregationVector.Clone(); 
                Chrom[1] = FragmentationVector.Clone(); 
            } 
            /// <summary> 
            /// Properties 
            /// </summary> 
            public ColumnVector Aggregation_Vector 
            { 
                get 
                { return Chrom[0]; } 
            } 
            public ColumnVector Fragmentation_Vector 
            { 
                get 
                { return Chrom[1]; } 
            } 
 
            /// <summary> 
            /// Methods 
            /// </summary> 
            public Chromosome Clone() 
            { 
                Chromosome cloned = new 
Chromosome(this.Aggregation_Vector, this.Fragmentation_Vector); 
                return cloned; 
            } 
            private double GaussianRandom() 
            { 
                Random rng = new Random(); 
                Distribution dist = new NormalDistribution(0.5, 1); 
                double y = rng.NextDouble(); 
                double x = Math.Abs(dist.InverseLeftProbability(y)); 
                return x; 
            } 
            public Chromosome Mutate() 
            { 
                //Random x = new Random(); 
                int dim = this.Aggregation_Vector.Dimension; 
                ColumnVector AggMutated = new ColumnVector(dim); 
                ColumnVector FragMutated = new ColumnVector(dim); 
 
                for (int i = 0; i < dim; i++) 
                { 
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                    AggMutated[i] = GaussianRandom() * 
this.Aggregation_Vector[i]; 
                    FragMutated[i] = GaussianRandom() * 
this.Fragmentation_Vector[i]; 
                } 
                Chromosome mutated = new Chromosome(AggMutated, 
FragMutated); 
 
                return mutated; 
            } 
            public Chromosome Crossover(Chromosome Parent2) 
            { 
                int rows = Parent2.Aggregation_Vector.Dimension; 
                ColumnVector NewAgg = this.Aggregation_Vector.Clone(); 
                ColumnVector NewFrag = 
this.Fragmentation_Vector.Clone(); 
 
                for (int i = 0; i < rows; i += 2) 
                { 
                    NewAgg[i] = Parent2.Aggregation_Vector[i]; 
                    NewFrag[i] = Parent2.Fragmentation_Vector[i]; 
                } 
                Chromosome Crossed = new Chromosome(NewAgg, NewFrag); 
 
                return Crossed; 
            } 
        } 
 
        /// <summary> 
        /// A class that defines the population type 
        /// </summary> 
        public class Population 
        { 
            /// <summary> 
            /// Members 
            /// </summary> 
            List<Chromosome> theChromosomes = new List<Chromosome>(); 
 
            /// <summary> 
            /// Properties 
            /// </summary> 
            public int Count 
            { 
                get 
                { return theChromosomes.Count; } 
            } 
 
            /// <summary> 
            /// Methods 
            /// </summary> 
            /// <summary> 
            public void Add(Chromosome tobeadded) 
            { 
                theChromosomes.Add(tobeadded); 
            } 
            public void RemoveAt(int index) 
            { 
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                theChromosomes.RemoveAt(index); 
            } 
            public Chromosome Chromosome(int index) 
            { 
                return theChromosomes[index]; 
            } 
            public Chromosome Population_Average() 
            { 
                int PopLength = this.Count; 
                int dim = 
this.Chromosome(0).Aggregation_Vector.Dimension; 
 
                ColumnVector sumAgg = new ColumnVector(dim); 
                ColumnVector sumFrag = new ColumnVector(dim); 
 
                for (int i = 0; i < PopLength; i++) 
                { 
                    sumAgg += this.Chromosome(i).Aggregation_Vector; 
                    sumFrag += this.Chromosome(i).Fragmentation_Vector; 
                } 
 
                sumAgg = (1 / PopLength) * sumAgg; 
                sumFrag = (1 / PopLength) * sumFrag; 
                Chromosome Average = new Chromosome(sumAgg, sumFrag); 
 
                return Average; 
            } 
            public Population Remove10Worst(ColumnVector 
Fitness_Vector) 
            { 
                int d = Fitness_Vector.Dimension; 
                ColumnVector fitaux = Fitness_Vector.Clone(); 
                int[] indices = new int[d]; 
                Population theBest = new Population(); 
                List<int> indcomp = new List<int>(); 
 
                for (int i = 0; i < 20; i++) 
                { 
                    indcomp.Add(i); 
                } 
 
                for (int j = 0; j < 10; j++) 
                { 
                    indices[j] = 
Unimodal_SteadyState.IndexofMax(fitaux); 
                    fitaux[indices[j]] = -1000; 
                    indcomp.Remove(indices[j]); 
                } 
 
                for (int k = 0; k < 10; k++) 
                { 
                    theBest.Add(this.Chromosome(indcomp[k])); 
                } 
                return theBest; 
            } 
        } 
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        /// The Genetic Algorithm to obtain the optimum parameters 
        /// for the steady-state unimodal condition 
        /// <summary> 
        /// Members 
        /// </summary> 
        int num_modes; 
        Multimodal MultimodalObject; 
        ColumnVector InitialVec; 
        private List<double[]> TargetInput = new List<double[]>(); 
        ColumnVector SignsVec; 
        int p_norm; 
        double h; 
        int timesteps; 
 
        /// <summary> 
        /// Constructor 
        /// </summary> 
        public Multimodal_GA(int numberofmodes, Multimodal 
aMultimodalObject, int pnormCoeff, ColumnVector ControlVector, 
List<double[]> InputFlocData, ColumnVector SignsVector, double 
time_interval, int time_steps) 
        { 
            num_modes = numberofmodes; 
            MultimodalObject = aMultimodalObject; 
            p_norm = pnormCoeff; 
            TargetInput = InputFlocData; 
            InitialVec = ControlVector.Clone(); 
            timesteps = time_steps; 
            h = time_interval; 
            SignsVec = SignsVector.Clone(); 
        } 
 
        /// <summary> 
        /// Methods 
        /// </summary> 
        private double LpNorm(ColumnVector Vector) 
        { 
            double norm = 0; 
            int dim = Vector.Dimension; 
 
            for (int i = 0; i < dim; i++) 
            { 
                norm += Math.Pow(Vector[i], p_norm); 
            } 
 
            return Math.Pow(norm, Math.Pow(p_norm, -1)); 
        } 
        private double Fitness(ColumnVector Predicted_Vector, 
ColumnVector Observed_Vector) 
        { 
            return LpNorm(Predicted_Vector - Observed_Vector); 
        } 
        private ColumnVector GeneratePopFitness(List<double[]> 
InputFloc, Population thePopulation) 
        { 
            ColumnVector PopFitnesses = new 
ColumnVector(thePopulation.Count); 
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            for (int i = 0; i < thePopulation.Count; i++) 
            {                                                                       
                List<ColumnVector> ResList = new List<ColumnVector>(); 
                ResList = 
MultimodalObject.TimeEvolution(thePopulation.Chromosome(i).Aggregation_
Vector, thePopulation.Chromosome(i).Fragmentation_Vector, h, timesteps, 
SignsVec); 
                //PopFitnesses[i] = Fitness(ResList[ResList.Count - 1], 
TargetVec); 
                ColumnVector Temp = ResList[ResList.Count - 1].Clone(); 
                bool isNAN = false; 
                for (int k = 0; k < Temp.Dimension; k++) 
                { 
                    if (double.IsNaN(Temp[k])) 
                    { 
                        isNAN = true; 
                        break; 
                    } 
                } 
                bool isBad = false; 
                for (int j = 0; j < num_modes; j++) 
                { 
                    if (Temp[j] < 0) 
                    { 
                        isBad = true; 
                        break; 
                    } 
                } 
                if (!isNAN && !isBad) 
                    PopFitnesses[i] = MultimodalObject.SEE(InputFloc, 
ResList[ResList.Count - 1]); 
                else 
                    PopFitnesses[i] = 100000000; 
 
                if ((double.IsNaN(PopFitnesses[i])) && isBad) 
                    PopFitnesses[i] = 100000000; 
            } 
            return PopFitnesses; 
        } 
 
        //Main Routine that searchs for the optimum results 
        public Chromosome GetOptimum(string GApath, int MaxSteps) 
        { 
            //The StreamWriter that will capture the results 
            StreamWriter sw = new StreamWriter(GApath); 
            sw.WriteLine("GA Algorithm"); 
            sw.WriteLine(); 
            sw.WriteLine("Iteration No.,Min. Fitness Val."); 
 
            ColumnVector Aini = new ColumnVector(3 * num_modes); 
            ColumnVector Bini = new ColumnVector(3 * num_modes); 
 
            Aini[0] = 1.07489181643306E-08; 
            Aini[1] = 4.36386425971222E-08; 
            Aini[2] = 1.07489181643306E-08; 
            Aini[3] = 4.36386425971222E-08; 
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            Aini[4] = 1.07489181643306E-08; 
            Aini[5] = 4.36386425971222E-08; 
 
            Bini[0] = 3.1318876813257E-10; 
            Bini[1] = 1.27148914049075E-09; 
            Bini[2] = 3.1318876813257E-10; 
            Bini[3] = 1.27148914049075E-09; 
            Bini[4] = 3.1318876813257E-10; 
            Bini[5] = 1.27148914049075E-09; 
 
            //Creating initial population 
            Population Population = new Population(); 
            int N = 20; 
            //Generating N chromosomes 
            Chromosome MainChromosome = new Chromosome(Aini, Bini); 
            Population.Add(MainChromosome); 
            ColumnVector fitnesses = new ColumnVector(N); 
 
            //Creating the initial Chromosome population (N-1) 
            for (int i = 1; i < N; i++) 
            { 
                Random rnd = new Random(); 
                Chromosome NextChrom = Population.Chromosome(i - 
1).Mutate(); 
                Population.Add(NextChrom); 
            } 
 
            //Defining the stop criteria 
            double epsilon = 1; 
            int count = 0; 
            double minfit = 2 * epsilon; 
            Chromosome Optimum = MainChromosome.Clone(); 
 
            do 
            { 
                fitnesses = GeneratePopFitness(TargetInput, 
Population); 
                minfit = fitnesses.Min(); 
                int indmin = IndexofMin(fitnesses); 
                Optimum = Population.Chromosome(indmin).Clone(); 
 
                sw.WriteLine(count + "," + minfit); 
 
                //Updating the population: 
                //Removing the 10 worst from the population 
                Population = Population.Remove10Worst(fitnesses); 
 
                //Proceeding to breed to obtain the offsprings 
                int numoffs = Population.Count - 1; 
                int noff = 0; 
                while (noff < numoffs) 
                { 
                    Chromosome p1 = Population.Chromosome(noff); 
                    Chromosome p2 = Population.Chromosome(noff + 1); 
                    noff += 2; 
                    Chromosome offspring1 = p1.Crossover(p2); 
                    Population.Add(offspring1); 
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                    Chromosome offspring2 = offspring1.Mutate(); 
                    Population.Add(offspring2); 
                } 
 
                //Verifying that we have a new population 
                int npop = Population.Count; 
                //if not add the remaining members through averaging 
                while (npop < N) 
                { 
                    Chromosome newmember = 
Population.Population_Average(); 
                    Population.Add(newmember); 
                } 
 
                //The new population should now be complete 
 
                count += 1; 
            } while ((minfit > epsilon) && (count <= MaxSteps)); 
 
            //int themin = IndexofMin(fitnesses); 
 
            sw.WriteLine("Optimum Results:"); 
            sw.WriteLine("Aggregation Parameters"); 
            for (int i = 0; i < 3 * num_modes; i++) 
            { 
                sw.WriteLine(Optimum.Aggregation_Vector[i]); 
            } 
            sw.WriteLine("Fragmentation Diagonal"); 
            for (int i = 0; i < 3 * num_modes; i++) 
            { 
 
                sw.WriteLine(Optimum.Fragmentation_Vector[i] + ","); 
            } 
            sw.Close(); 
 
            return Optimum; 
        } 
    } 
} 
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APPENDIX J: Observed vs. Predicted Flocculated 

PSD curves 
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Figure 4 - 9: Observed vs. Predicted PSD for Sample A1 using Flocculant MF 
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Figure 4 - 10: Observed vs. Predicted PSD for Sample A1 using Flocculant FP 
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Figure 4 - 11: Observed vs. Predicted PSD for Sample A1 using Flocculant TF 
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Figure 4 - 12: Observed vs. Predicted PSD for Sample A1 using Flocculant HF 
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Figure 4 - 13: Observed vs. Predicted PSD for Sample A2 using Flocculant MF 
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Figure 4 - 14: Observed vs. Predicted PSD for Sample A2 using Flocculant FP 
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Figure 4 - 15: Observed vs. Predicted PSD for Sample A2 using Flocculant TF 
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Figure 4 - 16: Observed vs. Predicted PSD for Sample A2 using Flocculant HF 
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Figure 4 - 17: Observed vs. Predicted PSD for Sample A3 using Flocculant MF 
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Figure 4 - 18: Observed vs. Predicted PSD for Sample A3 using Flocculant FP 

R2 = 0.9992

R2 = 0.9956



 

244 

0

10

20

30

40

50

60

70

80

90

100

110

0.11101001000

Diameter (microns)

Pe
rc

en
t F

in
er

Observed
Predicted

 
Figure 4 - 19: Observed vs. Predicted PSD for Sample A3 using Flocculant TF 
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Figure 4 - 20: Observed vs. Predicted PSD for Sample A3 using Flocculant HF 
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Figure 4 - 21: Observed vs. Predicted PSD for Sample A4 using Flocculant MF 
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Figure 4 - 22: Observed vs. Predicted PSD for Sample A4 using Flocculant FP 
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Figure 4 - 23: Observed vs. Predicted PSD for Sample A4 using Flocculant TF 
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Figure 4 - 24: Observed vs. Predicted PSD for Sample A4 using Flocculant HF 
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APPENDIX K: Column Test Graphs – Small Glass 

Micro-Spheres 
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Figure 5 - 3: Small Micro-Spheres – Low Concentration – Replicate 1. 
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Figure 5 - 4: Small Micro-Spheres – Low Concentration – Replicate 2. 
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Figure 5 - 5: Small Micro-Spheres – Low Concentration – Replicate 3. 
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Figure 5 - 6: Small Micro-Spheres – Medium Concentration – Replicate 1. 
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Figure 5 - 7: Small Micro-Spheres – Medium Concentration – Replicate 2. 
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Figure 5 - 8: Small Micro-Spheres – Medium Concentration – Replicate 3. 
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Figure 5 - 9: Small Micro-Spheres – High Concentration – Replicate 1. 
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Figure 5 - 10: Small Micro-Spheres – High Concentration – Replicate 2. 
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Figure 5 - 11: Small Micro-Spheres – High Concentration – Replicate 3. 
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APPENDIX L: Column Test Graphs – Large Glass 

Micro-Spheres 
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Replicate 1 for the low concentration revealed some errors and thus was not used in 
the analysis. 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Concentration (mg/L)

z 
(m

)

t = 0
t = 5
t = 10
t = 15
t = 20
t = 30
t = 45
t = 60
t = 90

 
Figure 5 - 12: Large Micro-Spheres – Low Concentration – Replicate 2. 
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Figure 5 - 13: Large Micro-Spheres – Low Concentration – Replicate 3. 
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Figure 5 - 14: Large Micro-Spheres – Medium Concentration – Replicate 1. 
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Figure 5 - 15: Large Micro-Spheres – Medium Concentration – Replicate 2. 
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Figure 5 - 16: Large Micro-Spheres – Medium Concentration – Replicate 3. 
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Figure 5 - 17: Large Micro-Spheres – High Concentration – Replicate 1. 
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Figure 5 - 18: Large Micro-Spheres – High Concentration – Replicate 2. 
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Figure 5 - 19: Large Micro-Spheres – High Concentration – Replicate 3. 
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APPENDIX M: C# Code of the Non-Staggered NT 

Numerical Method 
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class NTscheme 
    { 
        ///<summary> 
        ///Class Members/Attributes 
        ///<summary> 
        int nmodes; 
        ColumnVector GammaVec; 
        ColumnVector d; 
        double binf; 
        double h, dz; 
        int numT, numJ; 
        double lambda; 
        double theta; 
        double phimax; 
        double M1; 
        double M2; 
        ColumnVector tcoeff; 
        ///<summary> 
        ///Static method that returs M1 
        ///<summary> 
        private static double M_1(int n, ColumnVector Pvec) 
        { 
            double average = 0; 
 
            for (int i = 0; i < n; i++) 
            { 
                average += Pvec[i] * Pvec[i + n] * Pvec[i + 2 * n]; 
            } 
 
            return average; 
        } 
        ///<summary> 
        ///Static method that returs M2 
        ///<summary> 
        private static double M_2(int n, ColumnVector Pvec) 
        { 
            double variance = 0; 
 
            for (int i = 0; i < n; i++) 
            { 
                variance += Pvec[i] * Pvec[i + n] * (Pvec[i + n] + 1) * 
Math.Pow(Pvec[i + 2 * n], 2); 
            } 
 
            return variance; 
        } 
        ///<summary> 
        ///Constructor 
        ///<summary> 
        public NTscheme(int num_modes, ColumnVector Coeffs, 
ColumnVector Time_Coeffs, ColumnVector Initial_Gamma_Parameters, double 
Stokes_Coefficient, int numtsteps, int numjsteps, double deltat, double 
deltaz, double PhiMax) 
        { 
            nmodes = num_modes; 
            GammaVec = Initial_Gamma_Parameters.Clone(); 
            binf = Stokes_Coefficient; 
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            h = deltat; 
            dz = deltaz; 
            numT = numtsteps; 
            numJ = numjsteps; 
            lambda = deltat / deltaz; 
            theta = 2; 
            phimax = PhiMax; 
            M1 = M_1(2, GammaVec); 
            M2 = M_2(2, GammaVec); 
            d = Coeffs.Clone(); 
            tcoeff = Time_Coeffs.Clone(); 
            theta = 2; 
        } 
        ///<summary> 
        ///Method that returns true if all the elements of a vector are 
positive or 
        ///false otherwise 
        ///<summary> 
        private bool IsAllPositive(ColumnVector Pvec) 
        { 
            bool iap = false; 
            int d = Pvec.Dimension; 
 
            for (int i = 0; i < d; i++) 
            { 
                if (Pvec[i] <= 0) 
                { 
                    iap = false; 
                    break; 
                } 
                else iap = true; 
            } 
 
            return iap; 
        } 
        ///<summary> 
        ///Method that returns true if all the elements of a vector are 
negative or 
        ///false otherwise 
        ///<summary> 
        private bool IsAllNegative(ColumnVector Pvec) 
        { 
            bool ian = false; 
            int d = Pvec.Dimension; 
 
            for (int i = 0; i < d; i++) 
            { 
                if (Pvec[i] >= 0) 
                { 
                    ian = false; 
                    break; 
                } 
                else ian = true; 
            } 
 
            return ian; 
        } 
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        ///<summary> 
        ///Method that returns the numerical derivative using the  
        ///MinMod delimiter 
        ///<summary> 
        private double MM(ColumnVector theVec) 
        { 
            double mm = 0; 
            if (IsAllPositive(theVec)) 
                mm = theVec.Min(); 
            else if (IsAllNegative(theVec)) 
                mm = theVec.Max(); 
 
            return mm; 
        } 
        ///<summary> 
        ///Flux Function 
        ///<summary> 
        public double flux(double phi) 
        { 
            double theres = phi * binf * (M2 + phi * (d[0] * 
Math.Pow(M1, 2) + d[1] * M2)); 
 
            return theres; 
        } 
        public double flux(int j, int time, double phi) 
        { 
            double M1max = M1 * (2 - Math.Exp(-tcoeff[0] * time * h)); 
            double M1min = 2 * M1 - M1max; 
            M1max = M1; 
            double M2max = M2 * (2 - Math.Exp(-tcoeff[1] * time * h)); 
            double M2min = 2 * M2 - M2max; 
            M2max = M2; 
            double m1 = (M1max - M1min) / (1.75E6); 
            double m2 = (M2max - M2min) / (1.75E6); 
 
            double M1zt = m1 * j * dz + M1min; 
            double M2zt = m2 * j * dz + M2min; 
 
            double theres = phi * binf * (M2zt + phi * (d[0] * 
Math.Pow(M1zt, 2) + d[1] * M2zt)); 
 
            return theres; 
        } 
        ///<summary> 
        ///Derivative of the flux 
        ///<summary> 
        public double flux_prime(double phi) 
        { 
            double theres = binf * (M2 + 2 * phi * (d[0] * Math.Pow(M1, 
2) + d[1] * M2)); 
 
            return theres; 
        } 
        public double flux_prime(int j, int time, double phi) 
        { 
            double M1max = 2 * M1 * (1 - Math.Exp(-tcoeff[0] * time * 
h)); 
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            double M1min = 2 * M1 - M1max; 
            M1max = M1; 
            double M2max = 2 * M2 * (1 - Math.Exp(-tcoeff[1] * time * 
h)); 
            double M2min = 2 * M2 - M2max; 
            M2max = M2; 
            double m1 = (M1max - M1min) / (1.75E6); 
            double m2 = (M2max - M2min) / (1.75E6); 
 
            double M1zt = m1 * j * dz + M1min; 
            double M2zt = m2 * j * dz + M2min; 
 
            double theres = binf * (M2zt + 2 * phi * (d[0] * 
Math.Pow(M1zt, 2) + d[1] * M2zt)); 
 
            return theres; 
        } 
        ///<summary> 
        ///Discrete derivative function 
        ///<summary> 
        public double phi_prime_j(int j, ColumnVector Phi) 
        { 
            ColumnVector Elements = new ColumnVector(3); 
 
            double deltajm = Phi[j] - Phi[j - 1]; 
            double deltajp = Phi[j + 1] - Phi[j]; 
            Elements[0] = theta * deltajp; 
            Elements[1] = 0.5 * (deltajm + deltajp); 
            Elements[2] = theta * deltajm; 
 
            return MM(Elements); 
        } 
        ///<summary> 
        ///Predictor form 
        ///<summary> 
        public double phi_j_nphalf(int j, ColumnVector Phi) 
        { 
            double theres = 0; 
 
            if ((j < 3) || (j > numJ + 3)) 
                theres = Phi[j]; 
            else 
                theres = Phi[j] - 0.5 * lambda * flux_prime(Phi[j]) * 
phi_prime_j(j, Phi); 
 
            return theres; 
        } 
        public double phi_j_nphalf(int j, int time, ColumnVector Phi) 
        { 
            double theres = 0; 
 
            if ((j < 3) || (j > numJ + 3)) 
                theres = Phi[j]; 
            else 
                theres = Phi[j] - 0.5 * lambda * flux_prime(j, time, 
Phi[j]) * phi_prime_j(j, Phi); 
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            return theres; 
        } 
        ///<summary> 
        ///Corrector form 
        ///<summary> 
        public double phi_jphalf_np1(int j, ColumnVector Phi) 
        { 
            double theres; 
            double p1 = 0.5 * (Phi[j] + Phi[j + 1]); 
            double p2 = 0.125 * (phi_prime_j(j, Phi) - phi_prime_j(j + 
1, Phi)); 
            double p3 = 0; 
            if (j == 2) 
                p3 = lambda * flux(phi_j_nphalf(j + 1, Phi)); 
            else if (j == numJ + 3) 
                p3 = lambda * (-flux(phi_j_nphalf(j, Phi))); 
            else if ((j > 2) || (j < numJ + 4)) 
                p3 = lambda * (flux(phi_j_nphalf(j + 1, Phi)) - 
flux(phi_j_nphalf(j, Phi))); 
             
            theres = p1 + p2 - p3; 
 
            return theres; 
        } 
        public double phi_jphalf_np1(int j, int time, double tcoeff1, 
double tcoeff2, ColumnVector Phi) 
        { 
            double theres; 
            double p1 = 0.5 * (Phi[j] + Phi[j + 1]); 
            double p2 = 0.125 * (phi_prime_j(j, Phi) - phi_prime_j(j + 
1, Phi)); 
            double p3 = 0; 
            if (j == 2) 
                p3 = lambda * flux(j, time, phi_j_nphalf(j + 1, Phi)); 
            else if (j == numJ + 3) 
                p3 = lambda * (-flux(j, time, phi_j_nphalf(j, Phi))); 
            else if ((j > 2) || (j < numJ + 4)) 
                p3 = lambda * (flux(j, time, phi_j_nphalf(j + 1, Phi)) 
- flux(j, time, phi_j_nphalf(j, Phi))); 
 
            theres = p1 + p2 - p3; 
 
            return theres; 
        } 
        ///<summary> 
        ///Predictor/Corrector form 
        ///<summary> 
        public double delta_phi_i_np1(int i, ColumnVector Phi) 
        { 
            double theres; 
            double p1 = 0.5 * (Phi[i + 1] - Phi[i - 1]); 
            double p2 = 0.125 * (phi_prime_j(i - 1, Phi) - 2 * 
phi_prime_j(i, Phi) + phi_prime_j(i + 1, Phi)); 
            double p3 = 0; 
            if (i == 2) 
                p3 = p3 = lambda * (flux(phi_j_nphalf(i + 1, Phi))); 
            else if (i == 3) 
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                p3 = lambda * (flux(phi_j_nphalf(i + 1, Phi)) - 2 * 
flux(phi_j_nphalf(i, Phi))); 
            else if (i == numJ + 3) 
                p3 = lambda * (flux(phi_j_nphalf(i - 1, Phi)) - 2 * 
flux(phi_j_nphalf(i, Phi))); 
            else if (i == numJ + 4) 
                p3 = lambda * (flux(phi_j_nphalf(i - 1, Phi))); 
            else if ((i > 3) && (i < numJ + 3)) 
                p3 = lambda * (flux(phi_j_nphalf(i - 1, Phi)) - 2 * 
flux(phi_j_nphalf(i, Phi)) + flux(phi_j_nphalf(i + 1, Phi))); 
            theres = p1 - p2 - p3; 
 
            return theres; 
        } 
        public double delta_phi_i_np1(int i, int time, ColumnVector 
Phi) 
        { 
            double theres; 
            double p1 = 0.5 * (Phi[i + 1] - Phi[i - 1]); 
            double p2 = 0.125 * (phi_prime_j(i - 1, Phi) - 2 * 
phi_prime_j(i, Phi) + phi_prime_j(i + 1, Phi)); 
            double p3 = 0; 
            if (i == 2) 
                p3 = p3 = lambda * (flux(i, time, phi_j_nphalf(i + 1, 
Phi))); 
            else if (i == 3) 
                p3 = lambda * (flux(i, time, phi_j_nphalf(i + 1, Phi)) 
- 2 * flux(i, time, phi_j_nphalf(i, Phi))); 
            else if (i == numJ + 3) 
                p3 = lambda * (flux(i, time, phi_j_nphalf(i - 1, Phi)) 
- 2 * flux(i, time, phi_j_nphalf(i, Phi))); 
            else if (i == numJ + 4) 
                p3 = lambda * (flux(i, time, phi_j_nphalf(i - 1, 
Phi))); 
            else if ((i > 3) && (i < numJ + 3)) 
                p3 = lambda * (flux(i, time, phi_j_nphalf(i - 1, Phi)) 
- 2 * flux(i, time, phi_j_nphalf(i, Phi)) + flux(i, time, 
phi_j_nphalf(i + 1, Phi))); 
            theres = p1 - p2 - p3; 
 
            return theres; 
        } 
        ///<summary> 
        ///Staggered discrete derivatives 
        ///<summary> 
        public double phi_prime_jmhalf(int j, ColumnVector Phi) 
        { 
            ColumnVector Deltaj = new ColumnVector(2); 
            Deltaj[0] = delta_phi_i_np1(j, Phi); 
            Deltaj[1] = delta_phi_i_np1(j - 1, Phi); 
            double theres = MM(Deltaj); 
 
            return theres; 
        } 
        public double phi_prime_jphalf(int j, ColumnVector Phi) 
        { 
            ColumnVector Deltajp1 = new ColumnVector(2); 
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            Deltajp1[0] = delta_phi_i_np1(j + 1, Phi); 
            Deltajp1[1] = delta_phi_i_np1(j, Phi); 
            double theres = MM(Deltajp1); 
 
            return theres; 
        } 
        ///<summary> 
        ///Non-Staggered corrector scheme 
        ///<summary> 
        public double phi_j_np1(int j, ColumnVector Phi) 
        { 
            double p1 = 0.25 * (Phi[j - 1] + 2 * Phi[j] + Phi[j + 1]); 
            double p2 = 0.0625 * (phi_prime_j(j + 1, Phi) - 
phi_prime_j(j - 1, Phi)); 
            double p3 = 0; 
            if ((j == 2) || (j == 3)) 
                p3 = 0.5 * lambda * (flux(phi_j_nphalf(j + 1, Phi))); 
            else if ((j == numJ + 3) || (j == numJ + 4)) 
                p3 = 0.5 * lambda * (-flux(phi_j_nphalf(j - 1, Phi))); 
            else if ((j > 3) && (j < numJ + 3)) 
                p3 = 0.5 * lambda * (flux(phi_j_nphalf(j + 1, Phi)) - 
flux(phi_j_nphalf(j - 1, Phi))); 
            double p4 = 0.125 * (phi_prime_jphalf(j, Phi) - 
phi_prime_jmhalf(j, Phi)); 
            double theres = p1 - p2 - p3 - p4; 
 
            if (theres < 0) 
                theres = 0; 
            else if (theres > phimax) 
                theres = phimax; 
 
            return theres; 
        } 
        public double phi_j_np1(int j, int time, ColumnVector Phi) 
        { 
            double p1 = 0.25 * (Phi[j - 1] + 2 * Phi[j] + Phi[j + 1]); 
            double p2 = 0.0625 * (phi_prime_j(j + 1, Phi) - 
phi_prime_j(j - 1, Phi)); 
            double p3 = 0; 
            if ((j == 2) || (j == 3)) 
                p3 = 0.5 * lambda * (flux(j, time, phi_j_nphalf(j + 1, 
Phi))); 
            else if ((j == numJ + 3) || (j == numJ + 4)) 
                p3 = 0.5 * lambda * (-flux(j, time, phi_j_nphalf(j - 1, 
Phi))); 
            else if ((j > 3) && (j < numJ + 3)) 
                p3 = 0.5 * lambda * (flux(j, time, phi_j_nphalf(j + 1, 
Phi)) - flux(j, time, phi_j_nphalf(j - 1, Phi))); 
            double p4 = 0.125 * (phi_prime_jphalf(j, Phi) - 
phi_prime_jmhalf(j, Phi)); 
            double theres = p1 - p2 - p3 - p4; 
 
            if (theres < 0) 
                theres = 0; 
            else if (theres > phimax) 
                theres = phimax; 
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            return theres; 
        } 
        ///<summary> 
        ///Time-Evolution 
        ///<summary> 
        public List<ColumnVector> TimeEvolution(ColumnVector iniPhi) 
        { 
            List<ColumnVector> Results = new List<ColumnVector>(); 
            ColumnVector Phi_n = iniPhi.Clone(); 
            Results.Add(Phi_n); 
 
            for (int n = 1; n <= numT; n++) 
            { 
                ColumnVector Phi_np1 = new ColumnVector(numJ + 7); 
                int maxj = numJ + 3; 
                for (int j = 3; j <= maxj; j++) 
                { 
                    Phi_np1[j] = phi_j_np1(j, Phi_n); 
                } 
 
                //Piece-wise linear interpolation for the inflow 
section 
                double s = (Phi_np1[4] - Phi_np1[3]) * Math.Pow(dz, -
1); 
                double nlin = Phi_np1[3]; 
                double x1 = -1 * dz; 
                double x2 = -2 * dz; 
                double x3 = -3 * dz; 
                Phi_np1[0] = s * x1 + nlin; 
                Phi_np1[1] = s * x2 + nlin; 
                Phi_np1[2] = s * x3 + nlin; 
 
                //Piece-wise linear interpolation for the outflow 
section 
                s = (Phi_np1[numJ + 3] - Phi_np1[numJ + 2]) * 
Math.Pow(dz, -1); 
                nlin = Phi_np1[numJ + 3] - s * numJ * dz; ; 
                x1 = (numJ + 1) * dz; 
                x2 = (numJ + 2) * dz; 
                x3 = (numJ + 3) * dz; 
                Phi_np1[numJ + 4] = s * x1 + nlin; 
                Phi_np1[numJ + 5] = s * x2 + nlin; 
                Phi_np1[numJ + 6] = s * x3 + nlin; 
 
                Results.Add(Phi_np1); 
                Phi_n = Phi_np1.Clone(); 
            } 
 
            return Results; 
        } 
        public List<ColumnVector> TimeEvolution_zt(ColumnVector iniPhi) 
        { 
            List<ColumnVector> Results = new List<ColumnVector>(); 
            ColumnVector Phi_n = iniPhi.Clone(); 
            Results.Add(Phi_n); 
 
            for (int n = 1; n <= numT; n++) 
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            { 
                ColumnVector Phi_np1 = new ColumnVector(numJ + 7); 
                int maxj = numJ + 3; 
                for (int j = 3; j <= maxj; j++) 
                { 
                    Phi_np1[j] = phi_j_np1(j, n, Phi_n); 
                } 
 
                //Piece-wise linear interpolation for the inflow 
section 
                double s = (Phi_np1[4] - Phi_np1[3]) * Math.Pow(dz, -
1); 
                double nlin = Phi_np1[3]; 
                double x1 = -1 * dz; 
                double x2 = -2 * dz; 
                double x3 = -3 * dz; 
                Phi_np1[0] = s * x1 + nlin; 
                Phi_np1[1] = s * x2 + nlin; 
                Phi_np1[2] = s * x3 + nlin; 
 
                //Piece-wise linear interpolation for the outflow 
section 
                s = (Phi_np1[numJ + 3] - Phi_np1[numJ + 2]) * 
Math.Pow(dz, -1); 
                nlin = Phi_np1[numJ + 3] - s * numJ * dz; ; 
                x1 = (numJ + 1) * dz; 
                x2 = (numJ + 2) * dz; 
                x3 = (numJ + 3) * dz; 
                Phi_np1[numJ + 4] = s * x1 + nlin; 
                Phi_np1[numJ + 5] = s * x2 + nlin; 
                Phi_np1[numJ + 6] = s * x3 + nlin; 
 
                Results.Add(Phi_np1); 
                Phi_n = Phi_np1.Clone(); 
            } 
 
            return Results; 
        } 
    } 
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APPENDIX N: C# Code of the Cubic Spline Method 
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public static double CubicSpline(double Height, ColumnVector x, 
ColumnVector y) 
        { 
            ColumnVector xnew = new ColumnVector(x.Dimension); 
            for (int i = 0; i < x.Dimension; i++) 
                xnew[i] = x[i]; 
            int N = xnew.Dimension; 
            xnew[N - 1] = 10 * x[N - 2]; 
 
            ColumnVector h = new ColumnVector(N - 1); 
            for (int k = 0; k < N - 1; k++) 
                h[k] = xnew[k + 1] - xnew[k]; 
 
            ColumnVector d = new ColumnVector(N - 1); 
            for (int k = 0; k < N - 1; k++) 
                d[k] = (y[k + 1] - y[k]) / h[k]; 
 
            ColumnVector u = new ColumnVector(N - 2); 
            for (int k = 1; k < N - 1; k++) 
                u[k - 1] = 6 * (d[k] - d[k - 1]); 
 
            ColumnVector m = new ColumnVector(N); 
            ColumnVector maux = new ColumnVector(N - 2); 
            SquareMatrix A = new SquareMatrix(N - 2); 
            A[0, 0] = 3 * h[0] + 2 * h[1] + Math.Pow(h[0], 2) / h[1]; 
            A[0, 1] = h[1] - Math.Pow(h[0], 2) / h[1]; 
            for (int k = 1; k < N - 3; k++) 
            { 
                A[k, k - 1] = h[k - 1]; 
                A[k, k] = 2 * (h[k - 1] + h[k]); 
                A[k, k + 1] = h[k]; 
            } 
            A[N - 3, N - 4] = h[N - 3] - Math.Pow(h[N - 2], 2) / h[N - 
3]; 
            A[N - 3, N - 3] = 2 * h[N - 3] + 3 * h[N - 2] + 
Math.Pow(h[N - 2], 2) / h[N - 3]; 
 
            maux = A.Inverse() * u; 
            m[0] = maux[0] - h[0] * (maux[1] - maux[0]) / h[1]; 
            m[N - 1] = maux[N - 3] + h[N - 2] * (maux[N - 3] - maux[N - 
4]) / h[N - 3]; 
            for (int k = 1; k < N - 1; k++) 
            { 
                m[k] = maux[k - 1]; 
            } 
 
            Matrix S = new Matrix(N - 1, 4); 
            for (int k = 0; k < N - 1; k++) 
            { 
                S[k, 0] = y[k]; 
                S[k, 1] = d[k] - h[k] * (2 * m[k] + m[k + 1]) / 6; 
                S[k, 2] = m[k] / 2; 
                S[k, 3] = (m[k + 1] - m[k]) / (6 * h[k]); 
            } 
 
            double res = 0; 
            double Sx; 
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            int Ik; 
 
            if (Height < xnew[0]) 
            { 
                double w = Height - xnew[0]; 
                res = ((S[0, 3] * w + S[0, 2]) * w + S[0, 1]) * w + 
S[0, 0]; 
            } 
            else if (Height > xnew[N - 1]) 
            { 
                double w = Height - xnew[N - 1]; 
                res = ((S[N - 2, 3] * w + S[N - 2, 2]) * w + S[N - 2, 
1]) * w + S[N - 2, 0]; 
            } 
            else 
            { 
                for (int k = 0; k < N - 1; k++) 
                { 
                    if ((Height < xnew[k]) || (Height > xnew[k + 1])) 
                        Ik = 0; 
                    else Ik = 1; 
                    double w = Height - xnew[k]; 
                    Sx = ((S[k, 3] * w + S[k, 2]) * w + S[k, 1]) * w + 
S[k, 0]; 
                    res += Sx * Ik; 
                } 
            } 
            return res; 
        } 
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APPENDIX O: Observed and Predicted Concentration 

Profiles of the Small Glass Micro-Spheres after 60 

Minutes of Settling 
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Figure 5 - 20: Observed vs. predicted concentration profiles after 60 minutes of settling for low initial 
concentration and replicate 1. 
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Figure 5 - 21: Observed vs. predicted concentration profiles after 60 minutes of settling for low initial 
concentration and replicate 2. 
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Figure 5 - 22: Observed vs. predicted concentration profiles after 60 minutes of settling for low initial 
concentration and replicate 3. 
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Figure 5 - 23: Observed vs. predicted concentration profiles after 60 minutes of settling for medium 
initial concentration and replicate 1. 
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Figure 5 - 24: Observed vs. predicted concentration profiles after 60 minutes of settling for medium 
initial concentration and replicate 2. 
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Figure 5 - 25: Observed vs. predicted concentration profiles after 60 minutes of settling for medium 
initial concentration and replicate 3. 
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Figure 5 - 26: Observed vs. predicted concentration profiles after 60 minutes of settling for high 
initial concentration and replicate 1. 
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Figure 5 - 27: Observed vs. predicted concentration profiles after 60 minutes of settling for high 
initial concentration and replicate 2. 
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Figure 5 - 28: Observed vs. predicted concentration profiles after 60 minutes of settling for high 
initial concentration and replicate 3. 
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APPENDIX P: Observed and Predicted Concentration 

Profiles of the Large Glass Micro-Spheres after 60 

Minutes of Settling 
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Figure 5 - 29: Observed vs. predicted concentration profiles after 60 minutes of settling for low initial 
concentration and replicate 2. 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
0 500 1000 1500 2000 2500

Concentration (mg/L)

z 
(m

)

Observed
Predicted

 
Figure 5 - 30: Observed vs. predicted concentration profiles after 60 minutes of settling for low initial 
concentration and replicate 3. 
 



 

280 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Concentration (mg/L)

z 
(m

)

Observed
Predicted

 
Figure 5 - 31: Observed vs. predicted concentration profiles after 60 minutes of settling for medium 
initial concentration and replicate 1. 
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Figure 5 - 32: Observed vs. predicted concentration profiles after 60 minutes of settling for medium 
initial concentration and replicate 2. 
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Figure 5 - 33: Observed vs. predicted concentration profiles after 60 minutes of settling for medium 
initial concentration and replicate 3. 
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Figure 5 - 34: Observed vs. predicted concentration profiles after 60 minutes of settling for high 
initial concentration and replicate 1. 
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Figure 5 - 35: Observed vs. predicted concentration profiles after 60 minutes of settling for high 
initial concentration and replicate 2. 
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Figure 5 - 36: Observed vs. predicted concentration profiles after 60 minutes of settling for high 
initial concentration and replicate 3. 
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