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ABSTRACT

Wireless ad hoc network is decentralized wireless network, which does not rely on a pre-

existing infrastructure, such as routers in wired networks or access points in managed (infras-

tructure) wireless networks. Instead, each node participates in routing by forwarding data for

other nodes. The determination of which nodes forward data is made dynamically based on

the network connectivity. Node density has a great impact on the performance and efficiency

of wireless ad hoc networks by influencing some factors such as capacity, network contention,

routing efficiency, delay, and connectivity.

On one hand, maintaining stable connectivity is a big challenge for sparsely deployed and

highly dynamic ad hoc wireless network. Vehicle ad hoc network (VANET) which consists

of highly mobile vehicles with wireless interfaces is one type of such network, especially in

rural areas where vehicles traffic are very sparse. One of the most important applications built

on top of VANET is the safety application. In VANET safety applications, source vehicles

that observe accidents or some other unsafe conditions of the roads generate warning messages

about the conditions, and propagate the warning messages to the following vehicles. In this

way, the following drivers have the opportunity to do some necessary action before they reach

the potential danger zone to avoid accident. The safety application requires timely and accurate

warning message detection and delivery. However, recent researches have shown that sparse

and highly dynamic vehicle traffic leads network fragmentation, which poses a crucial research

challenge for VANET safety application.

On the other hand, reducing contention and thus maximizing the network throughput is

also a big challenge for densely deployed ad hoc wireless network, especially when many devices

are located in a small area and each device has heavy duty message to transmit. The WiFi

interface perhaps is the most common interface found in mobile devices for data transfer as

it provides good combination of throughout, range and power efficiency. However, the WiFi
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interface may have to consume a large amount of bandwidth and energy for contention and

combating collision, especially when mobile devices located in a small area all have heavy traffic

to transmit.

Meanwhile, ZigBee is an emerging wireless communication technology which supports low-

cost, low-power and short-range wireless communication. Nowadays, it has been common for

a mobile device, such as smart phone, PDA and laptop, to have both WiFi and Bluetooth

interfaces. As the ZigBee technology becomes more and more mature, it will not be surprising

to see the ZigBee interface commonly embedded in mobile devices together with WiFi and

Bluetooth interfaces in the near future. The co-existence of the ZigBee and the WiFi interfaces

in the same mobile device inspires us to develop new techniques to address the above two issues.

Specifically, this thesis presents two systems built based on ZigBee-assisted ad-hoc net-

working of multi-interface mobile devices. In order to achieve stable connectivity in a sparse

and dynamic VANET, the first system integrates a network of static roadside sensors and

highly mobile vehicles to improve driving safety. In order to reduce contention in a densely

deployed ad hoc wireless network, the second system assists WiFi transmission with ZigBee

interface for multi-interface mobile devices. Extensive implementations and experiments have

been conducted to demonstrate the effectiveness of our proposed systems.
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CHAPTER 1. Introduction

For a sparsely-deployed wireless ad hoc network, maintaining stable connectivity is crucial to

the success of many applications built on top of it. Take the vehicle ad-hoc network (VANET)

for example, it is an emerging mobile ad hoc network paradigm formed by highly mobile

vehicles and static roadside infrastructure stations. Due to its ability to support both vehicle-to-

vehicle and vehicle-to-infrastructure wireless communication, researchers have proposed many

applications to be deployed on top of it. One of the most important applications of VANET is to

improve driving safety by the collaboration of mobile vehicles and roadside stations. In VANET

safety applications, source vehicles that observe accidents or some other unsafe conditions of the

roads generate warning messages about the conditions, and propagate the warning messages to

the following vehicles. When receive the warning message from preceding vehicles, drivers can

do some necessary actions before they reach potential danger zones to avoid accidents. The

main purpose of the VANETs safety application is to detect and propagate dangerous road

conditions promptly and accurately to following drivers. However, since a VANET consists of

highly mobile vehicles and the speed and density of the vehicle network vary from time to time,

it may not guarantee stable wireless connectivity when the network density is low (e.g., in rural

highways, midnight time). Therefore, the VANET itself may not provides timely detection or

notification of dangerous road condition.

On the other hand, reducing contention is important for a densely deployed ad-hoc wireless

network, especially when each device’s transmission duty is heavy. The WiFi interface perhaps

is the most common interface found in mobile devices for data transfer as it provides good

combination of throughout, range and power efficiency. It is commonly observed that the WiFi

communication become slow when many mobile devices having heavy traffic to transmit are

located in a small area (e.g., conference room, library, stadium, etc.). The reason is that WiFi
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interface may have to consume a large amount of bandwidth and thus energy for contention

and combating collision in such situation.

ZigBee is an emerging wireless communication technology defined by the IEEE 802.15.4 s-

tandard. The major feature of ZigBee which distinguishes itself from other wireless technologies

is its provision of low-cost, low-power and short-range wireless communication. It is targeted

for missions of low data-rate, and supports low-power consumption, security, and reliability.

It supports multiple network topologies such as point-to-point, point-to-multipoint and mesh

networks. It has been common for a mobile device, such as smart phone, PDA and laptop, to

have both WiFi and Bluetooth interfaces. As the ZigBee technology becomes more and more

mature, it will not be surprising to see the ZigBee interface commonly embedded in mobile de-

vices together with WiFi and Bluetooth interfaces in the near future. The co-existence of the

ZigBee and the WiFi interfaces in the same mobile device inspires us to develop new techniques

to address the above two issues.

Towards addressing the connectivity problem in a VANET, instead of relying on expensive

roadside infrastructure stations, this thesis proposes to integrate the VANET with an inexpen-

sive wireless sensor network (WSN). That is, sensor nodes with ZigBee interface are deployed

along the roadside to sense road conditions, and to buffer and deliver information about dan-

gerous conditions to vehicles regardless of the density or connectivity of the VANET. Each

vehicle is equipped with a device which has both WiFi and ZigBee interfaces. Each vehicle

can communicate with other vehicles using the WiFi interface, and each vehicle can communi-

cate with the roadside sensors using the ZigBee interface. With the help of roadside sensors,

the VANET-WSN can provide guaranteed timely detection and delivery of road conditions

to drivers, consuming low energy and supporting long life time. Along with the concept of

VANET-WSN integration, new challenges arise and should be addressed. In this thesis, we

investigate these challenges and propose schemes for effective and efficient vehicle-sensor and

sensor-sensor interactions. Prototype of the designed system has been implemented and tested

in the field. Extensive simulations have also been conducted to evaluate the designed schemes.

The results demonstrate various design tradeoffs, and indicate that satisfactory safety and

energy efficiency can be achieved simultaneously when system parameters are appropriately
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chosen.

To leverage the ZigBee interface for improving the communication performance of mobile

devices in a dense ad hoc network, we propose a ZigBee-assisted WiFi transmission system

where the ZigBee interface is used to coordinate the communication activities of WiFi inter-

faces to reduce contention and collision. In our proposed system, each device has two wireless

communication interfaces, WiFi interface and ZigBee interface. The ZigBee interface is in

charge of contention management, while the WiFi focuses on transmitting the real data. A

prototype of the proposed system and a detailed simulator of it have been implemented; exten-

sive experiments and simulations have been conducted. The results show that, the proposed

system can achieve significantly higher throughput and energy efficiency than a system running

the standard IEEE 802.11 protocol; moreover, nodes running the proposed system can co-exist

with nodes running the IEEE 802.11 protocol, and both types of nodes can achieve better

performance than when they all run the IEEE 802.11 protocol.

1.1 Integration of VANET and WSN

1.1.1 Background and Motivation

Driving is an indispensable part of the life of many people; meanwhile, driving accidents

have been a big threat to the lives, health and wealth of the people. The past years have

witnessed substantial efforts on improving driving safety. Among them, the most prominent

technological one might be the emerging vehicular ad hoc network (VANET) and the safe

driving-targeted applications built atop the VANET. The VANET is composed of highly-mobile

vehicles and sparsely-deployed roadside stations, each equipped with wireless communication

devices and optionally with sensing devices. Wireless communication can be conducted between

vehicles and/or between vehicles and roadside stations. On top of the VANET, applications

have been developed to collect, process, share and deliver real-time information about road

conditions. In vehicle safety applications that communicate by some wireless interface, vehicles

disseminate traffic-related information to all reachable nodes based on broadcast transmission.

When a source vehicle detects a hazard or an accident, it can generate a safety message to the
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succeeding vehicles. This safety message contains real-time traffic information, which is used

to warn travelers before they drive to potential danger zones on the road.

These systems sometimes help in accident prevention, but they are not always effective since

the underlying VANET does not provide guaranteed real-time detection of road conditions or

stable communication connectivity. Firstly, the VANET only opportunistically monitors road

conditions. That is, only when a vehicle or a roadside station detects or is notified of some

conditions, can the information be shared within the VANET. For example, a driver driving at

night may not know about a deer roaming on the road ahead because no vehicle or roadside

station detects or is notified of the condition. Secondly, the VANET can be disconnected due to

high mobility and unpredictable movements of vehicles and the sparse deployment of roadside

stations. If the VANET is disconnected, critical information about road conditions known by

one partition of the VANET cannot be shared timely with vehicles that need to know it but

are in other partitions.

To provide real time detection of the road condition, deploying more roadside stations ap-

pears to be a solution. This, however, may significantly increase the investment cost; also, lack

of power supply is a big obstacle to do so in rural areas. To guarantee the timely delivery of the

dangerous road condition, wide area wireless networks (such as cellular networks) could be used

to connect disconnected segments of the VANET. This approach may achieve communication

connectivity, but it does not solve the problem of lacking guaranteed real-time sensing of road

conditions.

1.1.2 Related Work

The interest in vehicular networks research has been increasing exponentially over the last

few years. Farnoud et al. in [12] used a positive orthogonal code to distribute a transmission

pattern for broadcast messages. In this paper, the performance in terms of the success proba-

bility and the average delay in message delivery was reported. In [10], a model for deriving the

packet delivery delay between disconnected vehicles, the re-healing time, was proposed. It was

shown that this time can increase to values in excess of 100 seconds in multihop disconnect-

ed communications, which is unacceptable for vehicular networks. A pure vehicle-to-vehicle
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network may not be sufficient to ensure good performance and efficiency when the network

is sparse. Therefore, many researchers proposed the vehicle-to-infrastructure (V2I) communi-

cation where roadside units (RSUs) with better equipment are deployed to increase network

connectivity. DV-CAST protocol was proposed in [39], which is a distributed vehicular multi-

hop broadcast protocol that relies only on local topology information for handling broadcast

messages in VANETs. DV-CAST can operate in all traffic regimes, including extreme scenarios

such as dense and sparse traffic regimes. In [31], mathematical models (based on [10]) was

developed to determine the average delay of a packet between disconnected source and desti-

nation in the presence of RSUs as relays. The results obtained for a specific number of RSUs

(connected and disconnected) are compared with the ones where no RSUs are in place. The

results show that significant improvements can be achieved with RSUs. In order to improve

VANET connectivity, [36] proposed to deploy a limited number of RSUs. In that paper, they

proposed a new safety message routing flow mechanism between the vehicles and the RSUs

and derive the analytical performance of the proposed mechanism. The results show that the

proposed scheme is feasible and can substantially enhance vehicle safety on highways. Due to

small number of RSUs, neihter of above proposals can achieve real time detection and delivery

of the road condition messages.

With the advance of semiconductor technology, the sensor becomes a good candidate to

facilitate the communication in VANET. A static-sensor assisted adaptive routing protocol [9]

has been proposed, where the static sensors are deployed at the intersections to facilitate the

routing by temporarily storing the messages. A prototype of hybrid sensor-vehicular networks

has been proposed in [41]. Besides, many related applications have been investigated. Bohil et

al. [6] propose a secure WSN-based roadside architecture to support accident prevention and

post-accident investigation. But very little detail is given on the underlying network design and

implementation. MobEyes (Smart Mobs for Urban Monitoring) has been developed in [22]. It

exploits vehicle mobility to opportunistically diffuse summaries of sensed data. An in-vehicle

sensor network has been proposed for remote vehicle diagnosis and management in [18], where

sensors inside and around the vehicle form a hierarchical network.

Most of existing work directly applies the technologies in the conventional WSN to the
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VANET but do not consider much the unique characteristics of the VANET (e.g., high mobili-

ty, pre-defined layout, potential interference, dynamic traffic, etc.). The collaboration between

sensors and vehicles has not been exploited adequately. Therefore, a more seamless and prof-

itable integration of the WSN and the VANET is still demanded. Our design targeted at fully

leveraging the complementary capabilities and features of sensors and vehicles and providing

the basic communication framework for the WSN-VANET applications. Demonstrated by the

results of extensive simulation and implementation, our system can meet the efficiency require-

ment of the WSN and the timeliness requirement of driving-safety applications of the VANET.

It maintains constant performance against dynamic traffic patterns. More importantly, our

design provides scalability and flexibility for large-scale and realistic application scenarios.

1.1.3 Overview of VANET-WSN System

Since the inexpensive ZigBee can provide low-power, short-range wireless communication,

we propose to integrate the VANET with the WSN to provide timely detection of road con-

ditions and to help connect partitioned segments of the VANET. Wireless sensor nodes, for

example, MicaZ motes [15], are much cheaper than roadside stations of current VANETs. Be-

sides, some inexpensive, low-power and small-size sensing modules, for example, the WiEye

passive infrared sensors [25], have been commercialized and can be installed on the motes to

sense road conditions with low cost.

These sensor nodes can be deployed along roadside with higher density than current roadside

stations to form a connected network together with the VANET. The sensor nodes can sense

the road conditions, collect and process the sensing data to find out information useful for safe

driving, and deliver the information to vehicles that need it. The sensor nodes also can buffer

the safety-related information generated by vehicles, and forward the information to vehicles

in different partitions of the VANET.

1.1.4 Two Examples VANET-WSN System Can Be Applied to

Following are two examples showing that deploying WSNs can greatly help in preventing

road accidents:
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• Example I. Deploying WSN along rural roads can help prevent vehicle-animal collision

accidents. As shown in Fig. 1.1, the WSN nodes deployed along roadside can detect

a deer roaming on the road and propagates the information within the nearby area.

Approaching vehicles will get the warning beforehand, and have enough reaction time to

do some necessary work to avoid accident. The advantage brought by the deployment

of WSN is significant. It may help to avoid 1.5 million vehicle-deer collisions happening

every year (according to auto insurer State Farm) which result in about 150 deaths and

$1.1 billion losses [11].

Figure 1.1: Example 1 for VANET-WSN Integration

• Example II. Fig. 1.2 shows that, bad road conditions (e.g., slippery surface) detected

by an isolated vehicle can be told to nearby roadside WSN nodes, and the WSN nodes

can then collaborate with each other to propagate the information to other vehicles ap-

proaching this dangerous area. Note that, this cannot be accomplished if only VANET

can be used since the VANET is not connected.
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Figure 1.2: Example 2 for VANET-WSN Integration

1.1.5 Objectives and Chanlleges

To realize the proposed VANET-WSN system, several important issues should be investigat-

ed. Firstly, the system should be really viable in the real scenarios. The impact of interference,

noises and other environmental factors on the performance of the system should be investigated.

Secondly, the system should be highly scalable, considering the large scale of highway system

in the world. As the scale of deployment increases, the difficulty in deploying and maintaining

the system should not increase much, and the quality of service and the energy efficiency of

the system should remain stable. Thirdly, the system should be flexible to changes in the real

world. WSN nodes may fail or lose time synchronization, the highways may be extended or

reshaped, and traffic pattern may change from time to time. It is desired that the deployment

and the working parameters of VANET-WSN system can be adjusted with low overhead as the

above changes happen. Fourthly, energy efficiency should be maximized for the roadside WSN.

Although WSN nodes can be deployed and redeployed by humans and their batteries can be

replaced manually when necessary, it is still important to minimize the energy consumption and

maximize the network life time to reduce energy and maintenance costs. Finally, satisfactory
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quality of service should be attained. Dangerous road conditions should be detected and the

information about the dangers should be delivered to related vehicles, both in a timely fashion,

to ensure driving safety.

1.1.6 Major Contribution

Towards tacking the above issues, this thesis makes the following major contributions:

• We adopt the idea of group-based modular design to achieve scalability and flexibility.

In our design, the roadside WSN is made up of sensor groups. Each group works au-

tonomously and asynchronously, and neighboring groups interact with each other through

a gateway node shared by them. Deployment or redeployment of a group does not affect

others; topology and working parameter adjustments conducted within each group do

not affect others, either. The modularity nature of the network and the autonomy nature

of each module enable easy deployment, extension and reconfiguration. Moreover, our

design takes the dynamics of traffic flows and the particularity of sensor distribution into

full consideration, making our system highly flexible and scalable in various application

scenarios.

• The objectives of energy efficiency and quality of service are achieved by (i) an event-

driven duty cycle scheduling strategy which also leverages the VANET to minimize energy

consumption in the WSN, and (ii) low-contention and low-delay communication protocols

which ensure contention-less communication within a group and can reduce inter-group

contentions with certain coordination costs.

• A prototype of our designed system has been implemented and tested in the field to

study the viability of the system. Based on realistic vehicle traffic traces and roadside

sensor-to-sensor communication traces, extensive simulations have also been conducted to

study the impact of various factors on the system performance. The results demonstrate

various design tradeoffs, and indicate that desired quality of service and energy efficiency

can be achieved simultaneously when system parameters are appropriately chosen.
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To the best of our knowledge, this is the first work that proposes, implements and evaluates

an integrated VANET-WSN system for driving safety.

1.2 ZigBee-Assisted WiFi Transmission

1.2.1 Background and Motivation

The WiFi interface perhaps is the most common interface found in mobile devices for data

transfer as it provides good combination of throughout, range and power efficiency. The WiFi

uses CSMA/CA protocol to mediate access to the shared communication medium, which is

space. In CSMA/CA protocol, a node wishing to transmit data first sense the channel for a

predetermined amount of time to determine whether or not another node is transmitting on

the channel within the wireless range. If the channel is idle, then the node is permitted to

begin the transmission process. If the channel is busy, the node defers its transmission for a

random period of time. There exists two problems which CSMA/CA protocol can not handle.

One is the hidden node problem, another is the exposed node problem [20], which are described

as follows.

B CA

Figure 1.3: The hidden node problem. Although A and C are hidden from each other, their
signal can collide at B.

• hidden node problem: Consider the situation depicted in Fig. 1.3, where A and C are both

within range of B but not each other. Suppose both A and C want to communicate with

B and so they each send a frame. A and C are unware of each other since their signals

do not carry that far. These two frames collide with each other at B, but neither A nor
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C is aware of this situation. A and C are said to be hidden nodes with respect to each

other.

• exposed node problem: As shown in Fig. 1.4, each of the four nodes is able to send and

receive signals that reach just the nodes to its immediate left or right. Suppose B is

sending to A. Node C is aware of this communication because it hears B’s transmission.

However, C can not conclude that it cannot transmit to anyone just because it can hear

B’s transmission. It is fine for C to transmit to D since C’s transmission to D will not

interfere with A’s ability to receive from B.

B DCA

Figure 1.4: The exposed node problem. Although B and C are exposed to each other’s signals,
their is no interference if B transmits to A while C transmits to D.

In order to address the hidden node problem and exposed node problem, WiFi uses RTS/CTS

mechanism by default to access the channel. In RTS/CTS mechanism, the sender transmits a

Request to Send(RTS) frame to the receiver; the RTS frame includes a field that indicates how

long the sender wants to hold the channel. The receiver then replies with a Clear to Send(CTS)

frame; this frame echoes this length field back to the sender. If the sender hears the CTS, it

starts to transmit data frame. If the sender does not receive the CTS after a period of time,

it concludes that the RTS must collide with some other RTS. In this case, the sender waits a

random amount of time before trying again. Any node that hears the CTS frame knows that

it is close to the receiver, and therefore cannot transmit for the period of time reserved by the

sender. Any node that sees the RTS frame but not the CTS frame is not close enough to the

receiver to interfere with it, and therefore, is free to transmit. The Simplified Algorithm of
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WiFi MAC protocol is depicted as Fig. 1.5.

Start

Assemble a frame

Channel is idle?

Transmit RTS

CTS received?

Transmit data frame

End

Wait for random 

backoff time
no

yes

yes

no

Figure 1.5: Simplified Algorithm of WiFi MAC protocol

As described above, the WiFi interface has to consume a large amount of bandwidth and

energy for contention and combating collision, especially when mobile devices located in a

small area (e.g., conference room, library, stadium, etc.) all have heavy traffic to transmit.

Besides, the RTS/CTS mechanism is by default used to access the channel. Unlike data packets,

these control packets are transmitted with a lower rate. According to our simulation results,

the maximum throughput(i.e., saturation throughput) decreases and the energy consumption

increases(illustrated in Fig. 1.6) rapidly, as the number of concurrent transmitters(running

the default IEEE 802.11g protocol) rises. To reduce contention, many protocols have been

proposed. However, most of them (e.g., Overlay MAC [30], TDM MAC [19], token-passing

MAC [24], etc.) require to either modify the underlying MAC protocol or introduce extra

control overhead.
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Figure 1.6: Impact of contention

Recently, mobile devices are increasingly equipped with multiple network interfaces [5,

47, 16]. It has been common for a mobile device, such as smart phone, PDA and laptop,

to have both WiFi and Bluetooth interfaces. As the ZigBee technology becomes more and

more mature, embedded ZigBee interfaces have emerged and the size is becoming smaller and

smaller [37, 32]. It will not be surprising to see the ZigBee interface commonly embedded in

mobile devices together with WiFi and Bluetooth interfaces in the near future. With ZigBee

interfaces, mobile devices can communicate with various electrical and electronic appliances to

realize the smart home entertainment and control, home awareness, mobile services, commercial

building and smart industrial plants [44].

1.2.2 Proposed ZigBee-Assisted WiFi Transmission system

The co-existence of the ZigBee and the WiFi interfaces in the same mobile device inspires us

to develop new techniques to address the above issue. The key idea is that nearby mobile devices

use their ZigBee interfaces to coordinate their communication activities to reduce contention

and collision. The rationales behind the idea are as follows. The ZigBee interface and the

WiFi interface can use different channels, and hence the coordination using ZigBee interfaces

will not consume the WiFi bandwidth. As the WiFi transmission has higher rate and energy

consumption than ZigBee transmission, the utilization of WiFi for large-size data transmission

and ZigBee for small-size control message transmission presents an ideal, efficient resource

allocation pattern. Such collaboration is possible because ZigBee may not be used frequently
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in the places, such as conference room, library and stadium, where WiFi traffic could be very

heavy.

In this thesis, we propose a simple yet effective ZigBee-assisted WiFi transmission system

for the high traffic density scenario. In this system, mobile devices leverage ZigBee communi-

cation to form clusters where each cluster has a cluster head and multiple cluster members that

can directly communicate with the head via the ZigBee interface. According to the communi-

cation demands of individual mobile devices, members in the same cluster collaboratively run

a TDMA-like protocol with the ideal goal that, at any moment only one of them attempts to

use the WiFi channel so as to eliminate or greatly reduce the contention within a cluster and

thus mitigate the contention in the whole network. This system runs on top of the underlying

WiFi MAC protocol, therefore, it does not need to modify the underlying WiFi MAC protocol.

To evaluate the feasibility and performance of our proposed system, a prototype of it has

been implemented on a testbed containing 10 laptops, each equipped with WiFi and ZigBee

interfaces. The implementation does not need any change in the underlying MAC protocol, and

thus is compatible with existing standards. The experiment results show that, out proposed

system has up to 49% higher throughput than the IEEE 802.11g protocol.

To further evaluate the performance of our proposed system in a large-scale network and

in a hybrid network with both nodes running our system and nodes running the IEEE 802.11

protocol, a detailed ns2-based simulator is built and extensive simulations have been conducted.

The results show that our proposed system can increase network throughput by 18%, reduce

power consumption by 32%, and achieve much better fairness, compared to the IEEE 802.11

protocol. The results also show that the performance of every individual node in the hybrid

network can be improved, and the performance of the overall network increases as the fraction

of nodes running our system increases.

1.2.3 Related Work

In the recent years, numerous efforts have made to improve the performance of IEEE 802.11

network. To improve throughput, various TDMA-typed protocols have been proposed and

implemented. Overlay MAC [30] proposes a multi-hop TDMA-typed MAC protocol for IEEE
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802.11 network by employing a distributed algorithm to allocate time slots among nodes and

also implements a precise control over time slots. Koutsonikolas et al. [19] design and implement

a TDM MAC protocol for multi-hop wireless mesh networks using a programmable wireless

platform. Inspired by the IEEE 802.4 Token Ring protocol, the token-passing protocols, such

as [27] and [24], have been proposed to the performance of IEEE 802.11 network. Different

from their work, our proposed protocol works transparently to the underlying MAC layer and

introduces zero control overhead.

Fairness is also a popular research issue in 802.11 networks. In [13], a combination of an

Inter Frame Space (IFS) based Distributed Fair Scheduling (IDFS) with the backbone of IEEE

802.11 DCF is designed to achieve better performance in terms of throughput and fairness. A

cross-layer approach, IFS based Distributed Fair Queuing (IDFQ) algorithm, has been proposed

in [21]. It is adaptive to the collision state in the system by considering physical characteristics

of wireless channel and designs a mapping function at the MAC layer to achieve proportional

fairness and improve network throughput. Compared to these methods, our approach of achiev-

ing the fairness is purely built atop the 802.11 MAC layer, which is untouched, to guarantee

the compatibility.

Moreover, some research has been conducted recently to investigate co-located interfaces

to assist WiFi transmission. One of the first work is Blue-Fi [5], which brings forth the idea of

using other co-located interface to assist WiFi transmission. It uses the co-located Bluetooth to

predict the availability of the WiFi connectivity by using user’s trend of repeatedly encounter-

ing the same set of bluetooth devices and cell-towers. Different from Blue-Fi, our system uses

ZigBee interface, which has a much longer communication range. Thus, it can provide a better

communication capability under the mobile environment. Our proposed system is motivated

by this feature. Because of using different hardware and methodologies, the accomplishment

of Blue-Fi and Z-WiFi are also different. Besides, ZiFi [47] utilizes ZigBee radios to identify

the existence of WiFi networks through WiFi beacons, while WiZi-Cloud protocols [16] have

been proposed to use WiFi-ZigBee radios on mobile phones and Access Points to achieve ubiq-

uitous connectivity, high energy efficiency, real time intra-device/inter-AP handover. Unlike

those work, our work focuses on improving the performance WiFi transmission under the DCF
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through reducing contention. In general, the previous work targets on saving energy, but our

work aims to improve the throughput, power efficiency and fairness.

1.3 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the system overview

of our proposed VANET-WSN system. Chapter 3 illustrates the detailed design of VANET-

WSN system, and Chapter 4 reports the implementation and simulation results of VANET-

WSN system. Chapter 5 first presents the preliminaries of our proposed ZigBee-assisted WiFi

transmission system, then elaborates our proposed design, and finally analyze co-existence of

S-WiFi and Z-WiFi systems. Chapter 6 reports the results of comprehensive simulation and

prototype implementation of the ZigBee-assisted WiFi transmission system. Finally, chapter 7

concludes the work and discusses future work.
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CHAPTER 2. System Overview of VANET-WSN System

2.1 Network Deployment

The proposed system consists of highly mobile vehicle nodes and static roadside sensor

nodes. Each vehicle node has two communication interfaces: a WiFi (IEEE 802.11) interface

for communication with other vehicle nodes; and a ZigBee (IEEE 802.15.4) interface for com-

munication with roadside sensor nodes. In our prototype, each vehicle node is an on-car laptop

with an embedded WiFi card and an attached Telosb mote [15].

AP0

Cluster 2

Cluster 3

Cluster member

Cluster head

Regular node

AP

Group 0

Group 4

Group 1
0 1 2 3 4 5 AP1 AP26 7 8

Group 2

Cluster 0 A B

θ of Cluster 0

Warning message

Cluster 1

Activation

Broadcast Request

Group 3

Group 5

Cluster 4

Figure 2.1: Network Deployment

Each sensor node has a ZigBee interface used to communicate with other sensor nodes and

with vehicle nodes, and in our prototype, each sensor node is a Telosb mote. Sensor nodes are

also mounted with sensors which are used to sense road conditions.

As illustrated in Fig. 2.1, sensor nodes are deployed along one side of the highway. We

consider only one-way highways, though the system can be extended to two-way roads. The
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sensor nodes form a connected network. According to their roles, sensor nodes have two different

classifications: the regular sensor node and the access point sensor node (called AP thereafter),

which can sense and relay messages, while APs have extra responsibilities of discovering and

communicating with vehicles, and managing the network. APs are much fewer than regular

nodes. Regular nodes that are deployed between two adjacent APs along the roadside form a

group. As shown in Fig. 2.1, one highway may merge into another one, two highways may be

connected with a ramp, and one highway may branch into two or more highways; hence, the

roadside sensor network is not linear. In our design, the node connected with three or more

linear segments must be an AP.

In practice, some roads (e.g., in mountain areas) may be more prone to safety-related events

than others; hence, sensor nodes may only be deployed along the roads with high risks. This

way, deployed sensor nodes do not form a single connected network, but multiple disconnected

networks. Our design is flexible and is applicable to such deployment due to the modularity

approach adopted.

2.2 Duty Cycle Scheduling and Warning Message Forwarding

A connected partition of vehicular nodes on a highway forms a cluster. Cluster formation

has been widely studied and is beyond the scope of this thesis. Each cluster maintains a cluster

head, a node which is running at the front of the cluster. It is responsible for communicating

with roadside sensors on behalf of the whole cluster. As shown in Fig. 2.1, there are five

clusters, where cluster 2 and cluster 3 are connected but they are on different highways.

2.2.1 On-Demand Duty Cycle Scheduling

As illustrated in Fig. 2.2, each AP periodically broadcasts a beacon message. If the AP

has buffered some safety-related information that its nearby vehicles should be aware of, it

will piggyback these messages in its beacon message. When a passing cluster head hears the

message, it sends its registration request to the AP.

In response to the request, the AP generates and broadcasts an activation message. The

activation message is then propagated by the roadside sensors hop by hop along the moving
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Figure 2.2: Big Picture of the Integrated VANET-WSN System

direction of this cluster (called forward direction till it reach a certain number (denoted as θ, a

system parameter) of hops away. When each roadside sensor receives the activation message,

it become active. In this way, The AP activates sensor nodes that are within θ hops along

the forward direction, if these nodes have not been activated yet. After be activated, these

activated sensor nodes will be able to proactively monitor the conditions of the roads. To save

energy, a roadside sensor is active only when there is a vehicle cluster approaching to its sensing

range within θ hops. In order to save energy, if there is no vehicle approaching this sensor, the

sensor does not need to be active.

2.2.2 Warning Message Propagation

If a dangerous condition is detected (e.g., a deer is roaming on the road) by the roadside

sensor, the detecting sensor node will generate a warning message and propagate it along the

direction opposite to the moving direction of the vehicles (called backward direction hereafter).

The warning message will be propagated along the backward direction until the message reaches

the heads of all incoming clusters that requested the activation of the sensor nodes. Then, the

warning message can be propagated within the clusters of vehicles by using a certain data

dissemination protocol such as [23, 7, 38]. This way, VANET nodes are leveraged whenever

possible to reduce the workload of the roadside WSN to save its energy. In this way, the drivers

can receive the dangerous road condition before they reach the potential area, such that they
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have enough reaction time to do some necessary work to avoid accident.
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CHAPTER 3. Detailed Design of VANET-WSN System

The above description on duty cycle scheduling and warning message propagation remains

high-level. To realize these functionalities, practical and efficient protocols should be designed

for scheduling duty cycles of sensors and for propagating activation messages in forward di-

rection or warning messages in the backward direction. Since the duty cycle scheduling and

message propagation are not independent of each other, we will study them together.

One big challenge in designing these protocols is that, the forward and the backward prop-

agations take place on the same communication channel, and hence they should be scheduled

appropriately to avoid or reduce collisions to minimize both propagation delay and energy con-

sumption. Although CSMA/CA-based protocols are commonly used in wireless ad hoc and

sensor networks, TDMA-based protocols are preferred in our system for following reasons:

• As opposed to CSMA-based MAC protocols commonly used in wireless networks, sensor

nodes in the proposed system often have very little data to transmit (packets are generated

only when cluster heads pass APs or events are detected by sensors). Meanwhile, once

there is data to transmit, the data should be transmitted in a timely fashion to guarantee

quality of service. If CSMA/CA is adopted, time and energy may be wasted for long idle

listening, medium contention, etc.

• To improve network throughput and support real-time data delivery in WSN, TDMA-

based MAC protocols [35, 4, 33] have been proposed recently. Although they can achieve

real-time transmission, their different application scenarios (e.g., high data rate, special

network structure, etc.) make them unsuitable for our proposed system. Moreover, these

protocols are for unidirectional communication, while our system requires bidirectional.

Thus, designing a new TDMA-based protocol becomes necessary.
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• Further, the special network topology in the proposed system can facilitate the application

of TDMA-based protocol. Each sensor has a limited number of neighboring nodes, which

are pre-determined, making the assignment of the time slots for transmission easier. By

carefully assigning the transmission slot, we can avoid or greatly mitigate the hidden

terminal problem that is hard to be solved by using CSMA/CA-based protocols.

However, TDMA-based protocols require time synchronization among nodes, which is hard

to accomplish in large-scale systems. To accommodate bidirectional communication in a single

channel and meanwhile achieve scalability, we adopt the idea of modularity: sensor nodes are

divided into groups; within each group, duty cycles of nodes and bidirectional propagations

are scheduled to achieve both contention-less communication and energy efficiency; inter-group

communication is handled by APs shared by different groups. In our proposed system, we only

require nodes within the same group to be time synchronized.

In this section, we first present our proposed intra-group and inter-group scheduling schemes.

Then, we discuss the choice of system parameters and bootstrapping of the system.

3.1 Intra-group Scheduling

Sensors in the same group are time synchronized, and the approach to maintain the syn-

chronization is to be presented in Chapter 4. The time is divided into slots of fixed length.

During each slot, a packet can be sent from a sensor to its neighbors successfully if there is no

interference; hence, we call the length of a slot a packet time (denoted as τ). A certain number

of slots form a period, and the length of a period is denoted as p. Protocols for duty cycle

scheduling and medium access control (MAC) are presented in the following such that, every

cf period(s), a packet can be propagated hop by hop from the most back sensor of the group

to the most front sensor along the forward direction, and every cb period(s), a packet can be

propagated hop by hop from the most front sensor to the most back sensor along the backward

direction. Here, we call cf the forward interval and call cb the backward interval.
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Figure 3.1: Example of Intra-group Scheduling for Forward Activation Msg Propagation

3.1.1 Overview of scheduling mechanism for Forward Propagation

Without loss of generality, let us consider the example shown in Fig. 3.1, where circles

A,B, · · · , E represent sensors in the same group, A is the most back sensor and E is the most

front sensor. We want to schedule the duty cycles of these nodes and their communication

behaviors such that a packet can be forwarded from A to E hop by hop.

Taking into account the unique characteristics of the network topology, we adopt the follow-

ing methods to design forwarding propagation protocol which has no contention, high energy

efficiency and low propagation delay:

Firstly, TDMA-based access control is adopted to eliminate contention. For each sensor,

a certain number of slots are reserved for it for sending or receiving. The reservation of slots

follows the following rule: During the slot reserved for node X for sending, none of its one-hop

and two-hop neighbors is allowed to send packets. For the example in Fig. 3.1, during the slots

for sensor C to send packets, sensors A, B, D and E are not allowed to send packets. This

way, contention (even the hidden terminal problem) can be eliminated.

Secondly, the broadcast nature of transmission is leveraged to speed up packet propagation

and reduce acknowledgement overhead. Specifically, after a node has received a data packet
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from its previous hop, it forwards the packet to the next hop immediately in the next slot.

Due to the broadcast nature of transmission, the data packet can also reach the previous hop,

serving as the acknowledgement. If the packet cannot reach the previous hop due to errors in

the channel, the packet that has arrived at the next hop can be propagated further without

waiting for the acknowledgement packet being successfully sent to the previous hop.

Thirdly, reserved retransmission slots can be dynamically shared among sensors in the

same group. For reliability, retransmission slots are reserved for sensors. However, the quality

of different links may not be the same and may change dynamically. For example, sometimes

the link between sensors A and B may be better than the link between D and E, and vice

versa in other time. Considering this, our design can enable sensors to dynamically share a

certain total number of retransmission slots.

3.1.2 Scheduling Detail for Forward Propagation

The forward scheduling protocol is detailed as follows.

• Reservation of slots: The most back sensor is assigned with 3(r + 1) sequential slots,

where r is the system parameter specifying the maximum times to retransmit a packet

by all nodes in the group, which we call retransmission quota hereafter. Without loss of

generality, we call the first slot assigned to the node as slot 0, and the remaining slots

are called slot 1, 2, · · · , 3(r + 1)− 1, respectively. Slots 3i+ 1 (i = 0, · · · , r) are reserved

for sending while others are reserved for receiving. If we use R to represent a slot for

receiving and S to represent a slot for sending, all these slots can be represented as a

sequence of r+1 RSR’s. For each of the remaining sensors in the group, it is also assigned

with 3(r + 1) sequential slots of the same sensing/receiving pattern, except that its first

slot is one slot later than that of its previous hop. In the middle of Fig. 3.1, the scheme

for slot reservation is shown for a group composed of 5 nodes and parameter r = 3.

• Sending of a packet: If a sensor has a packet to propagate, it will send it out at the first

sending slot. If it overhears the forwarding of this packet or receives an acknowledgement

in the next slot, which is reserved for receiving, from the next hop, the transmission
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is successful. Otherwise, it will retransmit the packet in the next sending slot. The

procedure continues until the transmission is successful or the slots reserved for sending

have been used up. In the case that the reserved slots have been used up, the packet can

be transmitted in the next reserved propagation time (i.e., nearly cf · p time later).

• Receiving/forward of a packet: If a sensor does not have any packet to send, it will listen

in the first slot. If it does not hear anything from its previous hop, it can go to sleep in the

following two slots since it can be predicted that it will not have any sending or receiving

in the next two slots. If it receives a packet from its previous hop, it will transmit the

packet to next hop immediately in the next slot, which is a slot reserved for sending.

Then the follow-up procedure for checking if the packet has been successfully sent and

retransmitting the packet is the same as in the part of Sending of a packet. Note that,

if its forwarding is not overheard by its previous hop, the previous hop node may resend

the packet. In this case, this forwarding node should be able to identify the duplication;

then, it will send a dedicated acknowledgement packet to its previous hop in the next

sending slot.

Note that, if multiple sensors in the group have packets to send, these packets can all be

propagated except that, some sensor in the middle may have multiple packets to send/forward.

In this case, it can merge these packets into one if possible and send it, or send these packets

one by one.

An example for packet sending and forwarding is also shown in Fig. 3.1, which is explained

as follows. Sensor A wants to send a packet to sensor E. It starts the transmission at its first

available sending slot, slot 1. However, this packet gets lost. Hence, A will not receive the

acknowledgement from B during the following receiving slot, so it retransmits the packet in

the next available sending slot, i.e., slot 4, and it succeeds. Upon receiving the new packet, B

immediately forwards the packet, which serves as both data packet to downstream node (C)

and acknowledgement to upstream node (A). This sending packet has been received by C but

is not acknowledged successfully. Thus, B assumes that C has not received the packet and

retransmits that packet. This retransmission packet can be overheard by A and C. A simply
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ignores it while C attempts to resend the acknowledgement. Due to the good link quality in

following propagation, the packet can eventually reach E even before every packet has been

successfully acknowledged.

3.1.3 Scheduling Detail for Backward Propagation

With the same idea, the protocol for backward warning message propagation can also be

designed similarly. The most front sensor is assigned with 3(r+1) sequential slots following the

RSR pattern. For each of the remaining sensors in the group, it is also assigned with 3(r + 1)

sequential slots of the same sensing/receiving pattern, except that its first slot is one slot later

than that of its following hop. Fig. 3.2 has shown an example of backward propagations next

to forward propagations, which is explained as follows.

Delivery

Direction

A

B

C

D

E

0 3 6 9 12 15

Sending slot Receiving slot Data Ack Packet loss

Figure 3.2: Example of Intra-group Scheduling for Backward Warning Msg Propagation

Sensor E wants to send a warning message to sensor A. It starts the transmission at its first

available sending slot, slot 1. Sensor D receives the message at slot 1 and immediately forwards

the message, which serves as both data message to upstream node (C) and acknowledgement
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to downstream node (E). Unfortunately, neither the transmission to upstream node nor the

transmission to downstream node succeeds. At slot 4, node E observes that it hasn’t received

the acknowledgement from node D. Node E retransmits the warning message to node D

at slot 4. Since node D does not receive acknowledgement from node C, it retransmits the

message at slot 5. Both node C and node E hears the packet retransmitted by node D. Upon

receiving the new message, C immediately forwards the packet, which serves as both data packet

and acknowledgement. This sending packet has been received by B but is not acknowledged

successfully. After node B receives the message, it transmits it to node A. Finally, node A

receives the message at slot 8. Node D retransmits the message since it does not receive the

acknowledgement from node C, and finally get acknowledged. Due to the good link quality

in previous propagation, the message eventually reaches A even before every packet has been

successfully acknowledged.

In order to save energy, a sensor can turn off its radio during the slots that are not reserved

for sending or receiving.

3.2 Inter-Group Scheduling

The scheduling of each group is made independently. When two groups are connected

together at an AP, an issue arises: how can the AP successfully pass packets from one group to

another with low delay? To address this issue, the AP needs to cooperate with its neighboring

regular nodes (called boundary nodes, for example, nodes 5 and 6 are boundary nodes of AP1

in Fig. 2.1) as follows.

The AP needs to know the schedules of its boundary nodes. For this sake, the boundary

nodes periodically tell the AP their schedules, by either explicitly sending the schedule or

implicitly piggybacking it in the data packet. Knowing the schedules of its boundary nodes,

the AP should be active when any of its boundary nodes is active. This way, packets sending

to the AP will not be missed if no collision occurs.

The AP also follows the protocol below to ferry packets between groups:

(i) Initially, the AP is in the idle state. Suppose the AP is connected with multiple groups,
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we call a group connects to it on the backward direction as its upstream group and a group

connects to it on forward direction as its downstream group. For example, in Fig. 2.1,

Group 1 is a upstream group of AP1 while Group 2 is a downstream group of AP1. When

the AP receives a forward (backward) packet from its upstream (downstream) group, AP

is bound to delivering the forward (backward) packet and hence sets itself to the forward

(backward) state.

(ii) The AP in forward (backward) state is dedicated to delivering the forward (backward)

packet. Any incoming backward (forward) will be just buffered and not acknowledged.

(iii) The AP will make an attempt to send the forward (backward) packet to the downstream

(upstream) group if (a) any boundary node is in its forward (backward) receiving slots

and (b) the last attempt was two time slots away from the current attempt to ensure AP

to have enough time to get the possible acknowledgement.

(iv) Step (iii) is repeated until the AP has got an acknowledgement from its downstream

(upstream) group. Then, AP will check its buffers to see if there is any packet ready to

be delivered. If so, step (iii) and (iv) will be repeated; otherwise, the AP goes back to

step (i).

Fig. 3.3 shows an example. Bu and Bd are two boundary nodes of the AP, whose schedules

are shown in the figure. At time t0, Bu sends a forward packet (pkt0) to the AP. Since the

AP is in the idle state, it switches to the forward state and sends out the packet acting as

acknowledgement. This packet can be also received by Bd as well. However, since Bd is now

in backward phase, it will just buffer this packet without acknowledging it. Suppose at time

t1 Bd wants to send a backward packet (pkt1) to AP. Since AP is now in the forward state,

it will also just buffer this packet without acknowledging it. After some time, the forward

phase of Bd becomes available. Then, the AP sends pkt0 at Bd’s first available receiving slot.

Note that, even if this packet can not be successfully transmitted to Bd, Bd can still send out

the acknowledgement for the previously buffered packet. Upon receiving the acknowledgement

from downstream group, the inter-group delivery of that packet is accomplished. At that time,



29

the AP checks its buffer and finds the backward pkt1 is there to be delivered. Then, it changes

to backward state and starts another inter-group delivery.

pkt0 ACK0

Forward phase

Backward phase Forward phase

pkt0

AP

Bu

Bd

ACK0

Backward phase

pkt1

pkt1

t0

t2

t1 t3

Upstream 
group

Downstream 
group

ACK1

Idle forward backward Idle

Figure 3.3: Example of Scheduling for Inter-group Communication

Resolution for Extreme Collisions: In some extreme case, data packets from two boundary

nodes may arrive at the AP simultaneously and the schedules of these two boundary nodes

match exactly. Then, the AP may never receive the data packet from either node because colli-

sion always exists. In this case, the above scheme fails. Thus, we propose the yield mechanism

to deal with this situation. The basic idea is to let one boundary node yields to the other when

they do not receive the acknowledgement from the AP for a certain number of times (which

indicates the possible occurrence of collisions). At this time, one boundary node will start

resending the packet once every two sending slots, while the other remains the same. Note that

the working of this mechanism can be coordinated by the AP.

Broadcast of AP Beacon Messages: When none of the boundary nodes of the AP is in their

reserved slots for backward or forward propagation slots, shown as “BC” blocks in Fig. 3.4, the

AP can pick some time point to broadcast beacon messages such that passing cluster heads can

discover and contact with the AP. The interval between two consecutive beacon messages should

be short enough to ensure that a passing cluster head cannot miss it during its stay within

the transmission range of the AP. During the time that the AP does not broadcast beacon

messages and none of its boundary nodes is active in their forward/backward propagation, the

AP can go to sleep to save energy.
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Figure 3.4: Forward and Backward Propagation Scheduling in a System with Multiple Groups
(Group 0: cb = 1 and cf = 2; Group 1: cb = cf = 2; two groups have the same period p0 = p1;
BC: slots that the AP1 can use to broadcast beacon messages)

3.3 Discussion on System Parameters

In this section, we show the relation between various system parameters by presenting our

derived equations.

3.3.1 System Parameters n and r

Based on the probability model for estimating the packet loss between two nodes in [8], we

can derive the following inequality by requiring the expected number of retransmissions that

a packet needs to cross a group should be no greater than the retransmission quota r. n is the

number of sensors in a group and pi is the packet loss ratio of node i in the group.

n∑
i=1

pi
1− pi

≤ r (3.1)

If we assume that each sensor node has the uniform packet loss ratio, say p̄, then from the

Equation (3.1) we can get the lower bound of r.

r =
np̄

1− p̄
(3.2)

3.3.2 System Parameter cf and cb

Here, we only show the impact of cf on the delay of forward propagation, and the impact

of cb on backward propagation is similar. The propagation delay within a group includes two

parts: the intra-group delay (among regular nodes) and inter-group delay (at AP). Considering
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the worst case that the forward phase of the downstream boundary node is just over when the

packet reaches the AP, the propagation speed within a group (including one AP), denoted by

vp, is

vp =
(n+ 1)I

(3r + n+ 2)τ + cfp
, (3.3)

where τ is the length of a slot, p is the length of a period (defined before) and I is the distance

between two neighboring sensors. From this equation, we can see that by changing cf we can

dynamically control the propagation speed and further satisfy the delay requirement.

3.3.3 System Bootstrapping and Maintenance

System bootstrapping is conducted group by group. Initially, there is only one starting

AP0 on the road. The administrator of the roadside WSN determines the system parameters

of the newly deployed group, which include n, r, cb and cf . Then the sensors in this group are

preloaded with these parameters and are deployed one by one. Next, another AP (denoted as

AP1) is deployed. After the deployment, all nodes in the group synchronize their time clock

through exchanging a message between each pair of neighboring nodes. After deployment,

the clock of each sensor will differ after some amount of time due to clock drift, caused by

clocks counting time at slightly different rates. All nodes except the boundary node follows the

previous AP within the same group synchronize itself with its previous node when it receives

activation message from its previous node.

Due to the modularity nature of our system, system maintenance (e.g., sensor addition,

replacement, system parameter resetting, rotation of APs etc.) can be performed within groups

autonomously. The basic standpoint is that any adjustment to the network can be bounded

within two APs (or the group), making the impacts local. Since their underlying principles are

similar to the above system bootstrapping, we will not elaborate in this thesis.
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CHAPTER 4. Implementation and Simulation of VANET-WSN System

4.1 Implementation and Field Tests

We implement the proposed system using network embedded system C (nesC) programming

language and test it in the field. The system is run on TinyOS, which is a free and open source

component-based operating system and platform targeting wireless sensor networks (WSNs).

In the implementation, three different type sensor nodes, namely, AP, regular node and vehicle

node, have been prototyped. The vehicle node is implemented atop a laptop injected with a

Telosb mote. AP and regular nodes are implemented atop Telosb motes with WiEye passive

infrared sensors mounted. The Telosb motes run TinyOS-2.1.0 in Ubuntu Operating System.

Table 4.1 shows the image sizes of the software modules developed for these components:

Table 4.1: Image size of VANET-WSN implementation software

Component ROM RAM

AP 33274bytes 1604bytes

Regular node 32194bytes 1600bytes

Vehicle node 17558bytes 1086bytes

4.1.1 Implementation Detail

• TinyOS and nesC programming language: TinyOS[14] is a free and open source component-

based operating system and platform designed specifically for wireless sensor network

nodes. Sensor networks consist of many tiny, low-cost, low-power, short wireless commu-

nication range sensor nodes. Each node of the wireless sensor network execute concurrent,

reactive programs that must operate with severe memory and power constraints. TinyOS

is an event-driven operating system designed for sensor network nodes that have very
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limited resources (e.g., 8K bytes of program memory, 512 bytes of RAM). TinyOS is

an embedded operating system written in the nesC programming language as a set of

cooperating tasks and processes[43]. NesC is an extension to C programming language

designed to embody the structuring concepts and execution model of TinyOS.

• Time syncrhonization of roadside sensor nodes: For TDMA-based protocols to work, time

synchronization is a prerequisite. To realize time synchronization, we use two interfaces

provided by TinyOS-2.1.0 library: TimeSyncAMSend and TimeSyncPacket, which pro-

vide the primitives to synchronize a group of nodes through exchanging packets. We use

the send command provided by TimeSyncAMSend interface and eventTime command

provided by TimeSyncPacket interface keep the roadside sensors synchronized. The send

command has four parameters, which are receiver address, message content, message

length, and event time. The send command sends a regular message, and it also performs

sender-receiver time synchronization. The eventTime parameter holds the time of some

event as expressed in the local clock of the sender. The receiver can obtain the time

of this event (expressed in its own local time) via the TimeSyncPacket interface. The

eventTime command of interface TimeSyncPacket can be called by the receiver of the

transmitted message. The time of the synchronization event is returned as expressed in

the local clock of the caller. This command must be called only on the receiver side and

only for messages transmitted via the TimeSyncSend interface. Each node sends the acti-

vation/warning message using the TimeSyncAMSend in the forward/backward direction,

and each receiver synchronized its local clock with the sender node when it receives the

message. In this way, we keep each group of the roadside sensor to be synchronized.

• Business Logic of vehicles: The vehicle sensors keep listening the message sent out by

roadside sensors. If vehicle node receives warning messages from roadside sensors, it

displays the warning messages on the laptop screen. If vehicle node receives beacon

messages periodically broadcast by roadside sensors, it broadcasts a request message to

roadside sensors, and informs roadside sensors that it will pass along and asks sensors

activate themselves if they are inactive. If drivers observe some dangerous road condition,
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it broadcasts a warning message about the road condition to roadside sensors using ZigBee

interface.

• Business Logic of Regular Nodes: Each regular node keeps two timers, which are Forward

Phase Timer(FPT ) and Backward Phase Timer(BPT ). FPT (BPT ) is responsible to

broadcast and receive forward activation (backward warning) messages. When a sensor

node except the most back (front) one receives an forward activation (backward warning)

message from previous (following) node, it synchronizes itself with the sender node, at

the same time, it save a local copy of the received message. The sensor will broadcast

the local copy message at sending slots under the following situations: a).The local copy

message has not been broadcast. b).The local copy message has been broadcast, but the

sender has never received the acknowledgement. We also implement the yield mechanism

to deal with the heavy condition at boundary nodes. We let previous boundary node

yields to the other when they do not receive the acknowledgement from the AP for a

certain number of times (which indicates the possible occurrence of collisions). At this

time, the previous node will resend the packet once every two sending slots, while the

other remains the same.

• Business Logic of APs: In order to be synchronized with both boundary node from

previous group and boundary node from following group, APs need to keep four timer-

s. PreForwdTimer (PostForwdTimer) is responsible to broadcast and receive activation

(acknowledge of activation) message from previous (following) boundary node. PostBack-

Timer (PreBackTimer) is responsible to broadcast and receive a warning (acknowledge

of a warning) message from following (previous) boundary node. APs broadcast bea-

con message periodically to vehicles and keep listening the request message and warning

message from vehicles. APs generate new activation message and propagate the message

in the forward direction to activate other roadside sensors if they receives some request

message from vehicles. Another responsibility of APs is propagating activation message

in the forward direction and warning message in the backward direction.

In order to collect data, we implement another two type nodes, which is start node and
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stop node. At the beginning of each experiment, the start node sends a message to the

first AP, and wake up the whole system. At the end of each experiment, the stop node

sends a stopping message to the last AP to terminate the whole system.

4.1.2 Feild Tests

The major purposes of field tests are two folds. The first is to test if the proposed system

works in field, and the second is to find out the impact of real environmental factors on the

proposed system, especially on the communication of the system. Hence, we conduct two

sets of field tests in a large open parking lot: One set of experiments are to test how the

whole system works. The test is conducted in two scenarios: there exist intensive WiFi traffics

nearby and there does not. Another set of experiments are conducted to measure the impacts of

environmental conditions on communication between two Telosb motes when the interference

level varies. Here, we elaborate the findings and results from the first set of experiments, while

the results from the second set of experiments are used as inputs to our simulation which is

discussed in Chapter 4.2.

Two groups of Telosb motes (including totally 9 motes) are deployed along the roadside in

a large open parking lot. The motes cover the length of 480 meters, the distance between two

adjacent motes is 60 meters. A vehicle repeatedly runs along the motes. Whenever the vehicle

enters the road from one end and is discovered by an AP, the AP will wake up all the rest

motes to start sensing. Warning messages are generated by the AP located at the other end

of the road at a constant frequency, and the messages are propagated to the AP who discovers

the vehicle and then is delivered to the vehicle.

Other experimental parameters are as follows. Transmission range is 100 meters. AP

broadcasts beacon message every 10 seconds and an event is generated every 20 seconds. Re-

transmission quota (r) is fixed at 3 while the number of hops to activate (θ) is set to 8. Vehicle

speed is about 20miles/hour. Each test lasts for 20 minutes.
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4.1.3 System Performance with Interference

As WiFi communication is expected to co-exist with the proposed system, we first test the

working and performance of the system when WiFi communication exists. For this sake, two

laptops equipped with WiFi cards are put near each of the APs, respectively, to serve as inter-

ferers. To make the interference strong, about 10Mbps traffic is exchanged between them, and

the traffic is generated by using LAN Traffic V2 [26]. In the experiment, WiFi communication

uses channel 6 (the default channel) and ZigBee uses channel 26. For comparison, we also

conduct experiment for the situations of no WiFi traffic.

In these experiments, we set the forward/backward interval (cf/cb) and group size (n) to 3.

We measured the average per-hop delay for the forward/backward message propagation, which

are denoted as DForward and DBackward respectively. The results are shown in the table 4.2.

From the results, we can see that the average delay measured with interference is slightly (i.e.,

between 5% and 9%) higher than that without interference for both forward and backward

message propagation. Note that, the simulated interference traffic is intensive. This indicates

that the impact of interference on propagation delay is not significant.

Table 4.2: Propagation Delay

n = cf = cb = 3 With Interference No interference

DForward(ms) 54.07 51.06

DBackward(ms) 95.99 88.31

4.1.4 System Performance with Varying Parameters

Since the impact of interference from WiFi traffic is insignificant, we conduct more extensive

experiments without the interference. In the experiments, we vary the system parameters (i.e.,

cf , cb and n) and measure the propagation delay. The results are as table 4.3 and table 4.4.

As we can see the largest forward propagation delay is about 205ms per hop, which means

the speed for propagating activation messages from an AP which detects an incoming cluster

of vehicles to other sensors that should be activated is about 293m/s, i.e., 659miles/h, which is
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Table 4.3: Forward Activation Message Propagation Delay

DForward(ms) cf = cb = 2 cf = cb = 3 cf = cb = 4

n = 3 63.04 51.06 59.57

n = 4 205.19 75.73 157.25

n = 5 85.76 122.73 102.65

Table 4.4: Backward Warning Message Propagation Delay

DBackward(ms) cf = cb = 2 cf = cb = 3 cf = cb = 4

n = 3 111.69 88.31 97.30

n = 4 540.59 105.39 189.08

n = 5 293.40 327.29 424.17

much faster than the speed of a vehicle. The largest backward delay is about 540 ms per hop,

which means the speed to propagate a warning message to related vehicles is about 111m/s,

i.e., 250miles/h, which is also much faster than the speed of a vehicle.

We can also see that the backward delay is higher than the forward delay. The reason is

found to be that, the forward phases of boundary nodes happen to have a better match than

their backward phases in our experiments. Consequently, each forward packet arriving at APs

can be relayed to the downstream group immediately, while some backward packets have to

wait for the next available backward phase of the downstream group. Besides, we can see that

the propagation delay goes up as the forward/backward interval increases most of the time.

Occasionally, it varies. By analyzing the collected data at each node, we find that the variations

are caused by the random packet loss, which affects the average delays.

4.2 Simulation

NS2-based simulation has been conducted to evaluate our design. We evaluate the impacts

of system parameters and environmental factors on the system performance. The system

parameters include group size and forward/backward interval. The performance metrics include

energy consumption (the average energy consumption per hour of all APs and regular nodes)

and propagation delay (the time from when the event occurs to when the cluster head receives

the warning message, which is normalized as delay per hop).
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We conduct both theoretical evaluation and empirical evaluation. For the theoretical e-

valuation, we vary the system parameters within theoretically-possible ranges to evaluate our

system performance. For the empirical evaluation, we follow the empirical traffic data to gen-

erate traffic and use the packet transmission traces collected from field experiments.

4.2.1 Setup

Table 4.5 shows the parameters fixed in the simulation. We simulate a highway with more

than 200 sensor nodes deployed along one side. Based on field experimental result, we set the

packet time (i.e., length of a slot in the proposed protocols) to 25ms. We assume cf = cb. In

addition, since retransmission quota is decided by group size and packet loss ratio as shown in

Equation 3.2, we do not explicitly consider it in our simulation.

Table 4.5: Parameters setup for VANET-WSN simulation

Road length 18900m × 20m

Number of hops to activate (θ) 50

AP Beacon interval 600ms

Sensor transmission range 100m

Inter-node distance (I) 90m

Vehicle transmission range 250m

Slot length (τ) 25ms

Average packet loss ratio at sensor and vehicle 15%

Interval between two events 6 minutes

Simulated time 1 hour

4.2.2 Theoretical Evaluation

Since the system performances are associated with three different parameters, we evaluate

each performance metric by varying one parameter while fixing the other two. Besides, the

arrival rate of the clusters is set to be 2 cluster per minute and the average speed of the vehicles

is 30m/s (67.5miles/hour).
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4.2.2.1 Group Size n

Fix cf = cb = 5. In Fig. 4.1, we can see that the impact of group size on delay becomes

insignificant as it goes up. This is because, by combining Equation (3.2) with (3.3), we know

that vp converges to a constant value as n approaches infinity and cf (or cb) and t are fixed.

For the energy consumption on sensor side, we can see that a larger group consumes less energy

per node. This is because forming a large group can reduce the number of boundary nodes and

APs, which consume more energy than regular nodes, in a given area.

However, we can not conclude from the above results that, the larger the group size is the

better performance we can achieve. The major problem of forming large group is that the

message propagation delay at APs becomes larger as the group size increases. This means

that the activation process becomes slow; hence, a vehicle may move ahead of the activation

message, which is not desired for safety. Thus, an appropriate group size should be around 25.
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Figure 4.1: Impacts of n on System Performance

4.2.2.2 Forward/Backward Interval cf and cb

Fix n = 20. It is obvious that by using larger forward/backward interval the sensor nodes

can get a larger fraction of time to sleep. Therefore, the delay increases and energy decreas-

es accordingly, which is approximately linear, as shown in Fig. 4.2. Since group size is often

pre-defined according to the road topology and packet loss ratio is related to environmen-
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tal conditions, the forward/backward interval should be the key factor affecting our system

performance.
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Figure 4.2: Impacts of cf and cb on System Performance

4.2.3 Empirical Evaluation

In order for the simulation to better reflect the real-world traffic, we use the empirical

vehicle traffic data, measured on I-80 highway in California in [45], to generate traffic for our

simulation. Also in field experiments, we log the packet transmission of the sensor nodes under

different traffic scenarios. These logs are transformed into the packet loss traces and then fed

into our simulator to determine the reception and dropping of the incoming packets, serving as

a realistic emulation of packet loss ratio for our system.

4.2.3.1 Traffic Generation

As shown in Table 4.6. In our simulation, the vehicle clusters are generated following the

three traffic categories proposed in [45]: night traffic with very low traffic volume and high

speed (1 am - 3 am), free-flow traffic with moderate traffic volume and high speed (10 am - 12

pm) and rush-hour traffic with low speed and very high traffic volume (3 pm - 5 pm).

4.2.3.2 Packet Transmission Traces

To emulate the road-side interference, we deploy some sensor nodes in the middle of two

regular nodes to act as the interferers by randomly broadcasting messages (20 packets/sec on
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Table 4.6: Traffic Generation

Traffic category Average speed(m/s) Density(veh/m) # of Clusters/ hour

Night traffic 30.93 0.0019 133

Free-flow traffic 29.15 0.0125 57

Rush-hour traffic 10.73 0.0364 <1

average). The reason that we choose sensors, rather than WiFi devices, as interferers is to

make the interference more intensive since they share the same channel with roadside sensors

in our system. The distance between two nodes is nearly 100m. According to different traffic

categories, different numbers of interferers are employed: 2 for night traffic, 4 for free-flow

and 6 for rush-hour. For comparison, we also tested no interferer scenario. The number of

transmissions for a serial of packets (called packet trace) are logged, as shown in Fig. 4.3.
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Figure 4.3: Outdoor Experiment: Packet Transmission Traces

4.2.3.3 Results

Based on the empirical traffic generation and collected packet transmission traces, simula-

tions are conducted. The first figure in Fig. 4.4 shows the propagation delay under three traffic

categories. We see that forward/backward interval is the dominant factor that affects the delay,

especially when group size is large. The delay in free-flow traffic is slightly higher than that in

night traffic. However, the delay in rush-hour is much higher than the other two cases due to

severe interference. Actually, this does not lead to a low system performance, since according
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Figure 4.4: Impacts of n, cf and cb on System Performance in Three Scenarios

to our proposed system model only cluster head interacts with the WSN. As shown before,

cluster arrival rate in rush-hour traffic is less than 1, which means the VANET in rush-hour

traffic is almost always connected. The warning propagation can be always conducted via the

VANET rather than the WSN.

Therefore, the utilization of sensor nodes is inversely proportional to the traffic (or cluster)

density. The energy consumption of both APs and regular nodes in the rush-hour traffic scenario

is the lowest while that in the night traffic scenario is the highest.

4.2.3.4 Average Propagation Speed and Estimated Node Lifetime

From the simulation, we can also obtain the average message propagation speed in different

traffic categories and estimate the lifetime of sensor nodes. The results are shown in the table 4.7

and table 4.8 below. To estimate the lifetime, we take both sensing and communication energy
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consumption into account under the traffic dynamics of a day. For sensing, experiment has

been conducted to measure the sensing energy consumed by passive infrared sensor [25]. Each

sampling consumes about 8.7mJ. Each sensor node samples the road condition every 10 seconds

when it is activated. The communication energy consumption is obtained from the simulation

by following the specification of Telosb mote [15]. Specifically, we consider the power for

receiving(62.1mW), transmitting (52.2mW), sleeping (3µW), idling (1.41mW) and transition

(426µW), when transmission range is about 75 ∼ 100m by default. Each sensor is equipped

with 2×AA batteries with 20, 000J in total. For system parameters, n = 20 and cf = cb = 5.

Table 4.7: Average Propagation Speed

Traffic category v̂p(miles/hour)

Night traffic 425

Free-flow traffic 356

Rush-hour traffic 115

Table 4.8: Estimated Node Lifetime

Node type Lifetime(days)

AP 145

Regular node 545
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CHAPTER 5. Design of ZigBee-Assisted WiFi Transmission System

5.1 Preliminaries

5.1.1 System Model and Design Objectives

To run our proposed system, each network node (e.g., laptop) has two wireless interfaces:

ZigBee (IEEE 802.15.4) and WiFi (IEEE 802.11). We call such nodes Z-WiFi nodes. The

WiFi interface is for data transmission while the ZigBee interface is for coordinating node

transmission activities. Due to current popularity of the IEEE 802.11 protocol, Z-WiFi nodes

may co-exist with the nodes that do not have or use ZigBee but use the Standard IEEE 802.11

protocol. We call such nodes S-WiFi nodes.

Our design targets mainly at the scenarios where data traffic is heavy due to high node

density and/or high packet transmission rate per node. Network nodes can be either static or

mobile. If the nodes are mobile, we assume that mobility is relatively low. For example, nodes

are carried by people who stay in conference rooms, libraries, cafe shops, stadiums, etc., where

it is typical that a node is static or moves for a while and then pauses for a while and so on

and so forth following the well-known random waypoint model. Our design objectives are as

follows.

• High Throughput : The network nodes gather information such as network deployment,

transmission rate of each node by their ZigBee interfaces. Then network nodes carefully

schedule the data transmission of WiFi interfaces based on the information collected by

the ZigBee interfaces. In this way, our design should reduce the contention among nodes

and thereby increase the throughput.

• Energy Efficiency : Through reducing the contention experienced by the WiFi interfaces,
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our design should also decrease the power consumption of nodes.

• Compatibility : On one hand, our system should not demand changes in the existing WiFi

and ZigBee standards. On the other hand, Z-WiFi and S-WiFi nodes should not harm

each other, but should be in the win-win status when co-exist.

• Fairness: Our design should organize data transmission of WiFi interfaces in a way that

the shared channel is shared relatively fairly among all nodes.

5.1.2 Practical Concerns

To apply in practice such a design where heterogeneous interfaces co-exist and collaborate,

two major concerns have to be investigated.

5.1.2.1 Interference

Both ZigBee and WiFi interfaces work on 2.4GHz frequency band. Experiments have been

done [17, 34], which show that WiFi can have severe interference on ZigBee communication

if their working channels overlap. However, if their channels are separated, the interference

becomes insignificant. Although lots of research has been done to evaluate the performance

of co-located ZigBee and WiFi, they rarely investigated the scenario under our investigation,

where both ZigBee and WiFi interfaces co-exist in the same station. Hence, we conducted

experiments to measure the impacts of interference on packet delivery ratio (PDR) of ZigBee

interfaces in this scenario.

Both indoor (e.g, library) and outdoor (e.g., parking lot) experiments have been conducted,

using two laptops. Each laptop has a ZigBee interface (i.e., attached Crossbow telosB mote)

and a WiFi interface. Two WiFi interfaces uniformly generate data traffic in both directions

and run the IEEE 802.11g protocol to keep network throughput saturated, while one ZigBee

interface transmits packets at a constant rate to the other. The channel of ZigBee interfaces is

fixed to Channel 26, while WiFi is tuned to Channel 6 (default channel) or Channel 11 (closest

to Channel 26).
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Figure 5.1: Impact of WiFi transmission on ZigBee PDR

The results of indoor experiments is shown in Fig. 5.1, and the results of outdoor experi-

ments are very similar. From Fig. 5.1, by using the non-overlapping channels for ZigBee and

WiFi, the packet loss ratio of ZigBee communication is small (< 2%), which not only motivates

but also justifies our leveraging of the co-existence of ZigBee and WiFi interfaces to benefit

each other.

5.1.2.2 Transmission Range

The other concern is the range difference of ZigBee and WiFi. As the transmission range

of ZigBee (i.e., 10 ∼ 75 meters [44]) is shorter than that of WiFi (i.e., 38 ∼ 140 meters [42]), it

is impossible to completely eliminate contention by forming clusters using ZigBee. Contention

may still exist among different clusters. However, this does not necessarily result in degradation

of system performance. Particularly, when the intensity of contention is low (no more than 4

contenders, as demonstrated in Fig. 1.6), the throughput does not decrease, but even slightly

goes up, as the number of contenders increases. This is because the default minimum contention

window is relatively too large when few nodes contend, leading to insufficient use of the channel.

This fact allows the presence of a certain degree of contention among different clusters without

degrading system performance.
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5.2 Proposed Design

Fig. 5.2 depicts the architecture of our proposed Z-WiFi system, which is built atop WiFi

and ZigBee. Thus, it is transparent to and independent of these standards. The cluster mainte-

nance component works through communication over the ZigBee interface. A packet buffering

queue is used to temporarily buffer packets from the upper layer. Through monitoring the sta-

tus of the queue, packet arrival rate can be inferred, based on which the transmission scheduler

dynamically computes the TDMA-like schedule for WiFi transmission within a cluster. The

schedule is executed by the packet controller component which controls the timing and speed

for passing packets in the packet buffering queue down to the underlying IEEE 802.11 MAC

layer. In addition, the duty-cycle scheduling component can power off the ZigBee interface

when possible to reduce its energy consumption.
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Figure 5.2: System architecture

In this section, we present the deign details of our proposed Z-WiFi network. Briefly, we first

present the cluster formation scheme. Then, the intra-cluster and the inter-cluster coordination

are elaborated, respectively. After that, a heuristics is designed to determine when our system

should be turned on to maximize the performance. For convenience, the notations used in this



48

thesis are listed in the Table. 5.1 below.

Table 5.1: Notation of ZigBee-Assisted WiFi Transmission System

τw Slot length for WiFi transmission

τz Slot length for ZigBee transmission

fw Number of slots within a WiFi transmission frame

fz Number of slots within a ZigBee duty-cycle frame

i The unique index of a node in a cluster (i = 0, 1, ...,M)

N The maximum index used in a cluster

ri Packet arrive rate of the node with index i

ni Number of slots assigned to the node with index i for WiFi transmission

λ Penetration rate of Z-WiFi nodes

W Minimum contention window

k Number of nodes within a cluster

δ Parameter for assigning ni
γ Parameter for turning on/off the ZigBee interface

ω Parameter for adjusting W

5.2.1 Cluster Formation

To facilitate the coordination of their transmissions for reduced contention, we propose

to organize nodes that have potential need for contention into a single cluster through Zig-

Bee communication. Based on existing cluster formation protocols for wireless networks [40],

we propose in the following a cluster formation scheme efficient for the scheduling of WiFi

transmission.

Initially, each node marks itself as a free node (denoted as FN). To obtain information

about neighboring nodes, each node periodically broadcasts a beacon message, defined as

〈Node id, CH id, i, ri〉, via its ZigBee interface. Here, Node id is the network-wise unique

id of the sender, CH id is the node id of its cluster head (denoted as CH) if the sender has

joined a cluster (otherwise it is empty), and i is a cluster-wide unique index of the sender,

assigned by the corresponding CH, when it joins the cluster. Besides, ri is its current packet

arrival rate (in the unit of bits/second) of the node with index i, estimated through monitoring

the status of its packet buffering queue. Note that, if the sender is a cluster member (denoted

as CM) or a FN, ri is the packet arrival rate of its own; if it is a CH, ri is the sum of packet
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rates of all nodes in its cluster. The usage of ri and i is to be detailed later.

Based on beacon exchange, each node can maintain a neighbor information list to record the

most recent information about its neighbors. If a FN has heard a beacon from one or multiple

CHs, it chooses the one whose cluster has the smallest packet arrival rate to join. Otherwise,

if a FN does not find any CH after a certain rounds of beacon exchange, it announces itself

as a CH candidate by broadcasting a formation packet piggybacking the number of FNs in its

neighborhood. When a node that is not a CH candidate first receives the formation packet,

it waits for a certain period of time to overhear other possible formation packets; when the

backoff expires, the candidate CH having the largest number of FNs is chosen as its CH and a

registration packet is sent back to the candidate to join. Upon receiving a registration packet,

the candidate node becomes a new CH. In response to each registration from a new CM, the

CH sends back an index packet, in which a cluster-wide unique index i (i is a positive integer)

is assigned to the CM. Note that, the index of a CH is 0.

5.2.2 Intra-cluster Coordination for WiFi Transmission

5.2.2.1 Time Synchronization

Based on the cluster structure, WiFi transmissions of nodes within the same cluster between

CH and CMs for reduced contention are coordinated. Each CM is time-synchronized with its

CH. This can be achieved by requiring the CH to attach its local time to each message that it

sends through its ZigBee interface, and each receiving CM adjusts its local time to align with

that of the CH.

5.2.2.2 Packet Arrival Rate Estimation

Each node measures the packet arrival rate (i.e., ri) at its packet buffering queue, rather

than at application layer. When packet buffering queue is full, any incoming packet from upper

layer is dropped, which imposes a limit on the value of ri. Hence, ri cannot be infinitely large.
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5.2.2.3 Slot Assignment and Schedule Representation

With the synchronized time reference, time is divided into frames and each frame is further

sliced into slots of equal length. The length of a slot, denoted as τw, is the empirical time

needed to send a packet through WiFi interface. The CH assigns the slots in each frame to the

nodes in its cluster, according to their packet arrival rates. In the following, we show how the

CH computes the WiFi transmission schedule (i.e., the slots to transmit), how it is represented

and how the CH updates the schedule to its CMs by using the ZigBee interfaces.

A WiFi transmission schedule is represented and sent as a sequence of binary bits, which

can be contained in the payload of a single ZigBee packet. A sequence consists of many sub-

sequences of 0(s) separated by a 1. For example, sequence

0000011000010001001000100 · · · 0

represents that a WiFi transmission schedule, where each frame has 17 slots, nodes with indices

0, 1, 2, 3, 4 and 5 are assigned with 5, 0, 4, 3, 2 and 3 slots, respectively. Node 0 (i.e., the CH)

can perform WiFi transmission during the first 5 slots of each frame, node 1 may not exist or

has no packet to send, node 2 can perform WiFi transmission during the 6th to the 9th slot

of each frame, and so on and so forth. WiFi transmission schedule periodically is updated and

broadcasted by the CH via its ZigBee interface as the packet arrival rate may change in each

node.

Particularly, in our experiments, we set the payload size to 28 bytes, which is the default

payload size used by TinyOS. Once the payload size is determined, the maximum number of

slots in a frame is also determined. We denote the maximum number of slots in a frame as fmaxw .

Also, we use ri to denote the packet rate of node with index i (i = 0, · · · , N − 1) in the cluster,

recalling that each node is assigned a unique index. Let δ (0 < δ ≤ 1) be a predetermined

system parameter. The number of slots allocated to each node i (denoted as ni) and the actual

number of slots composing a frame (denoted as fw) is computed as follows:

ni =

⌊
min

{
δ · ri

B · τw
, fmaxw · ri∑N−1

j=0 rj

}⌋
> 0, (5.1)
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fw =

N−1∑
i=0

ni ≤ fmaxw , (5.2)

where B is the WiFi bandwidth. Thus, ri/Bτw represents the expected number of packets sent

by node i. The rationale behind the slot computation is of three folds:

• For the sake of fairness, the number of slots allocated to a node is proportional to the

packet arrival rate of the node while the total number of slots composing a frame should

not exceed fmaxw .

• The ratio between the number of slots and the packet arrival rate is determined by system

parameter δ. The larger is δ, the longer is a frame and the larger number of consecutive

slots a node can use for WiFi transmission, and vice versa. Through our experiments,

increasing δ leads to decrease in energy consumption and increase in packet delay, and

vice versa. To balance energy consumption, δ is set to 0.2.

• Based on Eq. (5.1), the clustering condition can be defined as follows: a FN node can join

or form a cluster only if for any node i (including itself) in the resulted cluster ni > 0

can be satisfied. On one hand, a node with very few packets to send do not need to join

or form a cluster and it can just use the IEEE 802.11 protocol as a FN. On the other

hand, a node with a high packet rate should not be allowed to join a cluster if its joining

makes any existing node in the cluster have zero slot to transmit. Thus, after a certain

period of time, it will attempt to form a new cluster.

5.2.2.4 Schedule Execution

Ideally, each node transmits data through its WiFi interface only during the slots assigned

to it, and one packet uses one slot time (i.e., τw) to be transmitted. It follows that ni packets

should be sent down to the underlying 802.11 MAC layer in each frame. However, in practice,

this is hardly true, considering the following two facts.

• Overutilizing scheduled slots: Due to the inter-cluster contention, it is very likely that the

ni−1 packets scheduled for transmission at node i− 1 cannot be transmitted completely



52

when ni−1τw time is used up. Therefore, the buffered packets in the underlying MAC

layer may contend or collide with the packets sent by the next node i.

• Underutilizing scheduled slots: As the data from upper layer is unpredictable, the packet

size could be very flexible. It is different to accurately predict the number of packets that

can fit in with the scheduled transmission slots. Thus, it is possible that the transmission

of a packet is finished before the corresponding slot expires.

To make full use of each slot, we propose to use the callback (i.e., notification of the

completion of a packet transmission) from the underlying MAC layer to control the timing

for passing packets downwards, as illustrated in Fig. 5.2. Specifically, when the scheduled

transmission time (i.e.,niτw) begins, the packet buffering queue delivers a packet to the MAC

layer. As long as the scheduled time does not run out and there is an available packet for

transmission, a packet will be pushed down to the MAC layer once the callback of previous

packet is received.

5.2.2.5 Duty-cycle Scheduling on ZigBee Interface

To effectively and efficiently communicate among the ZigBee interfaces of the CH and the

CMs in a cluster, we propose a duty-cycle scheduling scheme for ZigBee communication.
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Figure 5.3: Duty-cycle of ZigBee interface

As illustrated in Fig. 5.3, the synchronized time is divided into slots each of length denoted

as τz, which is the typical length of time needed to process and transmit a maximum ZigBee

packet (e.g, 10 ∼ 20ms). A certain number of slots form a frame. The number of slots in a
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frame, denoted as fz, is a system parameter. During each frame, the communication between

the CH and each CM is scheduled based on the index of each CM. Specifically, the CH always

wakes up and transmits its own beacon message at the first slot and the WiFi transmission

schedule at the second slots. Correspondingly, CMs also wake up at the first two slots to hear

these information from its CH. Then, each CM with index i goes to sleep until the beginning

of the (2i + 1)th slot, when it sends out its beacon to the CH. In the (2i + 2)th slot, it waits

for possible notification of index change from the CH. As to be discussed in Section 5.2.3, the

index of a node may need to be changed when clusters are merged.

In addition, multiple clusters may co-exist and their ZigBee communication could interfere

with each other. To deal with this, a node does not start transmission immediately at the

beginning of the ZigBee transmission slot; instead, a random backoff is made to reduce collisions.

5.2.3 Inter-cluster Dynamics for Dealing With Mobility

Due to mobility, a CM may move out the range of its CH and join another cluster; a FN

may discover a CH and join the cluster headed by that CH; a CH may move into the range

of another CH and their clusters may be merged to reduce the number of co-existing clusters

and hence inter-cluster contention. In this subsection, we briefly describes cluster switching,

joining and merging.

5.2.3.1 Cluster Switching

When a CM with index i finds it has moved out of the ZigBee communication range of its

CH, i.e., failing to receive beacon from its CH for a certain time (e.g., 3fz time), it attempts

to discover nearby CHs by overhearing beacons. If it finds some CHs, it joins the cluster that

has the lowest overall packet arrival rate. If no CH is found in vicinity, it becomes a FN, which

can either join another cluster, or form its own cluster. Note that, if a CH fails or is turned off,

its CMs will not be able to receive beacon messages from it, in which case they will react as if

they have moved out of the communication range of the CH and perform cluster switching as

depicted above.
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5.2.3.2 Cluster Joining

When a CM or CH becomes a FN, it first tries to join other cluster by turning on its

ZigBee and listening for a certain time (e.g., 3fz time). If it finds some CHs in the vicinity,

a registration packet is sent. Upon receiving the registration packet, the CH acknowledges

that node by replying an index packet containing a unique index (typically the smallest unused

index in the cluster) assigned to that node, if the clustering condition (See Eq. (5.1)) can be

satisfied. Once the index packet is successfully received by the FN, it becomes a CM of that

cluster. If no CH is found, it starts the cluster formation process as described in Section 5.2.1,

if the clustering condition can be satisfied.

5.2.3.3 Cluster Merging

To dynamically minimize the cluster density and hence reduce inter-cluster contention,

cluster merging is proposed as follows. As CHs are always awake, they may overhear WiFi

transmission schedule packets from nearby clusters. When a CH (CH1) overhears a schedule

packet from another CH (CH2), it checks if it can cover more than half of CMs of CH2. If

so, merging process will be conducted through the negotiation between these two CHs. As

a results, the nodes that are in the cluster of CH2 and covered by CH1 are merged into the

cluster of CH1, while the rest of CMs become FNs, which with either join other clusters or

form a new cluster later.

5.2.4 Turning on/off ZigBee

Our system is designed mainly to improve WiFi performance in high-contention scenarios,

and the IEEE 802.11 protocol can already achieve the optimal throughput when the contention

is low. To avoid unnecessary control overhead, we propose a simple heuristic parameter γ for

turning off ZigBee interfaces of Z-WiFi nodes when the contention is low and turning on them

when the contention is high. The nodes without using ZigBee interface run the IEEE 802.11

protocol.

Specifically, each node records transmission time (i.e., duration from the arrival of a packet
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to the reception of corresponding ACK) of the most recent outgoing packets. Let Tpkt be

average transmission time, then

• ZigBee is turned off, if Tpkt < 0.5× γτw;

• ZigBee is turned on, if Tpkt > 1.5× γτw.

γτw represents the expected packet delivery delay when system throughput is saturated. The

above conditions attempt to find a range, beyond whose upper bound the ZigBee interface

should be turned on to improve performance and below whose lower bound ZigBee interface

can be turned off to save energy. Besides, the difference between the upper bound and the lower

bound is γτw, which is designed to prevent frequent switching caused by random vibration of

the network traffic.The selection of γ is to be studied in Section 6.1.

5.3 Co-existence of Z-WiFi and S-WiFi

In this section, we first present an analytical model for our proposed system by taking

account of penetration rate (i.e., the proportion of Z-WiFi nodes in a system), denoted as λ.

Then, based on the model, we enhance our proposed system to be able to operate with the

co-existence of S-WiFi nodes.

5.3.1 Model

As outlined in [46, 28], our model is also built upon the Markov chain model for analyzing

saturation throughput. Similarly, we assume that a fixed number (n) of nodes (including λn

Z-WiFi nodes and (1 − λ)n S-WiFi nodes) contend with each others and each node always

has a packet available for transmission. Let W denote the minimum contention window, m

represent maximum backoff stage (i.e., 2mW is the maximum contention window) and M be

the maximum retransmission count (e.g., m = 4 for data frame and m = 7 for RTS frame in

the IEEE 802.11b/g protocol).

Suppose the probability that a packet sent by a node collides with others is p. According

to [46], the probability (η) that each node transmits a packet in a randomly chosen slot time
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can be computed as a function of p and W ,

η= φ(p,W ) =


2(1−2p)(1−p)

W ·B(m+1)+A(m+1) if m ≤M
2(1−2p)(1−p)

W ·B(M+1)+A(m+1)+W ·2MpM+1A(m−M)
if m > M

, (5.3)

where A(x) = (1− 2p)(1− px), B(x) = (1− p)(1− (2p)x) and p = 1− (1− η)n−1.

The above model is used to analyze the saturation throughput of homogeneous WiFi sys-

tems, where all network nodes have exact the same configurations. In our system, we propose

to allow different settings for the WiFi interfaces on Z-WiFi and S-WiFi nodes. Thus, the

model can be extended as follows.

Virtually, each Z-WiFi cluster is represented as a super Z-WiFi node that can transmit all

the time. Let Wz and Ws be the minimum contention window used by Z-WiFi and S-WiFi

node, respectively. Let C denote the expected number of clusters. Then, we can have

• the probability that a super Z-WiFi node (i.e., a Z-WiFi cluster) transmits in a randomly

chosen slot time is

ηc = φ(pc,Wz), (5.4)

where

pc = 1− (1− ηc)C−1(1− ηs)(1−λ)N ; (5.5)

• the probability that a S-WiFi node transmits in a randomly chosen slot time can be

computed as

ηs = φ(ps,Ws), (5.6)

where

ps = 1− (1− ηc)C(1− ηs)(1−λ)n−1. (5.7)

5.3.2 Achieving Fairness Through Adjusting W

5.3.2.1 Formulation of Fairness

From the above-presented model, it is easy to observe that a super Z-WiFi node has the

same chance to transmit as a S-WiFi node (i.e., ηc = ηs) if Wz = Ws. Suppose there are k

nodes in a cluster. Then, the average transmission probability for a Z-WiFi node is ηs/k, which
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means S-WiFi nodes have an advantage over Z-WiFi nodes in accessing the channel. To deal

with this problem and make Z-WiFi nodes have equal chance to access the channel, we propose

to dynamically adjust the minimum contention window Wz of Z-WiFi nodes to achieve fair

sharing of the channel with S-WiFi nodes.

Assume that all S-WiFi nodes use default the contention window (i.e., 31 for 802.11b and

15 for 802.11g), denoted as Wdef . That is, Ws = Wdef . We define that Z-WiFi and S-WiFi

nodes fairly access the channel if

Pc = k · Ps, (5.8)

where Pc and Ps are respectively the probability that a super Z-WiFi node and a S-WiFi node

can successfully transmit in a randomly chosen slot time. Specifically, we have

ηc(1− ηc)C−1(1− ηs)(1−λ)n = k · ηs(1− ηc)C(1− ηs)(1−λ)n−1 (5.9)

Combining Eq. (5.4), (5.5), (5.6), (5.7) and (5.9), the optimal value of Wz can be only found

numerically given a particular set of system parameters, similar to [46, 28].

5.3.2.2 Heuristics

Due to the complexity of solving the above equations, we design a heuristics to choose Wz

based on a simplified model, where we assume m = 0 (i.e., only the first transmission of a

packet is considered). Hence, from Eq. (5.4) and (5.6), we have

ηc =
2

Wz + 1
and ηs =

2

Wdef + 1
. (5.10)

Combining these two equations with Eq. (5.9), we can get

Wz =
1

k
(Wdef − 1) + 1, (5.11)

where 0 < 1/k ≤ 1. Since Wdef − 1 > 0, Wz monotonously increases as 1/k becomes larger.

Thus, when 1/k = 1 (i.e., only one node in the cluster), Wz = Wdef which is the same as

S-WiFi nodes; when 0 < 1/k < 1 (i.e., more than one node in the cluster), 1 < Wz < Wdef

which enable Z-WiFi nodes to compete with S-WiFi nodes. The value of Wz for a Z-WiFi node

is dynamically chosen as follows.
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• According to the neighbor information, each Z-WiFi node computes the expected value

of minimum contention window E[Wz] by

E[Wz] = (1/k)ω (Wdef − 1) + 1, (5.12)

where ω is a positive system parameter to adjust the changing rate of Wz as cluster

structure alters. Note that 0 < (1/k)ω ≤ 1 as well.

• If bE[Wz]c = dE[Wz]e, then Wz = bE[Wz]c = dE[Wz]e

• If bE[Wz]c 6= dE[Wz]e, then

– Wz = bE[Wz]c with the probability dE[Wz]e − E[Wz];

– Wz = dE[Wz]e with the probability E[Wz]− bE[Wz]c.

By appropriately choosing the value of ω, Z-WiFi nodes can achieve no worse performance than

S-WiFi nodes as to be shown in Section 6.1.

Remarks: The above heuristics is purely based on the local information (i.e., k), and thus

is efficient to be implemented. Moreover, it enables fair access of the channel not only between

Z-WiFi nodes and S-WiFi nodes but also among Z-WiFi clusters of different sizes. Particularly,

the heuristics will force a Z-WiFi cluster of more nodes to use a smaller W to compete with

clusters of fewer nodes, so as to achieve fairness for the Z-WiFi nodes in different clusters.
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CHAPTER 6. Implementation and Simulation of ZigBee-Assisted WiFi

Transmission System

6.1 Simulation

To evaluate our proposed system in a large-scale network, we simulate the system with ns2

simulator. In the simulation, the following major metrics are studied:

• Network throughput (Mb/s) is the total amount of data successfully transmitted (i.e.,

ACKed at sender side) in the network. To measure the throughput, each node runs

an application which keeps sending UDP packets and by default totally all these nodes

generate the data input with an average rate of 20.4Mb/s (i.e., 22 packets/s at each node

on average). All the packets have maximum payload size.

• Energy consumption (J/Mb) is computed as the total amount of energy consumed by

all network interfaces of all nodes divided by the number of Mbs of data that has been

successfully transmitted. The energy consumed by the WiFi interface is measured accord-

ing to the specified power consumption rate of SX-SDWAG 802.11g wireless module [3]

(i.e., 1047mW for transmission, 513mW for reception and 420mW for being idle) and the

power consumed by the ZigBee interface is measured according to the specified power

consumption of CC2420 RF transceiver [2] (i.e., 52.2mW for transmission, 56.4mW for

reception, 1.28mW for being idle, 0.06µW for sleeping and 0.06mW for transition).

• Throughput fairness is measured with respect to the fairness index (FI) [29], which is

defined as FItp = µ(χ)
µ(χ)+σ(χ) , where µ(χ) and σ(χ) are the mean and the standard deviation

of χ at all network nodes. χ is the ratio of throughput to input. Obvious, FItp is between

0 and 1. The more closer FItp approaches 1, the better is the fairness.
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Unless otherwise specified, our simulation use the settings shown in the Table. 6.1. Also,

we adopt the random waypoint mobility model, where the pause time is fixed to 20s. Besides

collision-caused drops, each node intentionally drops 2% (based on the experiment results

shown in Fig. 1.6) incoming packets on ZigBee communication to simulate the packet loss due

to interference from WiFi, which use the default IEEE 802.11g protocol.

Table 6.1: Parameter setup

Simulation time 1 hour

Number of nodes 50

Network scale 100m × 100m

Average moving speed 2m/s

Range of WiFi (Rw) 120m

Range of ZigBee (Rz) 60m

ZigBee slot length (τz) 0.02s

WiFi slot length (τw) 0.001s

Length of frame (fz) 150 slots

ZigBee on/off parameter (γ) 15

Contention window parameter (ω) 2.0

Packet buffer size 50 packets

6.1.1 Comparing with S-WiFi system and studying parameter γ

Recall that parameter γ affects when to turn on/off ZigBee interface of a Z-WiFi node

to choose using either our proposed protocol or the IEEE 802.11 protocol. To find the best

time to turn on ZigBee so as to maximize the performance, we compare Z-WiFi systems (with

λ = 100%), configured with four different values of γ (i.e., 1, 5, 15 and 25), with the S-WiFi

system (with λ = 0%).

From Fig. 6.1a, we can see that when network input is below 17Mb/s, S-WiFi system can

almost deliver all incoming packets. When input is beyond 17Mb/s, S-WiFi nodes reach the

maximum throughput. At this time, ZigBee interface of Z-WiFi nodes should be turned on

to assist WiFi transmission. As shown in Fig. 6.1a and 6.1c, γ = 5, 15 or 25 can precisely

render ZigBee turned on at the right time. This is because, due to accumulated waiting delay

in the packet buffer queue, packet transmission delay rises up drastically (from less than one
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Figure 6.1: Choosing parameter γ by comparing with S-WiFi

millisecond to more than hundreds of milliseconds) once S-WiFi system gets saturated. Thus,

large values of γ (e.g., γ > 5) can work appropriately. Particularly, when ZigBee interface

is turned on (i.e., input exceeds 17Mb/s), energy consumption drops rapidly, as shown in

Fig. 6.1b, which shows that our proposed system can save energy.

When γ = 1, ZigBee interface is turned on when network input (i.e., contention) is low.

At this time, our protocol cannot help, as the S-WiFi system has already achieve the optimal

throughput. Hence, the overhead introduced for ZigBee communication makes Z-WiFi systems

consume more energy.

In addition, we also measure average packet delivery delay from application layer, as illus-

trated in Fig. 6.1d. From the results, setting γ to 15 or 25 can guarantee that Z-WiFi system

can achieve no longer packet delivery delay than S-WiFi system when input is below 21Mb/s.

When input is above 21Mb/s, our system also becomes saturated and thereby packet delivery

delay increases. Note that the packet delivery delay of Z-WiFi system is longer than that of
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S-WiFi system only when the throughput of Z-WiFi is higher than S-WiFi.

To summarize from the above results, our proposed system can improve the network through-

put by 18%, reduce the energy consumption by 32% and provide much better fairness, when the

network traffic density is high.

6.1.2 Co-existence of S-WiFi and Z-WiFi Systems

6.1.2.1 Choosing Contention Window Parameter ω

Recall that, we propose parameter ω to dynamically adjust Wz of Z-WiFi nodes to compete

with the co-existing S-WiFi nodes. Fig. 6.2a illustrates the impact of ω on overall throughput

(including both Z-WiFi and S-WiFi nodes) with different penetration rate. According to the

results, the throughput increases as ω becomes larger. This is because using small W can make

full use of the channel when contention is very low. When ω is beyond 2.0, the throughput

stays approximately constant as the average value W approaches its lower bound.
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Figure 6.2: Impact of parameter ω on throughput

By fixing λ = 60%, we further measured the average throughput/input ratio (χ) of Z-WiFi

and S-WiFi nodes, respectively, as ω varies. The result is shown in Fig. 6.2b. Generally, as ω

increases, Z-WiFi node gets more chance to transmit while S-WiFi node gets less chance. When

ω = 0.5, Z-WiFi nodes have the similar χ to S-WiFi, which means Z-WiFi and S-WiFi nodes

fairly share the channel; when ω is beyond 0.5, Z-WiFi nodes outperform S-WiFi nodes. This
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also holds for the cases of other penetration rates. To obtain the maximum overall throughput,

we choose ω = 2 in our simulation.

6.1.2.2 Impact of Penetration Rate on Performance
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Figure 6.3: Impact of penetration rate λ on performance

Fig. 6.3a gives the overall network throughput, which increases as λ approaches 100%.

Fig. 6.3c and Fig. 6.3b show the average throughput/input ratio (χ) and energy consumption of

Z-WiFi nodes and those of S-WiFi nodes, respectively, as λ changes. Besides, the corresponding

overall averages are also shown. From these figures, we can see that both node throughput ratio

and energy consumption of Z-WiFi and S-WiFi nodes are improved, as more and more nodes use

our proposed system. This is because by using our system the network contention is reduced,

which can also benefit the co-existing S-WiFi nodes simultaneously. Similar trends can be seen

from the overall performance.

In Fig. 6.3c, as λ increases, χ of Z-WiFi nodes first reaches 1. Then, it slightly drops
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below 1. This is because when λ becomes larger, the size of each cluster also increases, leading

to more schedule inconsistencies (due to emulated packet loss) within the same cluster. As

a result, more transmission slots of the nodes in the same cluster may overlap, resulting in

more collisions. Thus, χ slightly drops. Moreover, in Fig. 6.3b, the energy consumption of

Z-WiFi nodes decreases very slowly when λ becomes larger. This is because the energy has to

be consumed by the regular RTS/CTS of the underlying IEEE 802.11 protocol, which sets an

upper bound for the energy saving that can be accomplished.

As a conclusion of the above analysis, using our proposed system can benefit all network

nodes (both Z-WiFi and S-WiFi nodes) in terms of both throughput and energy. As penetration

rate grows, the performance of both individual nodes and the overall networks is improved.

6.1.3 Performance with different network scale

Fig. 6.4 shows how our system works with different network scale. From Fig. 6.4a, the

throughput slightly decreases as the scale of the network becomes larger, due to the number

of clusters increasing. When the number of clusters within WiFi transmission range increases,

contention gets more severe, which degrades the performance. However, the number of clusters

will not become too large, since cluster merging mechanism is applied, which can ensure the

number of interfering clusters close to dR2
w/R

2
ze (e.g. 4 under our simulation). For energy con-

sumption illustrated in 6.4b, more clusters consume more energy in transmission coordination

and cluster maintenance.

6.1.4 Impact of ZigBee Packet Loss on Performance

Apart from random collision-caused packet loss, we also study the packet loss due to other

environmental phenomena (e.g., interference, obstacle, multipath, etc.). Thus, we conduct a

simulation by varying packet loss ratio from 2% to 20%. As shown in Fig. 6.5, our performance

degrades slightly as loss ratio gets larger. For throughput, it is because of the insufficient uti-

lization of channel caused by increasing delay or error in updating WiFi transmission schedule.

The energy consumption increases mainly because of the increased energy consumption for

contention caused by schedule inconsistencies.
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Figure 6.4: Impact of network scale on performance
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Figure 6.5: Impact of ZigBee packet loss on performance

6.2 Implementation

6.2.1 Prototyping

As a proof of concept, we implement a prototype of our proposed system. We build a

testbed with 10 DELL D-Series laptops (called nodes hereafter), each running the Ubuntu

Linux 8.10 (kernel 2.6.27-17-generic). Each node is also equipped with a D-Link WNA-2330

Wireless G Notebook Adapter (108Mbps, 802.11g, Atheros chipset, PCMCIA) and a Crossbow

telosB mote (i.e., ZigBee interface). Note that the wireless adapter is built with the state-of-

the-art technology, which can deliver higher throughput than standard 802.11g devices. The
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scheduling of WiFi transmission is implemented upon MadWiFi [1], an open-source driver for

Atheros chipset-based 802.11 Wireless LAN devices. The prototyped ZigBee communication is

implemented upon TinyOS 2.1.1 platform, where 10 nodes form a cluster shown in Fig. 6.6. The

WiFi interfaces of all nodes run in the ad hoc model and are tuned to Channel 3, and the ZigBee

interfaces are tuned to Channel 26; thus, the interference between them is minimal. Besides,

the implementation of transmission scheduling is based on software timer provided by Linux

kernel, which can allow a minimum granularity of 1µs. At the beginning of each experiment, we

ask a dummy ZigBee node broadcasting a dummy message as start signal, when other ZigBee

nodes receive this dummy signal, they start their ZigBee timer and trigger WiFi interface. In

this way, We keep both the ZigBee interface and WiFi interface time synchronized.

Figure 6.6: Experiment Testbed

Experiments have been conducted on the prototyped system to evaluate the feasibility and

the performance of our designed system. For comparison, two sets of experiments are conducted

by running the IEEE 802.11 protocol and our proposed system, respectively. Through the

experiments, we measure the maximum network throughput as the number of nodes increases

from 2 to 10. To measure the maximum throughput, each node generates UDP traffic of 34.8

Mb/s to its neighbor node. Each packet has a payload of 1450 bytes, which makes the overall
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packet to exactly fit into a single MAC-layer frame. The duration of each experiment run is 5

minutes. The experiment is conducted three times. Besides, ni = 10 and τw = 0.001s.
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Figure 6.7: Maximum Network Throughput

6.2.2 Experiment Results

The experiment results are shown in Fig. 6.7. In general, compared with the IEEE 802.11

protocol, our proposed system can improve the network throughput significantly. Particularly,

when the number of involved nodes reaches 10, the improvement of throughput can be as high

as 49.1%. As expected, our proposed system outperforms the IEEE 802.11 protocol when the

number of transmitters is large (e.g., more than 4 nodes in our experiment). As that number

keeps increasing, the difference becomes more significant because the IEEE 802.11 protocol

suffers from severe contention and the throughput drops fast.

Moreover, the standard deviation (STDV) of throughput among different nodes is also

measured, as shown in the table below. From the results, we can see that using our proposed

system introduces much lower throughput STDV, which indicates better throughput fairness.

# of transmitters Throughput STDV of S-WiFi Throughput STDV of Z-WiFi

4 1.1016 0.1780

6 0.8016 0.1281

8 0.7698 0.1775
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Through the experiments, our proposed system has been shown to be able to improve

throughput significantly and provide fair sharing of bandwidth.
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CHAPTER 7. Conclusion and Future Work

7.1 Summary of Thesis

In this thesis, we first studied the big challenges for both sparsely deployed and densely

deployed wireless ad hoc network. We then introduced the emerging wireless communication

technology, namely ZigBee, which supports low-power, low-cost, short-range communication.

Maintaining stable connectivity is a big challenge for sparsely deployed and highly dynamic ad

hoc wireless network. Reducing contention and maximizing network throughput is also a big

challenge for densely deployed ad hoc wireless network, especially when many devices locate

in a small area and each device has heavy duty message to transmit. Inspired by the fact

that more and more devices support multiple different wireless communication interfaces, we

propose two systems to address above challenges by assisting existing wireless ad hoc network

by ZigBee interfaces.

An integrated VANET-WSN system was proposed to address the connectivity issue in

sparsely deployed VANET. Protocols were designed for efficient vehicle-sensor and sensor-sensor

interactions. Prototype of the system has been implemented and tested in the field to verify its

feasibility. The simulation results indicate that, with appropriately chosen system parameters,

satisfactory safety and energy efficiency can be achieved simultaneously.

In order to reduce contention of pure WiFi network, we have proposed a simple yet ef-

fective system for ZigBee-assisted WiFi transmission to improve system throughput. Mobile

devices form clusters based on the information gathered by their ZigBee interfaces. Coordinat-

ed through ZigBee interfaces, members in each cluster take turns to transmit using their WiFi

interface, resulting in reduced contention and collision. Results of experiment and simulation

have verified our design by showing that, the throughput, power consumption and fairness can
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be improved.

7.2 Future Work

There are several future research works we can do about our proposed VANET-WSN system.

The main future works of VANET-WSN system are summarized as follows.

1. Even though the node failure within one group has no effect on other groups because of

the modularity of our design, it is important for VANET-WSN to detect node failure and

replace the failed node with good one timely. Otherwise, it is possible that the dangerous

road condition happens within the range covered by the group which contains the failed

node will not be seen by incoming drivers.

2. Detecting nodes with low battery and replace the batteries timely is another important

and challenge work. Sensors may not work well when their battery is low. The commu-

nication range may become short and the sensing accuracy may become low.

3. Since the conditions of highways may be very complicated. From drivers’s prospective,

false warning message is no better than no warning message. Thus Detecting the real road

condition accurately is very important for drivers. In our proposed system, we believe in

the sensors. Whatever warning message sent out by the detecting sensors, we believe the

message is true. However, it is possible that the sensor may send out some false warning

message. It is another challenge to make sure that only the true warning message will be

propagated through our proposed network.

4. In this thesis, we only consider one-way road. Even though it is easy to extend our

proposed system to two-way roads, new challenges may appear when we deploy the system

on two way roads, such as ZigBee interference from both road sides.

There are several future research works we can do about our proposed ZigBee-Assisted

WiFi Transmission System too. The main future works of ZigBee-Assisted WiFi Transmission

System are summarized as follows.
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1. In this thesis, we assume wireless devices are static. If they are mobile, we assume the

mobility is relatively low. We need to address more challenges when we extend our

proposed system to highly mobile devices and highly dynamic network.

2. As a proof of concept, we implement a prototype of our proposed system. And the

result shows that our proposed system can improve the network throughput significantly.

However, the implementation is a simplified version of our designed system and the test

bed scale is small. We only use 10 laptops to do the experiment, and the system only has

one cluster. In order to further demonstrate the effectiveness of our proposed systems,

we need to do more complicated implementation and more experiments.
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