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CHAPTER 1. General Background

Proteins are the principal catalytic agents, structural elements, signal transmitters, transporters and

molecular machines in cells. The diverse roles played by proteins in cells are mediated by interactions

between proteins (130), and between proteins and DNA (152), proteins and RNA (30) and between

proteins and ligands (33). Protein-protein interactions involve the association of protein molecules. The

interactions between proteins are important in virtually every biological process in a living cell. Protein-

protein interactions play a pivotal role in energy conversion; ion transportation; DNA replication and

transcription; RNA splicing; reaction catalysis and signal transduction. Consequently, understanding

the sequence and structural determinants as well as the biophysical and biochemical mechanisms of

interactions between proteins is crucial for understanding of cellular function. The study of protein-

protein interactions encompasses:

• Experimental detection of pairwise protein-protein interactions (175). Dozens of methods have

been developed for this task although only two broad classes of methods have been used on a

large scale: Fragment complementation assays such as the yeast two-hybrid (Y2H) system (153)

in which split proteins are reconstituted by fusions of interacting proteins; Biophysical methods

which include structure determination and mass spectroscopic (MS) identification proteins in

complexes. At present, it is unclear whether any particular method should be favored over others;

hence, multiple complementary methods are used in practice to cover the interactome (the full

complement of interactions among proteins) within a cell or organism of interest.

• Computational analysis of protein-protein interaction networks (47; 17; 178). Such networks

provide a global picture of protein-protein interactions that can further be analyzed to identify

putative functional modules (21; 171; 174), nodes that play important roles (e.g., hubs) (83);

or to determine topological features (degree distribution, hierarchical structure, modularity, etc.
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(49; 146; 192; 96). Comparative analysis of two or more networks of the same type from different

species can help identify conserved functional modules (159; 168; 135; 196).

• Protein docking (90; 120) methods for modeling the structure of complexes formed by interac-

tions between proteins. Docking methods can be used to address questions such as: can two

proteins with known (or predicted) structures bind to each other? If so, what is the strength of

the interaction between them? What spatial configuration do they adopt in their bound state?

• Analysis and characterization of protein-protein interfaces in terms of their physico-chemical

features (127), topological features (86), geometric features (35; 140; 110; 187) and residue con-

tact preferences (41; 133). Barring a few exceptions (133; 191), much of the published analyses

of protein-protein interfaces have been carried out using relatively small datasets. Against this

background, comprehensive and systematic analyses of protein-protein interfaces is of interest.

• Computational prediction of protein-protein interfaces or binding sites (169; 164; 165; 195) us-

ing amino acid sequence features (134; 58), structural features (when the structure of the target

protein is available but the structure(s) of complexe(s) it forms with other protein(s) are unknown

(127; 19; 20; 100), evolutionary information (114; 115; 148; 105) as well as a combination of

different types of information (158; 112; 113). Many of these methods have been evaluated using

relatively small datasets of protein-protein interfaces. Systematic comparison of the alternative

methods using large datasets and different classes of interfaces is important for understanding

their relative strengths and weaknesses, assessing the reliability of individual methods, and for

developing improved methods for predicting protein-protein interaction sites.

1.1 Protein-Protein Interface Analysis and Prediction

The primary focus of this thesis is on the analysis and characterization of protein-protein interfaces

and on the development of methods for predicting protein-protein interface sites. Advances in protein

methods for identifying the amino acid residues that contribute to the specificity and affinity of the

protein-protein interaction can complement experimental methods for construction of protein-protein

interaction networks, and enhance the effectiveness of protein docking methods (by helping focus the
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search for interfaces to parts of the protein surface that are predicted to be part of an interface), and

ultimately, assist the discovery the physicochemical principles of protein macromolecule associations

and contribute to advances in rational drug design.

Protein-protein interactions can be classified into several categories based on the sequence identity

of constituent proteins, and the strength and the duration of the interactions. The interfaces between

subunits of a protein-protein complex are called homo-oligomeric interfaces when the two subunits

share a high degree of sequence identity; otherwise, they are called hetero-dimeric interfaces. Based

on the strength and duration of interactions, protein-protein interactions can be classified into perma-

nent (obligate) or transient (non-obligate) interactions (133; 129). Permanent or strong interactions

result in stable protein-protein complexes, whereas transient or weak interactions result in unstable

protein-protein complexes. Transient interactions play a major role in the regulation of several impor-

tant cellular processes. However, they are much harder to study than obligate interactions due to the

lack of the physically stable complexes.

Experimental methods while generally expensive and time-consuming, in many instances, offer

the only direct methods available for reliable identification of amino acid residues that participate in

protein-protein interactions. Computational methods on the other hand are inexpensive, and can be ap-

plied in settings where experimental data are unavailable or too expensive to obtain. However, before

computational methods can be applied on a large scale, it is important to determine the reliability of

predictions generated by such methods through rigorous statistical cross-validation as well as direct

experimental verification of their predictions. We now proceed to briefly review the experimental and

computational methods that are available for identification or prediction of protein-protein interfaces.
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1.2 Experimental Methods

1.2.1 X-ray Crystallography

X-ray crystallography technique works as follows: shed a beam of X-ray on crystal material; the

diffraction caused by the electrons in the crystal produce a three-dimensional picture of the density of

electrons; atomic positions and bonds can then be determined. X-ray is regarded as a gold standard of

structure determination due to its precision (71) and has been successfully applied on the determination

of large protein complexes structures (132; 12; 182; 69). Most resolved structures deposited in the

Protein Data Bank (PDB) (14) come from the X-ray method. The challenge with X-ray is the require-

ment of highly purified protein complexes and favorable conditions for crystallization. Proteins such

as membrane proteins, virus envelopes and participants in transient protein-protein interactions rarely

form stable crystals (23). Thus, it is impossible to determine the structures of such proteins or protein

complexes using X-ray crystallography. Moreover, crystallized protein complexes may not imply bio-

logically relevant conformations. This creates controversy about the reliability of PPIS identified using

only structures derived from X-ray crystallography.

1.2.2 Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR imposes external magnetic fields on the nuclei of atoms and aligns them into high or low

energy levels. When agitated with an alternating magnetic field, the nuclei shifts between energy

levels and produces NMR spectroscopy from which physical, chemical and electronic information

is obtained to deduce protein macromolecule structures. Compared to X-ray crystallography, NMR

produces lower-resolution protein structures and only works for smaller proteins (about 30-40 kDa).

However, the latest development of transverse relaxation-optimized spectroscopy (TROSY) (138) tech-

nology has enabled NMR’s applications to large proteins (up to 1,000 kDa). NMR with chemical shift,

cross-saturation and TROSY has specifically been developed for identifying protein-protein interfaces

(138; 163; 54; 170).
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1.2.3 Site-Directed Mutagenesis

Site-directed mutagenesis (181) is a molecular biology method to change particular base pairs in a

piece of DNA. Gene functions are identified through the comparison of the wild type genotype with the

mutated DNA. For instance, alanine scanning mutagenesis alters the codon sequence by substituting

specific amino acid residue with alanine and investigates the change of binding affinity of the wild type

protein. Thus, specific protein-protein interaction sites can be recognized (37; 38; 7). Evidence shows

that interface residues do not contribute equally to the protein-protein binding; the binding affinity

comes mainly from a few central residues (dubbed “hot spots”), which are surrounded by less important

residues (34). Several research teams (15; 22) have recently begun to explore the relationship between

hot spots and protein-protein interfaces.

1.2.4 Fluorescence Resonance Energy Transfer (FRET)

FRET can be applied to recognize transient protein-protein interactions in living cells. When two

fluorescent molecules are close enough (within 60Ȧ), energy is transferred from one excited fluores-

cent molecule (the donor) to the other (the acceptor), which can be detected via their spectrum peaks.

Using fluorescent molecules as tags, FRET can identify the distance of interactions groups between

two proteins (139).

1.2.5 Chemical Cross-Linking

Chemical cross-links are chemical bonds formed in a chemical reaction between two cross-linking

reagents. Two proteins tagged with chemical reagents will be covalently cross-linked if they interact

with each other. The formation of a cross-link not only identifies the close proximity of the two proteins,

but also reveals their contact regions. Combined with subsequent mass spectrometry, chemical cross-

linking is well-suited for investigating interacting sites in transient protein complexes (145; 119).



6

1.3 Computational Methods

1.3.1 Protein Docking

Protein docking refers to the computational modeling of a protein complex formed by two or more

unbounded proteins as components. It is helpful to disclose genetic diseases caused by mutated pro-

teins and design rational drugs. Protein docking correlates tightly with PPIS: on the one hand, inter-

action sites can be easily determined based on the success of the protein docking; on the other hand,

unbounded proteins often have been studied before the docking, their interaction sites or “hot-spots”

often have already been identified, hence the knowledge of the binding sites significantly reduces the

searching space of configurations in the protein docking process (167). Protein docking usually consists

of four steps: 1) choose protein surface representation, 2) list a set of possible configurations of pro-

tein complexes, 3) evaluate the configurations based on associate energy and select the nearly correct

configurations and 4) refine the candidate models by accommodating side-chains. During the process,

protein docking utilizes the prior knowledge such as binding sites, NMR conformations and known

structures of protein complex homologues to restrict the configuration space (167; 120; 42). Protein

docking methods are developed with the Critical Assessment of Predicted Interactions (CAPRI) con-

test (80). They have been greatly improved using fast Fourier transformation (90; 57; 116; 29), flexible

docking (150; 59), analysis of highly-populated low-energy regions (51) and the combination of ex-

ternal biochemical or biophysical data (13), all of which rely on shape complementarities of protein

molecule surfaces to select the candidate models. The challenge of docking stems from the unpre-

dictable conformation changes which occur upon binding (63).

1.3.2 Evolutionary Methods

Protein interaction sites are assumed to be more conserved across different protein families than

other residues to maintain protein functionality, so attempts have been made to use conservation to

identify interaction sites. The Evolutionary Trace (ET) method (114; 115) generates multiple sequence

alignment given an input protein sequence and builds up a phylogenetic tree which is subdivided into

groups in terms of sequence divergence. Subsequently, each residue position in the multiple sequence
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alignment is assigned a score to rank its evolutionary importance by taking into account of its variation

within and between groups. High rank residues detected by ET method are clustered spatially (105) or

are combined with machine learning methods to identify functional important sites (148). The conser-

vation of residues is also defined in ways other than ET method, such as in consurf hssp database (61).

There is a trend of incorporating the conservation scores of residues as features into machine learning

classifiers to improve their prediction (111; 180; 16; 112). Although some works show homo-dimers

have more conserved interface residues than surface residues (176), other works reveal that conserva-

tion score does not actually improve in the discrimination of interface residues from surface residues

(100). The discrepancy might be explained by the recent discovery that protein-protein interfaces are

slightly more conserved than surfaces when estimated based on residues rather than surface patches

(24).

1.3.3 Patch Based Analysis

Protein-protein interfaces can be regarded as amino acid residues or surface patches. Patch based

analysis studies the physicochemical properties of interfaces using surface patches as units. Some prop-

erties of the patch depend on aggregate properties of the surface residues it contains (like hydrophobic-

ity and propensity), others depend on the geometry of the molecule surface (like accessible surface area

and protrusion). Patch analysis on six properties (solvation potential, hydrophobicity, accessible sur-

face area, residue interface propensity, planarity and protrusion) shows that protein-protein interfaces

are more hydrophobic, planner, more global and more protruding than protein surfaces (88; 85; 86).

These results have been applied to predict protein-protein interfaces. The general steps are as follows

(87; 124): 1) define surface patches, 2) calculate six properties for each surface patch, and 3) score

each surface patch in terms of six properties, rank the patches in terms of scores and select out potential

interfaces. Patch based analysis emphasizes more on the aggregate role of protein-protein interface

residues in contrast to residue based analysis, because residues in protein-protein interfaces do not con-

tribute equally to the protein-protein binding (34). However, patch analysis has a potential drawback:

It is necessary to know the structure of the target protein structure. The combinations of patch-based

analysis and residue-based analysis have been tried to cultivate advantages from both (19; 100)– pre-
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dictions are mainly made on residues, while the contributions by the patches to which each residue

belongs are also considered in each prediction.

1.3.4 Machine Learning Methods

The prediction of protein-protein interaction sites can be formulated as a supervised learning prob-

lem as follows (25): given a training data set in which each instance has the form (x, y), learn a function

y = f(x) out of it. Here x = (x1, x2, ..., xn) is a feature vector, y is a 0 vs. 1 two-valued class label in

which 0 represents an instance of non-interaction sites and 1 represents an instance of interaction sites.

The application of a machine learning method for predicting protein-protein interface residues consists

of three steps: 1) Construct a classifier using the training dataset. 2) Assess the performance of the

trained classifier on an independent test dataset. 3) If the performance is acceptable, use the classifier

to make predictions on new proteins of interest. Typically, steps 1 and 2 are repeated several times

(using statistical cross-validation) to get reliable estimates of the performance of the trained classifiers.

Successful application of machine learning methods in practice has to address several challenges:

• No single machine learning method outperforms all other methods on all problems. Hence,

a broad class of machine learning algorithms have been applied to the problem of predicting

protein-protein interfaces including: Naive Bayes (127), Neural Network (134; 48; 194; 28),

Support Vector Machine (98; 148; 180; 16; 189; 19; 43; 141), Linear Regression (111; 100; 112;

74), Baysian Network (20), Hidden Markov Model (55; 128) and Conditional Random Field

(123). However, in the absence of direct and systematic comparisons on large datasets, it is

unclear as to how the different methods compare against each other and whether their relative

strengths can be synergistically combined to generate more reliable predictions.

• The performance of classifiers trained using machine learning methods often depends on the

specific attributes or features that are used to encode the inputs. Good feature representations

often incorporate domain knowledge in a form that can be exploited by the machine learning

algorithm. A variety of features have been used in the prediction of protein-protein interface

residues including the identity of amino acid residues in the sequence neighborhood of a target

residue (134; 189; 48), physicochemical properties of amino acid residues (127; 194; 28; 98;
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16; 19; 43; 141; 74; 20; 55; 128; 123), and evolutionary information (111; 112; 180), as well

as their combinations (188; 158; 19; 143). In the absence of direct and systematic comparisons

of the different choices of data representations, and different types of features on large datasets,

it is unclear as to what the optimal choice of features or the optimal combination of feature

representations is for predicting protein-protein interface sites.

• The predictions of a classifier trained on a small training set may not generalize beyond the

training data. This often requires feature selection to reduce the dimensionality of the input to

the classifier as well as incorporation of penalties for overly complex classifiers.

• Obtaining reliable estimates of the expected performance of a classifier on new data requires

steps to ensure that the training and test data used in cross-validation are indeed independent and

that the overall distribution of data instances is representative of the scenario in which the trained

classifier is intended to be used.

• The proportion of interface residues is often much smaller than that of non-interface residues.

Machine learning methods that simply optimize the accuracy (the fraction of correct predictions)

tend to favor the majority class at the expense of the minority class. Hence, it is necessary to

incorporate steps to cope with class imbalance in training such classifiers and use performance

measures that provide a comprehensive picture of the tradeoff between sensitivity and specificity

of predictions (25).

• The protein-protein interface data is necessarily incomplete. Whereas the class labels associ-

ated interface residues in the dataset can be generally relied on (assuming that the experimental

method used to identify the interfaces is accurate), the class labels associated with non-interface

residues in the dataset are inherently unreliable: A residue that is labeled as a non-interface

residue may in fact participate in an as yet undiscovered protein-protein interaction. Hence, care

needs to be exercised in interpreting the predictions generated by classifiers trained on such data.
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1.4 Databases

Several databases that focus on different aspects of protein-protein interaction have been developed

in recent years. These include: databases of interaction partner or network with data deduced from

high-throughput experiments or literature reports, e.g., (186; 8; 27); databases of structurally-defined

interfaces between pairs of protein domains with data deduced from Protein Data Bank (PDB) (14),

e.g., PIBASE (39), 3DID (4), ProtCom (101), iPfam (149), InterPare (64), amid which iPfam (149)

also includes interfaces at amino acid resolutions; databases of co-crystallized complexes, e.g., DOCK-

GROUND (44), databases of structural classification of protein-protein interfaces, e.g., SCOPPI (183),

tools for characterization and visualization of protein sequence and structure, e.g., STING (125) or

SCOWLP (173), and databases of protein-peptide interfaces, e.g., DOMINO (26), electrostatic-surface

of protein functional sites, e.g., eF-site (97), amino acid hotspots in protein interfaces, e.g., BID (53),

and protein surface regions for functional annotation of proteins, e.g., SURFACE (52) and SPIN-PP

(Spi), dataset of non-redundant interface structures (95). Most structural data is derived from Protein

Data Bank (PDB) (14) which consists of protein complexes resolved by X-ray or NMR. However, the

deposit entries in PDB usually are asymmetric units (ASU), from which the complete crystal macro-

molecules can be reconstructed via crystallographic symmetry operation. This imposes difficulties

on determining the oligomeric state of proteins and motivates the creation of the Protein Quaternary

Structure (PQS) database (72), which separates multiple copies of protein molecules, applies crystal-

lographic symmetry operations and removes crystal packing for PDB entries. Published datasets and

analyses of protein-protein interfaces have used different definitions of interfaces making it difficult to

directly compare the results of analyses or methods for predicting protein-protein interfaces. Hence,

there is a need for a comprehensive database of protein-protein interface residues from which large

datasets can be extracted based on user-supplied definitions of interfaces.

1.5 Research Aims

The long term goal of our research is to discover the sequence and structural correlates of the

protein-protein interfaces. Our guiding hypothesis is that protein-protein interaction rules can be

“learned” using machine learning algorithms, which is trained on experimentally well-characterized
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data sets to identify protein-protein interaction sites. The specific aims are:

• Aim1: Develop a database of all known protein-protein complexes. We will develop a

protein-protein interface database (PPIDB), which includes all known protein-protein complexes

deposited in the PDB. PPIDB will facilitate protein-protein interface query with customized cri-

teria and extraction of protein-protein interface data sets for statistical analysis and computational

learning. PPIDB will update periodically to synchronize with the PDB.

• Aim2: Analyze protein-protein interface data to discover sequence and structural determi-

nants of protein-protein interfaces. After establishing the database, we will analyze the data to

discover key sequence and structural features of protein-protein interfaces. For example, analysis

of amino acid composition of interfaces can reveal whether some amino acids are preferred in

protein-protein interfaces.

• Aim3: Implement and evaluate machine learning algorithms to predict protein-protein

interaction sites. Based on the analysis, we will develop machine learning algorithms to identify

protein-protein interaction sites. The implemented classifiers, will assist in experimental work

e.g., in the identification of ITK kinase binding sites. The classifiers will be integrated into the

online tools of PPIDB system as well.

1.6 Dissertation Organization

The dissertation is organized as follows:

– Chapter 1 This chapter addresses the general background of the protein-protein interaction

sites (PPIS) problem, specific aims of our study and outlines the dissertation.

– Chapter 2 We have explored kernel methods to determine binding sites on proteins, specif-

ically from protein-protein, protein-DNA, and protein-RNA complexes. We examine three

different kernels functions: identity kernel, sequence-alignment kernel, and amino acid sub-



12

stitution matrix kernel to learn support vector machine classifiers on three data sets: pepti-

dase interface, DNA-binding site and RNA-binding dataset. These results, which have been

published in IEEE Joint Conference on Neural Networks, 2006, show that the substitution

matrix kernel method improves the predictions. Feihong Wu carried out the computational

experiments and drafted the manuscript; Byron Olson contributed to the discussions and

draft editing. Drena Dobbs and Vasant Honavar contributed to experimental design, discus-

sions and manuscript preparation.

– Chapter 3 We have built Protein-Protein Interface Database (PPIDB) , a comprehensive

database of protein-protein interfaces extracted from experimentally determined protein

complex structures deposited in the current version of Protein Data Bank (PDB). At present,

PPIDB consists of 71, 486 binary protein-protein interfaces. PPIDB supports the extrac-

tion of well-characterized datasets of protein-protein interface residues for computational

analyses. The database is accessible through the Web Interface http://ppidb.cs.

iastate.edu and a set of Web services http://ppidb.cs.iastate.edu/axis/

services/Version?wsdl. Feihong Wu designed the system architecture, built up the

database, specified the Web service functions and implemented the Web interface, prepared

an initial draft of the manuscript and participated in later manuscript revisions. Rafael Jor-

dan designed the Web services, implemented the Web Interface and Web Services, wrote

an initial draft of the Web services and Web interface sections of the manuscript and par-

ticipated in later manuscript revisions. Jyotishman Pathak participated in the implemen-

tation of the Web service and the draft editing. Peter Zaback designed the web site and

contributed significantly to the draft editing. Changhui Yan participated in discussions

on database design, data integration and manuscript reviews. Drena Dobbs and Vasant

Honavar participated in database design, discussions, manuscript preparation and revisions.

The manuscript is to be submitted to BMC Bioinformatics.

– Chapter 4 We have analyzed protein-protein dimeric interfaces. We have studied five

parameters (amino acid composition, secondary structure, variation entropy, conservation

score, side chain orientation) properties to differentiate interfaces from protein exterior
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and interior regions and eight parameters (variation entropy, conservation score, side chain

orientation, surface roughness, solid angle, cx value, hydrophobicity and interface cluster

size) to discriminate interfaces from surfaces. The results of our analysis show that interface

residues have side chains pointing inward; interfaces are rougher, tend to be flat, moderately

convex or concave and protrude more relative to non-interface surface residues. Interface

residues tend to be surrounded by hydrophobic neighbors and form clusters consisting of

three or more interfaces residues. Feihong Wu carried out the computational experiments

and prepared the draft; Fadi Towfic contributed to the discussions and the draft editing.

Drena Dobbs and Vasant Honavar contributed to discussions and manuscript preparation.

The results have been submitted to International Journal of Data Mining.

– Chapter 5 We have built NB PPIPS, a Naive Bayes classifier to predict protein-protein

interaction sites out of protein surfaces. NB PPIPS improves its prediction by incorpo-

rating evolutionary and structural properties. Evaluated on modelled protein structures,

NB PPIPS reveals the importance of protein structures to the prediction. NB PPIPS imple-

mented as an online server at http://watson.cs.iastate.edu/nb_ppips. The

results have been submitted to journal BMC Bioinformatics. Feihong Wu carried out the

computational experiments, implemented the NB PPIPS server and web site, and prepared

the draft; Fadi Towfic contributed to discussions and the draft editing; Drena Dobbs and

Vasant Honavar contributed to discussions and manuscript editing. The manuscript will be

submitted to the IEEE Transactions on Bioinformatics and Computational Biology.

– Chapter 6 This chapter summarizes the study and future work.
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CHAPTER 2. Comparing Kernels For Predicting Protein Binding Sites From Amino

Acid Sequence

A paper published in the 2006 International Joint Conference on Neural Networks

Feihong Wu, Byron Olson, Drena Dobbs, Vasant Honavar

Abstract The ability to identify protein binding sites and to detect specific amino acid residues that

contribute to the specificity and affinity of protein interactions has important implications for problems

ranging from rational drug design to analysis of metabolic and signal transduction networks. Support

vector machines (SVM) and related kernel methods offer an attractive approach to predicting protein

binding sites. An appropriate choice of the kernel function is critical to the performance of SVM.

Kernel functions offer a way to incorporate domain-specific knowledge into the classifier.

We compare the performance of three types of kernels functions: identity kernel, sequence-alignment

kernel, and amino acid substitution matrix kernel in the case of SVM classifiers for predicting protein-

protein, protein-DNA and protein-RNA binding sites. The results show that the identity kernel is quite

effective in on all three tasks. The substitution kernel based on amino acid substitution matrices that

take into account structural or evolutionary conservation or physicochemical properties of amino acids

yields modest improvement.

2.1 Introduction

Proteins are the principal catalytic agents, structural elements, signal transmitters, transporters and

molecular machines in cells. Hence, assigning them putative functions from sequences alone remains

one of the most challenging problems in functional genomics. Protein-protein, protein-DNA, and

protein-RNA interactions play a pivotal role in protein function. Experimental detection of residues in

protein-protein interaction surfaces must come from determination of the structure of protein-protein,
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protein-DNA and protein-RNA complexes. However, experimental determination of structures of such

complexes is a time-consuming and expensive enterprise. Hence, there is a need for reliable compu-

tational methods for identifying protein-protein, protein-DNA and protein-RNA binding sites from the

amino acid sequence of the protein. Machine learning methods in general, and support vector machines

and related kernel methods in particular, offer an attractive approach to construction of sequence-based

classifiers for identifying such binding sites (157; 189; 188; 179; 172).

The SVM (18) classifies inputs into two classes using a hyperplane in a high-dimensional space. If

the patterns are not separable in the original n-dimensional pattern space, a suitable non-linear kernel

function is used to implicitly map the patterns in the n-dimensional input space into a typically higher

(finite or even infinite)dimensional feature space in which the patterns become separable. SVM selects

the hyperplane that maximizes the margin of separation between the two classes from among all sepa-

rating hyperplanes. The kernel function measures the similarity between pairs of patterns in the feature

space. An appropriate choice of the kernel function is critical to the performance of SVM. An ideal ker-

nel function assigns a higher similarity score to any pair of patterns that belong to the same class label

than it does to any pair of patterns that belong to different classes. Kernel functions provide a means

of incorporating domain-specific knowledge into an SVM. Hence, there is a large body of work aimed

at designing suitable kernels for protein sequence classification (109; 108). Against this background,

we investigate the effect of incorporating various types of biological information into SVM kernels for

protein-protein, protein-DNA, and protein-RNA binding site prediction.

The rest of this paper is organized as follows: Section 2 describes the three data sets used in the

study. Section 3 introduces the kernel methods and describes the design of the three types of kernel

functions. Section 4 presents the experimental results comparing the performance of SVM classifiers

trained using the different kernel functions considered in this study. Section 5 briefly describes related

work on SVM applications in bioinformatics. Section 6 concludes with a summary of the paper and an

outline of some promising directions for further research.
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2.2 Materials

The data sets used in this study are available for download at http://www.cild.iastate.

edu/GM066387/homepage.htm.

2.2.1 42 Peptidase Protein-Protein Interface Data Set

Protein-protein interactions play a central role in protein function. A peptidase is an enzyme that

digests proteins through the breaking of peptide bonds. The peptidase interface data set consists of 42

peptidase chains (with sequence identity < 40%) from the MEROPS database (147). Interface residues

(binding sites) – amino acids in the sequence that bind to another protein, are identified on the basis of

observed decrease in solvent accessible surface area (ASA) in the bound complex relative to that of the

monomer. The ASA is computed using the Naccess program (76)(http://wolf.bms.umist.ac.uk/naccess/).

A residue is defined as a interface residue if the reduction in ASA in the complex is > 1Ȧ2 (85). Rel-

ative solvent accessibility is defined as the ratio of ASA to the nominal maximal ASA of the residue

by Rost and Sander (151). A residue is defined as a surface residue when the relative accessibility is

greater than 25%. This data set consists of 1694 interface residues out of 5513 total surface residues.

2.2.2 56 Protein-DNA Interface Data Set

Protein-DNA interactions play a pivotal role in DNA replication and transcription. The 56 protein-

DNA binding data set, first published by Jones (84), includes 56 non-homologous protein chains. The

definition of interface residues is the same as in the 42 peptidase interface data set. This results in 1752

interface residues out of 12665 total residues.

2.2.3 109 Protein-RNA Interface Data Set

Protein-RNA interactions are vitally important in a wide range of biological processes, including

regulation of gene expression, protein synthesis, and replication and assembly of many viruses. The 109

protein-RNA binding data set (172) consists of 109 non-homologous protein chains. Interface residues

are determined using software ENTANGLE (1). The data set consists of 3518 interface residues out of

25, 118 total residues.
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2.3 Method

2.3.1 Support Vector Machines and Kernel Functions

The SVM classifies inputs into two classes using a hyperplane in a high-dimensional space. If the

patterns are not separable in the original n-dimensional pattern space, a suitable non-linear kernel func-

tion is used to implicitly map the patterns in the n-dimensional input space into a typically higher (finite

or even infinite)dimensional feature space in which the patterns become separable. SVM selects the

hyperplane that maximizes the margin of separation between the two classes C+ and C− from among

all separating hyperplanes. The kernel function measures the similarity between pairs of patterns in the

feature space. Given the training data set with m labelled examples

(x1, y1), (x2, y2), (x3, y3), ..., (xm, ym)

where





yk = 1 if xk ∈ C+;

yk = −1 if xk ∈ C−,

the SVM produces a decision function:

D(x) =
m∑

k=1

αkK(xk, x) + b

such that

if D(x) > 0, x ∈ A

otherwise x ∈ B

where the kernel function K defines a kernel matrix K whose entries Kij correspond to similarities

between pairs of training instances (i.e. Kij = K(xi, xj)). A valid kernel function needs to satisfy

the Mercer conditions which requires the kernel matrix to be positive semi-definite (104). The opti-

mization procedure used in training a support vector machine coefficients essentially solves a quadratic

programming problem. The weights αk (1 ≤ k ≤ m) and the bias b are determined by the SVM

algorithm. The training samples with non-zero weights are called the support vectors.
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2.3.2 Input Representation and Kernel Function Definition

In this study, the SVM was trained to predict whether or not a residue is in the interaction site. The

input to the SVM consists of the identity of amino acids within a window of 11 contiguous residues,

corresponding to the target residue flanked by five sequence neighbors residues on each side. The de-

sired output of the classifier is a 1 if the target residue is an interface residue (class C+) and -1 (class

C−) otherwise. The training set consists of 11-residue subsequences extracted from the protein se-

quences, with each window labelled with the corresponding class label.

A kernel function defines similarity between two fixed length sequences Sa = a1a2...an and

Sb = b1b2...bn in which ai, bi(1 ≤ i ≤ n) are amino acids and n is the width of the window. We define

three kernel functions: the identity kernel, the alignment kernel (154), and the substitution kernel (177).

Definition 1 (identity kernel) The identity kernel counts the number of matching residues between the

two strings Sa, Sb.

Ki(Sa, Sb) =
n∑

k=1

e(ak, bk)

where





e(ak, bk) = 1, if ak = bk;

e(ak, bk) = 0 otherwise.

It is easy to show that the resulting kernel matrix K is a positive semidefinite matrix.

Definition 2 (alignment kernel) Let A be a matrix of alignment scores obtained by locally aligning

each pair of strings Sa, Sb, in the training set.

A(Sa, Sb) = align(Sa, Sb)

where align(Sa, Sb) is the alignment score based on local alignment of Sa and Sb. The align function,

and hence the matrix A is not guaranteed to be positive definite. To circumvent this problem, we define
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the alignment kernel Ka as follows:

Ka(Sa, Sb) =





A(Sa, Sb)− λg if Sa = Sb;

A(Sa, Sb) otherwise

where λg is the smallest eigenvalue of the matrix of pairwise alignment scores A. The resulting kernel

matrix K is a positive semidefinite matrix.

Definition 3 (substitution kernel) Let Ms be an amino acid substitution matrix (? ). Substitution

matrices are not typically positive definite. We can create a positive semidefinite matrix M from a

substitution matrix Ms as follows:

1. Find the minimal entry min of Ms

2. Find the maximal entry max of Ms

3. M(i, j) = Ms(i,j)−min
max−min

4. Find the least eigenvalue λ of M

5. M(i, i) = M(i, i)− λ

The substitution kernel is defined as follows:

Ks(Sa, Sb) =
n∑

k=1

M(ak, bk)

The resulting kernel matrix K is a positive semidefinite matrix.

Amino acid substitution matrices are symmetric matrices expressing the rate of substitution of one

amino acid by another. A variety of substitution matrices based on physical, chemical and biologi-

cal properties of amino acids as well as evolutionary and structural considerations are available in the

AAindex database (91). For example, HENS920102, a well known BLOSUM62 matrix, is based on

evolutionary considerations; The substitution matrix JOHM930101 is based on structural considera-

tions, and MCLA720101 is based on chemical properties of amino acids.
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2.3.3 Performance Measures

Let TP be the number of true positives(residues predicted to be interaction sites that are actually

interaction sites); FP the number of false positives(residues predicted to be interaction sites that are

actually non-interaction sites); TN the number of true negatives; FN the number of false negatives. the

performance measures ac(accuracy), re(recall), pr(precision) and cc(correlation coefficient) defined as

follows:

ac =
TP + TN

TP + FP + TN + FN

re =
TP

TP + FN

pr =
TP

TP + FP

cc =
TP ∗ TN− FN ∗ FP√

(TP + FN)(TN + FP)(TP + FP)(TN + FN)

2.4 Experimental Results

We trained SVM classifiers for predicting whether or not a target residue is a (protein-protein,

protein-DNA, or protein-RNA) interface residue based on the amino acid identities of its sequence

neighbors using the identity kernel Ki, alignment kernel Ka and substitution kernel Ks. The classifiers

were trained and evaluated (using leave-one-out cross-validation) on the 3 data sets: P (42 peptidase

protein-protein interface data set), D (56 protein-DNA interface data set) and R (109 protein-RNA in-

terface data set). The alignment kernel was derived using the BLOSUM62 (HENS920102) substitution

matrix. The substitution kernel was derived using 3 different substitution matrixes and we got 3 sub-

stitution kernels: Ksh with evolution based substitution matrix HENS920102, Ksj with structure based

matrix JOHM930101 and Ksm with chemical similarity based matrix MCLA720101. Our SVM clas-

sifiers with different kernels were implemented based on WEKA machine learning package (184).

When data sets have unbalanced class representation (as in the case with the data sets used in

this study), the traditional performance measure of accuracy can present a misleading picture of the
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effectiveness of the classifier. Hence we report multiple performance measures including accuracy,

recall, precision, and correlation coefficient. The results are summarized in Table 2.1.

Table 2.1 Comparison of the amino acid identity kernel Ki, the alignment kernel
Ka, and several substitution kernels Ksh Ksj and Ksm (derived from
HENS920102, JOHM930101, and MCLA720101 substitution matrices
respectively). Accuracy (ac), recall(re), precision ( pr), and correlation
coefficient (cc) shown are estimated using leave-one-out cross-valida-
tion.

data set kernel function ac re pr cc

Ki 60.3% 54.9% 42.0% 16.6%
Ka 63.7% 47.6% 43.9% 16.6%

P Ksh 63.4% 48.1% 44.0% 17.7%
Ksj 63.6% 49.7% 44.5% 18.9%
Ksm 62.0% 51.4% 42.7% 17.0%

Ki 64.0% 69.6% 30.0% 25.0%
Ka 63.9% 66.0% 29.4% 22.7%

D Ksh 64.1% 69.3% 29.7% 24.4%
Ksj 64.4% 68.1% 29.8% 24.3%
Ksm 65.1% 69.6% 30.3% 25.7%
Ki 71.2% 60.3% 34.8% 25.1%
Ka 69.2% 53.1% 31.9% 18.0%

R Ksh 72.1% 58.4% 35.3% 24.9%
Ksj 72.2% 58.9% 35.5% 25.3%
Ksm 71.6% 58.6% 34.8% 24.3%

The performance of the identity kernel is competitive with that of other kernels on all three predic-

tion tasks.

The substitution kernel, depending on the data set used, and the specific substitution kernel cho-

sen, sometimes outperforms the identity kernel. In the case of the peptidase protein-protein interface

data set, the substitution kernel yields a 13.9% relative improvement in correlation coefficient over the

identity kernel when the JOHM930101 substitution matrix is used; In the case of the other two data

sets, the relative improvement in correlation coefficient offered by the substitution kernel is quite small:

2.8% (using MCLA720101 substitution matrix on the protein-DNA interface data set) and 0.8% (using
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JOHM930101 substitution matrix on the protein-RNA interface data set) respectively.

The alignment kernel does not perform as well as the other kernels on these data sets. This might

be due to the fact that the substitution matrix used for aligning sequences (BLOSUM62) may be subop-

timal for the data sets used. (Note that the results of the substitution kernel varies with on the specific

substitution matrix used).

2.5 Related Work

Kernel methods have been widely applied in computational biology, and many kernel functions

have been specifically designed for biological data (157; 179). Several authors have explored the use

of support vector machines for secondary structure prediction (75) (66). Bram et al. (177) have exam-

ined the effects of amino acid substitution matrix on the effectiveness of SVM kernels for secondary

structure prediction. Jaakkola et al. (77) have derived a Hidden Markov Model (HMM) profile based

SVM-Fisher kernel for remote homology detection. Leslie et al. (109) have explored the p-spectrum

kernel and a mismatch kernel (108) for protein function classification. Saigo et al. (154) have proposed

a string alignment kernel for protein remote homology detection. Lanckriet et al. (103) have developed

a method based on semi-definite programming for optimal linear combination of multiple kernels for

protein function prediction.

Several authors have explored the application of machine learning approaches to classification of

protein-protein, protein-DNA, and protein-RNA interface sites from amino acid sequences. Yan et al.

(189; 188) have used SVM for identifying protein-protein interface residues among surface residues

using amino acid sequence information. Sen et al. (158) have proposed an approach to combining

several different sources of information (including amino acid sequence, evolutionary conservation,

and structure comparison) to improve the accuracy of protein-protein interface residues. Yan et al.

(190) have explored the use of several types of information derived from amino acid sequences to

train a Naive Bayes classifier on the 56 protein-DNA data set used in this study. The result obtained

using amino acid sequence identity alone (correlation coefficient of 24%) is comparable to that of

the SVM reported here. However, addition of residue entropy of the target residue (obtained from
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multiple sequence alignment) with other sequences in the training data set as an additional input to the

classifier improved the correlation coefficient to 28%. Terribilini et al. (172) have used a Naive Bayes

classifier to predict protein-RNA interface residues from amino acid sequence. On the data set of 109

protein-RNA interfaces which is the same as the protein-RNA interface data set used in our study, the

Naive Bayes classifier yields a correlation coefficient of 35%, which is better than that of SVM trained

using sequence kernels. However, the reported performance of Naive Bayes classifier for protein-RNA

interface prediction was obtained with a window size of 25 (as opposed to a window size of 11 used in

our study).

2.6 Summary

We have compared the performance of 3 types of kernels to predict protein-protein, protein-DNA,

and protein-RNA interfaces from amino acid sequence information alone. Our results suggest that the

identity kernel is competitive with apparently more sophisticated kernels on all three prediction tasks.

Our results also suggest the possibility of improving the performance of the SVM classifiers using

kernel functions derived using amino acid substitution matrices. Yan et al. (190) have shown that it

is possible to improve the accuracy of protein-DNA interface prediction by using sequence entropy of

the target residue as an additional input to the Naive Bayes classifier. Sen et al. (158) have reported

improved accuracy of protein-protein interface prediction using multiple types of information. Hence,

there is reason to expect that the performance of the SVM classifiers reported in this paper can be fur-

ther improved by using other types of information such as sequence conservation score (60), predicted

or known secondary structure, sequence entropy, sequence disorder, sequence entropy, among others.

Work in progress is aimed at exploring these possibilities.
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CHAPTER 3. PPIDB – A Database of Protein-Protein Interface

A paper submitted to the Journal of BMC Bioinformatics

Feihong Wu, Rafael Jordan, Jyotishman Pathak, Peter Zaback, Changhui Yan, Drena Dobbs and

Vasant Honavar

Abstract Protein-protein interactions play a key role in biological processes like signal transduction

and metabolism network. Although more and more protein structures are resolved, the experimental

work of identifying protein interfaces lags behind. Analyzing and predicting protein-protein interfaces

with computational methods, is increasingly used in this area that calls for large benchmark datasets

extracted using an unanimous definition.

We have built a Protein-Protein Interface Database (PPIDB) which extracted 71, 486 binary protein

interfaces from experimentally determined protein complex structures deposited in the current version

of PDB (Protein Data Bank). PPIDB not only identifies protein-protein interaction sites, but also in-

tegrates protein functional annotations (Gene Ontology identifier), sequential properties (sequence and

residues), structural properties (solvent accessible area and secondary structure) and evolutional prop-

erties (variation entropy and conservation score) from other public domain databases. PPIDB is de-

signed to facilitate the construction of well-characterized datasets of protein-protein interface residues

for computational analysis. It incorporates three widely used protein-protein interface residue defini-

tions and allows users to specify desired thresholds for each definition. Queries based on the protein

name, PDB ID, or Gene Ontology (GO) identifier and batch retrieval of interface residues for single

polypeptide chains or for pairs of chains are supported. Tools for filtering datasets on the basis of

amino acid sequence similarity and for visualizing interface residues within the primary amino acid

sequence mapped onto the 3D structure of proteins are provided. PPIDB is periodically updated and

synchronized with the PDB. PPIDB can be accessed through a Web query interface or programmati-
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cally through a set of Web services. A sequence homologue based protein-protein interface prediction

server (SHB PPIPS), designates an example of using PPIDB data via Web services.

PPIDB is accessible through a Web Interface http://ppidb.cs.iastate.edu and a set of

Web services http://ppidb.cs.iastate.edu/axis/services/Version?wsdl.

3.1 Background

Protein-protein interactions are essential for virtually all biological processes, including DNA repli-

cation and transcription, RNA splicing, signal transduction and metabolism network. Identifying the

sequence and structural determinants of specificity and affinity of protein-protein interactions is impor-

tant not only for macromolecular recognition, but also for practical applications such as rational drug

design. High throughput genomic sequencing and structural genomics projects have led to an explosion

in the number of available protein sequences and experimentally determined protein structures. In con-

trast, detailed experimental characterization of protein-protein interfaces has lagged behind because the

traditional experimental methods are costly and time-consuming. In this context, computational meth-

ods have been employed as a complementary way to analyze and/or predict protein-protein interactions

(58; 87; 134; 48; 194; 28; 189; 188; 19; 148; 158).

Protein-protein interaction consists of three problems: First is the “if” problem in which one tries to

determine whether two monomeric proteins interact to form a protein complex. This problem emerges

in identifying metabolic roles performed by proteins in metabolic networks. Second is the “where”

problem in which one tries to identify the interaction sites of a protein interacting with its partners.

This problem occurs in annotating protein functions or identifying critical protein function domains.

The third is the “how” problem or the protein docking problem in which one tries to build the inter-

action model given two unbounded proteins. These three kinds of interactions problems are highly

correlated with each other: people tend to answer the “if” problem in terms of the functional domains

of proteins. After knowing that two proteins interact, it is of great interest to further explore the details

of the interaction – the interacting sites and how residues from two proteins coordinate to form protein

complexes. In this paper, we primarily focus on investigating the “where” problem, which bridges the
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first and the third problems, where protein-protein interface refers to protein-protein binding sites.

Even narrowed down, the study is complicated by the inconsistent definitions of protein-protein

interface residues: Jones and Thornton (86) defined a residue as an interface residue if its change of

solvent accessible area (∆ASA) is greater than 1Ȧ2 when the protein transits from its monomeric state

to its dimeric state; Ofran and Rost (133) suggested that two residues interact if their closest atoms

are within a distance cutoff of 6Ȧ ; Fariselli (48) considered two residues to interact if the distance

between their α-carbon atoms is < 12Ȧ. Such inconsistencies make it hard to compare analysis results

of researchers since the way in which the definition influences the results remains unknown. Under

such circumstances, our first goal is to allow users to choose any of the three definitions freely.

A number of authors (88; 85; 86; 129; 133; 40; 176; 15; 93; 94; 16; 24; 70; 137; 160; 191) have

analyzed protein-protein interfaces: Jones and Thornton (88; 85; 86) disclosed that interfaces are

hydrophobic, planar and more accessible. Ofran (133) studied amino acid composition and contact

preference of six types of interfaces (intra-domain, domain-domain, homo-obligomer, homo-complex,

hetero-obligomer and hetero-complex). Nooren (129) and De (40) emphasized spotting the discrepan-

cies between transient interfaces and permanent interfaces. Valdar and Thornton (176) showed homod-

imeric interface residues are more conserved than surface residues. Their study is complemented by

Caffrey’s work (24), which showed protein-protein interfaces are slightly more conserved than surfaces

when estimated based on residues, but are rarely more conserved than surfaces when estimated based

on surface patches. Bogan and Thorn (15) demonstrated that central residues of the protein interface

(dubbed “hot spots”) impose more influence on the stability of protein complexes. Additionally, Ke-

skin (93; 94) discovered that hot spots clustered in tight-packed regions contribute to the stability of

complexes in a modular way. Bordner (16) discovered that interfaces are hydrophobic and less polar,

which agrees with Thornton’s results. However, he also asserted that interfaces are not more accessible

than surfaces, which contradicts with Thornton’s results. Headd (70) studied unexpectedly preferred

residue-residue pairs in protein-protein interfaces. Pal (137) compared segmentation of interfaces with

that of crystal packing contacts. Sheinerman (160) revealed the central role of electrostatic interactions
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in protein-protein association. Yan (191) compared the interfaces with protein cores and non-interface

surfaces using a large dataset. Protein-protein interfaces are divided into homodimer interfaces vs.

heterodimer interfaces in terms of pairwise sequence similarity, transient interfaces vs. permanent

interfaces in terms of binding affinity and antibody-antigen vs. protease-inhibitor in terms of function-

ality. Our second goal, therefore, is to provide queries of protein-protein interfaces and their correlated

properties with constraints on pairwise sequence similarity or protein functionality.

Many approaches have been proposed for predicting protein interaction sites from protein se-

quences and/or structures. Gallet (58) proposed a hydrophobic moment method to predict protein-

protein interaction sites. Ofran (134) predicted heterodimer interfaces using neural networks only from

protein sequences. Fariselli (48) implemented a neural network method to identify heterodimer protein

interfaces using spatial neighboring residues of the target residue as inputs. Likewise, Zhou (194; 28)

predicted interaction sites by the neural network method fed with the spatial neighboring residues.

Koike (98) employed SVM (support vector machine) to predict interaction sites using spatial neigh-

boring residues. Lichtarge et al. (114; 115; 148) devised a ET (evolution trace) method to connect

evolutionary information with protein-protein interface. The ET method was subsequently extended

by Landgraf (105) in the analysis of spatial residue clusters. Li (111) and Wang (180) adopted the

idea of integrating conservation scores into prediction as well. Bordner (16) predicted protein-protein

interface with SVM in terms of sequence profiles and evolutionary rates of spatial neighbors. Yan

(189; 188) identified protein interface residues out of surface residues by considering the sequential

neighbors of a target residue using a support vector machine method and later refined his work with a

two stage approach. Jones (87; 124) predicted four types of protein interfaces (homodimers, small and

large protomers from hetero-complexes and antigens) based on their patch analysis method. Neuvirth

(127) presented a structure-based program to identify interacting sites by assigning scores to residues

in terms of thirteen different properties. Bradford (19; 20) proposed a method to combine the SVM

and the patch analysis, followed with an “expert” Bayesian network method. Kufareva (100) recently

presented a PIER algorithm which scores surface patches through twelve patch descriptors defined by

atom properties and reflects the surface patch scores back to surface residues. Sen et al. (158) re-
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ported improved accuracy of predicting hydrolase-inhibitor interfaces by combining several methods.

Generative methods, such as Hidden Markov Model (by Friedrich (55), by Nguyen (128)) and Con-

ditional Random Field (by Li (123)) are also applied in addition to the discriminative methods like

neural network and SVM. Hoskins (74) disclosed the usage of abnormal exposed secondary structure

in the prediction of protein-protein interfaces. Liang (112; 113) combined the side chain energy, con-

servation score and residue propensity into his PINUP prediction implementation. Dong (43) defined

profile-level interface propensity to predict various protein-protein interfaces. Porollo (141) applied the

difference of accessible area between monomeric and oligomeric states of a protein in protein-protein

interface prediction. Zhou (195; 143) recently built a meta server by combining results from different

predictors.

In spite of these advances, most published studies of protein-protein interfaces have relied on anal-

ysis of relatively small datasets barring several notable exceptions (185; 134; 133; 191), partly due to

the difficulty of extracting well-defined sets of protein-protein interface residues from the PDB. The

lack of widely-available large datasets, together with the absence of widely-agreed upon definitions of

“interface residues” has made it difficult to compare results of various studies. It is unclear whether

conclusions drawn from analysis of relatively small datasets generalize beyond the specific datasets an-

alyzed. To facilitate direct comparison of different analysis and prediction results, e.g., those obtained

using automated machine learning approaches, there is an urgent need for a comprehensive database of

well-characterized protein-protein interfaces, with support for generation of large benchmark datasets.

Our third goal is to supply tools to extract large representative datasets of protein-protein interface for

analysis and prediction.

The Protein-Protein Interface Database (PPIDB) is designed to address these needs. PPIDB allows

identification of interfaces on a residue-by-residue basis and facilitates extraction of large datasets in a

machine-readable format. What then, distinguishes PPIDB from other databases and associated tools

that focus on various aspects of protein-protein interactions and protein-protein interfaces? PPIDB

focuses on interfaces of protein-protein complexes at the amino acid residue level and enables users
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to extract interfaces using a flexible set of parameters. Thus, PPIDB provides unique capabilities

that complement existing databases of interacting partners, e.g., DIP (186), MINT (27), databases of

structurally-defined interfaces between pairs of protein domains, e.g., PIBASE (39), 3DID (4), Prot-

Com (101) and InterPare (64), tools for visualization of interactions between pairs of domains, e.g., iP-

fam (149), databases of co-crystallized complexes, e.g., DOCKGROUND (44), databases of structural

classification of protein-protein interfaces, e.g., SCOPPI (183), tools for analysis and visualization of

protein sequence and structure, e.g., STING (125) or SCOWLP (173), and databases of protein-peptide

interfaces, e.g., DOMINO (26), protein functional sites, e.g., eF-site (97), amino acid hotspots in pro-

tein interfaces, e.g., BID (53), and protein surface regions for functional annotation of proteins, e.g.,

SURFACE (52). Three publicly available databases with goals similar to PPIDB are InterPare (64),

DOCKGROUND (44) and SNAPPI-DB (82) all of which seek to provide a comprehensive database of

protein-protein interfaces extracted from the PDB. InterPare contains both inter-chain and intra-chain

interfaces, but has not been updated since 2004 and consequently, has significantly limited coverage rel-

ative to PPIDB. DOCKGROUND is a relational database of co-crystalized protein-protein complexes

that allows datasets to be generated based on either sequence or structural similarity. SNAPPI-DB is

an object-oriented database of domain-domain interactions observed in structural data at the atomic

level. Unlike PPIDB, neither InterPare nor DOCKGROUND provides flexibility in interface definition

(e.g., user-specified choices of parameters such as distance thresholds), generation of datasets based on

additional user-defined criteria or support of flexible programmatic access to the underlying database.

SNAPPI-DB stores domain-domain interactions for multiple domain definitions. It also provides pro-

grammatic access to the underlying database through its application programmer’s interface (API). This

is similar to PPIDB where such access is supported through a Web service interface. Unlike SNAPPI-

DB, PPIDB focuses on a database of interface residues for use in large-scale analysis of protein-protein

interfaces. In short, PPIDB complements existing databases of protein-protein interfaces without du-

plicating functionality.
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3.2 Results and Discussion

3.2.1 System Architecture

PPIDB consists of two layers: a data collection layer and a data publication layer (See Figure

1). The data collection layer connects to online public domain databases, downloads raw data such

as protein-protein complexes, calculates protein-protein interfaces and stores the final data - residue,

sequence and structural properties into the database. The data collection layer consists of two compo-

nents: the data loading program and the MySQL 5.0.4 database server. The data loading program is

written in Java and operates the MySQL database through JDBC (Java Database Connectivity). The

work flow of the data collection is illustrated in Figure 1. The data publication layer accepts end users’

query requests, retrieves data in the database and returns the formalized results. The data publication

layer also has two components: Tomcat 5.0.28 Web server and Apache Axis 1.2 Web services (2). End

users are able to access PPIDB data either through Web browsers or by running their client programs

to invoke Web services.

3.2.2 Data Collection Layer

3.2.2.1 Data Sources

The data collection layer integrates data from the following public domain databases:

• PDB (Protein Data Bank) (14) is the macromolecular structure database from which PPIDB ex-

tracts protein-protein interaction chain pairs and interaction sites. PPIDB deducts most attributes

of protein chains such as molecule name, sequence, secondary structure etc. from PDB. More-

over, PPIDB updates itself periodically to synchronize with PDB.

• PQS (Protein Quaternary Structure file server) (72) is the complementary data source of PDB

for PPIDB to decide on protein-protein interaction chain pairs. It contains quaternary states for

macromolecular structures in PDB determined by X-ray crystallography. It attempts to remove

duplicate quaternary structures and crystal compacts, which are noise in protein-protein interface

data.
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• HSSP (Homology-derived Secondary Structure of Proteins) (155), a database that derives the

multiple sequence alignment of proteins with known structures, contains the variation entropy

of each protein residue. The variation entropy denotes evolutionary conservations of protein

residues, while interface residues are believed to be evolutionary-insensitive to keep the protein’s

functionalities.

• CONSURF-HSSP (61) makes use of multiple sequence alignments of HSSP and estimates the

evolutionary rates of residues by an algorithmic tool called Rate4Site (142). It can detect func-

tionally important regions overlooked by HSSP. PPIDB includes the conservation coding, a dis-

crete scale of relative entropy as a complementary to the HSSP’s variation entropy.

• GO (Gene Ontology) (6)is the database that provides ontological annotation of genes and gene

products. GO organizes biological vocabularies into three branches: molecular functions, bio-

logical process and cellular components. Each term in the vocabulary is represented by a GO

Identification (GO ID). The GO IDs for a protein chain denote its biological roles. PPIDB inte-

grates the GO IDs of each protein chain to support queries based on GO ID.

3.2.2.2 Data Collection

The primary source of data used by PPIDB is the Protein Data Bank (PDB). The basic approach is:

1) identify the distinct quaternary structures that are components of a given PDB complex; 2) extract

interacting chain pairs out of quaternary structures; and 3) identify protein-protein interface residues in

each chain pair.

Before deciding on the protein-protein interfaces, it must be determined if two protein chains interact.

In general, two protein chains are considered to interact with each other if they are in a biological unit,

defined as a macromolecule that has been shown or is believed to be functional. A biological unit can be

identified through function analysis or computationally through the quaternary structures of the protein

complex. Due to the existence of point-group symmetry in crystallographic studies of protein complex

structures, the deposited entries in the PDB are actually Asymmetric Symmetry Units (ASU) which

may include a portion of a biological unit or multiple copies of a biological unit. However, quaternary

structures can be regenerated through ASUs using the symmetry operation. The Protein Quaternary
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Structure Server, PQS (72), generates quaternary structures for those proteins in PDB determined by

X-ray crystallography. PQS also tries to distinguish functionally relevant contacts from crystal pack-

ing contacts based on physico-chemical parameters of the quaternary structure, since protein-protein

interactions are believed to exist inside a quaternary structure with functional relevant contacts. We

determine the binary protein interaction chain pairs as follows: for those protein complexes having

corresponding entries in PQS, we only consider possible interactions of any two chains in the same

quaternary structure; for those having no corresponding entries in PQS, we assume any two chains of

the protein complex might interact. Two chains are considered to be interacting if the mean ∆ASA

is ≥ 200Ȧ2. For example, in PDB, protein complex 1a3a has 4 chains A, B, C, D. In PQS, they are

divided into two quaternary structures: (A, C) and (B, D). So we only need to determine if interactions

exist between chains A and C, B and D. On the other hand, PDB protein complex 1ciw also has 4

chains A, B, C and D, but is regarded as one quaternary structure in PQS, so we need to determine if

any combination of two chains will interact. Based on our calculations, we find that there are only four

such interaction pairs: (A, B), (A, D), (B, C) and (C, D) out of six candidate chain pair combinations.

The ∆ASA is calculated by NACCESS (76).

To identify protein-protein interface residues in each chain pair, PPIDB adopts the three different

definitions in previous studies: by ∆ASA (86), by closest atom distance (133) and by α-carbon atom

distance (48). Interface residues (IRs) of a protein chain refer to the set of amino acid residues that

belong to protein-protein interfaces formed by that chain with any of the other protein chains in the

same PDB structure. Thus, if a protein chain A forms interfaces with chains B and C, the IRs of protein

chain A include the residues of chain A located in the interface between chains A and B and in the

interface between chains A and C.

To do protein-protein interface analysis and prediction, we need non-redundant representative data

sets in which protein sequence homologues are removed from the dataset. In a non-redundant data set,

the sequence identity between any two protein chains should be lower than a threshold. PDB builds
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clusters of chains1 under sequence identities of 30%, 50%, 70%, 90% and 95% weekly. PPIDB relies

on the PDB clustering to remove redundancy in dataset generation. Table 1 lists the number of protein

chains in PPIDB under various sequence identity values.

PPIDB calculates the sequence similarity of any two interacting chains using the ALIGN program2

thereby allowing users to filter out homodimeric or heterodimeric interfaces in terms of sequence simi-

larity. In addition, PPIDB incorporates the molecule name and GO IDs of each protein chain to support

queries with respect to protein functions and biological roles. PPIDB handles the protein-protein in-

terfaces in a residue-based way, so it has properties such as interface status, surface status, secondary

structure, variation entropy etc. residue by residue.

PDB updates monthly to add new protein complex structures, remove obsolete ones and make

changes to incomplete ones. PPIDB’s data loading program follows the PDB’s monthly updating logs

and periodically updates PPIDB to synchronize with PDB. Initially set up in terms of the PDB version

on Oct 20, 2007, PPIDB has been updated to keep pace with the PDB version on June 1, 2008.

3.2.2.3 Contents & Statistics

PPIDB contains a total of 22, 225, 472 amino acid residues, of which 4, 097, 830 correspond to

interface residues in protein-protein complexes using the definition of ∆ASA (the numbers of inter-

face residues are 4,722,127 and 6,886,548 respectively using definitions of closest atom distance and

α-carbon distance). The current version of PPIDB is derived from a total of 51, 458 protein structures

retrieved from the PDB. These structures correspond to a list of protein sequences for the PDB snapshot

on June 1st, 2008, which can be downloaded from ftp://ftp.rcsb.org/pub/pdb/derived data/pdb seqres.txt/.

After removing complexes containing only protein-DNA, protein-RNA and crystal contacts, 38,815

PDB structures remained, from which the PPIDB data were derived. These 38,815 complexes con-

sist of 94,220 polypeptide chains (17,909 of them are monomeric chains and do not participate in the

protein-protein interfaces) drawn from 2,724 species with 1,847 unique GO function labels. The 76,311
1ftp://ftp.rcsb.org/pub/pdb/derived data/NR
2ftp://ftp.virginia.edu
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chains participate in 71,486 inter-chain protein-protein interfaces. Pair-wise sequence identity between

pairs of chains is > 90% for 47,604 and < 30% for 21,567 of these interfaces.

3.2.3 Data Publication Layer

PPIDB can be accessed through a Web interface or a set of Web services. The Web interface allows

users to access the PPIDB data through a Web browser in a traditional way, while Web services (2)

enable users to access the PPIDB data in their own client programs. Web services are self-contained,

self-describing, modular applications that can be published, accessed and invoked over the Web. The

Web service technology aims to connect computer systems and enable data exchange data and other

tasks without human interference.

3.2.3.1 Web Interface

The Web Interface3 supports the following six types of queries:

1. Identify interacting chain pairs within a protein complex. Through this query, a user can deter-

mine if any two chains in a complex interact. For example, a user might know that the protein

complex 1ciw has 4 chains in PDB, namely, A, B, C and D. However, with the help of this query

the user can find out which of these 4 chains interact. In this case, there are only 4 interaction

pairs: (A, B), (A, D), (B, C) and (A, D).

2. Identify protein-protein interfaces for a single chain. By specifying a single protein chain, a

user can receive the interacting sites by providing the following additional information: interface

definition, threshold, the similarity of two chains or the other chain. For example, the protein

complex 1d5x has 3 chains A, B and C in which there are 2 interacting chain pairs:(A,B), (A,C).

The similarity between A and B is 27% and the similarity between A and C is 18.9%. Now

consider the chain 1d5xA, if one only wants to know the interactions, one can query without any

constraints and get the combined interface sites of 1d5xA from the two interaction pairs: AB

and AC. If one cares only about interfaces whose similarity of chains are greater than 20%, the
3http://einstein.cs.iastate.edu/ppidb/Search



35

interactions between A and C can be filtered out; or, one can query the interacting residues of

chain A with C by specifying chain C directly.

3. Basic Search. This is the way to generate non-redundant protein-protein interface datasets for

analyses. A user can specify additional options such as the interface definition, the protein com-

plex resolution, etc. to customize the generation of datasets, which are XML format files sent

out via email.

4. Search by GO IDs. Through this query, a user can generate non-redundant protein-protein inter-

face datasets by specifying gene annotation. For example, one might want to get the interfaces of

proteins that have the molecular function “trypsin activity” which corresponds to GO ID 0004295

and interfaces of those that act on the biological process “proteolysis” which corresponds to GO

ID 0006508. The user can input the corresponding GO IDs “0004295 0006508” and apply the

function of search by GO to obtain what the desired interface datasets.

5. Search protein chains by molecule name. Using this query, a user can generate non-redundant

protein-protein interface datasets by specifying by specifying the molecule name. For example,

to generate the interfaces of all peptidases but not the inhibitors, one can include the key word

“peptidase” in the search and exclude the key word “inhibitor” to get the result.

6. Batch query for a list of PDB IDs. A user can also generate protein-protein interface dtasets

by providing a protein ID list. List items could be a PDB ID (e.g. 1ciw), a protein chain (e.g.

1ciwA), or a protein chain pair (e.g. 1ciwAB).

3.2.3.2 Visualization

Using the Web interface the computed protein-protein interfaces can be displayed with 3-D repre-

sentation of the protein structure, which PPIDB carries out by embedding the Jmol4 open source viewer

in the dynamically generated Web pages. This visualization provides an intuitive way to study the cor-

relation of protein interfaces and protein structures. Figure 3 demonstrates an example of an interface

query of a single protein chain.
4http://www.jmol.org
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3.2.3.3 Web Services

PPIDB provides seven running services: infoComplex, interactingChains, interfacesResiduesOneChain,

interfaceResiduesTwoChains, interfacesBasicSearch, interfacesGoId and interfacesMoleculeName, which

are the infrastructure for Web interface implementation. The specifications of the Web services, includ-

ing function name, input and output parameters, are described in a Web Service Definition Language

(WSDL) (32) file5. Conforming to the specifications, users can invoke Web Services in their own

programs (“client program”) by connecting to the Web Services, sending out a request with input

parameters and getting back a response with the output parameters. Client programs can be written

independent of software languages, which greatly facilitates the use of PPIDB data. PPIDB provide

examples of client programs written in Java and Python6. A sample Web service client program written

in Java is shown in Additional File 1.

3.2.4 An Application Case - SHB PPIS

Sequence Homologue Based Protein-Protein Interface Prediction Server (SHB PPIS) is an online

server used to predict protein-protein interfaces in term of protein sequence. As an application of

PPIDB, it demonstrates how easily PPIDB data can be used and seamlessly integrated into other inde-

pendent applications.

SHB PPIS aims to identify interface residues in a given protein sequence using the Naive Bayes

(45) machine learning method: each residue r0 is regarded as an instance with class label c1 (interface

residue) or c0 (otherwise). Each instance has 11 features x = r−5, r−4, .., r−1, r0, r1, ..., r5 correspond-

ing to 11 sequential neighbor residues: five each on both sides of the target residue r0 and r0 itself. Let

P (ck|x) be the conditional probability that an instance belongs to class ck (k=0 or 1) given that it has

feature vector x, the Naive Bayes classifier works as follows:

P (c1|x)
P (c0|x)

=
P (c1)×

∏5
j=−5 P (xj |c0)

P (c0)×
∏5

j=−5 P (xj |c1)

If
P (c1|x)
P (c0|x)

> 1, r0 is an interface residue;

5http://einstein.cs.iastate.edu/axis/WebServices.jws?wsdl
6http://einstein.cs.iastate.edu/ppidb/ZDownload
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Otherwise , r0 is non-interface site.

The conditional probabilities P (ck|x) are calculated from training data sets with known class labels

of residues. SHB PPIS is expected to boost the prediction by using sequence homologues to generate

the training dataset. The working procedure is:

1. Run blastp (3) against the target protein sequence to obtain its sequence homologues.

2. Identify protein-protein interaction residues of the sequence homologues using the PPIDB Web

service interfacesResiduesOneChain.

3. Form the training dataset, learn the Naive Bayes classifier and predict the interaction residues out

of the target protein sequence.

3.3 Future Work

Current work is directed toward the development of several additional Web services for analysis of

protein-protein interface datasets and visualization of the results (e.g., relative amino acid propensities,

surface roughness, local curvature of interfaces and non-interfaces). We also plan to annotate PPIDB

and the associated Web services with metadata conforming to W3C standards to enable other research

groups to integrate PPIDB with further data resources and utilize services offered by PPIIDB as part

of larger analysis workflows or pipelines. We plan to add several additional tools for the prediction

of protein-protein interface residues and for the analysis of protein-protein interfaces based on various

physicochemical, structural and geometric properties of interfaces.

3.4 Methods

3.4.1 Database Structure

The PPIDB database is implemented as a relational database. The simplified version of the current

database schema is shown in Figure 4. The key tables CHAIN, CHAIN CHAIN and RESIDUE store

information of single protein chains, protein chain-chain interfaces and residues respectively. Tables

MOLECULE, SPECIES and COMPLEX store protein molecule names, protein species and protein
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complex source respectively. Table CHAIN has many-to-one relationships with tables MOLECULE,

SPECIES and SOURCE, while table CHAIN CHAIN has a many-to-one relationship with table CHAIN,

which is often used in schema design of relational databases to remove store redundancy. Table

RESIDUE stores properties of individual residues such as amino acid, entropy, etc. Table CHAIN stores

properties for individual chains like sequence, secondary structure, surface, etc. Table CHAIN CHAIN

stores properties relating to binary interfaces like similarity and interfaces under default threshold

(∆ASA: 1Ȧ; α-carbon distance: 12Ȧ; closest atom distance: 6.0Ȧ). The database also stores in-

termediate data such as calculated ∆ASA, α-carbon distance and minimal atom distance of residues in

the table RESIDUE CHAIN1, RESIDUE CHAIN2 and RESIDUE RESIDUE. Consequently, if users

query for interfaces under the default thresholds, PPIDB will immediately return interfaces from its

storage; otherwise, PPIDB will calculate the interface based on the saved intermediate data, which

takes a little more time.
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3.6 Figures

Figure 1 -PPIDB System Architecture

PPIDB system is composed of two parts: the data collection layer (left) and the data publication

layer (right). The data collection layer pumps data into the database. The data publication layer presents

the data through a Web Interface and a set of Web services.

Figure 2 - Work Flow of PPIDB Data Collection

The PPIDB data collection procedure depicts how protein-protein interfaces are extracted from

public domain data sources (PDB, PQS, etc.), processed and deposited into the database.
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Internet
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Figure 3.1 PPIDB System Architecture

.

Figure 3 - Interface Visualization

Interaction Sites of Protein Chain 1d5xA. Chain A is shown as white spacefill. Interacting chains

B and C, are shown as yellow ribbons. Interface residues of chain A, defined by loss 1Ȧ of ASA, are

green. The structure diagram was generated by PPIDB Web query interface with Jmol plug-ins.

Figure 4 -Database Schema

The main tables and relationships of the PPIDB database are shown. The arrows represent the

foreign key constraints.
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Figure 3.2 Work Flow of PPIDB Data Collection
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Figure 3.3 Interface Visualization

.

3.7 Tables

Table 1 - The sizes of non-redundant datasets with various sequence identity cutoffs

Sequence Identity Cutoff Size of Non-Redundant Dataset

30 6492

50 10684

70 12365

90 14022

95 14871

3.8 Appendix

A sample: Web service client program written in java

This program invokes the Web service interfacesMoleculeName. It retrieves non-redundant protein
chains with 90% similarity, including “peptidase” and excluding “inhibitor” from the molecule name
and considering only protein complexes obtained using X-ray crystallography with a resolution≤ 3 Ȧ.
Residues with loss of ASA upon complexation greater than 1 Ȧ2 are defined as interfaces. More
details about the use of PPIDB Web services can be found online in the sections “Documentation” and
“Download” on the PPIDB web page.
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Figure 3.4 Database Schema

.
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1 /* Sample invocation of the interfacesMoleculeName search service*/

2 import java.net.MalformedURLException; import java.net.URL; import

3 java.rmi.RemoteException; import javax.xml.namespace.QName; import

4 javax.xml.rpc.ServiceException; import org.apache.axis.client.Call;

5 import org.apache.axis.client.Service;

6

7 public class MoleculeNameServiceClient {

8 // Interface definitions

9 final static int atomDistance = 1;

10 final static int alphaCarbonDistance = 2;

11 final static int ASAChange = 3;

12 // Experimental methods

13 final static int XRayCrystallography = 1;

14 final static int NMR = 2;

15

16 public static void main(String[] args)

17 throws ServiceException, MalformedURLException {

18 //Step 1. Setup for the web service invocation

19 Service service = new Service();

20 Call call = (Call)service.createCall();

21 call.setTargetEndpointAddress

22 (new URL("http://einstein.cs.iastate.edu/axis/WebServices.jws?wsdl"));

23 call.setOperationName(new QName("", "interfacesMoleculeName"));

24

25 //Step 2: Parameters of the service

26 String includedText = "peptidase";

27 String notIncludedText = "inhibitor";

28 double interfaceDefinitionThreshold = 1.0;

29 // interfaces defined by loss of ASA under complexation

30 int experimentalMethod = XRayCrystallography;

31 double xRayResolutionThreshold = 3.0;

32 double chainSimmilarityLowerLimit = 0.0;

33 double chainSimmilarityUpperLimit = 100.0;

34 double RASAthresholdSurface = 0.125;

35 int identityFilter = 90;

36 //identityFilter possible values: 30, 50, 70, 90, 95

37 int typeOfService = ASAChange;

38

39 //Step 3: Invocation of the service

40 HashMap chains = null;
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41 try {

42 chains = (HashMap )call.invoke(

43 new Object[]{includedText, notIncludedText,

44 new Double(interfaceDefinitionThreshold),

45 new Double(RASAthresholdSurface),

46 new Integer(identityFilter),

47 new Double(chainSimmilarityLowerLimit),

48 new Double(chainSimmilarityUpperLimit),

49 new Integer(experimentalMethod),

50 new Double(xRayResolutionThreshold),

51 new Integer(typeOfService)});

52 } catch (RemoteException e) {

53 System.out.println("Remote exception: " + e.toString());

54 e.printStackTrace();

55 }

56

57 //Step 4. Retrieve and print the results

58 String state = (String)chains.get("pstate");

59 if (state.equals("ok")) {

60 // if there was not error within the web services

61 Object [] pdbChains = (Object []) chains.get("data");

62 for (int i = 0; i < pdbChains.length; i++){

63 String pdbChain = (String)pdbChains[i];

64 System.out.println(pdbChain);

65 }

66 } else {

67 // print the web service errors

68 System.out.println("Problem with interfacesMoleculeName\n Status: " + state);

69 System.out.println("Message error: "+((String)chains.get("pmessage")));

70 }

71 }

72 }
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CHAPTER 4. Structural Analysis of Protein-Protein Dimeric Interfaces

A paper submitted to the International Journal of Data Mining

Feihong Wu, Fadi Towfic, Drena Dobbs, Robert Jernigan and Vasant Honavar

Abstract Protein-protein interfaces are analyzed on a series of properties to differentiate them from

protein exterior and interior regions. The residue-based analysis is carried out on a large, non-redundant

dataset of 2, 383 protein chains extracted from dimeric complexes. The residue-residue contact prefer-

ence map discloses the importance of cysteine-bridge, salt-bridge and aromatic residues to interfaces.

Five parameters (amino acid composition, secondary structure, variation entropy, conservation score,

side chain orientation) show that interfaces can exist amid exterior and interior regions, but are more

likely to be closer to the exterior. Furthermore, protein interfaces can be analyzed according to struc-

tural properties when protein’s structure is known. We consider eight parameters: variation entropy,

conservation score, side chain orientation, surface roughness, solid angle, cx value, hydrophobicity and

interface cluster size. The results of our analysis show that interface residues have side chains point-

ing inward; interfaces are rougher, tend to be flat, moderately convex or concave and protrude more

relative to non-interface surface residues. Interface residues tend to be surrounded by hydrophobic

neighbors and form clusters of three or more interfaces residues. These findings are consistent with

previous published studies using much smaller datasets. We find that none of the sequence or structure

derived features carries a strong enough signal to allow reliable prediction of protein-protein interfaces.

This underscores the need for developing sophisticated machine learning methods that can discover

sequence and structural correlates of protein-protein interfaces.
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4.1 Introduction

Protein-protein interactions play a pivotal role in cellular processes such as DNA replication and

transcription, RNA splicing, signal transduction and metabolic networks. Therefore, understanding the

sequence and structural determinants of protein-protein interactions is crucial for understanding bio-

logical processes, including those that play a role in diseases and efforts to design therapeutic drugs.

Many studies of protein-protein interface residues have been carried out to identify specific physico-

chemical characteristics that contribute to protein-molecule recognition. These studies have covered a

wide scope and analyzed a variety of interface types (homo versus hetero dimer, transient versus per-

manent interface, etc.), considered different amino acid characteristics and representations, and used

different definitions of interfaces (measured at the level of residues or surface patches). At the residue

level, interfaces differ in terms of amino acid composition, inter-residue contact preference and degree

of conservation across orthologous proteins relative to non-interfaces. At the surface patch level, in-

terfaces are more hydrophobic, planar and protruding relative to non-interfaces (133; 176; 85; 86; 40;

129; 127; 70; 41; 169; 164; 165; 195). Additionally, various surface descriptors associated with surface

residues have been examined to study protein surfaces. However, since most of this work was carried

out on relatively small datasets, one might suspect that the small dataset size influenced the conclusions

from previous studies. In this paper, the analysis is carried on a large dataset of 2, 383 protein chains.

All protein residues are studied in the context of interface, interior or exterior; Interface residues are

studied relative to surface residues and a series of parameters are evaluated in order to obtain discrim-

inants to differentiate interfaces from non-interfaces or surfaces. Specifically, we attempt to answer

the following questions: Can interfaces be differentiated from non-interfaces? from surfaces? Which

properties are the most useful in distinguishing interfaces from non-interface residues?

The rest of the paper is organized as follows: Section II describes the dataset and residue prop-

erties examined in this study. Section III presents the results of our analysis: residue-residue contact

preference on the interface; comparing interface, interior and exterior residues based on five properties;

comparing interface and non-interface surface residues based on eight properties. Section IV summa-

rizes the results, compares the study to related work and discusses future applications.
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4.2 Materials and Methods

4.2.1 Dataset

We extracted protein-protein interface residues from complexes in PDB (14) using the following

procedure: The protein entries with resolution ≤ 3Ȧ were then checked with the Protein Quaternary

structure file Server (PQS) (72) to regenerate quaternary structures, from which protein dimers were

kept, while crystal packing and protein multimers were filtered out. Next, protein dimers with one chain

of ≤ 20 amino acids were removed. We selected chains out of the protein dimer complexes such that

no two chains share sequence identity≥ 30%. The protein sequence identity information was obtained

from the PDB (ftp://ftp.rcsb.org/pub/pdb/derived data/NR/). The final dataset (PPI2383) includes 2383

protein chains derived from 2316 protein dimers. The dataset consists of 452 heterodimeric and 1931

homodimeric interfaces (Interfaces between chains with ≥ 90% sequence identity are defined as ho-

modimeric interfaces. All others are defined as heterodimeric interfaces.)

4.2.2 Surface versus Non-surface

Surface residues are defined by Miller et al. (122) as those residues having relative accessible sur-

face area ≥ 5%. The relative accessible surface area is calculated through the Naccess program (76).

4.2.3 Interface, Exterior and Interior

We follow Ofran and Rost’s definition of interface residues: Two residues are considered to be in

contact if the closest distance between any two atoms, one from each residue, is less than 6Ȧ; A residue

having at least one contact residue from the interacting partner chain is considered to be an interface

residue (133). Additionally, non-interface residues are classified into two types: exterior residues lie

on the surface and interior residues are embedded beneath the surface. So the residues can be divided

into three disjoint classes: interface, exterior and interior. Our analysis focuses on interface residues

extracted from surface residues as well as the comparison of interface residues to the exterior and inte-
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rior residues of a protein.

4.2.4 Interface Propensity

Assume there exists a residue-based property (such as amino acid type, variation entropy or residue

roughness etc.) with k discrete values: (v1, v2, ..., vk), accordingly, protein residues are divided into k

disjoint subsets S1, S2, ..., Si, ..., Sk in terms of the residue property. Let Ri and ri be the number of

residues and interface residues in the set Si in respect, then:

pi =
ri∑k

i=1 ri

Pi =
Ri∑k

i=1 Ri

IPi = log2 (
pi

Pi
)

IPi is the interface propensity (IP) of the property at value vi. IP estimates the interface residues’

occurring tendency at a specified property value. IP > 0 denotes that the specified property value is

more preferred in the interface than in the protein as a whole. Similarly, IP < 0 denotes that it is less

preferred in the interface. The concept of interface propensity can also be extended to exterior and

interior residues.

4.2.5 Residue-Residue Contact Preference

Let i and j be two types of amino acid residue, p(i, j) is the probability of contacts between residue

i and j and q(i), q(j) is the respective probability of occurrence of residue i, j. The residue-residue

contact preference L(i, j) is defined as:

L(i, j) = log2

p(i, j)
q(i)q(j)
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4.2.6 Side Chain Orientation

The side chain orientation of a residue is defined as the angle between two vectors. The first vector

connects the geometrical center of the side chain of the residue with its Cα atom. The second vector

connects the geometrical center of the protein chain with the Cα atom of the residue. The angle is

confined to the range from 0 to π, within which angles (0, π
2 ) and (π

2 , π) correspond to side chains

pointing directly inward and outward, respectively.

4.2.7 Surface Roughness

Using Richard’s (107) method, a molecular surface (As) is produced by rolling a solvent sphere

with radius R against the target protein. Lewis (110) defined surface roughness as follows: D =

2− ∂log As

∂log R . It denotes the degree of irregularity of a surface. Here, each surface residue is assumed to

have its own molecular surface and roughness. Roughness is calculated by varying the radius R from

0.2Ȧ to 4.0Ȧ, in steps of 0.1Ȧ. The molecular surface area As is calculated using the Molecule Surface

Package (MSP) (36).

4.2.8 Solid Angle

Solid angle, first proposed by Connolly (35) as a measure of the shape of local regions of protein

surfaces, is calculated as the fraction of a sphere intersecting the protein when the sphere is centered at

a point on the protein surface. The range of a solid angle is (0, 4π). A point with solid angle < 2π lies

on a surface that is locally convex. A point with > 2π lies on surface that is locally concave. The MSP

software package implemented by Connolly (36) uses discrete dots to represent the molecule surface

and generates a solid angle for each dot. The solid angle of a surface residue is calculated as the average

of the solid angles of all the surface dots that belong to the residue. The sphere radius is set as 6Ȧ by

default in the computation.

4.2.9 Protrusion-cx Value

Pintar (140) devised a metric called cx value to estimate the protrusion of protein atoms. The basic

idea, similar to that of the solid angle, is to center a sphere at an atom and calculate the ratio of volume
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occupied by the protein and the volume left free by the protein. The cx value is a real number between

0 and 15. High cx values correspond to protruding atoms. Here, protrusion is defined over surface

residues instead of atoms. A surface residue’s protrusion is represented by the cx value of its Cα atom.

The cx values are computed using the C++ program provided by Pintar with default parameters (140).

4.2.10 Surface Micro-Environment: Hydrophobicity and Interface Cluster Size

Although some interface residues (dubbed “hot spots”) contribute more to the binding affinity than

other residues (15), most interface residues are not solitary. Interface residues have a tendency to form

clusters on the surface. This tendency is the basis of analysis of interfaces using surface patches or

spatial clusters (86; 193; 105). Here, we define a surface micro-environment for each surface residue

to examine whether residue preferences of interfaces are sensitive to the micro-environment or context

in which the residue resides. Given a target residue, its surface micro-environment is defined as the set

of surface residues whose Cα atom is < 7Ȧ away from the Cα of the target residue. By this definition,

each residue is included in its own surface micro-environment. Two surface micro-environment param-

eters are of interest here: the hydrophobicity and the interface cluster size. The hydrophobicity of a tar-

get residue is defined as the average hydrophobicity of all the residues in its surface micro-environment,

while hydrophobicities of each residue type Ri are denoted with an energy value ei, which is derived

from residue contact energies1 (193). The residue contact energies represent the degree of hydropho-

bic force between residue pairs. Hence, ei can be regarded as an estimation of hydrophobicity: the

lower the ei value, the more hydrophobic the residue. As a result, the average energy ei denotes the

hydrophobicity of the surface micro-environment of the target residue. The interface cluster size refers

to the number of interface residues within a target residue’s micro-environment. We anticipate a larger

cluster size for interface residues.

4.3 Analyses Results

We now proceed to describe the results of our analyses of protein-protein interfaces. Our analyses

are aimed at exploring the following questions:
1The ei values of 20 residues are: F -5.12, M -4.91, I -4.88, L -4.65, W -4.36, V -4.17, C -4.00, Y -3.24, A -2.82, H -2.75,

G -2.34, T -2.30, P -2.22, R -2.18, S -2.07, Q -1.98, E -1.94, N -1.90, D -1.81, K -1.50
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• Are some of the 20 amino acids are over-represented in protein-protein interfaces relative to

non-interfaces?

• Are some residue-residue contacts over-represented in protein-protein interfaces relative to non-

interfaces?

• Are some types of amino acid residues (e.g., hydrophobic ones) over-represented in interface

relative to non-interfaces?

• Are interface residues more conserved (in evolutionary terms) than non-interface residues?

• Are some secondary structures over-represented in protein-protein interfaces relative to non-

interfaces?

• Are some side-chain orientations more prevalent in protein-protein interfaces relative to non-

interfaces?

• Do molecular surfaces of interfaces differ from those of non-interface residues in terms of their

roughness?

• Are convex, concave or flat molecular surfaces over-represented in interfaces relative to non-

interfaces?

• Do molecular surfaces of interfaces tend to be more or less protruding relative to non-interfaces?

4.3.1 Residue-Residue Contact Preference

Figure 4.1, the grid map, shows the 2D distribution of residue-residue contact preference. Residues

are placed in increasing hydrophobicity order along the x- and y-axis. The residue-residue contact

preference is calculated as log odds ratio of the observed frequency of the residue pair over its expected

frequency. Each grid represents the contact preference value of two residues from the x- and y-axis

and is filled with different colors. The colors, from black to white, represent contact preference from

low values to high values. In the grid map, Cys-Cys stands out with the highest preference, known for

its formation of the cysteine-bridges. The contact preferences between residues with opposite charges
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Figure 4.1 Grid map of residue-residue contact preference

Each grid corresponds to a residue-residue contact preference. The filled color measures the extent
of preference: white-the most preferred, black-the least preferred. The color bar on the right shows
the contact preference values to which the colors correspond. The 20 amino acids are arrayed with
increasing hydropathy along the right and up side of the grid map. Cys-Cys outstands as the most
preferred contact. A “favorable contact zone” at the top right region and an “unfavorable contact zone”
at the top left region are noticeable.

(like Arg-Glu, Arg-Asp, His-Asp and Lys-Asp) are also high, which confirms the earlier findings that

interfaces are rich in salt-bridges (118; 161; 73). Contacts consisting of any of Tyr, Trp, Phe and His

are generally favored due to aromatic residues’ specificity in interfaces. A “favorable zone” exists in the

upper-right of the grid map, whose paired components are highly hydrophobic residues like Met, Cys,

Phe, Leu, Val and Ile. An “unfavorable zone” is found in the upper-left region and consists primarily

of pairs composed of one hydrophobic residue and one hydrophilic residue. The existence of the two

regions is consistent with the Glaser’s conclusion that contacts between large hydrophobic residues

are highly preferred and contacts between pairs of hydrophobic and polar residues are not preferred

(62). Keskin investigated the residue contacts at protein-protein interfaces using e0-“solvent-mediated”

potentials and er-“residue-mediated” potentials (92). It can be verified that those highly preferred con-

tacts have low values of residue-mediated potential. e.g. er(Cys-Cys)=-7.23,er(Arg-Glu)=-4.13 and

er(Tyr-Trp)=-5.12 etc.
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4.3.2 Residue Composition and Propensity

The dataset PPI2383 contains 113, 553 interface residues, 323, 270 exterior residues and 131, 632

interior residues. The occurrence frequencies of each amino acid in the interface, exterior and interior

regions are calculated and shown in the y-axis (see Figure 4.2). Along the x-axis, amino acids are

placed in order of increasing hydrophobicity based on the Kyte and Doolittle hydropathy index (102).

Figure 4.2 shows that more hydrophobic amino acids are over-represented in the protein interiors and

in interfaces. This is consistent with the results of earlier analysis by Janet Thornton’s group (88).

The residue propensities of interface, exterior and interior regions are calculated and compared in Fig-

ure 4.3. Note that hydrophobic residues have high propensities in interior regions and low propensities

in exterior regions. The hydropathy difference between interior regions and exterior regions is apparent,

while the hydropathy of interface regions appears to be neutral between those of interior and exterior

regions. Korn et. al (99) and Argos (5) drew similar conclusions concerning the hydropathy of the in-

terface. Furthermore, the calculation of the interface residue propensity out of surface residues (104,789

interface residues and 323,270 exterior residues) in Figure 4.4 reveals that hydrophobic residues like

Met, Cys, Phe, Leu, Val and Ile have high affinities for the interface. On the other hand, less hydropho-

bic residues like Lys, Asn, Asp, Gln and Gly have low affinitities for the interface. Aromatic residues

His, Phe, Trp and Tyr all have high propensity values. Argos (5) discovered this rule and postulated that

aromatic residues can glue together protein subunits. Charged residues show no consistent affinities:

propensities of Arg and His are high, while those of Lys, Asp and Glu are low. Our results corroborate

Janet Thorton’s (88) analysis, which concluded that interface residues pose as hydrophobic patches of

surface residues.

4.3.3 Variation Entropy

The HSSP database (155) provides multiple sequence alignments (MSAs) of all proteins in PDB.

The protein homologues in the MSA are selected based on a rigorous sequence identity threshold such

that they are also highly likely to be structural homologs. Each residue is assigned a variation entropy,

which is calculated based on the occurrence frequency of each amino acid at a given position within the

MSA. The variation entropy value of a residue denotes its conservation degree and ranges between 0-
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Figure 4.2 Percentage frequencies of amino acid residues in the exterior, interface
and interior regions
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Figure 4.3 Propensities of amino acid residues in the exterior, interface and inte-
rior regions
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Figure 4.4 Propensities of amino acid residues in the interface region relative to
the surface
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Figure 4.5 Variation entropy distribution

The variation entropy is extracted from the HSSP database (155). Values range at 0-100 and are divided
into 10 equal-width zones. The lower variation entropy, the more conserved the residues are.

100. High variation entropy suggests variable residues, while low entropy suggests conserved residues.

Figure 4.5 displays the distribution of variation entropy within exterior, interface and interior regions.

Variation entropy values between 0 and 100 are placed into 10 equal-sized bins (along the x-axis), The

number of residues in each bin, calculated as a percentage of the total number, is plotted along the

y-axis. It is evident that interior residues are the most conserved among the three, concentrated in the

zones with small variation entropy values. Interface residues are similar to exterior residues. However,

as the variation entropy increases along the x-axis, interface residues tend to occupy positions with

smaller entropy scores compared to exterior residues. This tendency implies that interface residues are

more conserved than exterior residues over evolutionary time. This tendency is also apparent in the

propensities of interface residues relative to the surface residues, as depicted in Figure 4.6. This is

consistent with Valdar (176)’s amino acid conservation analysis in six homodimer protein families.

4.3.4 Conservation Score

Utilizing the multiple sequence alignments (MSAs) in the HSSP database, Consurf-HSSP database

(61) calculates the rate of evolution at each residue position through a phylogenetic tree-based al-

gorithm. The rate of evolution is normalized to a conservation score ranging at 0-9. In contrast to

variation entropy of HSSP, high scores correspond to highly conserved residues. In the Figure 4.7,

the diagram on the left shows the distribution of conservation scores in exterior, interface and interior
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Figure 4.6 Propensities of variation entropy in the interface region relative to the
surface
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Figure 4.7 Conservation score distributions and propensities of interfaces relative
to surfaces

Conservation scores range at 0-9. The higher conservation scores, the more conserved the residues.

regions respectively, and the diagram on the right shows the propensity of interface residues extracted

from surface residues. The results, comparable to the variation entropy distribution, lead to the same

conclusion that evolutionary conservation can help distinguish interface residues from other surface

residues.

4.3.5 Secondary Structure

Protein secondary structure is studied to bridge the gap between the sequence and the structure.

Kabsch and Sander (89) defined eight secondary structures: H (alpha helix), B (beta-bridge), E (ex-

tended strand), G (3-helix), I (5-helix), T (hydrogen bonded turn), S (bend) and (coil). They imple-

mented a program (DSSP) to compute protein secondary structure. Figure 4.8 shows the distribution of
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Figure 4.8 Secondary structure distribution

The eight secondary structures: H (alpha helix), B (beta-bridge), E (extended strand), G (3-helix), I
(5-helix), T (hydrogen bonded turn), S (bend) and (coil) are computed through the program DSSP
(89).

the secondary structures in the exterior region, the interface region and the interior region respectively.

Interface residues are more similar to exterior residues based on the distribution. H (alpha helix) is the

most common configuration in all the three regions. However, the interior region also contains a large

amount of E (extended strand) but a small amount of other secondary structures in contrast to exterior

and interface regions.

4.3.6 Side Chain Orientation

Rackovsky and Scheraga first proposed side chain orientation as a metric to estimate hydrophobic

forces (144). They studied the residue orientations in 13 native proteins and found that polar and

non-polar residues have various orientation preferences. Later Yan (187) extended the studies to 48

proteins concerning exposed, interfacial and buried residues. Similar conclusions were reached: side

chain orientation has a high correlation with hydrophobicity. Figure 4.9 depicts the distribution of side

chain orientations in the exterior, interface and interior regions. Interior residues tend to have small

side chain orientations, or point inward, which may be a result of the shrinkage of side chains to fit into

the protein conformation and minimize the free energy. This conclusion is supported by other metrics

such as: amino acid composition, variation entropy, among others. Interface residues are more similar
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Figure 4.9 Side chain orientation distribution
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Figure 4.10 Propensities of side chain orientation in the interface region relative
to the surface

to exterior residues than interior residues in the side chain orientation distribution. Figure 4.10 shows

the side chain orientation propensity of interface residues relative to non-interface surface residues.

Interface residues with side chain orientation < π
2 are overrepresented, implying that interface residues

tend to point inward. Although the interface residue side chain’s tendency to point inward is clear, the

small propensity values (between -0.1 and 0.1) imply that the tendency is not all that well-pronounced.

4.3.7 Surface Roughness

The difference in surface roughness between interface residues and non-interface surface residues is

shown in Figure 4.11. Greater surface roughness values denote a smoother surface of protein residues.
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Figure 4.11 Interface propensities of surface roughness
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Figure 4.12 Interface propensities of solid angle

The histogram shows that interface residues tend to lie in rougher regions of the surface. The smoother

a surface residue, the less likely it is to be an interface residue.

4.3.8 Solid Angle

The difference in solid angle values between the interface and non-interface surface residues is

highlighted in Figure 4.12. Solid angles of surface residues mostly lie between 1.8π to 2.5π. Note

that the solid angle 2π denotes a “flat” local region, whereas the solid angles < 2π and > 2π denote

“concave” and “convex” local regions respectively. Figure 4.12 shows that interface residues favor

moderately concave (1.8π − 2.0π), flat (2.0π) or moderately convex (2.0π − 2.2π) local regions but

not highly convex regions (2.2π − 2.5π) or highly concave regions.
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Figure 4.13 Interface propensities of protrusion (cx value)

4.3.9 Protrusion-cx value

Figure 4.13 compares the protrusion in interface and non-interface surface regions. Although the cx

values range from 0-15, the cx values of surface residues corresponding to their Cα atoms are concen-

trated in the range 0-5. Large cx values correspond to protruding atoms. The fact that the propensities

increase as the cx values increase suggests that the interface residues prefer to be protruding.

4.3.10 Surface Micro-Environment: Hydrophobicity and Interface Cluster Size

Figure 4.14 shows the propensities of the two parameters related to the surface micro-environment:

the hydrophobicity and interface cluster size. The hydrophobicity in the upper figure, estimated through

average contact energy, shows that interface residues reside at more hydrophobic environments. The

lower figure demonstrates that an interface residue tends to be clustered with three or more interface

residues on the protein surface.

4.4 Discussion

4.4.1 A Summary of Protein-Protein Dimeric Interfaces

Several physicochemical properties are studied on a big dataset to characterize the protein-protein

dimeric interfaces. Our analysis has shown that:
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Figure 4.14 Interface propensities of hydrophobicity (average contact energy) and
size of interface cluster.

• Interfaces consist of many cysteine-bridges (Cys-Cys) and salt-bridges (Arg-Glu, Arg-Asp, His-

Asp and Lys-Asp)

• Aromatic residues (Tyr, Trp, Phe and His) are favored in interfaces.

• Hydrophobic-hydrophobic residue pairs overtake hydrophobic-hydrophilic residue pairs in inter-

faces.

Our analysis of protein-protein interfaces with respect to amino acid composition, secondary structure,

variation entropy, conservation score, side chain orientation has shown that:

• Interior residues tend to be the most hydrophobic, exterior residues tend to be the least hydropho-

bic and interface residues falling between the two extremes.

• Compared to the exterior and interface residues, interior residues have the most extended strand

secondary structures.

• Based on variation entropy and conservation score (derived from multiple sequence alignment

and phylogenetic tree construction respectively), interior residues tend to be among the most

conserved, the exterior residues among the least conserved, with the interface residues falling

between the two extremes.
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• Side chains of interior residues tend to point inward, while those of exterior residues tend to point

outward, and those of interface residues tend to have orientations between the two extremes, but

closer to those of the exterior residues.

Our analysis of interface regions of protein structures with respect to variation entropy, conservation

score, side chain orientation, surface roughness, solid angle, cx value, hydrophobicity and interface

cluster size has shown that:

• Side chains of interface residues tend to point inward.

• Interfaces tend to be rougher than the rest of the protein surface.

• Interfaces tend to be moderately concave, flat or moderately convex but not highly convex or

concave (as measured by the solid angle).

• The Cα atoms of interface residues protrude more in terms of cx value.

• Interface residues often reside in a hydrophobic micro-environment.

• Interface residues are often clustered on the surface.

The results of our analyses of a large dataset of protein-protein interface residues show that the

interface residues have distinctive physico-chemical properties in contrast to non-interface residues.

Our results confirm that protein-protein interfaces usually have a hydrophobic core with polar residues

and water molecules scattered around (106; 136), and are conserved across protein families (114) and

that the residues tend to interact through hydrogen bonding and electrostatic forces (78; 85). However,

the distinction between interface residues and interior and exterior residues is not very crisp. This

presents some challenges in reliable prediction of interface residues from amino acid sequences. In this

context, it might be useful to focus on specific sub-categories of interfaces (133), or “hot spots” (15)

or on distinguishing interface residues from surface resides (86; 87). However, the focus on surface

residues requires the knowledge of the structure of the target protein, or, at the very least, reliable

prediction of surface residues from sequence.
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4.4.2 Comparison with Previous Studies

Ofran et al. (133) investigated residue-residues contact preferences and amino acid compositions;

Thornton et al. (88; 85) studied protein-protein interfaces, interior regions and exterior regions and later

focused on surface interfaces. Yan et al. (191) explored physical-chemical properties of protein-protein

interfaces on a large dataset extracted from PDB. Connolly et al. (35), Lewis et al. (110), Pintar et al.

(140) and Yan et al. (187) focused on one specified structural property of protein-protein interfaces.

Most analyses were performed on relatively small datasets (e.g. two datasets of Thornton et al. (88; 85)

are 32 and 54 protein-protein dimers respectively.) Among the studies that used large datasets, Ofran

et al. (133) limited their studies to sequence residues; Lewis et al. (110) to surface roughness; Yan et

al. (191) did not consider structural properties. Against this background, the results presented in this

paper are based on comprehensive analyses of protein-protein interfaces using a large dataset of binary

protein-protein interfaces associated with 2, 383 non-redundant protein chains.

4.4.3 The Influence of Different Interface Definitions

Our definition of interfaces, adapted to Ofran et al’s method (133), is based on the closest dis-

tance between atoms. While Thorton’s definition of interface, at the residue level, is based on ∆ASA: a

residue is regarded as an interface residue when the loss of solvent accessible area (∆ASA) is≥ 1Ȧ dur-

ing the protein’s complexation. The numbers of interface versus non-interface in the dataset, PPI2383

based on the two definitions are listed in table 4.1. The two definitions have 96.97% of the assignments

in common. However, 14.63% of the interfaces defined by distance are categorized as non-interfaces

on the basis of ∆ASA.

Table 4.1 Comparison of interface definitions: ∆ASA-based and distance-based

interface by ∆ASA non-interface by ∆ASA
interface by distance 96,933 16,615

non-interface by distance 629 454,288
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Figure 4.15 Interface size distribution

4.4.4 The Distribution of Interface Size

We repeated Thorton’s analysis of the interface size of protein subunits. Interface size is calculated

as the loss of solvent accessible area (∆ASA) during the process of protein complexation. Figure 4.15

shows the interface size distribution of the dataset PPI2383, 1, 931 chains of which are in homodimer

complexes and 452 chains in heterodimer complexes. Fewer than 1.0% of the interfaces have size less

than 400Ȧ2. This is due to the fact that PQS (72) discriminates crystal packing from interfaces using a

cutoff of 400Ȧ2 mean accessible area loss. The interface sizes range from 200Ȧ2 up to 4000Ȧ2, 81.0%

of which fall into the range 400 − 2200Ȧ2 and the peak is at 800 − 1000Ȧ2. Comparison of the the

interface sizes of heterodimers and homodimers shows that heterodimers tend to have interface sizes

around 600 − 1400Ȧ2 with a sharp peak in the 800 − 1000Ȧ2 range, whereas the interface sizes of

homodimers tend to be more evenly distributed.

4.4.5 Cutoff of Surface Definition

Protein-protein interface residues are defined in terms of atom-atom distance. Protein surface

residues are defined in terms of relative solvent accessible area (RASA). The RASA distribution is

shown in Figure 4.16. As can be seen from the figure, a large fraction of non-interface residues (up to



65

0%

5%

10%

15%

20%

25%

30%

35%

[
0
-
5
)

[
5
-
1
0
)

[
1
0
-
1
5
)

[
1
5
-
2
0
)

[
2
0
-
2
5
)

[
2
5
-
3
0
)

[
3
0
-
3
5
)

[
3
5
-
4
0
)

[
4
0
-
4
5
)

[
4
5
-
5
0
)

[
5
0
-
5
5
)

[
5
5
-
6
0
)

[
6
0
-
6
5
)

[
6
5
-
7
0
)

[
7
0
-
7
5
)

[
7
5
-
8
0
)

[
8
0
-
8
5
)

[
8
5
-
9
0
)

[
9
0
-
9
5
)

[
9
5
-
1
0
0
]

relative solvent accessible area(%)

f
r
e
q
u
e
n
c
y

non-interface interface

Figure 4.16 Relative solvent accessible area distribution

28.94%) have RASA ≤ 5%; whereas a relatively small fraction (7.72%) of the interface residue with

RASA ≤ 5%. It appears that more interface residues are included among the surface residues when

5% − 20% range for RASA is used to identify the surface residues. The optimal choice of RASA

cutoffs is unclear; and the interface residues that are classified as non-surface residues deserve careful

examination.

4.4.6 Application: A Case Study

The distinct characteristics of residues with high versus low interface propensities, with respect to

the structural characteristics analyzed above, suggests the possibility that these characteristics might be

useful in improving the performance of classifiers trained to predict protein-protein interface residues.

Although physicochemical properties of amino acids have been widely used, only a few studies have at-

tempted to exploit geometric features of protein interfaces in building classifiers for predicting protein-

protein interface residues (20; 126; 124; 165; 195). To explore the potential utility of such an approach,

we examined the transcriptional regulatory protein SlyA (pdb entry 1lj9) by combining the five struc-

tural properties using a simple voting method to identify the interface residues of chain B: For each

surface residue, we calculated its side chain orientation, surface roughness, solid angle, cx-value and

hydrophobicity. If the value of a property lies in the region where the value is preferred in the interface
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(based on propensity estimates), the surface residue is “voted” to be an interface residue based on that

property. If a surface residue is voted to be as an interface residue based on at least 3 of the 5 properties,

it is predicted to be an interface residue; otherwise, it is predicted to be a non-interface residue. We

then use the tendency of the interface residues to be clustered together on the protein surface to refine

the predictions of the voting method as follows: If a surface residue that is predicted to be an interface

residue by the method described above has ≤ 2 neighbors in its surface micro-environment that are

also predicted to be interface residues, it is reclassified as a non-interface residue; If a residue predicted

to be non-interface residue has ≥ 4 neighbors in its surface micro-environment that are predicted to be

interface residues, it is reclassified as an interface residue.

Let TP be the number of true positives (residues predicted to be interface residues that are actually

interface residues); FP the number of false positives (residues predicted to be interface residues that

are actually non-interface residues); TN the number of true negatives; FN the number of false nega-

tives. The numerical performance measures ac (accuracy), re (recall), pr (precision) and cc (correlation

coefficient) are defined as follows:

ac =
TP + TN

TP + FP + TN + FN

re =
TP

TP + FN

pr =
TP

TP + FP

cc =
TP ∗ TN− FN ∗ FP√

(TP + FN)(TN + FP)(TP + FP)(TN + FN)

The results of prediction using the voting method followed by the refinement strategy described above

are summarized in Table 5.1 and Figure 4.17. We see that the use of the five structural properties

results in fairly accurate prediction of the interface residues. The results also suggest that refining the

predictions based on the clustering tendency of the interface residues further improves the quality of

the predictions in terms of precision and recall. It is worth noting that the results are significantly better

than those obtained based on analysis of sequence neighbors of the target residues (precision=55%,

recall=53%). These results suggest the possibility of using structural properties of interfaces to reliably
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Figure 4.17 Interaction Sites Identification of Chain B of Protein 1lj9 Under Two
Approaches: voting method (the left) and voting method+refinement
strategy (the right). The chain B is shown in grey, with the residues
of interest shown in space fill and color coded as follows: black, in-
terface residues identified as such by the classifier (TPs); light grey,
interface residues missed by the classifiers (FNs); and dark grey,
residues incorrectly classified as interface residues (FPs). For clarity,
interface residues for the chain A (gray wireframe) are not shown.
The structure diagrams were generated using RasMol (156).

identify protein-protein interface residues when only the structure of a protein (but not that of protein-

protein complex(es) in which it participates) is available.

Table 4.2 prediction results: chain B of protein 1lj9

classifiers ac re pr cc
voting 76% 66% 82% 53%

voting+refinement 82% 77% 86% 64%

4.4.7 Conclusion

Our analyses of dimeric protein-protein interfaces shows that protein-protein interfaces differ from

protein interiors and protein surfaces with respect to several sequence and structure derived features.

However, none of the sequence-or structure-derived features carries a strong enough signal to allow

reliable prediction of protein-protein interface residues. This underscores the need for developing so-

phisticated machine learning methods that can discover sequence and structural correlates of protein-

protein interfaces. Our analyses suggest that the use of structural features (when structure of the target

protein is available) can improve the reliability of predicted interfaces.
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CHAPTER 5. NB PPIPS - A Naive Bayes Method to Predict Protein-Protein

Interaction Sites

A paper submitted to IEEE Transactions on Bioinformatics and Computational Biology

Feihong Wu, Fadi Towfic, Drena Dobbs, Robert Jernigan and Vasant Honavar

Abstract Reliable identification of protein-protein interaction sites in proteins is one of the major

challenges in computational biology. We describe a machine learning approach to predicting protein-

protein interface residues on the surface of a protein. The proposed method is useful in settings where

the structure of the target protein is available although the structures of its binding partners or the com-

plexe(s) formed by it with other protein(s) are unavailable. We use a large non-redundant dataset of

2, 383 proteins. We explore several alternative representations of the input to the classifier starting

with a sequence window consisting of the target residue and its sequence neighbors. We compare the

performance of the resulting classifier estimated using 10-fold cross-validation with that of classifiers

that utilize evolutionary and structure-derived features. Our results show that the Naive Bayes classifier

trained using a combination of sequence, structure, and evolutionary information substantially outper-

forms its counterpart that is trained using sequence information alone. We find that some interfaces

are easy-to-predict and others hard-to-predict. In the case of the former, interface predictions with high

precision and recall can be achieved using sequence information alone whereas in the case of the latter,

even addition of structural and evolutionary features yields only marginal improvement in predictions.

We explore the feasibility of adapting this approach to settings where the structure of the target protein

is unavailable. We model the structure of the target protein using its known structural homologues and

use the modeled structure instead of the actual structure to determine the surface residues and to cal-

culate the structural features to be used as inputs to the classifier. Our results show that the closer the

modeled structure is to the actual structure, the more reliable are the interface residue predictions gen-
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erated by the classifier. The methods have been implemented in an online server NB PPIPS, accessible

at http://watson.cs.iastate.edu/nb_ppips.

5.1 Introduction

Protein-protein interactions play a pivotal role in cellular processes such as DNA replication and

transcription, RNA splicing, signal transduction and metabolic networks. Therefore, understanding the

sequence and structural determinants of protein-protein interactions is crutical for the determination of

protein functions, understanding biological processes and designing therapeutic drugs. Protein-protein

interactions play a pivotal role in protein function. Completion of many genomes is being followed

rapidly by large-scale efforts to identify interacting protein pairs experimentally, in order to decipher

the networks of interacting proteins. Experimental proteomics projects have already resulted in com-

plete ’interactomes’ (56). While such efforts yield a catalog of interacting proteins, experimental detec-

tion of residues in protein-protein interaction surfaces must come from determination of the structure

of protein-protein complexes. However, determination of protein-complex structures using X-ray and

NMR methods lags far behind the number of known protein sequences. Hence, there is a need for

the development of reliable computational methods for identifying protein-protein interface residues

(169; 164; 165).

When the structure of a target protein and its putative binding partner are both available, docking

methods (131; 166; 67; 121) can be used to identify interaction sites. However, such an approach is

impractical when the structure of the putative binding partner is unknown. Even in cases where the

structure of the binding partner is available, the computational effort involved in docking can be signif-

icantly reduced if reliable predictions of binding sites can be used to guide docking. Hence, there is an

urgent need for reliable computational methods for predicting protein-protein interface residues from

amino acid sequence of the target protein, and when available, its structure, but not the structure of its

binding partners.

Studies of “hot spot” regions (93; 94; 15; 189; 188) suggest that interaction sites are pre-organized
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in the unbound states. This raises the possibility of identifying the interface residues of a protein with-

out knowledge of the structures of its binding partners, or for that matter, the identities of its binding

partners. Analyses of protein-protein complexes from the Protein DataBank (14) (31; 79; 81; 5; 133;

176; 88; 85; 86; 40; 129; 127; 193) have shown that protein-protein interface residues differ from

non-interface residues with respect to a number of characteristics. These studies covered a wide scope

over a variety of interface types (homo-interface or hetereo-interface, transient or permanent interfaces,

etc.) and properties (sequential properties, evolutionary properties and structural properties). Despite

the differences among different types of interfaces (133; 86), interfaces tend to be more hydrophobic,

more conserved and more protruding as compared to non-interface residues (31; 79; 81; 5; 86).

Several groups have attacked the problem of predicting protein-protein interface residues using

only the sequence features of the target protein (134; 58). However, there is much room for improve-

ment in the sensitivity and specificity of such methods. Consequently, recent studies have focused on

incorporating additional types of information e.g., the degree of conservation of residues in sequence

and/or structure, structural features of the target protein, among others: Fariselli and colleagues (48)

and Zhou (194; 28) have developed neural network classifiers to identify heterodimer protein interfaces

using spatial neighbors of the target residue as inputs to the classifier. Koike et al. (98) have devel-

oped a support vector machine classifier using an input representation similar to that used by Zhou et

al. (194; 28). Besides discriminative models like neural network and SVM, generative models such

as hidden Markov model(by Friedrich (55), by Nguyen (128)) and conditional random field (by Li

(123)) are also applied. Lichtarge et al. (114; 115; 148) devised an evolution trace (ET) method that

assigns a score to each sequence residue based on phylogenetic analysis and uses the resulting score

to predict protein-protein interface residues. Landgraf (105) used ET scores of clusters of residues in

3-dimensional structure of a target protein to predict protein-protein interface residues. Li (111) and

Wang (180) have also used conservation scores of residues in predicting interface residues. Bordner et

al. (16) have developed SVM classifiers for predicting protein-protein interface using sequence profiles

and evolutionary rates of spatial neighbors of a target residue. Jones et al. (87; 124) have developed

a method for predicting four types of protein interfaces (homodimers, small and large protomers from
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hetero-complexes and antigens) using patch analysis of surface residues. Neuvirth et al. (127) have

described a structure-based method for identifying interacting sites by assigning scores to residues in

terms of thirteen different properties. Bradford et al. (19; 20) have proposed a method to combine the

SVM and patch analysis, followed by a Bayes network for combining the predictions. Kufareva et al.

(100) have recently presented a PIER algorithm that scored surface patches using twelve patch descrip-

tors defined by atom properties and reflected the surface patch scores back to surface residues. Sen

et al. (158) reported improvements in predicting hydrolase-inhibitor interfaces by combining several

methods. Hoskins and colleagues (74) have described the use of abnormal exposed secondary structure

in the prediction of protein-protein interfaces. Liang et al. (112; 113) have explored a combination of

side chain energy, conservation score and residue propensity in predicting protein-protein interfaces.

Dong et al. (43) have introduced profile-level interface propensity to predict protein-protein interfaces.

Porollo and colleagues (141) have applied the difference of accessible area between monomeric and

oligmeric states of a protein in protein-protein interface prediction. Zhou et al. (195; 143) have recently

constructed a meta server by combining results from various predictors.

Our previous work of protein-protein interface analysis (185) studied six physicochemical residue

properties (variation entropy, side chain orientation, surface roughness, solid angle, cx value, hydropho-

bicity) in a large dataset consisting of 2, 383 protein chains. The results of our analysis show that the

interface residues have side chains pointing inwards; interfaces are rougher, tend to be flat or moder-

ately convex or concave (but not highly convex or concave) and protrude more relative to non-interface

surface residues. Interface residues tend to be surrounded by hydrophobic neighbors.

Against this background, this paper explores whether it is possible to exploit such properties to

improve the sensitivity and specificity of protein-protein interface predictions. We describe a machine

learning approach to predicting protein-protein interface residues on the surface of a protein. The pro-

posed method is useful in settings where the structure of the target protein is available although the

structures of its binding partners or the complexe(s) formed by it with other protein(s) are unavailable.

We use a large non-redundant dataset of 2, 383 proteins. We explore several alternative representations
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of the input to the classifier starting with a sequence window consisting of the target residue and its

sequence neighbors. We compare the performance of the resulting classifier estimated using 10-fold

cross-validation with that of classifiers that utilize evolutionary and structure-derived features. Our

results show that the Naive Bayes classifier trained using a combination of sequence, structure, and

evolutionary information substantially outperforms its counterpart that is trained using sequence infor-

mation alone. We explore the feasibility of adapting this approach to settings where the structure of the

target protein is unavailable. We model the structure of the target protein using its known structural ho-

mologues and use the modeled structure instead of the actual structure to determine the surface residues

and to calculate the structural features to be used as inputs to the classifier. Our results show that the

closer the modeled structure is to the actual structure, the more reliable are the interface residue predic-

tions generated by the classifier. The methods have been implemented in an online server NB PPIPS

accessible at http://watson.cs.iastate.edu/nb_ppips.

5.2 Materials and Methods

5.2.1 Dataset

We extracted protein-protein interface residues from complexes in PDB (14) using the following

procedure: The protein entries with resolution ≤ 3Ȧ were then checked with the Protein Quaternary

structure file Server (PQS) (72) to regenerate quaternary structures from which protein dimers are kept,

while crystal packing and protein multimers are filtered out. Next, protein dimers with one chain of

≤ 20 amino acids were removed. We selected chains out of the protein dimer complexes such that

any two chains would have sequence identity ≤ 30%. The protein sequence identity information is

obtained from PDB (ftp://ftp.rcsb.org/pub/pdb/derived data/NR/). The final dataset includes 2, 383

protein chains coming from 2, 316 protein dimers. The dataset consists of 452 heterodimer interfaces

and 1931 homodimer interfaces. (Homodimer interfaces are distinguished from heterodimer interfaces

through sequence identity. Interfaces between chains with ≥ 90% sequence identity are defined as

homodimer interfaces. All others are defined as heterodimer interfaces.)
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5.2.2 Surface versus Non-surface

Surface residues are defined by Miller et al (122) as those residues having a relatively accessible

surface area of ≥ 5%. The accessible surface area is calculated using the Naccess program (76).

5.2.3 Interface versus Non-interface

We follow Ofran and Rost’s (133) definition of interface residues: Two residues are considered

to be in contact if the closest distance between any two atoms, one from each residue, is ≤ 6Ȧ. A

surface residue having at least one contact residue from the interacting partner chain is considered to

be an interface residue, otherwise it is a non-interface residue. Hence, the dataset consists of 104, 789

interface residues and 323, 270 non-interface residues.

5.2.4 Variation Entropy

The HSSP database (155) provides multiple sequence alignments(MSAs) of all proteins in PDB.

The protein homologues in the MSA are selected based on a rigorous sequence identity threshold so that

they are also structure homologues. Each residue is assigned a variation entropy, which is calculated

based on the amino acid occurring frequencies at its position within the MSA. The variation entropy

value of a residue denotes its conservation degree and ranges between 0-100. High variation entropy

suggests variable residues, while low entropy suggests conserved residues. Our previous study (185)

showed that interface residues are more conserved than surface residues: they are over-represented at

0-50 of variation entropy.

5.2.5 Side Chain Orientation

The side chain orientation of a residue is defined as the angle between two vectors: The first vector

connects the geometrical center of a side chain of the residue with its Cα atom. The second vector

connects the geometrical center of the protein chain with the Cα atom of the residue. The angle is

confined in the range of 0 to π. Our previous study (185) shows that the side chains of interface

residues prefer to point inward, having side chain orientation < π
2 .
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5.2.6 Surface Roughness

Using Richard’s (107) method, a molecule surface is produced by rolling a solvent sphere with

radius R against the target protein. The area of the resulting surface, As, depends on R. Lewis (110)

defined surface roughness as follows D = 2− ∂log As

∂log R . It denotes the degree of irregularity of a surface.

Here, each surface residue is assumed to have its own molecule surface and roughness. Roughness is

calculated by varying the radius R from 0.2Ȧ to 4.0Ȧ, in steps of 0.1Ȧ. The molecule surface area

As is calculated using the Molecule Surface Package (MSP) (36). Our previous study (185) shows that

interface residues have rougher molecular surfaces with surface roughness values within 2.0− 2.2.

5.2.7 Solid Angle

Solid angle, first proposed by Connolly (35) as a measure of gross shape of local regions of protein

surfaces, is calculated as the fraction of a sphere intersecting the protein by centering a sphere at a

point on the protein surface. The range of a solid angle is (0, 4π).The MSP software package (36)

implemented by Connolly uses discrete dots to represent the molecule surface and generates a solid

angle for each dot. The solid angle of a surface residue is calculated as the average of the solid angles

of all the surface dots that belong to the residue. The sphere radius is set as 6Ȧ by default in the

computation. Our previous study (185) shows that interface residues favor moderately concave (1.8π−
2.0π), flat (2.0π) or moderately convex (2.0π − 2.2π) local regions.

5.2.8 Protrusion-cx Value

Pintar (140) devised a metric called cx value to estimate the protrusion of protein atoms. The basic

idea, similar to that of the solid angle, is to center a sphere at an atom and calculate the ratio of volume

occupied by the protein and the volume left free by the protein. The cx value is a real number between

0 and 15. High cx values correspond to protruding atoms. Here, protrusion is defined over surface

residues instead of atoms. A surface residue’s protrusion is represented by the cx value of its Cα atom.

The cx values are computed by the C++ program provided by Pintar with default settings of parameters.

Our previous study (185) shows that interface residues have protruding Cα atoms because cx values

concentrate in the range 1− 5.
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5.2.9 Surface Micro-Environment: Hydrophobicity

We define a surface micro-environment for each surface residue to examine whether the residue

preferences of interfaces are sensitive to the micro-environment or the context in which the residue

appears. Given a target residue, its surface micro-environment is defined as the set of surface residues

whose Cα atom is < 7Ȧ away from the Cα of the target residue. By this definition, each residue is

included in its own surface micro-environment. The hydrophobicity of a target residue is defined as the

average hydrophobicity of all the residues in its surface micro-environment, while the hydrophobic-

ity of each residue type Ri is denoted with an energy value ei derived from residue contact energies1

(193). The residue contact energies designate the degree of hydrophobic force between residue pairs.

Hence, ei can be regarded as an estimation of hydrophobicity: the smaller ei, the more hydrophobic the

residue. As a result, the average energy ei denotes the hydrophobicity of the surface micro-environment

of the target residue. Our previous study (185) shows that interface residues primarily reside in more

hydrophobic environments (-4.5 -2.5).

5.2.10 Naive Bayes Classifier

A framework of classification is to classify each instance with d-dimension feature vector x =

(x1, x2, ..., xd) into one of e classes (c1, c2, ..., ck, ...ce). Let P (ck|x) be the conditional probability

that an instance belongs to class ck given we know it has feature vector x. According to Bayes’ rule

(45), the conditional probability P (ck|x) can be computed from the conditional probabilities of occur-

rence of particular vectors of feature values given each class P (x|ck) and unconditional probability of

occurrence of each class P (ck) as follows:

P (ck|x) = P (ck)× P (x|ck)
P (x)

1The ei values of 20 residues are: F -5.12, M -4.91, I -4.88, L -4.65, W -4.36, V -4.17, C -4.00, Y -3.24, A -2.82, H -2.75,
G -2.34, T -2.30, P -2.22, R -2.18, S -2.07, Q -1.98, E -1.94, N -1.90, D -1.81, K -1.50
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If we can estimate P (ck|x) for a classification problem, an instance with feature vector x can be as-

signed with the class ck which P (ck|x) is highest to minimize the classification errors.

Naive Bayes classifier is derived from Bayes’ rule and assumes that occurrence of all features are inde-

pendent. Hence we have:

P (x|ck) =
d∏

j=1

P (xj |ck)

Thus, our goal in interface prediction is to classify a residue r0 as an interaction site (c1) or non-

interaction site (c0) based on various features. For example, considering five sequence neighbors

r−5, r−4, .., r−1, r1, .., r4, r5 on either side of the target residues r0, we get a 11-dimensional feature

vector x = (x−5, x−4, ..., x4, x5) where each xi denotes the amino acid identity of the corresponding

residue. Assuming that the 11 residues in the sequence window are independent given the class, we

have a Naive Bayes classifier that uses only the sequence information:

P (c1|x)
P (c0|x)

=
P (c1)×

∏5
j=−5 P (xj |c0)

P (c0)×
∏5

j=−5 P (xj |c1)

If
P (c1|x)
P (c0|x)

> 1, r0 is an interaction site;

Otherwise , r0 is non-interaction site.

To improve the baseline classifier, we add evolutionary and structural features to the feature vector x.

We consider seven features (variation entropy, side chain orientation, surface roughness, solid angle, cx

value and spatial neighborhood hydrophobicity) of the target residue r0. Features are discretized into

bins of equal width. For example, values of spatial neighborhood hydrophobicity fall in the range (-5,

-1.5). They are discretized into seven bins of equal width (-5,-4.5], (-4.5,-4], ..., (-2.0,-1.5) and numeric

value for the feature is assigned to the appropriate bin. The Naive Bayes classifier that combines multi-

ple types of information is constructed using a greedy strategy as follows: Structural and evolutionary

features are considered one at a time, in the order of decreasing impact, keeping the feature if the clas-

sifier performance improves and discarding the feature otherwise.
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We trained the Naive Bayes classifiers on the dataset using ten-fold sequence-based cross validation

(25): the 2, 383 protein chains were partitioned into 10 disjoint subsets. In each round, 9 subsets were

used to generate the training dataset and the remaining subset was used to generate the test dataset.

The Naive Bayes classifier was trained using the training dataset and evaluated on the test dataset. The

performance estimates (accuracy, precision, recall, etc.) are averaged over the 10 runs. To assess the

performance of our Naive Bayes classifiers, we use the following measures (11):

Let TP be the number of true positives (residues predicted to be interaction residues that are in fact

interaction residues); FP the number of false positives (residues predicted to be interaction residues

that are actually non-interaction residues); TN the number of true negatives; FN the number of false

negatives. We then have performance measures ac(accuracy), re(recall), pr(precision), tpr (true posi-

tive rate) and fpr (false positive rate)and cc(correlation coefficient) defined as follows:

ac =
TP + TN

TP + FP + TN + FN

re =
TP

TP + FN

pr =
TP

TP + FP

tpr =
TP

TP + FN

fpr =
FP

TN + FP

cc =
TP ∗ TN− FN ∗ FP√

(TP + FN)(TN + FP)(TP + FP)(TN + FN)

None of these measures individually gives a comprehensive picture of the performance of the classifier.

This is especially true in settings where the class distribution is unbalanced (as is the case in interface

prediction: the proportion of interface residues is much smaller than that of non-interface residues).

It is possible to trade off true positive rate against false positive rate or alternatively, precision against

recall by varying the classification threshold. The ROC curve (50) and the precision-recall curve show

the tradeoff between the false positive rate and true positive rate and between precision and recall (re-

spectively) of classifiers.
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5.2.11 Homology-based Structure Modeling

We use the FUGUE (162) program to identify the distant homologues of a target protein to use

as structural templates. We selected 10% (209) of the proteins in the dataset randomly as target pro-

teins. We discard structure templates with sequence identity > %95 to ensure that FUGUE does not

include the target protein itself with its distant homologues and the condition that normalized z-score

>= 6.0 is enforced to retain only structure templates with high confidence. We then provide the multi-

ple sequence alignment of the target sequence with its homologues to the MODELLER (117) program.

MODELLER automatically calculates a modeled protein structure based on the constraints imposed by

the sequence alignment and the structure templates. Two parameters are calculated to determine how

well the modeled structures approximate the actual structures. Surface equivalence (SE) is defined as

the ratio of “equivalent” residues of the modeled structure to the actual structure (two corresponding

residues are equivalent if they are both embedded or on the surface). SE is a coarse metric to estimate

the surface similarity of two proteins. RMSD, calculated with BioShell package (65), is the root mean

square deviation of the modeled structure and the actual structure, denoting the structure similarity of

two proteins.

5.2.12 Predicting Interfaces on Modeled Structures

As noted above, a random sample of 209 proteins was selected and set aside from the original

dataset of 2383 proteins. We trained a Naive Bayes classifier using the best performing combination

of sequence, structural features on the remaining set of 2174 proteins. The performance of the trained

classifier was evaluated on the 209 modeled proteins, by using the modeled structures instead of the

actual structures to generate the input to the classifier.
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5.3 Experimental Results

5.3.1 Structural and Evolutionary Features Improve Interface Prediction

The results of our experiments are shown in Table 5.1 and Figure 5.3. The classifier that uses the

target residue and its sequence neighbors provides the baseline. Various structural features are added

to explore the impact each feature on the performance of the resulting classifier. The results of our

experiments show that almost all the structural and evolutionary features considered improve the accu-

racy of the classifier over that of the baseline classifier, with cx value yielding the largest improvement,

followed by hydrophobicity, solid angle, roughness and variation entropy. Side chain orientation did

not yield an improvement in performance over the baseline. The Naive Bayes classifier that was con-

structed using a combination of sequence, structural and evolutionary features shown in the last line of

Table 5.1, incorporates cx value, hydrophobicity, solid angle, variation entropy. It has 60.7% recall and

34.6% precision, as compared to 56.2% and 29.3% respectively for the baseline classifier. The observed

difference is statistically significant based on paired t-tests which yield p values less than 0.0001. The

precision-recall curve (see Figure 5.3) of the classifier that exploits sequence and structural as well as

evolutionary features dominates the precision-recall curve for the baseline classifier.

5.3.2 Easy-to-predict and Hard-to-predict Interfaces

Analysis of the interface residue predictions on individual proteins indicates that the proteins whose

interfaces are predicted with high precision and recall using structural features are also well predicted

from sequence alone (although the latter are often inferior to the former). This can be accounted for by

the fact that we only predict interface residues on the surface, which means that even sequence-based

predictor indirectly utilizes some structural information in the form of knowledge of the surface.

We also find that that interfaces in some proteins are “easy-to-predict” (with recall > 60% and

precision > 50%), whereas interfaces in other proteins are “hard-to-predict” (with recall < 30% and

precision < 20%). Interestingly, we find that “easy-to-predict” proteins interfaces are predicted with
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relatively high precision and recall using only sequence-derived features. “Hard-to-predict” proteins

interfaces tend to be difficult to predict with high precision and recall even using structural features.

Upon closer examination, we find that the “easy-to-predict” interfaces tend to have large protein sur-

faces (with 80% or more of residues being surface residues) and protein interfaces consisting of residues

that are clustered along the sequence (with more than > 10 interface residues nearly contiguous in

sequence). Examples of “easy-to-predict” interface is shown in 5.1. In contrast, “hard-to-predict” in-

terfaces have large protein surfaces but interface residues that are form small isolated clusters along

the sequences (< 6 nearly contiguous residues in sequence) (See figure 5.2). One possible explanation

for this observation might be the fact that all of the classifiers considered in this study use a primarily

sequence-based representation, albeit augmented by structural and evolutionary features. It would be

interesting to explore alternative representations based on surface neighborhood or structural neighbor-

hood of target residues.

Table 5.1 Prediction results of different Naive Bayes classifiers with different
feature compositions: 1 – sequence, 2 – sequence+side chain orien-
tation, 3 – sequence+variation entropy, 4 – sequence+roughness, 5 –
sequence+solid angle, 6 – sequence+hydrophobicity, 7 – sequence+cx,
8 – sequence+cx+hydrophobicity+solid angle+variation entropy

Naive Bayes Classifier ac re pr cc auc
1 56.1% 56.2% 29.3% 10.6% 0.589
2 56.3% 55.6% 29.4% 10.5% 0.589
3 57.0% 56.8% 30.2% 12.0% 0.610
4 57.9% 57.8% 31.0% 13.6% 0.612
5 57.0% 58.1% 31.0% 13.8% 0.613
6 58.9% 57.8% 31.5% 14.8% 0.625
7 60.2% 56.1% 32.2% 15.3% 0.629
8 62.3% 60.7% 34.6% 20.3% 0.675

5.3.3 Predicting Interfaces on Modeled Structures

Our use of structural features in predicting protein-protein interfaces relies on the availability of the

structures of target proteins. In light of the fact that the use of structural features improves the precision
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Figure 5.1 Interaction Sites Recognition of “easy-to-predict” proteins: 1aih
(chain D), 1cdc (chain B), 1igu (chain B), 1joc (chain B), 1lgp (chain
A) and 1lj9 (chain B). The predicted chain B is shown in green, with
the residues of interest shown in space fill and color coded as follows:
red, interface residues identified as such by the classifier (TPs); yel-
low, interface residues missed by the classifiers (FNs); blue, residues
incorrectly classified as interface residues (FPs) and orange, residues
correctly classified as non-interface residues (TNs). For clarity, inter-
face residues for partner chains (gray wireframe) are not shown. The
structure diagrams were generated using RasMol (156).

Figure 5.2 Interaction Sites Recognition of “hard-to-predict” proteins: 1czf
(chain A) and 1iqu (chain A)
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Figure 5.3 Recall precison curves of the 8 Naive Bayes classifiers with different
feature compositions
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and recall of interface predictions, it is natural to ask whether similar gains can be obtained if we use

modeled structures in place of actual structures of the target proteins. We used the Naive Bayes classi-

fier using the best performing combination of sequence, structure, and evolutionary features described

above, trained on a dataset extracted from 2174 of the original 2383 proteins, to predict the protein-

protein interfaces in the 209 modeled protein structures. The SE and RMSD between the 209 modeled

proteins and their corresponding actual structures are 81.6%± 10.1% and 16.46± 36.82 respectively.

Three predictions are performed, p1 – using only protein sequence, p2 – using modeled structure and

p3 – using actual structures. The prediction results are shown in Table 5.2 as prediction experiments

p1, p2 and p3 and in Figure 5.4 as curves 1, 2 and 3.

Comparison among these three predictions shows that interface prediction the modeled structures

is inferior to the predictions on the actual structures, but marginally better than prediction using only

sequence information. A possible explanation for the disparity between the predictions on actual versus

modeled structures might be the poor accuracy of the modeled structures. To explore this possibility,

we conducted an additional experiment – p4: we selected well-modeled proteins with RMSD < 2.0

from the larger set of 209 modeled proteins. The performance of the classifier on this subset of 24

well-modeled proteins (experiment p4) are in Table 5.2 and curve 4 in Figure 5.4. The results of this

experiment show that the more accurate the structure models, the greater the improvement obtained by

using structural features in predicting protein-protein interfaces.

Table 5.2 Prediction results of modeled protein structures

prediction experiment ac re pr cc auc
p1 : sequencealone 56.8% 55.8% 32.7% 12.0% 0.589

p2 : modeledstructures 55.8% 66.0% 31.8% 14.8% 0.624
p3 : actualstructures 63.2% 61.2% 36.2% 19.7% 0.676

p4 : well −modeledstructures 57.4% 65.5% 33.6% 17.0% 0.645
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Figure 5.4 Recall precison curves of the four prediction experiments on protein
sequences, modeled protein structures and actual protein structures

Figure 5.5 Interaction Site Recognition Using Modeled Structure and Actual
Structure (protein 2b5a, chain D): The left displays the prediction of
modeled structure (re=0.79 and pr=0.64) and the right shows the pre-
diction of the actual structure (re=0.71 and pr=0.68). RMSD: 1.93 and
SE:96.2%
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Figure 5.6 snapshot of NB PPIPS running results

.

5.4 NB PPIPS Protein-Protein Interface Prediction Server

We have made available NB PPIPS, an on-line server for predicting protein-protein interfaces given

the actual or modeled structure of the target protein. NB PPIPS implements a Naive Bayes classifier

trained on the 2, 383 protein dataset, with 16 input features: eleven sequence neighboring residues,

variation entropy, cx value, solid angle and hydrophobicity. NB PPIPS can be accessed via http:

//watson.cs.iastate.edu/nb_ppips. NB PPIPS integrates several pieces of software into

a web server: WEKA machine learning package (184) to build the classifier, blastp (3) to calculate

variation entropy, the cx program (140) to calculate cx value and the msp program (36) to calculate

solid angle. NB PPIPS parses an input protein structure to identify its surface residues, calculates the

structural features of each residue and outputs the probability that a residue is an interaction residue

(Only surface residues are assigned non-zero probability of being an interface residue). The process of

parsing, calculating and predicting can be monitored on the webpage. The predicted interface residues

can be visualized on the structure using Jmol (Jmo) plug-in. Figure 5.6 shows a screen shot of the the

result page produced by the server.
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5.5 Summary

Reliable identification of protein-protein interaction sites in proteins is one of the major challenges

in computational biology. We have described a machine learning approach to predicting protein-protein

interface residues in settings where the structure of the target protein is available although the structures

of the its binding partners or that of complexe(s) formed by it with other protein(s) are unavailable. We

have explored several alternative representations of the input to the classifier starting with a sequence

window consisting of the target residue and its sequence neighbors. The results of our experiments

using 10-fold cross-validation on a large non-redundant dataset of 2, 383 proteins show that the Naive

Bayes classifier trained using a combination of sequence, structure, and evolutionary information sub-

stantially outperforms its counterpart that is trained using sequence information alone.

We found that that interfaces in some proteins are “easy-to-predict” with relatively high preci-

sion and recall using only sequence-derived features whereas interfaces in other proteins are “hard-

to-predict” despite the use of structural features, although the use of structural features yields im-

provements in both cases. We observed that the “easy-to-predict” interfaces tend to have large protein

surfaces and protein interfaces consisting of many residues that are clustered along the sequence. In

contrast, “hard-to-predict” interfaces have large protein surfaces but interface residues that form small

isolated clusters along the sequence.

We also explored the use of a modeled protein structure in place of the actual structure of the

target protein as input to the classifier. Our results show that the feasibility of this approach de-

pends on the accuracy of the modeled structure. We have made the structure-based Naive Bayes

classifier for predicting protein-protein interfaces as an online server NB PPIPS accessible at http:

//watson.cs.iastate.edu/nb_ppips.

The identification of protein-protein interface residues is complicated in part because of the great

diversity of proteins as well as their interactions. Protein-protein interfaces can be divided into six

categories in terms of inter versus intra-molecule, homodimer versus heterodimer and permanent ver-
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sus transient. Each of these categories differs from others in terms of amino acid composition (133;

40; 129). Protein-protein interfaces are usually more conserved across protein families in terms of the

residues that participate in the interactions although such conservation is surprisingly less pronounced

(176; 24). Protein-protein interfaces usually form a hydrophobic core with polar residue margins, but all

interface residues do not appear contribute equally to the protein-protein binding affinity (106; 136; 15).

Although a variety of machine learning methods for predicting protein-protein interfaces have been

explored, there is limited understanding of the relative strengths and limitations of the different meth-

ods. Different studies sometimes use different definitions of interface and surface (48; 133; 86), and

report different measures of performance (and in some instances, use different definitions for the same

performance measures). The difficulty of comparing different methods is further compounded by the

unavailability of the datasets used in the study, and the algorithms used for classification. Therefore,

there is a need for systematic comparisons of a broad class of methods, using a variety of data repre-

sentations and types of sequence and structure-derived features, to understand their relative strengths

and weaknesses and to develop new approaches that synergistically combine multiple methods. The

dataset used in this study is one of the largest non-redundant datasets of protein-protein interfaces and

hence can serve as a basis for comparison of multiple methods.

Work in progress is aimed at:

• Systematic and rigorous comparison of protein-protein interface predictions using a large dataset

and a broad class of prediction methods and data representations

• Further exploration of what makes some interfaces easy and others hard to predict

• Development of customized predictors for specific target proteins (as opposed to a single predic-

tor trained on the entire dataset)
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CHAPTER 6. Conclusion

6.1 Contributions

Our study focuses on using computational methods to discover sequence and structural correlates of

protein-protein interfaces, an important problem in the study of protein-protein interactions. Advances

in methods predicting protein-protein interfaces can lead to better methods for identifying functionally

important sites of proteins, extending the range of docking problems (by helping localize promising re-

gions on the protein surface for docking), and focusing experimental work (e.g., site-specific mutation

studies aimed at uncovering the sequence and structural correlates of protein-protein interactions) and

better methods for rational drug design.

The work described in this thesis is organized around three main components:

• PPIDB: A comprehensive Database of protein-protein interfaces: We have assembled a

comprehensive protein-protein interface database – PPIDB, extracted from the PDB. PPIDB

design allows its contents to be updated periodically as PDB is updated. PPIDB provides a

well-characterized dataset of protein-protein interfaces. It provides tools for generating large

benchmark datasets for analyses and prediction of protein-protein interfaces, and for comparison

of alternative prediction algorithms and data representations. PPIDB currently contains 71, 486

inter-chain protein-protein interfaces and keeps updating. PPIDB provides programmatic access

to the database through web services. These features make PPIDB distinctive and complemen-

tary to other databases such as InterPare (64), DOCKGROUND (44), and SNAPPI-DB (82),

etc.

• Analyses of Protein-Protein Interfaces: We have carried out analyses of physicochemical and
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structural properties of protein-protein interfaces and non-interfaces. Most of the previous anal-

yses of protein-protein interfaces were limited to small datasets (88; 85) or are confined to a

subset of the properties of interest (133; 191; 110). Our analyses utilized a large, non-redundant

dataset of 2, 383 proteins. We investigated a number of sequence, evolutionary and structural

properties. The results of these analyses confirm many of the results of previous analyses using

small datasets while providing additional insights regarding the sequence and structure-derived

properties that carry information that can be used as a basis for predicting protein-protein inter-

faces.

• Improved methods for predicting protein-protein interfaces: We have developed classifiers

to predict protein-protein interfaces from protein sequence, and when available, the structure

of the target protein. We have shown that the use of structural features greatly improves the

precision and recall of predicted protein-protein interface residues. The resulting classifier has

been implemented as an online server.

6.2 Future Work

Identification of protein-protein interfaces is an important, challenging and fast-evolving area of

research in computational biology. Some promising directions for further work include:

• Enhancing functionality of PPIDB to support analyses and prediction of protein-protein in-

terfaces: It would be useful to develop additional web services to support different types of anal-

yses of protein-protein interface datasets and for visualization of the analyses results (e.g., rela-

tive amino acid propensities, surface roughness, local curvature of interfaces and non-interfaces).

It would be useful to annotate PPIDB and the associated Web services with metadata to enable

other research groups to integrate PPIDB with other data resources and utilize the services of-

fered by PPIDB in largera workflows.

• Extending the analyses of interfaces to multimeric, transient and protein-ligand complexes:

Our work has largely focused on protein-protein dimeric interfaces (mostly permanent, physical

interactions). However, many proteins form multimeric complexes consisting of multiple inter-
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acting subunits; transient protein-protein interactions are very important in signal transduction;

protein-ligand interactions are extremely important in the context of rational drug design.

• Analysis and prediction of protein-RNA and protein-DNA interfaces: Protein-protein inter-

actions may share some of the characteristics of other macromolecular interactions. Hence, it

would be interesting to compare protein-protein interfaces with protein-RNA and protein-DNA

interfaces.

• Using interface predictions to focus on experimental investigations: It would be interesting

to use interface predictions on specific experimental targets (such as ITK kinase binding sites) to

focus experimental investigations and to use the experiments in turn to verify and help refine the

computational predictions.

• Applying protein-protein interface predictions to improve the reliability of protein-protein

interaction networks constructed from high-throughput experiments: The presence of false

positives in protein-protein interaction datasets poses a challenge in analysis and interpretation

of such networks: it has been shown that some reported protein interactions cannot be reconciled

with known protein complexes (46). The lack of complete experimental data on the interaction

networks presents additional challenges (9; 10). Vidal’s group (68), for example, observed that

the incompleteness of protein-protein interaction networks can lead to misleading conclusions

from topological analysis of the networks. Protein-protein interface predictions can be used, in

conjunction with docking studies, to improve the reliability of protein-protein interaction net-

works.
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