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ABSTRACT

Applications of ontologies/knowledge bases (KBs) in many domains (healthcare, national

security, intelligence) have become increasingly important. In this dissertation, we focus on

developing techniques for answering queries posed to KBs under the open world assumption

(OWA) 1.

In the first part of this dissertation, we study the problem of query answering in KBs that

contain epistemic information, i.e., knowledge of different experts. We study ALCKm, which

extends the description logic ALC by adding modal operators of the basic multi-modal logic

Km. We develop a sound and complete tableau algorithm ΛK for answering ALCKm queries

w.r.t. an ALCKm knowledge base with an acyclic TBox. We then consider answering ALCKm

queries w.r.t. an ALCKm knowledge base in which the epistemic operators correspond to those

of classical multi-modal logic S4m and provide a sound and complete tableau algorithm ΛS4.

Both algorithms can be implemented in PSpace.

In the second part, we study problems that allow autonomous entities or organizations (col-

lectively called querying agents) to be able to selectively share information. In this scenario,

the KB must make sure its answers are informative but do not disclose sensitive informa-

tion. Most of the work in this area has focused on access control mechanisms that prohibit

access to sensitive information (secrets). However, such an approach can be too restrictive in

that it prohibits the use of sensitive information in answering queries against knowledge bases

even when it is possible to do so without compromising secrets. We investigate techniques for

secrecy-preserving query answering (SPQA) against KBs under the OWA. We consider two

scenarios of increasing difficulty: (a) a KB queried by a single agent; and (b) a KB queried by

multiple agents where the secrecy policies can differ across the different agents and the agents

1The closed world assumption is the presumption that a statement that cannot be inferred from the KB, is
false. The open world assumption on the other hand is the presumption that a statement that cannot be inferred
from the KB is not necessarily false.
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can selectively communicate the answers that they receive from the KB with each other sub-

ject to the applicable answer sharing policies. We consider classes of KBs that are of interest

from the standpoint of practical applications (e.g., description logics and Horn KBs). Given a

KB and secrets that need to be protected against the querying agent(s), the SPQA problem

aims at designing a secrecy-preserving reasoner that answers queries without compromising

secrecy under OWA. Whenever truthfully answering a query risks compromising secrets, the

reasoner is allowed to hide the answer to the query by feigning ignorance, i.e., answering the

query as “Unknown”. Under the OWA, the querying agent is not able to infer whether an

“Unknown” answer to a query is obtained because of the incomplete information in the KB or

because secrecy protection mechanism is being applied. In each scenario, we provide a general

framework for the problem. In the single-agent case, we apply the general framework to the

description logic EL and provide algorithms for answering queries as informatively as possible

without compromising secrecy. In the multiagent case, we extend the general framework for

the single-agent case. To model the communication between querying agents, we use a com-

munication graph, a directed acyclic graph (DAG) with self-loops, where each node represents

an agent and each edge represents the possibility of information sharing in the direction of the

edge. We discuss the relationship between secrecy-preserving reasoners and envelopes (used to

protect secrets) and present a special case of the communication graph that helps construct

tight envelopes in the sense that removing any information from them will leave some secrets

vulnerable. To illustrate our general idea of constructing envelopes, Horn KBs are considered.
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CHAPTER 1. INTRODUCTION

The rapid expansion of the World Wide Web (WWW) and the widespread use of distributed

databases and networked information systems offer unprecedented opportunities for productive

interaction and collaboration among individuals and organizations in virtually every area of

human endeavor. In many domains such as healthcare, with the increasing electronic data,

applications that store domain information and manipulate stored information in an automated

way have become more and more important. Knowledge representation and reasoning is an area

of artificial intelligence research that is concerned with representing knowledge symbolically

and manipulating the knowledge representation, by inference and otherwise, to create new

knowledge. This dissertation focuses on two topics in this area.

1.1 Query Answering in Epistemic Knowledge Bases

In many applications, due to the specific domain knowledge from different experts, the

ability to represent experts knowledge such as ‘Dr. Vos knows that swine flu is a life threat-

ening disease’ rather than just the facts as ‘swine flu is a life threatening disease’ is desirable.

Motivated by such applications, we study Description Logics (DLs) [1] which offer a power-

ful formalism for representing and reasoning with knowledge in a broad range of applications.

Many DLs have been investigated with respect to their expressivity and complexity [2, 3, 4, 5].

Some DLs provide the foundation for powerful practical languages to represent knowledge on

the web, e.g., DAML+OIL [6], OWL DL, OWL Lite [7], and reasoners (typically based on the

analytic tableau method [4]) can be used to draw inferences from these DL knowledge bases [7].

Because of its inferential feasibility and practical utility, the terminological knowledge repre-

sentation language ALC [2] is of particular interest. Representing knowledge in such a system
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amounts to introducing the terminology of the application domain through definitions of the

relevant concepts, and assertions that hold with respect to specific individuals in the domain.

However, terminological knowledge representation languages such as ALC lack the expressivity

needed to represent modal or epistemic aspects of knowledge.

Epistemic DLs allow us to address this limitation by providing a means to model as well

as reason about the knowledge of different experts using epistemic operators. The resulting

logic finds applications in settings where it is useful to be able to attribute specific pieces of

knowledge to individual experts.

In Chapter 2, we augment ALC with an acyclic TBox with modal operators that can ap-

pear in front of any concept expressions, yielding a language which we refer to as ALCKm.

We provide two sound and complete algorithms that can be implemented in PSpace for the

satisfiability of an ALCKm query with respect to an ALCKm knowledge base and the satisfi-

ability of an ALCS4m query with respect to an ALCS4m knowledge base where ALCS4m is

an epistemically motivated language whose syntax is identical to that of ALCKm, but whose

semantics is based on the modal logic S4m.

1.2 Secrecy-preserving Query Answering Problem

With the increasing reliance on networked knowledge bases in virtually all areas of hu-

man endeavor that involve interactions among organizations, those that provide healthcare

(hospitals, pharmacies, insurance providers), governmental agencies (e.g., intelligence, law en-

forcement, public policy), or independent nations acting on matters of global concern (e.g.,

counter-terrorism, international finance) call for information sharing between organizations.

However, the need to share information often has to be balanced against the need to protect

sensitive information or secrets from unintended disclosure, e.g., due to copyright, privacy, se-

curity, or commercial considerations. Barring few examples (see below), most approaches to

information protection, e.g., access control methods in databases [8, 9, 10, 11] and on policy

languages (see [12] for a survey), including those that focus on selective access to information

on the web [13, 14, 15, 16, 17] simply forbid the use of secret information in answering queries.

As Weitzner et al. [18] have recently noted, “excessive reliance on secrecy and up-front
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control over information has yielded policies that fail to meet social needs, as well as technologies

that stifle information flow”. The controlled query evaluation (CQE) framework [19] offers a

way to answer database queries without revealing secrets [20, 21, 22]. This work has focused

on protecting secrets in (typically relational) databases under the closed world assumption

(CWA), using techniques that may rely on lying (i.e., responding to queries with answers that

are inconsistent with the knowledge base) in addition to refusing to answer. However, KBs that

contain knowledge about the real world, e.g., scientific or medical knowledge are necessarily

incomplete. Hence semantics based on OWA is better suited than that based on CWA in such

settings. To the best of our knowledge, Bao et al. (2007) were the first to consider the SPQA

problem under OWA, albeit in the restricted setting of a hierarchical KB with a single querying

agent. In this case, query answering reduces to checking reachability in a directed acyclic graph,

and protecting a secret is tantamount to hiding the reachability of a given target node from a

given source node. More recently, Tao et al. (2010) provided a solution to the SPQA problem

for instance checking in the description logic EL, with a single querying agent.

In this part of this dissertation, techniques for secrecy-preserving query answering against

KBs under OWA are investigated in two scenarios of increasing difficulty: (a) a KB queried by

a single agent; and (b) a KB queried by multiple agents where the secrecy policies can differ

across the different agents and the agents can selectively communicate the answers that they

receive from the KB with each other subject to the applicable answer sharing policies.

In Chapter 3, a simplified version of the SPQA problem which consists of a single querying

agent is presented. Given a KB Σ and a finite set S of secrets, called a secrecy set, the

secrecy-preserving query answering problem aims at designing a secrecy-preserving reasoner

that answers queries without revealing any secrets. A formal framework modeling most of

the aspects of the problem is provided. In general, the answer to a query q against a KB Σ

can be “Yes” (q can be inferred from Σ), “No” (¬q can be inferred from Σ) or “Unknown”

(e.g., because of the incompleteness of Σ). We assume a cooperative rather than adversarial

scenarios in which the KB does not lie. However, whenever truthfully answering a query risks

compromising secrets in S, the reasoner associated with the KB is allowed to hide the answer

to the query by feigning ignorance, i.e., answering the query as “Unknown”.
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One way to answer queries while preserving secrecy is to evaluate every query when it is

posed to the KB. If the truthful answer to the query together the query history compromises

some secret, an “Unknown” will be retrieved. Otherwise, the query will be faithfully answered.

This strategy is called a lazy evaluation. Since this approach checks the query history every

time a query is posed, when the history gets larger, the response time gets longer, and therefore,

the approach is getting less and less appealing.

Therefore, we propose an approach in which we precompute a secrecy envelope used to

protect secrets such that the querying agent who has no access to the contents of the envelope

will not be able to deduce any secrets. To compute such an envelope, we try to “disrupt” all

proofs of secrets that an envelope needs to protect. To illustrate the basic idea, consider a

formula α ∧ β in propositional logic. Suppose Γ � α and Γ � β. Obviously, Γ � α ∧ β. If we

need to protect α∧ β, we must protect at least one of α and β, i.e., if α∧ β is a secret, at least

one of α and β will be in the corresponding envelope. The formula, α or β, that is relegated to

the envelope is “disrupting” a proof of α ∧ β from {α, β}. Roughly, an envelope will be built

from all the disrupting formulas.

It is easy to see that a secrecy envelope always exists. For instance, Σ+\ {tautologies}

constitutes an envelope for any secrecy set S ⊆ Σ+. A key challenge is to develop strategies

that can be used by the KB to respond to queries as informatively as possible (i.e., using an

envelope that is as small as possible) without compromising secrets that the KB is obliged to

protect. Unfortunately, it turns out that given a language that is expressive enough, computing

a minimum envelope may be NP-hard (see Section 3.5.1). Therefore, we aim at computing

envelopes that are tight in the sense that removing any information from such an envelope will

leave the secrecy set vulnerable. In general, if an envelope is finite, for each element in the

envelope, we could test whether it is necessary to protect the secrets. If it is not, it can be

removed. After all the elements in the envelope are tested, a tight envelope is obtained. Since

computing tight envelopes is an optimization problem, depending on the underlying language,

algorithms may be designed to directly build an envelope that is tight.

We apply this approach to EL [25], which is one of the simpler Description Logics (DLs)

that is both computationally tractable [26, 27, 28] and practically useful [25, 29]. For example,
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the medical ontology Snomed ct [30] and large parts of the medical ontology Galen [31]

can be expressed in EL. We provide algorithms to computes envelopes and tight envelopes to

answer queries against an EL knowledge base that use, but do not reveal, the information that

is designated as secret.

In Chapter 4, we extend the single-agent framework to multiple querying agents where the

querying agents are allowed to communicate by sharing some of the query answers obtained

from the KB. Since secrecy sets for different agents may be different, instead of allowing free

communication, which essentially eliminates the distinction between different agents, we use

a communication graph, a directed acyclic graph (except for all the self-loops) to restrict how

the agents communicate. In a communication graph, each node represents a querying agent

and each edge denotes the permission of information sharing from a querying agent to its

successor. We consider a general situation where agents are only allowed to pass their own

query answers obtained from the KB rather than “gossip” about the information obtained

from their predecessors. This chapter aims at designing a secrecy-preserving reasoner that

answers queries so that none of the querying agents can infer any of the secrets which the

knowledge base is obliged to protect against them.

Similarly to the single-agent case, we utilize OWA and protect secrets by feigning ignorance.

If the truthful answer to q risks compromising any of the querying agents’ secrets, the answer

to q will be censored to be “Unknown” by the KB reasoner. Such a reasoner can be designed

using lazy evaluation, which, as we mentioned before, becomes less attractive over time. In

view of this, we provide a general approach of precomputing an envelope such that none of the

querying agents can deduce any secrets that need to be protected against itself from the queries

answers it obtains from both the KB and its predecessors. We provide a general framework for

SPQA problem in the multiple querying agents setting and discuss the relationship between a

secrecy-preserving reasoner and an envelope that protects secrets. We then use Horn KBs as

an example to present the idea of computing envelopes by “disrupting” proofs.
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CHAPTER 2. QUERY ANSWERING IN EPISTEMIC KNOWLEDGE

BASES

Based on a paper titled “PSpace Tableau Algorithms for Acyclic Modalized ALC”

published in Journal of Automated Reasoning 2011

Jia Tao, Giora Slutzki and Vasant Honavar

Abstract

We study ALCKm, which extends the description logic ALC by adding modal operators

of the basic multi-modal logic Km. We develop a sound and complete tableau algorithm

ΛK for answering ALCKm queries w.r.t. an ALCKm knowledge base with an acyclic TBox.

Defining tableau expansion rules in the presence of acyclic definitions by considering only

the concept names on the left-hand side of TBox definitions or their negations allows us to

give a PSpace implementation for ΛK. We next consider answering ALCKm queries w.r.t.

an ALCKm knowledge base in which the epistemic operators correspond to those of classical

multi-modal logic S4m. The expansion rules in the tableau algorithm ΛS4 are designed to

syntactically incorporate the epistemic properties. We also provide a PSpace implementation

for ΛS4. In light of the fact that the satisfiability problem for ALCKm with general TBox and

no epistemic properties (i.e., KALC) is NEXPTIME-complete, we conclude that ALCKm offers

computationally manageable and practically useful fragment of KALC .

2.1 Introduction

Description Logics (DLs) [1] offer a powerful formalism for representing and reasoning with

knowledge in a broad range of applications. Many DLs have been investigated with respect to

their expressivity and complexity [2, 3, 4, 5]. Some DLs provide the foundation for powerful
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practical languages to represent knowledge on the web, e.g., DAML+OIL [6], OWL DL, OWL

Lite [7], and reasoners (typically based on the analytic tableau method [4]) can be used to

draw inferences from these DL knowledge bases [7]. Because of its inferential feasibility and

practical utility, the terminological knowledge representation language ALC [2] is of particular

interest. Representing knowledge in such a system amounts to introducing the terminology of

the application domain through definitions of the relevant concepts, and assertions that hold

with respect to specific individuals in the domain. However, terminological knowledge repre-

sentation languages such as ALC lack the expressivity needed to represent modal or epistemic

aspects of knowledge. Thus, in a pure terminological system, we can say that ‘swine flu is a

life threatening disease’ but not that ‘Dr. Vos knows that swine flu is a life threatening dis-

ease’. Epistemic DLs allow us to address this limitation by providing a means to model as well

as reason about the knowledge of different experts using epistemic operators. The resulting

logic finds applications in settings where it is useful to be able to attribute specific pieces of

knowledge to individual experts.

Motivated by such applications, there is growing interest in incorporating some features of

epistemic modal logics [32, 33, 34] into DLs [35, 36, 37, 38, 39, 40]. In general, in DLs augmented

with modal operators the interaction between modalities and DL constructs can substantially

increase the complexity of reasoning and in some cases, even lead to undecidability [41, 42, 43].

In a series of papers, Wolter and Zakharyaschev [44, 45, 46, 47] showed various decidability

results for the satisfiability problem for logics that augment DLs by modal operators. These

papers delineate some syntactical and semantical limits within which DLs augmented with

modal operators remain decidable; this line of research was summarized in [40].

There are also papers that provide decision procedures for languages that augment ALC

with modal operators. For example, Donini et al. [37, 38] investigated the addition of an

epistemic operator to an ALC-based query language and showed that this allows treatment of

several features of standard databases such as closed-world reasoning and integrity constraints.

The language is further extended by adding the autoepistemic operator A [48] such that the

resulting language combines the non-first-order features of frame-based systems with default

reasoning. Baader and Laux [39] extended ALC by adding multi-modal operators which can
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be used both inside concept expressions and in front of assertional (ABox) and terminological

(TBox) axioms but not in front of roles. The modal operators in the resulting language (later

named KALC in [40]), are interpreted in the classic multi-modal logic Km. By extending

the tableau expansion rules for ALC to incorporate accessibility relation between worlds, they

showed that the satisfiability of finite sets of formulae in KALC is decidable under the increasing

domain assumption (i.e., if a world w′ is accessible from a world w, then the domain of w is

a subset of the domain of w′). They further showed that their tableau algorithm for KALC is

not adequate under the constant domain assumption (a.k.a. common domain assumption in

[32]) where all worlds share the same interpretation domain. It has been shown in [44] that

the satisfiability problem w.r.t. models with increasing domains can be reduced to that w.r.t.

models with constant domains. Hence, the treatment in this chapter is based on the constant

domain assumption.

Lutz et al. [40] assumed a constant domain and a global interpretation for all individuals

(i.e., all individuals are interpreted identically in all worlds) and provided a tableau decision

algorithm for the KALC satisfiability problem. They observed that although infinitely many

individuals may be needed to construct a model for a satisfiable KALC formula, only finitely

many concepts are involved. Based on this observation, they designed a tableau algorithm

that constructs a quasimodel wherein each object represents a type of individuals (i.e., a set

of concepts they belong to) rather than the individuals themselves. The complexity of the

resulting tableau algorithm is NEXPTIME which is consistent with the known result that the

satisfiability problem for KALC is NEXPTIME-complete [42]. In contrast, the satisfiability

problem for ALC is known to be PSpace-complete [2, 49]. Hence, it is of interest to explore

computationally manageable, yet practically useful fragments of KALC . We investigate a subset

of KALC obtained by augmenting ALC with an acyclic TBox with modal operators that can

appear in front of any concept expressions, yielding a language which we refer to as ALCKm.

As in the case of KALC , ALCKm conforms to the constant domain assumption. We provide a

sound and complete tableau algorithm for ALCKm with an acyclic TBox.

As in the case of DL knowledge bases (see [50]), given an ALCKm knowledge base (KB) Σ,

the following problems are of interest: (1) KB-satisfiability : Σ is satisfiable if it has a model;
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(2) Concept satisfiability : a concept C is satisfiable w.r.t. Σ if there exist a model of Σ in which

the interpretation of C is not empty; (3) Subsumption: a concept C is subsumed by a concept

D w.r.t. Σ if for every model of Σ the interpretation of C is a subset of the interpretation of

D; (4) Instance checking : a is an instance of C if the assertion C(a) is satisfied in every model

of Σ. Instance checking problem can be viewed as a query answering problem. It is well-known

that problems (2)-(4) can be reduced to KB-satisfiability in linear time [50]. We solve the query

answering problem (whether the KB entails the query) by reducing it to the KB-satisfiability

problem.

The main contribution of this chapter is two PSpace implementations for the satisfiabil-

ity of an ALCKm query with respect to an ALCKm knowledge base and the satisfiability of

an ALCS4m query with respect to an ALCS4m knowledge base. This extends the result of

Schmidt-Schauß and Smolka [2] that checking satisfiability and subsumption of ALC concepts

can be decided in linear space. Hladik and Peñaloza [51] used automata-theoretic approach

to reprove the result that the ALC concept satisfiability w.r.t. acyclic TBoxes is decidable in

PSpace. Our solution takes advantage of:

1. Tableau expansion rules that can cope with acyclic definitions by considering only the

left-hand sides of TBox definitions or their negations. This approach allows us to detect

potential clashes and facilitates PSpace implementation by eliminating the need for

backtracking.

2. An extension of the idea of canonical interpretation [52, 50] that incorporates the TBox

definitions into the interpretation of concept names.

3. A blocking technique that facilitates the termination of the algorithm in the case of

ALCS4m.

In what follows, we introduce the syntax and semantics of ALCKm as well as the frame-

work of query answering problem in Section 2.2. We proceed to develop a sound and complete

algorithm for ALCKm KB-satisfiability with an acyclic TBox in Section 2.3, and then pro-

vide the solution to the query answering problem in Section 2.4. Section 2.5 shows a PSpace
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implementation for ALCKm KB-satisfiability. Section 2.6 develops a sound and complete al-

gorithm for ALCS4m KB-satisfiability w.r.t. the class of S4-models and provides a PSpace

implementation for the algorithm. Section 2.7 summarize the chapter.

2.2 Preliminaries

2.2.1 The Syntax and Semantics

The non-logical signature of the ALCKm language includes four mutually disjoint sets: a

set of concept names NC , a set of role names NR, a set of individual names NO, all of which

are countably infinite and a finite set of experts NE = {1, . . . ,m}. When we write �i or ♦i, the

subscript i refers to an expert i ∈ NE . The syntax of ALCKm is defined by specifying ALCKm

expressions E and ALCKm formulae F. E contains the set of roles names NR and a set of

concepts C which is recursively defined as follows:

C,D −→ A | > | ⊥ | ¬C | C uD | C tD | ∀R.C | ∃R.C | ♦iC | �iC

where A ∈ NC , > is the top symbol, ⊥ is the bottom symbol, C,D ∈ C, R ∈ NR, i ∈ NE and

♦iC is an abbreviation of ¬�i¬C.

In this paper we will consider restricted ALCKm formulae F of two kinds: the assertional

formulae of the form C(a) or R(a, b) and the definitional formulae of the form A
.
= C, where

a, b ∈ NO, C ∈ C, R ∈ NR and A ∈ NC .

A concept is said to be in negation normal form (NNF) if negation occurs only in front of

concept names. It is well-known that any concept can be rewritten into an equivalent negation

normal form in linear time [2].

The semantics of ALCKm language is defined by using Kripke structures [32]. A relational

Kripke structure for m experts is a tuple M = 〈S, π, E1, ..., Em〉 where S is a set of states,

Ei ⊆ S × S are the accessibility relations, and π interprets the syntax of ALCKm, both the

expressions in E and the formulae in F for each state s ∈ S. A (Kripke) world is a pair

w = (M, s) where M is a Kripke structure and s is a state in S. The intuitive interpretation of

(s, t) ∈ Ei is that in world (M, s) expert i considers world (M, t) as a possible world. We may

further use Ei(s) to denote the set {t | (s, t) ∈ Ei} of the i-successors of the state s.
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For a finite set of symbols N ⊂ NC ∪ NR ∪ NO, we define a Kripke structure M =

〈S, π, E1, ..., Em〉 restricted to N to be M|N = 〈S, π|N , E1, ..., Em〉 where π|N denotes the re-

striction of the function π to N .

All the concepts and roles will be interpreted in a common (i.e., state-independent) non-

empty domain which we denote by ∆. We do not make the Unique Name Assumption, i.e.,

distinct individual names can be interpreted identically. The interpretation of concept and role

expressions is defined recursively as follows: for all a ∈ NO, A ∈ NC , R ∈ NR, C ∈ C,

>π(s) = ∆ (C tD)π(s) = Cπ(s) ∪Dπ(s)

⊥π(s) = ∅ (C uD)π(s) = Cπ(s) ∩Dπ(s)

aπ(s) ∈ ∆, (�iC)π(s) =
⋂
t∈Ei(s)C

π(t)

Aπ(s) ⊆ ∆, (♦iC)π(s) =
⋃
t∈Ei(s)C

π(t)

Rπ(s) ⊆ ∆×∆, (¬C)π(s) = ∆ \ Cπ(s)

(∀R.C)π(s) = {a ∈ ∆ | ∀b : (a, b) ∈ Rπ(s) → b ∈ Cπ(s)}

(∃R.C)π(s) = {a ∈ ∆ | ∃b : (a, b) ∈ Rπ(s) ∧ b ∈ Cπ(s)}

Definition 2.2.1 Let C be a concept, C(a) and R(a, b) assertional formulae, and A
.
= C a

definitional formula. We define the satisfiability relation as follows:

(M, s) � C ⇔ Cπ(s) 6= ∅ (M, s) � R(a, b) ⇔ (aπ(s), bπ(s)) ∈ Rπ(s)

(M, s) � C(a) ⇔ aπ(s) ∈ Cπ(s) (M, s) � A .
= C ⇔ Aπ(s) = Cπ(s)

Let ϕ be a formula (assertional or definitional). Then (i) ϕ is satisfiable if there is a world

w = (M, s) such that w � ϕ; (ii) ϕ is valid in a Kripke structure M = 〈S, π, E1, ..., Em〉, written

as M � ϕ, if (M, s) � ϕ for all s ∈ S; (iii) ϕ is valid, written as � ϕ, if M � ϕ for all M.

2.2.2 Knowledge Bases and Query Answering

A finite non-empty set of assertional formulae whose concepts and roles belong to the

language ALCKm is called an ABox. A finite set T of definitional formulae is called a TBox. A

concept name A directly refers to a concept name B w.r.t. T if there is a definition A
.
= C ∈ T

and B occurs in C. Let refers be the transitive closure of directly refers. Then T is said to be
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acyclic if no concept name refers to itself. In this paper, a TBox is assumed to be acyclic such

that no defined concept (l.h.s. of a definitional formula) has more than one definition (r.h.s.

of a definitional formula). An ABox A and a TBox T together form an ALCKm-knowledge

base Σ = 〈A, T 〉. Note that all the KBs in this paper will be ALCKm-knowledge bases unless

specified otherwise. A knowledge base Σ = 〈A, T 〉 is called acyclic if T is acyclic. Our query

language is the set of all assertional formulae over the alphabet of the given knowledge base.

Definition 2.2.2 A world w = (M, s) satisfies a knowledge base Σ = 〈A, T 〉, written as w � Σ,

if w satisfies all the assertions in A and all the definitions in T . A knowledge base Σ entails

an assertion C(a), written as Σ � C(a), if for all worlds w, w � Σ⇒ w � C(a).

In this paper, our motivation is to answer queries of the form C(a) or R(a, b), i.e., whether a

is a member of the concept C, or whether (a, b) is a member of the role R. Given a KB Σ, a

concept C ∈ C, and an individual a ∈ NO, the answer to the query C(a) posed to Σ, is based

on the open world assumption (OWA) and it is defined as

• YES, if Σ � C(a),

• NO, if Σ � ¬C(a),

• UNKNOWN, otherwise.

Clearly, given Σ = 〈A, T 〉, answering the query C(a) is equivalent to checking the non-

satisfiability of 〈A ∪ {¬C(a)}, T 〉 in the following sense. If 〈A ∪ {¬C(a)}, T 〉 is not satisfiable,

the answer to the query is YES. Otherwise, if 〈A∪{C(a)}, T 〉 is not satisfiable, then the answer

to the query is NO; and if both are satisfiable, the answer to the query will be UNKNOWN.

The query answering framework contains the following components:

• A knowledge base Σ = 〈A, T 〉.

• Σ includes epistemic statements that contain knowledge of the experts expressed using

modal operators.
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• A reasoner that knows every assertion and definition in Σ. In response to a query, it

computes answers such as “YES”, “NO”, or “UNKNOWN” from the information present

in Σ and returns the answer to the querying agent.

• A querying agent that poses queries of the form C(a) or R(a, b) to Σ. We assume that

the querying agent does know the language, NC , NR, NO, NE as well as the syntax of

the language. In particular, the querying agent can ask queries that involve knowledge

operators.

In the following example we consider a knowledge base with an ABox and an acyclic TBox

with exactly one operator on the right-hand side of each definition.

Example 2.2.3 Consider the following knowledge base Σ1 = 〈A, T 〉 where

A = { ADVISE(john, mary), TEACHES(susan, cs525), ♦1Advisor(susan),

♦2Grad(mary), �2Lecturer(susan), Advisor(john), ¬BasicCourse(cs525)}

T = { Lecturer
.
= ∀TEACHES.BasicCourse, Advisor

.
= Professor u A,

A
.
= ∃ADVISE.Grad }.

Consider the following queries:

Q1: Is john a professor?

Query: Professor(john); Answer: YES.

Q2: Is susan a lecturer?

Query: Lecturer(susan); Answer: NO.

Q3: Is there an Expert 1’s successor world where peter is a graduate student?

Query: ♦1Grad(peter); Answer: UNKNOWN.

Q4: In all Expert 2’s successor worlds, is it true that all courses that susan teaches are basic

courses?

Query: �2(∀TEACHES.BasicCourse)(susan); Answer: YES.

The answer to Q1 is explained by the assertion Advisor(john) and the definition Advisor

.
= Professor u A. The answer to Q2 comes from the assertions TEACHES(susan, cs525),
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¬BasicCourse(cs525) and the definition Lecturer
.
= ∀TEACHES.BasicCourse. To answer Q3,

observe that there is an Expert 1’s world where Advisor(susan) is true. However, under the

OWA, whether there is an Expert 1’s world where peter is a graduate student is UNKNOWN. In

answering Q4, for any Expert 2’s successor world (and there is one in view of ♦2Grad(mary)),

Lecturer(susan) is true. Since the definition Lecturer
.
= ∀TEACHES.BasicCourse is satisfied

in any such world, The answer to �2(∀TEACHES.BasicCourse)(susan) is YES.

2.3 Tableau Algorithm for ALCKm

As discussed in Section 2.2.2, answering queries against a knowledge base can be reduced

to the problem of checking existence of models. Tableau algorithms are generally used to

construct models. Such a model, usually built by using a data structure called a constraint

system [37, 39, 38, 40], contains a set of constraints and it is constructed by recursively applying

expansion rules.

In the presence of modal operators, we need to construct a model which eventually is

equivalent to a Kripke structure. Intuitively, one world corresponds to one constraint system,

and the accessibility relations connect one constraint system to another. Let Σ = 〈A, T 〉 be

a knowledge base. We define the concept of a constraint graph by generalizing the idea of a

completion tree in [53], and build it starting from a single node representing the constraint

system obtained from A and an input query and repeatedly applying expansion rules. The

constraints in constraint systems are of the form a : C or (a, b) : R, where a, b ∈ NO, C ∈ C

and R ∈ NR. Each assertion D(a) in A is rewritten into a constraint a : D′ where D′ is the

NNF of D; each R(a, b) in A is rewritten into a constraint (a, b) : R.

Formally, a constraint graph 1 is a directed graph G = 〈V,E,L〉 where V is a set of nodes,

E is a set of directed edges and L is a function that labels each node n with a constraint

system and each edge (n, n′) in E with a nonempty subset of NE . If i ∈ L(n, n′), then n′ is

an i-successor of n, i.e., it is directly accessible from node n by expert i. We denote by OG

(a subset of NO) the set of all individual names that occur in G. A node n ∈ V is said to be

1We use constraint graphs, rather than trees, with an eye towards an application to the case of S4-structures
in which the accessibility relations are reflexive and transitive.
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closed if L(n) contains a clash, i.e., {a : C, a : ¬C} ⊆ L(n) or {a : ⊥} ⊆ L(n). G is said to be

closed if at least one of its nodes is closed. A constraint graph that is not closed is open, and

it is complete if no expansion rule applies.

There are three types of expansion rules: local expansion rules which generate new con-

straints within one constraint system, global expansion rules which can add new assertions to

constraint systems associated with nodes that are directly accessible from the current node

and terminological expansion rules which take into consideration both the constraints in the

constraint systems and the given set of terminological definitions T . Note that the syntactic

construct ∃R.C encodes incomplete information. For example, ∃ADVISE.Grad(susan) says

that the individual susan advises a graduate student. However, who is this graduate student is

left unspecified. Under the OWA and without the Unique Name Assumption, to find a model

for the knowledge base containing this kind of assertions, it is sufficient to use a new individual

name that has not yet appeared in the constraint graph to denote this unknown person. If

using a new individual name causes a clash, then, a fortiori, using any existing individual name

will also cause a clash.

We denote by NΣ (OΣ) the set of all the symbols (individual names) appearing in the

knowledge base Σ. Initially, the constraint graph G contains only the individual names occur-

ring in Σ, i.e., OG = OΣ. With the application of expansion rules, new individual names may

be added to OG. An individual name is called fresh (at any particular time) if it belongs to

NO \ OG (at that time). The local and global expansion rules are listed in Figure 2.1.

We assume that the TBox T is in simple form where the right-hand side of each definition

contains exactly one operator, i.e., the right-hand side of each definition is of the form ¬C,C u

D,C tD,∃R.C,∀R.C,♦iC or �iC where C,D ∈ NC and R ∈ NR; moreover, if the right-hand

side is of the form ¬A, then A does not appear on the left-hand side of any definition in T (see

[54], Definition 6). It can be shown that transforming a given TBox to an equivalent simple

form can be done in linear time. The proof is similar to that of Lemma 1 in [54].

Nebel has shown that the straightforward unfolding of an ABox w.r.t. a TBox may lead

to an exponential blowup [55]. To give a PSpace complexity result for reasoning ALC with

acyclic TBoxes, instead of unfolding iteratively as in [55], the approach in [54] ensures that if an
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Local Expansion Rules:

u-rule: If there is a node n with a : C1 u C2 ∈ L(n),

and {a : C1, a : C2} * L(n),

then L(n) := L(n) ∪ {a : C1, a : C2};
t-rule: If there is a node n with a : C1 t C2 ∈ L(n)

and {a : C1, a : C2} ∩ L(n) = ∅,
then L(n) := L(n) ∪ {a : Ci} for some i ∈ {1, 2};

∃-rule: If there is a node n with a : ∃R.C ∈ L(n),

and there is no b ∈ OG s.t. {(a, b) : R, b : C} ⊆ L(n),

then L(n) := L(n) ∪ {(a, c) : R, c : C} where c is fresh;

∀-rule: If there is a node n with {a : ∀R.C, (a, b) : R} ⊆ L(n),

and b : C /∈ L(n),

then L(n) := L(n) ∪ {b : C};

Global Expansion Rules:

♦-rule: If there is a node n with a : ♦iC ∈ L(n),

and n has no i-successor l with a : C ∈ L(l),

then add a new i-successor n′ of n with L(n′) := {a : C};
�-rule: If there is a node n with a : �iC ∈ L(n),

and n has an i-successor n′ with a : C /∈ L(n′),

then L(n′) := L(n′) ∪ {a : C}.

Figure 2.1 The local and global expansion rules for ALCKm

assertion a : C is in the ABox and a definition C
.
= D is in the TBox, then the assertion a : D

is added to the ABox. However, in the case when C
.
= D1uD2 ∈ T and {a : D1, a : D2, a : ¬C}

is a subset of a constraint system, such an approach may not detect the implicit clash. The

terminological expansion rules given in Figure 2.2 deal with this issue.

We denote by ΛK the K-tableau algorithm which nondeterministically applies the local,

global and terminological expansion rules until no further applications are possible. We note

again, following up on footnote 1, that the graph-structure constructed by ΛK is actually a

tree, referred to as a constraint tree. It is also easily seen that in a constraint tree the edge

labels are singletons. The following lemma is easy to prove.

Lemma 2.3.1 All executions of ΛK on an input consisting of a knowledge base and a query

terminate.

The next definition provides a formal interpretation of a constraint graph.
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Terminological Expansion Rules:

T-rule: If there is a node n with a : A ∈ L(n), A
.
= D ∈ T , and a : D /∈ L(n)

then L(n) := L(n) ∪ {a : D}.
N-rule: If there is a node n with {a : ¬A, a : B} ∩ L(n) 6= ∅, A .

= ¬B ∈ T ,
and {a : ¬A, a : B} * L(n),

then L(n) := L(n) ∪ {a : ¬A, a : B};
N u -rule: If there is a node n with a : ¬A ∈ L(n), A

.
= B1 uB2 ∈ T ,

and a : ¬B1 t ¬B2 /∈ L(n),

then L(n) := L(n) ∪ {a : ¬B1 t ¬B2};
N t -rule: If there is a node n with a : ¬A ∈ L(n), A

.
= B1 tB2 ∈ T ,

and a : ¬B1 u ¬B2 /∈ L(n),

then L(n) := L(n) ∪ {a : ¬B1 u ¬B2};
N∃-rule: If there is a node n with a : ¬A ∈ L(n), A

.
= ∃P.B ∈ T ,

and a : ∀P.(¬B) /∈ L(n),

then L(n) := L(n) ∪ {a : ∀P.(¬B)};
N∀-rule: If there is a node n such that a : ¬A ∈ L(n), A

.
= ∀P.B ∈ T ,

and a : ∃P.(¬B) /∈ L(n),

then L(n) := L(n) ∪ {a : ∃P.(¬B)};
N♦-rule: If there is a node n with a : ¬A ∈ L(n), A

.
= ♦iB ∈ T ,

and a : �i¬B /∈ L(n),

then L(n) := L(n) ∪ {a : �i¬B}.
N�-rule: If there is a node n with a : ¬A ∈ L(n), A

.
= �iB ∈ T ,

and a : ♦i¬B /∈ L(n),

then L(n) := L(n) ∪ {a : ♦i¬B}.

Figure 2.2 The terminological expansion rules for ALCKm

Definition 2.3.2 Let G = 〈V,E,L〉 be a constraint graph, M = 〈S, π, E1, ..., Em〉 a Kripke

structure, and σ a mapping from V to S. Then M satisfies G via σ if, for all n, n′ ∈ V,

• i ∈ L(n, n′) =⇒ Ei(σ(n), σ(n′))

• a : C ∈ L(n) =⇒ (M, σ(n)) � C(a)

• (a, b) : R ∈ L(n) =⇒ (M, σ(n)) � R(a, b)

We say that M satisfies G, denoted as M  G, if there is a mapping σ such that M satisfies G

via σ. In this case, we also say that M is a model of G. Note that M  G implies that G is

open.

The idea behind Definition 2.3.2 is that each constraint system is mapped to a state of
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M in which all its constraints are satisfied. Moreover, labeled edges in G are mapped to the

corresponding accessibility relations.

LetM = 〈S, π, E1, ..., Em〉 andM′ = 〈S, π′, E1, ..., Em〉 be two Kripke structures, and N2 ⊆ N1

be finite subsets of NC ∪NR ∪NO such that N1 \N2 ⊆ NO. Then M′|N1 = 〈S, π′|N1 , E1, ..., Em〉

is a semantic extension of M|N2 = 〈S, π|N2 , E1, ..., Em〉 if (M′|N1)|N2 = M|N2 . The following

theorem shows that if a constraint graph has a model, then the constraint graph resulting from

the application of any expansion rule also has a model which is a semantic extension of the

original model.

Theorem 2.3.3 (Soundness of the expansion rules) Given a Kripke structure M = 〈S, π,

E1, ..., Em〉 and an acyclic TBox T where M � T , let G be a constraint graph, α a local, global

or terminological expansion rule and Gα a constraint graph obtained by applying α to G. If

M  G via σ, then there exists a semantic extension Mα of M|NΣ∪OG s.t. Mα  Gα via σ′

(which extends σ) and Mα � T . Furthermore, Mα  G.

Theorem 2.3.3 (proof is given in Appendix A.1.1) ensures that applications of expansion

rules preserve the existence of models. Unfortunately, it does not specify how to construct such

models in the first place. The canonical interpretation of a constraint system has been defined

in [52, 50]. In [52], no TBox is involved, and the canonical interpretation is defined to be a

model for a constraint system that originates from an ABox of an ALCN knowledge base. The

approach in [50] incorporates the subsumptions in the TBox (not necessarily acyclic) into the

initial constraint system and then applies expansion rules. A subsumption, C v D, is converted

into a constraint ∀x.x : ¬C t D in which, during the process of expansion, the variable x is

substituted by all possible individual names in the constraint system. The resulting algorithm

for ALCNR is in NEXPTIME. In contrast, our tableau algorithm for ALCKm incorporates

the TBox (in our case, acyclic) into the terminological expansion rules. This is reflected in

the following definition of a canonical Kripke structure for a constraint graph which takes the

TBox into account. It thereby ensures that the TBox is valid in the canonical Kripke structure

for an open constraint graph that is complete w.r.t. local, global and terminological expansion

rules.
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Definition 2.3.4 Let G = 〈V,E,L〉 be a constraint graph and T a simple acyclic TBox. Let

Θ be the set of all the concept names in either G or T that do not occur on the left-hand side

of any definition in T . The canonical Kripke structure MG = 〈S, π, E1, ..., Em〉 for G w.r.t. T

is defined as follows.

• S := V,

• Ei := {e ∈ E | i ∈ L(e)}, 1 ≤ i ≤ m,

• ∆ := OG,

• aπ(n) := a for all a ∈ OG,

• Rπ(n) := {(a, b) | (a, b) : R ∈ L(n)},

• Aπ(n) := {a | a : A ∈ L(n)}, if A ∈ Θ,

• Aπ(n) := {a | a : A ∈ L(n)} ∪Dπ(n), if A /∈ Θ and A
.
= D ∈ T .

Let T be a given TBox and let G be a constraint graph that is complete w.r.t. local, global

and terminological expansion rules. We next prove that G is open if and only if it has a model.

This shows the soundness and completeness of the K-tableau algorithm. Before proving it,

we state an auxiliary lemma that specifically deals with negation (proof is given in Appendix

A.1.2).

Lemma 2.3.5 Let T be an acyclic TBox and let G be an open complete constraint graph w.r.t.

local, global and terminological expansion rules. Then for every A ∈ NC and every a ∈ ∆,

a : ¬A ∈ L(n)⇒ (MG, n) � ¬A(a).

Theorem 2.3.6 (Soundness and Completeness of the K-Tableau Algorithm) Let T be a simple

acyclic TBox, and G be a constraint graph, complete w.r.t. local, global and terminological

expansion rules. Then G is open if and only if MG  G and MG � T .

Proof It suffices to prove the following:

• Claim 1. If G is open, then MG  G and MG � T .
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• Claim 2. If G is closed, then there does not exist a Kripke structure M such that M  G.

Proof of Claim 1. For Claim 1, suppose that the complete constraint graph G is open. We

first prove MG  G.

By the construction of MG, for every n, n′ ∈ V, i ∈ L(n, n′) ⇒ Ei(n, n′) and (a, b) : R ∈

L(n) ⇒ (MG, n) � R(a, b) where R ∈ NR. The implication a : C ∈ L(n) ⇒ (MG, n) � C(a)

where C ∈ C, is proved by induction on the structure of C. The base case is when C ∈ NC .

If C ∈ Θ, by the definition of Cπ(n), (MG, n) � C(a). If C /∈ Θ, then there is a definition

C
.
= D ∈ T , and again by Definition 2.3.4, Cπ(n) = {b | b : C ∈ L(n)} ∪ Dπ(n). Hence,

(MG, n) � C(a).

With respect to the induction step, the most involved case is that of the negation, which

was dealt with in Lemma 2.3.5. The remaining cases, namely, u,t, ∃, ∀,♦, and �, are proved

below.

1. C is of the form B1 u B2. Since G is complete, {a : B1, a : B2} ⊆ L(n). By IH,

a : B1 ∈ L(n) and a : B2 ∈ L(n) ⇒ (MG, n) � B1(a) and (MG, n) � B2(a) ⇔ (MG, n) �

B1 uB2(a)⇔ (MG, n) � C(a).

2. C is of the form B1 t B2. Since G is complete, {a : B1, a : B2} ∩ L(n) 6= ∅. By IH,

a : B1 ∈ L(n) or a : B2 ∈ L(n) ⇒ (MG, n) � B1(a) or (MG, n) � B2(a) ⇔ (MG, n) �

B1 tB2(a)⇔ (MG, n) � C(a).

3. C is of the form ∃R.B. Since G is complete, there exists b s.t. {(a, b) : R, b : B} ⊆ L(n).

Since (a, b) : R ∈ L(n) ⇒ (MG, n) � R(a, b) and by IH, b : B ∈ L(n) ⇒ (MG, n) � B(b),

(MG, n) � ∃R.B(a).

4. C is of the form ∀R.B. Since G is complete, for every b where (a, b) : R ∈ L(n), we have

b : B ∈ L(n). Since (a, b) : R ∈ L(n) ⇒ (MG, n) � R(a, b) and by IH, b : B ∈ L(n) ⇒

(MG, n) � B(b), (MG, n) � ∀R.B(a).

5. C is of the form ♦iB. Since G is complete, there exists n′ ∈ V s.t. i ∈ L(n, n′) and

a : B ∈ L(n′). Since i ∈ L(n, n′)⇒ Ei(n, n′) and by IH, a : B ∈ L(n′)⇒ (MG, n
′) � B(a),

we have (MG, n) � ♦iB(a).
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6. C is of the form �iB. Since G is complete, then for every n′ ∈ V where i ∈ L(n, n′), we

have a : B ∈ L(n′). Since i ∈ L(n, n′)⇒ Ei(n, n′) and by IH, a : B ∈ L(n′)⇒ (MG, n
′) �

B(a), we have (MG, n) � �iB(a).

We next show that T is valid in MG. Suppose that there is a node n and a definition

A
.
= D ∈ T such that (MG, n) 2 A .

= D. Since A /∈ Θ, Aπ(n) := {a | a : A ∈ L(n)}∪Dπ(n), and

hence, Dπ(n) ⊆ Aπ(n). Suppose that Dπ(n) 6= Aπ(n). Then there is b ∈ OG such that b ∈ Aπ(n)

and b /∈ Dπ(n). This implies that b ∈ {a | a : A ∈ L(n)}. G being complete and b : A ∈ L(n)

imply that b : D ∈ L(n). We already proved that MG  G. So (MG, n) � D(b) ⇔ b ∈ Dπ(n),

which is a contradiction. It follows that for every definition A
.
= D ∈ T and for every n ∈ V,

(MG, n) � A
.
= D.

Proof of Claim 2. Assume that the complete constraint tree G is closed. Then there is a

node n in G such that {a : C, a : ¬C} ⊆ L(n) or {a : ⊥} ⊆ L(n). Suppose there is a Kripke

structure M and a mapping σ that satisfy G. Then aπ(σ(n)) ∈ Cπ(σ(n)) and aπ(σ(n)) ∈ ¬Cπ(σ(n)),

or aπ(σ(n)) ∈ ⊥π(σ(n)). Either case leads to a contradiction.

Remark Firstly, note that Theorem 2.3.6 applies to general directed graphs (rather than just

trees as, e.g., in [53]). Secondly, it is crucial that G is complete w.r.t. all the local, global and

terminological expansion rules as given in Figures 2.1 and 2.2.

Corollary 2.3.7 Given a simple acyclic TBox T , let G be a constraint graph that is com-

plete w.r.t. local, global and terminological expansion rules, and let M be an arbitrary Kripke

structure. Then, M  G =⇒ (MG  G ∧MG � T ).

Discussion. Designing a set of terminological expansion rules that provide a sound and com-

plete tableau algorithm, and also lead to a PSpace implementation is rather challenging. Recall

the example presented just before Lemma 1: Given a definition C
.
= D1 uD2 and a constraint

system L(n) = {a : D1, a : D2, a : ¬C}, to generate a “quick” clash, one may expand L(n) by

adding a constraint a : C. This would suggest a terminological expansion rule for the construct

u : “If there is a node n with {a : B1, a : B2} ⊆ L(n), A
.
= B1 u B2 ∈ T , and a : A /∈ L(n),

then L(n) := L(n) ∪ {a : A}”. Similar terminological expansion rules could be defined for
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other constructs. However, treating ♦ and � analogously would require one to backtrack to

the parent node, which would vastly complicate the algorithm. To avoid backtracking, our

terminological expansion rules always examine the left-hand side of a definition and expand

the right-hand side whenever necessary. As we will see in Section 2.5, this idea facilitates the

PSpace implementation of the K-tableau algorithm ΛK
2.

2.4 Query Answering

In this section we show how to use the tableau algorithm to answer queries.

Theorem 2.4.1 Let Σ = 〈A, T 〉 be a knowledge base, C a concept, and a ∈ NO. Let L(n0)

be the constraint system obtained from A ∪ {¬C(a)}. Then Σ � C(a) if and only if all the

complete constraint graphs generated by the tableau algorithm ΛK from n0 are closed.

Proof Assume the hypotheses. The proof can be split into two claims:

• Claim 1. If Σ � C(a), then all the constraint graphs generated by ΛK from n0 are closed.

• Claim 2. If Σ 2 C(a), then there is an open and complete constraint graph generated

by ΛK from n0.

Proof of Claim 1. Assume that Σ � C(a). By Definition 2.2.2, this means that for all

(M, s), (M, s) � Σ⇒ (M, s) � C(a). Suppose that G is an open and complete constraint graph

generated by ΛK starting from n0. By Theorem 2.3.6, MG  G and MG � T . By Theorem

2.3.3, (MG, n0) � L(n0). Because the set of constraints obtained from A∪ {¬C(a)} is a subset

of L(n0), we have (MG, n0) � A and (MG, n0) � ¬C(a). It follows that (MG, n0) � Σ and

(MG, n0) � ¬C(a). This contradicts that Σ � C(a).

Proof of Claim 2. Suppose that Σ 2 C(a). By Definition 2.2.2, this means that for some

(M0, s0), (M0, s0) � Σ and (M0, s0) 2 C(a); this implies that (M0, s0) � T and (M0, s0) �

A ∪ {¬C(a)}. We construct an initial constraint graph G0 consisting of a single node n0 with

2If the terminological expansion rules go from left to right for definitions involving modalities (to avoid
backtracking) and go from right to left for definitions that do not involve modalities, then the resulting tableau
algorithm is incomplete. See an example in Appendix A.1.3.
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label L(n0) obtained from A∪{¬C(a)} and set the mapping σ0(n0) = s0. Obviously, M0  G0

via σ0. By Lemma 1 and repeated application of Theorem 2.3.3, there is an execution of ΛK

resulting a complete constraint graph G, a corresponding Kripke structure M and a mapping σ

such that M is a semantic extension of M0|NΣ
where M  G (via σ) and M � T . Thus, M  G.

By Corollary 2.3.7, MG  G and MG � T where MG is the canonical Kripke structure of G. It

follows from Theorem 2.3.6 that G is open.

We revisit Example 2.2.3 to illustrate the use of tableau algorithm to answer queries against

an ALCKm knowledge base.

Example 2.4.2 (Example 2.2.3 continued.) Consider the knowledge base Σ1 = 〈A, T 〉 where

A = { ADVISE(john, mary), TEACHES(susan, cs525), ♦1Advisor(susan),

♦2Grad(mary), �2Lecturer(susan), Advisor(john), ¬BasicCourse(cs525)}

T = { Lecturer
.
= ∀TEACHES.BasicCourse, Advisor

.
= Professor u A,

A
.
= ∃ADVISE.Grad }.

Each query will be answered by constructing a constraint graph.

Q1: Is john a professor? Query: Professor(john).

In this example, since there are no concepts involving the construct t or possibility of

generating a concept involving t, there is only one complete constraint graph that can be

constructed from A ∪ {¬Professor(john)}. The constraint system L(n0) at the root node

n0 is listed below:

L(n0) ={ (john, mary) : ADVISE, (susan, cs525) : TEACHES, susan : ♦1Advisor,

mary : ♦2Grad, susan : �2Lecturer, john : Advisor, john : Professor,

john : A, john : ∃ADVISE.Grad, (john, x) : ADVISE, x : Grad,

john : ¬Professor, cs525 : ¬BasicCourse }

Because of the constraints “john : Professor” and “john : ¬Professor”, L(n0) has a clash

and the constraint graph is closed. Hence, Σ1 � Professor(john) and the answer to the

query is YES.
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Q2: Is susan a lecturer? Query: Lecturer(susan).

We start by constructing a constraint system from A ∪ {¬Lecturer(susan)} and end up

with an open complete constraint graph G1 as follows.

L(n0) ={ (john, mary) : ADVISE, (susan, cs525) : TEACHES, susan : ♦1Advisor,

mary : ♦2Grad, susan : �2Lecturer, john : Advisor, john : Professor,

john : A, john : ∃ADVISE.Grad, (john, x) : ADVISE, x : Grad,

cs525 : ¬BasicCourse, susan : ¬Lecturer, susan : ∃TEACHES.¬BasicCourse }

L(n1) ={ susan : Advisor, susan : Professor, susan : A,

susan : ∃ADVISE.Grad, (susan, y) : ADVISE, y : Grad }

L(n2) ={ mary : Grad, susan : Lecturer, susan : ∀TEACHES.BasicCourse }

L(n0, n1) = {1}, L(n0, n2) = {2}.

The above G1 provides a model of 〈A ∪ {¬Lecturer(susan)}, T 〉. Therefore, we cannot

conclude “YES” to the original query. We then go on to construct a constraint graph

from A ∪ {Lecturer(susan)} and similarly to Q1, there is a clash in L(n0).

L(n0) ={ (john, mary) : ADVISE, (susan, cs525) : TEACHES, susan : ♦1Advisor,

mary : ♦2Grad, susan : �2Lecturer, john : Advisor, john : Professor, john : A,

john : ∃ADVISE.Grad, (john, x) : ADVISE, x : Grad, cs525 : ¬BasicCourse,

susan : Lecturer, susan : ∀TEACHES.BasicCourse, cs525 : BasicCourse }

Since there is only one constraint graph that can be constructed from A∪{ Lecturer(susan)

} and it has a clash, we conclude that Σ1 � ¬Lecturer(susan) and therefore the answer

to the query is NO.

The queries Q3 and Q4 in Example 2.2.3 will be answered in the same way.

2.5 PSpace implementation of the Tableau Algorithm ΛK

The model constructed by the K-tableau algorithm ΛK may be exponential in the size of

input as illustrated by the following set of constraints a : Ci where Ci = ♦1Ai1u♦1Ai2u�1Ci+1

(1 ≤ i < n− 1), and Cn = ♦1An1 u ♦1An2.
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We now describe the algorithm ALCKm-Sat (Algorithm 1), a PSpace implementation for

the tableau algorithm ΛK. Given an ALCKm KB Σ = 〈A, T 〉 and an ALCKm query C(a),

the algorithm ALCKm-Sat decides whether C(a) is satisfiable with respect to Σ. The algo-

rithm ALCKm-Sat(Σ, C(a)) makes use of the recursive subroutine Sat(n, L(n)) that imposes

restrictions on the order in which expansion rules are applied so as to maintain only a single

path of the constraint tree at all times during its execution.

The algorithm ALCKm-Sat expands constraint systems in a depth-first manner (see Figure

2.3). The expansion procedure creates two kinds of successors: successors of individuals w.r.t.

roles that are created due to the ∃-rule, and successors of the current constraint system that

are created due to the ♦-rule.

Within each constraint system, before applying the ∃-rule or the ♦-rule, the algorithm

ensures that all the other local and terminological rules are applied exhaustively. Once this

process is completed, the resulting constraint system, say L(n), remains fixed until the time

when L(n) is removed. The algorithm then expands L(n), by applying the ∃-rule to a constraint

of the form b : ∃R.D ∈ L(n), and creates an R-successor, say x, of the individual b, and

constraints (b, x) : R, x : D that are put in a “temporary” set Lx(n). In the presence of (b, x) : R

and x : D, other expansion rules may become applicable to constraints in L(n) ∪ Lx(n). So

the algorithm then exhaustively applies local and terminological rules, except the ∃-rule. All

these newly created constraints, except for (b, x) : R, are only about the fresh individual x

and they are put into the set Lx(n). Since constraints about x cannot clash with constraints

about other individuals, we consider Lx(n) as an auxiliary constraint system specifically for

individual x. The algorithm checks in a depth first manner whether Lx(n) contains any clash

(Line 14-16). During the recursive call (Line 14), new auxiliary constraint systems, e.g., Ly(n),

may be created. Once Ly(n) was found to be satisfiable, the control returns to Lx(n) and Ly(n)

is removed. If still E(n) 6= ∅, another auxiliary constraint system will be created, and the space

previously used by Ly(n) will be reused. Once E(n) = ∅, D(n) is checked. If D(n) 6= ∅, the

♦-rule will be applied and a new constraint system Lx(n′) will be created (see Figure 2.3).

Expansion rules are applied in Lx(n′) the same manner as in L(n). If Lx(n′) has been fully

examined without any clash, the ♦-rule will be applied to another possible constraint and
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Algorithm 1 ALCKm-Sat(Σ, C(a))

ALCKm-Sat(Σ, C(a)) := Sat(n0,L(n0)), where Σ = 〈A, T 〉 and L(n0) is a constraint system

obtained from A ∪ {C(a)}.

Sat(n,L(n)):

1: while a local or terminological rule, except for the ∃-rule, is applicable to L(n) do

2: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the new constraints to L(n)

3: end while

4: if L(n) contains a clash then

5: return “not satisfiable”

6: end if

7: E(n) := {a : ∃R.C | a : ∃R.C ∈ L(n) and there is no b s.t. (a, b) : R, b : C ∈ L(n)}
8: D(n) := {a : ♦iC | a : ♦iC ∈ L(n)}
9: while E(n) 6= ∅ do

10: pick one a : ∃R.C ∈ E(n) and let Lx(n) := {(a, x) : R, x : C} where x is fresh

11: while a local or terminological rule, except for the ∃-rule, is applicable to L(n) ∪ Lx(n)

do

12: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the new constraint to Lx(n)

13: end while

14: if Sat(n,Lx(n)) = “not satisfiable” then

15: return “not satisfiable”

16: end if

17: discard Lx(n)

18: E(n) := E(n) \ {a : ∃R.C}
19: end while

20: while D(n) 6= ∅ do

21: pick one a : ♦iC ∈ D(n), create a new constraint system L(n′)

let L(n′) := {a : C} and L(n, n′) := {i}
22: while the �-rule is applicable to L(n) do

23: apply the rule in L(n), add corresponding constraints to L(n′)

24: end while

25: if Sat(n′,L(n′)) = “not satisfiable” then

26: return “not satisfiable”

27: end if

28: discard L(n′)

29: D(n) := D(n) \ {a : ♦iC}
30: end while

31: return “satisfiable”
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another constraint system will be created using the same space of Lx(n′). When D(n) = ∅,

if no clash has been detected, Lx(n) is satisfiable. The control returns to L(n) and Lx(n) is

removed so that the same space can be reused for another “fresh” individual.

Figure 2.3 An Illustration of the Execution of Algorithm 1

The following example illustrates the operation of Algorithm 1.

Example 2.5.1 Suppose that we have an initial constraint system L(n) = {a : ∃R.♦1C, a :

∀R.∃R.♦2D, b : ♦1D}. The constraint systems and the auxiliary constraint systems are created

or removed in the following order:

1. Lx(n) = {(a, x) : R, x : ♦1C, x : ∃R.♦2D} is created;

2. Ly(n) = {(x, y) : R, y : ♦2D} is created;

3. Ly(n′) = {y : D} is created where (n, n′) = {2};

4. Ly(n′) is removed;

5. Ly(n) is removed;

6. Lx(n′) = {x : C} is created where (n, n′) = {1};

7. Lx(n′) is removed;

8. Lx(n) is removed;

9. L(n′) = {b : D} is created where (n, n′) = {1};

10. L(n′) is removed.

Eventually, the algorithm returns “satisfiable”.
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In reference to Figure 2.3, we note that at any one time only one path through the “tree”

is maintained. For example, when this path consists of · · · ,L(n),Lx(n),Lx(n′), · · · , the tem-

porary “nodes” Ly(n),Ly(n′), · · · would have already been processed and the space they used

can therefore be reused. At that point of time, the node L(n′), in Figure 2.3, has not yet been

created.

We now proceed to show that the ALCKm satisfiability problem can be solved in PSpace.

It suffices to show that ALCKm-Sat, the implementation of the tableau algorithm ΛK, runs in

PSpace.

Theorem 2.5.2 The tableau algorithm ΛK can be implemented in PSpace.

Proof Referring to the execution of ALCKm-Sat, within each (possibly auxiliary) constraint

system, the algorithm ALCKm-Sat takes one existential constraint a : ∃R.C at a time and

the auxiliary constraint system is reset for the newly created constraints that are all about the

witness individual of a : ∃R.C. The algorithm reuses the same space for new constraint systems

that are successors of the current system. The constraint system L(n′) is reset whenever such

a successor of the current constraint system is created.

Since the TBox is acyclic, the depth of the auxiliary constraint systems created due to

the ∃-rule or ♦-rule is linearly bounded by the length of the constraints in the original con-

straint system. Within each constraint system, the total number of constraints is polynomially

bounded by the number of constraints in the initial constraint system. Furthermore, in algo-

rithm ALCKm-Sat, once the ∃-rule is applied to a constraint b : ∃R.D ∈ L(n), it will not be

applicable to the same constraint again (Line 18). Similarly, for constraints of the form b : ♦iD,

after the ♦-rule is applied to it, the same rule will not be applicable to this constraint any more

(Line 29). It follows that the algorithm terminates and runs in PSpace.

2.6 Tableau Algorithm for ALCS4m

In this section we study ALCS4m, an epistemically motivated language whose syntax is

identical to that of ALCKm, but whose semantics is based on the modal logic S4m. The modal

logic S4m is well-suited to express epistemic knowledge in multiagent environments. This point
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was argued eloquently in [56]. Given a knowledge base Σ = 〈A, T 〉 and a query C(a), we would

like to know whether Σ � C(a) w.r.t. all S4-structures defined as follows.

A Kripke structure M = 〈S, π, E1, ..., Em〉 is reflexive (transitive) if for every i ∈ NE , the

relation Ei is reflexive (transitive). M is an S4-structure if it is reflexive and transitive. It

can be easily shown that S4-structures satisfy the following two properties (see the analogous

axioms (A3) and (A4) in [33]):

(e1) (Truth) The facts known by experts are true; formally, for any world w, every i ∈ NE , if

w � �iC(a), then w � C(a).

(e2) (Positive Introspection) If an expert knows something, then he/she knows that he/she

knows it; formally, for any world w, every i ∈ NE , if w � �iC(a), then w � �i�iC(a).

As discussed in Section 2.2.2, checking whether Σ � C(a) can be reduced to the problem of

checking the existence of models. Given a knowledge base Σ and a query C(a), we would like to

build an open and complete constraint graph which can be used to construct an S4-structure

as per Definition 2.3.4. However, the K-tableau algorithm which utilizes only local, global

and terminological expansion rules is not sufficient for this purpose. For example, consider

a set of constraints A = {a : �1C, a : ¬C} with an empty TBox. Clearly, the constraint

graph G consisting of a single node labeled with A is open and complete w.r.t. local, global

and terminological expansion rules. By Theorem 2.3.6, there is a canonical Kripke structure

MG = 〈{s}, π, ∅〉 such that MG  G. But MG is not an S4-structure for G since it is not

reflexive. In fact, due to reflexivity, G is not satisfiable in any S4-structure.

Accessibility Expansion Rules:

AT -rule: If there is a node n with a : �iC ∈ L(n), and a : C /∈ L(n),

then L(n) = L(n) ∪ {a : C}.
A4-rule: If there is a node n with a : �iC ∈ L(n),

and n has an i-successor n′ with a : �iC /∈ L(n′),

then L(n′) := L(n′) ∪ {a : �iC}.

Figure 2.4 The accessibility expansion rules

To address this problem, we adapt the K-tableau algorithm by adding two accessibility

expansion rules that implement the two properties (e1) and (e2) stated above and which will
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facilitate the construction of S4-models. They are shown in Figure 2.4. However, it turns

out that the tableau algorithm with the accessibility rules and the current local, global and

terminological rules may not terminate. Consider an initial constraint system L(n0) = {a :

�1♦1C}. After an application of the AT -rule, a constraint a : ♦1C is added to L(n0) and

leads to the application of ♦-rule which creates a new constraint system L(n1) = {a : C} with

L(n0, n1) = {1}. After an application of the A4-rule followed by another application of the

AT -rule, L(n1) = {a : C, a : �1♦1C, a : ♦1C}. With the current tableau algorithm ΛK, a new

constraint system, say L(n2), will be created and contain the same constraints as L(n1); this

process will not terminate. Since S4-structures are reflexive, any world in the structure is an

i-successor of itself (i ∈ NE) and this suggests that we modify the condition of the ♦-rule such

that the ♦-rule is not applicable to a : ♦iC ∈ L(n) whenever a : C ∈ L(n). Unfortunately, this

modification by itself is not sufficient to ensure termination as is illustrated in the following

example.

Example 2.6.1 Consider an initial constraint system L(n0) = {a : �1♦1D, a : ♦1D, a :

�1♦1∃R.�1♦1C, a : ♦1∃R.�1♦1C}. Applications of several expansion rules may lead to the

following constraint systems: L(n1) = {a : ∃R.�1♦1C, (a, x) : R, x : �1♦1C, x : ♦1C}∪L(n0),

L(n2) = {x : C, x : �1♦1C, x : ♦1C} ∪ L(n0), and L(n3) = {a : ∃R.�1♦1C, (a, y) : R, y :

�1♦1C, y : ♦1C}∪{x : �1♦1C, x : ♦1C}∪L(n0) where L(n0, n1) = L(n1, n2) = L(n2, n3) = {1}

and individuals x, y were freshly chosen. Both L(n1) and L(n3) were created because of the

constraint a : ♦1∃R.�1♦1C. The constraint system L(n2) was created because of the constraint

x : ♦1C. Since the ∃-rule always picks a fresh individual, the box-assertions for the previously

picked individuals will be carried along to the newly created constraint system. So there may be

larger and larger sets of constraints with the creation of new constraint systems.

To address this problem, we use a blocking technique. We define Bni = {a : �iC ∈ L(n) | a ∈

NO, C ∈ C} for i ∈ NE . In a constraint tree, we say that n1 is an i-ancestor of nk and that nk

is an i-descendant of n1 if i ∈
⋂k−1
j=1 L(nj , nj+1) where k > 1. Among all the tableau expansion

rules that we use, there are two expansion rules that create new entities - the ♦-rule and the

∃-rule. To enforce termination, we must limit the applicability of these rules. Figure 2.5 lists
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the “blocking” versions of these rules: the ♦b-rule and the ∃b-rule.

Definition 2.6.2 An assertion a : ♦iC ∈ L(n) is blocked by a node n′ if (i) n′ is an i-

ancestor of n, (ii) Bni = Bn′
i , and (iii) a : C ∈ L(n′). An assertion a : ∃r.C ∈ L(n) is blocked

by an individual x ∈ OG \ OΣ if there is an ancestor n′ of n such that {a : ∃r.C, (a, x) : r,

x : C} ⊆ L(n′).

♦b-rule: If there is a node n such that none of the expansion rules except the ♦b-rule

is applicable to L(n), and

1. a : ♦iC ∈ L(n), a : C /∈ L(n),

2. a : ♦iC is not blocked,

3. n has no i-successor l with a : C ∈ L(l),

then add a new i-successor n′ of n with L(n′) := {a : C} and L(n, n′) = {i}.
∃b-rule: If there is a node n with a : ∃R.C ∈ L(n) and there is no b ∈ OG such that

{(a, b) : R, b : C} ⊆ L(n), then

(i) if there is an individual x ∈ OG \ OΣ such that a : ∃R.C is blocked by x,

then L(n) := L(n) ∪ {(a, x) : R, x : C}; or

(ii) if a : ∃R.C is not blocked by any individual in OG \ OΣ,

then L(n) := L(n) ∪ {(a, c) : R, c : C} where c is fresh.

Figure 2.5 The ♦b-rule and the ∃b-rule

The u-, t-, ∃b- and ∀-rules (respectively, the ♦b- and �-rules/the AT - and A4-rules) are

jointly referred to as S4-local rules (respectively, S4-global rules/S4-accessibility rules). The

S4-local, S4-global, terminological and S4-accessibility expansion rules together are called S4-

rules. We denote by ΛS4 the S4-tableau algorithm which nondeterministically applies an S4-rule

until no rule is applicable. As was the case with ΛK, the graph-structure produced by ΛS4 will

be a tree. The next theorem establishes the soundness of the expansion rules used in ΛS4.

Theorem 2.6.3 (Soundness of expansion rules) Given an S4-structure M = 〈S, π, E1, ...,

Em〉 and an acyclic TBox T with M � T , let G be a constraint graph, α an S4-rule and Gα

a constraint graph obtained by applying α to G. If M  G via σ, then there exists a semantic

extension Mα (also an S4-structure) of M|NΣ∪OG s.t. Mα  Gα via σ′ (which extends σ) and

Mα � T . Furthermore, Mα  G.
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Proof Assume the hypotheses. It suffices to prove that the ∃b-rule, the ♦b-rule and S4-

accessibility expansion rules preserve the existence of S4-models. In the other cases, Mα is a

semantic extension of M (see proof of Theorem 2.3.3) and hence, if M is an S4-structure, so is

Mα.

• If α is an AT -rule, then there is a node n with a : �iC ∈ L(n) and a : C /∈ L(n). After

applying α, a : C ∈ L(n). Since M is reflexive, Gα obtained from G is satisfied by M via

σ.

• If α is an A4-rule, then there are two nodes n and n′ in G such that i ∈ L(n, n′),

a : �iC ∈ L(n) and a : �iC /∈ L(n′). After applying α, a : �iC is added to L(n′).

Let n′′ be an arbitrary i-successor of n′. Because M  G and a : �iC ∈ L(n), we have

(M, σ(n)) � �iC(a). Since M being transitive implies that n′′ is also an i-successor of

n, we have (M, σ(n′′)) � C(a). Because n′′ is an arbitrary i-successor of n′, (M, σ(n′)) �

�iC(a). Therefore, Gα obtained from G is satisfied by M via σ.

• If α is a ♦b-rule, then there is a node n such that none of the expansion rules except the

♦b-rule is applicable, a : ♦iC ∈ L(n), a : ♦iC is not blocked, and n does not have an

i-successor l with a : C ∈ L(l). By Definition 2.3.2, a : ♦iC ∈ L(n) implies (M, σ(n)) �

♦iC(a) which means that there is a world s with (σ(n), s) ∈ Ei and aπ(s) ∈ Cπ(s). There

are two cases. (i) If a : C /∈ L(n), then after applying the ♦b-rule, a new node n′ is added

to G with L(n′) = {a : C}, L(n, n′) = {i} and L(n, n′) = a : ♦iC. Extend σ to σ′ such

that σ′(n′) = s. M satisfies the resulting Gα via σ′. (ii) When a : C ∈ L(n), since M is

reflexive, (σ(n), σ(n)) ∈ Ei, then s = σ(n) and aπ(s) ∈ Cπ(s).

• If α is an ∃b-rule, then there is a node n with a : ∃R.C ∈ L(n) and there is no b ∈ OG such

that {(a, b) : R, b : C} ⊆ L(n). There are two cases. (i) If a : ∃R.C is blocked by x, then

x ∈ OG \ OΣ and there is an i-ancestor n′ of n such that x is a witness for the assertion

a : ∃R.C ∈ L(n′). Since a : ∃R.C ∈ L(n), we have (M, σ(n)) � ∃R.C(a). So there exists

an element d ∈ ∆ such that (aπ(σ(n)), d) ∈ Rπ(σ(n)) and d ∈ Cπ(σ(n)). Let xπ(σ(n)) = d.

Then we have xπ(σ(n)) ∈ Cπ(σ(n)) and (aπ(σ(n)), xπ(σ(n))) ∈ Rπ(σ(n)). Therefore, the newly
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added constraints (a, x) : R and x : C are satisfied. (ii) If a : ∃R.C is not blocked, the

proof is same as that in Theorem 2.3.3).

In the case of ALCKm, since the KB is finite and the TBox is acyclic, there are finitely many

assertions in each constraint system and so the outdegree of each constraint system is finite.

Moreover, since no A4-rule is involved (and the TBox is acyclic), whenever a new constraint

system is created, the length of an assertion in the new constraint system is shorter than the

assertion that creates it. It follows that the length of a path is also finite and therefore, the

tableau algorithm ΛK terminates. However, in the ALCS4m case, because of the A4-rule, the

same assertion may be passed from one constraint system to its successor and so it is not

immediately obvious why the tableau algorithm ΛS4 terminates. The following lemma deals

with this issue.

Lemma 2.6.4 Given a KB Σ = 〈A, T 〉 and a query C(a), the S4-tableau algorithm ΛS4 that

takes 〈A ∪ {¬C(a)}, T 〉 as input terminates.

Proof It suffices to show that the constraint tree that ΛS4 creates is a finite tree and that each

constraint system contains finitely many constraints.

Let l be the total number of sub-expressions of all the concepts and roles that appear in Σ

or C(a). Within each constraint system, for each individual x ∈ OG, the number of assertions

involving individual x is bounded by l. Since the TBox is acyclic, at most one fresh individual

is chosen for each ∃-assertion and so the total number of individuals in each constraint system

is also bounded by l. Therefore, the size of each constraint system is O(l2). It follows that the

number of ♦-assertions in each constraint system and hence the outdegree of each node in a

constraint tree are O(l2).

Note that starting from the root, each path actually contains a sequence of i-edges followed

by a sequence of j-edges (j 6= i), and so on. Let i-sequence denote the sequence of nodes as well

as the constraint systems associated with them where nodes (except the starting node) are i-

descendants of the starting node. Also note that due to the ∃b-rule, for each ∃-assertion within

an i-sequence, at most one fresh individual will be chosen as witness and so there are O(l)

individuals within each i-sequence. It follows that the total number of distinct �-assertions
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and ♦-assertions along each i-sequence of a constraint tree is O(l2). To show that the length

of each path of a constraint tree is finite, it suffices to show that (1) each i-sequence has finite

length, and (2) on each path, there are finitely many such sequences:

(1) Since there are O(l2) �-assertions in one i-sequence of a constraint tree, there are O(l2)

�i-assertions in each i-sequence. Due to the A4-rule, every �i-assertion is passed to its i-

descendants. So there will be one constraint system L(n∗) in an i-sequence which contains all

the �i-assertions that appear in this i-sequence. Starting from node n∗, each ♦i-assertion will

be expanded once and then will remain blocked so that the ♦b-rule is not applicable to this

assertion any more. Since there are O(l2) ♦i-assertions in an i-sequence, each i-sequence is

finite.

(2) If a j-sequence starts from the last node of an i-sequence (j 6= i), then no �k-assertions

(k 6= j) can be passed to the constraint systems in the j-sequence (see A4-rule). There may

be two or more different i-sequences in one path. However, since the TBox is acyclic, the

constraint systems associated with two different i-sequences will be different and none of such

sequences can be repeated in one path. Specifically, every �-concept appearing in the latter

i-sequence is a proper sub-concept of some �-concept appearing in the former i-sequence (with

a shorter length). Therefore, the number of distinct such sequences in one path of a constraint

tree is finite.

Since each constraint system has finitely many constraints with a finite outdegree and each

path is finite, ΛS4 terminates.

Let G be an open and complete constraint tree resulting from ΛS4. To obtain an S4-model

for G, we need to construct a graph from G such that whenever a : ♦iC ∈ L(n), there is an

i-successor n′ of n such that a : C ∈ L(n′). Moreover, for each i ∈ NE , the set of edges labeled

by {i} should represent a reflexive and transitive relation. Formally, this is defined as follows.

Definition 2.6.5 Let G = 〈V,E,L〉 be an arbitrary constraint tree resulting from ΛS4. An S4

constraint graph GS4 = 〈V,E∗,L∗〉 is obtained from G as follows:

1. For every i ∈ NE ,

Ei := {(n, n′) | n, n′ ∈ V, either i ∈ L(n, n′) or a : ♦iC ∈ L(n) is blocked by n′},
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E∗i is the reflexive and transitive closure of Ei,

E∗ :=
⋃
i E∗i ;

2. For every n ∈ V and every e ∈ E∗,

L∗(n) := L(n),

L∗(e) := NE , if e is a self-loop edge,

L∗(e) := {i}, if e ∈ E∗i and e is not a self-loop edge.

Note that when i 6= j, Ei ∩Ej = ∅. Moreover, since G is a tree, E∗i ∩E∗j = {(n, n) | n ∈ V}.

The following lemma shows the relationship between G and GS4.

Lemma 2.6.6 If a constraint tree G = 〈V,E,L〉 is open and complete w.r.t. S4-rules, then

GS4 = 〈V,E∗,L∗〉 is also open and complete w.r.t. S4-rules. Moreover, GS4 is open and

complete w.r.t. local, global and terminological expansion rules.

Proof Suppose that G is open and complete w.r.t. S4-rules. Let us analyze the applicability

of the expansion rules in GS4.

• A4-rule: If an A4-rule is applicable in GS4, then there is a node n with a : �iC ∈ L∗(n) =

L(n) and n has an i-successor n′ with a : �iC /∈ L∗(n′). Since a : �iC ∈ L(n) and G

is complete (specifically, the A4-rule is not applicable), n′ cannot be an i-descendant of

n in G. In view of the construction of E∗i (see Definition 2.6.5), there is an assertion

b : ♦iD ∈ L(n) that is blocked by a node n′′ (an i-ancestor of n in G) which is either n′

itself or an i-ancestor of n′. It follows from Definition 2.6.2 that Bni = Bn′′
i . Moreover, if

n′′ is an i-ancestor of n′ in G, by the the A4-rule, we have Bn′′
i ⊆ Bn

′
i . Hence, a : �iC ∈

L(n′) = L∗(n′), which is a contradiction. Therefore, no A4-rule is applicable in GS4.

• �-rule: Since no A4-rule is applicable in GS4 by the previous case, for any two nodes n,

n′ such that i ∈ L∗(n, n′), a : �iC ∈ L∗(n) ⇒ a : �iC ∈ L∗(n′). Furthermore, since no

AT -rule is applicable in G, a : �iC ∈ L∗(n′) = L(n′) implies a : C ∈ L(n′) = L∗(n′).

Therefore, no �-rule is applicable in GS4.
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• ♦b-rule: Since G is a subgraph of GS4, if an assertion a : ♦iC ∈ L∗(n) is not blocked by

any i-ancestor, a : C /∈ L∗(n) and there is no i-successor n′ of n such that a : C ∈ L∗(n′)

in GS4, same happens in G. However, this contradicts that G is complete w.r.t. ♦b-rule.

Therefore, no ♦b-rule is not applicable in GS4.

Since none of the A4-, �- and ♦b-rules are applicable and all the constraint systems in GS4

remain the same as those in G, if no S4-local, terminological expansion rule, or AT -rule is

applicable in G, it is not applicable in GS4 either. Next we analyze the applicability of the ♦-

and ∃-rules.

• ♦-rule: If a ♦-rule is applicable in GS4, then there is a node n with a : ♦iC ∈ L∗(n) =

L(n), a : C /∈ L∗(n) = L(n) and n does not have an i-successor n′ in GS4 such that

a : C ∈ L∗(n′) = L(n′). This implies that in G the assertion a : ♦iC ∈ L(n) was blocked

by an i-ancestor n1 of n. It follows that a : C ∈ L(n1) and Bn1
i = Bni . By Definition

2.6.5, there is an edge (n, n1) ∈ E∗i in GS4 and so n1 is an i-successor of n such that

a : C ∈ L∗(n1) = L(n1), which is a contradiction. Therefore, no ♦-rule is applicable in

GS4.

• ∃-rule: All constraint systems in GS4 are same as those in G. Moreover, G is complete

w.r.t. ∃b-rule, i.e., for every n ∈ V, if a : ∃R.C ∈ L∗(n), there is a witness x ∈ OG such

that {(a, x) : R, x : C} ⊆ L∗(n). Therefore, no ∃-rule is applicable in GS4.

It follows that GS4 is complete w.r.t. local, S4-local, global, S4-global, terminological and

S4-accessibility expansion rules. Furthermore, the constraint systems in GS4 are exactly the

same as the corresponding ones in G and since G is open, so is GS4.

Note that the converse implication of Lemma 2.6.6 does not hold. That is, GS4 = 〈V,E∗,L∗〉

being open and complete (w.r.t. S4-rules) does not imply that G = 〈V,E,L〉 is open and

complete (w.r.t. S4-rules). For example, suppose that we have L(n0) = {a : ♦1C, a : ♦1♦1C} =

L∗(n0), L(n1) = {a : ♦1C} = L∗(n1) and L(n2) = {a : C} = L∗(n2) where L(n0, n1) =

L(n1, n2) = {1}. G is not complete since n0 does not have a 1-successor l such that a : C ∈ L(l).

However, the corresponding GS4 is complete because (n0, n2) ∈ E∗1.
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The canonical Kripke structure MGS4 is obtained from GS4 using Definition 2.3.4. By

Definition 2.6.5, MGS4 is actually an S4-structure. To show the soundness and completeness

of the tableau algorithm ΛS4, we need to show that any complete constraint graph G (w.r.t

S4-rules) is open if and only if there is an S4-structure that satisfies G. The next lemma shows

that the canonical Kripke structure MGS4 is such an S4-structure for G.

Lemma 2.6.7 Let G = 〈V,E,L〉 be a constraint tree and GS4 = 〈V,E∗,L∗〉 the constraint

graph obtained from G by Definition 2.6.5. Let MGS4 = 〈S, π, E1, ..., Em〉 be the canonical

Kripke structure of GS4. Then MGS4  GS4 ⇒MGS4  G.

Proof Suppose MGS4  GS4 via σ where σ is an identity function (see Definitions 2.3.2 and

2.3.4). Since for every n ∈ V, L(n) = L∗(n), E ⊆ E∗ and for every e ∈ E, L(e) = L∗(e), it is

clear that MGS4  G via σ. Hence, MGS4  GS4 ⇒MGS4  G.

Theorem 2.6.8 (Soundness and completeness of ΛS4) Let G = 〈V,E,L〉 be a complete con-

straint tree resulting from ΛS4 applied to a KB Σ = 〈A, T 〉 where T be a simple acyclic TBox.

Then G is open if and only if MGS4  G and MGS4 � T .

Proof (⇒) Suppose that G is open and complete w.r.t. S4-rules. Let GS4 be the constraint

graph constructed from G by Definition 2.6.5. By Lemma 2.6.6, GS4 is open and complete w.r.t.

local, global and terminological expansion rules, and hence, by Theorem 2.3.6, MGS4  GS4

and MGS4 � T . By Lemma 2.6.7, MGS4  G.

(⇐) The proof is exactly the same as the proof of Claim 2 in Theorem 2.3.6.

By Lemma 2.6.4, the S4-tableau algorithm ΛS4 terminates. Based on ΛS4, a PSpace im-

plementation ALCS4m-Sat for ALCS4m-satisfiability can be obtained following the approach

of ALCKm-Sat. The basic idea is to maintain a single path of the constraint tree during the

execution by imposing restrictions on the order of application of the expansion rules. The

algorithm ALCS4m-Sat(Σ, C(a)) (see Algorithm 2) calls the subroutine S4-Sat by providing

the input arguments n0 and L(n0), where Σ = 〈A, T 〉 and L(n0) is a constraint system ob-

tained from A∪{C(a)}. The subroutine S4-Sat differs from the subroutine Sat in Algorithm

1 mainly at the following points:
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Algorithm 2 ALCS4m-Sat

ALCS4m-Sat(Σ, C(a)) := S4-Sat(n0,L(n0)), where Σ = 〈A, T 〉, T is a simple acyclic TBox,

and L(n0) is a constraint system obtained from A ∪ {C(a)}.

S4-Sat(n,L(n)):

1: while an S4-local, terminological or AT -rule, except for the ∃b-rule, is applicable to L(n)

do

2: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the resulting constraints to L(n)

3: end while

4: if L(n) contains a clash then

5: return “not satisfiable”

6: end if

7: E(n) := {a : ∃R.C | a : ∃R.C ∈ L(n) and there is no b ∈ OG s.t. (a, b) : R, b : C ∈ L(n)}
8: D(n) := {a : ♦iC | a : ♦iC ∈ L(n) is not blocked and a : C /∈ L(n)}
9: while E(n) 6= ∅ do

10: pick one a : ∃R.C ∈ E(n)

11: if a : ∃R.C is blocked by an individual x then

12: Lx(n) := {(a, x) : R, x : C} ∪ {x : D | x : D ∈ L(n)} and

L(n) := L(n) \ Lx(n)

13: else

14: Let Lx(n) := {(a, x) : R, x : C} where x is fresh

15: end if

16: while an S4-local, terminological or AT -rule, except for the ∃b-rule,

is applicable to L(n) ∪ Lx(n) do

17: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the resulting constraint to Lx(n)

18: end while

19: if S4-Sat(n,Lx(n)) = “not satisfiable” then

20: return “not satisfiable”

21: end if

22: discard Lx(n)

23: E(n) := E(n) \ {a : ∃R.C}
24: end while

25: while D(n) 6= ∅ do

26: pick one a : ♦iC ∈ D(n), create a new constraint system L(n′)

let L(n′) := {a : C} and L(n, n′) := {i}
27: while the �- or A4-rule is applicable to L(n) do

28: apply the rule to L(n), add corresponding constraints to L(n′)

29: end while

30: if S4-Sat(n′,L(n′)) = “not satisfiable” then

31: return “not satisfiable”

32: end if

33: discard L(n′)

34: D(n) := D(n) \ {a : ♦iC}
35: end while

36: return “satisfiable”
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• Lines 10-15 in S4-Sat implements the ∃b-rule which corresponds to Line 10 in Sat (see

Algorithm 1).

• In Lines 1 and 16, S4-Sat tests for the applicability of the S4-local, terminological and

AT rules except for the ∃b-rule instead of local and terminological rules except for the

∃-rule in Sat (Lines 1 and 11).

• In Line 8, S4-Sat chooses constraints of the form a : ♦iC ∈ L(n) only under the condition

that a : ♦iC is not blocked and a : C /∈ L(n) whereas Sat chooses constraints of the form

a : ♦iC ∈ L(n) without any restriction.

• In Line 27, S4-Sat tests for the applicability of the A4-rule in addition to the �-rule in

Sat (Line 22).

It is clear that these changes do not affect the space requirements of ALCS4m-Sat. It follows

that the tableau algorithm ΛS4 can be implemented in PSpace.

2.7 Summary and Discussion

In this chapter we studied ALCKm and ALCS4m, knowledge representation languages ob-

tained by augmenting ALC with modal operators of the basic multi-modal logics Km and S4m.

The resulting logics allow us to represent and reason about the knowledge of multiple experts.

We developed sound and complete tableau algorithms ΛK and ΛS4 for answering queries w.r.t.

corresponding knowledge bases with acyclic TBoxes.

Instead of general concept inclusions allowed in KALC [40] which lead to a NEXPTIME

algorithm for satisfiability, the acyclicity restriction on the TBoxes is critical to achieving the

PSpace implementations for both algorithms. In particular, the tableau algorithm ΛK does

not need any blocking technique to ensure termination. Furthermore, we have introduced

expansion rules that have the following features:

• The expansion rules are quite efficient at detecting clashes in the tableau by avoiding

addition of concept memberships that are guaranteed not to lead to a clash during tableau

expansion. For example, when L(n) = {a : C, a : D} and A
.
= C u D ∈ T , we do
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not add a : A into L(n). The design of the terminological expansion rules aims at

detecting clashes only when necessary instead of fully expanding the constraint systems.

A consequence of this approach is that not all individuals are categorized as being in

or out (of the interpretation) of concept names. In this setting, it turns out that a

canonical interpretation, defined analogously to [50], is not sufficient to ensure that the

TBox definitions are valid in the model. Therefore, we had to introduce a new definition

of a canonical Kripke structure for a constraint graph to address this issue (see Definition

2.3.4).

• In the case of ΛS4, we not only have accessibility expansion rules that are designed to

syntactically incorporate the properties of S4-structures, but also use a blocking technique

that guarantees the termination of the algorithm and facilitates the construction of S4-

models. In KALC [40], since there is no acyclicity restriction on the formulas, in order to

prevent creating infinitely many individuals and ensure the termination of the algorithm,

each object is used to represent a type, i.e., a set of concepts that an individual belongs

to, rather than the individual itself. Thus, two “individuals” that have the same type

are deemed the same. This identification can be viewed as a “blocking” of sorts. In ΛS4,

the repetition of the same constraint in different constraint systems is caused because

of the epistemic property (e2) that is implemented as the A4-rule. To prevent creating

infinitely many individuals and ensure termination, we limit the generation of new entities

as follows. The ∃b-rule limits the creation of a new individual by reusing an existing one

created in some previous constraint system and the ♦b-rule limits the creation of a new

constraint system if there is an existing constraint system that can be used as a successor

of the current one. With this blocking technique, when ΛS4 terminates, the resulting

constraint tree is sufficient to detect clashes (see Definition 2.6.5 and Lemma 2.6.6).

If the resulting constraint tree is open and complete, the corresponding canonical S4-

structure can be constructed by adding edges to the constraint tree without the need to

change any constraint system.

The implementations of the tableau algorithms ΛK and ΛS4 trace a constraint tree one
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path at a time, and within each (possibly auxiliary) constraint system the algorithms deal with

constraints about the same “freshly” chosen individual one at a time, thus lending themselves

to PSpace implementations.

Our PSpace results for the satisfiability of ALCKm and ALCS4m extend the result of

Schmidt-Schauß and Smolka [2] for the satisfiability and subsumption of ALC concepts. Baader

et al. [57] have recently extended the PSpace result of [2] to ALC with transitive and inverse

roles. In light of this result, we conjecture that query answering against SIK, obtained by

replacing ALC with SI (ALC augmented with transitive and inverse roles), can also be imple-

mented in PSpace.
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CHAPTER 3. SECRECY-PRESERVING QUERY ANSWERING

FOR KNOWLEGDE BASES

Abstract

In this chapter, we investigate the secrecy-preserving query answering (SPQA) problem.

Given a knowledge base (KB) and a set of secrets that need to be protected against the querying

agent, the SPQA problem aims at designing a secrecy-preserving reasoner that answers queries

without compromising secrecy under the OWA. Whenever truthfully answering a query risks

compromising secrets, the reasoner is allowed to hide the answer to the query by feigning

ignorance, i.e., answering the query as “Unknown”. Under the OWA, the querying agent is not

able to infer whether an “Unknown” answer to a query is obtained because of the incomplete

information in the KB or because secrecy protection is being applied.

A simple solution to this problem is to evaluate every query when it is posed to the KB.

Since this approach checks the query history each time a query is posed, when the query

history gets longer, the response time to a query gets longer as well and hence the approach

becomes less and less attractive over time. In our approach, we maintain a secrecy system that

is initialized before any query is posed. This system contains a set of assertions that can be

inferred from the KB and a secrecy envelope that is used to protect the secrets, both restricted

to a finite set of expressions. When a query that was not evaluated during the prequery stage

is posed, the secrecy system will be expanded accordingly. The secrecy envelope contains a

set of assertions that “disrupt” all proofs of secrets so that none of the secrets can be deduced

by the information outside the envelope. To answer queries as informatively as possible, the

envelope should be as small as possible. Unfortunately, computing a minimum envelope may

be NP-complete. However, we could compute a tight envelope which is irredundant in the sense
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that removing any information from it will leave the secrecy set vulnerable.

We provide a general framework for answering queries while preserving secrecy and then

study query answering against EL knowledge bases. Given an EL knowledge base Σ and a set

S of secrets, we compute an envelope Ef ⊇ S by inverting the EL-tableau expansion rules. We

then provide two algorithms for computing tight envelopes, a naive approach and an optimized

one. We compare the complexity of the two approaches, including experimental results. With

the precomputed tight envelope, the answer to a query q posed to Σ will be censored if q can

be deduced from Σ and q ∈ Ef . Our approach allows more flexible information sharing than is

possible with traditional access control mechanisms.
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3.1 Introduction

The rapid expansion of the WWW and the widespread use of distributed databases and

networked information systems offer unprecedented opportunities for productive interaction and

collaboration among individuals and organizations in virtually every area of human endeavor.

However, the need to share information has to be balanced against the need to protect private,

confidential and otherwise sensitive information. The following example illustrates one such

scenario.

Example 3.1.1 (Healthcare) (a simplified version adapted from [58]): Suppose that Jane’s

mother Jill had breast cancer. Dr. James, Jane’s physician, who is aware of Jane’s family

history, concludes that Jane has a significant risk of developing breast cancer. He asks her to

undergo genetic screening for BRCA1 mutation (which is linked to an increased risk of breast

cancer) to determine the extent to which Jane is at risk of developing breast cancer. Suppose

Jane tests positive for BRCA1 mutation. Dr. James proceeds to prescribe her a certain drug

that he knows is effective at reducing the breast cancer risk for patients with BRCA1 mutation.

Jane purchases the medications from her pharmacy and wants to get reimbursed for the cost

of her prescription by her insurance company. If her insurance company finds out that she has

tested positive for BRCA1 mutation or that she has been prescribed certain drug(s) for breast

cancer, Jane risks losing her health insurance. In this setting, the knowledge base (KB) needs

to be able to certify to the insurance company that Jane qualifies for reimbursement for a drug

that is covered by her insurance policy without revealing the fact that she is on such drugs.

The preceding example illustrates the need for algorithms that can, given a knowledge base

Σ and a set S of secrets (perhaps specified using some secrecy policy1), answer queries against Σ,

using secrets in the deduction process and providing informative answers, whenever it is possible

to do so without compromising confidentiality. In this chapter, we investigate a simplified

version of the SPQA problem which consists only one single querying agent. Note that multiple

querying agents can be treated as a single querying agent whenever communication between

1Upon choosing an underlying language to express the information in the KB, a mechanism is needed to
transform the secrecy policies into secrets expressed by the chosen language. Such transformations are beyond
the scope of this paper.
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the agents is unrestricted. Given a KB Σ and a finite set S of secrets, called a secrecy set,

that need to be protected against the querying agent, the secrecy-preserving query answering

problem aims at designing a secrecy-preserving reasoner that answers queries without revealing

any secrets. We provide a general framework of how to answer queries without compromising

S. In general, the answer to a query q against a KB Σ can be “Yes” (q can be inferred from

Σ), “No” (¬q can be inferred from Σ) or “Unknown” (e.g., because of the incompleteness of

Σ). We assume a cooperative rather than adversarial scenarios in which the KB does not lie.

However, whenever truthfully answering a query risks compromising secrets in S, the reasoner

associated with the KB is allowed to hide the answer to the query by feigning ignorance, i.e.,

answering the query as “Unknown”.

One way to answer queries while preserving secrecy is to evaluate every query when it is

posed to the KB. If the truthful answer to the query together the query history compromises

some secret, an “Unknown” will be retrieved. Otherwise, the query will be faithfully answered.

This strategy is called a lazy evaluation. Since this approach checks the query history every

time a query is posed, when the history gets larger, the response time gets longer, and therefore,

the approach is getting less and less appealing.

Let Σ+ denote the set of all assertions that can be inferred from Σ. Given a finite secrecy

set S ⊆ Σ+, it is clear that answers to queries in S will be “Unknown”. However, since truthful

answers to certain queries that are not in S may reveal information in S, protecting just S is

not sufficient. It follows that we must protect a superset E of S (S ⊆ E ⊆ Σ+), which we

call a secrecy envelope for S, such that the querying agent who has no access to the envelope

will not be able to deduce any information in S. It is easy to see that a secrecy envelope

always exists. For instance, Σ+\ {tautologies} constitutes an envelope for any secrecy set

S ⊆ Σ+. A key challenge is to develop strategies that can be used by the KB to respond to

queries as informatively as possible (i.e., using an envelope that is as small as possible) without

compromising secrets that the KB is obliged to protect. Unfortunately, it turns out that given a

language, computing a minimum envelope may be NP-hard (see Section 3.5.1). Therefore, we

aim at computing an envelope that is tight in the sense that removing any information from it

will leave the secrecy set S vulnerable. In general, if an envelope is finite, after it is obtained,
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for each element in the envelope, we could test whether it is necessary to protect the secrets. If

it is not, it will be removed. After all the elements in the envelope are tested, a tight envelope

is obtained. Since computing tight envelopes is an optimization problem, depending on the

underlying language, algorithms may be designed to directly build an envelope that is tight.

We apply this approach to EL [25], which is one of the simpler Description Logics (DLs)

that is both computationally tractable [26, 27, 28] and practically useful [25, 29]. For example,

the medical ontology Snomed ct [30] and large parts of the medical ontology Galen [31] can

be expressed in EL. We provide algorithms to answer queries against an EL knowledge base

that use, but do not reveal, the information that is designated as secret.

In the case of EL, a KB contains an ABox A, a finite set of assertions and a TBox T , a

finite set of subsumptions. Given an EL-KB Σ = 〈A, T 〉 and a secrecy set S, let SubE be

a finite set of expressions, initialized as the set of expressions occurring in Σ or S and some

of their subexpressions (see Section 3.4.1). We shall maintain a secrecy maintenance system

which we will initialize before any query is posed. It consists of SubE, Af , T f and Ef where

Af is a set of assertions deducible from Σ, T f is the set of subsumptions deducible from Σ,

and Ef ⊆ Af is an envelope for S, all restricted to SubE. Envelopes restricted in this fashion

will be termed partial envelopes. The answer to a query q ∈ Af is censored whenever q ∈ Ef .

When a query q whose expression is not in SubE is posed, the secrecy maintenance system

needs to be expanded before q can be answered. This includes updating SubE, Af , T f and

Ef .

We assume that T f is precomputed (see [59] for more details). The ABox Af is computed

using the EL tableau expansion rules. To compute Ef , we introduce the following idea. From

each original expansion rule, we construct a corresponding inverse expansion rule. We show

that the inverted system of expansion rules generates an envelope for S. To the best of our

knowledge, the idea of constructing a secrecy envelope by inverting the tableau expansion rules

is novel.

Since computing a minimum envelope in EL is NP-hard (see Section 3.5.1), instead of com-

puting a minimum envelope, we provide two polynomial time algorithms (one called the naive

and the other optimized) for computing tight envelopes. The naive algorithm first computes an
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envelope, then tests every assertion in the envelope whether or not it is redundant, and removes

those that are. The optimized algorithm guides the process as it builds up a tight envelope. It

avoids much unnecessary work of first putting an assertion in the envelope and then removing

it because of redundancy. Even though both approaches run in polynomial time, we show that

the optimized algorithm indeed is more efficient for applications whenever the sizes of the TBox

and the secrecy set are much smaller than that of the ABox.

The rest of the chapter is organized as follows. Section 3.2 provides the general framework

for the SPQA problem. From Section 3.3 to Section 3.6, we study the SPQA problem against EL

knowledge bases. In more detail, Section 3.3 introduces the EL secrecy-preserving framework.

Section 3.4 initializes the EL secrecy maintenance system. We provide a tableau algorithm

for computing Af and a tableau algorithm for computing Ef . In Section 3.5, we show that

computing a minimum envelope in EL is NP-complete and give an optimized algorithm for

computing tight envelopes. Section 3.6 discusses how to retrieve answers to queries for an EL

KB. Specifically, when a query is not in the current secrecy maintenance system, Af and Ef

need to be expanded. We show that such expansion will still lead to a tight envelope provided

we start with a tight envelope. Section 3.7 contains description of related work and we conclude

in Section 3.8.

3.2 General Framework of Secrecy-preserving Query Answering

3.2.1 Preliminaries

Let L be some appropriate (logic-based) description language which, for simplicity of nota-

tion, we also view as a set of sentences (viz., all sentences expressible in the language L). Let

�L (or, just �) be a Tarski-style semantic entailment for L and suppose that `L (or, just `) is

an inference system for the language L that is sound and complete with respect to �.

For Γ ⊆ L, we write Γ+ = {α | Γ `L α} for the inferential closure of a set of formulas Γ

and we say that Γ ⊆ L is inferentially closed if Γ+ = Γ. We also write ¬Γ = {¬α | α ∈ Γ}.

A formula α ∈ L is a tautology if � α. The set of all tautologies will be denoted by Taut.

Definition 3.2.1 A knowledge base (abbreviated, KB) over L is a triple K , 〈Σ,Q,Ω〉 where
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• Σ is a consistent finite subset Σ ⊆f L. It represents the information that is explicitly

stored in K. Σ+ represents all the assertions that the KB can infer. In the sequel, we

shall refer to both K and Σ as a knowledge base (KB).

• Q, the query space of K, is a subset: Σ+ ⊆ Q ⊆ L representing the set of all queries that

can be “legally” posed against K. We do not insist that Q = L which allows us to account

for possible restrictions that may be imposed on the querying agents.

• Ω, is the answer space. In most cases Ω = {Y,N,U} (for “Yes”, “No” and “Unknown”,

respectively). The “classical” answer space is Ω = {Y,N}.

A secrecy set S ⊆ Σ+ is a finite set of non-tautological statements that the KB is supposed to

protect against the querying agent. Associated with the KB K, there is a reasoning algorithm,

called a K-reasoner R : Q → Ω, which for a query q ∈ Q provides an answer R(q) ∈ Ω. For

any B ∈ Ω = {Y,N,U}, let QB = {α ∈ Q | R(α) = B}, for the set of all queries to which the

K-reasoner returns the answer B 2.

Definition 3.2.2 Given a KB K = 〈Σ,Q,Ω〉 and a secrecy set S, a secrecy-preserving K-

reasoner is a K-reasoner R : Q → Ω satisfing the following axioms:

• [Yes-Axiom] QY ⊆ Σ+;

• [No-Axiom] QN = ¬QY , {¬α | α ∈ QY };

• [Closure Axiom] (QY )+ = QY ;

• [Secrecy Axiom] (QY )+ ∩ S = ∅.

The triple 〈K, S,R〉 is called a secrecy-preserving query answering system (SQ system).

The Yes-Axiom ensures that all Y -queries are provable from Σ. The No-Axiom enforces a

match between the Y -queries and the N -queries and implies that QU is closed under negation:

¬QU = QU . The Closure Axiom requires the set of Y -queries is closed under inference. Finally,

the Secrecy Axiom ensures that secrets are “inferentially unreachable” from QY . A trivial

2Observe that the set {QY ,QN ,QU} forms a 3-partition of the query space Q.
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example of a secrecy-preserving reasoner is one which for every non-tautological query α ∈ Q,

R(α) = U .

Given a KB K and a secrecy set S, the secrecy-preserving querying answering (SPQA)

problem is to design a secrecy-preserving K-reasoner. The secrecy-preserving query answering

framework is based on the OWA where what cannot be inferred is considered unknown rather

than false. To protect confidential information, we utilize OWA and answer queries that relate

to secrets as “Unknown” so that the querying agent is not able to distinguish between (a) the

answer to the query is truly unknown, and (b) the answer is being protected for reasons of

secrecy. We call the set of queries whose answers are adjusted so as to protect secrets a secrecy

envelope (or just envelope) for the secrecy set. To answer queries as informatively as possible,

we aim to have envelopes as small as possible. The idea of envelopes is formalized below in a

purely semantic way.

Definition 3.2.3 Let K = 〈Σ,Q,Ω〉 be a KB and S a secrecy set on K. A set E, where

S ⊆ E ⊆ Σ+ \ Taut, is called a secrecy envelope (or envelope) for S if for every α ∈ E,

Σ+ \E 2 α. A secrecy envelope E is said to be tight if it satisfies an extra condition: for every

α ∈ E, there exists β ∈ S such that (Σ+ \ E) ∪ {α} � β.

Note that for any secrecy envelope E, its complement is closed under entailment, i.e.,

Σ+ \ E � α implies α ∈ Σ+ \ E. A secrecy envelope ensures that its contents is “semantically

hidden” from the outside. A tight envelope requires, in addition, that the envelope cannot be

reduced by changing the answer of a single query in E without revealing the secret information

that needs to be protected against the querying agent. Also note that secrecy envelopes as well

as tight envelopes are not unique. For example, E = Σ+ \ Taut is a secrecy envelope.

The following two theorems present a useful relationship between secrecy envelopes and

secrecy-preserving K-reasoners.

Theorem 3.2.4 Let 〈K,S,R〉 be an SQ system. Then E = Σ+ \ QY is an envelope for S.

Proof We first show that for every α ∈ E, Σ+ \ E 2 α. Suppose that there exists α ∈ E such

that Σ+ \ E � α. Since the proof system ` is complete w.r.t. �, we have QY = (Σ+ \ E) ` α.

By the Closure Axiom, α ∈ QY , i.e., α ∈ Σ+ \ E. This contradicts α ∈ E.
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Next we show that S ⊆ E. If α ∈ S \ E, then α ∈ Σ+ \ E = QY , contradicting the Secrecy

Axiom.

Theorem 3.2.5 Let K = 〈Σ,Q,Ω〉 be a KB, S a secrecy set on K and E a secrecy envelope

for S. Define a function RE: Q → Ω by

RE(α) =



Y if α ∈ Σ+ \ E,

N if ¬α ∈ Σ+ \ E,

U otherwise.

Then RE is a secrecy-preserving K-reasoner.

Proof We need to show that RE satisfies the four axioms.

• Yes-Axiom: By definition of RE, QY = {α | α ∈ Σ+ \ E} = Σ+ \ E ⊆ Σ+.

• No-Axiom: By definition of RE, QN = {α | ¬α ∈ Σ+ \ E} = {¬α | α ∈ Σ+ \ E} = ¬QY .

• Closure Axiom: It suffices to show that (QY )+ ⊆ QY . By definition of RE, QY = Σ+ \E.

Suppose that QY ` α and α /∈ QY = Σ+ \ E. By the soundness of `, QY � α and α ∈ E.

This contradicts the assumption that E is an envelope.

• Secrecy Axiom: Suppose that (QY )+∩S 6= ∅. Let α ∈ S s.t. QY ` α. Then, (Σ+ \E) ` α,

and by the soundness of `, (Σ+ \ E) � α. This contradicts the assumption that E is an

envelope.

3.2.2 A Simple SQ Reasoner – Lazy Evaluation

Given a KB K and a secrecy set S, a simple approach of answering queries while preserving

secrecy is to evaluate each query when it is posed, check whether truthfully answering the query

will compromise the secrecy and adjust the answer if necessary. Suppose that queries are posed

in an arbitrary but fixed order (history) H = {αk}∞k=1. The history H is said to be full if for

all α ∈ Q, α belongs to H. When a query αk is posed, the algorithm checks whether answers

to previous queries combined with the truthful answer to αk reveal secret information or not.
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If they do, αk will be answered as “Unknown”. Otherwise, αk can be faithfully answered.

This approach is greedy in that it makes sure that the secrecy is not compromised each time

when answering a query without considering how the current response may constrain answers

to future queries. Algorithm 3 implements this lazy approach. For the sake of simplicity of

presentation, it omits the actual responses and, instead, concentrates on the construction of

the sets QY , QN , and QU . Note that when the history H is not full, Algorithm 3 does not

define a total function Q → Ω and as such it does not satisfy the definition of K-reasoner. The

next lemma shows that for full history, Algorithm 3 defines a secrecy-preserving K-reasoner.

Algorithm 3 Lazy Evaluation Algorithm

Input: K = 〈Σ,Q,Ω〉 and S
Initialization: Let QY = QN := ∅, QU := S.

1: while true do

2: input α ∈ Q
3: if α /∈ QY ∪QN ∪QU then

4: if Σ+ ∩ {α,¬α} = ∅ then

5: QU := QU ∪ {α,¬α}
6: else

7: let ᾱ ∈ {α,¬α} such that Σ ` ᾱ
8: if (QY ∪ {ᾱ})+ ∩ S 6= ∅ then

9: QU := QU ∪ {α,¬α}
10: else

11: QY := QY ∪ {ᾱ}
12: QN := QN ∪ {¬ᾱ}
13: end if

14: end if

15: end if

16: end while

Lemma 3.2.6 Given a knowledge system K = 〈Σ,Q,Ω〉, a secrecy set S and a full query

history H = {αk}∞k=1, the lazy evaluation algorithm (Algorithm 3) defines a secrecy-preserving

K-reasoner.

Proof It is easy to see that Algorithm 3 satisfies Yes-Axiom and No-Axiom in Definition 3.2.2.

To show that the Secrecy Axiom is satisfied, we argue by induction on history of queries. In

the pre-query stage, QY = ∅ and so, since Taut ∩ S = ∅, (QY )+ ∩ S = ∅. For the induction

step, suppose that the condition (QY )+ ∩ S = ∅ holds, and consider the next query α ∈ Q. If
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Σ+∩{α,¬α} = ∅, then QY does not change, and the above condition is maintained. The same

holds true if (QY ∪{ᾱ})+∩S 6= ∅. So suppose that (QY ∪{ᾱ})+∩S = ∅. Then QY := QY ∪{ᾱ}.

So with the new value of QY , the same condition holds. Note that whenever a query is assigned

to be in QY ∪QN ∪QU , it will not be re-evaluated. Therefore, the property (QY )+ ∩ S = ∅ is

an invariant of the algorithm. It follows that the Secrecy Axiom is satisfied.

To show that the Closure Axiom is also satisfied, we assume that there is a query q ∈ (QY )+

and q /∈ QY . From q ∈ (QY )+, we conclude Σ ` q. This means that when q was first queried

and evaluated (i.e., when q was not in QY ∪ QN ∪ QU ), Algorithm 3 executes Lines 7-13.

Moreover, since q /∈ QY , the condition in Line 8 was satisfied. Hence, (QY ∪ {α})+ ∩ S 6= ∅.

This contradicts the invariant of the algorithm. Therefore, (QY )+ ⊆ QY . Since, obviously,

QY ⊆ (QY )+, the Closure Axiom is satisfied.

By Theorem 3.2.4, E = Σ+ \QY = Σ+∩QU where QY and QU are computed by Algorithm

3 is an envelope. The next theorem shows that E is actually a tight envelope.

Theorem 3.2.7 Given an SQ system 〈K, S, R〉 where R is defined as in Algorithm 3, every

query that can be deduced from Σ and is in QU belongs to a tight envelope.

Proof By Lemma 3.2.6, for full history, the lazy evaluation algorithm is a secrecy-preserving

K-reasoner. It then follows from Theorem 3.2.4 that E = Σ+ \ QY = Σ+ ∩ QU is an envelope

where QY and QU are obtained by Algorithm 3. Suppose that E is not tight. Then there exists

α ∈ E ⊆ QU such that for every β ∈ S, (Σ+ \ E) ∪ {α} 2 β. By the soundness of `, we have

(Σ+ \E)∪ {α} 0 β, i.e., QY ∪ {α} 0 β. This means that (QY ∪ {α})+ ∩ S = ∅. So when α was

queried for the first time, since Σ ` α and the condition in Line 8 is satisfied, α should have

been added to QY . However, this contradicts that α ∈ QU .

The lazy evaluation approach is simple, but as the number of queries increases, the set QY

gets larger, checking conditions in Line 8 takes longer time and so answering queries tends to be

more time consuming as the system continues to operate. Therefore, the system becomes less

and less user-friendly. In the next section, we propose another approach that answers queries

by computing envelopes based on the intrinsic properties of secrets.
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3.2.3 Computing Envelope

Consider a formula α∧β in propositional logic. If Γ � α and Γ � β, then obviously Γ � α∧β,

and hence if we need to protect α∧β, it is clear that we must protect at least one of α and β; i.e.,

if α∧β is in a secrecy set, at least one of α and β should be in the corresponding envelope. We

use a syntactic version of a generalization of this observation. Roughly, the idea is to “disrupt”

all proofs of secret information in S. The disrupting formulas will form an envelope for S. Since

finding proofs is a syntactic process, to construct an envelope, we invert the inference rules to

obtain disrupting formulas (see an example in Section 3.4.3). When an envelope is present, a

reasoner can be defined to answer queries while preserving secrecy according to Theorem 3.2.5.

In what follows, we formalize these ideas.

Given a language L and α ∈ L, we say that a finite set Γ ⊆f L is α-minimal if Γ � α and

for every β ∈ Γ, Γ \ {β} 2 α. Let Fα = {Γ | Γ is α-minimal}. If α is to be protected, at least

one element in each set in Fα has to be protected so that α cannot be entailed. Let φΓ be an

arbitrary but fixed element of a given set Γ. Note that, in particular, for Γ ∈ Fα, Γ � α, but

Γ \ {φΓ} 2 α. Also note that for two different sets Γ and Γ′, φΓ and φΓ′ may be same.

Theorem 3.2.8 Given a secrecy set S, define a sequence of sets where E0 = S and Ei+1 =

{φΓ | there is α ∈ Ei and Γ ∈ Fα}. Let E =
⋃∞
i=0Ei. Then E is an envelope for S.

Proof Suppose that for some α ∈ E, Σ+ \ E � α. Then for some finite subset Γ ⊆ Σ+ \ E,

Γ � α and Γ is α-minimal; and therefore, Γ ∈ Fα. By the definition of E, suppose α ∈ Ei.

Then, φΓ ∈ Γ ∩ Ei+1 and so Γ ∩ E 6= ∅, contradicting Γ ⊆ Σ+ \ E.

Once an envelope is computed, queries can be answered according to Theorem 3.2.5 without

revealing any secret. Note that E is not unique and may contain redundant information. We

would like to have envelopes as small as possible so that we can answer truthfully as many

queries as possible. However, given a language, deciding a minimum secrecy envelope may

be NP-complete (see Section 3.5.1). Because of this, we strive to obtain tight envelopes. If

an envelope E is finite, a simple approach is to test for each α ∈ E, whether or not it could

be removed from E without compromising S. That is, if there does not exist β ∈ S such that
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(Σ+\E)∪{α} � β, then α is removed from E. After all the elements in the original envelope are

tested, one will get a tight envelope. Also note that depending on the order in which elements

of E are tested, different tight envelopes may result. Further optimization techniques may be

developed according to the properties of the underlying language L and its native inference

system.

We have presented a general framework for answering queries posed to a knowledge base

containing secret information that need to be protected against the querying agent. For the

rest of this paper, we take the description language EL to illustrate how our secrecy-preserving

query answering framework can be applied to a specific language.

3.3 EL Preliminaries

3.3.1 Syntax and Semantics

The non-logical signature of the EL description language includes three mutually disjoint

sets: a set of concept names NC , a set of role names NR and a set of individual names NO.

The syntax of EL is defined by specifying expressions and formulae. EL expressions consist of

the set of role names NR and the set of concepts C which is recursively defined as follows:

C,D −→ A | > | C uD | ∃r.C

where A ∈ NC , > is the top symbol, C,D ∈ C and r ∈ NR. In this paper we will consider three

kinds of EL formulae: assertions of the form C(a) or r(a, b), definitions of the form A
.
= D

and general concept inclusions (GCI) of the form C v D where a, b ∈ NO, C,D ∈ C, r ∈ NR

and A ∈ NC .

The semantics of EL is defined by using an interpretation I = 〈∆, ·I〉 where ∆ is a non-

empty domain and ·I is a function that maps each individual name to an element in ∆, >

to ∆, each concept name to a subset of ∆ and each role name to a subset of ∆ × ∆. The

interpretation of concept expressions is extended recursively as follows: for all r ∈ NR and

C,D ∈ C, (C uD)I = CI ∩DI and (∃r.C)I = {a ∈ ∆ | ∃ b ∈ ∆ : (a, b) ∈ rI ∧ b ∈ CI}. For

a finite set of symbols N ⊂ NC ∪ NR ∪ NO and an interpretation I = 〈∆, ·I〉, we define an

interpretation I restricted to N to be IN = 〈∆, ·I |N 〉 where ·I |N denotes the restriction of the
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function ·I to N .

Definition 3.3.1 An EL-knowledge base (abbreviated, EL-KB) is a triple K , 〈Σ,Q,Ω〉 such

that

• Σ = 〈A, T 〉 where A contains a finite non-empty set of assertions over EL, named an

ABox, and T contains a finite set of definitions and GCIs over EL, named a TBox. As

in the general case (see Definition 3.2.1), we shall refer to both K and Σ as a knowledge

base.

• Q, the query space of K is a set of assertions.

• Ω, is the answer space. Since EL does not have negation, Ω = {Y,U} (for “Yes” and

“Unknown”, respectively).

A TBox T is normalized [60] if T contains only GCIs each of which is of the following form:

A v B, A1 u ... u Ak v B, A v ∃r.B or ∃r.A v B where A,Ai, B ∈ NC ∪ {>} (i ∈ {1, ..., k}).

It was shown that transforming a TBox into such a normal form can be accomplished in

polynomial time [60]. Henceforth, we will assume that all the subsumptions are in normal

form. From now on, we shall denote by T + the extended transitive closure of the TBox T (as

computed in [59]). For example, if D v E ∈ T , then ∃r.(C u D) v ∃r.E ∈ T +. Similarly,

A+ will denote the inferential closure of Σ restricted to assertions and is referred to as the

assertional closure of Σ.

A concept C is said to be atomic if C ∈ NC or C = ∃r.D where D ∈ C. Note that the

concepts on the right-hand side of subsumptions (in normal form) are all atomic. An assertion

C(a) is atomic if C is atomic. We denote by NΣ ⊆ NC ∪ NR ∪ NO the set of all the names

appearing in Σ and by OΣ the set of individual names appearing in Σ. Thus, OΣ ⊂ NO ∩NΣ

and NΣ \ OΣ ⊂ NC ∪NR.

Definition 3.3.2 Let Σ = 〈A, T 〉 be a knowledge base, I = 〈∆, ·I〉 an interpretation, C,D ∈ C,

r ∈ NR and a, b ∈ NO. We say that I satisfies C(a), r(a, b), or C v D if, respectively, aI ∈ CI ,

(aI , bI) ∈ rI , or CI ⊆ DI . I is a model of Σ if it satisfies all the assertions in A and all the
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GCIs in T . Let α be an assertion or a GCI. We say that Σ entails α, written as Σ � α, if all

models of Σ satisfy α.

3.3.2 The Secrecy-preserving Query Answering Problem in EL

The scenario described in Example 3.1.1 can be more formally specified as an EL-KB.

Example 3.3.3 (Example 3.1.1, cont.) Let Σ1 = 〈A1, T1〉 be a KB that contains information

about the patients, their health history, the prescriptions that they get from the physicians and

their insurance information.

1. ∃is child.A v CancerRisk 7. A v HasCancer

2. HasMutBRCA1 v ∃has pres.CancerDrug 8. Woman uHasCancer v A

3. ∃has pres.CancerDrug v CancerRisk 9. Woman(Jill)

4. ∃has pres.CoveredDrug v Reimburse 10. HasCancer(Jill)

5. CancerDrug v CoveredDrug 11. is child(Jane, Jill)

6. A vWoman 12. HasMutBRCA1(Jane)

The GCIs 1-8 form a subset of T1 (in normal form) and the assertions 9-12 form a subset of

A1. The secrecy set is S1 = {CancerRisk(Jane)}. In order for Jane to get reimbursed, when

the query Reimburse(Jane) is posed to the KB, the answer should be “Yes”. To protect Jane’s

privacy, the query CancerRisk(Jane) should be answered “Unknown”.

Given an EL-KB and a finite secrecy set S, the basic goal is to answer queries as informa-

tively as possible while preserving secrecy. It is obvious that protecting just secrets in S is not

enough to preserve secrecy. For instance, in Example 3.3.3, in order to protect Jane’s privacy,

the query CancerRisk(Jane) should be answered “Unknown”. However, by keeping just Can-

cerRisk(Jane) secret, the fact that Jane has cancer risk can still be inferred from statements

12, 2 and 3.

Since the SPQA problem is to design a secrecy-preserving K-reasoner, it follows from the

discussion in Section 3.2 that we could either (a) use the lazy evaluation outlined in Section

3.2.2, or (b) be somewhat more proactive and precompute a (partial) envelope to answer queries
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as per Theorem 3.2.5. In what follows, we focus on providing algorithms to compute envelopes

for the given knowledge system and secrecy set.

In the following, we make explicit some assumptions about the EL-SPQA problem.

• The EL reasoner R has an underlying inference system `EL that is complete in the sense

that it can infer (prove) an assertion α whenever Σ � α (such inference systems exist, see

[2], and Section 3.4.2). Specifically, the inference system ` should be able to decide:

– whether a given subsumption follows from the TBox T . Since a sound and complete

proof system dealing with this issue is given in [59], we shall use it without any

further ado.

– whether any given assertion can be inferred from Σ.

• The querying agent has the same inference capacity as R. Since we assume that `EL

is complete, this is not a restriction. The querying agent may log the history of all the

answers to its queries and draw conclusions from it.

• The querying agent has full access to the TBox T . This implies that the querying agent,

given any subsumption, can decide whether or not it follows from T .

• Queries in the query space Q are of the form C(a) or r(a, b). We assume that the querying

agent has computational access only to the signature of the knowledge base, i.e., all its

queries are over NΣ.

• A secrecy set S is a finite set of assertions over NΣ.

The reason for the last two assumptions is that, if an assertion α contains symbols not in NΣ,

based on OWA, the answer to α is “Unknown” and asking such queries or protecting such

queries is of no interest. We stress that the secrecy set S is not assumed to be a subset of the

ABox A. However, the individual names that occur in S do belong to OΣ.
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3.4 Initializing EL SQ System

In this section, we discuss the initialization of the secrecy maintenance system in detail.

Since the set of formulas that can be deduced from a given KB as well as an envelope may

be infinite, we compute a finite set SubE of some subexpressions of all concepts and roles

appearing in Σ = 〈A, T 〉 or S. Then we restrict all the relevant sets to SubE. For example, the

assertional closure of Σ is denoted by A+, and its restriction to SubE will be denoted by Af .

Similarly, T f will denote the restriction of T + to SubE. The set Af is called the assertional

closure of Σ (restricted to SubE). Obviously, since S ⊆ Σ+ is finite and all the concepts and

roles in S are also in SubE, S ⊆ Af .

In [2], authors gave a sound and complete inference system for ALC. We have chosen

another inference system (see Section 3.4.2) which is fashioned explicitly for EL and is more

amenable to rule inversion, a technique we shall use to construct envelopes (see Section 3.4.3).

To compute envelopes, we apply the idea of “disrupting” proofs discussed in Section 3.2.3; the

inverted rules help us find formulas that will disrupt all the proofs of secrets in S.

3.4.1 Computing SubE

In the prequery stage, SubE is the set of certain subexpressions of all the concepts and

roles appearing in Σ or S, and it is defined formally as follows:

• if C(a) ∈ A ∪ S, then C ∈ SubE; if r(a, b) ∈ A ∪ S, then r ∈ SubE;

• if C v D ∈ T , then {C,D} ⊆ SubE;

• if C1 u · · · u Ck ∈ SubE (all Ci are atomic), then Ci ∈ SubE (1 ≤ i ≤ k);

• if ∃r.C ∈ SubE, then {r, C} ⊆ SubE;

Note that SubE does not contain all the subexpressions of concepts appearing in Σ or S.

For example, if C1 u C2 u C3(a) ∈ A, then {C1, C2, C3, C1 u C2 u C3} ⊆ SubE. However,

C1uC2 /∈ SubE unless it is added to SubE in another way, for example, if ∃r.(C1uC2) ∈ SubE

or C1 u C2 v D ∈ T .
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When a query C(a) comes along with C /∈ SubE, it (and, possibly, some of its subconcepts)

will be added into SubE. As such, following an initial, pre-query phase, the system is built up

gradually depending on the history of queries. Also note that the initial size of SubE is linear

in the size of the KB Σ plus the size of the secrecy set S.

Example 3.4.1 (Example 3.1.1-3.4.7, cont.) The set of subexpressions of Σ1 and S1 is:

SubE1 = {∃is child.A, CancerRisk, HasMutBRCA1, ∃has pres.CancerDrug,

∃has pres.CoveredDrug, Reimburse, CancerDrug, CoveredDrug, A,

WomanuHasCancer, Woman, HasCancer, is child, has pres}.

3.4.2 Computing Af

The ABox Af is initialized as A and expanded by recursively applying assertion expansion

rules listed in Figure 3.1. We say that Af is assertionally closed, or that it is an assertional

closure of Σ, w.r.t. SubE, if no assertion expansion rule is applicable. The set of all the

individual names appearing in Af is denoted by Of . It is initialized as OΣ. New individuals

are introduced with the application of the ∃A2 -rule. We stipulate that all individuals in OΣ are

introduced at the same time and before any individual in Of \ OΣ. An individual a is said to

be fresh (at a particular time during the expansion process) if a ∈ NO \Of (at that time). An

individual a ∈ Of \ OΣ is blocked by an individual b ∈ Of if b was introduced earlier than a

(during the expansion process), and {C | C(a) ∈ Af} ⊆ {C ′ | C ′(b) ∈ Af}.

vA -rule: if C v D ∈ T f , C(a) ∈ Af and D(a) /∈ Af ,
then Af := Af ∪ {D(a)};

uA -rule: if C1 u · · · u Ck ∈ SubE, {C1(a), ..., Ck(a)} ⊆ Af
and C1 u · · · u Ck(a) /∈ Af , then Af := Af ∪ {C1 u · · · u Ck(a)};

∃A1 -rule: if ∃r.C ∈ SubE, {r(a, b), C(b)} ⊆ Af and ∃r.C(a) /∈ Af ,
then Af := Af ∪ {∃r.C(a)};

∃A2 -rule: if none of the vA-, uA- and ∃A1 -rules are applicable, and

1. ∃r.C(a) ∈ Af ,
2. a is not blocked, and

3. for all b ∈ Of , {r(a, b), C(b)} * Af ,
then Af := Af ∪ {r(a, c), C(c)} where c is fresh, and Of := Of ∪ {c}.

Figure 3.1 Assertion Expansion Rules
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We denote by Λ the tableau algorithm which nondeterministically applies assertion expan-

sion rules until no further applications are possible. Since each expansion rule can be applied

polynomially many times (in the size of SubE), the computation of Af can be completed in

polynomial time. When an execution of Λ terminates, we have an assertionally closed ABox

Af . The following are observations about the individuals occurring in Af .

f1. For any role assertion r(a, b) ∈ Af , b ∈ OΣ ⇒ a ∈ OΣ and r(a, b) ∈ A.

f2. Once an individual a is found to be blocked by an individual a′ while attempting to apply

the ∃A2 -rule (item 2), the set {C | C(a) ∈ Af} will remain fixed and will not change for

the remainder of the tableau algorithm Λ. In particular, a will always remain blocked by

a′.

f3. For all a ∈ Of \OΣ, if a was introduced via an application of the ∃A2 -rule to an assertion

∃r.C(b), then for any D ∈ {D′ | D′(a) ∈ Af}, C v D. The proof of this observation can

be found in Appedix A.2.1.

Remark. Without blocking, the ∃A2 -rule may introduce infinitely many individuals for the

same existential concept expression as in this example: A v ∃r.A ∈ T f and A(a) ∈ A.

With blocking and the condition that the ∃A2 -rule has to be considered only when no other

assertion expansion rule is applicable, for each existential concept assertion ∃s.B(d) ∈ Af with

d ∈ Of \ OΣ, the expansion process will generate at most one new individual (besides d). A

typical example is the following. Suppose that we have {A v B,B v C,C v ∃r.A} ⊆ T f

and B(a) ∈ A. From B(a) ∈ A, we conclude that C(a),∃r.A(a) ∈ Af . Since a ∈ OΣ, a

is not blocked and the ∃A2 -rule is applicable to ∃r.A(a). Suppose that a fresh individual b is

introduced and r(a, b), A(b) are added to Af . As a consequence, B(b), C(b), and ∃r.A(b) are

also added into Af . There are two cases: (1) If b is blocked by a, by observation (f2), the

∃A2 -rule will never be applicable to ∃r.A(b), or (2) If b is not blocked by a (e.g., if A(a) /∈ Af ),

the ∃A2 -rule is applicable to ∃r.A(b) and a new individual c is introduced which will be blocked

by b (since the set of concepts that c belongs to is a subset of concepts that b belongs to and b

was introduced earlier than c).
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Example 3.4.2 Continuing Examples 3.1.1-3.4.1 with the KB Σ1 = 〈A1, T1〉 and secrecy set

S1, by applying Λ, we can obtain the assertional closure of Σ1, denoted by Af1 , as follows.

Af1 = A1 ∪ {WomanuHasCancer(Jill), A(Jill), ∃is child.A(Jane), CancerRisk(Jane),

∃has pres.CancerDrug(Jane), has pres(Jane, a), CancerDrug(a), CoveredDrug(a),

∃has pres.CoveredDrug(Jane), Reimburse(Jane) }.

Let I1 = 〈∆, ·I1〉, I2 = 〈∆, ·I2〉 be two interpretations, and N2 ⊆ N1 be two finite subsets

of NC ∪ NR ∪ NO such that N1 \ N2 ⊆ NO. Then, I1
N1

= 〈∆, ·I1 |N1〉 is a semantic extension

of I2
N2

= 〈∆, ·I2 |N2〉 if (·I2 |N2) = (·I1 |N2). The following theorem shows the soundness of the

assertion expansion rules. The proof is in Appendix A.2.2.

Theorem 3.4.3 (Soundness of the Assertion Expansion Rules) Let Af be an assertionally

closed ABox obtained from Σ by applying the tableau algorithm Λ. For any C ∈ C ∩ SubE and

any a ∈ Of , if C(a) ∈ Af , then for every model I = 〈∆, ·I〉 of Σ, there is a semantic extension

of INΣ
that satisfies C(a). In particular, if a ∈ OΣ, then Σ � C(a).

The following Theorem shows the completeness of the tableau algorithm Λ and its proof is

in Appendix A.2.3.

Theorem 3.4.4 (Completeness) Let SubE be the set of subexpressions obtained from a KB

Σ = 〈A, T 〉 and a finite set of assertions S (see Section 3.4.1). Let Af be an assertionally

closed ABox obtained from Σ by applying the tableau algorithm Λ. Then for every concept

C ∈ C ∩ SubE and for every individual a ∈ Of , Σ � C(a)⇒ C(a) ∈ Af .

Note that the ∃A2 -rule helps us to build a model for the assertional closure Af . The vA-rule,

as we will see in Theorem 3.4.6, leads to a nice feature regarding different assertional closures

of the same Σ. Example 3.4.5 below shows that two different executions of Λ may lead to two

different assertional closures Af .

Example 3.4.5 Consider a KB Σ = 〈A, ∅〉 where A = {∃r.C(a),∃r.D(a),∃r.(CuD)(a)}. One

computation of the assertional closure Af of Σ is obtained by:

1. applying the ∃A2 -rule to ∃r.(C uD)(a) and introducing r(a, b), C uD(b);
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2. applying the vA-rule to C uD(b) and introducing C(b), D(b);

resulting Af = A ∪ {r(a, b), C uD(b), C(b), D(b)}. Another computation of Af is:

1. applying the ∃A2 -rule to ∃r.C(a) and introducing r(a, d1), C(d1);

2. applying the ∃A2 -rule to ∃r.D(a) and introducing r(a, d2), D(d2);

3. applying the ∃A2 -rule to ∃r.(C uD)(a) and introducing r(a, e), C uD(e);

4. applying the vA-rule to C uD(e) and introducing C(e), D(e);

resulting Af = A ∪ {r(a, d1), C(d1), r(a, d2), D(d2), r(a, e), C uD(e), C(e), D(e)}.

As illustrated in Example 3.4.5, even though different assertional closures of Σ can be

obtained from different executions of Λ, they differ only in assertions about individual names

that have been freshly chosen during the executions. This observation is formulated more

precisely in the next theorem. Let AfΣ denote the assertional closures Af restricted to the

individuals in OΣ.

Theorem 3.4.6 Given a KB Σ = 〈A, T 〉 and a secrecy set S, let Af1 and Af2 be two assertional

closures of Σ w.r.t. SubE obtained by different executions of Λ. Then Af1Σ = Af2Σ where Af1Σ

(Af2Σ) denotes Af1 (Af2) restricted to the individuals in OΣ.

Proof By symmetry, it suffices to prove that Af1Σ ⊆ A
f
2Σ. If C(a) ∈ Af1Σ, then we have

a ∈ OΣ and C ∈ C ∩ SubE. It follows from Theorem 3.4.3 that Σ � C(a). By Theorem 3.4.4,

C(a) ∈ Af2 . Since a ∈ OΣ, C(a) ∈ Af2Σ.

3.4.3 Computing Envelopes in EL-KBs

In this section, we illustrate how we apply the general idea of computing envelopes presented

in Section 3.2.3. The basic idea is to start from secrets, protect at least one premise from each

proof of each secret, and answer “Unknown” to the protected information. As we shall see, this

can be achieved by inverting the normal inference rules. Because of OWA, a querying agent

cannot distinguish between an answer “Unknown” that results from the reasoner’s incomplete
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information and an “Unknown” resulting from the reasoner’s need to protect secret information.

Since we have assumed that the querying agent can only ask queries over the vocabulary NΣ, the

information the reasoner needs to protect against need not include assertions about individuals

that are not in OΣ.

Remark. Axiom pinpointing [61, 62] was introduced to find out proofs for a given consequence

by computing a boolean formula that encodes all the axioms used for obtaining the consequence.

Specifically, axiom pinpointing in EL [62] aims at finding all the possible subsumptions used to

deduce the subsumption relation between two concepts. It has been shown in [63] that axiom

pinpointing is hard. Different from axiom pinpointing that finds minimal subsets of the original

KB that have the given consequence, to protect a secret, we need to find all the sets (some

of them may not be a subset of the original KB since our secrets are assertions rather than

subsumptions) that the given secret can be deduced from, and disrupt every such set so that

the secret is not deducible.

Example 3.4.7 (Example 3.4.2, cont.) For the given knowledge base Σ1 = 〈A1, T1〉, consider

the secrecy set S1 = {CancerRisk(Jane)}. Here, the querying agent is the insurance company

and the queries include CancerRisk(Jane) and Reimburse(Jane). Because CancerRisk(Jane)

can be inferred from statements 12, 2 and 3 in A1, at least one of these assertions, e.g.,

statement 12, should be put into the envelope. Thus, HasMutBRCA1(Jane)∈ E1 for S1.

The following definition specializes the general definition of envelopes and tight envelopes

to EL-KBs (see Definition 3.2.3).

Definition 3.4.8 Given an EL-KB Σ = 〈A, T 〉 and a finite secrecy set S ⊆ A+
Σ, a secrecy

envelope (or envelope) for S, denoted by E, is a superset of S and a subset of A+
Σ \ Taut such

that for every α ∈ E, A+
Σ \ E 2 α where A+ is the assertional closure of Σ and A+

Σ is A+

restricted to the individuals in OΣ. An envelope E is tight if for every α ∈ E, there exists β ∈ S

such that (AfΣ \ E) ∪ {α} � β.

Remark. (1) The computational idea behind this definition is that if the reasoner R answers

every query in E with “Unknown” and every query in A+
Σ \ E with “Yes”, the querying agent
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will not be able to deduce any assertions in S. Note that the computation of a secrecy envelope,

as described above, happens in the pre-query stage. (2) When constructing a knowledge base

that involves secret or private information, the designer is faced with the problem of resolving

the tradeoff between the two goals of a good design: secrecy and informativeness. In order

to be as informative as possible, we aim to make E as small as possible. A tight envelope

E is irredundant in the sense that removing any assertion α from E (i.e., answering it with

“Yes” instead of “Unknown”) would leave the secrecy set S vulnerable. Thus, the problem of

how to efficiently compute tight envelopes is of much interest. In what follows, we first focus

on the primary goal of preserving secrecy. Based on the techniques used to achieve this goal,

we go on to present some methods that can be used to achieve the second goal of improved

informativeness.

To compute an envelope, we introduce the technique of inverting assertion expansion rules.

The intuitive idea behind inverting rules is that: if the conclusion of an expansion rule is to

be secret, then some of its premises must be secret as well. There are four assertion expansion

rules in Figure 3.1. Among these four rules, even if ∃A2 -rule is applicable to (AfΣ \ E)+, due

to OWA, the querying agent can only conclude that there exists an individual d that is the

witness for ∃r.C(a) and that d /∈ OΣ. However, since the querying agent has no computational

access to individual names that are not in OΣ (except, of course, the names introduced for its

own use), inverting ∃A1 - and ∃A2 -rules can be restricted to OΣ (without considering any “fresh”

individuals). Therefore, we do not need to invert the ∃A2 -rule. Figure 3.2 lists a set of secrecy

closure rules that can be used to compute an envelope, which we name Secrecy Closure Rules.

Note that the SQ system only maintains a finite part of an envelope that is a subset of Af .

vS -rule: if C(a) ∈ Af \ Ef , C v D ∈ T f and D(a) ∈ Ef , then Ef := Ef ∪ {C(a)};
uS -rule: if C1 u · · · u Ck(a) ∈ Ef and {C1(a), ..., Ck(a)} ∩ Ef = ∅,

then Ef := Ef ∪ {Ci(a)} where 1 ≤ i ≤ k and Ci is atomic;

∃S -rule: if ∃r.C(a) ∈ Ef and {r(a, b), C(b)} ⊆ Af \ Ef with b ∈ OΣ,

then Ef := Ef ∪ {r(a, b)} or Ef := Ef ∪ {C(b)}.

Figure 3.2 Secrecy Closure Rules

We denote by ΛS the tableau algorithm which repeatedly and nondeterministically applies
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the secrecy closure rules where Ef is initialized as the given set S. When no further rules are

applicable, we say that Ef is closed w.r.t. S. It is clear that all executions of ΛS , on an input

consisting of the assertional closure Af of a KB and a finite set of assertions S, terminate. It

is also easy to see that ΛS takes polynomial time in the size of its input.

Example 3.4.9 For the given KB Σ1 and the secrecy set S1, with the assertional closure Af1

of Σ1, by applying ΛS, an envelope can be obtained and is listed as follows:

E′1 = {CancerRisk(Jane), ∃has pres.CancerDrug(Jane), HasMutBRCA1(Jane),

∃is child.A(Jane), is child(Jane, Jill) }.

Theorem 3.4.10 Let Σ = 〈A, T 〉 be a KB and S ⊆ AfΣ be a finite secrecy set. If Ef is closed

w.r.t. S, then Ef is an envelope for S restricted to SubE.

Proof Since Ef is initialized as S, we have S ⊆ Ef . To show that Ef is an envelope, we need

to show that for every α ∈ Ef , AfΣ \Ef 2 α. Since the tableau algorithm Λ is sound, it suffices

to show that for every α ∈ Ef , AfΣ \ Ef 0 α, or, equivalently, (AfΣ \ Ef )f ∩ Ef = ∅.

Let A = AfΣ \ Ef . We prove that Af ∩ Ef = ∅ by induction on the construction of Af . We

use A′ (A′′) and O′ (O′′) to denote the ABox before (after) the application of an expansion

rule and the set of individual names appearing in A′ (A′′), respectively. Since AfΣ \Ef ⊆ Af , it

follows from Theorem 3.4.6 that, AfΣ, the assertional closure of 〈AfΣ \ Ef , T 〉 restricted to OΣ,

is a subset of AfΣ. Therefore, for each assertion C(a): C(a) ∈ A′′, a ∈ OΣ ⇒ C(a) ∈ Af .

The base case is when none of the assertion expansion rules has been applied yet, A′ = A.

Clearly, A ∩ Ef = ∅. We assume that A′ ∩ Ef = ∅ and show that A′′ ∩ Ef = ∅.

• If the vA-rule is applicable, then C(a) ∈ A′, C v D ∈ T f and D(a) /∈ A′. After

the application of the vA-rule, D(a) ∈ A′′. Suppose D(a) ∈ Ef . Because individuals

appearing in Ef are in OΣ, we have a ∈ OΣ, and so by Theorem 3.4.6, C(a), D(a) ∈ Af .

However, since Ef is closed, by the vS-rule, C(a) ∈ Ef , which contradicts A′ ∩ Ef = ∅.

Therefore, A′′ ∩ Ef = ∅.

• If the uA-rule is applicable, then {C1(a), ..., Ck(a)} ⊆ A′, C1 u · · · u Ck(a) /∈ A′ and

C1 u · · · u Ck ∈ SubE. A′ ∩ Ef = ∅ implies that {C1(a), ..., Ck(a)} ∩ Ef = ∅. After the
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application of the uA-rule, C1u· · ·uCk(a) ∈ A′′. If A′′∩E 6= ∅, then C1u· · ·uCk(a) ∈ Ef .

Since Ef is closed, by uS-rule, there is an i (1 ≤ i ≤ k) such that Ci(a) ∈ Ef , contradicting

A′ ∩ Ef = ∅. Therefore, A′′ ∩ Ef = ∅.

• If the ∃A1 -rule is applicable, then {r(a, b), C(b)} ⊆ A′, ∃r.C ∈ SubE and ∃r.C(a) /∈ A′.

After the application of the rule, ∃r.C(a) ∈ A′′. By IH, A′ ∩ Ef = ∅, so in particular,

{r(a, b), C(b)} ⊆ A′ \ Ef . There are two cases:

– b ∈ OΣ. By (f1), a ∈ OΣ and r(a, b) ∈ A. It then follows from Theorem 3.4.6 that

r(a, b), C(b) ∈ AfΣ. Suppose ∃r.C(a) ∈ Ef . Since Ef is closed, by the ∃S-rule, either

r(a, b) ∈ Ef or C(b) ∈ Ef , contradicting A′ ∩ Ef = ∅.

– b /∈ OΣ. Suppose ∃r.C(a) ∈ Ef (and hence, a ∈ OΣ). Since b /∈ OΣ, b was

introduced earlier via an application of the ∃A2 -rule to some assertion in A′. In

view of r(a, b) ∈ A′, this assertion must be of the form ∃r.D(a). We have, by (f3),

D v C ∈ T f and so, ∃r.D v ∃r.C ∈ T f . Because a ∈ OΣ, it follows from Theorem

3.4.6 that ∃r.D(a) ∈ Af . Since Ef is closed, by the vS-rule, ∃r.D(a) ∈ Ef . However,

this contradicts A′ ∩ Ef = ∅.

Therefore, A′′ ∩ Ef = ∅.

• An application of the ∃A2 -rule introduces a fresh individual, say c /∈ OΣ, and adds two

assertions involving c to A′′. On the other hand, the tableau algorithm ΛS puts in Ef

only assertions involving individuals in OΣ. It follows that A′′ ∩ Ef = ∅.

Note that the whole initialization of the SQ system (including the computation of SubE,

Af and Ef ) is easily seen to be doable in polynomial time in the size of the KB Σ plus the size

of the given secrecy set S.

3.5 Tight Envelopes

Depending on the execution of ΛS , we may have different secrecy envelopes. Furthermore,

the construction of E resulting from ΛS may not result a tight envelope as shown in the following

example.
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Example 3.5.1 Suppose that the secrecy set S is {C uD(a), D uE(a)} and Σ = 〈A, ∅〉 where

A = {C(a), D(a), E(a)}. Depending on the choice made in the application of the uS-rule when

computing the secrecy envelope, we may have several envelopes:

• E1 = S ∪ {C(a), D(a)}, E2 = S ∪ {D(a), E(a)} — not tight;

• E3 = S ∪ {C(a), E(a)} — tight;

• E4 = S ∪ {D(a)} — minimum (and tight).

Since our goal is to answer queries as informatively as possible while preserving secrecy,

we would prefer to have a minimum envelope, i.e., an envelope of the smallest cardinality.

Unfortunately, to compute a minimum envelope is hard. Specifically, we will show that the

decision version of the problem of computing minimum envelopes is NP-complete.

3.5.1 Deciding a Minimum Secrecy Envelope is NP-complete

An instance of the Minimum Secrecy Envelope (MSE) problem contains a triple 〈Σ =

〈A, T 〉, S, k〉 where Σ is a knowledge base, A+ is the assertional closure of Σ restricted to

SubE, S ⊆ A+ is a secrecy set, and k ≤ |A+| is a nonnegative integer. The question is “Is

there a secrecy envelope E such that S ⊆ E ⊆ A+ and |E \ S| ≤ k?”

Given a set of assertions E′ ⊇ S, we can verify (a) whether E′ is an envelope by recalculating

(A+
Σ \E′)+ and checking that it contains no assertions in S, and (b) whether |E′ \ S| ≤ k. Both

tasks are doable in polynomial time and therefore MSE belongs to NP.

To show that the MSE problem is NP-hard, we reduce the Hitting Set (HS) problem to the

MSE problem. An instance of HS consists of a collection M of subsets of a finite set S and a

positive integer k ≤ |S|. The question is “Is there a subset S′ ⊆ S with |S′| ≤ k such that S′

contains at least one element from each set in M?” W.l.o.g., we may assume that every set in

M has at least two elements.

Given an instance of HS, we construct an instance of MSE, using the same constant k, as

follows:

• NO = {a}, NR = ∅, NC = S
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• S = {A1 u · · · uAm(a) | {A1, ..., Am} ∈ M}

• A = {A(a) | A ∈ S} ∪ S

• Σ = 〈A, ∅〉

Claim. S has a subset S′ with |S′| ≤ k that hits every subset in M iff there is a secrecy

envelope E such that S ⊆ E ⊆ A+ and |E \ S| ≤ k.

Proof Suppose that S has a subset S′ with |S′| ≤ k that hits every set in M. Then for

each set {A1, ..., Am} ∈ M, there is an element Aj ∈ S′ (1 ≤ j ≤ m). Let E = S′ ∪ S. It

follows that for every A1 u · · · u Am(a) ∈ S, there is an assertion Aj(a) ∈ E (1 ≤ j ≤ m). By

construction, Σ does not involve any roles and SubE = {C | C(a) ∈ A}. Therefore A+
Σ = A,

and so A+
Σ \ E = A \ E. Note that A \ E contains only assertions of the form C(a) where

C ∈ NC and a ∈ OΣ. Consequently, none of the assertion expansion rules is applicable to

A \ E, implying that (A+
Σ \ E)+ ∩ E = (A \ E) ∩ E = ∅. It follows that E is an envelope with

|E \ S| ≤ |S′| ≤ k.

Conversely, suppose that there is a secrecy envelope E such that S ⊆ E ⊆ A+ and |E\S| ≤ k.

Then, by Definition 3.4.8, for every A1 u · · · uAm(a) ∈ S, there is Aj(a) ∈ E where 1 ≤ j ≤ m.

E \ S contains only assertions of the form C(a) where C ∈ NC . This shows that S contains a

subset S′ = {C | C(a) ∈ E \ S} that hits every set in M and |S′| = |E \ S| ≤ k.

3.5.2 A Naive Algorithm for Computing Tight Envelope

Since computing a minimum envelope is NP-hard, in what follows, we consider polynomial

time algorithms for computing tight envelopes. Such a tight envelope is minimal in the sense

of being irredundant, but, as shown in Example 3.5.1, it need not be minimum.

By Definition 3.4.8, a naive algorithm for computing tight envelope can simply take an

envelope Ef obtained by applying ΛS to the secrecy set S, and check each assertion α in Ef

whether it is redundant: if the intersection ((AfΣ \Ef )∪{α})f ∩S is empty, α is redundant and

moved from Ef to AfΣ \ Ef . Otherwise, α remains in Ef .

Since Af and Ef can be computed in polynomial time and ((AfΣ \Ef )∪ {α})f ∩ S can also

be computed in polynomial time, it follows that the whole naive algorithm runs in polynomial
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time. The following example illustrates some of the computations in the execution of the naive

algorithm.

Example 3.5.2 Given a KB Σ = 〈A, T 〉 and a secrecy set S where

• A = {F (a), C(a), ∃r.∃s.(D uD′)(a), C uC1(a), C uC2(a), ..., C uCk(a), E1 uE2(a)},

• T = {E1 u E2 v C, ∃r.M v F , ∃s.D vM}, and

• S = {F (a), C u ∃r.∃s.(D uD′)(a)},

the set of subexpressions SubE and a corresponding assertional closure Af are listed as follows:

• SubE = {F,C, ∃r.∃s.(D u D′), r,∃s.(D u D′), s,D u D′, D,D′, C u C1, C u C2, ..., C u

Ck, C, C1, C2, ..., Ck, E1 u E2, E1, E2,∃r.M,M,∃s.D,C u ∃r.∃s.(D uD′)}.

• Af = A∪ S ∪ {r(a, x), ∃s.(D uD′)(x), s(x, y), D uD′(y), D(y), D′(y), ∃s.D(x), M(x),

∃r.M(a), C1(a), C2(a), ..., Ck(a), C(a), E1(a), E2(a)}, where x and y were freshly

chosen individuals during the computation of A+.

Suppose that an envelope Ef is obtained by

1. applying the uS-rule to C u ∃r.∃s.(D uD′)(a) and choosing C(a),

2. applying the vS-rule to C(a) and obtaining E1 u E2(a),

3. applying the uS-rule to E1 u E2(a) and choosing E1(a),

4. applying the vS-rule to F (a) and obtaining ∃r.M(a),

5. applying the vS-rule to ∃r.M(a) and obtaining ∃r.∃s.(DuD′)(a). Note that ∃s.(DuD′) v

∃s.D vM and so ∃r.∃s.(D uD′) v ∃r.M .

6. applying the vS-rule to C(a) repeatedly and obtaining C u C1(a), ..., C u Ck(a).

The resulting envelope is Ef = {F (a), Cu∃r.∃s.(DuD′)(a), C(a), E1uE2(a), E1(a), ∃r.M(a),

∃r.∃s.(D uD′)(a), C uC1(a), ..., C uCk(a)}. The naive algorithm tests every assertion in Ef

and removes it if it is redundant. Note that in this case the presence of ∃r.∃s.(D uD′)(a) not
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only makes C(a) as well as all of C uC1(a), ..., C uCk(a) redundant, but also makes E1uE2(a)

and E1(a) redundant since they were obtained because of C(a). This suggests that further

optimization can be done to compute a tight envelope during the construction of an envelope by

using D-secrecy closure rules.

3.5.3 ∃Sd -Secrecy Closure Rule

Instead of repeatedly checking redundancy as done by the naive approach, we provide an

optimized approach that guides the application of secrecy closure rules as it builds up a tight

envelope.

Among the secrecy closure rules (Figure 3.2), the ∃S-rule is the only one that, when applied

to an assertion for one individual, may cause an assertion for (possibly) a different individual

to become redundant. Consider an example where {r(a, b), C(b), D(b)} ⊆ Af \ S and S =

{∃r.C(a), CuD(b)}. An application of the uS-rule may lead to Ef = {∃r.C(a), CuD(b), D(b)}.

Then, since {r(a, b), C(b)} ⊆ Af \ Ef and ∃r.C(a) ∈ Ef , the ∃S-rule is applicable and Ef may

be expanded to {∃r.C(a), C u D(b), D(b), C(b)}. At this point, D(b) becomes redundant. To

reduce such kinds of “interactions” between assertions for different individuals, we will use a

deterministic version of ∃S-rule. The rule, named ∃Sd -rule, is listed in Figure 3.3.

vS -rule: if C(a) ∈ Af \ Ef , C v D ∈ T f and D(a) ∈ Ef , then Ef := Ef ∪ {C(a)};
uS -rule: if C1 u · · · u Ck(a) ∈ Ef and {C1(a), ..., Ck(a)} ∩ Ef = ∅,

then Ef := Ef ∪ {Ci(a)} where 1 ≤ i ≤ k and Ci is atomic;

∃Sd -rule: if ∃r.C(a) ∈ Ef and {r(a, b), C(b)} ⊆ Af \ Ef with b ∈ OΣ,

then Ef := Ef ∪ {r(a, b)}.

Figure 3.3 D-secrecy closure rules

The set of rules obtained from the deterministic secrecy closure rules by replacing the

∃S-rule with the ∃Sd -rule will be referred to as the D-secrecy closure rules.

In the following discussion, when we say that an assertion is redundant (irredundant), during

the construction of an envelope, we mean that this assertion is a candidate of being removed

(retained) in the resulting envelope. Here are some observations regarding the D-secrecy closure

rules:
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• uS-rule: Some of the non-deterministic choices in its applications may create redundant

assertions when computing an envelope (see Examples 3.5.1 and 3.5.2).

• ∃Sd -rule: It cannot trigger applications of the uS-rule (since its applications create role

assertions) and so if we can restrict its applications to irredundant assertions, the ∃Sd -rule

will not create any redundancy.

• vS-rule: An application of the vS-rule may possibly trigger applications of the uS-rule.

If it does, since the non-deterministic choice in the uS-rule may create redundancy, the

vS-rule may participate in creating redundancy. However, for any assertion C(a) ∈ E

obtained by applying the vS-rule, if there is an irredundant assertion E(a) ∈ E such that

C v E, then C(a) is also irredundant.

Taking these observations into account, the general idea of the optimized approach is to

(i) obtain a set of irredundant assertions that contains the given secrecy set and is closed

under the uS-rule, and

(ii) exhaustively apply the vS- and ∃Sd -rules (which, as we will show in Theorem 3.5.6, will

not create any redundancy).

In step (i), we need to consider not only applications of the uS-rule, but also applications

of the vS-rule because those applications, in turn, may trigger applications of the uS-rule (see

Step 2 and 3 in Example 3.5.2). In this step, the applications of the vS-rule will be restricted

to the set of subexpressions of S and T , denoted by SubE(S, T ) and computed in the same way

as SubE (see Section 3.4.1). This is important as the set S ∪ T may be substantially smaller

than A ∪ S ∪ T .

In a little more detail, the optimized approach first removes the redundancy from a set,

referred to as
⋃
a∈OΣ

E(1)
a in Section 3.5.4, that is closed under the uS-rule and the vS-rule

restricted to SubE(S, T ). The removal procedure ensures that the resulting set, referred to

as the basic set BS, is a superset of the given secrecy set S and is closed under the uS-rule.

The optimized approach then completes the envelope by repeated applications of the vS-rule,
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followed by repeated applications of the ∃Sd -rule. This procedure, named Tight, results a tight

envelope, as we shall see in Section 3.5.5.

Note that the uS-rule in fact deals with some implicit subsumptions that can be deduced

from an empty TBox. For example, DuD1 v D is such a subsumption even if it may not appear

in T . If an assertion D uD1(a) is to be protected, one of D(a) and D1(a) must be protected.

This differs from an subsumption such as C v D. In this case, if D(a) is to be protected, then

C(a) needs to be protected. However, if C(a) is to be protected, it’s not necessary to protect

D(a) because a “Yes” answer to D(a) does not directly lead to the “Yes” answer to C(a).

Therefore, we would like to distinguish these two kinds of subsumptions during the process of

building a tight envelope. We say that a concept D trivially subsumes (or covers) a concept

C, or C is trivially subsumed (or is covered) by D, denoted by C � D, if C = C1 u ... u Ck,

D = D1 u ... u Dm and {D1, · · · , Dm} ⊆ {C1, · · · , Ck}. We stipulate that every concept is

trivially subsumed by >. The following list two observations about the trivial subsumptions.

(s1) If (i) C ∈ SubE is non-atomic, (ii) C v D ∈ T f and C 6= D, and (iii) C does not

occur in the TBox, then there exists a concept E ∈ SubE such that E 6= C, C � E and

E v D ∈ T f .

(s2) If (i) ∃r.C ∈ SubE does not occur in the TBox, and (ii) ∃r.C v D ∈ T f where ∃r.C 6= D,

then there exists a concept ∃r.E ∈ SubE such that {∃r.C v ∃r.E, ∃r.E v D, C v E} ⊆

T f and C 6= E.

For observation (s1), it is obvious that when C � D, the claim is true (by letting E = D).

If C � D, then there must exist C ′ v D′ ∈ T (which cannot be deduced from an empty TBox)

where C ′ � D′ such that C � C ′ and D′ v D ∈ T f . Because C ′ v D′ ∈ T , by the computation

of SubE, C ′ ∈ SubE. Letting E = C ′, the claim holds. For observation (s2), since ∃r.C is

atomic and does not occur in the TBox, for ∃r.C v D to be a subsumption that is not deduced

from an empty TBox, we can only have C v E where C � E to deduce ∃r.C v ∃r.E and

through ∃r.E v D to obtain ∃r.C v D.

We next provide an efficient algorithm for computing a basic set, denoted by BS, that will

play an important role in constructing a tight envelope for S.
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3.5.4 Computing the Basic Set BS

For each a ∈ OΣ, let Sa = {C(a) | C(a) ∈ S}. We apply the uS-rule and the vS1 -rule (the

vS-rule restricted to SubE(S, T ), see Figure 3.4) to Sa until none of them are applicable. The

resulting set is denoted by E(1)
a .

vS1 -rule: if C ∈ SubE(S, T ), C(a) ∈ Af \ Ef , C v D ∈ T f and D(a) ∈ Ef ,
then Ef := Ef ∪ {C(a)}.

Figure 3.4 vS1 -Rule, the vS-Rule restricted to SubE(S, T )

It turns out that the set E(1)
a may be too large for our purposes. We compute a subset

Ba ⊆ E(1)
a termed the basic set for Sa w.r.t. E(1)

a . Then we define BS :=
⋃
a∈OΣ

Ba. To compute

Ba, we first construct a directed graph Ga = 〈Va, ATa , Aua 〉 where Va = E(1)
a and ATa and Aua

consist of two types of edges constructed as follows:

(g1) If C(a), D(a) ∈ Va, C � D, C 6= D, and there does not exist E(a) ∈ Va such that

C 6= E 6= D and C � E � D, then Aua := Aua ∪ {(C(a), D(a))}.

(g2) If C(a), D(a) ∈ Va, C v D ∈ T f and C � D, then ATa := ATa ∪ {(D(a), C(a))} 3.

We call a node n ∈ Va atomic if n is an atomic assertion and non-atomic otherwise. For any

two nodes n1, n2 ∈ Va, if (n1, n2) ∈ Aua (ATa ), we say that n1 is a u-predecessor (v-predecessor)

of n2 and n2 is a u-successor (v-successor) of n1. A node n1 is a predecessor of a node n2

if n1 is either a u-predecessor or a v-predecessor of n2. The edges in Ga encode two kinds

of dependencies between assertions. For every C(a) ∈ Va, if C(a) needs to be protected, then

at least one of its u-successors and all of its v-successors need to be protected. Note that

Aua ∩ATa = ∅.

Some edges in Ga represent applications of rules used to compute E(1)
a ; other edges represent

“accidental” subsumptions as illustrated in the following example. Let E(1)
a = {C uD(a), D u

E(a), C(a), D(a)} where C(a) is obtained by an application of the uS-rule to C u D(a) and

D(a) is obtained by an application of the uS-rule to D u E(a). In the corresponding graph

3Note that the edges in Au
a and AT

a represent subsumptions in opposite directions.
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Ga, the edge (C uD(a), D(a)) does not correspond to an actual application of a rule used to

compute E(1)
a .

The algorithm Basic-set checks for each node/assertion whether it is necessary in order

to protect Sa. If the tested node/assertion is not needed, it will be removed by the procedure

Remove (Line 4, Procedure 5). Some ancestors of the tested node/assertion will also be

removed (recursively) by the procedure Remove (Line 5-16, Procedure 5). Note that the

variable W is used to keep track of all the tested nodes so that none is tested more than once.

Moreover, it is easy to see that when the algorithm terminates, Va = W . There are three

criteria for removing predecessors:

c1. If (C(a), D(a)) ∈ ATa (e.g., C = ∃r.C1, D = ∃r.D1 and D1 v C1 ∈ T f ), removing D(a)

leads to the removal of C(a). This is because if D(a) is not protected, neither can be

C(a).

c2. If (C(a), D(a)) ∈ Aua and D(a) is the only u-successor of C(a) in Ga, removing D(a)

will directly lead to the removal of C(a) (e.g., C = D u D′ and D′(a) is not in Ga. In

this case, if none of D(a) and D′(a) is protected, D u D′(a) cannot be protected and

hence should be removed.); otherwise, when C(a) has an u-successor other than D(a),

removing D(a) will not lead to the removal of C(a).

c3. If (C(a), D(a)) ∈ Aua and C(a) is the only predecessor of D(a) in Ga, removing C(a)

will lead to the removal of D(a); otherwise, if D(a) has a predecessor other than C(a),

removing C(a) will not lead directly to the removal of D(a).

Regarding criterion (c3), note that we may have {(DuD′(a), D(a)), (DuD′(a), D′(a)} ⊆ Aua ,

and (E(a), D′(a)) ∈ ATa , in which case, removing D uD′(a) will lead to the removal of D(a),

but not D′(a). After computing Ba, if D′(a) ∈ Ba, then D uD′(a) will be brought back into

the tight envelope by applying the vS-rule (see Section 3.5.5).

The procedure Remove-Desc (Procedure 6) further optimizes the process by repeatedly

removing nodes that are only descendants of the removed node.

Example 3.5.3 In Example 3.5.2, we have given a KB Σ = 〈A, T 〉 with
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Algorithm 4 Basic-set(Ga = 〈Va, ATa , Aua 〉, Sa)
1: W := Sa {The set W is used to maintain the tested irredundant nodes}
2: V := Va \W
3: while V is not empty do

4: pick a node v ∈ V
5: G′ = 〈V ′a, A

′T
a , A

′u
a 〉 := Remove(Ga = 〈Va, ATa , Aua 〉, v)

6: if W ⊆ V ′a then {Removing v will not compromise Sa}
7: Ga := G′

8: V := V ′a
9: else {v cannot be removed}

10: W := W ∪ {v}
11: end if

12: V := V \W
13: end while

14: return Ga = 〈Va, ATa , Aua 〉

• A = {F (a), C(a), ∃r.∃s.(D uD′)(a), C uC1(a), C uC2(a), ..., C uCk(a), E1 uE2(a)},

• T = {E1 u E2 v C, ∃r.M v F , ∃s.D vM}, and

• S = {F (a), C u ∃r.∃s.(D uD′)(a)}.

The set of subexpressions of S and T is SubE(S, T ) = {F , Cu∃r.∃s.(DuD′), C, ∃r.∃s.(Du

D′), r, ∃s.(D uD′), s, D uD′, D, D′, E1 u E2, E1, E2, ∃r.M , M , ∃s.D}.

Suppose that applications of the uS- and vS1 -rules are exactly the same as those in Example

3.5.2. Then we have E(1)
a = S ∪ {C(a), E1 u E2(a), E1(a), ∃r.M(a), ∃r.∃s.(D uD′)(a)}.

Figure 3.5 Ga in Example 3.5.3

Note that Step 6 in Example 3.5.2 is not applied since those concepts are not in SubE(S, T ).

Figure 3.5 is the graph Ga = 〈Va, ATa , Aua 〉 built from E(1)
a . In Ga, there are single-head arrows

and two-head arrows which denote the edges in Aua and ATa , respectively. The nodes ∃r.M(a)

and ∃r.∃s.(D u D′)(a) cannot be removed because removing any of them leads to the removal
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Procedure 5 Remove(Ga = 〈Va, ATa , Aua 〉, v)

1: V Tv := {u | (u, v) ∈ ATa }
2: V uv := {u | (u, v) ∈ Aua } {All the predecessors of v in Ga due to trivial subsumptions.}
3: sucuv := {u | (v, u) ∈ Aua } {All the successors of v in Ga due to trivial subsumptions.}
4: Ga := Ga \ {v} {Including all the incident edges. }
5: for all u ∈ V Tv do

6: Ga = 〈Va, ATa , Aua 〉 := Remove(Ga = 〈Va, ATa , Aua 〉, u) {See criterion (c1).}
7: end for

8: for all u ∈ V uv do

9: if there is no vertex u′ s.t. (u, u′) ∈ Aua then

10: Ga = 〈Va, ATa , Aua 〉 := Remove(Ga = 〈Va, ATa , Aua 〉, u) {See criterion (c2).}
11: end if

12: end for

13: for all u ∈ sucuv ∩ Va do

14: Ga = 〈Va, ATa , Aua 〉 := Remove-Desc(Ga = 〈Va, ATa , Aua 〉, u)

15: end for

16: return Ga = 〈Va, ATa , Aua 〉

Procedure 6 Remove-Desc(Ga = 〈Va, ATa , Aua 〉, v)

1: if v has a predecessor in Ga then {v will not be removed. See criterion (c3).}
2: return Ga = 〈Va, ATa , Aua 〉
3: end if

4: sucuv := {u | (v, u) ∈ Aua } {All the successors of v in Ga due to trivial subsumptions.}
5: Ga := Ga \ {v} {Including all the incident edges.}
6: for all u ∈ sucuv do

7: Ga = 〈Va, ATa , Aua 〉 := Remove-Desc(Ga = 〈Va, ATa , Aua 〉, u)

8: end for

9: return Ga = 〈Va, ATa , Aua 〉

of F (a) ∈ S. After the execution of the Algorithm Basic-set, the nodes C(a), E1 uE2(a) and

E1(a) will be removed. Eventually, the basic set Ba = S ∪ {∃r.M(a), ∃r.∃s.(D uD′)(a)}.

We denote by Ga = 〈Va,ATa ,Aua 〉 the graph obtained from Ga = 〈Va, ATa , Aua 〉 by executing

the algorithm Basic-set. Define Ba := Va. The following lists some observations about Ba:

b1. Sa ⊆ Ba.

The set W in Algorithm 4 is initialized as Sa and none of the elements in W was removed

once it is added to W . When the algorithm terminates, W = Va = Ba. Therefore,

Sa ⊆ Ba.
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b2. (a) For every assertion C(a) ∈ Ba \ Sa, there is a path to C(a) in Ga that starts from an

assertion in Sa.

If an assertion C(a) ∈ Ba \Sa is not reachable from Sa, then it is also not reachable from

nodes in W in Algorithm 4 (because all nodes in W are reachable from Sa), and so C(a)

would have been removed (Algorithm 4, Lines 5-11), contradicting the assumption.

(b) Moreover, given an assertion D(a) ∈ Ba \ Sa, there is a path p from Sa to D(a) such

that all non-atomic nodes on p have a unique u-successor in Ga (not necessarily on p).

Proof Let D(a) ∈ Ba \ Sa be an assertion for which the claim does not hold. Then

for every path p from Sa to D(a), there is a non-atomic node up with more than one

u-successor. W.l.o.g., we assume that up is the closest such node to D(a) (among all

the non-atomic nodes on p with more than one u-successor). Then, at the time when

D(a) was tested for removal (see Algorithm 4, Line 4), none of the nodes on p starting

from up’s u-successor and up to D(a) were tested yet because if they were, they would

have been removed (see criteria (c1) and (c2) as implemented by Algorithm 4, Lines 5,

and Procedure 5). It follows that none of these nodes were in W at that time and all of

them could be removed, including D(a) (when D(a) was tested for removal). This yields

a contradiction to D(a) ∈ Va = Ba. Therefore, the claim (b2) part(b) holds.

b3. Ba is closed under the uS-rule. This is equivalent to the claim that every non-atomic

node in Ba has a u-successor.

Proof Suppose that after the execution of the algorithm Basic-set, a non-atomic as-

sertion, say C uDuE(a) ∈ Ba, does not have any u-successor in Ga. Since E(1)
a is closed

under the uS-rule, when the graph Ga was initially defined, at least one of C(a), D(a)

and E(a) was in Va. W.l.o.g., assume that all of them were in Va. Since C uD u E(a)

does not have any u-successor in Ga, then C(a), D(a) and E(a) were all removed dur-

ing the execution. Suppose that among C(a), D(a) and E(a), C(a) was removed after

the removal of D(a) and E(a). Right before the removal of C(a), C(a) was the only

u-successor of C uDuE(a). By criterion (c2) (Procedure 5, Line 12-16), removing C(a)
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will lead to the removal of CuDuE(a), contradicting that CuDuE(a) ∈ Ba. Therefore,

the claim (b3) holds.

3.5.5 The Procedure Tight

The whole procedure of computing a tight envelope is given in Figure 3.6. We will show

that by utilizing the basic set computed as in Section 3.5.4, the resulting set F(3) is a tight

envelope.

Tight:

(1) Compute the basic set BS for S according to Section 3.5.4. Let F(1) := S ∪ BS. Note
that F(1) \BS contains all and only the role assertions in S (see (b1) and the definition
of Sa).

(2) Apply the vS-rule exhaustively until no longer applicable a. The resulting set is
denoted by F(2).

(3) Apply ∃Sd -rule exhaustively to F(2) until no longer applicable. The resulting set is
denoted by F(3).

aNote that if C v D,D v E ∈ T f and E(a) ∈ F(1), then C(a) could have been added to F(2) either via
an application of the vS-rule to E(a) ∈ F(1) or via an application of the vS-rule to D(a) after D(a) is added
to F(2) via an application of the vS-rule to E(a). Furthermore, since F(1) is closed under the uS-rule, for
every C(a) ∈ F(2) \ F(1), there is an atomic assertion D(a) ∈ F(1) such that C v D ∈ T f .

Figure 3.6 Procedure Tight

Some observations regarding the procedure Tight are listed below:

t1. F(1) is closed under the uS-rule by (b3) and since BS :=
⋃
a∈OΣ

Ba.

t2. F(2) is closed under the vS-rule. Furthermore, if C(a) ∈ F(2) is atomic and C ∈

SubE(S, T ), then C(a) ∈ F(1).

Proof Suppose that there is an atomic assertion C(a) ∈ F(2)\F(1) where C ∈ SubE(S, T ).

Then (by footnote (a)), there is an atomic assertion D(a) ∈ F(1) such that C v D ∈ T f .

Both C and D being atomic and distinct implies that C � D. Because C ∈ SubE(S, T ),

D(a) ∈ E(1)
a and C v D ∈ T f , both C(a) andD(a) are in E(1)

a . Moreover, since C � D, by

(g2), we have (D(a), C(a)) ∈ ATa in the initial graph Ga that we construct for computing

the basic set. However, C(a) /∈ F(1), so C(a) must have been removed by the algorithm
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Basic-set during its execution. By criterion (c1) (implemented by Procedure 5, Lines

1, 5-11), D(a) would also have been removed, contradicting D(a) ∈ F(1). Therefore,

C(a) ∈ F(1).

t3. F(3) is closed under ∃Sd -rule and F(3) \ F(2) contains only role assertions.

Lemma 3.5.4 For every non-atomic assertion C(a) ∈ F(2)\F(1) where C ∈ SubE\SubE(S, T ),

there is an assertion D(a) ∈ F(2), C 6= D, such that C � D.

Proof Since C(a) ∈ F(2) \ F(1), there is an assertion E(a) ∈ F(1) such that C v E ∈ T f .

Furthermore, because C ∈ SubE \ SubE(S, T ), C does not appear in the TBox. Since C(a)

is non-atomic, by (s1), there is a concept D ∈ SubE, D 6= C, such that C � D v E. It then

follows from (t2) that D(a) ∈ F(2).

Lemma 3.5.5 F(3) obtained from the procedure Tight is a secrecy envelope.

Proof We argue that F(3) is closed, i.e., none of the Secrecy Closure Rules rules is applicable

to F(3). By Theorem 3.4.10, F(3) is a secrecy envelope.

• vS-rule: By (t2) and (t3) above, F(3) is closed under the vS-rule.

• uS-rule: Since F(2) is obtained by exhaustively applying the vS-rule, for every C(a) ∈

F(2) \ F(1), there is an assertion D(a) ∈ F(1) such that C v D. If C(a) is atomic, then

the uS-rule is not applicable to C(a). If C is non-atomic, then either C ∈ SubE(S, T ) or

C ∈ SubE \ SubE(S, T ).

(a) C ∈ SubE(S, T ): If C � D, then since D(a) ∈ F(1) and F(1) is closed under the

uS-rule, the uS-rule is not applicable to C(a). Now suppose that C � D. Because

E(1)
a is closed under the vS1 -rule (the vS-rule restricted to SubE(S, T )), and since

C v D and D(a) ∈ F(1) (in particular, D(a) ∈ Ba ⊆ E(1)
a ), it follows that C(a)

must be in the initial graph Ga. Then by the construction of Ga, in particular (g2),

we have (D(a), C(a)) ∈ ATa . Since C(a) /∈ F(1), it was removed by the algorithm

Basic-set. However, in that case by criterion (c1) (implemented by Procedure 5,
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Lines 1, 5-11), D(a) would also have to be removed. This contradicts D(a) ∈ F(1).

Therefore, the uS-rule is not applicable to C(a).

(b) C ∈ SubE\SubE(S, T ): By Lemma 3.5.4, there is an assertion C1(a) ∈ F(2), C 6= C1,

such that C � C1.

∗ If C1 is atomic, then the uS-rule is not applicable to C(a).

∗ If C1 is non-atomic and C1 ∈ SubE(S, T ), it then follows from case (a) that the

uS-rule is not applicable to C1(a) and so it is also not applicable to C(a) in

view of C � C1.

∗ If C1 is non-atomic and C1 ∈ SubE \ SubE(S, T ), again by Lemma 3.5.4, there

is an assertion C2(a) ∈ F(2), C1 6= C2, such that C1 � C2, and hence C � C2

and C 6= C2. Note that the length of C2 is smaller than that of C1. Applying

the same reasoning to C2, eventually, there is an atomic assertion Ck(a) ∈ F(2),

C 6= Ck, such that C � Ck. Therefore, the uS-rule is not applicable to C(a).

We have shown that F(2) \ F(1) is closed under the uS-rule. It then follows from (t1) and

(t3) that F(3) is closed under the uS-rule as well.

• ∃S-rule: Since F(3) is closed under the ∃Sd -rule by (t3), it is also closed under the ∃S-rule.

Theorem 3.5.6 F(3) obtained from the procedure Tight is a tight envelope.

Proof By Lemma 3.5.5, F(3) is an envelope. It suffices to show that for every α ∈ F(3),

((AfΣ \ F(3)) ∪ {α})f ∩ S 6= ∅. Note that F(3) = S ∪ (BS \ S) ∪ (F(2) \ F(1)) ∪ (F(3) \ F(2)).

1. If α ∈ S, then α ∈ ((AfΣ \ F(3)) ∪ {α})f ∩ S, and hence the intersection is not empty.

2. Let α = C(a) ∈ BS\S. By (b2), there is a path p in Ga from Sa to C(a) s.t. all non-atomic

nodes on p have a unique u-successor (not necessarily on p). Suppose that the path p

starts from D(a) ∈ Sa and that nodes on p are C1(a), ..., Ck(a) where C1(a) = D(a) and

Ck(a) = C(a). Then an edge (Ci(a), Ci+1(a))(1 ≤ i ≤ k − 1) is in either ATa or Aua .
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(a) If (Ci(a), Ci+1(a)) ∈ ATa , then we have Ci+1 v Ci ∈ T f . With an application of the

vA-rule (see Figure 3.1), Ci(a) ∈ ((AfΣ \ F(3)) ∪ {Ci+1(a)})f .

(b) If (Ci(a), Ci+1(a)) ∈ Aua , then Ci(a) is non-atomic and Ci � Ci+1. Let H be the set of

atomic concepts that trivially subsumes Ci but not Ci+1. Since Ci+1(a) is the only u-

successor of Ci(a) in Ga, for every atomic E ∈ H, E(a) /∈ F(1). In view of Ci(a) ∈ BS,

we have Ci ∈ SubE(S, T ) and so H ⊆ SubE(S, T ). It follows from observations (t2)

and (t3) that for every E ∈ H, E(a) /∈ F(2) and E(a) /∈ F(3) \F(2). Therefore, E(a) ∈

AfΣ \ F(3). With an application of the uA-rule, Ci(a) ∈ ((AfΣ \ F(3)) ∪ {Ci+1(a)})f .

Iterating these two cases, we conclude that D(a) ∈ ((AfΣ \F(3))∪{C(a)})f ∩S. Therefore,

when α ∈ (BS \ S), ((AfΣ \ F(3)) ∪ {α})f ∩ S 6= ∅.

3. Let α = C(a) ∈ F(2) \F(1). Then there is an assertion D(a) ∈ F(1) such that C v D ∈ T f .

With an application of the vA-rule, D(a) ∈ ((AfΣ \F(3))∪{α})f . However, by cases 1 and

2, ((AfΣ \ F(3))∪ {D(a)})f ∩ S 6= ∅. Since ((AfΣ \ F(3))∪ {D(a)})f ⊆ ((AfΣ \ F(3))∪ {α})f ,

we obtain ((AfΣ \ F(3)) ∪ {α})f ∩ S 6= ∅.

4. If α ∈ F(3)\F(2), then α = r(a, b) (b ∈ OΣ) was obtained by an application of ∃Sd -rule to an

assertion ∃r.C(a) ∈ F(2) with {r(a, b), C(b)} ⊆ AfΣ. Hence, C(b) ∈ AfΣ \ F(3). By case 3,

∃r.C(a) ∈ F(2) implies that ((AfΣ\F(3))∪{∃r.C(a)})f∩S 6= ∅. An application of ∃A1 -rule to

α and C(b) (both in (AfΣ \F(3))∪{α}) would result ∃r.C(a) ∈ ((AfΣ \F(3))∪{α})f . Thus,

((AfΣ\F(3))∪{∃r.C(a)})f ⊆ ((AfΣ\F(3))∪{α})f , and therefore ((AfΣ\F(3))∪{α})f∩S 6= ∅.

3.5.6 Experimental Comparison Result

We have presented two algorithms for computing tight envelopes, a naive one and an op-

timized one, the Procedure Tight. It is easy to see that both algorithms run in polynomial

time. However, to compute a tight envelope, the naive approach uses the whole ABox, for each

assertion in an envelope, to check whether it is necessary to be protected whereas the optimized

algorithm depends much less on the ABox. Because of this, the optimized algorithm should

run faster when the sizes of the TBox and the secrecy set are much smaller than that of the
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ABox. We implemented ΛS for computing envelopes, and the two algorithms for computing

tight envelopes to see how they run in practice. Next we compare the experiment results for

the algorithms that build envelopes or tight envelopes during the pre-query stage.

Let NT be the number of subsumptions (in normal form) in T , NA be the number of

assertions in A, NI be the number of individuals in A and NS be the number of assertions

in S. Below we list experiment results showing the running time (in seconds) of computing

an envelope, computing a tight envelope using the naive approach and computing a tight

envelope using Procedure Tight. The experiments were run on a personal computer with

Intel R©CoreTM2 duo processor at 2.40GHz and 3GB of RAM.

Table 3.1 Experiments result

Line# NT NA NI NS tenvelope tnaive tTight

1 45 120 2 25 0.19 6.56 0.16

2 45 210 12 14 0.02 46.29 0.37

3 103 210 12 14 0.05 104.70 0.14

4 103 210 12 56 0.18 162.07 0.55

5 45 240 2 11 0.04 22.17 0.05

6 45 418 22 13 0.02 34.29 0.01

7 133 418 24 13 0.31 295.95 0.08

8 133 418 24 101 0.55 409.01 0.28

9 45 400 2 11 0.06 109.62 0.07

10 45 400 40 11 0.02 42.09 0.02

11 173 400 40 11 0.03 47.55 0.01

12 173 400 40 165 0.11 685.86 0.14

13 45 2340 40 11 0.06 31524.47 0.05

From the table above, we can see that the time for Procedure Tight for computing a

tight envelope is comparable with the time for computing an envelope (not necessarily tight).

However, computing a tight envelope using the naive approach is much more costly. In general,

when the size of S increases, the time of computation increases since the corresponding envelope

is larger (see lines 3 vs 4, 7 vs 8, 11 vs 12). When the size of the ABox A increases and the

size of the secrecy set S decreases, the time for computing an envelope or a tight envelope

using Procedure Tight decreases, but the time for computing a tight envelope using the naive
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approach increases because the naive approach depends more on the ABox A (see lines 1, 2, 5,

6). An extreme example is shown in Line 13.

3.6 Queries

Recall that we have assumed that given a KB Σ and a secrecy set S, the assertional closure

Af , the subsumption set T f and the initial secrecy envelope Ef for S are precomputed at the

pre-query stage (as described in detail in Section 3.4). Thus, when the concept C in a query

C(a) is in SubE, the answer of the query is “Yes” if C(a) ∈ AfΣ and C(a) /∈ Ef and it is

“Unknown” otherwise. It is obvious that such a query can be answered in linear time in the

size of AfΣ.

When C /∈ SubE, SubE will be expanded by adding the subexpressions of C, the assertional

closure Af and then the secrecy envelope Ef will be updated. The corresponding procedure

SPQA is listed in Algorithm 7. The input to SPQA includes the TBox T f in normal form, the

precomputed assertional closure Af , the query C(a) and the precomputed secrecy envelope Ef .

Algorithm 7 SPQA(T f ,Af , C(a),Ef )

1: if C /∈ SubE then

2: compute sub(C) (see Section 3.4.1)

3: SubE = SubE ∪ sub(C)

4: expand Af and T f to SubE

5: expand the secrecy envelope Ef to SubE by exhaustively applying the vS-rule

6: end if

7: if C(a) ∈ AfΣ and C(a) /∈ Ef then

8: return “Yes”

9: end if

10: return “Unknown”

Lines 1-6 of SPQA deal with the case when the concept expression of a query is not in

SubE. Line 2 computes the set of subexpressions of the concept C as defined in Section 3.4.1

and Line 3 expands SubE by adding expressions in sub(C) \ SubE. The expanded SubE is

then used to update Af by applying assertion expansion rules (Figure 3.1) until none of them

is applicable. T f is also updated accordingly, as indicated in Line 4. As a consequence, some

secrecy closure rules may become applicable, implying that the current Ef may no longer be a
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secrecy envelope. Therefore, we apply the vS-rule exhaustively in Line 5. We next show that

once the execution of Line 5 is completed, we obtain a tight envelope. Let SubE′ be the newly

expanded set of subexpressions after the application of Line 3, A′ the assertional closure of Σ

after the application of Line 4 and E′ the expansion of Ef after the application of Line 5. We

first argue that E′ is an envelope.

• It is obvious that the vS-rule is not applicable.

• Suppose that the uS-rule is applicable to an assertion C(a) ∈ E′. Since Ef is closed under

the uS-rule, C(a) ∈ E′ \Ef . Therefore, C ∈ SubE′ \ SubE and C does not appear in the

TBox T . C(a) being non-atomic and not a role assertion implies that C(a) is obtained by

an application of the vS-rule. So there is an assertion D(a) ∈ Ef such that C v D ∈ T f .

It then follows from (s1) (see Section 3.5.3) that there is a concept E ∈ SubE′ such that

C 6= E and C � E v D. If E ∈ SubE, then E(a) ∈ Ef because Ef is closed under the

vS-rule w.r.t. SubE. Since Ef is also closed under the uS-rule w.r.t. SubE, there is an

atomic assertion E′(a) ∈ Ef such that E � E′, and hence, the uS-rule is not applicable to

C(a). If E ∈ SubE′\SubE, applying the same reasoning to E, we can eventually conclude

that the uS-rule is not applicable to (E(a) and) C(a). It follows that the uS-rule is not

applicable to E′.

• Suppose that the ∃Sd -rule is applicable to an assertion ∃r.C(a). By the previous case,

the uS-rule is not applicable to any assertion in E′. Hence, ∃r.C(a) was obtained by an

application of the vS-rule and there is an assertion D(a) ∈ Ef such that ∃r.C v D ∈ T f .

Since Ef is closed under the ∃Sd -rule, ∃r.C(a) ∈ E′ \Ef . Therefore, ∃r.C ∈ SubE′ \ SubE

and hence ∃r.C does not appear in the TBox T . It follows from (s2) (see Section 3.5.3)

that there is a concept ∃r.E ∈ SubE′ such that ∃r.C v ∃r.E v D, C v E and C 6= E. If

∃r.E ∈ SubE, then ∃r.E(a) ∈ Ef because Ef is closed under the vS-rule w.r.t. SubE and

D(a) ∈ Ef . Since the ∃Sd -rule is applicable to ∃r.C(a), there is an individual b ∈ OΣ such

that r(a, b), C(b) ∈ A′. By the observation (f1) in Section 3.4.2, r(a, b) ∈ A. Moreover,

C(b) ∈ A′ implies E(b) ∈ A′. Since E ∈ SubE, we have E(b) ∈ Af . Because Ef is

closed under the ∃Sd -rule, r(a, b) ∈ Ef . This contradicts the applicability of the ∃Sd -rule
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to ∃r.C(a). Therefore, the ∃Sd -rule is not applicable to ∃r.C(a). If ∃r.E ∈ SubE′ \ SubE,

applying the same reasoning to ∃r.E, we can eventually conclude that the ∃Sd -rule is not

applicable to ∃r.E(a) and so it is not applicable to ∃r.C(a). It follows that the ∃Sd -rule is

not applicable to E′.

Since no D-secrecy closure rules are applicable, E′ is closed and so it is an envelope. Further-

more, since all assertions in E′\Ef are obtained by applications of the vS-rule, for every C(a) ∈

E′\Ef , there is D(a) ∈ Ef such that C v D, and so ((A′\E′)∪{D(a)})f ⊆ ((A′\E′)∪{C(a)})f .

Since Ef is an envelope w.r.t. SubE and D(a) ∈ Ef , ((Af \Ef )∪ {D(a)})f ∩ S 6= ∅. Moreover,

because (E′ \ Ef ) ⊆ (A′ \ Af ), we have Af \ Ef ⊆ A′ \ E′ and so ((A′ \ E′) ∪ {C(a)})f ⊇

((A′ \ E′) ∪ {D(a)})f ⊇ ((Af \ Ef ) ∪ {D(a)})f . It follows that ((A′ \ E′) ∪ {C(a)})f ∩ S 6= ∅.

Hence, E′ is tight.

Example 3.6.1 Recall that we have a knowledge base Σ1 = 〈A1, T1〉 and the secrecy set S1 =

{CancerRisk(Jane)} in our running Examples 3.1.1, 3.3.3, 3.4.7, 3.4.1, 3.4.2 and 3.4.9. The

assertional closure Af1 of Σ1 is listed in Example 3.4.2. The envelope Ef1 of S1 in Example 3.4.9

is a tight envelope. If the querying agent asks the query Reimburse(Jane), Reimburse(Jane)∈

Af1Σ1
\ Ef1 , the answer to the query is “Yes”. If the querying agent asks the query Cancer-

Risk(Jane), since CancerRisk(Jane)/∈ Af1Σ1
\ Ef1 , the answer to the query is “Unknown”.

Example 3.6.2 Recall that in Examples 3.5.2 and 3.5.3, we have a KB Σ = 〈A, T 〉 with

• A = {F (a), C(a), ∃r.∃s.(D uD′)(a), C uC1(a), C uC2(a), ..., C uCk(a), E1 uE2(a)},

• T = {E1 u E2 v C, ∃r.M v F , ∃s.D vM}, and

• S = {F (a), C u ∃r.∃s.(D uD′)(a)}.

Starting with the basic set Ba computed in Example 3.5.3, we obtain a tight envelope Ef =

S ∪ {∃r.M(a), ∃r.∃s.(D uD′)(a)}. Suppose that the querying agent asks the query ∃r.∃s.D(a).

Note that ∃r.∃s.D /∈ SubE (see Example 3.5.2). We add ∃r.∃s.D into SubE and accordingly,

∃r.∃s.D(a) is added into Af in view of r(a, x),∃s.D(x) ∈ Af . Since ∃r.M(a) ∈ Ef and

∃r.∃s.D v ∃r.M , ∃r.∃s.D(a) is added into E′. The final answer to the query ∃r.∃s.D(a) is

“Unknown”.
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3.7 Related Work

In this section, we outline some related work in the area of privacy and security in infor-

mation systems, including web-based information systems.

Early work on information protection led to the creation of a multi-level security model for

mandatory access control (MAC) [8, 9] where each data object belongs to a security class and

each user is assigned a clearance for a security class. By posing restrictions on reads and writes

of all data objects, such models are built to ensure that no secret information flows between

different users. While MAC solves the problem of an unauthorized user tricking an authorized

user into disclosing sensitive data that a discretionary access control (DAC) model may have,

it restricts the security granularity at object level. Role-Based Access Control (RBAC) [64] is

an alternative approach to both DAC and MAC which provides authorization on operations

(rather than objects). The primary focus of these work has been on access control mechanisms

that prohibit access to sensitive information.

Chin [65] studied the problem of unintended disclosure of information about particular in-

dividuals that can be inferred from statistics made available about groups of individuals. Grau

and Horrocks [66] have recently introduced a framework that combines logic and probabilistic

approaches to privacy-preserving query answering from databases. A growing body of work on

data linkage [67, 68] addresses the problem of disclosure of personal data from aggregate infor-

mation or from separately released, non-confidential information about an individual. Work on

privacy preserving data mining [69, 70, 71] addresses the design of algorithms for constructing

predictive models that describe shared characteristics of groups of individuals, e.g., patients in

a clinical trial, without revealing information about specific individuals, e.g., clinical records

of individual participants in clinical trials. The primary focus of such work is on preventing

inference that is typically of a probabilistic nature about individual records from statistical

or aggregate information about a population. Our paper focuses on guaranteeing that secret

information is not compromised by queries answered using deductive inferences that are of a

purely logical nature. It remains to be seen (i.e., it is an open question) whether these two

approaches can be usefully combined in the context of knowledge bases with the open world
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assumption.

Research on encryption of sensitive information focuses on preventing unauthorized access

to such information using cryptographic protocols. Giereth [72] has studied techniques for hid-

ing a fragment of an RDF document by encrypting it while the rest of the document remains

publicly readable. Abel et al. [73] have proposed a policy-based control of access to RDF stores.

Baader et al. [74] have recently introduced an approach to reasoning with ontologies in the

presence of access restrictions on specific axioms. Access control policies and encryption tech-

niques can be used to prohibit access to sensitive information. More recent work on logic-based

authorization frameworks [64, 75, 76] focuses on policy languages that go beyond traditional

access control methods to address obligation, provision, and delegation of authorization as a

basis for protecting sensitive information in computer systems, databases and networked in-

formation systems (see [12] for a survey). Most of the work on policy languages for the web

[13, 14, 15, 77, 16, 78, 17, 79, 80] focuses on specifying syntax-based restrictions on access to

specific resources or operations on the web. Halpern and Weissman [81] have proposed a first

order logic based approach to reasoning about policies. The main focus of these models is

the control of direct access to sensitive information. Our paper focuses on logic-based mecha-

nisms for answering queries using secret information whenever it is possible to do so without

compromising their confidentiality.

Farkas et al. [58] have proposed a privacy information flow model to represent information

flow and privacy requirements that are enforced by a privacy mediator which guarantees that

users cannot logically infer information that violates the privacy requirements. They assume

a tree-like, semistructured data model, selection-projection queries and domain knowledge,

represented as Horn clause constraints, and a domain KB consisting of assertions in the form

of Horn clauses. Jain and Farkas [11] have proposed an elegant RDF authorization model that

can selectively control access to RDF triples using a pre-specified set of patterns that can be

used to assign a secrecy label to each (stored or inferred) RDF triple. Our approach can be

generalized to many KBs that are equipped with a sound and complete reasoning algorithm.

Several authors have explored the use of “cover stories” i.e., lies introduced into a multi-

level database in order to protect some secret information in the database [82, 83, 84]. The
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controlled query evaluation (CQE) framework first introduced by Sicherman et al. [19] offers

a mechanism for answering database queries without revealing secrets. This framework which

has been explored extensively by Biskup and colleagues in a series of papers [85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96] includes: (a) policies that specify secrets (queries for which all possible

answers must be protected), potential secrets (queries for which only some of the answers must

be protected); (b) policies for answering queries so as to protect secrets and potential secrets

including lying in response to a query, refusing to answer a query, and their combinations; and

(c) alternative assumptions regarding whether or not the querying agent is aware of the queries

whose answers the KB is trying to protect. Recent work within this framework has introduced

techniques using SAT-solvers and constraint solvers for preprocessing the databases so that

the resulting database can answer queries in a manner that is consistent with the specified

policies. However, with the exception of [94], this work has focused on protecting secrets in

(typically relational) databases under the closed world assumption. We focus on answering

queries against KBs under the open world assumption with emphasis on scenarios where lying

is either not desirable or prohibited (e.g., in the case of the physician, the pharmacy, and the

insurance company sharing information with each other in the scenario described in Example

1, or different government agencies sharing information with each other under the law).

3.8 Conclusion and Future Work

In this chapter, we studied the problem of answering queries against a knowledge base that

contains secret information. Based on the OWA, we designed reasoners that hide truthful

answers to the queries that if faithfully answered, may compromise the secrecy. One such a

reasoner was designed using the lazy evaluation. This approach checks the query history each

time a query is posed, when the query history gets longer, the response time to a query gets

longer as well and hence the approach becomes less and less appealing over time. Because of

this, we proposed to maintain a secrecy system that precomputes an envelope used to protect

secret information so that the information outside the envelope cannot deduce any secret.

Once an envelope is present, a query will be truthfully answered if it is outside the envelope. A

general framework for the solution to the problem was provided. We discussed the relationship
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between a secrecy-preserving reasoner and an envelope. To answer queries as informatively

as possible, we aim at computing an envelope as small as possible. Unfortunately, given a

language, deciding the smallest envelope may be NP-complete. Depending on the underlying

language and its native inference system, optimization can be designed to compute a tight

envelope in the sense that removing any information from it will compromise secrecy.

We applied the general framework to the Description Logic EL. Given an EL knowledge

base Σ and a secrecy set S, in order to answer queries, we first construct a secrecy maintenance

system which contains a finite set of consequences Af of Σ and a secrecy envelope Ef which is

used to protect S. Both Af and Ef are restricted to SubE, a finite set of some subexpressions

in Σ or S. To answer queries as informatively as possible, we aimed to make Ef as small as

possible. Since computing the smallest envelope in EL is also NP-complete, we have presented

two algorithms for computing tight envelopes: a naive algorithm and an optimized version,

procedure Tight. We compared the complexities of these two algorithms, designed experiments

and concluded that the optimized algorithm indeed is more efficient for applications whenever

the sizes of the TBox and the secrecy set are much smaller than that of the ABox, which is

typical in many applications. When a query C(a) is posed to Σ, we first check whether the

concept C ∈ SubE. If it doesn’t, we expand the whole secrecy maintenance system by adding

the subexpressions of C. We showed that after the expansion of the maintenance system, the

resulting envelope is still tight. Then the answer of a query α is “Yes” if α ∈ Af \ Ef and

“Unknown” otherwise.

Instead of forbidding the use of the secret information in answering queries as is done in

access control methods, our approach uses secrets in the deduction process while providing

informative answers, whenever it is possible to do so without compromising secrecy.

In this chapter, we have focused on how to answer queries while preserving secrecy given

a secrecy set. A future extension of the current work can be developing strategies to specify

secrets (policy specifications) and generate secrecy sets in an automated way. For example, a

policy like “Whether or not a patient x is at risk of developing cancer must be kept secret”

specifies a requirement about a whole range of assertions which must be protected (rather than

a single assertion). This is rather different than most of the work on policy languages for the
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web which focuses on specifying syntax-based restrictions on access to specific resources or

operations on the web (see Section 3.7). We have also assumed that the secrecy set to be finite

in the current work. To develop strategies that can deal with infinite secrecy set is also a future

direction.
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CHAPTER 4. OPEN WORLD SECRECY-PRESERVING QUERY

ANSWERING: THE MULTIPLE QUERYING AGENTS SETTING

Abstract

Many applications require a knowledge base (KB) that contains secrets to answer queries

posed against it using secrets, whenever it is possible to do so, without revealing secrets. We

consider this problem under the OWA in a setting with multiple querying agents M1, ...,Mm

that can pose queries against the KB K and selectively share answers that they receive from

K with one or more other querying agents. We assume that for each Mi, the KB has a pre-

specified set of secrets Si that need to be protected from Mi. Communication between querying

agents is modeled by a communication graph, a DAG with self-loops. We introduce a general

framework and propose an approach to secrecy-preserving query answering. The idea is to

hide the truthful answer from a querying agent Mi, by feigning ignorance without lying, i.e.,

to provide the answer ‘Unknown’ to a query q if it needs to be protected. Under the OWA, a

querying agent cannot distinguish whether q is being protected or it cannot be inferred from K.

We precompute a set of envelopes E1, ..., Em (restricted to a finite set Φ of formulae that are

entailed by K) such that Si ⊆ Ei and a query α posed by agent Mi can be answered truthfully

only if α /∈ Ei. The envelope is updated as needed. We illustrate this approach in the case of

Propositional Horn KBs.
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4.1 Introduction

This chapter considers the SPQA problem under the OWA in a setting with multiple query-

ing agents. Given a KB K and a set of querying agents M = {M1, M2, ..., Mm}, we assume

that for each Mi, there is a pre-specified set of secrets Si that K needs to protect from Mi.

We further assume that each Mi can selectively share answers that it receives (in response to

queries posed by it) from K with one or more other querying agents. We model communication

(answer sharing) between querying agents using a communication graph (CG), a DAG with

self-loops, in which a node in the CG corresponds to a querying agent and a directed edge

from node Mi to Mj in CG denotes the ability of Mi to share with Mj the answers it receives

from K (but not answers shared with it by other querying agents, unless they happen to be

also received directly from K). We introduce a general framework and propose a solution to

the SPQA problem in this setting. Under OWA, the answer to a query q posed by an agent

Mi against K can be “Yes” (q can be deduced from K), “No” (¬q can be deduced from K), or

“Unknown” (Neither q nor ¬q can be deduced from K). The basic idea is to hide the truthful

answer from Mi, when it is necessary to do so by feigning ignorance without lying; i.e., to

provide the answer ‘Unknown’ to a query q whenever providing to Mi, the truthful answer to

q would compromise any secret that the KB K is obliged to protect from any of the querying

agents in M. Under the OWA, a querying agent cannot distinguish between the following two

scenarios: the answer to q (i) is being protected; and (ii) cannot be inferred from K.

A simple way of defining a secrecy-preserving reasoner is to maintain a history that, for

each agent, logs the sequence of queries and the corresponding answers. When a new query

q is posed by an agent Mi, the reasoner tests whether the truthful answer to q together with

answers to previous queries that Mi has obtained from directly by querying the KB K or

indirectly from other querying agents (its predecessors in the CG) compromises a secret that

K is obliged to protect against any of the querying agents in M. If it does, Mi receives the

answer “Unknown” in response to the query q. Otherwise, q will be truthfully answered. A

“Yes” or “No” answer can be shared by Mi with its successors in CG. We call this approach

lazy evaluation. Because lazy evaluation requires checking the answer to each query posed by
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each querying agent against a query history, it takes more and more time to answer a query as

the size of the history grows over time. Hence, we propose a different approach: we precompute

a secrecy envelope (or simply envelope) E = {E1, E2, ..., Em} (restricted to a finite set Φ of

formulae that are entailed by the KB) such that Si ⊆ Ei and a query α posed by agent Mi

can be answered truthfully only if α /∈ Ei. The envelope is updated as needed as queries are

answered. Our notion of an envelope is illustrated by the following example (in the simplified

setting of a single querying agent): Consider a formula α ∧ β in propositional logic that needs

to be protected from the querying agent. Suppose that both α and β are entailed by the KB.

Obviously, α∧β is entailed by the KB. If we need to protect α∧β from the querying agent, we

must disrupt every proof of α ∧ β, protect either α or β, i.e., if α ∧ β is a secret, either α or β

must be protected, and hence placed in the envelope. It is easy to show that an envelope always

exists. The challenge is to construct an envelope that is guaranteed to protect secrets (in the

sense described above, in the setting with multiple querying agents that can selectively share

answers with other querying agents) while allowing queries to be answered as informatively as

possible (feigning ignorance only when doing so is necessary to protect a secret). This requires

constructing an envelope that is as small as possible. Unfortunately, in general, computing the

smallest envelope is NP-hard or worse (see Section 4.5). Hence, we settle on computing and

maintaining a tight envelope, i.e., an envelope that is minimal in that no formula can be removed

from it without risk of a secret being compromised. When an envelope is finite, a general way

of obtaining a tight envelope is to evaluate every assertion in the envelope. If removing an

assertion still results an envelope, it will be removed from the envelope. This process ends with

a tight envelope. Since computing a tight envelope is an optimization problem, depending on

the language, and/or properties of the communication graph, some strategy may be designed

to guide the computation of an envelope so that when an envelope is constructed, it is tight.

we consider an example of a communication graph that is an inverted forest (with self-loops)

in which a strategy leads to a tight envelope.

The rest of the chapter is organized as follows: Section 4.2 formally introduces a general

framework for SPQA with multiple querying agents under OWA. An algorithm for lazy evalu-

ation is provided in Section 4.3. Section 4.4 proves some properties of envelopes that are useful
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in computing and updating envelopes, and in using envelopes to answer queries and considers

an interesting special case of communication graphs (inverted forests). Section 4.5 illustrates

an application of the framework and results of preceding sections to solve the SPQA problem

in the simple yet practically useful case of Propositional Horn KBs.

4.2 Multiagent Secrecy-preserving Framework

Let L be some appropriate (logic-based) description language which, for simplicity of nota-

tion, we also view as a set of sentences (viz., all sentences expressible in the language L). Let

�L (or, just �) be a Tarski-style semantic entailment for L and suppose that `L (or, just `) is

an inference system for the language L that is sound and complete, with respect to �.

For Γ ⊆ L, we write Γ+ = {α | Γ `L α} for the inferential closure of a set of formulas Γ

and we say that Γ is inferentially closed if Γ+ = Γ. A formula α ∈ L is a tautology if � α. The

set of all tautologies will be denoted by Taut.

Definition 4.2.1 A knowledge base (abbreviated, KB) over L is a triple K , 〈K,Q,Ω〉 where

• K is a consistent finite subset K ⊆f L. It represents the information that is explicitly

stored in K. K+ represents all the information (“knowledge”) that the KB K can infer.

In the sequel, we shall refer to both K and K as a knowledge base (KB).

• Q, the query space of K, is a subset: K+ ⊆ Q ⊆ L representing the set of all queries

that can be “legally” posed against K. We do not insist that Q = L which allows us to

account for possible restrictions that may be imposed on the querying agents.

• Ω, is the answer space. In most cases Ω = {Y,N,U} (for “Yes”, “No” and “Unknown”,

respectively). The “classical” answer space is Ω = {Y,N}.

Let K = 〈K,Q,Ω〉 be a KB and let M = {M1, M2, ..., Mm} be an m-set of querying

agents who may pose queries to the KB. For each querying agent Mi there is a corresponding

secrecy set consisting of non-tautological statements which the KB is supposed to protect

against agent Mi. The querying agents may share the answers they obtain from K with other

querying agents. The sharing is constrained by means of a communication graph (M,A) which
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is an acyclic directed graph (except for all the self-loops) such that the existence of an edge

(Mi,Mj) ∈ A means that querying agent Mi shares with agent Mj all the non-U answers he

receives from the KB 1. As a technicality, we stipulate that the communication graph includes

all the self-loops; that is, for every Mi ∈M, (Mi,Mi) ∈ A.

Definition 4.2.2 A secrecy structure on a KB K is a triple S , 〈M,S,G〉 where

• M = {M1,M2, ...,Mm} is an m-set of querying agents who may pose queries to K,

• S = {S1, S2, ..., Sm} is a collection of secrecy sets, one for each querying agent, where for

all 1 ≤ i ≤ m, Si ⊆ K+ \ Taut, and

• G = (M,A) is a directed communication graph which is acyclic except for all the self-

loops.

Protection of secrets is accomplished by means of K-reasoner R : Q×M→ Ω, a reasoning

algorithm “attached” to K, which for a query q ∈ Q and a querying agent Mi ∈ M provides

an answer R(q,Mi) ∈ Ω back to Mi. For any B ∈ Ω = {Y,N,U}, we write QiB = {α ∈

Q | R(α,Mi) = B}, for the set of all Mi-queries to which the K-reasoner returns the answer

B; similarly, for any B ∈ {Y,N}, we write P iB =
⋃
j:(Mj ,Mi)∈AQ

j
B, for the set of all B-queries

that agent Mi obtains from its predecessors. Note that, as stated above, an agent Mi ∈M can

pass to its successors only answers to queries in QiY or QiN ; for a query α ∈ QiU ∩ (P iY ∪ P iN ),

even though agent Mi can infer the answer to α, it is not allowed to pass that answer to

its successors. The following definition attempts to capture and formalize the whole secrecy

framework as discussed above.

Definition 4.2.3 A multi-agent secrecy-preserving query answering (MSQ) system is a triple

〈K,S,R〉 where

• K = 〈K,Q,Ω〉 is a KB,

• S = 〈M,S,G〉 is a secrecy structure on K, and

1The case when an agent is allowed to share query-answers obtained from other agents instead of only answers
obtained from the KB can be reduced to the current problem by using the transitive closure of the communication
graph rather than the original graph.
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• R is a K-reasoner satisfying the following axioms: for all 1 ≤ i ≤ m,

– [Yes-Axiom] QiY ⊆ K+;

– [No-Axiom] QiN = {¬α | α ∈ QiY };

– [Closure Axiom] (QiY )+ = QiY ;

– [Secrecy Axiom] (P iY )+ ∩ Si = ∅.

A K-reasoner satisfying the above four axioms is termed a secrecy-preserving reasoner.

The Yes-Axiom ensures that every Y -query is provable from K. The No-Axiom enforces a

match between the Y -queries and the N -queries. Note that the No-Axiom implies that QiU is

closed under negation: ¬QiU = QiU . The Closure Axiom requires that any consequence of a set

of Y -queries that a querying agent obtains from the KB be a Y -query, i.e., QiY is inferentially

closed. Finally, the Secrecy Axiom ensures that any combination of Y -answers that agent Mi

obtains from its predecessors does not compromise any secrets that need to be protected against

it. A trivial example of a secrecy-preserving reasoner is one which for every Mi ∈M and every

non-tautological query α ∈ Q, R(α,Mi) = U . At the other extreme, a reasoner R who answers

truthfully all queries except for α ∈ Si may fail to satisfy the Closure and/or Secrecy Axioms

and hence is not a secrecy-preserving reasoner.

Definition 4.2.4 Let K = 〈K,Q,Ω〉 be a KB and S = 〈M, S,G〉 a secrecy structure on K. A

collection E = {E1, E2, ..., Em}, where for 1 ≤ i ≤ m, Si ⊆ Ei ⊆ K+ \Taut, is called a (secrecy)

envelope for S if the following two axioms are satisfied for every 1 ≤ i ≤ m:

• [E1] for every α ∈ Ei, K+ \ Ei 2 α;

• [E2] for every α ∈ Si,
⋃
j:(Mj ,Mi)∈A(K+ \ Ej) 2 α.

The collection E is called a weak envelope for S if it only satisfies Axiom E2. A secrecy envelope

E is said to be tight if it satisfies an extra minimality axiom:

• [TE] for every Mi ∈M and every α ∈ Ei, there exist an edge (Mi,Mj) ∈ A and β ∈ Sj

such that
⋃
k:(Mk,Mj)∈A(K+ \ Ek) ∪ {α} � β.
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Note that every envelope is a weak envelope. Given an envelope E = {E1, E2, ..., Em}, we

say that Ei is an envelope for the secrecy set Si. Axiom E1 requires that no information in

the envelope Ei is entailed from K+ \ Ei. Axiom E2 ensures that no combination of query

answers obtained from an agent’s predecessors entails any secrets protected against this agent.

Axiom TE requires that none of the queries in any of the envelopes in E can be removed

without compromising the overall secrecy (not necessarily of its own secrecy set). Specifically,

answering α ∈ Ei with Y (instead of U) would allow one of Mi’s successors to conclude some

of the secrets that need to be protected against it using the information passed to it from its

predecessors. It is easy to see that (1) for each Mi ∈M, the complement of Ei is closed under

entailment, i.e., K+ \ Ei � α implies α ∈ K+ \ Ei; and (2) for each (Mj ,Mi) ∈ A, Si ⊆ Ej .

Lemma 4.2.5 If a weak envelope E = {E1, E2, ..., Em} for S is tight, then E is a tight envelope

for S.

Proof We need to show that E satisfies Axiom E1. Suppose, by contradiction, that there

exists α ∈ Ei s.t. K+ \ Ei � α. Since E satisfies Axiom TE, there exist an edge (Mi,Mj) ∈ A

and β ∈ Sj s.t.
⋃
k:(Mk,Mj)∈A(K+ \ Ek) ∪ {α} � β. However, since K+ \ Ei � α, we have⋃

k:(Mk,Mj)∈A(K+ \Ek) � α, and so
⋃
k:(Mk,Mj)∈A(K+ \Ek) � β. This contradicts the fact that

E satisfies Axiom E2. Therefore, E satisfies Axiom E1. Since E satisfies Axioms E1, E2 and

TE, it is a tight envelope for S.

Secrecy envelopes (as well as tight envelopes) are not unique. For example, E = {K+ \

Taut, ...,K+ \ Taut} is always a secrecy envelope.

Let K = 〈K,Q,Ω〉 be a KB. For a secrecy structure S = 〈M,S,G〉 on K define a set of in-

duced single-agent secrecy structures, one for eachMi ∈M: Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi,Mi)}〉〉,

1 ≤ i ≤ m. Let E′i be a (weak) envelope for Si (as per Definition 4.2.4) and for each 1 ≤ i ≤ m,

define E∗i =
⋃
j:(Mi,Mj)∈AE

′
j . Even though E′ = {E′1, ..., E′m} need not be a (weak) envelope

for S, we have the following result.

Theorem 4.2.6 E∗ = {E∗1 , ..., E∗m} is a (weak) envelope for S.
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Proof To show that E∗ is an envelope for S, we need to verify that E∗ satisfies Axioms E1

and E2.

• [E1]: Suppose that for α ∈ E∗i , K+\E∗i � α. Then α ∈ E′j for some j with (Mi,Mj) ∈ A.

SinceK+\E∗i ⊆ K+\E′j , every model ofK+\E′j is a model of K+\E∗i , and soK+\E′j � α.

This contradicts the definition of E′j .

• [E2]: Suppose that for some i and α ∈ Si, we have
⋃
j:(Mj ,Mi)∈A(K+ \ E∗j ) � α. This

is equivalent to K+ \ (
⋂
j:(Mj ,Mi)∈AE

∗
j ) � α. By the definition of E∗, we have E′i ⊆⋂

j:(Mj ,Mi)∈AE
∗
j . It follows that K+ \ (

⋂
j:(Mj ,Mi)∈AE

∗
j ) ⊆ K+ \ E′i, and so every model

of K+ \ E′i is a model of K+ \ (
⋂
j:(Mj ,Mi)∈AE

∗
j ). This implies that K+ \ E′i � α,

contradicting the definition of E′i.

Note that by performing only local changes, Theorem 4.2.6 can be used to integrate existing

MSQs into one. The next theorem shows that given a secrecy-preserving K-reasoner, there is

a natural way to define a corresponding envelope.

Theorem 4.2.7 Given an MSQ system 〈K,S,R〉, define a set E′ = {E′1, E′2, ..., E′m} where

E′i = K+ \ QiY (1 ≤ i ≤ m). Then E′ is a secrecy envelope for S.

Proof We need to show that E′ satisfies Axioms E1 and E2.

• [E1]: Suppose that there exist Mi ∈ M and α ∈ E′i such that K+ \ E′i � α. Since the

proof system ` is complete w.r.t. �, we have QiY = (K+ \ E′i) ` α. It follows from the

Closure Axiom that α ∈ QiY , i.e., α ∈ K+ \ E′i. This contradicts α ∈ E′i.

• [E2]: Suppose that there is α ∈ Si s.t.
⋃
j:(Mj ,Mi)∈A (K+ \ E′j) � α. It follows from the

definition of E′i that
⋃
j:(Mj ,Mi)∈AQ

j
Y � α. Since the proof system ` is complete w.r.t. �,

we have
⋃
j:(Mj ,Mi)∈AQ

j
Y ` α, i.e., P iY ` α. This contradicts the Secrecy Axiom.

The following theorem gives the opposite direction: given a KB and an envelope E, a

corresponding secrecy-preserving K-reasoner can be defined and the answer of a query α can

be obtained by checking whether α can be deduced from the KB and its membership status

w.r.t. E.
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Theorem 4.2.8 Let K = 〈K,Q,Ω〉 be a KB, S = 〈M, S,G〉 a secrecy structure on K and

E = {E1, E2, ..., Em} a secrecy envelope for S. Define a function RE: Q×M→ Ω by

RE(α,Mi) =



Y if α ∈ K+ \ Ei,

N if ¬α ∈ K+ \ Ei,

U otherwise.

Then RE is a secrecy-preserving K-reasoner.

Proof We need to show that RE satisfies the four axioms.

• Yes-Axiom: By definition of RE, QiY = {α | α ∈ K+ \ Ei} = K+ \ Ei ⊆ K+.

• No-Axiom: By definition of RE, QiN = {α | ¬α ∈ K+ \ Ei} = {¬α | α ∈ K+ \ Ei} =

¬QiY .

• Closure Axiom: It suffices to show that (QiY )+ ⊆ QiY . By definition of RE, QiY =

K+ \ Ei. Suppose that QiY ` α and α /∈ QiY = K+ \ Ei. By the soundness of `, QiY � α

and α ∈ Ei. This contradicts Axiom E1 in Definition 4.2.4.

• Secrecy Axiom: Suppose that (P iY )+ ∩ Si 6= ∅. Let α ∈ Si s.t. P iY ` α. Then we have⋃
j:(Mj ,Mi)∈A(K+ \Ej) ` α. Because of the soundness of `, we obtain

⋃
j:(Mj ,Mi)∈A(K+ \

Ej) � α. This contradicts our assumption that E is an envelope.

4.3 A Simple MSQ Algorithm - Lazy Evaluation

Given a KB K and a secrecy structure S, a natural way of defining a secrecy preserving

reasoner is to assume that queries are posed in an arbitrary but fixed order (history) H =

{(αk,Mik)}∞k=1 where for all k, 1 ≤ ik ≤ m. The history H is said to be full if for all

(α,Mi) ∈ Q×M, (α,Mi) belongs to H, i.e., all the queries are asked by every agent Mi ∈M.

When agent Mik poses a query, the reasoner takes into account its answers to previous queries

and responds (to Mik) according to whether or not a true answer may reveal secret information

to Mik or to one of its successors (via communication as per the given communication graph).
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This greedy approach is implemented in Algorithm 8. For the sake of simplicity of presentation,

the algorithm omits the actual responses to the querying agents and, instead, concentrates on

the construction of the sets QiY , QiN , and QiU . Note that when the history H is not full,

Algorithm 8 does not define a total function Q ×M → Ω and as such it is not a “true” K-

reasoner according to our definition. The next lemma shows that for a full history, Algorithm

8 defines a secrecy-preserving K-reasoner.

Algorithm 8 Lazy Evaluation Algorithm

Input: K = 〈K,Q,Ω〉 and S = 〈M, S,G〉
Initialization:

For 1 ≤ i ≤ m, let QiY = P iY = QiN = P iN := ∅, QiU :=
⋃
j:(Mi,Mj)∈A Sj .

1: while true do

2: input α ∈ Q, Mi ∈M
3: if α /∈ QiY ∪QiN ∪QiU then

4: if K+ ∩ {α,¬α} = ∅ then

5: QiU := QiU ∪ {α,¬α}
6: else

7: let ᾱ ∈ {α,¬α} such that K ` ᾱ
8: if there exists j where (Mi,Mj) ∈ A such that (PjY ∪ {ᾱ})+ ∩ Sj 6= ∅ then

9: QiU := QiU ∪ {α,¬α}
10: else

11: QiY := QiY ∪ {ᾱ}
12: QiN := QiN ∪ {¬ᾱ}
13: for all j where (Mi,Mj) ∈ A, PjY := PjY ∪ {ᾱ} and PjN := PjN ∪ {¬ᾱ}
14: end if

15: end if

16: end if

17: end while

Lemma 4.3.1 Given a knowledge base K = 〈K,Q,Ω〉, a secrecy structure S = 〈M,S, G〉

and a full query history H = {(αik ,Mik)}∞k=1, the lazy evaluation algorithm (Algorithm 8) is a

secrecy-preserving K-reasoner.

Proof We need to show that Algorithm 8 satisfies the four axioms in Definition 4.2.3. It is

easy to see that Yes-Axiom and No-Axiom are satisfied.

To show that the Secrecy Axiom is satisfied, we argue by induction on history of queries.

In the pre-query stage, for every i, P iY = ∅ and so, since Taut ∩ Si = ∅, (P iY )+ ∩ Si = ∅. Now
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suppose that the condition (PjY )+ ∩ Sj = ∅ holds for all j, and consider the next query α ∈ Q

posed by agent Mi. If K+ ∩ {α,¬α} = ∅, then PjY does not change, and the above condition

is maintained. The same holds true if for some edge (Mi,Mj) ∈ A, (PjY ∪ {ᾱ})+ ∩ Sj 6= ∅.

So suppose that for all (Mi,Mj) ∈ A, (PjY ∪ {ᾱ})+ ∩ Sj = ∅. Then for (Mi,Mj) ∈ A,

PjY := PjY ∪ {ᾱ}. So with the new value of PjY , the same condition holds. Note that whenever

a query is assigned to be in QiY ∪ QiN ∪ QiU for some Mi ∈ M, it will not be re-evaluated for

Mi. Therefore, the property (P iY )+ ∩ Si = ∅ (1 ≤ i ≤ m) is an invariant of the algorithm. It

follows that the Secrecy Axiom is satisfied.

To show that the Closure Axiom is also satisfied, we assume that there is a query q ∈ (QiY )+

and q /∈ QiY . From q ∈ (QiY )+, we conclude K ` q. This means that when q was first queried by

Mi and evaluated (i.e., when q was not in QiY ∪QiN ∪QiU ), the scope of the execution was from

Lines 7-14. Moreover, in view that q /∈ QiY , the condition in Line 8 was satisfied. Hence, there

existed j where (Mi,Mj) ∈ A and β ∈ Sj s.t. (PjY ∪ {α})+ ∩ Sj 6= ∅. Therefore, there existed

β ∈ Sj such that PjY ∪ {α} ` β. Since q ∈ (QiY )+, QiY ` q and so
⋃
k:(Mk,Mj)∈AQkY = PjY ` β.

This contradicts the invariant of the algorithm. Hence, (QiY )+ ⊆ QiY . It then follows from the

fact that QiY ⊆ (QiY )+ that the Closure Axiom is satisfied.

By Theorem 4.2.7, E′ = {E′1, ..., E′m} with E′i = K+\QiY andQiY as computed by Algorithm

8 is an envelope. The next theorem shows that E′ is actually a tight envelope.

Theorem 4.3.2 Let 〈K, S, RH〉 be an MSQ system where RH is a K-reasoner resulting from

Algorithm 8 applied to a full history H. Define E = {E1, ..., Em} where Ei = K+ ∩ QiU for

1 ≤ i ≤ m. Then E is a tight envelope for S.

Proof By Lemma 4.3.1, for full history, the lazy evaluation algorithm is a secrecy-preserving

K-reasoner. It then follows from Theorem 4.2.7 that E = {E1, ..., Em} is an envelope. Suppose

that E is not tight. Then by Axiom TE, there exist Mi ∈ M and α ∈ Ei ⊆ QiU such that for

every edge (Mi,Mj) ∈ A and every β ∈ Sj , we have
⋃
k:(Mk,Mj)∈A(K+ \ Ek) ∪ {α} 2 β. By

the soundness of `, we have
⋃
k:(Mk,Mj)∈A(K+ \ Ek) ∪ {α} 0 β, i.e., PjY ∪ {α} 0 β and hence

(PjY ∪{α})+∩Sj = ∅. Note that in this case, ᾱ = α. So when α was posed as a query by agent
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Mi (for the first time), since K ` α and the condition in Line 8 is not satisfied, α should have

been added to QiY . However, this contradicts the choice of α ∈ QiU .

The lazy evaluation approach is rather simple, but as the number of queries increases,

the sets QiY get larger and checking condition in Line 8 takes longer time. Thus, answering

queries will tend to be more time consuming as the KB continues to operate. Therefore, as an

alternative, we propose to precompute an envelope and then utilize Theorem 4.2.8 to answer

queries. We formalize this idea in the next section.

4.4 Computing Envelopes

In this section, we provide a general approach to compute envelopes. Given a KB K and

a secrecy structure S, as indicated in Theorem 4.2.6 (and the paragraph before it), the basic

task is to construct an envelope for a single secrecy set. Our basic idea is to find a set of proof-

disrupting assertions (of secrets) and put these in an envelope. We utilize the normal inference

rules (that are native to the underlying language) and look for such disrupting formulas by

inverting the inference rules. Next we formalize these ideas.

For a given KB K = 〈K,Q,Ω〉 and a formula α ∈ K+, we say that a finite set Γ ⊆f K+

is α-minimal if Γ � α and for every β ∈ Γ, Γ \ {β} 2 α. Let Fα = {Γ | Γ be α-minimal}. If

α needs to be protected, then at least one element in each set in Fα has to be protected so

that α cannot be entailed. Denote by φΓ an arbitrary but fixed element of a given set Γ. The

following theorem indicates a general way for obtaining an envelope for a secrecy structure.

Theorem 4.4.1 Given a secrecy structure S = 〈M,S,G〉 where S = {S1, S2, ..., Sm}, for

each 1 ≤ i ≤ m, define a sequence of sets where E0
i = Si and Ek+1

i = {φΓ | there is α ∈ Eki

and Γ ∈ Fα}. Let Ei =
⋃∞
k=0E

k
i and E∗i =

⋃
j:(Mi,Mj)∈AEj. Then E∗ = {E∗1 , ..., E∗m} is an

envelope for S.

Proof For the given secrecy structure S, define a set of induced single-agent secrecy structures,

one for each Mi ∈ M: Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi,Mi)}〉〉, 1 ≤ i ≤ m. By Theorem 4.2.6,

it suffices to show that for 1 ≤ i ≤ m, Ei is an envelope for Si. Suppose that for some α ∈ Ei,
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K+ \ Ei � α. Then there is a finite set Γ ⊆ K+ \ Ei s.t. Γ � α and Γ is α-minimal. Hence,

Γ ∈ Fα. According to the definition of Ei, there exists k such that α ∈ Eki . It follows that

φΓ ∈ Γ ∩ Ek+1
i and so Γ ∩ Ei 6= ∅. This contradicts the fact that Γ ⊆ K+ \ Ei. Therefore, Ei

is an envelope for Si for every 1 ≤ i ≤ m.

Since we have assumed that given a language L, ` is sound and complete w.r.t. �, Theorem

4.4.1 in essence indicates a recursive procedure of computing an envelope (see an example in

Section 4.5). Once an envelope is computed, queries can be answered according to Theorem

4.2.8 without compromising secrecy, which is the basic goal of solving the SPQA problem.

As mentioned before, we would like to compute envelopes that are as small as possible so that

queries can be answered as informatively as possible. However, since given a language, deciding

a minimum envelope may be NP-hard (see Section 4.5), we aim at computing tight envelopes. In

general, when an envelope is finite, we could obtain a tight envelope by checking every formula

in the envelope to see whether removing it compromises any secrets. If it does, the formula

should be kept. Otherwise, it can be removed. After all the formulas in the original envelope

are checked, a tight envelope is obtained. When an envelope E = {E1, ..., Em} is infinite, we

may not obtain a tight envelope by removing assertions from it one by one. Given two weak

envelopes E = {E1, ..., Em} and E′ = {E′1, ..., E′m} for S, we say that E′ = {E′1, ..., E′m} is a weak

sub-envelope of E, denoted by E′ ⊆ E, if for each 1 ≤ i ≤ m, E′i ⊆ Ei. A weak sub-envelope E′

of E is proper if there exists 1 ≤ i ≤ m such that E′i ⊂ Ei. Let E′ and E be envelopes for S. If

E′ is a weak sub-envelope of E, then we say that E′ is a sub-envelope of E. We next show that

given an envelope E, there always exists a tight sub-envelope E′ of E.

Lemma 4.4.2 Given a KB K and a secrecy structure S on K, for every weak envelope E =

{E1, ..., Em} for S, if E does not contain a proper weak sub-envelope, then E is a tight envelope

for S.

Proof Since E does not contain a proper weak sub-envelope, for every Mi ∈ M and every

α ∈ Ei, there exist an edge (Mi,Mj) ∈ A and β ∈ Sj such that
⋃
k 6=i:(Mk,Mj)∈A(K+ \ Ek) ∪

(K+\(Ei\{α})) � β. This amounts to
⋃
k:(Mk,Mj)∈A(K+\Ek)∪{α} � β. Therefore, E satisfies

Axiom TE. It then follows from Lemma 4.2.5 that E is a tight envelope for S.
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Given a KB K and a secrecy structure S on K, for every weak envelope E for S, either it

has a sub-envelope E′, or it does not. In the latter case, E is a tight envelope for S by Lemma

4.4.2. Given a weak envelope E for S, let E = E0 ⊇ E1 ⊇ · · · ⊇ En ⊇ · · · be a descending chain

of weak envelopes for S where Ek = {Ek1 , ..., Ekm}(k ≥ 0). The next lemma holds.

Lemma 4.4.3
⋂∞
k=0 Ek = {

⋂∞
k=0E

k
1 , ...,

⋂∞
k=0E

k
m} is a weak envelope for S.

Proof Suppose that
⋂∞
k=0 Ek is not a weak envelope for S. Then

⋃
j:(Mj ,Mi)∈A(K+\

⋂∞
k=0E

k
j ) �

α for some α ∈ Si. This means that there is a finite subset Φ ⊆f
⋃
j:(Mj ,Mi)∈A(K+ \

⋂∞
k=0E

k
j )

such that Φ � α. Since Φ is finite, for some (large enough) n, Φ ⊆
⋃
j:(Mj ,Mi)∈A(K+ \ Enj ),

implying
⋃
j:(Mj ,Mi)∈A(K+ \ Enj ) � α. This contradicts the assumption that En is a weak

envelope for S.

A weak envelope E is minimal if it does not contain a proper weak sub-envelope. Let E be

a weak envelope for S and CE be the collection of all weak sub-envelopes of E. Since the binary

relation ⊆ between weak envelopes of a given E is a partial order on CE, by Lemma 4.4.3 and

(the dual of) Zorn’s Lemma, CE contains a minimal weak envelope E′. It follows from Lemma

4.4.2 that E′ is a tight envelope for S. Since every envelope is a weak envelope, this implies

that every envelope has a tight sub-envelope (for the same S).

Depending on the native inference system ` of a language, and/or properties of the com-

munication graph, some strategy may be designed to guide the computation of an envelope so

that when an envelope is constructed, it is tight. In what follows, we consider an example of a

communication graph that is an inverted forest (with self-loops) in which a strategy leads to a

tight envelope.

Definition 4.4.4 Given a formula α and a set D of formulas, for each Γ ∈ Fα, let ΓD =

Γ if Γ ∩ D = ∅ and ΓD = Γ ∩ D otherwise. Define Fα,D = {ΓD | Γ ∈ Fα}. For each

ΓD ∈ Fα,D, let φΓD
be an arbitrary but fixed element in ΓD. Given a secrecy structure S =

〈M = {M1, ...,Mm}, {S1, ..., Sm}, 〈M,A〉〉 and a set D, define Ei[D] = {φΓD
| α ∈ Si and

ΓD ∈ Fα,D}.
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For any set D, Ei[D] is a weak envelope for the induced single-agent secrecy structure Si:

If there is α ∈ Si s.t. K+ \ Ei[D] � α, then there is Γ ⊆f K+ \ Ei[D] s.t. Γ is α-minimal.

However, by Definition 4.4.4, there is φΓD
∈ Γ s.t. φΓD

∈ Ei[D], implying Γ ∩Ei[D] 6= ∅. This

contradicts the fact that Γ ⊆f K+ \ Ei[D]. Thus, Ei[D] is a weak envelope for Si.

Lemma 4.4.5 Given a KB K and a secrecy structure S = 〈M = {M1,M2}, {S1, S2}, 〈M,A〉〉

on K where A = {(M1,M1), (M2,M2), (M1,M2)}, define two induced single-agent secrecy

structure: Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi, Mi)}〉〉 (1 ≤ i ≤ 2). Suppose that E2 is a tight

envelope for S2. Let E1[E2] be obtained from Definition 4.4.4. Suppose that E1 ⊆ E1[E2] is a

tight envelope for S1. Then E∗ = {E∗1 , E∗2} where E∗i =
⋃
j:(Mi,Mj)∈AEj (1 ≤ i ≤ 2) is a tight

envelope for S.

Proof We first show that E∗ satisfies Axiom TE.

• For M2: Since E∗2 = E2 and E2 is a tight envelope for S2, for every α ∈ E∗2 , there exists

β ∈ S2 such that (K+ \ E∗2) ∪ {α} � β. Since E∗2 = E2 ⊆ E∗1 ,
⋃
k:(Mk,M2)∈A(K+ \ E∗k) ∪

{α} = K+ \ (E∗1 ∩E∗2)∪ {α} = K+ \E∗2 ∪ {α} � β. This shows that Axiom TE holds for

M2.

• For M1:

– Consider α ∈ E∗1 ∩ E2 = E2. Since E2 is a tight envelope for S2, there exists

β ∈ S2 such that (K+ \ E2) ∪ {α} � β. Then
⋃
k:(Mk,M2)∈A(K+ \ E∗k) ∪ {α} =

K+ \ (E∗1 ∩ E∗2) ∪ {α} = K+ \ E∗2 ∪ {α} = K+ \ E2 ∪ {α} � β.

– Consider α ∈ E∗1 \ E2 = E1 \ E2. Since E1 is a tight envelope for S1, there exists

β ∈ S1 such that K+ \ E1 ∪ {α} � β and K+ \ E1 2 β. Since α ∈ E1 ⊆ E1[E2],

by Definition 4.4.4, there exists a finite set Γ ⊆ K+ \E1 ∪ {α} such that α = φΓE2
,

Γ � β and ΓE2 ∈ Fβ,E2 . If Γ ∩ E2 6= ∅, then α = φΓE2
∈ E2 by the construction

of E1[E2] using Definition 4.4.4. However, this contradicts the assumption that

α ∈ E1 \ E2. Therefore Γ ∩ E2 = ∅. Moreover, since Γ ⊆ K+ \ E1 ∪ {α} � β, we

have (K+ \ E1) \ E2 ∪ {α} � β. Also, since
⋃
k:(Mk,M1)∈A(K+ \ E∗k) = K+ \ E∗1 =

K+ \ (E1 ∪ E2) = (K+ \ E1) \ E2, we have
⋃
k:(Mk,M1)∈A(K+ \ E∗k) ∪ {α} � β.
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These show that the TE condition holds for M1.

It follows from Theorem 4.2.6 that E∗ is a weak envelope. By Lemma 4.2.5, E∗ is a tight

envelope for S.

Theorem 4.4.6 Given a KB K and a secrecy structure S = 〈M, {S1, ..., Sm}, G = 〈M,A〉〉

on K where each node in G has only one successor besides itself, i.e., G is an inverted forest

with self-loops. For 1 ≤ i ≤ m, in a bottom-up fashion according to G, define an envelope

Ei[Ej ] for an induced single-agent secrecy structure: Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi,Mi)}〉〉 as

per Definition 4.4.4, (Mi,Mj) ∈ A and Ej is a tight envelope for Sj. Suppose that Ei ⊆ Ei[Ej ]

is a tight envelope for Si. Then E∗ = {E∗1 , ..., E∗m} where E∗i =
⋃
j:(Mi,Mj)∈AEj is a tight

envelope for S.

Proof By Theorem 4.2.6, E∗ is a weak envelope. It suffices to show that E∗ satisfies Axiom

TE. Suppose, by contradiction, that there are Mi ∈ M and α ∈ E∗i s.t. for every j and every

β ∈ Sj where (Mi,Mj) ∈ A,
⋃
k:(Mk,Mj)∈A(K+ \ E∗k) ∪ {α} 2 β. Consider (Mi,Mj) ∈ A where

i 6= j (when i = j the argument is easy). There are two cases:

• E∗i \Ej 6= ∅. By Lemma 4.4.5, for every α′ ∈ E∗i \Ej , there is γ ∈ Si s.t. K+\E∗i ∪{α′} � γ

(see proof of Lemma 4.4.5 case (ii) for M1). Since
⋂
k:(Mk,Mj)∈AE

∗
k ⊆ E∗i (in view that

(Mi,Mj) ∈ A), every model of K+ \
⋂
k:(Mk,Mj)∈AE

∗
k is a model of K+ \ E∗i , and so

(K+ \
⋂
k:(Mk,Mj)∈AE

∗
k) ∪ {α′} � γ.

• E∗i \Ej = ∅, i.e., E∗i = Ej . By Lemma 4.4.5, {E∗i , Ej} is a tight envelope for the induced

two-agent secrecy structure: Sij = 〈{Mi,Mj}, {Si, Sj}, 〈{Mi,Mj}, {(Mi,Mi), (Mj ,Mj),

(Mi,Mj)}〉. Hence, for every α′ ∈ E∗i , there is γ ∈ Si ∪ Sj s.t. (K+ \ E∗i ) ∪ {α′} � γ or

(K+ \E∗i )∪ (K+ \Ej)∪{α′} � γ, i.e. (K+ \E∗i )∪{α′} � γ. Since
⋂
k:(Mk,Mj)∈AE

∗
k ⊆ E∗i ,

we have
⋃
k:(Mk,Mj)∈A(K+ \ E∗k) ∪ {α′} � γ.

Both cases contradict the assumption that Axiom TE is not satisfied.

Note that both Lemma 4.4.5 and Theorem 4.4.6 consider communication graphs where each

node has only one successor besides itself. In both cases, for any node Mi, the computation of
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its envelope Ei is governed by the envelope Ej where (Mi,Mj) ∈ A so that as much information

in Ej is reused for Ei as possible and as less redundant information is put into Ei as possible.

In fact, Lemma 4.4.5 not only helps prove Theorem 4.4.6, but also is a special case of Theorem

4.4.6.

4.5 Horn MSQ System

In this section we illustrate multi-agent secrecy-preserving query answering in the context

of Horn knowledge bases. This is of some interest as Horn theories are widely used in AI and

Data Bases [97] and more recently KBs [98]. The main reason for this interest is that the

satisfiability and inference problems for Horn theories can be solved very efficiently [99]. In

fact, precisely for that same reason, non-Horn KBs are often “approximated” by Horn KBs

[100, 98].

Recall that a (propositional) Horn clause is a clause containing at most one positive literal,

i.e., generally, it is of the form: x1 ∧ · · · ∧ xk → η where x1, x2, ..., xk are propositional names

(a.k.a. positive literals) and η is either a propositional name, in which case the Horn clause is

called a rule (or a definite clause), or it is ⊥, in which case it is called a constraint. In this

paper we shall have no further use of constraints. A Horn clause is called a fact if k = 0 and

η 6= ⊥, i.e. it consists of a single positive literal. We shall assume a single underlying inference

rule, the forward chaining, which is well-known to be sound and complete for Horn logic with

respect to the usual semantics of propositional logic,

Forward Chaining (FC):

{l1 ∧ l2 ∧ · · · ∧ lk → p}, l1, l2, ..., lk

p

where p, l1, l2, ..., lk are all propositional names.

A Horn KB is a triple K = 〈K,Q,Ω〉 where K is a finite set of Horn clauses (no constraints),

Q is the set of all (relevant) facts (the query space), and Ω = {Y,N,U} is the answer space.

The set of clauses K can be further partitioned K = F ∪ R where F is the set of facts in K

and R is the set of rules in K. By F+ we will denote the set of all facts derivable by applying
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the FC-rule with assumptions in F and the rules in R: F+ = {p | K `FC p and p is a fact}.

Obviously, if K is finite, so is F+.

Given a collection of querying agents M = {M1,M2, ...,Mm}, a corresponding collection

of secrecy sets S = {S1, S2, ..., Sm}, and a communication graph G we have a secrecy structure

S = 〈M,S,G〉. Note that the secrecy sets are subsets of F+. To compute an envelope for

S = 〈M,S,G〉, we can use the approach suggested in Theorem 4.2.6: for 1 ≤ i ≤ m, com-

pute an envelope E1
i for the induced single-agent secrecy structure Si = 〈{Mi}, {Si}, 〈{Mi},

{(Mi,Mi)}〉〉. Then, letting E∗i =
⋃
j:(Mi,Mj)∈AE

1
j , an envelope E∗ = {E∗1 , ..., E∗m} is obtained

for the secrecy structure S.

It remains to show how to compute an envelope for the single-agent secrecy structure

Si. We will use a methodology developed by the authors in [24]. The idea is to invert the

inference rules, in this case just the FC-rule, into new rules that enforce the intuitively obvious

requirement: whenever the conclusion of an inference rule is to be secret so must be at least

one of its premises. The inverted version of FC is denoted by FCI and it is formulated as

follows for each 1 ≤ i ≤ m:

FCI-rule:

p ∈ E′i, l1 ∧ l2 ∧ ... ∧ lk → p ∈ R, l1, l2, ..., lk ∈ F+ \ E′i

E′i := E′i ∪ {l}, for some l ∈ {l1, l2, ..., lk}

The actual computation of the envelopes proceeds by initializing E′ = {E′1, E′2, ..., E′m}

with E′i = Si (1 ≤ i ≤ m). The FCI -rule is then applied repeatedly until it is no longer

applicable. Denote by E1 = {E1
1 , E

1
2 , ..., E

1
m} the resulting collection of the sets E1

1 , E1
2 , ...,

E1
m. To prove the correctness of our procedure we must show that for each 1 ≤ i ≤ m, E1

i is

an envelope for Si.

Claim 4.5.1 E1
i is a secrecy envelope for Si.

Proof It suffices to show that E1
i satisfies Axiom E1: for every α ∈ E1

i , F+ \ E1
i 2 α. Since

` is complete w.r.t. �, we shall argue instead that for every α ∈ E1
i , F+ \ E1

i 0 α. First note

that for a fixed i, once a rule l1 ∧ l2 ∧ ...∧ lk → p ∈ R is used in an application of FCI -rule for

computing E1
i , it is no longer applicable (for that fixed i). Thus, after at most |R| applications
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of the FCI -rule (for that i) the computation of the set E1
i is complete. This means that for

any rule l1 ∧ l2 ∧ ...∧ lk → p ∈ R with l1, ..., lk ∈ F+ \E1
i , p /∈ E1

i and hence p ∈ F+ \E1
i . This

implies the claim.

Since E∗ is an envelope, according to Theorem 4.2.8, a query can be safely answered by

checking whether it can provable from the given KB and its membership status w.r.t. E∗.

The envelope E∗ = {E∗1 , ..., E∗m} resulting from the single-agent “slices” in a manner indicated

above, need not be tight.

Example 4.5.2 Given a Horn KB K = 〈K,S,R〉 where K = 〈F = {l1, l2, s}, R = {l1 ∧

l2 → s}〉, S = 〈{M1, M2}, {S1, S2}, 〈{M1, M2}, {(M1,M1), (M2,M2), (M1,M2)}〉〉 and

S1 = S2 = {s}. Suppose that E1
1 = {s, l1} and E1

2 = {s, l2}. It is easy to check that E1
i

is a tight envelope for Si, 1 ≤ i ≤ 2. Let E∗1 = E1
1 ∪ E1

2 = {s, l1, l2} and E∗2 = E1
2 . Then

E∗ = {E∗1 , E∗2} is an envelope for S. However, E∗ is not tight because we could remove l1 from

E∗1 and still have an envelope for S.

In fact, there are two tight envelopes for S: E∗1 = {{s, l1}, {s, l1}} and E∗2 = {{s, l2}, {s, l2}}.

As mentioned before, we aim at computing envelopes that are as small as possible. Un-

fortunately, the decision problem associated with finding a smallest cardinality envelope is

NP-complete. We specify the Minimum Envelope problem (ME ) by the pair 〈〈K,S〉, N〉 where

K = 〈K,Q,Ω〉 is a Horn KB, S = 〈M, S,G〉 is a secrecy structure for K and N is a positive in-

teger. The decision problem is to determine whether S has a secrecy envelope E = {E1, ..., Em}

satisfying |
⋃

1≤i≤mEi| ≤ N . It is easy to see that the problem is in NP as this only involves

checking that E satisfies the axioms E1 and E2.

We use the Hitting Set (HS) to show NP-hardness. Given a finite set X, a finite collection

of non-empty sets C = {C1, ..., Ck} ⊆ P(X) and an integer 0 ≤ N ≤ |X|, the problem is to

determine whether or not there is a subset Y ⊆ X such that |Y | ≤ N and for every C ∈ C,

C ∩ Y 6= ∅. Given such an instance of HS, we construct an instance of ME as follows:

• M = {M1}, a single querying agent;

• the communication graph consists of a single self-loop on M1;
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• S = {S1}, with S1 = {si | Ci ∈ C}, where si’s are new symbols;

• N ′ = N + |C|;

• K = F ∪R where F = X ∪ S1 and R = {l1 ∧ ... ∧ lr → si | Ci = {l1, ..., lr} ∈ C}.

Claim 4.5.3 C has a hitting set Y ⊆ X with |Y | ≤ N if and only if 〈K,S〉 has a secrecy

envelope E = {E1} such that S1 ⊆ E1 ⊆ F+ and |E1| ≤ N + |C|.

Proof Suppose that Y ⊆ X is a hitting set for C with |Y | ≤ N . Define the set E1 := Y ∪ S1.

Since Y ∩S1 = ∅, |E1| = |Y |+ |S1| ≤ N+ |C|. Moreover, for every C ∈ C, C∩Y 6= ∅. Therefore,

none of the rules in K can be used in applying the FC-rule to F+ \E1. It follows that E1 is a

secrecy envelope for S.

Conversely, let E = {E1} be a secrecy envelope for S such that S1 ⊆ E1 ⊆ F+ and

|E1 \ S1| ≤ N . By Axiom E1 and the soundness of the FC-rule, this implies that for every

α ∈ E1 : F+ \ E1 0FC α. We show that the HS instance C = {C1, ..., Ck} ⊆ P(X), together

with an integer 0 < N ≤ |X|, has a hitting set of size at most N . Define Y := E1 \ S1. It now

suffices to show that for every Ci ∈ C, Y ∩Ci 6= ∅. Let Ci = {l1, ..., lr}; by the definition of the

reduction, this implies that l1 ∧ ... ∧ lr → si belongs to R. If none of the lj(1 ≤ j ≤ r) belongs

to Y , then they all belong to F+ \Y and hence also to F+ \E1 because Ci∩S1 = ∅. Therefore,

F+ \ E1 `FC si ∈ E1, which leads to a contradiction.

4.6 Conclusion and Future Work

Many applications require a KB that contains secrets to answer queries using secrets, when-

ever it is possible to do so, without revealing secrets. We considered this problem under the

OWA in a setting with multiple querying agents, where associated with each agent is a secrecy

set that the KB is obliged to protect from it, and the agents can selectively share the answers

that they receive with other agents. We introduced the notion of a secrecy envelope and prove

some results that are helpful in computing and updating the envelope, and for using the enve-

lope to protect secrets while answering queries. We also provided a strategy for constructing

tight envelopes in the interesting special case where the communication graphs are inverted
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forests. We illustrated an application of this general approach in the case of propositional Horn

KBs.

We have assumed that the secrecy sets are finite. It would be interesting to consider how

to relax cases where secrecy sets have finite descriptions that can be expressed in a suitable

policy language. Other interesting directions for future work include consideration of more

expressive communication graphs e.g., those that place additional restrictions on the answers

that can be shared between agents e.g., by attaching predicates to edges, and design of efficient

algorithms for constructing and maintaining envelopes and answering queries using envelopes

for KBs based on tractable yet practically useful knowledge representation languages.
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CHAPTER 5. SUMMARY AND DISCUSSION

This dissertation focuses on developing techniques to answer queries posed to KBs. The

first topic we studied is query answering in KBs that contain epistemic information. This topic

is presented in Chapter 2. The second topic (Chapters 3 and 4) we studied requires autonomous

entities or organizations to be able to selectively share information without disclosing sensitive

information. We investigate techniques for secrecy-preserving query answering against KBs

under the OWA. We consider two scenarios of increasing difficulty: (a) a KB queried by a

single agent; and (b) a KB queried by multiple agents where the secrecy policies can differ

across the different agents and the agents can selectively communicate the answers that they

receive from the KB with each other subject to the applicable answer sharing policies. Specific

contributions are listed below:

• In Chapter 2, we studied ALCKm and ALCS4m, knowledge representation languages

obtained by augmenting ALC with modal operators of the basic multi-modal logics Km

and S4m. The resulting logics allow us to represent and reason about the knowledge of

multiple experts. We developed sound and complete tableau algorithms ΛK and ΛS4 for

answering queries w.r.t. corresponding knowledge bases with acyclic TBoxes.

Instead of general concept inclusions allowed in KALC [40] which lead to a NEXPTIME

algorithm for satisfiability, the acyclicity restriction on the TBoxes is critical to achieving

the PSpace implementations for both algorithms. Our PSpace results for the satisfia-

bility of ALCKm and ALCS4m extend the result of Schmidt-Schauß and Smolka [2] for

the satisfiability and subsumption of ALC concepts.

• In Chapter 3, we studied the problem of answering queries against a knowledge base that

contains secret information. Based on the OWA, we designed reasoners that hide truthful
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answers to the queries that if faithfully answered, may compromise the secrecy. One such

reasoner was designed using the lazy evaluation. Since this approach becomes less and

less appealing over time, we proposed to maintain a secrecy system that precomputes an

envelope. Once an envelope is present, a query will be truthfully answered if it is outside

the envelope. A general framework for the solution to the problem was provided. We

discussed the relationship between a secrecy-preserving reasoner and an envelope. We

applied the general framework to the Description Logic EL and provided an algorithm

for constructing an envelope. To answer queries as informatively as possible, we aimed to

make envelopes as small as possible. Since computing the smallest envelope in EL is also

NP-complete, we have presented two algorithms for computing tight envelopes: a naive

algorithm and an optimized version, procedure Tight. We compared the complexities of

these two algorithms, designed experiments and concluded that the optimized algorithm

indeed is more efficient for applications whenever the sizes of the TBox and the secrecy

set are much smaller than that of the ABox, which is typical in many applications.

• In Chapter 4, we extended the general framework for secrecy-preserving query answering

problem in the single-agent case to multiple querying agents where a knowledge base

contains secret information for each agent and the agents are allowed to share query an-

swers in a constrained fashioned. We designed a secrecy-preserving reasoner that answers

queries without compromising the overall secrecy, analyzed the relationship between a

secrecy-preserving reasoner associated with a KB and a secrecy envelope used to protect

secrets, and discussed a special case of restricted communication for constructing tight

envelopes. The idea of constructing envelopes was illustrated using Horn KBs.

There are several directions for extending this dissertation.

• For the first topic, Baader et al. [57] have recently extended the PSpace result of [2] to

ALC with transitive and inverse roles. In light of this result, we conjecture that query

answering against SIKm, obtained by replacing ALC (in ALCKm) with SI (ALC aug-

mented with transitive and inverse roles), can also be implemented in PSpace. Another
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direction would be investigating algorithms for the satisfiability of ALCS5m whose syntax

is identical to that of ALCKm, but whose semantics is based on the modal logic S5m.

• For the second topic in single-agent case, strategies may be designed to specify secrets

(policy specifications) and generate secrecy sets in an automated way. For example,

a policy like “Whether or not a patient x is at risk of developing cancer must be kept

secret” specifies a requirement about a whole range of assertions which must be protected

(rather than a single assertion). This is rather different than most of the work on policy

languages for the web which focuses on specifying syntax-based restrictions on access to

specific resources or operations on the web (see Section 3.7).

• In the multiagent case, one direction could be applying our multiagent framework to

specific DLs such as ALC. Another direction would be to make the communication graph

more flexible and realistic. For instance, we could add restrictions on the information

sharing by putting predicates on the edges of the communication graph, or allow more

general graph structures (not necessarily DAG with self-loops).
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APPENDIX A. ADDITIONAL MATERIAL

A.1 Additional Material for Chapter 2

A.1.1 Proof of Theorem 2.3.3

Theorem 2.3.3 (Soundness of the expansion rules) Given a Kripke structure M = 〈S, π,

E1, ..., Em〉 and an acyclic TBox T where M � T , let G be a constraint graph, α a local, global

or terminological expansion rule and Gα a constraint graph obtained by applying α to G. If

M  G via σ, then there exists a semantic extension Mα of M|NΣ∪OG s.t. Mα  Gα via σ′

(which extends σ) and Mα � T . Furthermore, Mα  G.

Proof Assume the hypotheses.

1. If α is a u-rule, then there is a constraint a : C1 u C2 ∈ L(n) in G and {a : C1, a : C2} *

L(n). After applying u-rule, L(n) = L(n)∪{a : C1, a : C2}. By Definition 3, a : C1uC2 ∈

L(n) implies (M, σ(n)) � C1 u C2(a). It follows that aπ(σ(n)) ∈ (C1 u C2)π(σ(n)), which

means that aπ(σ(n)) ∈ C
π(σ(n))
1 and aπ(σ(n)) ∈ C

π(σ(n))
2 . Hence, (M, σ(n)) � C1(a) and

(M, σ(n)) � C2(a). Thus, Gα obtained by application of u-rule from G is satisfied by M

via σ.

2. If α is a t-rule, then there is a constraint a : C1 t C2 ∈ L(n) in G and {a : C1, a : C2} ∩

L(n) = ∅. By Definition 3, (M, σ(n)) � C1tC2(a) and therefore aπ(σ(n)) ∈ (C1tC2)π(σ(n)).

This means that aπ(σ(n)) ∈ Cπ(σ(n))
1 or aπ(σ(n)) ∈ Cπ(σ(n))

2 . Hence, (M, σ(n)) satisfies C1(a)

or C2(a) (or both). It follows that t-rule can be applied in a way such that Gα is satisfied

by M via σ.

3. If α is an ∃-rule, then there is a constraint a : ∃R.C ∈ L(n) in G. Since (M, σ(n)) �

∃R.C(a) (by Definition 3), there must be an element d ∈ ∆ such that (aπ(σ(n)), d) ∈
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Rπ(σ(n)) and d ∈ Cπ(σ(n)). After applying the ∃-rule, a fresh individual name c is picked

and L(n) := L(n) ∪ {(a, c) : R, c : C}. Define the interpretation π′ as π except for the

fresh individual name c: cπ
′(σ(n)) = d. The resulting Gα is satisfied by Mα via σ where

Mα = 〈S, π′, E1, ..., Em〉 is a semantic extension of M|NΣ∪OG .

4. If α is a ∀-rule, then there is a node n with {a : ∀R.C, (a, b) : R} ⊆ L(n) and b : C /∈ L(n).

By Definition 3, a : ∀R.C ∈ L(n) implies (M, σ(n)) � ∀R.C(a), which means that for all

d ∈ ∆, (aπ(σ(n)), d) ∈ Rπ(σ(n)) implies d ∈ Cπ(σ(n)). Moreover, (a, b) : R ∈ L(n) implies

(M, σ(n)) � R(a, b), which means (aπ(σ(n)), bπ(σ(n))) ∈ Rπ(σ(n)). After applying the ∀-rule,

b : C is added to L(n). The resulting Gα is satisfied by M via σ.

5. If α is a ♦C-rule, there is a constraint a : ♦iC ∈ L(n) in G and n does not have an

i-successor l such that a : C ∈ L(l). By Definition 3, a : ♦iC ∈ L(n) implies (M, σ(n)) �

♦iC(a) which means that there is a world s with (σ(n), s) ∈ Ei and aπ(s) ∈ Cπ(s). After

applying the ♦C-rule, a new node n′ is generated with L(n′) = {a : C} and L(n, n′) = {i}.

Extend σ to σ′ such that σ′(n′) = s. M satisfies the resulting Gα via σ′.

6. If α is a �C-rule, then there are two nodes n and n′ in G such that i ∈ L(n, n′), a : �iC ∈

L(n) and a : C /∈ L(n′). By Definition 3, a : �iC ∈ L(n) implies (M, σ(n)) � �iC(a)

which means that for all s with (σ(n), s) ∈ Ei, (M, s) � C(a). It follows that (M, σ(n′)) �

C(a). After applying the �C-rule, a : C ∈ L(n′). Gα obtained from G is satisfied by M

via σ.

7. If α is a T-rule, then there is a constraint a : A ∈ L(n), a definition A
.
= D ∈ T and

a : D /∈ L(n). After applying α, L(n) = L(n) ∪ {a : D}. Since M  G and M � T ,

aπ(σ(n)) ∈ Aπ(σ(n)) = Dπ(σ(n)). Therefore, (M, σ(n)) � D(a) and hence, M  Gα via σ.

8. If α is an N-rule, then {a : ¬A, a : B} ∩ L(n) 6= ∅, A .
= ¬B ∈ T and {a : ¬A, a :

B} * L(n). Since M  G and M � T , we have (M, σ(n)) � A
.
= ¬B and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) ∈ Bπ(σ(n)). Because only one of a : ¬A and a : B is in

L(n), after applying the N-rule, the other constraint is added to L(n) and it is satisfied

by (M, σ(n)). Therefore, M  Gα via σ.
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9. If α is an Nu-rule, then a : ¬A ∈ L(n), A
.
= B1uB2 ∈ T , and a : ¬B1t¬B2 /∈ L(n). Since

M  G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= B1 u B2 and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (B1 uB2)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆ \ (B
π(σ(n))
1 ∩Bπ(σ(n))

2 )⇔

aπ(σ(n)) ∈ (∆ \ Bπ(σ(n))
1 ) ∪ (∆ \ Bπ(σ(n))

2 ) ⇔ aπ(σ(n)) ∈ (¬B1)π(σ(n)) ∪ (¬B2)π(σ(n)). This

means that aπ(σ(n)) ∈ (¬B1 t ¬B2)π(σ(n)). After applying α, a : ¬B1 t ¬B2 ∈ L(n) and

it is satisfied by (M, σ(n)). Therefore, M  Gα via σ.

10. If α is an Nt-rule, then a : ¬A ∈ L(n), A
.
= B1tB2 ∈ T , and a : ¬B1u¬B2 /∈ L(n). Since

M  G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= B1 t B2 and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (B1 tB2)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆ \ (B
π(σ(n))
1 ∪Bπ(σ(n))

2 )⇔

aπ(σ(n)) ∈ (∆ \ Bπ(σ(n))
1 ) ∩ (∆ \ Bπ(σ(n))

2 ) ⇔ aπ(σ(n)) ∈ (¬B1)π(σ(n)) ∩ (¬B2)π(σ(n)). This

means that aπ(σ(n)) ∈ (¬B1 u ¬B2)π(σ(n)). After applying α, a : ¬B1 u ¬B2 ∈ L(n) and

it is satisfied by (M, σ(n)). Therefore, M  Gα via σ.

11. If α is an N∃-rule, then a : ¬A ∈ L(n), A
.
= ∃R.B ∈ T , and a : ∀R.¬B /∈ L(n). Since

M  G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= ∃R.B and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (∃R.B)π(σ(n)) ⇔ aπ(σ(n)) /∈ {c ∈ ∆ | ∃b : (c, b) ∈

Rπ(s) ∧ b ∈ Bπ(s)} ⇔ aπ(σ(n)) ∈ {c ∈ ∆ | ∀b : (c, b) ∈ Rπ(s) → b /∈ Bπ(s)} ⇔ aπ(σ(n)) ∈

(∀R.¬B)π(σ(n)). After applying α, a : ∀R.¬B ∈ L(n) and it is satisfied by (M, σ(n)).

Therefore, M  Gα via σ.

12. If α is an N∀-rule, then a : ¬A ∈ L(n), A
.
= ∀R.B ∈ T , and a : ∃R.¬B /∈ L(n). Since

M  G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= ∀R.B and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (∀R.B)π(σ(n)) ⇔ aπ(σ(n)) /∈ {c ∈ ∆ | ∀b : (c, b) ∈

Rπ(s) → b ∈ Bπ(s)} ⇔ aπ(σ(n)) ∈ {c ∈ ∆ | ∃b : (c, b) ∈ Rπ(s) ∧ b /∈ Bπ(s)} ⇔ aπ(σ(n)) ∈

(∃R.¬B)π(σ(n)). After applying α, a : ∃R.¬B ∈ L(n) and it is satisfied by (M, σ(n)).

Therefore, M  Gα via σ.

13. If α is an N♦-rule, then a : ¬A ∈ L(n), A
.
= ♦iB ∈ T , and a : �i¬B /∈ L(n). Since

M  G and M � T , we have (M, σ(n)) � A
.
= ♦iB, (M, σ(n)) � ¬A(a) and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (♦iB)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆ \ (♦iB)π(σ(n)) where ∆ \
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(♦iB)π(σ(n)) = ∆ \
⋃
t∈Ei(σ(n))B

π(t) =
⋂
t∈Ei(σ(n))(∆ \ Bπ(t)) =

⋂
t∈Ei(σ(n))(¬B)π(t) =

(�i¬B)π(σ(n)). Hence, aπ(σ(n)) ∈ (�i¬B)π(σ(n)). After applying α, a : �i¬B is added into

L(n) and is satisfied by (M, σ(n)). Therefore, M  Gα via σ.

14. If α is an N�-rule, then a : ¬A ∈ L(n), A
.
= �iB ∈ T , and a : ♦i¬B /∈ L(n). SinceM  G

and M � T , we have (M, σ(n)) � A
.
= �iB, (M, σ(n)) � ¬A(a) and therefore aπ(σ(n)) /∈

Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (�iB)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆\(�iB)π(σ(n)) where ∆\(�iB)π(σ(n)) =

∆\
⋂
t∈Ei(σ(n))B

π(t) =
⋃
t∈Ei(σ(n))(∆\Bπ(t)) =

⋃
t∈Ei(σ(n))(¬B)π(t) = (♦i¬B)π(σ(n)). Hence,

aπ(σ(n)) ∈ (♦i¬B)π(σ(n)). After applying α, a : ♦i¬B is added into L(n) and is satisfied

by (M, σ(n)). Therefore, M  Gα via σ.

It follows that after the application of every expansion rule, the resulting constraint graph Gα is

satisfied by Mα which, except after applying an ∃-rule, is the same as M. When α is an ∃-rule,

Mα differs from M only in the interpretation of the newly picked individual name. Therefore,

T is valid in Mα. Since Mα is a semantic extension of M restricted to NΣ ∪ OG, it is obvious

that Mα satisfies the constraint graph G.

A.1.2 Proof of Lemma 2.3.5

Lemma 2.3.5 Let T be an acyclic TBox and let G be an open complete constraint graph w.r.t.

local, global and terminological expansion rules. Then for every A ∈ NC and every a ∈ ∆,

a : ¬A ∈ L(n)⇒ (MG, n) � ¬A(a).

Proof There are two cases, and for both, since G is open, a : A /∈ L(n).

(1) When A ∈ Θ, a : ¬A ∈ L(n) ⇒ a : A /∈ L(n) ⇒ a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) �

¬A(a). The first implication is due to the fact that G is open. The second implication is

by Definition 2.3.4 and the rest equivalences are because of the semantics.

(2) When A /∈ Θ, i.e., there is a definition A
.
= D ∈ T , we will prove by induction on the

structure of D. For the base case where the concept names involved in D are elements in

Θ, we have the following cases:
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1. D is of the form ¬B where B ∈ Θ. Since G is complete, a : B ∈ L(n). By Definition

2.3.4, a ∈ Bπ(n) ⇔ a /∈ (¬B)π(n). Since G is open, a : ¬A ∈ L(n) ⇒ a : A /∈ L(n).

However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (¬B)π(n). This implies that a /∈ Aπ(n) ⇔ a ∈

(¬A)π(n) ⇔ (MG, n) � ¬A(a).

2. D is of the form B1uB2 where {B1, B2} ⊆ Θ. Since G is complete, a : ¬B1t¬B2 ∈

L(n) and a : ¬B1 or a : ¬B2 is in L(n). W.l.o.g., suppose a : ¬B1 ∈ L(n). Since

G is open, a : B1 /∈ L(n). Because B1 ∈ Θ, a /∈ B
π(n)
1 ⇔ a ∈ (¬B1)π(n) ⇒ a /∈

(B1uB2)π(n). However, Aπ(n) = {b | b : A ∈ L(n)}∪ (B1uB2)π(n) and a : A /∈ L(n).

Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).

3. D is of the form B1 t B2 where {B1, B2} ⊆ Θ. Since G is complete, a : ¬B1 u

¬B2 ∈ L(n) and {a : ¬B1, a : ¬B2} ⊆ L(n). Since G is open, a : B1 /∈ L(n) and

a : B2 /∈ L(n). Because {B1, B2} ⊆ Θ, a /∈ Bπ(n)
1 and a /∈ Bπ(n)

2 ⇔ a /∈ (B1tB2)π(n).

However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (B1 t B2)π(n) and a : A /∈ L(n). Therefore,

a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).

4. D is of the form ∃R.B where B ∈ Θ. Since G is complete, a : ∀R.¬B ∈ L(n) and

for every b, (a, b) : R ∈ L(n) ⇒ b : ¬B ∈ L(n). Suppose (a, b) : R ∈ L(n). Then,

b : ¬B ∈ L(n), and since B ∈ Θ and G is open, we have b /∈ Bπ(n). Moreover, since

R ∈ NR, we have (a, b) ∈ Rπ(n). It follows that for every b, (a, b) ∈ Rπ(n) ⇒ b /∈

Bπ(n). So a ∈ (∀R.¬B)π(n) and therefore a /∈ (∃R.B)π(n). However, Aπ(n) = {c | c :

A ∈ L(n)} ∪ (∃R.B)π(n) and a : A /∈ L(n). Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔

(MG, n) � ¬A(a).

5. D is of the form ∀R.B where B ∈ Θ. Since G is complete, a : ∃R.¬B ∈ L(n) and

there exists b s.t. (a, b) : R ∈ L(n) and b : ¬B ∈ L(n). Since B ∈ Θ and G is

open, we have b /∈ Bπ(n). And since R ∈ NR, we have (a, b) ∈ Rπ(n). Therefore,

there exists b s.t. (a, b) ∈ Rπ(n) ∧ b /∈ Bπ(n). Thus, a ∈ (∃R.¬B)π(n) and hence,

a /∈ (∀R.B)π(n). However, Aπ(n) = {c | c : A ∈ L(n)}∪ (∀R.B)π(n) and a : A /∈ L(n).

Therefore, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).

6. D is of the form ♦iB where B ∈ Θ. Since G is complete, a : �i¬B ∈ L(n) and for
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each n′ with i ∈ L(n, n′), a : ¬B ∈ L(n′). Since B ∈ Θ and G is open, we have

a /∈ Bπ(n′) whenever i ∈ L(n, n′). Therefore, we have a ∈
⋂
n′∈Ei(n)(¬B)π(n′) ⇔ a ∈

(�i¬B)π(n) ⇔ a /∈ (♦iB)π(n). However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (♦iB)π(n) and

a : A /∈ L(n). Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).

7. D is of the form �iB where B ∈ Θ. Since G is complete, a : ♦i¬B ∈ L(n) and

there exists n′ s.t. i ∈ L(n, n′) and a : ¬B ∈ L(n′). Since B ∈ Θ and G is open, we

have a /∈ Bπ(n′). Therefore, we have a ∈
⋃
n′∈Ei(n)(¬B)π(n′) ⇔ a ∈ (♦i¬B)π(n) ⇔

a /∈ (�iB)π(n). However, Aπ(n) = {a | a : A ∈ L(n)} ∪ (�iB)π(n) and a : A /∈ L(n).

Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).

Note that for the first five cases, the correctness of the implication a : ¬A ∈ L(n) ⇒

(MG, n) � ¬A(a) depends on the fact that the constraint graph G has no applicable local

or terminological expansion rules. For the last two cases, the correctness of the implication

depends on the fact that G has no applicable global or terminological expansion rules.

The induction step is similar to the corresponding base case, except that in the general

case, in order to show that a /∈ Dπ(n), we use the induction hypothesis rather than relying

on the membership in Θ when none of the concept names occurring in D belong to Θ, and

we use both induction hypothesis and the membership in Θ when some of the concept

names occurring in D belong to Θ and some don’t.

A.1.3 An Example for Footnote 2

One may wonder what would happen if the terminological expansion rules go from left to

right for definitions involving modalities (to avoid backtracking) and go from right to left for

definitions that do not involve modalities. It turns out that using this approach causes the

tableau algorithm to become incomplete as is illustrated in Example A.1.1.

Example A.1.1 Consider a set of expansion rules that contains (i) local and global expansion

rules as given in Fig. 2.1, and (ii) terminological expansion rules that contain the T-, N♦-, and

N�-rules as given in Fig. 2.2. Suppose that there are also five other rules (corresponding to the

N-, Nu-, Nt-, N∃- and N∀-rules in Fig. 2.2) that examine the right-hand sides of definitions
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in the TBox. For example, the rule “If there is a node n with {a : B1, a : B2} ∩ L(n) 6= ∅, A .
=

B1tB2 ∈ T , and a : A /∈ L(n), then L(n) := L(n)∪{a : A}” corresponds to the Nt-rule in Fig.

2.2. Now consider a Tbox T = {A .
= C1 t C2, C1

.
= ♦1B} and a constraint tree G containing

the constraint systems L(n0) = {a : ¬A, a : �1B, b : ♦1C} and L(n1) = {b : C, a : B} where

1 ∈ L(n0, n1). With respect to this set of expansion rules, G is complete and open. Suppose

that there is a model M  G via σ and M � T . Then we have (M, σ(n1)) � B(a) and

E1(σ(n0), σ(n1)), which implies (M, σ(n0)) � ♦1B(a). Since M � T and C1
.
= ♦1B ∈ T , we

have (M, σ(n0)) � C1(a). Furthermore, because M � A .
= C1 t C2, we have (M, σ(n0)) � A(a).

However, the fact that M  G and a : ¬A ∈ L(n0) implies that (M, σ(n0)) � ¬A(a), and this

contradicts (M, σ(n0)) � A(a). Hence, there does not exist a model that satisfies G. Thus, due

to the inability to generate a : ¬A in L(n0), this set of expansion rules fails to detect a potential

clash.

A.2 Additional Material for Chapter 3

A.2.1 Proof of Observation (f3)

f3. For all a ∈ Of \ OΣ, if a was introduced via an application of the ∃A2 -rule to an assertion

∃r.C(b), then for any D ∈ {D′ | D′(a) ∈ Af}, C v D ∈ T f .

Proof We prove this by induction on the application of the assertion expansion rules. Let A′

(A′′) be the ABox before (after) the application of an expansion rule. We assume that for any

individual a ∈ Of \ OΣ and for all D ∈ {D′ | D′(a) ∈ A′}, C v D ∈ T f and we argue that

C v E ∈ T f for all E ∈ {D′ | D′(a) ∈ A′′}. The base case is when a was just introduced as

a result of applying the ∃A2 -rule to ∃r.C(b) and no other rule was applied yet. Then we have

{C ′ | C ′(a) ∈ A′} = {C} and obviously, C v C ∈ T f .

If thevA-rule is applied to an assertion E(a) where E ∈ {D′ | D′(a) ∈ A′} and E v F ∈ T f ,

then we add F (a) ∈ A′′. By IH, C v E ∈ T f . It follows that C v F ∈ T f .

If the uA-rule is applied to assertions E1(a), ..., Ek(a) where E1, ..., Ek ∈ {D′ | D′(a) ∈ A′}

and E1u· · ·uEk ∈ SubE, then we have E1u· · ·uEk(a) ∈ A′′. By IH, C v Ei ∈ T f (i = 1, ..., k).

It follows that C v E1 u · · · u Ek ∈ T f .
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If the ∃A2 -rule is applied to an assertion ∃r.E(a) where ∃r.E ∈ {D′ | D′(a) ∈ A′}, then

a fresh individual c and new assertions, r(a, c) and E(c), are introduced. Since for every

b ∈ Of \OΣ where b 6= c, {D′ | D′(b) ∈ A′} = {D′ | D′(b) ∈ A′′}, the claim holds for individual

b. For the fresh individual c, we have {C ′ | C ′(c) ∈ A′′} = {E} and obviously, E v E ∈ T f .

If the ∃A1 -rule is applied to assertions r(a, c), E(c) ∈ A′, then ∃r.E(a) ∈ A′′ and ∃r.E ∈

{D′ | D′(a) ∈ A′′}. Since a ∈ Of \ OΣ, it follows from (f1) that c ∈ Of \ OΣ and so, in

view of r(a, c) ∈ A′, the individual c was introduced as a result of applying the ∃A2 -rule to an

assertion, say ∃r.F (a) ∈ A′. By IH, C v ∃r.F ∈ T f and F v E ∈ T f . It then follows that

C v ∃r.E ∈ T f .

A.2.2 Proof of Theorem 3.4.3

Theorem 3.4.3 (Soundness of the Assertion Expansion Rules) Let Af be an assertionally

closed ABox obtained from Σ by applying the tableau algorithm Λ. For any C ∈ C ∩ SubE and

any a ∈ Of , if C(a) ∈ Af , then for every model I = 〈∆, ·I〉 of Σ, there is a semantic extension

of INΣ
that satisfies C(a). In particular, if a ∈ OΣ, then Σ � C(a).

Proof Let I = 〈∆, ·I〉 be an arbitrary model of Σ. We need to show that after applying each

of the expansion rules, there is a semantic extension of INΣ
that satisfies the new assertion(s)

being added to Af . We prove this by induction on the construction of Af . The base case is

when C(a) ∈ A. Since I is a model of Σ, so is INΣ
, and hence INΣ

satisfies C(a). For the

induction step, we use A′, O′ and I ′ = 〈∆, ·I′〉 to denote the ABox before the application

of an expansion rule, the set of individual names appearing in A′, and a model of 〈A′, T 〉,

respectively, where, by IH, I ′ = I ′NΣ∪O′ is a semantic extension of INΣ
. We also denote by A′′

the ABox after the application of the expansion rule and by O′′ the set of individual names

appearing in A′′. Note that in the first three cases below, O′′ = O′.

1. If vA-rule is applicable, then C(a) ∈ A′, C v D ∈ T f and D(a) /∈ A′. After applying

the rule, D(a) ∈ A′′. By IH, C(a) ∈ A′ implies that aI
′ ∈ CI′ . Since C v D implies

CI
′ ⊆ DI′ , we have aI

′ ∈ DI′ . It follows that the newly added assertion D(a) is satisfied

by I ′.
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2. If uA-rule is applicable, then {C1(a), ..., Ck(a)} ⊆ A′, C1u· · ·uCk(a) /∈ A′ and C1u· · ·u

Ck ∈ SubE. After applying the rule, C1 u · · · uCk(a) ∈ A′′. By IH, aI
′ ∈ CI′i (1 ≤ i ≤ k)

which implies aI
′ ∈ CI′1 ∩ · · · ∩ CI

′
k = (C1 u · · · u Ck)I

′
. It follows that I ′ satisfies the

newly added assertion C1 u · · · u Ck(a).

3. If ∃A1 -rule is applicable, then {r(a, b), C(b)} ⊆ A′, ∃r.C ∈ SubE and ∃r.C(a) /∈ A′. After

applying the rule, ∃r.C(a) ∈ A′′. By IH, {r(a, b), C(b)} ⊆ A′ implies that (aI
′
, bI

′
) ∈ rI′

and bI
′ ∈ CI′ . It follows that aI

′ ∈ (∃r.C)I
′
. So, I ′ satisfies the newly added assertion

∃r.C(a).

4. If ∃A2 -rule is applicable, then ∃r.C(a) ∈ A′, a is not blocked and for all b ∈ O′, {r(a, b),

C(b)} * A′. In applying the rule, a fresh individual name c is introduced and after the

application, {r(a, c), C(c)} ⊆ A′′. By IH, ∃r.C(a) ∈ A′ implies that there is an individual

d ∈ ∆ such that (aI
′
, d) ∈ rI

′
and d ∈ CI

′
. We define an interpretation J such that

cJ = d and JNΣ∪O′ = I ′NΣ∪O′ . Let O′′ := O′ ∪ {c}. It is obvious that JNΣ∪O′′ is a

semantic extension of I ′NΣ∪O′ and we have (aJ , cJ ) ∈ rJ and cJ ∈ CJ .

Next we show that if a ∈ OΣ, then Σ � C(a). The fact that a ∈ OΣ implies that C(a) can

only be obtained by an application of the vA-, uA-, or ∃A1 -rule. There are two cases: (a) If

C(a) is obtained through a sequence of applications of the assertion expansion rules without

the ∃A2 -rule from A, since at each step, no new individual is created, the semantic extension

of I is itself, and hence C(a) is satisfied by I. Since I is an arbitrary model of Σ, we have

Σ � C(a). (b) If in the sequence of applications of obtaining C(a), the ∃A2 -rule has been applied

to an assertion D(a), in view that a ∈ OΣ, by (f3) and the (EX)-rule in [59], D v C ∈ T f .

Therefore, C(a) could have been obtained from C(a) by an application of the vA-rule. It then

follows from case (a) that Σ � C(a).

A.2.3 Proof of Theorem 3.4.4

To prove the completeness of Λ, we define a canonical interpretation JAf = 〈∆, ·J 〉 for the

assertionally closed ABox Af as follows:

• ∆ := Of ;
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• aJ := a, for every a ∈ Of ;

• AJ := {a | A(a) ∈ Af} where A ∈ NC ∩ SubE;

• rJ := {(a, b) | r(a, b) ∈ Af or r(c, b) ∈ Af where c ∈ Of blocks a and is not blocked by

other individuals}

• JAf is extended to all of SubE as usual.

Because of blocking, some assertions of the form ∃r.C(a) ∈ Af may not have a witness

d ∈ Of such that {r(a, d), C(d)} ⊆ Af . In this case, the canonical interpretation of ∃r.C is

obtained by utilizing an individual, say c, that blocks a and is not blocked by other individuals.

Then we have {∃r.C(c), r(c, b), C(b)} ⊆ Af for some b ∈ Of . The individual b can be used as

an r successor of the individual a when constructing the interpretation of ∃r.C and therefore

a becomes an element of (∃r.C)J . This is reflected in the definition of rJ .

Lemma A.2.1 For every concept C ∈ C ∩ SubE and for every individual a ∈ Of , C(a) ∈

Af ⇔ JAf � C(a).

Proof (=⇒) Assume that C(a) ∈ Af . We argue by induction on the structure of C. The base

case is when C ∈ NC ∩ SubE. By the definition of JAf , aJ ∈ CJ and hence JAf � C(a).

If C = C1 u · · · u Ck, by the computation of SubE, Ci ∈ SubE (1 ≤ i ≤ k). Since Af is

assertionally closed, {C1(a), ..., Ck(a)} ⊆ Af due to the vA-rule. By IH, Ci(a) ∈ Af ⇒ JAf �

Ci(a)⇒ aJ ∈ CJi , 1 ≤ i ≤ k. Hence aJ ∈ CJ1 ∩ · · · ∩C
J
k = (C1 u · · · uCk)J = CJ . Therefore,

JAf � C(a).

If C = ∃r.C1, there are two cases:

• ∃r.C1(a) has a witness b ∈ Of such that {r(a, b), C1(b)} ⊆ Af . Then by the definition of

JAf , (aJ , bJ ) ∈ rJ . By IH, bJ ∈ CJ1 . It follows that aJ ∈ (∃r.C1)J = CJ and hence,

JAf � C(a).

• ∃r.C1(a) does not have a witness b ∈ Of such that {r(a, b), C1(b)} ⊆ Af . Then there

must exist an individual c ∈ Of that blocks a and {r(c, d), C1(d), ∃r.C1(c)} ⊆ Af for
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some d ∈ Of . By the definition of JAf , (aJ , dJ ) ∈ rJ . By IH, dJ ∈ CJ1 . It follows that

aJ ∈ (∃r.C1)J = CJ . Therefore, JAf � C(a).

(⇐=) It suffices to show that for every concept C ∈ C ∩ SubE and individual a ∈ Of , if

C(a) /∈ Af , then JAf 2 C(a). We again argue by induction on the structure of C. The base

case is when C ∈ NC ∩ SubE. If C(a) /∈ Af , by the definition of JAf , aJ /∈ CJ . Therefore,

JAf 2 C(a).

If C = C1 u · · · u Ck, then since Af is assertionally closed, C(a) /∈ Af implies {C1(a), ...,

Ck(a)} * Af due to the uA-rule. So there is a Ci such that Ci(a) /∈ Af , 1 ≤ i ≤ k. By IH,

JAf 2 Ci(a). It follows that aJ /∈ CJi and hence aJ /∈ CJ1 ∩· · ·∩C
J
k = (C1u· · ·uCk)J = CJ .

Therefore, JAf 2 C(a).

If C = ∃r.C1, then since Af is assertionally closed, C(a) /∈ Af implies that there does

not exist an individual b ∈ Of such that {r(a, b), C1(b)} ⊆ Af due to the ∃A1 -rule. By the

definition of rJ and IH, for every b ∈ Of , either (aJ , bJ ) /∈ rJ or bJ /∈ CJ1 . It follows that

aJ /∈ (∃r.C1)J = CJ and hence, JAf 2 C(a).

Corollary A.2.2 In the canonical interpretation JAf , for every C ∈ C ∩ SubE, CJ = {b ∈

Of | C(b) ∈ Af}.

Lemma A.2.1 says in effect that the canonical interpretation is a model of the ABox Af .

Next lemma shows that JAf is also a model of the TBox T f .

Lemma A.2.3 For all concepts C,D ∈ C ∩ SubE, C v D ∈ T f ⇒ JAf � C v D.

Proof The claim is an easy consequence of the vA-rule and Lemma A.2.1. For any subsump-

tion C v D ∈ T f and any a ∈ Of , C(a) ∈ Af ⇒ D(a) ∈ Af by the vA-rule. By Corollary

A.2.2, CJ = {b ∈ Of | C(b) ∈ Af} and similarly for DJ . It follows that CJ ⊆ DJ .

Theorem 3.4.4 (Completeness) Let SubE be the set of subexpressions obtained from a KB

Σ = 〈A, T 〉 and a finite set of assertions S (see Section 3.4.1). Let Af be an assertionally

closed ABox obtained from Σ by applying the tableau algorithm Λ. Then for every concept

C ∈ C ∩ SubE and for every individual a ∈ Of , Σ � C(a)⇒ C(a) ∈ Af .
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Proof Suppose that C(a) holds in all models of Σ. By Lemma A.2.1, the canonical interpreta-

tion JAf is a model of Af and hence of A. By Lemma A.2.3, JAf is a model of T f and hence

of T . It follows that C(a) holds in JAf . By Lemma A.2.1, C(a) ∈ Af .
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