
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Intrusion detection and response for system and
network attacks
Fred Philip Stanley
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Stanley, Fred Philip, "Intrusion detection and response for system and network attacks" (2009). Graduate Theses and Dissertations.
10684.
https://lib.dr.iastate.edu/etd/10684

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10684?utm_source=lib.dr.iastate.edu%2Fetd%2F10684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Intrusion detection and response for system and network attacks

by

Fred Philip Stanley

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Johnny Wong, Major Professor

Samik Basu
Shashi Gadia

Iowa State University

Ames, Iowa

2009

Copyright © Fred Philip Stanley, 2009. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv
ABSTRACT . v

CHAPTER 1. OVERVIEW. 1
1.1. Introduction . 1
1.2. Motivation . 2
1.3. Contribution . 3
1.4. Road map . 4

CHAPTER 2. RELATED WORK . 5
2.1. Background . 5
2.2. Open source software . 8

2.2.1. Snort. 8
2.2.2. Fwsnort . 8
2.2.3. Psad . 9

2.2.3.1. Various attacks detected by psad . 9
2.2.3.2. Active response with psad. 10

2.2.4. Combining psad and fwsnort . 10
2.2.5. Fwknop . 11

2.2.5.1. Port knocking . 11
2.2.5.2. Fwknop tool . 12

2.3. Summary . 13

CHAPTER 3. INTRUSION DETECTION & RESPONSE FRAMEWORK 14
3.1. Overview . 14
3.2. Multi-source intrusion detection module . 15
3.3. Optimized Link State Routing (OLSR) . 17

3.3.1. OLSR packet format . 17
3.3.2. HELLO messages of OLSR. 19

3.4. Basic activities of an OLSR worm. 20
3.5. Worm propagation . 21

CHAPTER 4. INTRUSION RESPONSE ENGINE. 23
4.1. Overview . 23
4.2. Initialization module . 24

4.2.1. System entities - A layered approach . 24
4.2.2. Dependency graph . 26

iii

4.2.3. Value propagation method using dependency graph. 29
4.3. Cost based response selection module . 33

4.3.1. Damage assessment . 34
4.3.2. Response cost evaluation. 35
4.3.3. Response selection. 36

4.4. Response deployment module . 37

CHAPTER 5. WORM IMPLEMENTATION & EXPERIMENTAL EVALUATION 38
5.1. OLSR worm implementation . 38
5.2. Intrusion detection module implementation. 39
5.3. Intrusion response engine. 41

5.3.1. Initialization module . 41
5.3.2. Response selection and deployment module . 44

5.4. Test-bed setup . 45

CHAPTER 6. EXPERIMENTAL RESULTS . 47
6.1. Attack scenario without automated response . 47
6.2. Attack scenario with automated response . 48
6.3. Performance metrics. 50

6.3.1. Benchmarking the response selection time . 50
6.3.2. Cumulative response time . 52

6.4. Discussion . 53
6.4.1. Benchmarking using different types of attacks . 53
6.4.2. Dependency graph enhancement . 53

6.4.2.1. Automatic generation of the dependency graph . 53
6.4.2.2. Visualization of dependency graph. 54
6.4.2.3. Alternative value evaluation method . 54

6.4.3. Cross layer response . 54
6.4.4. Communication between the response engines . 54

CHAPTER 7. CONCLUSION AND FUTURE WORK . 55
7.1. Conclusion . 55
7.2. Future work . 55

BIBLIOGRAPHY. 56
ACKNOWLEDGEMENTS . 58

iv

LIST OF FIGURES

Figure 1. Multi-source intrusion detection & response framework . 15
Figure 2. OLSR packet format [22] . 18
Figure 3. OLSR HELLO Message [22] . 19
Figure 4. OLSR worm propagation . 21
Figure 5. Dependency graph showing different entities of a system 27
Figure 6. Dependency graph - VoIP example. 28
Figure 7. Example of inter-dependency weight assignment. 30
Figure 8. Dependency graph representing the test bed. . 42
Figure 9. OLSR worm attack scenario without automated response 47
Figure 10. OLSR worm attack scenario with automated response. 49
Figure 11. Benchmarking of response selection time. 51
Figure 12. Cumulative response time . 52

v

ABSTRACT

This work focuses on Intrusion Detection System (IDS) and Intrusion Response System

(IRS) model for system and network attacks. For decades, IDS has evolved tremendously and

has become highly sophisticated. However, the response to an attack is still manually

triggered by an administrator who relies on static mapping to counteract the intrusion. The

speed of attack-spread and its increased complexities in recent years have shown that it is

highly critical to develop an automatic IRS. Moreover, manual responses are not flexible and

effective in distributed environment without infrastructure.

This work presents a cost based response model that is tightly coupled with multi-source

IDS. It is a known fact that any system can be broken down into smaller granules of services

and resources. A dependency graph is employed to describe the relations between services

and resources in a system. This dependency graph is also used to propagate the total value of

the system down to the service and resource levels. The damage cost of the intrusion and the

response cost of the responses are evaluated using the dependency graph. Using several

performance metrics, a response which brings the most benefit to the system is deployed.

We demonstrate the abilities of our model by using buffer overflow attack caused by a

computer worm on Optimized Link State Routing (OLSR) protocol on a wireless ad-hoc

network environment. Experimental results show that our model is effective and is highly

practical.

 1

CHAPTER 1. OVERVIEW

1.1. Introduction

Intrusion detection has been the focus of intense research for the last few decades and has

become highly sophisticated. Typically intrusion detection is defined as the process of

analyzing information about the system activity or its data to detect any malicious behavior or

unauthorized activity. There are many types of intrusion detection systems which include

Network based Intrusion Detection Systems (NIDs) and Host based Intrusion Detection

Systems (HIDs).

Network layer attack can be defined as a packet or a series of packets that abuses the field of

network layer header in order to exploit vulnerability in the network. NIDs look at the

network traffic data and detect any malicious activity between any two interacting systems.

Snort [17] is an example of a network based intrusion detection system. On the other side,

HIDs monitor and analyse the internals of a computing system like memory, file system, user

rather than the external interfaces to find abnormal behavior. OSSEC [23] is an example of a

open source host based intrusion detection system and there are lots of open source HIDs

available on market.

Typically, any type of intrusion detection system will trigger an alert or will log the

malicious activity. After an intrusion detection system has detected a malicious activity it is

desirable to take evasive or corrective actions to stop the attack and ensure safety of the

computing environment. Such a counter-measure is called intrusion response.

Traditionally, when an intrusion detection system is triggering an alert it is the duty of the

system administrator to go through every detail of the alert generated and then deploy a

suitable response. Unfortunately, system administrators neither can keep up with the pace of

the intrusion detection system nor can they react upon these alerts within a reasonable time

limit. Moreover these manual responses are not flexible and are not very efficient. These

manual responses totally depend on the expertise of the system administrator.

Automated response systems can take over the task which is required in case of many

distributed systems to respond to an alert more quickly and accurately. Even though the

 2

intrusion response system component is often integrated with intrusion detection, it receives

considerably less attention than the intrusion detection research because of the complexity

involved developing and deploying response in automated fashion.

An automated intrusion response is a mechanism to select a response without human

intervention. The main advantage of automated response is reduction in the response latency

from the time of detection. An automated response also provides consistent and accurate

response across systems and organizations. These automated responses also eliminate the fact

that many system administrators fail to consider the cost associated with the response

deployed. Even though the automated responses have lot of advantages, it is slow to be

adopted because its implementation is complex even for experienced professionals as it still

needs standardized performance metrics and increased automation .

1.2. Motivation

A major concern of most of the existing automated intrusion response systems is the way to

build a system model. This system model takes into account the resources of the system and

factors like intrusion cost, response cost and response effectiveness. Many graph based

system models have been proposed in the past. Some of the examples include a dependency

graph [1], graph models [3] and hierarchical tree model [2].

Most of these approaches need the system administrator to assign values to specific

resources of the system and then build the system model. This assigned value for the resources

are used in the process of evaluating metrics like intrusion damage cost, response cost and

response effectiveness. Any system can be divided into many components that may be a

service or a resource. But it becomes intractable in general for the system administrator to

assign values for a specific resource or a service in a system. It is not only a tough job for the

system administrators but it may not also be an accurate estimate for that system.

 On the other hand, the project managers or the business analysts are more comfortable in

assigning the values just for the services of the system. This can be easily obtained from the

cost incurred by the organization when that service stops functioning. The other problem is

that most of the existing automated response systems assume that the damage cost of an

intrusion is known and they only provide ways to estimate the response cost.

 3

To solve all the aforesaid problems we have proposed and implemented a generic response

model that will be a possible solution to these problems. We provide an accurate and a

consistent way to evaluate the system and a procedural method to select a response. We have

introduced a dependency graph that will help in evaluating values for all elements in the

system, estimating the damage cost, response cost and response effectiveness of an intrusion.

1.3. Contribution

In this work we design and implement an intrusion detection and response framework. We

introduce a dependency graph model which represents the interdependency between entities

of a system. The system is divided into layers of different entities. An entity is a general name

used to represent a resource or a service of a system. The dependency graph divides any

system into four layers namely the application services, component services, system/support

services and the resources of the system. The resources are further categorized into virtual

resources and physical resources.

This dependency graph represents each of these entities as nodes connected by edges. These

edges represent the dependencies between entities in terms of the security goals, namely

confidentiality, integrity and availability. Each edge also has information that describes the

dependency weight among services and resources. As a first step the overall value of the

system is gauged from the business analyst or the manager. Then the total value of the system

is shared among the top level application services. Then a value propagation method is used to

propagate the value of the top level application services to all other entities of the system. This

propagation method uses information provided by the dependency graph to do the value

propagation.

Each entity in the system gets a value for its own after the propagation. Thus we do an

accurate value estimate of all the entities in a system. Then we use the dependency graph

constructed to find the Damaged Cost (DC) of an intrusion when an attack takes place. Along

with that we provide functions to evaluate metrics like response cost and response

effectiveness.

Finally we provide a method to select the best response for an intrusion and then deploy the

selected response. We deploy a response only when that response is estimated to do more

 4

benefit than damage to the system. We use Linux shell scripts to deploy responses such as

adding a firewall rule, restart a process or suspend a process.

The main contributions of this project are the following:

Intrusion detection/response framework: A framework is implemented that works on the

principle of proposed generic response model. The framework is adaptable to different

environments. It has a multi-source intrusion detection module and a cost based automated

intrusion response engine. The communication between the intrusion detection module and

the intrusion response engine is based on the client server architecture.

Dependency graph: A dependency graph is designed and implemented using an XML

technology. This dependency graph helps categorizing a system into different layers of

entities. Then this graph is used to represent the interdependencies between entities.

Value propagation method: A value propagation method is implemented to propagate the

whole value of the system to every entity of the system.

Response selection and deployment module: This provides a generic approach to measure

metrics like damage cost and response cost. This module also helps to select and deploy the

best response.

1.4. Road map

This thesis is organized as follows. Chapter 2 details some of the related work and

highlights some interesting open source tools in the field of intrusion detection and response.

Chapter 3 describes the intrusion detection module, focusing on Optimized Link State

Routing (OLSR) protocol and an OLSR worm attack. In Chapter 4 introduces the cost based

automated intrusion response engine that uses dependency graph to select the best response.

Chapter 5 describes the implementation details of the intrusion detection and response

framework. Chapter 6 presents the results, timing and efficiency of the framework. Finally

Chapter 7 concludes the discussion with opportunity for future development and

enhancement.

 5

CHAPTER 2. RELATED WORK

In this chapter we summarize the work previously done in the area of automated response

system. The latter part of this chapter focuses on some open source intrusion detection system

and response tool available to mitigate system and network attacks.

2.1. Background

Taxonomy of intrusion response system with a review of current trends is provided by

Stakhanova et al. [4], which provides a general overview of the existing work on intrusion

response systems. The intrusion response systems can be classified as active and passive.

Passive response systems do not attempt to minimize the damage already caused by an

intrusion or prevent further attacks. The main purposes of those passive systems are to notify

the authorities or to provide attack information. As opposed to passive intrusion response

systems the active systems aim at minimizing the damage caused by the attack and attempts to

locate the attacker.

The classification according to the level of automation has been presented in early days by

several authors [1][5][6]. But [4] has come up with a new classification based on the degree of

automation of the intrusion response system and can be divided into notification systems,

manual systems and automatic systems. Notification systems provide information about the

intrusion which can be used by the system administrator to respond to the intrusion. Most

existing IDS provide notification response mechanism. Manual systems provide a higher

degree of automation than the notification systems. They allow the system administrators to

launch an action from a predefined set of responses based on reported attack information.

Automatic systems allow immediate response to the intrusion through decision making

process. Current research on intrusion response systems focus on automatic response systems.

Lee et al. [7] introduce a cost-sensitive model for intrusion detection and response. They

examine the major cost factors associated with the IDS which includes development cost,

operational cost, damage cost due to successful intrusions and the cost of manual and

automated responses to intrusions. Operational cost covers the cost of processing and

analyzing the data for detecting the intrusion. Damage cost is the measure of the cost incurred

 6

because of an intrusion. The response cost includes operational cost incurred while deploying

the response actions. They define a cost model to formulate the total expected cost of an IDS

and they present cost-sensitive machine learning techniques that can produce detection

models that are optimized for user-defined cost metrics. These three cost factors mentioned

act as metrics for selecting a response.

Toth et al. [1] provide a network-based response model and an algorithm to evaluate the

impact of a response action on entities of a network. Networks are complex structures that

include many elements which are heavily related and dependent on each other. The elements

of a network system include services offered by a host, system users, security control

information, network topology and firewall rule. They represent the dependencies between

these elements using a dependency graph. There can be different types of dependencies

between these elements. So when an intrusion takes place, the penalty costs of different

response actions to the system are evaluated. The penalty cost refers to the impact of a

response action to the elements of the system. The response with the lowest negative effect is

selected. This network based response model helps to select a globally optimal response.

Balepin et al. [2] provide a structured approach in automatic responses by coupling the

automated response with the specification based and host based intrusion detection. They

describe a system map based action cost model that gives the basis for deciding on a response

strategy. The resources of a system are arranged in two ways as resource type hierarchy and

system map. The resource type hierarchy is the process of grouping the resources by type.

This is because every group has most likely the same response actions associated with an

attack.

The system map is a direct graph to model the local resources and their dependencies. The

nodes in the graph represent every instance of the resource types and the edges represent the

dependencies between them. The authors propose the use of cost based on priority of a

resource as a base metric for selecting a response. There are nodes on the system map called

priority nodes that represent the most important resources on the system. They carry a non-

zero value. There are nodes that represent the basic resources of the system and they have no

value of their own. They get the cost based on its dependency with the priority nodes of the

system. Every node has a list of basic response action and every response action has an

 7

activation condition. They use a cost model to select a response, when several response

actions with activation criteria match with the current situation. Every node is associated with

some numeric cost by the system administrator and the system map is generated.

They provide methods to compute the cost of intrusion action, benefit of the response and

the cost of a response action. Cost of an intrusion action is defined as the sum of nodes that

were previously in safe before they got affected. The benefit of the response is defined as the

sum of cost of all nodes previously in set of affected nodes that this response action restores to

working state. Cost of response action is the cost of the nodes that get negatively affected by

the response action. Finally they provide a response selection that maximizes the benefit at the

minimum cost. They also show the process of suspending the attack and then designing an

optimal strategy during the time of uncertainty.

Foo et al. [8] introduce a complex framework called Adaptive Intrusion Response using

Attack Graphs (ADEPTS) for determining automated responses when an intrusion takes

place. They use attack graphs to identify the response actions required to stop possible attacks

on targets in a distributed system. The other objective is to allow certain parts of the system to

continue to provide partial system functionality in the case of failures. ADEPTS uses a

directed graph representation to model the spread of the failure though the system. It also

presents algorithms for determining appropriate responses and monitoring their effectiveness

and quantifies the effect of disruption through a high level survivability metrics.

This framework uses graph called intrusion Graph (I-graph). The nodes of an I-graph

represent sub-goals for the intrusion and edges represent pre-condition/post conditions

between the goals. They also have a graph representing the interdependencies between

services. Using the information of the interdependencies among services, an I-graph is

generated. Compromised Confidence Index (CGI) of a node in the I-graph is a measure of the

likelihood that a node has achieved by an attacker. Using this metric the response deployment

location is determined. Responses are selected to frustrate attack goals based on effectiveness

of that particular attack in the past, disruptiveness to legitimate users and the confidence level

which indicates that attack is actually taking place.

 8

Jahnke at al. [3] propose a graph based approach for modeling the effects of both attacks

against computer networks and response measures as a reaction against the attacks. Certain

properties of the model graph are utilized to quantify different response metrics that are well

known to network security officers. They generate a dependency graph for the system where

the nodes represent different system resources and the edges represent their dependencies.

This graph is used for choosing the best response from the list of available responses after

measuring the effects of all the responses. Although this method requires careful graph

construction and validation, it allows automatic assessment of the response success calculated

through the change of the availability of resource nodes in the graph.

2.2. Open source software

There are many intrusion detection and response tools available in commercial market and

in research community. This section highlights a few interesting and popular ones.

2.2.1. Snort

Snort is a network based IDS that scans the traffic and tries to find suspicious activities

using a set of rules. A rule set is a collection of specific byte pattern that indicates a particular

attack. This type of IDS is usually called signature based intrusion detection system. The

signature of the attacks can be downloaded from snort web site and once it is configured it can

be used by snort to detect that attack. Snort can also be configured to work as a packet sniffer

and packet logger. Snort performs protocol analysis, content searching/matching, and is

commonly used to actively block or passively detect a variety of attacks and probes such as

buffer overflows, stealth port scans, web application attacks, SMB probes, and OS

fingerprinting attempts. The main problems faced with snort are difficulty in installing and

maintaining, needs significant amount of tuning required to avoid false positives.

2.2.2. Fwsnort

In recent years much effort has been put into integrating the snort with the iptables. We will

be discussing about several tools that are developed based on this approach.

Fwsnort stands for firewall snort. It translates snort rules into equivalent iptables rules and

generates a shell script that implements the resulting iptables commands. First it parses the

 9

iptable rule set on the machine and determines which snort rules are applicable to specific

iptable policy. Then fwsnort generates iptable rules which log information to the syslog.

Fwsnort utilizes the filtering and inspection capabilities of iptables including heavy use of

iptables string matching extension in order to match snort rules as closely as possible within

an iptable rule set. These logged messages can be analyzed with a log analyzer such as psad.

Fwsnort is able to translate approximately 60% of all the rules from the Snort-2.3.3 IDS into

equivalent iptables rules.

2.2.3. Psad

Port Scan Attack Detector (PSAD) is a light-weight IDS which results from Bastille-NIDS

project. Psad makes use of iptables log messages to detect, alert, and (optionally) block port

scans and other suspect traffic. Firewalls like iptables offer extensive logging and filtering

capabilities and can provide valuable security data that cannot be ignored. A dedicated IDS

such as snort offers a large feature set and comprehensive rules of language to describe

network attacks. Psad utilizes both the advantages by adapting the snort rules and matching it

against the logs created by the firewalls like iptables. In fact psad can be considered as a log

file analyzer.

2.2.3.1. Various attacks detected by psad

Psad can detect various types of suspicious network traffic by examining network and

transport layer headers. It can detect port scans generated by Nmap, probes for various back

door programs, Distributed Denial of Service (DDoS) attacks and other efforts to abuse

networking protocols. Psad can detect many types of port scans like TCP connect scan, TCP

FIN, XMAS and NULL scans, TCP SYN or half-open scan and UDP scan to name a few.

Psad can also passively fingerprint the remote operating system from which a scan or a

malicious traffic originates. This information can be reported to DShield, which is a

community-based collaborative firewall log correlation system. It serves as a central depot of

data. These data are provided by software from both open source and commercial worlds.

These collective data is used to analyze the attack and attack trends.

 10

Psad also uses snort rules to do a signature matching. Psad uses all the 150 rules in the snort

ruleset to do signature based intrusion detection. For example naptha DDoS attack is

designed to flood the target TCP stack with so many SYN packets that the system cannot

serve the legitimate requests. But there is a snort rule with id number 275 that can detect a

packet generated by the naptha DDoS attacker who uses IP id value as 413 and TCP sequence

number 6060842. Thus using the snort rules, psad is able to detect most of the known DDoS.

As a matter of fact, psad can detect and generate alerts for over 60 percent of all Snort-2.3.3

rules.

2.2.3.2. Active response with psad

One of the features sought after intrusion detection is the ability to automatically respond to

an attack. Psad has the ability to respond to an attack dynamically by instantiating blocking

rules against the attacker. The main method psad employs to respond is by changing the local

filtering policy so that it blocks all accesses from an attacker’s source IP address for a

configurable amount of time. It can reset the established session or a connection with the

attacker for a specific amount of time. Some of the responses include instantiation of firewall

blocking rules, modification of routing tables, generation of ICMP port/host unreachable

packets for UDP attacks and use of TCP resets for attacks that take place over TCP

connection.

2.2.4. Combining psad and fwsnort

A combination of psad and fwsnort provide a system with intrusion detection and response

capabilities. Although psad provides detection, alerting and auto-response capabilities, the

effectiveness of its detection engine is fundamentally limited by the characteristics of the

iptables logging format. Better attack detection is offered by fwsnort, including detection for

application layer attacks using string matching capabilities.

For example WEB-PHP setup.php access attack can be detected and stopped, which is an

attempt to exploit an input validation weakness in the MediaWiki software. A successful

exploit of the vulnerability could lead to unauthorized remote execution of code on the

targeted system upon receipt of specially constructed URI parameters within a HTTP request.

 11

This HTTP request looks like the following http://x.x.x.x/setup.php. Fwsnort uses the string

matching extension to detect /setup.php string within an established TCP connection. So an

alert is logged when fwsnort detects string /setup.php over a web session. Thus fwsnort is able

to inspect application layer data and log malicious activities. Now psad can analyze the log

and apply its alerting and reporting machinery to the event. Then psad maps this alert to

appropriate snort rule so that more information (e.g. the class type of the attack) can be found.

In this case it is a web-application-activity class type. Such valuable information is given to

the system administrator who is trying to investigate the nature of the attack and to determine

what a successful exploit might have meant for the security stance of the network.

The combination of these two tools can also help us in providing a cross layer intrusion

response. For example when there is an attack on an application layer, like a user trying to

abuse an application, the usual response would be disabling the user account. But a network

level response can also be provided. The string matching libraries of fwsnort are used to

inspect the application layer data and detect the application level attack. Then psad can read

the logs of fwsnort and respond to the attack either by adding an iptable rule to block a

connection or perform a network level response like tearing down a TCP connection of the

attacker by sending a RST packet.

2.2.5. Fwknop

The biggest implication for all signature based IDS is that they detect only known attacks.

The challange that arises is that how to protect network services from undiscovered

vulnerabilities. These are called zero-day attack. These are created when someone finds an

undiscovered vulnerability in a piece of software and writes an exploit for it. He becomes the

first person in the world to find this vulnerability and there is no signature based IDS for it. To

address this problem this tool helps in adding an additional layer of security to arbitrary

network services.

2.2.5.1. Port knocking

Port knocking is the communication of authentication data across closed ports which a

service (such as SSH daemon) is protected behind a packet filter configured in a default-drop

 12

stance. Any would-be client that wishes to make a connection to a protected service through

the default-drop packet filter must first prove possession of a valid port-knock sequence. If the

client produces a correct knock sequence then the packet filter is temporarily reconfigured to

allow IP address that sent the sequence to connect to a protected service for a certain period of

time.

2.2.5.2. Fwknop tool

FireWall KNock OPerator (fwknop) is released as an open source project using GNU

Public License (GPL). It combines the encrypted port knocking with passive OS

fingerprinting, making it possible to allow only Linux systems to connect to your SSH

daemon. Fwknop’s port knocking component is based on iptables log messages and it uses

iptables as a default-drop packet filter. It implements an authorization scheme known as

Single Packet Authorization (SPA) for Linux systems running iptables. This mechanism

requires only a single encrypted and non-replayed packet to communicate various pieces of

information including desired access through an iptables policy. An authorization server

fwknopd passively monitors authorization packets via libpcap and hence there is no ‘server’

to which to connect in the traditional sense.

Fwknopd is the server component for the FireWall Knock Operator, and is responsible for

monitoring Single Packet Authorization (SPA) packets that are generated by fwknop clients,

modifying an iptables or ipfw policy to allow the desired access after decrypting a valid SPA

packet, and removing access after a configurable time-out. The fwknop client has a rich set of

command-line options that allow system administrators to inform the fwknop server to grant

the exact access according to the iptables policy. The main application of this program is to

protect services such as SSH with an additional layer of security in order to make the

exploitation of vulnerabilities much more difficult. Any service protected by fwknop is

inaccessible (by using iptables or ipfw to intercept packets within the kernel) before

authenticating and anyone scanning for the service will not be able to detect the fact that it is

listening.

Thus this is a powerful tool to protect server by default-drop packer filter, through which

access is granted only to clients who are able to prove their identities to use its service.

 13

Fwknop is mostly used to provide an additional layer of security for services that typically

have long running sessions such as OpenSSH or OpenVPN.

2.3. Summary

All these models have one common problem, i.e., lack of consistency in the value

evaluation of the resources and lack of procedural way to select a response. Our approach

builds on existing work and have provided a consistent way to evaluate the value of all

resources across all system with a procedural response selection model.

 14

CHAPTER 3. INTRUSION DETECTION & RESPONSE FRAMEWORK

This chapter describes the overall design of the intrusion detection and response framework

that is developed in this project. We present the multi-source intrusion detection model and

the communication method between the intrusion detection module and the intrusion response

engine.

This chapter also highlights Optimized Link State Routing (OLSR) protocol [22], an IP

routing protocol on a wireless ad-hoc network environment and the different packet format

used by OLSR. We also illustrate working of an Internet worm that uses a specific

vulnerability in OLSR routing protocol and propagates itself across the wireless ad-hoc

network. We have used this worm to evaluate the intrusion detection and response framework.

The other details on the implementation of the worm are given on chapter 5.

3.1. Overview

The framework developed has two main parts, namely, the multi-source intrusion detection

module and the intrusion response engine. Fig. 1 shows the different modules within the

intrusion detection and response framework. The intrusion detection module consists of

multiple independent intrusion detection sources. These intrusion detection sources are

responsible for the detection of intrusion or any malicious activity on the network or on the

host and send alerts to the intrusion response engine which is responsible for deploying

response so as to curtail the effects of intrusion.

The communication between different intrusion detection sources and the intrusion

response engine is based on client server architecture. These intrusion detection sources can

be anything from a signature based IDS to any custom designed intrusion detection module

developed by a system administrator to monitor any specific aspect of the system.

The intrusion response engine on receiving an alert from these intrusion detection sources

would process the damage effect of the intrusion and then would come up with a list of

possible responses and deploy the best response that will mitigate the effects of the intrusion.

 15

The response engine does a cost sensitive response selection. More detailed description of the

intrusion response engine will be shown on chapter 4.

.

Figure 1. Multi-source intrusion detection & response framework

3.2. Multi-source intrusion detection module

The intrusion detection module is a collection of many individual intrusion detection

sources. Intrusion detection basically refers to a variety of techniques for detecting attacks in

the form of malicious and unauthorized activity. There are three classifications of intrusion

detection approaches [16]. They are: Misuse-based, Anomaly-based and Specification based.

Misuse-based technique relies on pre-specified attack signature, and execution techniques

 16

matching these signatures are flagged as abnormal. In case of Anomaly based approach, we

use machine learning algorithm to discover normal patterns and any deviation from the

normal patterns will be detected as malicious. The last approach is called Specification based

technique, which operates in similar fashion as Anomaly based method. It detects deviations

from specified legitimate system behavior. However it requires user guidance in developing a

model of valid program behavior in the form of specification.

 For the implementation we have used the following types of intrusion detection sources.

• Snort & perl: Snort [17] is an open source network intrusion detection system (NIDS)

which is a type of intrusion detection system that detects malicious activity by monitoring

the network traffic. This is a signature based intrusion detection system. This type of IDS

tries to identify the intrusion by matching the attack pattern to the list of all possible known

attack patterns. When there is a pattern matching the signature, an alert is generated and

logged. Then we have a custom written Perl code that reads these log files and sends a cus-

tom intrusion message to the intrusion response engine.

• CPU resource monitor: This type of intrusion detection source is useful when the signature

of the attack is unknown but the affected entity in our system is known. Entity denotes a

resource or a service in a system. For example in our implementation we have developed a

custom intrusion detection source that will keep looking for a CPU utilization of a specific

resource in our system. When the CPU utilization of that specific resource shows abnormal

behavior, a possible attack might have happened. Then the intrusion detection source sends

out a specific intrusion alert to the response engine. Many custom intrusion detection

sources can be created by the system administrator. This type of IDS can be made to moni-

tor specific aspects of the system and generate alert when there is an abnormality.

For the purpose of testing the intrusion detection and response framework we have used a

OLSR worm attack [15] on the Optimized Link State Routing (OLSR) protocol as an

intrusion on a wireless ad hoc network. Worms usually exploit security vulnerabilities and use

them to gain control of the system. This OLSR worm exploits a specific vulnerability in

OLSR routing protocol. OLSR worm [15] was developed by Jacob Russell Lynch. The OLSR

worm sends out some specially crafted OLSR packet that causes a buffer overflow on the

target machines. And thus the worm takes control of the target machine.

 17

To know more on the working of the worm and the propagation methods on the network it

is important to know the OLSR protocol and OLSR packet format.

3.3. Optimized Link State Routing (OLSR)

OLSR [22] is an IP routing protocol which is optimized for mobile ad-hoc network

(MANET) but can also be used on other wireless ad-hoc networks. OLSR is best suited for

network where the nodes keep moving around or join or leave frequently. OLSR is a proactive

protocol, meaning the routes are available when they are needed unlike the reactive protocol

where the routes are computed when needed. OLSR is also effectively used in networks that

are very dense and large. This is mainly because of the optimization mechanism OLSR has,

which reduces the overhead when flooding messages are sent through the network.

OLSR is an improved and optimized version of the link state routing (LSR) protocol.

Optimization of the flooding mechanism is achieved by selecting a subset of nodes called

multipoint relays (MPRs) to do the broadcasting in the network. A MPR is a node in the

network. Each node will select a set of MPRs from its 1-hop neighbors. A set of MPRs for a

node N will be able to take a message from a node N and can send it on to all the 2 hop

neighbors of N. If a node wants to send a broadcast message, all its 1-hop nodes will receive

the message but however only the MPRs will continue to broadcast the message. This greatly

reduces the amount of congestion and bandwidth being used to send a message to everyone in

the network.

3.3.1. OLSR packet format

OLSR communicates using a unified packet format for all the data related to the protocol.

There are few fields in the packet header that require some explanation to understand how the

OLSR worm exploits the protocol. For any OLSR implementation the following types of

messages have to be supported. They are HELLO messages, Topology Control messages,

(TC) Multiple Interface Declaration messages (MID). HELLO messages are the type of

messages exploited by the OLSR worm to propagate. But going further, It is also necessary to

understand the basics of OLSR packet format.

 18

The OLSR packet format is shown on Fig. 2. The first two fields in OLSR packet are packet

length and packet sequence number. The packet sequence number is incremented every time

an interface transmits a new packet. These two fields make up the packet header. In the OLSR

implementation, the packet header is included after the TCP and IP headers. This is because

our implementation runs on the application layer. Immediately following the packet header is

the message type which describes the type of message included next. The Vtime is used to let

the receiving node know how long the information within the message must be considered to

be valid. Message size is measured in bytes and it includes the message header. The originator

address field is filled with the main address of the node that sends the message and it is not

changed if the packet is retransmitted unlike the source address in the IP header.

Figure 2. OLSR packet format [22]

OLSR transmits HELLO messages when a connection is setup between two computers,

which establishes the symmetric link, such links are added to the routing table. A computer

worm could use the HELLO message to invade a computer running OLSR. If the OSLR was

 19

running on a wireless network it can be easy for the attacker to use the routing table to find its

targets.

3.3.2. HELLO messages of OLSR

HELLO messages are the most important part of the OLSR. These HELLO messages are

sent out by nodes to discover its links. Each node must create a link set, which is the set of

nodes, with which it communicates. Each link in the set has a status associated with it. The

status can be symmetric or asymmetric. If there is a two way communication between two

neighboring nodes then the link is symmetric. If a node can only receive from another node

but cannot transmit to that node then the link is asymmetric. A HELLO message is sent out

periodically by every node and should never be forwarded beyond 1-hop neighbors as it is

only used to discover 1-hop neighbors.

Figure 3. OLSR HELLO Message [22]

Fig. 3 shows the OLSR HELLO message format. The reserved fields are always set to

thirteen zeroes. HTime is used to indicate the time interval before the node will transmit its

next HELLO message. The willingness field indicates how willing the node is to forward the

message. Link code has information of the interface to show if the link is symmetric or

 20

asymmetric. The link message size field is the number of bytes starting from the previous link

code field upto the beginning of the next link code field. The size is useful to include different

sets of interfaces. It can also indicate the fact that there are no more following links. The

neighbor interface address is the address of a neighbor node.

The next section describes in detail the basic activities of a computer worm. It also

highlights the worm design used for testing purpose and the different stages involved during a

worm attack.

3.4. Basic activities of an OLSR worm

 Any computer worm is involved in three basic activities. They are indentifying target,

propagating and attack activation [18].

 Indentifying target is the first step for a computer worm. The worm becomes useless if it

cannot find its target and propagate. There are many ways in which a worm finds its targets

but it is not in the scope of this thesis. This OLSR worm uses the routing table to find its

targets. This is because the OLSR protocol adds all other nodes with symmetric links to the

routing table. So this worm can simply read the routing table and find all the potential targets

within its transmission range.

The propagation is the way in which the worm makes a copy of itself from the attacker’s

machine to the target machine. In this case the OLSR worm uses a second channel

propagation mechanism. This type of propagation method uses a separate communication

channel apart from the one used to infect the target. TFTP is used to download a copy of the

worm binary from the infected machine to the target machine, which requires a second

communication channels. This is not the best way to propagate, but the OLSR worm was

designed for the research purpose and there is scope for improvement of the propagation

method.

The attack activation of the worm is the phase where the copied worm binary is activated.

It can happen in different ways. One of the best ways to activate the worm is to perform a self-

activation. This means that it does not need any human intervention. The OLSR worm uses

this type of activation method. The worm from the infected machine after initiating a copy of

the worm binary to the target machine sends out a set of shell commands, asking the target

 21

machines to execute the newly copied binary. Thus the target machine has the worm binary

activated.

3.5. Worm propagation

This section details the four main steps involved in the propagation of a worm from an

infected host to a nearby target on a wireless network. It is assumed that every host on this

network runs the OLSR protocol. As we have seen in the previous section, OLSR requires all

hosts to periodically send HELLO mesages to its entire neighbor. All the participating hosts

send HELLO messages on an open UDP port, 698 on a regular basis. Fig. 4 gives a pictorial

representation of the worm propagation.

Figure 4. OLSR worm propagation

• Sending a crafted hello message: This is the first step that the worm does after finding a

suitable target. All the hosts on a wireless ad hoc network running OLSR protocol send out

 22

HELLO messages to all its neighbors to find all its one-hop and two-hop neighbors from

their responses. This is because it is a mobile ad hoc network and all the nodes are mobile

and any new node can enter the network and any node can leave the network at anytime.

Thus both the host and the target will keep exchanging HELLO messages on a periodic

basis. Now the worm sends out a crafted HELLO message to the target. The implementa-

tion details of the crafted HELLO message are given on Chapter 5. This crafted HELLO

message will cause a buffer over flow on the target and will force the target to open the port

43690. This port is later used by the infected machine to establish a second communication

link with the target machine.

• Shell commands: Once the port has been opened for communication via the crafted

HELLO message, the infected machine sends a set of shell commands on port 43690 to the

target machine to be executed on the shell prompt.

• Worm binary request: When the shell commands are executed the target machine is made

to request for the worm binary from the infected machine. Then the infected machine sends

the worm binary to the target through TFTP, which sets up a second communication link

between the infected and the target machines.

• Worm binary sent and executed: The worm binary is sent from the infected machine to the

target machine. Now along with worm binary, several shell commands are sent to the target

machine. These shell commands execute the copied worm binary and now the target

machine becomes a newly infected machine. By ‘infected’ we mean that the worm termi-

nates the OLSR daemon running on the infected machine. Then this newly infected

machine continues to infect all its neighbors. Thus the worm finds its targets, copies itself to

the target machines using TFTP and activates the worm binary copied using the shell com-

mands sent on port 43690.

Most worms are capable of infecting all machines in a network in a very short span of time.

A properly designed worm can infect all vulnerable computers in the Internet in an hour or

less[19]. Humans are not capable of reacting quickly enough to the fast-paced worm. This is

the reason we need an automated intrusion detection and response system. Chapter 4 details

the automated intrusion response engine developed to stop such worm attacks.

 23

CHAPTER 4. INTRUSION RESPONSE ENGINE

This chapter provides the design details of the intrusion response engine. The subsystems of

the response engine are listed and the functionality of each subsystem is explained. It also

gives a detailed description on the dependency graph that is used to divide the whole system

into smaller units of services and resources as well as the relationship between them. Then the

value propagation method is introduced and illustrated with an example. It uses the

dependency graph to propagate the total value of the system to every resource and service

present in the system. Section 4.3 and Section 4.4 outline the cost sensitive response selection

module and the response deployment module, respectively.

4.1. Overview

The response engine is responsible for receiving the intrusion alerts from the intrusion

detection sources. Then it performs a cost sensitive analysis of the intrusion and deploys the

suitable response to stop the intrusion. Fig. 1 shows that the intrusion response engine has

three modules. They are the initialization module, the cost based response selection module

and the response deployment module.

Initialization module is responsible for providing the response engine with all the

information about the system security policies in terms of confidentiality, integrity and

availability. It also has a value propagation function that does the propagation of the total

value of the system to all the resources and services in the system. The initialization module

reads all information regarding available resources, services and system security policies of

the system from an XML file.

Cost based response selection module uses all the information provided by the

initialization module on the system security policies and comes up with the best response for

every intrusion alert it receives from the intrusion detection module. The core cost based

response selection methodology for selecting the best response was developed by Christopher

Roy Strasburg [13]. We have used this cost based selection response methodology in our

intrusion response engine.

 24

Response deployment module deploys the selected response. It manages the responses that

are available for a particular system and triggers a response when it is selected by the cost

based response selection module. The responses are currently implemented as Linux shell

scripts. But in the future all these responses can be extended to suit other architectures like

Windows OS. More implementation details are provided on Chapter 5.

Now we provide a detailed description of the three modules of the response engine

4.2. Initialization module

This module initializes the response engine with the security goals given to all resources

and the services of the system. It also initializes the list of possible intrusions that can affect

the system and the list of possible responses that can be used to protect the resources and

services of the system. This information is hand coded as an XML file, which contains all the

information about the dependency graph. We first describe the different entities of a system.

4.2.1. System entities - A layered approach

A system is a generic name given to a collection of hosts communicating with one another

using the Internet. The network can be statically configured using some networking devices

like router and switches or it can be dynamic as in the case of wireless ad-hoc networks.

Wireless ad-hoc network represents a self-configuring network of mobile devices connected

through wireless links.

Such a system contains many hosts running different applications, which are supported by

resources of the system. Let S denote the set of all the services of the system. Each service of

set S can be an instance of application service, component service or a system/support service.

So applications of a system can be broadly categorized as one of the following services:

· Application Service (AS)

· Component Service (CS)

· System/Support Service (SS)

 25

These applications of the system are supported by a set of resources of the system. Let R

denote the set of all resources of the system. Each resource of the set R can be one of the

following

· Virtual Resources (VR)

· Physical Resources (PR)

Thus any system can be divided into a multi-layered structure, each of which is explained in

detail in the following sections. For the sake of convenience we denote all the services and

resources of a system as entities e.

• Application Services - These are the services the system administrator and the business ana-

lyst really care about. These services have intuitive value in them. Some examples of the

application service are web service that runs on a host or DNS hosting service that runs on a

server (host) or a VoIP service.

• Component services - Component services are those that are visible to the user but not

directly used by the user. These services are typically the sub-functions of a bigger applica-

tion service. For example a VoIP application service is composed of different component

services like a VoIP record and replay service, message sending and message receiving ser-

vice etc.

• System/Support Services - System/support services are the services that support the upper

layer component services or application services. They are not visible to the user. For exam-

ple Secure Socket Layer (SSL) service is used to support upper layer application service

such as a web server that uses https connections with its clients. In case of wireless ad-hoc

networks the routing protocols like OLSR which we have discussed in the previous chapter

is a system service. A network subsystem, file management systems and the process subsys-

tem are classified as system/support services.

• Resources - These are the system entities that support all the above defined system services.

They are classified as Virtual Resources (VR) and the Physical Resources (PR). In other

words these resources are the building blocks of any service which need resources for its

normal functioning. The virtual resources include files, sockets, device drivers etc. They are

the objects or the software used as an interface with the hardware of a host. The physical

 26

resources are the hardware such as hard disk, network interface card, motherboard etc. In

the case of wireless ad-hoc network environment the virtual resources include the wireless

device driver that interfaces with the hardware - wireless network interface card which

forms the physical resource.

Now we categorize the system into different layers each containing multiple entities. In the

following sections we will introduce the concept of dependency graph that defines the

relationship between entities. This dependency graph is also used to propagate the value of the

system to all the entities e of a system.

4.2.2. Dependency graph

Most IDS modules identify and detect an intrusion at the service level or at the resource

level. In order to deploy an appropriate response for an intrusion we have to estimate the cost

of intrusion. Furthermore the system administrators have to determine the cost of such

response that will be deployed to stop the intrusion. We also need to take into account the

impact of those deployed responses on the system as a whole. This whole process of selecting

a response for an intrusion depends on the values assigned to each and every entity of the

system.

 Usually we depend on the system administrator’s intuition in assigning specific value for

every entity present in a system. This assignment may not always be accurate. Also, in case of

a large system it becomes hard for the system administrator to estimate and assign values of

each and every resource and service on the system.

To solve this problem and to make the cost assignment process smooth and accurate, we

propose the dependency graph structure and the value propagation function. A dependency

graph is one that will be used to show the functional dependencies among all the services and

resources of the system. A value propagation function is one which when given the value of

the level entities, will propagate that value to the lowest level entities using the dependency

graph.

The value of the top level entities can be obtained from the system administrator or the

business analyst as these are the entities that are visible to them to estimate a value. By top

level entities we refer to all the application services of the system. For example, a business

 27

analyst or a system administrator can come up with the value of an application level service

such as a web service from the loss or the cost incurred by the organization when the web

server stops functioning. Now this value of the web service can be propagated to all the

services and the resources that support this web service using the value propagation function

to be described in Section 4.2.3.

Dependency graph is defined as a pair (V,E) where V is set of vertices and E is the set of

edges. Any vertex v ∈ V in the dependency graph is a tuple of the form (C,I,A). We will use

v[C] to denote confidentiality which is the first element, v[I] to denote integrity which is the

second element and v[A] to denote the availability which is the last element in the tuple for the

vertex v.

We also use VC = { v[C] | v ∈ V } , VI = { v[I] | v ∈ V }, VA = { v[A] | v ∈ V }. And we

define the edge relation E ⊆ Z x Z where Z = VC ∪ VI ∪ VA. To simplify the notation further

we denote X = { C , I , A}.

Figure 5. Dependency graph showing different entities of a system

 28

Fig. 5 shows a dependency graph representing the dependency relations between entities of

a system. An entity vi is dependent and has a dependency relation on another entity vj if and

only if there exists an edge in E from vi[x] to vj [y], where x, y ∈ X. In Fig. 5 there is an

application service (AS) that has dependency relations with the lower level component service

CSj , j ∈ {1,....m}. Similarly all the component services CSj have dependency relations with its

lower level service, namely the system/support services (SS). All these services depend of the

resources (RS) and have direct or indirect dependency relation with virtual or physical

resources of the system.

Figure 6. Dependency graph - VoIP example

 29

Fig. 6 illustrates a dependency graph constructed using VoIP service as an example. The

VoIP service forms the application service of this dependency graph. This application service

depends on several component services like VoIP send and receive service and VoIP record

service. These component services are in turn dependent on several system services. The VoIP

send and receive service needs system services like TCP and UDP protocol for its normal

functioning. Similarly, the VoIP record service needs system service like audio module. These

system services need resources to support them. The TCP and UDP protocols use the virtual

resource ethernet driver to communicate with the ethernet network interface card and audio

module needs virtual resource audio driver to communicate with the audio hardware. The

ethernet network interface card and the audio hardware form the physical resources of this

system.

4.2.3. Value propagation method using dependency graph

When we define the dependency relation among the services and resources of the system

we do not specify the degree to which they depend on each other. Also we do not define the

dependencies in terms of system security goals like confidentiality, integrity and availability.

We know that different systems with different security goals have different dependencies

between services and resources.

For example the dependency relation in terms of security goals between a web server using

https connection with a SSL service can be different from the situation that does not use https

connection. So we need some variables to denote the inter-dependency relations in terms of

security goals among entities. To denote these inter-dependencies, weights are assigned to

each dependency edge. For example the dependency weight between vi[x] and vj [y] where x, y

∈ X is denoted as Wvi[x]->vj [y].

 30

Figure 7. Example of inter-dependency weight assignment

Fig. 7 has an application service ASi which depends on lower level component services CSj

, j ∈ {1,....m}. Ηere the availability of the application service ASi depends on all the three

security goals of the lower level component services. This means that ASi[A] has 3n edges

coming out of the vertex. Each of those edges point to any one of the CSj[x], x ∈ X. Each of

those 3n edges get an equal weight with a sum equal to 1.

Therefore, the weight for each edge is calculated as WASi[A]->CSj[x] =1/(3m) where j ∈

{1,....m}. Similarly other weights can be used. It is the responsibility of the system

administrator to assign the cost of the interdependency weights. This is because they are the

experts who know the system and its security goals.

We have the dependency graph created with all those interdependencies between all the

entities defined. We have also assigned values for all the application services in our system by

the business managers and business analysts. In order to propagate the value of the application

services to all the entities of the dependency graph we use the value propagation function.

 31

Before we get into the details of the propagation function we need to define two more

important definitions, namely the dependent value and the intrinsic value.

Intrinsic value of an entity is defined as the value of the inner functionality of that entity in

the system. Dependent value of an entity is defined as the value of an entity that is propagated

down to its lower level entities on a dependency graph.

Let Cv denote the value of a vertex, Cv (I) denote the intrinsic value of the vertex v and

Cv(D) denote the dependent value of the vertex v then,

Cv = Cv (I) + Cv(D)

This means that we divide the value of any entity into two parts namely the intrinsic value

and the dependent value. This definition is reasonable because when the lower level entity

fails it affects the upper level entity partially only.

For example in the case of a web service, when a lower level network service goes down or

is attacked the availability of the upper level service is downgraded to half its capacity. That is

the intrinsic value of the upper level service is not affected and only the dependent value on

the lower level network service is lost.

To illustrate the calculation, we can assign percentage P to derive the intrinsic value from

the total value of an entity. So the intrinsic value and the dependent value can be calculated as

follows

Cv (D) = Cv * P

 Cv (I) = Cv * (1 - P)

We want all the values of the application services to be propagated down to the lower level

entities in the dependency graph so the percentage P = 1. When P=1 in the equations above

the dependent value gets all the value of the entity and the intrinsic value of the entity

becomes zero. Similarly all the lowest level entities on a dependency graph will have no more

dependency. So they are assigned percentage P = 0, which means that dependent value of

those entities are zero and the intrinsic value of those entities will be equal to the total value of

the entity. For all intermediate entities on the dependency graph an appropriate value of P

(where 0≤P≤1) is assigned by the system administrator.

 32

Now we introduce a procedural method used to propagate the system value. It has multiple

steps involved and we illustrate each step in detail.

Finding the system value: As a first step, the system administrator works with the business

analyst to get the system value. This may be expressed either in a static quantity i.e. dollars or

in a quantity per unit time i.e. dollars per minute. This value is inferred from the direct

revenue, profit and loss of the system. The metric used may differ from one system to another.

Let us denote the total value of the system as Cs.

 Dividing the system value among application services: As a second step, the application

level services of the system are identified. Then, the overall system value is divided between

the application services. For example an organization may have a web server and a mail

server. Both these services may be equally important to the company. So the system

administrator can divide the system value equally between these two services. We denote the

web server as ASw and the mail server as ASm

 Cw = 0.5 x Cs (Value of the web server)

Cm = 0.5 x Cs (Value of the mail server)

Dividing the value of application services between security goals of C, I, A: As a third step

the value of each application service is divided into C,I,A values. This is done by the system

administrator. In this example the integrity of the web service and the availability of the web

service take the total value of ASw into two equal halves. In the case of the mail server let us

assume that all the three security goals take one third of the value of ASm.

Web server (ASw)

Cw[C] = 0.00 x Cw

Cw[I] = 0.50 x Cw

Cw[A] = 0.50 x Cw

Mail server (ASm)

Cm[C] = 0.33 x Cm

Cm[I] = 0.33 x Cm

Cm[A]= 0.33 x Cm

 33

Propagating the values to lower level entities on the dependency graph: Once the cost of

the application service is determined we use the dependency graph to propagate the value to

the lower level entities using a recursive function. The values of entities in a layer are

determined by the entities of the same layer or the lower level entities. The value is calculated

using the following formula.

In this formula u denotes the dependent upper level entity and v denotes the lower level

entity. The cost propagation function first propagates the value of the application service to all

the component service entities. Then the value of the component service is divided into two

parts namely the intrinsic value and the dependent value. Then the dependent value of the

component service is propagated to all the system/support entities. This propagation goes on

till the lowest level entity is reached on a dependency graph.

For any system, we assert the following property holds.

 This says that total summation of values of all entities without adding the application level

services (represented by v) is equal to the sum of the application services (represented by u).

This is true because the total value of the system is divided between the application services.

We know for all application services the percentage P = 1. This means that all the appplication

services have just the dependent value and no intrinsic value. This dependent value of all the

application services are propagated down to lower level entities using the value propagation

method. So the above equation holds true.

4.3. Cost based response selection module

This module is responsible for the selection of the best response using the dependency

graph and the other system security policies. In this section we introduce methods like damage

assessment, cost evaluation in selecting a suitable response.

 34

4.3.1. Damage assessment

Given a dependency graph for a system and the value of the application service we have

propagated that value down to all the lower level entities on the graph. We now need a method

to measure the intrusion cost on this system.

Before we determine the cost of the intrusion we classify the intrusion into different types.

For different types of attacks the system administrator uses different metrics to estimate the

intrusion cost. Using a penetration track of the intrusion on the dependency graph the system

administrator will know the list of affected entities. Then the damage cost of the intrusion is

the sum of all the values of damaged entities on the dependency graph.

Different intrusions will have varying impacts on entities of the dependency graph. These

different impacts depend on the percentage of functionality loss on the security goals of each

entity. Thus for every intrusion the percentage of impact on the security goals like

confidentiality, integrity and availability can be measured. If we do not have sufficient

information about any intrusion then we choose default values for damage assessment. Let us

consider three different types of intrusion detections and their ways to evaluate the damage

cost.

• Known attack using signature based detection system: As discussed in Chapter 3, an attack

can be detected by matching its signature with a set of all available intrusion patterns. Snort

is an intrusion detection system that works on this principle. By knowing the attack we can

have some knowledge of the attack and the list of affected resources and services. Then we

map those services and resources on to the dependency graph. Then we will have a list of

entities that are damaged by that attack. Let us represent that list as vi where i ∈ {1,....m}.

Then the system administrator estimates the damage of each entity and comes up with the

percentage of functionality loss for each of the security goals. Let us use ri[C], ri[I], and

ri[A] to denote the loss of confidentiality integrity and availability for an entity ri. Then the

damage cost (DC) of the intrusion is calculated using this formula

 35

• Unknown attack but affected entities are known: There are some cases where the attack is

not known because the signature of the attack is unknown, however the system administra-

tor still has knowledge of the affected services and resources. With a list of affected

resources and services, we can map it to the dependency graph and come up with the list of

entities affected on the dependency graph. Then we use the formula given above to find the

damage cost of the intrusion. One example is a CPU resource monitor which is explained in

Chapter 3.

• Unknown attack: This is when we have a new type of attack. The installed intrusion detec-

tion system is not able to detect the attack using any signature based technique. Also when

all the resource monitoring detection systems fail to detect the attack we end up finding the

top level application services affected. Then the damage cost in terms of security goals of

those upper level entities can be easily assessed by the system administrator. For example, if

a mail server is affected, the system administrator will estimate the cost as the loss to the

company as a whole and will estimate the monetary loss because of the attack. This is then

given some default damage cost and sent to response evaluation module.

4.3.2. Response cost evaluation

After the damage cost for the intrusion is calculated we have to define some cost evaluation

for the response. The cost based model should give priority in selecting a response that has

less operational cost and the minimum negative system impact. We define three important

terminologies for response cost.

Operational Cost (OC) is defined as the cost incurred for deploying the response.

Deploying a response requires some effort from the system administrator or the technical

support person. For example, the work may include generating a report about the attack

scenarios and the response deployed by the system administrator. This also includes the labor

cost incurred by the organization in assigning a system administrator to analyze the situation.

Response System Impact (RSI) is the impact that the deployed response brings to the system.

With the help of the dependency graph, the resources and the services affected by a response

can be identified. Let S denote the set of all entities affected by the response. Let T denote the

set of all entities affected by the real attack or the intrusion. Then the response system impact

 36

is defined as the values of all entities affected by the deployed response but not damaged by

the intrusion. The RSI is represented by the formula given below, where ‘d’ is the percentage

by which an entity is affected by a response. It takes value of range [0,1].

Response Success Factor (RS) is the measure of how effective the corresponding response

will stop the intrusion from happening. The entities that are affected by the response are

compared with the help of a dependency graph. Usually the response is said to have a full

success rate if it can completely stop the intrusion from happening.The RS is represented by

the formula given below, where ‘r’ is the percentage by which the entity is protected by a

response. It takes value of range [0,1]..

4.3.3. Response selection

So far, we have defined the ways to evaluate the damage cost of the intrusion, response cost

and response success factor of a response. In this section we will provide a metric called

expected value using which we can select a suitable response. The detailed way to evaluate

expected value and its sub components are defined in [13].

Expected Value (EV) is defined as a measure of value gained by deploying a response when

an intrusion occurs. Its value ranges between [-1,1]. This is calculated as follows

EV = RB - (RSI + OC)

If the expected value of a response is positive then that response is worth deploying. If the

expected value is negative then it indicates that the response is not worth deploying and it will

result in doing more harm than benefit to the system. RB stands for response benefit which is

the amount of potential damage caused by an intrusion that will be stopped by a specific

response. It requires the intrusion damage cost (DC) and response success factor as an input

and tells us how well a response action will cover the damage cost brought about by an

 37

intrusion. It takes a value between 0 and 1 with zero meaning the response will not cover any

intrusion damage and anything greater than zero meaning the response covers some part of the

intrusion.

RSI is the response system impact and OC is the operational cost of the response which we

have discussed in the previous sections. These form the second part of the formula. The

summation will be either 0 or 1 with zero indicating no cost incurred to deploy the response

and 1 indicating the cost equal to the entire system value.

4.4. Response deployment module

This module is responsible for deploying the response. If the expected value (EV) is greater

than zero, a response is worth deploying. This module chooses a response that has the biggest

positive EV value from the list of responses. Then Linux shell scripts are triggered to deploy

the corresponding responses. Some examples of the Linux shell script responses are adding a

rule in firewall, killing an infected process and restarting the process, delaying a process,

stopping particular type of traffic like TFTP traffic or blocking a port used by the attacker.

Chapter 5 gives more implementation details on the responses deployed using Linux shell

scripts.

 38

CHAPTER 5. WORM IMPLEMENTATION & EXPERIMENTAL EVALUATION

This chapter provides the implementation details about the OLSR worm, the intrusion

detection module and the intrusion response engine. It focuses on the implementation details

of the dependency graph using XML. Section 5.4 of this chapter gives a detailed description

of the test bed environment.

5.1. OLSR worm implementation

The OLSR worm uses the routing table for target machine discovery. We know that the

OLSR protocol running on a host updates the routing table with details about connection to its

neighbors on a wireless ad hoc network. It is easy for a worm to get the details of potential

targets from the routing table instead of doing an exhaustive scanning for targets.

To transmit the worm from one computer to another the worm needs to exploit some

vulnerability in the target machine. This vulnerability helps to setup a connection from the

infected machine to the target machine, then transfer the worm to the infected machines and

executes the worm in the target machines. For experimental purpose, we have added an

exploit in OLSR protocol implementation. The strcpy() of the packet processing code of the

OLSR has been modified to not check the length of the transmitted packet.

Now a specially crafted HELLO message is sent from the host machine to the target

machine. This HELLO message has everything according to the specification upto the

neighbor interface address in the HELLO message explained on Section 3.3.2. Then instead of

including the neighbor interface address, the packet includes a special code that will cause a

buffer overflow on the target machine using the strcpy() we added to the OLSR

implementation. It copies all the data from the packet into the character buffer of the stack,

which is not large enough to hold all the bytes of the transmitted packet. The stack also has a

return pointer, which returns the control of the program after execution is done on the stack.

This packet copy overwrites the return pointer of the stack, and makes the return address point

to a new return address defined by the attacker. This causes the packet processing code to

return to the new address specified by the attack machine.

 39

A NOOP sled technique is used to perform this buffer overflow attack. A NOOP stands for

‘no operation’ command. Usually it solves the problem of finding the exact start address of

the stack. When a processor executes a NOOP, it jumps to the next instruction. So when the

program returns to the address where the NOOP sled resides. The execution slides through

each NOOP till it reaches the shell code which is the code sent by the attacker inside the

HELLO message.

These shell codes are just assembly codes translated into hexadecimal. Usually it depends

on the architecture of the target machine. The main purpose of the shell code is to open up

command shell in the target machine. The shell codes may vary from Windows machine to the

Linux machine. The shell code in this attack is used to set up a connection that accepts

unauthenticated connections on port 43690.

So once the connection is set up in the target machine by the shell code, the worm has to

replicate itself from the host machine to the target machine. Using the socket connection on

port 43690, shell commands are sent from the attacker machine to the target machine, which

forces the worm binary to be copied onto the target machine via TFTP. This is how the worm

gets replicated to the target machine. Now that the target machine has the worm binary, the

attacker simply sends the execute command to the target machine. Then this sequence is

repeated till all the machines in the neighborhood are affected.

5.2. Intrusion detection module implementation

This section will elaborate on the two intrusion detection sources that are implemented

namely, the Snort & Perl source and the other being the CPU resource monitor tool.

Snort & Perl detection source: Snort is an IDS that will keep monitoring the network traffic

and will raise an alarm when it detects abnormal activity. So in order to feed the network

traffic to snort we use tcpdump utility [20]. Tcpdump is a common packet sniffer that runs

under the command line. The tcpdump tool is configured to capture all the packets on a

wireless interface and directs the packets to a FIFO pipe.

tcpdump -i ath0 -s 2048 -w /tmp/kismet_dump

This command line directs the tcpdump utility to capture all the packets that go via wireless

interface ath0 and dumps it into a FIFO pipe called kismet_dump. Now snort is configured to

 40

read the packets dumped by the tcpdump utility from the FIFO pipe and then scans for known

attacks based on their patterns. Snort can also be configured to scan for user-defined patterns

using custom rules. In this implementation, there is no need for any custom rules because by

default snort has rules to detect the NOOP sled attack which is caused by the worm. When an

attack takes place snort logs those alerts in a log file. Snort is configured on a fast logging

mode using the following command.

snort -c /etc/snort/snort.conf -r /tmp/kismet_dump -A fast

This command directs the snort to read from the FIFO pipe called kismet_dump and uses the

configuration setting defined on snort.conf to detect possible attacks. Now we have a Perl

module that keeps looking for specific newly logged alerts from snort alert log files. When the

Perl module finds an alert logged that is related to our system, it constructs a custom alert

message and sends it to the intrusion response engine. The syntax of the custom message is

described in the later section of this chapter.

CPU resource monitor source: This is a custom developed tool that is used to monitor the

CPU utilization of system entities. This tool is configured to monitor the OLSR process. The

tool checks and makes sure that the OLSR process does not exceed the CPU utilization over a

certain threshold. When CPU utilization of OLSR process exceeds that threshold a custom

alert is sent to the intrusion response engine. This is because when a worm attack happens on

a target machine, it sends CPU utilization of OLSR process running on that system from a

normal usage to an abnormal usage. This is a possible indication that the worm has infected a

particular machine. These types of custom intrusion detection sources can be developed by the

system administrator and can be added as the intrusion detection framework.

Using these two intrusion detection sources, the worm attack is identified and alerts are sent

to the intrusion response system. The custom messages sent by an intrusion detection source

have four arguments INAME, IID, IPOSS and IPROB. Intrusion name (INAME) is the name

of the intrusion. Unique identification value (IID) is the unique identification number given

for every intrusion. The number of possible intrusion (IPOSS) is the set of all possible

intrusions. The probability that a specific intrusion occurs is denoted as IPROB.

 41

So when all alerts with the same IID have been received by the response engine and added

to the attack profile, the attack is sent to the cost based selection module to evaluate the best

response in that context.

5.3. Intrusion response engine

The intrusion response engine is a server program that keeps listening on a specific tcp port

(13299) and waits for intrusion alerts from intrusion detection sources. Before the response

engine starts it has to be fed with all information concerning the system and its security goals.

It also needs information about the list of possible intrusions and the corresponding responses,

which is provided by the initialization module.

5.3.1. Initialization module

Fig. 8 shows the dependency graph of three hosts ad hoc wireless network environment.

More details of the test bed are given in Section 5.4. This dependency graph is encoded as an

XML file, which is currently hand-coded and it can be automatically generated in our future

enchancement.

This dependency graph in Fig. 8 has a few application services running on the system. One

of which is DNS application service. All of these application services depend on a component

service called OLSR. This OLSR component service depends on three system services that

run on three different hosts. These system services are the OLSR daemons. They are

represented as olsr_ daemon1, olsr_daemon2 and olsr_daemon3 on the dependency graph.

Every daemon running on a host depends on a virtual resource like a device driver. These are

represented by three device driver entities, one for each host in the dependency graph. At each

host the device driver assists in the communication with the physical resource like wireless

interface card. So there are three wireless interface card entities represented in the dependency

graph one for each host.

 42

.

Figure 8. Dependency graph representing the test bed.

In the initialization phase the information about the system and its security goals has to be

fed to the intrusion response engine. This information is encoded in an XML (eXtensible

Markup Language) formatted file, which is given as an input to the response engine during its

initialization. This XML file contains information about the dependency graph of the system,

which has different sections that contain information about the system security policies. The

sections are

· Available entities section

· Dependencies section

· Possible responses section

· Possible intrusions section

 43

The available entities section provides a list of all available entities in the system. These

entities are classified into five categories by the dependency graph. The application entities

have the C, I, A values in the XML file. The security goals in terms of C, I, A values for all

other entities are calculated using the value propagation function. Below is an example to

represent an application service called DNS with its security goals defined as.

The dependencies section of the XML file gives information on the interdependency

between entities in a system. For example, if the application service AS1 e.g. “DNS” is

dependent on a component service e.g. “OLSR”, there is an entry in the section of the XML

file as shown below. The value WCc= “0.5” denotes that the confidentiality of DNS depends

on the confidentiality of “OLSR” by 50%. Similarly the value WIa = “0.1” means that

integrity of DNS depends of availability of OLSR by 10%. These values are used by the value

propagation function to propagate the value of the application level to the lower level entities.

The possible response section of the XML file has information about the name and

Operational Cost (OC) of the response. It also has a list of entities protected by the response

and a list of entities damaged by the response. Each entity in the protected and damaged

section has the corresponding C, I, A values. These values correspond to the percentage of

impact caused by the intrusion. In the example below the response called blockAttackerIP

protects one entity called OLSR and damages one entity called DNS. The values C=”0.2” in

the protected resources section conveys that blockAttackerIP response protects the

confidentiality of an entity called OLSR by 20%. The values of C, I, A in the damaged entities

 44

conveys the percentage of damage. For example I=”0.3” says the response blockAttackerIP

damages the integrity of entity called DNS by 30%

The possible intrusion section of the XML file is similar to the possible response section,

however it does not have the list of protected entities as it only has the list of damaged entities.

It has name and Operational Cost (OC) of the intrusion. The C, I, A values corresponding to

each of the damaged entities convey the percentage of damage this intrusion can bring to the

security goal of that resource. For example C=“0.3” means that the intrusion

wormattackInNeighbourhood damages the confidentiality of the entity called OLSR by 50%.

To read the information from an XML an open source library called TinyXML [21] is used,

which is a simple C++ XML parser that can be easily integrated into other programs. It is a

Document Object Model (DOM) based XML parser. The TinyXML parses the XML

document and builds from that a DOM that can be read, modified and saved. Then the

information from this XML file is read and is turned into data structures. This completes the

initialization phase.

5.3.2. Response selection and deployment module

The response selection phase and response deployment phase come after the intrusion is

detected. The response engine opens a TCP port and listens to input socket connection request

from clients. When the clients send intrusion alerts, the intrusion response engine constructs

 45

an attack profile structure and it is passed on to the response selection module. In the response

selection module, all the cost computation is done and one best response is selected. This

selected response is then sent to the response deployment module. Responses are currently

implemented as shell scripts that are triggered from the C framework. The deployment

module gets the information like traffic type, source IP address and destination IP address

from the snort alert logs and passes them as arguments to the Linux shell scripts.

5.4. Test-bed setup

The test-bed setup consists of three machines running Red Hat Enterprise Linux 4.0 using

kernel 2.6.9. Each machine has one wireless network interface card installed. All the three

machines must be running the modified implementation of OLSR protocol. We use the Naval

Research Laboratory’s [22] implementation of OLSR and modify it so that the worm can

propagate using the exploit we added in the regular implementation, which is called nrlolsrd.

In Section 5.1 we have described the strcpy() vulnerability that has been added to the OLSR

implementation. Along with that we should also disable any rule in the firewall that stops

UDP communication so that the UDP packets can be sent from one system to another. A new

feature is added to many Linux distributions called ExecShield. This is aimed at reducing the

risk of worm or other automated remote attacks on Linux systems. This is done by making the

data memory of the stack as non-executable and program memory of the stack as non-

writable. This feature has to be disabled as the OLSR worm attack implementation needs to

execute a shell code that is on the stack.

The main focus of this implementation is to get a system level attack and check how our

response system reacts to a system level attack. For this reason the ExecShield has been

disabled and a buffer overflow attack using a tweaked version of the OLSR protocol has been

put in place. Also in order to prevent the worm from spreading to the wild, it is first made to

check for the presence of a path /go/yes. The worm would then start infecting the target

machines. This is mainly added to safe-guard other systems outside the testbed from being

affected.

All the three systems have snort installed. There are multiple predefined rules built into

snort to detect any kind of intrusions. A custom rule can also be added to snort to detect

 46

specific intrusion. In this case we do not need any custom rule because there is already a rule

in snort to check for long strings of NOOPs. In the worm implementation about nine-hundred

consecutive NOOPs are sent across from the attack machine to the target machine.

Along with snort all the three machines use the tcpdump utility to capture packets on the

wireless interface and dump them into a FIFO pipe. Then the snort is configured so that it can

read from the FIFO pipe. When the worm sends the modified HELLO message from the

attacker system, the NOOP rule in the snort installed on the target machine gets triggered and

logs an alert indicating a possible attack. These alerts are logged in the log directory of snort

in /var/log/snort/alert file. Snort is configured to run in a fast logging mode so that we have

control over the amount of data dumped onto the log file. This produces output that looks like

the one shown below

Finally, we have a Perl module that keeps looking for all types of alerts in the log file. We

use some regular expressions matching of Perl to parse each alert logged on var/log/snort/

alert file and separate the important fields. The information is needed by the response engine

to deploy a suitable response. For example the response module may need the IP address of

the attacker to add a firewall rule asking it to block some specific traffic from the attacker IP

address. So information like the name of the intrusion, time-stamp, priority of the intrusion,

source IP address, source port, destination IP address, destination port and the protocol type

are read from the snort log files and are sent to the response engine along with the alert.

03/25-22:07:32.047217 [**] [1:648:7] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1] {UDP}
192.168.1.225:34381 -> 192.168.1.226:698

 47

CHAPTER 6. EXPERIMENTAL RESULTS

This chapter describes the attack scenario that is used to test the intrusion detection and

response framework. Then the attack scenario is revisited with the intrusion response engines

activated on all hosts. This chapter also provides details on the mitigation technique used by

the response engine to stop the OLSR worm attack. Section 6.3 illustrates the performance of

the intrusion response engine. We conclude the chapter by providing some information on

possible enhancement to our generic response model.

6.1. Attack scenario without automated response

This section illustrates the propagation of the worm in the testbed consisting of three hosts.

This will be useful to understand how our response engine responds to stop the propagation of

the worm and keeps the OLSR protocol running on all the three hosts.

Figure 9. OLSR worm attack scenario without automated response

 48

 Fig. 9 shows the attack scenario of the worm using three machines. All these machines are

one hop away from each other. Host-2 is the place where the worm attack is launched. The

numbers on the arrows in Fig. 9 represent the steps by which the worm propagation occurs.

The steps involved during the worm attack are explained in detail as follows.

• Step 1: Worm propagation occurs from host-2 to host-3. As a result, the OLSR daemon run-

ning on host-3 is terminated.

• Step 2: Worm propagation happens from host-2 to host-1. As a result, the OLSR daemon

running on host-1 is also terminated. By end of step 2 all the neighbors of host-2 are

infected.

• Step 3: Host-3 is infected and becomes an attacker. Worm propagation occurs from host-3

to all its neighbors. The neighbors of host-3 are host-1 and host-2. As a first step, worm

propagation occurs from host-3 to host-1.

• Step 4: Worm propagation occurs from host-3 to host-2. As a result of this worm propaga-

tion the OLSR daemon running on host-2 is terminated.

• Step 5: Host-1 is infected and is becomes an attacker. As a result, worm propagation occurs

from host-1 to host-2.

 So by the end of the five step processes all OLSR daemons running on the three machines

are terminated. This represents a huge loss to the organization as all the applications services

will stop, including the DNS service, which depends on these OLSR daemons running on

these three machines.

6.2. Attack scenario with automated response

Now we have our response engines installed on all the three hosts on the testbed. Fig. 10

shows the attack scenario with deployment of the response engine.

• Step1: Worm propagation happens from host-2 to host-3. This triggers two types of alerts

generated by the IDS snort. The first alert is generated on host-3 and second alert is gener-

ated on host-1. The snort alert on host-3 informs the response engine on host-3 that there is

a worm trying to infect the machine. As a result of this alert, the response engine on host-3

selects an optimal response that stops TFTP traffic and restarts OLSR daemon. When the

OLSR worm infects any machine, the OLSR daemon running on that machine will be ter-

 49

minated. This deployed response restarts the terminated OLSR daemon to keep it alive.

• Step 2: When worm propagation happens between host-2 and host-3, snort on host-1 trig-

gers an alert indicating a worm attack has happened in the neighborhood of host-1. Along

with that alert snort sends information (e.g. attackers IP address) to the response engine run-

ning on host-1. The response engine on host-1 selects the optimal response which blocks the

attackers IP address.

Step 2 in Fig. 10 conveys the fact that when the worm tries to propagate from host-2 to host-

1 the worm propagation fails. This is because the response engine on host-1 has already

deployed the response that brings up the firewall blocking all traffic from the attackers IP

address. Hence the OLSR daemon running on host-1 is not affected.

Figure 10. OLSR worm attack scenario with automated response.

 50

The response engines installed on all the three systems respond so that even after the attack

takes place, we have all the OLSR daemons running on all the systems which in turn keep all

the application services alive. This saves the organization from a huge loss.

6.3. Performance metrics.

To evaluate the performance we have defined several metrics as follows.

Detection time is defined as the time need by the intrusion detection module to detect an

attack.

Detection latency is defined as the latency between the detection of the attack by the

intrusion detection module and the reception of the alert on the attack by the intrusion

response engine.

 Response selection latency is defined as the time taken for the response engine to select the

best response on receipt of an intrusion alert. It is defined as the time difference between the

reception of the intrusion alert by the response engine and the selection of the best response by

the response engine.

Response deployment latency is the time taken to deploy the selected response. It is defined

as the time difference between the selection of the response and the suceessful deployment of

the response by the response engine.

6.3.1. Benchmarking the response selection time

Table 1 shows the results by benchmarking the response selection system based on the

wireless ad hoc network. The entities, number of intrusion and number of system responses

are varied and the different response time is benchmarked.

For example the 5000x in Table 1 conveys the fact that there are 5000 entities in the system,

5000 possible intrusions and 5000 possible responses available for the system. Thus these

values are varied logarithmically from 20 to 10,000 and the four metrics defined above are

calculated. The results are the average value of 10 experiments.

 51

Table 1. Performance metrics on a host

The results are plotted on a graph and is represented below on Fig. 11

Figure 11. Benchmarking of response selection time

 52

Fig. 11 conveys that there is no significant change in the response selection time even when

we increase the number of entities, responses and intrusions to 10,000. The response selection

is well below 0.5 seconds. This demonstrates that our response engine is highly scalable.

6.3.2. Cumulative response time

In order to show the efficiency of the total response time, we plot the graph with x axis

having the cumulative value of the metrics we have defined in Section 6.3. For example

cumulative response latency will be defined as the time difference between the start of the

worm and the selection of the response. This graph helps us to understand the total time taken

by our response engine to select a response and deploy it from the start of the worm.

Figure 12. Cumulative response time

 53

Fig. 12 shows that the total time taken to deploy a response is well within one second range

even when there were 10,000 of entities, response and intrusion available. Attack time is

defined as the time taken for the OLSR worm to infect a system and turn it into an attacker.

The average attack time of an OLSR worm is 10 seconds. If we respond within that attack

time we will be able to stop the worm from propagating to its neighbors. The results show that

we respond on an average less than one second which stops the target machines from being

infected.

6.4. Discussion

6.4.1. Benchmarking using different types of attacks

The benchmarking of the response engine is done only by using a worm attack on OLSR

protocol. The number and types of attacks on this wireless environment can be varied and the

response engine can be benchmarked. In order to detect different types of attacks we may

have to add different types of IDS including anomaly based IDS. In order to have the ability to

detect application layer attacks we can use the combination detection capabilities of fwsnort

and psad discussed in Section 2.2.4. The response engine can use fwknop tool discussed in

Section 2.2.5 to respond.

6.4.2. Dependency graph enhancement

The dependency graph used in this approach has a room for improvement. Some of the

possible enhancements are described in the following sections.

6.4.2.1. Automatic generation of the dependency graph

Currently the dependency graph used in our response engine is manually created and is

handcoded as an XML file. The generation of dependency graph can be automated. Given an

application level service of a system there should be some methods which automatically list

its dependent entities. It can also provide information about the interdependency between

entities in a system, which can be done by using programs like strace and ptrace to track all

the system calls made by application services. Then these information can be outputted as an

XML file with the format specified on Section 5.3.1.

 54

6.4.2.2. Visualization of dependency graph

The dependency graph generated can be visualized. This helps the system administrator to

easily understand the status of the system. It can also help the system administrator to

manually validate the interdependencies between entities in terms of system security goals,

and can fine tune the interdependencies in accordance with the company policies. During the

time of attack, the affected entities of the dependency graph can be highlighted. This would

also help the administrator to manually respond when the automated response system fails.

6.4.2.3. Alternative value evaluation method

In Section 4.2.3 we divide the value of an entity into the intrinsic value and the dependent

value. The dependency value is propagated down to other entities of the dependency graph.

An alternative method of value propagation is based on the idea that the fuctionality of one

entity is entirely dependent on other entities. This type of propagation can capture the

situation where one service is solely dependent on other services. This will change the way in

which we do the cost computation of intrusion damage and response impact.

6.4.3. Cross layer response

A cross layer based response can be evaluated using tools like fwsnort and psad. Most of

the application level attacks can be detected using fwsnort using its string matching libraries.

Then psad can be used to analyze the logs of fwsnort and deploy a network layer level

response like adding an iptable rule to block a connection or tearing down a TCP connection

of the attacker by sending an RST packet.

6.4.4. Communication between the response engines

The response engines are deployed on every host and currently there is no communication

between them. Communication can be enabled between them so that the knowledge learnt

about an attack on one response engine can be shared with the other response engine present

on this distributed network. This communication ensures that the knowledge learnt is shared

among them.

 55

CHAPTER 7. CONCLUSION AND FUTURE WORK

In this chapter we summarize our contributions and present opportunities for future

development and enhancements

7.1. Conclusion

In this project we have presented a generic framework for intrusion detection and response.

We have implemented the dependency graph using XML technology. We have introduced a

value propagation method which provides a way to propagate total system value to every

entity of a system. We have also used the dependency graph for damage cost evaluation,

response cost evaluation and evaluation of response effectiveness. Finally, all the metrics

have been incorporated into the cost based automatic response engine to select the best

response in the event of an intrusion.

The performance results have shown that the generic response framework is scalable and

has a very fast response time. But the field of automated response is still in an infant stage and

significant effort is needed to address challenges in this field of research.

7.2. Future work

This section focuses on some avenues for future enhancement and imporvement.

• Automatic generation of the dependency graph for the system.

• Developing metrics to measure the system security policies like availability, integrity and

confidentiality. Developing standards to evaluate the system resources in terms of security

policies.

• Providing a mechanism to transfer the knowledge of one response engine to another.

Enabling communication between one response engine and another so that the knowledge

thus gained by the response engine is shared across all hosts.

• Finally developing standards to measure the success of a selected response on different

environments. This will help in comparing results of response selected between one envi-

ronment and another.

 56

BIBLIOGRAPHY

[1] T. Toth and C. Kruegel. “Evaluating the impact of automated intrusion response mecha-

nisms”, in the 18th Computer Security Applications Conference (ACSAC02), Las

Vegas,NV, 2002, p. 301C310.

[2] I. Balepin, S. Maltsev, J. Rowe, and K. Levit. “Using specification-based intrusion detec-

tion for automated response,” in the 6th International Symposium on Recent Advances in

Intrusion Detection (RAID) 2003, 2003.

[3] M. Jahnke, C. Thul, and P. Martini. “Graph based metrics for intrusion response measures

in computer networks,” in 32nd IEEE Conference on Local Computer Networks (LCN),

Dublin, Ireland, October 2007.

[4] N. Stakhanova, S. Basu, and J. Wong. “A taxonomy of intrusion response systems,” Inter-

national Journal of Information and Computer Security, vol. 1, pp. 169–184, 2007.

[5] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch. Adaptation techniques for intrusion

detection and intrusion response system. In Proceedings of the IEEE International Confer-

ence on Systems, Man, and Cybernetics at Nashville,Tennessee, pages 2344–2349, 2000.

[6] C. Carver, J. M. Hill, and J. R. Surdu. A methodology for using intelligent agents to pro-

vide automated intrusion response. In Proceedings of the IEEE Systems, Man, and Cyber-

netics Information Assurance and Security Workshop,West Point, NY, June 6-7, 2000,

pages 110–116, 2000.

[7] W. Lee,W. Fan, M. Miller, S. J. Stolfo, and E. Zadok. Toward cost-sensitive modeling for

intrusion detection and response. J. Comput. Secur., 10(1-2):5-22, 2002.

[8] B. Foo , Y.-S.Wu, Y.-C. Mao, S. Bagchi, and E. H. Spaord. ADEPTS: Adaptive intrusion

response using attack graphs in an e-commerce environment. In Proceedings of DSN,

pages 508-517, 2005.

[9] Fwsnort, “Firewall snort,” [Website], Availalble: HTTP://www.cipherdyne.org/fwsnort/

[10] Fwknop, “Firewall Knock Operator,” [Website], Availalble: HTTP://www.cipher-

dyne.org/fwknop/

[11] Psad, “Port scan attack detector,” [Website], Availalble: HTTP://www.cipherdyne.org/

psad/

 57

[12] OLSR, “Optimized Link State Routing Protocol (OLSR),” [Online document], 2003

Oct., [cited 2006 Apr. 3], Available HTTP: http://www.ietf.org/rfc/rfc3626.txt

[13] C. Strasburg, “A framework for cost-sensitive automated selection of intrusion

response,” Master Thesis, 2009.

[14] N. Stakhanova “A framework for adaptive, cost-sensitive intrusion detection and

response system” Phd thesis, 2007.

[15] Jacob Russell Lynch “Intrusion detection systems in wireless ad-hoc networks: detecting

worm attacks” Master thesis, 2006.

[16] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou. Specifica-

tion-based anomaly detection: a new approach for detecting network intrusions. In Pro-

ceedings of the 9thACM conference on Computer and communications security, 2002.

[17] Snort, “Snort – the de facto standard for intrusion detection/prevention,” [Website], 2006

Mar 23, [cited 2006 Apr 3], Available HTTP: http://www.snort.org

[18] N. Weaver, V. Paxson, S. Staniford, R. Cunningham, “A taxonomy of computer worms,”

in: Proceedings of the 2003 ACM Workshop on Rapid Malcode, 2003, pp. 11-18.

[19] S. Staniford, V. Paxson, N. Weaver, “How to own the Internet in Your Spare Time,” Pro-

ceedings of the 11th USENIX Security Symposium, 2002.

[20] “Tcp dump” [Online document]. Available:http://www.tcpdump.org/

[21] “Tinyxml” [Online document]. Availalble:http://www.grinninglizard.com/tinyxml/

[22] “Naval research laboratory” [Online document]. Available:http://cs.itd.nrl.navy.mil/

work/olsr/index.php

[23] “OSSEC” [Online document]. Available:http://www.ossec.net/

58

ACKNOWLEDGEMENTS

I would like to express my gratitude to all my committee members for all their invaluable

support, instruction and inspiration. First of all, I would like to thank my major professor, Dr.

Johnny S. Wong for all his guidance and consistent support. He was a great source of

inspiration and motivation throughout my work. I feel extremely lucky to get an opportunity

to work with him. I would also like to thank Dr. Samik Basu for his guidance and inspiring

discussions during our research meetings and Dr. Shashi K. Gadia for his willingness to serve

on my program of study committee.

It was my pleasure working with my research group and I enjoyed having interesting

discussions, meetings and e-mail exchanges with all of them. I specially thank Dr. Xia Wang

for all her inputs and insightful feedback, Christopher Strasburg for his constant support and

inputs towards my implementation and Tanmoy Sarkar for collaborating with me. Without

their support and encouragement this work would not have been possible.

I am also grateful to all the people whom I met during my stay at Iowa state university.

Special mention has to be made about the constant encouragement given to me by my

roommates Valliappan, Bharath and Kartic. Finally I would like to thank my parents and my

brother for their immense love and constant support throughout my life.

	2009
	Intrusion detection and response for system and network attacks
	Fred Philip Stanley
	Recommended Citation

	Johnny Wong, Major Professor
	Samik Basu
	Shashi Gadia
	Copyright © Fred Philip Stanley, 2009. All rights reserved.
	TABLE OF CONTENTS
	CHAPTER 1. OVERVIEW 1
	1.1. Introduction 1
	1.2. Motivation 2
	1.3. Contribution 3
	1.4. Road map 4

	CHAPTER 2. RELATED WORK 5
	2.1. Background 5
	2.2. Open source software 8
	2.2.1. Snort 8
	2.2.2. Fwsnort 8
	2.2.3. Psad 9
	2.2.3.1. Various attacks detected by psad 9
	2.2.3.2. Active response with psad 10

	2.2.4. Combining psad and fwsnort 10
	2.2.5. Fwknop 11
	2.2.5.1. Port knocking 11
	2.2.5.2. Fwknop tool 12

	2.3. Summary 13

	CHAPTER 3. INTRUSION DETECTION & RESPONSE FRAMEWORK 14
	3.1. Overview 14
	3.2. Multi-source intrusion detection module 15
	3.3. Optimized Link State Routing (OLSR) 17
	3.3.1. OLSR packet format 17
	3.3.2. HELLO messages of OLSR 19

	3.4. Basic activities of an OLSR worm 20
	3.5. Worm propagation 21

	CHAPTER 4. INTRUSION RESPONSE ENGINE 23
	4.1. Overview 23
	4.2. Initialization module 24
	4.2.1. System entities - A layered approach 24
	4.2.2. Dependency graph 26
	4.2.3. Value propagation method using dependency graph 29

	4.3. Cost based response selection module 33
	4.3.1. Damage assessment 34
	4.3.2. Response cost evaluation 35
	4.3.3. Response selection 36

	4.4. Response deployment module 37

	CHAPTER 5. WORM IMPLEMENTATION & EXPERIMENTAL EVALUATION 38
	5.1. OLSR worm implementation 38
	5.2. Intrusion detection module implementation 39
	5.3. Intrusion response engine 41
	5.3.1. Initialization module 41
	5.3.2. Response selection and deployment module 44

	5.4. Test-bed setup 45

	CHAPTER 6. EXPERIMENTAL RESULTS 47
	6.1. Attack scenario without automated response 47
	6.2. Attack scenario with automated response 48
	6.3. Performance metrics. 50
	6.3.1. Benchmarking the response selection time 50
	6.3.2. Cumulative response time 52

	6.4. Discussion 53
	6.4.1. Benchmarking using different types of attacks 53
	6.4.2. Dependency graph enhancement 53
	6.4.2.1. Automatic generation of the dependency graph 53
	6.4.2.2. Visualization of dependency graph 54
	6.4.2.3. Alternative value evaluation method 54

	6.4.3. Cross layer response 54
	6.4.4. Communication between the response engines 54

	CHAPTER 7. CONCLUSION AND FUTURE WORK 55
	7.1. Conclusion 55
	7.2. Future work 55

	LIST OF FIGURES
	Figure 1. Multi-source intrusion detection & response framework 15
	Figure 2. OLSR packet format [22] 18
	Figure 3. OLSR HELLO Message [22] 19
	Figure 4. OLSR worm propagation 21
	Figure 5. Dependency graph showing different entities of a system 27
	Figure 6. Dependency graph - VoIP example 28
	Figure 7. Example of inter-dependency weight assignment 30
	Figure 8. Dependency graph representing the test bed. 42
	Figure 9. OLSR worm attack scenario without automated response 47
	Figure 10. OLSR worm attack scenario with automated response. 49
	Figure 11. Benchmarking of response selection time 51
	Figure 12. Cumulative response time 52

	ABSTRACT
	Chapter 1. OVERVIEW
	1.1. Introduction
	1.2. Motivation
	1.3. Contribution
	1.4. Road map

	Chapter 2. RELATED WORK
	2.1. Background
	2.2. Open source software
	2.2.1. Snort
	2.2.2. Fwsnort
	2.2.3. Psad
	2.2.3.1. Various attacks detected by psad
	2.2.3.2. Active response with psad

	2.2.4. Combining psad and fwsnort
	2.2.5. Fwknop
	2.2.5.1. Port knocking
	2.2.5.2. Fwknop tool

	2.3. Summary

	Chapter 3. INTRUSION DETECTION & RESPONSE FRAMEWORK
	3.1. Overview
	Figure 1. Multi-source intrusion detection & response framework

	3.2. Multi-source intrusion detection module
	3.3. Optimized Link State Routing (OLSR)
	3.3.1. OLSR packet format
	Figure 2. OLSR packet format [22]

	3.3.2. HELLO messages of OLSR
	Figure 3. OLSR HELLO Message [22]

	3.4. Basic activities of an OLSR worm
	3.5. Worm propagation
	Figure 4. OLSR worm propagation

	Chapter 4. INTRUSION RESPONSE ENGINE
	4.1. Overview
	4.2. Initialization module
	4.2.1. System entities - A layered approach
	4.2.2. Dependency graph
	Figure 5. Dependency graph showing different entities of a system
	Figure 6. Dependency graph - VoIP example

	4.2.3. Value propagation method using dependency graph
	Figure 7. Example of inter-dependency weight assignment

	4.3. Cost based response selection module
	4.3.1. Damage assessment
	4.3.2. Response cost evaluation
	4.3.3. Response selection

	4.4. Response deployment module

	Chapter 5. WORM IMPLEMENTATION & EXPERIMENTAL EVALUATION
	5.1. OLSR worm implementation
	5.2. Intrusion detection module implementation
	5.3. Intrusion response engine
	5.3.1. Initialization module
	Figure 8. Dependency graph representing the test bed.

	5.3.2. Response selection and deployment module

	5.4. Test-bed setup

	Chapter 6. EXPERIMENTAL RESULTS
	6.1. Attack scenario without automated response
	Figure 9. OLSR worm attack scenario without automated response

	6.2. Attack scenario with automated response
	Figure 10. OLSR worm attack scenario with automated response.

	6.3. Performance metrics.
	6.3.1. Benchmarking the response selection time
	Table 1. Performance metrics on a host
	Figure 11. Benchmarking of response selection time

	6.3.2. Cumulative response time
	Figure 12. Cumulative response time

	6.4. Discussion
	6.4.1. Benchmarking using different types of attacks
	6.4.2. Dependency graph enhancement
	6.4.2.1. Automatic generation of the dependency graph
	6.4.2.2. Visualization of dependency graph
	6.4.2.3. Alternative value evaluation method

	6.4.3. Cross layer response
	6.4.4. Communication between the response engines

	Chapter 7. CONCLUSION AND FUTURE WORK
	7.1. Conclusion
	7.2. Future work

	BIBLIOGRAPHY
	[1] T. Toth and C. Kruegel. “Evaluating the impact of automated intrusion response mechanisms”, in the 18th Computer Security Applications Conference (ACSAC02), Las Vegas,NV, 2002, p. 301C310.
	[2] I. Balepin, S. Maltsev, J. Rowe, and K. Levit. “Using specification-based intrusion detection for automated response,” in the 6th International Symposium on Recent Advances in Intrusion Detection (RAID) 2003, 2003.
	[3] M. Jahnke, C. Thul, and P. Martini. “Graph based metrics for intrusion response measures in computer networks,” in 32nd IEEE Conference on Local Computer Networks (LCN), Dublin, Ireland, October 2007.
	[4] N. Stakhanova, S. Basu, and J. Wong. “A taxonomy of intrusion response systems,” International Journal of Information and Computer Security, vol. 1, pp. 169–184, 2007.
	[5] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch. Adaptation techniques for intrusion detection and intrusion response system. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics at Nashville,Tennessee, pages 23...
	[6] C. Carver, J. M. Hill, and J. R. Surdu. A methodology for using intelligent agents to provide automated intrusion response. In Proceedings of the IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop,West Point, NY, June ...
	[7] W. Lee,W. Fan, M. Miller, S. J. Stolfo, and E. Zadok. Toward cost-sensitive modeling for intrusion detection and response. J. Comput. Secur., 10(1-2):5-22, 2002.
	[8] B. Foo , Y.-S.Wu, Y.-C. Mao, S. Bagchi, and E. H. Spaord. ADEPTS: Adaptive intrusion response using attack graphs in an e-commerce environment. In Proceedings of DSN, pages 508-517, 2005.
	[9] Fwsnort, “Firewall snort,” [Website], Availalble: HTTP://www.cipherdyne.org/fwsnort/
	[10] Fwknop, “Firewall Knock Operator,” [Website], Availalble: HTTP://www.cipherdyne.org/fwknop/
	[11] Psad, “Port scan attack detector,” [Website], Availalble: HTTP://www.cipherdyne.org/ psad/
	[12] OLSR, “Optimized Link State Routing Protocol (OLSR),” [Online document], 2003 Oct., [cited 2006 Apr. 3], Available HTTP: http://www.ietf.org/rfc/rfc3626.txt
	[13] C. Strasburg, “A framework for cost-sensitive automated selection of intrusion response,” Master Thesis, 2009.
	[14] N. Stakhanova “A framework for adaptive, cost-sensitive intrusion detection and response system” Phd thesis, 2007.
	[15] Jacob Russell Lynch “Intrusion detection systems in wireless ad-hoc networks: detecting worm attacks” Master thesis, 2006.
	[16] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou. Specification-based anomaly detection: a new approach for detecting network intrusions. In Proceedings of the 9thACM conference on Computer and communications security,...
	[17] Snort, “Snort – the de facto standard for intrusion detection/prevention,” [Website], 2006 Mar 23, [cited 2006 Apr 3], Available HTTP: http://www.snort.org
	[18] N. Weaver, V. Paxson, S. Staniford, R. Cunningham, “A taxonomy of computer worms,” in: Proceedings of the 2003 ACM Workshop on Rapid Malcode, 2003, pp. 11-18.
	[19] S. Staniford, V. Paxson, N. Weaver, “How to own the Internet in Your Spare Time,” Proceedings of the 11th USENIX Security Symposium, 2002.
	[20] “Tcp dump” [Online document]. Available:http://www.tcpdump.org/
	[21] “Tinyxml” [Online document]. Availalble:http://www.grinninglizard.com/tinyxml/
	[22] “Naval research laboratory” [Online document]. Available:http://cs.itd.nrl.navy.mil/ work/olsr/index.php
	[23] “OSSEC” [Online document]. Available:http://www.ossec.net/

	ACKNOWLEDGEMENTS

