
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Extending substitutability in composite services by
allowing asynchronous communication
Zachary James Oster
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Oster, Zachary James, "Extending substitutability in composite services by allowing asynchronous communication" (2009). Graduate
Theses and Dissertations. 11079.
https://lib.dr.iastate.edu/etd/11079

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11079?utm_source=lib.dr.iastate.edu%2Fetd%2F11079&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Extending substitutability in composite services

by allowing asynchronous communication

by

Zachary James Oster

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Samik Basu, Major Professor

Vasant Honavar
Robyn R. Lutz

Iowa State University

Ames, Iowa

2009

Copyright c⃝ Zachary James Oster, 2009. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

CHAPTER 1. INTRODUCTION . 1

1.1 Web Services: An Overview . 1

1.2 Contributions . 5

1.3 Outline of Thesis . 5

CHAPTER 2. RELATED WORK . 7

2.1 Formalisms for Representing Web Services . 7

2.1.1 High-Level Languages . 7

2.1.2 State Machine-Based Models . 8

2.2 Web Service Composition Tools and Techniques 10

2.3 Approaches to the Web Service Substitutability Problem 13

CHAPTER 3. BACKGROUND . 17

3.1 Labeled Transition Systems . 17

3.2 Web Service Composition . 18

3.3 Mu-Calculus . 20

3.4 The Web Service Substitutability Problem . 24

3.5 The Quotienting Technique . 26

3.6 Applying Quotienting to Determine Web Service Substitutability 30

iii

CHAPTER 4. SUBSTITUTABILITY IN ASYNCHRONOUS COMPOSI-

TIONS . 34

4.1 Existing Substitutability Analysis Technique Cannot Be Applied 35

4.2 Formalizing Composition of Asynchronous Web Services 37

4.3 Handling Asynchronous Behavior by Using a Buffer Process 39

4.4 Combining a Buffer Process and Quotienting to Solve the Problem 43

4.4.1 Solution and Proof of Correctness . 43

4.4.2 Complexity of the Solution . 48

CHAPTER 5. IMPLEMENTATION . 50

5.1 MoSCoE Framework: An Overview . 51

5.2 Modifications to MoSCoE . 53

5.3 New Tools for Web Service Substitutability Analysis 54

CHAPTER 6. CONCLUSION . 60

6.1 Summary . 60

6.2 Future Work . 61

BIBLIOGRAPHY . 64

iv

LIST OF FIGURES

Figure 2.1 Example of a state machine . 9

Figure 2.2 Two perspectives on Web service composition 11

Figure 3.1 Example representation of a Web service as an LTS 18

Figure 3.2 Semantics of a mu-calculus formula . 21

Figure 3.3 LTS for demonstrating the use of mu-calculus 22

Figure 3.4 Quotienting rules . 27

Figure 3.5 Sample service Q2 for quotienting example 29

Figure 3.6 Results of quotienting ' (Equation 3.2) by Q2 (Figure 3.5) 29

Figure 3.7 LTS representations for (a) Q1, (b) Q2, (c) Q′1 30

Figure 3.8 The LoanApproval service composition Q1 ∣∣ Q2 31

Figure 3.9 Result of quotienting ('╱∅,Rt1) . 32

Figure 4.1 LTS representation for Q′′1 . 35

Figure 4.2 The asynchronous composition Q′′1 // Q2 40

Figure 4.3 Buffer processes (a) QrateB , (b) QcredscrB , (c) QB12 for our example . 41

Figure 5.1 MoSCoE architectural diagram . 51

Figure 5.2 Revised core data structure for MoSCoE framework 53

Figure 5.3 Grammar for XML schema used by our tool set 55

Figure 5.4 Architecture for Web service substitutability analysis tool set 56

Figure 5.5 Control flow for Web service substitutability analysis tool set 58

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to everyone who has guided

and supported me in my research and in writing this thesis. In particular, I thank Dr. Samik

Basu for providing me with inspiration, motivation, and wise advice throughout the time he

has served as my major professor. I am grateful for the time that he has spent helping me

refine my research ideas and improve this thesis. I also thank thank Dr. Vasant Honavar and

Dr. Robyn Lutz for serving on my committee and for their help in my research.

I would like to thank Dr. Jyotishman Pathak for leading previous development of the

MoSCoE framework and for his work on Web service substitutability, on which this work is

based. I would also like to thank Tanmoy Sarkar for his assistance with the initial implemen-

tation of the quotienting tool presented in this thesis and Ganesh Ram Santhanam for his

help in redesigning the MoSCoE data structures. In addition, I thank the National Science

Foundation (grants CNS0709217 and CCF0702758) for providing funding for my research.

Finally, I thank my family for their constant support of my academic pursuits — especially

my wife Carrie, without whom I probably would never have come this far.

vi

ABSTRACT

Web services are programs that are self-contained, self-describing, interoperable, platform-

independent, and accessible over a network. These properties allow several Web services to be

combined together to form a Web service composition. However, when a component service

within a Web service composition becomes unavailable or unusable, it is necessary to iden-

tify a substitute service that can replace the failed component while preserving the original

functionality of the composition. This is the problem of Web service substitution.

Most existing work that addresses this problem requires strict functional equivalence be-

tween the original component service and its substitute. In contrast, Pathak et al. have shown

in 2007 that it is sufficient for a substitute service to provide the same functionality with re-

spect to the rest of the composition as the component it is replacing. Pathak et al. apply a

technique called quotienting to determine the portion of the composition’s overall functionality

that is satisfied by the original component. The quotienting operation yields the property that

must be satisfied by a substitute for that component.

While the use of quotienting allows more possible substitute services to be accepted, it

is possible to relax the substitutability condition even further by considering asynchronous

communication between component services within the Web service composition model. Our

work accomplishes this task by providing a formal framework for representing asynchronous

communication within a Web service composition. In our framework, the asynchronous com-

munication is encapsulated in a buffer process, which stores each message until a component

is ready to consume it. We prove the correctness of our solution, describe our implementation,

and discuss some directions for future research.

1

CHAPTER 1. INTRODUCTION

1.1 Web Services: An Overview

The use of Web services is rapidly gaining popularity in industry, government, and academia

as an effective alternative to traditional software for many applications. A Web service, or sim-

ply a service, is a self-contained and self-describing program that is designed to be interoperable

with other Web services, regardless of hardware platform, language, or operating system, and

that is made available for use over a network.1 Web services communicate with each other and

with their users by sending and receiving messages according to a common protocol; a group

of services can successfully interact with each other, i.e., the services are interoperable, if all

services in the group communicate using the same protocol. Information describing what each

Web service does, how it can be accessed, and other properties of the service is made publicly

available in order to allow potential users to discover and make use of the service. Web services

are commonly used for tasks such as providing real-time Web-based access to software on a

remote system or querying multiple large off-site data stores and then aggregating and pre-

senting the query results. Several popular Web-based software applications, including Google

Docs [20] and Microsoft Office Live [29], make extensive use of Web services to provide their

functionality to users without requiring the users to install or maintain a complete copy of the

software on their own systems.

The use of Web services in software development presents a number of interesting and

challenging problems. One of these is the problem of Web service composition, which entails

finding a way to assemble several existing Web services into a new composite service in order

to provide some functionality required by the user. This is made possible by the fact that Web

1Throughout this thesis, the terms “Web service” and “service” will be used interchangeably.

2

services are interoperable, self-contained, and self-describing, which makes them ideal for reuse.

Web service composition has the potential to greatly reduce redundant software development

efforts and thus provide a way to deliver better software applications more quickly, especially

if the process of composition development can be partially or fully automated. Although

significant theoretical and practical problems currently prevent the wider use of Web service

composition, many techniques have been developed to attempt to deal with these problems

during the past decade; please refer to [15, 23] for a survey of some of these techniques. Closely

related to the Web service composition problem is the problem of Web service substitution,

also called Web service substitutability, which requires determining the condition under which

one service may be replaced by a substitute service without loss or reduction of functionality in

the event that it becomes unavailable or unusable.2 Solving this problem entails determining

the substitutability condition for the service with respect to the other services with which it

interacts. The substitutability condition is defined as the minimum functionality that must be

provided by a substitute service in order to preserve the full functionality of the original service

with respect to the process in which it is used. Determining a substitutability condition for a

Web service is useful because this allows substitutes for a Web service to be identified in advance

of failures; in the event that the original service fails, a previously identified substitute service

can be quickly deployed to replace it, thus minimizing downtime. Other notable problems,

including the lack of consistent standards for specifying various properties of Web services and

the difficulty of determining whether services are compatible with one another, also affect the

use of Web services; however, these problems are beyond the scope of our work. We will focus

primarily on the Web service substitution problem in this thesis.

Much of the existing work on Web service substitution defines the substitutability condition

for any Web service in any context to be behavioral equivalence between the original service

and the proposed substitute for that service. As a result, the existing work is generally focused

on determining whether a proposed substitute service is behaviorally equivalent to the service

being replaced. Some of the more notable research efforts along this track are presented in

2The terms “Web service substitution” and “Web service substitutability” will be used interchangeably
throughout this thesis to refer to this problem.

3

Section 2.3. While this condition is always sufficient to permit substitution, it is too strong

because requiring behavioral equivalence to the original service limits service substitution to

instances where a nearly exact match for the original service can be found. In addition, existing

work on Web service substitution often assumes that services in a Web service composition

always communicate synchronously, i.e., each output message from one component must be

consumed immediately by another component as an input message. This assumption is usually

made to simplify the process of finding the substitutability condition, but it unintentionally

introduces an implicit requirement that a substitute service must perform the required tasks

in the same order as the original service. If Web services in a composition can communicate

asynchronously with each other, i.e., if there may be some delay between the time when one

component sends an output message and the time when another component consumes that

message as an input,3 then it is necessary only to show that all required tasks will be performed

and all required properties will hold, regardless of the order in which the tasks are performed.

The rigid requirement of behavioral equivalence as a substitutability condition was first re-

laxed by Bordeaux et al., who presented the concept of context-dependent substitutability in [9]

as an alternative to requiring behavioral equivalence. Pathak, Basu, and Honavar further re-

laxed the behavioral equivalence requirement in [35] by extending the idea of context-dependent

substitutability to account for both the composition where the substitution must occur and

the properties of the composition that must be preserved after the substitution is completed

— i.e., the environment in which the substitute service will be deployed — in addition to the

behavior of the original service. Pathak et al. employed a technique called quotienting to re-

duce properties that must be satisfied by an entire Web service composition by removing those

parts of the required properties that are satisfied by other components of the composition,

leaving only the properties that must be satisfied by the component being considered. It was

proven in [35] that considering the environment of a proposed substitution results in a signif-

icant relaxation of the required substitutability condition, which allows more Web services to

3We are not considering real-time systems and/or timeout delays, nor are we explicitly considering the effects
of network latency and/or data loss. Our objective is to show that it is not necessary to require “lock-step”
movement of services in a composition.

4

be identified as valid candidates for substitution. The work of Pathak et al. on Web service

substitution was an outgrowth of their original work on Web service composition, which re-

sulted in the development of the MoSCoE (Modeling Service Composition and Execution) [36]

framework. The MoSCoE framework, which is meant to serve as a test bed for future work

in Web services, currently includes designs and partial implementations of tools to assist with

composition development and analysis.

Like the majority of previous work on Web service substitution, the context-specific substi-

tutability analysis presented in [35] assumes that the services in the composition being analyzed

use only synchronous communication. Our work in this thesis aims to relax this assumption

by considering asynchronous communication, making it possible to provide a method to de-

termine the true minimum functionality that must be provided by a substitute for a service in

a composition, i.e., the most relaxed substitutability condition for a given service in a given

context. We will accomplish this task by providing a method for constructing a buffer process

that can be used to treat a composition of asynchronously communicating Web services as

if its components communicate synchronously, which will allow us to apply the methods for

context-sensitive substitutability analysis presented in [35] to asynchronously communicating

Web services. By accomplishing this objective, we aim to increase the number of valid substi-

tute services that are considered during a substitutability analysis (i.e., to decrease the number

of false negatives when analyzing potential substitutes for a component of a Web service com-

position) and to provide a theoretical framework for substitutability analysis of Web service

compositions whose components communicate asynchronously.

The problem we aim to solve in this thesis may be stated formally as follows:

Problem Specification: Suppose there exists a composition of services Q comprising

n component services Q1, Q2, . . . , Qn that satisfies some required property ' describing the

functionality of the composition, and suppose that one or more components of the composition

Qi (where i ∈ {1, 2, . . . , n}) become unavailable or unusable. Does there exist a service (or

composition of services) Q′i that may be substituted for Qi such that the new composition Q′

resulting from the substitution satisfies the property '?

5

1.2 Contributions

The contributions of our work are summarized as follows:

1. We address the service substitution problem, going beyond existing work by taking into

consideration the asynchronous communication paradigm and the context in which the

substitution takes place.

2. We provide a formal framework for substitutability analysis of asynchronous Web service

compositions that includes a transition system-based representation of services and a mu-

calculus description of properties. Since the formalism is based on mu-calculus (unlike

Linear Temporal Logic as in [12]), our formalism and results can be immediately extended

to use other temporal logics such as CTL, CTL∗, and LTL.

3. We prove the correctness of our technique and provide a way to design the required buffer-

ing of messages to allow for correct handling of asynchronous communication between

components of a composition.

4. We present a prototype implementation of our technique, which features XML-based

input and output, a robust data structure for representing mu-calculus properties, and

compatibility with the MoSCoE composition tool presented in [36].

1.3 Outline of Thesis

The remainder of this thesis is organized as follows:

∙ Chapter 2: A survey of the existing literature in Web services is presented, with special

attention to previous approaches to the substitution problem. Because the substitution

problem is best understood within the context of the composition problem, formalisms

for representing Web services, as well as major paradigms and existing techniques for

Web service composition, are also discussed.

∙ Chapter 3: Background information needed to understand the remaining chapters is

given, including formal definitions of the major concepts used in our framework and a

6

summary of previous work on the substitution problem for synchronously communicating

services.

∙ Chapter 4: Our formal framework for the substitution problem for asynchronously

communicating services is presented, including a proof of correctness and a complexity

analysis.

∙ Chapter 5: Information about our implementation of the framework presented in Chap-

ter 4 is given, along with a discussion of the updates and changes made to the existing

implementation of the MoSCoE framework for Web service composition.

∙ Chapter 6: The contributions of this thesis are summarized and possible future direc-

tions for research are set forth.

7

CHAPTER 2. RELATED WORK

2.1 Formalisms for Representing Web Services

A large number of formalisms have been proposed for representing the structure and be-

havior of Web services. These formalisms can generally be categorized as either high-level

languages or state machine-based models. This section summarizes the common uses, advan-

tages, and disadvantages of each category of Web service representations and presents examples

from each category.

2.1.1 High-Level Languages

The first major category of Web service representations to be covered consists of specifica-

tion languages that use structured text to describe the structure and function of Web services.

These languages resemble high-level programming languages to some degree. Most of these

languages use a syntax based on XML [10] and defined in an XML Schema [21] document.

Two of these high-level specification languages that have gained relatively wide acceptance

in the Web services community are WSDL and BPEL. WSDL (Web Services Description

Language) [13] is a W3C recommendation for describing Web services and is a part of the

W3C Web Services Architecture [8]. WSDL allows a service to be described at an abstract

level by specifying the types of messages that the service may send and receive, as well as

the operations supported by the service. It also supports the specification of concrete details

about how to connect to the service. WSDL does not, however, provide a way to represent

the internal behavior of a service. BPEL (Business Process Execution Language) [2] is a

specification language that was developed by a consortium of industry leaders, including BEA,

IBM, and Microsoft. BPEL is built upon the WSDL model of Web services, modeling the given

8

business process and its partners as Web services using WSDL, but it also provides additional

features that can be used to specify both the behavior of individual services and the desired

protocols for exchanging messages between services.

WSDL and BPEL are useful for two main reasons. First, they are both accepted as stan-

dards for describing Web services. WSDL is a standard because of its status as a W3C rec-

ommendation, and BPEL can be considered a de facto standard because of its support from

IBM, Microsoft, and others. Second, the syntax for both WSDL and BPEL is based on XML,

and each language provides its own XML Schema document for validation. This allows service

description documents written in either language to be validated and parsed on any computing

platform using standard XML document processing tools, which facilitates the development of

tool support for Web services specified using these languages.

However, these high-level languages have two serious disadvantages. First, high-level lan-

guages, even BPEL, cannot directly represent the internal behaviors of Web services in an

easily understandable way; these languages are meant as aids for discovering and accessing

Web services, not for analyzing their behavior. Second, formal verification cannot be directly

applied to Web service descriptions written in high-level languages, because the semantics of

formal methods are generally not compatible with the semantics of these languages.

2.1.2 State Machine-Based Models

The other major category of Web service representations consists of models that are

based on the concept of a state machine. State machines can be used to provide low-level,

implementation-independent representations of Web services. Any Web service that can be

represented using WSDL, BPEL, or any other language can be represented as an equivalent

state machine. Models based on state machines are more useful for analyzing Web services

than high-level language representations because state machine-based models can represent

both the internal behaviors of a Web service and the interactions of a service with its partners

in a way that is both machine-readable and intuitively understandable to a human viewing the

representation. In addition, many formal logics define their semantics in terms of state ma-

9

power-down

readyoff alarm

normal

power-up

power-down reset

fault

Figure 2.1 Example of a state machine

chines or related formalisms. By modeling Web services as state machines, it becomes possible

to rigorously verify desired properties of Web services against the models of those services.

A state machine consists of a set of states, a set of transitions connecting the states in some

way, and a set of labels that may be assigned to transitions. Each label generally represents

an action that is taken during a transition or a condition that must be true in order to enable

a transition, but labels may also be assigned other meanings; for purposes of this thesis, a

label will always represent an action that occurs during a transition from one state to another

state. State machines are often illustrated as directed graphs, where each node represents a

state and each edge represents a transition. Figure 2.1 depicts a state machine that monitors

the status of a system and sounds an alarm if a fault occurs in the system. This state machine

begins in the off state, moving to the ready state when the system is powered up. The state

machine remains in the ready state as long as the system reports a normal status. If the system

reports a fault, then the state machine moves to the alarm state; it remains there until a reset

command is received from an operator, at which point the state machine returns to the ready

state. The state machine will also move from either ready or alarm to off when the system is

powered down.

Many different state machine-based models exist in the Web services literature. Mecella

et al. [28] use the Unified Modeling Language (UML) [18] to represent both the structure and

behavior of services: the structure is specified in a UML class diagram and the behavior is given

as a UML statechart diagram, which is an alternative visual representation of a state machine.

10

Bultan, Fu, and Su [12] model services as state machines with attached FIFO queues to provide

for asynchronous message passing between services; a similar model that uses Büchi automata,

which are finite state machines that can accept infinite inputs, is used in [19]. Several groups

model Web services using Petri nets [31], which are more powerful than state machines. Petri

nets can be viewed as state machines augmented with a well-defined token-passing semantics

that may be used for formal verification of properties. Martens et al. [27] transform services

specified in BPEL into Petri nets, while Hamadi and Benatallah [22] model services directly as

Petri nets. A number of authors, including [9, 24, 35, 37], use labeled transition systems [30]

to represent services, as we do in our work; these are essentially finite state machines that

designate a start state, although they may also be annotated with additional information. Liu

et al. [26] use CCS processes [30], whose semantics are given in terms of labeled transition

systems, to represent services. Pathak et al. [36] use symbolic transition systems, which are

similar to labeled transition systems but also designate a set of final states.

2.2 Web Service Composition Tools and Techniques

Recall from Chapter 1 that the process of combining several component services into a single

composite service is known as Web service composition. Because Web services are interoperable

and reusable, several Web services can be combined into a single composite Web service (a

composition, for short) that provides the full functionality of its combined components. Web

service composition is a difficult problem that involves specifying the desired functionality of

the composition, identifying appropriate services to include in the composition, determining

whether the chosen component services are compatible with one another, and verifying whether

the finished composition actually provides the intended functionality.

Research on Web service composition generally approaches the problem from one of two

perspectives: the “orchestration” perspective and the “choreography” perspective.1 Figure 2.2

illustrates the differences between the two perspectives. In each diagram, the desired goal ser-

1Unfortunately, although these terms are used commonly in the Web service composition literature, there is
disagreement as to the meaning of each term. For our purposes, we will use the definitions given by Papazoglou
et al. in [33], as these definitions seem to reflect a majority opinion in the literature.

11

(a) (b)

Figure 2.2 Two perspectives on Web service composition [6]:

(a) Orchestration, (b) Choreography

vice is shown on the left, and the resulting composition as viewed from the given perspective

is shown on the right. The “orchestration” perspective assumes the existence of a supervisory

process (a “conductor” or “orchestrator”) that exists separately from the components of the

composition. This orchestrator process acts as a central point of control for all communication

between components; instead of communicating with each other, the components communi-

cate only with the orchestrator process. This approach emphasizes the high-level sequence

of actions — in other words, the process — being executed by the composition as a whole.

In contrast, the “choreography” perspective treats a composition as a set of processes that

interact directly, without any centralized control structure. In this perspective, the component

services are viewed as peers in a peer-to-peer system that agree to collaborate by following

common interaction rules. This approach focuses on the low-level interactions between com-

ponents. Although most existing Web service composition research chooses to approach the

problem from only one of these perspectives, Papazoglou et al. argue that a complete solution

to the composition problem will need to incorporate both perspectives [33].

Many different models, frameworks, and methods for Web service composition have been

proposed. Although a full survey of the Web service composition literature is beyond the

scope of this chapter, several researchers’ work in this area informs our work on Web service

substitutability. Pistore et al. [37] apply a technique that they describe as “planning via

symbolic model checking” to generate a Web service composition from a set of Web services

12

represented as labeled transition systems and a set of requirements specified as a formula in

the requirements language EaGLe. Hamadi and Benatallah [22] define several composition

operators, each with somewhat different behavior, to form what they call a “service algebra.”

The operators are defined in terms of Petri nets for compatibility with their Petri net-based Web

service model, so services modeled according to their framework may be easily composed. One

of the most important models of Web service composition is the conversation model presented

by Bultan et al. in [11]. According to the conversation model, a Web service composition can

be viewed as a set of Mealy machines, or finite state machines with input and output, that

communicate asynchronously using message passing. Although [11] focuses on the analysis of

Web service compositions rather than their creation, the conversation model has informed a

number of other researchers’ approaches to various problems in Web services, including our

approach to the substitutability problem. The Colombo framework developed by Berardi et

al. [6] is directly influenced by the conversation model, but its model of Web service composition

is much more sophisticated, incorporating a database representing the current world state,

atomic processes corresponding to Web services, and various other aspects that make it one of

the most detailed representations of Web service composition.

Our work on Web service substitutability is based on the MoSCoE framework for Web

service composition presented by Pathak, Basu, and Honavar in [36]. MoSCoE incorporates

ideas from each of the approaches to Web service composition mentioned here, as well as

several others. The input to the MoSCoE framework consists of a set of symbolic transition

systems (STS) corresponding to the available repository of Web services and an STS that

models a goal service, which is an abstract and perhaps incomplete specification of the desired

functionality to be provided by the composition. Given this input, if it is possible to create

a Web service composition that provides the functionality specified by the goal service, the

MoSCoE composition algorithm identifies a set of Web services that can form a satisfactory

composition and creates a new service that provides the necessary communication links between

the component services. If it is impossible to realize a composition that models the goal

service, the MoSCoE composition algorithm notifies the user that the composition process

13

has failed and tells the user exactly which states or transitions in the goal service could not

be satisfied. This feature, which is unique to MoSCoE (to the best of our knowledge), is

meant to give the user enough information to reformulate the goal specification and attempt

to form a composition again; the process can continue iteratively until either a composition

is successfully created or the user stops trying. A previous working implementation of the

MoSCoE composition algorithm exists, but it is difficult to use because it is tightly coupled to

an unstable, non-intuitive graphical user interface and because some of the auxiliary features,

including translation between BPEL specifications and STS models, are not fully functional. As

part of our work, we have updated this existing MoSCoE implementation to use a simpler set of

core data structures, provide support for XML-based input and output, and remove features

that were not fully implemented. Our goal in doing so was to establish a solid foundation

for future additions and modifications to the MoSCoE framework, providing support for the

framework’s purpose as a testbed for new Web service research ideas.

2.3 Approaches to the Web Service Substitutability Problem

While the problem of Web service substitutability — identifying conditions that must be

satisfied in order for one or more services to be replaced by one or more other services — has

been studied by a number of researchers, much of the existing work on this problem has at-

tempted to find ways to establish behavioral equivalence between the service(s) being replaced

and the substitute service(s). These approaches differ primarily in the methods employed for

computing equivalence between services. To determine equivalence between services, Bena-

tallah et al. [5] and Taher et al. [40] use similarity, Bordeaux et al. [9] use bisimilarity, and

Martens et al. [27] use trace equivalence. Other approaches for determining equivalence include

subsumption ordering [7] and graph matching [25].

Much of the work on determining substitutability by finding behavioral equivalence between

services makes the assumption, implicitly or explicitly, that behavioral equivalence is always

a necessary condition for substitutability. However, Bordeaux et al. argue in [9] that while

behavioral equivalence is always a sufficient condition for substitutability, it is not necessary.

14

[9] introduces the idea of context-dependent substitutability by stating that given two compatible

services Q1 and Q2, if another service Q′1 is compatible with Q2, then Q′1 can substitute for

Q1. Their definition of compatibility implies that Q′1 can substitute for Q1 if at least one of the

following holds: Q1 and Q′1 are behaviorally equivalent, Q′1 cannot produce any outputs that

Q2 cannot consume and vice versa, or the composition of Q′1 and Q2 is deadlock-free. This

concept represents an important first step in relaxing the behavioral equivalence requirement.

Our approach derives from the work of Pathak et al. in [35], which extends the notion of

“context” in context-dependent substitutability to include both the structure of the services

in a composition and the specific functionality that each component service provides to the

entire composition. In [35], the context-specific substitutability problem is divided into two

branches, environment-independent and environment-dependent, based on whether the substi-

tutability condition must apply to all possible compositions (environment-independent) or one

particular composition (environment-dependent). To accomplish the environment-dependent

analysis, Pathak et al. use a technique called quotienting to reduce the functionality that a

substitute service is required to satisfy. Consider a simple Web service composition Q that

incorporates two services Q1 and Q2, and let ' be the property that describes the functionality

provided by Q. Suppose that the service Q1 must be replaced. Quotienting the property '

against the service Q2, written ('╱Q2), removes the parts of the property ' that are satisfied

by the functionality of Q2 and leaves the parts of ' that must be satisfied by the rest of the

composition, i.e., Q1. The result of this quotienting operation may be used as the substi-

tutability condition for Q1 with respect to the composition Q. In the quotienting operation,

Web services are represented as labeled transition systems and properties are expressed as mu-

calculus statements; as a result, environment-dependent substitutability conditions can include

detailed requirements that cannot be expressed in other specification languages. A detailed

description of the quotienting technique is given in Section 3.5, and an example of the use of

quotienting to compute substitutability conditions for Web services appears in Section 3.6.

15

A drawback of these methods is that they generally assume synchronous communication

between all component services; in other words, they assume that each output produced by one

component is immediately consumed as an input by another component. While this assump-

tion often simplifies the computation of a substitutability condition, it also significantly limits

the extent to which the substitutability condition may be relaxed by requiring that a substitute

service must perform certain required actions in exactly the same order as the original service

to preserve synchronization of actions. This implicit action-ordering requirement unnecessarily

eliminates possible substitute services that accomplish the required tasks in a different order

from the original service. An asynchronous communication paradigm, in which each output can

be stored until some component requires it, permits further relaxation of the substitutability

condition by eliminating this implicit requirement. By considering asynchronous communi-

cation in Web service compositions, it is possible to identify additional substitutes for each

service, increasing the likelihood that an appropriate substitute can be found.

One model that incorporates asynchronous communication is the conversation model pre-

sented by Fu et al. in [11], which focuses on the set of messages generated by the component

services (the conversation between the components). This model represents each component

as a finite state machine with a queue to store unprocessed inputs. Components process input

messages and produce output messages independently of other components, so all communi-

cation is asynchronous. This model is used by Bultan et al. in [12] to develop the concepts

of synchronizability (whether a service’s conversation set is identical under both synchronous

and asynchronous communication) and realizability (whether a composition that generates the

required conversation set exists). It is shown in [12] that if an asynchronous composition is

both synchronizable and realizable, then the asynchronous composition can be safely treated

as a synchronous composition for formal verification purposes.

Another Web service model that can account for asynchronous communication is proposed

by Kazhamiakin et al. in [24]. In this model, each individual Web service is modeled as a labeled

transition system (LTS). A composition of asynchronously communicating Web services is

modeled as a composition of the LTSs representing the services, combined with a set of shared

16

message queues that can store messages for later consumption. The transition function of

this composite LTS defines the flow of messages into and out of the queues. Unlike in the

conversation model of Fu et al., individual services in this model do not each have their own

message queue; instead, the queues exist at the level of the composition. Kazhamiakin et

al. use this model in [24] to define a hierarchy of communication models ranging from complete

synchronization to unrestricted asynchronous message passing. They also present an algorithm

for determining the least general adequate communication model for a given composition, i.e.,

the model that requires the smallest amount of asynchronous communication to accurately

represent the functionality of the composition. They do not, however, use their model to

address the problem of Web service substitutability.

The model of asynchronous communication used in our work is inspired by the model used

in [12] and is similar to the model used in [24], but the goal of our work is different. We aim to

show that any asynchronous composition may be transformed into an equivalent synchronous

composition in order to perform formal verification. This will allow us to show, in turn, that

there exists some asynchronous composition under which the substitutability condition may

be considerably relaxed.

17

CHAPTER 3. BACKGROUND

This chapter presents the necessary background information for understanding our work

on Web service substitutability. The concepts in this chapter are all incorporated into the

MoSCoE framework as presented in [35, 36], as our work is meant to complement and extend

this existing framework. We begin with a formal definition of labeled transition systems, which

we use to represent Web services. A synchronous composition of Web services is then defined

as the product of labeled transition systems that model synchronously communicating services.

Next, we introduce mu-calculus, the temporal logic that we use to describe properties of Web

services. Finally, using the above concepts, we discuss the Web service substitutability problem

and explain its solution as proposed by Pathak et al. in [35].

3.1 Labeled Transition Systems

In our work, Web services are represented by Labeled Transition Systems (LTS) [30]. An

LTS is a finite state machine with a set of states that are connected by transitions, where each

transition is labeled with an action. The formal definition of an LTS, as given in [35], follows:

Definition 1 (Labeled Transition System) An LTS is defined as Q = (S, s0, A,Δ), where:

1. S is the set of states, representing the configurations of a service.

2. s0 ∈ S is the start state, representing the initial configuration of a service.

3. A is the set of actions of the form {m?,m!,m, �}. m?, denoting an input action, and

m!, denoting an output action, are used by the service to communicate with other ser-

vices and/or the end-user. An action m denotes atomic actions of the service that are

observable to the external world, while � represents an internal or unobservable action.

18

ZIP?
0 s1 s2 s3 s4

location!DB-query! DB-reply?
s

Figure 3.1 Example representation of a Web service as an LTS

4. Δ ⊆ S ×A× S denotes the transition relation. (s, a, s′) ∈ Δ represents that a service in

state s moves to a state s′ after performing action a ∈ A.

From this point forward in the thesis, we will use s
a−→ s′ for (s, a, s′) ∈ Δ.

Figure 3.1 shows an LTS that corresponds to a simple Web service. The service shown

in this figure is designed to receive a ZIP code as input, contact a database, and return the

city and state represented by that code as output. The service is initially in the start state s0

before receiving input. Upon receiving a ZIP code from the user (ZIP?), the service moves to

state s1. In state s1, the service formulates a database query, then moves to state s2 by sending

the query to a database (DB-query!). The service waits in state s2 to receive a response from

the database; when a response is received (DB-reply?), the service moves to state s3, in which

it parses the response. The service then moves to the final state s4 by producing an output

message (location!) that contains the city and state names corresponding to the given ZIP

code.

3.2 Web Service Composition

A composition of Web services, as defined in the MoSCoE framework, consists of two

or more services that work together to provide some desired functionality. In order for the

component services to work together, certain communication links must be defined between

the component services in order to ensure that each required input to one service is satisfied by

an output from another service or by data received from the user. For example, if component

service Q2 must receive a message of type m as input, then the composition must contain

a component service Q1 that outputs a message of type m; further, a link must be created

between the m-output action of Q1 and the m-input action of Q2.

19

Let us formalize this idea by introducing a relation inv ⊆ A × A, where (a, b) ∈ inv (i.e.,

a is the inverse action of b) if and only if a = m? and b = m! or vice versa. We will write

inv(a, b) to denote (a, b) ∈ inv. This relation, previously defined in [35], captures the idea that

if one service performs the input action a = m? and another service performs the output action

b = m!, then the services communicate by synchronizing on the action pair (m?,m!).

A composite service, or a composition of multiple communicating component services, is

then defined as the parallel composition of the LTSs representing the components. In other

words, composition of services is performed by establishing synchronous communication links

between the components. The formal definition of this operation is given here.

Definition 2 (Synchronous LTS Composition [35]) Given Q1 = (S1, s0,1, A1, Δ1) and

Q2 = (S2, s0,2, A2, Δ2), their composition under a set of “restrictions” R, denoted by

(Q1 ∣∣ Q2)∖R, is a tuple Q = (S, s0, A,Δ) where S ⊆ S1 × S2, s0 = (s0,1, s0,2), and A ⊆

A1 ∪A2 ∪ {�}. The transition relation Δ is defined as:

1. (s1, s2)
a−→ (t1, t2) if a ∕∈ R and there exists (i) s1

a−→ t1, s2 = t2, or (ii) s2
a−→ t2,

s1 = t1

2. (s1, s2)
�−→ (t1, t2) if there exists s1

a−→ t1, s2
b−→ t2, inv(a, b), and a, b ∈ R

The restriction set R ⊆ A is defined as the set of actions on which Q1 and Q2 must make

synchronized moves (communicating via the input/output actions) and generate a � -transition

in the composition. For all actions that are not in R, the component services make autonomous

moves.

Although this definition provides a simple and effective model of Web service composition,

it is worth noting two assumptions made in this definition: that the composition is formed

from two services and that the composition’s component services communicate synchronously.

The first assumption is made to simplify the definition, making it easier to understand. This

assumption is easily relaxed, as Definition 2 can be extended to handle more than two ser-

vices by redefining the components of the composition Q, e.g., by using S ⊆ S1 × ⋅ ⋅ ⋅ × Sn,

s0 = (s01, . . . , s0n), and A ⊆ A1 ∪ ⋅ ⋅ ⋅ ∪ An ∪ {�}, and redefining Δ accordingly. The second

20

assumption, that the component services communicate synchronously, is more difficult to re-

lax. Unfortunately, requiring synchronous communication between component services creates

problems for two reasons. First, the nature of communications over the Web renders true

synchronization costly at best and impossible at worst. Second, and more importantly for our

purposes, requiring synchronous communication makes it unnecessarily difficult to identify a

group of services that can be successfully composed to provide the required functionality. If a

set of interacting services performs the required tasks in a different order than expected, then

a satisfactory solution will be wrongly rejected. A representation of Web service composition

that allows for asynchronous communication between components is therefore needed. We will

propose such a representation in Chapter 4.

3.3 Mu-Calculus

Mu-calculus [17] is an expressive temporal logic that uses explicit least and greatest fixed

point operators to represent temporal properties. Because it uses explicit fixed point operators,

mu-calculus is more expressive — and therefore more powerful — than more commonly used

temporal logics, such as CTL (Computation Tree Logic), CTL* (an extension of CTL), and

LTL (Linear Temporal Logic); in fact, any property expressed in these logics can also be

expressed in mu-calculus. We use mu-calculus to represent properties of services because the

expressivity of mu-calculus makes it flexible enough to represent more types of properties than

other temporal logics.

The syntax of mu-calculus is defined over a set of fixed point variables X and a set of

actions A as follows:

'→ tt ∣ ff ∣ ' ∧ ' ∣ ' ∨ ' ∣ ⟨a⟩' ∣ [a]' ∣ X ∣ �X.'

where a ∈ A, X ∈ X , and � ∈ {�, �}. The ⟨.⟩ and [.] operators are modal operators, which

are referred to as diamond and box modalities, respectively. The operator � is the least fixed

point operator, while � is the greatest fixed point operator. A formula of the form �X.' is a

fixed point formula, where X is said to be bound by the fixed point operator �. In this work,

we consider only formulas where all variables are bound. We write def(X) = �X.' for �X.'.

21

1. [[tt]]e = S

2. [[ff]]e = ∅

3. [[X]]e = e(X)

4. [['1 ∧ '2]]e = [['1]]e ∩ [['2]]e

5. [['1 ∨ '2]]e = [['1]]e ∪ [['2]]e

6. [[⟨a⟩']]e = {s ∣ ∃s a−→ s′ ∧ s′ ∈ [[']]e}

7. [[[a]']]e = {s ∣ ∀s a−→ s′ ⇒ s′ ∈ [[']]e}

8. [[�X.']]e = fn
X,e

(∅)

9. [[�X.']]e = fn
X,e

(S)

Figure 3.2 Semantics of a mu-calculus formula

The semantics of a mu-calculus formula ', denoted by [[']]e , is given in terms of the set of

states of an LTS Q = (S, s0, A,Δ) that satisfies the formula '. Figure 3.2 presents the full set

of mu-calculus semantics; these rules and their explanations are taken from [35]. In Figure 3.2,

the subscript e in [[']]e denotes a mapping function of the form e : X → 2S . This function is

used to map fixed point variables to sets of states in the LTS.

The propositional constant tt (true) is satisfied by all states, while the propositional con-

stant ff (false) is not satisfied by any state. The semantics of conjunctive and disjunctive

expressions are the intersection and the union of the semantics of the conjuncts and disjuncts,

respectively. The diamond modal expression ⟨a⟩' is satisfied by states having at least one

a-successor (i.e., a successor state reachable by an a action) that satisfies '. The box modal

expression [a]', which is the dual of ⟨a⟩', is satisfied by the states whose a-successors, if any,

all satisfy '; note that a state with no a-successors trivially satisfies [a]'. The semantics of a

fixed point variable X is defined by the mapping function e.

Finally, the semantics of least and greatest fixed point formula expressions are defined using

the function fX,e(Ŝ) = [[']]
e[X 7→Ŝ]

, where def(X) = �X.' and Ŝ ⊆ S. Here, e[X 7→ S′] denotes

an update to the mapping function e such that e[X 7→ S′](Y) is equal to S′ if X = Y and

e(Y) otherwise. It can be immediately shown that fX,e : 2S → 2S is monotonic over the lattice

22

e!
0 s4

s7s6

s3s2

s5

s1
a? b? d!

c? d! f!

s

Figure 3.3 LTS for demonstrating the use of mu-calculus

of subsets of state-set S, i.e., for all S1 ⊆ S2 ⊆ S: fX,e(S1) ⊆ fX,e(S2). Following the Tarski-

Knaster theorem [41], the semantics of the fixed point expression is obtained from n = ∣S∣

applications of the function fX,e(Ŝ), where Ŝ is initially equal to ∅ (the bottom of the lattice

of subsets of S) if computing a least fixed point or S (the top of the lattice) if computing a

greatest fixed point.

An LTS Q = (S, s0, A,Δ) is said to satisfy a mu-calculus formula ' (denoted by Q ∣= ')

if and only if s0 ∈ [[']]e . We will use s0 ∈ [[']]e and s0 ∣= ' interchangeably. Therefore, if a Web

service is represented as an LTS Q and a property that the service must satisfy is expressed as

a mu-calculus formula ', then the service satisfies the required property if and only if Q ∣= ',

assuming that the LTS Q accurately represents the service’s behavior. This proposition is the

basis of the verification technique proposed in [35] and extended in this work.

Example. To demonstrate how the semantics of mu-calculus can be used to determine

the set of states that satisfy a given mu-calculus formula, let us consider the LTS Q shown in

Figure 3.3 and define the mu-calculus formula

'
.
= ⟨a?⟩�X.(⟨d!⟩tt ∨ ⟨−⟩X) (3.1)

where the “dash” character (−) is a wildcard that stands for any action. In the context of the

LTS Q in Figure 3.3, this translates roughly to the following in English:

There is an immediate a?-transition, which is followed eventually by a d!-transition.

According to the semantics given in Figure 3.2, the first part of ', ⟨a?⟩, is satisfied by all

states that have an a?-transition to a state that satisfies the remainder of the formula. The

only a?-transition in Q is from state s0 to state s1; therefore, if s1 satisfies the remaining parts

23

of ', then s0 alone satisfies the entire formula. To determine whether this is the case, the

least fixed point �X.(⟨d!⟩tt ∨ ⟨−⟩X) must be computed. As before, let Ŝ ⊆ S be the set of

states representing the current status of the fixed point computation. The fixed point function

is defined as fX,e(Ŝ) = [[⟨d!⟩tt ∨ ⟨−⟩X]]
e[X 7→Ŝ]

, meaning “states with an outgoing d!-transition

to any other state or states with an outgoing transition of any type to a state already in Ŝ.”

Since we are computing a least fixed point, we must begin with Ŝ = ∅. On the first application

of the fixed point function, we add to Ŝ all states that have outgoing d!-transitions (s2 and

s5). On the second application of the function, we add all states that have outgoing transitions

to either s2 or s5 (only s1). On the third application, we add all states that have outgoing

transitions to s1 (only s0). On the fourth application, we add all states that have outgoing

transitions to s0; however, because s0 is the start state, we cannot add any more states to

Ŝ. We have therefore reached a fixed point, since further applications of the function cannot

change the value of Ŝ. In notation, the fixed point computation proceeds as follows:

fX,e(∅) = {s2, s5}

f2X,e(∅) = fX,e(fX,e(∅)) = {s1, s2, s5}

f3X,e(∅) = fX,e(fX,e(fX,e(∅))) = {s0, s1, s2, s5}

f4X,e(∅) = fX,e(fX,e(fX,e(fX,e(∅)))) = {s0, s1, s2, s5}

So {s0, s1, s2, s5} is the set of states that satisfy the subformula �X.(⟨d!⟩tt ∨ ⟨−⟩X). Because

s1 satisfies this subformula and s0 has an a?-transition to s1, we know that s0 satisfies Equa-

tion 3.1. Using this proposition and the fact that s0 ∣= ', we conclude that Q ∣= ', i.e., Q

provides the required functionality specified by '.

Let us briefly revisit the Web service composition problem. Given a set of LTS representa-

tions of services Q and a desired functionality ' expressed in mu-calculus logic, the problem of

Web service composition is to identify the existence of a composition Q1 ∣∣ Q2 ∣∣ ⋅ ⋅ ⋅ ∣∣ Qn ∣= ',

where for all i ≤ n, Qi ∈ Q. A number of techniques, including [6, 11, 22, 36, 37], have

been proposed and developed to address this problem. In this work, we do not focus on the

composition problem; instead, we focus on the related problem of Web service substitutability,

which will be discussed in the following section.

24

3.4 The Web Service Substitutability Problem

The problem of Web service substitutability is concisely expressed by Bordeaux et al. in [9]

as a question: “when can one service be replaced by another without introducing some flaws

into the whole system?” Although the substitutability problem applies to any application of

Web services, we will restrict our attention to substitution within the context of Web service

compositions; this allows us to characterize Web service substitution in the context of several

interacting services while directly addressing the problem of replacing unusable components

of Web service compositions. Our view of the Web service substitutability problem, which is

derived from the view taken by Pathak et al. in [35], involves determining whether a service

Q1 that is part of a composition with one or more services Q2 can be replaced by a substitute

service Q′1 while preserving the functionality of the original composition. Generalizing this

problem to compositions of any size produces the following definition of the general Web

service substitutability problem:

Definition 3 (General Service Substitutability Problem [35]) Let Q be a Web service

composition that comprises n component services Q1, Q2, . . . , Qn and that satisfies some re-

quired property ' describing the functionality of the composition. Suppose that one or more

components of the composition Qi (where i ∈ 1, 2, . . . , n) become unavailable or unusable. Does

there exist a service (or composition of services) Q′i that may be substituted for Qi such that

the new composition Q′ resulting from the substitution satisfies the property '?

The substitutability problem is usually solved by finding an appropriate substitutability

condition that will allow the service(s) to be replaced without loss or reduction of functionality.

Any service that satisfies the substitutability condition for a service Qi in a composition Q is

then an acceptable substitute for Qi in Q. A formal definition of this concept is:

Definition 4 (Substitutability Condition) Let Q = Q1 ∣∣ ⋅ ⋅ ⋅ ∣∣ Qn be a Web service

composition that realizes a desired functionality '. The substitutability condition for a service

Qi ∈ Q is the property or functionality that a substitute service Q′i must satisfy or provide in

order to preserve the full functionality ' of the composition Q when Q′i is substituted for Qi.

25

In [35], Pathak et al. divide the substitutability problem into two variants based on the

potential substitute service’s dependence on its environment (i.e., the other services in the

composition). Both variants assume that a property ' and services Q1 and Q′1 are given. The

environment-independent substitutability problem asks whether Q′1 can substitute for Q1 in any

composition, regardless of the environment of Q1. The environment-dependent substitutability

problem, which is a relaxation of the environment-independent problem, asks whether Q′1 can

substitute for Q1 in a particular composition. Defining Q2 as the environment of a composition

(i.e., all components of a composition except for Q1) yields the following formal definitions for

each variant of the problem, taken from [35]:

∙ Environment-independent: ∀Q2 : (Q1 ∣∣ Q2 ∣= ')
?⇒ (Q′1 ∣∣ Q2 ∣= ')

∙ Environment-dependent: ∃Q2 : (Q1 ∣∣ Q2 ∣= ')
?⇒ (Q′1 ∣∣ Q2 ∣= ')

It follows from these definitions that an environment-independent substitutability condi-

tion is generally stricter than the corresponding environment-dependent condition. A service

that satisfies the environment-independent version is valuable because it can be used to replace

the original component in any composition. However, in any given case, more services will sat-

isfy environment-dependent substitutability, which gives a composition developer flexibility to

choose the best substitute service for the situation based on factors besides simple correctness.

Even if a substitute service can replace the original service in all compositions, it may not be

the best choice for a particular composition. Further, using an environment-dependent sub-

stitutability condition may allow the consideration of one or more possible substitute services

that would be rejected if an environment-independent condition was used.

Note that both variants of the substitutability problem defined thus far assume that all ser-

vices within the composition communicate synchronously. We will show in Chapter 4 that this

assumption significantly limits the likelihood of finding a suitable substitute service. Nonethe-

less, for simplicity, we will continue to assume that all components of compositions communi-

cate synchronously until the end of this chapter.

26

3.5 The Quotienting Technique

The formal analysis necessary to compute a substitutability condition for a component of

a Web service composition is done in [35] using a technique called quotienting. Quotienting

provides a method for reducing the size and complexity of the property that a substitute

service must satisfy by removing the portions of the required property that are satisfied by

other components of the composition (i.e., by the environment of the service being replaced).

The result of the quotienting operation is an environment-dependent substitutability condition

for the service in question. In addition to its use in Web service substitutability analysis,

quotienting has been used to solve problems in a variety of other settings, including model

checking of ring protocols [1], verification of parameterized systems [4], and controller synthesis

of discrete event systems [3].

Given that a composition Q1 ∣∣ Q2 satisfies a desired functionality ', the quotienting

operation aims to obtain the property that Q2 (the environment of Q1) must satisfy. In

terms of the start states s0,1 and s0,2 of Q1 and Q2 respectively, this can be restated as: given

(s0,1, s0,2) ∣= ', obtain the property such that s0,2 ∣= must hold. This is realized by

defining the quotienting function as follows: ('╱T,Rs) : Φ × S × ℛ × T → Φ, where ' ∈ Φ,

s ∈ S of an LTS Q, R ∈ ℛ is the restricted action set (i.e., the actions on which Q must

synchronize with its environment), and T ∈ T is a tag set. The tag set contains elements

of the form Xs
i , where X is a fixed point variable in ', s ∈ S, and i is an integer. The tag

set is necessary to ensure termination of the recursive definition of quotienting. The result of

('╱T,Rs) is another mu-calculus formula that must be satisfied by the environment state t such

that (s, t) ∣= ' under the restriction set R.

Figure 3.4 presents the quotienting function. Rule 1 states that any environment state when

composed with s can satisfy tt, while Rule 2 states that no environment state can be composed

with s to satisfy ff. Rules 3 and 4 follow from the fact that the semantics of conjunctive

and disjunctive formulas are the intersection and union of the semantics of conjuncts and

disjuncts, respectively. Rule 5 handles quotienting of diamond modal formula expressions.

There are three possible cases by which (s, t), where t is the environment state composed with

27

1. (tt╱T,Rs) = tt

2. (ff╱T,Rs) = ff

3. ('1 ∧ '2╱T,Rs) = ('1╱T,Rs) ∧ ('2╱T,Rs)

4. ('1 ∨ '2╱T,Rs) = ('1╱T,Rs) ∨ ('2╱T,Rs)

5. (⟨a⟩'╱T,Rs) = ⟨a⟩('╱T,Rs)

∨

⎧⎨⎩
(⋁

s′:s
c−→s′⟨b⟩('╱T,Rs

′)
)

if a = � ∧ ∃s′ : s c−→ s′ ∧ inv(b, c) ∧ {b, c} ∈ R
ff otherwise

∨

⎧⎨⎩
(⋁

s′:s
a−→s′('╱T,Rs

′)
)

if ∃s′ : s a−→ s′ ∧ a ∕∈ R
ff otherwise

6. ([a]'╱T,Rs) = [a]('╱T,Rs)

∧

⎧⎨⎩
(⋀

s′:s
c−→s′ [b]('╱T,Rs

′)
)

if a = � ∧ ∃s′ : s c−→ s′ ∧ inv(b, c) ∧ {b, c} ∈ R
tt otherwise

∧

⎧⎨⎩
(⋀

s′:s
a−→s′('╱T,Rs

′)
)

if ∃s′ : s a−→ s′ ∧ a ∕∈ R
tt otherwise

7. (�X.'x╱T,Rs) =

⎧⎨⎩ �Xs
i .('x╱T∪{Xs

i
},Rs) if Xs

i ∕∈ T

�Xs
i+1.('x╱T [Xs

i
∖Xs

i+1
],R
s) otherwise

8. (X╱T,Rs) =

{
Xs
i if Xs

i ∈ T

(�X.'x╱T,Rs) otherwise, where def(X) = �X.'x

Figure 3.4 Quotienting rules

28

s, can satisfy ⟨a⟩'. The cases depend on whether the actions from s and t synchronize. The

first disjunct is satisfied if some action from state t is responsible to satisfy the diamond modal

obligation, i.e., if t has an a action after which it reaches a state t′ such that (s, t′) satisfies '.

The second disjunct corresponds to the case when a = � and the diamond modal obligation on

� is satisfied by a synchronous move from s and t. As a result, if there is a restricted action1

a from s, then the environment state t must have the action b such that inv(a, b). The third

disjunct corresponds to the case where s makes an autonomous move to satisfy the diamond

modal obligation. Rule 6 is the dual of Rule 5 and can be similarly explained.

Rule 7 denotes the quotienting of a fixed point formula. It can be proven that given a

fixed point formula ' containing sub-formulas of the form �X.'x, the sub-formulas can be

quotiented ∣S∣nd times in the worst case [3]. Here nd denotes the nesting depth of the formula

under consideration. For each repeated quotienting, a new fixed point formula is generated

over a fixed point variable Xs
i , where i denotes the ith time the formula �X.'x is quotiented

using the state s. The tag set T is used to keep track of the repeated quotienting of the

same fixed point formula against the same state. In case 2 of Rule 7, T [Xs
i ∖Xs

i+1] denotes the

replacement of Xs
i with Xs

i+1 in the tag set T .

Finally, Rule 8 case 1 applies to the situation where quotienting �X.'x against s leads

to quotienting of X in 'x against s. The result is Xs
i , the variable resulting from the last

quotienting of �X.'x against s as per Rule 7. Case 2 in Rule 8 considers the quotienting of X

against s for the first time. In this case, X is expanded to its definition, �X.'x.

The following theorem asserts the correctness of the quotienting rules.

Theorem 1 (Soundness and Completeness of Quotienting) Given any two LTSs Q1 =

(S1, s01, A1,Δ1) and Q2 = (S2, s02, A2,Δ2), a restriction set R, and a mu-calculus formula ',

the following holds: ((Q1 ∣∣ Q2)∖R ∣= ')⇔ (Q2 ∣= ('╱∅,RQ1)).

For a detailed explanation of the rules, their correspondence to the mu-calculus semantics

(Figure 3.2), and the proof of the above theorem, refer to [3, 4].

1Recall that restricted actions are the ones on which LTSs communicate via synchronization (see Definition 2).

29

e!
3b2b10b x? d! b

Figure 3.5 Sample service Q2 for quotienting example

('╱∅,∅Q2) = (�Y.([b?]�Z.(⟨e!⟩tt ∨ ⟨−⟩Z) ∧ [−]Y)╱∅,∅b0)

= �Y b0
1 .([b?](�Z.(⟨e!⟩tt ∨ ⟨−⟩Z)╱b0) ∧ [−]Y b0

1 ∧ 'Y b1
1

) Rules 7, 3, 6

= �Y b0
1 .([b?]�Zb01 .(⟨e!⟩tt ∨ ⟨−⟩Z

b0
1 ∨ 'Zb1

1

) ∧ [−]Y b0
1 ∧ 'Y b1

1

) Rules 7, 4, 5, 1

'
Y

b1
1

= �Y b1
1 .([b?]'

Z
b1
1

∧ [−]Y b1
1 ∧ 'Y b2

1

) Rules 7, 3, 6

'
Y

b2
1

= �Y b2
1 .([b?]'

Z
b2
1

∧ [−]Y b2
1 ∧ 'Y b3

1

) Rules 7, 3, 6

'
Y

b3
1

= �Y b3
1 .([b?](�Z.(⟨e!⟩tt ∨ ⟨−⟩Z)╱b3) ∧ [−]Y b3

1) Rules 7, 3, 6

= �Y b3
1 .([b?]�Zb31 .(⟨e!⟩tt ∨ ⟨−⟩Z

b3
1) ∧ [−]Y b3

1) Rules 7, 4, 5, 1

'
Z

b1
1

= �Zb11 .(⟨e!⟩tt ∨ ⟨−⟩Z
b1
1 ∨ 'Zb2

1

Rules 7, 4, 5, 1

'
Z

b2
1

= �Zb11 .(⟨e!⟩tt ∨ tt ∨ ⟨−⟩Zb21 ∨ �Z
b3
1 .(⟨e!⟩tt ∨ ⟨−⟩Z

b3
1)) Rules 7, 4, 5, 1

= �Zb21 .(tt) ∀P : tt ∨ P = tt

Figure 3.6 Results of quotienting ' (Equation 3.2) by Q2 (Figure 3.5)

Example. Suppose that the service Q2, shown in Figure 3.5, provides a portion of the

functionality specified by the following mu-calculus formula:

' = �Y.([b?]�Z.(⟨e!⟩tt ∨ ⟨−⟩Z) ∧ [−]Y) (3.2)

which means that every b?-transition must be followed eventually by an e!-transition. We want

to know what portion of this property is satisfied by Q2, so we will quotient ' against the start

state of Q2.

The results of this operation are shown in Figure 3.6. Because Q2 contains an e!-transition,

the inner fixed point formula is satisfied if a b? action occurs in the environment of Q2 before

Q2 reaches state b2.

30

loaninfo?
 1 s 2 s 3

s 4s 5

rate!

ssn?

credscr!

s

decision!

 1 t 2

t 3t 4

rate?

credscr?

t

bestrate!

 1 s 2 s 3

s 4s 5s 6

loaninfo? rate!

ssn?

credscr!

ssn?

s

(a) (b) (c)

Figure 3.7 LTS representations for (a) Q1, (b) Q2, (c) Q′1

3.6 Applying Quotienting to Determine Web Service Substitutability

The quotienting technique presented in the previous section is used by Pathak et al. in [35]

to reduce the Web service substitutability problem to the problem of mu-calculus satisfiabil-

ity. Recall the two variants of the context-specific substitutability problem defined in Sec-

tion 3.4, and suppose that the composition Q1 ∣∣ Q2 satisfies the functionality or property

'. For the environment-independent substitutability problem, a service Q′1 can replace Q1

in all possible environments Q2 where Q1 ∣∣ Q2 ∣= ' if it holds that ('╱∅,RQ1) ⇒ ('╱∅,RQ
′
1);

however, we are not addressing environment-independent substitutability in this work. For the

environment-dependent substitutability problem, a service Q′1 can replace Q1 with respect to a

given environment Q2 if it holds that Q′1 ∣= ('╱∅,RQ2). Therefore, the environment-dependent

substitutability condition for Q1 can be determined by simply quotienting the required func-

tionality ' against the environment Q2. A mu-calculus model checking tool can then be used

to determine whether a possible substitute service Q′1 satisfies the substitutability condition.

Let us demonstrate this process with the following example. Suppose that a bank has

decided to automate parts of its loan approval process using a Web service composition, which

it calls LoanApproval. The inputs to the service are the amount and length of the loan (de-

noted by loaninfo?), as well as the Social Security number of the user (denoted by ssn?); the

output from the service is the approval decision and the monthly payment amount (denoted by

decision!). LoanApproval is composed of two services, LoanCompute (Q1) and DecisionMaker

(Q2), shown in Figure 3.7(a, b). LoanCompute takes the user inputs and then outputs the in-

terest rate of the loan (denoted by rate!) followed by the credit score of the user (denoted by

31

τ

 1 t 2

s 4s 5

s 1
t 1

s 2 s 3

t 2t 3t 4

s 5

loaninfo?

ssn?

decision!

τt

Figure 3.8 The LoanApproval service composition Q1 ∣∣ Q2

credscr!). DecisionMaker takes as input the interest rate (rate?) followed by the credit score

(credscr?) and outputs the decision (decision!). Notationally, if the composition is repre-

sented by Q1 ∣∣ Q2 (capturing the communication between Q1 and Q2) and the functionality of

the composition is represented by ', then the composition satisfies the required functionality,

i.e., Q1 ∣∣ Q2 ∣= '. Figure 3.8 illustrates this composition.

In the event that Q1 becomes unavailable, it can be replaced with Q′1 (Figure 3.7(c)) such

that the composition still realizes the same functionality, i.e., Q′1 ∣∣ Q2 ∣= '. Note that Q1

and Q′1 are not functionally equivalent (Q1 ∕≡ Q′1), as is typically required for substitution in

the existing literature; however, with respect to the desired functionality of the composition

(referred to as the context in [35]), their behavior is equivalent, as their communication patterns

with Q2 are identical. Therefore, the composition Q′1 ∣∣ Q2 can be realized and will satisfy ',

meaning that Q′1 is a feasible substitute for Q1 in LoanApproval.

In this example, the property ' that the LoanApproval service must satisfy is that after

user inputs of loaninfo? and ssn? are received, eventually an output decision! is obtained.

This property is represented formally by the following least fixed point mu-calculus formula:

'
.
= ⟨loaninfo?⟩�X.(⟨ssn?⟩�Y.(⟨decision!⟩tt ∨ ⟨�⟩Y) ∨ ⟨�⟩X)

This states that a loaninfo? input is followed eventually by an ssn? input, which is followed

eventually by a decision! output. For better readability, in the rest of the paper we will use

'1 and '2 to represent sub-formulas of ', where:

'
.
= ⟨loaninfo?⟩'1, '1

.
= �X.(⟨ssn?⟩'2 ∨ ⟨�⟩X), '2

.
= �Y.(⟨decision!⟩tt ∨ ⟨�⟩Y) (3.3)

By inspection of Figure 3.8, it is clear that the composition Q1 ∣∣Q2 satisfies ', i.e., (s1, t1) ∣= '.

32

'╱t1
.
= ⟨loaninfo?⟩('1╱t1)

'1╱t1
.
= �Xt1

1 .(⟨ssn?⟩('2╱t1) ∨ ⟨�⟩Xt1
1 ∨ ⟨rate!⟩(X╱t2))

X╱t2
.
= �Xt2

1 .(⟨ssn?⟩('2╱t2) ∨ ⟨�⟩Xt2
1 ∨ ⟨credscr!⟩(X╱t3)

X╱t3
.
= �Xt3

1 .(⟨ssn?⟩('2╱t3) ∨ ⟨�⟩Xt3
1

'2╱t1
.
= �Y t1

1 .(⟨decision!⟩tt ∨ ⟨�⟩Y t1
1 ∨ ⟨rate!⟩(Y╱t2))

Y╱t2
.
= �Y t2

1 .(⟨decision!⟩tt ∨ ⟨�⟩Y t2
1 ∨ ⟨credscr!⟩(Y╱t3))

Y╱t3
.
= �Y t3

1 .(tt)

'2╱t2 ≡ Y╱t2
'2╱t3 ≡ Y╱t3

Figure 3.9 Result of quotienting ('╱∅,Rt1)

Having specified the composition Q1 ∣∣ Q2 and the property ' that describes its essential

functionality, we are now ready to compute the substitutability condition for Q1. Recall from

Theorem 1 that if Q1 ∣∣ Q2 satisfies the original property ', then Q1 satisfies the quotiented

property ('╱∅,RQ2); therefore, if Q′1 also satisfies ('╱∅,RQ2), then Q′1 ∣∣ Q2 must satisfy '.

We proceed by first quotienting the property ' against the environment process Q2 and then

determining whether Q′1 satisfies the resulting quotiented property.

The process of quotienting ('╱∅,RQ2), where Q2 is the service LTS (Figure 3.7(b)) and R

is the restriction set {rate!, rate?, credscr!, credscr?}, begins as follows:

('╱∅,Rt1) = ⟨loaninfo?⟩(�Xt1
1 .⟨ssn?⟩('2╱

{Xt1
1 },R

t1) ∨ ⟨rate!⟩('1╱
{Xt1

1 },R
t2))

where '1 and '2 are defined in Equation 3.3. Note that loaninfo? and ssn? are left as the

obligation of the environment of Q2 (i.e., Q1 or Q′1 must provide these actions), as Q2 cannot

satisfy these modal action obligations. Also note that Q2 at state t1 can perform a restricted

action rate?, which satisfies ⟨�⟩ in the definition of '1 by leaving the obligation of ⟨rate!⟩

for the environment (see Rule 5, second disjunct, Figure 3.4). The result of this quotienting

operation is shown in Figure 3.9; the underlined subformulas are satisfied by Q′1.

To prove that Q′1 can substitute for Q1, it suffices to show that Q′1 ∣= ('╱∅,RQ2) holds. Let

33

s1 be the start state of Q′1 and t1 be the start state of Q2. The proposition is proven as follows:

Q′1 ∣= ('╱Q2) ⇔ s1 ∣= ('╱t1)
.
= ⟨loaninfo?⟩('1╱t1)

⇔ s2 ∣= ('1╱t1)
.
= �Xt1

1 .(⟨ssn?⟩('2╱t1) ∨ ⟨�⟩Xt1
1 ∨ ⟨rate!⟩(X╱t2))

⇔ s3 ∣= (X╱t2)
.
= �Xt2

1 .(⟨ssn?⟩('2╱t2) ∨ ⟨�⟩Xt2
1 ∨ ⟨credscr!⟩(X╱t3))

⇔ s4 ∣= ('2╱t2)
.
= �Y t2

1 .(⟨decision!⟩tt ∨ ⟨�⟩Y t2
1 ∨ ⟨credscr!⟩(Y╱t3))

⇔ s5 ∣= (Y╱t3)
.
= �Y t3

1 .(tt)

⇔ s5 ∣= tt

According to the semantics of mu-calculus, every state of every LTS always satisfies tt, implying

that s1 ∣= ('╱t1); therefore, Q′1 ∣= ('╱Q2) holds as desired. Thus we have successfully proven

thatQ′1 can substitute forQ1 in the compositionQ1 ∣∣Q2 in the event thatQ1 becomes unusable

or unavailable. Knowing that a substitute is available for the component Q1 may help convince

the bank to adopt the proposed Web service composition to provide automated loan approval

services.

34

CHAPTER 4. SUBSTITUTABILITY IN ASYNCHRONOUS

COMPOSITIONS

In this chapter, we will discuss how the substitutability condition can be relaxed by al-

lowing asynchronous communication between participating services in a composition. The

central theme of our technique will rely on formally modeling an asynchronous communica-

tion paradigm using synchronous communication of services with appropriate communication

buffers. After formalizing the notion of an asynchronous Web service composition and pre-

senting a technique for treating such a composition as if its components communicate syn-

chronously, we will show how the substitutability condition can be further relaxed.

To motivate the contents of this chapter, we proceed by presenting the drawbacks of con-

sidering only synchronous communication when obtaining a substitutability condition. Let us

revisit the LoanApproval composite service introduced in Section 3.6. Suppose that the bank

in our example has developed a new version of the LoanCompute component service, which we

will denote by Q′′1. The bank needs to determine whether Q′′1 can substitute for the original

LoanCompute component Q1 within the LoanApproval composition. To that end, our objective

is to determine whether the proposed substitute service Q′′1 can provide the same functionality

as Q1 within the existing composition Q1 ∣∣ Q2. The original LoanCompute component Q1

and its previously identified substitute Q′1 are shown in Figures 3.7(a) and 3.7(c), respectively,

while Q′′1 is presented in Figure 4.1.

Under the existing setting for substitutability analysis, which requires synchronous com-

munication between component services, it is not possible for Q′′1 to replace Q1 in the existing

composition. However, if support for asynchronous communication can be introduced into the

formal Web service composition model, then it may be possible to identify Q′′1 as a valid sub-

35

credscr!

 1 s 2 s 3

s 4s 5s 6

loaninfo?

ssn?

bestrate!

ssn?

rate!

s

Figure 4.1 LTS representation for Q′′1

stitute for Q1. Our intent is to provide a formal model of asynchronous communication within

Web service compositions and then apply this model to correctly determine a substitutability

condition for a component of a Web service composition under an asynchronous communication

paradigm.

4.1 Existing Substitutability Analysis Technique Cannot Be Applied

To clearly illustrate that the existing quotienting-based substitutability analysis technique

cannot be applied to Web service compositions where the components communicate asyn-

chronously, we will begin by demonstrating informally that Q′′1 can substitute for Q1 in the

existing composition with no loss of functionality. We will then show that naive application of

the technique used in Section 3.6 fails to conclude that Q′′1 can substitute for Q1, after which

we will present prior results implying that applying this technique naively to asynchronously

communicating Web service compositions is undecidable in general. We will then present our

technique in the remaining sections of this chapter.

First, let us observe the functionality of the original LoanApproval composite service

Q1 ∣∣ Q2 that was defined in Section 3.6 and shown in Figure 3.8. In Q1 ∣∣ Q2, execution

begins when Q1 receives a loaninfo input from the user. The first � -action represents a rate

output being produced by Q1 and immediately consumed by Q2. At this point, Q1 receives an

ssn input from the user; this leads to the second � -action, in which Q1 produces a credscr

output that is immediately consumed by Q2. Since Q1 has completed execution, all that

remains is for Q2 to produce its decision output for the user.

36

Now let us determine by inspection whether substituting Q′′1 for Q1 in this composition

preserves the original functionality of Q1 ∣∣ Q2. Q
′′
1 can receive either a loaninfo or ssn input

from the user as it begins executing. If a loaninfo input is received first, then Q′′1 waits to

receive an ssn input from the user. After receiving both inputs, Q′′1 produces two outputs:

first credscr and then rate. Because Q2 blocks until it receives a rate input, it cannot do

anything until Q′′1 has finished; further, the credscr output must be stored in order for Q2 to

use it when needed. Clearly, the change in output order from Q1 to Q′′1 renders synchronous

communication between Q′′1 and Q2 impractical; as a result, Q′′1 ∣∣ Q2 cannot provide the

functionality of Q1 ∣∣ Q2. However, if we allow asynchronous communication between Q′′1 and

Q2 by providing a common message store accessible to both component services, then the

out-of-order outputs produced by Q′′1 can be consumed in the order that Q2 expects them to

be provided. This means that Q′′1 can substitute for Q1 under an asynchronous communication

paradigm with no loss of functionality. The implication of this conclusion is that restricting

substitutability analysis to cases where synchronous communication is possible can cause valid

substitute services to be incorrectly rejected.

An intuitive possible solution to this problem would be to alter the existing substitutability

analysis technique from [35] to assume that all communication between component services

will be asynchronous, instead of assuming that all such communication must be synchronous.

However, this approach suffers from serious drawbacks, the most important of which is that

model checking against a set of LTSs that communicate asynchronously with unbounded queues

has been shown in [19] to be undecidable. A variation on this approach involves simulating

asynchronous communication by inserting finite-length queues between the component services

in the proposed composition. This strategy attempts to find a set of queues of different lengths

that will allow a substitution candidate to replace the existing component. Although this avoids

the undecidability that comes with using unbounded queues for asynchronous communication,

the complexity of this approach means that it is impractical for any substantial applications.

In our work, we have expanded on the idea of using queues or buffers to support asyn-

chronous communication between components. Instead of naively inserting buffers between

37

services at each interaction point, we create a single buffer process for the entire composition

that can handle any type of message that the component services send or receive. This buffer

process encapsulates all of the asynchronicity of the communications between component ser-

vices, because it is always ready to accept an unused output or supply a stored input as needed

by other components; however, it is included in a synchronous composition with the original

components of the composition. In this way, we transform an asynchronous composition into

a synchronous composition that can be analyzed like any other synchronous composition.

4.2 Formalizing Composition of Asynchronous Web Services

Before proceeding further, it is necessary to define a new operator for asynchronous com-

position of LTSs. The existing LTS composition operator ∣∣ defined in Definition 2 only allows

for synchronous composition. Compositions formed using this operator are allowed to commu-

nicate only by synchronizing on actions in the restricted action set R. Consider a composition

Qs ∣∣ Qe that consists of a service Qs in composition with several other services that form its

environment Qe, and consider actions a and b, where a, b ∈ R and inv(a, b). If Qs reaches a

state where it is ready to perform action a, but its environment Qe has not reached a state

where it can perform action b, then Qs is required to block until Qe is ready to perform ac-

tion b. This is true even if a is an output action that is independent of the current state of

Qe. However, under asynchronous communication, the notion of a “restricted action” can be

relaxed somewhat. Instead of a strict two-way codependency requiring that an action must

never occur except simultaneously with its matching inverse action, a pair of restricted actions

now has a weaker one-way dependency, where the output action is completely independent

and the input action may occur at any time during or after its corresponding output action.

In order to allow this, we must introduce a message store St into the composition formalism

to keep track of outputs from each participating LTS that can be consumed later. This will

allow the strict synchronization requirement to be removed from the logic of the composition

formalism as desired.

The formal definition of an asynchronous composition of LTSs (and thus of Web services)

38

proceeds as follows:

Definition 5 (Asynchronous LTS composition) Given Q1 = (S1, s0,1, A1,Δ1) and Q2 =

(S2, s0,2, A2,Δ2), their asynchronous composition under a set of “restrictions” R, denoted by

(Q1 // Q2)∖R, is a tuple Q = (S, s0, A,Δ), where S ⊆ S1×S2×P(A), s0 = (s0,1, s0,2, ∅), and

A ⊆ A1 ∪ A2 ∪ {�}. The asynchronous transition relation is Δ ⊆ S × P(A)× A× S × P(A),

where P(A) denotes the powerset of A. Δ is defined as follows:

1. Autonomous move: (s1, s2, St)
a−→ (t1, t2, St

′) ∈ Δ if a ∕∈ R and there exists

(i) s1
a−→ t1 ∈ Δ1, s2 = t2, and St′ = St; or (ii) s2

a−→ t2 ∈ Δ2, s1 = t1, and St′ = St.

2. Asynchronous output: (s1, s2, St)
�−→ (t1, t2, St

′) ∈ Δ if there exists

(i) s1
a!−→ t1 ∈ Δ1, s2 = t2, a! ∈ R, and St′ = St ∪ {a!}; or

(ii) s2
a!−→ t2 ∈ Δ2, s1 = t1, a! ∈ R, and St′ = St ∪ {a!}.

3. Asynchronous input: (s1, s2, St)
�−→ (t1, t2, St

′) ∈ Δ if there exists

(i) s1
a?−→ t1 ∈ Δ1, s2 = t2, a? ∈ R, a! ∈ St, and St′ = St∖{a!}; or

(ii) s2
a?−→ t2 ∈ Δ2, s1 = t1, a! ∈ R, a! ∈ St, and St′ = St∖{a!}.

We observe that Definitions 2 and 5 imply the following proposition.

Proposition 1 Given any set of n services Q1, Q2, . . . , Qn and any property ', if the syn-

chronous composition Q1 ∣∣ Q2 ∣∣ ⋅ ⋅ ⋅ ∣∣ Qn satisfies ', then the asynchronous composition

Q1 // Q2 // ⋅ ⋅ ⋅ // Qn also satisfies '.

The asynchronous composition operator // defined in Definition 5 is essentially an extension

of the synchronous composition operator defined in Definition 2 that provides the additional

theoretical machinery for handling asynchronous communication between services. The bulk

of the increased complexity results from the introduction of a message store St ⊆ P(A). This

store holds output messages from any component and provides these stored messages to any

component that requires them. Because the contents of the store St may change during any

given transition, each state in the composite LTS must include the current contents of the

store St at that state.

39

The asynchronous transition relation Δ encompasses three conditions. The first condi-

tion describes an autonomous move in which one component LTS makes a move that does not

change the contents of the store St. This condition is essentially the same as for an autonomous

move in a synchronous composition (Condition 1 in Definition 2). The second condition repre-

sents an asynchronous output, where one LTS makes a move on an output action in R, creating

an output message that is not consumed by a corresponding input action in any other LTS. As

a result, the output action is added to the store St for future consumption. Finally, the third

condition corresponds to an asynchronous input, where a component LTS performs an input

action in R by consuming the appropriate output from the store St. An input action for each

participating LTS is allowed only when the requested message is available in the store or from

the user; if the appropriate message is not available, the LTS must block until it becomes avail-

able. Output actions may be performed by any component LTS at any time. Note that none

of these conditions describe strictly synchronized communication between component LTSs.

While synchronous communication is allowed under this model, synchronization cannot be

directly represented. Instead, each synchronized move can be represented as an asynchronous

output followed immediately by its corresponding asynchronous input.

Figure 4.2 presents the asynchronous composition of Q′′1 and Q2 with the restriction set

R = {rate!, rate?, credscr!, credscr?}. In Q′′1 // Q2, the store St is empty at the start

state (s1, t1) and remains empty until the � -transition to (s4, t1). As credscr! is produced

by Q′′1 but not consumed by Q2 in this transition, credscr! is added to St at state (s4, t1);

likewise, rate! is added to St during the � -transition to (s5, t1). The stored outputs are

consumed by Q2 in the remaining � -transitions, leaving St empty at states (s5, t3) and (s5, t4).

4.3 Handling Asynchronous Behavior by Using a Buffer Process

The core of our technique for allowing asynchronous behavior in substitutability analysis

depends on obtaining a buffer process that is composed with the proposed composition. The

purpose of the buffer process in our approach is to provide the facilities required to handle

asynchronous communication between the components of a composition by synchronizing with

40

′

 1 t 1

s 4s 5

s 1
t 1

s 2 s 3

t 1t 1t 2

s 5

s 5
t 3

s 5
t 4

s 5s 6
t 1 t 1

loaninfo? ssn?

τ

τ τ

decision!

τ

bestrate!

ssn?

t

State Contents of St

(s1, t1) {}
(s2, t1) {}
(s3, t1) {}
(s4, t1) {credscr!}
(s5, t1) {rate!, credscr!}
(s5, t2) {rate!}
(s5, t3) {}
(s5, t4) {}
(s6, t1) {}
(s5, t1)′ {}

Figure 4.2 The asynchronous composition Q′′1 // Q2

them as needed to store each component’s unused outputs until they are needed as inputs to

another component. It does not generate any actions by itself; rather, it exists only to act as

an intermediary between the components. We will first provide a formal definition for such a

buffer process and then present an algorithm for efficiently constructing an appropriate buffer

process for a given asynchronous composition of Web services. After this, we will demonstrate

the creation of a buffer process to accomplish an asynchronous composition of Q′′1 and Q2 in

the example from the beginning of this chapter.

We define a buffer process for a given asynchronous composition of LTSs as follows:

Definition 6 (Buffer Process) Given an asynchronous composition (Q1 // Q2)∖R, where

Qi = (Si, s0,i, Ai,Δi) and i ∈ {1, 2}, the corresponding buffer process is defined as QB12 =

∣∣{QaB ∣ a! ∈ Ai ∩ R}, where each QaB = ({qa0 , qa1 , qa2}, qa0 , {a!, a?},Δa
B) is an LTS such that

Δa
B = {qa0

a?−→ qa1 , q
a
1

a?−→ qa1 , q
a
1

a!−→ qa2}.

The buffer process QB12 is a synchronous composition of ∣R∣/2 buffer LTSs of the form QaB

— one such LTS for each input/output action pair in the restriction set R. Each buffer LTS

QaB has three states and three transitions (one of which is a “self-loop” transition that does not

result in a change in state), and each QaB is capable of consuming an output from any LTS and

providing input to another. The buffer process QB12 is simply the synchronous composition

of all of the QaBs that have been created. Note that the composition QB12 does not have any

restriction set, i.e., the participating QaBs are not capable of communicating with each other.

41

rate?

 1a

b 2a

b 3a

rate!

b

credscr!

 1b

b 2b

b 3b

credscr?

b
rate?

 1

b 6

b 3b 2

b 7

b 5b 4

b 9

b 8
rate?

rate?

rate!
credscr?credscr?

credscr!

credscr?

credscr!

credscr!

rate!

rate!b

at each state:

rate!

credscr!

rate!, credscr!

Stored actions

(none)

(a) (b) (c)

Figure 4.3 Buffer processes (a) QrateB , (b) QcredscrB , (c) QB12

for our example

Figure 4.3 presents the simple buffers and the resulting buffer process for the asynchronous

composition in Figure 4.2. The self-loop transitions are not illustrated in this figure; instead,

shapes are used to denote the actions for which a self-loop transition is available at each state.

For example, states b2a and b2b have self-loops on rate? and credscr? actions, respectively;

similarly, state b7 has self-loops on both rate? and credscr? actions. Note that a path exists

for every permitted ordering of the actions.

A buffer process created according to Definition 6 must have exactly 3∣R∣/2 states, because

the set of states of the buffer process is the Cartesian product of the sets of states of the ∣R∣/2

buffer LTSs. We have determined that a buffer process must also have exactly (∣R∣/2)
(
3∣R∣/2

)
transitions. Because the set of actions for the buffer process is comparatively small (∣R∣)

and therefore occupies relatively little space, the space required to store the buffer process is

O
(
∣R∣3∣R∣

)
.

Before presenting our algorithm for creating a buffer process, it is necessary to present an

alternative definition of a restriction set that will be used in the algorithm. It can be observed

that the actions in the restriction set R generally occur in pairs, where one action in each

pair must always be synchronized with the other action in the same pair. This insight can be

formalized by defining a pairwise restriction set as follows:

Definition 7 (Pairwise Restriction Set) Let Q1 = (S1, s0,1, A1, Δ1) and Q2 = (S2, s0,2,

A2, Δ2) be any two LTSs, and let Q1 ∣∣ Q2 be the synchronous composition of Q1 and Q2. The

42

pairwise restriction set RP ⊆ A1×A2 of Q1 ∣∣ Q2 is the set of pairs of actions on which Q1 and

Q2 must make synchronized moves and generate a � -transition in the composition Q1 ∣∣ Q2.

In notation:

RP = {(a, b) : a ∈ A1, b ∈ A2, inv(a, b)}

where the relation inv is as defined in Section 3.1.

We now present Algorithm 1, which creates a buffer process as defined in Definition 6

corresponding to a given pairwise restriction set. To understand the underlying premise of

this algorithm, recall that each pair of actions (a?, a!) in a pairwise restriction set RP gives

rise to a corresponding buffer QaB having three states (Qa0, Qa1, and Qa2), two actions (a? and

a!), and three transitions (Qa0
a?−→ Qa1, Qa1

a?−→ Qa1, and Qa1
a!−→ Qa2). Let us place Qa0, Qa1, and

Qa2 at coordinates 0, 1, and 2 on the number line, respectively; then the transition Qa0
a?−→ Qa1

forms the line segment (0, 1), the transition Qa1
a?−→ Qa1 forms a self-loop on coordinate 1, and

the transition Qa1
a!−→ Qa2 forms the line segment (1, 2). If the buffer LTS for each action pair in

RP is placed in its own dimension in space, then the LTS corresponding to the composition of

these ∣RP ∣ buffers can be viewed as a set of 3∣RP ∣ state points in ∣RP ∣-space that are connected

by transition arcs such that each state point has a transition to a successor state point along

each axis where the coordinate of that state point is either 0 or 1. For example, if ∣RP ∣ = 3, the

start state at (0, 0, 0) has three outgoing transitions to states at (1, 0, 0), (0, 1, 0), and (0, 0, 1);

the state at (1, 0, 1) has three outgoing transitions to states at (2, 0, 1), (1, 1, 1), and (1, 0, 2);

the state at (1, 1, 2) has two outgoing transitions to states at (2, 1, 2) and (1, 2, 2); and the state

at (2, 2, 1) has one outgoing transition to the final state at (2, 2, 2). Figure 4.3(c) illustrates

an example where ∣RP ∣ = 2. In addition, each state point has one transition to itself for each

axis where the coordinate of that state point is 1. This accounts for the fact that if an action

of type a is already stored in the store St, then further actions of type a are accepted but not

added to the store (i.e., they are lost) until the stored a-message is consumed.

This conception of the composition’s structure suggests an intuitive method for composing

the buffer process:

1. Create 3∣RP ∣ states and map each state to an element of
∏
∣RP ∣ {0, 1, 2}.

43

2. For each state s, beginning with (0, . . . , 0, 0), then (0, . . . , 0, 1), then (0, . . . , 0, 2), then

(0, . . . , 1, 0), and so on until (2, . . . , 2, 2), do the following for each axis a:

(a) If the position of state s on axis a is 0, then create a transition s
a?−→ s′, where state

s′ has the same coordinates as s except its position on axis a is 1.

(b) If the position of state s on axis a is 1, then create a self-loop transition s
a?−→ s

and a transition s
a!−→ s′, where state s′ has the same coordinates as s except its

position on axis a is 2.

(c) If the position of state s on axis a is 2, then do not create a transition.

Algorithm 1 follows this pattern to generate a complete buffer process from a given pairwise

restriction set RP .

4.4 Combining a Buffer Process and Quotienting to Solve the Problem

Our main objective in this work has been to produce a general solution for the asynchronous

Web service substitutability problem, or the problem of finding a condition that must be satis-

fied by a service in order for that service to substitute for a particular component of an existing

Web service composition in which the services communicate asynchronously without loss of

functionality. By combining the formal definition of asynchronous composition given in Defi-

nition 5, the algorithm for creating a buffer process that corresponds to a given asynchronous

composition presented in Section 4.3, and the application of the quotienting technique from [35]

that was presented in Section 3.6, we obtain a general solution for the asynchronous Web ser-

vice substitutability problem. In this section, we present that solution, prove its correctness,

and discuss its complexity.

4.4.1 Solution and Proof of Correctness

We begin the presentation of our solution to the asynchronous substitutability problem

by proving that an asynchronous Web service composition and its corresponding buffered

synchronous composition created according to the technique described in this chapter are

44

Algorithm 1 Create a buffer process from a pairwise restriction set

Input: RP : a pairwise restriction set

Output: B = (SB , s0,B , AB ,ΔB): an LTS for the buffer service corresponding to RP

procedure BufferGen(RP)

if RP = ∅ then ⊳ create a trivial buffer

SB ← {b}, s0,B ← b, AB ← {no action}, ΔB ← {b
no action−→ b}

else ⊳ RP contains at least one restricted action pair

AB ← RP

let actNames = {a.name : a ∈ RP } ⊳ the names, without types, of the actions in RP

let r = ∣actNames∣ ⊳ the number of matched action pairs in RP

let stCtr ∈ {0, 1, 2}r ⊳ array representing the state of each component buffer Qa
B

SB ← {b0, b1, . . . , b3r−2, b3r−1}
define stLocnMap : SB → {0, 1, 2}r such that:

b0 7→ (0, . . . , 0, 0) b2 7→ (0, . . . , 0, 2) . . . b3r−2 7→ (2, . . . , 2, 1)

b1 7→ (0, . . . , 0, 1) b3 7→ (0, . . . , 1, 0) b3r−1 7→ (2, . . . , 2, 2)

stCtr ← (0, . . . , 0)

for i← (r − 1) to 0 do ⊳ for each value of stCtr, in order from (0, . . . , 0) to (2, . . . , 2)

if i = r − 1 then ⊳ if on last digit (axis) of stCtr

while stCtr[i] ≤ 2 do

start← stLocnMap−1(stCtr) ⊳ choose state mapped to stCtr as transition start

for j ← 0 to (r − 1) do

if stCtr[j] < 2 then

stCtr[j]← stCtr[j] + 1 ⊳ find start’s successor along the jth axis

end← stLocnMap−1(stCtr) ⊳ choose this state as transition end

stCtr[j]← stCtr[j]− 1 ⊳ restore the value of stCtr

a.name← actNames[j] ⊳ action name matches jth element of stCtr

if stCtr[j] = 0 then

ΔB ← ΔB ∪ {start
a?−→ end}

else if stCtr[j] = 1 then

ΔB ← ΔB ∪ {start
a?−→ start, start

a!−→ end}
stCtr[i]← stCtr[i] + 1 ⊳ move to the next value of stCtr

else ⊳ if on any other digit (axis) of stCtr

if stCtr[i] < 2 then ⊳ if current digit < 2

stCtr[i]← stCtr[i] + 1 ⊳ increment current digit

while i < r − 1 do ⊳ reset all previously exhausted digits to zero

i← i+ 1

stCtr[i]← 0

i← i+ 1 ⊳ needed to make for loop work correctly

s0,B ← b0

return B

45

equivalent. Using this result, we will further show that the condition for substitutability in the

asynchronous setting can be obtained from the substitutability condition in the corresponding

synchronous setting. It is then possible to perform formal verification of a buffered synchronous

composition against this asynchronous substitutability condition, as desired.

Theorem 2 (Composition Equivalence) Let Q1 and Q2 denote two LTSs that represent

Web services, let QB12 denote the buffer process generated from (Q1 // Q2)∖R as described in

Definition 6, and let ' denote a property satisfied by a given composition. The transition rela-

tion of the asynchronous composition (Q1 // Q2)∖R is bisimulation equivalent to the transition

relation of the buffered synchronous composition (Q1 ∣∣ Q2 ∣∣ QB12)∖R. In notation:

(Q1 ∣∣ Q2 ∣∣ QB12)∖R ∣= '⇔ (Q1 // Q2)∖R ∣= '

Proof. Given an action a ∈ A, let
a−→∣∣ denote a synchronous a-transition, and let

a−→//

denote an asynchronous a-transition. Let Δ1, Δ2, and ΔB12 denote the transition relations of

Q1, Q2, and QB12, respectively. We will prove Theorem 2 by showing that ∀s1 ∈ S1, ∀s2 ∈ S2,

∀St, St′ ⊆ P(A), ∀sb, s′b ∈ SB12, and ∀a ∈ A, there exists a transition (s1, s2, St)
a−→//

(s′1, s
′
2, St

′) in the transition relation of (Q1 // Q2)∖R if and only if there exists a transition

(s1, s2, sb)
a−→∣∣ (s′1, s

′
2, s
′
b) in the transition relation of (Q1 ∣∣ Q2 ∣∣ QB12)∖R. The transition

relation of each composition is partitioned into communication moves (i.e., those transitions

labeled with a � -action) and autonomous moves (i.e., all other transitions); each type of move

will be addressed separately.

Case 1: Autonomous Move. This is the case in which one component of a com-

position moves autonomously on an unrestricted action, i.e., any action that is not in the

restricted action set R. Autonomous moves are described in rule 2 of the synchronous tran-

sition relation defined in Definition 2 and in rule 1 of the asynchronous transition relation

defined in Definition 5.

Suppose that (Q1 ∣∣ Q2 ∣∣ QB12)∖R contains a transition (s1, s2, sb)
a−→∣∣ (s′1, s2, sb), such

that a /∈ R and s1
a−→ s′1 ∈ Δ1. Then by Definition 5, (Q1 // Q2)∖R contains a tran-

sition (s1, s2, St)
a−→// (s′1, s2, St), where the contents of St ⊆ P(A) reflect the current

46

state of the buffer process sb. Conversely, suppose that (Q1 // Q2)∖R contains a transition

(s1, s2, St)
a−→// (s′1, s2, St), where a /∈ R, St ⊆ P(A), and s1

a−→ s′1 ∈ Δ1. By Definition 2,

(Q1 ∣∣ Q2 ∣∣ QB12)∖R contains a transition (s1, s2, sb)
a−→∣∣ (s′1, s2, sb), where the state of the

buffer process sb corresponds to the contents of the store St. Similar results occur if the au-

tonomous move occurs in Q2 instead of in Q1. Note that the buffer process state sb and the

contents of the store St have no effect on the relevant transitions, because autonomous moves

are always independent of the buffer process or the store, respectively.

Case 2: Communication Move. This is the case in which two components of a

composition make a common move, which is illustrated in the LTS diagram as a � action.

Communication moves are described in rule 1 of the synchronous transition relation defined in

Definition 2 and in rules 2 and 3 of the asynchronous transition relation defined in Definition 5.

Suppose that (Q1 ∣∣ Q2 ∣∣ QB12)∖R contains a transition (s1, s2, sb)
�−→∣∣ (s′1, s

′
2, s
′
b). This

transition represents an input or output action generated by one component service that is

immediately consumed by either another component service or the buffer process. Let (a?, a!) ∈

RP . Suppose further that s1
a?−→ s′1 ∈ Δ1, s2 = s′2, and sb

a!−→ s′b ∈ ΔB12; then by Rule

3 of Definition 5, (Q1 // Q2)∖R contains a transition (s1, s2, St)
�−→// (s′1, s

′
2, St ∖ {a!}).

Alternatively, if s1
a!−→ s′1 ∈ Δ1, s2 = s′2, and sb

a?−→ s′b ∈ ΔB12, then by Rule 2 of Definition 5,

(Q1 // Q2)∖R contains a transition (s1, s2, St)
�−→// (s′1, s

′
2, St ∪ {a!}). Because the buffered

synchronous composition (Q1 ∣∣ Q2 ∣∣ QB12)∖R is derived from the corresponding asynchronous

composition (Q1 // Q2)∖R, the component services never directly synchronize with each other;

rather, the buffer process QB12 always mediates the communication.

Now suppose that (Q1 // Q2)∖R contains a transition (s1, s2, St)
�−→// (s′1, s

′
2, St

′), where

St ∕= St′ and either s1 ∕= s′1 or s2 ∕= s′2. This transition can exist for two reasons:

1. The move results from an a? input action from either s1 or s2. This implies that in

(Q1 ∣∣ Q2 ∣∣ QB12)∖R, there is a � -transition from the equivalent state triple (s1, s2, sb)

resulting from an a? action for which the matching a! action is produced immediately by

either a component service or the buffer process.

47

2. The move results from an a! output action from either s1 or s2. This implies that in

(Q1 ∣∣ Q2 ∣∣ QB12)∖R, there is a � -transition from the equivalent state triple (s1, s2, sb)

resulting from an a! action that is consumed immediately by either a component service

or the buffer process.

In either case, the resulting transition is (s1, s2, sb)
�−→∣∣ (s′1, s

′
2, s
′
b), where sb is the state of

the buffer process that corresponds to the store’s original contents and s′b is the buffer process

state that matches the updated contents of the store.

Thus we have shown that each transition in the transition relation of the asynchronous

composition (Q1 // Q2)∖R implies the existence of an equivalent transition in the transition

relation of the corresponding buffered synchronous composition (Q1 ∣∣ Q2 ∣∣ QB12)∖R, and

each transition in the transition relation of (Q1 ∣∣ Q2 ∣∣ QB12)∖R implies the existence of an

equivalent transition or pair of transitions in the transition relation of (Q1 // Q2)∖R. This

proves that (Q1 ∣∣ Q2 ∣∣ QB12)∖R and (Q1 // Q2)∖R are bisimulation equivalent, as desired.

□

It follows directly from Theorem 2 that any property ' that is satisfied by an asynchronous

composition is also satisfied by its corresponding buffered synchronous composition. Formally:

∀' : (Q1 // Q2)∖R ∣= '⇔ ((Q1 ∣∣ Q2) ∣∣ QB12)∖R ∣= '

We are now ready to formalize the general substitutability condition for asynchronous

compositions of Web services in the following theorem:

Theorem 3 (Substitutability Condition) Given an LTS composition, either (Q1 ∣∣ Q2)∖R

or (Q1 // Q2)∖R, which satisfies ', Q1 can be substituted by Q′′1 in an asynchronous composi-

tion with Q2 if and only if Q′′1 ∣= (('╱∅,RQB12)╱∅,∅Q2).

Proof. The proof of the theorem proceeds as follows:

Q′′1 ∣= (('╱∅,RQB12)╱∅,∅Q2)⇔ (Q′′1 ∣∣ Q2) ∣= ('╱∅,RQB12) [Theorem 1]

⇔ ((Q′′1 ∣∣ Q2) ∣∣ QB12) ∖R ∣= ' [Theorem 1]

⇔ (Q′′1 // Q2)∖R ∣= ' [Theorem 2]

□

48

4.4.2 Complexity of the Solution

The bulk of the complexity of our solution derives from the processes of creating the buffer

process that is necessary for transforming an asynchronous composition into a synchronous

composition, quotienting the required property against the buffer process, further quotienting

this intermediate result against the equivalent synchronous composition without the component

service being replaced, and using model checking to verify whether a substitute service satisfies

the resulting substitutability condition. We do not consider the complexity of creating an

asynchronous Web service composition in our analysis, as our work does not directly address

this topic.

The time complexity of Algorithm 1 depends primarily on the number of action pairs in

the restriction set. The algorithm creates the 3∣RP ∣ required states, maps each state to an

∣RP ∣-tuple of coordinates, and then iterates through the states in order. At each state, each of

the state’s ∣RP ∣ coordinates are checked and all required self-loop transitions and transitions to

successor states are created; this occurs during the if block within the outer loop. In addition,

the current set of coordinates stCtr that is used to create the correct number of transitions

from each state must be updated 3(∣RP ∣−1) times; this is done in the else if block within the

outer loop. The time complexity of Algorithm 1 is therefore O
(
∣RP ∣3∣RP ∣

)
.

The complexity of verifying whether a service can substitute for one of the constituents in

a synchronous composition of Web services depends on the complexity of quotienting and the

complexity of model checking mu-calculus formulas. The complexity of quotienting and the

size of the formula generated by quotienting have been shown in [3] to be O(∣'∣ × ∣S∣nd ×B),

where ∣'∣ is the size of the formula, ∣S∣ is the number of states in the LTS used in quotienting,

nd is the nesting depth of ', and B is the maximum branching factor of any state in the LTS.

The nesting depth of the generated formula is O(∣S∣nd). The complexity of model checking mu-

calculus formulas is O(∣S∣×∣'∣ad), where ad denotes the alternation depth of '. The alternation

depth of a formula is the number of nestings of alternating fixed point sub-formulas. Therefore,

the worst case complexity for verifying the substitutability of a service Q1 in a composition of

Q1 with Q2 in an asynchronous setting is exponential in the number of states in Q2 and the

49

nesting depth of the formula (composition property), and it is linear in the number of states

in the buffer process.

50

CHAPTER 5. IMPLEMENTATION

The implementation portion of our work consists of several extensions and modifications

to the MoSCoE [36] framework for Web service composition. A number of changes were made

to the core data structures of the existing MoSCoE implementation to remove unnecessary

or currently unsupported portions and improve the maintainability and extensibility of the

remaining parts of the framework. Support for XML-based input and output was also added

to the MoSCoE framework as part of the implementation process, including newly developed

XML representations for mu-calculus formulas and labeled transition systems. In addition

to these changes, the MoSCoE framework was extended and complemented by creating new

tools for analyzing the substitutability of Web services in both synchronous and asynchronous

settings. These new tools provide support for performing the quotienting operation described in

Section 3.5 and for constructing a buffer process according to the technique given in Section 4.3.

Our implementation is written in Java using the Eclipse [16] integrated development envi-

ronment. The Java 1.6 runtime environment is required to run our implementation because

our XML conversion module uses the Streaming API for XML (StAX) [39], which is not na-

tively supported in earlier versions of the Java runtime environment. We chose to use StAX to

implement the necessary XML handling functionality because the API is easy to learn and use

and because it does not require an XML Schema document to verify the correctness of each

XML document. Because of time constraints, the tool set currently does not have a graphical

user interface (GUI) available. Development of a GUI will be a high priority for future work.

This chapter begins with a brief overview of the MoSCoE framework and a description

of the modifications that we have made to that framework. After presenting our changes to

MoSCoE, we describe our tools for performing quotienting and creating buffer processes.

51

Figure 5.1 MoSCoE architectural diagram [34]

5.1 MoSCoE Framework: An Overview

The architecture of the MoSCoE framework, illustrated in Figure 5.1, encompasses two

main modules: a composition management module, which performs static analysis to identify

a set of existing services that can be composed to provide some required functionality, and

an execution management module, which dynamically deploys, monitors, and maintains the

service compositions identified by the composition management module [34]. These two main

modules are assisted by several support modules, including a semantic matchmaker that uses

domain ontologies to resolve differences in terminology and a transition system generator that

handles the details of translation between the transition systems used within MoSCoE and the

formalisms used by Web service providers to describe their services, e.g., WSDL and BPEL.

52

According to the framework, the user provides a high-level and perhaps incomplete specifi-

cation of the service to be provided (the goal service). The MoSCoE composition management

module then uses a composition algorithm such as the one presented in [36] to search the

available service repositories for a set of services that can work together to satisfy the goal

service. If no viable composition is found, a message is sent to the user to explain where and

why the composition process failed, allowing the user to reformulate the goal service and try

again. If the composition process is successful, one or more possible compositions will have

been identified; all possible compositions identified by the composition algorithm are passed to

the execution management module for deployment. The execution management module uses

a set of non-functional requirements supplied by the user to determine automatically which of

the possible compositions best satisfies the given functional and non-functional requirements.

It then generates the necessary BPEL code for the composition and calls the MoSCoE service

execution engine to deploy the best composition. Once a Web service composition has been

deployed, the execution management module monitors the performance of the composition. If

the composition violates any of its requirements, the execution management module attempts

to replace it with an equivalent composition [34].

Our implementation work affects all of the MoSCoE framework to some degree, since part of

our work was a redesign of the core transition system data structures used to represent services

within the entire MoSCoE framework. We classify the new XML input/output support that we

added as part of our implementation as a separate support module because it provides support

for XML representations of transition systems, restriction sets for the composition process,

and mu-calculus properties for substitutability analysis. Because the execution management

module is responsible for ensuring the continued reliability of service compositions in the

MoSCoE framework, substitutability analysis for existing service compositions falls within its

domain; as a result, our tools for performing quotienting and for creating buffer processes

naturally fit into the execution management module.

53

Figure 5.2 Revised core data structure for MoSCoE framework

5.2 Modifications to MoSCoE

Our tool set is designed to be compatible with the MoSCoE [36] framework for Web service

composition. However, the existing MoSCoE implementation was difficult to work with because

it included a number of data types and features that were not fully implemented. In addi-

tion, the graphical user interface (GUI) for MoSCoE was heavily implementation-dependent,

which presented serious problems for future extension and refinement of the MoSCoE frame-

work. Therefore, the first task in our implementation process, before writing any tools for

substitutability analysis, was to revise and simplify the core data structures of MoSCoE to

54

provide support for both the LTS model used to represent Web services in our work and in [35]

and the Symbolic Transition System (STS) model used in [36]. The resulting data structure,

which is shown in Figure 5.2, is the basis of the operations performed by our tool set. While

these two models are similar in most respects, there are important differences between them.

For example, transitions between states of an STS may include guards, which are conditions

that must be satisfied before the transition is executed; transitions in an LTS cannot include

guards. To accommodate these differences, the data structure contains more classes and fields

than strictly necessary for our purposes in this work. Our tool set ignores the contents of all

fields and objects that are not part of the LTS model; it does not read or modify the contents

of any such fields or objects.

Along with our revisions to the core MoSCoE data structures, we added new XML-based

input and output capabilities to the MoSCoE framework. These new capabilities include an

XML schema for representing Web service data, along with tools for translating MoSCoE data

from XML files to Java data structures and vice versa. They replace the previous mechanisms

for input and output, which depended on the existing GUI to function. Our XML schema for

Web service analysis allows one or more LTSs, a restriction set for a Web service composition,

and one or more mu-calculus formulas to be encoded within a single XML file. The grammar

corresponding to this XML schema is presented in Figure 5.3. It should be noted that this

schema is somewhat informal, as our tools do not yet use a formal XML Schema [21] document

to validate input. Future work will incorporate this functionality into our tool set.

5.3 New Tools for Web Service Substitutability Analysis

In addition to the changes that we made to the MoSCoE framework, we have created a

set of several tools that can be used to compute substitutability conditions for Web services

and determine whether a Web service can substitute for a component of an existing Web

service composition. The high-level architecture of our tool set for Web service substitutability

analysis is illustrated in Figure 5.4. Our tool set consists primarily of three main components:

a substitutability analysis manager, a buffer creation module, and a quotienting module. The

55

quotienting-data = ’<quotienting-data>’, [services], [restriction-set],

[property], ’</quotienting-data>’

services = ’<services>’, {service}, ’</services>’

service = ’<service name="’, [string], ’" />’, states, actions,

transitions, ’</service>’

states = ’<states>’, {state}, ’</states>’

state = ’<state name="’, [string], ’" isStart="’, tf, ’" isFinal="’,

tf, ’" />’

tf = ’true’ | ’false’

actions = ’<actions>’, {action}, ’</actions>’

action = ’<action name="’, [string], ’"type="’, action-type, ’" />’

action-type = ’?’ | ’!’ | ’TAU’ | ’FUNC’

transitions = ’<transitions>’, {transition}, ’</transitions>’

transition = ’<transition name="’, [string], ’" startState="’, state-name,

’" endState="’, state-name, ’" action="’, action-name, ’" />’

state-name = string (* where the string must match the name of a state

defined in the states element *)

action-name = string (* where the string must match the name of an action

defined in the actions element *)

restriction-set = ’<restriction-set>’, {action}, ’</restriction-set>’

property = ’<property>’, property-parts, ’</property>’

property-parts = fixpt-formula | diamond | box | and-formula | or-formula

| proposition | fixpt-variable

fixpt-formula = ’<fixpt-formula type="’, fixpt-type, ’" variable="’, string,

’">’, property-parts, ’</fixpt-formula>’

fixpt-type = ’mu’ | ’nu’

diamond = ’<diamond action="’, string, action-type, ’">’,

property-parts, ’</diamond>’

box = ’<box action="’, string, action-type, ’">’,

property-parts, ’</box>’

and-formula = ’<and-formula>’, {and-or-part}, ’</and-formula>’

or-formula = ’<or-formula>’, {and-or-part}, ’</or-formula>’

and-or-part = ’<part>’, property-parts, ’</part>’

proposition = ’<proposition name="’, string, ’" />’

fixpt-variable = ’<fixpt-variable name="’, fixpt-var-name, ’" />’

fixpt-var-name = string (* where the string must match a variable declared

in an enclosing fixpt-formula element *)

Figure 5.3 Grammar for XML schema used by our tool set

56

Substitutability Module
interm

ediate

CreateBuffer Quotienting Model
checker

New composition with
substitutions performed

Output:

Essential property
of composition

to replace
Set of components

Service
repository

Original composition
with restriction set

Substitutability
analysis
manager

condition
substitution

& condition

substitute setres
tri

cti
on

 se
t

bu
ffe

r p
ro

ce
ss

resultresults

Figure 5.4 Architecture for Web service substitutability analysis tool set

user interacts directly with the substitutability analysis manager, which automates the steps of

the analysis process by coordinating the use of the other tools in the tool set. The tool set may

optionally include access to a tool for verifying satisfiability of mu-calculus formulas. While

any such tool will suffice, we currently have not incorporated a model checking tool into our

tool set; in future work, we plan to explore the use of the model checking tools XMC [38] and

CWB-NC [14] within our tool set. The remaining parts displayed in Figure 5.4 are assumed to

exist externally. The user may (and perhaps should) use an automated search assistant tool to

identify one or more possible substitute services from a service repository, but we have omitted

this tool from the architecture diagram because it is not required and its presence or absence

does not change the essential structure of the system.

The flow of control within the Web service substitutability analysis tool set is illustrated

by Figure 5.5. Execution begins when the user provides a Web service composition, its cor-

responding restriction set, and the property that it must satisfy. If the component services

of the composition communicate asynchronously, then the buffer creation module is called to

57

form a buffer process for the composition and the quotienting module is called to quotient

the property against the buffer process; if the component services communicate synchronously,

these steps are unnecessary. Next, the user specifies the component of the composition that

must be substituted. After this component is removed from the composition, the remainder of

the composition is quotiented against the required property (or the portion of it that remains

after quotienting against the buffer property). The result of this quotienting operation is the

substitutability condition, which is presented to the user. If no possible substitute services

were supplied by the user, then the control flow ends here. Otherwise, a model checking tool

is used to verify whether each of the possible substitutes can satisfy the substitutability con-

dition, and the results are communicated to the user. Note that if a proposed substitution

is approved, another tool must be used to perform the substitution; our tool set does not

perform the substitution automatically, and therefore this functionality is not included in the

control flow. If the substitution is rejected, the user may try again with one or more different

substitute services.

The control flow for the tool set is coordinated by the substitutability analysis manager.

The substitutability analysis manager accepts as input the original composition, its restriction

set, the component of the composition that must be replaced, and a property (specified as a

mu-calculus formula) that expresses the essential functionality of the original composition and

must therefore be satisfied by the new composition resulting from the substitution. A user

may additionally specify one or more services that should be tested to determine whether they

can substitute for the component service that is to be replaced. The substitutability analysis

manager then coordinates execution of the buffer creation module, the quotienting modules,

and the model checker in the appropriate order, providing inputs and storing intermediate

results as needed. When finished, it provides the substitutability condition for the component

to be replaced. It also informs the user whether the proposed substitute service(s), if any were

tested, can correctly replace the original component in the composition.

The role of the quotienting module is to perform quotienting of an LTS against a mu-

calculus formula according to the rules given in Figure 3.4. The quotienting module accepts

58

or failure

another
service]

[test

[no more services
to test]

[do not test
any substitute

services]

[test one or more
substitute services]

restriction set, and
required property

Enter composition, Input component
to substitute

to substitute from
composition

Remove component

process from
restriction set

Create buffer Quotient property
against

buffer process

[composition is
asynchronous]

synchronous]
[composition is

composition
remainder of

property against
Quotient current

Output
substitutability

condition

to determine whether
Run model checker

service satisfies

substitutability condition

Input possible
substitute service

Output success

Figure 5.5 Control flow for Web service substitutability analysis tool set

59

input in the form of an XML input file formatted according to the schema given in Figure 5.3.

It then recursively quotients the specified mu-calculus formula against the given LTS. When

the quotienting process is completed, the resulting mu-calculus formula is written to a new

XML file along with the LTS against which quotienting was performed. This output file can

then be used immediately as an input to another tool, e.g., a model checking tool, for verifying

whether the mu-calculus formula generated by the quotienting process is satisfied by a given

substitute service.

The buffer-creation module creates a buffer process that is capable of handling asynchronous

production and consumption of all actions that appear in the restriction set of a given syn-

chronous composition. The only input required by the buffer-creation module is a restriction

set encoded according to the XML schema required by our tool set; this restriction set need

not be pairwise. Because the algorithm for generating the buffer process assumes that the

restriction set is a pairwise restriction set as defined in Definition 7, the module first converts

the given restriction set to a pairwise restriction set by removing any actions for which a cor-

responding inverse action cannot be found. This is done by attempting to match the name of

each input action in the restriction set to the name of an output action in the set using simple

string comparisons. Matched pairs of actions are allowed to remain in the pairwise restriction

set; actions for which matches are not found are removed. Once the pairwise restriction set

has been constructed, the buffer-creation module then executes Algorithm 1 to create the ap-

propriate buffer process corresponding to the given restriction set. When finished, the module

writes the completed buffer process LTS to a new XML file, following our XML schema for

representing LTSs. This file may immediately be used as input to the MoSCoE composition

tool, the quotienting module, or any other Web service analysis tool that supports our XML

schema.

60

CHAPTER 6. CONCLUSION

6.1 Summary

Most previous work on identifying conditions for substitutability of components in a com-

posite service makes two major assumptions: that behavioral equivalence must be established

between the service being replaced and the replacement service to guarantee correctness, and

that all components of a composite service must communicate synchronously. It was shown

in [35] that considering the environment in which a replacement service will be deployed makes

it unnecessary to require behavioral equivalence between the original service and its substitute.

However, [35] continued to assume synchronous communication between component services

in order to simplify the computation of substitutability conditions for Web services. This

assumption prevents some acceptable substitute services from being identified.

In this thesis, we have extended the work in [35] to relax this assumption by showing that

asynchronous composition of services can be reduced to synchronous composition by adding

a buffer for each internal input/output action pair. We have presented a new formalism for

representing compositions of asynchronously communicating Web services. We have defined a

buffer process as the synchronous composition of all of the buffers created for a given asyn-

chronous composition, and we have shown that an asynchronous Web service composition can

be represented as a synchronous composition composed with such a buffer process. We have

proven that our technique produces correct results, and we have defined an algorithm to design

the necessary buffers for handling asynchronous composition. Finally, we have developed tools

for creating buffer processes to handle asynchronous composition and for quotienting a prop-

erty specified as a mu-calculus formula against a labeled transition system. These tools have

been incorporated into the MoSCoE framework for Web service analysis and composition.

61

6.2 Future Work

Future theoretical work on substitutability of asynchronous Web services will include re-

finement of the communication model used to represent a given Web service composition and

development of strategies for improving discovery of substitute services. Most existing work,

including ours, assumes that all communication between a service and its environment is either

completely asynchronous or completely synchronous. There is no “middle ground” that allows

buffers to be created for only the actions that need them; either buffers are created for all actions

(asynchronous) or no buffers are created (synchronous). We plan to refine our formalism to

allow buffering only for input/output pairs that are required to communicate asynchronously.

This refinement could potentially incorporate different levels of buffering based on a hierarchy

of communication models for Web service compositions similar to the hierarchy presented by

Kazhamiakin et al. in [24]. The asynchronous composition formalism presented in this thesis

can be extended to incorporate such a hierarchy of communication models, and our existing

tool set can be modified to include an algorithm for automatically selecting the communication

model that provides the minimum sufficient set of buffers to permit each service to be used

within the composition. We believe that in many cases this will increase the efficiency of the

quotienting process while preserving the equivalence property of Theorem 2, which is essential

to the correctness of the results.

Another topic of interest for future work is determining whether it is necessary to create

a composite buffer process when determining a substitutability condition under asynchronous

communication. For an asynchronous composition Q1 // Q2, instead of creating the appropri-

ate buffer process QB12 and then performing quotienting against the buffer process, it may be

possible to obtain the same result by quotienting against each of the buffer process’s compo-

nent LTSs QaB individually in sequence. This would eliminate the time required to compose

the buffer process, potentially resulting in significantly faster performance when the restric-

tion set contains more than a few actions. Suppose that Q1 // Q2 has the restriction set

R = (a?, a!, b?, b!) and consider the synchronous composition (Q1 ∣∣ Q2 ∣∣ (QaB ∣∣ QbB))∖R. This

composition is identical to the buffered synchronous composition (Q1 ∣∣ Q2 ∣∣ QB12), because

62

QB12 = QaB ∣∣ QbB as defined in Definition 6; therefore, Theorem 2 holds. To show that quoti-

enting against individual simple buffers would have the same result as quotienting against the

entire buffer process, it would be sufficient to prove a result similar to Theorem 3 showing, for

example, that a service Q′1 can replace Q1 in the asynchronous composition (Q1 // Q2)∖R if

and only if Q′1 ∣= ((('╱∅,∅Q
a
B)╱∅,∅Q

b
B)╱∅,RQ2). If this can be proven, then the next step after

proving this result would be to compare the performance of this method with the performance

of the method presented in this thesis.

In addition, we are currently investigating the applicability of formula graph analysis [4]

to identification of replacement component services. Translating a composition’s required mu-

calculus properties into formula graphs may enable the discovery of possible substitute services

that satisfy semantically, but not syntactically, equivalent properties; we are not aware of

any existing methods for discovering such services. Using formula graphs to represent mu-

calculus properties may also improve the efficiency of the quotienting operation, although

further study is needed to determine whether this is the case. We have already developed a

tool for transforming mu-calculus formulas into formula graphs according to the rules presented

in [4], which will prove useful for future research in this area.

A significant amount of future implementation work is needed to improve the performance

of the MoSCoE framework in general and our substitutability analysis tool set in particular.

While the core of our tool set has already been developed and tested, additional features

should be added to improve the usability of the tool set and the overall MoSCoE framework.

Three major priorities that complement each other are the development of an appropriate

graphical user interface for the MoSCoE framework, the creation of tools that correctly and

efficiently translate BPEL and WSDL specifications of Web services into their equivalent XML

representations for MoSCoE, and the continued refinement and formalization of the current

informal XML schema for representing MoSCoE input and output. Because the architecture

of our substitutability analysis tool set envisions access to a model checking tool for automated

verification of service substitutability, we also intend to include a model checker within our tool

set in the future. To that end, as mentioned in Chapter 5, we intend to explore the feasibility

63

of incorporating the model checking tools XMC [38] and CWB-NC [14] within our tool set.

In addition, while not directly related to substitutability analysis, it will be helpful to provide

support within the MoSCoE execution management module for on-the-fly replacement of a

component service with a previously identified substitute service in the event that the original

component fails or becomes unavailable. The eventual goal is to integrate our work with the

previous contributions of [34] to allow for automatic re-composition of a composite service at

runtime according to both functional and non-functional requirements for substitution.

We are also planning to explore the applicability of our tool set in practical settings. In par-

ticular, we are investigating approximate quotienting algorithms to compute substitutability

conditions, which can potentially increase the efficiency of the computation without compro-

mising the soundness of the process. We also intend to test the effectiveness of our tool set

and the MoSCoE framework as a whole when applied to a benchmark or similar set of signif-

icant Web services and/or compositions. While no benchmark has yet been widely accepted

throughout the Web service community, WSBen [32] is a proposed benchmark that shows some

promise for this purpose. We hope that the results from this testing will provide additional

impetus toward realizing the vision of MoSCoE as a comprehensive, effective framework for

creating and managing Web service compositions.

64

BIBLIOGRAPHY

[1] Henrik Reif Andersen. Partial Model Checking (extended abstract). In Logic in Computer

Science, pages 398–407. IEEE Computer Society, 1995.

[2] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank

Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and

Sanjiva Weerawarana. Business Process Execution Language for Web Services, Version

1.1. URL: http://www.ibm.com/developerworks/library/ws-bpel/, 2003.

[3] Samik Basu and Ratnesh Kumar. Quotient-based Control Synthesis for Non-Deterministic

Plants with Mu-Calculus Specifications. In 45th IEEE Conference on Decision and Con-

trol, 2006.

[4] Samik Basu and C. R. Ramakrishnan. Compositional Analysis for Verification of Param-

eterized Systems. Theoretical Computer Science, 354(2):211–229, 2006.

[5] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Representing, Analysing and

Managing Web Service Protocols. Data and Knowledge Engineering, 58(3):327–357, 2006.

[6] Daniela Berardi, Diego Calvanese, De Giacomo Giuseppe, Richard Hull, and Massimo Me-

cella. Automatic Composition of Transition-based Semantic Web Services with Messaging.

In 31st International Conference on Very Large Databases, pages 613–624, 2005.

[7] Dirk Beyer, Arindam Chakrabarti, and Thomas Henzinger. Web Services Interfaces. In

15th World Wide Web Conference, pages 148–159. ACM Press, 2005.

65

[8] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris

Ferris, and David Orchard. Web Services Architecture. W3C Working Group Note,

World Wide Web Consortium, February 2004. URL: http://www.w3.org/TR/ws-arch/.

[9] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella. When are Two

Web Services Compatible? In 5th International Workshop on Technologies for E-Services,

pages 15–28. LNCS 3324, Springer-Verlag, 2004.

[10] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, François Yergeau, and John

Cowan. Extensible Markup Language, Version 1.1. W3C Recommendation, World Wide

Web Consortium, September 2006. URL: http://www.w3.org/TR/xml11/.

[11] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation Specification: A

New Approach to Design and Analysis of e-Service Composition. In 12th Intl. Conference

on World Wide Web, pages 403–410. ACM Press, 2003.

[12] Tevfik Bultan, Jianwen Su, and Xiang Fu. Analyzing Conversations of Web Services.

IEEE Internet Computing, 10(1):18–25, 2006.

[13] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web

Services Description Language Version 2.0 Part 1: Core Language. W3C Recommenda-

tion, World Wide Web Consortium, June 2007. URL: http://www.w3.org/TR/wsdl20/.

[14] CWB-NC: The Concurrency Workbench of the New Century. URL:

http://www.cs.sunysb.edu/˜cwb/, 2001.

[15] Schahram Dustdar and Wolfgang Schreiner. A Survey on Web Services Composition.

International Journal on Web and Grid Services, 1(1):1–30, 2005.

[16] Eclipse. Integrated development environment (IDE) and software development kit (SDK)

for Java. URL: http://www.eclipse.org.

[17] E. Allen Emerson. Model Checking and the Mu-Calculus. In Neil Immerman and

Phokion G. Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of

66

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 185–

214. American Mathematical Society Press, 1997.

[18] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Longman, Boston, MA, USA, 2003.

[19] Xiang Fu, Tevfik Bultan, and Jianwen Su. Conversation Protocols: A Formalism for Spec-

ification and Verification of Reactive Electronic Services. Theoretical Computer Science,

328(1–2):19–37, November 2004.

[20] Google Docs. Web-based software. URL: http://docs.google.com.

[21] XML Schema Working Group. W3C XML Schema. W3C Recommendation, World Wide

Web Consortium, October 2004. URL: http://www.w3.org/XML/Schema.

[22] Rachid Hamadi and Boualem Benatallah. A Petri Net-based Model for Web Service Com-

position. In 14th Australasian Database Conference, pages 191–200. Australian Computer

Society, Inc., 2003.

[23] Richard Hull and Jianwen Su. Tools for Design of Composite Web Services. In ACM

SIGMOD Intl. Conference on Management of Data, pages 958–961, 2004.

[24] Raman Kazhamiakin, Marco Pistore, and Luca Santuari. Analysis of Communication

Models in Web Service Compositions. In 15th International Conference on World Wide

Web, pages 267–276. ACM Press, 2006.

[25] Yunyao Li and H.V. Jagadish. Compatibility Determination in Web Services. In ICEC

Workshop on E-Government and Web Services, 2003.

[26] Fangfang Liu, Liang Zhang, Yuliang Shi, Lili Lin, and Baile Shi. Formal Analysis of Com-

patibility of Web Services via CCS. In 1st International Conference on Next Generation

Web Services Practices, pages 143–148. IEEE Computer Society, 2005.

67

[27] Axel Martens, Simon Moser, Achim Gerhardt, and Karoline Funk. Analyzing Compati-

bility of BPEL Processes. In International Conference on Internet and Web Applications

and Services, pages 147–155. IEEE CS Press, 2006.

[28] Massimo Mecella, Barbara Pernici, and Paolo Craca. Compatibility of e-Services in a

Cooperative Multi-platform Environment. In 1st International Workshop on Technologies

for e-Services, volume 2193 of Lecture Notes in Computer Science, pages 44–57. Springer,

2001.

[29] Microsoft Office Live. Web-based software. URL: http://workspace.officelive.com/en-us/.

[30] Robin Milner. Communication and Concurrency. Prentice Hall, Upper Saddle River, NJ,

1989.

[31] Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4):541–580, April 1989.

[32] Seog-Chan Oh and Dongwon Lee. WSBen: A Web Services Discovery and Composition

Benchmark Toolkit. Intl. Journal of Web Service Research, 6(1):1–19, 2009.

[33] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-

Oriented Computing: State of the Art and Research Challenges. IEEE Computer,

40(11):38–45, 2007.

[34] Jyotishman Pathak. Interactive and Verifiable Web Services Composition, Specification

Reformulation, and Substitution. PhD dissertation, Iowa State University, 2007.

[35] Jyotishman Pathak, Samik Basu, and Vasant Honavar. On Context-Specific Substitutabil-

ity of Web Services. In IEEE International Conference on Web Services, pages 192–199,

2007.

[36] Jyotishman Pathak, Samik Basu, Robyn Lutz, and Vasant Honavar. Parallel Web Ser-

vice Composition in MoSCoE: A Choreography-Based Approach. In 4th IEEE European

Conference on Web Services, pages 3–12. IEEE CS Press, 2006.

68

[37] Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi. Automated

Synthesis of Composite BPEL4WS Web Services. In 3rd Intl. Conference on Web Services,

pages 293–301. IEEE Press, 2005.

[38] C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. Smolka, Yifei Dong, Xiaoqun Du,

Abhik Roychoudhury, and V. N. Venkatakrishnan. XMC: A Logic-Programming-Based

Verification Toolset. In E. Allen Emerson and A. Prasad Sistla, editors, 12th Intl. Confer-

ence on Computer Aided Verification, volume 1855 of Lecture Notes in Computer Science,

pages 576–580. Springer, 2000.

[39] Streaming API for XML (StAX). A package within the standard Java platform for parsing

XML as a stream. URL: http://stax.codehaus.org/Home.

[40] Yehia Taher, Djamal Benslimane, Marie-Christine Fauvet, and Zakaria Maamar. Towards

an Approach for Web Services Substitution. In 10th Intl. Database Engineering and Ap-

plications Symposium, pages 166–173. IEEE CS Press, 2006.

[41] Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific

Journal of Mathematics, 5(2):285–309, 1955.

	2009
	Extending substitutability in composite services by allowing asynchronous communication
	Zachary James Oster
	Recommended Citation

	tmp.1335711608.pdf.pc_rD

