
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Measurement of PVFS2 performance on
InfiniBand
Sudhindra Prasad Tirupati Nagaraj
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tirupati Nagaraj, Sudhindra Prasad, "Measurement of PVFS2 performance on InfiniBand" (2009). Graduate Theses and Dissertations.
12246.
https://lib.dr.iastate.edu/etd/12246

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12246?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 

 

Measurement of PVFS2 performance on InfiniBand 

 

by 

 

Sudhindra Prasad Tirupati Nagaraj 

 

 

A thesis submitted to the graduate faculty  

in partial fulfillment of requirements for the degree of  

MASTER OF SCIENCE 

 

 

Major: Computer Science                                                                                                      

Program of Study Committee:                                                                                  
Brett Bode, Co-Major Professor                                                                                                              

Robyn R. Lutz, Co-Major Professor                                                                                                   
Soma Chaudhuri 

 

 

 

 

 

Iowa State University 

Ames, Iowa 

2009 

Copyright © Sudhindra Prasad Tirupati Nagaraj, 2009.  All rights reserved.



ii 
 

 
 

TABLE OF CONTENTS 

 

LIST OF FIGURES iii  

LIST OF TABLES iv 

ACKNOWLEDGEMENTS v 

ABSTRACT vii  

CHAPTER 1.  INTRODUCTION 1 

CHAPTER 2.  BACKGROUND 5 
2.1 InfiniBand Architecture 5 
2.2 Parallel Virtual File System (PVFS) 7 

2.2.1 PVFS/InfiniBand                                                                                           7 
2.3 MPI I/O 9 
2.4 IOR Parallel I/O Benchmarking Tool 10 
2.5 Overall I/O path used for benchmarking 11 

CHAPTER 3.  SYSTEM CONFIGURATION 13 
3.1 Hardware configuration 13 
3.2 Software configuration 15 

CHAPTER 4.  BENCHMARKING METHODOLOGY 16 
4.1 Outline of the methodology used 16 
4.2 Experimental Setup 17 
4.3 Test Strategy 17 

CHAPTER 5.  BENCHMARKING RESULTS 19 
5.1 Graph description 19 
5.2 Results 19 
5.3 Analysis of the Results 24 

CHAPTER 6.  CONCLUSION 32 

CHAPTER 7.  FUTURE WORK 33 

BIBLIOGRAPHY 34 

APPENDIX 36 
Makefile changes 36 
IOR.c changes 37 
aiori.h changes 37 
aiori-PVFS2.c 38 
benchmark script 50 
perfquery/vmstat script 54 

 



iii 
 

 
 

LIST OF FIGURES 
 

Figure 1.  OpenIB software stack 6 

Figure 2.  PVFS2 architecture 8 

Figure 3.  PVFS2/InfiniBand 9 

Figure 4.  I/O path 12 

Figure 5.  ibmcluster in Ames Lab 14 

Figure 6.  2-client write bandwidth performance 20 

Figure 7.  2-client read bandwidth performance 20 

Figure 8.  4-client write bandwidth performance 21 

Figure 9.  4-client read bandwidth performance 21 

Figure 10.  6-client write bandwidth performance 22 

Figure 11.  6-client read bandwidth performance 22 

Figure 12.  MPI I/O write bandwidth comparison 30 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 
 

LIST OF TABLES 
 

Table 1.  Hardware configuration of test system 13 

Table 2.  Software configuration of test system 15 

Table 3.  Standard deviation for writes on 6 clients 23 

Table 4.  Standard deviation for reads on 6 clients 24 

Table 5.  Context Switch counts across interfaces for writes 27 

Table 6.  Mean CPU time 28 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



v 
 

 
 

ACKNOWLEDGEMENTS 
 

The work was supported in part by Iowa State University under the contract DE-

AC02-07CH11358 with the U.S. Department of Energy. 

I would like to take this opportunity to express my deep felt gratitude and thanks 

to those who were instrumental in helping me with my research and the writing of my 

thesis. Without their support, I would not have been successful in my endeavor. To start 

with, I would like to thank Dr. Brett Bode for his outstanding support and the freedom he 

offered me to pursue my research. His patience and insistence have inspired me a lot to 

complete my thesis. Without his favorable support, I would not have been able to 

complete my thesis early enough. I would like to thank the contribution of Troy 

Benjegerdes who gave valuable inputs towards my thesis and helped me in constantly 

troubleshooting and resolving the ever-failing hardware infrastructure in Ames Lab. I 

would like to thank Dr. Robyn R. Lutz for her kind encouragement and timely advices to 

help me in writing my thesis. Her smiling support and her research experience motivated 

me to great heights. Her course on Software Safety helped me understand the intricacies 

of writing a research article. 

  I would like to thank my committee member Dr. Soma Chaudhuri for her 

encouragement. Her gentle guidance and the course on Distributed Algorithms I took 

with her provided me a solid foundation for the way research is conducted. I also would 

like to thank the Ames Lab staff for providing me a good research environment to work 

in.  



vi 
 

 
 

 On a personal level, I am grateful to Dr. Kasthurirangan Gopalakrishnan for his 

constant suggestions to help me align my research focus. I am thankful to Sandeep 

Krishnan, Ankit Agrawal and Ganesh Ram Santhanam for helping me in writing my 

thesis. I am most grateful to my parents Mr. T. S. Nagaraj and Mrs. Sarala Nagaraj and 

my sister Ms. Deepti for their love and moral support all through my graduate studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 
 

ABSTRACT 
 

InfiniBand is becoming increasingly popular as a fast interconnect technology 

between servers and storage. It has far better price/performance ratio compared to both 

Gigabit Ethernet and 10 Gigabit Ethernet, and hence is being increasingly used for high-

performance computing applications. PVFS2, the second generation Parallel Virtual File 

System (PVFS), is a distributed file system for parallel data access that is being 

increasingly used in clustered applications. As previous studies have shown, in general, 

PVFS2 over InfiniBand offers enhanced I/O rates compared to PVFS2 over TCP and 

Gigabit Ethernet. Apart from the hardware technology, the application programming 

interface into the file system also makes a difference. To get better parallel performance, 

the choice of a file system interface is important. Our study is to benchmark and compare 

the performance of PVFS2 running over InfiniBand using different file system interfaces. 

IOR is a popular I/O benchmarking tool that supports the POSIX and MPI I/O file system 

interfaces. In addition to testing these already supported interfaces, we have written a 

PVFS2 module extension for IOR to support native PVFS2 interfaces into the PVFS2 file 

system. As we shall see in this study, using native PVFS2 interface offers significant 

performance benefit compared to other file system interfaces on the PVFS2 file system. 

Our benchmarking effort also involves studying the effect of a multi-client environment 

on the I/O performance of different file system interfaces. Based on the benchmarking 

results we obtain, we determine the most efficient application programming interface for 

parallel I/O on PVFS2 in a typical multi-client parallel application scenario.



1 
 

 
 

CHAPTER 1.  INTRODUCTION 
 

As the size of data grows exponentially [15], there is a need for serving the data 

more efficiently in a cost-effective way. This is especially true of scientific applications 

that work with terabytes, or even petabytes, of data and hence need an advanced file 

system to allow for efficient storage and retrieval of data. A parallel file system like 

PVFS addresses the issue of facilitating efficient data processing by the high-

performance computing (HPC) applications. PVFS allows for parallel access to data 

striped across multiple file servers. Thus, parallel applications, where concurrent, large 

I/O and many file access are common [2], benefit from the dynamic distribution of I/O 

data and metadata on a PVFS file system. We are now into the second generation of 

PVFS file system, referred to from here on as PVFS2. The PVFS2 clients communicate 

with the PVFS2 servers over various interconnect technologies. Traditionally, Gigabit 

Ethernet was the popular interconnect technology for PVFS client/server communication. 

With InfiniBand [1] offering high data bandwidth rates, it is fast replacing Gigabit 

Ethernet as the client/server interconnect technology. In addition InfiniBand has better 

price/performance ratio. For example, a 24-port DDR switch is under $5000, that is 

$200/port, whereas a 10 Gigabit Ethernet costs about $400/port, say an Arastra 10 gig 

switch, thus offering only half the bandwidth. We therefore chose InfiniBand for our 

benchmarking purposes because of its high potential impact on the world of parallel 

scientific applications.  

Currently, as far as we know, there has not been much effort in benchmarking of 

PVFS2 on the InfiniBand interconnect. There has been no effort to the best knowledge to 



2 
 

 
 

study deeply the effect of file system interfaces in a PVFS2/InfiniBand environment for a 

multiple client parallel I/O scenario. The  tools that allow benchmarking of parallel I/O 

with different APIs into PVFS2 either do not allow for effective testing of a multi-client 

environment, or do not support all the APIs for an effective analysis. J. Wu et al. [7] offer 

a I/O performance comparison of PVFS between InfiniBand and TCP/IP communication 

protocols. They only analyze the impact of different number of compute nodes on the I/O 

bandwidth rates, and their study was not aimed at comparing the effect of different file 

system interfaces into the PVFS file system. Also, they test the original PVFS version, 

and not the second generation PVFS (PVFS2) which offers better performance. The study 

of L. Chai et al. [8] aims to compare pNFS and PVFS2 I/O performance in an InfiniBand 

cluster environment. Their study shows the I/O performance improvement as compared 

to a Gigabit Ethernet implementation. However, their work does not study the effect of 

different file system interfaces into the PVFS2 file system. Also, they do not study the 

effect of different I/O transaction unit sizes on the I/O performance. Furthermore, their 

study does not use IOR as the benchmarking tool that is most suitable for testing multiple 

client parallel I/O pattern that is most typical of parallel applications.  

In order to explore the single tool that allows us to test different file system 

interfaces in a multi-client environment, we looked at different benchmarking options. 

IOZone [9] is one popular I/O benchmarking tool, but it is more ideally suited for single 

client throughput experiments. Another tool b_eff_io [10] examines first write, rewrite 

and read access, strided and segmented collective patterns on one file per application and 

non-collective access to one file per process. But it supports only MPI I/O interface. 



3 
 

 
 

Furthermore, it does not capture the parallel I/O patterns most typical in parallel 

applications.  

IOR is a parallel I/O microbenchmark that is suited for multi-client experiments. 

It also allows the characterization of the I/O pattern most typical in parallel applications. 

In addition, it supports different file system interfaces, including POSIX and MPI I/O. 

IOR does not support native PVFS2 interface into the PVFS2 file system though. Hence, 

we wrote a PVFS2 module extension for IOR. Thus we now have a single tool that can 

give us all the necessary statistics required to benchmark PVFS2 on InfiniBand as per our 

requirements. 

The first key contribution of this thesis is to extend native PVFS2 support to the 

IOR benchmarking tool for performing I/O into a PVFS2 file system. We believe that this 

support can help one use the advantages offered by IOR in terms of performing multi-

client benchmarking, along with other features like computing mean I/O, standard 

deviation of reads and writes over multiple runs, performing non-overlapping parallel 

sequential I/O on a single file by multiple clients etc., and at the same time benchmark 

native PVFS2 interface I/O performance more effectively in comparison to other 

interfaces using the same tool.  

The second key contribution is to benchmark the I/O bandwidths offered by 

different file system interfaces into the PVFS2 file system over the InfiniBand 

client/server interconnect using the IOR tool. This study includes testing the performance 

of POSIX, MPI I/O over PVFS, MPI I/O over POSIX and native PVFS2 interfaces into 

the PVFS2 file system. We also test with different number of PVFS2 clients and different 



4 
 

 
 

I/O message sizes and capture the results. We analyze the performance results so 

obtained from IOR to try to identify the factors determining the difference in 

performance of reads and writes. 

The rest of the thesis is structured in the following way. Chapter 2 provides the 

background information on InfiniBand, PVFS, MPI I/O and IOR. Chapter 3 provides 

information on the test bed used for our benchmarking effort. It talks about the hardware 

and software configurations used while running our benchmark. Chapter 4 outlines the 

benchmarking methodology we used. Chapter 5 consists of the performance results 

obtained from IOR, a demonstration of the advantages of using native PVFS2 interface 

and an analysis of the results.  Chapter 6 talks about the conclusion and Chapter 7 about 

the future work. 

 

 

 

 

 

 

 
 



5 
 

 
 

CHAPTER 2.  BACKGROUND 
 

In this chapter, we discuss the background of InfiniBand, Parallel Virtual File 

System (PVFS), MPI I/O and the IOR I/O benchmarking tool. 

2.1 InfiniBand Architecture 
 

The InfiniBand architecture (IBA) [1] provides a point-to-point linking 

technology used as a base for an I/O fabric that aims to increase the aggregate data rate 

between servers and the storage devices. In our implementation, we use InfiniBand 

technology to interconnect the PVFS2 clients (the processing nodes) and the PVFS2 

servers (the I/O nodes), where the clients send I/O requests and servers respond to the I/O 

requests via InfiniBand interfaces. PVFS2 has support for the InfiniBand network fabric 

between the clients and the servers. The PVFS2 clients send PVFS requests using the 

native InfiniBand protocol stack by bypassing the traditional TCP/IP protocol stack since 

the InfiniBand protocol allows client/server communication via RDMA (Remote Direct 

Memory Access). In order to deploy the InfiniBand hardware as a communication 

medium between clients and servers, the clients and the servers must have the necessary 

software to enable InfiniBand access. OpenIB [14] is an open-source software stack 

developed by the OpenFabrics Alliance (OFA) that enables communication on a RDMA-

capable fabric like InfiniBand. Following figure (Figure 1) shows the OpenIB protocol 

stack used for RDMA data transfers over InfiniBand. It shows a RDMA-based 

application bypassing the TCP/IP stack to talk to the hardware directly. In an OpenIB 

implementation, the RDMA application uses the OpenIB Verbs API in the user-space to 

communicate to the InfiniBand hardware. OpenIB then copies the data from the 



 

 

application memory to the hardware directly to perform RDMA to the remote 

application. 

 

 

 

 

 

 

 

              

                            

 
 

 

 

 

 

Storage 

 User space

Socket calls 

6 

 

application memory to the hardware directly to perform RDMA to the remote 

                                        

                   

                            Figure 1.  OpenIB software stack 

 

RDMA based application

InfiniBand hardware 

TCP 

IP 
 Kernel bypass

OpenIB/gen2 API

 IB switch

 IB interconnect 

User space 
Regular 

Application 

 

application memory to the hardware directly to perform RDMA to the remote 

                                 

RDMA based application 

Kernel bypass 

OpenIB/gen2 API 

IB switch 

 



7 
 

 
 

2.2 Parallel Virtual File System (PVFS) 
 

PVFS is a parallel file system that supports high performance I/O of the kind 

typical in High Performance Computing (HPC) clusters. The primary goal of PVFS is to 

provide high-speed access to file data for parallel applications [3]. PVFS is a client-server 

file system, with potentially multiple servers and clients. These servers act as I/O nodes, 

responsible for serving data, while the clients demand data from the servers. One or more 

nodes can act as metadata servers, responsible for metadata operations like open, close 

and remove operations (refer Figure 2). There need not be dedicated PVFS servers, 

clients and metadata servers. The same node can act as all three, though for better 

performances, typically deployments have dedicated nodes acting as either I/O nodes, 

metadata node or clients. In the PVFS file system, each PVFS file is striped across the 

disks on the PVFS servers. PVFS is a user-space implementation that needs no kernel 

modifications. PVFS is an upper layer parallel file system that sits on top of traditional 

native file systems like ext2, ext3, xfs etc.. So actual file data still resides on the native 

file system. The second generation PVFS (PVFS2) retains the design if the original 

version, and also provides additional advantages of higher performance and better 

metadata managements. 

2.2.1 PVFS/InfiniBand 
 

PVFS supports the InfiniBand interface between the clients and servers through a 

Buffered Messaging Interface (BMI) implementation for InfiniBand that uses either 

Mellanox VAPI or OpenIB APIs (see Figure 3). Since we used the OpenIB software 

stack in our test setup, PVFS builds over the OpenIB verbs layer to establish 



8 
 

 
 

communication between the clients and servers via the IB channel. PVFS reads and 

writes happen via RDMA (Remote Direct Memory Access) operations between the 

clients and the servers, thus allowing the data transfer to bypass the TCP/IP stack. 

However, there is an OpenIB component called IPoIB which allows IB communication to 

happen over TCP/IP, but its discussion is beyond the scope of this thesis. In order to 

enable IB support with PVFS, we must build PVFS specifically for IB support.  

 

Figure 2.  PVFS2 architecture 

 

 

 

 

 



9 
 

 
 

 

 

 

               

 

 

 

 

 

 

Figure 3.  PVFS2/InfiniBand 

 

2.3 MPI I/O 
 

MPI I/O [12] is a standard application programming interface for parallel I/O 

defined by the MPI Forum. MPI I/O provides for concurrent I/O access to a single file by 

many processes. The parallelism attained thus enhances the read and write performances 

significantly with multiple processes performing I/O on a file in parallel, instead of a 

single process I/O. Since we are testing the effect of multiple PVFS2 clients on the 

read/write performance of PVFS2, MPI I/O becomes a natural choice for achieving 

concurrent I/O. The benchmarking tool we have chosen, IOR, supports the MPI I/O 

interface into the PVFS2 file system. MPI I/O is a process synchronization layer and uses 

underlying I/O function like PVFS2 I/O or Unix (POSIX) I/O to perform the actual file 

OpenIB API IBA OpenIB API 

User-level interface 

Application 

Buffer Manager 

System interface 

Communication Manager 

PVFS transport layer 

PVFS2 server binary 

Buffer Manager 

Communication Manager 

PVFS transport layer 

File access 
Manager 

Disk 

C
   

L 
  I

   
E

   
N

   
T 

S
  E

  R
  V

  E
  R

 PVFS2 client 



10 
 

 
 

system I/O [4]. Since the specific choice of the I/O function has an impact on the overall 

MPI I/O performance, the tests in this paper cover both MPI I/O using POSIX and MPI 

I/O using PVFS2 stacks for analyzing the I/O performance. 

ROMIO [5] is one of the main implementations of MPI I/O that provides high-

performance and portability. We used the MPICH2 package that includes ROMIO as the 

MPI I/O implementation on our test systems. ROMIO provides a portable MPI I/O 

implementation through the use of an internal abstract I/O device layer called ADIO. The 

ADIO layer interfaces between MPI I/O and the underlying file system, in our case the 

PVFS2 file system [6]. ROMIO can be used on top of PVFS2 file system through 2 

mechanisms. The first mechanism is where ROMIO interfaces into the POSIX compliant 

VFS layer to access the PVFS2 file system. In this case, ROMIO is ignorant of the 

underlying PVFS2 file system. The second mechanism is where ROMIO uses PVFS2 

interfaces directly, instead of POSIX semantics. In this case, ROMIO needs to be built 

with PVFS2 support. In this paper we test with both ROMIO on VFS and ROMIO on 

PVFS2.  

2.4 IOR Parallel I/O Benchmarking Tool 
 

IOR (Interleaved or Random) [13] is used for testing parallel file systems using 

various interfaces and access patterns. It is particularly used for testing the sequential I/O 

pattern typical in parallel applications. IOR is especially useful for testing a multiple 

client parallel I/O environment. IOR needs MPI software to be installed on all the client 

nodes to achieve process synchronization between multiple clients issuing I/O in parallel. 

IOR allows configuration of I/O in terms of the transfer size (size of each I/O transfer 



11 
 

 
 

unit used by the client), block size (size of the total chunk of data written by each client), 

number of clients, number of iterations (number of times the same test is run to get a 

more accurate average I/O performance value), the type of interface (MPIIO, POSIX) 

among others. IOR also allows the user to specify whether the clients should write to the 

same file or different files, one per client. In our setup, all the clients write to the same 

file hosted on a PVFS2 file system. 

2.5 Overall I/O path used for benchmarking 
 

The following figure shows the I/O path as the reads and writes are issued by IOR 

on the PVFS2 client nodes. The MPI I/O calls go through the ROMIO interface. Here, the 

MPI I/O calls can either go via the PVFS2 library (MPI I/O using PVFS) or via the 

Kernel VFS layer (MPI I/O using POSIX). The calls that go via the Kernel VFS layer 

follow the POSIX semantics, wherein the applications issue POSIX calls to the PVFS2 

file system mounted as a traditional Unix File System on the client nodes. The native 

PVFS2 and POSIX calls bypass the ROMIO interface. I/O calls through the kernel VFS 

layer go to a user-space pvfs2-client process (running on each client node) that converts 

the calls into low level system interface calls to communicate to the pvfs2-server. In 

contrast, I/O calls via PVFS2 library go via the libpvfs library which converts the native 

PVFS calls again into low-level system interface calls before communicating to the 

pvfs2-server. In both cases, the PVFS2 software uses RDMA for communication between 

the PVFS2 clients and servers. To use RDMA, PVFS2 uses the OpenIB Verbs API. The 

OpenIB layer sits on top of the InfiniBand hardware, acting as an interface between 

PVFS2 and the underlying InfiniBand hardware. 

 



12 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  I/O path 

 

 

 

 

 

 

 

 

 
 

 

IOR 

PVFS2  library Kernel VFS 

User-space pvfs2-
client  process 

Low-level  system  interface 

Open IB Verbs API 

InfiniBand hardware 

MPI I/O using 
PVFS2 

MPI I/O using 
POSIX 

ROMIO MPI I/O library 

Native PVFS2 
calls 

POSIX calls 



13 
 

 
 

CHAPTER 3.  SYSTEM CONFIGURATION 
 

3.1 Hardware configuration 
 

The following table shows the hardware configuration of the test cluster called 

“ibmcluster” at the Scalable Computing Lab, Ames Laboratory, US Department of 

Energy. The cluster is a non-homogeneous cluster consisting of five AMD Opteron nodes 

and one Intel Xeon node. The nodes are connected to each other and to the storage disks 

by InfiniBand channels via 2 InfiniBand switches. All the nodes have a common root file 

system provided by Andrew File System (AFS). The AFS volume resides on a shared 

disk. 

Table 1.  Hardware configuration of test system 

Main Memory 4 GB RAM 

Processor AMD Opteron node – Dual processor, 2.4   
    GHz 

Intel Xeon node – Dual processor, 2 GHz 

Host Channel Adapter card Mellanox 4X DDR PCI-Express InfiniBand adapter 
(16 Gbps) 

Storage disks hosting the PVFS2 
file system 

500 GB partition for each node on a 8 disk RAID 
Set of Seagate SATA HDs 

RAID controller for each storage 
node 

2 Areca PCI-X SATA RAID controllers (only one 
is used for I/O) 

Client/Server Interconnect 2 Mellanox 24 port (4X SDR/DDR) switches 
connected with a 12X DDR interlink (48 Gbps max 

data payload) 

 

 

 

 



14 
 

 
 

 

 

 

                         

                                                                                 

 

 

                                                                       

 

 

 

 

 

Figure 5.  ibmcluster in Ames Lab 

 

 

 

 

 

12X DDR 

AMD Opteron 

Intel  Xeon 

   Mellanox 4X 
DDR HCA 

500 GB 

AMD Opteron 



15 
 

 
 

3.2 Software configuration 
 

Each node in the PVFS cluster has the following software installed on it: 

Table 2.  Software configuration of test system 

Operating system Debian GNU/Linux 4.0 
PVFS2 version 2.7.1 

MPI I/O software MVAPICH2 1.2 
OpenIB version OFED 1.3 

IOR version 2.10.2 
 

For running PVFS2 with InfiniBand, the PVFS2 sources have to be compiled with 

InfiniBand support. Before compiling PVFS2 with IB, OpenIB must already have been 

installed in the test systems. PVFS2 binaries link with OpenIB libraries to perform 

RDMA over the IB fabric. For multiple clients to perform parallel I/O using IOR, an mpd 

ring must be setup in the cluster. The mpd ring essentially consists of a group of mpd 

daemons, each of which is running on a node in the PVFS2 cluster. The mpd binary is 

shipped as part of the MVAPICH2 bundle. To create the mpd ring, we use the “mpdboot” 

utility. A hostfile listing the names of all the nodes being used as PVFS2 clients is 

provided as an argument to the mpdboot utility. A run of the “mpdtrace” utility will then 

list all the client nodes that form the mpd ring. Furthermore, IOR also needs to be built 

with MVAPICH2. This is done by setting the PATH environment variable to the 

directory where MVAPICH2 binaries are located, and running the Makefile. In order for 

IOR to use the POSIX and MPI I/O using POSIX file system interfaces, the PVFS2 file 

system must be mounted as a Unix file system on the client machines. The PVFS2 kernel 

module [2] allows mounting the PVFS2 file system as a traditional Unix file system. 

 



16 
 

 
 

CHAPTER 4.  BENCHMARKING METHODOLOGY 
 

4.1 Outline of the methodology used 
 

In the test setup, the PVFS2 clients communicate with the PVFS2 servers using 

the InfiniBand protocol stack, bypassing the TCP/IP stack. To read/write data from/to the 

PVFS2 servers, applications can use different types of file system interfaces, including 

POSIX and MPI I/O. As already mentioned, IOR is a popular benchmarking tool for 

testing parallel filesystems using different interfaces. It is especially used for analyzing 

multiple client performance doing parallel I/O on a single file. Since our experiments aim 

to test multiple client I/O performance on PVFS2, we chose IOR to do our benchmarking 

of PVFS2 on InfiniBand. Presently, IOR only supports MPI I/O and POSIX file system 

interfaces. We wrote a PVFS2 extension module for IOR to include native PVFS2 

support for IOR. This allows IOR to read/write data into the PVFS2 file system using 

native PVFS2 interfaces. We analyze these different interfaces by running IOR with 

different I/O message size used for reading or writing PVFS2 data to and from PVFS2 

servers, and different number of PVFS2 clients. This allows us to determine the optimum 

message sizes for different interfaces that would give the maximum read/write 

performance. We finally make observations on the benchmarking statistics so obtained to 

determine the best file system interface in terms of offering good read/write bandwidths 

for application data.  

 

 



17 
 

 
 

4.2 Experimental Setup 
 

Our test ring consists of 6 servers that double up as both PVFS2 servers and 

clients. To test PVFS2 with multiple clients, we configure a fixed set of 6 PVFS2 I/O 

servers and 6 PVFS2 metadata servers. We then vary the number of PVFS2 clients (2, 4 

and 6) and run the IOR benchmark.  

4.3 Test Strategy 
 

The IOR benchmarking tool uses the sequential access pattern for measuring the 

read and write bandwidths. In the world of HPC applications, sequential I/O patterns 

dominate among other access patterns [11]. Using IOR, the PVFS2 clients write data to a 

single file in parallel, using independent I/O. The different types of I/O access vary from 

serial (all I/O happens via a single processor), multi-file parallel (each processor does I/O 

to a separate file) to single-file parallel I/O (multiple processors do I/O to a single file in 

parallel). The limitation of serial I/O is that it leads to performance bottleneck since all 

I/O gets routed through a single processor. Also, since the size of the file to be written 

might exceed the memory capacities of the single processor, I/O cannot take advantage of 

memory buffers. Similarly, multi-file I/O approach has problems associated with piecing 

together multiple files into a single file, high metadata overhead and the inherent 

difficulty in measuring I/O performance. Due to these limitations, single file parallel I/O 

is the most popular choice in the parallel-programming paradigm [11]. We assumed the 

total file size written to by the PVFS clients to be 24 GB. This file size was so chosen to 

offset any impact of buffering either on the client size or at the I/O servers. Each node in 

our PVFS cluster has a RAM of 4 GB. Since each node acts as both client and server, we 



18 
 

 
 

assumed a total file size of (6 PVFS servers/clients) * 4 GB = 24 GB. This file size 

assures us that the I/O is actually hitting the disk, allowing for the measurement of I/O 

performance more accurately. Since the access is sequential, and each client has its own 

chunk of file data, it does not make sense to test with collective I/O. For each 

configuration, we test with multiple message sizes, and see how the read/write 

performance is affected. The size of I/O transactions used by HPC applications vary 

across KB to tens of MB. We run our tests on message sizes from 1 MB to 1 GB to 

capture the effect of message size on read/write performance more effectively, and to 

determine the optimum message size for peak I/O performance. We restrict the message 

size at 1 GB since the peak read/write performance is reached before this. We test to see 

if the ROMIO interface into the PVFS2 file system has any impact on the I/O 

performance. To this end, we test with MPI I/O using POSIX interfaces into the PVFS2 

file system, and MPI I/O using native PVFS interfaces into the PVFS2 file system. 

  
 

 

 

 

 

 

 

 

 



19 
 

 
 

CHAPTER 5.  BENCHMARKING RESULTS 
 

5.1 Graph description 
 

The results are shown as line graphs plotted with the read/write bandwidth (in 

Megabytes per second units) against the I/O message size (in Megabytes). The maximum 

read/write bandwidth is fixed at 800 MB on the y-axis of each graph. This makes 

performance comparison easier across different measurements. On the x-axis of each 

graph, we consider message sizes of 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, 

128 MB, 256 MB, 512 MB and 1 GB. Each graph shows plotted lines pertaining to 

POSIX, MPI I/O using POSIX, MPI I/O using PVFS and native PVFS interfaces. There 

are different sets of graphs for different client numbers. The plotted lines have different 

colors and plot points to differentiate between themselves. Figures 6-7 show 2 client read 

and write bandwidths, figures 8-9 show 4 client read and write bandwidths and figures 

10-11 show 6 client read and write bandwidths. For plotting the graphs we used 

Microsoft Excel software. 

5.2 Results 
  

Following are the results captured by our testing: 

 

 

 

 



20 
 

 
 

 

Figure 6.  2-client write bandwidth performance 

 

                  

Figure 7.  2-client read bandwidth performance 

 

  

 

 

 

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

W
ri

te
 B

a
n

d
w

id
th

 (
M

B
/s

e
c)

Message Size (MB)

2 PVFS2 clients

POSIX

MPI I/O using POSIX

MPI I/O using PVFS

Native PVFS2

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

R
e

a
d

 B
a

n
d

w
id

th
 (

M
B

/s
e

c)

Message Size (MB)

2 PVFS2 clients

POSIX

MPI I/O using POSIX

MPI I/O using PVFS

Native PVFS2



21 
 

 
 

 

 

    

Figure 8.  4-client write bandwidth performance 

 

    

Figure 9.  4-client read bandwidth performance 

 

 

 

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

W
ri

te
 B

a
n

d
w

id
th

 (
M

B
/s

e
c)

Message Size (MB)

4 PVFS2 clients

POSIX

MPI I/O using POSIX

MPI I/O using PVFS

Native PVFS2

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

R
e

a
d

 B
a

n
d

w
id

th
 (

M
B

/s
e

c)

Message Size (MB)

4 PVFS2 clients

POSIX

MPI I/O using POSIX

MPI I/O using PVFS

Native PVFS2



22 
 

 
 

 

    

Figure 10.  6-client write bandwidth performance 

 

 

Figure 11.  6-client read bandwidth performance 

 
 

 

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

W
ri

te
 B

a
n

d
w

id
th

 (
M

B
/s

e
c)

Message Size (MB)

6 PVFS2 clients

POSIX

MPI I/O using POSIX

MPI I/O using PVFS

Native PVFS2

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

R
e

a
d

 B
a

n
d

w
id

th
 (

M
B

/s
e

c)

Message Size (MB)

6 PVFS2 clients

POSIX

MPI I/O using POSIX

MPI I/O using PVFS

Native PVFS2



23 
 

 
 

The following tables (Table 3 and Table 4) show the standard deviation for measuring read and 

write bandwidth over 3 runs, on each of the file system interfaces. For writes, the standard 

deviation is very less, on the order of 12 MB/sec, indicating that the bandwidth rates are reliable 

and predictable. For the reads, the standard deviation is a bit more, especially for the native 

PVFS interface (this may be because we captured the error margins after the original results were 

obtained. This may have resulted in a changed system configuration). 

Table 3.  Standard deviation for writes on 6 clients 

Interface Message size 
(MB) 

Write Bandwidth (MB/sec) Standard 
deviation(MB/sec) Run #1 Run #2 Run #3 

 
 

MPI I/O 
over PVFS 

64 451.35 465.42 471.82 8.38 
128 457.54 456.89 469.66 4.03 
256 460.02 469.66 466.36 3.74 
512 462.33 470.13 470.54 3.77 

 
 

MPI I/O 
over POSIX 

64 706.23 709.44 681.15 12.55 
128 690.59 695.74 680.59 6.24 
256 730.58 720.03 735.02 6.24 
512 663.73 670.02 659.32 4.55 

 
 

POSIX 

64 364.25 349.77 353.24 6.34 
128 358.79 353.94 349.54 3.68 
256 362.94 355.84 350.75 4.92 
512 358.62 352.85 345.17 5.31 

 
 

Native 
PVFS2 

64 644.06 637.42 666.94 12.35 
128 695.91 698.15 699.77 1.69 
256 705.05 700.30 697.49 3.30 
512 666.61 661.91 659.51 2.94 

 

 

 

 

 

 

 



24 
 

 
 

Table 4.  Standard deviation for reads on 6 clients 

Interface Message size 
(MB) 

Read Bandwidth (MB/sec) Standard 
deviation(MB/sec) Run #1 Run #2 Run #3 

 
 

MPI I/O 
over PVFS 

64 563.30 533.44 532.41 14.38 
128 528.72 564.82 556.91 15.40 
256 548.57 572.47 549.41 11.08 
512 613.42 561.32 554.86 26.31 

 
 

MPI I/O 
over POSIX 

64 373.69 394.46 400.27 11.57 
128 414.00 408.85 393.68 8.83 
256 349.07 357.95 363.91 5.73 
512 353.18 339.45 363.10 9.84 

 
 

POSIX 

64 348.52 332.72 335.04 6.94 
128 344.18 340.34 333.52 4.54 
256 345.40 337.05 338.29 3.56 
512 367.60 359.02 346.35 8.65 

 
 

Native 
PVFS2 

64 543.10 520.77 518.14 11.34 
128 605.16 496.51 480.10 55.53 
256 575.90 473.70 482.42 46.10 
512 542.04 478.41 462.71 34.5 

 

5.3 Analysis of the Results 
 

As can be seen in the above results, as far as read performance is concerned, for 

small message sizes, the low-level interface of MPI I/O to the PVFS file system does not 

seem to make a difference. Performance is comparable with both MPI I/O over POSIX 

and MPI I/O over native PVFS2. As the size of the messages increases, the performance 

of MPI I/O using PVFS starts to improve significantly compared to MPI I/O using 

POSIX. With 6 PVFS clients, MPI I/O using PVFS hits a peak read bandwidth of ~614 

MB/sec at a message size of 512MB. However, MPI I/O using POSIX peaks out at ~469 

MB/sec at a message size of 16 MB; for bigger message sizes, its read performance is 

considerably lower. When IOR uses native PVFS2 interfaces, the read performance is 

mostly similar to the read performance of MPI I/O using PVFS. For all client numbers, 



25 
 

 
 

the read performance of MPI I/O over PVFS and native PVFS are almost always similar. 

With 6 PVFS clients, the native PVFS interface gives a peak read performance of ~606 

MB/sec for a message size of 128 MB. The worst read performance is obtained using 

POSIX interface into the PVFS2 file system. It gives a peak read performance of only 

~368 MB/sec for a message size of 512 MB and with 6 PVFS clients.  

However, as far as the write performances are concerned, MPI I/O over the 

POSIX layer offers significantly better performance compared to MPI I/O over the 

PVFS2 layer. The difference in the write performance between the different MPI I/O 

stacks becomes bigger and bigger as the number of PVFS2 clients increases. Also, for 

bigger message sizes, the gap between the write bandwidths gets wider. MPI I/O over 

PVFS offers a peak write bandwidth of ~370 MB/sec with 6 PVFS2 clients and a 

message size of 16 MB. In contrast, MPI I/O using POSIX offers a peak bandwidth of 

~731 MB/sec, almost double the write bandwidth, for a message size of 256 MB. Native 

PVFS2 write performance almost exactly matches the write performance of MPI I/O over 

POSIX. It offers a peak write performance of ~706 MB/sec for a similar message size of 

256 MB. 

The performance difference between native PVFS2 and POSIX interfaces is 

because reads and writes in native PVFS2 happen through the user-space on the client 

side when the data is transferred to the pvfs2-server. In the POSIX model, reads and 

writes get copied from the user-space to the kernel space and back from kernel space to 

the user-space before the data gets transmitted to the pvfs2-server. Hence native PVFS2 

calls perform better in terms of reads and writes. 



26 
 

 
 

The performance difference between MPI I/O over PVFS and MPI I/O over 

POSIX follows a similar theory. The I/O calls in each of the cases is different. As already 

discussed in section 2.5, the POSIX semantics use the kernel VFS layer, while the PVFS 

calls go via the libpvfs2 library. Since MPI I/O is an abstraction layer above POSIX or 

PVFS2, the I/O path underneath causes difference in their overall performance. 

MPI I/O calls in general suffer from the disadvantages of protocol overhead. It 

however has support for passing hints, like the stripe size, to the underlying file system. 

We use the default PVFS2 stripe size throughout our tests. The ROMIO implementation 

of MPI I/O is especially optimized for good parallel performance on PVFS. MPI I/O also 

has support for pre-fetching data, a feature that POSIX I/O lacks leading to a poor 

parallel I/O performance for POSIX. POSIX I/O also suffers from drawbacks due to 

atomic writes, read-after-write consistency and attribute freshness [16]. MPI I/O provides 

better metadata management. In a POSIX file model, all client processes are forced to 

open the shared file, causing system call storm, while MPI I/O uses a handle-based model 

where a single file system handle lookup by a master client node is broadcasted to 

remaining client nodes [17]. Native PVFS has less protocol overhead, and also provides a 

much richer API for describing I/O accesses, since it is specifically made for parallel I/O. 

Also, unlike the POSIX model, it has much lesser metadata overhead compared to MPI 

I/O. It matches the non-contiguous regions in memory and file more effectively as 

compared to POSIX. Thus it offers superior read/write performance as our results have 

shown. 

To understand the write performance between different interfaces better, we used 

the “vmstat” utility to get the virtual memory statistics on the server nodes. Since we used 



27 
 

 
 

the same nodes as both clients and servers, it didn’t really matter where we ran the vmstat 

tool. In particular, we found that the number of context switches between different 

interfaces varied significantly. Following are the results captured for writing a 256 MB 

message by 6 clients (Table 3). We chose this message size since large messages result in 

the most performance difference compared to small messages. Table 3 shows the number 

of context switches happened for each interface when performing writes on the PVFS2 

file system. 

Table 5.  Context Switch counts across interfaces for writes 

Interface Run1 Run2 Run3 Mean Standard Deviation 

MPI I/O over PVFS 152176 143114 157768 151000 6038.12 

POSIX 131114 135840 133521 134000 1929.49 

MPI I/O over POSIX 109792 103745 113928 109000 4181.52 

Native PVFS 100029 99182 102219 100000 1279.62 

 

As seen above, the number of context switches for MPI I/O over POSIX is less 

compared to MPI I/O over PVFS. This might account for the better write performance of 

MPI I/O over POSIX as compared to MPI I/O over PVFS. To understand why the context 

switches are more for MPI I/O over PVFS, we looked at the time spent by the CPU in the 

user-space and kernel-space while performing I/O, again using the vmstat utility. For 3 

runs, following is the mean CPU time with an error margin of less than 2% - 

 

 



28 
 

 
 

Table 6.  Mean CPU time 

Interface User-space Kernel-space 

MPI I/O over PVFS 30% 6% 

POSIX 35% 10% 

MPI I/O over POSIX 40% 12% 

Native PVFS 35% 13% 

 

As seen above, the CPU time spent in I/O for both user-space and kernel-space is 

less for MPI I/O over PVFS compared to MPI I/O over POSIX. Since the amount of I/O 

is same for both the cases, it seems that CPU is more actively involved in I/O for MPI I/O 

using POSIX as compared to MPI I/O over PVFS, thus achieving fewer context switches 

since CPU is not handling many non I/O tasks while doing I/O. In contrast, for MPI I/O 

over PVFS, since the CPU is less involved in I/O, it switches contexts to perform other 

tasks, leading to more context switches. This observation led us to hypothesize that the 

number of packets generated for MPI I/O over POSIX was perhaps more and with 

smaller packet sizes as compared to MPI I/O over PVFS. This somehow seems to lead to 

better parallelization and better batching at the server while performing disk I/O. The 

PVFS2 server interfaces to disk using POSIX asynchronous I/O routines, which are 

implemented via glibc using threads and blocking read/write. So if there is more I/O, it 

appears that the I/O gets batched together better. We believe that the higher IB traffic 

generated for MPI I/O over POSIX compared to MPI I/O over PVFS leads to a better 

write performance for larger message sizes. For larger message sizes, MPI I/O over 

POSIX seems to fragment the application data more leading to a higher number of packet 



29 
 

 
 

traffic on the InfiniBand interconnect.  More packets lead to higher parallelization of the 

packets to the I/O servers, leading to better performance. On the contrary, the higher 

number of IB packets generated for MPI I/O over POSIX for larger message sizes leads 

to a degraded read performance compared to MPI I/O over PVFS. This is because, 

reading more packets means more overhead for reading the actual file data from the file 

system. 

To test our hypothesis that MPI I/O over POSIX results in more I/O packets 

compared to MPI I/O over PVFS, we used the “perfquery” tool. But we did not get any 

conclusive evidence. 

The “perfquery” tool is part of the OpenIB diagnostics. The perfquery tool can 

query the host/switch InfiniBand ports to get a measure of the number of IB packets 

transmitted and received through these ports. We used the tool to query all the ports of 

both the IB switches used in our setup to compute the IB traffic generated for one run of 

the IOR benchmark tool for a 6 PVFS2 client setup. Basically, perfquery will compute 

the aggregated sum of the IB packets passing through the 24 ports of each of the two IB 

switches in our test environment. Since the difference in I/O performance was significant 

mostly for the larger message size, IOR was run with a transfer size of 256 MB. The 

counts of IB packets were – 

  MPI I/O and PVFS2 - 244,086,007 

MPI I/O and POSIX - 244,241,310 

Native PVFS2 - 244,126,754 



30 
 

 
 

POSIX - 244,785,626 

But the difference between the packet counts was not significant enough to draw 

any conclusions. There is a possibility that the tool might also contain bugs that would 

give incorrent results. 

In order to test the theory that parallelization helps the write performance for 

higher number of I/O packets, we reduced the number of I/O servers from 6 to 4 to 

decrease the degree of I/O parallelization. We then ran IOR with 4 PVFS2 clients on the 

MPI I/O over POSIX file system interface. IOR would write file of the same size as 

before (24 GB), but this time on a PVFS2 file system striped across only 4 I/O servers. 

We then compared the results so obtained with the results of MPI I/O over PVFS 

performance on 4 PVFS2 clients and 6 PVFS2 servers. We observed that their write 

bandwidths almost matched each other. Following is the graph of the same – 

 

 

              Figure 12.  MPI I/O write bandwidth comparison 

0

100

200

300

400

500

600

700

800

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4W

ri
te

 B
a

n
d

w
id

th
 (

M
B

/s
e

c)

Message Size (MB)

MPI I/O comparison for 4 PVFS2 

clients

MPI I/O using POSIX + 

4 PVFS2 servers

MPI I/O using PVFS + 6 

PVFS2 servers



31 
 

 
 

As seen above,  

WriteBandwidth(Loss in the degree of parallelization for MPI I/O over POSIX, Higher 

number of IB packets) = WriteBandwidth(Higher degree of parallelization for MPI I/O 

over PVFS, Lesser number of IB packets). 

Native PVFS2 outperforms MPI I/O over PVFS2 in terms of writes since it 

involves less redundant buffering in the I/O path on account of less protocol overhead. 

For larger messages, the write performance of MPI I/O over PVFS gets saturated perhaps 

on account of lack of support for transfer of large messages as a unit. In other words, the 

MPI I/O layer could be fragmenting the larger packets, leading to saturation in 

performance. As far as MPI I/O over POSIX is concerned, the performance benefit 

offered perhaps by its higher packet count matches with the reduced protocol overhead 

and support for larger message size of native PVFS2. Hence their performances are 

almost similar to each other. We have already discussed the limitations of POSIX for 

parallel I/O and our results reflect the limitations. In the current work, we have not been 

able to exactly determine the causes leading to the performance differences between 

different interfaces. We hope that in our future work, we can isolate the causes more 

effectively to explain the performance results and also help improve I/O performance. 

 
 

 

 



32 
 

 
 

CHAPTER 6.  CONCLUSION 
 

In this thesis we studied the I/O performance of PVFS2 over the InfiniBand 

technology. In particular, we studied the performance of concurrent reads and writes by 

multiple processes, characterizing the typical parallel I/O access pattern used in parallel 

applications. We examined in detail the effects of different application programming 

interfaces into the PVFS2 file system by making use of the IOR parallel I/O 

microbenchmark. In addition to the POSIX and MPI I/O interfaces supported by IOR, we 

extended its functionality to include a PVFS2 module allowing IOR to access the PVFS2 

file system using native PVFS2 interfaces. To study the effects of different MPI I/O 

stacks on the I/O performance of a PVFS2 file system, we ran our benchmarks in the MPI 

I/O over POSIX as well as MPI I/O over PVFS environments. We also tested I/O 

performance with different I/O transfer unit sizes to find out the optimum I/O message 

size for each configuration.  

Our results showed that MPI I/O over PVFS fetches better read performance for 

large I/O message sizes, while MPI I/O over POSIX fetches better write performance for 

large I/O message sizes. We also showed that a native PVFS2 interface performs really 

well in both reads and writes in a multi-client parallel I/O scenario. With these results, on 

the whole we characterize the performance of PVFS2 on the InfiniBand interconnect by 

achieving impressive I/O performance results. By extending IOR functionality to include 

PVFS2 support, we make available a single parallel I/O benchmarking tool suitable for 

comparing different file system interfaces in multiple client experiments in a PVFS2 

environment. Using this work, parallel applications can configure their I/O environment 

according to the performance parameters we identified and get better I/O performance. 



33 
 

 
 

CHAPTER 7.  FUTURE WORK 
 

We showed our benchmarking results obtained from the IOR benchmarking tool. 

Now that we have identified the application programming interface and the I/O 

transaction unit size that will most benefit reads and writes in a PVFS2/InfiniBand 

environment, the next step is to run a real-world parallel application with these 

performance parameters as a case study. A measurement of the I/O efficiency of such an 

application will prove the effectiveness of our analysis in a real-world scenario. In this 

thesis, we measured PVFS2 performance on native InfiniBand, where PVFS2 clients 

communicate with PVFS2 servers using native InfiniBand calls. It may be worthwhile to 

test PVFS2 with clients and servers communicating using the IP over IB protocol stack, 

wherein the communication happens using the regular TCP/IP stack on InfiniBand as the 

physical medium. We are also planning to benchmark I/O performance on a Lustre file 

system that is currently being setup on the “ibmcluster” in Ames Lab. The goal is to do a 

comparative study of PVFS2 I/O performance and Lustre I/O performance on InfiniBand. 

Since this kind of comparative study does not exist as of today to our best knowledge, we 

hope that this will give us some interesting insights. Also, as we have already mentioned, 

we hope to analyze the performance of different interfaces more effectively to isolate the 

exact causes of performance bottlenecks. Lastly, in the pipeline is a asynchronous I/O 

implementation with NetPipe wherein application I/O overlaps with PVFS2 client/server 

I/O. Such an implementation might offer a significantly better parallel I/O performance. 

 

 



34 
 

 
 

BIBLIOGRAPHY 
 

[1] InfiniBand Trade Association. http://www.infinibandta.com . 

[2] Parallel Virtual File System. http://www.pvfs.org . 

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A Parallel File System for 

Linux Clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317-

327, Atlanta, GA, 2000. USENIX Association. 

[4] Y. Tsujita: Implementation of an MPI I/O Mechanism Using PVFS in Remote I/O to a PC 

Cluster. In Proceedings of the High Performance Computing and Grid in Asia Pacific Region, 

7th International Conference, pages 136-139, 2004. IEEE Computer Society. 

[5] ROMIO. http://www-unix.mcs.anl.gov/romio . 

[6] R. Thakur, W. Gropp, and E. Lusk, An Abstract-Device Interface for Implementing Portable 

Parallel-I/O Interfaces, in Proc. of the 6th Symposium on the Frontiers of Massively Parallel 

Computation, pages 180-187, 1996. 

[7] J. Wu, P. Wyckoff, D. K. Panda: PVFS over InfiniBand: design and performance evaluation. 

In Proceedings of the International Conference on Parallel Processing, pages 125-132, 2003. 

[8] L. Chai, X. Ouyang, R. Noronha, D. K. Panda: pNFS/PVFS2 over InfiniBand: early 

experiences. In Proceedings of the 2nd international workshop on Petascale data storage, pages 

5-11, 2007. 

[9] Iozone Filesystem Benchmark. http://www.iozone.org . 



35 
 

 
 

[10] Effective I/O Bandwidth Benchmark. 

http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io . 

 

[11] H. Shan and J. Shalf: Using IOR to analyze the I/O performance of HPC platforms. In Cray 

Users Group Meeting (CUG) 2007, Seattle, Washington, May 7-10, 2007. 

 

[12] Peter Corbett, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill Nitzberg, 

Bernard Traversat, Parkson Wong, and Dror Feitelson: MPI-IO: A parallel file I/O 

interface for MPI, version 0.4. http://lovelace.nas.nasa.gov/MPI-IO, December 1995. 

 

[13] IOR, http://www.llnl.gov/asci/purple/benchmarks/limited/ior . 

[14] OpenIB,  http://www.openib.org . 

[15] HPC Analytics, Arizona State University, http://plato.asu.edu/slides/stanzione.pdf . 

 [16] Clustered and Parallel Storage System Technologies FAST09, 

http://www.usenix.org/events/fast09/tutorials/T1.pdf . 

[17] R. Ross:  PVFS2 and Parallel I/O on BG/L. Invited talk at Third BG/L Systems Software and 

Applications Workshop 2006, Tokyo, Apr 19-20, 2006; see 

http://www.cbrc.jp/symposium/bg2006/PDF/Ross.pdf . 

 

 

 

 
 

 

 

 

 



36 
 

 
 

APPENDIX 
 

 IOR source changes for PVFS2 support. 

Makefile changes 
 

 ... 

posix: $(OBJS) aiori-POSIX.o aiori-noPVFS2.o aiori- noMPIIO.o \  

aiori-noHDF5.o aiori-noNCMPI.o \ 

          $(CC) -o IOR $(OBJS) \ 

                  aiori-POSIX.o aiori-noPVFS2.o aio ri-noMPIIO.o \ 

aiori-noHDF5.o aiori-noNCMPI.o \ 

                  $(LDFLAGS) 

pvfs2:  $(OBJS) aiori-PVFS2.o aiori-POSIX.o aiori-n oMPIIO.o \ 

aiori-noHDF5.o aiori-noNCMPI.o \ 

          $(CC) -o IOR $(OBJS) \ 

                 aiori-PVFS2.o aiori-POSIX.o aiori- noMPIIO.o \ 

aiori-noHDF5.o aiori-noNCMPI.o \ 

                  -I$(PVFS_INCLUDE) $(LDFLAGS) $(PV FS_LDFLAGS) -lpvfs2 

mpiio:  $(OBJS) aiori-POSIX.o aiori-PVFS2.o aiori-M PIIO.o \ 

aiori-noHDF5.o aiori-noNCMPI.o \ 

         $(CC) -g -o IOR $(OBJS) \ 

                  aiori-POSIX.o aiori-PVFS2.o aiori -MPIIO.o \ 

aiori-noHDF5.o aiori-noNCMPI.o \ 

                  $(LDFLAGS) 

 ... 

 

 

 

 



37 
 

 
 

IOR.c changes 
 

  This is the main benchmarking logic that tests file system I/O. 

sudhindra@da12:/IO-tools/IOR-2.10.2/src/C$ diff IOR.c.PVFS IOR.c.withoutPVFS 

187,195d186 

< } else if (strcmp(api, "PVFS2") == 0) { 

< IOR_Create         = IOR_Create_PVFS2; 

< IOR_Open           = IOR_Open_PVFS2; 

< IOR_Xfer           = IOR_Xfer_PVFS2; 

< IOR_Close          = IOR_Close_PVFS2; 

< IOR_Delete         = IOR_Delete_PVFS2; 

< IOR_SetVersion     = IOR_SetVersion_PVFS2; 

< IOR_Fsync          = IOR_Fsync_PVFS2; 

< IOR_GetFileSize    = IOR_GetFileSize_PVFS2; 

 

aiori.h changes 
 

This is the header file containing the definitions and prototypes needed for the 

abstract I/O interfaces invoked by IOR. 

sudhindra@da12:/IO-tools/IOR-2.10.2/src/C$ diff aiori.h.pvfs aiori.h.withoutPVFS 

202,212d201 

< /* PVFS2-specific functions */ 

< void *IOR_Create_PVFS2(char *, IOR_param_t *); 

< void *IOR_Open_PVFS2(char *, IOR_param_t *); 

< IOR_offset_t IOR_Xfer_PVFS2(int, void *, IOR_size _t *, 

<                             IOR_offset_t, IOR_par am_t *); 

< void IOR_Close_PVFS2(void *, IOR_param_t *); 



38 
 

 
 

< void IOR_Delete_PVFS2(char *, IOR_param_t *); 

< void IOR_SetVersion_PVFS2(IOR_param_t *); 

< void IOR_Fsync_PVFS2(void *, IOR_param_t*); 

< IOR_offset_t IOR_GetFileSize_PVFS2(IOR_param_t *,  MPI_Comm, char *); 

 

aiori-PVFS2.c 
 

This file contains the implementation of abstract I/O interfaces for PVFS2. 

#include "aiori.h"          /* abstract IOR interfa ce */ 

#ifdef __linux__ 

#  include <sys/ioctl.h>    /* necessary for: */ 

#  define __USE_GNU         /* O_DIRECT and */ 

#  include <fcntl.h>        /* IO operations */ 

#  undef __USE_GNU 

#endif                      /* __linux__ */ 

#include <errno.h>          /* sys_errlist */ 

#include <fcntl.h>          /* IO operations */ 

#include <stdio.h>          /* only for fprintf() * / 

#include <stdlib.h> 

#include <sys/stat.h> 

#include <unistd.h> 

#include <pvfs2.h> 

#include <limits.h> 

#include <string.h> 

#include <sys/time.h> 

#include <sys/types.h> 

#include <sys/stat.h> 



39 
 

 
 

#include <time.h> 

#include <libgen.h> 

#define STRIP_SIZE -1 

#define NUM_DATAFILES -1 

/*******************P R O T O T Y P E S************ *********/ 

/******************D E C L A R A T I O N S********* **********/ 

extern int errno; 

extern int rank; 

extern int rankOffset; 

extern int verbose; 

extern MPI_Comm testComm; 

int flag = 0; 

PVFS_credentials credentials; 

PVFS_object_ref ref; 

PVFS_fs_id fs_id; 

/********************F U N C T I O N S************* *********/ 

/************************************************** *********/ 

/* 

 * Create and open a file through the PVFS2 interfa ce. 

  */ 

void make_attribs(PVFS_sys_attr *attr, PVFS_credent ials *credentials, 

                        int nr_datafiles, int mode)  

{ 

       attr->owner = credentials->uid; 

        attr->group = credentials->gid; 

         attr->perms = PVFS_util_translate_mode(mod e, 0); 

         attr->atime = time(NULL); 

         attr->mtime = attr->atime; 



40 
 

 
 

        attr->ctime = attr->atime; 

         attr->mask = (PVFS_ATTR_SYS_ALL_SETABLE); 

        attr->dfile_count = nr_datafiles; 

         if (attr->dfile_count > 0) 

         { 

             attr->mask |= PVFS_ATTR_SYS_DFILE_COUN T; 

         } 

} /* make_attribs */ 

void *IOR_Create_PVFS2(char *testFileName, IOR_para m_t *param) 

{ 

       PVFS_sys_attr attr; 

       PVFS_permissions perms; 

       PVFS_sysresp_lookup resp_lookup; 

       PVFS_sysresp_getattr resp_getattr; 

       PVFS_sysresp_create resp_create; 

       PVFS_object_ref parent_ref; 

       PVFS_sys_dist *new_dist; 

       int ret = 0; 

       char pvfs2_path[PVFS_NAME_MAX]; 

       char   *entry_name;            /* name of th e pvfs2 file */ 

    char  str_buf[PVFS_NAME_MAX]; /* basename of th e pvfs2 file */ 

        /* so things like debug files go the right place */ 

       if (!flag) 

       { 

             ret = PVFS_util_init_defaults(); 

              if (ret < 0) 

             { 

                   ERR("PVFS_util_init_defaults"); 



41 
 

 
 

             } 

              flag = 1; 

         } 

         /* Translate path into pvfs2 relative path  */ 

        ret = PVFS_util_resolve(testFileName, &fs_i d, pvfs2_path,   

PVFS_NAME_MAX); 

       if (ret < 0) 

         { 

             ERR("Unable to map requested name to a  pvfs2 file\n"); 

        } 

         PVFS_util_gen_credentials(&credentials); 

         entry_name = str_buf; 

         if (PINT_remove_base_dir(pvfs2_path, str_b uf, PVFS_NAME_MAX)) 

         { 

             if(pvfs2_path[0] != '/') 

                 { 

                   ERR("Error: poorly formatted pat h.\n"); 

                 } 

                 ERR("Error: cannot retrieve entry name for creation"); 

        } 

         ret = PINT_lookup_parent(pvfs2_path, fs_id , &credentials, 

                               &parent_ref.handle);  

       if (ret < 0) 

       { 

         ERR("PVFS_util_lookup_parent"); 

         } 

         /*we are always dealing with a dest full p ath with file name */ 

         parent_ref.fs_id = fs_id; 



42 
 

 
 

         memset(&resp_lookup, 0, sizeof(PVFS_sysres p_lookup)); 

         if (!param->filePerProc && rank != 0) 

         { 

             MPI_CHECK(MPI_Barrier(testComm), "barr ier error"); 

         } 

         ret = PVFS_sys_ref_lookup(parent_ref.fs_id, entry_n ame,                                                          

  par ent_ref, &credentials, &resp_lookup,                                                          

  PVFS2_LOOKUP_LINK_FOLLOW); 

        if (ret == 0) 

         {  

/* file exists, open it */ 

                 ref = resp_lookup.ref; 

        } 

         else 

         { 

             int nr_datafiles = NUM_DATAFILES; 

                 PVFS_size stripe_size = STRIP_SIZE ; 

                PVFS_sys_dist *new_dist; 

                PVFS_sysresp_create resp_create; 

                 PVFS_sys_layout layout; 

                 make_attribs(&attr, &credentials, NUM_DATAFILES,                                         

(int)(S_IFREG | S_IRUSR | S_IWUSR)); 

                if (stripe_size > 0) 

                 { 

                   new_dist = PVFS_sys_dist_lookup( "simple_stripe"); 

                        ret = PVFS_sys_dist_setpara m(new_dist, "strip_size",  

                 &stripe_size); 

                      if (ret < 0) 



43 
 

 
 

                        { 

                       ERR("PVFS_sys_dist_setparam" ); 

                        } 

                 } 

                 else 

                { 

                   new_dist = NULL; 

                 } 

                layout.algorithm = PVFS_SYS_LAYOUT_ NONE; 

                 ret = PVFS_sys_create(entry_name, parent_ref, attr,                                                         

   &credentials, new_dist, &layout,                                                         

   &resp_create); 

                if (ret < 0) 

                 { 

                   ERR("PVFS_sys_create"); 

                 } 

                ref = resp_create.ref; 

        } 

         if (rank == 0) 

             MPI_CHECK(MPI_Barrier(testComm), "barr ier error"); 

         return (void *)fs_id; 

} /* IOR_Create_PVFS2() */ 

 

/************************************************** ************/ 

/* 

* Open a file through the PVFS2 interface. 

 */ 

void *IOR_Open_PVFS2(char *testFileName, IOR_param_ t * param)                                         



44 
 

 
 

{ 

      return((void *)fs_id); 

} /* IOR_Open_PVFS2() */ 

/************************************************** ************/ 

/* 

  * Write or read access to file using the PVFS2 in terface. 

  */ 

IOR_offset_t IOR_Xfer_PVFS2(int access, 

                                  void *file, 

                                  IOR_size_t   * bu ffer, 

                                  IOR_offset_t   le ngth, 

                                  IOR_param_t  * pa ram) 

{ 

         char *ptr = (char *)buffer; 

         int ret = 0; 

         PVFS_Request mem_req, file_req; 

         PVFS_sysresp_io resp_io; 

         file_req = PVFS_BYTE; 

         ret = PVFS_Request_contiguous(length, PVFS _BYTE, &mem_req); 

        if (ret < 0) 

         { 

             ERR("PVFS_Request_contiguous"); 

         } 

         if (access == WRITE) 

         { 

             ret = PVFS_sys_write(ref, file_req, pa ram->offset, 

                                ptr, mem_req, &cred entials, &resp_io); 

             if (ret == 0) 



45 
 

 
 

                 { 

                   PVFS_Request_free(&mem_req); 

                 } 

                 else 

                 { 

                   ERR("PVFS_sys_write"); 

                 } 

         } 

        else 

         { 

             ret = PVFS_sys_read(ref, file_req, par am->offset, 

                                   ptr, mem_req, &c redentials, &resp_io); 

                if (ret == 0) 

                 { 

                   PVFS_Request_free(&mem_req); 

                } 

                else 

                { 

                   ERR("PVFS_sys_read"); 

                 } 

         } 

         return(length); 

} /* IOR_Xfer_PVFS2() */ 

/************************************************** ********/ 

/* 

  * Perform fsync(). 

  */ 

void IOR_Fsync_PVFS2(void *fd, IOR_param_t *param) 



46 
 

 
 

{ 

} /* IOR_Fsync_PVFS2() */ 

/************************************************** *********/ 

/* 

  * Close a file through the POSIX interface. 

 */ 

void IOR_Close_PVFS2(void *fd, IOR_param_t *param) 

      { 

} /* IOR_Close_PVFS2() */ 

 

/************************************************** ******/ 

/* 

 * Delete a file through the PVFS2 interface. 

  */ 

void IOR_Delete_PVFS2(char * testFileName, IOR_para m_t * param) 

{ 

       int rc = 0, num_segs = 0; 

        char filename[PVFS_SEGMENT_MAX]; 

         char directory[PVFS_NAME_MAX]; 

         PVFS_fs_id cur_fs; 

         PVFS_sysresp_lookup resp_lookup; 

         PVFS_object_ref parent_ref; 

         char pvfs2_path[PVFS_NAME_MAX]; 

         if (!flag) 

         { 

             rc = PVFS_util_init_defaults(); 

                 if (rc < 0) 

                 { 



47 
 

 
 

                   ERR("PVFS_util_init_defaults"); 

                 } 

                flag = 1; 

         } 

         PVFS_util_gen_credentials(&credentials); 

         /* Translate path into pvfs2 relative path  */ 

       rc = PVFS_util_resolve(testFileName, &cur_fs , pvfs2_path,  

     PVFS_NAME_MAX); 

         if (rc < 0) 

         { 

             ERR("PVFS_util_resolve"); 

         } 

         // break into file and directory 

         rc = PINT_get_base_dir(pvfs2_path, directo ry, PVFS_NAME_MAX); 

         if (rc < 0) 

        { 

             ERR("PINT_get_base_dir"); 

         } 

         num_segs = PINT_string_count_segments(test FileName); 

        rc = PINT_get_path_element(testFileName, nu m_segs - 1, filename,                                                                         

   PVFS_SEGMENT_MAX); 

         if (rc) 

         { 

             ERR("Unknown file path format"); 

         } 

         memset(&resp_lookup, 0, sizeof(PVFS_sysres p_lookup)); 

         rc = PVFS_sys_lookup(cur_fs, directory, &c redentials, 

                             &resp_lookup, PVFS2_LO OKUP_LINK_NO_FOLLOW); 



48 
 

 
 

         if (rc) 

         { 

             ERR("PVFS_util_resolve"); 

         } 

         parent_ref = resp_lookup.ref; 

         rc = PVFS_sys_remove(filename, parent_ref,  &credentials); 

         if (rc) 

         { 

             ERR("Error: An error occurred while re moving file"); 

         } 

} /* IOR_Delete_PVFS2() */ 

/************************************************** *********/ 

/* 

 * Determine api version. 

  */ 

void IOR_SetVersion_PVFS2(IOR_param_t *test) 

{ 

      strcpy(test->apiVersion, test->api); 

} /* IOR_SetVersion_PVFS2() */ 

 

/************************************************** *****/ 

/* 

  * Use PVFS2_sys_attr to return aggregate file siz e. 

  */ 

IOR_offset_t IOR_GetFileSize_PVFS2(IOR_param_t *tes t, 

                              MPI_Comm testComm, 

                              char *testFileName) 

{ 



49 
 

 
 

       IOR_offset_t aggFileSizeFromStat, tmpMin, tm pMax, tmpSum; 

       int ret = 0; 

      PVFS_sys_attr *attr; 

       PVFS_sysresp_getattr getattr_response; 

       memset(&getattr_response,0, sizeof(PVFS_sysr esp_getattr)); 

       PVFS_util_gen_credentials(&credentials); 

       ret = PVFS_sys_getattr(ref, PVFS_ATTR_SYS_AL L_NOHINT, 

                      &credentials, &getattr_respon se); 

       if (ret < 0) 

       { 

             ERR("PVFS_sys_getattr"); 

       } 

       attr = &getattr_response.attr; 

       aggFileSizeFromStat = attr->size; 

       if (test->filePerProc == TRUE) 

{ 

             MPI_CHECK(MPI_Allreduce(&aggFileSizeFr omStat, &tmpSum, 1, 

    MPI_LONG_LONG_INT, MPI_SUM, testComm), 

                       "cannot total data moved"); 

           aggFileSizeFromStat = tmpSum; 

      }    

     else  

    { 

          MPI_CHECK(MPI_Allreduce(&aggFileSizeFromS tat, &tmpMin, 1, 

MPI_LONG_LONG_INT, MPI_MIN,  

testComm), 

                                           "cannot total data moved"); 

          MPI_CHECK(MPI_Allreduce(&aggFileSizeFromS tat, &tmpMax, 1, 



50 
 

 
 

  MPI_LONG_LONG_INT, MPI_MAX,     

  testComm),                                                                        

  "cannot total data moved"); 

          if (tmpMin != tmpMax)  

        { 

              if (rank == 0)  

              { 

                      WARN("inconsistent file size by different tasks"); 

               } 

              /* incorrect, but now consistent acro ss tasks */ 

              AggFileSizeFromStat = tmpMin; 

         } 

      } 

      return(aggFileSizeFromStat); 

} /* IOR_GetFileSize_PVFS2() */ 

 

benchmark script 
 

This is the benchmarking script we used to capture the I/O performance of our 

experimental setup. 

#!/bin/sh 

 

echo "MPI I/O over PVFS" 

 

i=1 

size=1024 

 



51 
 

 
 

while [ $i -lt 2 ]; do 

 

 sleep 30 

 new_size="$size"M 

 

 echo "Testing with $new_size" 

 

 j=0 

 

 while [ $j -lt 5 ]; do 

  /usr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \ 

  /IO-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t $new_s ize -b 4G \ 

  -i 5 -o pvfs2:/mnt/pvfs2/mpiio_pvfs2_krsna 

  sleep 10 

  j=`expr $j + 1` 

  rm -rf /mnt/pvfs2/* 

 done 

 

 

 echo "******Run $i ended*******" 

 

 i=`expr $i + 1` 

 size=`expr $size \* 2` 

done 

 

echo "MPI I/O over POSIX" 

 

i=1 

size=1024 



52 
 

 
 

 

while [ $i -lt 2 ]; do 

 sleep 30 

 new_size="$size"M 

 

 echo "Testing with $new_size" 

 

 j=0 

 

 while [ $j -lt 5 ]; do 

  /usr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \ 

  /IO-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t $new_s ize -b 4G \ 

  -i 5 -o /mnt/pvfs2/mpiio_posix_krsna 

  sleep 10 

  j=`expr $j + 1` 

  rm -rf /mnt/pvfs2/* 

 done 

 

 echo "******Run $i ended*******" 

 

 i=`expr $i + 1` 

 size=`expr $size \* 2` 

done 

 

echo "POSIX" 

 

i=1 

size=1024 

 



53 
 

 
 

while [ $i -lt 2 ]; do 

 sleep 30 

 new_size="$size"M 

 

 echo "Testing with $new_size" 

 

 j=0 

 

 while [ $j -lt 5 ]; do 

  /usr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \ 

  /IO-tools/IOR-2.10.2/src/C/IOR -a POSIX -t $new_s ize -b 4G \ 

  -i 5 -o /mnt/pvfs2/posix_krsna 

  sleep 10 

  j=`expr $j + 1` 

  rm -rf /mnt/pvfs2/* 

 done 

 

 echo "******Run $i ended*******" 

 

 i=`expr $i + 1` 

 size=`expr $size \* 2` 

done 

 

echo "Native PVFS2" 

 

i=1 

size=1024 

 

while [ $i -lt 2 ]; do 



54 
 

 
 

 sleep 30 

 new_size="$size"M 

 

 echo "Testing with $new_size" 

 

 j=0 

 

 while [ $j -lt 5 ]; do 

  /usr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \ 

  /IO-tools/IOR-2.10.2/src/C/IOR -a PVFS2 -t $new_s ize -b 4G \ 

  -i 5 -o /mnt/pvfs2/pvfs2_krsna 

  sleep 10 

  j=`expr $j + 1` 

  rm -rf /mnt/pvfs2/* 

 done 

 

 echo "******Run $i ended*******" 

 

 i=`expr $i + 1` 

 size=`expr $size \* 2` 

done 

perfquery/vmstat script 
 

This is the script we wrote to capture the count of IB traffic for each interface, and 

to get virtual memory statistics. 

#!/bin/sh 

# reset all counters 



55 
 

 
 

reset_counters() { 

 echo "### & reset all counters" 

 perfquery -r -e -a 4 

 perfquery -r -e -a 5 

 perfquery -r -e -a 6 

} 

# function to query port counters 

dump_counters() { 

 echo "### da12 (lid 8) port on switch 4" 

 perfquery -e 4 4 

 echo "### 12XDDR link from switch 4 to switch 5" 

 perfquery -e 4 22 

 echo "### 12XDDR link from switch 5 to switch 4" 

 perfquery -e 5 22 

 echo "### 12XDDR link from switch 5 to switch 6" 

 perfquery -e 5 10 

 echo "### 12XDDR link from switch 6 to switch 5" 

 perfquery -e 6 13 

} 

 

echo "MPI I/O over PVFS" 

vmstat 1 & 

i=0 

while [ $i -lt 5 ]; do 

 sleep 30 

 reset_counters 

 dump_counters 

 /usr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \ 

 /IO-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t 256M -b  4G -i 1 -w -o \ 



56 
 

 
 

 pvfs2:/mnt/pvfs2/mpiio_pvfs2 

 dump_counters 

 echo "Run $i ended" 

 i=`expr $i + 1` 

done 

echo "MPI I/O over POSIX" 

i=0 

while [ $i -lt 5 ]; do 

 sleep 30 

 reset_counters 

 dump_counters 

 /usr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \ 

 /IO-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t 256M -b  4G -i 1 -w –o \  

  /mnt/pvfs2/mpiio_posix 

 dump_counters 

 echo "Run $i ended" 

 i=`expr $i + 1` 

done 

kill %1 


	2009
	Measurement of PVFS2 performance on InfiniBand
	Sudhindra Prasad Tirupati Nagaraj
	Recommended Citation


	Microsoft Word - $ASQsupp_F6E34008-1894-11DE-BB8F-7080F0E6BF1D.docx

