
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Enhancing a behavioral interface specification
language with temporal logic features
Faraz Hussain
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Hussain, Faraz, "Enhancing a behavioral interface specification language with temporal logic features" (2009). Graduate Theses and
Dissertations. 10342.
https://lib.dr.iastate.edu/etd/10342

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10342?utm_source=lib.dr.iastate.edu%2Fetd%2F10342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Enhancing a behavioral interface specification language with temporal logic features

by

Faraz Hussain

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Gary T. Leavens, Major Professor

Roger D. Maddux
Samik Basu

Iowa State University

Ames, Iowa

2009

Copyright c© Faraz Hussain, 2009. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

LIST OF LISTINGS . vi

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1 OVERVIEW . 1

1.1 Introduction . 1

1.2 Temporal Logic & Specifications . 2

1.3 Temporal logic extension to JML . 2

1.4 The Problem and Approach Used . 4

1.5 Temporal Specification Examples . 5

1.5.1 File Operations Example . 6

1.5.2 Bank Account example . 6

1.6 About this document . 7

CHAPTER 2 PARSING, AST CONSTRUCTION AND TYPECHECKING 8

2.1 Temporal JML grammar and Temporal constructs . 8

2.2 Parsing . 9

2.3 Description of AST classes . 12

2.4 Testing the AST . 14

2.5 Typechecking . 14

2.6 Typechecking Tests and Errors . 18

2.6.1 A typechecking test failure . 19

iii

CHAPTER 3 CODE GENERATION AND RUNTIME ASSERTION CHECKING 21

3.1 Major Code Generation Ideas . 21

3.2 Generated Code for the Bank Account Example . 24

3.2.1 The Temporal State Machine . 25

3.2.2 Temporal States . 25

3.2.3 Checking Temporal Specifications . 26

3.2.4 Checking trace properties . 27

3.2.5 Temporal State Machine post-final state checking . 28

3.2.6 Sample runs of the BankAccount class . 31

3.3 Revisiting the File Operations Example . 32

CHAPTER 4 DISCUSSION . 37

4.1 Notes on Semantics . 37

4.2 Related Work . 38

CHAPTER 5 CONCLUSION . 40

5.1 Limitations & Future Work . 40

APPENDIX A CODE REFERENCES . 42

APPENDIX B FILE OPERATIONS EXAMPLE . 51

APPENDIX C BANK ACCOUNT EXAMPLE . 56

BIBLIOGRAPHY . 57

iv

LIST OF TABLES

Table 2.1 Trace from JmlImpliesExpression . 11

Table 2.2 Trace from mjPrimaryExpression . 11

Table 2.3 Modified Temporal Specification Grammar . 12

Table 2.4 JML Temporal Types . 15

v

LIST OF FIGURES

Figure 1.1 Pattern Scopes . 3

Figure 1.2 Temporal Pattern Scopes . 3

Figure 1.3 Proposed Temporal Specification Grammar . 4

Figure 3.1 Bank Account Example Temporal State Machine . 26

Figure 3.2 Bank Account Driver-1 Output . 32

Figure 3.3 Bank Account Driver-2 Output . 32

Figure 3.4 File Operations Driver-1 Output . 33

Figure 3.5 File Operations Driver-2 Output . 34

Figure 3.6 File Operations Driver-3 Output . 35

Figure 3.7 File Operations Driver-4 Output . 36

vi

Listings

1.1 File Operations temporal specifications . 6

1.2 Bank Account Example Temporal Specification . 6

2.1 Start of the jmlDeclaration rule . 9

2.2 Handling invariants and constraints in jmlDeclarationrule . 10

2.3 Handling temporal specifications in jmlDeclarationrule . 10

2.4 JExpressionFactory.createBitwiseExpression() . 19

2.5 JmlExpressionFactory.createBitwiseExpression() . 19

3.1 TransType.translate() . 22

3.2 Bank Account Temporal Specification Reproduced . 24

3.3 Runtime Temporal State Machine initialization . 25

3.4 Runtime machine’s temporal checks . 27

3.5 Check all (instance) temporal formulas . 28

3.6 Check (instance) temporal formulas . 29

3.7 Final trace property check . 30

3.8 Temporal Machine Final State check . 30

3.9 Bank account main driver –1 . 31

3.10 Bank account main driver –2 . 32

3.11 File Operations main driver –1 . 33

3.12 File Operations main driver –2 . 33

3.13 File Operations main driver –3 . 34

3.14 File Operations main driver –4 . 35

A.1 jmlPrimary Rule . 42

A.2 jmlSpecQuantifiedExprRest Rule . 44

A.3 jmlTemporalExpression Rule . 46

A.4 Type JmlTemporalAfterExpression . 47

vii

A.5 Runtime Temporal State Machine . 48

B.1 TemporalSpecFileOps.java: Driver-1 . 51

B.2 TemporalSpecFileOps.java: Driver-2 . 52

B.3 TemporalSpecFileOps.java: Driver-3 . 53

B.4 TemporalSpecFileOps.java: Driver-4 . 54

C.1 TemporalSpecBankAC.java . 56

viii

ACKNOWLEDGEMENTS

I would like to thank Prof. Gary Leavens for being my guide and mentor throughout my graduate studies at

the Iowa State University and now at the University of Central Florida. Thanks also to Prof. Roger Maddux and

Prof. Samik Basu for being on my MS Program of Study (POS) committee.

The code snippets included in this thesis report have been inserted using the listings package1 by Carsten

Heinz (maintained by Brooks Moses).

Thanks to Harish B. Narayanappa and Satyadev Nandakumar for help with parsing using ANTLR and dur-

ing the Abstract Syntax Tree building process. Thanks also to the JML lab members Kristina Boysen, Neeraj

Khanolkar, Steve Shaner & Ghaith Haddad for help during different stages of my thesis. Special thanks to Neeraj

Khanolkar for helping me with the presentation during my MS oral defense, done remotely from the University

of Central Florida.

Finally, I would like to thank my family for their patience, support and constant encouragement.

1http://www.ctan.org/tex-archive/macros/latex/contrib/listings/

http://www.ctan.org/tex-archive/macros/latex/contrib/listings/

ix

ABSTRACT

Specification languages help programmers write correct programs and also aid efforts for dynamically check-

ing a software implementation with respect to its desired specifications. Most mainstream specification languages

primarily deal with a program’s functional behavior. However, for certain applications it is more natural and in-

tuitive to be able to express a system’s temporal properties.

This thesis enhances the capabilities of the Java Modeling Language (JML), a behavioral interface speci-

fication language, by incorporating temporal logic constructs. The temporal specification grammar used is a

modification of the JML temporal extension proposed by K. Trentelman and M. Huisman in their paper “Extend-

ing JML Specifications with Temporal Logic”.

I have modified jmlc, the runtime assertion checker for the Java Modeling Language, so that it also generates

runtime assertion checking code to dynamically check a program’s temporal specifications.

1

CHAPTER 1 Overview

This chapter gives an introduction to current mainstream program specification techniques, motivates the

need for introducing constructs for temporal program specification/checking and provides a glimpse into the

approach used to add these constructs into a software specification language.

1.1 Introduction

Design-by-contract techniques [24], popularized by Bertrand Meyer by use in the language Eiffel, are widely

used in the specification and checking of computer programs. Most current program specification techniques,

such as design by contract, are primarily used to describe a system’s functional behavior. However, for many pro-

gramming tasks, there is a natural need to provide a temporal description of the system along with its functional

behavior. For example, consider the specification:

“After a file is opened, it is available for reading, until the file is closed.”

A program to implement this can be written by the setting and unsetting of flags for the expected “event” (viz

the opening of the file). However, its specification can be expressed in a more intuitive manner if temporal

specification constructs are also available in a specification language. This specification is described later in this

chapter and revisited again (§3.3) when discussing the runtime assertion checking of temporal specifications,

accompanied with a somewhat realistic example.

In modern programming techniques, a specific task is performed typically by sending a message to an object

(i.e. by calling a method). In this thesis, this key practice of method invocation forms the basis of our definition

of temporal events. The temporal control points are the calling and termination of method. In addition, we

distinguish between the normal termination (i.e. without throwing an exception) of a method and exceptional

termination of a method. By temporal specification, we refer to the way program properties are expected to hold

or vary delimited by temporal events.

2

The research presented in this thesis is based on the Java Modeling Language (JML) [23, 8, 5, 6], a behavioral

interface specification language developed by Prof. Gary T. Leavens, his colleagues and students, primarily at

the Iowa State University. This thesis presents research toward adding temporal specification capabilities to JML.

1.2 Temporal Logic & Specifications

Temporal logic is used extensively in the area of specification and verification of computer programs, espe-

cially concurrent programs [10], and is increasingly being used even in non-traditional roles such as sequential

program specification, [2]. Temporal logic in computer science has been used traditionally to describe properties

of concurrent systems or programs to prove properties related to issues such as deadlock-avoidance. An example

is the model checker SPIN1 [21], which uses Linear Temporal Logic (LTL) to specify the properties that a system

needs to respect. Another example is the Bandera Specification Language [13, 25] which is used by the Bandera2

project [19, 12] as an input language for temporal specifications. The BSL uses temporal specification patterns

[15] to express properties that the programmer wishes to express.

Temporal specifications of programs handle descriptions of a sequence of method-related events, rather than

the typical functional behavior of a single method, or entire-class invariants, described by traditional program

specifications.

1.3 Temporal logic extension to JML

Kerry Trentelman and Marieke Huisman have proposed a temporal logic extension [26] to JML. The research

presented in this thesis is an effort to provide an implementation of this temporal logic extension of JML, by

adding to the code base of jmlc, the JML compiler.

Patterns and Scopes

The work of Trentelman and Huisman is inspired by the SanTos3 Specification Patterns project [16]. In the

Specification Patterns project, a pattern is defined over one of five scopes: global, before, after, between, and

after-until. Figure 1.1, which is taken from the patterns project website4, depicts these five temporal specification

scopes.

Our implementation of temporal specification constructs is based on a modified semantics of these temporal

pattern scopes (Figure 1.2). Global scope refers to the entire timeline. The After R scope is shown next and refers

1http://spinroot.com/
2http://bandera.projects.cis.ksu.edu/
3http://santos.cis.ksu.edu/
4http://patterns.projects.cis.ksu.edu/documentation/patterns/scopes.shtml

http://www.jmlspecs.org
http://spinroot.com/
http://bandera.projects.cis.ksu.edu/
http://santos.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/documentation/patterns/scopes.shtml

3

Figure 1.1 Property Specification Scopes

to the the part of the timeline after the first occurrence of event R. Then the Before R scope is shown and refers

to the part of the timeline before the first occurrence of event R (Figure 1.2).

The scope described by Between Q and R is equivalent to the temporal fomula after Q unless R; in particular

the scope includes the part of the timeline where Q has occurred, but R has not (yet) occurred. The scope

described by After Q until R describes the part of the timeline between event Q and R, where the event R must

occur (Figure 1.2).

Global

RR

Before R

After R

R R

Q R Q

Between Q & R

Q R Q

After Q until R

Time

Figure 1.2 Temporal Property Specification Scopes

Trentelman and Huisman’s temporal specification constructs also use occurrence specification patterns5 in

order to allow the user to describe temporal behavior. These occurrence specification patterns are: Absence

(\never), Universality (\always), Existence (\eventually) and Bounded Existence (\atmost).

5http://patterns.projects.cis.ksu.edu/documentation/patterns/occurrence.shtml

http://patterns.projects.cis.ksu.edu/documentation/patterns/occurrence.shtml

4

Temporal Specification Grammar

Figure 1.3 Proposed Temporal Specification Grammar

Minor changes have been made to the original grammar (Figure 1.3) proposed by Trentelman and Huisman

[26]. The actual implementation has been done using the modified temporal specification (Table 2.3).

In the rest of this document, a reference to “the grammar” is to the new grammar (Table 2.3). Our version of

the temporal logic extension to JML is henceforth referred to as temporalJML and its runtime assertion checker

is called temporaljmlc.

1.4 The Problem and Approach Used

The problem at hand is to augment the Java Modeling Language with constructs that enable the specification

of temporal properties of a program. The basic approach used is to follow the suggestions by Trentelman and

Huisman [26] by providing an implementation of their temporal logic extension to JML. This involves all the

phases of compiler construction – lexical analysis and parsing of the newly added temporal constructs, building

an appropriate abstract syntax tree while parsing a given temporal specification, typechecking to ensure that its

a well formed and legal specification according to the defined semantics ([26] §5.1) for temporal specifications,

5

and finally, generating runtime assertion checking code which will perform the actual dynamic checking of these

temporal specifications.

The approach used in this research differs from the one used by the JAG tool [18], which translates temporal

specifications written in the language extension in [26] into JML annotations (§4.2). The runtime assertion

checking of temporal specifications basically builds on the methodology described in Yoonsik Cheon’s Ph.D.

thesis: “A Runtime Assertion Checker for the Java Modeling Language” [7].

Another goal of the thesis is to clarify the semantics of the newly added temporal specification constructs

(§4.1), especially those that are not fully described, or are somewhat ambiguous in [26].

The JML compiler, jmlc, is built on top of the Multijava compiler, mjc [11]. This thesis work builds upon the

jmlc compiler, enhancing it with temporal specification capabilities by adding a modified version of the temporal

specification constructs suggested in [26]. The implementation is based on the JML2 compiler codebase.6 To

achieve this, the main steps that had to be followed were:

• Add the suggested temporal logic constructs outlined in the grammar proposed by Trentelman and

Huisman [26] to the file specifying the current JML grammar in the JML2 system located in

/JML2/org/jmlspec/checker/Jml.g. The grammar proposed in [26] is shown in in Figure 1.3 and

its modification used in this implementation is shown in Table 2.3.

• Create classes that represent the different nodes of the abstract syntax tree for specifications written in this

new temporal-specification-augmented grammar.

• Modify the runtime assertion checker so that it also generates code to verify the temporal specifications

written by the programmer/user.

1.5 Temporal Specification Examples

Trentelman and Huisman show an example ([26, §4.1]) in which they use their temporal logic extension of

JML to describe properties of the JavaCardTM transaction mechanism. Lets quickly look at how sample temporal

specifications can be written in our temporal logic extension of JML, temporalJML.

6The source code can be accessed from http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/ under the
tag farazhussain_temporalspecs or directly from:
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_temporalspecs.

http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_temporalspecs

6

1.5.1 File Operations Example

A simple example class providing basic file operations is shown in Listing B.1. The temporal specifications

in the file are reproduced here (Listing 1.1). The intended informal semantics of the three temporal specifications

as as follows.

1. The method writeFile is not enabled (i.e. if it terminates, it terminates by throwing an exception) unless

the method openFile has been invoked.

2. After method openFile has been called and it terminates normally (i.e. without throwing an exception)

the method writeFile is always enabled (i.e. if it terminates, it doesn’t throw an exception) until the

method closeFile is invoked; also closeFile must eventually be invoked.

3. After method closeFile has been called and it terminates normally (i.e. without throwing an exception)

the method writeFile is always not enabled (i.e. it it terminates, it does so by throwing an exception)

unless the method openFile is invoked.

Listing 1.1 File Operations temporal specifications

1 //@ public static temporal (\always(\not_enabled(writeFile)) \unless \call(openFile));

2 //@ public static temporal (\after \normal(openFile); (\always (\enabled (writeFile)) \until

\call (closeFile)));

3 //@ public static temporal (\after \normal(closeFile); (\always (\not_enabled(writeFile))

\unless \call(openFile)));

This example is revisited when explaining runtime assertion checking (§3.3) in temporaljmlc.

1.5.2 Bank Account example

For another example, consider the file in Listing C.1, whose sole temporal specification is reproduced here

(Listing 1.2). The temporal events in the temporal specification are: the normal termination of the method

openAC, the normal termination of the method activateAC and the call to the the method suspendAC.

Listing 1.2 Bank Account Example Temporal Specification

1 //@ public temporal (\after \normal (openAC);

2 (\after \normal (activateAC);

3 (\always (balance>0) | \eventually (swissType)) \unless \call (suspendAC)));

An informal description of the semantics of this temporal specification is as follows: After the invocation of

openAC has terminated successfully, followed by a successful (normal) termination of activateAC, a property

7

must hold unless the method suspendAC is invoked. The property, say P, that must hold is that either balance

must always be positive or swissType must at some point get the value true. To reiterate, the property P has to

hold after openAC (has been called and) has terminated normally, and then activateAC (has been called and)

has terminated normally, until suspendAC has been invoked. In case suspendAC is invoked the property P no

longer has to hold unless activateAC (is called again and) terminates normally.

This example is revisited when explaining runtime assertion checking (§3.2) in temporaljmlc.

1.6 About this document

Chapter 2 includes a discussion of the grammar, parsing & abstract syntax tree construction, and typing rules

and typechecking of temporal specifications.

Chapter 3 describes how runtime assertion checking code for the dynamic checking of temporal specifications

is generated by temporaljmlc.

Chapter 4 contains notes on the semantics of temporalJML and clarifications of certain temporalJML con-

structs. It also discusses scope for future work on this topic and gives pointers to related research in this

area.

Chapter 5 contains the conclusion and a discussion on the limitations of the current implementation and the

scope of future work in the area.

8

CHAPTER 2 Parsing, Abstract Syntax Tree Construction & Typechecking

This chapter discusses the grammar of the temporal extension to JML proposed by Trentelman and Huisman,

issues related to parsing (§2.2) and construction of the abstract syntax tree (§2.3, §2.4) for temporal specification

and finally the typing rules and typechecking (§2.5, §2.6) of temporal formulas.

2.1 Temporal JML grammar and Temporal constructs

The temporal specification grammar extension to JML proposed by Trentelman and Huisman (Figure 1.3)

has been modified (Table 2.3) in order to achieve better integration with the existing JML grammar inside the

jmlc compiler. In particular, we have added a backshlash (“\”) before temporal specification keywords to help

in the lexical analysis of temporal constructs.

The temporal constructs added to the JML grammar are briefly described below:

Temporal Formula This is the top-level temporal specification grammar rule. A temporal formula can be

an: \after formula, \before formula, \between formula, \atmost formula, \unless formula,

\until formula or a temporal trace property.

Trace Property A temporal trace property can be an \always, \eventually or \never trace property. We

further informally distinguish between a basic temporal trace property (one which contains no temporal

conjunction (&) or temporal disjunction (|) operator) and a general temporal trace property (one which

may contain one or more &s and/or |s).

Events The temporal events rule is used to represent a list of temporal events. It evaluates to true if any one of

the temporal events comprising this list occurs.

Event A temporal event is caused by a step in program execution which relates to the invocation or completion

of a method. It maybe one of the following: a method call (\call) , a normal termination of a method

(\normal), an exceptional termination of a method (\exceptional). The temporal event \terminates

is said to have occurred if either the event \normal occurs or the event \exceptional occurs.

9

State Property A temporal state property is either a simple JML property or involves one of the newly added op-

erators \enabled and \not_enabled. We further informally distinguish between a basic temporal state

property (one which contains no temporal conjunction (&) or temporal disjunction (|) operator connecting

two basic state properties both of which contain a \enabled or \not_enabled) and a general temporal

state property (one which may contain one or more &s and/or |s connecting two basic state properties both

of which contain an \enabled or \not_enabled).

2.2 Parsing

The JML compiler, jmlc, uses the ANTLR1 tool for lexical analysis and parsing. The relevant gram-

mar files are /JML2/org/jmlspecs/checker/Jml.g and /MJ/org/multijava/mjc/Mjc.g. The keyword

temporal is introduced to allow temporal property specification.

Listing 2.1 Start of the jmlDeclaration rule

1475 jmlDeclaration [CParseClassContext context,long mods, Token startToken]

1476 {

1477 TokenReference sourceRef = utility.buildTokenReference(startToken);

1478 JmlInvariant inv = null;

1479 JmlPredicate pred = null;

1480 boolean redundant = false;

1481 JmlMethodNameList mnList = null;

1482 JmlStoreRefExpression storeRef = null;

1483 JmlStoreRef[] storeRefList = null;

1484 JmlSpecExpression specExpr = null;

1485 JmlSpecExpression[] specs = null;

1486 JNameExpression fieldName = null;

1487

1488 JmlTemporalFormula jtf = null; //--FH

1489 JExpression jte = null; //--FH

1490 }

1491 :

A temporal specification is similar to a JML invariant or constraint specification. A JML invariant

node is created in the rule called jmlDeclaration (Listing 2.1), using a subrule which is basically of the form

“invariant predicate” (Listing 2.2). Invariants and Constraints in jmlDeclaration are handled using an OR (|)

1http://www.antlr.org

http://www.antlr.org

10

(Listing 2.2). In a similar way, top level temporal specification parsing functionality has been added (Listing 2.3)

in the rule for jmlDeclaration using the temporal disjunction (|) operator (not shown in Listing 2.3).

Listing 2.2 Handling invariants and constraints in jmlDeclarationrule

1491 :

1492 (

1493 ("invariant" | "invariant_redundantly" { redundant = true; })

1494 pred = jmlPredicate[]

1495 {

1496 context.addInvariant(

1497 new JmlInvariant(sourceRef, mods, redundant, pred));

1498 }

1499 |

1500 ("constraint" | "constraint_redundantly" { redundant = true; })

1501 pred = jmlPredicate[]

1502 ("for"

1503 (

1504 "\\everything"

1505 |

1506 mnList = jmlMethodNameList[]

1507)

1508)?

1509 {

1510 context.addConstraint(

1511 new JmlConstraint(sourceRef, mods, redundant, pred,

1512 mnList));

1513 }

It can be seen (Listing 2.3) that the top level rule for handling of temporal specifications is really

jmlTemporalExpression (Listing A.3). This rule depicts the handling of a TemporalUnlessExpression

and a TemporalUntilExpression.

Listing 2.3 Handling temporal specifications in jmlDeclarationrule

1515 ("temporal" | "temporal_redundantly" { redundant = true;})

1516 {

1517 }

1518 jte = jmlTemporalExpression[]

1519 {

1520 context.addTemporalFormula(

11

1521 new JmlTemporalFormula(sourceRef, mods, redundant, jte));

1522 }

To understand how the other temporal specification constructs are handled, it is necessary to start with the

jmlImpliesExpression rule in Jml.g and keep following the rules in the files Jml.g and Mjc.g. The order

in which the relevant rules containing handlers for temporal specifications are reached is shown in Table 2.1.

Table 2.1 Trace from JmlImpliesExpression

jmlImpliesExpression (Jml.g)
jLogicalOrExpression (exists only in Mjc.g)
jLogicalAndExpression
jInclusiveOrExpression
jExclusiveOrExpression
jAndExpression
jEqualityExpression (overridden, so considering the one in Jml.g)
jRelationalExpression (Jml.g)
jShiftExpression (Mjc.g)
jAdditiveExpression (Mjc.g)
jMultiplicativeExpression (Mjc.g)
jUnaryExpression (Mjc.g)
jUnaryExpressionNotPlusMinus (Mjc.g)
jPrimaryExpression (Mjc.g) (overridden, so considering the one in Jml.g)
jPrimaryExpression (Jml.g)

In Jml.g, a jPrimaryExpression can be a mjPrimaryExpression or a jmlPrimary. Now, proceed

from a mjPrimaryExpression (Table 2.2). It is now clear that from the rule for jmlImpliesExpression,

either of the rules for jmlPrimary and jmlSpecQuantifiedExprRest can be reached directly.

Table 2.2 Trace from mjPrimaryExpression

mjPrimaryExpression (Mjc.g)
jParenthesizedExpression (overridden, so considering the one in Jml.g)
jParenthesizedExpressionRest (Jml.g)
jmlSpecQuantifiedExprRest (Jml.g)

jmlSpecQuantifiedExprRest rule handles the \after, \atmost, \before and \between temporal-

expressions. The rule jmlPrimary (Listing A.1) handles the temporal trace properties (viz \always,

\eventually, \never) and the newly introduced JML temporal state properties (viz \enabled and

\not_enabled) as defined in the modified temporal JML grammar (Table 2.3).

12

Table 2.3 Modified Temporal Specification Grammar
〈TempForm〉 ::= (\after 〈Events〉 ; 〈TempForm〉)

| (\before 〈Events〉 ; 〈TraceProp〉)
| 〈TraceProp〉 \until 〈Events〉
| 〈TraceProp〉 \unless 〈Events〉
| (\between 〈Events〉 ; 〈Events〉 〈TraceProp〉)
| (\atmost 〈Nat〉 〈Events〉)
| 〈TraceProp〉

〈TraceProp〉 ::= \always 〈StateProp〉
| \eventually 〈StateProp〉
| \never 〈StateProp〉
| 〈TraceProp〉 & 〈TraceProp〉
| 〈TraceProp〉 | 〈TraceProp〉

〈Events〉 ::= 〈Event〉 | 〈Event〉, 〈Events〉
〈Event〉 ::= \call (〈method〉)

| \normal (〈method〉)
| \exceptional (〈method〉)
| \terminates (〈method〉)

〈StateProp〉 ::= 〈JMLProperty〉
| \enabled (〈method〉)
| \not_enabled (〈method〉)
| 〈StateProp〉 & 〈StateProp〉
| 〈StateProp〉 | 〈StateProp〉
| !〈StateProp〉

The rule for jmlSpecQuantifiedExprRest (Listing A.2) shows the handling of the temporal specification

constructs \after, \before, \atmost, and \between. Of these, \between involves two temporal-event lists,

whereas the others involve one temporal-event list. In each case, the appropriate abstract syntax tree node is

created.

In the case of \after temporal expressions, the temporal-event list is followed by the grammar element

jmlTemporalExpression. This means that the expression which is part of a \after formula can in turn be

another temporal formula such as a \after formula, a \before formula, etc.

2.3 Description of AST classes

The classes used for representing nodes of the abstract syntax tree created while parsing temporal specifica-

tions are in directory /JML2/org/jmlspecs/checker/. A list of these files with a brief description of their

functions follows.

JmlTemporalAfterExpression As per the grammar in Table 2.3, an \after formula contains one temporal

event list and an underlying temporal expression. This underlying expression can be another temporal

formula, for example, an \after temporal formula, a \between formula, an \unless temporal for-

13

mula, or simply a temporal trace property (i.e. \always, \eventually or a \never expression or a

combination of these basic-trace-properties using the operators & and |).

JmlTemporalBeforeExpression As per the grammar in Table 2.3, a \before formula contains one temporal

event list and an underlying temporal trace property (i.e. \always, \eventually or a \never expres-

sion or a combination of these basic-trace-properties using the operators & and |), unlike in the case of

\after temporal formulas, where it can be an arbitrary temporal formula.

JmlTemporalAtMostExpression As per the grammar in Table 2.3, an \atmost formula contains one

temporal-event-list (typically containing only one temporal event), and an integer literal which denotes

the maximum number occurrences of each of the events that’s allowed. (The typechecking phase will

ensure that this integer literal is non-negative).

JmlTemporalBetweenExpression As per the grammar in Table 2.3, a \between formula contains two

temporal-event-lists and an underlying temporal-trace-property.

JmlTemporalUntilExpression As per the grammar in Table 2.3, \until formula contains one temporal-event-

list and an underlying temporal-trace-property.

JmlTemporalUnlessExpression As per the grammar in Table 2.3,\unless temporal-expressions contain one

temporal-event-list and an underlying temporal-trace-property.

JmlTemporalTraceProperty As per the grammar in Table 2.3, a temporal trace property contains one of the

basic-trace-property-expressions (viz \always, \eventually or a \never expression).

Note: A conjunction/disjunction of the above mentioned basic trace properties is formed using the class

JmlBitwiseExpression.

JmlTemporalEvent A JmlTemporalEvent holds the type of the event (viz one of \call, \normal,

\exceptional or \terminates) and an object of type JmlMethodName describing the method

which this temporal-event refers to. A JmlTemporalEvent also contains a data member called

JmlTemporalEvent next which points to the next event in a temporal event list (Events in Table 2.3),

if any, and is null otherwise.

JmlTemporalStateProperty According to the grammar in Table 2.3, a temporal state property can be a simple

JML-property or contain one newly added \enabled or \not_enabled operators which may or may

not be associated using a temporal conjunction/disjunction with simple JML properties. For a note on the

current restricted implementation of this, see §5.1.

14

JmlSpecQuantifiedAugmentedExpression This class has been created to serve as a common su-

perclass of the class JmlSpecQuantifiedExpression and the newly added abstract class

JmlTemporalSequenceExpression.

JmlTemporalFormula This is the class used to represent an entire temporal specification. An AST node of this

type is created by the rule jmlDeclaration.

JmlTemporalExpression This is an abstract class created as a superclass of JmlTemporalUntilExpression

and JmlTemporalUnlessExpression to avoid redundant code.

JmlTemporalSequenceExpression This is an abstract class created as a superclass of

JmlTemporalAfterExpression, JmlTemporalBeforeExpression, JmlTemporalBetweenExpression

and JmlTemporalAtMostExpression to avoid redundant code.

2.4 Testing the abstract syntax tree

The file /JML2/org/jmlspecs/checker/TestJmlTemporalParser.java contains junit test cases to

test the construction of the abstract syntax tree after temporal specifications have been parsed.

To run these AST tests, in the JML2 base directory, which I write as /JML2/, run the following command:

/JML2$: junit org.jmlspecs.checker.TestJmlTemporalParser

To test that the existing JML tests are still working, run the following command:

/JML2$: junit org.jmlspecs.checker.TestJmlParser

2.5 Typechecking

The types added to the existing JML types are shown in Table 2.4. These types are used to typecheck

the temporal specifications annotated with any JML code and also during runtime assertion checking. Files

representing these type are in the /JML2/org/jmlspecs/checker/ directory.

The enforcement of typing rules of a temporal specification AST is done by the methods typecheck and

getType. The type system of temporal specifications is also used during runtime assertion checking phase when

building the temporal state machine.

Typechecking of any AST node essentially follows the grammar for temporal specifications (Table 2.3). The

following is a brief description of typechecking in temporal AST classes and includes the temporal type assigned

to each of the temporal AST nodes, which can be retrieved using their respective getType methods.

15

Table 2.4 JML Temporal Types
JmlStdType.temporalFormula Representing the top-level JML temporal formulas
JmlStdType.temporalTraceProperty Representing both basic and general temporal trace prop-

erties
JmlStdType.temporalStateProperty Representing temporal state properties, but excluding

simple JML properties
JmlStdType.temporalAtMostExpression Representing temporal \atmost formulas
JmlStdType.temporalAfterExpression Representing temporal \after formulas
JmlStdType.temporalBeforeExpression Representing temporal \before formulas
JmlStdType.temporalBetweenExpression Representing temporal \between formulas
JmlStdType.temporalUnlessExpression Representing temporal \unless formulas
JmlStdType.temporalUntilExpression Representing temporal \until formulas

JmlTemporalFormula A JmlTemporalFormula node represents an entire temporal formula specifica-

tion. Its typecheck method calls typecheck on the underlying temporal expression. After type-

checking the underlying temporal expression, it uses the getType method of the underlying tem-

poral expression to check if this expression has one of the types allowed by the grammar (Ta-

ble 2.3); if not, an error is reported. The allowed types for the underlying temporal specifica-

tion are: JmlStdType.temporalTraceProperty, JmlStdType.temporalAfterExpression,

JmlStdType.temporalAtMostExpression, JmlStdType.temporalBeforeExpression,

JmlStdType.temporalBetweenExpression, JmlStdType.temporalUnlessExpression and

JmlStdType.temporalUntilExpression.

In turn, the type of a JmlTemporalFormula node itself is JmlStdType.temporalFormula (Table 2.4),

which is the value returned by its getType method.

JmlTemporalAfterExpression As per the grammar in Table 2.3, an \after formula contains a tempo-

ral event and an underlying temporal formula. A JmlTemporalAfterExpression is a subclass of

JmlTemporalSequenceExpression. Its typecheck method first calls super.typecheck() which

typechecks the temporal event. It then calls typecheck on the underlying temporal expression, which ac-

cording to the grammar (Table 2.3) is a temporal formula. After typechecking the underlying temporal ex-

pression, it calls getType on the underlying temporal expression to check if its of one of the types allowed

by the grammar (Table 2.3); if not an error is reported. The allowed types for the underlying temporal ex-

pression are: JmlStdType.temporalTraceProperty, JmlStdType.temporalAfterExpression,

JmlStdType.temporalAtMostExpression, JmlStdType.temporalBeforeExpression,

16

JmlStdType.temporalBetweenExpression, JmlStdType.temporalUnlessExpression and

JmlStdType.temporalUntilExpression.

The type of a JmlTemporalAfterExpression node itself is JmlStdType.temporalAfterExpression

(Table 2.4), which is the value returned by its getType method.

JmlTemporalAtMostExpression As per the grammar in Table 2.3, an \atmost formula contains a temporal

event. A JmlTemporalAtMostExpression is a subclass of JmlTemporalSequenceExpression. Its

typecheck method calls super.typecheck which typechecks the temporal event. It also tests if the

integer data field representing the maximum number of events is non-negative.

The type of a JmlTemporalAtMostExpression node itself is JmlStdType.temporalAtMostExpression

(Table 2.4), which is the value returned by its getType method.

JmlTemporalBeforeExpression As per the grammar in Table 2.3, a \before formula contains a temporal

event and an underlying temporal trace property. Its typecheck method calls super.typecheck which

typechecks the temporal event. It then calls typecheck on the underlying temporal expression which

is a temporal trace property. After typechecking the underlying temporal expression it calls getType

on the underlying temporal expression to check if is of one of the types allowed by the grammar (Ta-

ble 2.3); if not an error is reported. The allowed type of the the underlying temporal expression is

JmlStdType.temporalTraceProperty.

The type of a JmlTemporalBeforeExpression node itself is JmlStdType.temporalBeforeExpression

(Table 2.4), which is the value returned by its getType method.

JmlTemporalBetweenExpression As per the grammar in Table 2.3, a \between formula contains two tem-

poral events and an underlying temporal expression. A JmlTemporalBetweenExpression is a subclass

of JmlTemporalSequenceExpression. Its typecheck method first calls super.typecheck() which

typechecks one of the temporal events. It then calls typecheck on the second temporal event; and then on

the underlying temporal expression, which according to the grammar (Table 2.3) is a temporal trace prop-

erty. After typechecking the underlying temporal expression, it calls getType on the underlying temporal

expression to check if its of one of the types allowed by the grammar (Table 2.3); if not an error is reported.

The allowed type for the underlying temporal expression is JmlStdType.temporalTraceProperty.

The type of a JmlTemporalBetweenExpression node itself is JmlStdType.temporalBetweenExpression

(Table 2.4), which is the value returned by its getType method.

17

JmlTemporalEvent According to the temporal grammar (Table 2.3) the nonterminal Events refers to a (pos-

sible singleton) Event list. The type JmlTemporalEvent is used to represent this grammar produc-

tion. A JmlTemporalEvent contains an integer that identifies the type of the event (\call, \normal,

\exceptional and \terminates), a descriptor for the method which this event is associated with and

a pointer to the next temporal event in this list, if any. Its typecheck method confirms if the event-type

identifier has a valid value, typechecks the method descriptor and then calls typecheck on the temporal

event node that this node points to, it the pointer is non-null.

The type of a JmlTemporalEvent node itself is CStdType.Boolean which is the value returned by its

getType method.

JmlTemporalExpression This is the superclass of JmlTemporalUntilExpression and

JmlTemporalUnlessExpression. Its typecheck method typechecks the underlying temporal ex-

pression. It then calls getType on the underlying temporal expression to check if it is of one of the types

allowed by the grammar (Table 2.3); if not, an error is reported.

JmlTemporalSequenceExpression This is the superclass of JmlTemporalAfterExpression,

JmlTemporalBeforeExpression, JmlTemporalBetweenExpression and JmlTemporalAtMostExpression.

Its typecheck method typechecks the underlying temporal event for each of its subclasses (the first tem-

poral event, in the case of \between formulas).

JmlTemporalTraceProperty As per the grammar in Table 2.3, a temporal trace property contains one

of the basic temporal trace properties (\always, \eventually or \never) or a combination of ba-

sic trace properties made using the temporal conjunction (&) and/or temporal disjunction (|) operators.

The class JmlTemporalTraceProperty represents a basic temporal trace property. Non-basic, gen-

eral temporal trace properties which use the temporal conjunction/disjunction operators are formed us-

ing JmlBitwiseExpression (and, in case of parenthesization, JParenthesedExpression). A basic

temporal trace property contains an underlying state property and an identifier for the type of trace prop-

erty (\always, \eventually or \never). Its typecheck method typechecks the underlying temporal

expression, which is a temporal state property. It then calls getType on the underlying expression to

check if it is of one of the types allowed by the temporal specification grammar (Table 2.3); if not, an

error is reported. The allowed types for the underlying temporal expression are CStdType.Boolean

(representing simple JML properties) and JmlStdType.temporalStateProperty (representing the

newly added temporal state property operators \enabled and \not_enabled). The type of a

18

JmlTemporalTraceProperty node itself is JmlStdType.temporalTraceProperty (Table 2.4)

which is the type returned by its getType method.

JmlTemporalStateProperty A temporal state property can be either a simple JML property or may con-

tain one of the new temporal state property operators (viz \enabled and \not_enabled). Note that

currently a restricted version of \enabled and \not_enabled operators has been implemented (§5.1).

JmlTemporalUnlessExpression As per the grammar in Table 2.3, an \unless formula contains a temporal

event list and an underlying temporal trace property. A JmlTemporalUnlessExpression is a subclass of

JmlTemporalExpression. Its typecheck calls super.typecheck which typechecks the underlying

temporal expression and also typechecks the associated temporal event list.

The type of a JmlTemporalUnlessExpression node itself is JmlStdType.temporalUnlessExpression

(Table 2.4), which is the value returned by its getType method.

JmlTemporalUntilExpression As per the grammar in Table 2.3, an \unless formula contains a temporal

event list and an underlying temporal trace property. A JmlTemporalUntilExpression is a subclass of

JmlTemporalExpression. Its typecheck calls super.typecheck which typechecks the underlying

temporal expression and also typechecks the associated temporal event list.

The type of a JmlTemporalUntilExpression node itself is JmlStdType.temporalUntilExpression

(Table 2.4), which is the value returned by its getType method.

2.6 Typechecking Tests and Errors

The file /JML2/org/jmlspecs/checker/JmlMessages.msg contains the list of errors that the type-

checker reports when it encounters typing problems in temporal specification.

The directory /JML2/org/jmlspecs/checker/testcase/typecheck/ contains files to test the type-

checking of temporal specifications. Some of the tests cases are such that there is a corresponding .java-expected

file which contains the error message that will be generated by JML2. Others have no such corresponding .java-

expected file and are those test cases that are compiled successfully by the JML2 compiler without any error

message. To run these typechecking tests, run the command following command:

/JML2/org/jmlspecs/checker/testcase/typecheck$: make runtests

19

2.6.1 A typechecking test failure

One typecheck test fails on running the make runtests command in direc-

tory /JML2/org/jmlspecs/checker/testcase/typecheck/. The test is in the file

Primitive_bigint_basic.java. The test has been isolated and can be observed in the file

/JML2/org/jmlspecs/temporalspec/TemporalTestBigintProblem.java.

The source of the error is the specification /*@spec_bigint_math@*/ which quali-

fies the class Primitive_bigint_basic. It occurs because I have added the method

JmlExpressionFactory.createBitwiseExpression (Listing 2.5). This method overrides

JExpressionFactory.createBitwiseExpression (Listing 2.4). It is this overriding which has caused the

problem, not the changes to JmlBitwiseExpression.java.

Listing 2.4 JExpressionFactory.createBitwiseExpression()

1 public /*@non_null@*/ JBitwiseExpression createBitwiseExpression(/*@non_null@*/

TokenReference where,

2 int oper,

3 /*@non_null@*/ JExpression left,

4 /*@non_null@*/ JExpression right){

5 return new JBitwiseExpression(where, oper, left, right);

6 }

The only difference between JmlExpressionFactory.createBitwiseExpression and

JFactory.createBitwiseExpression is that the former creates a JmlBitwiseExpression whereas

the latter creates a JBitwiseExpression.

Listing 2.5 JmlExpressionFactory.createBitwiseExpression()

1 public /*@non_null@*/ JBitwiseExpression createBitwiseExpression(/*@ non_null @*/ Token

op,

2 /*@ non_null @*/ TokenReference where,

3 int oper,

4 /*@ non_null @*/ JExpression left,

5 /*@ non_null @*/ JExpression right) {

6 return new JmlBitwiseExpression(where, oper, left, right);

7 // return (op instanceof CToken)

8 // ? new JmlBitwiseExpression(where, oper, left, right)

9 // : new JBitwiseExpression(where, oper, left, right);

10 }

20

An attempt can be made to remove this problem if it can be ascertained what in the lexer causes a certain

token (for example ’+’ or ’&’) to be of type CToken.

21

CHAPTER 3 Code Generation & Runtime Assertion Checking

This chapter uses the examples mentioned briefly in the introductory chapter (§1.5) to explain general ideas

about the code generated by temporaljmlc and runtime assertion checking ideas for temporal specification in

general.

The runtime assertion checking code in the JML2 project is located inside /JML2/org/jmlspecs/jmlrac/.

This is the directory in which files have been added and existing files modified to runtime assertion checking

capabilities for temporal specifications.

The basic approach I use to generate runtime assertion checking code for temporal specifications is to create

one finite state machine, with accepting and non-accepting states, per temporal specification, when temporal

specifications are parsed. After parsing, code is produced to generate a finite state machine at runtime when the

JML-augmented Java code is compiled using temporaljmlc. The transitions of these finite state machines are the

temporal events (which are specified using temporal event constructs, viz \call, \normal, \exceptional and

\terminates.) For every temporal specification, there is a variable representing each of its basic trace properties

(if it doesn’t contain one of the temporal state properties viz \enabled and \not_enabled). The temporal state

machine causes these variables to be updated as appropriate (only if the machine is in a trace property checking

state). When the program terminates, the values of the variables representing the trace property of each temporal

specification are checked to decide if a trace-property violation error is to be reported. Also, each machine’s final

state is checked to see if its an accepting state; if not, an error is reported. This is used as the checking mechanism

for constructs like an \until temporal formula and \enabled and \not_enabled state properties.

3.1 Major Code Generation Ideas

In /JML2/org/jmlspecs/jmlrac/, the method TransType.translate has been modified to insert code

for the translation of temporal specifications (Listing 3.1).

The various methods called by translate perform (temporal runtime assertion checking) code generation

work like adding the appropriate data members and methods to the target type.

For example, the addTemporalSpecificationObserverUpdateMethod method uses class

22

TemporalUpdateMethodProducer, a visitor subclass of RacAbstractVisitor to add the method

update$temporalspec (the equivalent of a visitor pattern update [17]) to the target class. Similarly,

the visitor TemporalTracePropertyIdentifier is used to add trace property checking/error reporting

methods to the target type.

Listing 3.1 TransType.translate()

327 public void translate()

328 {

329

330 // translate type decl if it is not a model

331 if (hasFlag(typeDecl.modifiers(), ACC_MODEL))

332 return;

333

334 String wrapperClass = null;

335 if (genSpecTestFile) wrapperClass = translateForSpecTestFile();

336

337 markTemporalSpecificationInstanceStaticFormulaExistence(); //FH

338 addTemporalSpecificationListOfInstancesToType(); //FH

339 addTemporalSpecificationEventLists();//FH

340 addTemporalSpecificationRuntimeTemporalMachineVariables(); //FH

341

342

343 //FH: Adds temporal trace property end-scope check methods

344 TemporalTracePropertyIdentifier ttpi = new TemporalTracePropertyIdentifier(

345 typeDecl.temporalFormulas(), this);

346 ttpi.perform();

347

348

349 ArrayList methods = new ArrayList(typeDecl.methods());

350 ArrayList inners = typeDecl.inners();

351 JPhylum[] fieldsAndInits = typeDecl.fieldsAndInits();

352

353 // translate invariants and (history) constraints.

354 translateInvariant();

355 translateConstraint();

356

357 //Translate temporal formulas

358 addTemporalSpecificationObserverUpdateMethod(); //FH

359 createTemporalSpecificationRuntimeMachineInitMethodForStaticFormulas(); //FH

23

360 createTemporalSpecificationRuntimeMachineInitMethodForInstanceFormulas(); //FH

361 translateTemporalFormulaUsingStateMachine(); //FH

362 addTemporalStaticMachineFinalStateCheckMethod(); //FH (24DEC08)

363 addTemporalInstanceMachineFinalStateCheckMethod(); //FH (30JAN09)

364 addTemporalInstanceMachineFinalStateCheckMethodCaller(); //FH (30JAN09)

365

366

367 // translate represents clauses.

368 // WARNING! The translation of represents clauses must precede

369 // that of body which also performs the translation of

370 // model fields if any.

371 // The reason is that if this type declaration contains both

372 // a model field declaration and its represents clause,

373 // the model field access method should be generated from the

374 // represents clause, not from the model field declaration

375 // (see translateRepresents and translateField).

376 translateRepresents(typeDecl.representsDecls());

377

378 // translate body (i.e., inner classes, field, and methods)

379 translateBody(inners, methods, fieldsAndInits);

380

381

382 if (genSpecTestFile) {

383 postTranslationChangesForSpecTestFile(wrapperClass);

384 }

385

386 // do subclass (class or interface) specific finalization,

387 // e.g., generating specification inheritance mechanism,

388 // surrogate class, etc.

389 finalizeTranslation();

390

391 }

The methods createTemporalSpecificationRuntimeMachineInitMethodForInstanceFormulas

and createTemporalSpecificationRuntimeMachineInitMethodForStaticFormulas are

used to generate runtime temporal machine initialization code. They both use the visitor

TemporalStateMachineBuilder to build one temporal state machine per specification. Class

TemporalStateMachineBuilder, along with TemporalStateMachineGenerator do the actual machine

code generation using the classes TemporalState and JMLRuntimeTemporalStateMachine.

24

A detailed understanding of the classes used in code generation requires a lengthy perusal of the code, which

can be obtained from:

http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_

temporalspecs. In the rest of this chapter using the examples from the introductory chapter (§1.5) will

be used to explain code generation.

3.2 Generated Code for the Bank Account Example

Consider again the bank account temporal specification example (§1.5.2) from the introductory chapter. The

specifications are reproduced in Listing 3.2.

Listing 3.2 Bank Account Temporal Specification Reproduced

1 //@ public temporal (\after \normal (openAC);

2 (\after \normal (activateAC);

3 (\always (balance>0) | \eventually (swissType)) \unless \call (suspendAC)));

The non-static temporal events which occur are stored in the ArrayList variable

temporalEventList$instance. The wrapper for each method is used to add elements to this ArrayList.

Consider the method getBalance; in the generated file, it is renamed internal$getBalance and a wrapper

method is generated with the name getBalance following the wrapper method approach used by Cheon [8]. A

try-block contains contains the call to the original method, now renamed as internal$getBalance.

Before the try-block which contains the call to the internal$getBalance method, the call to

checkTemporalFormulas$instances performs temporal specification checking in the pre-state of the ex-

ecution of method internal$getBalance.

Before internal$getBalance is called, the event getBalanceLParenRParenI$temporalspec$called

is deemed to have occurred and is added to temporalEventList$instance. After internal$getBalance

returns, the event getBalanceLParenRParenI$temporalspec$normal is deemed to have occurred

and is added to temporalEventList$instance, if internal$getBalance does not throw an ex-

ception. If internal$getBalance throws a non-runtime assertion checking exception then the event

getBalanceLParenRParenI$temporalspec$exceptional is deemed to have occurred and is added to

temporalEventList$instance. (A non-runtime assertion checking exception is one which is not a subtype

of JmlAssertionError.)

The finally block contains code showing temporal specification checking by invoking the method

checkTemporalFormulas$instances in the post-state of the execution of method internal$getBalance.

http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_temporalspecs
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_temporalspecs

25

3.2.1 The Temporal State Machine

A temporal state machine is created for each temporal specification. In the code generated by the runtime

assertion checker, these temporal machines are represented by the type JMLRuntimeTemporalStateMachine

(Listing A.5). For TemporalSpecBankAC class temporal specification, the runtime temporal state machine is

initialized in method init$instance$temporalspecs$RuntimeTemporalMachines. The method starts

with the following line:

Listing 3.3 Runtime Temporal State Machine initialization

tsm$temporalspec$TF0 = new JMLRuntimeTemporalStateMachine(this, 0);

The current object is passed to the constructor of the runtime temporal state machine. This is done so as to

provide a rudimentary implementation of the Observer Pattern [17], which is required for appropriate calls to

trace-property-update methods. Essentially, the object this, which is of type TemporalSpecBankAC, becomes

an observer of the runtime temporal state machine represented by tsm$temporalspec$TF0.

The file TemporalSpecBankAC.java has only one temporal specification (Listing 3.2) and the correspond-

ing machine is represented by the variable tsm$temporalspec$TF0. The temporal state machine is defined in

the method init$instance$temporalspecs$RuntimeTemporalMachines The method creates four tem-

poral States (numbered 0, 1, 2, 3), defines a start state (State 0), and adds relevant transitions. Figure 3.1 gives a

graphical representation of the automaton generated.

The start state (State0) is shown by an incoming arrow. The accepting states1 (State0, State1,

State2, State3) are marked by a double frame box. The (only) temporal trace property checking state

(State2) is colored blue and also marked by an asterisk (*). The long arrows with the arrowheads touching

some state represent transitions from the state touching the arrow tail to the state touching the arrow head. (Note

that in Figure 3.1, the names of the temporal events causing the transitions have been shortened for convenience.)

3.2.2 Temporal States

The class TemporalState represents a temporal state. A TemporalState contains the following data

members:

• A state number, which uniquely identified this state: state

• A flag indicating if its an accepting state: acceptingState

• A flag indicating if its a trace-property-checking-state: tracePropertyCheckingState
1If, at program termination, the temporal state machine is not in one the accepting states, an exception is generated.

26

activateAC$normal

openAC$normal State1State0

State3 State2*

ac
ti
v
at
eA

C
$
n
o
rm

al

suspendAC$called

Figure 3.1 BankAC Temporal State Machine Automaton

• A string which, for a non-accepting state, holds a value describing the reason why its a non-accepting state.

• Four other data members required for the implementation of \enabled and \not_enabled formulas

(not used in this example).

The method init$instance$temporalspecs$RuntimeTemporalMachines in the generated file

testTemporalSpecsExample.java.gen contains code where temporal states are constructed.

State0 is an accepting, non-temporal-traceproperty checking state.

State1 is an accepting, non-temporal-traceproperty-checking

State2 is an accepting, temporal-traceproperty-checking state.2

State3 is an accepting, non-temporal-traceproperty-checking state.

3.2.3 Checking Temporal Specifications

The method checkTemporalFormulas$instance checks the temporal formula in Listing 3.2. It uses the

temporalEventList$instance to see if there any new events have occurred. If there are, then it considers
2If the specification were changed by replacing \unless by \until then this state would become a non-accepting state and the

reason for non-acceptance would be represented by the following string value: “Temporal Formula TF0 contains a TemporalUntilExpression:
Expecting one of the following temporal events: [terminateACLParenRParenV$temporalspec$called]"

27

them in their order of occurrence and feeds each to the runtime machine’s consume method, and then removes

that event from temporalEventList$instance. This is the mechanism with which the machines keeps itself

up-to-date. After making all the necessary transitions depending on the temporal events that have occurred, the

machine’s performTemporalChecks method is called.

Listing 3.4 Runtime machine’s temporal checks

public void performTemporalChecks() {

if (this.currentState.isTracePropertyCheckingState()) {

//this.setChanged();

//this.notifyObservers();

this.myObserver.update$temporalspec(this, null);

}

}

The method performTemporalChecks (Listing 3.4) tests if the machine is currently in a temporal-trace-

property-checking state. If it is, then the machine’s observer’s update$temporalspec method is called.

3.2.4 Checking trace properties

A given temporal specification formula can have only one trace property. However, this trace property can be

a conjunction/disjunction of multiple basic trace properties (i.e. \always, \eventually, \never). Each basic

temporal trace property needs to be checked when the temporal state machine is in the trace-property-checking

state.

For a given temporal specification formula, there is a variable associated with each basic trace property.

Here, the variables are tpID$TF0$TP1$Ty145 and tpID$TF0$TP2$Ty146.

The observer’s update method, update$temporalspec, in turn calls the appropriate trace property update

methods for each basic trace property for the temporal specification whose representative machine invoked this

oberver update method.

The trace property in the temporal specification in Listing 3.2 is a disjunction of two

the two basic trace properties \always(balance > 0) and \eventually(swissType).

The observer’s temporalspec$update method calls update method for updating the sta-

tus of both basic trace properties updateAlwaysTP$instance$tpID$TF0$TP1$Ty145 and

updateEventuallyTP$instance$tpID$TF0$TP2$Ty146 are called respectively).

The method updateAlwaysTP$instance$tpID$TF0$TP1$Ty145 checks the value of balance>0 and

appropriately updates the corresponding basic trace property variable tpID$TF0$TP1$Ty145. The method

28

updateEventuallyTP$instance$tpID$TF0$TP2$Ty146 checks the value of swissType and appropriately

updates the corresponding trace property variable tpID$TF0$TP2$Ty146.

Consider again the always-trace-property update method, updateAlwaysTP$instance$tpID$TF0$TP1$Ty145.

It works by checking the value of and appropriately setting the value of the variable tpID$TF0$TP1$Ty145.

While checking an \always temporal trace property, if the underlying temporal-state-property does not hold,

then that trace property is false.

Accordingly, in this case the always-temporal-trace property variable tpID$TF0$TP1$Ty145 is permanently

set to false. On the other hand, if the underlying temporal-state-property does hold, then the temporal trace

property variable tpID$TF0$TP1$Ty145 is set to true.

The method updateEventuallyTP$instance$tpID$TF0$TP2$Ty146 checks the value of swissType

and appropriately updates the corresponding basic trace property variable tpID$TF0$TP2$Ty146. Ini-

tially, this basic eventually trace property’s scope has not started and hence the inital value of the vari-

able tpID$TF0$TP2$Ty146 is true. On the first call to the eventually-trace-property update method,

updateEventuallyTP$instance$tpID$TF0$TP2$Ty146, the value of that variable is set to false because

the underlying state property is not known ever have been true up to this point since it is yet to be checked. In-

deed, then the value of the underlying state property, swissType is checked. If it is true, then the trace-property-

variable tpID$TF0$TP2$Ty146 is permanently set to true. If not, the value of tpID$TF0$TP2$Ty146 remains

false.

3.2.5 Temporal State Machine post-final state checking

In the generated file TemporalSpecBankAC.java.gen, the original main method has been re-

named internal$main and a new wrapper method has been created with the name main. This

method is similar to the generated wrapper method getX in the addition of temporal-events

(mainLParenArrLjavaSlashlangSlashStringRParenV$temporalspec$called,

mainLParenArrLjavaSlashlangSlashStringRParenV$temporalspec$normal,

mainLParenArrLjavaSlashlangSlashStringRParenV$temporalspec$exceptional) to the static

temporal event list temporalEventList$static and the checking of temporal specifications in the pre-state

and post-state by calling checkTemporalFormula$TF0$instances). Note that since this is a static method,

the static and not instance temporal event list is modified. Also, the temporal formula checking method which is

called is checkTemporalFormulas$instances (Listing 3.5), which itself is static.

Listing 3.5 Check all (instance) temporal formulas

29

public static void checkTemporalFormulas$instances(java.lang.String rac$msg) {

for (int i = 0; i < listOfInstances$temporalspec.size(); i++){

TemporalSpecBankAC anObject = (TemporalSpecBankAC) listOfInstances$temporalspec.get(i);

anObject.checkTemporalFormulas$instance(rac$msg);

}

}

checkTemporalFormulas$instances in turn calls checkTemporalFormulas$instance (Listing 3.6)

on each of the TemporalSpecBankAC objects in existence (which are inserted by the constructor wrapper into

variable listOfInstances$temporalspec).

Listing 3.6 Check (instance) temporal formulas

public void checkTemporalFormulas$instance(java.lang.String rac$msg) {

String anEvent = "";

while (temporalEventList$instance.size() > 0) {

anEvent = (String) temporalEventList$instance.get(0);

tsm$temporalspec$TF0.consume(anEvent);

tsm$temporalspec$TF0.performTemporalChecks();

temporalEventList$instance.remove(0);

}

}

However, the wrapper method main differs from the wrappers for all other methods in what happens after

the post-state call to checkTemporalFormulas$instances.

At this point it is clear that the original main has now completed execution, either with or with-

out throwing an exception. Depending on this, the latest addition to temporalEventList$static

is either mainLParenArrLjavaSlashlangSlashStringRParenV$temporalspec$normal or

mainLParenArrLjavaSlashlangSlashStringRParenV$temporalspec$exceptional.

Method main now calls checkTraceProperties$instances to check the final status of the temporal

trace properties for this temporal specification.

Recall that each call to checkTemporalFormulas$instance was used to appropri-

ately update the variables representing the basic trace properties, by the mechanism of

the runtime temporal state machine (which calls the observer’s update$temporalspec

method if its in a trace-property-updating state; update$temporalspec in turn calls the

trace property update methods, updateAlwaysTP$instance$tpID$TF0$TP1$Ty145() and

updateEventuallyTP$instance$tpID$TF0$TP2$Ty146(). These trace property update method keep

30

the value of the basic trace property variables, tpID$TF0$TP1$Ty145 and tpID$TF0$TP2$Ty146, up-to-

date).

The method checkTraceProperties$instance is reproduced in Listing 3.7. Note from the original

temporal specification (Listing 3.2) that the trace property is actually a disjunction of the basic traceproper-

ties \always (balance > 0) and and \eventually (swissType). For this reason, the boolean values of

the variables representing these two basic temporal trace properties are combined with a disjunction (|). If

either of the variables is true (i.e. either of the basic trace properties is true), then the temporal specifi-

cation is respected and no exception is thrown. Otherwise, the temporal specification did not hold, and a

TemporalSpecificationException is thrown.

Listing 3.7 Final trace property check

public void checkTraceProperties$instance(java.lang.String rac$msg) {

if (!((tpID$TF0$TP1$Ty145) || (tpID$TF0$TP2$Ty146))) {

throw new JMLTemporalSpecificationError("Temporal Trace Property at location <File

\"TemporalSpecBankAC.java\", line 7, character 25> violated",

"TemporalSpecBankAC", " checkTraceProperties$instance" , new

java.util.HashSet());

}

}

Furthermore, main calls the method checkTemporalMachineFinalState$instances, which in turn

calls checkTemporalMachineFinalState$instance (Listing 3.8) for each object that is created (and hence

is in listOfInstances$temporalspec).

Listing 3.8 Temporal Machine Final State check

public void checkTemporalMachineFinalState$instance(java.lang.String rac$msg) {

//--------Code for machine for instance temporal formula 0-----------

if (!tsm$temporalspec$TF0.inFinalState()) {

String reasonForNonAcceptingState =

tsm$temporalspec$TF0.getReasonForCurrentNonAcceptingState();

throw new JMLTemporalSpecificationError("Temporal Specification at location <File

\"TemporalSpecBankAC.java\", line 7, character 25> violated: " +

reasonForNonAcceptingState, "TemporalSpecBankAC", "

checkTemporalMachineFinalState$instance" , new java.util.HashSet());

}

//--------End of code for machine for instance temporal formula 0-----------

}

31

The method checkTemporalMachineFinalState$instance checks to ensure if the runtime temporal

state machine’s final state is an accepting state. If not, then it prints why final state is not an accepting state. In

this example, all states are accepting states, so the temporal state machine final state check will always succeed

and this (indirect) call to checkTemporalMachineFinalState$instancewill not report any errors regarding

a non-accepting state.

Recall that when a TemporalState object is created, a flag inside it is set which indicates if its an accepting

state or not; and if its a non-accepting state, a String data member inside the object hold the “reason” for it being

a non-accepting state.

Minor modification and an (even more) contrived example

To explain the utility of the temporal machine, final state checking, consider the following case.

If we modify part of the specification, replacing the \unless by an \until, to arrive at a more

contrived example, the behavior differs as explained next. In this case, the (indirect) call to

checkTemporalMachineFinalState$instance will ensure that the semantics of the \until formula is re-

spected. The semantics of the expression “someTraceProperty \until (\call aTemporalEvent)” is that

the trace property should hold until the temporal event \call aTemporalEvent occurs and that the temporal

event \call aTemporalEvent must occur.

3.2.6 Sample runs of the BankAccount class

Consider the main driver in Listing 3.9 for the bank account class (Listing C.1).

Listing 3.9 Bank account main driver –1

1 public static void main(String[] args) {

2 TemporalSpecBankAC ac1 = new TemporalSpecBankAC();

3 ac1.openAC();

4 ac1.setBalance(-100);

5 ac1.setBalance(200);

6 ac1.activateAC();

7 ac1.setBalance(-300); //positive or negative

8 //ac1.setSwissType(true);

9 ac1.suspendAC();

10 }

32

The output produced by temporaljmlc is shown in Figure 3.2. It shows that the trace property for the

temporal specification was violated. As can be seen from the main driver (Listing 3.9), this occurred since the

balance was negative even after the account was activated and the bank was never declared to be a swissType

account.

$ jmlrac2 TemporalSpecBankAC

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLTemporalSpecificationError:
Temporal Trace Property at location <File "TemporalSpecBankAC.java", line 7, character 24>
violated:

at TemporalSpecBankAC.checkTraceProperties$instance(TemporalSpecBankAC.java:116)
at TemporalSpecBankAC.checkTraceProperties$instances(TemporalSpecBankAC.java:126)
at TemporalSpecBankAC.main(TemporalSpecBankAC.java:1443)

Figure 3.2 Bank Account Driver-1 Output

Now consider the main driver in Listing 3.10 for the bank account class (Listing C.1).

Listing 3.10 Bank account main driver –2

1 public static void main(String[] args) {

2 TemporalSpecBankAC ac1 = new TemporalSpecBankAC();

3 ac1.openAC();

4 ac1.setBalance(-100);

5 ac1.setBalance(200);

6 ac1.activateAC();

7 ac1.setBalance(-300); //positive or negative

8 ac1.setSwissType(true);

9 ac1.suspendAC();

10 }

No output (in particular, no temporal specification violation exception) is produced by temporaljmlc as

shown in Figure 3.3. This behavior is expected because the trace property is not violated anymore since the flag

swissType is set to true by the driver (Listing 3.10).

faraz@hussain-machine:~/Software/JML2/org/jmlspecs/temporalspec/temporalfiles$jmlrac2 TemporalSpecBankAC

faraz@hussain-machine:~/Software/JML2/org/jmlspecs/temporalspec/temporalfiles$

Figure 3.3 Bank Account Driver-2 Output

3.3 Revisiting the File Operations Example

The file operations example’s code is listed in Listing B.1, Listing B.2, Listing B.3 and Listing B.4. Now

lets run some sample tests using these to see how the temporal specification runtime assertion checker behaves.

33

Which version of the class TemporalSpecFileOps from the above listings is being used will be specified along

with an explanation of the temporaljmlc output.

Consider the main driver as in Listing 3.11.

Listing 3.11 File Operations main driver –1

52 public static void main(String[] args) {

53 String filename = "file1.txt";

54

55 try {

56 File f = new File(filename);

57 openFile(f);

58 writeFile(f);

59 closeFile(f);

60 writeFile(f);

61 } catch (Exception e) {

62 System.out.println(e);

63 }

64

65 }

On running temporaljmlc on the main in Listing 3.11, using the class TemporalSpecFileOps version in

Listing B.1, the output produced is shown in Figure 3.4. This output is to be expected because writeFile

throws an exception if its not preceded by openFile. In fact, the third temporal specification(TS2) requires that

this property hold.

$ jmlrac2 TemporalSpecFileOps

java.lang.Exception: Cannot write to file.

Figure 3.4 File Operations Driver-1 Output

On running temporaljmlc on the main in Listing 3.12, using the class TemporalSpecFileOps version in

Listing B.2, the output produced is shown in Figure 3.5. Note that in the main for Driver2, writeFile is

invoked without first calling openFile. This should lead to an exception. However, note that (Listing B.2,

line 33) the program now doesn’t respect the intended specification because the exception throwing has been

excluded.

Listing 3.12 File Operations main driver –2

52 public static void main(String[] args) {

53 String filename = "file1.txt";

34

54

55 try {

56 File f = new File(filename);

57 //openFile(f);

58 writeFile(f);

59 closeFile(f);

60 //writeFile(f);

61 } catch (Exception e) {

62 System.out.println(e);

63 }

64

65 }

The output produced (Figure 3.5) shows that temporaljmlc gave a temporal specifica-

tion violation exception. It also points to the the temporal specification which was vio-

lated (TS0). In addition, its diagnostic message also indicates which bad event occurred –

writeFileLParenLjavaSlashioSlashFileRParenV$temporalspec$normal (i.e. the normal termina-

tion of method writeFile). According to the temporal specification, if writeFile is called without openFile

having been called before, an exception should be thrown by the program (\not_enabled writeFile). How-

ever, since this exception was not thrown (a bad event) due to the comment on line 33, a temporal specification

exception was thrown (Figure 3.5).

$ jmlrac2 TemporalSpecFileOps

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLTemporalSpecificationError:
Temporal Specification at location <File "TemporalSpecFileOps.java", line 9, character 31>
violated:
Bad Events: [TemporalSpecFileOps.writeFile(java.io.File)
terminates without throwing an exception]:
at TemporalSpecFileOps.checkTemporalFormulas$static(TemporalSpecFileOps.java:239)
at TemporalSpecFileOps.writeFile(TemporalSpecFileOps.java:746)
at TemporalSpecFileOps.internal$main(TemporalSpecFileOps.java:48)
at TemporalSpecFileOps.main(TemporalSpecFileOps.java:1038)

Figure 3.5 File Operations Driver-2 Output

Now consider the third driver in this file operations example (Listing 3.13), which uses the class

TemporalSpecFileOps version in Listing B.3. Its clear that the main driver here respects the intended tem-

poral specifications. However, note that (Listing B.3) openFile now does not set openFlag as it should. This

causes writeFile to throw an exception even though the file has been opened.

Listing 3.13 File Operations main driver –3

52 public static void main(String[] args) {

53 String filename = "file1.txt";

35

54

55 try {

56 File f = new File(filename);

57 openFile(f);

58 writeFile(f);

59 closeFile(f);

60 //writeFile(f);

61 } catch (Exception e) {

62 System.out.println(e);

63 }

64

65 }

The temporaljmlc output on running this is shown in Figure 3.6. temporaljmlc complains that a temporal

specification (TS1) was violated because writeFile terminated by throwing an exception even though TS1

says that after a successful opening of the file (\normal (openFile)), writeFile must not terminate with an

exception (\enabled (writeFile)) as long as closeFile is not invoked.

$ jmlrac2 TemporalSpecFileOps

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLTemporalSpecificationError:
Temporal Specification at location <File "TemporalSpecFileOps.java", line 12, character 32>
violated:
Bad Events: [TemporalSpecFileOps.writeFile(java.io.File) terminates by throwing an exception]:
at TemporalSpecFileOps.checkTemporalFormulas$static(TemporalSpecFileOps.java:245)
at TemporalSpecFileOps.writeFile(TemporalSpecFileOps.java:747)
at TemporalSpecFileOps.internal$main(TemporalSpecFileOps.java:49)
at TemporalSpecFileOps.main(TemporalSpecFileOps.java:1039)

Figure 3.6 File Operations Driver-3 Output

Now consider the fourth driver in this file operations example (Listing 3.14), which uses the class

TemporalSpecFileOps version in Listing B.4. Its clear that the main driver here does not respect the intended

specifications because writeFile is invoked even after closeFile has terminated and there is no intervening

invocation of openFile. According to the program specifications, this should throw an exception.

Listing 3.14 File Operations main driver –4

52 public static void main(String[] args) {

53 String filename = "file1.txt";

54

55 try {

56 File f = new File(filename);

57 openFile(f);

58 writeFile(f);

36

59 closeFile(f);

60 writeFile(f);

61 } catch (Exception e) {

62 System.out.println(e);

63 }

64

65 }

The temporaljmlc output on running this is shown in Figure 3.7. According to the message tem-

poraljmlc complains that the third temporal specification (TS2) was violated, because a bad event, viz

writeFileLParenLjavaSlashioSlashFileRParenV$temporalspec$normal (i.e. the normal termina-

tion of writeFile) occured. Clearly, an exception was expected, but because of the erroneous implementation

of closeFile (where the unsetting of openFlag was excluded), the exception was not thrown. Thus, a temporal

specification (TS2) was violated causing temporaljmlc to throw an exception.

$ jmlrac2 TemporalSpecFileOps

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLTemporalSpecificationError:
Temporal Specification at location <File "TemporalSpecFileOps.java", line 15, character 31>
violated:
Bad Events: [TemporalSpecFileOps.writeFile(java.io.File)
terminates without throwing an exception]:
at TemporalSpecFileOps.checkTemporalFormulas$static(TemporalSpecFileOps.java:251)
at TemporalSpecFileOps.writeFile(TemporalSpecFileOps.java:748)
at TemporalSpecFileOps.internal$main(TemporalSpecFileOps.java:51)
at TemporalSpecFileOps.main(TemporalSpecFileOps.java:1040)

Figure 3.7 File Operations Driver-4 Output

The above examples have shown, using modifications to the main driver and by introducing errors in the

implementation of the methods of the class (like openFile and closeFile), how the temporal runtime asser-

tion checker temporaljmlc reports implementation problems dynamically if they do not respect the temporal

specification.

37

CHAPTER 4 Discussion

This chapter contains a general discussion of certain issues regarding the semantics of the temporal logic

extension [26] and also related notes on the semantics of the temporal runtime assertion checker, temporaljmlc,

that I have implemented (§4.1). Later in the chapter, I also discuss related work in the area and how my work

differs from existing efforts on temporal specification (§4.2).

4.1 Notes on Semantics

Trentelman and Huisman give a state-based semantics for their temporal logic extension of JML ([26] §5.1).

Here are some general notes about the subrules of a temporal formula.

- A \before formula specification is equivalent to an \always-\until specification. Note that a

\before formula is fundamentally different from a \after formula in that it cannot contain another

top-level temporal formula, but only a temporal trace property.

- An \until formula is a realization of the temporal logic strong until operator and is used to specify that

one of the the following temporal events must occur.

- An \unless formula is a realization of the temporal logic weak until operator and is used to specify that

the all of the following temporal events may never occur, in which case the \unless formula holds if the

underlying trace property holds.

Below are a couple of clarifications regarding the semantics and the behavior of temporaljmlc , my implemen-

tation of the temporal logic extension proposed in [26].

Attempted specification on an internal state

Consider the following specification:

(\after \call(method1); (\before \normal(method1); \always(P)));

This seemingly innocuous temporal specification hides a subtle semantics issue. Between the two tem-

poral events described in this specification, there is no state in which temporal formula specifications can be

38

checked, since they are checked using wrapper methods, just before a \call event and just after a \normal or

\exceptional event. Therefore, this specification essentially is an attempt to describe the program state in an

internal state, which cannot be done because the runtime assertion checking is done only at the method control

points (i.e. the invocation and termination of methods). In this case, the only temporal formula check happens

in the wrapper method right when method1 is called, so the success of failure of this temporal formula depends

on the whether property P holds right at the point of the invocation of method1. temporaljmlc has the correct

semantics in this case by performing the temporal formula check only at that point.

The semantics of \atmost formulas

According to the grammar in [26] (Figure 1.3), the \atmost formulas describe the number of time an event

can happen using a natural number. It is to be noted that the natural numbers include zero, therefore an \atmost

formula can be used to prohibit the occurrence of a temporal event (or a list of such events).

4.2 Related Work

The research work here is primarily an effort to provide an implementation for the temporal logic extension

to JML proposed by Kerry Trentelman and Marieke Huisman ([26]). They also propose translating a subset (viz

the formulas which express safety properties) of the new constructs of this temporal extension back into standard

JML expressions[26, §5.2]. On the other hand, Groslambert et al [4] propose a method for the verification of

liveness properties in this temporal extension of JML. I have implemented their JML temporal extension, with

some modifications, on top of the jmlc runtime assertion checker using the JML2 compiler codebase.

JAG [18] is a JML Annotation Generator that translates formulas expressed in the extension described in [26]

into JML annotations. This differs from my approach (which is based on the temporal logic extension proposed

in [26]) because I translate the Java code annotated with temporal (and normal JML) specifications into Java,

whereas JAG translates temporal formula specifications back into JML.

Cheon and Perumandla propose an extension to the Java Modeling Language that allows the specification

of sequences of method calls (protocols) [9]. Their basic approach is to use regular-expression like syntax (a

call sequence clause) to define the permitted sequences of method calls. Ying Jin has suggested the use of

context free grammars (CFG) to represent the possible method call sequences of a Java program, thus allowing

static verification of properties by by inserting protocol checking the CFG implementation [22]. The approach

suggested by the above authors helps primarily in specifying protocol properties of Java types. This differs

in essence from my work because their approach provides (and demands) separation of temporal properties

(protocols) from functional behavior whereas my approach (which is based on the temporal logic extension to

39

JML proposed by Trentelman and Huisman [26]) allows integration of the two using Bandera-style patterns to

describe temporal behavior and trace properties to specify functional behavior. In Aspect Oriented Programming,

specifying history constraints with tracematches ([1]) also uses regular expression type techniques to build state

automata, like Cheon and Perumendla’s method call sequences ([9]).

Temporal Rover [14] is a verification tool that allows specifications written in an extension of Linear Tempo-

ral Logic (LTL) and Metric Temporal Logic (MTL) to be annotated to code written in C, C++, Java, Verilog and

VHDL. In this sense, their approach seems similar to the one used by Trentelman and Huisman [26] (on which

my research is based), but Temporal Rover is proprietary software and not available for free. This tool, developed

by Time-Rover Software1 generates code from the written specifications which is linked to the application that

its part of. Morover, Temporal Rover does not integrate with JML.

Jass (Java with assertions) [3] is an extension to Java which allows specifications to be annotated with Java

code. Jass translates this annotated Java code into pure Java and checks compliance with the specifications

dynamically. Jass supports specification of trace assertions, the ordering of method calls using design ideas from

CSP [20], unlike Trentelman and Huisman [26] whose approach is based on Bandera type specification patterns

[15, 16] and which I also have adopted for the research presented here.

The Bandera Specification Language is a “source-level, model-checker independent language for expressing

temporal properties of Java program actions and data [13]. It attempts to aid temporal specification by avoiding

the overly formal traditional ways of expressing such specifications like Computational Tree Logic (CTL) and

Linear Temporal Logic (LTL). It is different from our approach (and from any of the others described in this

section), in that its based on model checking, whereas we follow primarily a design by contract approach [24].

1http://www.time-rover.com/

http://www.time-rover.com/

40

CHAPTER 5 Conclusion

This chapter summarizes my contribution to the field of specification and verification of programs, outlines

the limitations of my implementation and discusses scope for future work in the area (§5.1).

Our contribution is the addition of temporal specification capability using Bandera-style patterns to the Java

Modeling Language, temporalJML, and an implementation of temporalJML by integrating it with the JML

toolset. This augmented JML tool (built on top of the JML runtime assertion checker, jmlc) is called tempo-

raljmlc.

Unlike traditional program specification constructs temporalJML allows specifications using multiple pro-

gram control points in a single specification. Also, our implementation differs from certain other attempts at

the temporal specification of programs, like method call sequences (§4.2), because temporalJML allows the

integration of temporal and functional specifications.

temporalJML is based on the temporal logic extension of JML sugggested by Trentelman and Huisman

([26]). Another contribution of thesis is the clarification of certain issues related to the semantics (§4.1) of the

temporal logic extension in ([26]).

5.1 Limitations & Future Work

One key obstacle faced during this implementation process was the lack of good documentation for the jmlc,

the JML runtime assertion checker. In order to aid the implementation of further extensions to JML, it would be

helpful to put effort into creating a javadocs-style API for jmlc.

A typechecking test failure caused due to the the temporal logic specification’s use of JML’s bitwise operators

(& and |) is explained earlier (§2.6.1).

The software currently does not handle temporal specifications written in Interfaces. Also, there is right now

no support for inheritance of temporal specifications. Future work may involve introducing constructs to allow

protocol specification (§4.2).

For now the newly added temporal state properties, (viz \enabled and \not_enabled), by default assume

that the state property is part of an \always trace property and the mixing of the temporal state operators

41

\enabled and \not_enabled is currently disallowed. Also, the negation operator (!) for temporal state

properties has not been implemented yet.

I also plan to make the technique for checking simple Temporal State Properties (i.e. those involving normal

JML properties), similar to the technique currently used for implementing the newly added temporal state prop-

erties \enabled and \not_enabled. Therefore, the simple temporal state properties will also be implemented

using variables encoded inside the JMLRuntimeTemporalMachine instead of having them as data members in the

translated target class.

Finally, there should also be an attempt for any future coding effort to minimize changes to the existing files

in the jmlc runtime assertion checker.

42

APPENDIX A Code References

Listing A.1 jmlPrimary Rule
,

3098 jmlPrimary []

3099 returns [JExpression self = null]

3100 {

3101 TokenReference sourceRef = utility.buildTokenReference(LT(1));

3102 JmlSpecExpression specExpression;

3103 JExpression expression;

3104 JmlStoreRef[] storeRefList;

3105 JmlMethodNameList names = null;

3106 JmlSpecExpression[] specExpressionList;

3107 CType type = null;

3108 JmlStoreRefExpression storeRefExpression = null;

3109

3110

3111

3112 int aen = -1; //for always eventually never //--FH

3113 JmlSpecExpression jse = null; //--FH

3114 JExpression jmlp = null; //--FH

3115

3116 JmlMethodName mn = null; //--FH

3117 boolean enabled = false; //--FH

3118

3119 }

3120 :

3121 "\\result" { self = new JmlResultExpression(sourceRef); }

3122 |

3123 "\\old" LPAREN

3124 specExpression = jmlSpecExpression[]

3125 (COMMA label:IDENT)?

3126 RPAREN

3127 { self = new JmlOldExpression(sourceRef,

3128 specExpression,

3129 (label!=null? label.getText(): null));

3130 }

3131 |

3132 "\\pre" LPAREN specExpression = jmlSpecExpression[] RPAREN

3133 { self = new JmlPreExpression(sourceRef, specExpression); }

3134 |

3135 "\\not_modified" LPAREN storeRefList = jmlStoreRefList[] RPAREN

3136 { self = new JmlNotModifiedExpression(sourceRef, storeRefList); }

3137 |

3138 "\\only_accessed" LPAREN storeRefList = jmlStoreRefList[] RPAREN

3139 { self = new JmlOnlyAccessedExpression(sourceRef, storeRefList); }

3140 |

3141 "\\not_assigned" LPAREN storeRefList = jmlStoreRefList[] RPAREN

3142 { self = new JmlNotAssignedExpression(sourceRef, storeRefList); }

3143 |

3144

43

3145 "\\only_called" LPAREN names = jmlMethodNameList [] RPAREN

3146 { self = new JmlOnlyCalledExpression(sourceRef, names); }

3147 |

3148 "\\only_captured" LPAREN storeRefList = jmlStoreRefList[] RPAREN

3149 { self = new JmlOnlyCapturedExpression(sourceRef, storeRefList); }

3150 |

3151 "\\only_assigned" LPAREN storeRefList = jmlStoreRefList[] RPAREN

3152 { self = new JmlOnlyAssignedExpression(sourceRef, storeRefList); }

3153 |

3154 "\\fresh" LPAREN specExpressionList = jmlSpecExpressionList[] RPAREN

3155 { self = new JmlFreshExpression(sourceRef, specExpressionList); }

3156 |

3157 "\\working_space" LPAREN expression = jExpression[] RPAREN

3158 { self = new JmlWorkingSpaceExpression(sourceRef, expression); }

3159 |

3160 "\\space" LPAREN specExpression = jmlSpecExpression[] RPAREN

3161 { self = new JmlSpaceExpression(sourceRef, specExpression); }

3162 |

3163 "\\duration" LPAREN expression = jExpression[] RPAREN

3164 { self = new JmlDurationExpression(sourceRef, expression); }

3165 |

3166 "\\reach" LPAREN

3167 specExpression = jmlSpecExpression[]

3168 (COMMA type = jClassTypeSpec[null, null] // WMD TODO

3169 (COMMA storeRefExpression = jmlStoreRefExpression[])?)?

3170 RPAREN

3171 { self = new JmlReachExpression(sourceRef, specExpression, type,

3172 storeRefExpression);

3173 /*

3174 * The following isn’t used, but is kept as an example

3175 * of how to deprecate something, if you want to make

3176 * something deprecated. It can be deleted when you have

3177 * something you really want to deprecate.

3178 *

3179 * utility.reportTrouble(

3180 * new CWarning(sourceRef,

3181 * JmlMessages.DEPRECATED_REACH));

3182 */

3183 }

3184 |

3185 infDesc:INFORMAL_DESC

3186 { self = new JmlInformalExpression(sourceRef, infDesc.getText()); }

3187 |

3188 "\\nonnullelements" LPAREN specExpression = jmlSpecExpression[] RPAREN

3189 { self = new JmlNonNullElementsExpression(sourceRef,

3190 specExpression); }

3191 |

3192 "\\typeof" LPAREN specExpression = jmlSpecExpression[] RPAREN

3193 { self = new JmlTypeOfExpression(sourceRef, specExpression); }

3194 |

3195 "\\elemtype" LPAREN specExpression = jmlSpecExpression[] RPAREN

3196 { self = new JmlElemTypeExpression(sourceRef, specExpression); }

3197 |

3198 "\\type" LPAREN type = jTypeSpec[] RPAREN

3199 { self = new JmlTypeExpression(sourceRef, type); }

3200 |

3201 "\\lockset" { self = new JmlLockSetExpression(sourceRef); }

3202 |

3203 "\\max" LPAREN specExpression=jmlSpecExpression[] RPAREN

3204 { self = new JmlMaxExpression(sourceRef,specExpression); }

3205 |

3206 "\\is_initialized" LPAREN type = jClassTypeSpec[null, null] RPAREN

3207 // WMD TODO

3208 { self = new JmlIsInitializedExpression(sourceRef, type); }

44

3209 |

3210 "\\invariant_for" LPAREN specExpression = jmlSpecExpression[] RPAREN

3211 { self = new JmlInvariantForExpression(sourceRef, specExpression); }

3212 |

3213 self = jmlWarnExpression []

3214 |

3215 self = jmlMathModeExpression []

3216 |

3217 // FH--The following line called jmlStatePropery[] which is also now in jmlPrimary[]

3218 //FH--from jmlTraceProperty[]

3219 (

3220 "\\always"

3221 {

3222 aen = Constants.OPE_TEMPORAL_ALWAYS; //--Const. val = 145

3223 //System.out.println("FH: Parsing always...");

3224 }

3225 |

3226 "\\eventually"

3227 {

3228 aen = Constants.OPE_TEMPORAL_EVENTUALLY; //--Const. val = 146

3229 //System.out.println("FH: Parsing eventually...");

3230 }

3231 |

3232 "\\never"

3233 {

3234 aen = Constants.OPE_TEMPORAL_NEVER; //--Const. val = 147

3235 //System.out.println("FH: Parsing never...");

3236 }

3237)

3238 LPAREN jse = jmlSpecExpression[] RPAREN

3239 //But what if two trace properties are being combined using ’|’ or ’&’? Is that

3240 //covered by JmlSpecExpression?

3241 {

3242 //System.out.println("FH: Creating JmlTemporalTraceProperty node.");

3243 self = new JmlTemporalTraceProperty(sourceRef, aen, jse);

3244 }

3245

3246 |

3247 //FH --from jmlStateProperty[]

3248 (

3249 (

3250 "\\enabled" { enabled = true; }

3251 |

3252 "\\not_enabled" { enabled = false; }

3253) LPAREN mn = jmlMethodName[] RPAREN

3254 {

3255 self = new JmlTemporalStateProperty(sourceRef, enabled, mn);

3256 }

3257)

3258 ;

Listing A.2 jmlSpecQuantifiedExprRest Rule
,

3307 jmlSpecQuantifiedExprRest [TokenReference sourceRef]

3308 returns [JmlSpecQuantifiedAugmentedExpression self = null]

3309 {

3310 int oper = -1;

3311 JmlVariableDefinition[] quantifiedVarDecls;

3312 JmlSpecExpression predicate = null;

3313 JmlSpecExpression specExpression = null;

3314

3315 JmlTemporalEvent ev = null; //--FH

45

3316 JExpression jt = null; //--FH

3317

3318 JmlTemporalEvent ev1 = null; //--FH

3319 JmlTemporalEvent ev2 = null; //--FH

3320 JmlSpecExpression jse = null; //--FH

3321 }

3322 :

3323 (

3324 ("\\forall" { oper = Constants.OPE_FORALL; }

3325 | "\\exists" { oper = Constants.OPE_EXISTS; }

3326 | "\\max" { oper = Constants.OPE_MAX; }

3327 | "\\min" { oper = Constants.OPE_MIN; }

3328 | "\\num_of" { oper = Constants.OPE_NUM_OF; }

3329 | "\\product" { oper = Constants.OPE_PRODUCT; }

3330 | "\\sum" { oper = Constants.OPE_SUM; }

3331)

3332 quantifiedVarDecls = jmlQuantifiedVarDecls[] SEMI

3333 (

3334 predicate = jmlSpecExpression[]

3335 (SEMI specExpression = jmlSpecExpression[])?

3336 {

3337 if (specExpression == null) {

3338 // really the predicate is optional

3339 specExpression = predicate;

3340 predicate = null;

3341 }

3342 }

3343 |

3344 SEMI specExpression = jmlSpecExpression[]

3345)

3346 {

3347 self = new JmlSpecQuantifiedExpression(sourceRef, oper,

3348 quantifiedVarDecls,

3349 predicate == null ? null : new JmlPredicate(predicate),

3350 specExpression);

3351 })

3352

3353 |

3354

3355 //try to do this the way its done for \forall--TODOFH

3356

3357 // LPAREN is in jParenthesizedExpr[] -- IMPORTANT

3358 //RPAREN is in jParenthesizedExprRest[]

3359 "\\after" ev = jmlEvents[] SEMI jt = jmlTemporalExpression[]

3360 {

3361 //System.out.println("FH: After parsed");

3362 self = new JmlTemporalAfterExpression(sourceRef, ev, jt,

3363 Constants.OPE_TEMPORAL_AFTER);

3364 }

3365 |

3366 "\\before" ev = jmlEvents[] SEMI jt = jmlTemporalExpression[]

3367 {

3368 //System.out.println("FH: Before parsed");

3369 self = new JmlTemporalBeforeExpression(sourceRef, ev, jt,

3370 Constants.OPE_TEMPORAL_BEFORE);

3371 }

3372 |

3373 //FH--replaced jmlTraceProperty[] with jmlSpecExpression[] in ’between’ subrule

3374 //Originally, jmlTraceProperty[] was called from the \between subrule

3375

3376 //!TODO! -- Should I call jmlPrimary[] here instead of jmlSpecExpression[]

3377 //Also: Should there be another semicolon after the second set of events?

3378 "\\between" ev1 = jmlEvents[] SEMI ev2 = jmlEvents[] jse = jmlSpecExpression[]

3379 {

46

3380 //System.out.println("FH: Between parsed");

3381 self = new JmlTemporalBetweenExpression(sourceRef, ev1, ev2, jse,

3382 Constants.OPE_TEMPORAL_BETWEEN);

3383 }

3384 |

3385 "\\atmost" maxNum: INTEGER_LITERAL SEMI ev = jmlEvents[]

3386 {

3387 //System.out.println("FH: At most parsed");

3388 self = new JmlTemporalAtMostExpression(sourceRef, ev,

3389 Integer.parseInt(maxNum.getText()), Constants.OPE_TEMPORAL_ATMOST);

3390 }

3391 ;

Listing A.3 jmlTemporalExpression Rule
,

4310 jmlTemporalExpression []

4311 returns [JExpression self = null]

4312 {

4313 JExpression subExpression = null;

4314 JmlTemporalEvent ev = null;

4315 JExpression temp = null;

4316 JmlTemporalTraceProperty tmp = null; //this can be commented.

4317

4318 //boolean isUnlessUntil = false;

4319

4320 //What really do we need to do here for TokenReference?

4321 //TokenReference sourceRef = utility.buildTokenReference(LT(1));

4322 }

4323 :

4324 //This goes to jParenthesizedExpression and then jmlPrimary

4325 self = jmlImpliesExpression[]

4326 {

4327 //Should I wrap this in a JmlTemporalExpression here?

4328 //(To ensure that what is returned above is a

4329 //JmlTemporalExpression|JmlTemporalUntilExpression|JmlTemporalUnlessExpression)

4330

4331 //why does trying to create this node give errors?

4332 //selfcopy = self;

4333 //self = new JmlTemporalExpression(selfcopy.getTokenReference(), selfcopy);

4334

4335 }

4336 (

4337 "\\unless" ev = jmlEvents[]

4338 {

4339 //isUnlessUntil = true;

4340 //System.out.println("FH: Unless parsed.");

4341 self = new JmlTemporalUnlessExpression(self.getTokenReference(), self, ev);

4342 }

4343 |

4344 "\\until" ev = jmlEvents[]

4345 {

4346 //System.out.println("FH: I’m in until and I have: " + self.getClass());

4347 //isUnlessUntil = true;

4348 //System.out.println("FH: Until parsed.");

4349 self = new JmlTemporalUntilExpression(self.getTokenReference(), self, ev);

4350 }

4351)?

4352 {

4353 //System.out.println("\t\tWe are in : " + self.getClass());

4354 //if (self instanceof JmlRelationalExpression) {

4355 //JmlRelationalExpression temp1 = (JmlRelationalExpression) (self);

4356 //System.out.println("FH: RelExpr of type: " + temp1.oper());

47

4357 //}

4358 }

4359 ;

Listing A.4 Type JmlTemporalAfterExpression
,

1 package org.jmlspecs.checker;

2

3 import org.multijava.mjc.CExpressionContextType;

4 import org.multijava.mjc.CStdType;

5 import org.multijava.mjc.CType;

6 import org.multijava.mjc.JExpression;

7 import org.multijava.util.compiler.PositionedError;

8 import org.multijava.util.compiler.TokenReference;

9

10 public class JmlTemporalAfterExpression extends JmlTemporalSequenceExpression

11 implements Cloneable

12 {

13

14 public JmlTemporalAfterExpression(TokenReference where,

15 JmlTemporalEvent jmltemporalevent, JExpression jtExpression, int operator) {

16 super(where, operator, jmltemporalevent);

17 //jEvent = je;

18 jte = jtExpression;

19

20 }

21

22 public CType getType() {

23 //return CStdType.Boolean;

24 //if (jte.getType() instanceof JmlTemporalType)

25 return JmlStdType.temporalType;

26 //else

27 //throw new UnsupportedOperationException();

28 }

29

30

31

32 public JExpression getJte() {

33 return jte;

34 }

35

36

37 // TODO check the return type of typecheck in JmlTemporalAfterExpression

38 public JExpression typecheck(CExpressionContextType context)

39 throws PositionedError {

40

41 try {

42 super.typecheck(context);

43

44 //System.out.println("FH: I’m typechecking JmlTemporalAfterExpression.");

45 //super.typecheck(context);

46

47 jte.typecheck(context);

48

49 //Added on 16 AUG 2008

50 //jte = jte.typecheck(context);

51

52 //System.out.println("FH: The type of After’s expression is " + jte.getType());

53

54 if ((jte.getType() != JmlStdType.temporalType))

55 //throw new UnsupportedOperationException();

48

56 context.reportTrouble(new PositionedError(getTokenReference(), JmlMessages.TEMPORAL_TEMPORALTYPE_EXPECTED,

jte.getType()));

57

58 }

59

60

61 catch (PositionedError e) {

62 context.reportTrouble(e);

63 }

64

65 return this;

66 }

67

68

69 private JExpression jte;

70 //private JmlTemporalEvent jEvent; -- now in superclass

71

72

73

74

75

76 }

Listing A.5 Runtime Temporal State Machine
,

1 package org.jmlspecs.jmlrac.runtime;

2

3

4 import java.util.ArrayList;

5 import java.util.HashMap;

6 import org.jmlspecs.checker.JmlTemporalFormula;

7 import org.jmlspecs.jmlrac.runtime.TemporalObserver;

8

9

10 public class JMLRuntimeTemporalStateMachine {

11 public JMLRuntimeTemporalStateMachine(TemporalObserver o, int indexOfTemporalFormulaInType) {

12 this.myObserver = o;

13

14 this.transitionTable = new HashMap();

15 this.temporalFormulaNumber = indexOfTemporalFormulaInType;

16

17 }

18

19 public void setStartState(int stateNumber) {

20 this.currentState = this.getState(stateNumber);

21 }

22

23 public TemporalState getState(int stateNumber) {

24 TemporalState found = null;

25

26 for (int i = 0; i < listOfStates.size(); i++) {

27 TemporalState temp = (TemporalState) listOfStates.get(i);

28 if (temp.getStateNumber() == stateNumber)

29 found = temp;

30 }

31

32 return found;

33 }

34

35 public void addTransition(int fromStateNumber, String event, int toStateNumber) {

36 TemporalState fromState = this.getState(fromStateNumber);

37 TemporalState toState = this.getState(toStateNumber);

49

38

39 Object otbl = transitionTable.get(fromState);

40 transitionTable.remove(fromState); //removing now and we’ll add modified entry later

41

42 HashMap newTable;

43 if (otbl == null) {

44 newTable = new HashMap();

45 newTable.put(event, toState);

46 } else {

47 newTable = (HashMap) otbl;

48 if (newTable.get(event) != null) {

49 System.err.println("FH: The key " + event + " already exists in the table with value " + newTable.get(event)

50 + " but I’ll insert the new value for this key anyway.");

51 }

52 newTable.put(event, toState);

53 }

54 transitionTable.put(fromState, newTable);

55 }

56

57 public void performTemporalChecks() {

58 if (this.currentState.isEnabledNotEnabledStateProperty()) {

59 //inform

60 }

61 else if (this.currentState.isTracePropertyCheckingState()) {

62 //this.setChanged();

63 //this.notifyObservers();

64 this.myObserver.update$temporalspec(this, null);

65 }

66 }

67

68 public void consume(String newTemporalEvent) {

69 if (this.currentState.isEnabledNotEnabledStateProperty()) {

70 this.currentState.informNewEvent(newTemporalEvent);

71 }

72

73

74 HashMap transitionsFromCurrentState = (HashMap) this.transitionTable.get(currentState);

75 if (transitionsFromCurrentState != null) {

76 if (transitionsFromCurrentState.get(newTemporalEvent) != null) {

77 currentState = (TemporalState) transitionsFromCurrentState.get(newTemporalEvent);

78 }

79 }

80 }

81

82 public int getTemporalFormulaNumber() {

83 return this.temporalFormulaNumber;

84 }

85

86 public void setStateList(ArrayList listOfStates) {

87 this.listOfStates = listOfStates;

88 }

89

90 public String getReasonForCurrentNonAcceptingState() {

91 return currentState.getReasonForBeingNonAccepting();

92 }

93

94 public boolean inFinalState() {

95 return currentState.isAcceptingState();

96 }

97

98

99 private ArrayList listOfStates;

100 private HashMap transitionTable;

101 private TemporalState currentState;

50

102 private int temporalFormulaNumber; //the number in the type that this machine represents

103 private TemporalObserver myObserver;

104

105 }

51

APPENDIX B File Operations Example

Listing B.1 TemporalSpecFileOps.java: Driver-1
,

1 //File TemporalSpecFileOps.java

2

3 import java.io.*;

4 import org.jmlspecs.jmlrac.runtime.*;

5

6 public class TemporalSpecFileOps implements TemporalObserver {

7

8 //TS0

9 //@ public static temporal (\always(\not_enabled(writeFile)) \unless \call(openFile));

10

11 //TS1

12 //@ public static temporal (\after \normal(openFile); (\always (\enabled (writeFile)) \until \call (closeFile)));

13

14 //TS2

15 //@ public static temporal (\after \normal(closeFile); (\always (\not_enabled(writeFile)) \unless \call(openFile)));

16

17 public static boolean openFlag = false;

18

19 /** Opens the file (Sets field ’openFlag’ to true).

20 * A file must be close after its opened.

21 */

22 public static void openFile(File f) {

23 try {

24 f.createNewFile();

25 openFlag = f.canWrite();

26 } catch (Exception e) {

27 System.out.println(e);

28 }

29 }

30

31 public static void writeFile(File f) throws Exception {

32 if (!openFlag) {

33 throw new Exception("Cannot write to file.");

34 }

35 try {

36 FileOutputStream fo = new FileOutputStream(f);

37 fo.write(97);

38 fo.close();

39 } catch(IOException ef) {

40 System.out.println(ef);

41 }

42 }

43

44 public static void closeFile(File f) {

45 openFlag = false;

46 }

47

52

48

49 public static void main(String[] args) {

50 String filename = "file1.txt";

51

52 try {

53 File f = new File(filename);

54 openFile(f);

55 writeFile(f);

56 closeFile(f);

57 writeFile(f);

58 } catch (Exception e) {

59 System.out.println(e);

60 }

61

62 }

63

64 }

Listing B.2 TemporalSpecFileOps.java: Driver-2
,

1 //File TemporalSpecFileOps.java

2

3 import java.io.*;

4 import org.jmlspecs.jmlrac.runtime.*;

5

6 public class TemporalSpecFileOps implements TemporalObserver {

7

8 //TS0

9 //@ public static temporal (\always(\not_enabled(writeFile)) \unless \call(openFile));

10

11 //TS1

12 //@ public static temporal (\after \normal(openFile); (\always (\enabled (writeFile)) \until \call (closeFile)));

13

14 //TS2

15 //@ public static temporal (\after \normal(closeFile); (\always (\not_enabled(writeFile)) \unless \call(openFile)));

16

17 public static boolean openFlag = false;

18

19 /** Opens the file (Sets field ’openFlag’ to true).

20 * A file must be close after its opened.

21 */

22 public static void openFile(File f) {

23 try {

24 f.createNewFile();

25 openFlag = f.canWrite();

26 } catch (Exception e) {

27 System.out.println(e);

28 }

29 }

30

31 public static void writeFile(File f) throws Exception {

32 if (!openFlag) {

33 //throw new Exception("Cannot write to file.");

34 }

35 try {

36 FileOutputStream fo = new FileOutputStream(f);

37 fo.write(97);

38 fo.close();

39 } catch(IOException ef) {

40 System.out.println(ef);

41 }

42 }

53

43

44 public static void closeFile(File f) {

45 openFlag = false;

46 }

47

48

49 public static void main(String[] args) {

50 String filename = "file1.txt";

51

52 try {

53 File f = new File(filename);

54 //openFile(f);

55 writeFile(f);

56 closeFile(f);

57 //writeFile(f);

58 } catch (Exception e) {

59 System.out.println(e);

60 }

61

62 }

63

64 }

Listing B.3 TemporalSpecFileOps.java: Driver-3
,

1 //File TemporalSpecFileOps.java

2

3 import java.io.*;

4 import org.jmlspecs.jmlrac.runtime.*;

5

6 public class TemporalSpecFileOps implements TemporalObserver {

7

8 //TS0

9 //@ public static temporal (\always(\not_enabled(writeFile)) \unless \call(openFile));

10

11 //TS1

12 //@ public static temporal (\after \normal(openFile); (\always (\enabled (writeFile)) \until \call (closeFile)));

13

14 //TS2

15 //@ public static temporal (\after \normal(closeFile); (\always (\not_enabled(writeFile)) \unless \call(openFile)));

16

17 public static boolean openFlag = false;

18

19 /** Opens the file (Sets field ’openFlag’ to true).

20 * A file must be close after its opened.

21 */

22 public static void openFile(File f) {

23 try {

24 f.createNewFile();

25 //openFlag = f.canWrite();

26 } catch (Exception e) {

27 System.out.println(e);

28 }

29 }

30

31 public static void writeFile(File f) throws Exception {

32 if (!openFlag) {

33 throw new Exception("Cannot write to file.");

34 }

35 try {

36 FileOutputStream fo = new FileOutputStream(f);

37 fo.write(97);

54

38 fo.close();

39 } catch(IOException ef) {

40 System.out.println(ef);

41 }

42 }

43

44 public static void closeFile(File f) {

45 openFlag = false;

46 }

47

48

49 public static void main(String[] args) {

50 String filename = "file1.txt";

51

52 try {

53 File f = new File(filename);

54 openFile(f);

55 writeFile(f);

56 closeFile(f);

57 //writeFile(f);

58 } catch (Exception e) {

59 System.out.println(e);

60 }

61

62 }

63

64 }

Listing B.4 TemporalSpecFileOps.java: Driver-4
,

1 //File TemporalSpecFileOps.java

2

3 import java.io.*;

4 import org.jmlspecs.jmlrac.runtime.*;

5

6 public class TemporalSpecFileOps implements TemporalObserver {

7

8 //TS0

9 //@ public static temporal (\always(\not_enabled(writeFile)) \unless \call(openFile));

10

11 //TS1

12 //@ public static temporal (\after \normal(openFile); (\always (\enabled (writeFile)) \until \call (closeFile)));

13

14 //TS2

15 //@ public static temporal (\after \normal(closeFile); (\always (\not_enabled(writeFile)) \unless \call(openFile)));

16

17 public static boolean openFlag = false;

18

19 /** Opens the file (Sets field ’openFlag’ to true).

20 * A file must be close after its opened.

21 */

22 public static void openFile(File f) {

23 try {

24 f.createNewFile();

25 openFlag = f.canWrite();

26 } catch (Exception e) {

27 System.out.println(e);

28 }

29 }

30

31 public static void writeFile(File f) throws Exception {

32 if (!openFlag) {

55

33 throw new Exception("Cannot write to file.");

34 }

35 try {

36 FileOutputStream fo = new FileOutputStream(f);

37 fo.write(97);

38 fo.close();

39 } catch(IOException ef) {

40 System.out.println(ef);

41 }

42 }

43

44 public static void closeFile(File f) {

45 //openFlag = false;

46 }

47

48

49 public static void main(String[] args) {

50 String filename = "file1.txt";

51

52 try {

53 File f = new File(filename);

54 openFile(f);

55 writeFile(f);

56 closeFile(f);

57 writeFile(f);

58 } catch (Exception e) {

59 System.out.println(e);

60 }

61

62 }

63

64 }

56

APPENDIX C Bank Account Example

Listing C.1 TemporalSpecBankAC.java
,

1 //package org.jmlspecs.temporalspec.temporalfiles;

2

3 import org.jmlspecs.jmlrac.runtime.*;

4

5 public class TemporalSpecBankAC implements TemporalObserver {

6

7 //@ public temporal (\after \normal (openAC); (\after \normal (activateAC); (\always (balance>0) | \eventually (swissType)) \unless \call

(suspendAC)));

8

9 private int balance = 0;

10 private boolean swissType = false;

11

12 public void openAC() { /* Opens A/C -- just to show temporal events */ }

13 public void activateAC() { /* Activates A/C -- just to show temporal events */ }

14 public void suspendAC()

15 {

16 /* Temporarily deactivates A/C; this can be reversed using activateAC --

17 just to show temporal events */

18 }

19

20 public int getBalance() { return balance; }

21

22 public void setBalance(int n) {

23 balance = n;

24 }

25

26 public void setSwissType(boolean onOrOff) {

27 swissType = onOrOff;

28 }

29

30

31 public static void main(String[] args) {

32 TemporalSpecBankAC ac1 = new TemporalSpecBankAC();

33 ac1.openAC();

34 ac1.setBalance(-100);

35 ac1.setBalance(200);

36 ac1.activateAC();

37 ac1.setBalance(-300); //positive or negative

38 //ac1.setSwissType(true);

39 ac1.suspendAC();

40 }

41 }

57

BIBLIOGRAPHY

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondřej Lhoták,

Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding trace matching with free

variables to AspectJ. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages 345–364, New York, NY, USA,

2005. ACM.

[2] Eric Allen. Diagnosing Java code: Assertions and temporal logic in Java programming: http://www.

ibm.com/developerworks/java/library/j-diag0723.html, 2002.

[3] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass – Java with Assertions. In K. Havelund and

G. Roşu, editors, Electronic Notes in Computer Science, volume 55(2). Elsevier Science BV, 2001.

[4] F. Bellegarde, J. Groslambert, M. Huisman, O. Kouchnarenko, and J. Julliand. Verification of liveness

properties with JML. Technical Report RR-5331, INRIA, 2004.

[5] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry, Gary T. Leavens, K. Rus-

tan M. Leino, and Erik Poll. An overview of JML tools and applications. International Journal on Software

Tools for Technology Transfer (STTT), 7(3):212–232, June 2005.

[6] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond Assertions: Advanced Specifica-

tion and Verification with JML and ESC/Java2. In FMCO, pages 342–363, 2005.

[7] Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD thesis, April 2003.

Technical Report 03-09, Department of Computer Science, Iowa State University.

[8] Yoonsik Cheon and Gary T. Leavens. A Runtime Assertion Checker for the Java Modeling Language

(JML). Technical Report 02-05, Department of Computer Science, Iowa State University, March 2002. In

SERP 2002, pp. 322-328.

[9] Yoonsik Cheon and Ashaveena Perumandla. Specifying and checking method call sequences of Java pro-

grams. Software Quality Journal, 15(1):7–25, March 2007.

http://www.ibm.com/developerworks/java/library/j-diag0723.html
http://www.ibm.com/developerworks/java/library/j-diag0723.html

58

[10] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems

using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[11] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers. MultiJava: Design rationale, com-

piler implementation, and applications. ACM Transactions on Programming Languages and Systems,

28(3):517–575, May 2006.

[12] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. Păsăreanu, Robby, and

Hongjun Zheng. Bandera: Extracting finite-state models from java source code. In International Conference

on Software Engineering, pages 439–448, 2000.

[13] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Expressing checkable properties of dy-

namic systems: The Bandera Specification Language. STTT, 4(1):34–56, 2002.

[14] Doron Drusinsky. The Temporal Rover and the ATG rover. In Proceedings of the 7th International

SPIN Workshop on SPIN Model Checking and Software Verification, pages 323–330, London, UK, 2000.

Springer-Verlag.

[15] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state verification.

Technical Report UM-CS-1998-035, Kansas State University, University of Massachusetts, University of

Hawai‘i, , 1998.

[16] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification patterns for finite-state

verification. In FMSP ’98: Proceedings of the second workshop on Formal methods in software practice,

pages 7–15, New York, NY, USA, 1998. ACM.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Elements of reusable

object-oriented software. Addison-Wesley Professional, 1995.

[18] A. Giorgetti and J. Groslambert. JAG: JML Annotation Generation for verifying temporal properties. In

FASE’2006, Fundamental Approaches to Software Engineering, volume 3922 of LNCS, pages 373–376,

Vienna, Austria, March 2006. Springer.

[19] John Hatcliff and Matthew B. Dwyer. Using the Bandera tool set to model-check properties of concurrent

Java software. In CONCUR ’01: Proceedings of the 12th International Conference on Concurrency Theory,

pages 39–58, London, UK, 2001. Springer-Verlag.

[20] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.

59

[21] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley Profes-

sional, September 2003.

[22] Ying Jin. Formal verification of protocol properties of sequential Java programs. In COMPSAC ’07:

Proceedings of the 31st Annual International Computer Software and Applications Conference - Vol. 1-

(COMPSAC 2007), pages 475–482, Washington, DC, USA, 2007. IEEE Computer Society.

[23] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral interface spec-

ification language for Java. Technical Report 98-06-rev29, Iowa State University, Department of Computer

Science, January 2006. Also ACM SIGSOFT Software Engineering Notes, 31(3):1-38, March 2006.

[24] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[25] Robby. Bandera Specification Language: A specification language for software model checking, 2000.

Master’s thesis, Kansas State University.

[26] Kerry Trentelman and Marieke Huisman. Extending JML specifications with temporal logic. In AMAST

’02: Proceedings of the 9th International Conference on Algebraic Methodology and Software Technology,

pages 334–348, London, UK, 2002. Springer-Verlag.

	2009
	Enhancing a behavioral interface specification language with temporal logic features
	Faraz Hussain
	Recommended Citation

	Title Page
	Contents
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	ACKNOWLEDGEMENTS
	ABSTRACT
	OVERVIEW
	Introduction
	Temporal Logic & Specifications
	Temporal logic extension to JML
	The Problem and Approach Used
	Temporal Specification Examples
	File Operations Example
	Bank Account example

	About this document

	PARSING, AST CONSTRUCTION AND TYPECHECKING
	Temporal JML grammar and Temporal constructs
	Parsing
	Description of AST classes
	Testing the AST
	Typechecking
	Typechecking Tests and Errors
	A typechecking test failure

	CODE GENERATION AND RUNTIME ASSERTION CHECKING
	Major Code Generation Ideas
	Generated Code for the Bank Account Example
	The Temporal State Machine
	Temporal States
	Checking Temporal Specifications
	Checking trace properties
	Temporal State Machine post-final state checking
	Sample runs of the BankAccount class

	Revisiting the File Operations Example

	DISCUSSION
	Notes on Semantics
	Related Work

	CONCLUSION
	Limitations & Future Work

	CODE REFERENCES
	FILE OPERATIONS EXAMPLE
	BANK ACCOUNT EXAMPLE
	BIBLIOGRAPHY

