University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Civil Engineering Theses, Dissertations, and Student Research

Civil Engineering

Spring 4-13-2016

Optimizing Chemical & Rheological Properties of Rejuvenated Bitumen

Dominic Nguyen University of Nebraska-Lincoln, dominicnguyen@huskers.unl.edu

Hamzeh Haghshenas Fatmehsari University of Nebraska-Lincoln, h.haghshenas@huskers.unl.edu

Santosh Kommidi *University of Nebraska-Lincoln,* santosh.kommidi@gmail.com

Yong-Rak Kim University of Nebraska-Lincoln, yong-rak.kim@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/civilengdiss Part of the <u>Materials Chemistry Commons</u>, <u>Other Chemical Engineering Commons</u>, <u>Structural</u> <u>Materials Commons</u>, and the <u>Transportation Engineering Commons</u>

Nguyen, Dominic; Haghshenas Fatmehsari, Hamzeh; Kommidi, Santosh; and Kim, Yong-Rak, "Optimizing Chemical & Rheological Properties of Rejuvenated Bitumen" (2016). *Civil Engineering Theses, Dissertations, and Student Research*. 93. https://digitalcommons.unl.edu/civilengdiss/93

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Optimizing Chemical & Rheological Properties of Rejuvenated Bitumen Dominic Nguyen¹, Hamzeh Haghshenas², Santosh Kommidi², and Dr. Yong-Rak Kim² 1 – Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln 2 – Department of Civil Engineering, University of Nebraska-Lincoln

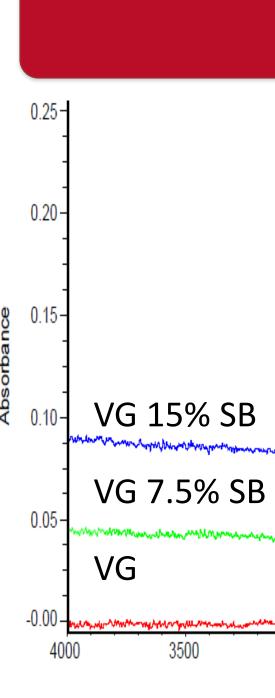
Introduction

Bitumen has long been a material used in the construction of roadways, yet new pavement only consists of 15% of recycled materials due to poor compatibility of aged bitumen and new materials.

Chemical additives such as rejuvenators have been used in an attempt to re-balance the chemical composition and restore the physical properties of aged bitumen back to its virgin state. However, a fundamental understanding of how rejuvenators revitalize bitumen is needed before developing the optimum rejuvenator.

Objectives

- Use Fourier-transform infrared (FTIR) spectroscopy to determine the changes in chemical properties of virgin, aged, and rejuvenated bitumen.
- Employ a linear amplitude sweep (LAS), a procedure using a dynamic shear rheometer (DSR), to investigate rheological properties.
- Relate resulting chemical evolution to changes in macroscopic mechanical properties of the revitalized bitumen.

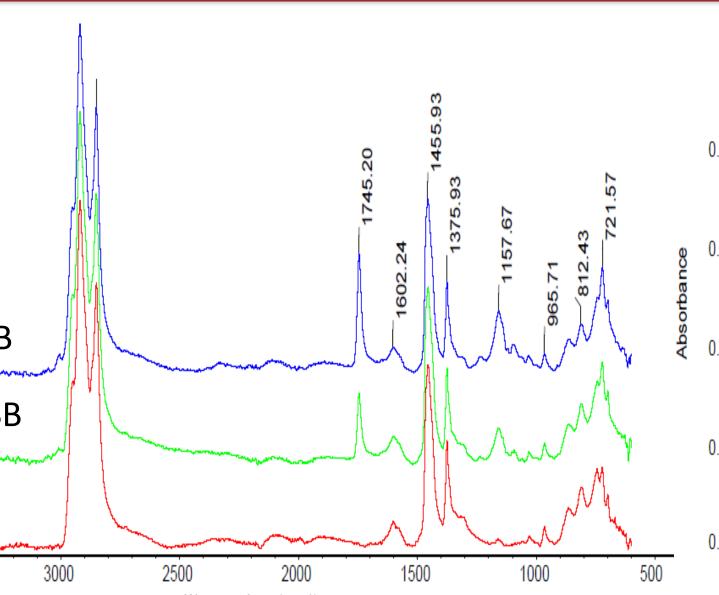

FTIR Index Data

INDEX	Carboxylic Acid	Ether	Carbonyl	Sulfoxide	Aliphatic	Aromatic
Approximate Wavelength (cm-1)	І _{соон} 1745	Ι _{εt} 1156	I _{C=0} 1700	I _{s=0} 1032	Ι _Β 1377	I _{Ar} 1601
VG	-0.00772	0.00650	0.00135	0.00589	0.18629	0.06106
VG 7.5%	0.07572	0.05225	-0.00166	0.00631	0.17887	0.04926
VG 15%	0.12309	0.07404	-0.00408	0.00565	0.17091	0.03995
RTFO	-0.00157	0.01337	0.00241	0.01024	0.18527	0.06205
RTFO 7.5%	0.07039	0.04935	-0.00022	0.00848	0.17826	0.04968
RTFO 15%	0.11658	0.07793	-0.00305	0.00788	0.17167	0.04149
PAV	-0.00398	0.00989	0.00639	0.01689	0.18502	0.06538
PAV 7.5%	0.04455	0.04387	0.00456	0.01584	0.17936	0.05789
PAV 15%	0.08780	0.05971	0.00224	0.01399	0.17399	0.04668
Soybean Oil	0.36656	0.21857	-0.00817	0.00296	0.10430	-0.01074

 Table 1: Absorbance of characteristic functional groups in virgin
(VG), rolling thin film oven (RTFO) aged, pressure aging vessel (PAV) aged, and rejuvenated bitumen.

Where

 $I_{C=0} = A_{1700cm^{-1}} / \sum A$ $\sum A = Total Peak Areas$


	Fig 1: FTIR s samples.						
	0.35-						
	0.30-						
	0.25						
	0.20	PAV					
	0.15-	RTFO					
	0.10	haventetter av Evergen og graver det av gefordet her her					
	0.05 -	VG					
	-0.00 4000	3500					

samples

	samples.
0.24	
0.22	
0.20	
0.18	
0.16	
0.14	
0.12	
0.10	PAV 15%
0.08	๛๚๛๛ _{๛๛๛} ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
0.06	RTFO 15
0.04	
0.02	VG 15%
-0.00 -	when a second way the second when
4000	3500

SB bitumen samples.

spectra of VG, VG 7.5% SB, and VG 15% SB bitumen

Wavenumbers (cm-1

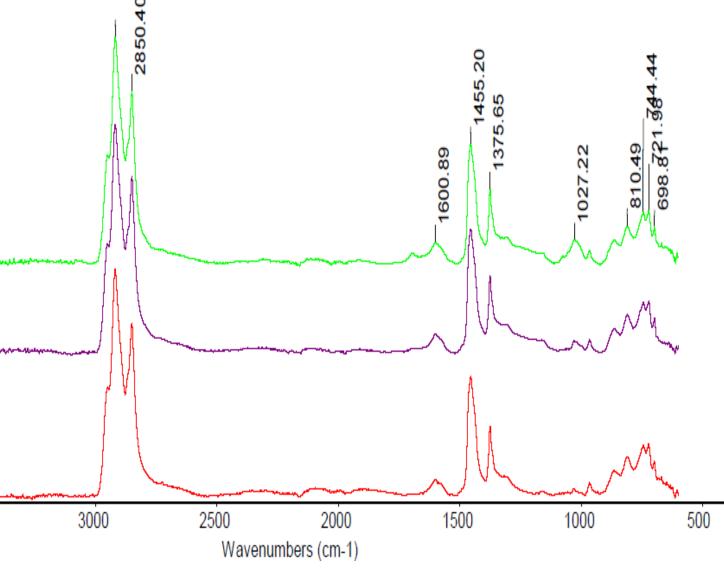


Fig 3: FTIR spectra of unmodified VG, RTFO, and PAV bitumen

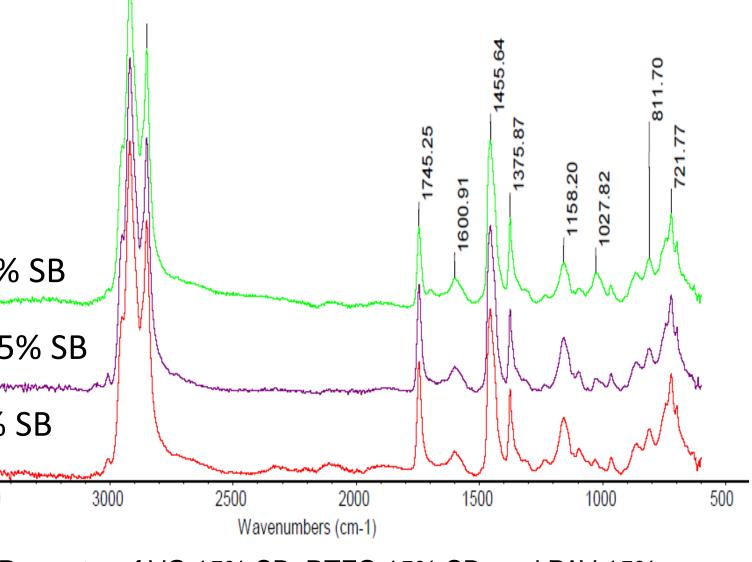


Fig 4: FTIR spectra of VG 15% SB, RTFO 15% SB, and PAV 15%

FTIR Analysis

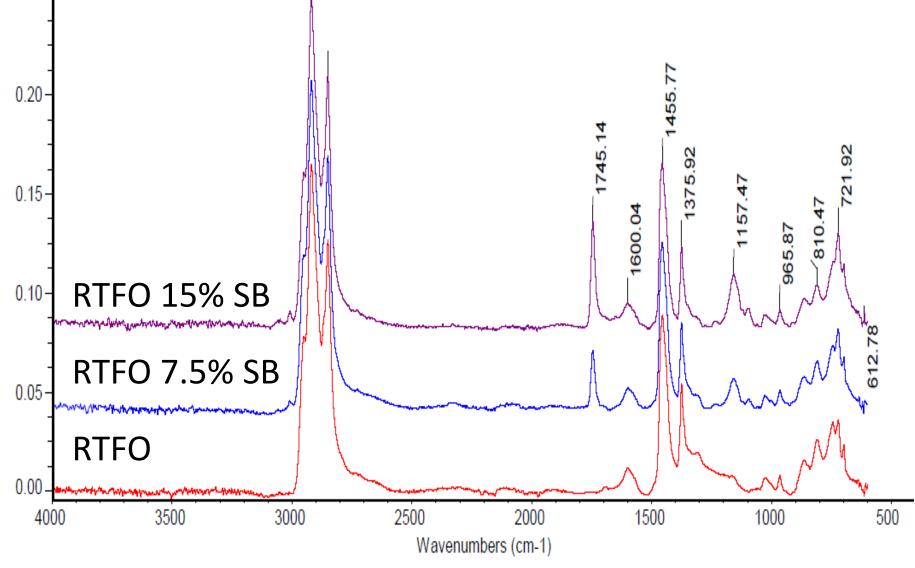
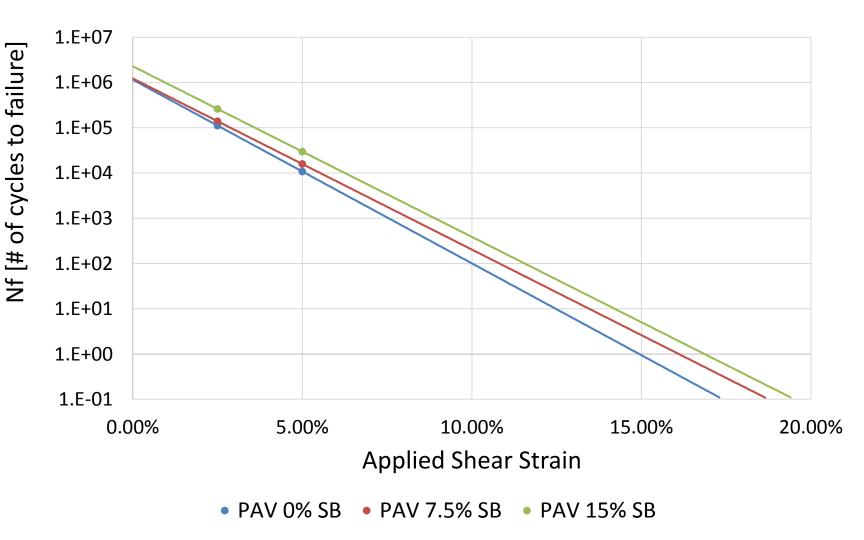


Fig 2: FTIR spectra of RTFO, RTFO 7.5% SB, and RTFO 15% SB bitumen samples.


LAS Analysis

A frequency sweep test followed by a strain sweep test with linear increasing amplitude were used to calculate important binder parameters, A and B, used to determine fatigue performance (N_f) .

$$A = \frac{f(D_f)^k}{k(\Pi C_1 C_2)^{\alpha}} \qquad B = -$$

LAS Data of PAV Samples						
	PAV 0%	PAV 7.5%	PAV 15%			
А	2443248	2471710	4586733			
В	-3.37037	-3.14031	-3.13159			
Nf (2.5%)	111,369	139,105	260,207			
Nf (5.0%)	10,769	15,777	29,690			

Bitumen Fatigue Curves

-2α

 $N_f = A(\gamma_{max})^B$

Conclusions

FTIR analysis of I_{COOH} and I_{Et} confirms that soybean oil has been introduced to bitumen in the rejuvenation process. I_{Et} indicates soybean oil may have already been partially oxidized.

 $I_{C=O}$ and $I_{S=O}$ decrease in RTFO and PAV samples suggesting the aging process in the aged bitumen has been reversed from rejuvenation with soybean oil. $I_{\rm B}$ and $I_{\rm Ar}$ also decrease due to rejuvenation, indicating chain scission and aromatization that occurs during aging has been reversed.

LAS analysis of PAV samples manifests fatigue resistances (N_f) of bitumen samples increases at every applied shear strain as a result of increasing concentration of rejuvenator.

The relation of FTIR and LAS results indicates rejuvenation of aged bitumen with soybean oil reverses the aging process at a molecular level and as a result, increases the fatigue life of the bitumen.

References

[1] Feng, Z., Bian, H., Li, X., and Yu, J. (2016). "FTIR analysis of UV aging on bitumen and its fractions." Materials and Structures, 10.1617/s11527-015-0583-9, 1381-1389.

[2] Lu XH, Isacsson U (2002) Effect of ageing on bitumen chemistry and rheology. Constr Build Mater 16:15–22

[3] Kim, Y., H. J. Lee, D. N. Little, and Y. R. Kim. A simple testing method to evaluate fatigue fracture and damage performance of asphalt mixtures. Journal of Association of Asphalt Paving Technologists, Vol. 75, 2006, pp. 755–788.

[4] Hintz, C., R. Velasquez, C. Johnson, and H. Bahia. Modification and Validation of the Linear Amplitude Sweep Test for Binder Fatigue Specification. In Transportation Research Record: Journal of the Transportation Research Board. Washington, DC., Vol. 2207, 2011, pp. 99-

Acknowledgements

The authors would like to thank Dr. Martha Morton and Undergraduate Instrumentation Center of the Department of Chemistry of the University of Nebraska-Lincoln for assistance and use of their FTIR instrument.

Nebraska Lincoln