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 There is a noticeable difference between different road users, specifically 

between passenger vehicles and heavy vehicles such as its length and weight. The majority 

of previous research were focused on general highway traffic that included passenger cars, 

trucks, buses, motorcycles, etc. Moreover, HRGC safety studies of specific types of 

vehicles are relatively few and heavy vehicle safety at grade crossing is even more under-

explored.  

This research thus focuses on the following objectives: Identify factors related to 

different injury severity levels of heavy-vehicle drivers (truck/truck-trailer) drivers in 

crashes reported at HRGCs; to identify a more suitable statistical model for injury severity 

modeling of truck involved crashes. This study considered variables that have not been 

explored in previous injury severity studies of truck-involved crashes at HRGCs. Three 

unordered response models: Multinomial Logit model (MNL), Nested Logit model (NL) 

and Mixed Logit model (RPL) were evaluated to investigate injury severity of drivers of 

heavy-vehicles involved in crashes at HRGCs. 

Based on criteria used for judging the models and the dataset used in this study, it 

was concluded that the RPL was most suitable for modeling truck drivers’ injuries in 

crashes reported at HRGCs amongst the models considered. Truck drivers’ injuries in 

crashes reported at HRGCs are positively associated with speed of train and road user 



 

(truck/trailer), truck-train crash, when train strike road user (truck/trailer), hazardous 

materials by either one or both users, driver behavior “went around the gates”, age of driver, 

crashes reported in rural areas and crashes at minimum crossing angle of 60-90 degrees. 

Whereas truck drivers’ injuries are negatively associated with train detection system, gates, 

if the track is signaled, when the track is obstructed, HRGCs within 500 feet of a highway 

and position of vehicle “heavy vehicle stopped on the crossing”. 
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CHAPTER 1 INTRODUCTION 

 Background 

In the United States (US), the FHWA report for the year 2013 states that 122.5 

million households, 7.5 million business establishments, and over 90,000 governmental 

units are part of the economy (FHWA: Freight Facts and Figures report FFF-2015), for 

which the efficient movement of freight is critical. Major freight transportation modes 

include highway, rail, water and pipelines. The 2012 Commodity Flow Survey (CFS-

2012), jointly conducted by the US Census Bureau and the Bureau of Transportation 

Statistics (BTS), estimated shipping of about 11.3 billion tons of freight valued at more 

than $13 trillion over the nation’s freight transportation system and generating 3.3 trillion 

ton-miles of travel in 2013 (US DOT 2015). Freights transportation by roads(Table 1), 

continued to dominate the nation’s movement of freight for value and tonnage, accounting 

for 73.1% of the value ($10.1 trillion) and about 71% of weight (8.1 billion tons). Truck 

and rail each accounted for 1.2 trillion ton-miles. Single mode truck was the dominant 

mode of freight transportation, accounting for at least 60% of the total value of shipments 

for 43 states in the US. According to Freight Facts and Figures 2015  report (US DOT 

2015), total shipments are expected to increase to 28.5 billion tons, with domestic 

shipments of about 23 billion tons by 2040 (Table-1).  

Freight transportation has made important contributions to the growth of the 

national economy but these have come at the price of traffic crashes, injuries and fatalities. 

Truck and train traffic is expected to increase due to the expected growth in the demand 
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for freight. This will likely increase the risk of conflicts between these two modes of 

transport thereby exacerbating a multimodal safety issue. 

 

Collisions at highway-rail grade crossings (HRGCs), although relatively rare events 

are nonetheless a safety concern as crashes at these locations tend to be more severe in 

terms of fatalities, injuries and property damage, compared to crashes reported elsewhere 

on the transportation network. Federal Railroad Administration (FRA) crash data shows 

that the total number of reported HRGC crashes decreased by 25.7% from 2007-2015 

(Figure 1). However, it can be observed (Figure 1) that there has been an increase (15.4%) 

in the number of crashes between 2012 and 2014 (1,987 crashes in 2012 to 2,293 crashes 

in 2014). According to the FRA crash data, there have been relatively small changes in the 

number of injuries and fatalities from the year 2007 to 2015. In fact, the number of injuries 

and fatalities have slightly increased from the year 2012 with 231 fatalities and 971 injuries, 

to 2015 with 237 fatalities and 1,003 injuries.  

In 2015, of the 2,063 crashes at grade crossings, 317 (15.4%) involved heavy 

vehicles (truck, trailer) on public crossings with 10 truck driver fatalities constituting 4.2% 

of the total fatalities reported at HRGCs. Figure 2 presents details of heavy-vehicle 

Total Domestic Exports Imports Total Domestic Exports Imports

Truck 13955 13732 120 103 18786 18083 368 335

Rail 1858 1681 82 94 2770 2182 388 201

Water 808 410 89 309 1070 559 164 347

Air, air & truck 15 3 5 7 53 6 20 27

Multiple modes & Mail 1554 459 559 536 3575 645 1546 1383

Pipeline 1539 1391 11 137 1740 1257 17 467

Other & unknown 333 274 47 13 526 362 130 34

Total 20062 17950 913 1199 28520 23094 2633 2794

2013 2040

Table 1 The weight of shipments by transportation mode (millions of tons). Source: US 

DOT:  Freight Facts and Figures, 2015 
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involved crashes over the nine-year period (2007-2015) while Figure 3 shows its 

comparison by different severity levels with the total number of HRGC crashes. These two 

figures show no appreciable decrease in truck-involved crashes at HRGCs over the years. 
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Figure 1 Highway rail crashes in U.S 2007-2015 

Figure 2 Heavy-vehicle crashes at HRGC in U.S 2007-2015 
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 Problem Statement 

Truck-involved crashes at HRGCs are important to investigate because they are not 

only vulnerable to more severe injury, but also can potentially disrupt both the highway 

and the rail network. Current safety research is mostly focused on crashes reported at non-

HRGC locations while research on crashes reported at HRGCs is not specifically focused 

on trucks- it is mostly focused on mixed traffic or pedestrians. Trucks have unique 

characteristics compared to other motor vehicles in terms of size, weight, and acceleration 

characteristics. However, limited literature was found on truck-involved crashes at HRGCs 

Figure 3 Percent of heavy-vehicle crashes w.r.t each category of the total HRGC crashes in 

U.S 
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and therefore they require attention. In light of the above, the problem statement for this 

research is as follows: 

Due to the unique characteristics of trucks compared to other motor vehicles and the 

greater potential for injury and disruption of multimodal networks due to truck-involved 

crashes at HRGCs, there is a need to study reported truck crashes at HRGCs. Specifically, 

truck driver injury severity and appropriate models for studying factors related to truck 

driver injury severity need investigation.  

 Research Objectives 

a) Identify factors related to different injury severity levels (fatal, injury, PDO) of truck 

drivers in crashes reported at HRGCs. 

This study will consider variables that have not been explored in previous injury 

severity studies of truck-involved crashes at HRGCs. They include variables such as the 

railroad class, distance to nearby intersecting highway, percentage of school buses and train 

traffic at HRGCs, primary obstruction of track view, active and passive warning devices, 

and different behavioral characteristics of the highway user (truck driver) prior to the crash. 

b) To identify a more suitable statistical model for injury severity modeling of truck 

involved crashes 

This study will evaluate three unordered response models: Multinomial Logit 

model (MNL), Nested Logit model (NL) and Mixed Logit model (RPL) to investigate 

injury severity of drivers of heavy-vehicles involved in crashes at HRGCs. 

 Research Outline 

This thesis consists of six chapters. Chapter 1 introduces background of this study, 

problem statement, and outlines the structure of this thesis. Chapter 2 presents a 
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comprehensive review of published literature related to this topic. Reviewed topics include 

HRGC safety studies, injury severity studies of road users at HRGCs, safety studies related 

to truck drivers, and potential modeling approaches used for crash injury severity.  

Chapter 3 introduces the statistical models used in this study and the general 

framework for model estimation. Chapter 4 describes the source of data, its formulation 

and provides descriptive statistics of the dataset used for model estimation. Chapter 5 

presents the three estimated models (MNL, NL, and RPL), comparison of the three models 

including model classification accuracy and discussion of the different independent 

variables that were found associated with driver injury severity of heavy-vehicles at 

HRGCs. Chapter 6 summarizes this study, presents conclusions from the analysis, provides 

recommendations for safety improvement at HRGCs and proposes future research. 
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CHAPTER 2 LITERATURE REVIEW 

This literature review covers HRGC safety analysis, injury severity of different 

road users at HRGCs and different factors associated with it. It also covers different 

statistical models and methods used to identify key factors related to injury severity at 

HRGCs. 

 Highway-Rail Grade Crossing Safety 

According to the latest FRA national HRGC inventory there are 133,825 public rail 

grade crossings whereas 82,921 crossings are situated on private property in the US. 

Special highway traffic control devices, such as advance warnings, flashing lights, gates, 

stop signs, pavements markings, bells, cross bucks and their combinations are regulated 

for installation by local, state and federal authorities, to ensure safe and efficient operation 

of both highway and railroad traffic system at HRGCs. Crossings with a history of crashes 

can be examined and upgraded to more restrictive warning devices. Railroads and 

transportation agencies work together to close unsafe crossings or grade-separate them with 

the goal to balance cost with risk reduction. Nelson (2010) encapsulates many strategies 

currently in use for reducing the risk of crashes at grade crossings. These include upgraded 

lights and gates, alternate technologies such as in-pavement flashers, and closure and 

consolidation. 

The North Carolina DOT (NCDOT) and Illinois DOT (IDOT) implement the sealed 

corridor concept on 216 and 311 HRGCs respectively (Bien-Aime, 2009, Hellman and 

Ngamdung, 2009). This concept was developed as a way to upgrade conventional rail lines 

to accommodate higher-speed passenger trains. FRA requires crossings to have approved 
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barrier systems that can prevent infiltration of motor vehicles. Obstacle detection systems 

are also recommended to alert oncoming trains if a motor vehicle is stuck on the tracks. 

The use of appropriate technologies and its requirements are summarized in the document 

“Highway-Rail Grade Crossing Guidelines for High-Speed Passenger Rail” (2009). 

NCDOT projected that the implementation of the sealed corridor concept saved 19 lives 

between 2004 and 2009. As mentioned earlier, the goal of obstacle detection systems is to 

identify motor vehicles or persons on the crossing and warn approaching trains in time to 

allow train stoppage (Glover 2009). Glover discussed that obstacle detection should 

provide a feasible way to attenuate grade crossing risk. However, due to short amount of 

time for the system to react and the train to stop, there may be limited benefits. Hall (2007) 

on the other hand suggested that benefits of an obstacle detection system may still exist 

although it may not necessarily prevent crashes at HRGCs as trains may possibly slow 

down reducing crash severity. 

Low-cost warning devices provide similar level of safety as conventional devices; 

in this respect Hellman and Ngamdung (2010) demonstrated several low-cost warning 

devices for HRGCs that satisfied FRA’s requirements. Several studies have been 

conducted to identify the reactions of different people to warning signs at HRGCs (Lenne 

et al., 2011, Tey et al., 2011a, Tey et al., 2011b). Drivers exhibit lower compliance at 

passive crossings in response to warning signs than at active crossings. The addition of 

warning signs, especially active warning signs has reduced crashes at HRGCs. Chadwick 

et al., 2014 performed in-depth analysis of relevant research through an extensive literature 

review and addressed safety enhancing strategies at HRGCs as well as limitations of those 

strategies.  
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 Injury Severity 

Safety at HRGCS is a significant concern because the severity of crashes at these 

locations is usually higher than those reported at non-HRGCs. Although many studies have 

been conducted on crash injury severity analysis, the majority of the research published is 

on injury severities on road segments or intersections. 

Most of the research focused on HRGCs used MNL, OP, Ordered Logit (OL) and 

mixed logit model (mixed generalized logit model) to identify different aspects of crash 

injury severity at level crossings. Hu et al. (2010) conducted a study in Taiwan using 592 

highway-rail crossings. A generalized logit model was estimated using different 

characteristics of crossings, highways, railway traffic controls and land use. Results 

indicated that the likelihood of more severe crash injuries increased with an increase in the 

number of trucks and daily trains. Highway obstacle and separation detection devices were 

also found to be associated with more severe crash. A latent segmentation based ordered 

logit model was developed by Eluru et al. (2012) using the FRA crash data (1997-2006). 

In this model, HRGCs were assigned probabilistically to different segments based on their 

characteristics with a separate injury severity component for each segment. The results 

indicated that time of the crash, the presence of snow and/or rain, driver age, driver 

behavior before the crash and vehicle role in the crash were the key factors influencing 

injury severity. 

Hao and Daniel (2013) determined different factors influencing driver’s injury 

severity at HRGCs, using OP model by utilizing FRA 2002-2011 data. Factors related to 

higher injury severity of vehicle driver at HRGCs included adverse weather conditions, 

low visibility, train and vehicle speeds greater than 50mph, highways with AADT over 
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10,000, crashes reported in open areas, and crashes involving trucks and semi-trailers. 

Russo and Savolainen (2013) used an ordered logit model using the FRA data to identify 

different factors of rail, highway, traffic and driver characteristics associated with the 

frequency and injury severity of HRGCs crashes. Factors that were found to be positively 

associated with more severe injury included females, drivers aged over 60 years, motorists 

behavior: did not stop at crossings and trains with speed greater than 60 mph. A MNL was 

used by Fan and Haile (2014), to identify various factors that increased injury severity of 

crashes at HRGCs by using the FRA 2005-2012 crash data. Drivers aged 25 years and 

older, pickup trucks and crossing surfaces with concrete or rubber were found related to 

more severe crashes. Foggy and snowy weather conditions, truck-trailers, certain land 

development types and higher AADT were found associated with less severe crashes. 

A study was conducted in Australia to identify the effect of active and passive 

controls, in which participants drove the Monash University Accident Research Center 

(MUARC) advanced driving simulator for 30min. The study found that traffic signals at 

HRGCs did not appear to offer safety benefits beyond those provided by the use of flashing 

lights, the reduction in vehicle speeds at crossings with flashing lights was greater than 

crossings with signals. It was concluded that vehicle speed was significantly lower when 

approaching a stop sign, compared to both red flashing lights and traffic signals (Lennéet 

al. 2011). Hao et al. 2016 identified different factors affecting driver injury severity of 

vehicle driver at highway-rail grade crossing under different weather conditions using 

mixed logit model. The result showed that injury severity was more prevalent in crashes 

involving vehicles or trains with high speeds. Light condition and unpaved surfaces also 

increased injury severity. 
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Freight transport by rail and road (trucks) has increased, and will likely keep on 

increasing in the future. As a result, more and more trucks will surmount HRGCs, thereby 

increasing the chances of conflict betweet trains and trucks. Several studies conducted on 

safety at HRGCs have identified heavy vehicles as one of the factors contributing to HRGC 

crashes (Hu et al. 2010, Hao and Daniel 2013, Fan and Haile 2014). Due to the disparity in 

mass between train and motor vehicles, the impact is usually extensive leading to traumatic 

scenes. A recent trend of heavy vehicle involvement in these crashes, in Australia at least, 

has led to risk the train and its passengers, in addition to the road vehicle, with the potential 

for catastrophic outcomes (Australian Transport Safety Bureau, 2008). With growing 

numbers of longer and heavier freight vehicles using the road network, coupled with 

increased train services and speeds, this catastrophic risk may be increasing. A study found 

that the passing time for heavy-vehicles at rail crossing is about four time greater than the 

passing time of an automobile at the same location. Due to its physically large size and 

weight, the behavior of large vehicles at HRGCs is different than other motor vehicles, 

hence the topic requires an investigation that can identify the potential factors associated 

with truck driver injury severity. Limited research was found on safety analysis of trucks 

at HRGCs, few studies have been conducted on driver behavior at grade crossing and the 

type of violations. The majority of reviewed research found was focused on general 

highway traffic that includes passenger cars, buses, trucks, motorcycles etc. Highway-rail 

safety studies are relatively few and heavy-vehicle safety at grade crossing is even more 

under-explored. 

Human errors are primarily considered as a cause of railway crossing crashes. A 

study conducted in Australia focused on understanding the design issues and behavior 
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issues that affect at-grade crossings safety and may cause heavy vehicle-train collisions by 

conducting a series of group discussions. A selected group of train and truck drivers were 

selected for the discussion, it was concluded that the vehicle driver visibility (line of sight 

& angles of approach) and effective vehicle clearance (impeded acceleration, length of 

carriage maneuverability) was affected by the configuration of level crossings. However, 

the driver compliance towards violation of crossing protocols was often due to saving time 

or due to high familiarity with the crossing (Davey, Jeremy, et al 2008). 

Ishak et al. 2011 introduced Petri nets- a graphical and mathematical modeling tool 

in assessing risk at HRGCs when heavy vehicles were passing through intersecting areas. 

Results indicated that factors associated with heavy vehicle collisions at level crossings 

included traffic level of service (LOS), the percentage of heavy vehicles and the distance 

of grade crossing to or from the nearest intersection (Ishak et al. 2011). Driver behavior 

was identified as one of the potential factors in crashes, especially truck driver behavior, 

which was not only different than passenger drivers but more critical due to long hours of 

driving, sleep factor, consciousness, frustration level etc. The behavior of truck driver led 

to violations of traffic laws, hence increasing the risk of a crash. 

A study was conducted on the frequency, type of crossing gate-related violations 

by truck drivers and the contributing factors at gated HRGCs in Nebraska (Khattak and 

Miao 2012). The analysis indicated that violations increased at crossings with longer time 

between onset of flashing lights and train arrivals and with greater truck traffic at the 

HRGCs. The results also indicated that most of the violations occurred during night time. 

Jun Liu et al (2016), conducted a detail safety analysis of truck involved crashes, to identify 

the factors associated with driver’s behavior before the collision. The study also explored 
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several key factors on different crash outcomes. The results indicated that truck-involved 

crashes occurring at HRGCs equipped with gates were generally less severe, compared to 

those occurring at crossings without gates. The correlates of pre-crash behaviors revealed 

that the truck drivers at crossings without gates, are more likely failed to make an 

appropriate stop, or proceeded after a short stop, or even stopped on crossing before crash 

occurance. 

 Potential Modeling Approaches 

 

 Injury severity data may be considered as nominal or ordinal and relevant 

modeling techniques may be used. Frequently used nominal models include MNL, NL and 

mixed logit models (RPL model), while GOL model, OL, and OP models are commonly 

used ordinal models. The modeling approach for injury severity depends on the quality and 

quantity of data available for the analysis. A number of data characteristics and its 

limitations have been identified in past that may be critical in development and application 

of a statistical model. Hence it is important to identify the most suitable model to overcome 

data limitations to the extent possible. 

Some of the commonly used models for modeling injury severities in the past 

decade are OL/OP model (O’Donnell and Connor, 1996; Kockelman and Kweon, 2002; 

Kweon and Kockelman, 2003), MNL (Carson and Mannering, 2001; Lee and Mannering, 

2002; Khorashadi et al., 2005) and NL (Lee and Mannering, 2002). Abdel-Aty (2003) 

compared OP, MNL and NL model, in addition to identifying different factors associated 

with injury severity at intersections and roadway sections. The OP model was 

comparatively simple and produced better results in terms of model’s goodness of fit and 
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number of significant variables entered in the model specification. Abdel-Aty and Abdel 

Wahab (2004) compared results from an Artificial Neural Network (ANN) and an OP 

model. The test of difference in proportion revealed that ANN showed more accurate 

prediction capabilities and performed better than the OP model.  

A bivariate response model was used by Yamamoto and Shankar (2004) to capture 

different levels of crash severity and most severely injured passengers. Yau (2004) used a 

logistic regression model with stepwise variable selection to identify different factors 

affecting the severity of single-vehicle traffic crashes. To count for unobserved effects 

associated with driver and highway characteristics, Milton et al. (2008) used mixed logit 

model. Mixed logit model overcomes the limitation induced by MNL model i.e. allowing 

heterogeneous effect and correlation in unobserved factors. Hu et al. (2010) developed a 

generalized logit model by using HRGC data in Taiwan. 

A study conducted by Haleem and Abdel-Aty (2010) on traffic crash injury severity 

at un-signalized intersection concluded that binary probit model showed better goodness 

of fit compared to the disaggregated OP and NL models. Yasmin and Eluru (2013) 

compared different ordered and unordered response models for driver injury severity of 

crashes involved in traffic. The models used for nominal response were MNL, NL and 

order generalized extreme value logit (OGEV) where as OL and GOL model were used for 

the ordinal response framework. The criteria used to compare performances of the 

estimated models included in the study are; Akaike information criterion corrected (AICc), 

Bayesian Information Criterion (BIC) and Ben-Akiva and Lerman’s adjusted likelihood 

ratio (BL) test. It was found that OGEV and NL models reduced to simple MNL model. 

However, GOL model comparatively performed better in terms of data fit than OL and 
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MNL models. Eluru (2013) also examined the performance of the GOL and MNL models 

by examining the issues by data generation perspective. In conclusion, the author discussed 

that it was not possible to conclude which of the two models was better without considering 

the dataset structure. The results indicated the emergence of the GOL model as a true 

equivalent ordered response model to the MNL model for ordinal discrete variables. 

Yasmin et al. (2014) attempted to identify a better model framework for injury 

severity of pedestrian by comparing three order response models: OL model, latent 

segmentation based ordered logit model (LSOL) and GOL. The results indicated that LSOL 

performed better than the GOLand LSOL model for identifying factors associated with 

different injury severity levels of pedestrians. The effect of sample size on model 

development was investigated (Ye and Lord 2014) by using a Monte-Carlo analysis based 

on simulated and observed data. The three models estimated in the study are OP, MNL and 

RPL models and the criteria used for comparison of these three models are: total root-

mean-square-error (RMSE) and maximum APB and absolute-percentage-bias (APB).The 

results indicated that RPL model required largest sample size than the other two models 

whereas OP model required the smallest. In terms of model interpretations, RPL model 

performed better than the MNL model, whereas MNL model had superior interpretation 

power compare to the order probit model. However, the OP model had better goodness-of-

fit than the other two models (RPL & MNL), and the RPL had better goodness-of-fit than 

the MNL model.  

Zhao and Khattak (2015) recenly used the FRA crash data to identify different 

variables associated with driver injury severity of train-motor vehicle crashes at grade 

crossings. The study compared OP, MNL and RPL models, in an attempt to identify a 
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suitable model to explore factors related to different severity levels of driver in train-

vehicle crash. The following criteria was used for model superiority: number of statistically 

significant parameters, model goodness-of-fit, model’s interpretation power and 

classification accuracy. It was concluded that the RPL model and the MNL model 

performed better for injury severity analysis of motor vehicle drivers involved in crashes 

at highway-rail grade crossings. 

 Gaps in Literature 

The majority of previous research were focused on general highway traffic that 

included passenger cars, trucks, buses, motorcycles, etc. HRGC safety studies of specific 

types of vehicles are relatively few and heavy vehicle safety at grade crossing is even more 

under-explored. There is a noticeable difference between different road users, specifically 

between passenger vehicles and heavy vehicles such as length and weight. This may affect 

the time, a heavy vehicle takes to cross the crossing and its impact on the level of severity, 

if a collision occurs between train and heavy vehicles specifically in the presence of any 

hazardous materials, the result of collision can be catastrophic. There is a research gap for 

investigation of injury severity of heavy vehicles at HRGCs, some of the limited literature 

previously found did not consider all the characteristics in the investigation. Previous 

studies majorly included driver and operational characteristics. 

Because there is limited research available on heavy vehicle injury severity at 

HRGCs, it provides an opportunity to investigate different statistical models utilizing the 

FRA HRGC crash dataset to identify the modeling framework suitable for the injury 

severity of heavy-vehicle crashes at HRGCs. For dependent variable (i-e injury severity) 

with multiple response outcomes, injury severity is divided into three levels (PDO, injury, 
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fatal) from low to high. This study considered unordered (i.e. treat injury severity as 

discrete outcomes and neglect ordering in the severity) response models that were found to 

be vital in the literature by overcoming some of the limitations of the available dataset. 

This study will use MNL, NL and mixed logit model (RPL) for unordered response 

modeling of injury severity of heavy-vehicle crashes at level crossings. 
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CHAPTER 3 METHODOLOGY 

To achieve the objectives of this study, it is important to identify a suitable model 

for truck driver injury severity. This chapter presents model selection criteria and 

introduction of each model considered in this research. A model selection discussion is 

presented in Section 3.1. A brief introduction of crash injury severity models used in this 

study is presented in Section 3.2.  Section 3.3 provides the estimation procedure for each 

model. Details of model estimating and results are provided in Chapter 4. 

 Model Selection 

A variety of methodological techniques have been employed to analyze crash injury 

severity data. The statistical methods applied by researchers have primarily relied on 

methodological issues associated with the data. Because driver injury severity is discrete, 

discrete outcome models were selected for this study. The three models selected for this 

study are: MNL (Multinomial Logit) model, NL (Nested Logit) model and a mixed logit 

model, also known as RPL (Random Parameter Logit) model. The MNL model was 

selected because it is by far the most widely used due to its simplicity and ease of 

estimation. A prominent limitation of this model is a property known as “Independence of 

Irrelevant Alternatives (IIA)” and identically distribution (IID) assumption. 

The IIA property states that the ratio of the choice probabilities of any pair of 

alternatives is independent of the presence or absence of any other alternative in a choice 

set. A particularly important behavioral implication of IIA is that all pairs of alternatives 

are equally similar or dissimilar. This amounts to assuming that all the information in the 

random components is identical in quantity for the set of attributes that are not observed 
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and the relationship between pairs of alternatives and hence across all alternatives (IID 

condition). In addition to not accounting for the ordinal nature of injury severity, the MNL 

is particularly vulnerable to correlations of unobserved effects from one injury severity 

level to the next. This causes a violation of the model’s IIA property (Washington et al., 

2011). The IIA property neglects unobserved heterogeneity which leads to an inferior 

model specification and a spurious interpretation of the model. 

The NL models offer a partial relaxation of the IID and IIA assumptions of the 

MNL model, this relaxation occurs in the variance components of the model together with 

some correlations within subsets of alternatives, but the IID problem still exists within the 

groups, however the NL model is relatively straightforward to estimate and offers the 

added benefit of being a closed form solution. RPL model is more complex model and it 

offers relaxation of the IIA property. The three models mentioned in this sections are used 

to achieve the best results possible. 

 Multinomial Logit Model 

 The MNL model is a traditional discrete outcome model that does not 

explicitly consider the ordering nature that may be present in the outcomes. It is a special 

case of a general model of utility maximization. The general framework used to model the 

degree of injury severity of a crash begins by a linear function Uij. According to NLOGIT 

version 5 (Greene 2002) reference guide, consider driver i in a crash experiencing an injury 

severity level j, the severity function for the outcome is: 

ijijjjij XU    (1) 

Where, 

 Uij = function of covariates that determines the severity level j for driver i 
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 ∂j = constant parameter for injury severity level of j 

 βj = vector of coefficients to be determined for severity level j 

 Xij = vector of independent variable values for driver i for the severity level of j 

Ɛij = represents a random error term 

 The error terms are assumed to be independent and identically distributed with 

identical type 1 extreme value distribution. Based on the above specification, let Pi(j) 

represents the probability of driver i experiencing injury severity level j in a crash. The 

probability of MNL model is expressed in eq-2, where EXP represents the base of natural 

logarithm. 
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 Nested Logit Model 

A class of models known as generalized extreme value models (GEV) were 

developed by McFadden (1981) to address the IIA limitation. The NL model is one of the 

commonly used model in this class. It is the generalization of the MNL model that is based 

on the idea that some alternatives may be joined in several groups called nests. The error 

term may represent some correlations within the nest, but different nests are still 

uncorrelated. It overcomes the IIA limitation of the MNL model and potentially improves 

upon the sequential logit model by allowing for correlations among error terms across 

different severity levels (Savolainen et. al 2011). Assuming the disturbances are 

generalized extreme value distributed, the NL model can be written as (McFadden, 1981): 
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Where, 

 Pn = unconditional probability of crash n resulting in injury outcome i 

 β = vectors of estimable parameters  

X = it represents the vectors of measurable characteristics that determine the 

probability of injury severities.  

Pn(j/i) = the probability of observation n have injury severity level j conditioned on 

the outcome being in the outcome category i 

For example in the nested structure shown in Fig 4, the outcome category i will be 

“injury” and Pn(j/i) would be the binary logit model of injury severity outcomes; Non-fatal 

(injury) and fatal, whereas j is the conditional set of outcomes i-e conditioned on i and i is 

the unconditional set of outcome categories (the upper two branches of fig 4 i-e no injury 

& injury). 

 LNin is the exclusive value (logsum), and ø is an estimable parameter. This 

equation system implies that the probability (unconditional) of having outcome j is, 

   i)|(*)( jPiPjP nnn   (6) 
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The marginal distribution for term Ɛs are still univariate extreme value, but there is some 

correlation within the nests. 1-λ is a measure of the correlation i.e. λm = 1 indicates no 

correlation.  

 Mixed Logit Model 

Mixed logit model also called random parameter logit model (RPL) or hybrid 

model is a relatively recent development for the analysis of discrete data (McFadden and 

Train, 2000). The random parameter model addresses a weakness of standard MNL model 

by allowing parameter values to vary across observations. For the derivation and 

application of the standard MNL model, it is assumed that parameters are fixed across all 

observations. When this assumption is incorrect, the parameter estimates and outcome 

probabilities are inconsistent (Washington et. al 2010).  

Random parameter logit model is appropriate to account for the possibility of 

variation of different parameters across individual observations. Following the work 

presented by McFadden and Train (2000) to develop the RPL modeling approach, consider 

a function determining discrete outcome probabilities as; 

 Tin = βiXin + Ɛin (7) 

Figure 4 NL model structure 
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Where, 

βi = vector of estimable parameter for discrete outcome i  

Xin = a vector of the observable characteristics (covariates) that calculate discrete outcomes 

for observation n,  

Ɛin = disturbance term.  

As mentioned in the previous section (eq-2), the standard MNL form can be written as 
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Where, 

 Pi (j) = the probability of observation i having discrete outcome j (j denoting all possible 

outcomes for observation n). By defining a mixed model (with a mixing distribution) 

whose outcome probabilities are defined as Pi (j) with 

   dfjPjP ii )|()()(  (9) 

Where )|( f  represents the density function of β and φ, refers to the mean and variance 

of the density function, all other terms are previously defined. By putting the values of eq-

7 in eq-8 we get 
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Equation 8 indicates that the mixed logit probabilities Pi (j) are the weighted 

average of the standard MNL probabilities with the weights determined by the density 

function. In case of )|( f =1, the model reduces to simple MNL. The term β of eq-8, 
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can now account for observation-specific variations of the effect of X on outcome 

probabilities, with the density function )|( f  used to determine β. Different types 

distribution (normal, uniform, triangular distribution) can be used as a density function for 

β. RPL probabilities are thus a weighted average of different values of β across different 

observation where some elements of parameter vector β are random parameters and some 

are fixed. 

 Modeling Procedure 

This section provides a general procedural approach to analyze and estimate the 

three models used in this study. The three models were estimated by using the NLOGIT-5 

software package (Econometric Software, Inc). NLOGIT is widely used for data analysis 

in different fields such as transportation, economics, marketing, statistics and other social 

sciences. The details of estimating each model will be discussed in Chapter 5, however, 

the reader can refer to Applied Choice Analysis by Hensher et. al (2005).  

The estimating procedure using NLOGIT of all the three models used in this study 

are discussed in detail. An initial model with independent variables was calibrated, each 

model was then revised by removing the non-significant variables (P-value > 0.1) and 

adding new variables. Fig 5 represents a general idea of the approach used to estimate each 

model. 
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Figure 5 General procedure adopted for model estimation 
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CHAPTER 4 DATA PROCESSING 

The dataset utilized in this study was extracted from the FRA highway-rail grade 

crossing inventory and crash databases. This chapter focuses on the data used for the 

analysis, the manipulation of the data extracted from the FRA database into the final dataset 

used for model estimation. The first section (4.1) of this chapter introduces the FRA 

database. This section introduces the different database files used to extract the information 

related to crash data. Section 4.2 details the merging procedures of the different files and 

data clean up. It further details the description and frequencies of the dependent variable 

and all independent variables utilized in this study. 

 Data Source 

The FRA started an original national highway-rail crossing inventory database on 

January 1, 1975. This database includes both current and historical records with 80,000 to 

100,000 crossings updated per year (Woll, 2007). The database contains three major data 

files; highway-rail crossing accident file, highway-rail crossing history file and highway-

rail crossing inventory file. These three files are linked to each other by a unique crossing 

ID number that is common amongst the three files. 

The highway-rail crossing accident database provides a history file of all the 

crashes reported at highway-rail crossings and the surrounding conditions at that time. This 

sub-database consists of records of all yearly crashes starting from 1975 to-date. This file 

has details such as speed of train and vehicle involved in the crash, type of train, type of 

materials carried (by freight vehicles), type of vehicle, crash circumstances, time of day, 

environmental conditions, and driver attributes etc. 
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The highway-rail crossing inventory file provides current crossing inventory 

information, which reflects the current state of each crossing with reference attributes. The 

highway-rail crossing history file reflect the changes made to the crossing including a 

reason for the update and an effective date of the update. The history file contains previous 

records of every crossing before any changes were made to the crossing, this is helpful to 

understand or to get inventory information of crossing before the changes were made at a 

particular crossing. The inventory file contains information such as average annual daily 

traffic (AADT), active and passive warnings, warning type, area type, geometric 

characteristics and coordinates of the crossings. 

In order to get inventory information for the year a crash occurred, both highway-

rail crossing inventory and highway-rail crossing history files were utilized. The data was 

substantially checked and cleaned for consistency, some IDs were missing in the highway-

rail crossing inventory but were found in the accident files. In such case, the crossings were 

removed from the final data set. 

 Data Formulation 

Initially, crashes at highway-rail crossings were extracted from highway-rail 

crossing accidents database for the year 2007-2015. The unique ID number between the 

three data sets were then used to extract inventory information for each accident/incident. 

The total number of accidents/incident were 19,689 and this number includes all kinds of 

crashes reported at crossings such as auto truck, passenger vehicles, pedestrians, school 

bus, motorcycle, at-grade and grade separated crashes etc. Heavy-vehicle (truck & truck-

trailer) involved crashes at grade crossings were then extracted from the dataset, which 
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contributed to about 15.2% (2,980) of the total accidents/incidents occurred at crossings 

for the year 2007-2015.  

The heavy-vehicles dataset was then divided into two subsets; subset-I consisting 

of crashes from the year 2007-2014 with a total of 2664 observations (each observation 

representing a single crash) for model estimation. Subset-II consisted of 315 crashes 

(10.6% of total heavy-vehicle crashes from 2007-2015) for model validation . Fig 6 shows 

the steps towards the final dataset used in this study. 

 Data Description 

The dependent variable i.e., injury severity consisted of three severity levels, 

property damage, injury and fatal. The three levels were coded as 0-property damage 

Figure 6 Data processing of HRGC crash data (2007-2015) 
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(PDO), 1-injury (INJ) and 2-fatal. The estimating data set (subset-I) consisted of 2,005 

PDOs (75.26%), 525 injury (19.7%) and 134(5%) fatal crashes. Table 2 and 3 presents 

details of some of the variables used in model estimation.  

The parameters used in modeling were mostly related to crossing geometric 

characteristics, traffic-related variables such as different types of passive and active 

controls, truck driver attributes, environmental aspects and some crash specific details such 

driver behavior, circumstances of the crash, hazardous materials released if carried by 

either train or truck involved in the crash etc. Details of some important variables based on 

the analysis are presented in table 2 and 3. The more detailed form of these tables can be 

found in the appendix which includes all the parameters used in the process of model 

estimation. 
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Table 2 Descriptive statistics for the variables incorporated in the injury severity models 

Variable Type Description and Coding

Frequency 

Yes=1  

No=0

Mean
Standard 

Deviation

PDO 2005 - -

Injured 525 - -

Fatal 134 - -

Truck 832 0.31 0.46

Truck-trailer 1832 0.69 0.46

Vehicle speed (mph) NA 7.79 11.54

Yes 711

No 1950

Train speed (mph) NA 30.67 18.36

Yes=1 97

No=0 2566

Driver age (years) NA 45.70 13.61

Male 2472 0.96 0.04

Female 96 0.19 0.19

Driver went around the gates 199 0.07 0.26

Standing RR equipment/ did not stop 1364 0.51 0.50

Stopped on crossing 784 0.29 0.46

Went around/ through temporary 

barricade
317 0.12 0.32

Yes=1 1091

No=0 1573

Yes=1 1430

No=0 1183

Yes=1 74

No=0 2590

Yes=1 271

No=0 1163

Yes=1 1369

No=0 1247

Yes=1 1375

No=0 1289

Yes=1 383

No=0 2281

Yes=1 1275

No=0 1349

Yes=1 1894

No=0 770

Gates available (indicator) 0.92 1.19

Crossbuck assemblies available indicator 0.71 0.45

Passive controls

Stop sign available 0.26 0.66

Pavement marking indicator (stop line/RR xing 

symbols)
0.49 0.50

0.39

Indicator for availability of bells 0.52 0.50

Train detection system indicator 0.52 0.50

Dependent Variable

Truck driver injury severity

Independent Variables

Primary obstruction of track view 0.04 0.19

Vehicle type

Hazardous materials carried 0.27 0.44

Railway Characteristics

Motor Characteristics

Driver Attributes

Driver gender

Active controls

Traffic Characteristics

Truck driver behavior/action of highway user

Is track signaled 0.55 0.50

Highway traffic signal controling crossing 0.03 0.16

Nearby hwy intersection have traffic signals 0.19
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Table 3 Descriptive statistics for the variables incorporated in the injury severity models 
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CHAPTER 5 DATA ANALYSIS AND RESULTS 

Section 5.1 presents the model estimation procedure of each model and its results. 

Section 5.2 shows comparisons between the three models based on the number of 

significant parameters, Akaike Information Criteria (AIC), log-likelihood function and 

model prediction accuracy. Section 5.3 presents discussion pertaining to the results 

obtained from the modeling and comparison of the three models. 

 Model Estimation 

NLOGIT 5 was used for estimating the models by using data subset-I, consisting 

of 2,664 observations from 2007-2015. The dependent variable representing injury severity 

levels of truck driver was named “injury”. For MNL model, NLOGIT utilized single line 

data i.e., each observation representing a single crash. However, the data was converted to 

multi line format for NL and RPL model i.e., three rows represented each crash with each 

row representing an injury severity level. Therefor for NL and RPL models, the number of 

rows were 7992. The independent variables included in the model estimating process were 

based on previous research and their statistical significance in the modeling process. 

5.1.1 Multinomial Logit Model 

The category of PDO (coded as 0) was set as the baseline category for the MNL 

model. Different independent parameters were tried and those statistically not significant 

were removed from the final model. Model estimation removed observations with missing 

data and the final output is based on 2,156 observations. 

Table 4 presents the results of final MNL model estimated for the injury severity 

of truck drivers at HRGCs. This table contains the estimated coefficients of the significant 
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parameters and the standard error of these coefficients. A positive coefficient indicates 

increased likelihood toward a particular crash injury severity category compared to the no 

injury (PDO).  

The results indicate that driver’s injury severity increased with higher train speed 

and vehicle speed (truck, truck trailer); both findings being rational as higher speeds are 

known to result in severe injuries. After examining both rural and urban area, it was found 

that higher injury severity was more likely in rural areas. Since this study is focused on 

truck and truck-trailers crashes, the model revealed that trucks were more vulnerable to 

higher injuries compared to truck-trailers. Freight transport (either train or heavy vehicle) 

carrying hazardous materials was positively associated with injury severity of truck drivers. 

Thus carrying hazardous materials increased the likelihood of more severe crashes. After 

examining different driver characteristics, driver age and driver behavior while crossing 

were found statistically significant. Driver age was strongly associated with fatal crashes 

at 95% confidence level, indicating that older truck drivers are more vulnerable to fatal 

crashes.  

Driver behavior that significantly increased the likelihood of severe crashes were 

crossing violation at HRGCs; the motorist attempts to drive around the gates when gates 

are closed. However, the presence of gates at the crossing was found to statistically 

significantly reduce the likelihood of a severe crash at a significance level of 95%. HRGCs 

with a minimum crossing angle of 600-900 were found positively associated with crash 

severity outcome injury but negatively associated with fatal crashes.  
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Table 4 MNL model results 

Multinomial Logit Model 

Log likelihood function -1345.42    

Chi squared 463.98    

McFadden Pseudo R-squared 0.147    

Akaike Information Criterion (AIC) 2734.8    

No. of observations 2156    

Injury Severity Coefficient Standard Error z Prob. Z>Z 

Injury Severity Level : Injury 

Constant -3.21317 0.30515 10.53 0.000 

Hazardous Material  0.32804 0.12427 2.64 0.0083 

Speed of Train 0.03183 0.0035 9.08 0 

Rural Area 0.33552 0.12854 2.61 0.009 

Indicator for Gates availability -1.03754 0.15556 -6.67 0 

Motorist Behavior: the motorist went 

around the gates 
1.15276 0.22236 5.18 0 

Speed of Vehicle (truck/ truck trailer) 0.01934 0.00484 4 0.0001 

Age of Driver N/S 0.00409 0.38 0.7003 

Smallest crossing; 600 – 900 0.3439 0.164 2.1 0.036 

Truck indicator in crash 0.88658 0.12072 7.34 0 

Train Detection System indicator -0.2393 0.12902 1.86 0.0636 

Injury Severity Level : Fatal 

Constant -7.25993 0.60271 -12.05 0 

Hazardous Material  0.40507 0.21565 1.88 0.0603 

Speed of Train 0.06468 0.00637 10.15 0 

Rural Area 0.81145 0.26517 3.06 0.0022 

Indicator for Gates availability -1.07314 0.30452 -3.52 0.0004 

Motorist Behavior: the motorist went 

around the gates 
1.50018 0.37524 4 0.0001 

Speed of Vehicle (truck/ truck trailer) 0.03737 0.00756 4.94 0 

Age of Driver 0.0225 0.00695 3.24 0.0012 

Smallest crossing; 600 – 900 N/S 0.25432 -0.75 0.4518 

Truck indicator in crash 1.48149 0.208 7.12 0 

Train Detection System indicator -0.0738 0.23991 0.31 0.7582 

Note: dependent variable = injury severity of truck drivers is coded as; PDO = 0, injury=1 and fatal = 2 
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5.1.2 Nested Logit Model 

The NL model permits partial relaxation in the IID assumption of the MNL model 

by permitting for differential variation in the unobserved effects across partitions (nests) of 

alternatives but not with in same partitions. That is with only a minor complexity of model 

estimation (Hensher et. al 2005).The NL model is estimated in the form of a tree (i.e., 

alternatives are separated in different nests). NLOGIT has the ability to estimate NL 

models with up to four nest levels. However, the majority of NL models estimated as part 

of choice studies have only two levels or in some cases three levels. The three highest 

levels of NL tree structure are named, from the highest level to the lowest level, as trunk, 

limbs, and branches. This general concept of NL model can be found in the Applied Choice 

Analysis (Hensher et. al 2005) and Statistical and Econometric Methods for Transportation 

Data Analysis (Washington et. al 2010). 

 Different tree structure can be formulated in NL models, some branches can even 

have one alternative called degenerate branches. There exists a unique Inclusive Value (IV) 

parameter for each trunk, limb and branch specified as part of the tree structure in the NL 

model. For model estimation, one can constrain or normalize several of the IV parameters. 

Different tree structures were tested to develop the best possible structure for NL 

model estimation. The tree structures tested in this study are shown in Fig 7 and the final 

NL model tree structure with a degenerate branch selected is Fig 7(d). It is common in 

many applications to have partition or nests with only one alternative within the nest 

referring to it as a degenerate branch and we had a similar situation. The tree structure 

performing better has a degenerate branch (No injury) with only one alternative i-e PDO. 

Whereas the nest of branch “Injury” has two alternatives; non-fatal and fatal injury. 
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Given that PDO is the only alternative with in the nest, it follows that the 

conditional choice probability at level one for PDO must be equal to 1. Table 5 presents 

the details of final NL model estimated. The NL model was estimated using an estimation 

technique known as Full Information Maximum Likelihood (FIML). For NL models with 

two to four levels, it is common to use simultaneous estimation techniques which provide 

statistically efficient parameters estimates. The simultaneous estimation of braches, trunks 

and limbs of NL model is achieved using FIML (Hensher et. al 2005). Initially, for testing 

different independent variables, the maximum number of iterations were set to 40. 

However, the maximum number of iterations were then increased to 200 for the final model 

estimation. As mentioned earlier, NLOGIT feeds on a number of observations based on 

the number of outcomes. Since there were three outcomes for the dependent variable, the 

Figure 7  Different tree structures examined for NL model estimation 
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number of observations were three times, thus across all 2644 choice sets (observations), 

there was a total of 7992 alternatives. 

As per requirement for the degenerate branch, “No Injury” (table 5) was set to 1. 

To test if the IV value is statistically different than 0 and 1, two test are required. The tests 

are undertaken to see if there exists an evidence for a partition of the tree structure at this 

section of the model. This procedure was repeated by using the different tree structures 

mentioned earlier. To identify if the IV is statistically different than zero at 95% confidence 

level (alpha=0.05), the IV estimated is divided by its associated standard error and is 

compared with the critical value of ± 1.96. If the parameter is found not to be significant 

(zero), the parameter remains in the 0-1 bound. By doing so, it was found that the parameter 

is significantly different than zero (7.757/1.6668=4.65 > 1.96).  This indicates that the two 

scale parameters taken from different levels to form the IV parameter are not statistically 

different. 

A second test is required to see if the parameter estimate is different than 1 (Greene 2005). 

This is done by using the Wald-test, which is undertaken with a simple modification to the 

test conducted to determine whether the parameter is statistically equal to zero. 

The IV parameter for “Injury” branch was found to be statistically different than 

zero. To determine if it is different than 1, eq-9 is used. By comparing the test-statistics of 

4.05 to the critical value of ± 1.96 (i.e., at alpha equal to 0.05), we reject the null hypothesis 

that branch (injury) is statistically equal to one. This indicates that the two branches should 

not collapse into a single branch. 

1  Wald-test = 
𝐼𝑉𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−1

𝑆𝑡𝑑.𝑒𝑟𝑟𝑜𝑟
 

 

(11) 
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Wald-test = 
7.75720−1

1.6668
   = 4.05 

The results obtained from the NL model had some similarity with the MNL model 

results. In addition, some new parameters were also found to be statistically significant. 

The total number of independent parameters found to be significant at 90% confidence 

interval are 14.The results indicate that crossing angle of 600-900 and motorist behavior 

(went around the gates) were positively associated with severity level; injury. Whereas 

train and vehicle speed, hazardous materials carried, the age of truck driver and crashes 

reported to occur in rural area are positively associated with fatal crashes. Crashes 

occurring in the rural area and older drives increased the likelihood of more severe crashes. 

Two circumstances of a crash (rail equipment struck highway user and rail equipment 

struck by highway user) were examined and it was found that crash circumstance in which 

highway user (truck/truck trailer) was hit by rail equipment, increase the likelihood of a 

fatal crash. This finding is reasonable as driver’s injuries would be more severe when the 

train (being larger in size) strikes truck or trailer.Other factors that were found positively 

associated with injury severity were; hazardous materials carried, the position of 

truck/trailer i.e., when it was moving over the crossing. Trucks involved in crashes at 

HRGCs were also found more severe. However, the presence of gates and location of 

crossing near the highway (i.e., with in 500ft) decreased the likelihood of severe crashes. 
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Table 5 NL model results 

 

Nested Logit Model 

Log likelihood function -1330.35       

Chi squared 1147.43    

McFadden Pseudo R-squared 0.30131    

Akaike Information Criterion (AIC) 2696.7    

No. of observations 2153     

Injury Severity Coefficient 
Standard 

Error 
z 

Prob. 

Z>Z 

Injury Severity level : Injury 

Constant -0.39718 0.06554 6.06 0.000 

Speed of Train 0.00213 0.00104 2.04 0.0416 

Indicator for Gates availability -0.1086 0.03889 -2.79 0.0052 

Motorist Behavior: the motorist went 

 around the gates 
0.12342 0.04899 2.52 0.0118 

Smallest crossing; 600 – 900 0.04345 0.02628 1.65 0.0982 

Indicator for primary obstruction of track view -0.1050 0.06089 -1.73 0.0845 

Highway near intersection (500ft) -0.0392 0.0203 -1.93 0.0536 

Train Detection System indicator -0.0444 0.0212 2.09 0.037 

Injury Severity level : Fatal 

Constant -3.99 0.4829 -8.26 0 

Hazardous Material  0.19764 0.0755 2.62 0.0089 

Speed of Train 0.0159 0.00348 4.59 0 

Rural Area 0.29178 0.09836 2.79 0.003 

Speed of Vehicle (truck/ truck trailer) 0.00678 0.00312 2.17 0.0297 

Age of Driver 0.00556 0.00254 2.19 0.0287 

Truck indicator in crash 0.61336 0.12303 4.99 0 

Circumstances of Crash: rail equipment  

struck highway user 
0.23114 0.11827 1.95 0.0506 

Position of vehicle: moving over crossing 0.75791 0.18783 4.04 0.0001 

IV Parameter 

NoINJ 1 Fixed parameter 

Injury 7.757 1.6668 4.65 0 

Note: dependent variable = injury severity of truck drivers is coded as; PDO = 0, injury=1 and fatal = 2 
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5.1.3 Random Parameter Logit Model 

The RPL model also known as the mixed logit model offers the ability to overcome 

the limitation imposed by the MNL and NL model, as discussed in Chapter 3. The RPL 

model comparatively represents the latest development in the econometric toolkit available 

to the choice modeler. It provides flexibility to estimate different parameters as random. 

The analyst can test different parameters in the data set for random effects by using the 

function (;fcn) command. Different distribution can be assigned to the random parameters, 

to improve the overall performance of the model. In the RPL model estimation, all the 

independent parameters were first assumed random and both the uniform and normal 

distribution were tested for randomness. The random parameters that were not found 

statistically significant at 90% confidence interval for both normal and uniform distribution 

were then kept as fixed parameters in the model specifications and examined. 

The historic approach used in the estimation of RPL models has been, to use R 

random draws from some derived empirical distributions. However, to get satisfactory 

results a large number of random draws is computationally time-consuming. Another 

limitation cited by using random draws in estimating RPL model is that random draws may 

over-sample (in assigning parameters over the sampled population) from the areas of 

distributions while leaving the other areas of the distribution under-sampled (Hensher et. 

al 2005). To overcome this, a number of intelligent draws methods have been introduced 

which have been shown to provide no discernible degradation in model results.  

Unlike random draws, intelligent draw methods are designed to sample the entire 

parameter space in accordance with the empirical distribution imposed. NLOGIT provides 

two types of intelligent draws; Standard Halton Sequence (SHS) and Shuffled Uniform 
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Vectors (Hess et. al 2003). Bhat (2001) compared the results of models estimated by using 

SHS intelligent draws and random draws. It was reported that by using Halton draws to 

estimate the model, the results can be obtained with only one-tenth of the total number of 

random draws. Thus, SHS intelligent draws were selected for RPL model estimation. 

Initially, the number of Halton draws and iterations were set to 40, to identify significant 

random and fixed parameters at a confidence level of 90% (p-value=0.10). The final model 

was then revised by increasing the number of draws (SHS) and maximum iterations to 200. 

Table 6 presents results of the final RPL model estimated. The original output of NLOGIT 

for the final estimated model can be found in the Appendix-II. 

For injury crash level in the RPL model, vehicle position (i-e stopped on the 

crossing) was found to follow normal random distribution implying that the parameters can 

vary from crash to crash. All other independent variables were restricted to fixed 

parameters. A total of 16 parameters (including random parameter) were found statistically 

significant at overall 90% confidence level. The parameters that were found to increase the 

likelihood of crash severity at 90% confidence level (at alpha=0.05) are; vehicle and train 

speed, crashes occurring in rural area, crossing angle of 600-900, driver age, crash involving 

trucks at HRGCs, hazardous materials carried by either train or road user, motorist 

behavior; went around the gates (violation) and crashes circumstances in which train strikes 

roadway user (truck/truck trailer). However, primary obstruction of track view, crossings 

within 500ft of the highway were found negatively associated with injury severity of 

heavy-vehicle drivers in crashes at HRGCs. These parameters were also found to have 

similar behavior with crash injury severity in MNL and NL model results. Two additional 

variables that were found statistically significant in the RPL model were the position of the 
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vehicle; stopped on crossing (random parameter) and the presence of signal equipment. 

The position of vehicle i.e., the vehicle stopped on crossings seemed to reduce the 

likelihood of crash severity level “injury”. This result appears reasonable in light of the 

common practice of abandoning the vehicle when stalled on a crossing. 

 



49 
 

  

 

 

Table 6 RPL model results 

  

 

Random Parameter Logit Model 

Log likelihood function -1329.9       

Chi-squared 2070.7    
McFadden Pseudo R-squared 0.4377    
AIC 2707.8    
No. of observations 2153    

Injury Severity Coefficient 
Standard 

Error 
z 

Prob. 

Z>Z 

Random parameter in utility functions 

Position of vehicle: Stopped on crossing -1.39064 0.84437 
-

1.65 
0.0996 

Injury Severity level : Injury 

Constant -2.899 0.2165 2.1 0.000 

Hazardous Material  0.36489 0.13203 2.76 0.0057 

Speed of Train 0.03656 0.00424 8.61 0 

Rural Area 0.30245 0.1365 2.22 0.0267 

Indicator for Gates availability -0.83641 0.17072 -4.9 0 

Motorist Behavior: the motorist 

 went around the gates 
0.83721 0.22786 3.67 0.0002 

Truck indicator in crash 0.93508 0.1291 7.24 0 

Speed of Vehicle (truck/ truck trailer) 0.0116 0.00516 2.25 0.0246 

Smallest crossing; 600 – 900 0.3872 0.16674 2.32 0.0202 

Indicator for primary obstruction  

of track view 
-0.72544 0.37753 

-

1.92 
0.0547 

Highway near intersection (500ft) 
-0.27709 0.1208 

-

2.29 
0.0218 

Indicator if track is signaled -0.2904 0.13186 -2.2 0.0276 

Train Detection System indicator -0.3059 0.1349 2.27 0.0233 

Injury Severity level : Fatal 

Constant -9.117 0.66607 
-

13.7 
0 

Hazardous Material  0.45507 0.21652 2.1 0.0356 

Speed of Train 0.06253 0.00642 9.74 0 

Rural Area 0.79671 0.255 3.12 0.0018 

Speed of Vehicle (truck/ truck-trailer) 0.02959 0.00843 3.51 0.0005 

Age of Driver 0.02202 0.00668 3.3 0.001 

Truck indicator in crash 1.46426 0.20902 7.01 0 

Circumstances of Crash: rail  

equipment struck highway user 
0.58321 0.33823 1.72 0.0847 

Position of vehicle: vehicle  

moving over crossing 
1.56492 0.3222 4.86 0 

Distns. Of Standard deviation or limits of triangular 

Position of vehicle: Stopped on crossing 

(Normal distribution) 
1.79577 1.00448 1.79 0.0738 

Note: dependent variable = injury severity of truck drivers is coded as; PDO = 0, injury=1 and fatal = 2 
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 Model Comparison 

The approach for model comparison was adopted from previous research (Abdel-

Aty and Abdel Wahab, 2004; Yasmin and Eluru, 2013; Zhao and Khattak, 2015). The 

following criteria were used in model comparison: number of significant parameters, 

models classification accuracy, model’s interpretation power and model’s goodness-of-fits. 

Table 7 represents the results of all three models. The RPL model had the highest 

number of statistically significant parameters (16), compared to NL model (14) and MNL 

model (10). The greater number of significant parameters in the model comparatively leads 

to a better model in terms of higher adjusted R-square; MNL (0.142), NL (0.298), RPL 

(0.4346). It also helps identify additional explanatory variables impacting or associated 

with the dependent variable. The RPL model overcomes individual variation issues 

compare to MNL model and does not exhibit the IIA (Independence of irrelevant 

alternatives) property. However, NL model represents a partial relaxation of the IIA 

property. In terms of interpretation, RPL model had more flexibility in estimation and thus, 

performed better compared to the NL and the MNL models. The parameter found to vary 

across individual crash was the position of the vehicle (i-e stopped on the crossing), it was 

found to be normally randomly distributed. 

5.2.1 Likelihood-Ratio Test 

To examine the model fit, the likelihood ratio test and AIC (Akaike Information 

Criteria) were compared. The likelihood ratio test is conducted at 95% confidence level 

(alpha=0.05) with a degree of freedom equal to the difference between the significant 

parameters between the two models. The null hypothesis is that there is not statistical 
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difference between the two models. The general form of likelihood ratio for comparing two 

models can be shown as; LL ratio test = -2(LLlargest - LLsmallest) 

˜ X(difference in the number of parameters estimated between the two models)  

The LL-ratio test indicated that the NL model was statistically better than the MNL 

model in this case. That is the LL-ratio value (i.e., 30) was larger than the critical value 

(9.487) at 95% significance level. Similar results were found between the RPL and the 

MNL model. Which is obvious, because the LL-ratio test between RPL and NL model 

indicated that the RPL model was not significantly better than the NL model. That is, the 

LL-ratio statistics for RPL and NL with 2 degree of freedom was 2.0, which was smaller 

than the Chi-square critical value of 5.99 at the 95% significance level. The AIC values for 

MNL, NL and RPL models were 2734.8, 2696.7 and 2707.8 respectively. Models with 

lower AIC values are preferable, therefore RPL model and NL model were superior to the 

MNL model in this case. The NL model had slightly better model fit than the RPL model 

based on the AIC criteria.  

 Likelihood ratio test between MNL & NL model (df = 14-10= 4) 

LL ratio test = -2[-1345-(-1330)] = 30 

Chi-square critical value at 95% confidence level (df=4) = 9.487) 

 Likelihood ratio test between NL & RPL model (df = 16-14= 2) 

LL ratio test = -2[-1330-(-1329)] = 2 

Chi-square critical value at 95% confidence level (df=2) = 5.99 

 Likelihood ratio test between MNL & RPL model (df = 16-10= 6) 

LL ratio test = -2[-1345-(-1329)] = 32 

Chi-square critical value at 95% confidence level (df=6) = 12.59) 
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Table 7 Driver injury severity: MNL, NL and RPL models 

Variables MNL NL RPL 

Injury Fatal Injury Fatal Injury Fatal 

Constant -3.2131 -7.2599 -0.3972 -3.99 -2.899 -9.117 

Vehicle Characteristics 

Speed of Train 0.03183 0.06468 0.00213 0.0159 0.03656 0.06253 

Hazardous Material Carried 0.32804 0.40507 N/S 0.19764 0.36489 0.45507 

Truck indicator in crash 0.88658 1.48149 N/S 0.61336 0.3059 1.46426 

Speed of Vehicle (truck/ truck 

trailer) 

0.01934 0.03737 N/S 0.00678 0.0116 0.02959 

Driver Attributes 

Motorist Behavior: the motorist went 

around the gates 

1.15276 1.50018 0.12342 N/S 0.83721 N/S 

Age of Driver 0.00157 0.0225 N/S 0.00556 N/S 0.0222 

Crash Specific Characteristics 

Circumstances of Crash: rail 

equipment struck highway user 

N/S N/S N/S 0.23114 N/S 0.58321 

Position of vehicle: vehicle moving 

over crossing 

N/S N/S N/S 0.75791 N/S 1.56492 

Position of vehicle: Stopped on 

crossing (Normal distribution) 

- - - - -1.39 N/S 

Standard deviation of distribution - - - - 1.79577 

(1.0045) 

N/S 

Traffic Characteristics 

Indicator if track is signaled N/S N/S N/S N/S -0.2904 N/S 

Indicator for Gates availability -1.0375 -1.0731 -0.1086 N/S -

0.83641 

N/S 

Train Detection System indicator -0.2394 -0.0738 -0.0444 N/S -0.3059 N/S 

Geometric Characteristics 

Rural Area 0.33552 0.81145 NS 0.29178 0.30245 0.79671 

Smallest crossing; 600 – 900 0.3439 -0.1914 0.04345 N/S 0.3872 N/S 

Indicator for primary obstruction of 

track view 

N/S N/S -0.1050 N/S -

0.72544 

N/S 

Highway near intersection (500ft) N/S N/S -0.0392 N/S -

0.27709 

N/S 

Inclusive Value (NL model) 

NoINJ - - 1 - - 

Atleast injury - - 7.757 - - 

Model Characteristics 

Number of Significant parameters 10 14 16 

Log likelihood function -1345.42 -1330.35 -1329.9 

Chi squared 463.98 (df=20) 1147.4 (df=18) 2070.78 (df=24) 

McFadden Pseudo R-squared 0.14707 0.3013 0.4377 

Adjusted R-square 0.142 0.2984 0.4346 

AIC 2734.8 2696.7 2707.8 

Inf. Cr. AIC 1.268 1.253 1.258 

Note: N/A is not applicable, whereas N/S implies not significant at 10% level. All other values are 

statistically significant at 10% level. 
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5.2.2 Model Prediction 

The prediction accuracy of the three models was compared using subset-II which 

consisted of heavy-vehicle crashes at HRGC reported in 2015. As mentioned before, the 

testing data (subset-II) had 315 HRGC crashes which constituted about 10.6% of the total 

reported crashes between 2007 and 2015.The severity outcomes of the 2015 crashes were 

consistent with the 2007-2014 crashes, there was 75.26% PDOs, 19.7% injury crashes and 

5% fatal crashes, while the corresponding percentages in the 2015 crash dataset were 

76.8%, 19.7% and 5% respectively. The prediction success and failures for the three 

models are shown in Table 8. The row value represents the actual injury outcome while the 

column value is the model predicted value.  

Comparison of the model prediction indicated that the MNL model correctly 

classified 74.8% of the 2015 observations while the NL and the RPL models correctly 

classified 75.95 and 75.2% of the observations, respectively. Hence, there is not much 

difference in the overall prediction accuracy of the three models. However, for fatal 

crashes, the MNL and RPL model performed better in terms of classification compared to 

the NL model. The prediction accuracy of an individual crash severity level for each model 

is presented in Fig 8. It was observed that for prediction of fatal crashes, the NL model 

underperformed (did not classify fatal crashes). However, the MNL model and the RPL 

model had similar results. Thus, it was concluded that MNL and RPL model had better 

prediction accuracy in this case.  
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Category

Actual PDO Injury Fatal Total/actual observed

PDO 183 7 0 190

INJ 46 9 2 57

FATAL 6 4 1 11

TOTAL 235 20 3 258

Percentage correctly classified = 193(100)/258 74.81

Category

Actual PDO Injury Fatal Total/actual observed

PDO 183 7 0 190

INJ 44 13 0 57

FATAL 4 7 0 11

TOTAL 231 27 0 258

Percentage correctly classified = 196(100)/258 75.97

Category

Actual PDO Injury Fatal Total/actual observed

PDO 184 5 1 190

INJ 46 9 2 57

FATAL 7 3 1 11

TOTAL 237 17 4 258

Percentage correctly classified = 194(100)/258 75.20

RPL Model

Predicted

NL Model

Predicted

Predicted

MNL Model

Table 8 Prediction success table for MNL, NL & RPL model using 2015 crash 

data 

PDO; 96.3% PDO; 96.3% PDO; 96.8%

Injury; 15.7% Injury; 22.8% Injury; 15.7%

Fatal; 9.1% Fatal; 9.1%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

MNL NL RPL

Prediction accuracy of each crash severity level: 2015 crashes 

PDO Injury Fatal

Figure 8 Prediction comparison of MNL, NL and RPL model in percentage 
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 Results and Discussion 

Comparison of all three models revealed that the RPL model had the most 

significant parameters included in its specification and had the best interpretation power 

compare to the other two models due to more flexible parameter estimates (randomly 

assigned with different distributions). In terms of goodness-of-fit, the RPL and NL model 

were significantly better than the MNL model. However, there was no significant 

difference found between the RPL and the NL model. Although the overall prediction 

accuracy of all three models were found to be similar, but it can be said that the MNL and 

the RPL model performed better in terms classifying fatal crashes. Overall, the RPL model 

performed slightly better than the MNL and the NL model for driver’s injury severity 

analysis of heavy vehicle involved crash at highway-rail grade crossings. Thus, the factors 

associated with driver’s injury severity at HRGCs identified by the RPL model are 

discussed below.  

Sixteen independent variables were identified as being statistically significant with 

different driver’s injury severity levels of train-heavy vehicle crashes at HRGCs based on 

the RPL model at the 90% significance level. The results indicated that train speed and the 

vehicle speed were positively associated with injury severity at the 99% significance level. 

Both findings were found to have similar association with injury severity in literature 

(Ishak et. Al 2011, Hao and Daniel 2015, Zhao and Khattak, 2015, Jun Liu et., al 2015) 

and were reasonable as higher speeds are commonly associated with more severe injuries 

(Ishak et. Al 2011, Hao and Daniel 2015, Zhao and Khattak, 2015, Jun Liu et., al 2015).  

Truck involved crashes at HRGCs significantly increased the likelihood of a more 

severe crash. The total number of truck-train crashes consisted of 9.5% fatal and 27.8% of 
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injury crashes, whereas as truck-trailer although had a higher number of total crashes 

(68.7%) consist of 3% fatal and 16% of injury crashes. The dummy variable indicating 

hazardous materials carried by either road user or train significantly increased the 

likelihood of a more severe crash at 99% significance level.  

Different geometric characteristics that were statistically significant to driver injury 

severity included; crossings at the rural road, crossing angle 600-900, the intersecting 

roadway within 500ft of the crossing and primary obstruction of the track view. Crashes 

that occoured in the rural areas were more severe. About 58% of the total crashes (2594) 

were reported in rural areas in which the total number of injury and fatal crashes were 24% 

and 7.2% respectively. Primary obstruction of track view and roadway located within 500ft 

of the crossing were found to be negatively associated with severity level; injury. 

According to the data, no fatal or injury crashes were reported when truck view was 

obstructed. Similarly, 17.3% and 4.6% of total crashes reported at crossings within 500ft 

of intersecting roadway were injury and fatal respectively, whereas 23.7% and 6% of total 

crashes occurring at crossing not within 500ft of roadway were injury and fatal 

respectively. This explains the negative sign associated with the two variables for ‘injury’ 

severity level. 

Different active and passive traffic controls were examined in model estimation and 

three types of passive control devices were found to reduce the likelihood of injury 

severity; presence of rain detection system, gates installed and if the track was signaled. 

The model results indicates that the availability of gates decreases the likelihood of a severe 

crash of heavy-vehicle drivers at HRGCs; this finding is consistent with previous studies 



57 
 

  

 

 

(Jun Liu et al., 2015). Three types of train detection systems were specified in the data set; 

constant warning, motion detection and direct current track circuit.  

Driver attributes that significantly increased injury severity of truck drivers were 

the age of driver and motorist (truck/truck-trailer) action “went around the gates while 

crossing”. Other crash specific characteristics that increased the likelihood of crash injury 

severity were; when trains struck road user and vehicle moving over the crossing. Both of 

the findings are reasonable and consistent with each other. Drivers will be more vulnerable 

to severe injury when train strikes the road user. About 62% of total crashes (2007-2014 

crashes) were reported when road user was moving over the a crossing, in which 26% 

where injury and 7.3% were fatal crashes. The parameter representing the position of the 

vehicle (i.e., stopped on the crossing), was found to follow normal random distribution 

implying that it varied from crash to crash. This parameter was negatively associated with 

“injury” category of severity level. 
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CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH 

This chapter presents a summary of the research, including a brief discussion of the 

results. Based on the research findings, this chapter presents the conclusions. It also 

provides infomraton on limitations of this research study and recommendations for future 

research on truck driver safety at HRGCs. 

 Research Summary  

Heavy-vehicle crashes account for 14% to 17% of the yearly crashes reported at 

HRGCs in the US; the estimated cost of the damages from these crashes is about $49 

million. No substantial decrease was observed in truck-involved crashes at HRGCs during 

2007-2015. Heavy-vehicle crashes at HRGC reported between 2007-2015 were utilized in 

this study. A total of 2664 observations (2007-2014) were used for model estimation. The 

models estimated in this study were MNL, NL and RPL. Criteria used for comparison of 

the estimated models were AIC, model interpretation power, goodness-of-fit, the number 

of significant parameters and models prediction accuracy (using 2015 crash data). For 

dependent variables with three injury severity levels, sixteen independent variables were 

statistically significant at 90% confidence level (alpha=0.10). 

 Results and Discussion 

Comparison of the three models revealed that the RPL model performed better than 

the MNL and NL models. Statistically significant parameters that were positively 

associated with injury severity included speed of train and road user (truck/trailer), truck-

train crash, hazardous materials carried by either one or both users, driver behavior “ went 

around the gates”, age of driver, crashes reported in rural areas and crashes at minimum 
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crossing angle of 60-90 degrees. Crash specific characteristics increasing the likelihood of 

fatalities included when train struck heavy-vehicle and when the vehicle was moving over 

the crossing. 

Higher speeds were commonly associated with more severe injury. This finding is 

reasonable and consistent with previous injury severity research. The total number of truck-

train crashes reported were comparatively lower (Table 2) than trailer-train crashes. 

However, truck-train crashes constituted 9.5% fatal and 27.8% injury crashes. Whereas 

truck-trailer crashes at HRGC consisted of 3% fatal and 16% injury crashes (2007-2014). 

The dataset included 200 crashes resulting from the heavy-vehicle driver going 

around crossing gates. Thus resulting in about 28% injury and 9.6% fatal crashes. About 

58% of the total crashes were reported in rural areas, which consisted about 7.2% fatal and 

23.8% injury crashes. Heavy-vehicles moving over HRGC i.e., it failed to make a stop for 

the oncoming train, turned to be more severe. Examples of such instances include truck 

drivers unaware of oncoming trains due to poor visibility, the absence of appropriate traffic 

warnings and driver inattention. Heavy-vehicles hit by a train while moving over the 

crossing consisted of 26% injury and 7.3% fatal crashes. Age of driver and when train 

strikes the road user (truck/trailer) increased the likelihood of a severe crash. This finding 

is reasonable and consistent with injury severity of motor vehicle at HRGC (Zhao and 

Khattak 2015). 

Variables that significantly decreased the likelihood of a severe crash were; 

crossing with gates, if the track is signaled, train detection system, if the track was 

obstructed and crashes in which heavy vehicles stopped on the crossing. The variables 

representing the position of the vehicle (i.e., stopped on the crossing), was found to follow 
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normal random distribution implying that it varied from crash to crash. This parameter was 

negatively associated with “injury” category of severity level. 

 Conclusions 

This research was undertaken with the objectives to: 1) identify factors associated 

with injury severity of heavy-vehicle drivers in crashes reported at HRGCs and 2) identify 

a more suitable model for modeling heavy-vehicle drivers’ injury severities in crashes 

reported at HRGCs. Based on the results both objectives were successfully achieved. The 

following conclusions are drawn: 

 Truck drivers’ injuries in crashes reported at HRGCs are positively associated with 

the following factors: speed of train and road user (truck/trailer), truck-train crash, 

when train strike road user (truck/trailer), hazardous materials carried by either one 

or both users, driver behavior “went around the gates”, age of driver, crashes 

reported in rural areas and crashes at minimum crossing angle of 60-90 degrees.  

 Truck drivers’ injuries in crashes reported at HRGCs are negatively associated 

with the following factors: train detection system, gates, if track is signaled, when 

the track is obstructed, HRGCs within 500 feet of a highway and position of vehicle 

“heavy vehicle stopped on the crossing”. 

The RPL was most suitable for modeling truck drivers’ injuries in crashes reported at 

HRGCs amongst the models considered, based on criteria used for judging the models, 

and the dataset used in this study.  

6.4 Limitation and Future Research 

This research investigated different factors associated with driver injury severity of 

heavy-vehicles but did not consider the injury severity of the most severe person in the 
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crash. Furthermore, results indicated that driver behavior had a strong relationship with 

injury severity. However, this study did not consider truck drivers’ physical and personality 

characteristics such as health/illness, financial and educational levels, driving experience, 

past traffic citations, etc. These chracteristics were not available for this study but future 

research should attempt to include such data in evaluating truck drivers’ safety at HRGCs.  

Truck drivers going around crossing gates and moving over crossing were 

positively associated with injury severity. Future research can build on this finding by 

identifying factors that are associated with such unsafe driving behavior, e.g., driver age, 

gender, driving speed range, visibility and environmental conditions. Such research will 

allow for more targeted information campaigns and educational activities aimed at 

improving HRGC safety.  

This study includes three models but future studies can consider other types of 

models and techniques. This research considered the unordered response of the dependent 

variable, ordered response models such as OP and GOL etc. may be considered. Other 

methods such as Artificial Neural Network (ANN) and different data mining techniques 

were used in the past (Abdelwahab and Abdel-Aty. 2001, Chang and Wang. 2006, Chimba 

and Sando. 2009). Such methods may be used to investigate truck drivers’ injury severity 

in crashes reported at HRGCs.  
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APPENDIX A: DATA CHARACTERISTICS 
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Variable Type Description and Coding

Fraquency 

yes=1  

No=0

Mean
Standard 

deviation

Temperature degree Fahrenheit NA 61.74 22.87

Day 2150 0.81 0.39

Dark 514 0.19 0.39

Clear 2436 0.91 0.28

Rain 157 0.06 0.24

Snow/Sleet 71 0.03 0.16

Dry 1070 0.85 0.35

Wet/Water (standing, moving) 90 0.09 0.29

Snow/Slush/Ice 92 0.05 0.23

Both Sides 2542 0.96 0.19

Single Side 99 0.04 0.19

Yes=1 2601

No=0 61

AADT 4326 18355.509

Count of roadway gate arms 0-8 NA 0.41 0.49

Yes=1 1091

No=0 1573

Connected (1) 286

Not Connected (0) 1797

Yes=1 569

No=0 1878

Yes=1 53

No=0 1325

Yes=1 1430

No=0 1183

Yes=1 74

No=0 2590

Yes=1 271

No=0 1163

Connected 245

Not-Connected 366

Yes=1 1369

No=0 1247

Yes=1 1205

No=0 272

Yes=1 475

No=0 1057

No of Bells 0.82 0.91

Yes=1 1375

No=0 1289

Yes=1 1108

No=0

Yes=1 383

No=0 2281

Number of crossbuck assemblies available 

(number 0-9)
1.54 1.16

Yes=1 1275

No=0 1349

Yes=1 1894

No=0 770

Visibility

Weather

Indicator for availability of bells

Mast mounted flash light indicator

Stop sign available

Pavement Marking indicator (stop line/RR 

xing symbols)

Whistle ban in effect

Is track signaled

Highway traffic signal controling crossing 

Nearby hwy intersection have traffic signals

Highway traffic signal interconnection

Train detection system indicator

0.13

0.03

0.82

0.26

Roadway conditions indicators

Are there Signs or Signals

Crossbuck assemblies available indicator

Emergency Notification system (ENS) sign 

displayed

Is crossing illuminated

0.50

0.34

0.23 0.42

0.04 0.19

0.55 0.50

Environmetal Characteristics

Traffic Characteristics

0.66

0.49 0.50

0.71 0.45

1.19

Active controls

Passive controls

Crossing illuminated by street Lights or 

Special Lights

Crossing warning Interconnected with 

Highway Signal

Location of warning

0.150.98

Gates availeble (indicator) 0.92

0.39

0.31 0.46

0.52 0.50

0.42 0.49

0.16

0.19 0.39

0.40 0.49

0.52
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APPENDIX B: NLOGIT ESTIMATED MODELS OUTPUTS 

Multinomial Logit Model  

NLogit command: 

skip$ 

|-> LOGIT; LHS=INJ_SEV; 

RHS=ONE, HAZARD, TRNSPD, RURAL, GATESD, MOTR_A, VEHSPD, DRIVAGE, ANGLE_C,      

TRUCK, TRNDTC; MARGINAL; 

CROSSTAB$ 

 

Dependent Variables 
INJ_SEV: Injury severity of driver 
0 = PDO  
1 = Injured   
2 = Fatal 
 

Independent Variables: 

 
1. HAZARD: Indicator for Hazardous materials carried by one or both i-e train and truck. 

2. TRNSPD: Speed of Train 

3. RURAL: Functional classification of road at crossing (Rural Area) 

4. GATESD: Indicator of gates availability at the crossings 

5. TRUCK: Indicator of Truck involved in the crash 

6. DRIVAGE: Age of driver 

7. ANGLE_C: Smallest crossing angle (Angle = 600 – 900) 

8. MOTR_A: Motorist behavior (MOTR_A = Went around the gates) 

9. TRNDTC: Train detection system indicator 

10. VEHSPD: Speed of vehicle 

 

--------------------------------------------------------------- 

Deleted    508 observations with missing data. N is now   2156 

--------------------------------------------------------------- 

Normal exit:   6 iterations. Status=0, F=    1345.422 

 

------------------------------------------------------------------------

----- 

Multinomial Logit Model 

Dependent variable              INJ_SEV 

Log likelihood function     -1345.42190 

Restricted log likelihood   -1577.41561 

Chi squared [  20 d.f.]       463.98742 

Significance level               .00000 

McFadden Pseudo R-squared      .1470720 
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Estimation based on N =   2156, K =  22 

Inf.Cr.AIC  =   2734.8 AIC/N =    1.268 

--------+---------------------------------------------------------------

----- 

        |                  Standard            Prob.      95% Confidence 

 INJ_SEV|  Coefficient       Error       z    |z|>Z*         Interval 

--------+---------------------------------------------------------------

----- 

        |Characteristics in numerator of Prob[INJ_SE=1] 

Constant|   -3.21317***      c   -10.53  .0000    -3.81124  -2.61509 

  HAZARD|     .32804***      .12427     2.64  .0083      .08448    .57159 

  TRNSPD|     .03183***      .00350     9.08  .0000      .02496    .03869 

   RURAL|     .33552***      .12854     2.61  .0090      .08359    .58745 

  GATESD|   -1.03754***      .15556    -6.67  .0000    -1.34243   -.73265 

  MOTR_A|    1.15276***      .22236     5.18  .0000      .71693   1.58858 

  VEHSPD|     .01934***      .00484     4.00  .0001      .00986    .02882 

 DRIVAGE|     .00157         .00409      .38  .7003     -.00644    .00959 

 ANGLE_C|     .34390**       .16400     2.10  .0360      .02246    .66534 

   TRUCK|     .88658***      .12072     7.34  .0000      .64997   1.12319 

  TRNDTC|     -.23935*        .12902     1.86  .0636     -.01353    .49222 

        |Characteristics in numerator of Prob[INJ_SE=2] 

Constant|   -7.25993***      .60271   -12.05  .0000    -8.44122  -6.07864 

  HAZARD|     .40507*        .21565     1.88  .0603     -.01758    .82773 

  TRNSPD|     .06468***      .00637    10.15  .0000      .05219    .07717 

   RURAL|     .81145***      .26517     3.06  .0022      .29172   1.33117 

  GATESD|   -1.07314***      .30452    -3.52  .0004    -1.66999   -.47629 

  MOTR_A|    1.50018***      .37524     4.00  .0001      .76471   2.23564 

  VEHSPD|     .03737***      .00756     4.94  .0000      .02255    .05220 

 DRIVAGE|     .02250***      .00695     3.24  .0012      .00888    .03612 

 ANGLE_C|    -.19136         .25432     -.75  .4518     -.68983    .30711 

   TRUCK|    1.48149***      .20800     7.12  .0000     1.07382   1.88916 

  TRNDTC|    -.07384         .23991      .31  .7582     -.39637    .54406 

--------+---------------------------------------------------------------

----- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

------------------------------------------------------------------------ 

------------------------------------------------------------------------

----- 

Partial derivatives of probabilities with 

respect to the vector of characteristics. 

They are computed at the means of the Xs. 

Observations used for means are  All Obs. 

A full set is given for the entire set of 

outcomes, INJ_SEV  =  0 to INJ_SEV  =   2 

Probabilities at the mean values of X are 

  0= .772 1= .200 2= .028 

--------+---------------------------------------------------------------

----- 

        |     Partial                          Prob.      95% Confidence 

 INJ_SEV|      Effect    Elasticity      z    |z|>Z*         Interval 

--------+---------------------------------------------------------------

----- 

        |Marginal effects on Prob[INJ_SE=0] 

  HAZARD|    -.05932***     -.02101    -2.85  .0043     -.10006   -.01857 

  TRNSPD|    -.00630***     -.25331   -10.76  .0000     -.00745   -.00515 

   RURAL|    -.06924***     -.05301    -3.22  .0013     -.11134   -.02715 

  GATESD|     .18311***      .09400     7.20  .0000      .13328    .23294 

  MOTR_A|    -.21010***     -.01981    -5.69  .0000     -.28251   -.13769 

  VEHSPD|    -.00379***     -.03953    -4.65  .0000     -.00538   -.00219 

 DRIVAGE|    -.00073        -.04305    -1.06  .2871     -.00207    .00061 

 ANGLE_C|    -.04888*       -.05336    -1.81  .0708     -.10191    .00415 

   TRUCK|    -.16866***     -.06684    -8.35  .0000     -.20827   -.12905 

  TRNDTC|    -.03849*       -.02535    -1.78  .0750     -.08086    .00388 
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        |Marginal effects on Prob[INJ_SE=1] 

  HAZARD|     .05014**       .06876     2.56  .0104      .01179    .08848 

  TRNSPD|     .00472***      .73476     8.62  .0000      .00365    .00580 

   RURAL|     .04907**       .14541     2.42  .0154      .00939    .08874 

  GATESD|    -.15974***     -.31745    -6.64  .0000     -.20692   -.11257 

  MOTR_A|     .17577***      .06414     5.07  .0000      .10781    .24372 

  VEHSPD|     .00288***      .11636     3.78  .0002      .00139    .00437 

 DRIVAGE|     .00013         .02879      .20  .8452     -.00114    .00139 

 ANGLE_C|     .05600**       .23663     2.17  .0303      .00534    .10666 

   TRUCK|     .13335***      .20456     7.02  .0000      .09614    .17057 

  TRNDTC|     .03782*        .09643     1.86  .0628     -.00202    .07766 

        |Marginal effects on Prob[INJ_SE=2] 

  HAZARD|     .00918         .08984     1.59  .1110     -.00211    .02046 

  TRNSPD|     .00158***     1.75478     7.83  .0000      .00118    .00198 

   RURAL|     .02018***      .42686     2.94  .0033      .00673    .03362 

  GATESD|    -.02337***     -.33157    -2.86  .0043     -.03941   -.00733 

  MOTR_A|     .03433***      .08944     3.42  .0006      .01463    .05403 

  VEHSPD|     .00091***      .26176     4.17  .0000      .00048    .00133 

 DRIVAGE|     .00060***      .98423     3.16  .0016      .00023    .00098 

 ANGLE_C|    -.00712        -.21472    -1.05  .2943     -.02042    .00618 

   TRUCK|     .03531***      .38668     5.61  .0000      .02298    .04763 

  TRNDTC|    -.00067         .01222      .10  .9164     -.01187    .01321 

--------+---------------------------------------------------------------

----- 

z, prob values and confidence intervals are given for the partial effect 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

------------------------------------------------------------------------

----- 

Marginal Effects Averaged Over Individuals 

--------+---------+---------+---------+ 

Variable|INJ_SE=0 |INJ_SE=1 |INJ_SE=2 | 

--------+---------+---------+---------+ 

ONE     |   .6367 |  -.3488 |  -.2879 | 

HAZARD  |  -.0554 |   .0423 |   .0131 | 

TRNSPD  |  -.0061 |   .0036 |   .0025 | 

RURAL   |  -.0680 |   .0354 |   .0327 | 

GATESD  |   .1694 |  -.1381 |  -.0313 | 

MOTR_A  |  -.1970 |   .1472 |   .0497 | 

VEHSPD  |  -.0037 |   .0022 |   .0014 | 

DRIVAGE |  -.0009 |  -.0002 |   .0011 | 

ANGLE_C |  -.0405 |   .0567 |  -.0162 | 

TRUCK   |  -.1608 |   .1067 |   .0541 | 

TRNDTC  |  -.0341 |   .0353 |  -.0012 | 

--------+---------+---------+---------+ 

Averages of Individual Elasticities of Probabilities 

--------+---------+---------+---------+ 

Variable|INJ_SE=0 |INJ_SE=1 |INJ_SE=2 | 

--------+---------+---------+---------+ 

ONE     |  1.1236 | -2.0895 | -6.1363 | 

HAZARD  |  -.0314 |   .0584 |   .0795 | 

TRNSPD  |  -.4229 |   .5652 |  1.5852 | 

RURAL   |  -.0899 |   .1085 |   .3900 | 

GATESD  |   .0790 |  -.3325 |  -.3466 | 

MOTR_A  |  -.0380 |   .0459 |   .0712 | 

VEHSPD  |  -.0736 |   .0823 |   .2277 | 

DRIVAGE |  -.0799 |  -.0080 |   .9474 | 

ANGLE_C |  -.0560 |   .2339 |  -.2174 | 

TRUCK   |  -.1349 |   .1365 |   .3186 | 

TRNDTC  |  -.0258 |   .0960 |   .0118 | 
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Nested Logit Model 
NLogit command: 

|-> SKIP$ 

|-> NLOGIT; LHS=INJSEV; 

    CHOICES= PDO, INJ, FATAL; 

    TREE= CRASH[NOINJ(PDO), ATLEAST(INJ,FATAL)]; 

    IVSET:(NOINJ)=[1]; 

    MODEL: 

    U(INJ)= C_I+TRNSPD1*TRNSPD+GATESD1*GATESD+ANGLE_C1*ANGLE_C 

    +HWYNEAR1*HWYNEAR+MOTR_A1*MOTR_A+TRNDTC1*TRNDTC+VIEW1*VIEW/ 

    U(FATAL)= C_F+TRNSPD2*TRNSPD+VEHSPD2*VEHSPD 

    +TRUCK2*TRUCK+POSI_C2*POSI_C+RURAL2*RURAL+ 

    SRKUSR2*SRKUSR +DRIVAGE2*DRIVAGE+ HAZARD2*HAZARD; 

    PTS=200; 

    MAXIT=200; 

    HALTON; 

    CROSSTAB$ 

Dependent Variables 
INJ_SEV: Injury severity of driver 
0 = PDO  
1 = Injured   
2 = Fatal 

Independent Variables: 

 
1. HAZARD: Indicator for Hazardous materials carried by one or both i-e train and truck. 

2. TRNSPD: Speed of Train 

3. RURAL: Functional classification of road at crossing (Rural Area) 

4. GATESD: Indicator of gates availability at the crossings 

5. TRUCK: Indicator of Truck involved in the crash 

6. DRIVAGE: Age of driver 

7. ANGLE_C: Smallest crossing angle (Angle = 600 – 900) 

8. MOTR_A: Motorist behavior (MOTR_A = Went around the gates) 

9. TRNDTC: Train detection system indicator 

10. VEHSPD: Speed of vehicle 

11. HWYNEAR: Indicator for Intersecting Roadway within 500ft 

12. VIEW: Indicator for Primary Obstruction of Track view 

13. POSI_C: Vehicle moving over crossing 

14. SRKUSR: Rail equipment struck highway user 

 



73 
 

  

 

 

 

+------------------------------------------------------+ 

|WARNING:   Bad observations were found in the sample. | 

|Found 511 bad observations among    2664 individuals. | 

|You can use ;CheckData to get a list of these points. | 

+------------------------------------------------------+ 

 

Normal exit:   6 iterations. Status=0, F=    1378.580 

 

------------------------------------------------------------------------

----- 

Discrete choice (multinomial logit) model 

Dependent variable               Choice 

Log likelihood function     -1378.58020 

Estimation based on N =   2153, K =  17 

Inf.Cr.AIC  =   2791.2 AIC/N =    1.296 

Model estimated: Apr 19, 2017, 22:18:44 

R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 

Constants only  -1576.4480  .1255 .1218 

Chi-squared[15]          =    395.73551 

Prob [ chi squared > value ] =   .00000 

Response data are given as ind. choices 

Number of obs.=  2664, skipped  511 obs 

--------+---------------------------------------------------------------

----- 

        |                  Standard            Prob.      95% Confidence 

  INJSEV|  Coefficient       Error       z    |z|>Z*         Interval 

--------+---------------------------------------------------------------

----- 

     C_I|   -2.04120***      .19504   -10.47  .0000    -2.42346  -1.65893 

 TRNSPD1|     .03137***      .00324     9.69  .0000      .02502    .03771 

 GATESD1|   -1.26539***      .14754    -8.58  .0000    -1.55456   -.97621 

ANGLE_C1|     .35373**       .15830     2.23  .0254      .04347    .66400 

HWYNEAR1|    -.35839***      .11156    -3.21  .0013     -.57705   -.13973 

 MOTR_A1|    1.29070***      .21065     6.13  .0000      .87784   1.70356 

 TRNDTC1|     .19055         .12311     1.55  .1217     -.05074    .43183 

   VIEW1|    -.65174*        .36720    -1.77  .0759    -1.37144    .06795 

     C_F|   -8.74870***      .65873   -13.28  .0000   -10.03978  -7.45762 

 TRNSPD2|     .05962***      .00632     9.44  .0000      .04724    .07200 

 VEHSPD2|     .02438***      .00811     3.00  .0027      .00847    .04028 

  TRUCK2|    1.11544***      .20193     5.52  .0000      .71966   1.51121 

 POSI_C2|    1.47775***      .31752     4.65  .0000      .85541   2.10008 

  RURAL2|     .71229***      .25122     2.84  .0046      .21992   1.20467 

 SRKUSR2|     .60469*        .34125     1.77  .0764     -.06414   1.27353 

DRIVAGE2|     .02269***      .00671     3.38  .0007      .00954    .03584 

 HAZARD2|     .30432         .20944     1.45  .1462     -.10617    .71481 

--------+---------------------------------------------------------------

----- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

 

FIML Nested Multinomial Logit Model 

Dependent variable               INJSEV 

Log likelihood function     -1330.35725 

Restricted log likelihood   -1904.07530 

Chi squared [  18 d.f.]      1147.43611 

Significance level               .00000 

McFadden Pseudo R-squared      .3013106 

Estimation based on N =   2153, K =  18 

Inf.Cr.AIC  =   2696.7 AIC/N =    1.253 

Model estimated: Apr 19, 2017, 22:19:00 

R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 

No coefficients -1904.0753  .3013 .2984 

Constants only  -1576.4480  .1561 .1526 
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At start values -1378.5802  .0350 .0309 

Response data are given as ind. choices 

The model has 2 levels. 

Nested Logit form:IVparms=Taub|l,r,Sl|r 

& Fr.No normalizations imposed a priori 

Number of obs.=  2664, skipped  511 obs 

--------+---------------------------------------------------------------

----- 

        |                  Standard            Prob.      95% Confidence 

  INJSEV|  Coefficient       Error       z    |z|>Z*         Interval 

--------+---------------------------------------------------------------

----- 

        |Attributes in the Utility Functions (beta) 

     C_I|    -.39718***      .06554    -6.06  .0000     -.52564   -.26871 

 TRNSPD1|     .00213**       .00104     2.04  .0416      .00008    .00417 

 GATESD1|    -.10860***      .03889    -2.79  .0052     -.18483   -.03237 

ANGLE_C1|     .04345*        .02628     1.65  .0982     -.00805    .09495 

HWYNEAR1|    -.03919*        .02030    -1.93  .0536     -.07898    .00060 

 MOTR_A1|     .12342**       .04899     2.52  .0118      .02740    .21944 

 TRNDTC1|     .04441**       .02130     2.09  .0370      .00267    .08615 

   VIEW1|    -.10504*        .06089    -1.73  .0845     -.22439    .01430 

     C_F|   -3.99089***      .48291    -8.26  .0000    -4.93737  -3.04442 

 TRNSPD2|     .01599***      .00348     4.59  .0000      .00916    .02281 

 VEHSPD2|     .00678**       .00312     2.17  .0297      .00067    .01290 

  TRUCK2|     .61336***      .12303     4.99  .0000      .37223    .85449 

 POSI_C2|     .75791***      .18783     4.04  .0001      .38978   1.12605 

  RURAL2|     .29178***      .09836     2.97  .0030      .09900    .48456 

 SRKUSR2|     .23114*        .11827     1.95  .0506     -.00065    .46294 

DRIVAGE2|     .00556**       .00254     2.19  .0287      .00058    .01053 

 HAZARD2|     .19764***      .07555     2.62  .0089      .04956    .34571 

        |IV parameters, tau(b|l,r),sigma(l|r),phi(r) 

   NOINJ|        1.0    .....(Fixed Parameter)..... 

 ATLEAST|    7.75720***     1.66681     4.65  .0000     4.49032  11.02409 

--------+---------------------------------------------------------------

----- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

Fixed parameter ... is constrained to equal the value or 

had a nonpositive st.error because of an earlier problem. 

--------+-------------------------------------------------------- 

NLOGIT Cross Tabulation for 3 outcome Multinomial Choice Model 

XTab_Prb|           PDO           INJ         FATAL         Total 

--------+-------------------------------------------------------- 

     PDO|       1220.00       276.000       63.0000       1559.00 

     INJ|       281.000       140.000       46.0000       467.000 

   FATAL|       58.0000       48.0000       21.0000       127.000 

   Total|       1559.00       464.000       130.000       2153.0 

+-------------------------------------------------------+ 

| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 

| Row indicator is actual, column is predicted.         | 

| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 

| Predicted y(ij)=1 is the j with largest probability.  | 

+-------------------------------------------------------+ 

 

--------+-------------------------------------------------------- 

NLOGIT Cross Tabulation for 3 outcome Multinomial Choice Model 

XTab_Frq|           PDO           INJ         FATAL         Total 

--------+-------------------------------------------------------- 

     PDO|       1479.00       80.0000       .000000       1559.00 

     INJ|       362.000       105.000       .000000       467.000 

   FATAL|       65.0000       62.0000       .000000       127.000 

   Total|       1906.00       247.000       .000000       2153.00 
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Random Parameter Logit Model 
 

NLogit command: 

CALC;RAN(12345)$ 

|-> SKIP$ 

|-> NLOGIT; 

    LHS=INJSEV; 

    CHOICES= PDO, INJ, FATAL; 

    MODEL: 

    U(FATAL)= C_F+VEHSPD*VEHSPD+TRNSPD*TRNSPD 

    +POSI_C*POSI_C+RURAL*RURAL+TRUCK*TRUCK+ 

    SRKUSR*SRKUSR +DRIVAGE*DRIVAGE+HAZARD*HAZARD/ 

    U(INJ)= C_I+TRNSPD1*TRNSPD+VEHSPD1*VEHSPD 

    +GATESD1*GATESD+MOTR_A1*MOTR_A+TRUCK1*TRUCK+ 

    TRNDTC1*TRNDTC+ANGLE_C1*ANGLE_C+HAZARD1*HAZARD+ 

    RURAL1*RURAL+VIEW1*VIEW+POSI_B1*POSI_B 

    +HWYNEAR1*HWYNEAR+SGNLEQP1*SGNLEQP; 

    RPL; 

    PARAMETER; 

    PTS=200; 

    MAXIT=200; 

    HALTON; 

    FCN= POSI_B1(N); 

    CROSSTAB$ 

 

Dependent Variables 
INJ_SEV: Injury severity of driver 
0 = PDO  
1 = Injured   
2 = Fatal 
 

Independent Variables: 
1. HAZARD: Indicator for Hazardous materials carried by one or both i-e train and truck. 

2. TRNSPD: Speed of Train 

3. RURAL: Functional classification of road at crossing (Rural Area) 

4. GATESD: Indicator of gates availability at the crossings 

5. TRUCK: Indicator of Truck involved in the crash 

6. DRIVAGE: Age of driver 

7. ANGLE_C: Smallest crossing angle (Angle = 600 – 900) 

8. MOTR_A: Motorist behavior (MOTR_A = Went around the gates) 

9. TRNDTC: Train detection system indicator 

10. VEHSPD: Speed of vehicle 

11. HWYNEAR: Indicator for Intersecting Roadway within 500ft 

12. VIEW: Indicator for Primary Obstruction of Track view 

13. POSI_C: Vehicle moving over crossing 

14. SRKUSR: Rail equipment struck highway user 

15. SGNLEQP: Indicator if track is signaled 
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16.Posi_B: Stopped on the crossing 
 

 

Normal exit:   6 iterations. Status=0, F=    1330.634 

 

------------------------------------------------------------------------

----- 

Start values obtained using MNL model 

Dependent variable               Choice 

Log likelihood function     -1330.63377 

Estimation based on N =   2153, K =  23 

Inf.Cr.AIC  =   2707.3 AIC/N =    1.257 

Model estimated: Apr 19, 2017, 22:18:52 

R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 

Constants only  -1576.4480  .1559 .1512 

Chi-squared[21]          =    491.62837 

Prob [ chi squared > value ] =   .00000 

Response data are given as ind. choices 

Number of obs.=  2664, skipped  511 obs 

--------+---------------------------------------------------------------

----- 

        |                  Standard            Prob.      95% Confidence 

  INJSEV|  Coefficient       Error       z    |z|>Z*         Interval 

--------+---------------------------------------------------------------

----- 

 POSI_B1|    -.53407***      .16675    -3.20  .0014     -.86090   -.20724 

     C_F|   -9.06479***      .66292   -13.67  .0000   -10.36410  -7.76549 

  VEHSPD|     .02942***      .00843     3.49  .0005      .01290    .04594 

  TRNSPD|     .06206***      .00640     9.70  .0000      .04952    .07461 

  POSI_C|    1.51925***      .31919     4.76  .0000      .89365   2.14486 

   RURAL|     .79961***      .25471     3.14  .0017      .30038   1.29883 

   TRUCK|    1.45335***      .20845     6.97  .0000     1.04479   1.86191 

  SRKUSR|     .58519*        .33861     1.73  .0839     -.07847   1.24885 

 DRIVAGE|     .02212***      .00668     3.31  .0009      .00902    .03521 

  HAZARD|     .44507**       .21580     2.06  .0392      .02211    .86803 

     C_I|   -2.82576***      .23757   -11.89  .0000    -3.29139  -2.36012 

 TRNSPD1|     .03419***      .00374     9.13  .0000      .02685    .04153 

 VEHSPD1|     .01158**       .00511     2.26  .0236      .00156    .02160 

 GATESD1|    -.81318***      .15934    -5.10  .0000    -1.12548   -.50088 

 MOTR_A1|     .83278***      .22253     3.74  .0002      .39663   1.26892 

  TRUCK1|     .90041***      .12139     7.42  .0000      .66249   1.13833 

 TRNDTC1|    -.27423**       .12718     2.16  .0311      .02497    .52349 

ANGLE_C1|     .38787**       .16037     2.42  .0156      .07354    .70219 

 HAZARD1|     .35542***      .12510     2.84  .0045      .11023    .60061 

  RURAL1|     .30521**       .12984     2.35  .0187      .05073    .55969 

   VIEW1|    -.73257**       .37352    -1.96  .0499    -1.46466   -.00048 

HWYNEAR1|    -.25280**       .11521    -2.19  .0282     -.47861   -.02699 

SGNLEQP1|    -.26146**       .12454    -2.10  .0358     -.50555   -.01737 

--------+---------------------------------------------------------------

----- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

------------------------------------------------------------------------

----- 

 

Normal exit:  34 iterations. Status=0, F=    1329.921 

 

------------------------------------------------------------------------

----- 

Random Parameters Logit Model 

Dependent variable               INJSEV 

Log likelihood function     -1329.92063 

Restricted log likelihood   -2365.31226 
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Chi squared [  24 d.f.]      2070.78326 

Significance level               .00000 

McFadden Pseudo R-squared      .4377399 

Estimation based on N =   2153, K =  24 

Inf.Cr.AIC  =   2707.8 AIC/N =    1.258 

Model estimated: Apr 19, 2017, 22:22:58 

R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 

No coefficients -2365.3123  .4377 .4346 

Constants only  -1576.4480  .1564 .1517 

At start values -1330.6338  .0005-.0051 

Response data are given as ind. choices 

Replications for simulated probs. = 200 

Used Halton sequences in simulations. 

Number of obs.=  2664, skipped  511 obs 

 

--------+---------------------------------------------------------------

----- 

        |                  Standard            Prob.      95% Confidence 

  INJSEV|  Coefficient       Error       z    |z|>Z*         Interval 

--------+---------------------------------------------------------------

----- 

        |Random parameters in utility functions 

 POSI_B1|   -1.39064*        .84437    -1.65  .0996    -3.04557    .26429 

        |Nonrandom parameters in utility functions 

     C_F|   -9.11763***      .66607   -13.69  .0000   -10.42310  -7.81216 

  VEHSPD|     .02959***      .00843     3.51  .0005      .01306    .04612 

  TRNSPD|     .06253***      .00642     9.74  .0000      .04994    .07511 

  POSI_C|    1.56492***      .32220     4.86  .0000      .93341   2.19643 

   RURAL|     .79671***      .25500     3.12  .0018      .29692   1.29650 

   TRUCK|    1.46426***      .20902     7.01  .0000     1.05458   1.87394 

  SRKUSR|     .58321*        .33823     1.72  .0847     -.07972   1.24613 

 DRIVAGE|     .02202***      .00668     3.30  .0010      .00892    .03511 

  HAZARD|     .45507**       .21652     2.10  .0356      .03069    .87945 

     C_I|   -2.89959***      .25239   -11.49  .0000    -3.39427  -2.40491 

 TRNSPD1|     .03656***      .00424     8.61  .0000      .02824    .04488 

 VEHSPD1|     .01160**       .00516     2.25  .0246      .00148    .02172 

 GATESD1|    -.83641***      .17072    -4.90  .0000    -1.17102   -.50180 

 MOTR_A1|     .83721***      .22786     3.67  .0002      .39060   1.28381 

  TRUCK1|     .93508***      .12910     7.24  .0000      .68205   1.18811 

 TRNDTC1|    -.30590**       .13490     2.27  .0233      .04151    .57029 

ANGLE_C1|     .38720**       .16674     2.32  .0202      .06040    .71399 

 HAZARD1|     .36489***      .13206     2.76  .0057      .10605    .62373 

  RURAL1|     .30245**       .13649     2.22  .0267      .03494    .56997 

   VIEW1|    -.72544*        .37753    -1.92  .0547    -1.46539    .01450 

HWYNEAR1|    -.27709**       .12080    -2.29  .0218     -.51385   -.04032 

SGNLEQP1|    -.29039**       .13186    -2.20  .0276     -.54883   -.03195 

        |Distns. of RPs. Std.Devs or limits of triangular 

NsPOSI_B|    1.79577*       1.00448     1.79  .0738     -.17297   3.76451 

--------+---------------------------------------------------------------

----- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

------------------------------------------------------------------------

----- 

 

+-------------------------------------------------------+ 

| Cross tabulation of actual choice vs. predicted P(j)  | 

| Row indicator is actual, column is predicted.         | 

| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 

| Column totals may be subject to rounding error.       | 

+-------------------------------------------------------+ 

 

--------+-------------------------------------------------------- 

NLOGIT Cross Tabulation for 3 outcome Multinomial Choice Model 
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XTab_Prb|           PDO           INJ         FATAL         Total 

--------+-------------------------------------------------------- 

     PDO|       1214.00       284.000       61.0000       1559.00 

     INJ|       284.000       140.000       43.0000       467.000 

   FATAL|       61.0000       43.0000       23.0000       127.000 

   Total|       1559.00       467.000       127.000       2153.00 

 

 

--------+-------------------------------------------------------- 

NLOGIT Cross Tabulation for 3 outcome Multinomial Choice Model 

XTab_Frq|           PDO           INJ         FATAL         Total 

--------+-------------------------------------------------------- 

     PDO|       1488.00       65.0000       6.00000       1559.00 

     INJ|       361.000       97.0000       9.00000       467.000 

   FATAL|       78.0000       37.0000       12.0000       127.000 

   Total|      1927.00       199.000       27.0000       2153.00      

27.0000       2153.00 
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