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Image processing techniques have been widely used in plant science for plant phenotyping

studies. These fast algorithms are desired to process massive image data. In this thesis,

we analyze RGB digital images taken from different view angles of plants and propose

an efficient ad-hoc algorithm to identify structures of plants by 3D volume reconstruction

techniques. We study hyperspectral images of plants and extend our scope to other images

from different scientific disciplines. Obtaining the spectral and spatial information simul-

taneously is a challenging task due to the high dimensionality of hyperspectral images. We

first develop a real-time interactive tool for exploring the hyperspectral images as a hy-

perspectral data cube. We discover a strong correlation between information entropy and

hyperspectral images with respect to the wavelength under which the hyperspectral images

are taken. We design an information metric based transfer function allowing users to study

the hyperspectral data cube by interactive volume rendering techniques. In this manner,

the transfer function changes dynamically with the regions of interest selected by users

and both the spatial and spectral information can be preserved. We show the usefulness of

our approach in different scientific disciplines including plant science, physics and remote

sensing. In addition, our transfer function also works for the traditional volumetric data

and our method provides a new interactive way of volume rendering.
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Chapter 1

Introduction

One of the key objectives that plant scientist and agriculturist want to achieve is to en-

sure the crop production is sufficient for the growing population. The goal is challenging

because current rate of increase of crop yields is lower than the increased demand for

food and fuel [16]. A promising approach is selecting high yielding, stress-tolerant plants

through the study of genotype and phenotype. The genotype, known as DNA sequence of

the genetic makeup of an organism, with inherited epigenetic factors and non-inherited en-

vironmental factors determine the phenotype. The plant phenotype consisting of complex

traits (such as, growth, development, tolerance, resistance and so on) provides a compre-

hensive assessment of these traits. However, the lack of effective and reliable phenotyping

data limits the study of analyzing the genetics of quantitative traits that relate to growth,

yield and adaptation to stress.

High throughput phenotyping studies of plants growing in controlled environments,

such as growth chamber or greenhouse, have provided fast and inexpensive genomic in-

formation. The assessments of phenotype traits used to rely largely on visual scoring by

domain experts, which is time-consuming and infeasible for extremely large scale studies

[23]. The imaging based plant study opens up the possibility of high throughput pheno-
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typing and leads to the development of many imaging platforms [23, 17]. The autonomous

platforms can take images in near real-time at any stage during the plant growth, resulting

in massive amounts of data for analysis. Modern imaging techniques allow for the visual-

ization of multi-dimensional and multi-variable data that are used to quantify the growth,

yield and applications to stress. The plant images are taken with a large range of wave-

length of electromagnetic waves (light) due to the fact that plant leaves interact with light

at different wavelength reflecting different information. For example, in the visible range

(400-750 nm) of light, photoactive pigments (chlorophylls, anthocyanins, and carotenoids)

dominates the interaction and in the near-infrared range (750-1200 nm) of light, multiple

scattering at the air-cell interfaces in the internal leaf tissues causes high reflectance of light

from plant leaves.

In this work, all plant image data is taken in a controlled environment (greenhouse).

We focus on two types of images: visible light images known as RGB images, and hy-

perspectral images taken with wavelength of light from 550 nm to 1750 nm. RGB images

are the digital images intending to mimic human perception to provide visual information

about plant phenotype. The raw data of a RGB image is essentially a matrix M with di-

mension of mx×my, where indexes (x ∈ mx,y ∈ my) known as the pixel position represent

the spatial locations and intensity values M(x,y) associated with pixels (x,y) corresponds

to photon fluxes in the red ( 600 nm), green ( 550 nm) and blue ( 450 nm) spectral bands

of electromagnetic waves. RGB images encode plant morphology information and have a

wide range of applications in the study of root system, seed surface features, leaf length and

width [23, 17]. Hyperspectral images can be considered as an extension of RGB images

with respect to a wavelength/band range of light. In hyperspectral imaging, band is more

frequently used to represent wavelength and they are used exchangeably. At a given band,

one image is taken and across the entire band range, a series of images are obtained as

hyperspectral images. The interaction between plants and light at different bands gives the
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so-called spectral information of plants. Hyperspectral imaging, originally developed for

remote sensing applications [32], is an emerging technique that integrates both spatial and

spectral information. Hyperspectral images have been widely used in plant phenotyping

studies [23, 24, 35] to discriminate genotypes with different contents of leaf biochemical

components. The leaf chlorophyll (such as ref. [38, 3]) and thocyanins [13] or nitrogen

[39] contents are different and a hyperspectral image provides a non-destructive, rapid and

safe method of qualitative analysis of plants.

New imaging platforms and massive image data provide great opportunities to study

plant phenotype. However, the challenge is obvious. The processing time for massive

amounts of image data may become the bottleneck for high throughput phenotyping study.

For example, in our data set, one RGB image with 2000 × 2000 pixels takes 4 MB of disk

space. It is very common to take images at different view angles for continuous days. If

images from 10 view angles for a plant are taken for 30 days then there are more than 1 GB

RGB image data saved. In one experiment, plant scientists usually grow hundreds of plants

to compare with the same number plants from one or more controlled group. There exists

more than 100 GB data for just one experiment. In addition, the crop plants grow fast and

vary day by day. The real-time analysis is desired and necessary.

In this thesis, our objective is to obtain growth information from RGB images and

hyperspectral images for crop plants. Image processing techniques are applied to these

images. Information mining and visualization of the hyperspectral images have not only

been done for plant images but also for images from other scientific fileds. This thesis is

organized as follow: Some related work of image processing and hyperspectral images are

introduced in Chapter 2. From RGB images, we aim to get the structure information of

plants by utilizing the three dimension (3D) reconstruction techniques. An ad-hoc solution

is proposed to help plant scientists obtain the 3D structure of plants from RGB images

taken at 5 different view angles. This part is introduced in Chapter 3. For hyperspectral
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images, we make several technical contributions in developing a real-time interactive tool

to explore the hyperspectral images by volume rendering. The hyperspectral image infor-

mation mining and visualization are introduced in Chapter 4. In Chapter 5, the conclusions

and future work are discussed.
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Chapter 2

Related Work

2.1 Image processing in plant science

The functionality of plant imaging goes above and beyond taking images for plants. It is

primarily used to measure traits of plant architecture such as biomass [14], imbibition and

germination rates [11], yield [12], leaf morphology [18], seed morphology [8] and root

architecture [10]. A series of image processing algorithms are used and developed to study

plant images. The pre-processing methods such as contrast enhancement and noise removal

algorithms are important. The variability of luminance issues such as sunlight and shadow

can be addressed by image enhancement algorithms [19, 27]. Oriented Gaussian filters [6]

are used to optimize the skeletonization of a plant image. The segmentation algorithms are

necessary to divide an image into different regions of interest (ROIs), such as leafs, stems,

roots and background which contains soil, pot and other residues. Background removal

is an essential stage for avoiding any mis-classification. These algorithms use different

approaches to make the segmentation. Examples include color index-based segmentation,

threshold-based segmentation, and learning-based segmentation [17]. Once the ROIs from

plants are identified, statistical work such as counting pixels or calculating areas can be
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done.

However, plants grow in 3D space and the 2D image processing has certain limitations

for exploring 3D plants. Although scientists can obtain information from 2D images in

a relatively fast manner, a 2D image is a projection from a 3D plant, which may cause

a loss of spatial information, especially when there is occlusion in the perception of a

plant. In this situation the morphological analysis in 2D images is less intuitive than a

3D model. The 3D analysis has tremendous potentials in accurately estimating specific

morphological features. There exists different ways to reconstruct a 3D model of an object

from multiple views of 2D images [31, 22] and some are introduced to plant science to

help plant scientists obtain 3D plant models. For example, GROWSCREEN 3D [5, 26]

and the solution proposed by Wang et al. [36] focus on 3D leaf reconstruction and the

RootReader3D software platform [10] gives the root reconstruction.

The plant 3D reconstruction by images from multiple angles at some circumstances

is infeasible since the uniform color, thin leaf area and specular surface of plant leaves

introduce challenges to typical reconstruction techniques. The solution addressing these

problems can be reconstructing the structures instead of the leaves or the entire plants

[6, 37]. Previous work [37] points out there actually are advantages for reconstructing a

structure instead of the plant shape.

As we introduced above, there is existing work to reconstruct a 3D plant model. For the

data set provided by our domain collaborators, we would like to conduct reconstruction of

a 3D plant model in real-time. In Chapter 3, the detailed solutions are introduced.

2.2 The study of hyperspectral images

The hyperspectral images measure the interaction between light and materials. It is known

that the electromagnetic waves (light) are categorized based on wavelength (which is of-
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ten referred as a band in hyperspectral imaging) into many ranges such as X-ray, Ultra-

violate(UV), Visible light (VIS), near infrared (NIR) and microwave, and so on. Materials

interact with an electromagnetic wave in the basic forms, such as absorption and reflec-

tion. By analyzing the absorption on an atomic or molecular level, scientists can obtain the

fingerprint of the materials. Researchers have developed a plenty of techniques to analyze

hyperspectral images across different domains.

Hyperspectral images can be modeled as a three-dimensional (3D) data block known

as a hyperspectral data cube. The X and Y dimensions reserve the spatial information

of imaged objects and the X or λ dimension contains the spectrum information that acts

like a fingerprint for objects shown in the X and Y space. The hyperspectral data cube

is obtained by keeping the field of view of image fixed and stacking one image for one

wavelength examined after another, stored as the Band Sequential (BSQ) format. Usually,

a study of this 3D data cube consists of two individual parts: one is applying image fusion

technique [30] to get a two-dimensional (2D) digital image with up to 3 channels (i.e.,

R, G, B); and another is studying the one dimensional (1D) spectra in one given region

of interest (ROI) on the 2D image obtaining the intrinsic clustering information based on

some distance measurements. However, the existing studies are relatively ad-hoc in that

the fused 2D image and 1D spectral are studied and visualized individually, making it less

effective and intuitive to correlate the spatial to spectral information. As a result, although

many sophisticated methods have been presented, they often require users to exhaustively

search appropriate parameters or leverage prior knowledge to identify features in a trial and

error manner.

The most common method to reduce dimensions for a hyperspectral 3D cube is calcu-

late the reflectance indices which are calculated from discrete bands among the entire typi-

cal wavelength range (400-2000 nm). The normalized difference vegetation index (NDVI)
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is one of the popular indices [28]. It is calculated by

NDV I =
(NIR−V IS)
(NIR+V IS)

(2.1)

where NIR and VIS are wavelengths typically chosen [25] as 770 nm and 670 nm in plant

science. By calculating the index for each pixel (x,y) of images in these two bands, one

can obtain the index map which can be interpreted as a 2D image fused from the entire

cube data. With various indices, different 2D images are obtained for the same plant for

studying different plant components [35].

In a physical or chemical analysis, usually Raman imaging is identified as one of the

hyperspectral imaging techniques [15]. There exists other imaging techniques such as elec-

tron microscopy images taken by varying a spectral variable. The spectral variable can be

incoming X-ray/UV light energy or electron kinetic energy resulting in images known as

photoemission electron microscopy (PEEM) images or low energy electron microscopy

(LEEM) [2] respectively. In our work, we show that our hyperspectral data model concept

can be naturally extended to PEEM/LEEM or other similar images. Traditionally, one or

several images with higher intensity are selected out from the entire image sequences for

visualization and the spectral information (for example, X-ray absorption spectra obtained

in X-ray PEEM images) are studied accordingly [7].

The hyperspectral imaging techniques were originally developed from remote sensing

fields. There are numerous studies of fusing images from different bands to one single

2D image [30]. In addition to the reflectance indices (such as, NDVI) introduced above,

other dimension reduction methods (such as principal component analysis (PCA) or dis-

crete wavelet transform (DWT)) are commonly used for image fusion. For other image

fusion techniques, usually one or more cost functions are constructed and minimizing of

these functions results in the 2D image fusion [4]. One expects that a fused 2D image
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keeps as much information as possible. The supervised or non-supervised learning of spec-

tra is also developed to classify the regions in a 2D image based on the spectra or other

properties.

As we introduced above, generally, hyperspectral images in various domains are studied

following the same strategy: reduce the dimensions to generate a 2D image. In addition,

the spectral analysis is performed individually as it is unfeasible to obtain information in

all three dimensions of a hyperspectral cube simultaneously. In Chapter 4, the detailed

solutions are introduced to tackle all these problems.
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Chapter 3

Three-dimensional (3D) Reconstruction

3.1 The objective of plant 3D reconstruction

The images for this work are from rice and maize plants. For a given rice or maize plant,

there are 5 images taken at different angles of 0◦, 72◦, 144◦, 216◦ and 288◦, respectively.

The first pre-processing step is to crop the images since the plants only take a small portion

of the entire original images which have a size of 2454× 2056 pixels. A typical cropped

image approximately has 500×500 pixels, which can reduce the entire reconstruction time.

For a complete plant shape reconstruction, more images from different angles with

higher resolution are expected [21]. However, the structure reconstruction of plants in the

similar imaging condition can be achieved [37]. In this work, we focus on obtaining the

structure of plants.

We choose to implement the Shape-From-Silhouette (SFS) algorithm [9] to obtain a

3D model of plant. The principle of SFS estimating the shape of a object is that the back-

projections from silhouette images taken at different angles of the same objects intersect

with each other resulting in a visual hull. The schematic picture is shown in Fig. 3.1

to illustrate this. With Wi being a camera center and Ψi being a silhouette image, the
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Figure 3.1: The Shape-From-Silhouette problem scenario: three silhouette images are pro-
jected from the camera centers backward. The obtained intersection V is the visual hull.

SFS algorithm gives the intersection part known as the visual hull which is an approxima-

tion 3D model of a real object [9]. It is worth pointing out that a silhouette image of an

object literally means the main object of this image is in black (binary 0) and the back-

ground is in white (binary 1). While in practice the contrast is flipped which means the

object is in white because usually the object only takes a small portion in an image and

the white-object-black-background “silhouette” is more efficient with respect to memory

space cost. Without specification, our silhouette or binary image follows the white-object-

black-background style.

The plant leaves have relatively simple structures and specular surfaces. The green

color of leaves is homogeneous and the contrast is large between plants and background.

The information loss in silhouette is limited in this case. Once we compute the silhouette

images of a plant, by implementing SFS algorithm, we can obtain a visual hull of the plant.

However, the volume contained in a visual hull is a upper bound of a real plant. In Section

3.2, we propose an ad-hoc algorithm to obtain silhouette images and skeletons of plants

from the obtained silhouette images. We show how we can obtain meaningful information

from a visual hull for plant scientists.
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3.2 3D volume and structure reconstruction of plants

Plant images are taken in a controlled environment. All plants are grown in pots sitting in

front of a white board background. It is straight forward to get the segmentation of a plant

and background by HSV values [34] in an image and then the binarization can be done by

assigning the background as binary 0 and the foreground (plant) as 1. The obtained binary

images can be considered as the silhouette images of the plant. The visual hull obtained

from the silhouette images for a plant is a superset of a 3D model of the plant so that the

shape information of plant is not accurate. However, the skeleton of a visual hull of a

reconstructed plant can be considered as the structure of a plant. Plant scientists can obtain

the length information of the leaves or stems for a plant. If a 3D skeletonization algorithm

is applied to the visual hull, the 3D structure of a plant may be obtained. The problem of

this solution is that the 3D skeletonization is a challenging problem and it is expensive and

may not be optimized for our application [29].

We propose an ad-hoc algorithm (Algorithm 1) to obtain the silhouette and skeleton of

a plant image in O(N) time where N is the total number of pixels an image contains. For a

RGB image, there are three channels and in this work we use the intensity value only from

the blue channel, which is sufficient for us to distinct a plant from the white background.

Our method is low-cost with respect to memory space due to the fact that we only use

one channel and other methods based on HSV values [34] have to make use of all three

channels. We split the channels directly and do not need to convert a RGB image to a gray

image, which also reduces the computation cost. The plants from blue channels of images

have lower intensity values compared with the white background and then an threshold can

be used to segment plants and the white background. The basic idea of our algorithm is to

use the local information of an image and for each row (the X direction) we identify the

plant and the background. The advantage of using the row information is to overcome the
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Algorithm 1 2D skeletonization
1: Initialize two 8-bit empty images Ψsil and Ψbi with size as input image Ψ

2: for each row R ∈ image Ψ do
3: Get the mean value Mean and standard deviation ST D for the pixel values in R
4: for each pixel value Iv ∈ R do
5: if Iv < mean+α ∗ST D and Iv < β then . α and β are practical parameters
6: Iv is assigned to the plant
7: Set Iv as 255 . White in 8-bits gray image
8: else
9: Iv is assigned to the background

10: Set Iv as 0 . Black in 8-bits gray image
11: end if
12: Write Iv to the corresponding pixel in Ψsil
13: end for
14: end for . The silhouette image Ψsil is obtained
15: for each row R ∈ image Ψsil do
16: Find the regions corresponding to the plant
17: Find the boundary pairs which bound the regions
18: Find the midpoints (pixel positions) of these boundary pairs
19: Write 255 to the pixel positions of all midpoints to Ψbi
20: end for
21: for each column C ∈ image Ψsil do
22: Find the regions corresponding to the plant
23: Find the boundary pairs that bound the regions
24: Find the midpoints (pixel positions) of these boundary pairs
25: Write 255 to the pixel positions of all midpoints to Ψbi
26: end for

problem introduced by the inhomogeneously distributed light background. The threshold

can be obtained according to the mean value and standard deviation of a set of intensity

values corresponding to a given row in the image. This step is shown in Line 4-13 of

Algorithm 1. Once the segmentation is done for a plant and background we can obtain the

silhouette image and also identify the edges of plant in both the X and Y directions of an

image. An example is given in Fig. 3.2 (c) where the red pixels are the boundary pixels. In

Algorithm 1 Line 15-20, we obtain the midpoints of plant boundaries along the X direction

as shown by the yellow pixels in Fig. 3.2 (d). In Line 21-26 we obtain the midpoints of
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Figure 3.2: The schematic illustration of our 2D skeletonization algorithm for rice images.
(a) shows a real rice plant leaf. (b) shows the obtained skeleton, where the brighter and
darker pixels are from scanning along the X and Y directions, respectively. (c) shows a
schematic illustration of an identified leaf region. (d) shows the midpoints (in yellow) of
boundary pixels (in red) of an identify leaf regions along the X direction.

plant boundaries along the Y direction.

The reason that we can use a set of midpoints of a leaf region to represent a skeleton or

structure of the leaf is straightforward. In our data set, all the leaves have simple geometry

shapes and each leaf has a mirror plane along leaf main vein. As shown in Fig. 3.2 (a),

the 2D leaf of rice has a symmetry axis approximately along the diagonal direction. In Fig.

3.2 (b), the obtained midpoints are shown and it can be regarded as a skeleton of Fig. 3.2

(a). A synthetic leaf region is shown in Fig. 3.2 (c). One white box with black boundaries

represents a pixel in a real image. The boundaries of the synthetic leaf region are shown in

red in Fig. 3.2 (d). The midpoints of these red boundaries are shown in yellow. Once the

region of leaf is identified, we can scan the images to search the boundaries of leaf regions

along both the X and Y directions. The midpoints corresponding to one pair of boundary

points can be simply calculated. Except leaves, the stem of a plant is approximately a

cylinder which also has very high symmetry. As a result, the highly symmetric structure of

rice or maize makes our argument valid. The results of implementing our algorithm on rice

data set are shown in Fig. 3.3.

From the silhouette images by implementing the SFS algorithm, the reconstructed 3D

model of a plant can be obtained. In Fig. 3.4 (a), the top view of volume rendering result
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Figure 3.3: The results of our 2D skeletonization algorithm. (a)-(e) show the original input
images from different angles. (f)-(j) show the silhouette/binary images. (k)-(o) show the
skeletonized images.

indicates the principle of how the way of finding intersection from silhouette images works

and there are 10 main components which can be identified. The side view is shown in Fig.

3.4 (b) and the visual hull is highlighted in green. If we only keep the visual hull visualized,

it gives the approximation of a plant as shown in Fig. 3.4 (c).

The structure of a plant in a 3D model can be obtained by combining the 3D visual hull

and 2D skeleton of a plant. Among all the skeletons from different view angles shown in

Fig. 3.3 (k)-(o), a skeleton with maximum pixel numbers is automatically recommended

to users and the intersection of this skeleton with the 3D visual hull leads to a 3D structure.

The intersection of the visual hull in Fig. 3.4 (c) and the skeleton in Fig. 3.3 (m) is the

approximation of 3D structure of this plant shown in Fig. 3.4.

The rice plants have simple structures in our data set. Our approach can be naturally
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Figure 3.4: The 3D reconstruction for rice images. (a) Top view and side view (b) of a
backprojection process. (c) 3D visual hull and skeleton/structure (d) of a rice plant.

Figure 3.5: The image processing and 3D reconstruction for maize images. (a)-(e) Original
input images from different angles. (f)-(j) Silhouette/binary images. (k)-(o) Skeletonized
images. (p) 3D visual hull of a maize plant.

extended to other plant image system. Maize plants have relatively complex structures and

the results of applying our algorithm to a maize data set are shown in Fig. 3.5. Some leaves

in the 3D visual hull of the maize plant are shorter than those of real plants. This is due to

the occlusion among leaves and may be solved by taking more images at other angles.
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Chapter 4

Hyperspectral Image Information

Mining and Visualization

4.1 Volume rendering in hyperspectral images

As it has been discussed in Chapter 2, the stacking of hyperspectral images along the λ

direction leads to a hyperspectral data cube and it is worth developing a novel 3D interactive

tool allowing users to explore this data cube and obtain information in the 2D image and

the 1D spectral simultaneously. For a given spectral feature, users want to know the spatial

information where the feature shows up and for a given spatial location, users are interested

in learning the spectral information. To achieve this, we are inspired by existing volume

rendering techniques that have been proposed to intuitively visualize complex structure

within volumetric data. For example, the transfer functions (TF) can be used to assign

opacity, color and emittance. The hyperspectral data cube is also in 3D volume data format

containing scalar data value. At a given 3D data point/voxel (x,y,λ ), namely, a pixel (x,y)

and a band λ , there is one intensity value associated. It seems that existent transfer function

techniques for volume data in computer graphic field may be adapted directly to visualize
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hyperspectral data cubes and explore interesting structures.

However, hyperspectral data cubes have differences from traditional volumetric data

sets. In a hyperspectral data cube, the third dimension λ should be considered individually.

The projection on the X −Y plane gives spatial information but the projection on X − λ

or X − λ plane is less intuitive since it mixes the spatial space and the spectral or phase

space. For a 3D object in the traditional volume, the interior region of this object has a

relatively constant value. The boundaries exist as a 3D surface enclosing the object. For

an object in the hyperspectral cube, the boundaries that exist in the X−Y plane correspond

to the actual boundaries of the object, and ideally these boundaries will be reserved along

the entire λ range. However, the boundaries in the λ dimension is not the real boundaries

of objects but the spectral patterns. Many research efforts have been devoted to transfer

function designs [20, 1]. The traditional usage of transfer functions for volume rendering is

still comparably limited to identifying important features in a hyperspectral cube, as there is

a lack of transfer functions that are designed to treat the variable variation in one direction

particularly. In a hyperspectral cube, the intensity variation along the λ direction, namely

the spectral information, characterizes the different substances. The traditional transfer

functions used in volume classification cannot make use of the spectral information. As a

result, it leads to incorrect object identification.

4.2 Objectives and our contributions

The hyperspectral images give absorption or reflection information about different mate-

rials interacting with light. In the following parts of the paper, we will use interaction to

stand for both absorption and reflection that characterize or identify the materials from each

other. Then the most important question scientists would like to know from hyperspectral

images is that at which band/wavelength the interaction between some regions of interest
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(ROI) and light is largest. In other words, the main objectives of studying hyperspectral

images can be summarized as following:

• First, explore and identify bands to see which bands are more important among all

the bands.

• Second, explore and identify ROIs in the given band ranges. The ROIs are clustered

due to the spectra characteristic.

We want to achieve the two objectives in 3D hyperspectral data cube by utilizing vol-

ume rendering techniques with a well-designed transfer function. The current existing

methods of looking for a transfer function that matches the characteristics of objects in

the volume may not be an appropriate solution due to the intrinsic differences between the

hyperspectral cube and the traditional volume discussed above. A new transfer function is

needed which can extract meaningful information from the cube and treat the λ dimension

specifically.

In our work, we present the following technical contributions for developing a real-time

interactive tool to explore the hyperspectral data cube by volume rendering.

• We propose a new data model to describe the hyperspectral data cube which contains

objects in right prism shapes. Our model is not limited to traditional hyperspectral

imaging and can be naturally extended to image sequences. We show three case

study including the application of this model to both traditional or extended hyper-

spectral images: plant science hyperspectral images, physics photoemission electron

microscopy (PEEM) images and remote sensing hyperspectral images.

• We derive the correlation between the intensity change of substances in hyperspectral

images and the entropy of images. Based on the entropy and information theory, we

propose new methods for designing a universal transfer function for hyperspectral
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data cubes. Our information metric based transfer function design not only allows

users to study the hyperspectral data cube and obtain the spectral and spatial infor-

mation simultaneously, but also guides unsophisticated users to explore the hyper-

spectral data cube. In addition, any volumetric data within our data model can use

our transfer function for volume rendering and obtain information sensitive rendering

results.

• We propose a fast clustering algorithm which is used to group the same substances in

a hyperspectral cube. The clustering results help users to identify the same substances

in one or more user selected spectral ranges and the clustering results can be refined

dynamically by users.

4.3 Rational

4.3.1 The data model of objects in a 3D hyperspectral cube

The formal 3D hyperspectral cube data model is given in this section and illustrated by a

synthetic data set. The synthetic data set is a simulated hyperspectral image taken at differ-

ent bands. There are total 100 images and some of them are picked shown in Fig. 4.1. The

substances in the image sequences may or may not shown at some bands due to the dif-

ferent interaction characteristic with light which is quite common in hyperspectral images.

The traditional hyperspectral image analysis techniques leverage image fusion to reduce a

3D cube to a 2D image and try to maximize the information shown in the 2D image. The

three substances in our example are shown in a 2D fused image. The further clustering in-

formation can be obtained from spectra where the three unique spectra from corresponding

substances indicating there are three materials. Combining two separated studies of image

and spectrum, one can finally identify all the substances. This is the traditional approach
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Figure 4.1: The selected images from a synthetic data set are shown in (a). The data model
of stacking these image sequences is schematically illustrated in (b). Oki and Ok j stand for
two different substances and the voxel unions `α(xi,y j)) and `β (xi,y j)) are assigned to Oki
since the spectrum of Γ(`α(xi,y j)) and Γ(`β (xi,y j)) are identical. The band direction is
indicated by the green arrow. Three substances O1, O2 and O3 exist in the synthetic data
set. The boundary between O1 and O2 are not shown in the first few images. At the middle
range of the bands, three substances are clearly distinguished. At the end of bands, the
O1 is disappearing and the boundary between O2 and O3 is merged. (c) shows an image
fusion result by PCA indicating 3 substances and (d) gives the spectral properties of three
substances.

as introduced in Section 2. By using traditional 3D volume rendering techniques, we can

obtain a 3D cube. We can abstract the data model and formally define it. Later we show,

within the frame of our data model, how we can obtain the optimized transfer function and

volume rendering results to display the spatial and spectral information in our interactive

user interface.

Assume an image Φ(λ ) with size xm×yn = N pixels is a 2D image taken at band λ and

there are total v bands. The 3D hyperspectral data cube is defined as:

Ω(v) = {Φ(λ ) | λ = 1, · · · ,v} (4.1)
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Each pixel (x,y) in an image Φ(λ ) for λ ∈ {1, · · · ,v} shows up v times in a 3D hyper-

spectral cube. The order of stacking Φ(λ ) to 3D cube is essential and usually in increment

order and then for each given pixel (xi,y j)∈ {(x,y) | x∈ xm,y∈ yn} it gives a ordered voxel

union `v(xi,y j) =
v⋃

λ=1
(xi,y j,λ ) in the 3D space. For a given voxel (xi,y j,λk) in a 3D hy-

perspectral cube, there is an intensity value associated with the voxel. The plot of these

intensity values associated with a voxel union `v(xi,y j) versus λ ∈ [1,v] is referred as a

spectrum for `v(xi,y j) within a selected band range v and labeled as Γ(`v(xi,y j)).

The ordered voxel unions are clustered together under some distance metric measure-

ment for the spectra associated with the unions. For example, the plot of Γ(`) vs λ for

synthetic data set gives spectra/curves as shown in Fig. 4.1 (c) and the similar analysis

among curves can be used for clustering and this is usually performed by domain experts.

The `(xi,y j) union is assigned to one and only one substance Oκ implying Oκ ∩Oκ ′ = Ø

for κ 6= κ ′, where the substance Oκ is defined as:

Oκ = {`α(xi,y j) | metric(Γ(`α(xi,y j)))< ε,α ∈ [1,N]} (4.2)

where metric(Γ(`α(xi,y j)))< ε means a spectrum Γ(`α(xi,y j)) satisfies some user-defined

metric measurement, and then the different `α(xi,y j) are grouped into different groups. The

user-defined metric usually measures the spectrum characteristics of voxel unions. The

total number of `(xi,y j) is bounded by the image size N.

The physical meaning of substance is that in the hyperspectral 3D cube, there are many

materials which are mapped to the image Φ(λ ) and then the spectrum Γ(`α(xi,y j)) of

a voxel union `(xi,y j) gives the characteristic of interaction between materials and light.

Under the selected metric, one can eventually identify and cluster the same material and

group the voxel unions corresponding to each material together. The grouped voxel unions

in 3D cube are from the same material in our 3D cube model. We confine the discussion
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of the data model in ideal hyperspectral imaging condition which means the objects are

mapped to corresponding pixels in Φ(λ ). In reality, the linear or non-linear mixture of

spectral characteristics [33] happens, causing mapping of the spectral information from

one or more objects from the real world into the same pixels in Φ(λ ). As a result, the

pixels in Φ(λ ) corresponding to the boundary of two materials in the real world are mapped

with the spectral information for both materials. This may introduce an artificial substance

at the boundary since the superposition changes its spectral characteristic. Other camera

related imaging conditions (such as chromatic aberration and/or spherical aberration) with

the spectral mixture contribute to forming different substances with blurred boundaries in

Φ(λ ). However, our 3D data model is still valid in these conditions and we only need to

consider the resolved artificial substances as ordinary substances in a 3D cube.

From the discussion above, in the hyperspectral data cube of the entire range, we have

the following equation holds whether it is in ideal or non-ideal image condition:

Ω(v) =
s(v)⋃
κ=1

Oκ(v) (4.3)

where s(v) is the total number of substances depending on v.

From the topology point of view, each and every voxel union `α(xi,y j) ∈ Oκ may or

may not be connected to each other. Since the voxel unions are obtained by stacking pixels

(xi,y j) ∈Φ(λ ) along λ direction, if the connected pixels (xi,y j) form congruent polygons

then the corresponding voxel unions `α(xi,y j) are connected and form prism shapes in a

3D hypercube. It is straightforward to know the prism is a right prism from the stacking

direction which is orthogonal to the image plane. Each Oκ can approximately be described

as a union of right prism shapes. These right prism may or may not be connected.

An important fact in hyperspectral data cube model is that the total substances number

depends on the selected band range. If we select a band range resulting sub-total µ < v
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bands, then eq. 4.1 and eq. 4.3 become:

Ω(µ) = {Φ(λ ) | λ = i, · · · ,µ + i−1}=
s(µ)⋃
κ=1

Oκ(µ) (4.4)

For a given voxel union `g(xi,y j), g ∈ [1,N] clustering to the substance st , `g(xi,y j) ⊂

Oκ=st (v) in the entire band range v, it may be clustered to another substance when par-

tial bands are selected giving `g(xi,y j) ⊂ Oκ=s′t (µ). As shown in the image sequences in

Fig. 4.1, the substances O1 and O2 are not distinguishable at the front of the band range. If

we only select these regions then O1 and O2 are clustered as a superset O′12 cluster. More

discussions are shown in Section 4.4 by the synthetic data set.

Generally, we obtain the important facts with respect to band selection in a hyperspec-

tral cube for µ < v:

Oκ=st (v)⊂ Oκ=s′t (µ) (4.5)

If we project Ω(u) for a given u along λ direction and map the same Oκ(u) ∈ Ω(u) to

a 2D image with the same attribute (i.e. intensity or color), we can get a substances map

Φu corresponding to selected band range u. For example, in our synthetic data set, if only

first few bands are selected, then the substance map only contains the union of O1 and O2

since the spectral information of O1 and O2 is identical in the selected band ranges. All the

existing image fusion results are equivalent to obtain a substances map Φu.

Since Oκ(µ <= v) may be known (supervised) or not (unsupervised) and it strongly

depends on the selected sub-band ranges, the band selection and dynamically changed Oκ

are desired for the tools for studying the hyperspectral data cube.

Our data model of hyperspectral 3D cube indicates the significant difference from tra-

ditional 3D volumetric data. In traditional 3D cube, objects can be distinguished from

boundaries and within a given boundary. The density values of a object are relatively ho-
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Figure 4.2: The stacking of 2D images from synthetic data set to a 3D hyperspectral cube.
The intensity based transfer function and volume rendering results are in the left panel.
The middle and right one are corresponding to gradient based transfer function and the
volume rendering results are shown for 3D gradient and 2D gradient (in image plane only)
respectively.

mogeneous and the shape of object is arbitrary. If we use the volume rendering techniques

for traditional 3D volumes, the substance in hyperspectral 3D cube will be misleadingly

divided from the λ direction, making the rendering results meaningless. For example, the

synthetic data set is shown in Fig. 4.2 (a) by volume rendering. The volume rendering

summarizes all the image sequences information in one volume. The information in the 3D

cube is very compacted and the 3D cube is more feasible to mining information than hun-

dreds of images. This is the advantage of volume rendering. However, the three substances

are not directly segmented due to the intensity based transfer functions used in volume

rendering. If the intensities of two voxels are same, the same opacity or color is assigned

to make the voxels indistinguishable. In the hyperspectral cube, it is not the intensities

but the spectra or the intensity union along a series of voxels (locality) determining what

color or opacity the voxels should be assigned. The gradient based transfer function [20]

seems to make use of the locality information of an intensity with the neighbors since the

intensity gradient is calculated from the neighbor pixels. Unfortunately, the 3D gradient of
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a hyperspectral cube is less intuitive since the 3D gradient mixes the spectral and spatial

information. Fig. 4.2 (b) shows the 3D gradient transfer function and the volume rendering

results. The edges are detected but they divide the substances in the band direction, which

is incorrect. The 3D hyperspectral cube is formed by stacking 2D images. Compared with

the 3D gradient transfer function, the 2D gradient only calculates the spatial information in

a given image and then has a meaningful explanation. As shown in Fig. 4.2 (c), a 2D gra-

dient transfer function identifies all the edges in the images. However, the three substances

shown in Fig. 4.1 (c) is hard to be detected by the gradient based transfer function.

We need to design a new type transfer function for hyperspectral 3D data cube in order

to achieve two objectives described in section 4.2. The first objective studies the spec-

tral character and the second studies the spatial character of hyperspectral images. The

change of the interaction indicates the importance of a band. This can be illustrated by the

change of intensity of a region in hyperspectral images. Similarly, at a given band, scien-

tists would like to know which regions in the image are changing with respect to intensity.

The same materials will give the same interaction patterns and therefore the clustering can

be achieved by analyzing the interaction patterns with light in given band range. As we

introduced in a previous section, traditionally the two main objectives are studied individu-

ally. In our approach, once we consider the hyperspectral images as a 3D data cube, we can

study the spectral and spatial characters simultaneously by designing a transfer function for

the hyperspectral data cube so that the volume rendering techniques provides us an interac-

tive tool to explore the 3D data cube. In addition, the real-time interaction is necessary and

then scientists can use the transfer function explore and learn all the important information

simultaneously and instantly in spatial and spectral space.
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4.3.2 Entropy

The 3D hyperspectral data cube is constructed by stacking images taken at each band. The

entropy for each image can be calculated based on Shannon’s entropy. By assuming each

pixel in an image is an independent and identically distributed realization, we can obtain the

probability of a intensity value in an image from the intensity histogram plot of the image.

For an image with xm×yn =N total pixels, hi denotes the histogram entry of intensity value

i and the probability of pixel intensity is pi = hi/N. Under this model, the entropy of an

image is defined as:

H =−∑
i

pi× log(pi) (4.6)

From the image entropy definition, it is clear to see only the distribution of intensity

namely the histogram will affect the value of entropy. The intensity variation is reflected

by entropy which has larger tolerance to noise and other extrinsic imaging conditions. For

example, if the distribution remains the same but the total intensity change due to exposure

time will not change the entropy. A noise pixel, pixel shift or object drifting during imaging

will give limited change in entropy which is negligible.

In the hyperspectral images, if the absorption of light happens then the intensity of

image will change accordingly. As a result, the distributions of intensity changes. At one

band λδ , the average intensity I of hyperspectral image Φ(λδ ) is described by the following

equation:

I =
C0I0 +C1I1 + · · ·+CiIi + · · ·+C jI j + · · ·+CnIn

∑
k

Ck
(4.7)

where {I0, · · · , In} are all possible intensity value sample space and n is the total dis-

cretized intensity value (e.g. n is typically chosen to be 255 for an 8-bit gray image.);

Ck ∈ {0, · · · ,N} is the total count of the corresponding intensity where N = xm× yn is the

total pixels the xm by yn image contains and Ck is constrained by the total pixels of the



28

Figure 4.3: The average intensity and entropy plots for images across the entire bands.
Four sets of hyperspectral images from three different scientific fields including (a) plant
science, (b) physics, and (c)-(d) remote sensing are used to show the generalization of the
correlation between image intensity and entropy.

image implying
n
∑

k=0
Ck = N.

From the equation 4.7, we can get the probability P of an intensity value Iα in the image

as:

PIα
=

Cα

n
∑

k=0
Ck

=
Cα

N
(4.8)
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The entropy of image Φ(λδ ) based on equation 4.6 is given by:

H(λδ ) =−
n

∑
α=0

PIα
log(PIα

)

=− ∑
β /∈i, j

PIβ
log(PIβ

)−PIilog(PIi)−PI j log(PI j)

(4.9)

If the count of an arbitrary intensity Ii changes to I j ∈{I0, · · · , In} then the PIi and PI j will

change accordingly and the entropy value in the equation above may be altered. Assume

there are originally ∆c pixels with intensity Ii defined as a ROI in Φ(λδ ), and due to the

interaction with lights at another band λδ ′ the original intensity Ii changes to intensity I j.

In image Φ(λδ ), the initial counts of Ii and I j are Ci and C j respectively. Then in image

Φ(λδ ′) the counts C′i and C′j for Ii and I j change to C′i = Ci−∆c and C′j = C j +∆c. The

probabilities P′Ii
and P′I j

also changed to P′Ii
= Ci−∆c

N and P′I j
=

C j+∆c
N

The entropy of image Φ(λδ ′) taken at band λδ ′ changes accordingly

H(λδ ′) =− ∑
β /∈i, j

PIβ
log(PIβ

)−P′Ii
log(P′Ii

)−P′I j
log(P′I j

) (4.10)

Combining eq. 4.9 and 4.10, we get the entropy change due to intensity change:

∆Hλδ−λ
δ ′
= ∆(H(λδ )−H(λδ ′))

= P′Ii
log(P′Ii

)+P′I j
log(P′I j

)−PIilog(PIi)−PI j log(PI j)

(4.11)

In the scenario we discussed above, we assume the intensity did not change dramatically

beyond the ROI so in eq. 4.9 and 4.10 the first term remains the same. This assumption is

valid due to the fact how the light interacts with matters, namely if the photon energies mis-

match the energy band gap of the materials, the transmission/absorption rate is independent

the energies. When the photon energy lines around the energy band gap of materials, the

transmission/absorption rate depends on the energy. One can always find the bands with a
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large intensity change for a selected ROI in an image and the region beyond the ROI will

not change much among the selected bands.

Theoretically, eq. 4.11 may equal to zero but in practical, since the hyperspectral bands

for imaging is particular chosen by domain scientists for studying the particular materials

in the bands, so the intensity change are large across the entire band space and the change

of entropy is also noticeable. The hyperspectral image intensity vs entropy plot is shown

in Fig. 4.3 from different scientific fields, which confirms the correlation between entropy

change and average intensity variety of an image.

The intensity change of an image reflects the interaction between materials with lights

which is the keystone for studying hyperspectral images. Although intensity plays a key

role in interpreting the hyperspectral images, it is subjected to some vital defects. The

image intensity depends on the experimental environments. For example, the exposure

time, thermal fluctuation of charge-coupled device (CCD) and noises may be different for

images taken at different bands which make the direct intensity comparison meaningless.

The intensity is assigned to each and every voxel in 3D data cube and it only gives local

information. The voxel-by-voxel intensity analysis is subject to noise and not feasible.

In order to overcome these difficulties, we will make use of entropy of an image. In our

transfer function design, we keep the entropy vs band number plot. Since the intensity

change is correlated with entropy as shown in eq. 4.11 one can look for the bands where

entropy changes dramatically.

The first objective namely identifies the important bands can be achieved by making

use of entropy vs band number plot. Once we select a band range u or many discrete

band ranges, the next objective is identifying the ROIs or substances Oκ(u) ∈ Ω(u) in the

contiguous or non-contiguous given band ranges by clustering voxel unions as eq. 4.1

shown. One metric is needed to character the spectrum value set Γ(`v(xi,y j)) associated

with a voxel union `v(xi,y j) for further clustering the voxel unions to substances. On one
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hand, a spectrum set can be interpreted as a set of curves. The similarity between curves

can be calculated among curves to identify the characteristics. Usually, the comparison

among curves gives O(N2) time complexity where N is the total number of curves. On the

other hand, if the value Γvi ∈ Γ(`v(xi,y j)) is considered as a random variable, then we can

apply statistical methods to variable set {Γvi} including standard deviation, skewness and

so on which evaluate each set {Γvi} individually resulting in O(N) time complexity which

is preferable for real-time applications. In the following section, the metric of evaluating

set {Γvi} and the clustering based on the metric is given.

4.3.3 Curve evaluation metric

Skewness is a measure to evaluate how asymmetric the distribution of a given set of values.

If distribution is symmetric the skewness of it is zero. Asymmetric distribution gives either

positive value or negative value. For a given random variable sample set {xi} with mean of

x̄ and standard deviation σx =

√
1
N

N
∑

i=1
(xi− x̄)2 the skewness S is defined as:

S =

1
N

N
∑

i=1
(xi− x̄)3

( 1
N

N
∑

i=1
(xi− x̄)2)

3
2

=

1
N

N
∑

i=1
(xi− x̄)3

σ3
x

(4.12)

In a given band range u ∈ [1,v], there are total N spectrum set Γ(`u(xi,y j)). We pro-

pose a formula inspired by skewness calculation to characterizes the spectrum value set

{Γuδ
} associated with a voxel union `u(xi,y j). We define the curve-skewness ς of a given

spectrum value set {Γu
δ
} as

ς =

1
u
∑

δ=1
Γu

δ

×
u
∑

δ=1
[Γuδ
× (δ −ζ )3]

( 1
u
∑

δ=1
Γu

δ

×
u
∑

δ=1
[Γuδ
× (δ −ζ )2])

3
2

(4.13)
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where

ζ =
u

∑
δ=1

(Γuδ
×δ )/

u

∑
δ=1

Γuδ

For each voxel union `uδ
(xi,y j) ∈ Ω(u) we can evaluate the corresponding spectrum

value set {Γuδ
} by eq. 4.13 to calculate the curve-skewness score. All the curve-skewness

scores for voxel unions `u(xi,y j) where xi ∈ xm and y j ∈ yn consist a matrix Ψu with di-

mension xm and yn. Every point in matrix Ψu corresponds to a spectrum characteristic

in a hyperspectral 3D cube in given band range u. If the values shown in matrix Ψu are

clustering then it is equivalent to cluster the corresponding voxel unions `u(xi,y j).

The physical reason that one can use curve-skewness score to identify a spectrum corre-

sponding to a voxel union `uδ
(xi,y j) is that the interaction with light results a peak/valley in

the spectrum point of view. In a given range of bands, the shape of peaks/valleys identifies

the materials so the curve-skewness score ς represents the shape/asymmetric character of a

spectrum resulting from the interaction between light and the materials. In order to achieve

the second objective in exploring a 3D hyperspectral cube namely identify and cluster the

ROIs, the clustering of points in matrix Ψu based on their values is used. Since the com-

parable spectra gives similar curve-skewness scores identifying the similar interaction with

lights, we just divide all the values in matrix Ψu into different bins based on the value

ranges which essentially is the histogram of values of matrix Ψu. For the same bin, we can

map the values back to the spectra associated with different voxel unions and cluster the

voxel unions in one group. The average of spectra in the same bin represents the spectral

information of voxels in 3D hyperspectral cube. Given the 3D cube Ω(u), our procedure

is summarized in the following algorithm which calculates the spectra properties in given

band range u and the clustering in Ω(u) is achieved.

In our algorithm , users can define the bin size NB to explore the 3D hyperspectral cube.

The curve-skewness algorithm is applied to our synthetic data set. It shows promising clus-
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Algorithm 2 Voxel Union Clustering
1: Initialize a matrix Ψu with size xm by yn
2: Initialize an average spectrum set Γavg = {Ø}
3: for each voxel union `uδ

(xi,y j) ∈Ω(u) do
4: Get value set {Γuδ

} associated with `uδ
(xi,y j)

5: Get ςi, j for value set {Γuδ
} corresponding to pixel (xi,y j) . calculated by eq. 4.13

6: Write ςi, j to matrix Ψu(i,j)
7: end for
8: Define a bin number NB . User defined NB
9: Get the histogram of matrix Ψu(i,j) with respect to NB

10: for each bin NBi do
11: for each value val ∈ NBi do
12: Get the voxel union `uδ

(xi,y j) corresponding to val
13: Assign `uδ

(xi,y j) into cluster ONBi
14: end for
15: Get mean spectrum Γ(ONBi

) for all spectra in cluster ONBi
16: Add Γ(ONBi

) to Γavg
17: end for

tering results as shown in Fig. 4.4 (a)-(c). All the three substances are clustering correctly.

We also show the case that the selected bands affect the clustering. In the Fig. 4.4 (d) and

(f), we only select the first or last few bands and the substances are not distinguishable in

these bands. The band selection is critical for identifying instances and hence the entropy

guided transfer function is necessary and can help unsophisticated users to explore the 3D

hyperspectral cube. In the Fig. 4.4 (e), we show that with a carefully selection of band

range the edge of substances can also be detected as an artificial substance. If the bound-

aries mix the spectral information resulting from a superposition of spectra, our method

can also be used to detect object edges.

In Section 4.4, we show how we integrate the algorithm and entropy into our user

interface and our real-time interactive design gives the state-of-art visualization tool to

study the spectral and spatial information simultaneously by volume rendering.
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Figure 4.4: The three substances are clustered by our method and interface. The boundaries
can also be detected.

4.4 Implementation

In this section, we introduce how we make use of entropy and curve-skewness score to

design a transfer function which allows users to explore the hyperspectral 3D data cube.

Two interface screenshots with an application in physics PEEM images are shown in Fig.

4.5 indicating the successful segmentation of two structure phases of oxides [7].

The interface contains 5 windows. Window 1 displays the 3D hyperspectral data cube.

The program load 2D images stacking along λ direction resulting in a 3D cube which is

rendered using intensity based transfer function. User can rotate the cube and zoom in and

out to explore it. Once the images are loaded, Window 2 displaying a plot of the entropy

vs band number across the entire band range. A hyperspectral image with high entropy is

more likely to provide useful information about the substances it contains. This window

can guide users to do an unsupervised exploring. Users can select one or multiple ranges.
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Figure 4.5: The user interface with an application in physics PEEM images

One left click of mouse generates a pair of triangular sliders and by click-and-hold users

can slide the sliders to the interested range. Right click on a slide will remove it with the

one it was paired with. In our example, one peak envelope of entropy is selected. The dra-

matical entropy envelope change indicates an importance of these bands as we discussed

in section 4.3.2. Once the band range are selected, the volume rendering results in Win-

dow 1 will change by showing red planes indicating the selection. The implementation of

our curve-skewness algorithm calculates the curve skewness score for the selected band

range and return a histogram map shown in Window 4. Windows 4 changes in real-time

corresponding to one or more band range selections. The bin number associated with his-

togram is set to 1024 for physics PEEM data and can be adjusted by users for generating

histograms. The averaged spectra for the same bin are shown in Window 3. Since each bin

contains corresponding sets of voxel unions, once the bins in the histogram are selected by

users, the program highlights the selection in red, and the corresponding voxels are shown

in Window 5. At the meantime, the spectra are highlighted in red to indicate the spectral
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characters.

The brush of histogram allows users to obtain dynamically changed spectra and spatial

information simultaneously. User can select multiple bands at the same time and multiple

corresponding histograms are shown. By brushing the different histograms, the unsuper-

vised interactive studies are achieved. Our transfer function designed for hyperspectral data

cube utilizes entropy and curve-skewness shown in Window 2 and 4. The spatial and spec-

tral information are dynamically shown in Window 1, 3, and 5. By using our tool, scientists

can explore and study the hyperspectral images in both spatial and spectral dimensions. As

shown in Fig. 4.5 the different brush positions in histogram give two different phases of

oxides. The brush positions highlighted in red in Fig. 4.5 (a) Window 4 are lowered in

Fig. 4.5 (b) Window 4. Different bins correspond to different instances indicating the

similar voxels are clustering in the bins and confirms the validness of our methods. More

discussion of these brush results are shown in section 5.1.

4.5 Case study

4.5.1 Application in physics PEEM image

In this section, we show how the hyperspectral 3D data cube can be explored and studied

by our tool in different scientific domains. First, we show an application of our method in

physics domain. The X-ray PEEM images are taken with X-ray energy corresponding to

Fe absorption edge. The hyperspectral images with size 608×496 of oxide LuFeO3 were

taken across 178 band. These images consist a 3D hyperspectral data cube with dimension

of 608×496×178. Two selected images from band 55 and 65 and a PCA fused image are

shown in Fig. 4.6. In the image, there are mainly three substances. The trivial substance

is the aperture shown as the gray square with a circle in the middle shown in Fig. 4.6.
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Figure 4.6: Two gray images (a)-(b) from band 55 and 65, a PCA image fusion result (c)
with pseudo color, the volume rendering (d) of images in 3D hyperspectral data cube and
volume rendering results (e) by intensity based transfer function are shown for physics
PEEM data set. There are three black dots corresponding to dead pixels in CCD show in
gray images.

Inside the circle there are two important substances which draw physicists interest. One is

hexagonal LuFeO3 and another one is orthorhombic LuFeO3 referred as h-LFO and o-LFO

respectively. The spatial relation between h-LFO and o-LFO can be considered as o-LFO

islands(shown in red in PCA image) sitting on h-LFO background (the rest area inside the

circle). The o-LFO is barely noticeable in band 55 but shows as white islands in band 65

indicating the X-ray absorption character. The small darker regions with irregular shape in

original images from both bands is the morphology shape giving the contrast as well but

actually it is the h-LFO. The strip contrasts are from the X-ray light which has inhomoge-

neous intensity. The inhomogeneous X-ray introduce the difficulties to distinguish h-LFO

and o-LFO as shown in the volume rendering result. However, since h-LFO and o-LFO

have different absorption character with respect to X-ray, by our method we can get the

islands and background separated as shown in Fig. 4.5. Previously, scientist usually use

one individual image to represent the entire image sequences and study the spectra accord-

ingly. In our interface, once the h-LFO and o-LFO are distinguished, the corresponding

spectra are shown in Window 3 which shows the spectral information. From the spectra

information it is easily to confirm the segmentation is correct. The spectra associated with

different oxides are highlighted in user interface and consistent with previous study [7].
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Figure 4.7: Two gray images (a)-(b) from band 27 and 48, a PCA image fusion result
(c) with pseudo color, the volume rendering (d) of images in 3D hyperspectral data cube
and volume rendering results (e) by intensity based transfer function are shown for maize
hyperspectral images.

Figure 4.8: The 3D volume rendering results. The segmentation is achieved by our inter-
face. (a) The background. (b) Leaf edges. (c) A maize plant. (d) Stem of a maize and (e)
The pot where the maize grows in

4.5.2 Application in plant science

Second, we show an application of our method and user interface in plant science domain.

The hyperspectral images with size 261× 275 of maize plant were taken across 242 band

(from wavelength 545 nm to 1700 nm). These images consist a 3D hyperspectral data cube

with dimension of 261× 275× 244. Two selected images from band 27 and 48 (corre-

sponding to wavelength 670 nm and 770 nm) and a PCA fused image are shown in Fig.

4.7. From these 2D images, one may identify the plant from the background and pot. The

difficulties to identify plants are introduced also by inhomogeneous light intensity. The 3D

hyperspectral cube are shown in Fig. 4.7 (d). At most of the band the leaves has same

intensity with the background which the plant locates in front of. The intensity based vol-
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Figure 4.9: Two gray images (a)-(b) from band 30 and 70, a PCA image fusion result
(c) with pseudo color, the volume rendering (d) of images in 3D hyperspectral data cube
and volume rendering results (e) by intensity based transfer function are shown for Pavia
University remote sensing data set

ume rendering results are shown in Fig. 4.7 (e) where the different colors other than blue

indicate the complex distribution of background intensity. In this situation, our method

still can segment the plant as leaves and stem since the absorption of light for them are

different. The background, pot and plat segmentation are shown in Fig. 4.8. Note that the

segmentation is done within the volume and it is a 3D segmentation.

In the experimental set-up of the imaging, a white plastic board are used as the back-

ground. The white board reflects light and result in a so-called light pollution to plants.

Therefore, the edges of plants mix many spectra from different places which distinguishes

the edges from others. These boundaries are also detected by our methods shown in Fig.

4.8 (b).

4.5.3 Application in remote sensing

Last but not least, we show an application in remote sensing domain. Reflective Optics

System Imaging Spectrometer (ROSIS-03) University of Pavia data is used in this work.

The hyperspectral images with size 340×610 were taken across 103 band. These images
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Figure 4.10: Two gray images (a)-(b) from band 30 and 70, a PCA image fusion result
(c) with pseudo color, the volume rendering (d) of images in 3D hyperspectral data cube
and volume rendering results (e) by intensity based transfer function are shown for Pavia
University remote sensing data set

consist a 3D hyperspectral data cube with dimension of 496× 608× 178. Two selected

images from band 30 and 70 and a PCA fused image are shown in Fig. 4.9. The remote

sensing hyperspectral data set has significant difference from the physics and plant data set.

In physics or plant data set, the substances within an image usually has limited number.

The effective pixels of one substance defined as the pixel count of one substance to the

total pixels an image has is large. The experimental environment is control by scientist

and the date set are taken in a laboratory. However the remote sensing images may have

many unknown or uninterested substances. For example, in the Pavia data set or other

remote sensing data set, even in the ground truth there are unclassified area. In addition,

the cloud or other uncontrollable noises may also exist. The volume rendering technique in

our method can detect some of the materials shown in Fig. 4.10.
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Chapter 5

Conclusion and Future Work

In this thesis, we study RGB images and hyperspectral images and present different ap-

proaches leading to efficient information mining procedures for these images. The image

processing and 3D volume reconstruction techniques for crop plants have been applied to

RGB images. We propose an ad-hoc solution for processing a massive amount of image

data and obtaining growth information. Our method only needs 5 images from different

view angles to reconstruct a visual hull and the structure of a simple plant such as a rice

plant. For a complex plant, such as maize, our 2D binarization method also gives promising

outputs. However, more images are necessary to obtain an accurate structure. Plant sci-

entists control the growth conditions, such as stress level or light time for different plants,

and our approach can tell the differences between plants in different growth conditions for

phenotyping studies. The growth information can be subtracted from the reconstructed 3D

structures. In the future, we would like to extend the existing segmentation algorithms

(such as, region growing) on 3D reconstructions, and enable detailed comparisons between

the structures of leaves or stems of different plants.

In order to obtain other information for plant growth, hyperspectral images are taken.

Our scopes are not limited to analyzing the hyperspectral images from plants. Instead,
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we extend our study to different scientific fields where hyperspectral images are used. In

our work, volume rendering technique is introduced first to study the hyperspectral image

sequences knows as 3D hyperspectral cube. We develop a real-time interactive tool for

explore the 3D cube. Since the 3D hyperspectral cube mixes the spatial and spectra di-

mensions, the traditional transfer functions such as gradient based transfer function suffer

some difficulties to reserve the spectral information and identify substances in 3D cube

by making use of spectral information. We formally define a data model for hyperspec-

tral data cube and propose a new method to design a transfer function based on entropy

and spectra information. We analyze the significant role the image entropy plays in hy-

perspectral image sequences and derive the strong correlation between image intensity and

entropy. Entropy is a metric that has been widely used to select useful images for image

fusion. In the traditional image fusion methods, each image is treated as an individual di-

mension without considering the relationship between images. However one hyperspectral

image is usually highly correlated to its neighboring images in a specific band range. Once

one or more important bands are identified, other metrics can be introduced to cluster the

substances in the 3D hyperspectral data cube. In this work, we propose a fast O(N) time

complexity algorithm calculating a curve-skewness score, where N is the total pixels in one

hyperspectral image. The identification of different substances are achieved by calculating

curve-skewness scores and this method shows promising results in wide scientific fields

including plant science, physics and remote sensing.

Our work gives the initial attempts to build a bridge connecting 3D hyperspectral cubes

and volume rendering. In addition, our transfer function and design strategies can be gen-

eralized to traditional volumetric data if the data shares some common features with our

hyperspectral data model.
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and B. Teulat-Merah. QTL analysis of seed germination and pre-emergence growth

at extreme temperatures in medicago truncatula. Theoretical and Applied Genetics,

122(2):429–444, 2011.

[12] L. Duan, W. Yang, C. Huang, and Q. Liu. A novel machine-vision-based facility for

the automatic evaluation of yield-related traits in rice. Plant Methods, 7(1):44, 2011.



45

[13] A. A. Gitelson, Y. Zur, O. B. Chivkunova, and M. N. Merzlyak. Assessing carotenoid

content in plant leaves with reflectance spectroscopy. Photochemistry and photobiol-

ogy, 75(3):272–281, 2002.

[14] M. R. Golzarian, R. A. Frick, K. Rajendran, B. Berger, S. Roy, M. Tester, and D. S.

Lun. Accurate inference of shoot biomass from high-throughput images of cereal

plants. Plant Methods, 7(1):2, 2011.

[15] H. Grahn and P. Geladi. Techniques and applications of hyperspectral image analysis.

John Wiley & Sons, 2007.

[16] P. Grassini, K. M. Eskridge, and K. G. Cassman. Distinguishing between yield ad-

vances and yield plateaus in historical crop production trends. Nature Communica-

tions, 4, 2013.

[17] E. Hamuda, M. Glavin, and E. Jones. A survey of image processing techniques for

plant extraction and segmentation in the field. Computers and Electronics in Agricul-

ture, 125:184–199, 2016.

[18] V. Hoyos-Villegas, J. Houx, S. Singh, and F. Fritschi. Ground-based digital imaging

as a tool to assess soybean growth and yield. Crop Science, 54(4):1756–1768, 2014.

[19] G. Jeon. Color image enhancement by histogram equalization in heterogeneous color

space. Int. J. Multimedia Ubiquitous Eng, 9(7):309–318, 2014.

[20] G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer functions for

direct volume rendering. In Proceedings of the 1998 IEEE symposium on Volume

visualization, pages 79–86. ACM, 1998.



46

[21] M. Klodt and D. Cremers. High-resolution plant shape measurements from multi-

view stereo reconstruction. In European Conference on Computer Vision, pages 174–

184. Springer, 2014.

[22] K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving. In Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE International Conference

on, volume 1, pages 307–314. IEEE, 1999.

[23] L. Li, Q. Zhang, and D. Huang. A review of imaging techniques for plant phenotyp-

ing. Sensors, 14(11):20078–20111, 2014.

[24] M. Meroni, M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and

J. Moreno. Remote sensing of solar-induced chlorophyll fluorescence: Review of

methods and applications. Remote Sensing of Environment, 113(10):2037–2051,

2009.
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