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 Fatigue cracking in asphalt concrete (AC) is of immense importance to 

pavement design and analysis because it is one of the most important forms of distress 

that can lead to structural failure in pavement. Once started, these types of cracks can 

be combined with other environmental factors leading to detrimental effects such as 

faster rates of pavement deterioration and shortened pavement life and functionality.  

Currently AASHTO TP101, also known as linear amplitude sweep (LAS) 

specification, is being widely used to evaluate the ability of an asphalt binder to resist 

fatigue. The LAS method, although mechanistic in its approach, has certain 

drawbacks. First, the test is performed on an aged 2-mm thick binder sample, which 

in reality may never exist in the AC where there is a varying non-uniform thickness of 

the binder across the components of the AC. Secondly, the test methodology predicts 

an increased fatigue resistance at lower strain levels of load when the binder ages. 

This is in contrast to the general belief among researchers that aging is one of the 

primary contributors to the acceleration of pavement cracking.  

This study aims to evaluate fatigue resistance in a more realistic approach that 

is more likely to exist in AC by incorporating sand asphalt mixtures. First, the linear 

viscoelastic properties of binder and sand asphalt mixture samples were evaluated to 

obtain the material properties under the influence of aging. Later, the fatigue tests on 

the sand asphalt mixture were investigated to understand the influence of a thin film 

of binder on the fatigue resistance. It was observed that 𝐺𝑅 based energy dissipation 



 

 

criterion for the binder evaluated a reasonable estimate for fatigue damage at 

relatively lower temperatures, but was limited to capture the influence of aging. 

Moreover, it was observed that fatigue testing on a binder at an intermediate 

temperature of 25 °C could cause edge effects to dominate as seen in the plateau 

regime for the phase angle in the time sweep tests. In order to overcome the edge 

effects in the binder LAS tests, the sand asphalt mixture testing was used for 

analyzing the binder fatigue resistance. Sand asphalt mixture testing could capture the 

microcracking and macrocracking phases more distinctively when compared to binder 

testing. In the case of pressure aging vessel (PAV) aged samples, it was observed that 

the macrocracking phase disappeared and was replaced by sudden changes in the 

material properties, indicating that the PAV aged mixture was more susceptible to 

fatigue cracking. By using the simplified viscoelastic continuum damage approach, 

the fatigue resistance of the binder and sand asphalt mixture was evaluated. The sand 

asphalt mixture testing was better to capture the influence of aging and changes in the 

microstructure during fatigue in comparison to binder fatigue tests.  
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CHAPTER ONE  

INTRODUCTION 

1.1 Overview 

Fatigue cracking or failure is one of the most important forms of distress in 

asphalt pavements. There are four important forms of distresses: (1) fatigue cracking, 

(2) rutting or permanent deformation, (3) moisture induced damage, and (4) low 

temperature cracking. Most researchers are interested in these four forms of distress 

as they are critical to develop any predictive model of the pavement behavior over its 

life time, either computationally or analytically.  

Fatigue cracking in asphalt pavement usually occurs due to repeated heavy 

axle loads from traffic. This could lead to development of various cracks in certain 

zones of the pavement across and along the wheel path. The exact location of these 

cracks on the pavement is quite difficult to predict as fatigue cracking in AC depends 

on various factors such as: (1) aggregate gradation, (2) air voids and their distribution, 

(3) binder properties, (4) variation of binder film thickness across the components of 

the AC, and (5) aging dependent changes in the properties of binder and AC [1]. The 

overall behavior and mechanical properties of the AC are highly dependent on the 

properties of the binder [2]. Also, there is a strong consensus among researchers that 

the weakest link in the composite mixture is the binder and the interface between the 

mastic and the aggregates. Fatigue cracks usually initiate and propagate in these two 

phases [3]. The significant impact of the binder properties on the fatigue resistance of 

AC is imperative, hence it is only natural that most studies to mitigate the fatigue 

cracking of AC are based on binder. Researchers have reported that based on the 

finite element simulation on AC, the stress and strain levels in the binder and mastic 

phase are at least 10 to 1000 more than what the pavement experiences [4-7]. This 
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occurs due to the differences in the stiffness of the aggregates, binder, and mastic 

phases. 

There are several test methods and experimental procedures outlined in 

literature to investigate the fatigue resistance of the binder [8]. To analyze fatigue 

resistance characteristics one usually performs strain/stress sweep tests, time sweep 

tests at high levels of stress or strains, or more recently developed linear amplitude 

sweep (LAS) tests. Moreover, the binder properties are highly dependent on time, 

type of loading, temperature, and aging. It is important to incorporate these 

parameters or their effects in any mechanistic damage evolution analysis. To 

effectively characterize fatigue damage one must consider the following factors: 

1. They must be more realistic in the sense that it should represent what 

truly happens in the pavement.  

2. Well-defined damage evolution law 

3. Well-defined failure criterion 

4. The described method should be independent of path and type of 

loading. 

5. The evolution of aging 

In order to incorporate the effect of binder film thickness as observed in the 

pavement, fatigue tests on sand asphalt were investigated. Although sand asphalt is 

not a true representation of the state of the binder in the pavement, it does provide 

valuable insight in to the influence of thin films on fatigue resistance.  

1.2 Objective and Scope 

In the current investigation, the linear viscoelastic properties of bituminous 

materials in two different length scales, binder and sand asphalt, were obtained under 

the influence of aging. 
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The fatigue resistance was characterized in the two length scales using time 

sweep and stress/strain sweep tests under different loading conditions and 

temperatures. The results were then analyzed using the simplified viscoelastic 

continuum damage model, and the influence of aging on the fatigue life of the 

samples was assessed. The most recently developed average released pseudo strain 

energy method was used for binder, and its applicability for sand asphalt was 

assessed.  
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 Introduction 

Asphalt layer in pavements strongly behaves as viscoelastic, and it owes its 

nature to the properties of the binder used. Fatigue failure is the most commonly 

observed distress phenomenon in the asphalt pavements. This form of cracking 

usually appears along the wheel path of the pavement and is mostly due to the 

repeated heavy axle loads. Fatigue failure is closely associated with the mechanical 

properties of the asphalt binder used in the composite. Even though the binder used 

strongly influences the fatigue resistance of AC, there are other factors such as: (1) 

aggregate gradation, (2) air voids and their distribution, (3) binder properties, (4) 

variation of binder film thickness across the components of the AC, and (5) aging 

dependent changes in the properties of the binder that can influence the fatigue 

behavior in the AC. It is beyond the scope of the current investigation to consider all 

the factors. Instead, some of the factors such as aging, binder in the form of thin films, 

and small air voids will be investigated.  

The most frequently used performance based specification for binder to 

mitigate the fatigue failure in AC is the PG grading system. It requires the binder to 

be tested under oscillatory mode at different aging conditions such as unaged, short 

term, and long term aged to evaluate the performance of the binders at intermediate 

and high temperatures to check the binder’s ability to resist rutting and fatigue 

cracking. The parameter |G*| sin(δ) was used as to evaluate the fatigue resistance and 

limited it to a value of 5000 kPa. Several researchers such as Stuart and Mogawer and 

Tsai and Monismith [9] concluded that the |G*| sin(δ) parameter was a poor choice of 

material resistance to fatigue because of poor correlation compared to field fatigue 
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evaluation. Bahia et.al [10] suggested that the strain level used for the PG grading was 

relatively less compared to the actual strains experienced by the binder in the asphalt 

mixture composite. Hence, they suggested the fatigue testing methodology to 

incorporate high non-linear strain levels. In another study, Masad et.al [4] conducted 

finite element analysis on the microstructure of AC to investigate the influence of 

localized strain distribution on the mechanical response of the composite. It was 

concluded that the strain levels in the mastic or the binder phase were quite high and 

most likely to be in the non-linear region. In order to incorporate the effects of high 

strain levels, Bahia et al. [11] suggested the use of time sweep tests to evaluate 

cracking in the asphalt binder. Anderson et al. [12] thoroughly investigated the time 

sweep tests proposed by Bahia et al. [11] and suggested that when the binder modulus 

was low at the intermediate temperatures, the binder was susceptible to edge effects 

and instability flow, and such fatigue characterization would not represent true fatigue 

behavior. They suggested that fatigue characterization should be performed at 

relatively low temperatures where the binder stiffness would be large enough to avoid 

edge effects. Kim et al. [13] were the first to introduce the testing of a thin film of 

binder by incorporating fatigue tests on sand asphalt mixtures. They proposed a new 

sample fabrication methodology where uniformly graded Ottawa sand particles were 

mixed with 8% of the weight of the binder. The samples were 50 mm in height and 12 

mm in diameter, and time sweep tests were performed on these cylindrical samples 

using a dynamic mechanical analyzer. The proposed method ensured that there were 

no edge effects as the sample was much stiffer and could represent the true state of 

binder in the AC mixture. Their methodology was based on a mechanistic approach 

incorporated a viscoelastic continuum damage-based analysis. They identified that the 

second point of inflection in the stiffness versus the number of cycles and the peak in 
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phase angles correlated well to describe the point of fatigue failure in the samples. 

They also investigated the influence of rest periods on the fatigue life of sand asphalt 

samples. In another study, Martono et al. [14] investigated the influence of edge flow 

and instability parallel to the plate testing of the binder by comparing time sweep 

results of the binder and sand asphalt samples. Simple shift parameters were used to 

compare the results from the two length scales, and regression analysis indicated that 

test geometry was not a sufficiently significant factor to affect the fatigue results in 

the binder, and that there were no significant edge effects.  

Over the last two decades there has been significant improvement in 

characterizing fatigue damage in asphalt concrete based on the continuum damage 

models. Continuum damage theory is developed based on the changes observed in 

material properties at the macroscale (15). One of the most frequently used 

approaches in characterizing fatigue damage in AC is the viscoelastic continuum 

damage (VECD) theory based on the crack growth in viscoelastic media by Schapery 

[16]. A similar approach was used here for binder and sand asphalt mixture samples 

to assess the fatigue resistance properties. 
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CHAPTER THREE  

EXPERIMENTAL PROCEDURE 

3.1 Experimental Outline 

The mechanical properties of bituminous materials are highly dependent on 

time, temperature, and type of load applied. Any testing methodology adopted should 

be able to capture such dependencies to better understand the material response and 

model the material properties appropriately. Throughout the investigation, the load 

applied to the sample was either in controlled strain mode or stress mode, and all tests 

on both the binder and sand asphalt mixture were performed in torsion. Typically, 

bituminous materials are subjected to two types of testing, either in the time domain 

or in the frequency domain. Since the material dependent properties are the same 

irrespective of the type of domain used, one can convert material properties in one 

domain to another. Another mode of testing that is quite frequently used is the 

oscillatory mode of testing where the sample is subjected to a sinusoidal loading. The 

response measured would also be a sinusoidal response but out of phase relative to the 

applied load. 

3.2 Materials 

The binder selected for all the tests performed in this thesis is PG 64-28. It is 

the most commonly used binder in the state of Nebraska apart from PG 64-34 and PG 

58-34. The PG 64-34 and PG 64-28 are polymer modified binders whereas the PG 58-

34 is an unmodified binder.  

For preparing sand asphalt mixture samples, Ottawa sand was used with 

binder at a dosage of 4% by the weight of the binder. The selected Ottawa sand met 

the specification of ASTM C778 graded sand. The reason for using the sand asphalt 



8 

mixture for this study is to assess the influence of a thin film of binder on the fatigue 

resistance and the overall mechanical properties of the sand-binder composite.  

3.3 Sample Preparation 

3.3.1 Binder  

As mentioned above, the binder used in this investigation is a PG 64-28 

polymer modified binder. Typically, the PG 54-49 base binder from the source was 

modified with a dosage of 4% of Styrene butadiene styrene polymer and blended 

using a high shear mixer to obtain the PG 64-28 binder. 

 

 

 

3.3.2 Sand Asphalt 

The sand asphalt samples were prepared in two stages. In the first stage, called 

the mixing stage, the sand particles and binder were thoroughly mixed at an elevated 

temperature and stored in small containers. Then in a later stage called the compaction 

stage, the mixture was compacted to cylindrical samples in a metallic mold. In the 

mixing stage about 700 g of Ottawa sand was heated to a temperature of 135 °C for 

30 min in an oven then the binder, which was also heated to the same temperature, 

Figure 3.1 Hot binder poured into an 8mm diameter silicone mold and allowed to 

cool 
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was poured into the mixture and allowed to heat for 15 minutes. Once out of the oven, 

the mixture was mixed thoroughly until all the sand particles were coated with binder. 

If necessary (in case of short term aged samples), the mix was placed in the oven for 

another 15 minutes and mixed again until all the particles were coated with a thin film 

of binder. The mixture was stored in small containers and stored at a low temperature 

until it was used for compacting. In the compaction stage, approximately 10.5 g of a 

sand asphalt mixture in a small container was placed in the oven at 100 °C. After 20 

minutes, the mixture was poured into the mold immediately and compacted manually 

to obtain cylindrical samples with a height of 50 mm and a diameter of 12.3 mm. The 

same weight of the sand asphalt mixture was used for compaction to maintain 

consistency across the samples prepared. The mold was allowed to cool down so that 

the cylindrical samples would easily be removed from the mold. The samples were 

later glued to clamps using an epoxy based glue. 

3.4 Experimental Tests 

3.4.1 Strain/Stress Sweep 

In order to identify linear viscoelastic regime, a strain (or stress) sweep 

experiment can be conducted. In the strain (or stress) sweep experiment, the samples 

are subjected to increasing strain (or stress) levels with time, and the changes in the 

complex modulus value are observed. If the material was to satisfy the homogeneity 

condition of linear viscoelasticity, then the |G*| values will not change with varying 

strains (or stresses). If the |G*| values begin to drop, then the stress (or stress) levels 

are no longer in the linear regime, and the material behaves non-linearly.  

3.4.2 Frequency Sweep 

Once the linear viscoelastic limits have been established using the strain (or 

stress) sweep experiments, frequency sweep tests are performed at various 
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temperatures to establish the materials’ linear viscoelastic properties over a wide 

range of loading conditions. At a given temperature and strain selected, the frequency 

sweep test varies loading frequencies from 0.1 Hz to 10 Hz, and the values of |G*| and 

phase angle (δ) are obtained. A similar test is performed at various temperatures. A 

typical example for frequency sweep results on the binder and sand asphalt are shown 

in Figure 3.2 and Figure 3.4, respectively. 

 

 

(a) 

 

(b) 

Figure 3.2 Frequency sweep data for unaged binder (a) |G*| vs frequency (b) δ vs 

frequency 
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(a) 

 

(b) 

 

3.4.3 Time Sweep  

Fatigue damage in asphalt binder and sand asphalt is of primary concern in 

this study. To perform fatigue related tests, a time sweep test was done on binder and 

sand asphalt samples. In this test, the samples are subjected to a constant high non-

linear peak strain (or stress) in the oscillatory mode at a frequency-temperature. As 

Figure 3.3 Frequency sweep data for unaged sand asphalt sample (a) |G*| vs 

frequency (b) δ vs frequency 
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the loading cycles increase, there is a drop in |G*| values, which can be associated 

with damage accumulation. The trend in the |G*| and δ values can tell how the 

material resists fatigue damage accumulation and when the samples failed. An 

example for the time sweep test done using the controlled strain mode on binder and 

sand asphalt are shown in Figure 3.4 and Figure 3.5, respectively, where Nf represents 

the number of cycles to failure. Later in chapter 5, the definition of failure and how to 

calculate the number of cycles to failure will be discussed in detail. The figures here 

only represent the trends one will notice in different samples tested and the type of 

loading mode used. For controlled stress time sweep results, the data for the unaged 

binder performed at a peak stress amplitude of 50 KPa is shown in Figure 3.6. 

 

 

 

Figure 3.4 Time sweep |G*| and δ values for PAV age binder at 6 % strain 

amplitude.  
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3.5 Equipment  

To perform the time and frequency domain tests on binder and sand asphalt, 

two different shear rheometers were used. For all the tests performed on binder except 

Figure 3.5 Time sweep |G*| and δ values for unaged sand asphalt sample at 0.25 

% strain amplitude. 

Figure 3.6 Time sweep |G*| and δ values for unaged binder at 50 KPa stress 

amplitude. 
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the time sweep tests, the Malvern DSR was used. For sand asphalt, AR 2000 Ex was 

used. Figure 3.7 and Figure 3.8 show the schematic representation of the two-

equipment used in this study. 

 

 

 

 

Tests on binder were performed using a parallel plate geometry where the 

bottom plate was fixed and the top plate was free to rotate. The plate diameter used 

was 8 mm. The binder sample was placed in between the two plates, and the thickness 

Figure 3.7 AR 2000 DSR and its components used for testing sand asphalt 

samples 

Figure 3.8 Malvern DSR and its components used for binder testing 
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of the sample was set as 2 mm. Figure 3.9 shows the sample that was placed between 

the two plates. 

  

 

Figure 3.9 Binder placed between the top and bottom 8mm plate in Malvern 

DSR 
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CHAPTER FOUR  

LINEAR VISCOELASTIC ANALYSIS OF BINDER AND SAND ASPHALT 

4.1 Introduction to Linearity 

A material is said to behave as a linear viscoelastic material if and only if it 

satisfies the following two important criteria: (1) homogeneity and (2) superposition. 

The above statement can be mathematically described in the two equations (Equations 

(4.1) and (4.2)) below [17]. This is the basis for the Bolzmann superposition principle.  

 

  𝑅{𝛼𝐼} =  𝛼𝑅{𝐼} (4.1) 

 𝑅{𝐼1 + 𝐼2 + ⋯ … . +𝐼𝑛} =  𝑅{𝐼1} + 𝑅{𝐼2} + ⋯ … … . . +𝑅{𝐼𝑛} (4.2) 

 

For a linear non-aging, isothermal viscoelastic material, stress-strain 

constitutive equation in shear can be represented by a Boltzmann superposition 

integral or also called as the convolution integral, as shown in Equations (4.3) and 

(4.4). 𝐺(𝑡) is called the shear relaxation modulus, 𝐽(𝑡) is called the shear creep 

compliance, and 𝜏 is the integration variable. 

 

 𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝑑𝜀 (𝜏)

𝑑𝜏

𝑡

0

 (4.3) 

 𝜀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑑𝜎 (𝜏)

𝑑𝜏

𝑡

0

 (4.4) 

 

The above equations represent the time domain constitutive equations when 

input is controlled strain and stress, respectively. The form shown above is the 

integral representation of the constitutive equation, and it can also be represented in 
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its differential form. Such a response can be modeled using a combination of linear 

springs and dashpots, either in series or parallel, or a combination of both. Such 

representation helps in defining a mathematical form for 𝐺(𝑡) and 𝐽(𝑡) functions, as 

shown in Equations (4.5) and (4.6). 𝐺∞, 𝐺𝑖 and 𝜌𝑖 are long time equilibrium modulus, 

relaxation modulus constants, and relaxation times, respectively. Similarly, 𝐽𝑔, 𝜂0, 𝐽𝑗 

and 𝜏𝑗 are glassy compliance, zero shear or long time viscosity, creep compliance 

constants and retardation times, respectively. 

 

 

 The above form is known as the Prony series representation of a linear 

viscoelastic material. The material dependent functions such as 𝐺(𝑡) and  𝐽(𝑡) are 

interrelated, and one form can be converted to the other. The methods for converting 

one form to another is discussed in detail by Schapery (18). 

 In the frequency domain, complex material functions arise in response to the 

sinusoidal loading using the constitutive equations shown in Equations (4.3) and (4.4), 

where real parts are denoted by single prime, and the imaginary part by double primes 

(18). The real and imaginary parts are the storage and loss functions, respectively. 

  

 𝐺(𝑡) =  𝐺∞ + ∑ 𝐸𝑖 𝑒
−(

𝑡
𝜌𝑖

)
𝑚

𝑖=1

 (4.5) 

 𝐽(𝑡) =  𝐽𝑔 +
𝑡

𝜂0
+  ∑ 𝐽𝑗  (1 − 𝑒

−(
𝑡

𝜏𝑗
)
)

𝑛

𝑗=1

 (4.6) 

 𝐺∗ =  𝐺′(𝜔) + 𝑖 𝐺′′(𝜔) (4.7) 

 𝐽∗ =  𝐽′(𝜔) − 𝑖 𝐽′′(𝜔) (4.8) 
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The method used to convert one form to another in the time and frequency 

domain and estimation of the constants are detailed by Park and Schapery [18]. A 

similar approach is utilized in the current investigation for estimating the Prony series 

representation of the shear modulus and creep compliance for binder and sand asphalt 

mixture. To that end, the first set of experiments that are performed on the binder and 

sand asphalt are to establish the linear viscoelastic regime. To obtain the linear 

regime, experiments based on time or frequency domain can be performed. In the 

present investigation, a series of strain sweep tests are conducted at different 

temperatures and frequencies for the binder and sand asphalt mixture samples, as 

shown in Table 4.1 and Table 4.2. 

In Figure 4.1 it can be observed when the binder is well within the linear 

regime, the |G*| values are inderpendent of strains. A similar observation can be made 

for the phase angle, as shown in Figure 4.2.  

 

 

 

 

 𝐺′(𝜔) =  𝐺∞ +  ∑
ω2𝜌𝑖

2𝐺𝑖

𝜔2𝜌𝑖
2 + 1

𝑚

𝑖=1

 (4.9) 

 𝐺′′(𝜔) = ∑
𝜔𝜌𝑖𝐺𝑖

𝜔2𝜌𝑖
2 + 1

𝑚

𝑖=1

 (4.10) 

 𝐽′(𝜔) =  𝐽𝑔 +  ∑
𝐽𝑖

𝜔2𝜏𝑖
2 + 1

𝑛

𝑖=1

 (4.11) 

 𝐽′(𝜔) =  
1

𝜂0𝜔
+  ∑

𝜔𝑖𝜏𝑖𝐽𝑖

𝜔2𝜏𝑖
2 + 1

𝑛

𝑖=1

 (4.12) 
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 Test Type Temperature   Frequency Unaged  RTFOT PAV 

Strain Sweep 

0 Deg 

0.1 Hz  ✓  ✓ ✓  

10 Hz  ✓  ✓ ✓  

45 Deg 

0.1 Hz  ✓  ✓ ✓  

10 Hz  ✓  ✓ ✓  

Frequency 

Sweep 

0 Deg 

0.1 - 10 Hz 

 ✓  ✓ ✓  

15 Deg  ✓  ✓ ✓  

25 Deg  ✓  ✓ ✓  

45 Deg  ✓  ✓ ✓  

65 Deg  ✓  ✓ ✓  

 

 

 

Table 4.1 Binder test matrix 

 

Table 4.2 Sand asphalt test matrix 

Test Type Temperature   Frequency Unaged  RTFOT PAV 

Strain Sweep 

0 Deg 

0.1 Hz  ✓  ✓ ✓  

10 Hz  ✓  ✓ ✓  

45 Deg 

0.1 Hz  ✓  ✓ ✓  

10 Hz  ✓  ✓ ✓  

Frequency 

Sweep 

10 Deg 

0.1- 10 Hz 

 ✓  ✓ ✓  

25 Deg  ✓  ✓ ✓  

45 Deg  ✓  ✓ ✓  
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Figure 4.1 |G*| vs strain in a strain sweep tesst at different frequencies and 

temperatures for unaged binder 

Figure 4.2 δ vs strain at different frequencies and temperatures for unaged 

binder 
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A similar trend as seen in |G*| and phase angle (δ) values in strain sweep tests 

on an unaged binder was observed in the RTFOT and PAV aged binder. It is to be 

noted that the low temperature (0 °C) and high frequency (10 Hz) plays a critical role 

in the binder linear behavior as it shifts the limits to lower strain values. Figure 4.3 

shows the |G*| and phase angle (δ) values for the strain sweep test performed at a low 

temperature and high frequency for different aging conditions. Another point to be 

noted here is that the |G*| and phase angle independence can only justify the 

homogeneity requirement for linearity. Hence, even though the graphs suggest that 

linearity could be up to 1% strain, a lower strain value of 0.1% was taken to ensure 

that any subsequent tests are within the material’s linear limits. Similar tests were 

performed on unaged, RTFOT, and PAV aged sand asphalt mixture samples. Example 

strain sweep test results from an unaged sand asphalt mixture are shown in Figure 4.4 

and Figure 4.5. 

 

 

Figure 4.3 Strain sweep data at 0 °C and 10 Hz for unaged, RTFOt and PAV 

aged binders 



22 

 

 

 

 

It can be observed in Figure 4.4 and Figure 4.5 that the trend in |G*| and phase 

angle values for an unaged sand asphalt mixture are different when compared to the 

Figure 4.4 |G*| vs strain in strain sweep tests performed at different 

temperatures and frequencies for unaged sand asphalt mixture sample 

Figure 4.5  Phase angle (δ) vs strain in strain sweep tests performed at different 

temperatures and frequencies for unaged sand asphalt mixture sample 
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trends in an unaged binder. It clearly indicates the strong influence of the thin film of 

the binder on the overall properties of the mixture. In Figure 4.4 the linear limits are 

influenced by high temperature (45 °C) and low frequency (0.1 Hz), unlike the 

observations made in the unaged binder. Moreover, at these temperatures, the phase 

angle is lower than that of 10 °C, indicating that there are significant contacts 

occurring between the sand particles in the mixture. It can be concluded that the sand 

asphalt mixture is susceptible to large deformation, early and faster rates of damage at 

high temperatures where the binder film thickness controls the overall behavior of the 

mixture. Figure 4.6 and Figure 4.7 show the influence of aging on the strain sweep 

results.  

 

 

 

Figure 4.6 |G*| vs strain in strain sweep tests performed at different 

temperatures and frequencies for unaged, RTFOT, and PAV aged sand asphalt 

mxture sample 
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4.2 Time-Temperature Superposition and Master Curve 

Based on the strain sweep tests performed on binder and sand asphalt mixture 

samples, appropriate strain amplitudes were selected to perform frequency and 

temperature dependent tests to obtain the linear viscoelastic material properties. The 

strain amplitudes selected are shown in Table 4.3. Frequency sweep tests were 

performed over a wide range of temperature, as an example test on an RTFOT aged 

binder is shown in Figure 4.8 and Figure 4.9. The reason for performing tests at 

different temperatures is to use the principle of time-teperature superposition (TTSP), 

which says that the effect of time and temperature is equivalent for a linear viscoelatic 

material.  

 

Figure 4.7  Phase angle (δ) vs strain in strain sweep tests performed at different 

temperatures and frequencies for unaged, RTFOT, and PAV aged sand asphalt 

mixture samples 
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 Aging Binder Sand Asphalt Mixture 

Unaged 0.10% 10−4%  

RTFOT aged 0.10% 10−4%  

PAV aged 0.01% 10−4%  

 

 

 

 

Table 4.3 Strain amplitude selected for performing frequency sweep tests 

Figure 4.8 |G*| vs frequency in a frequeny sweep test performed at different 

temperatures  on RTFOT aged binder 
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TTSP allows for the use of temperature dependent shift factors (𝑎𝑇(𝑇)) to 

move the curves at different temperatures in order to allign to a reference temperature 

curve. Using TTSP, as shown below in Equation (4.13), where 𝜔𝑅 is the reduced 

frequency, 𝑇𝑟𝑒𝑓  is the reference temperature and 𝑎𝑇(𝑇)is the temperature dependent 

shift factor, one can shift to a reference temperature. Figure 4.10 shows the shifted 

curves using shift factors onto a reference temperature of 25 °C for an RTFOT aged 

binder. The resulting curve is called the master curve, which is representative of the 

material properties over a wide rage of loading frequency. 

 

 

Figure 4.9 δ vs frequency in a frequeny sweep test performed at different 

temperatures  on RTFOT aged binder 

 𝜔𝑅(𝑇𝑟𝑒𝑓) =  𝑎𝑇(𝑇) ∗ 𝜔(𝑇) (4.13) 
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Figure 4.11 shows the master curve obtained for storage and loss modulus and 

phase angle using the same shift factor that was used for shear modulus for the 

RTFOT aged binder sample. It should be noted that, for TTSP to work for the binder 

or sand asphalt mixture, the same shift factors are applicable to loss modulus, storage 

modulus, and phase angle. Similarly, master curves were obtained for sand asphalt 

mixture samples under different aging conditions using TTSP. The shift factors 

identified for binders and sand asphalt mixtures are presented in Table 4.4 and Table 

4.5 respectively.  

Figure 4.10 Shifted |G*| data for RTFOT aged binder 
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Temperature 𝑎𝑇 

[° C ] Unaged RTFOT PAV 

65 0.00095 0.0005 0.00035 

55 - 0.0021 - 

45 0.0185 0.0126 0.01 

35 0.125 0.1 - 

25 1 1 1 

10 57 67 78 

0 1129 1120 2480 

 

 

Figure 4.11 Shifted G’, G’’ and δ for RTFOT aged binder using the same shift 

factors  

Table 4.4 Shift factors for binder  
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Temperature 𝑎𝑇 

 [° C ] Unaged RTFOT PAV 

45 0.0355 0.023 0.02 

25 1 1 1 

10 55 73 89 

 

Figure 4.12 shows the master curves obtained for binder and sand asphalt 

mixture samples under different aging conditions using TTSP, which works well for 

both materials when tested in the linear viscoelastic regime. There is a clear indication 

of the difference in the material properties in the two different length scales, and the 

influence of aging is clearly visible. 

 

 

Table 4.5 Shift factors for sand asphalt mixture 

Figure 4.12 Master curve of binder and sand asphalt mixture samples for 

unaged, RTFOT, and PAV aged samples 
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The shear modulus values of the sand asphalt mixture is at least three orders of 

magnitude higher than the corresponding binder length scale. This is due to the fact 

that most of the sand asphalt mixture is composed of sand particles which are the 

main contributors to the sample stiffness. The change in slope at a low frequency (or 

high temperature) in the sand asphalt mixture might be due to contact stresses 

between sand particles, although the reason is not definitely conclusive yet. Aging 

clearly increases the material stiffness in both the length scales.  

4.3 Prony Series Representation  

The Prony series representation of the viscoelastic materiel properties has been 

widely used by many researchers. Its advantage lies in the fact that it allows for easy 

and effective means of converting one material property such as relaxation modulus to 

another property such as creep compliance. In the present section, the material 

properties in the form shown in Equations (4.5) and (4.6) are obtained for both length 

scales (i.e., binder and sand asphalt mixture). The methodology adopted is similar to 

that described by Schapery [18].  

In order to completely represent the properties in the form shown in Equation 

(4.5), several parameters need to be obtained (𝐺∞, 𝐺𝑖 and 𝜌𝑖) from experimental data. 

Since the experiment performed is in the frequency domain, the form shown in 

Equations (4.9) and (4.10) are used. The number of collocation points typically 

depends on the number of decades of the experimental data span in the log frequency 

domain. As illustrated in Figure 4.13, for an unaged binder, nine collocation points 

were chosen with the nine-decade data span. This collocation method is used for 

obtaining linear viscoelastic properties in the form of Prony series parameters (𝐺∞, 𝐺𝑖 

and 𝜌𝑖) through a system of linear equations until a smooth fit is obtained for the 
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storage modulus (G’), loss modulus (G’’), and dynamic modulus (|G*|), as shown in 

Figure 4.13 and Figure 4.14. 

 

 

 

.  

 

Once the material properties in the form shown in Equation (4.4) are obtained, 

they can be converted to define other properties such as creep compliance. Figure 

Figure 4.13 Prony fit to experimetal G’ and G’’ for unaged binder 

Figure 4.14 Prony fit to experimental |G*| for unaged binder 
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4.15 shows the creep compliance converted from the relaxation modulus using the 

Prony series parameters fitting the frequency domain data. Since binder is mostly 

modelled as a viscoelastic liquid, 𝐺∞ is zero and has a positive 𝜂𝑜value.Figure 4.16 

shows the |J*| fit using the parameters obtained in the conversion process. 

 

 

 

.  

 

 

 

Figure 4.15 G(t) and J(t) prony series plots for unaged binder 

Figure 4.16 Prony fit to experimental |J*| for unaged binder 
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The prony parameters describing the G(t) and J(t) are shown in Table 4.6 for 

binder under unaged, RTFOT aged and PAV aged conditions. 

 

Unaged  

No. of 

Prony terms 
𝜌𝑖 𝐺𝑖 𝜏𝑖 𝐽𝑖 

1 5.00E-05 8.29E+07 6.00E-05 3.64E-09 

2 0.0005 2.08E+07 0.0006 3.39E-08 

3 0.005 7.87E+06 0.006 6.71E-08 

4 0.05 1.68E+06 0.06 2.59E-07 

5 0.5 1.72E+05 0.6 1.20E-06 

6 5 2.56E+04 6 1.00E-05 

7 50 6.27E+03 60 4.34E-05 

8 500 4.79E+02 600 3.33E-04 

9 5000 1.75E+02 6000 1.54E-03 

      𝐽𝑔 8.82E-09 

      𝜂0 1.78E+06 

RTFOT aged  

No. of 

Prony terms 
𝜌𝑖 𝐺𝑖 𝜏𝑖 𝐽𝑖 

1 7.00E-05 7.96E+07 8.40E-05 3.51E-09 

2 0.0007 3.34E+07 0.00084 1.98E-08 

3 0.007 1.15E+07 0.0084 4.87E-08 

4 0.07 3.66E+06 0.084 1.58E-07 

5 0.7 7.29E+05 0.84 6.90E-07 

6 7 1.66E+05 8.4 2.77E-06 

Table 4.6 Prony series parameters for unaged binder 
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7 70 2.77E+04 84 1.20E-05 

8 700 4.07E+03 840 7.91E-05 

9 7000 1.04E+03 8400 2.64E-04 

      𝐽𝑔 7.75E-09 

      𝜂0 1.41E+07 

PAV aged  

No. of 

Prony terms 
𝜌𝑖 𝐺𝑖 𝜏𝑖 𝐽𝑖 

1 0.0001 5.22E+07 0.00012 4.22E-09 

2 0.001 2.95E+07 0.0012 1.70E-08 

3 0.01 1.53E+07 0.012 3.14E-08 

4 0.1 4.92E+06 0.12 1.30E-07 

5 1 1.35E+06 1.2 4.33E-07 

6 10 3.80E+05 12 1.39E-06 

7 100 6.31E+04 120 6.81E-06 

8 1000 1.42E+04 1200 3.35E-05 

9 10000 3.32E+03 12000 8.86E-05 

      𝐽𝑔 9.65E-09 

      𝜂0 5.96E+07 

 

 

A similar approach used for binder samples was adopted for the sand asphalt 

mixture samples. It should be noted that sand asphalt mixtures were modeled as linear 

viscoelastic solid-like material, while asphalt binder samples were assumed as linear 

viscoelastic fluid-like material. Figure 4.17 shows the Prony series fit for shifted 

storage and loss modulus master curves, and Figure 4.18 shows the shear relaxation 



35 

modulus and creep compliance for the unaged sand asphalt mixture sample. Similar 

analysis was performed for RTFOT and PAV aged sand asphalt samples..  

 

 

 

 

 

 

Figure 4.17 Prony fit for storage and loss modulus using frequency sweep data 

for unaged sand asphalt 

Figure 4.18 G(t) and J(t) obtained for unaged sand asphalt 
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The resulting Prony series parameters fitted for sand asphalt samples are 

shown in Table 4.7. 

 

Unaged  

No. of Prony 

terms 
𝜌𝑖 𝐺𝑖 𝜏𝑖 𝐽𝑖 

1 1.00E-03 2.71E+08 1.10E-03 6.24E-10 

2 0.01 2.15E+08 0.011 2.02E-09 

3 0.1 7.91E+07 0.11 6.54E-09 

4 1 2.89E+07 1.1 1.95E-08 

5 10 2.39E+06 11 3.22E-08 

6 100 7.09E+06 110 1.01E-08 

  𝐺∞ 1.14E+07 𝐽𝑔 1.63E-09 

RTFOT aged  

No. of Prony 

terms 
𝜌𝑖 𝐺𝑖 𝜏𝑖 𝐽𝑖 

1 4.00E-03 3.29E+08 4.12E-03 8.61E-10 

2 0.04 1.46E+08 0.0412 2.74E-09 

3 0.4 6.24E+07 0.412 5.67E-09 

4 4 2.05E+07 4.12 7.08E-09 

5 40 7.20E+06 41.2 3.32E-09 

6 400 6.37E+06 412 3.26E-09 

  𝐺∞ 7.13E+06 𝐽𝑔 1.73E-09 

Table 4.7 Prony series parameters for sand asphalt mixture 
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PAV aged  

No. of Prony 

terms 
𝜌𝑖 𝐺𝑖 𝜏𝑖 𝐽𝑖 

1 4.00E-03 3.37E+08 4.12E-03 6.84E-10 

2 0.04 1.82E+08 0.0412 1.95E-09 

3 0.4 8.64E+07 0.412 4.26E-09 

4 4 3.01E+07 4.12 6.43E-09 

5 40 1.04E+07 41.2 3.81E-09 

6 400 8.40E+06 412 3.36E-09 

  𝐺∞ 7.96E+06 𝐽𝑔 1.51E-09 
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CHAPTER FIVE  

FATIGUE DAMAGE CHARACTERIZATION IN BINDER AND SAND ASPHALT 

5.1 Introduction 

Fatigue in asphalt concrete has been of interest for many decades. It is one of 

the most important forms of distress in pavement leading to top-down and/or bottom-

up cracking. 

By applying Schapery’s [16] extended elastic-viscoelastic correspondence 

principle, which allows for the separation of viscoelastic effects from damage, one 

can reduce the viscoelastic problem to a corresponding elastic problem by replacing 

the physical strains during the test with pseudo-strain 𝛾𝑅, as defined in Equation (5.1).  

 

 

𝐺(𝑡), 𝑡𝑅, and 𝜁 are shear relaxation modulus, reduced time, and time variable for 

integration, respectively. 𝐺𝑅 is an arbitrary reference modulus usually taken to be a 

unity. Based on the linear viscoelastic response, one can write the shear stress in the 

form shown in Equation (5.2). Using the relation in Equation (5.1), Equation (5.2) can 

be rewritten as Equation (5.3), which is similar to the linear elastic hook’s law. 

 

 

 𝛾𝑅 =  
1

𝐺𝑟
 ∫ 𝐺(𝑡𝑅 − 𝜁)

𝑑𝛾

𝑑𝜁

𝑡𝑅

0

 𝑑𝜁 (5.1)  

 𝜏 = ∫ 𝐺(𝑡𝑅 − 𝜁)

𝑡𝑅

0

𝑑𝛾
𝑑𝜁⁄  𝑑𝜁 (5.2)  

 𝜏 =  𝐺𝑅𝛾𝑅 (5.3)  
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In order to quantify the macroscale observations of damage evolution, a 

simple parameter (pseudo stiffness) can be considered as shown in Equation (5.4). 

𝐶(𝑆) is the pseudo stiffness which is dependent on the internal damage parameter S.  

 

 

Using sinusoidal loading, Equations (5.1) and (5.4) can be written in the 

oscillatory mode. For viscoelastic materials subjected to sinusoidal loading, one can 

see hysteresis loops when plotting the strain vs. stress. The area under the loop 

accounts for the energy dissipation within the material. When the extended elastic-

viscoelastic correspondence principle formulated by Schapery [16] is applied, the 

hysteresis disappears, and a linear relation exists between the pseudo strain and stress. 

The peak pseudo strain is defined as follows in Equation 5.5, and peak pseudo 

stiffness is defined in Equation (5.6). Safaei et al. [19] suggested the use of D.M.R, 

which is defined as the ratio of the initial dynamic modulus of the sample during 

fatigue testing at very low levels of strain divided by the linear viscoelastic dynamic 

modulus of the material. This accounts for sample-to-sample variability during 

testing. 

 

 

The fundamental approach adopted in the simplified viscoelastic continuum 

damage (S-VECD) characterization of damage is based on Schapery’s work potential 

 𝐶(𝑆) =  
𝜏

𝛾𝑅
 (5.4)  

 𝛾𝑝
𝑅 =  

1

𝐺𝑅
  (𝛾𝑝|𝐺𝐿𝑉𝐸

∗ |(𝜔𝑅)) (5.5)  

 𝐶∗(𝑆) =  
𝜏𝑝

(𝛾𝑝
𝑅 × 𝐷. 𝑀. 𝑅)

  (5.6)  
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theory [16], which is based on the thermodynamics of irreversible processes. The 

damage evolution law proposed by Schapery is provided in Equation (5.7), where 𝑊𝑅 

is the stored pseudo strain energy, S is the internal state variable that represents the 

damage parameter, and 𝛼 is a material parameter that describes the rate of damage 

evolution.  

 

 

The value of 𝐶∗ is a material indicator, which is 1.0 when there is no damage 

or is within the linear viscoelastic regime. As the material accumulates damage, the 

peak pseudo stiffness (𝐶∗) begins to drop, indicating loss in material integrity, and the 

material loses its ability to store pseudo strain energy. Using Equations (5.5) through 

(5.8), one can arrive at an analytical equation for S, as shown in Equation (5.9), and 

establish a unique relationship between 𝐶∗ and 𝑆, as shown in Equation (5.10). This 

relation is called the damage characteristic curve because it is unique for a given 

material, and it is independent of the type, mode, and temperature of loading [19].  

 

 

 
𝑑𝑆

𝑑𝑡
=  (−

𝜕𝑊𝑅

𝜕𝑆
)

𝛼

 (5.7)  

 𝑊𝑅 =   
1

2
 𝐶∗(𝑆)(𝛾𝑝

𝑅)
2
 (5.8)  

 𝑆 =  ∑ [𝐷. 𝑀. 𝑅
2⁄  (𝛾𝑝,𝑖

𝑅 )
2

 (𝐶𝑖−1
∗ −  𝐶𝑖

∗)]
𝛼

(1+𝛼)⁄
 [𝑡𝑖 − 𝑡𝑖−1]

1
(1+𝛼)⁄

𝑁

𝑖=1

 (5.9)  

 𝐶∗ = 1 −  𝐶1(𝑆)𝐶2 (5.10)  
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5.2 Experimental Investigation 

To characterize fatigue damage, several tests were performed in oscillatory 

mode on binder and sand asphalt mixture samples under a multitude of conditions. 

The idea was to incorporate the effects of temperature, loading rate (frequency), 

stress, strain, and the influence of aging on the fatigue resistance of samples. The 

entire test matrix is provided in Table 5.1 for the binder, and in Table 5.2 for the sand 

asphalt mixture. 

 

Aging 

Time Sweep 

(Controlled Strain) 

Time Sweep 

(Controlled Stress) 

Strain Sweep 

Unaged 3%, 4%, 5% 50 kPa 

LAS-1 (25, 20, 15 °C), 

LAS-2 

RTFOT 3%, 4%, 5% 75kPa 

LAS-1 (25, 20, 15 °C), 

LAS-2 

PAV 4%, 5%, 6% - 

LAS-1 (25, 20, 15 °C), 

LAS-2 

 

 

 

Aging Time Sweep (Controlled Strain) Strain Sweep 

Unaged 0.2%, 0.25%, 0.35% LAS-2 (25 °C) 

RTFOT 0.25%, 0.35%,0.45% LAS-2 (25 °C) 

PAV 0.2%, 0.25%, 0.3% LAS-2 (25 °C) 

 

Table 5.1 Fatigue test matrix for binder 

Table 5.2 Fatigue test matrix for sand asphalt mixture 
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The LAS-1 is the most recent AASHTO TP 101 standard that is currently 

being used for binder fatigue tests. LAS-2 is another form of the strain sweep test 

where the only difference compared to LAS-1 is that the strain is increased in the 

logarithmic mode in LAS-2. 

5.3 Fatigue Failure Criterion 

It is important to clearly define the failure point and failure criterion for the 

analysis of fatigue damage and the use of S-VECD analysis. Several researchers have 

extensively investigated the definition of the failure point in the asphalt concrete and 

binder. The simplest definition of the fatigue failure point is a 50% reduction in 

stiffness. However, due to the arbitrary nature of its definition, it has been constantly 

challenged. Energy-based criterion were developed later to overcome the 50% 

reduction in the stiffness definition. This approach was more promising due to its 

more fundamental nature and its ability to describe marked changes in the material 

behavior due to the damage evolution. For most bituminous materials one can observe 

a hysteresis loop when plotting a stress vs. strain curve during sinusoidal loading. 

Similar observations can be seen in the binder and sand asphalt mixture as it is a 

consequence of the viscoelastic nature of the material. The area under the hysteresis 

loop is the dissipated energy in the material. Based on the dissipated energy concept 

two definitions of fatigue failure criterion emerged. The Dissipated Energy Ratio 

(DER) and the Ratio of Dissipated Energy Change (RDEC) have been successfully 

applied to the asphalt binder and the asphalt concrete in order to define the fatigue 

failure point. Another approach to define the point of failure was attempted by 

observing the changes in the slope of the stiffness and peak in the phase angle during 

fatigue tests. This approach clearly identified regions of microcracking, coalesce of 

mircrocracks, crack propagation, and complete failure or rupture in the material.  
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Another popular method that has become increasingly used is the peak in C* x 

N values during loading cycles. Although phenomenological in approach, this method 

has been able to capture the trends in fatigue damage evolution in the binder and 

mixture relatively well. Rowe and Bouldin [20] first applied this criterion to asphalt 

mixtures and could define fatigue failure successfully. By observing the trends in 𝐸∗, 

they could identify four stages of damage evolution in asphalt concrete under fatigue. 

The distinct regions were identified as: (1) internal heating, (2) micro-cracking, (3) 

crack formation/propagation, and (4) sample breakdown. They observed that by 

mathematically representing 𝐸∗ as a Taylor series expansion and function of N 

(Number of cycles) as shown in Equations (5.11) and (5.12), where 𝐸∗ is stiffness or 

modulus and 𝐸𝑜
∗ is the initial stiffness or modulus, the higher order terms were 

neglected as they did not contribute much when compared to the initial terms. 

 

 

During the microcracking phase the 
d𝐸∗

dN
 is constant and negative whereas the 

second order differential term is zero. When damage accumulation is faster or 

accelerates after a transition from a steady microcracking phase to a crack-

propagation, the second order term becomes negative, thereby reducing the product 

𝐸∗𝑁. Similar observations were made by Kim et al. [13] performed fatigue tests on 

the sand asphalt mixture samples and also assessed the influence of rest periods on 

fatigue life due to potential damage healing. They concluded that the transition point 

 𝐸∗ =  𝐸𝑜
∗ + 𝑁 

d𝐸∗

d𝑁
+ 

𝑁2

2!

𝑑2𝐸∗

𝑑𝑁2
+ ⋯ … ….   (5.11)  

 𝐸∗𝑁 =  𝐸𝑜
∗𝑁 + 𝑁2  

d𝐸∗

d𝑁
+  

𝑁3

2!

𝑑2𝐸∗

𝑑𝑁2
+ ⋯ … ….   (5.12)  
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in the stiffness and the product G* x N correlated well with the peak in the phase 

angle, thereby providing a reasonable means of identifying fatigue life. 

 Wang et al. [21] conducted a series of time sweep tests under the strain and 

stress control mode for different binders in the short term aged condition. They 

evaluated different failure criterion and concluded that phenomenological and 

dissipated energy criterion provide good indicators of failure when compared to a 

50% reduction in stiffness. Also, statistical analysis revealed that the peak in S x N 

(𝑆 =  
|𝐺∗|

|𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗ |

), the peak phase angle, and the RDEC criterion provide similar fatigue 

life predictions. In their analysis, it was observed that, for some polymer modified 

binders, the phase angle tends to gradually increase without any peaks, and the RDEC 

criterion was mostly dependent on how the data was interpreted. They concluded that 

the peak in S x N would be a better indicator of the failure point as it can indicate the 

rapid growth of damage accumulation. In the current investigation, similar fatigue 

failure criterion was used by taking the peak in C* x N (𝐶∗ = 𝑃𝑠𝑒𝑢𝑑𝑜 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠) as 

defined by Safaei et al. [19]. 

Figure 5.1 and 5.2 show results of the time sweep test performed at 4% strain 

amplitude for the unaged binder sample. In this case, it can be seen that C* x N did 

not show a peak value but a clear transition in the slope of the C* x N curve. This 

trend was also observed even in the RTFOT aged binder samples, as shown in Figure 

5.6.  

 

 



45 

 

 

 

 

In controlled stress time sweep tests, a different trend in |G*| and phase angle 

values were observed relative to controlled strain time sweep tests. This difference 

can be attributed to the mode of loading. In the case of controlled strain tests, the 

Figure 5.1 |G*| and C* x N vs No. of cycles in time sweep test for unaged binder 

at 5% strain  

Figure 5.2 Phase angle and C* x N vs no. of cycles in time sweep test for unaged 

binder at 5% strain 
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stress within the sample reduces as damage accumulates, meaning it takes less effort 

to deform to a particular state once the sample has experienced significant damage. 

On the other hand, in controlled stress tests, the sample is subjected to a constant level 

of stress, meaning that the sample has to undergo large deformation once there is 

significant damage to maintain the same level of stress. This is clearly observed in 

Figure 5.3 and Figure 5.4, where there is a phase of steady decrease in |G*| values and 

an increase in the phase angle. Once the transition point or the peak in the C* x N 

curve occurs, there is a faster rate of drop in the |G*| value and a corresponding 

increase in the phase angle, which indicates faster damage accumulation (such as 

crack propagation). The trend observed in Figure 5.3 and Figure 5.4 was consistently 

across RTFOT and PAV aged samples. This shows that controlled stress time sweep 

tests are capable of phases of radially oriented crack formation and propagation. 

 

 

 

Figure 5.3 |G*| and C* x N vs N in time sweep test for unaged binder at 50 kPa 

stress 



47 

 

Similar trends for |G*| and δ were observed for the RTFOT aged binder, as 

shown in Figure 5.5 and Figure 5.6.  

 

 

 

Figure 5.4 δ and C* x N vs N in time sweep test for unaged binder at 50 kPa 

strain  

Figure 5.5 |G*| and C* x N values in time sweep tests for RTFOT aged binder 
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Unlike in unaged and RTFOT aged binder samples, there was a clear 

correlation with the peak in C* x N, drop in |G*| values, and peak in the phase angle 

for the PAV aged binder, as shown in Figure 5.7 and Figure 5.8. The peak in the 

phase angle was a clear indication of fatigue failure due to damage, as shown in 

Figure 5.8.  

Figure 5.6 δ and C*xN vs N in time sweep test for RTFOT aged binder 
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Figure 5.7 |G*| and C*xN vs N in time sweep test at 7% strain ampltude for PAV 

aged binder 

Figure 5.8 δ and C*xN vs N in time sweep at 7% strain amplitudetest for PAV 

aged binder 
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The time sweep test conducted on an unaged sand asphalt mixture sample is 

exemplified in Figure 5.9. It shows the phase of micro-cracking where there is a 

steady increase in the phase angle and a steady decrease in the |G*| value. This phase 

is succeeded by a transition point beyond which there is an increased rate of damage 

accumulation. This region in the fatigue test can be called the macrocracking phase. 

During the macrocracking phase one can notice the faster rate of decrease for the |G*| 

value and a simultaneous increased rate of the phase angle growth. At the end of the 

fatigue test the sample breaks apart completely, which is associated with the sudden 

drop in the phase angle.  

 

 

 

For the unaged sand asphalt sample, the time sweep test performed at a strain 

amplitude of 0.35% is shown in Figure 5.10 and Figure 5.11. It can be observed that 

the peak in C* x N correlated well with the fatigue damage, as confirmed by the rapid 

decrease of |G*| and the increase of the phase angle. Unlike the binder, there was no 

Figure 5.9 |G*| and δ for time sweep test at 0.25 % strain amplitude for unaged 

sand asphalt mixture identifying micro and macro cracking 
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ambiguity in defining fatigue failure. This is clearly an advantage associated with the 

use of the sand asphalt mixture samples. A similar trend is observed in the case of the 

RTFOT aged sand asphalt samples, as shown in Figure 5.12 and Figure 5.13. It is 

important to point out here that the trends observed for the unaged and the RTFOT 

aged sand asphalt mixture samples were similar to that observed during the stress 

controlled strain sweep test of the binder. 

 

 

Figure 5.10 |G*| and C* x N vs N for time sweep test at 0.35 % strain amplitude 

for unaged sand asphalt mixture sample  
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Figure 5.11 δ and C*x N vs N for time sweep test at 0.35% strain amplitude for  

unaged sand asphalt mixture sample 

Figure 5.12 |G*| and C*xN vs N for time sweep test at strain amplitude of 0.35% 

for RTFOT aged sand asphalt mixture sample   
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In the case of the PAV aged sand mixture, there was no increase in the phase 

angle after the peak in the C* x N value. It showed a sudden drop of the phase angle 

which indicates fatigue failure, as shown in Figure 5.14 and Figure 5.15. This implies 

less macrocracking phase before a complete failure in the PAV aged mixture samples 

compared to unaged and RTFOT aged samples. The sudden drop in stiffness and the 

phase angle indicates that a transition from microcracking to complete failure was 

accelerated in the case of the PAV aged samples.  

 

 

 

 

 

Figure 5.13 δ and C*x N vs N for time sweep test at a strain amplitude of 0.35% 

for RTFOT aged sand asphalt mixture sample 
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Figure 5.14 |G*| and C*x N vs N for time sweep test at strain amplitude of 0.25% 

for PAV aged sand asphalt mixture sample  

Figure 5.15 δ and C*x N vs N for time sweep test at strain amplitude of 0.25% 

for PAV aged sand asphalt mixture sample 
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Figure 5.16 through Figure 5.18 show the time sweep test results in the form 

of fatigue life vs. strain amplitude for the unaged, RTFOT aged, and PAV aged binder 

samples. The fatigue life (i.e., the number of cycles to failure (Nf)) in the fatigue tests 

are based on the peak in C* x N values. It can be observed that with an increase in the 

strain amplitude, there is a decrease in fatigue life, which is expected and consistent 

across different aging conditions.  

 

 

 

Figure 5.16 Nf for different strain/stress amplitudes in time sweep tests 

performed on unaged binder 

Figure 5.17 Nf for different stress/strain amplitudes in time sweep tests 

performed on RTFOT aged binder 
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Figure 5.19 shows the fatigue life for LAS-1 tests performed on the unaged, 

RTFOT aged, and PAV aged binder at different testing temperatures. It can be 

observed that the fatigue life reduces as the temperature decreases irrespective of the 

aging condition. It is clear that the binder is more susceptible to fatigue cracking at 

lower temperatures. Moreover, it can be observed that at different temperatures the 

PAV aged binder shows improved fatigue resistance relative to unaged and RTFOT 

aged samples. This is in contrast with the general belief that aging is one of the 

primary reasons responsible for fatigue cracking in asphalt pavements. 

 

Figure 5.18 Nf for different strain amplitudes in time sweep tests performed on 

PAVaged binder  

Figure 5.19 Nf for LAS-1 tests at different temperature and aging conditions 



57 

Figure 5.20 shows results of time sweep fatigue tests performed at a strain 

amplitude of 5% and at 25 °C on the unaged, RTFOT aged, and PAV aged binder. It 

can be observed from the figure and the LAS-1 test results (Figure 5.19) that the 

influence of aging could not be captured effectively using 2-mm thick binder samples.  

 

Figure 5.21 through Figure 5.23 show the time sweep test results in the form 

of fatigue life vs. strain amplitude for the unaged, RTFOT aged, and PAV aged sand 

asphalt mixture samples.  

 

Figure 5.20 Nf for time sweep tests at 5% strain amplitude for different aging 

conditions 

Figure 5.21 Nf for time sweep test at different stain amplitudes for unaged sand 

asphalt mixture 
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Figure 5.24 summarizes the time sweep test results at a 0.25% strain amplitude 

and 25 °C, and Figure 5.25 shows the result from the LAS-2 tests performed for the 

sand asphalt mixture samples. Both the tests (time sweep and LAS-2) were performed 

under the three different aging conditions. It can be observed in Figure 5.24 that long 

Figure 5.22 Nf for time sweep tests at different strain amplitudes for RTFOT 

aged sand asphalt mixture 

Figure 5.23 Nf for time sweep tests at different strain amplitudes for PAV aged 

sand asphalt mixture 
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term aging (PAV aging) reduces the fatigue life of the mixture relative to unaged and 

RTFOT aged conditions. Similar observations can be made in Figure 5.25. 

 

 

 

 

 

5.4 Damage Characteristic Curve and Fatigue Life 

Sabouri et al. [22] came up with an average released pseudo strain energy until 

failure as a good indicator for incorporating different modes of loading and 

Figure 5.24 Nf for strain sweep tests performed at 0.25% strain amplitude on 

sand asphalt mixture samples under different aging conditions 

Figure 5.25 Nf for LAS-2 tests on unaged and aged sand asphalt mixture samples 
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temperature effects for asphalt mixtures. They suggested a 𝐺𝑅 based failure criterion, 

where the average pseudo strain energy released until failure versus the number of 

cycles to failure (Nf) was independent of the type of fatigue test and temperature. 

Wang et al.(23) suggested the use of peak in pseudo strain energy versus Nf as a good 

indicator of failure for fatigue testing in binder and based on the work by Sabouri et 

al.(22) they could expand the application of 𝐺𝑅 based analysis to binder. A similar 

approach was used in this research for both binder and sand asphalt fatigue tests. 

Based on the test results, the fatigue failure criterion, and methodology 

described by Safaei et.al [19], damage characteristic curves were developed for the 

binder, as shown in Figure 5.26. The damage characteristic curves are material 

dependent and independent of the type of loading, hence the time sweep data 

performed at different strain levels should still yield a similar damage curve. By using 

Equations (5.9) and (5.10), damage characteristic curves shown in Figure 5.26 can be 

developed from the time sweep fatigue tests of the unaged binder.  

The corresponding damage characteristic curves from the LAS tests (LAS -1 

and LAS -2) for the unaged binder are shown in Figure 5.27. It is interesting to note 

that, even though the same model parameter α was used for obtaining the curves for 

all the LAS data, damage characteristic curves from the LAS tests differed 

considerably relative to the time sweep case. It should also be noted that the damage 

curves at different temperatures were shifted using the principle of TTSP and using 

the same shift factors that were obtained from the linear viscoelastic master curve. 

Another thing to be noted from Figure 5.27 is that the damage characteristic curves 

obtained from different LAS tests (LAS-1 and LAS-2) were quite similar, which 

further implies that the damage characteristic is not quite dependent of loading modes. 
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Figure 5.26 Damage chracteristic curve of unaged binder in strain controlled and 

stress controlled time sweep tests 

Figure 5.27 Damage chracteristic curve of unaged binder for LAS-1 and LAS-2 

tests  
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Figure 5.28 and Figure 5.29 show the damage characteristic curves for 

RTFOT and PAV aged binders, respectively. 

 

 

 

Figure 5.28 Damage chracteristic curve for RTFOT aged binder in strain control 

and stress controled time sweep tests 

Figure 5.29 Damage characteristic curve for PAV aged binder in strain 

controlled time sweep tests 



63 

The damage characteristic curves for the sand asphalt mixture samples and the 

fit of Equation (5.10) are shown in Figure 5.30, Figure 5.31, and Figure 5.32, which 

represent the unaged, RTFOT aged, and PAV aged sand asphalt mixture samples, 

respectively. 

.  

 

 

 

 

Figure 5.30 Damage characteristic curve for unaged sand asphalt 

Figure 5.31 Damage characteristic curve for RTFOT aged sand apshalt 
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Important to the fatigue analysis is the failure criterion to define fatigue failure 

of the sample. In this study, as mentioned earlier, the 𝐺𝑅 based criterion was used to 

characterize damage evolution in both binder and sand asphalt mixture samples. The 

average released pseudo strain energy versus the failure correlated well across 

different testing conditions, as observed in Figure 5.33  and Figure 5.34. In this way, 

one can unify different testing methods such as the time sweep stress controlled, time 

sweep strain controlled, LAS-1, and LAS-2, and the effect of testing temperature. 

Safaei et al. [19] incorporated the 𝐺𝑅 to develop a fatigue characterization method, as 

described below. The released pseudo strain energy in a given cyclic load can be 

calculated as: 

 

Figure 5.32 Damage characteristic curve for PAV aged sand aspahlt sample 

 𝑊𝑟
𝑅 =  

1

2
 (1 − 𝐶∗)(𝛾𝑝

𝑅)
2

   (5.13)  
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where 𝑊𝑟
𝑅̅̅ ̅̅ ̅ is the average released pseudo strain energy until failure, defined as: 

 

where A is the total released pseudo strain energy until failure in the fatigue tests. 

 

𝐺𝑅 and the number of cycles to failure are related using a simple power law as 

follows: 

 

 

To demonstrated how it works, the fit using Equation (5.16) is exemplified in 

Figure 5.33 and Figure 5.34 for the unaged binder and the RTFOT aged sand asphalt 

mixture. The figures show the unifying approach adopted by using the average pseudo 

strain energy released during the different fatigue tests. The parameters obtained by 

fitting Equations (5.10) and (5.16) are presented in Table 5.3. 

 

 𝐺𝑅 =  
𝑊𝑟

𝑅̅̅ ̅̅ ̅

𝑁𝑓
=  

𝐴

𝑁𝑓
2   (5.14)  

 𝑊𝑟
𝑅̅̅ ̅̅ ̅ =  

𝐴

𝑁𝑓
   (5.15)  

 𝐺𝑅 =  a (𝑁𝑓)
𝑏

   (5.16)  
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The resulting fatigue life for the binder and sand asphalt mixture at different 

aging levels are shown in Figure 5.35 and Figure 5.36, respectively. Figure 5.35 

shows that fatigue resistance of unaged binder is less than PAV aged case, which 

Figure 5.33 𝑮𝑹 vs Nf for unaged binder obtained time sweep and LAS tests 

Figure 5.34 𝑮𝑹 vs Nf for RTFOT aged sand asphalt obtained using time sweep 

tests  
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contrasts to the common belief that aging would accelerate fatigue damage in 

pavements. On the other hand, in the case of sand asphalt sample, the fatigue lives of 

the unaged and RTFOT aged sand asphalt mixture were relatively similar at the strain 

levels tested in this study and they were longer than the PAV aged samples. 

  Aging 𝛼 𝐶1 𝐶2 a b 

Binder 

Unaged 1.2 3.31E-05 0.6383 1.00E+17 -2.962 

RTFOT 

aged 

1.3 5.45E-08 1.0186 7.00E+15 -2.257 

PAV aged 1.5 7.51E-07 0.7506 3.00E+16 -1.951 

Sand 

Asphalt 

Mixture 

Unaged 2.2 2.75E-06 0.7038 1.00E+10 -1.212 

RTFOT 

aged 

0.37 2.00E-03 0.4677 2.00E+16 -2.402 

PAV aged 3 5.93E-07 0.7244 2.00E+08 -0.688 

 

Results from the sand asphalt testing were closer to the general 

belief/observations than the DSR binder testing, which might be due to the fact that 

binder phase existing in a very thin film in sand asphalt mixture is more realistic and 

representative than the 2-mm thick binder used for binder fatigue testing. Figure 5.37 

shows the predicted and the experimental values for binder and sand asphalt mixture 

samples. It shows good predictions for unaged binder and sand aasphalt mixture. PAV 

aged sand asphalt mixture sample was excluded due to poor correlations. 

 

Table 5.3 Fit parameters for damage characteristic curve and 𝑮𝑹 vs Nf 
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Figure 5.35 Fatigue life for binder across different aging conditions 

Figure 5.36 Fatgue life for sand asphalt mixture across different aging conditions 
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Figure 5.37 Fatigue life predicted vs experimental values for binder and sand 

asphalt mixture samples under different aging conditions 
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CHAPTER SIX  

CONCLUSION 

6.1  Findings 

This study presents a linear viscoelastic analysis and fatigue damage 

characterization at two different length scales: the binder level and the sand asphalt 

mixture level. This study investigated the influence of a thin film of binder on the 

linear viscoelastic behavior and fatigue damage resistance. The effect of different 

modes of loading, either in strain controlled or stress controlled mode of loading, was 

investigated under the influence of aging. Based on the test results and relevant 

analyses, the following conclusions can be drawn.  

1. The binder strongly influenced the linear viscoelastic properties of the sand 

asphalt mixture. The sand mixture was modeled as a viscoelastic solid-like 

material, while binder was modeled as a viscoelastic fluid-like material.  

2. From the binder fatigue tests, particularly for the strain controlled time sweep 

testing mode, there was no clear peak in C* x N for unaged and the RTFOT 

aged binder in evaluating the fatigue failure point. Stress controlled fatigue 

tests showed clearer distinction in this regard. In the case of the sand asphalt 

samples, this was not an issue. Irrespective of the mode of loading, indicators 

such as points of inflection in the |G*| vs N, peak in the phase angle, and C* x 

N were clearly seen to be used simultaneously to evaluate progressive fatigue 

damage. 

3. Strain controlled time sweep tests of sand asphalt mixtures showed similar 

behavior from the stress controlled time sweep fatigue tests of binders.  

4. From the time sweep fatigue tests of unaged and RTFOT aged sand asphalt 

samples, two inflection points were noticed in the phase angle. After the first 



71 

point of inflection, a steady growth in the phase angle was observed, 

indicating the manifestation of small cracks that later coalesce to larger cracks 

after the second inflection point. 

5. From the strain controlled mode binder fatigue tests at 25 °C, considerable 

edge effects were observed during the test. A plateau region appeared in the 

phase angle is an indication of the onset of the edge effects or plastic flow. 

This was usually seen from unaged and RTFOT aged binders. Such effects 

could be reduced by performing the tests at relatively lower temperatures 

(such as below 20 °C). This was not observed in the case of the PAV aged 

samples.  

6. It was observed that 𝐺𝑅 based energy dissipation criterion for the binder 

evaluated a reasonable estimate for fatigue damage at relatively lower 

temperatures, but was limited to capture the influence of aging.  

7. Sand asphalt mixture testing could capture the microcracking and 

macrocracking phases more distinctively when compared to binder testing. In 

the case of pressure aging vessel (PAV) aged samples, it was observed that the 

macrocracking phase disappeared and was replaced by sudden changes in the 

material properties, indicating that the PAV aged mixture was more 

susceptible to fatigue cracking.  

8. By incorporating test results with the simplified viscoelastic continuum 

damage approach, it was found that the sand asphalt mixture testing was better 

to capture the influence of aging and changes in the microstructure during 

fatigue process in comparison to binder fatigue tests using 2-mm thick disc.  
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6.2  Future Work 

1. The binder film thickness in the sand asphalt mixture samples plays a 

prominent role in the fatigue behavior of the mixture. Hence, further studies 

investigating the influence of different film thickness on the fatigue resistance 

are recommended 

2. Moreover, the film thickness should be representative of what one can expect 

for a given AC mix design. Hence, a standardized sample preparation 

methodology of the sand mixture or so needs to be developed. 

3. Linear amplitude sweep is a much faster test methodology when compared to 

time sweep fatigue tests. The 𝐺𝑅 based failure criterion could unify the two 

test methods for the binder, but was somewhat limited to the sand asphalt 

mixture samples. Hence, an improved method that can unify different test 

conditions for sand mixtures is necessary.  

4. In the fatigue tests performed on the binder and the sand asphalt mixture 

samples herein, the strain/stress applied were large enough to be well within a 

much more complicated material behavior including linear viscoelastic, 

nonlinear viscoelastic as well as fatigue damage. The nonlinear viscoelastic 

behavior and its contribution was not considered in this study. Thus, it would 

be recommended to characterize the test results by considering more relevant 

material responses to more accurately understand the complex behavior. 
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