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As the traffic demand levels continue to grow in cities, more and more 

transportation systems experience instability during recurrent and non-recurrent 

congestion periods. Therefore, reliability has taken on increasing emphases in 

performance evaluation for transportation agencies, and in performance communication 

between agencies and the public. Existing reliability-related studies in transportation 

engineering focus on the long-term reliability of day-to-day travel time variations. This 

dissertation expands the reliability research literature with studies on the short-term 

reliability which is valuable for both real-time management and real-time traffic 

information systems.  

This dissertation proposes a level of service reliability metric for system 

evaluation. Instead of using an average measurement, the confidence interval of a point 

estimate of the performance measurement of interest is incorporated to evaluate the 

reliability of each level of service for traffic systems. Bootstrap methods are applied to 

generate confidence intervals. 

A reliability interval based on the travel time standard deviation is defined to 

describe short-term travel time variability for drivers’ information. This dissertation 

investigates both estimation and prediction methodologies for the mean and reliability 

interval of travel time, using a five km arterial corridor consisting of three links as a test 

bed. Regarding the estimation methods, the first-order and second-order approximation 



 

 

 

 

methods show superiority compared with the naïve sum method, which is widely applied 

to freeway corridors in practice. In terms of the prediction methodologies, the nonlinear 

autoregressive with exogenous inputs (NARX) neural network is shown to be effective to 

generate accurate reliability intervals in both the overall condition and the unexpected 

incident condition. 

Finally, the proposed reliability metrics and estimation methodologies are applied 

on a bimodal traffic network with highway-railway at-grade crossings in Lincoln to 

evaluate the impact of train traffic on the roadway travel time reliability. 



iv 

 

 

 

DEDICATION 

This dissertation is dedicated to my parents whose constant love and support I 

could not do without, and to my younger brother whose encouragement always 

unintentionally reminds me of who I wanted to be when I was at his age. I love you all 

very much.



v 

 

 

 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my advisor, Dr. Laurence Rilett, who 

offered me the opportunity to study at the University of Nebraska, guided me through the 

details, and always kept perspective on the bigger picture. His encouragement and 

support will always be appreciated and remembered.                                                                                                                                                                                                                                                                                                                                                                                                                        

I would also like to express my appreciation to Dr. Elizabeth Jones, Dr. Aemal 

Khattak, and Dr. Kent Eskridge for serving on my advisory committee. They provided 

valuable comments and support on my research. 

Special thanks to Mr. Tony Voigt from Research and Implementation at the Texas 

A&M Transportation Institute and the Texas Department of Transportation for providing 

the travel time data in Houston, Texas, for my research. Their shared data is the 

foundation in validating all the methodologies in this dissertation. Mr. Voigt’s help will 

be always remembered. In addition, thanks to Stanley Ernest Young and the Regional 

Integrated Transportation Information System (RITIS) for sharing the I495 data, and to 

the city of Lincoln for local traffic data. Appreciation is also extended to Dr. Weijun Ren 

for his technical expertise and willingness to spend the time to work with me on 

programming. 

I would like to thank the research sponsors: the Nebraska Department of Roads, 

the Mid-America Transportation Center, and the Nebraska Transportation Center for 

providing the resources and facilities to complete this research. Many thanks go to all the 

staff at the Nebraska Transportation Center. I am especially grateful to Amber 

Hadenfeldt, Larissa Sazama, Christopher LeFrois, April Edwards, Kacey Tegtmeier, and 

Laviania Thandayithabani.  

http://ntc.unl.edu/profile.php?id=2559


vi 

 

 

 

I extend my sincere gratitude to Dr. Justice Appiah, Dr. Bhaven Naik, and all my 

fellow students in the Nebraska Transportation Center. In addition, special appreciation is 

sent to Anita Fang, Dan Xu, and Shuihui Pan whose kindness, companionship, and 

encouragement carried me through those hardest moments.



vii 

  

 

 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ......................................................................................................................... x 

LIST OF TABLES ........................................................................................................................ xiii 

CHAPTER 1 INTRODUCTION ..................................................................................................... 1 

1.1 Background ............................................................................................................................ 2 

1.2 Problem Statement ................................................................................................................. 5 

1.2.1 Need a Generic Reliability Metric for Reliability Analysis ............................................................................ 6 

1.2.2 Need a Short-Term Travel Time Reliability Metric ........................................................................................ 7 

1.2.3 Need to Identify Efficient Methodologies to Estimate and Predict the Proposed Reliability Metrics ............ 8 

1.3 Research Objectives .............................................................................................................. 9 

1.4 Structure of the Dissertation ................................................................................................ 10 

CHAPTER 2 LITERATURE REVIEW ......................................................................................... 12 

2.1 Reliability for Traffic System Planners ............................................................................... 12 

2.1.1 Reliability for Traffic System Evaluation ..................................................................................................... 12 

2.1.2 Reliability for Traffic System Design ........................................................................................................... 15 

2.2 Reliability for Traffic System Users .................................................................................... 17 

2.2.1 Prediction Models in Traffic Analysis .......................................................................................................... 17 

2.2.2 Travel Time Prediction for Freeways ........................................................................................................... 28 

2.2.3 Travel Time Prediction for Arterials ............................................................................................................ 29 

2.2.4 Travel Time Prediction in Route Guidance Research .................................................................................. 30 

2.3 Statistical Methods for Traffic Reliability Analysis ............................................................ 33 

2.3.1 Non-Parametric Method for Confidence Interval Estimation ...................................................................... 33 

2.3.2 Measurement of Effectiveness (MOE) .......................................................................................................... 38 

2.3.3 Tests for Comparing Means and Distributions ............................................................................................ 40 

2.3.4 Test for Normality ........................................................................................................................................ 40 

CHAPTER 3 DEVELOPMENT OF RELIABILITY METRIC AND ESTIMATION 

METHODOLOGY FOR TRAFFIC MANAGEMENT ................................................................. 41 



viii 

  

 

 

3.1 Necessity of Performance Evaluation Considering Short-Term Fluctuations ..................... 42 

3.2 Definition of a Generic Reliability Metric for Evaluation ................................................... 45 

3.2.1 The Generic Reliability Metric and Demand Variation ............................................................................... 50 

3.2.2 The Generic Reliability Metric and Capacity Variation .............................................................................. 55 

3.3 Confidence Interval Estimation Methodology ..................................................................... 57 

3.3.1 Evaluation of a Single Link Network: Freeway ........................................................................................... 57 

3.3.2 Evaluation of an Arterial Corridor .............................................................................................................. 63 

3.4 Concluding Remarks ........................................................................................................... 78 

CHAPTER 4 DEVELOPMENT OF RELIABILITY INDICATOR AND PREDICTION 

METHODOLOGY FOR TRAVELERS ........................................................................................ 81 

4.1 Necessity of a Reliability Indicator for Traveler Information Systems ............................... 81 

4.2 Definition of Reliability Interval (RI).................................................................................. 86 

4.3 Case Study ........................................................................................................................... 88 

4.4 Travel Time Data ................................................................................................................. 93 

4.4.1 Data Collection Technology ........................................................................................................................ 93 

4.4.2 Bluetooth Travel Time Data for the Case Study ........................................................................................... 94 

4.4.3 Data Reduction and Outlier Identification ................................................................................................ 107 

4.5 Prediction Methodology and Results ................................................................................. 118 

4.5.1 Prediction Models .......................................................................................................................................119 

4.5.2 Prediction Results of Models Using Corridor-Based Data ........................................................................ 131 

4.5.3 Prediction Results of Models Using Link-Based Data ............................................................................... 133 

4.5.4 Overall Comparison and Conclusion ........................................................................................................ 137 

CHAPTER 5 APPLICATIONS OF THE RELIABILITY METRICS IN A BI-MODAL 

TRANSPORTATION NETWORK .............................................................................................. 150 

5.1 Simulation Model Setups................................................................................................... 151 

5.1.1 Benefits of Using Simulation Models for Reliability Analysis.................................................................... 151 

5.1.2 A Bimodal Simulation Model ..................................................................................................................... 152 

5.1.3 Railway Traffic Modelling ......................................................................................................................... 155 

5.2 Calibration and Validation ................................................................................................. 158 



ix 

  

 

 

5.2.1 Calibration Parameters ............................................................................................................................. 158 

5.2.2 Calibration Algorithm ............................................................................................................................... 160 

5.2.3 Calibration Results .................................................................................................................................... 166 

5.2.4 Validation Results ...................................................................................................................................... 168 

5.3 Reliability-Based LOS Evaluation of HRGC Related Intersection ................................... 171 

5.3.1 Intersection Evaluation .............................................................................................................................. 171 

5.3.2 HRGC Related Intersections ...................................................................................................................... 173 

5.3.3 Reliability-Based LOS of the Left-Turn Movement .................................................................................... 176 

5.4 OD Based Reliability Information ..................................................................................... 182 

5.4.1 Study Area.................................................................................................................................................. 182 

5.4.2 Simulated Travel Time Collection .............................................................................................................. 185 

5.4.3 Reliability Information for Individual Drivers ........................................................................................... 186 

5.4.4 Reliability Evaluation for System Operators ............................................................................................. 194 

5.5 Concluding Remarks ......................................................................................................... 201 

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS ................................................... 203 

6.1 An Innovative Metric for Reliability Analysis in Transportation Engineering .................. 203 

6.2 An Innovative Metric for Real-Time Reliability Information ........................................... 204 

6.3 Investigation of an Outlier Identification Method to Obtain Reliable Bluetooth Data ...... 205 

6.4 Investigation of Corridor Travel Time Mean and Variance Estimates ............................... 206 

6.5 Investigation of Prediction Models for Real-time Travel Time Reliability Information ... 208 

6.6 Investigation of the Impact of Train Arrivals on Travel Time Reliability ......................... 210 

6.7 Recommendations for Future Research ............................................................................. 211 

GLOSSARY ................................................................................................................................. 213 

REFERENCES ............................................................................................................................ 217 

 



x 

  

 

 

LIST OF FIGURES 

Figure 3.1 Geographical location of the real traffic time data ...................................................... 42 

Figure 3.2 Values of 𝜑 and the corresponding relationships between confidence interval (C) and 

evaluation interval (I) ..................................................................................................................... 48 

Figure 3.3 OD pair for example demonstration ............................................................................ 52 

Figure 3.4 Travel time (TT) reliability evaluation for two demand levels .................................... 53 

Figure 3.5 The simulation network ............................................................................................... 56 

Figure 3.6 Histogram of 2,000 Bootstrap replicates of mean speed with two types of confidence 

intervals .......................................................................................................................................... 60 

Figure 3.7 Histogram of 2,000 Bootstrap replicates of median speed with two types of confidence 

intervals .......................................................................................................................................... 61 

Figure 3.8 Five-minute confidence intervals of mean density ...................................................... 63 

Figure 3.9 A route p from origin node 1 to destination node N ..................................................... 66 

Figure 3.10 Time-dependent second-order link travel time functions .......................................... 69 

Figure 3.11 Time-dependent step link travel time functions ......................................................... 72 

Figure 3.12 The three-link corridor test bed ................................................................................. 73 

Figure 3.13 CDFs of estimation APEs .......................................................................................... 76 

Figure 3.14 HCM 2000 urban street LOS criteria ......................................................................... 77 

Figure 3.15 15-minute confidence intervals of mean travel speed ................................................ 78 

Figure 4.1 A snapshot of the Houston TranStar Traffic Map ........................................................ 85 

Figure 4.2 The test bed of a three-link arterial corridor ................................................................ 91 

Figure 4.3 An example of real-time traffic information for each link in the test bed ................... 92 

Figure 4.4 Results of model-based density estimation for travel time data .................................. 97 

Figure 4.5 CDF plots of link travel times in corridor-based and link-based datasets ................. 104 

Figure 4.6 One example of trip chain travel times ...................................................................... 108 



xi 

  

 

 

Figure 4.7 Outlier identification for Wilcrest-Kirkwood link ..................................................... 115 

Figure 4.8 Outlier identification for Kirkwood-DairyAshford link ............................................ 116 

Figure 4.9 Outlier identification for DairyAshford-Eldridge link ............................................... 117 

Figure 4.10 Nonlinear autoregressive with exogenous inputs (NARX) model .......................... 128 

Figure 4.11 NARX neural network for the mean RTT prediction ............................................... 130 

Figure 4.12 Simple methods comparison (corridor-based vs. link-based HTT methods) .......... 138 

Figure 4.13 Simple methods comparison (corridor-based vs. link-based ITT methods) ........... 139 

Figure 4.14 Outstanding simple methods vs. Neural network methods ...................................... 140 

Figure 4.15 Link-based HTT methods vs. link-based NN methods ........................................... 142 

Figure 4.16 Link-based ITT methods vs. link-based NN methods............................................. 142 

Figure 4.17 Corridor-based prediction methods.......................................................................... 143 

Figure 4.18 Neural network models ............................................................................................ 143 

Figure 4.19 Pareto optimal solutions for the overall traffic condition ........................................ 146 

Figure 4.20 Pareto optimal solutions for the unexpected incident condition .............................. 147 

Figure 5.1 The simulation model in VISSIM of the bimodal transportation network ................ 154 

Figure 5.2 Empirical and simulated train length distributions .................................................... 156 

Figure 5.3 Simulated train speed cumulative distribution input into VISSIM ............................ 157 

Figure 5.4 Genetic algorithm flowchart ...................................................................................... 161 

Figure 5.5 Simulated volume versus observed volume in field .................................................. 168 

Figure 5.6 Six intersections used in the validation study ............................................................ 170 

Figure 5.7 The intersection movement for analysis .................................................................... 176 

Figure 5.8 Time-dependent confidence intervals of average delay for the no-train scenario ..... 179 

Figure 5.9 Time-dependent confidence intervals of average delay for scenario 2 ...................... 179 

Figure 5.10 Time-dependent confidence intervals of average delay for scenario 3 .................... 180 

Figure 5.11 Four routes selected to study the OD pair from Campus (Origin) to UPS 

(Destination) ................................................................................................................................ 184 



xii 

  

 

 

Figure 5.12 Node coding to study route travel time reliability ................................................... 186 

Figure 5.13 Time-dependent reliability intervals for route travel time under the one-train scenario

 ..................................................................................................................................................... 189 

Figure 5.14 Time-dependent reliability intervals for route travel time under the no-train scenario

 ..................................................................................................................................................... 191 

Figure 5.15 Time-dependent route travel time reliability intervals under with- and without-train 

scenarios ....................................................................................................................................... 197 

Figure 5.16 Section components for the route network connecting the OD pair ........................ 199 

Figure 5.17 The complex system for the OD network ................................................................ 199 



xiii 

  

 

 

LIST OF TABLES 

Table 1.1 Various uncertainty studies in traffic networks................................................................ 3 

Table 3.1 Results of the paired t-test and Wilcoxon signed test .................................................... 44 

Table 3.2 Calculation of 𝑅x for demand level D1 scenario ........................................................... 54 

Table 3.3 Reliability metric demonstration for capacity degradation scenarios ............................ 57 

Table 3.4 Level of service criteria for basic freeway segments ..................................................... 62 

Table 3.5 Reliability-based LOS analysis results .......................................................................... 63 

Table 3.6 Performance of various estimation methods for corridor travel time metrics ............... 74 

Table 4.1 Dynamic message signs (DMS) of travel time information .......................................... 84 

Table 4.2 Link information of the corridor test bed in study ......................................................... 90 

Table 4.3 A comparison of various travel time collection technologies ........................................ 94 

Table 4.4 Examples of corridor-based travel time data ............................................................... 101 

Table 4.5 Examples of corridor-based travel time data (2011/1/1) ............................................. 102 

Table 4.6 The list of studied prediction models ........................................................................... 118 

Table 4.7 Structures of designed corridor-based NARX-1 models ............................................. 130 

Table 4.8 Structures of designed neural networks ....................................................................... 131 

Table 4.9 Prediction efficiency of corridor-based models ........................................................... 133 

Table 4.10 Prediction efficiency of link-based trivial models ..................................................... 135 

Table 4.11 Prediction efficiency of link-based NN models ......................................................... 136 

Table 4.12 Comparison of simple models ................................................................................... 149 

Table 5.1 Simulated train length distribution .............................................................................. 156 

Table 5.2 Train speed distribution ............................................................................................... 157 

Table 5.3 Default values of model parameters ............................................................................ 159 

Table 5.4 Encoding of calibration parameters ............................................................................. 163 



xiv 

  

 

 

Table 5.5 Example of converting binary chromosome to simulation parameters ....................... 164 

Table 5.6 Calibrated values of simulation parameters ................................................................. 166 

Table 5.7 Weighted MAPE of turning ratio ................................................................................. 169 

Table 5.8 Comparison of different analysis methods .................................................................. 171 

Table 5.9 LOS criteria for signalized intersection sin HCM2000 ............................................... 173 

Table 5.10 HRGC related intersections ....................................................................................... 175 

Table 5.11 LOS reliability of the left-turn movement in this study ............................................. 180 

Table 5.12 LOS of the left-turn movement in this study ............................................................. 182 

Table 5.13 Basic information of the four routes to study ............................................................ 183 

Table 5.14 Means and standard deviations of route travel times (min.) ...................................... 193 

Table 5.15 A-B travel time reliability interval information ......................................................... 194 

Table 5.16 Route information and reliability analysis under one-train scenario ......................... 196 

Table 5.17 Reliability of each components in the OD network................................................... 200 



1 

  

 

 

CHAPTER 1 INTRODUCTION 

By definition, the transportation system is stochastic and dynamic because both 

demand and supply: 1) are not constant within a given time period, and 2) change as a 

function of time. With respect to time, transportation parameters can change both within 

the day and from day-to-day. Consequently, the costs to the operators, users, and non-

users are also stochastic and dynamic. These costs could include travel time, monetary 

costs, emission costs, safety, etc. Historically, the costs have been represented by point 

estimates such as average travel time on a link. However, these point estimates do not 

describe the system performance comprehensively, because they lose information on the 

stochastic and dynamic nature of the system. Intuitively, these stochastic and dynamic 

costs are best represented by a probability distribution function that is a function of time. 

In the literature, the term reliability is typically used when describing metrics that seek to 

capture not only the measure of central tendency (e.g., mean, median, and mode), but also 

the measure of dispersion (e.g., range and variance). To date, a number of reliability 

metrics have been developed to address this issue.  

In transportation network theory, the demand is represented by the desire to 

travel. It is typically represented by a production-attraction matrix (planning) or an 

origin-destination matrix (operations). These matrices attempt to capture the propensity 

of travel between two locations (e.g., zones or nodes). The supply is often considered to 

be the infrastructure controlled by the transportation agency. This could include physical 

infrastructure such as roads, number of lanes, intersections etc., as well as operational 

strategies such as traffic signal timings. Supply is often represented as the capacity of the 
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particular link, node, or network. Transportation models, including micro-simulation 

models and the four-step planning model (Meyer and Miller 2001), attempt to model the 

interaction between the demand (e.g., number of vehicles going from origin i to 

destination j) and the supply (the physical network). The output from these models 

includes various cost metrics (e.g., travel time, delay) on the nodes, links, and systems. 

Historically, the output results of transportation models have been used to 

measure reliability performance for coarse aggregate temporal levels at one hour or one 

period (e.g., peak hours). Currently, more and more traffic measurements (e.g., travel 

time and speed) are becoming available at a fine-grained aggregation level (e.g., 5 minute 

interval) or even a discrete level (e.g., individual vehicle), as communication technology 

advances. This requires a new way to take advantage of the available dataset to generate 

more representative and effective reliability metrics for both traffic system planners and 

system users. 

 

1.1 Background 

Several research categories for investigating uncertainties in the traffic system 

have been developed, including reliability, vulnerability, and robustness (Taylor and 

D’Este 2003, 2004; Ukkusuri 2005; Wakabayashi and Iida 1992; Yin et al. 2009). These 

categories may be defined by the source of the uncertainty as shown in Table 1.1. Robust 

design focuses on optimizing improvement schemes or traffic network design while 

taking into account long-term demand uncertainty. The goal is to have the resulting 

network insensitive to realizations of uncertain demand levels. The long-term demand 

uncertainty could be attributed to external interruptions such as unexpected developments 
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of the socioeconomic system or prediction errors in travel demand modeling (Zhao and 

Kockelman 2002). For example, Ukkusuri (2005) proposed a robust network design 

model under uncertain demands and employed a multi-objective, evolutionary algorithm 

to identify very good solutions for the non-convex and non-differentiable optimization 

problem. Yin et al. (2009) studied robust improvement schemes using three optimization 

models: sensitivity-based, scenario-based, and min-max models.  

 

Table 1.1 Various uncertainty studies in traffic networks 

Research category Source of uncertainty 

Robust design Long-term changes in demand 

Vulnerability analysis Long-term changes in supply (e.g., link failure due to 

earthquakes) 

Reliability analysis Short-term changes in demand (e.g., peak hour) 

Short-term changes in supply (e.g., capacity degradation due 

to incidents) 

 

Vulnerability analysis identifies critical locations in large-scale, sparse, regional, 

or national transport infrastructure systems and evaluates the ability of transportation 

networks to withstand severe external disruptions, such as earthquakes or terrorism, 

which could lead to the complete or potential loss of a subset of network. Taylor and 

D’Este (2004) defined vulnerability by using the notion of accessibility, stating, “a 

network node is vulnerable if loss (or substantial degradation) of a small number of links 

significantly diminishes the accessibility of the node as measured by a standard index of 

accessibility and a network link is critical if loss (or substantial degradation) of the link 

significantly diminishes the accessibility of the network or of particular nodes, as 

measured by a standard index of accessibility”. In his work, a definition of “significantly 
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diminish” was not provided. There are various indices of accessibility that can be 

considered. Taylor and D’Este (2003) applied generalized travel cost and the Hansen 

integral accessibility index to analyze the vulnerability of the Australian road network. 

Reliability analysis concentrates on congested urban road networks, and the 

probability that a network will deliver a pre-defined level of performance given short-

term uncertainties. The sources of uncertainties considered in the travel time reliability 

analysis in the Highway Capacity Manual (2010) include: 1) recurring variations in 

demand; 2) special events that produce temporary, intense traffic demands; and 3) severe 

weather, incidents, and work zones that reduce capacity.  

Research focusing on reliability first began to gain momentum in the early 1990s. 

There have been various definitions of reliability. One of the most widely accepted 

definitions was given by Wakabayashi and Iida, which defined reliability as, “the 

probability of a device performing its purpose adequately for the period of time intended 

under the operating conditions encountered” (Wakabayashi and Iida 1992; Nicholson et 

al. 2003). The reliability in traffic system engineering has been defined in a number of 

ways such as connectivity reliability, travel time reliability, and capacity reliability (Chen 

et al. 2002; Ching and Hsu 2007; Tu 2008).  

Based on previous research, this dissertation proposes a generic methodology for 

reliability analysis. This proposed approach is tested on both discrete (e.g., fine-

aggregate) measurements from the empirical transportation system and from a well-

calibrated, micro-simulation model replicating the mechanism of a real traffic network. 

Of particular note is that the approach will be scalable, meaning it can be used for various 

parameters (e.g., travel time, speed, and delay), various network levels (e.g., intersection, 
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corridor, and network), and various analysis periods (e.g., within a day, month, and year). 

The proposed methodology will: 1) benefit traffic planners by providing a realistic 

reliability evaluation methodology for stochastic and dynamic properties of traffic 

systems (i.e., intersections, arterials, OD routes), and 2) benefit individual travelers by 

providing time-dependent reliability indicators in an easy-to-understand format – a 

reliability interval of arrival time. 

 

1.2 Problem Statement 

A review of reliability analysis in transportation engineering reveals that previous 

studies on traffic operations centered on defining travel time reliability at the coarse 

temporal level (e.g., peak hour) using data generated from equilibrium-based methods or 

collected as averages in the real world (Chen et al. 2002; Haitham and Emam 2006). The 

fine temporal level (e.g., 15-min interval) is generally used in real-time applications, such 

as predicting average travel time for the next interval based on real-time and historic data 

collected by a traffic monitoring system. This dissertation will develop a new 

methodology to evaluate traffic system reliability based on new reliability metrics using 

either disaggregated or aggregated data (e.g., at individual vehicle level or average 

estimates for short-term intervals). This method can be used to measure both day-to-day 

variability and within-day variability, depending on the input data. The proposed metric 

indicating day-to-day variability, referred to as long-term reliability, is useful for traffic 

system planners who are concerned with the general performance of the traffic system. 

The metric based on within-day variability, referred to as short-term reliability, can be 

provided to traffic system users through a real-time traffic information system. The short-
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term reliability metrics are also useful for traffic system operators to monitor real-time 

traffic situations and apply on-line management strategies. Methodologies will also be 

developed to estimate and predict the values of these metrics under various scenarios. 

The reliability metrics and reliability evaluation methodologies presented in this 

dissertation can be used for various traffic systems ranging from an intersection to a 

network between OD pairs. The problems to be addressed in this dissertation include 

three needs as discussed in the following sections. 

 

1.2.1 Need a Generic Reliability Metric for Reliability Analysis 

The concepts of transportation system reliability have been widely studied using 

data from equilibrium-based models for the entire period of interest (e.g., morning peak 

hour), under explicitly assumed distributions of demand and capacity (Chen et al. 2002; 

Du and Nicholson 1997). These studies considered the stochastic property of traffic 

parameters as static within the period of interest. Travel time reliability is the most 

commonly studied reliability metric, measured by buffer index, on-time probability, 

and/or a statistical range. However, traffic planners are also interested in different traffic 

parameters (e.g., travel time, safety, queue at intersection, etc.) for various design 

objectives. Furthermore, the stochastic property of traffic parameters such as average 

travel time is also dynamic in real traffic systems. To reflect the system reliability to 

system planners in a more comprehensive way, a generic reliability metric for system 

evaluation is needed. The metric needs to reflect the dynamic randomness of traffic 

parameters within the entire period of interest by accounting for short-term traffic 

fluctuations.  
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In contrast to the previous probability-based reliability metrics, this dissertation 

will propose an interval-oriented reliability metric. To reflect the uncertainty level in 

traffic systems, it is more representative to use not only point estimates of traffic 

parameters, but also the associated confidence intervals. Another advantage to using an 

interval-based metric is its capability to be correlated with level of service thresholds to 

yield the level of service reliability that can result in more representative system 

evaluation results. 

 

1.2.2 Need a Short-Term Travel Time Reliability Metric 

Most of the current real-time traffic information systems provide point estimates 

of key traffic parameters. For example, the Houston TranStar real-time traffic map 

provides average speed information. Some dynamic message signs at freeways are used 

to provide en-route travel time information in the format of a range around average travel 

time (Meehan and Rupert 2004; Oregon Department of Transportation 2005). The range, 

however, is not related to a statistic concept such as the confidence or prediction interval. 

For example, the Department of Transportation in Oregon “decided to display the travel 

time message in two-minute ranges during most times and in up to four-minute ranges 

during periods of heavy congestion.” Previous research about travel time prediction has 

focused on the point estimates of freeway travel time (Park and Rilett 1998, 1999; Eisele 

2001; van Lint et al. 2002; Xia 2006; Naik 2010; Fei et al. 2011). In addition, most in-

vehicle en-route guidance systems provide a dynamic routing policy based only on the 

shortest expected travel time between the intermediate point and the destination node 

(Miller-Hooks 2001; Yang and Miller-Hooks 2004; Bell 2009). The limitation of the 
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average-based optimization is that it does not reflect the stochastic properties of real 

traffic systems. Thus, a new metric is needed to indicate the travel time reliability for 

different route options. In this dissertation, the reliability interval of arrival time is 

proposed as a short-term reliability metric, which is defined based on the mean and 

variance of route travel times. 

 

1.2.3 Need to Identify Efficient Methodologies to Estimate and Predict the Proposed 

Reliability Metrics 

A confidence interval allows the user to estimate the uncertainty of the point 

estimate. For example, the confidence interval of the mean travel time indicates the likely 

location of the population mean travel time and indicates the uncertainty of the 

population mean. The confidence interval is used in this dissertation as a measure of 

long-term reliability performance for traffic planners and managers. The estimation 

methods of the confidence interval of traffic parameters needs to be identified for the 

long-term reliability metric. Confidence intervals can be derived based on parameter 

mean and variance which are relatively straightforward for an individual parameter with 

some known distribution (e.g., normal distribution). Non-parametric techniques can be 

used to estimate confidence intervals for parameters with unknown distribution 

(Spiegelman 2010). When it comes to a compound parameter, such as route travel time, 

for which there is not enough of a sample to calculate the confidence interval directly, 

special methods are needed to consider the correlation among link travel times to yield 

accurate mean and variance estimations for a route or corridor. This dissertation will 

compare several existing estimation methods to find the most efficient one. 
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In terms of real-time traffic reliability information, individual drivers are also 

interested in the reliability of their own travel time, in addition to the mean travel time 

estimate for all travelers. In this dissertation, the reliability interval of arrival time is 

defined as an interval that can include arrival time of a driver departing at a given time 

with a certain level of confidence. Several prediction methods for the reliability interval 

are compared and validated through one empirical example. 

 

1.3 Research Objectives 

The objective of this dissertation is to develop generalized reliability measures 

and associated estimation and prediction methodologies to evaluate the long-term and 

shot-term reliability of traffic systems for traffic agencies and road users. The traffic 

system could be a single intersection, a corridor, an OD route, or a network. The long-

term reliability is investigated in terms of level of service (LOS) reliability to give the 

overall LOS evaluation while accounting for day-to-day variability. The short-term 

reliability interval can be provided as real-time traffic information to assist drivers to 

make better decisions, which is enabled by the high penetration rate of Bluetooth 

technology and/or micro-simulation tool. The focus of this dissertation will be on the 

following aspects: 1) to propose a generic reliability metric for reliability evaluation for 

traffic agencies; 2) to test the efficiency of various methods in estimating corridor travel 

time mean and variance; and 3) to develop an efficient prediction model for arrival time 

reliability intervals under both regular conditions and unexpected congestions. 
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1.4 Structure of the Dissertation 

This dissertation consists of six chapters. Chapter 1 introduces basic background 

information on reliability studies in traffic engineering, states the problems in need of 

consideration, and outlines the structure for this dissertation. Chapter 2 reviews the 

previous research in several associated topics, including existing reliability definitions 

and metrics, travel time prediction and estimation methodologies, en-route traffic 

information provision, and so on. This dissertation is based on these previous studies and 

further improves them. Chapter 3 presents a reliability metric for system evaluation and 

its estimation methodology, together with several examples to illustrate its application 

using simulated or real traffic data. Two simulation examples are presented to show the 

capability of the proposed metric to evaluate system reliability given demand and 

capacity variations in the simulated networks, respectively. The bootstrap algorithm is 

applied to estimate the reliability metric for individual traffic systems (e.g., an 

intersection, single link). Furthermore, methods to accumulate link-based statistics (e.g. 

mean and variance of travel time) into a corridor- or route-based statistic, considering 

correlation and dependency, are presented and validated using real traffic data. Chapter 4 

turns to the reliability indicator for travelers – the corridor travel time reliability interval – 

and its prediction methodology. Different prediction models are compared using real 

traffic data to provide guidance for practitioners to choose the “best” model for a given 

objective. Chapter 5 applies the metrics and methodologies proposed in Chapter 3 and 

Chapter 4 on a simulated bimodal traffic network in Lincoln, Nebraska. This simulation 

model is well calibrated and validated. This chapter applies the proposed reliability 

metrics to quantify the impact of train traffic on the road way travel time reliability on 
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both route and OD levels. The expected results for travelers and traffic managers describe 

the system reliability in different perspectives, and have the potential to give operational 

benefits in real traffic management. The dissertation ends with a summary of findings and 

future directions presented in Chapter 6. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Reliability for Traffic System Planners 

2.1.1 Reliability for Traffic System Evaluation 

Increasingly, reliability has become an important component of the performance 

evaluation of transportation systems for both system managers and system users. Over 

the past 20 years, a number of researchers have examined ways to study the reliability of 

the system. While the Kobe earthquake of 1995 promoted the interest of connectivity 

reliability, the current increased congestion and demand urges the diversity of reliability 

indicators such as travel time reliability and capacity reliability.  

Connectivity reliability, also known as terminal reliability, was defined by Ching 

and Hsu (2007) as the probability that there is at least one route connecting the specific 

OD pair, while links and nodes are subjected to random failure events with known 

probability in real-world lifeline networks. Alternatively, connectivity reliability may 

also be defined as the probability that there exists at least one path with a certain traffic 

service level within a given time period. The certain traffic service level could be a 

simple physical connection as studied by Wakabayashi and Iida in 1992. Connectivity 

reliability does not reflect the capacity constraints of links, and is more useful to measure 

vulnerability of individual components and the network as a whole. One example is to 

evaluate the degree of performance satisfaction under extreme situations, such as natural 

disasters and terrorism attacks, which would lead to complete loss of links and nodes.  

In daily operations, reliability measurements such as travel time reliability and 

capacity reliability have been used to assess performance under recurrent congestions, 

without a complete loss of network components. Du and Nicholson (1997a, b) 
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distinguished two kinds of travel time reliability according to the source of uncertainty: 

daily traffic variations and events that lead to link degradations. Iida (1999) assumed that 

path travel time, as a sum of link travel times which are normally and independently 

distributed, is also normally distributed, and the path travel time reliability is defined as, 

“the probability that a trip will arrive at its destination within a given period.” Cassir 

(2001) defines the acceptable level of travel time as the travel time in normal conditions, 

plus a safety margin. Similarly, Chen et al. (2002) defines travel time reliability as the 

probability that a trip between a given OD pair can be made successful within a special 

interval of time. Haitham and Emam (2006) defines link travel time reliability as the 

probability that the expected travel time at degraded capacity is less than the link free 

flow travel time plus an acceptable tolerance; demands were assumed to be a normal 

distribution. Reliability engineering functions based on failure rate were used to estimate 

the travel time reliability (Haitham and Emam 2006). Tu (2008) summarized four 

approaches to define travel time reliability: 1) statistical range methods – considering 

travel time windows in the form of expected travel time, plus or minus a factor times the 

variance. This travel time window is a confidence interval for the mean travel time; 2) 

buffer time – the extra percentage travel time due to the travel time variability on a trip 

that a traveler should take into account in order to arrive on time; 3) tardy trip method – 

representing the travel time unreliability using the amount of trips that result in late 

arrivals, and focusing on the length of the delay of the worst trips; 4) probability-based 

methods – the probability that a trip between a given OD pair can be made successfully 

within a specified interval of time.  
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While travel time reliability is easy to understand by travelers in a traffic network, 

capacity reliability makes more sense from the viewpoint of network planners. Chen et al. 

(1999) defined capacity reliability as the probability that a network successfully 

accommodates a given level of travel demand; the capacity is the network reserve 

capacity (maximum network capacity) that was represented as a multiplier of an existing 

OD matrix. Furthermore, Chen et al. (2002) extended the research of capacity reliability 

by considering arc capacities as subject to random variations. Haitham and Emam (2006) 

modeled OD demand in normal distribution to find out link capacity reliability, which is 

the probability that the demand xi is less than the mean link capacity (which is also 

distributed normally), plus certain acceptable additional flow. Du and Nicholson (1997b) 

proposed flow decrement reliability to measure reliability by the likelihood that the 

reduction in flow (as a result of supply-demand interactions) is not less than a threshold, 

for both OD pairs and the network. Heydeckera et al. (2007) proposed travel demand 

satisfaction reliability, which is defined as the probability that the road network can 

accommodate a given latent travel demand. Latent travel demand is estimated using 

elastic travel demand functions.  

The studies above are mainly about developing reliability indicators to evaluate a 

traffic network. Some of them present sensitivity analysis of reliability indicators as a 

way to identify the critical components of a network for improvement. For example, 

Chen et al. (2002) performed a sensitivity analysis by computing derivations related to 

reliability measurements to identify critical arcs.  

Instead of using data generated through demand and supply assumption, recently, 

there are also reliability analyses based on real traffic data, mainly on travel time data. 
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Barkley et al. (2012) presents a methodology to determine the optimal number of states 

for travel time data. Their methodology also presents a process for distinguishing the 

impact on the travel time state of different sources, of non-recurrent congestion.  

 

2.1.2 Reliability for Traffic System Design 

In addition to system evaluation, reliability indicators can also be incorporated in 

the objective function or constraints of the models for designing traffic networks. Chen et 

al. (2010) reviewed the transportation network design problems using bi-level models in 

detail: 

1) The Mean-variance model optimizes both the expected parameters and the 

variance of parameters (e.g., travel time) (Chen et al. 2003; Sumalee et al. 2009; 

Yin et al. 2009). Satish Ukkusuri (2005) addressed the discrete network design 

problem, under long-term demand uncertainties, using a mean-variance model 

with total system travel time as its performance measurement. Final decisions are 

represented by a dummy variable to show whether or not to construct a new link.  

2) The probability model approach uses probability as its optimization objective 

(Chootinan et al. 2005; Chen et al. 2006; Sumalee et al. 2006; Chen et al. 2008). 

For example, Sumalee (2006) proposed a stochastic network model with an 

objective to maximize the network total travel time reliability, defined as the 

probability that the network total travel time is less than a threshold under demand 

uncertainties. 

3) The chance-constrained model, first developed by Charnes and Cooper (1959), 

models stochastic decision systems under the assumption that the “chance 
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constraint” will be held at least 𝛼 times. The variable 𝛼 is a percentage decided by 

researchers as a confidence level for the system’s ability to meet the chance 

constraint. To design a reliable transportation network, the chance constraint is 

always related to a reliability definition in probability form (Lo and Tung 2000, 

2003; Waller and Ziliaskopoulos 2001; Chen and Yang 2004). For example, Lo 

and Tung (2003) applied a link capacity chance constraint in their network 

capacity model to determine the maximum flow that a given network can carry. 

The chance constraint is that the probability of the traffic flow on link a, 

exceeding link a’s capacity, needs to be less than 𝛼𝑎.  

4) The Min-Max model offers a very conservative solution because such a model 

optimizes the worst-case performance.  

5) The alpha reliable model applies the conception of value-at-risk in finance to 

determine an optimal capacity expansion scheme (Chen et al. 2007). The “alpha” 

is a user-specified confidence level to guarantee that the probability of total travel 

time in the network is less than total travel time budget (TTTB); the probability is 

also the objective of the model to minimize. Total travel time, in this instance, is a 

random variable due to the uncertainties from design variables (i.e., capacity 

expansion scheme) and the demand. A higher alpha level indicates a risk-averse 

design.  

6) The scenario-based model is one of the most commonly used ways to deal with 

demand and capacity uncertainties. Yin et al. (2009) treated various demand 

levels with different probabilities as separate scenarios.  
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2.2 Reliability for Traffic System Users 

2.2.1 Prediction Models in Traffic Analysis 

Traffic parameter measurements are typically time series data. A fundamental 

property of time series data is its dependency among adjacent measurements. Analyzing 

the data generating mechanism and forecasting future outcomes can help traffic engineers 

manage a traffic system more efficiently. A number of macroscopic traffic parameters 

such as traffic flows, speeds, and occupancies are basic inputs for congestion 

management. For example, traffic flow forecasting will support the development of 

proactive traffic control strategies in advanced traffic management systems (ATMSs) and 

the evaluation of these real-time traffic control strategies. The microscopic parameter, 

individual travel time, is of great importance in advanced traveler information systems 

(ATISs). A report by Cheslow et al. (1992) about the architecture of intelligent 

transportation systems indicated that the ability to make continuous predictions of traffic 

flows and link travel times for several minutes into the future based on real-time traffic 

data is a major requirement for providing dynamic traffic control and guidance.  

This dissertation aims to predict travel time together with its reliability 

information. The parameter of interest in this dissertation is travel time. According to the 

input data, prediction models can be separated as direct and indirect models. Indirect 

travel time prediction models derive predicted travel times based on other quantities such 

as flows and/or speeds (Van Lint 2005). Indirect models are applied due to the limitation 

of available travel time observations. In contrast, direct models predict travel times using 

previous travel time observations. Generally, prediction methodologies developed for 
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other parameters (e.g., volume) can also be applied to travel time. Thus, literatures of 

prediction models for other traffic parameters are also included in this part. 

Generally, the models developed for prediction purposes in traffic engineering 

can be categorized as statistical models and artificial intelligence models. Statistical 

models include the historical average model, time-series models, dynamic linear models, 

Kalman filter, and non-parametric models. Artificial models include various neural 

network models.  

Historic Average Model 

 A historic average method predicts future travel time for each time interval as the 

average value of all the past travel times at the corresponding time interval. This method 

is easy to calculate, and the prediction can be refined continuously by updating the 

historical average with new available observations added. This model, however, depends 

heavily on the repeatable nature of the traffic flow and cannot reflect sudden changes 

such as incidents. 

Time-series Models 

Commonly used time series models include the moving average (MA) model, 

exponential smoothing filter, auto-regression (AR) model, and auto-regressive integrated 

moving average (ARIMA) model. For a time-series dataset, adjacent values are usually 

related to one another. The MA(1) model represents the relationship between adjacent 

values in a time-series dataset by a process that a random error (𝑒𝑡−1) at the previous time 

interval (t-1), plus a random error (𝑒𝑡) at the current time interval (t), drives the series to 

yield the output for the mean centered series (𝑌𝑡) at current time interval (t), where (𝑌𝑡) is 

the difference between observation (𝑦𝑡) and the mean of the series (𝜇), and (𝑒𝑡) is the 
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white noise error term (McCleary and Hay 1980). The MA model assumes a stationary 

time-series dataset. The exponential smoothing filter is a direct method to forecast time 

series with no trend, assuming that the average level changes slowly over time. 

Exponential smoothing resembles the moving average method, but it gives higher weight 

to the most recent observation (Bowerman and O’Connell 1979).  

In an auto-regression model, the predicted value of the time series is regressed, or 

expressed as a function of previous observation in the time series. For example, a pilot 

study by the Northern Region Operation (NRO) of the Virginia Department of 

Transportation (VDOT) applied an AR(2) model that assumes the predicted travel time at 

time t takes a linear, weighted form of the observed travel times in the previous two time 

intervals (Fei et al. 2011). To analyze the data-generating mechanism with both the auto-

regression and moving average processes, an ARMA model is proposed to integrate the 

two models together with the assumption of the stationary characteristic. To relieve the 

constraints of this assumption, an ARIMA model predicts future data points based on the 

trends and variations from the previous data points by modeling the autocorrelation in a 

time series mathematically (Washington 2011). An ARIMA model is identified by (p, d, 

q), where p is the auto-regressive component, d is the integrated component, and q is the 

moving average component. The process to develop an ARIMA model consists of model 

identification, parameter estimation, and validation. Based on the ARIMA modelling 

philosophy, a seasonal autoregressive integrated moving average (SARIMA) model can 

account for the seasonality in data. In addition, explanatory variables can be incorporated 

into an ARIMAX or SARIMA(X) model. Cools et al. (2009) applied ARIMAX and 

SARIMA(X) models to daily traffic count data to study the impact of holidays on the 
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variability in daily traffic counts. Xia (2006) studied dynamic travel time prediction 

based on available data from single-loop detectors and incident reports using a SARIMA 

model with an embedded adaptive predictor. This method involves multiple-step ahead 

predictions for flow rate and occupancy in real time. The embedded predictor modifies 

prediction error based on updated traffic data for every five-minute interval.  

One limitation of these linear based time series models (AR, MA, ARMA, and 

ARIMA) is their inability to deal with large variations and nonlinearity. This usually 

happens in transportation systems under recurrent and non-recurrent congestions when 

the system fails to generate continuous and stationary data series. In addition, there is a 

major difference between the typical time series prediction problems and the task of 

predicting travel times throughout a day. Most time series prediction models assume that 

the exogenous factors acting upon the dynamical system either remain constant or can be 

measured in the model, if they are time-varying (Amani et al. 2011). In a travel time 

prediction problem, however, the main exogenous factors – the demand and supply on a 

transportation network – varies widely throughout the day. These factors are typically 

difficult to quantify due to unpredictable reasons such as work zones, weather, and 

incidents. 

Dynamic Linear Model 

ARMA models can be usefully regarded in terms of dynamic linear models, but 

dynamic linear models can provide flexible framework in treating a non-stationary time 

series (Petris et al. 2007). A more general class of state-space models can be applied to 

analyze non-Gaussian and non-linear dynamic systems. Fei et al. (2011) applied a 

Bayesian dynamic linear model to predict short-term freeway travel time. To estimate 
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dynamic linear models, the Bayesian approach has both methodological and 

computational advantages. Bayesian forecasting is a learning process that revises 

sequentially the state of a priori knowledge based on newly available information. In a 

good forecasting model, there should be a routine way of learning during phases when 

predictions and decisions appear adequate, and an exceptional way when they seem 

unsatisfactory (West and Harrison 1997).      

Kalman Filter 

The Kalman filter is essentially a set of mathematical equations which can 

estimate the state of a dynamic process recursively while minimizing the mean of the 

squared error. To predict travel time, the process can be written into a state-space model 

by equations 2.1 and 2.2. The model was originally designed in a space tracking setting, 

where the state equation defines the motion equation for the position or state of a 

spacecraft, with the location represented as 𝑥𝑡, and 𝑦𝑡, which reflects the information 

observed such as velocity and azimuth (Shumway and Stoffer 2011).  

 

State equation: 𝑥𝑡 = Φ𝑥𝑡−1 + 𝑤𝑡 (2.1) 

Observation equation: 𝑦𝑡 = 𝐴𝑡𝑥𝑡 + 𝜐𝑡 (2.2) 

where: 

𝑥𝑡 = the state at time interval t, 

𝑦𝑡 = the observation at time interval t, 

Φ = the state transition parameter, 

𝐴𝑡 = the observation matrix, and 



22 

  

 

 

𝑤𝑡 , 𝜐𝑡 = the white noises. 

 

For travel time prediction, the state equation is an order-one, auto-regression 

model, determining the rule for the generation of the average travel time 𝑥𝑡 (i.e., state of 

the traffic system) at time interval t from the past state 𝑥𝑡−1. The state transition 

parameter is represented by Φ. The variable 𝑦𝑡 is the noisy observation(s) under the 

current system state, and 𝐴𝑡 is the observation matrix. Both Φ and 𝐴𝑡 can be defined in 

various versions as required in specific modeling problems. For example, they could be 

time-dependent or time-independent. The variables 𝑤𝑡 and 𝜐𝑡 are assumed to be white 

noises. The problem is to produce estimators for the underlying, unobserved 𝑥𝑡 , given the 

data 𝑌𝑠 = {𝑦1, … , 𝑦𝑠}. The Kalman filter provides the solution to this problem with the 

advantage that it specifies how to update the filter from 𝑥𝑡−1
𝑡−1 to 𝑥𝑡

𝑡 once a new 

observation 𝑦𝑡 is obtained, without having to reprocess the entire data set 𝑦1, … , 𝑦𝑡 

(Shumway and Stoffer 2011). The on-going Kalman filter is composed of predictor 

equations 2.3 and 2.4 and correction equations 2.5-2.7. Before the observation in time 

interval t becomes available, the average travel time at interval t is predicted based on 

previous observations 𝑦1, … , 𝑦𝑡−1 by equation 2.3. The error covariance 𝑃𝑡
𝑡−1 is estimated 

by equation 2.4. The predictor equations yield a priori estimates for the next time 

interval. After the observation in time interval t becomes available, the current state at t is 

calculated by equation 2.6, accounting for both the a prior estimate and the inconsistency 

between the predicted observation and the actual observation. This logic estimates the 

current state (i.e., average travel time) adaptively by adjusting the a priori estimate with 

the error of prediction discounted by 𝐾𝑡, the Kalman gain. If the prediction (i.e., 𝐴𝑡𝑥𝑡
𝑡−1) 
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is lower than the actual observation 𝑦𝑡, the a posterior estimate of state 𝑥𝑡
𝑡 will be 

adjusted lower than the a priori estimate 𝑥𝑡
𝑡−1, and vice versa. This feedback control will 

enable a prediction to account for the information from recent observations, which is very 

important in transition periods with unstable traffic conditions. During such a period, 

recent observations count for more information than the original trend to predict the 

system state.  

 

𝑥𝑡
𝑡−1 = Φ𝑥𝑡−1

𝑡−1 (2.3) 

𝑃𝑡
𝑡−1 = Φ𝑃𝑡−1

𝑡−1Φ′ + 𝑄 (2.4) 

𝐾𝑡 = 𝑃𝑡
𝑡−1𝐴𝑡

′ [𝐴𝑡𝑃𝑡
𝑡−1𝐴𝑡

′ + 𝑅]−1 (2.5) 

𝑥𝑡
𝑡 = 𝑥𝑡

𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐴𝑡𝑥𝑡
𝑡−1) (2.6) 

𝑃𝑡
𝑡 = [𝐼 − 𝐾𝑡𝐴𝑡]𝑃𝑡

𝑡−1 (2.7) 

where: 

𝑥𝑡
𝑡− , 𝑃𝑡

𝑡−1 = a priori estimate of state and covariance for time interval t, 

𝑥𝑡−1
𝑡−1 , 𝑃𝑡−1

𝑡−1 = state and covariance estimates from time interval t-1, 

Φ = transition matrix, 

𝐴𝑡 = matrix relating the state at previous time interval to the current time 

interval, 

𝐾𝑡 = the Kalman gain for time interval t, 

𝑄, R = noise covariance matrices, 

𝑥𝑡
𝑡 , 𝑃𝑡

𝑡 = state and covariance estimates at time interval t, and  

𝑦𝑡 = the observation in time internal t. 
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The first application of the Kalman filter in traffic engineering was for traffic 

volume prediction (Okutani and Stephanedes 1984). The model based on the most recent 

prediction error and inputs from multiple links demonstrated a high degree of accuracy. 

Yang et al. (2004) presented a recursive algorithm based on the Kalman filter to 

dynamically predict short-term traffic volume. Kuchipudi and Chien (2003) developed a 

hybrid model based on the Kalman filter algorithm for dynamic travel time prediction. 

Xie et al. (2007) improved the performance of the Kalman Filter on volume prediction by 

adding discrete wavelet decomposition analysis to divide the original data into several 

approximate and detailed data. In this way, the noise in the original data was removed 

and the prediction accuracy was increased, compared to the direct Kalman filter model 

measured by mean absolute percentage errors and root mean square errors.  

The standard Kalman filter (equations 2.3-2.7) was designed to estimate the state 

of a discrete-time controlled process that is governed by a linear stochastic difference 

equation. The Extended Kalman Filter (EKF), linearizing the current mean and 

covariance, can be used to address a non-linear process (Welch and Bishop 1995). One 

constraint of applying the Kalman filter directly in route travel time prediction is the 

delay of real-time observations. The filter has to wait until the trip is completed to receive 

input of new observations.  

Nearest Neighbor Model 

This non-parametric method is based on the hidden relationship between a large 

historical database and the current system state. After locating the current system state as 

a past time neighborhood with similar status, the states of the past systems in this 
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neighborhood are used to estimate the current state. This method aims for a satisfactory, 

rather than an optimal result. However, Karlsson and Yakowits (1987) stated that the 

nearest neighbor approach will result in an asymptotically optimal forecaster, meaning 

that for an input state vector containing m values, the nearest neighbor will 

asymptotically be at least as good as any mth order parametric model. The state vector for 

travel time prediction can include the travel times, traffic volumes, occupancies, and 

speeds in previous time intervals. The general methodology of a K nearest neighbor 

(KNN) model consists of five steps: 1) Build a historical database including traffic 

patterns such as free-flow, recurrent congestion, and non-recurrent congestion. 2) Define 

the neighborhood: Two basic approaches can be used to define the neighborhood. The 

kernal neighborhood has a fixed radius while the nearest-neighbor algorithm has a fixed 

sample size. 3) Calculate the distance through the absolute value distance or the 

Euclidean distance. 4) Find K for the nearest neighbor method. 5) Define the prediction 

function based on the average of the neighborhoods or the weighted average.  

The KNN model has been applied to predict traffic volume and travel time (Davis 

and Nihan 1991; Bajwa et al. 2004; Robinson and Polak 2005). Kim et al. (2005) 

improved the KNN model by adding a traffic flow pattern recognition technique that uses 

the signs of changes in the past sequences of traffic volume to overcome the memory-less 

property of the KNN model. This improvement made by considering the sign changes, 

however, only reflects the qualitative trend. Furthermore, Qiao et al. (2012) developed a 

modified KNN model with trend adjustment (KNN-T model) so that the traffic trend 

effects can be included into the model for short-term travel time prediction. The trend 

adjustment in this study considered travel time trends both qualitatively and 
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quantitatively in terms of the signs of changes and the magnitudes of changes in travel 

times, respectively. For the case study using Bluetooth data on Route I-66 in Virginia, the 

KNN-T model outperformed the historical average method, ARIMA, Kalman filter, and 

KNN model for both all-day and peak-hour periods, evaluated by absolute percentage 

errors (MAPE).  

Neural Network 

Neural networks (NN) are popular in transportation problems mainly because of 

their ability to perform self-learning, work with multi-dimensional data, deal with a non-

linear problem regarding a flexible model structure, and generate good prediction results 

(Karlaftis and Vlahogianni 2011). The topology generally used for prediction is a basic 

and fully connected back propagation multilayer perceptron (MLP) structure, consisting 

of one input layer, one hidden layer, and one output layer. The hidden layer is used to 

capture nonlinearity. Neural networks essentially train the connection weights as the 

hidden neurons learn to recognize different features of the total input space. The training 

is performed iteratively until the squared error between the computed and the desired 

output over all the training patterns is minimized (Washington et al. 2011). The trained 

neural network is capable to predict output values for future inputs. This topology was 

applied in various transportation prediction problems (Clark et al. 1993; Smith and 

Demetsky 1994; Park and Rilett 1998; Naik 2010).  

This conventional NN structure using arbitrary squashing functions was shown to 

be theoretically able to approximate any measurable function from a finite-dimensional 

space to another finite-dimensional space, and to any desired degree of accuracy as long 

as the hidden layer has sufficient hidden neurons (Hornik et al. 1989). In practice, 
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however, this NN structure encounters the greatest difficulty in approximating functions 

with the input features that are not linearly separable. Two techniques were proposed to 

solve this problem associated with the conventional NN: 1) input feature transformation 

or a spectral basis neural network (Park et al. 1999), and 2) input-partitioning or a 

modular neural network is used to approximate with a combination of relatively simpler 

functions instead of one complex function (Park and Rilett 1998; Kisgyorgy and Rilett 

2002). 

Some researchers integrated two or more methods to generate hybrid models to 

pursue higher accuracy and efficiency. One example is to combine some clustering 

techniques with either time-series analysis or neural network models for integrated 

prediction. Yin et al. (2002) applied a two-module fuzzy-neural model to predict the 

traffic flows for an urban street network. A fuzzy approach was used to classify the input 

data into clusters. For each cluster, a conventional neural network approach was used to 

model the input-output relationship. Zheng et al. (2006) presented a Bayesian combined 

neural network approach for short-term freeway traffic flow prediction. In these studies, 

an appropriate method was applied to classify traffic flow patterns first. Then, a neural 

network model suitable for each traffic pattern was selected for modeling and prediction. 

It is important to note that a predictor trained for certain patterns (e.g., peak period 

traffic) will generate deficient prediction when the traffic pattern changes. Therefore, 

hybrid models were generally found to be more efficient than a singular predictor. 

A feed-forward neural network, where the information flows in a unidirectional 

way from the input layer to the output layer, is not sensitive to previous processes, 

making it suitable for recognizing spatially and temporally separated patterns. Recurrent 
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neural networks can deal with the spatiotemporal dynamics through one or more 

feedback loops to feed predicted output signals or new output observations back to the 

input neurons. Van Lint et al. presented a recurrent neural network topology derived from 

a state-space formulation to predict freeway travel times. 

Summary 

In this dissertation, the requirement for a nonlinear predictor that can work under 

both stable and unstable state scenarios led to the application of one class of recurrent 

neural networks – the nonlinear autoregressive with exogenous inputs Model (NARX) 

neural network – to predict both mean and variance of corridor travel times on an urban 

arterial road.  

 

2.2.2 Travel Time Prediction for Freeways 

Advanced Traffic Information Systems (ATIS) aim to provide traffic information 

to help users make better pre-trip and en-route decisions, and receive reliable service out 

of the system. Real-time travel time information is an essential part for ATIS. Most 

researchers concentrated on the prediction of point estimates such as average travel time 

and percentiles. For example, Fei et al. (2011) presented a Bayesian dynamic linear 

model for short-term travel time prediction on a freeway stretch. The predicted travel 

time was considered as the sum of the median of historical travel times, time-varying 

random variations in travel time, and a model evolution error. Some studies also explored 

methods for travel time reliability prediction. Naik (2010) applied a neural network 

model to forecast the mean travel time on freeway sections, and bootstrap methods to 

estimate the standard error of the mean which could be used as a reliability measurement. 
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Based on the loess non-parametric statistical technique, Eisele (2001) outlined a 

procedure to estimate the travel time mean and variance from ITS data sources on 

freeways. Li and Rose (2011) applied a neural network model to predict the travel time 

range that was determined by the 10th and 90th percentiles in real time for the next ten-

minute interval, and up to one hour ahead depending on variables indicating time of day, 

day of week, rain fall, and the travel time in last ten minutes.  

 

2.2.3 Travel Time Prediction for Arterials 

In comparison to freeway travel time, there is limited research with regard to 

arterial travel times and route travel time. This is because transportation agencies, in 

general, are more likely to instrument freeways than arterials because they carry more 

traffic and are not as extensive. In addition, estimation and forecasting are more difficult 

on arterials because of the complicated interactions among vehicles at intersections. 

However, with new data sources coming online, including GPS, cell phone, RFID, and 

Bluetooth, it becomes possible to analyze travel time on an arterial corridor and even on 

an OD route. 

Due to sparse arterial data, research has focused on analytical methods for 

measuring intersection delay. Lin et al. (2004) decomposed the total delay on an arterial 

into link delay and intersection delay, and predicted arterial travel time based on the 

addition of link free flow time and the expected delay time at all the intersections along 

the arterial. Due to the metering effects of intersection signals, they assumed that the link 

travel time in midblock is not sensitive to the link flow that remains at medium or high 

levels without violating the capacity level. Thus, the problem of arterial travel time 
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prediction was reduced to estimate delay at intersections, which was done through the 

Webster delay formula and a calibrated transition matrix. The matrix represented the 

relationship of delay status at all intersections along the arterial. The advantage of this 

method is that there is no need for detailed calibration, which is difficult in real-time 

application. The method, however, is based on the existing delay formula that may not be 

qualified for oversaturated situations. Liu et al. (2006) proposed a hybrid model for 

predicting urban arterial travel time on the basis of so-called state-space neural networks 

(SSNNs) and an extended Kalman filter (EKF). The extended Kalman filter was 

incorporated to avoid laborious and sometimes impossible training and retraining 

sessions for real-time application. The improved SSNN used movement-separated traffic 

volumes collected by inductive loop detectors as its input, and predicted arterial travel 

time as its output. The three neurons in the hidden layer corresponded to the traffic 

conditions in terms of delays at the three intersections in the arterial for evaluation. This 

way of defining neurons reflects the relationship in physical traffic systems and avoids 

treating the neural network as a black-box. The SSNN was trained using observations of 

arterial travel time detected by two license plate cameras, and the performance of the 

model was compared with other SSNN trained by Levenberg-Marquardt (SSNNLM) and 

Kalman Filter (KF) methods. The results demonstrated the advantages of the hybrid 

model in terms of effectiveness and robustness for predicting arterial travel times.  

 

2.2.4 Travel Time Prediction in Route Guidance Research 

The research in route guidance application was generally placed into two classes: 

the time-adaptive least expected time (LET) hyperpath problem and the a priori LET path 
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problem. The time-dependent LET research aims to produce a set of path strategies that 

provide the traveler with the best next direction at each intermediate location depending 

on the actual arrival time at that location, while the a priori LET path research yields a 

unique LET path before starting the trip (Opasanon and Miller-Hooks 2006).  

In real transportation network, link travel times are both dynamic and stochastic. 

Dynamic link travel times require the routing strategy to be based on the forecasts of the 

immediate future of the traffic. Stochastic link travel times require the routing strategy to 

account for the uncertainty of link travel time. Hall (1986) first investigated the shortest 

path problem in a dynamic and stochastic transportation network, and revealed that the 

standard shortest path algorithm may fail to find the expected shortest path in this case. 

Given the uncertainty about link travel times and other attributes, routing algorithms are 

required to find out all the paths that may be optimal, termed collectively as a hyperpath, 

to improve travel time reliability (Bell 2009). Given the dynamic nature of link travel 

times, routing algorithms are required to be adaptive. Many studies have focused on 

finding the adaptive hyperpaths in stochastic and time-varying transportation networks 

(Fu 2001; Miller-Hooks 2001; Yang and Miller-Hooks 2004; Kim et al. 2005; Fu et al. 

2006; Gao and Chabini 2006; Opasanon and Miller-Hooks 2006; Ardakani and Sun 

2012).  

Other studies incorporated reliability explicitly into their routing algorithms 

through indicators such as travel time variance and reliability indices (Park 1998; Fu 

2001; Fu et al. 2006; Kaparias et al. 2008; Kaparias and Bell 2009, 2010; Ardakani and 

Sun 2012). Among them, Park (1998) presented a heuristic two-stage strategy to identify 

multiple reasonable routes based on which “near-optimal path” was selected. Link travel 
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time reliability – in the form of forecasting errors – and link travel time variance were 

incorporated into multi-criteria objectives to improve the arrival time reliability in route 

searching. Kaparias et al. (2008) proposed a lateness reliability index and an earliness 

reliability index to indicate how much later and earlier than the expected arrival time the 

actual arrival may occur. A modified time-dependent A* algorithm, considering the 

lateness and earliness reliability indices, was tested by Kaparias and Bell (2009) by 

conducting experimental drives in the London Congestion Charging Zone and further 

illustrated in Kaparias and Bell (2010).  

Fu and Rilett (1998) were the first to explicitly estimate a route’s mean travel time 

and variance based on available link information in dynamic and stochastic transportation 

networks, within the context of route guidance application. This is a heuristic method to 

identify the a priori LET or the LET from any intermediate point to the destination point. 

In this dissertation, instead of developing an algorithm to find out the LET for drivers, the 

route information in the form of the mean route travel time and the arrival time standard 

deviation, will be calculated for different route choices through the heuristic methods in 

Fu and Rilett (1998). Drivers can choose the route based on the provided information. 

This solution is beneficial for commute drivers because: 1) commute drivers generally 

have several route choices in their mind and prefer to know the information on the known 

routes rather than be guided to some unfamiliar streets; and 2) drivers have the ability to 

decide the weights of efficiency (i.e., mean route travel time) and reliability (i.e., arrival 

time standard deviation), which may vary a lot due to different trip purposes. 
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2.3 Statistical Methods for Traffic Reliability Analysis 

2.3.1 Non-Parametric Method for Confidence Interval Estimation 

Due to data availability, traffic parameter statistics (e.g., mean and median) used 

for traffic system evaluation are generally estimated from samples rather than the whole 

population. The sample-based estimates, however, might not be exactly equal to the true 

population parameters, resulting in uncertainties for performance evaluation. Standard 

error is one indicator of such uncertainty. Naik (2010) applied ordinary bootstrap, block 

bootstrap, and gap bootstrap to estimate the uncertainty of the travel time prediction 

model. In this dissertation, the confidence interval of traffic parameter estimates will be 

used to evaluate the uncertainty of traffic system performance. In this section, various 

bootstrap methods for interval estimation are reviewed.  

 

2.3.1.1 Standard Error Based Confidence Interval  

Assuming that the estimator (𝜃) of the true parameter (𝜃) follows a normal 

distribution, the (1 − 2𝛼) confidence interval can be approximated as 𝜃 ± 𝑧1−𝛼 ∙ 𝑠�̂�, 

where 𝜃 is the point estimate of 𝜃 and 𝑠�̂� is the estimated standard error. When the 

sample size (n) is not large enough to make the assumption of normal distribution hold, 

𝜃 ± 𝑡𝑛−1
1−𝛼 ∙ 𝑠�̂� can generate efficient average estimates. These two methods are named as 

the standard confidence interval and the Student’s t interval. They yield equal-tail 

intervals that are unable to represent the distribution skewness or other errors when 𝜃 

represents other statistics (e.g., median) instead of the mean.  
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To relieve the constraints of normal theory assumption and account for unequal 

tail, the bootstrap-t interval was proposed to estimate the distribution �̂� directly from the 

data instead of making the assumption of normal or t distribution. The resulting interval 

is in the form of [𝜃 − �̂�1−𝛼 ∙ 𝑠�̂�, 𝜃 − �̂�𝛼 ∙ 𝑠�̂�]. It is important to note that �̂�1−𝛼 is not equal 

to �̂�𝛼 in regards to skewness.  

To apply this method, an efficient way to estimate the standard error estimator is 

necessary for the dataset with dependent structure. It is well-established that the standard 

error of the sample mean could be estimated using√𝑠2/𝑛, where 𝑠2 = ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 /

(𝑛 − 1). However, there is no such equation for most statistical estimators (e.g., median). 

In these instances, the bootstrap estimate of standard error first proposed by Efron in 

1979, can be used. It is illustrated using the statistical estimator median as an example. 

The basic bootstrap algorithm starts with generating a large number of independent 

bootstrap samples: 𝑥∗1, 𝑥∗2,… , 𝑥∗𝐵, each of size n. The number of samples (B), generally 

ranges from 50 to 200 for standard deviation estimation. Bootstrap median replicates 

𝑠(𝑥∗1), s(𝑥∗2),… , 𝑠(𝑥∗𝐵) can be calculated for each sample. The standard deviation of 

these replicates is the standard error estimator of the median 𝑠(𝑥), as shown in equation 

2.8. 

 

𝑠�̂�𝑏𝑜𝑜𝑡 = {∑[𝑠(

𝐵

𝑏=1

𝑥∗𝑏) − 𝑠(∙)]2/(𝐵 − 1)}1/2 (2.8a) 

𝑠(∙) = ∑ 𝑠(

𝐵

𝑏=1

𝑥∗𝑏)/𝐵 (2.8b) 

where: 
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𝑠�̂�𝑏𝑜𝑜𝑡 = the estimated standard error of median using bootstrap-t method, 

B = the size of bootstrap sample, and 

𝑠(𝑥∗𝑏) = bth bootstrap median replicate. 

 

Different from the standard intervals which are symmetric around zero, the 

asymmetric intervals resulting from bootstrap-t percentiles represent an improvement in 

coverage. It is particularly applicable to location statistics like the sample mean, median, 

and other percentiles, but is not trustworthy for more general problems such as setting a 

confidence interval for a correlation coefficient. An overall assessment of the three 

standard-error based confidence intervals are quoted from Efron and Tibshirani (1993): 

“The increase in accuracy of estimation for Bootstrap-t approximation is at 

the price of generality. The standard confidence interval applies to all 

samples, and all sample sizes; the student-t table applies to all samples of a 

fixed size n; the bootstrap-t table applies only to the given sample.”  

 

2.3.1.2 Percentile Based Confidence Interval  

Although the bootstrap-t method can theoretically account for skewness and yield 

good theoretical coverage probabilities, it can yield somewhat erratic results in practice. 

Improved methods use percentiles instead of the standard error of bootstrapped estimates 

to identify the confidence limits.  

If bootstrap distribution of 𝜃∗ = 𝑠(𝑥∗) is roughly normal, then the standard 

normal and percentile intervals will nearly agree. The bootstrap distribution can be 

regarded as a normal distribution if sample size n approaches infinite, according to the 
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central limit theorem. However, this might not hold for small samples in which case the 

percentile interval is superior to the standard normal interval. Also, a percentile interval 

has transformation-respecting and range-preserving property. By range-preserving 

property, a percentile interval always falls within the allowable range of its estimator. 

Although percentile intervals are less erratic in practice compared to bootstrap-t intervals, 

they have less satisfactory coverage properties. 

Given independent bootstrapped samples 𝑥∗1, 𝑥∗2,… , 𝑥∗𝐵, each of size n, 

bootstrap replicates 𝜃∗(𝑏)= 𝑠(𝑥∗𝑏), 𝑏 = 1, 2, … , 𝐵. Denote 𝜃𝐵
∗(𝛼)

 as the 100αth empirical 

percentile (i.e., the value in the ordered list of the B replications of 𝜃𝐵
∗ ). The (1 − 2𝛼) 

percentile interval would be [𝜃𝐵
∗(𝛼)

, 𝜃𝐵
∗(1−𝛼)

]. It needs more bootstrap samples (B) for 

percentile estimation than for standard error estimation. Variable B should be greater than 

500 or 1000 to make the variability of percentile estimators acceptably low. 

 

2.3.1.3 Bias-Corrected and Accelerated (BCa) Interval 

The BCa interval is an improved version of the percentile method in both theory 

and practice. Given enough sample size, the resulting interval would closely match exact 

confidence intervals in special situations, where the statistically exact interval is 

accessible through statistical theory, and give dependably accurate coverage probabilities 

in all situations. In addition, the BCa method is also transformation-respecting. 

Integrating the performance on accuracy and flexibility, the BCa method is recommended 

for general use by Efron and Tibshirani (1993).  

The end points of the BCa interval is modified by acceleration (�̂�) and bias-

correction (�̂�0). The BCa interval of intended coverage (1 − 2𝛼) is given by equation 2.9. 
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The notation Φ(∙) is the standard, normal cumulative distribution function and 𝑧(𝛼) is the 

100αth percentile point of a standard normal distribution. For example, Φ(1.645) = 0.95 

and 𝑧(0.95) = 1.645. It can be assessed from equation 2.9 that if �̂� and �̂�0 are zero, the 

interval is equal to the percentile interval. Non-zero �̂� and �̂�0 correct deficiencies of the 

previous standard and percentile methods. 

           

BCa: (𝜃𝐵
∗(𝛼1)

, 𝜃𝐵
∗(𝛼2)

) (2.9a) 

𝛼1 = Φ(�̂�0 +
�̂�0 + 𝑧(𝛼)

1 − �̂�(�̂�0 + 𝑧(𝛼))
) (2.9b) 

𝛼2 = 𝛷(�̂�0 +
�̂�0 + 𝑧(1−𝛼)

1 − �̂�(�̂�0 + 𝑧(1−𝛼))
) (2.9c) 

where: 

�̂� = acceleration, 

�̂�0 = bias-correction, 

𝑧(𝛼) = the 100α th percentile point of a standard normal distribution. 

 

2.3.1.4 Modified Bootstrap 

When the dataset is not composed of independent observations, the standard 

bootstrap method is not enough to get independent bootstrap samples, and modified 

bootstrap (e.g., block bootstrap) is needed. Specifically for the traffic dataset with 

dependent observations within one day, Lahiri et al. (2012) applied gap bootstrap to 

generate consistent and asymptotically unbiased estimates of standard error for a massive 

dataset with certain dependent structure. 
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2.3.1.5 Summary 

This dissertation compares the coverage of the standard error based confidence 

interval and the BCa confidence interval. The BCa method is selected to calculate the 

confidence interval of individual traffic parameters.  

 

2.3.2 Measurement of Effectiveness (MOE) 

The estimated and predicted results need to be compared with real observations to 

measure the effectiveness of estimation and prediction methodologies. Commonly used 

MOEs include mean absolute error, mean absolute percentage error, and root mean 

squared error. The equations for calculation are as follows: 

 

Mean absolute error (MAE): 𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑋(𝑡) − �̂�(𝑡)|𝑛

𝑡=1                     (2.10) 

Mean absolute percentage error (MAPE): 𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑋(𝑡)−�̂�(𝑡)

X(t)
|𝑛

𝑡=1     (2.11) 

Root mean squared error (RMSE): RMSE =   √
∑ (𝑋(𝑡)−�̂�(𝑡))2𝑛

𝑡=1

𝑛
                  (2.12) 

where: 

 𝑋(𝑡) = the real observation for time interval t, 

�̂�(𝑡) = the estimated or predicted value for the time interval t, and 

n = the number of time intervals for analysis. 
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In addition, the CDF plot of absolute percentage error (APE) is also used in this 

dissertation to compare the distribution of estimation and prediction errors from various 

methods. 

When there is a need to compare two sets of traffic volumes so that simulation 

models can be evaluated based on real traffic observations, the GEH statistic, first 

proposed by Geoffrey E. Havers, provides a way to incorporate both relative and absolute 

errors. One example is the fitness evaluation of calibration results for a simulated 

transportation network. The evaluation generally involves several link volume 

observations as the benchmarks to calibrate the simulated link volumes. The calibration 

algorithm aims to minimize the difference between the observed link volumes and the 

simulated link volumes. A difference of 500 vehicles on a link with a high volume may 

provide a better fit than a difference of 500 on a lightly trafficked link. The GEH statistic, 

in the form of the chi-squared statistic, can take the variation in volumetric differences 

into account (Train 2003). GEH is calculated by the mathematical formula as shown in 

equation 2.13. 

𝐺𝐸𝐻 = √
2(𝑉 − 𝑣)2

𝑉 + 𝑣
 (2.13) 

where: 

V = the simulated traffic volume, and 

v = the observed traffic volume. 
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2.3.3 Tests for Comparing Means and Distributions 

Tests for comparing means and distributions are used to study the variation of 

traffic parameters in adjacent or close short-time intervals. A t-test can be used to check if 

the means of two independent and identically distributed samples differ from each other 

significantly. For example, a t-test can be used to compare the mean of travel times in 

two adjacent 5-minute intervals, within one day. A t-test can also be used to determine if 

two samples are significantly different from each other under the assumption that the test 

statistic follows a normal distribution. The Kolmogorov–Smirnov test, as an alternative to 

compare two sample distributions, does not require such an assumption. For samples 

consisting of paired observations of similar units, a paired t-test or a Wilcoxon signed test 

can compare the means. 

 

2.3.4 Test for Normality 

The Lilliefors test, testing the null hypothesis that the sample data came from a 

distribution in a normal family, is implemented by three steps (Lilliefors 1967). First, the 

population mean and variance are estimated based on the sample data. Next, as in the 

Kolmogorov-Smirnov test, the test statistic is identified as the maximum discrepancy 

between the empirical distribution function of sample data, and the cumulative 

distribution function of the normal distribution with the estimated mean and estimated 

variance from the first step. Lastly, if the maximum discrepancy is large enough to be 

statistically significant, the null hypothesis will be rejected.
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CHAPTER 3 DEVELOPMENT OF RELIABILITY METRIC AND ESTIMATION 

METHODOLOGY FOR TRAFFIC MANAGEMENT 

To quantitatively evaluate the quality of service in transportation systems, 

transportation professionals often use six levels of service (LOS A to F) that are defined 

based on a point estimate (i.e., average) of traffic performance measurements such as 

density. For example, LOS A on a freeway reflects the best operating conditions, while 

LOS F represents a hard-to-predict, stop-and-go condition (Highway Capacity Manual 

2010). The six-level LOS definition easily communicates roadway performance to 

nontechnical decision makers. However, using the LOS based on average values might 

hide short-term variations in a traffic stream within an analysis period. Two traffic 

networks with the same average performance measurement could provide different 

service in terms of reliability. In this chapter, the concept of reliability, with respect to 

traffic network performance, will be defined based on the confidence intervals of 

performance measurements. The confidence interval is used to take into account the 

underlying uncertainties in the dynamic and stochastic traffic system. The proposed 

metric combines the LOS concept and reliability theory to yield a more comprehensive 

evaluation measurement. The concept of reliability developed in this dissertation can be 

applied to various quantitative traffic parameters and across varying time and space 

ranges to reflect short-term fluctuations in traffic systems.  
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3.1 Necessity of Performance Evaluation Considering Short-Term Fluctuations 

Real travel time data recorded on one link of I-495 on Tuesday, Wednesday, and 

Thursday from 04/01/2012 to 09/30/2012, are used to demonstrate the existence of short-

term travel time fluctuations, quantitatively. The 2.57 km link, between the Connecticut 

Avenue Interchange (I/C) and the Georgia Avenue I/C, is shown in figure 3.1. The link of 

interest is marked by “Start” and “End”. The travel time information has been aggregated 

into five minute intervals. 

  

 

Figure 3.1 Geographical location of the real traffic time data 

 

The paired t-test and the Wilcoxon test are used to test the differences between the 

first 5-minute interval in a hour (i.e., 16:00-16:05) and the five following 5-minute 

intervals within the same half hour (i.e., 16:05-16:10, 16:10-16:15, 16:15-16:20, 16:20-

16:25, 16:25-16:30). 

The null hypothesis 𝐻0 of the paired t-test is that the mean difference d between 

the paired mean travel times for two different 5-minute intervals is zero, as shown in 

equation 3.1a.  
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𝐻0: 𝑑 = 𝜇1 − 𝜇2 = 0    (3.1a) 

𝐻𝑎: 𝑑 ≠ 0 (3.1b) 

where: 

d = the difference in the mean values of the two groups being studied, 

𝜇1 = the mean of the observed travel times for the [16:00-16:05] interval, and 

𝜇2 = the mean of the observed travel times for the other 5-minute interval being 

studied. 

 

The Wilcoxon singed-rank test examines if the differences between each pair 

come from a distribution with a median of zero (Dowdy et al. 2005). In the first step, the 

absolute differences are ranked from the smallest to largest. The signs of differences (i.e., 

+ or -) are attached to their respective ranks to obtain signed ranks that are averaged to 

obtain the mean of signed ranks (�̅�). The null hypothesis is that the expected value of �̅� is 

zero, as shown in equation 3.2a. If the null hypothesis is true, it implies that the 

differences between the members of the two 5-minute intervals are just random and the 

travel times in the two intervals are from the same distribution, as judged by the median 

difference.  

 

𝐻0: 𝐸(�̅�) = 0 (3.2a) 

𝐻𝑎: 𝐸 (�̅�) ≠ 0 (3.2b) 

 

where: 

r = the rank of absolute difference between the two groups being studied, and 
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�̅� = the mean value of signed ranks (+/- r). 

 

Table 3.1 shows the p-value of the paired t-test and Wilcoxon test for different 5-

minute intervals within the half hour from 16:00 to 16:30. A p-value less than 0.05 

indicates a rejection of the null hypothesis at the 95 percent confidence level. The paired 

t-tests indicate that the mean travel times of the 5-minute interval from 16:00 to 16:05 

and the four intervals after 16:10 are significantly different at the 95 percent confidence 

level. The Wilcoxon tests indicate that the travel times of the 5-minute interval from 

16:00 to 16:05 and the three intervals after 16:15 are from different distributions, judged 

by median difference, at the 95 percent confidence level. 

 

Table 3.1 Results of the paired t-test and Wilcoxon signed test 

[16:00-16:05] vs. 
[16:05-

16:10] 
[16:10- 
16:15] 

[16:15- 
16:20] 

[16:20- 
16:25] 

[16:25- 
16:30] 

Paired t-test p-value 0.07 0.04 0.03 0.02 0.00 

Wilcoxon signed test p-value 0.08 0.07 0.03 0.05 0.00 

 Note: 1). Sample sizes are 76 

 2). Bold values indcates a statistically significant difference at 5 percent 

significance level 

           3). All the 5-minute intervals are compared to the 16:00-16:05 interval 

 

These results demonstrate the existence of short-term travel time fluctuations 

within a half hour period. For this specific example, the statistically significant change in 

travel time means occurred at 16:10. However, this is not fixed for all traffic systems. 

The traditional LOS approach uses the average estimate for the peak 15 minute interval to 

evaluate traffic network performance for the whole peak hour. By definition, it is not able 

to reflect the short-term fluctuations or dynamic property of system performance. Note 
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that short-term fluctuations may not make a significant change in system performance for 

traffic systems with stable traffic flow that operates under system capacity. However, 

such short-term fluctuation could lead to appreciable variation in system performance 

under unstable traffic situations, such as the signal pre-emption control strategy at 

highway-railway at grade crossings. In those situations, it is hypothesized that 

considering such short-term variability when quantifying the performance evaluation of 

traffic networks can yield more comprehensive, reliability-based evaluation results and 

can help communicate more accurate system performance to system users and policy 

makers. The reliability metric presented in this dissertation incorporates the confidence 

intervals of traffic measurements for short-term intervals into performance LOS 

evaluation, which can address the aforementioned issues regarding the system evaluation 

for unstable traffic systems.  

 

3.2 Definition of a Generic Reliability Metric for Evaluation 

In this dissertation, the reliability of the transportation system is defined as the 

ability of the system to adapt to internal changes while maintaining a satisfactory system 

performance. Internal changes include variations in demand and/or capacity under 

prevailing conditions. The generic reliability metric, therefore, is calculated as a 

percentage of the number of times when a dynamic and stochastic transportation system 

can provide satisfactory service given uncertainties in transportation demand and/or 

transportation supply. To analyze the system reliability, the variation of system 

performance due to interval changes needs to be represented efficiently, and the level of 

satisfactory performance variation needs to be specified. In equation 3.3, which is used to 
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calculate the reliability metric, C is the interval to represent system performance 

variation, and I is the interval to represent satisfactory performance variation. In this 

chapter, the confidence interval of performance measurements is used as C because, 

statistically, a confidence interval represents the uncertainty of population statistic 

estimates. Traffic planners can also define their own interval to represent the system 

performance variation of specific interest. The definition of "satisfactory system 

performance" needs to be determined by system planners through I. A common metric 

for system performance is the level of service (LOS) that relates a letter “grade” to 

quantitative traffic parameters (e.g., density, delay). Using the thresholds of LOS i as 

evaluation thresholds for I, the generic reliability metric can yield the reliability of LOS i 

for the system in evaluation. System planners can also determine their own evaluation 

intervals for a special evaluation objective.  

The reliability metric for a given traffic parameter x (i.e., 𝑅x̂) represents the 

probability that for the whole period of interest (𝑇), the confidence intervals (𝐶) of 

parameter statistic x,̂ for all the short-time intervals (𝑑𝑡) in T, are included by the 

satisfactory evaluation interval (𝐼) corresponding to the performance measurement �̂�. 

 

𝑅x̂ =
∫ 𝜑 ∙ [𝑚𝑖𝑛(𝐶𝑈

x̂ , 𝐼𝑈
x̂) − max (𝐶𝐿

x̂, 𝐼𝐿
x̂)]𝑑𝑡

𝑇

0

∫ (𝐶𝑈
x̂ − 𝐶𝐿

x̂)𝑑𝑡
𝑇

0

   ∀  x̂  (3.3a) 

𝜑 = { 0      𝐶𝑈
x̂ ≤  𝐼𝐿

x̂ 𝑜𝑟 𝐶𝐿
x̂ ≥ 𝐼𝑈

x̂

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.3b) 

 

where: 
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x = the traffic parameter of interest (e.g., travel time), x̂ is the estimate of a statistic 

of x (e.g., average travel time), 

𝑅x̂ = the reliability metric for x̂, 

dt = the short-time interval, 

T = the analysis period, 

𝐶𝑈
�̂� = the time-dependent function of the upper bound of the confidence interval for �̂� 

at the 95 percent confidence level,  

𝐶𝐿
�̂� = the time-dependent function of the lower bound of the confidence interval for �̂� 

at the 95 percent confidence level,  

𝐼𝑈
�̂� = the upper threshold of the evaluation interval I for x̂, 

𝐼𝐿
�̂� = the lower threshold of the evaluation interval I for x̂, and 

𝜑 = the inclusive factor determined by the relationship between C and I. If the 

confidence interval area between 𝐶𝑈
�̂� and 𝐶𝐿

�̂� are not included by I, 𝜑 = 0. This 

includes the cases where C is below 𝐼𝐿
�̂�, and where C is above 𝐼𝑈

�̂�, as shown in 

figures 3.2a and 3.2b. If at least part of the confidence interval area is included by 

I, 𝜑 = 1. Figures 3.2c-3.2f show different possibilities when C intersects with I, 

and the gray areas indicate the portion of area C is included by area I. In figure 

3.2c, area I is greater than area C, and all of C is included by I. In figure 3.2d, 

area C is greater than area I and includes the entire I. Therefore, area I is equal to 

the proportion of area C that is within the thresholds 𝐼𝑈
�̂� and 𝐼𝐿

�̂�. In figure 3.2e, 

the proportion of C within the thresholds of I is equal to (𝐼𝑈
�̂� − 𝐶𝐿

�̂�) ∙ 𝑑𝑡. In 
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figure 3.2f, the proportion of C within the thresholds of I is equal to (𝐶𝑈
�̂� − 𝐼𝐿

�̂�) ∙

𝑑𝑡. 

 

Figure 3.2 Values of 𝜑 and the corresponding relationships between confidence interval (C) and 

evaluation interval (I) 

 

The variable x in equation 3.3a is objective-specific. For example, x might be: 1) 

the delay time or queue length for evaluating timing plans at an intersection, 2) the 

arterial travel time for evaluating the arterial coordination, or 3) the speed for freeway 
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evaluation. For the evaluation of the service level between a given OD pair, x could be 

the route travel time. In addition, researchers can choose which statistic (e.g., the 

estimated mean) to use for a given traffic parameter (e.g., travel time). For example, if the 

traffic parameter of interest is not normally distributed, then the median may be chosen 

because it limits the impacts of outliers. In studies related to speed limits, the 85th 

percentile may be appealing. This metric could be used as a quantitative standard for 

traffic agencies to evaluate the reliability-oriented performance of current and planned 

traffic systems. For example, a before-and-after comparison of the generic reliability 

metrics, in terms of the delay time and the number of conflicts, could be used to compare 

alternative signal timing strategies to identify which strategy is more reliable. 

 The evaluation interval I needs to be decided by traffic agencies and could vary 

by application and evaluation objective. In this dissertation, the LOS thresholds provided 

in the Highway Capacity Manual (HCM) are applied to analyze real traffic data collected 

for test beds in the field. In addition, the simulation examples for illustration purposes are 

given an assumed evaluation interval based on engineering judgment. In contrast to point 

estimates of traffic parameters, the metric shown in equation 3.3 considers variability due 

to short-term fluctuations within the period of interest. For example, consider the problem 

of evaluating the level of service at an intersection. The result would be a probability 

(e.g., p) where the confidence intervals of the average delay at the intersection fall into 

the LOS thresholds (e.g., B) defined in the HCM. In other words, the reliability metric 

would indicate that the intersection can provide the level of service B with a probability 

of p, over the time period of interest.  
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3.2.1 The Generic Reliability Metric and Demand Variation 

In this section, the generic reliability metric is applied to evaluate the route travel 

time on a test bed during the afternoon peak period. The traffic demand for the afternoon 

peak period (D1) is 1,500 vehicles per hour. For comparison purposes, a demand level 

(D2) that is 15 percent higher than the current peak demand level is also analyzed. Figure 

3.3 shows the test route that has an origin at the intersection of Vine Street and North 

Antelope Valley Parkway, and a destination at the intersection of N.16th Street and S 

Street. The route is 800 meters in length and consists of two signalized intersections: 

Vine Street and North16th Street, and Vine Street and North 17th Street. The two 

intersections are located 134 meters apart. Drivers may need to stop multiple times to get 

through the test route during the afternoon peak. The network was modeled in VISSIM, a 

microscopic traffic simulation tool. The simulation was run five times. Each run used a 

different random seed number. The simulation time was 70 minutes for each run. The 

first 15 minutes allowed the simulation to reach a steady state, and the last 55 minutes 

were used to collect data. The traffic parameter of interest is travel time (i.e., x = travel 

time; �̂�= mean travel time). It is assumed that: 1) the confidence interval at the 95 percent 

confidence level lies within 1.96 standard deviations of the mean; and 2) assuming that 

85 percent of the drivers regard their route travel times as acceptable, the upper threshold 

of evaluation interval I is the 85th percentile of the simulated travel times under current 

peak hour demand (D1). That is, the evaluation interval I for acceptable service is [0, 

710] seconds.  

Figures 3.4a and 3.4b show the resulting five-minute means and confidence 

intervals for two demand levels (i.e., D1 and D2), respectively. The green line in figure 
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3.4 shows the five-minute means of route travel time as a function of the elapsed 

simulation time. The blue and red lines show the upper and lower bounds of the 

confidence intervals (C) of the means as a function of the elapsed simulation time. The 

area between the upper bound and lower bound of the confidence intervals (i.e., blue and 

red lines in figure 3.4) is referred to as the confidence interval area. This confidence 

interval area is a numerical measurement of the variability in mean route travel time over 

a given analysis time period. The upper threshold of the user-specified evaluation interval 

(𝐼) is shown as a black solid line in figure 3.4. For both demand levels, the mean route 

travel time, which is shown as a green line, is below the upper threshold. That is, using 

the mean route travel time for evaluation will result in the conclusion that an increase of 

15 percent traffic demand will not change the system performance. In contrast, the 5-

minute confidence interval (𝐶) areas between the blue and red lines increases as demand 

increases. The impact of this change on performance evaluation can be quantitatively 

captured using the reliability metric proposed in this dissertation. 

In this example, the reliability metric 𝑅�̂� is the probability that 5-minute 

confidence intervals of mean travel time �̂� within the analysis period are included in the 

evaluation interval (𝐼). The percentage of the confidence interval area within 𝐼 of the 

overall confidence interval area is calculated as 𝑅�̂�. The calculation procedure for current 

peak hour demand (i.e., D1=1,500 vehicle per hour) is summarized in table 3.2 as an 

illustration. It was found that: 𝑅�̂� is 0.73 for the level 1 demand (i.e., 1,500 vehicles per 

hour), while 𝑅�̂� is 0.69 for level 2 demand (i.e., 1,730 vehicles per hour). For this 

example, an increase of 15 percent in the traffic demand will degrade the reliability of 

providing acceptable service by 6 percent. 



52 

  

 

 

This example illustrates the ability of the proposed reliability metric to reflect the 

detailed change on system performance due to demand variation, using simulation data, 

and the assumed evaluation interval and confidence interval for mean travel time. For real 

applications, the evaluation thresholds can be based on the Highway Capacity Manual or 

engineering judgment. The confidence intervals need to be estimated using collected 

traffic data.  

 

 

Figure 3.3 OD pair for example demonstration 
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Figure 3.4 Travel time (TT) reliability evaluation for two demand levels 
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Table 3.2 Calculation of 𝑅x̂ for demand level D1 scenario 

5-minute interval  

from 𝑡𝑖 in simulation (seconds) 15 20 25 30 35 40 45 50 55 60 65 

Mean TT (seconds) 646 683 617 615 612 626 668 683 684 666 660 

𝐶𝑈
x̂ (seconds) 774 835 733 710 714 752 780 795 855 842 804 

𝐶𝐿
x̂ (seconds) 518 530 501 520 510 499 557 572 513 490 517 

𝜑 1 1 1 1 1 1 1 1 1 1 1 

𝑚𝑖𝑛(𝐶𝑈
x̂ , 𝐼𝑈

x̂) 710 710 710 710 710 710 710 710 710 710 710 

𝑚𝑎𝑥 (𝐶𝐿
x̂, 𝐼𝐿

x̂) 518 530 501 520 510 499 557 572 513 490 517 

𝑚𝑖𝑛(𝐶𝑈
x̂ , 𝐼𝑈

x̂) −  𝑚𝑎𝑥 (𝐶𝐿
x̂, 𝐼𝐿

x̂) 192 180 209 190 200 211 153 138 197 220 193 

𝐶𝑈
x̂ − 𝐶𝐿

x̂   256 305 232 190 204 253 223 223 342 352 287 

  Note:   1) D1=1500 vehicle per hour 

  2) 𝐼𝑈
�̂� = 710 seconds. 𝐼𝐿

x̂ = 0 second; x̂ = Mean Travel Time (TT)  

  3) 𝑅x̂ =
∫ 𝜑∙[𝑚𝑖𝑛(𝐶𝑈

x̂ ,𝐼𝑈
x̂)−max (𝐶𝐿

x̂,𝐼𝐿
x̂)]𝑑𝑡

𝑇
0

∫ (𝐶𝑈
x̂−𝐶𝐿

x̂)𝑑𝑡
𝑇

0

 = 0.73 
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3.2.2 The Generic Reliability Metric and Capacity Variation 

A simple network was built in VISSIM to study the ability of the generic 

reliability metric to reflect the impact of capacity variations. As shown in figure 3.5, the 

simulation network consists of three links, each defined by its own physical length and 

speed limit. The upper threshold of the evaluation interval I for each link is defined as the 

travel time for a vehicle traveling at the speed limit. The lower threshold of I is 0 

seconds. The length, speed limit, and evaluation threshold of each link are shown in table 

3.3. The reliability metric used for this example will be based on the mean link travel 

time. This simulation example includes four assumptions: 1) for each ten-minute interval, 

the 95 percent confidence interval lies within 1.96 standard deviations of the mean link 

travel time; 2) the evaluation interval I represents the acceptable performance, that is, the 

satisfactory system is defined according to whether vehicles can travel at the speed limit 

or faster; 3) the OD demand is 2,500 vehicles per hour; and 4) the OD network is treated 

as a parallel system with three independent links, and the OD reliability is calculated 

through equation 3.4.  

 

𝐑�̅� = 1 − ∏ [1 − 𝑅�̅�𝑗
]

𝐽

𝑗=1

   (3.4) 

where: 

𝐑�̅� = the OD network reliability metric defined by the mean travel time 𝑡̅. 

𝑅�̅�𝑖
 = the travel time reliability on link i, and 

J = the number of independent links, J=3 in this example. 
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Figure 3.5 The simulation network 

 

Based on ten simulation runs with different random seeds, the reliability metrics 

of the three links and the OD network are calculated for two scenarios. Scenario 1 is a 

network with all three links, as shown in figure 3.5. Scenario 2 is the same, with the 

exception that link 2 is completely blocked. It can be seen that the loss of link 2 reduced 

the link-level reliabilities for links 1 and 3 by 15 percent and 25 percent, respectively. 

This means for scenario 1, links 1 and 3 can provide satisfactory performances 68 percent 

and 90 percent of the time. If link 2 is blocked completely, the reliability metrics of links 

1 and 3 can only provide satisfactory performances 58 percent and 68 percent, 

respectively. On the OD level, the OD network reliability is reduced from 99 percent to 

86 percent because of the loss of link 2.  
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Table 3.3 Reliability metric demonstration for capacity degradation scenarios 

Reliability 

Metrics 

Satisfactory 

Travel Time 

Threshold 

(s) 

Length 

(m) 

Speed Limit 

(km/h) 

Reliability Metric Results 

Complete 

Network 

Broken 

Link 2 
Degradation 

Link 1 

(𝑅𝑡1̅̅ ̅) 
36 500 50 68% 58% 15% 

Link 2 

(𝑅𝑡2̅̅ ̅) 
25 350 50 54% - - 

Link 3 

(𝑅𝑡3̅̅ ̅) 
35 390 40 90% 68% 25% 

OD Network: 𝐑t̅=1-(1-𝑅𝑡1̅̅ ̅)(1-𝑅𝑡2̅̅ ̅)(1-𝑅𝑡3̅̅ ̅) 99% 86% 12% 

Note: Scenario 1: Links 1, 2, and 3 are all open.  

          Scenario 2: Links 1 and 3 are open. Link 2 is closed. 

 

3.3 Confidence Interval Estimation Methodology 

The estimation methodology will be presented separately for a single link network 

(e.g., a basic freeway section) verses a multi-link traffic system (e.g., an urban arterial 

corridor composed of three links). 

 

3.3.1 Evaluation of a Single Link Network: Freeway 

3.3.1.1 Selection of Bootstrap Methods 

The bootstrap methods, which can be used to estimate confidence intervals, may 

be classified as standard error (SE) based methods and percentile based methods (e.g., 

BCa method). As reviewed in section 2.3.1, the main drawback of the SE-based 

methodology is its assumption of normality. Violation of this assumption will result in an 

unequal tail interval, which makes the estimates based on standard errors misleading. 

This limitation will be illustrated in this section using the I-495 data sample during the 5-
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minute interval from 18:55 to 19:00 on Tuesday, Wednesday, and Thursday, from April 

to September in 2012. Both methods are used to generate confidence intervals at a 95 

percent confidence level. 

The confidence intervals of the mean speed are used to illustrate the results of the 

SE-based and BCa bootstrap methods. The histograms of 2,000 bootstrap mean replicates 

generated by the SE-based and BCa bootstrap methods are shown in the top and bottom 

plots in figure 3.6, respectively. A Lilliefors test validated that these estimated means of 

bootstrap samples are normally distributed. The red lines in the plots represent the 

confidence intervals of mean speeds in the unit of mph. The BCa and the SE-based 

methods yield very similar results: [43.0, 47.2] mph and [43.0, 47.1] mph, respectively. 

Both intervals include 95 percent of the mean replicates. 

In contrast, the median speed is used as an example of the estimators that are not 

normally distributed. The histograms of 2,000 bootstrap median replicates generated by 

the two methods are shown in the top and bottom plots in figure 3.7, respectively. A 

Lilliefors test rejected the null hypothesis that the 2,000 bootstrap median replicates were 

from a normal distribution. The red lines in the top and bottom plots represent confidence 

intervals of median speeds in the unit of mph. The resulting confidence intervals using 

the BCa and the SE-based methods are [40.8, 52.0] mph and [36.5, 48.8] mph, 

respectively. As shown in the top plot in figure 3.7, the BCa method is able to work with 

non-normally distributed replicates with unequal tails as evidenced by the fact that its 

confidence interval includes 95 percent of the replicates. In contrast, the SE-based 

confidence interval in the bottom plot in figure 3.7 only includes 85 percent of all of the 

replicates. This dissertation aims to develop a generic framework to estimate the 
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reliability metric for system evaluation where some of the traffic measurement statistics 

(e.g., median speed) might not be normally distributed. Thus, the BCa method is selected 

for estimating the proposed generic reliability-based metric due to its capability to 

generate accurate results regardless of the estimator's distribution.
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Figure 3.6 Histogram of 2,000 Bootstrap replicates of mean speed with two types 

of confidence intervals 
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Figure 3.7 Histogram of 2,000 Bootstrap replicates of median speed with two 

types of confidence intervals  
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3.3.1.2 Evaluation of Level of Service (LOS) 

Table 3.4 lists the HCM density threshold values for the LOS criteria for basic 

freeway segments. Using the density data collected on I-495 at 129 meters west of Stone-

brook Drive, the LOS reliability metrics are calculated as shown in table 3.5. The density 

confidence intervals generated using the BCa method as a function of the time of day, 

together with the probabilities of the levels of service, are shown in figure 3.8.  

Table 3.5 compares the traditional LOS evaluation based on mean estimates with 

the reliability-based LOS evaluation on an hour-by-hour level. Based on the traditional 

evaluation method, the facility provides LOS D for all three hours. The reliability-based 

metric indicates that there is a 3 percent chance that a vehicle will experience LOS E 

during the hour from 16:00 to 17:00. In contrast, the LOS was 100 percent LOS D from 

17:00 to 18:00, and was 82 percent LOS D and 18 percent LOS C from 18:00 to 19:00. If 

travelers were aware that the later periods had higher reliability and they had flexibility in 

their departure time, they might adjust their departure time to avoid the worst hour of 

traffic.  

 

Table 3.4 Level of service criteria for basic freeway segments 

Level of Service Density Range for Basic Freeway Sections (pc/mi/ln) 

A ≤ 11 

B > 11 ≤ 18 

C > 18 ≤ 26 

D > 26 ≤ 35 

E > 35 ≤ 45 

F Demand Exceeds Capacity >45 

                                                            Source: Roess, R et al., 2010 
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Table 3.5 Reliability-based LOS analysis results 

Time Period  
Mean Density 

(pc/mi/ln) 

HCM LOS Reliability-based LOS 

C D E 

16:00-17:00 33 D 0% 97% 3% 

17:00-18:00 32 D 0% 100% 0% 

18:00-19:00 28 D 18% 82% 0% 

 

 

 
 

Figure 3.8 Five-minute confidence intervals of mean density 

 

3.3.2 Evaluation of an Arterial Corridor  

The level of service on an arterial corridor is generally related to the average 

travel speed on it. HCM uses an analytical method to calculate the delays on an urban 
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corridor travel time average and variance will be estimated based on link travel times 

collected on an arterial corridor. Given the estimated average corridor travel times, 

average travel speed is calculated, and subsequently, the reliability-based LOS is 

evaluated based on the confidence intervals of average travel speed.  

 

3.3.2.1 Estimation Methodology 

The most direct way to estimate average corridor travel time is to calculate it from 

direct measurements of probe vehicles traveling the corridor. In general, as the corridor 

distance increases, the number of vehicles traversing the corridor decreases. In addition, 

the time lag between the start of the vehicle journey and the time at which the travel time 

is reported will increase. In this situation, it might be advantageous to estimate the 

corridor time based on link measurements. The simplest way to do so is to add the link 

travel time means and variances, referred to as the naïve method by Eisele (2001). This 

naïve method can yield erroneous results if its assumption of independence between link 

travel times is violated. In dynamic traffic systems, the travel time on a roadway link is 

very likely to be dependent on the travel time on the preceding link, which will impact 

the arrival time of the current link, and in turn impact the travel time on the current link. 

For example, vehicles arriving in peak hours will experience higher travel times than 

those arriving in non-peak periods. That is, although the travel times on individual links 

can be regarded as statistically independent at a particular point in time, the travel times 

on adjacent links are often correlated. This correlation is referred to as “time-of-day 

correlation” (Fu and Rilett 1998). This section will introduce different methods used in 

section 3.3.2.2 to estimate the corridor travel time average and variance. 
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Approximation methods for mean and variance estimation. The link travel times 

in traffic networks are assumed as random variables with probability distributions 

dependent on the time of day. That is, the link travel times are modeled as a continuous-

time stochastic process denoted as {𝑋𝑎(𝑡), 𝑡 ∈ 𝑇}, where 𝑋𝑎(𝑡) is the travel time for 

vehicles entering the link 𝑎 at time 𝑡, and 𝑇 is a continuous parameter set. For each time 

instance t, the first-order probability density function (PDF) of 𝑋𝑎(𝑡) is denoted as 

𝑓𝑋𝑎
(𝑥𝑎, 𝑡). In this study, 𝑇 is the time range of interest, (i.e., peak hours) although it could 

be [0, ∞) theoretically.  

Travel times on individual links at a particular point in time are assumed to be 

statistically independent (Fu and Rilett 1998). Because the individual link travel time is 

modeled as a time-dependent process, its dependence on the preceding link is accounted 

explicitly through the arrival time at the current link, which is related to the travel times 

on the preceding link. This correlation is referred to as time-of-day correlation and is 

modeled directly within the individual link’s stochastic process. This way of addressing 

correlation avoided the more comprehensive data analysis incurred by considering the 

correlation between individual link travel times at a particular moment in time. 

As shown in figure 3.9, the route example extracted from Fu and Rilett (1998) is 

used to illustrate the approximation formulas. After a vehicle starts off from the origin 

node, its arrival time at the next node in a given route depends on the link travel time. 

Additionally, its arrival time at a destination depends on all the link travel times and the 

departure time from the origin nodes. This process can be represented by a recursive 

equation (see equation 3.5). Let the random variable 𝑌𝑖 denote the arrival time at node i. 
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The departure time at the origin node 1, 𝑌1, is assumed to be deterministic and a known a 

priori. The PDF of 𝑌𝑖 is represented by 𝑓𝑌𝑖
(𝑦𝑖). The problem of estimating route travel 

time variability is, therefore, to estimate 𝑓𝑌𝑖
(𝑦𝑖)(𝑖 = 𝑁) given a departure time at node 1 

and travel times on individual links. However, it is complex and computationally 

infeasible to estimate the 𝑓𝑌𝑖
(𝑦𝑖) when the links’ travel times are both dynamic and 

stochastic (Fu and Rilett 1998). The first- and second-order approximation methods can 

approximate the route travel time mean and variance based on the first two moments of 

the link travel time PDF.  

 

i

j
1

N

a

 
Source: Fig.1, Fu and Rilett (1998). 

 

Figure 3.9 A route p from origin node 1 to destination node N 
 

 

𝑌𝑗 = 𝑌𝑖 + 𝑍𝑎 (3.5) 

where: 

𝑌𝑗 = the arrival time at link j, 

𝑌𝑖 = the arrival time at link i, and 

𝑍𝑎 = the travel time on link a. 
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The random variable 𝑍𝑎 is the travel time on link a under a given experiment. The 

parameters of the experiment include both the route and the departure time. The 

distribution of 𝑍𝑎 is conditional to the specific experiment, and it is different from the 

link travel time represented solely by a function of the time entering the link. The 

probability distribution of 𝑍𝑎 under a given time (i.e.,𝑌𝑖 = 𝑦𝑖) will be the same as the 

probability distribution of 𝑋𝑎(𝑦𝑖), as shown in equation 3.6, where P is the link set for 

route p. In addition, 𝑍𝑎|𝑌𝑖 = 𝑦𝑖 also has the same mean and variance as the random 

variable 𝑋𝑎(𝑦𝑖), as shown in equations 3.7-3.8, where 𝜇𝑋𝑎
(𝑦𝑖) and 𝜈𝑋𝑎

(𝑦𝑖) need to be 

estimated through statistical methods.  

 

𝑃{𝑍𝑎 < 𝑥|𝑌𝑖 = 𝑦𝑖} = 𝑃{𝑋𝑎(𝑦𝑖) < 𝑥}, 𝑥 ∈ 𝑃 (3.6) 

𝐸[𝑍𝑎|𝑌𝑖 = 𝑦𝑖] = 𝜇𝑋𝑎
(𝑦𝑖) (3.7) 

𝑉𝐴𝑅[𝑍𝑎|𝑌𝑖 = 𝑦𝑖] = 𝜈𝑋𝑎
(𝑦𝑖)    (3.8) 

where: 

𝜇𝑋𝑎
(𝑦𝑖) = the distribution of the travel time mean given an arrival time, and  

𝜈𝑋𝑎
(𝑦𝑖) = the distribution of the travel time variance given an arrival time. 

 

To estimate the mean arrival time of node j, the recursive equation 3.5 can be 

further transformed into equation 3.9, where the second term is defined in equation 3.10. 

The PDF of arrival time 𝑓𝑌𝑖
(𝑦𝑖), however, is unavailable in the traffic database. What is 

available are the historical sample means and sample variances, or the forecasted means 

and variances for discrete periods throughout the day. To determine the second term in 
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equation 3.9 without 𝑓𝑌𝑖
(𝑦𝑖), the first- and second-order approximation methods expand 

𝜇𝑋𝑎
(𝑡) as a Taylor series around the point 𝑡 = 𝐸[𝑌𝑖], as shown in equation 3.11.  

 

𝐸[𝑌𝑗] = 𝐸[𝑌𝑖] + 𝐸[𝑍𝑎] = 𝐸[𝑌𝑖] + 𝐸[𝐸[𝑍𝑎|𝑌𝑖] = 𝐸[𝑌𝑖] + 𝐸[𝜇𝑋𝑎
(𝑌𝑖)]   (3.9) 

𝐸[𝜇𝑋𝑎
(𝑌𝑖)] = ∫ 𝜇𝑋𝑎

(𝑦𝑖)
+∞

0

𝑓𝑌𝑖
(𝑦𝑖)𝑑𝑦𝑖 (3.10) 

𝜇𝑋𝑎
(𝑡) = 𝜇𝑋𝑎

(𝐸[𝑌𝑖]) + 𝜇𝑋𝑎

′ ∙ (𝑡 − 𝐸[𝑌𝑖]) +
1

2!
𝜇𝑋𝑎

′′ ∙ (𝑡 − 𝐸[𝑌𝑖])2 + ⋯    (3.11) 

       𝐸[𝜇𝑋𝑎
(𝑌𝑖)] ≅ ∫ {

+∞

0

𝜇𝑋𝑎
(𝐸[𝑌𝑖]) + 𝜇𝑋𝑎

′ ∙ (𝑦𝑖 − 𝐸[𝑌𝑖])}𝑓𝑌𝑖
(𝑦𝑖)𝑑𝑦𝑖

= 𝜇𝑋𝑎
(𝐸[𝑌𝑖]) ∫ 𝑓𝑌𝑖

(𝑦𝑖)𝑑𝑦𝑖

+∞

0

+ 0 = 𝜇𝑋𝑎
(𝐸[𝑌𝑖])    

(3.12) 

 

As displayed in equation 3.12, the first-order approximation method estimates 

𝐸[𝜇𝑋𝑎
(𝑌𝑖)] by truncating the Taylor series of 𝜇𝑋𝑎

(𝑡) at the linear term, assuming that the 

second and higher order derivatives are equal to zero. The first-order approximation 

model of the recursive formula is shown in equation 3.13. 

 

𝐸[𝑌𝑗] ≅ 𝐸[𝑌𝑖] + 𝜇𝑋𝑎
(𝐸[𝑌𝑖])    (3.13) 

 

Furthermore, assuming the third and higher order derivatives of the Taylor series 

are zero, the second-order approximation model of the mean arrival time can be obtained, 

as shown in equation 3.14. 
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𝐸[𝑌𝑗] ≅ 𝐸[𝑌𝑖] + 𝜇𝑋𝑎
(𝐸[𝑌𝑖]) +

1

2!
𝜇𝑋𝑎

′′ (𝐸[𝑌𝑖]) ∙ 𝑉𝑎𝑟 [𝑌𝑖]    (3.14) 

 

In this dissertation, the link travel time function 𝜇𝑋𝑎
(𝑡) is approximated in the 

form of a second-order polynomial, as shown in figure 3.10.  

 

 Source: Fig.5(d), Fu and Rilett (1998). 

 

Figure 3.10 Time-dependent second-order link travel time functions 
 

 

 As shown in equation 3.14, the variance of arrival time at node i, 𝑉𝑎𝑟 [𝑌𝑖], is 

required to apply the second-order approximation method. Based on the recursive 

equation 3.5, the variance of arrival time at node j, 𝑉𝑎𝑟 [𝑌𝑗] can be written as: 

 

𝑉𝑎𝑟 [𝑌𝑗] =  𝑉𝑎𝑟 [𝑌𝑖] + 𝑉𝑎𝑟[𝑍𝑎] + 2𝐶𝑂𝑉(𝑌𝑖, 𝑍𝑎) (3.15) 

 

The last two terms of equation 3.15 can be transformed through equations 3.16 

and 3.17 (Ross 1989). 
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𝑉𝑎𝑟[𝑍𝑎] = 𝐸[𝑉𝑎𝑟[𝑍𝑎|𝑌𝑖]] + 𝑉𝑎𝑟[𝐸[𝑍𝑎|𝑌𝑖]] 

  = 𝐸[𝑉𝑎𝑟[𝑋𝑎(𝑌𝑖)]] + 𝑉𝑎𝑟[𝐸[𝑋𝑎(𝑌𝑖)] 

                                                  = 𝐸[𝜈𝑋𝑎
(𝑌𝑖)] + 𝑉𝑎𝑟[𝜇𝑋𝑎

(𝑌𝑖)] 

 

(3.16) 

𝐶𝑂𝑉(𝑌𝑖, 𝑍𝑎) = 𝐸[𝑌𝑖 ∙ 𝑍𝑎] − 𝐸[𝑌𝑖]𝐸[𝑍𝑎] 

= 𝐸[𝐸[𝑌𝑖 ∙ 𝑍𝑎|𝑌𝑖]] − 𝐸[𝑌𝑖][𝐸[𝑍𝑎|𝑌𝑖]] 

= 𝐸[𝑌𝑖 ∙ 𝐸[𝑍𝑎|𝑌𝑖]] − 𝐸[𝑌𝑖] 𝐸[𝜇𝑋𝑎
(𝑌𝑖)] 

= 𝐸[𝑌𝑖 ∙ 𝜇𝑋𝑎
(𝑌𝑖)] − 𝐸[𝑌𝑖] 𝐸[𝜇𝑋𝑎

(𝑌𝑖)] 

(3.17) 

 

Thus, the variance of the arrival time at node j can be calculated by equation 3.18. 

 

𝑉𝑎𝑟 [𝑌𝑗] =  𝑉𝑎𝑟 [𝑌𝑖] +  𝐸[𝜈𝑋𝑎
(𝑌𝑖)] + 𝑉𝑎𝑟[𝜇𝑋𝑎

(𝑌𝑖)] − 2𝐸[𝑌𝑖 ∙ 𝜇𝑋𝑎
(𝑌𝑖)]

− 2𝐸[𝑌𝑖] 𝐸[𝜇𝑋𝑎
(𝑌𝑖)]    

(3.18) 

 

Again, it is mathematically impractical to derive the functions 𝜈𝑋𝑎
(𝑌𝑖) and 

𝜇𝑋𝑎
(𝑌𝑖). The first- and second-order approximation models for the variance of the arrival 

time at node j (𝑉𝑎𝑟 [𝑌𝑗]) can be derived by replacing functions with truncated Taylor 

series expansions about point 𝐸[𝑌𝑖]. 

By assuming that the second and higher derivatives of 𝜈𝑋𝑎
(𝑌𝑖) and 𝜇𝑋𝑎

(𝑌𝑖) are 

equal to zero, the first-order approximation method is shown in equation 3.19. 
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𝑉𝑎𝑟 [𝑌𝑗] ≅ 𝐴 ∙  𝑉𝑎𝑟 [𝑌𝑖] + 𝜈𝑋𝑎
(𝐸[𝑌𝑖]) (3.19a) 

𝐴 ≅ {1 + 𝜇𝑋𝑎

′ (𝐸[𝑌𝑖])}2 (3.19b) 

 

By assuming that the third and higher derivatives of 𝜈𝑋𝑎
(𝑌𝑖) and 𝜇𝑋𝑎

(𝑌𝑖) are equal 

to zero, meaning the arrival time is symmetric and neither platykurtic nor leptokuric, a 

simplified second-order approximation model for normally distributed arrival time is 

shown by equation 3.20. 

 

𝑉𝑎𝑟 [𝑌𝑗] ≅ (𝐴 + 𝐵) ∙  𝑉𝑎𝑟 [𝑌𝑖] + 𝜈𝑋𝑎
(𝐸[𝑌𝑖])    (3.20a) 

𝐵 ≅
1

2
{𝜈𝑋𝑎

′′ (𝐸[𝑌𝑖]) + 𝜇𝑋𝑎

′′2(𝐸[𝑌𝑖]) ∙ 𝑉𝑎𝑟 [𝑌𝑖]} (3.20b) 

 

Similar to the mean estimation, second-order polynomial functions are used to 

approximate 𝜈𝑋𝑎
(𝑌𝑖) on link a for first- and second-order approximation methods. 

 

Naïve sum method for mean and variance method. As a baseline to compare the 

efficiency of the first- and second-order approximation methods, the mean and variance 

of arrival time will also be estimated using the naïve method. With the independence 

assumption, the naïve method uses equations 3.21 and 3.22.  

 

𝐸[𝑌𝑗] = 𝐸[𝑌𝑖] + 𝐸[𝑍𝑎]    (3.21) 

𝑉𝑎𝑟[𝑌𝑗] = 𝑉𝑎𝑟 [𝑌𝑖] + 𝑉𝑎𝑟[𝑍𝑎] + 2𝐶𝑂𝑉(𝑌𝑖, 𝑍𝑎) ≅ 𝑉𝑎𝑟 [𝑌𝑖] + 𝑉𝑎𝑟[𝑍𝑎]    (3.22) 
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Covariance-based method for variance estimation. The arrival travel time 

variance can also be estimated through equation 3.15.  

 

𝑉𝑎𝑟 [𝑌𝑗] =  𝑉𝑎𝑟 [𝑌𝑖] + 𝑉𝑎𝑟[𝑍𝑎] + 2𝐶𝑂𝑉(𝑌𝑖, 𝑍𝑎)    (3.15) 

 

Cumulative sum method for mean estimation. The expected arrival time could be 

estimated by equation 3.23, derived from 3.10, where 𝜇𝑋𝑎
(. ) is estimated by a step 

function, as shown in figure 3.11. 

 

𝐸[𝑌𝑗] ≅ 𝐸[𝑌𝑖] + 𝜇𝑋𝑎
(𝐸[𝑦𝑖]) = 𝐸[𝑌𝑖] + 𝐸[𝑋𝑎|𝑦𝑖] (3.23) 

 

 

 

Source: Fig.5(b), Fu and Rilett (1998) 

 

Figure 3.11 Time-dependent step link travel time functions  
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3.3.2.2 Estimation Methods Comparison 

The test bed used to study the accuracies of different estimation methods is a 

three-link corridor on Westheimer Road, an east-west arterial in Houston, Texas. The 

corridor starts at Wilcrest Drive and ends at Eldridge Parkway. As shown in figure 3.12, 

the yellow pins indicate the locations of MAC readers that collect Bluetooth information. 

Once the location and time stamp information is obtained, travel time can be readily 

calculated.  

 

 

Figure 3.12 The three-link corridor test bed 

 

The corridor travel time data was collected for afternoon peak hours (16:00-

19:00) from January to July in 2011. For each 15-minute interval, the true mean and 

variance of the arrival time (AT) at the Eldridge Parkway are calculated using the 

observed arrival travel times in the dataset. The performances of various estimation 

methods discussed in section 3.3.2.1 are evaluated by absolute percentage errors (APEs), 

which are calculated by equation 3.24.  
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𝐴𝑃𝐸 =
|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒| 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒
× 100% 

(3.24) 

 

Table 3.6 summarizes the mean and median of APEs for mean estimation and 

variance estimation, respectively. For mean estimation, the naïve sum method results in a 

mean APE of 2.6 percent. The second-order approximation method yielded a mean APE 

of 1.9 percent and improved the estimation accuracy by 27 percent compared to the naïve 

sum method.  

Because variance estimation could be significantly biased for intervals that have 

very few observations, the median APE is used to evaluate the overall performance of 

estimation methodologies. Also shown in table 3.6, the second-order approximation 

method improved the accuracy of variance estimation by 15 percent compared to the 

naïve sum method.  

 

Table 3.6 Performance of various estimation methods for corridor travel time metrics 

Estimation Methods for 
Mean Corridor Travel Time 

Naïve 

Sum 
Cumulative 

Sum 
First-order 

Approximation 
Second-order 

Approximation 
Mean APE of 

Mean Estimation (%) 2.6 2.5 2.0 1.9 

Improvement (%) Baseline 4 23 27 

Estimation Methods for 
Arrival Time Variance 

Naïve 

Sum COV-based 
First-order 

Approximation 
Second-order 

Approximation 
Median APE of 

Variance Estimation (%) 7.2 6.8 6.1 6.1 

Improvement (%) Baseline 6 15 15 

 

Figure 3.13 shows the cumulative density function plots of APEs for mean and 

variance estimations. Using this figure, traffic agencies can decide which method to use 
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according to their desired level of accuracy for their application. Assuming the traffic 

manager aims to estimate the corridor travel time mean with an APE of less than 5 

percent, the approximation method can yield an acceptable estimation 93 percent of the 

time, while the naïve sum method yields an acceptable estimate 85 percent of the time. 

Assuming the traffic manager prefers a variance estimation with an APE less than 20 

percent, the probability of obtaining satisfactory results are 90 percent and 82 percent by 

using the approximation method and the naïve sum method, respectively. 
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Figure 3.13 CDFs of estimation APEs 
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3.3.2.3 Evaluation of Level of Service 

The estimation results of the second-order approximation method are used in this 

section to continue with the corridor evaluation. The estimated mean arrival times are 

converted to corridor travel times and then to average travel speeds. The confidence 

intervals of average speed are generated using the BCa bootstrapping method. The test 

corridor is defined as a Class II facility, and the level of service evaluation thresholds use 

the HCM 2000 standard shown in figure 3.14. The evaluation results of this corridor, 

based on seven months of data collection, are plotted in figure 3.15. It may be seen that 

the LOS is either B or C during the analysis period. The lower LOS (e.g., C) typically 

starts around 16:45 and ends around 18:45. During the whole analysis period from 16:00 

to 19:00, the reliability of this corridor is 22 percent and 78 percent for LOS B and C, 

respectively. 

 

 
 

Figure 3.14 HCM 2000 urban street LOS criteria 
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Figure 3.15 15-minute confidence intervals of mean travel speed 

 

3.4 Concluding Remarks 

This chapter presented the new reliability metric for the evaluation of traffic 

system performance. The metric is able to evaluate traffic system reliability in terms of a 

probability of obtaining a certain level of service within the period of interest. Time-

dependent confidence intervals are incorporated to take into account the time-dependent 

fluctuations in traffic flow.  

The travel time data for one I-495 segment were used to study the variability of 

travel time distributions within a half hour. Based on the six-month data, it was shown 

using a paired t-test that the mean travel time for the 5-minute interval from 16:00 to 
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16:05 was different from the mean for the 5-minute interval between 16:10 and 16:15 at a 

95 percent confidence level. These results indicate that system performance needs to be 

monitored and evaluated at a scale finer than hourly if the user wishes for more detailed 

information on what is happening on the network.  

To capture the fluctuations in performance, each short-time interval was analyzed 

separately using a new reliability-based level of service metric. The BCa bootstrap 

method was applied to obtain a confidence interval based on percentiles instead of 

standard error estimates. This approach was chosen so that confidence intervals could be 

obtained even for those datasets that are not normally distributed. The new metric was 

applied for a segment of I-495, and the traffic parameter of interest was density. 

Compared to the traditional LOS evaluation scheme based on an average density, the 

reliability-based results can provide more detail about how the system performs within a 

given period of interest. This would be helpful when the performance evaluation results 

are used to compare competing designs or management strategies.  

In terms of applications on corridors that consist of multiple links, it is often 

difficult to obtain enough measurements of corridor travel times. This problem is 

particularly notable when the corridor under evaluation is very long. Thus, corridor travel 

time information such as mean and variance need to be first estimated from link travel 

times. A naïve way to do this is to sum the means and variances of travel times on all the 

links together by assuming that link travel times are independent. To relieve this 

unrealistic assumption, the first- and second-order approximation methods estimate the 

mean and variance of corridor travel time taking into account the correlations among 
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links. Bluetooth travel time data on a five-kilometer corridor of Westheimer Road in 

Houston, Texas, were used to compare the efficiency of the approximation methods with 

simple statistic methods. This is the first attempt to validate these approximation methods 

using empirical corridor travel times obtained using Bluetooth technology. The results 

justified the advantage of the two approximation methods for this three-link corridor. It is 

reasonable to conclude that for applications on longer corridors/paths, the accumulation 

of errors in the naïve method due to neglecting link-level correlations will be greater, and 

the advantage of the approximation methods will be even more apparent. It is also 

hypothesized that this approach would be better than the naïve method for real time 

application, which will be analyzed in chapter 4.
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CHAPTER 4 DEVELOPMENT OF RELIABILITY INDICATOR AND PREDICTION 

METHODOLOGY FOR TRAVELERS 

4.1 Necessity of a Reliability Indicator for Traveler Information Systems 

Most transportation systems are dynamic and stochastic in that travel times vary 

across space and time. This mainly arises because of: 1) recurring congestion such as the 

rush hour period, 2) operational treatments for unexpected disruptions (e.g., traffic signal 

preemption for emergency vehicles and highway railway at-grade crossings), and 3) 

traffic control devices and different roadway characteristics. For example, urban streets 

with traffic signals and conflicting cross street traffic introduce more variability in travel 

times than freeways and access-controlled highways, all else being equal. In traffic 

systems experiencing congestion, the provision of travel time reliability information is 

gaining importance among researchers, traffic operators, and drivers (Haitham and Emam 

2006; Tu 2008; Barkley et al. 2012; Carrion and Levinson 2013). 

Most current applications of Advanced Traveler Information Systems (ATIS) 

provide average estimates of the traffic parameters of interest through dynamic message 

signs and/or websites. Table 4.1 lists examples of dynamic message signs in terms of 

travel time information for freeway and arterial facilities. Examples (1) and (2) in table 

4.1 display only instantaneous average travel times. In example (3) in table 4.1, a two-

minute travel time interval is typically displayed during non-congested periods. In heavy 

congestion periods, an interval up to four minutes is applied to reflect a higher degree of 

uncertainty in expected travel times for travelers (Oregon Department of Transportation 
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2005). The use of time intervals was based on the experience of the traffic system 

operators.  

Figure 4.1 is a snapshot of the online Houston Transtar Traffic Map where various 

colors indicate different traffic conditions in terms of average speeds calculated from 

travel times. The Houston Transtar uses Bluetooth technology to collect travel time 

information and uses the average of the link travel time measurements during the last 5 

minutes as the current travel time information. The travel time information for a freeway 

corridor consisting of multiple links is based on the summation of the mean link travel 

times during the last 5 minutes (personal communitation, TxDOT 2013). This summation 

approach assumes that link travel times are independent and that changes in route travel 

time over the period of interest are minimal. Intuitively, these assumptions are not 

reasonable for traffic systems with unstable traffic conditions. 

The travel time at a route level is subject to variability due to the traffic control 

devices and different traffic conditions along the route. The level of variability increases 

as the length of the route inceases. Drivers who are interested in the route travel time can 

only get limited information from the average travel time estimate. In this case, a range 

within which they can expect individual arrival times with a certain level of confidence 

can provide them with a better idea of traffic information on the arterial corriodrs and/or 

the route. In fact, it has been found that travel time reliability is an important criterion in 

route choices and trip planning (Abdel-Aty et al. 1995; Carrion and Levinson 2013). This 

chapter represents travel time reliability with a reliability interval of arrival time. In 

contrast to the confidence interval, which by definition includes the population mean with 
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a certain statistical confidence, the reliability interval is defined to include a individual 

observation with certain statistical confidence. 

This chapter will study several prediction models for the short-term corridor 

travel time (CTT) mean, standard deviation (SD), and associated reliability interval. The 

methodology can also be extended for longer and more diverse paths. 
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Table 4.1 Dynamic message signs (DMS) of travel time information 

(1) DMS of freeway travel time in 

New Jersey. 

 
(2) Demonstration of DMS of 

arterial travel time on W Sand Lake 

Rd in Orlando by Post Oak Traffic 

Systems, Inc. 

 
(3) DMS of freeway travel time 

interval in Oregon. 
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                                                                                                                                                                  2:20pm 5/24/2013 

Figure 4.1 A snapshot of the Houston TranStar Traffic Map
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4.2 Definition of Reliability Interval (RI) 

The reliability interval of travel time 𝑅𝑖𝑗𝑛
𝛼  indicates the travel time variability 

between origin i and destination j, with the confidence level 𝛼 for drivers departing 

during the n-th time interval. The reliability interval is predicted based on current and/or 

historic travel time measurements. Variable α is the percentage of drivers who depart in 

n-th time interval can expect to finish their trips within a RI. The reliability interval of 

travel time is defined as the expected travel time bounded by 𝑘𝛼 times the predicted 

standard deviation of travel time, as shown in equation 4.1.  

The reliability interval of the arrival time for the k-th driver between i and j, 

departing at 𝑑𝑘 time, depends on his/her departure time 𝑑𝑘 and the associated travel time 

reliability interval for the n-th time interval, as indicated by equation 4.2. 

 

𝑅𝑖𝑗𝑛
𝛼 = �̅�𝑖𝑗𝑛 ± 𝑘𝛼 ∙ 𝑠𝑖𝑗𝑛   ∀𝑖 = 1 … 𝐼, ∀𝑗 = 1 … 𝐽, ∀𝑛 = 1 … 𝑁 (4.1) 

𝐴𝑖𝑗𝑘𝑛
𝛼 = 𝑑𝑘 + 𝑅𝑖𝑗𝑛

𝛼    ∀𝑖 = 1 … 𝐼, ∀𝑗 = 1 … 𝐽, ∀𝑛 = 1 … 𝑁, ∀𝑘 = 1 … 𝐾 (4.2) 

where: 

𝑅𝑖𝑗𝑛
𝛼  = the predicted reliability interval of travel time between nodes i and j, for 

departure time within the n-th 15-minute interval, at the confidence level of 𝛼. 

The roadway between i and j could be a link, a corridor, or a path. In this case 

study, it is a corridor with three links. 

𝑘𝛼 = the coverage parameter. This parameter is user defined and controls the 

spread of the interval. 
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�̅�𝑖𝑗𝑛 = the predicted mean travel time from i to j for vehicles departing during n-th 

time interval 𝑡𝑛. 

𝑠𝑖𝑗𝑛 = the predicted standard deviation of travel time from i to j for vehicles 

departing during n-th time interval. 

I, J = the number of origins and destinations, respectively. 

N = the total number of 15-minute intervals within the analysis period. For a PM 

peak period from 4:00pm to 7:00pm, N is equal to 12. 

𝐴𝑖𝑗𝑘𝑛
𝛼  = the predicted reliability interval of the arrival time for k-th driver between i 

and j, departing from i at 𝑑𝑘, which is in the n-th 15-minute interval.  

K = the number of drivers in the dataset who departed in the n-th time interval. 

𝛼 = the confidence level, which is the percentage of drivers who depart during 𝑛-

th time interval can expect to arrive at j within 𝐴𝑖𝑗𝑘
𝛼 . 

 

One key step to implementing the reliability interval in practice is to choose an 

appropriate value of 𝑘𝛼. Because the reliability interval is defined by the predicted 

sample mean and standard deviation, the coverage rate of a RI corresponding to a given 

𝑘𝛼 depends on the efficiency of prediction models. The coverage rate is defined as the 

percentage of the actual arrival times that are within the predicted reliability interval. 

Therefore, the value of 𝑘𝛼 needs to be decided by traffic agencies through a preliminary 

study based on an analysis of historic travel time datasets and a pre-selected prediction 

model. Intuitively, the value will have to be updated on a regular basis given new 

available information. Because the instantaneous travel time prediction method (ITT) is 
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applied for freeway corridor mean travel time estimation, the 𝑘𝛼 used in this dissertation 

is set to the value with which the predicted reliability intervals, using ITT, includes actual 

arrival times at the percentage of 𝛼 or higher. Note that the coverage rate for a given 𝑘𝛼 

can be used as an evaluation metric for different prediction methods. For example, the 

higher the coverage rate of the predicted reliability intervals, the better the prediction 

model is, all else being equal.  

In addition to the coverage rate, the average interval range is the other indicator of 

the efficiency of different prediction models. In general, there is a tradeoff between the 

coverage rate and the interval range of a given reliability interval. While the coverage 

rate indicates the ability of a prediction model to generate accurate reliability intervals for 

drivers, the interval range represents the usability of the predicted reliability intervals. For 

example, in a case study where the average corridor travel time is 442 seconds, a 

reliability interval ranging from 1 to 1,000 seconds can provide a very high coverage rate, 

but it would prove useless for drivers. Therefore, although a high coverage rate is desired, 

drivers would also like to have reliability intervals as compact as possible. Both the 

coverage rate and the average interval range need to be considered when identifying the 

“best” prediction model. This issue will be discussed in the example problem later in this 

chapter. 

 

4.3 Case Study 

An arterial corridor is used to demonstrate the calculation and prediction of arrival 

time reliability intervals defined by equation 4.2. The test bed is a three-link corridor 
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along Westheimer Road in Houston, Texas. Houston TranStar and its partners have 

implemented an anonymous wireless address matching (AWAM) system to measure 

travel times along arterial roadways. The AWAM system is able to detect vehicles with 

Bluetooth networking devices such as cellular phones, mobile GPS systems, etc. The 

unique electronic address of each enabled Bluetooth device, known as a MAC address, 

can be detected by the roadside AWAM readers as the device passes the reader station. 

The AWAM readers then transmit the time and location of the detected device back to 

the AWAM host processing system. Subsequently, the travel time readings are matched 

and the individual link travel times are derived. These are used to calculate the average 

travel time and speed information which are then provided to drivers in real time (Puckett 

and Vickich 2010). Figure 4.2 is a snapshot of the on-line Houston TranStar Traffic map 

showing the three-link corridor in this case study, which is monitored by the AWAM 

system. Figure 4.3 shows the traffic information available from the website including the 

road name, cross street 1, cross street 2, distance, average travel time, and average speed.  

In this section, the exploration of the Bluetooth travel time data will be expanded 

by predicting an arrival time reliability interval of the corridor trip for the next 15-minute 

interval. The three-link corridor, as marked by the four red circles in figure 4.2, is used as 

a test bed to compare efficiencies of various prediction methodologies. Each circle is a 

data collection station, and the links between adjacent circles are approximately 1.6 km in 

length, as shown in figure 4.2. The developer stated that this distance would provide an 

acceptable number of vehicle observations (Puckett and Vickich 2010). Each link 

includes multiple signalized intersections. The detailed information for each link is 
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summarized in table 4.2. Note that the number of traffic signals on each link were 

obtained from Google map (2014). 

 

Table 4.2 Link information of the corridor test bed in study 

Cross street 1 (from) Wilcrest Kirkwood Dairy Ashford 

Cross street 2 (to) Kirkwood Dairy Ashford Eldridge 

Distance in km 

(mile) 

1.6 

(1.0) 

1.6 

(1.0) 

1.8 

(1.1) 

Number of signals 2 2 3 
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Figure 4.2 The test bed of a three-link arterial corridor  

Link 1  Link 2 Link 3  
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Figure 4.3 An example of real-time traffic information for each link in the test bed 

Link 1  

Link 2 

Link 3 
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4.4 Travel Time Data 

4.4.1 Data Collection Technology 

There are various individual vehicle collection methods including GPS-equipped 

probe vehicles, the automatic license plate recognition system, radio-frequency 

identification (RFID) tool tag technology, and Bluetooth technology. Their advantages 

and disadvantages are summarized in table 4.3 (Turner et al. 1998; Vo 2011). Bluetooth 

has proven to be a viable technology in terms of its relatively large penetration rate of 

travel time data samples for a given roadway segment. One research project showed that 

5 to 7 percent of vehicles in a traffic stream were equipped with Bluetooth enabled 

devices (Tarnoff et al. 2009). This relatively large market penetration rate of Bluetooth 

data makes it applicable to calculate travel time standard deviations for short time 

intervals, which is necessary to evaluate short-term travel time variability using reliability 

intervals. 

 In addition, the Bluetooth measurement system is very cost-effective because the 

traffic agency does not have to spend any money equipping vehicles. It has been shown 

that the cost of this technology is one to two orders of magnitude below the costs for 

traditional toll tag reader equipment (Puckett and Vickich 2010). The cost advantage 

enables travel time to be collected on more roadway links. It also makes estimating 

arrival travel time reliability easier and potentially more accurate for relatively long trips. 
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Table 4.3 A comparison of various travel time collection technologies 

GPS-Equipped Probe 

Vehicles 

Pros:  
1) Reduction in staff requirement compared to manual method 
2) Relatively portable, reliable, and accurate 
3) Generates automatic geo-coding of detailed speed data 
Cons:  
1) Losing signals due to tall buildings, tunnels, etc. 
2) Building the based map using a geographic information system  

(GIS) to use the incoming data 
3) Limited sample size and privacy issues 

Automatic License 

Plate Matching 

Pros:  
1) Decrease in data reduction time 
2) Large sample size 
Cons:  
1) Constrained by lighting conditions 
2) Technologically intensive and unstandardized vendors 

RFID 

Pros:  
1) Cost-effective compared to loop and video detection method 
2) Takes advantage of preexisting RFID infrastructure 
3) Larger sample size compared to probe vehicle method 
Cons:  
1) Constrained by market penetration of RFID toll tags 
2) Limited portable applications and infeasible to be implemented 

in arterials 
3) Privacy issues 

Bluetooth 

Pros: 
1) Low cost, standardized, non-proprietary equipment and 

protocols 
2) Easy, non-intrusive field installation and maintenance with 

portable applications 
3) Large penetration of data samples 
4) Real-time summary calculations 
5) Complete ownership of data by operating agency 
6) No privacy issues 

Cons: Outliers from Bluetooth devices of non-vehicles 

(Vo 2011) 

 

4.4.2 Bluetooth Travel Time Data for the Case Study 

The base datasets used in this study were collected from January 1st to July 31st in 

2011 for the arterial corridor on westbound Westheimer Road, from Wilcrest Drive to 

Eldridge Parkway. The link-based travel times were generated by matching MAC 
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readings between readers located at the beginning and end points of each link. The 

corridor-based travel times were generated by matching the readings between the readers 

at the beginning and end points of the corridor (e.g., between Wilcrest Drive and Eldridge 

Parkway). 

 

4.4.2.1 Link Travel Time Distribution 

Travel times on arterial links with traffic signals are expected to form a multiple-

modal distribution because some vehicles will be stopped at one or more traffic signals 

while other vehicles will progress through the signals unimpeded. Using the travel time 

data from 16:00 to 19:00 on March 7, 2011 for the link from Wilcrest to Kirkwood, the 

distribution parameters were quantitatively investigated through the expectation-

maximization (EM) algorithm, implemented by Mclust. Mclust is an R package 

developed by the University of Washington for model-based density estimation (Fraley 

and Raftery 2002; Barkley et al. 2012). The best number of modes and related parameters 

(i.e., mean and variance of each mode) are determined through a penalty on the number 

of model parameters and Bayesian Information Criterion (BIC), which is the value of the 

maximized log-likelihood.  

The results for link Wilcrest-Kirkwood are summarized in figure 4.4. As 

expected, the histogram of the travel time data from 16:00 to 19:00 on March 7, 2011, 

shown in figure 4.4 (a), is bi-modal in nature. Figure 4.4 (b) shows the fitted distribution 

through the EM algorithm. It may be seen that the PDF has two components. The first 

component is a normal distribution with a mean of 110 seconds and a variance of 147 
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seconds2. The second component is a normal distribution with a mean of 188 seconds and 

a variance of 767 seconds2.  

Figure 4.4 (c) and (d) shows the CDF and the quantile-quantile (Q-Q) plot, 

respectively, which are used for diagnostic purposes. The CDF plot in figure 4.4 (c) 

compares the estimated CDF (e.g., black curve) with the empirical distribution function 

(e.g., green dashed curve). It may be seen that the CDF of the empirical data and the 

estimated CDF match each other closely. The highest difference between empirical and 

estimated CDFs is less than 7 percent. The Q-Q plot in figure 4.4 (d) is a graphical 

technique to determine if the dataset of the estimated distribution and the observed 

dataset come from populations with a common distribution. A Q-Q plot shows the 

quantiles of the first dataset in relation to the quantiles of the second dataset. A quantile is 

defined as the percentage of points below the given value. For example, the 30 percent 

quantile is the point at which 30 percent of the data fall below the value, and 70 percent 

fall above. The 45-degree reference line is also plotted in the Q-Q plot. If the two sets 

come from a population with the same distribution, the points should fall approximately 

along this reference line. For this example, figure 4.4 (d) indicates that the estimated 

distribution of the first component models the empirical data very closely because the Q-

Q plot lies on the 45-degree reference line. In contrast, while the second cluster doesn't 

model the empirical data as closely, it may be considered as an adequate approximation. 

It can be seen that the observed travel time dataset follows a bimodal distribution. 
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(a) 

 
(b) 

 

Figure 4.4 Results of model-based density estimation for travel time data 
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(c) 

 
(d) 

 

Figure 4.4 Results of model-based density estimation for travel time data (cont.) 
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4.4.2.2 Link-Based and Corridor-Based Dataset 

The raw Bluetooth dataset from the AWAM systems in Houston was reduced into 

the format shown in table 4.4. Specifically, the raw data was transformed into link 

specific information. Each line includes the MAC address of the vehicle, the locations of 

the readers (cross streets 1 and 2), the two timestamps when the vehicle entered and 

exited each link, the associated estimated trip time in seconds (i.e., the time difference 

between the two timestamps), and the speed in mph. If a given vehicle has more than one 

Bluetooth-activated device being detected, it generates multiple data lines with exactly 

the same records for all the columns in table 4.4 except the MAC address. In this 

situation, information from only one device is kept so that the MAC address column can 

be used as the vehicle ID to distinguish different vehicles.  

Subsequently, the three link based data sets were combined into one corridor 

based dataset. The corridor-specific dataset was derived by finding the sum of link-

specific travel times for the same vehicle ID traveling through the three-link corridor. By 

definition, the number of observations in the corridor-specific dataset will be equal to or 

smaller than that of each of the three link-specific databases. Table 4.5 shows some 

examples of the corridor-specific dataset records including the MAC address of each 

vehicle, the timestamps entering and leaving all three links, the corresponding link travel 

times in seconds, and the corridor travel time in seconds. Note that for a given vehicle the 

timestamp for entering a downstream link should be the same as the timestamp for 

departing the upstream link for a single vehicle. There were some observations where the 

two timestamps were not identical, as shown in line 15 in table 4.5. It is hypothesized that 
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this is because the vehicle waited at an intersection and was recorded with multiple 

timestamps at the same reader station. Different timestamps, however, were selected to 

match link travel times for different links. To eliminate any inconsistency, the time a 

given vehicle left a link was set equal to the time the vehicle entered the following link. 

For example, the observation in line 15 in table 4.5 is adjusted, as shown in line 16.   
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Table 4.4 Examples of corridor-based travel time data 

Vehicle ID Cross street 1 (from) Cross street 2 (to) 
Enter 
Time 

Exit 
Time 

Travel Time 
(sec) 

Speed 
(mph) 

00:24:83:50:C1:48 Westheimer_Wilcrest Westheimer_Kirkwood 
2011/1/1 

16:05:08 
2011/1/1 

16:07:56 
168 21 

00:12:1C:51:68:3D Westheimer_DairyAshford Westheimer_Kirkwood 
2011/1/1 

16:05:42 
2011/1/1 

16:07:36 
114 32 

10:1D:C0:96:67:40 Westheimer_Kirkwood Westheimer_DairyAshford 
2011/1/1 

16:06:10 
2011/1/1 

16:07:56 
106 34 

00:26:5D:E1:08:52 Westheimer_Wilcrest Westheimer_Kirkwood 
2011/1/1 

16:06:33 
2011/1/1 

16:07:57 
84 43 

00:18:C5:97:53:E0 Westheimer_Wilcrest Westheimer_Kirkwood 
2011/1/1 

16:06:23 
2011/1/1 

16:08:00 
97 37 

00:12:1C:F5:C3:03 Westheimer_Wilcrest Westheimer_Kirkwood 
2011/1/1 

16:06:51 
2011/1/1 

16:08:11 
80 45 

6C:9B:02:21:C1:29 Westheimer_DairyAshford Westheimer_Eldridge 
2011/1/1 

16:07:35 
2011/1/1 

16:08:56 
81 49 

00:15:D3:7F:DF:14 Westheimer_DairyAshford Westheimer_Eldridge 
2011/1/1 

16:07:40 
2011/1/1 

16:08:55 
75 53 

C0:38:F9:5A:1A:F0 Westheimer_DairyAshford Westheimer_Kirkwood 
2011/1/1 

16:06:18 
2011/1/1 

16:09:28 
191 19 

00:21:FE:76:34:4B Westheimer_DairyAshford Westheimer_Kirkwood 
2011/1/1 

16:07:04 
2011/1/1 

16:09:55 
171 21 

10:1D:C0:96:67:40 Westheimer_DairyAshford Westheimer_Eldridge 
2011/1/1 

16:07:56 
2011/1/1 

16:09:33 
97 41 

00:26:5D:E1:08:52 Westheimer_Kirkwood Westheimer_DairyAshford 
2011/1/1 

16:07:57 
2011/1/1 

16:09:58 
121 30 

00:05:4F:49:9A:D7 Westheimer_DairyAshford Westheimer_Kirkwood 
2011/1/1 

16:07:58 
2011/1/1 

16:09:46 
108 33 

D4:E8:B2:34:4E:6A Westheimer_DairyAshford Westheimer_Eldridge 
2011/1/1 

16:08:05 
2011/1/1 

16:09:33 
88 45 
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Table 4.5 Examples of corridor-based travel time data (2011/1/1) 

 

Line 

No. Vehicle ID 

Link 1 Wilcrest-Kirkwood Link 2 Kirkwood-Dairy Ashford Link 3 Dairy Ashford-Eldridge Corridor 

Enter 
Time 

Travel 

Time 
(sec) 

Exit 
Time 

Enter 
Time 

Travel 

Time 
(sec) 

Exit 
Time 

Enter 
Time 

Travel 

Time 
(sec) 

Exit 
Time 

Travel 

Time 
(sec) 

1 00:24:90:C8:A7:04 15:46:43 80 15:48:03 15:48:03 106 15:49:49 15:49:49 82 15:51:11 268 

2 FC:A1:3E:B8:BF:FB 15:55:46 86 15:57:12 15:57:12 111 15:59:03 15:59:03 93 16:00:36 290 

3 10:1D:C0:96:67:40 16:04:43 87 16:06:10 16:06:10 106 16:07:56 16:07:56 97 16:09:33 290 

4 00:26:5D:E1:08:52 16:06:33 84 16:07:57 16:07:57 121 16:09:58 16:09:58 86 16:11:24 291 

5 C0:38:F9:47:97:1B 16:08:38 102 16:10:20 16:10:20 119 16:12:19 16:12:19 103 16:14:02 324 

6 00:24:91:1A:86:90 16:09:29 175 16:12:24 16:12:24 122 16:14:26 16:14:26 93 16:15:59 390 

7 00:10:18:E8:F1:D0 16:13:21 79 16:14:40 16:14:40 123 16:16:43 16:16:43 82 16:18:05 284 

8 00:23:39:8C:CA:14 16:19:55 89 16:21:24 16:21:24 129 16:23:33 16:23:33 85 16:24:57 302 

9 00:25:66:86:0E:B8 16:22:44 84 16:24:08 16:24:08 106 16:25:54 16:25:54 95 16:27:29 285 

10 5C:59:48:70:3A:33 16:24:20 100 16:26:00 16:26:00 127 16:28:07 16:28:07 105 16:29:52 332 

11 00:24:83:60:7D:12 16:29:12 82 16:30:34 16:30:34 120 16:32:34 16:32:34 88 16:34:02 290 

12 44:4E:1A:72:D4:62 16:29:33 73 16:30:46 16:30:46 102 16:32:28 16:32:28 93 16:34:01 268 

13 00:26:5F:D1:66:44 16:31:47 82 16:33:09 16:33:09 104 16:34:53 16:34:53 93 16:36:27 280 

14 00:22:A9:2C:E2:73 16:32:20 155 16:34:55 16:34:55 126 16:37:01 16:37:01 91 16:38:31 371 

15 E8:E5:D6:76:D0:2F 17:19:07 153 17:20:38 17:21:40 156 17:24:16 17:24:16 96 17:25:52 405 

   

16 E8:E5:D6:76:D0:2F 17:19:07 153 17:21:40 17:21:40 156 17:24:16 17:24:16 96 17:25:52 405 
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The link travel times in the link-based dataset include left-turn, right-turn, and 

through movements, while the link travel times in the corridor-based dataset, by 

definition, only include through movements. The only exception is that the vehicles travel 

along the corridor until the last link, where it is impossible to know their movements on 

the last link. Figure 4.5 shows the CDF plots of link travel times in the corridor-based 

dataset (LTT1) and in the link-based dataset (LTT2) for all three corridor links. In the 

figure, the blue solid lines represent the link travel times in the corridor-based dataset, 

which is specific for through movements. The red lines represent the link-based dataset 

including both turning and through movements. A Kolmogorov-Smirnov (K-S) test was 

conducted to test the consistency between the distribtions of the link travel times in the 

two different datasets for all three links. The null hypothesis and alternative hypothesis 

are: 

𝐻0: 𝐿𝑇𝑇1 𝑎𝑛𝑑 𝐿𝑇𝑇2 𝑎𝑟𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

𝐻𝑎: 𝐿𝑇𝑇1 𝑎𝑛𝑑 𝐿𝑇𝑇2 𝑎𝑟𝑒 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 

where: 

𝐿𝑇𝑇1 = link travel time observations in the corridor-based dataset, 

𝐿𝑇𝑇2 = link travel time observations in the link-based dataset. 

 

The results of the two-sample Kolmogorov-Smirnov tests rejected the null 

hypothesis that the two samples are from the same continuous distribution at the 5 

percent significance level for all of the three links. It can be seen from the figure for the 

Wilcrest-Kirkwood link that the link travel times in the corridor-based dataset are, on 

average, shorter than those in the link-based dataset. In contrast, the relationship is not 
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straightforward for the Kirkwood-DairyAshord and DiaryAshford-Eldridge links. For 

short travel times of less than 200 seconds, the corridor-based link travel times are lower 

than the corresponding link-based travel times. This is as expected because the latter 

includes left-turns and right-turns. The situation reversed after 200 seconds, but the 

greatest differences are only 3.5 percent and 7.4 percent for the corresponding corridor-

based link travel times for the Kirkwood-DairyAshford and DairyAshford-Eldridge links, 

respectively. It is hypothesized for congested periods that the straight movements are 

affected more by congestion than the left-turn and right-turn movements for the 

DairyAshford-Eldridge link. It is important to be aware of the difference between the two 

kinds of datasets when developing prediction methodologies. Using link-based datasets 

as input to develop prediction models for mean corridor travel times can introduce 

additional bias at the input level. 

 

Figure 4.5 CDF plots of link travel times in corridor-based and link-based datasets 
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Figure 4.5 CDF plots of link travel times in corridor-based and link-based datasets 

(cont.) 
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However, the method to predict mean corridor travel time using corridor-based 

travel time observations also has its own constraints. First, the sample size of corridor-

based datasets are always equal to or smaller than the corresponding link-based datasets. 

This is because not all of the vehicles that are identified at the link level travel down the 

entire corridor. In this case study, for example, the number of corridor-based travel time 

observations is 29,115, while the sizes of the three link-based travel time datasets are 

65,728; 57,327; and 67,223, respectively. Secondly, the link travel times for a given 

vehicle, by definition, are shorter than the corridor travel times. Because travel time 

observations will not become available until the vehicle passes the last beacon, prediction 

models using corridor travel time data as an input have to use data that are not as recent 

as those using link travel time data as an input. For example, the average corridor travel 

time and the highest average link travel time in this study are 442 seconds and 182 

seconds, respectively. Therefore, the corridor-based prediciton model will be using, at 

best, observations entering the corridor approximately 442 seconds before the current 

time. In contrast, the link-based prediction model can use observations that first entered 

the corridor approximately 182 seconds before the current time. This constraint of 

corridor travel time data is particularly true for applications on long OD routes (e.g., one 

hour) where it could be impractical to collect enough real-time observations to study the 

OD arrival time reliability. Because the exact effect of these issues is unknown, this 

dissertation will compare different combinations of model structures and data input 

formats for predicting the mean corridor travel time and the associated arrival time 

reliability. 
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4.4.3 Data Reduction and Outlier Identification 

Outliers need to be identified and removed before conducting traffic analyses 

and/or developing prediction models. This is particularly true for the urban arterial 

corridor studied in this research, because the Bluetooth travel time data could include 

observations of non-vehicle travel times and trip chain travel times. Non-vehicle travel 

times in a multi-modal urban arterial could be from bicycles and pedestrians (O’Neil et 

al. 2006). A previous study showed that pedestrian traffic accounted for seven percent of 

Bluetooth observations (O’Neil et al. 2006). Trip chain travel times occur when the two 

matched observations are not from a single trip, resulting in an unreasonably long travel 

time. The links in this study are on the Westheimer Road arterial that is home to various 

attractions including shopping malls, schools, and restaurants. As such, the probability of 

drivers making trip chains around this area is high. Consider the example shown in figure 

4.6. A vehicle driving west on Westheimer Road is detected by the first sensor at 

Kirkwood. The driver subsequently stops at Susie’s Cakes to get some food for 15 

minutes. The driver returns to Westheimer Road, proceeds westward, and is then detected 

at DairyAshford. The matching algorithm would generate a link travel time 15 minutes 

longer than the travel time between Kirkwood and DairyAshford without the stop, 

because the algorithm could not account for the intermediate stop without additional 

information. The goal of outlier identification would be to identify these measurements 

and remove them from the data. 
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Figure 4.6 One example of trip chain travel times 

 

The existing methods for outlier identification include the smoothed histogram-

based method, the Host Software filter algorithm, and the moving standard deviation 

method (Haghani et al. 2010; Puckett and Vickich 2010; Quayle et al. 2010). Boxel et al. 

(2011) proposed a statistical method based on the observations’ standard residual in a 

robust Greenshields model. Each of these methods has its own advantages and 

limitations, as discussed below. 

 

4.4.3.1 Smoothed Histogram-Based Method 

Haghani et al. (2010) uses the smoothed histogram-based method to identify 

"abnormal" travel times for freeways. One example of an abnormal travel time was the 

detection of a specific vehicle at two consecutive Bluetooth sensors occurring on 

different days. They were matched in the travel time algorithm to generate unreasonably 

large travel time observations. In this method, the histogram of observed travel times is 

first generated. A moving average is then calculated to estimate the travel time 

distribution by “smoothing” the frequencies in the histogram. The algorithm identifies the 

peak in the moving averages and then searches for the first category on either side that 

violates the expected “down trend”. The categories that violated the trend are treated as 

outliers. Thus, it requires the data to be a single modal distribution (Kim et al. 2012). 
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However, the travel time data in this case study is not a single modal distribution, as 

shown in section 4.4.2.2. Thus, the smooth histogram method is not a good choice for 

identifying outliers in the arterial travel time dataset used in this study. 

 

4.4.3.2 Moving Standard Deviation (SD) Method 

Equations 4.3a and 4.3b illustrate the calculation process of the moving standard 

deviation method. The threshold T is used to discriminate outliers (e.g., those 

unreasonably slow trips) and is calculated by adding ±α local standard deviations to the 

mean. The local standard deviation 𝜎 is calculated by equation 4.3b, and this is referred 

to as the central mode. In essence, the local standard deviation for a given observation x 

is calculated by the sample of size (u+1) centering on x.  

 

𝑇 = 𝜇 ± 𝛼 ∙ 𝜎 (4.3a) 

𝜎 = √
1

𝑢 + 1
∑ (𝑝𝑖 − 𝜇)2

𝑥+𝑢/2

𝑖=𝑥−𝑢/2

 

(4.3b) 

where: 

𝑇 = the threshold of the moving SD method used to discriminate outliers; 

𝜇 = the mean of the neighborhood sample; 

𝜎 = the local standard deviation of the neighborhood sample; 

𝛼 = the range parameter, which is based on experience, and often one or two 

are used (Quayle et al. 2010), 𝛼=2 in this dissertation; 
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(𝑢 + 1) = a user-set neighborhood sample size to base standard deviation 

comparisons on, 𝑢=30 in this dissertation; 

x = the location of the current detection being assessed; and 

𝑝𝑖 = the travel time value for detection i. 

 

This method assumes that travel times are independent and normally distributed, 

which is violated for the urban arterial corridor used in this dissertation. As discussed in 

4.4.2.1, the corridor travel time follows bi-modal distributions instead of one single 

normal distribution. In addition, the travel time observations might not be independent. 

The performance of the moving SD method depends on parameters such as neighborhood 

size (𝑢 + 1) and the range parameter (𝛼). That is, it might be unreasonable to assume the 

parameter values on different links during various time periods are all equal.  

 

4.4.3.3 Gap Method 

This method is based on the observation that there is often a large gap between 

non-outlier and outlier travel times. Kim et al. (2012) assumed the critical gap length to 

be equal to 0.5 times the median travel time. The basic host software system method 

developed by the Texas Transportation Institute (TTI) defines outliers as the travel time 

that differs from the current average for the roadway link by more than a certain 

percentage (e.g., 25 percent) (Puckett and Vickich 2010). The limitation of the gap-based 

approach is that it is slow to adapt to the rapidly-changing travel times during the 

transition period (Kim et al. 2012). Puckett and Vickich (2010) found that the algorithm 

worked well for freeway segments but was insufficient for signalized arterial segments 
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because of the wide variance in arterial travel times. The host software addressed this 

issue by allowing users to specify the algorithm and parameters that would yield the most 

effective results (Puckett and Vickich 2010). 

 

4.4.3.4 A Statistical Method Based on a Robust Greenshields Model 

Boxel et al. (2011) presented this statistical methodology for real-time 

deployments and tested its performance on both Interstate highways and urban arterial 

corridors. Outliers are identified by a data point’s standard residual in a robust 

Greenshields model. A set of valid speed data points should have standardized residuals 

that are standardized normal. Outliers, however, don't have such a convenient 

distribution. The results validated the effectiveness of the model at identifying outliers 

from Bluetooth data. To compare the performance of the method for interstate and 

arterial corridor datasets, the Shapiro-Wilk (S-W) test was used to validate the normality 

of the standard residuals. They found the performance was better for Interstate highways 

than for urban arterials because the p value of the S-W test is more significant for the 

interstate dataset cleaned by this method compared to the cleaned arterial corridor 

dataset.  

 

4.4.3.5 Robust Local Regression Based Method 

The robust local regression model has been shown to be useful for identifying 

outliers (Cleverland 1979). The robust locally weighted regression scatterplot smoothing 

(RLOESS) model is a nonparametric method able to yield a robust regression surface out 

of scatter observations with outliers, and thus, those outliers have a limited impact on the 
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resulting threshold. An added advantage of this approach is that it does not require 

assumptions about the data distribution. As part of this dissertation, an extended outlier 

identification method was developed based on the RLOESS model. This new method 

identifies outliers based on the residual of a data point in the RLOESS model by 

following these steps: 

1. Decide the user-set neighborhood sample size u to fit a local RLOESS model. 

Data points outside the span u around 𝑥𝑖 (i.e., the current data point being 

processed) have no influence on the fit. 

2. Compute the regression weights for each data point in the span u using 

equation 4.4.   

𝑤𝑖 = (1 − |
𝑥 − 𝑥𝑖

𝑑(𝑥)
|3)3    (4.4) 

where: 

𝑤𝑖 = the regression weight of the ith data point, 

x = the detection time of the current data point being assessed, 

𝑥𝑖 = the neighbor of x within the user-set span, and 

𝑑(𝑥) = the distance along the abscissa from x to the most distant data 

point within the span. 

3. A weighted, linear least-squares regression is performed on the raw travel 

time data. The smoothed values for the average travel time at each moment 

can be calculated from the regression model. 

4. Calculate the residuals 𝑟𝑖 from the smoothed value and the real observation. 

5. Compute the robust weights for each data point in the span using equation 4.5. 

The robust weights help to remove the impact of outliers on the local 
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regression model. If the robust weight is 0, the associated data point is 

excluded from the smooth calculation. 

𝑤𝑖 = {
(1 − (𝑟𝑖/5𝑀𝐴𝐷)2)2,   |𝑟𝑖| < 5𝑀𝐴𝐷

0,                                      |𝑟𝑖| ≥ 5𝑀𝐴𝐷
 

(4.5) 

where: 

𝑤𝑖 = the robust weight of the ith data point, 

MAD = the median absolute deviation of the residuals, and 

𝑟𝑖 = the residual of the ith data point. 

6. Smooth the data again using the robust weights. The final smoothed value is 

calculated using both the local regression weight and the robust weight. 

7. Repeat the previous step for a total of A iterations to get the final RLOESS 

regression results and final residual 𝑅𝑖. 

8. If the resulting robust weight of 𝑥 is less than a user-set threshold B, 𝑥 is 

identified as an outlier. 

In this algorithm, parameters u, A, and B are defined based on engineering 

judgment. In this dissertation u is set to 0.5 times the sample size of travel time 

measurements during the peak period in the day being examined. The sample size varies 

from 300 to 400 per day. Parameters A and B were set to 3 and 0.05, respectively.  

Figures 4.7-4.9 compared the outliers screened by this RLOESS based method 

and the moving standard deviation (SD) method for the three links in this study. The PM 

peak period (15:45-19:00) on January 3, 2011 (Monday), is used for illustration purposes. 

Potential identification errors are circled by a red circle. It can be seen that the travel time 

data on link Wilcrest-Kirkwood, shown in figure 4.7, does not have an identifiable PM 
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peak on the selected day. That is, there is no rapid changes within the dataset. It can be 

seen from figure 4.7 (b), two potential outliers were not identified by the moving SD 

method. Because the local mean and SD used to distinguish outliers are sensitive to 

outliers, the new method based on RLOESS is able to classify the two points correctly, as 

shown in the upper plot in figure 4.7 (a). 

The link between Kirkwood and Dairy Ashford experienced a slight increase of 

travel time from 5:00 pm to 6:45 pm. In figure 4.8 (b), the five observations identified as 

outliers by the RLOESS based method, but not by the moving SD method, are circled.  

Compared to the Kirkwood-DairyAshford link, the link between Diary Ashford 

Road and Eldridge Road experienced a shorter peak period with more rapid travel time 

changes at the shoulders of the peak period. As shown in figure 4.9, both methods 

resulted in some unreasonable identifications as shown in the red circles. The ROLESS 

based method yielded a more conservative result because it identified more outliers for 

the period from 5:45 pm to 6:45 pm.  

It is important to note that no matter which method is used for outlier 

identification, engineering judgment is always necessary to fine-tune the algorithm 

parameters for the best application performance. The RLOESS based method with a 

single parameter setting is able to generate consistent results for different links and 

different hours. 



115 

  

 

 

 

 

  

 

Figure 4.7 Outlier identification for Wilcrest-Kirkwood link 
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Figure 4.8 Outlier identification for Kirkwood-DairyAshford link 
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Figure 4.9 Outlier identification for DairyAshford-Eldridge link 
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4.5 Prediction Methodology and Results 

The objective of this dissertation is to compare different combinations of model 

structures and data input formats to predict the reliability interval of arrival times. Every 

model studied in this chapter was estimated using link-based and corridor-based travel 

time data, respectively. Overall, 13 model formulations are tested using various 

combinations of the two kinds of datasets (e.g., link and corridor travel times) and four 

different modelling methods (e.g., neural network), as listed in table 4.6. 

 

Table 4.6 The list of studied prediction models 

Model No. Model Structure 

1 Corridor-based historical average travel time model (HTT) 

2 Corridor-based instantaneous travel time model (ITT) 

3 Corridor-based nonlinear autoregressive with exogenous inputs 

(NARX) neural network  

4 Link-based HTT with naïve sum method for corridor prediction 

5 Link-based HTT with accumulative sum method for corridor prediction 

6 Link-based HTT with first-order approximation algorithm for corridor 

prediction 

7 Link-based HTT with second-order approximation algorithm for 

corridor prediction 

8 Link-based ITT with naïve sum method for corridor prediction 

9 Link-based ITT with accumulative sum method for corridor prediction 

10 Link-based ITT with first-order approximation algorithm for corridor 

prediction 

11 Link-based ITT with second-order approximation algorithm for corridor 

prediction 

12 Link-based feedforward neural network 

13 Link-based NARX neural network 

 

The link-based and corridor-based travel time datasets, discussed in section 4.4, 

were used to calculate link and corridor travel time means and variances for each 15-

minute interval. For those models estimated using the link-based dataset, the corridor 
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travel time in the next 15-minute interval T(i+1) is calculated based on the previous 

travel times on all corridor links. For those models estimated using the corridor-based 

dataset, T(i+1) is predicted based on the previous corridor travel times.  

The results will identify which model formulation works best for a specific 

objective. The efficiency of the mean corridor travel time prediction models is measured 

by the mean absolute percentage error. The prediction of the arrival time reliability 

intervals is evaluated through the coverage rates and average ranges of the predicted 

reliability interval of arrival time for the overall analysis period and an example incident 

period. The overall analysis period includes all the 15-minute intervals during the PM 

peak (i.e., 16:00-19:00) in June and July 2011. The example incident period is from 17:30 

to 19:00 on July 21, 2011. The travel time data from January to May in 2011 are used to 

train the neural network models and to initiate the historical average model for the first 

weekday in June 2011. The dataset for June and July in 2011 is used to compare the 

performance of the trained neural networks, historical average models, and instantaneous 

travel time models. Although this case study uses Bluetooth travel time data, the 

methodology developed in this dissertation can be extended to other data collection 

methods that generate disaggregate measurements (e.g., individual travel time) such as 

automatic vehicle identification, GPS, and so on. 

 

4.5.1 Prediction Models 

4.5.1.1 Simple Prediction Models 

Travel times at a future moment in time depend on the future demand for the 

network, the future capacity of the network, and the current state of the network. These 
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factors suggest two simple prediction methods that can be used as a baseline to compare 

with more advanced prediction models (Nikovski et al. 2005).  

 

4.5.1.1.1 Historical Average Travel Time Method (HTT) 

The historical average method predicts that the average and standard deviation 

(SD) of travel time for a given interval is simply the long-term average of averages and 

SDs over all the previous days for that specific interval (Park 1998, Bovy and Thijs 2000, 

Naik 2010). This prediction would be accurate if future demand and capacity were equal 

to their historic averages, and the current and past states had no influence on future states 

(Nikovski et al. 2005). In this case study, the long-term averages are calculated over all 

the weekdays in the five months before the day to be predicted.  

1). For the corridor travel time dataset, the historical average method is shown in 

equations 4.6a and 4.6b. 

 

T̂̅𝑑,𝑝
𝑐,𝐻 =

1

𝑅
 ∑ �̅�𝑟,𝑝

𝑐

𝑅

𝑟=1

  ∀𝑑 = 1, … , 𝐷; 𝑝 = 1, … , 𝑃 (4.6a) 

�̂�𝑑,𝑝
𝑐,𝐻 =

1

𝑅
 ∑ 𝑠𝑟,𝑝

𝑐

𝑅

𝑟=1

  ∀𝑑 = 1, … , 𝐷; 𝑝 = 1, … , 𝑃 (4.6b) 

where: 

T̂̅𝑑,𝑝
𝑐,𝐻

 = the predicted average corridor travel time for day d amd period p. The 

superscript 𝑐 indicates that it is based on the corridor travel time dataset, 

and the superscript 𝐻 indicates that it is calculated through the historical 
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average method. The d represents the weekdays, in order, starting on June 

1, 2011, and the p represents a particular 15-minute time period. 

�̅�𝑟,𝑝
𝑐  = the average corridor travel time in period p and day r, using the corridor-

based dataset. 

�̂�𝑑,𝑝
𝑐,𝐻

 = the predicted standard deviation of corridor travel time for day d and 

period p, using the historical average method.  

𝑠𝑟,𝑝
𝑐  = the corridor standard deviation of travel time in period p and day r, 

calculated from the corridor-based dataset.  

D = the number of days for which corridor travel time means and SDs are 

being calculated. For this example, there are D=43 days to estimate, and 

these correspond to the 43 weekdays for June and July of 2011. 

R = the number of days used to calculate the T̂̅𝑑,𝑝
𝑐,𝐻

 and �̂�𝑑,𝑝
𝑐,𝐻

. In this example, 

R equals the 105 weekdays immediately preceding the current day d. 

P = the number of 15-minute periods being analyzed. For this example, there 

are twelve 15-minute periods starting at 16:00 and ending at 19:00. 

 

2). For the link travel time dataset, historical average method is shown in 

equations 4.7a, b, and c. 

T̂̅𝑑,𝑝
𝑙,𝐻 =

1

𝑅
 ∑ �̅�𝑑,𝑟

𝑙

𝑅

𝑟=1

  ∀𝑙 = 1, … , 𝐿; ∀𝑑 = 1, … , 𝐷; 𝑝 = 1, … , 𝑃 (4.7a) 

(𝑠2)̂
𝑑,𝑝
𝑙,𝐻 =

1

𝑅
 ∑(𝑠2)𝑑,𝑟

𝑙

𝑅

𝑟=1

 ∀𝑙 = 1, … , 𝐿;  ∀𝑑 = 1, … , 𝐷; 𝑝 = 1, … , 𝑃 (4.7b) 
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[T̂̅𝑑,𝑝
𝑐,𝐻, �̂�𝑑,𝑝

𝑐,𝐻] = 𝐹(T̂̅𝑑,𝑝
𝑙,𝐻 , (𝑠2)̂

𝑑,𝑝
𝑙,𝐻 )   𝑙 = 1, … , 𝐿; ∀𝑑 = 1, … , 𝐷; 𝑝 = 1, … , 𝑃 (4.7c) 

where: 

T̂̅𝑑,𝑝
𝑙,𝐻

 = the predicted average link travel time on link l for day d and period p. 

The superscript l indicates that it is a link travel time and the superscript H 

indicates that it is based on the historical average method. The d represents 

the weekdays, in order, starting on June 1, 2011, and the p represents a 

particular 15 minute time period. 

�̅�𝑑,𝑟
𝑙  = the average travel time on link l in period p and day r. 

(𝑠2)̂
𝑑,𝑝
𝑙,𝐻

 = the predicted link travel time variance for day d and period p. The 

superscript l indicates that it is a link-level estimate, and the superscript H 

indicates that it is based on the historical average method. 

(𝑠2)𝑑,𝑟
𝑙  = the travel time variance on link l in period p and day r. 

R = the number of days used to calculate T̂̅𝑑,𝑝
𝑙,𝐻

 and (𝑠2)̂
𝑑,𝑝
𝑙,𝐻

. In this example, R 

equals the 105, indicating the 105 weekdays immediately preceding the 

current day d. 

𝐹(∙) = a function used to estimate the predicted average and SD of corridor 

travel time based on the link travel time predictions on all the component 

links l. The total number of the component links on the corridor is L. In 

this example, L is 3. 

 

The four estimation methods for estimating F(∙), discussed in section 3.3.2, are 

examined in this chapter. They are the naive sum method, the cumulative sum method, 
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the first-order approximation method, and the second-order approximation method. The 

naive sum method is based on the assumption of independence between links. If this 

assumption is true, then the corridor travel time mean and variance at the 15-minute 

interval p are simply the sum of the link travel time means and variances at the same 

interval p, respectively. The cumulative method also assumes independence between 

links but considers the arrival time at each link. The corridor travel time mean and 

variance at the 15-minute interval p are the sum of the link travel time means and 

variances at the corresponding time interval within which the vehicle arrives at that link. 

The first- and second-order approximation methods use second-order functions to fit 

time-dependent link travel time means and variances for each link. Complete details of 

these later two methods may be found in section 3.3.2. 

 

4.5.1.1.2 Instantaneous Travel Time Method (ITT) 

The ITT method is fairly straightforward in that the predicted travel time mean 

and SD in the next interval (i+1) is equal to the travel time mean and SD in the previous 

time interval, respectively. This prediction would be accurate if future demand and 

capacity were equal to the current period, which is true when the network is in 

equilibrium (Park 1998, Nikovski et al. 2005, Naik 2010).  

1). ITT method using the corridor travel time dataset 

The mean and SD of corridor travel time for the 15-minute interval p in day d are 

equal to the corridor travel time average and SD for the previous 15-minute interval p-1 

in the same day, respectively. Equations 4.8a and 4.8b illustrate the ITT method used to 
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calculate the corridor travel time mean and SD, respectively, using the corridor-based 

travel time dataset.  

 

�̂̅�𝑑,𝑝
𝑐,𝐼 = �̅�𝑑,𝑝−1 

𝑐    ∀𝑑 = 1, … , 𝐷  ∀𝑝 = 1, … , 𝑃 (4.8a) 

�̂�𝑑,𝑝
𝑐,𝐼 = 𝑠𝑑,𝑝−1

𝑐    ∀𝑑 = 1, … , 𝐷  ∀𝑝 = 1, … , 𝑃 (4.8b) 

where: 

T̂̅𝑑,𝑝
𝑐,𝐼

 = the predicted average corridor travel time for day d and period p. The 

superscript 𝑐 indicates that it is based on the corridor travel time dataset, 

and the superscript 𝐼 indicates that it is calculated by the instantaneous 

travel time or real time method. The d represents the weekdays, in order, 

starting on June 1, 2011, and the p represents a particular 15-minute time 

period. 

�̅�𝑑,𝑝−1 
𝑐  = the measured average corridor travel time for day d and period p-1. The 

superscript c indicates that it is based on the corridor travel time dataset. 

The d represents the weekdays, in order, starting on June 1, 2011, and the 

p-1 represents the 15-minute time period immediately preceding the 

current time period p. Note that this parameter only includes those vehicles 

who drived the entire corridor and arrived at the end node at some point 

during time period p-1. 

�̂�𝑑,𝑝
𝑐,𝐼

 = the predicted standard deviation of the corridor travel times for day d and 

period p, using the ITT method.  

𝑠𝑑,𝑝−1
𝑐  = the measured corridor travel time SD for day d and period p-1.  
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D = the number of days for which corridor travel time predictions are being 

calculated. For this example, there are D=43 days to predict, and these 

correspond to the 43 weekdays for June and July of 2011. 

P = the number of 15-minute periods being analyzed. For this example, there 

are twelve 15-minute period starting at 16:00 and ending at 19:00. P is 

equal to 12. 

 

2). ITT method using the link travel time dataset 

The mean and variance of link travel time for the p-th 15-minute interval in the 

day d are equal to the link travel time average and variance for the (p-1)-th 15-minute 

interval in the same day, respectively. Equations 4.9a and 4.9b are used to calculate the 

link travel time mean and variance predictions, respectively, for the ITT method using the 

link-based travel time dataset. Equation 4.9c estimates the corridor travel time mean and 

SD for the p-th 15-minute interval in the d-th day using link-level predictions. 

 

T̂̅𝑑,𝑝
𝑙,𝐼 = �̅�𝑑,𝑝−1

𝑙   ∀𝑑 = 1, … , 𝐷  ∀𝑝 = 1, … , 𝑃 (4.9a) 

(𝑠2)̂
𝑑,𝑝
𝑙,𝐼 = (𝑠2)𝑑,𝑝−1

𝑙   ∀𝑑 = 1, … , 𝐷  ∀𝑝 = 1, … , 𝑃 (4.9b) 

[T̂̅𝑑,𝑝
𝑐,𝐼 , �̂�𝑑,𝑝

𝑐,𝐼 ] = 𝐹(T̂̅𝑑,𝑝
𝑙,𝐼 , (𝑠2)̂

𝑑,𝑝
𝑙,𝐼 )    𝑙 = 1, … 𝐿; ∀𝑑 = 1, … , 𝐷  ∀𝑝 = 1, … , 𝑃 (4.9c) 

where: 

T̂̅𝑑,𝑝
𝑙,𝐼

 = the predicted average travel time on link l for day d and period p. The 

superscript 𝑙 indicates that it is based on the travel time dataset of link l, 

and the superscript 𝐼 indicates that it is calculated through the 
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instantaneous travel time method. The d represents the weekdays, in 

order, starting on June 1, 2011, and the p represents a particular 15-minute 

time period. 

�̅�𝑑,𝑝−1
𝑙  = the measured link travel time average of link l for day d and period p-1. 

The d represents the weekdays, in order, starting on June 1, 2011. The p-1 

represents the 15-minute time period immediately preceding the time 

period p. Note that this parameter only includes those vehicles who drove 

the link l and arrived at the end node at some point during time period p-1. 

(𝑠2)̂
𝑑,𝑝
𝑙,𝐼

 = the predicted variance of travel time on link l for day d and period p. 

(𝑠2)𝑑,𝑝−1
𝑙    = the measured link travel time variance for link l for day d and period p-

1.  

𝐹(∙) = a function for converting link-level predictions to corridor travel time 

predictions. L is 3 in this study. The naive sum method, cumulative sum 

method, first-order and second-order approximation methods are applied 

to build this function. 

 

4.5.1.2 Neural Network 

In reality, the underlying assumptions for the HTT and ITT methods described 

above do not always hold. Both future demand and capacity are stochastic and may not 

be equal to the historic averages or the states at the previous time interval. Plus, the future 

state is closely related to the past and current states. For example, during the shoulders of 

the rush hour period, traffic states can change rapidly from one interval to the next, and 

the current travel times might not accurately predict travel time in the next time interval. 
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It is hypothesized that a dynamic prediction model for the prediction of short-term travel 

time is needed to provide accurate and reliable results. In this dissertation, dynamic 

neural network models are developed, and their performance is compared with the two 

simple methods. 

Various neural network (NN) structures have been applied for short-term travel 

time prediction, including feedforward neural networks, modular neural networks, and 

spectral basis neural netowrks (Naik 2010; Park and Rilett 1998, 1999; Clark et al. 1993; 

Smith and Demetsky 1994; Kisgyorgy and Rilett 2002; Park et al. 1999). Dynamic neural 

networks (DNN) have been studied as well. Based on the literature review, only two sub-

classes of DNN state-space neural networks (SSNNs) and time-delayed state-space neural 

networks (TDSSNNs) have been used for travel time prediction (Liu et al. 2006; Van 

Lint et al. 2005; Shen and Huang 2011; Zeng and Zhang 2013). The sub-class of DNN 

selected for this study is the nonlinear autoregressive with exogenous inputs (NARX) 

model, which has a short-memory to account for current and previous exogenous inputs 

x(n), x(n-1), … x(n-q+1) and for delayed values of the estimated outputs ŷ(n), ŷ(n-1), …, 

ŷ(n-q+1), as shown in figure 4.10 (Haykin 1999). As a dynamically recurrent neural 

model, NARX feeds the true or estimated ouputs back to the input layer when they 

become available. This is different from the SSNN structure which feeds the estimates of 

the network internal states back to the input layer (Zeng and Zhang 2013). Using the true 

travel time observations as feedback enables the model to respond to unexpected traffic 

incidents quickly. This is different from a feedforward neural network which models the 

information flows in a unidirectional way. A feedforward neural network without this 

type of feedback loop is not sensitive to newly available travel time information. Using 
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the link-based dataset as an illustration, this case study also compares the performance of 

the NARX model to the feedforward neural network with the same input.  
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Figure 4.10 Nonlinear autoregressive with exogenous inputs (NARX) model 

 

The dynamic behavior of the NARX model with estimated outputs as feedbacks, 

as shown in figure 4.10, can be described by equation 4.10.  
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�̂�(𝑛 + 1) = 𝐹(�̂�(𝑛), … �̂�(𝑛 − 𝑞 + 1), 𝑥(𝑛), … , 𝑥(𝑛 − 𝑞 + 1))    (4.10) 

where: 

𝑥(𝑖) = the value of the input vector for the ith time interval, i=n-q+1,…, n, 

�̂�(𝑖) = the value of the model output for the ith time interval, i=n-q+1,…, n+1, 

𝑞 = the size of delay-line memories for the input and the recurrent output, and 

F = a nonlinear function of its arguments. 

 

4.5.1.2.1 Corridor-Based NARX Model 

The HTT and ITT methods discussed in section 4.5.1.1 do not require calibration 

because of their simplicity. In contrast, the NARX model needs calibration to identify the 

number of units for tapped-delay-line memories (q) and the number of neurons in the 

hidden layer (n). The selection of q and n are based on manually comparing the resulted 

mean square errors between the NARX network outputs and the target outputs, and 

choosing the model with the lowest mean square error. The number of hidden layers 

examined ranged from 7 to 12, and the number of units for tapped-delay-line memories 

ranged from 1 to 5. After comparing results from NARX with different numbers of 

delays and hidden neurons, the optimal values for q and n to predict the mean and 

standard deviation of corridor travel times are listed in table 4.7. Note that M-CTT stands 

for the mean corridor travel time, and SD-CTT stands for the standard deviation of 

corridor travel time.  
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Table 4.7 Structures of designed corridor-based NARX-1 models 

Output y(t) Input x(t) 

Number of units for 

tapped-delay-line 

memories (q) 

Number of neurons in 

the hidden layer (n) 

M-CTT  

at interval (t) 

M-CTT at 

interval (t-1) 
4 10 

SD-CTT  

at interval (t) 

SD-CTT at 

interval (t-1) 
1 10 

 

 

 

 

Figure 4.11 NARX neural network for the mean RTT prediction 

 

Figure 4.11 gives an illustration of the NARX structure for M-CTT prediction. 

The NARX model has 10 hidden neural neurons and 4 units of delay-line memories.  

 

4.5.1.2.2 Link-Based Neural Network Model 

The neural network model presented in this section predicts the corridor travel 

time mean and standard deviation using the link-based dataset as its input. The model 

structure implicitly accounts for correlation between links. The number of hidden layers 

examined ranged from 7 to 12, and the number of units for tapped-delay-line memories 

ranged from 1 to 5. Based on the lowest mean square errors between the network outputs 
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and the target outputs, the optimal values for q and n to predict the mean and standard 

deviation of corridor travel times are listed in table 4.8. The overall model structures for 

mean and standard deviation prediction are summarized in table 4.8. Both the 

feedforward and NARX models used the same input data and output format. 

 

Table 4.8 Structures of designed neural networks 

Output Feedforward Network NARX Network 

Mean 

CTT 

6 inputs: travel times and standard deviations on the three links 

  

STD 
CTT 

6 inputs: travel times and standard deviations on the three links 

  

 

 

4.5.2 Prediction Results of Models Using Corridor-Based Data 

The prediction results of the historical average travel time (HTT) model, the 

instantaneous travel time (ITT) model, and the NARX model using corridor-based travel 

time data are summarized in table 4.9. The results are separated into two parts. The first 

part shows the overall model performance for the PM peaks from 16:00 to 19:00 during 

June and July 2011. The second one shows the performance of the model during an 

example incident period between 17:30 and 19:00 on July 21, 2011. The percentage of 

arrival times that are within the predicted reliability interval is listed in the RI coverage 

rate cell. In terms of the overall performance of simple methods, the historical average 
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method performs better than the ITT method because it has: 1) a lower overall MAPE for 

the M-CTT prediction (e.g., 12 percent versus 17 percent), 2) a higher coverage rate (e.g., 

98 percent versus 95 percent), and 3) a narrower reliability interval on average (e.g., 404 

seconds versus 518 seconds). It is hypothesized that this occurred because: 1) the ITT 

method was negatively impacted by delayed corridor travel time observations, and 2) the 

historical traffic patterns of the corridor travel time are relatively steady for the period 

and days studied. 

In general, the NARX neural network yielded the lowest overall MAPEs for both 

the mean and standard deviation predictions. Compared to the historical average method, 

the NARX-1 model has a 6 percent and 17 percent lower MAPE when predicting the M-

CTT and SD-CTT, respectively. 

It may be seen that during the non-recurring congestion period, the historical 

average and ITT approaches perform rather poorly as the coverage rates are only 23 

percent and 19 percent, respectively. In contrast, the coverage rate of the NARX-1 model 

is 85 percent. The average range of the NARX model is only 86 seconds wider than those 

that resulted from the historical average method. Considering the 266 percent 

improvement in the coverage rate during the example incident period, it was 

hypothesized that an increase of 86 seconds in the RI interval range for a 5-kilometer 

corridor would be acceptable for drivers. 
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Table 4.9 Prediction efficiency of corridor-based models 

1) Overall Performance 

Model 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

HTT 12% 29% 98% 404 

ITT 18% 28% 95% 518 

NARX 6% 12% 99% 490 

2) Example Incident Period Performance 

Model 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

HTT 39% 34% 23% 404 

ITT 34% 30% 19% 546 

NARX 12% 49% 85% 489 

Note: 1) All the 15-minute intervals from 16:00 to19:00 on weekdays of June and July 2011 

          2) 15-minute intervals from 17:30 to 19:00 on July 21st, 2011 

 

4.5.3 Prediction Results of Models Using Link-Based Data 

4.5.3.1 Simple Methods 

The first step of the prediction process is to predict the link travel time mean and 

variance for the next 15-minute time interval for each link in the corridor. Once the 

predicted link travel time mean and standard deviations are obtained, the corridor-level 

prediction in the next 15-minute time interval will be calculated using the naïve sum 

method, the cumulative sum method, the first-order, and the second-order approximation 

methods. 

The prediction results of the four estimation methods using link-level predictions 

generated by the simple methods (i.e., HTT and ITT) are summarized in table 4.10. With 

respect to the historical average prediction method, the results of the four corridor 

estimation methods were essentially the same. For all four methods, the MAPEs for the 

M-CTT and SD-CTT predictions were 14 percent and 22 percent, respectively. The 
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MAPEs for the example incident period were 28 percent and 24 percent, except for the 

naïve sum method. 

For the ITT prediction method, the first- and second-order approximation 

methods performed the best for both M-CTT and RI predictions. However, it should be 

noted that the differences between the MAPEs of the first-order approximation and the 

second-order approximation are less than 1 percent. The approximation methods were 

found to be effective for the incident period when the approximation methods provided a 

higher coverage rate (e.g., 99 percent) with a lower average interval range (e.g., 520 

seconds), as compared with the cumulative sum method that provided a coverage rate of 

90 percent and an average interval range of 533 seconds.  
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Table 4.10 Prediction efficiency of link-based trivial models 

Historical Average Travel Time Model 

1) Overall Performance 

Estimation Methods 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

Naïve Sum 14% 22% 98% 526 

Cumulative Sum 14% 22% 98% 529 

1st-order Approximation 14% 22% 98% 526 

2nd-order Approximation 14% 22% 98% 526 

2) Example Incident Period Performance 

Estimation methods 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

Naïve Sum 28% 27% 30% 524 

Cumulative Sum 28% 24% 30% 514 

1st-order Approximation 28% 24% 24% 509 

2nd-order Approximation 28% 24% 24% 509 

Instantaneous Travel Time Model 

1) Overall Performance 

Estimation methods 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

Naïve Sum 13% 46% 99% 525 

Cumulative Sum 12% 48% 99% 531 

1st-order Approximation 11% 45% 99% 527 

2nd-order Approximation 11% 45% 99% 527 

2) Example Incident 

Estimation methods 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

Naïve Sum 22% 82% 78% 537 

Cumulative Sum 18% 66% 90% 533 

1st-order Approximation 12% 59% 99% 520 

2nd-order Approximation 12% 59% 99% 520 

 

Note: 1) All the 15-minute intervals from 16:00 to19:00 on weekdays of June and July 2011 

          2) 15-minute intervals from 17:30 to 19:00 on July 21st, 2011 
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4.5.3.2 Neural Network Model 

Table 4.11 shows the results of the two neural network models using link-based 

travel time data. Compared to the feedforward network, the NARX-6 network MAPEs of 

M-CTT and SD-CTT were 3 percent lower and 1 percent lower for the overall condition, 

respectively. For the example incident period, the NARX-6 model had MAPEs of M-

CTT and SD-CTT that were lower by 9 percent and 28 percent, respectively, as compared 

to the feedforward model. In addition, the NARX-6 model improved the coverage rate by 

32 percent with a slight increase (e.g., 26 percent) on the average reliability interval 

range. It is hypothesized that these improvements are due to the NARX structure that 

feeds back real-time observations as part of its inputs, and that the resulting short-

memory enables it to quickly adapt to unstable traffic conditions. This hypothesis, 

however, needs to be validated using additional empirical real data from unstable traffic 

conditions. 

 

Table 4.11 Prediction efficiency of link-based NN models 

1) Overall Performance 

Model 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

NARX 8% 20% 99% 492 

Feedforward NN 11% 21% 99% 486 

2) Example Incident Period Performance 

Model 

MAPE of 

M-CTT 

MAPE of 

SD-CTT 

RI 

Coverage Rate 

RI 

Average Range (sec) 

NARX 11% 22% 85% 467 

Feedforward NN 20% 50% 64% 395 

 

Note: 1) All the 15-minute intervals from 16:00 to19:00 on weekdays of June and July, 2011 

          2) 15-minute intervals from 17:30 to 19:00 on July 21st 2011 
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4.5.4 Overall Comparison and Conclusion 

4.5.4.1 Mean Corridor Travel Time (M-CTT) Prediction 

Based on the prediction results in tables 4.9, 4.10, and 4.11, the corridor-based 

NARX-1 model yielded the lowest overall MAPE of M-CTT predictions (6 percent), 

followed by the link-based NARX-6 model (8 percent). The link-based NARX-6 model 

generated the lowest MAPE of M-CTT for the example incident period (11 percent), 

followed by the corridor-based NARX-1 model (12 percent). These numbers show that, 

for situations without enough corridor-based travel time measurements, the NARX 

structure is a promising approach for developing a prediction model based on link-based 

travel time data with comparable efficiency to the corridor-based models. 

Figures 4.12 and 4.13 compare the cumulative distribution function plots of the 

absolute percentage errors (APEs) of all the simple prediction models. Figure 4.12 

compares the link-based HTT method using four link aggregation methods, with the 

corridor-based HTT methods. It was found that there was not much practical difference 

between the four link aggregation methods. This result is probably because the errors of 

link-level predictions using the historic average method are higher compared to the errors 

resulting from the estimation methods. The corridor-based historical average method 

outperformed all the other methods. In terms of the 90th percentile of APEs, the corridor-

based historical average method improved the prediction results by 12 percent compared 

to the link-based simple methods. 

Figure 4.13 compares the link-based ITT methods, using four estimation methods, 

with the corridor-based ITT method. The best model in this group is the link-based ITT 

prediction model with the second-order approximation algorithm, which has 90th 
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percentile APEs that are 12 percent and 38 percent lower compared with the link-based 

ITT methods using naïve sum or cumulative sum methods, and the corridor-based ITT 

method, respectively. 

 

 
 

Figure 4.12 Simple methods comparison (corridor-based vs. link-based HTT methods) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Absolute Percentage Error (APE)

F
(A

P
E

)

 

 

Link.- HTT Naive Sum

Link.- HTT Cumulative Sum

Link.- HTT First-Order

Link.- HTT Second-Order

Corridor.- HTT



139 

  

 

 

 
 

Figure 4.13 Simple methods comparison (corridor-based vs. link-based ITT methods) 

 

Figure 4.14 compares the two “best” methods in the simple method category from 

figures 4.12 and 4.13 – the corridor-based HTT model and the link-based ITT model with 

the second-order approximation algorithm – to the neural network models. It can be seen 

that the feedforward neural network performed almost the same as the two “best” simple 

methods despite the extra requirements in structure design and data training. The NARX 

networks were able to reduce the 90th percentile of APE by half compared to the other 

three methods. 
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Figure 4.14 Outstanding simple methods vs. Neural network methods 

 

4.5.4.2 Reliability Interval (RI) Prediction 

As shown in table 4.9, the reliability interval of arrival time, based on one 

standard deviation, was able to effectively represent the corridor travel time in this case 

study because the corridor-based ITT model resulted in RIs with an overall coverage of 

95 percent. A desirable prediction model needs to predict RIs with a high coverage rate 

and small range. Figures 4.15-4.18 compare the cumulative distribution function plots of 

the RI ranges of all the prediction models. In each figure, the coverage rates during the 

incident situation are shown in the legend.  
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Figure 4.15 shows that the CDFs of the interval ranges resulting from neural 

networks are located at the left of the CDFs corresponding to the historical methods. That 

indicates that neural network models are superior compared to the HTT method, given 

link-based travel time data as the input.  

Figure 4.16 compares the link-based neural network models with link-based ITT 

prediction models. Although the link-based ITT methods can generate RIs with coverage 

rates comparable to the neural network models, as shown in the legend, their predicted 

RIs are generally wider, based on the location of corresponding CDF curves.  

Figure 4.17 compares all the corridor-based prediction models, showing that the 

corridor-based NARX-1 model resulted in the most compact distribution of RIs and the 

highest coverage rate. More than 90 percent of the reliability intervals predicted by the 

NARX-1 model are within the range from 480 seconds to 520 seconds.  

Figure 4.18 further compares all three neural network models. Overall, the 

distribution of RIs generated by the corridor-based NARX-1 network is the most 

compact. Given the slightly wider RIs of the link-based NARX-6 model, the coverage 

rate is 21 percent higher than that of the link-based feedforward neural network under the 

incident period. Therefore, the link-based NARX approach is still valuable for this 

particular application. 
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Figure 4.15 Link-based HTT methods vs. link-based NN methods 

 

 
 

Figure 4.16 Link-based ITT methods vs. link-based NN methods 
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Figure 4.17 Corridor-based prediction methods 

 

 
 

Figure 4.18 Neural network models 
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In practice, traffic agencies are interested in finding a solution which can 

maximize the coverage rate and minimize the interval ranges that are represented by the 

average interval range in this study. This type of decision making has two conflicting 

objectives. For the research results in this dissertation, there does not exist a single 

solution that optimizes both objectives simultaneously. In this case, a single or set of 

Pareto optimal solutions can be identified using figures 4.19 and 4.20. A solution is 

called Pareto optimal if one of the objective functions cannot be improved without 

degrading the other objective values. Without additional subjective preference 

information, all Pareto optimal solutions are considered equally good. Given an objective 

emphasized by traffic agencies (e.g., to maximize the reliability interval coverage during 

traffic incident periods or general peak periods), traffic engineers can choose the optimal 

application-specific model(s) according to figures 4.19 and 4.20.  

Figure 4.19 plots the coverage rates and average ranges of various models under 

overall conditions. Overall, the link-based ITT prediction model with the approximation 

estimation method, the corridor-based historical average prediction model, the corridor-

based NARX-1 model, and the link-based feedforward neural network model are all 

Pareto optimal solutions, each with its own advantage in either of the two objective 

functions. Agencies can make a final choice based on the data availability, computation 

capacity, and technician ability. 

Similarly, if the information accuracy in the unexpected incident period is a 

particular concern for model choices, the Pareto optimal solutions for incident periods 

can be used to assist decision-making. Figure 4.20 plots the coverage rates and average 

ranges of the studied models under the selected incident period in this study. It can be 
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seen that all three of the Pareto optimal solutions are link-based models. These models 

are the link-based NARX-6 model, the link-based feedforward neural network model, 

and the ITT method with approximation estimation. However, this plot needs to be 

improved by including more incidents period data before it can be used in real 

applications. 
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Figure 4.19 Pareto optimal solutions for the overall traffic condition

Corridor-based 

Historical Average

Corridor-based ITT

Corridor-based NARX-1

Link-based Historical …

Link-based Historical 

AT dependent  

Addition

Link-based Historical 

Approximation

Link-based ITT 

Simple Addition

Link-based ITT AT 

dependent Addition
Link-based ITT 

Approximation

Link-based NARX-6

Link-based 

Feedforward NN

390

410

430

450

470

490

510

530

550

570

95.00% 95.50% 96.00% 96.50% 97.00% 97.50% 98.00% 98.50% 99.00% 99.50% 100.00%

R
I 

A
v
er

ag
e 

w
id

th
 (

se
c)

RI Coverage Rate

Pareto Optimal Solutions

Better

Better



 

  

 

 

1
4
7
 

 

 

Figure 4.20 Pareto optimal solutions for the unexpected incident condition
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4.5.4.3 Summary 

After the comprehensive comparisons of various prediction methodologies, the 

NARX network models are recommended for both the corridor-based and link-based 

travel time data sets for predicting the mean corridor travel time and the reliability 

interval of the arrival time on a 15-minute level. For the applications of dynamic traffic 

information prediction, the NARX neural network, as a subclass of dynamically driven 

recurrent networks, can take advantage of the global feedback. This enables the recurrent 

network to acquire estimated or observed outputs and efficiently make predictions for 

nonlinear and adaptive situations. The travel time data from a real arterial corridor 

demonstrated the advantage and efficiency of the NARX neural network model in 

predicting both mean and reliability information. 

For those simple models, using the approximation algorithm can help to improve 

the prediction performance on the corridor level while link-based data are used as input. 

Table 4.12 shows the aggregated results for the best HTT and ITT corridor prediction 

models as a function of input type (e.g., corridor travel times or link travel times). For the 

corridor travel time input, the historical average model had better overall performance 

than the ITT model. For the link travel time data set, the ITT resulted in lower MAPE in 

terms of corridor travel time mean prediction. During the example incident period, 

however, the link-based ITT model with the first- or second-order approximation 

algorithm yielded corridor travel time mean predictions with the lowest MAPE (e.g., 12 

percent) and the arrival time reliability interval with the highest coverage rate (e.g., 99 

percent). The high coverage rate, however, comes with a higher average interval range 

compared with other methods.  
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Table 4.12 Comparison of simple models 

Overall Performance 
Corridor Data Input Link Data Input 

HTT ITT HTT1 ITT2 

MAPE of M-CTT 12% 18% 14% 11% 

MAPE of SD-CTT 29% 28% 22% 45% 

RI Coverage Rate 98% 95% 98% 99% 

RI Average Range 404 518 526 527 

Example Incident Period Performance 
Corridor Data Input Link Data Input 

HTT ITT HTT3 ITT3 

MAPE of M-CTT 39% 34% 28% 12% 

MAPE of SD-CTT 34% 30% 24% 59% 

RI Coverage Rate 23% 19% 24% 99% 

RI Average Range 404 546 509 520 

 

Note: 1) The four aggregation methods resulted in the same results for the HTT model. 

 2) The best of four aggregation methods for the ITT model is the first/second-order  

      approximation algorithm. 

3) The best of four aggregation methods for both HTT and ITT models is the        

first/second-order approximation algorithm.
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CHAPTER 5 APPLICATIONS OF THE RELIABILITY METRICS IN A BI-MODAL 

TRANSPORTATION NETWORK 

In chapter 3 and 4, reliability metrics have been developed for network evaluation 

and traveler information systems. This chapter will apply those reliability metrics on the 

OD level to exemplify the potential benefits for both driver and system operator 

perspectives. To illustrate the concept, the impact of railway traffic on roadway traffic at 

highway railway at-grade crossings (HRGCs) will be analyzed using a simulation model 

from Lincoln, NE. 

Traditionally, the Nebraska Department of Roads (NDOR) identifies potential 

locations for new grade separation structures based on exposure factor, crash costs, the 

elimination of vehicular delay, and other appropriate factors (NDOR 2011). For example, 

the minimum exposure factor of 50,000 for a single HRGC is required before a HRGC is 

considered for viaduct construction (NDOR 2011). The exposure factor is calculated as 

the product of the number of vehicles and the number of trains at a given HRGC for a 

day. The reliability metric for LOS proposed in chapter 3 enables traffic agencies to 

evaluate the HRGCs close to signalized intersections from the perspective of LOS 

reliability. The arrival time reliability interval that was presented in chapter 4 is applied 

to study the impact of train traffic on roadway travel time reliability. In addition, the 

chapter also provides an example of evaluating network service for a given OD pair 

based on the reliability intervals of multiple routes.  

The data for this study is collected from a calibrated micro-simulation model. 

Micro-simulation models can capture characteristics of real transportation systems 



151 

  

 

 

including emergent properties such as capacity and congestion (Nagel and Rasmussen 

1994). The output from the model includes both aggregated (e.g., average link travel 

time) and disaggregate data (e.g., link travel time for individual vehicles). In most micro-

simulation models, vehicle speed and location data at the end of each simulation step 

(e.g., 1 sec.) can be output. Aggregated statistics such as the maximum, mean, and 

standard deviation for traffic parameters (e.g., speed) can be recorded for pre-set 

simulation intervals at specific points or links in the network. In addition, simulation 

models can examine scenarios under varying railway demands. All these elements make 

micro-simulation models a useful tool for studying the reliability of transportation 

networks, such as the test bed with HRGCs used in this dissertation. The existence of 

train traffic and HRGCs generates short-term interference to roadway traffic. Applying 

reliability-based metrics to monitor and manage such bimodal transportation networks 

has the potential to improve the efficiency of decision-making for both traffic engineers 

and drivers.  

 

5.1 Simulation Model Setups 

5.1.1 Benefits of Using Simulation Models for Reliability Analysis 

In this dissertation, the micro-simulation software VISSIM is selected as the 

simulation tool. There are three benefits to using a well-calibrated micro-simulation 

model for the reliability-based evaluation of traffic systems. 

1) The ability to record and output performance measures for individual vehicles 

are necessary for considering short-term traffic fluctuations. The availability of real data 

is becoming more prevalent with the deployment of probe-based travel time collection, 
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and the archiving systems for roadway segments have been implemented by many private 

sector companies (Winick 2012). Currently, probe-based data is mainly collected on 

freeways, on major and some minor urban arterials, and on some non-urban highways for 

business. For the roadways without real travel time data, simulation models can provide 

simulated travel times in exchange. The methodology using simulation data developed in 

this dissertation can readily be generalized to real-time systems once more empirical data 

become widely available.   

2) Explicit assumptions inherent in aggregated models are not required, such as 

requiring capacity to be input rather than treated as an emergent characteristic. It is 

hypothesized that this results in a more realistic model for this application. 

3) Traffic designers can test various proposed strategies and designs before 

implementation. The results of the reliability evaluation of various alternatives could 

assist the decision-making process. This saves time and money by allowing designers to 

exclude poor-performance options. As will be shown in this chapter, various train 

volumes, speeds, and lengths can be simulated easily. 

 

5.1.2 A Bimodal Simulation Model 

The bimodal transportation network used in this study is bounded by Cornhusker 

Highway, Holdrege Street, 27th Street, and 48th Street, as illustrated in figure 1.8. This is 

a 2.4 km by 3.2 km urban transportation network that includes three HRGCs.  

Corresponding to the physical map in figure 1.8, figure 5.1 is the simulation model of the 

network in the VISSIM environment. The blue lines represent a 3.2 km section of the 

Burlington Northern Santa Fe (BNSF) railroad tracks, while the dark-gray lines represent 
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the roadway transportation network. The three red circles represent the locations of the 

HRGCs, and the blue rectangle represents a grade separated roadway-railway crossing. 

The 16 numbered points (e.g., in brackets) shown in figure 5.1 indicate the locations 

where traffic volume data were collected by the City of Lincoln. This data will be used to 

calibrate the model.  

The test network was modeled using dynamic traffic assignment in order to better 

capture the interaction between supply and demand. In a dynamic assignment, the travel 

time is a function of volume, and traffic demand will spread out over routes based on the 

route travel times.  

In this dissertation, the traffic demand is added to the network at 5 percent 

increments. At each iteration, the demand is loaded to the path with the shortest travel 

time. After each iteration, the travel times are updated and the process repeats. After 20 

iterations (e.g., 20×5%=100%), the network is fully loaded. 
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Figure 5.1 The simulation model in VISSIM of the bimodal transportation network 
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5.1.3 Railway Traffic Modelling 

The three signalized intersections located at points (11), (13), and (16) in figure 

5.1 are all within 200 meters of a HRGC. Consequently, the traffic signal timings follow 

standard train preemption logic when a train is present. The goal is to operate the traffic 

signal to allow vehicles to clear the HRGC before a train arrives. The train preemption 

logic of these three intersections were programmed using VISVAP in the VISSIM 

environment.  

VISSIM requires users to first define vehicle classes before these classes can be 

used in a simulation. In this bimodal simulation model, a vehicle class named “train” is 

used to represent trains. The class has both length and speed attributes. Table 5.1 shows 

the train length distribution input in VISSIM. The share was identified based on an 

empirical train length distribution as shown in figure 5.2. During the simulation, VISSIM 

will generate trains with a length randomly drawn from the distribution shown in table 

5.1. Note that VISSIM 5.40 does not allow direct input of train lengths. Instead, it has 

built-in train components (e.g., locomotives and train cars with given lengths). The train 

lengths are generated internally to VISSIM based on the input number of train 

components. It may be seen in figure 5.2 that the simulated train length distribution 

closely follows the observed train length distribution. 

 Table 5.2 shows the empirical speed distribution collected by Doppler radar 

located at the intersection of the Salt Creek Roadway and North Antelope Valley 

Parkway (Chen 2015). In contrast to vehicle length, VISSIM allows for direct input of 

speed distributions. Figure 5.3 displays the empirical speed distribution that is also used 

in the VISSIM simulation model.  
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Table 5.1 Simulated train length distribution 

Share Train Length (m) Number of Locomotives Number of Train Cars 

0.1 998.6 1 37 

0.1 1737.8 1 65 

0.1 2213.0 1 83 

0.5 2661.8 1 100 

0.2 2978.6 1 112 

         

        Note: 1) The default locomotive length is 21.8 meters in VISSIM.  

      2) The default length of a train car is 26.4 meters in VISSIM. 

      3) Train Length = Locomotive Length + Number of Train Cars * Car Length. 

 

 

Figure 5.2 Empirical and simulated train length distributions 
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Table 5.2 Train speed distribution 

Train Speed (km/h) Cumulative Percentile 

8.1 0% 

22.7 10% 

26.5 20% 

29.7 30% 

32.5 40% 

34.8 50% 

35.5 60% 

39.5 70% 

41.4 80% 

45.9 90% 

64.2 100% 

 

 

 

Figure 5.3 Simulated train speed cumulative distribution input into VISSIM 
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5.2 Calibration and Validation 

5.2.1 Calibration Parameters 

There are 24 parameters related to car following and lane changing logic in 

VISSIM. Based on previous calibration research on this network by Appiah in 2009, the 

eight parameters shown in table 5.3 will be used in the calibration process. Seven of them 

are VISSIM parameters. The last one, demand proportion, is incorporated to account for 

possible demand increases on this network after previous research. In addition, the 

calibration effort will directly account for the effect of trains. Note that trains were not 

analyzed in previous research. These eight parameters are described below and the 

default values are shown in table 5.3 (PTV 2011).  

Waiting time before diffusion defines the maximum length of time a vehicle can 

wait at emergency stop positions for an acceptable gap to change lanes so that it can stay 

on its route. The default value is 60 seconds. 

Minimum headway defines the maximum distance to the leading vehicle that must 

be available for a lane change in standstill condition. The default value is 0.5 meters. As 

this value decreases, the road capacity increases.  

The number of observed vehicles determines the ability of vehicles in the network 

to predict the movement of other vehicles, and to react accordingly. The default value for 

urban driving behavior is 4. As this value increases, the run time of simulation also 

increases. 

Maximum look-ahead distance defines the maximum distance allowed for drivers 

to “look ahead” and to react accordingly. Note that any event occurring outside this range 

will be ignored by the driver. The default value is 250 meters.  
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Average standstill distance, the additive and multiplicative part of the desired 

safety distance are model parameters for the Wiedemann 74 car following model that is 

suitable for urban traffic conditions. The distance d between two vehicles in meters is 

calculated by equation 5.1 in VISSIM. 

 

𝑑 = 𝑎𝑥 + (𝑏𝑥𝑎𝑑𝑑 + 𝑏𝑥𝑚𝑢𝑙𝑡 ∙ 𝑧) ∙ √𝑣 (5.1) 

where: 

d = the average standstill distance, 

ax = the average standstill distance that defines the average desired 

distance between stopped cars, 

𝑏𝑥𝑎𝑑𝑑 = the additive part of the desired safety distance, 

𝑏𝑥𝑚𝑢𝑙𝑡 = the multiplicative part of the desired safety distance, 

𝑧 = a value in the range [0, 1] normally distributed around 0.5 with a 

standard deviation of 0.15, and 

𝑣 = the vehicle speed in m/s. 

 

Table 5.3 Default values of model parameters 

Calibration Parameter Default Value 

Waiting time before diffusion (sec) 60 

Minimum headway (m) 0.5 

Number of observed vehicles 
4 - urban 

2 - others 

Max look-ahead distance (m) 250 

Average standstill distance (m) 2 

Additive part of safety distance 2 

Multiplicative part of safety distance 3 

Demand proportion 1.00 
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5.2.2 Calibration Algorithm 

A genetic algorithm (GA) toolbox, first developed by the University of Sheffield 

(Yu et al. 2003), and subsequently revised by Wojtal (2012), is used to calibrate the 

simulation model. Figure 5.4 is a flowchart of the genetic algorithm. A randomly 

generated set of feasible chromosomes is used as the first generation to start the GA 

procedure. In this study, the generation set includes 30 chromosomes. Each chromosome 

corresponds to a solution of simulation parameters. The process is repeated until a pre-

specified maximum number of iterations are completed. The maximum number of 

iterations used in this dissertation is 40. The best solution X* is the output of the 

calibrated parameters. Each step will be discussed with more details in the following 

sections. 
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 Initial population of calibration parameters

- Set current iteration number i=1

- Set maximum iteration number I=40

- Randomly generate N=30 chromosomes

GA start

Process n-th chromosome 

(n=1)

Run simulation model

- Input: 

1) Decoded model parameters 

from chromosome;

2) Decoded parameter for 

roadway traffic demand

3) Railway traffic: 2 trains/hour

- n=n+1

n>N N

Fitness evaluation

- Calculate fitness value for each chromosome

- Rank chromosomes by their fitness values

  X*= best fit chromosome

- i=i+1

Y

i>I

Y

GA end

N

Mutation

- Form offspring by randomly changing 

individual bits in parent chromosomes with 

probability pm=0.01

New generation of N chromsomes

Roulette Wheel Selection

- Select N/2 pairs of parents based on fitness 

values for crossover and mutation 

Crossover

- Form offspring of parent chromosomes with 

probability pc=0.7

 

Figure 5.4 Genetic algorithm flowchart 
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5.2.2.1 Parameter Coding 

Typical GA procedures require potential solutions to be encoded as a binary bit 

string that is called a chromosome. Each parameter to calibrate is encoded as a number of 

genes in the form of a chromosome. The number of genes needed for parameter 𝑥𝑖 is 

calculated by equation 5.2. 

 

𝑛𝑖 = 𝐿𝑜𝑔(
max (𝑥𝑖) − min(𝑥𝑖)

𝑎𝑖
+ 1) (5.2) 

where: 

𝑥𝑖 = the i-th parameter to calibrate (i=1, … 8), 

𝑛𝑖 = the number of genes necessary to encode parameter 𝑥𝑖, 

max(𝑥𝑖) , min (𝑥𝑖) = the upper and lower bounds marking the range of the potential 

parameter values, and 

𝑎𝑖 = the increment to change parameter values in GA procedures, 

which is calculated by equation 5.3. 

 

𝑎𝑖 =
max (𝑥𝑖) − min(𝑥𝑖)

(2𝑛𝑖 − 1)
 (5.3) 

  

The optimal values of 𝑎𝑖 and 𝑛𝑖 are determined by a trial and error procedure. The 

final results are summarized in table 5.4. Table 5.4 also lists all the upper and lower 

bounds used in this dissertation. They need to be determined based on the default values 

and engineering judgment. These bounds were based on previous studies (Appiah 2009). 
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Table 5.4 Encoding of calibration parameters 

Parameters to calibrate (𝑥𝑖) Max(𝑥𝑖) Min(𝑥𝑖) 
Increment 

(𝑎𝑖) 

Number of genes 

(𝑛𝑖) 

1.Waiting time before diffusion  

(sec) 
90 30 4 4 

2.Minimum headway (m) 1 0.1 0.06 4 

3.Number of observed vehicles 4 1 1 2 

4.Max look-ahead distance (m) 300 200 6.67 4 

5.Average standstill distance (m) 5 0.5 0.145 5 

6.Additive part of safety distance 10 1 0.6 4 

7.Multiplicative part of safety 

distance 
10 1 0.6 4 

8.Demand proportion 1.50 1.0 0.016 5 

 

Once the GA algorithm is done, the chromosome solutions are translated into 

simulation parameters by equation 5.4. Table 5.5 shows one example chromosome 

solution in binary and decimal formats. The conversion is based on equation 5.4, 

 

𝑥𝑖 = min(𝑥𝑖) + 𝐴 ∙
max (𝑥𝑖) − min(𝑥𝑖)

(2𝑏𝑘 − 1)
 (5.4) 

where: 

bk = the length of binary bit string corresponding to parameter 𝑥𝑖, and 

A  = the value of binary bit string to base 10 of parameter 𝑥𝑖. 
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Table 5.5 Example of converting binary chromosome to simulation parameters 

Parameters to calibrate (𝑥𝑖) 
Chromosome part 

(Binary format) 

Simulation parameter 

(Decimal format) 

1.Waiting time before diffusion (sec) 1110 60 

2.Minimum headway (m) 0001 0.16 

3.Number of observed vehicles 01 2 

4.Max look-ahead distance (m) 1010 266.7 

5.Average standstill distance (m) 00001 0.645 

6.Additive part of safety distance 0010 2.2 

7.Multiplicative part of safety distance 0010 2.2 

8.Demand proportion 00011 1.048 

   Note: The chromosome solution is: 11100001011010000010010001000011. 

 

5.2.2.2 Fitness Evaluation 

A number of functions can be used to evaluate the “fitness” of a given 

chromosome (i.e., parameter vector). In this dissertation, the fitness values are calculated 

through the Geoffrey E. Havers (GEH) statistic. The model is calibrated to the traffic 

volumes measured at the 16 locations shown in figure 5.1. The objective of the 

calibration is to find the “best” set of values of the eight parameters that replicate the 

observed volumes. The parameter solutions with lower GEH values provide a more 

accurate simulation with respect to the traffic volumes. GEH is selected as the fitness 

objective due to its self-scaling feature. That is, a single acceptance threshold based on 

the GEH statistic can be used over a fairly wide range of traffic volumes (Appiah 2009). 

For example, consider two roads. The first has an observed volume of 100 veh/h and a 

simulated volume of 200 veh/h. The second has an observed volume of 1,100 veh/h and a 

simulated volume of 1,200 veh/h. If the mean absolute percentage error is used to 

evaluate the calibration error, it will be very difficult for researchers to select a single 
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percentage as the threshold to evaluate both roads. The GEH statistic, in a form of the 

chi-squared statistic that incorporates both relative and absolute errors, reduces this 

problem (Appiah 2009). 

In this dissertation, the fitness value of each chromosome is calculated as an 

averaged GEH value at all the 16 data collection points after the simulation model is run. 

The GEH statistic at each point is calculated by equation 5.5. 

 

𝐺𝐸𝐻𝑖 = √
2(𝑉𝑖−𝑣𝑖)2

(𝑉𝑖+𝑣𝑖)
       𝑖 = 1, … 𝑁 (5.5) 

where: 

𝑉𝑖 = the simulated traffic volume at the data collection point i, 

𝑣𝑖 = the observed traffic volume at the data collection point i, and 

N = the number of locations with observed traffic volume, N=16. 

 

According to a technical report from the Oregon Department of Transportation 

(DOT), the goodness of fit can be evaluated using the following rules (Oregon DOT 

2006). If the GEH<5, the solution is a good fit to the problem. If 5<GEH<10, the solution 

needs further investigation. If the GEH>10, the solution is a poor fit.  

 

5.2.2.3 Genetic Operators 

The next generation of chromosomes is generated from the current generation 

through three genetic operators: selection, mutation, and crossover. The fitness values of 

the 30 chromosomes in the current generation are calculated, and each chromosome is 



166 

  

 

 

ranked based on its fitness value. The selection operator selects the parents for the next 

generation based on the rank of each chromosome. The better the chromosomes are, the 

higher their chance of selection. The crossover operator exchanges the genes of two 

parents to create new offspring with a probability of 0.7. The mutation operator changes 

the bits of new offspring with the probability of 0.01. Complete details of the GA 

operators used in this dissertation may be found in Cao and Wu, 1999. 

 

5.2.3 Calibration Results 

After 40 iterations, each with 30 chromosomes, the best GEH obtained was 5.27. 

Although this value is slightly higher than the recommended value of 5, it is regarded as 

acceptable considering the large size of the network in this study. The calibrated 

parameter values are shown in table 5.6.  

 

Table 5.6 Calibrated values of simulation parameters 

Calibrate parameter  Default value Calibrated value 

Waiting time before diffusion (sec) 60 42 

Minimum headway (m) 0.5 0.34 

Number of observed vehicles 4 3 

Max look-ahead distance (m) 250 266.7 

Average standstill distance (m) 2 0.5 

Additive part of safety distance 2 5.8 

Multiplicative part of safety distance 3 8.8 

Demand proportion 1.00 1.02 

 

Figure 5.5 is a scatter plot of the simulated hourly traffic volumes and the 

observed traffic volumes for both the calibrated and un-calibrated cases. The plot shows 

that most of the calibrated scatter points are close to the 45-degree line, which indicates 
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that the calibrated parameters provide acceptable simulation results compared to the real 

traffic observations. The coefficient of correlation is 0.70, indicating a relatively strong 

linear relationship between the observed and simulated volume counts after calibration. 

In contrast, the un-calibrated scatter points generally have higher simulated volumes than 

the calibrated ones. Overall, the coefficient of correlation is 0.55 for the un-calibrated 

scenario.  
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Figure 5.5 Simulated volume versus observed volume in field 

 

5.2.4 Validation Results 

The calibration algorithm adjusts the default parameters in VISSIM to make the 

simulation model produce reasonable traffic volumes at the 16 locations shown in figure 

5.1. It is important to validate the calibrated simulation model using simulation output 

different from the output used for calibration. 

The validation process is based on the turning ratios at the six intersections shown 

in figure 5.6. The blue lines in figure 5.6 represent the railroad tracks in this test network. 

Intersections II, III, and IV are the HRGC-related intersections. The mean absolute 
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percentage errors (MAPE) between the simulated and observed turning ratios are 

calculated for each movement and weighted by traffic volumes to yield the weighted 

MAPE for each intersection, as summarized in table 5.7. Table 5.7 lists the weighted 

MAPEs for both the before- and after-calibration cases. It can be seen that the calibration 

improves the weighted MAPE of turning ratios for intersection I, III, IV, and V, by 10 

percent, 7 percent, 10 percent, and 12 percent, respectively. After calibration, the 

weighted MAPE for intersection II becomes 7 percent higher than the before-calibration 

network. On average, the calibration improves the weighted MAPE of turning ratios by 6 

percent. Based on these results, it was decided that the calibrated VISSIM model could be 

used for reliability analyses. 

 

Table 5.7 Weighted MAPE of turning ratio 

No. Intersection Name 
Weighted MAPE 

(Before Calibration) 
Weighted MAPE 

(After Calibration) 
Improvement 

I 29th &Cornhusker 7% 6.% 10% 

II 33rd &Cornhusker 14% 15% -7% 

III 35th &Cornhusker 27% 25% 7% 

IV 44th &Cornhusker 21% 19% 10% 

V 33rd &Huntington 25% 22% 12% 

Average 19% 17% 6% 
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Figure 5.6 Six intersections used in the validation study 
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5.3 Reliability-Based LOS Evaluation of HRGC Related Intersection 

5.3.1 Intersection Evaluation 

Table 5.8 compares the intersection evaluation method from the highway capacity 

manual (HCM) and the simulation-based method. 

 

Table 5.8 Comparison of different analysis methods 

Methods HCM Simulation 

Measure of 

Effectiveness 

Delay Delay, Stops, Queues 

Best Applications Operations, 

Signal Timing 

Unusual Situations, 

Closely Spaced Intersections 

Secondary 

Applications 

Planning, Impact 

Studies, Roadway 

design 

Operations, Signal Timing, Planning, 

Impact Studies, Roadway Design 

Source: Husch, D. and J. Albeck (2003) 

 

The HCM presents an analytical method to calculate the control delay for each 

movement in an intersection. The HCM LOS thresholds, in terms of average delay, can 

be used to determine the operational LOS when details on intersection flow, 

signalization, and geometrics are known. According to the HCM method, the intersection 

LOS is directly related to the average control delay per vehicle. This metric is calculated 

by aggregating the estimated average control delay of each approach. The aggregation is 

based on volume, as shown in equations 5.6 and 5.7 (HCM 2000). 
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𝑑𝐼 =
∑ 𝑑𝑎𝑉𝑎

𝐴
𝑎=1

∑ 𝑉𝑎
𝐴
𝑎=1

 (5.6) 

where: 

𝑑𝐼 = the delay per vehicle for an intersection I (s/veh), 

A = the total number of approaches at intersection I, 

𝑑𝑎 = the delay for approach a that is aggregated from the delays for the lane 

groups in approach a by equation 5.7, and 

𝑉𝑎  = the adjusted flow for approach a (veh/h). 

 

𝑑𝑎 =
∑ 𝑑𝑖𝑉𝑖

𝐼
𝑖=1

∑ 𝑉𝑖
𝐼
𝑖=1

 (5.7) 

where: 

𝑑𝑖 = the delay per vehicle for lane group i on approach a (s/veh), 

I = the number of lane groups on approach a, and 

𝑉𝑖 = the volume for lane group i on approach a. 

 

The output from the HCM method includes average control delays for each lane 

group, approach, and the intersection as a whole, along with the corresponding LOS.  

As summarized in table 5.8, the best application for simulation models are for 

unusual situations such as closely spaced intersections (Husch and Albeck 2003). This is 

because the simulation software can provide case-specific data collection points to record 

a variety of performance measurements such as delay, queue, and the number of stops. 

The target of this study is a signal intersection located very close to a highway-railway at-

grade crossing. This scenario requires a special setup in VISSIM to collect the delay 
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resulting from both the intersection signal timing and the HRGC. Therefore, a simulation 

model built in VISSIM is selected to evaluate the operational performance at this 

intersection. This study will evaluate the reliability-based LOS based on simulation data. 

The HCM thresholds shown in table 5.9 will be used to calculate the LOS reliability on a 

specific lane group, and this analysis will consider the impact of trains in the network.  

 

Table 5.9 LOS criteria for signalized intersection sin HCM2000 

LOS Control Delay per 

Vehicle (sec/veh) 

A ≤10 

B >10-20 

C >20-35 

D >35-55 

E >55-80 

F >80 

 

5.3.2 HRGC Related Intersections 

Table 5.10 summarizes the basic information for the three HRGC related 

intersections in the test bed. At each signalized intersection, the inbound north bound 

(NB) lanes intersect with the railway. Consequently, there is a danger of vehicle queuing 

on the tracks when the NB signal is red. In addition, vehicles queuing up from the HRGC 

will experience delay due to the train traffic when there is a train present in the corridor. 

First, the volume to capacity (v/c) ratios for the lane groups on the NB approach are 

calculated without considering train traffic. The results for critical lane groups are 

summarized in table 5.10. The v/c ratios for critical lane-group i were calculated by 

equation 5.8. The relevant information used to calculate the v/c ratios was provided by 

the City of Lincoln. 
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The NB approach of the 44th and Cornhusker intersection only has one lane. The 

v/c ratio is 0.32, indicating that the approach can provide sufficient capacity for current 

traffic flows. The NB approach of the 33rd and Cornhusker intersection has two lanes – 

one is for left-turn movement and the other is for through and right-turn movements. The 

traffic on this approach consumes 84 percent of the overall capacity. The NB approach of 

the 35th and Cornhusker intersection also has two lanes – one exclusively for left-turn 

movements and the other for through and right-turn vehicles. The westbound (WB) 

Adams Street has one lane. When it turns into the NB 35th Street, after the HRGC, it 

becomes two lanes, as shown in figure 5.7. The left-turn bay on the NB 35th St is less 

than 28 meters in length. Based on empirical observations at the site, the section of road 

can accommodate approximately three vehicles. Given the limited lane capacity, the 

volume for the NB left-turn movement is 340 vehicles per hour (City of Lincoln 2008). 

Therefore, the v/c ratio for the left-turn lane on the NB of 35th Street approaches 1.05 

during peak hours, indicating that the lane operates at saturation flow rate during the peak 

hour. When a train is present, it is hypothesized that the service level for 35th Street NB 

and Adams Street WB will be further degraded due to the extra delay that results from 

waiting for the train to clear the HRGC. Therefore, this lane group is selected to 

implement the reliability-based LOS evaluation.  

The physical configuration of the 35th and Cornhusker intersection is shown in 

figure 5.7, with the north bound left-turn (NBL) phase marked by a solid arrow. The 

control delay for each vehicle from point A to point B is output from VISSIM and is used 

to calculate the confidence interval of control delay for the left-turn movement. Point A is 

set 150 meters east of the HRGC because this encompasses the maximum queue length 
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observation at the site. Point B is located 60 meters west of the signalized intersection. 

The delay time measurements output by VISSIM is the difference between the travel time 

from A to B under the simulated scenario and the idealized case (e.g., no signal control, 

no train traffic, etc.). 

As shown in table 5.9, control delay is used by current HCM to define the 

thresholds of different levels of service. It includes the initial deceleration delay, queue 

move-up time, stopped delay, and final acceleration delay. The purpose of setting a 

relatively long section for A-B is to ensure that all of the three delay components are 

measured.  

 

Table 5.10 HRGC related intersections 

HRGC Intersections 
 

33rd 

&  

Cornhusker 

35th 

&  

Cornhusker 

44th 

& 

Cornhusker 

NB Lane Configurations 
 

   

V/C Ratio of NB Critical Lane Group  
0.84 

(NB) 

1.05 

(NBL)* 

0.32 

(NB) 

Distance from the Stop Bar to HRGC (m) 170 30 28 

Volume NBL (veh/h) 166 340 24 

Volume NBT(veh/h) 51 15 21 

Volume NBR(veh/h) 79 8 10 

Green Time (second) 30 20 14 

* Selected lane group for reliability analysis. 
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𝑋𝑖 =  
𝑣𝑖

𝑠𝑖(
𝑔𝑖

𝐶 )
 (5.8) 

where:                                 

𝑋𝑖 = the v/c ratio, 

𝑣𝑖 = the observed volume of the critical lane group I, 

𝑔𝑖

𝐶
 

= actuated green to cycle ratio, and 

𝑠𝑖 = saturation flow rates. 

 

 
 

Figure 5.7 The intersection movement for analysis 

 

5.3.3 Reliability-Based LOS of the Left-Turn Movement 

Three scenarios were simulated for this reliability analysis: 1) no train traffic; 2) 

one train traveling at 60 km/h that occupies the HRGC from 1,185 seconds to 1,342 

seconds during the simulation; and 3) one train traveling at 25 km/h that occupies the 

HRGC from 1,127 seconds to 1,542 seconds during the simulation. These three scenarios 

were selected to illustrate the impacts of trains with different speeds on the LOS 
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reliability of the northbound left-turn movement at intersection of 35th Street and 

Cornhusker Highway. 

The time-dependent confidence intervals of the average delay for the left-turners 

for scenarios 1, 2, and 3 are shown in figure 5.8, 5.9, and 5.10, respectively. These 

confidence intervals are calculated using the BCa bootstrap method. In these figures, the 

x-axis represents the time since the simulation start time in unit of seconds, and the y-axis 

represents the delay time for the left-turners at the test bed. The first 600 seconds are used 

as the warm-up period, and the results from this period are not included in the figures. 

Therefore, the x-axis ranges from 600 seconds to 3,600 seconds. The horizontal blue lines 

are the upper and bottom boundaries of confidence intervals of the average delay for each 

5-minute interval. The confidence interval of a given 5-minute interval is calculated for 

the vehicles that passed the point B in figure 5.7 within that 5-minute interval. The 

horizontal red lines are the level of service thresholds. In figure 5.9 and 5.10, the vertical 

black dashed lines indicate the period of train presence at the HRGC.  

Figure 5.8 shows the control delay of left-turning vehicles when there is no train 

present at the HRGC. Figure 5.9 is the control delay for the scenario with a 60 km/h train 

present in the HRGC for 157 seconds. Note that the train occupies the HRGC during the 

5-minute interval from 1,200 seconds to 1,500 seconds. For the no-train scenario, the 

confidence interval of average delay is [68, 78] seconds for this 5-minute interval (e.g., 

1,200 seconds to 1,500 seconds). In contrast, the confidence interval is [136, 159] 

seconds for the 60km/h train scenario. In summary, the range of the confidence interval 

for average delay increases from 10 seconds to 23 seconds during the train event, 

indicating greater uncertainty in delay. Not surprisingly, the average delay during the 5-



178 

  

 

 

minute interval when a train is present approximately doubles as compared to the no-train 

scenario. 

Figure 5.10 shows the control delay for the 25 km/h train scenario. The train 

arrives at the HRGC at 1,127 seconds in the simulation and departs at 1,542 seconds. The 

train occupies the HRGC for 415 seconds. The confidence interval of average delay for 

the time period (e.g., 1,500 seconds to 1,800 seconds) is [339, 384] seconds. For the no-

train scenario, the confidence interval of average delay is [73, 85] seconds during the 5-

minute interval from 1,500 seconds to 1,800 seconds. In other words, the 25 km/h train 

increases the interval range from 12 seconds to 45 seconds, and results in an 

approximately five fold increase in control delay. 

The graphs also show that the train traffic increases both travel time and travel 

time variation for approximately 20 minutes for scenario 2 and approximately 30 minutes 

for scenario 3. It may be seen that the longer the train occupies the HRGC, the greater the 

impact on roadway traffic delay.  
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Figure 5.8 Time-dependent confidence intervals of average delay for the no-train 

scenario 

 

 

 
 

Figure 5.9 Time-dependent confidence intervals of average delay for scenario 2 
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Figure 5.10 Time-dependent confidence intervals of average delay for scenario 3 

 

As defined in chapter 3 (e.g., equation 3.3), reliability of a certain LOS is the 

probability that the average delay confidence intervals can be included in the thresholds 

of that LOS. The results of the reliability-based LOS analysis for the three scenarios are 

summarized in table 5.11.  

 

Table 5.11 LOS reliability of the left-turn movement in this study 

LOS 
Scenario 1: 

No train 

Scenario 2: 

One train at 60 

km/h 

Scenario 3: 

One train at 25 

km/h 

Thresholds based on 

average delay (sec) 

F 0.05 0.60 0.79 >80 

E 0.61 0.23 0.16 >55-80 

D 0.34 0.17 0.05 >35-55 
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In scenario 1, where there is no train traffic, the probability of LOS E is 61 

percent. In scenario 2, where a 60 km/h train occupies the HRGC for 157 seconds, the 

reliability of LOS E decreases to 23 percent. At the same time, the reliability of LOS F is 

increased from the 5 percent for the no-train scenario to 60 percent. In scenario 3, a train 

at 25 km/h occupies the intersection for 415 seconds. The reliability of left-turning 

vehicles at the studied approach experiencing LOS D was lowered from the 61 percent 

for the no-train scenario to 16 percent. This is 30 percent lower than the scenario 2 with a 

60 km/h train. The LOS E reliability was increased to 79 percent, which is a 32 percent 

increase as compared to scenario 2.  

These results indicated the complex impact that train traffic at a given HRGC has 

on roadway traffic. The longer the train occupies the HRGC, the lower the reliability of 

LOS D and E and the higher the reliability of LOS F. The concept of LOS reliability can 

reflect the different system performances for trains traveling at different speeds. For 

example, as compared to scenario 1 (i.e., no-train scenario), the LOS E reliability was 

reduced by 62 percent in scenario 2 (e.g., a train traveling at 60 km/h), while for scenario 

3 (i.e., a train traveling at 25 km/h) the LOS E reliability was reduced by 74 percent. In 

contrast, as shown in table 5.12, the traditional LOS based on average delay indicates that 

both scenarios 2 and 3 had LOS F. The traditional approach is unable to distinguish the 

impacts from different train speeds. The reliability metric proposed in this dissertation 

provides traffic engineers a more comprehensive representation of the impact magnitude 

due to train traffic events at the intersections near HRGCs. 
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Table 5.12 LOS of the left-turn movement in this study 

 
Scenario 1: 

No train 

Scenario 2: 

One train at 60 km/h 

Scenario 3: 

One train at 25 km/h 

Average Delay (sec) 60 106 156 

HCM LOS E F F 

 

5.4 OD Based Reliability Information 

Train traffic in a bimodal transportation network generally increases delay to 

vehicle traffic at HRGCs as the vehicles wait for the train to clear the HRGC. Drivers 

who use paths that include HRGCs will be particularly impacted. The arrival time 

reliability concept developed in this dissertation can be used to measure this effect. If 

drivers can be informed, in real time, regarding the reliability intervals of their route 

travel time when there is a train present in the corridor, they would have a better idea 

about their arrival time reliability, and could choose routes with better arrival time 

reliability. It is hypothesized that this will reduce total network delay and increase overall 

network performance.  

 

5.4.1 Study Area 

One OD pair in the test network is selected to demonstrate this application. The 

origin is the University of Nebraska-Lincoln’s east campus, and the destination is the 

UPS customer service center, as shown in figure 5.11. Four potential routes are selected, 

and they are representative of the options available to a driver. They are shown in 

different colors in figure 5.11. It can be seen in figure 5.11 that drivers who choose 

Route-2 have the opportunity to change to Route-1 before making their first right-turn. 

Similarly, drivers who choose Route-3 have the opportunity to change to Route-4 before 
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making their second left-turn. Therefore, in this analysis, Route-1 and Route-4 are 

considered as the alternative routes for Route-2 and Route-3, respectively, when a train is 

present in the corridor. Relevant information for each route is shown in table 5.13. The 

free flow travel time is the travel time at the link speed limit. 

 

Table 5.13 Basic information of the four routes to study 

Route No. 
Physical length 

(km) 

Speed limit section 
Number of 

signals 

Free flow 

travel time 
(min) 

Utilize 

HRGC Speed limit 
km/h (mph) 

Section 

length 
(km) 

Route-1 3.96 
56 (35 mph) 1.45 

6 5 No 64 (40 mph) 1.79 
72 (45 mph) 0.72 

Route-2 2.29 56 (35 mph) 2.29 3 3 Yes 

Route-3 4.67 
56 (35 mph) 2.98 

6 8 Yes 40 (25 mph) 1.53 
72 (45 mph) 0.16 

Route-4 6.16 
56 (35 mph) 1.26 

9 10 No 40 (25 mph) 2.88 
72 (45 mph) 2.03 
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Figure 5.11 Four routes selected to study the OD pair from Campus (Origin) to UPS 

(Destination) 

 

The train volume is set to 1 train per hour, traveling at 34 km/h, which is 

approximately the average train speed in the corridor, as shown in table 5.2. The network 

is simulated for one hour and the travel times are collected as illustrated in section 5.4.2. 

In section 5.4.3, the arrival travel time reliability for each route will be estimated using 

the approach developed in section 3.3.2.1. The impact of the train arrival on the OD-level 

network performance will be estimated using the methodology developed in section 

5.4.4. 
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5.4.2 Simulated Travel Time Collection 

The simulation model is used to generate travel time data to estimate travel time 

reliability intervals on the route and OD level. A specific way to collect travel time data 

needs to be defined before further research steps are taken. Conventionally, a road 

network is structured similar to picture (1) in figure 5.12, using a single node representing 

an intersection as shown in picture (2). Roadway links are the segments connecting a pair 

of adjacent nodes. Roadway travel time is defined as the travel time between the centers 

of the pair of nodes. Route travel time, however, is movement-specific. This requires a 

way to reflect movement-specific delay at intersections in the route. To do so, the travel 

time at a node is collected for each turning movement to include the movement-specific 

delay at the intersection. A movement-specific turning node is decomposed as three sub-

links according to specific movements within the intersection as illustrated in picture (3) 

in figure 5.12. Travel times for C-l, C-t, and C-r are collected for the left-turning, going-

through, and right-turning movements at the intersection, respectively. The data 

collection for route travel time estimation in this dissertation is based on movement-

specific turning nodes, as shown in picture (4) in figure 5.12. The tool of travel time 

sections available in the simulation software VISSIM for data collection is set up at the 

locations necessary for collecting link and movement-specific node travel times.  
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Figure 5.12 Node coding to study route travel time reliability  

 

 

5.4.3 Reliability Information for Individual Drivers 

As defined in equation 4.1, the reliability interval of route travel time is an 

interval centered on the average route travel time and bounded by plus and minus k 

standard deviations. In this study, k is set to 1 because the 4 routes are composed of urban 

arterials and the traffic conditions along these routes are similar to the test bed in chapter 
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4. In real applications where actual route travel times are available, k can be determined 

based on empirical experiments. 

Figures 5.13 (a), (b), (c), and (d) show the time-dependent reliability intervals 

under the one-train scenario for Routes-1, 2, 3, and 4, respectively. The x-axis is the 

simulation time in seconds. The y-axis is the route travel time in minutes. The green line 

bounded with stars indicates the presence of the train at the HRGC. Note that only figures 

5.13 (b) and (c) show the green lines because they are the two routes that cross the 

HRGC. The averages and standard deviations of route travel time used to construct the 

reliability interval bands are estimated by the first-order approximation method. Each 

reliability interval of route travel time is calculated for the trips that depart within the 

corresponding 5-minute interval shown on the x-axis. For the purpose of comparison, 

Figures 5.14 (a), (b), (c), and (d) show the time-dependent reliability intervals under the 

no-train presence scenario for Route-1, 2, 3, and 4, respectively. These plots provide 

straightforward information about the traffic situations on the four routes from 600 

seconds to 3000 seconds. It would be beneficial to include this type of information in an 

on-line traveler information system so that drivers can plan their trips beforehand.  

The means and standard deviations of route travel times for both the one-train 

scenario and the no-train scenario are summarized in table 5.14. As shown in table 5.13, 

Route-2 is shorter in physical distance than its alternative Route-1, and Route-3 is shorter 

than its alternative Route-4. However, table 5.14 reveals that the presence of a train on 

Route-2 and Route-3 generates enough delay to make their alternatives more attractive to 

drivers. As an example, consider the 5-minute interval from 600 to 900 seconds. The 

average route travel times of Route-1 and Route-2 in the no-train scenario are 6.2 and 5.6 
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minutes, respectively. In the one-train scenario, the average Route-2 travel time increases 

to 9.7 minutes, which is longer than Route-1. In addition, the standard deviation of 

Route-2 in the one-train scenario is 4.5 minutes while that of Route-1 is only 1.9 minutes.  

Despite having to cross a HRGC, Route-2 is less impacted than Route-3 for the 

one-train scenario. The underlined numbers in table 5.14 indicate the four 5-minute 

intervals where Route-3 is negatively impacted, and the one 5-minute interval where 

Route-2 is negatively impacted. These results indicate that even with the presence of only 

one train, it could be difficult to evaluate the traffic conditions for each route by drivers. 

Providing time-dependent reliability interval information can assist drivers in route 

decision making.   

Another application is to provide en-route information in the format similar to 

table 5.15 for the trip A-B, which can assist drivers at point A in choosing the most 

efficient route to get to point B. This kind of information can also be used in dynamic 

message sign systems to provide drivers with a better estimation of their arrival times 

along a particular route or corridor. 
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Figure 5.13 Time-dependent reliability intervals for route travel time under the one-train scenario 
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Figure 5.13 Time-dependent reliability intervals for route travel time under the one-train scenario (cont.) 
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Figure 5.14 Time-dependent reliability intervals for route travel time under the no-train scenario  
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Figure 5.14 Time-dependent reliability intervals for route travel time under the no-train scenario (cont.) 
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Table 5.14 Means and standard deviations of route travel times (min.) 

Route Scenario Statistic 

5-minute Interval for departure 

Average 600-

900 

900-

1200 

1200-

1500 

1500-

1800 

1800-

2100 

2100-

2400 

2400-

2700 

2700-

3000 

Route-1 no-train 
Mean 6.2 5.6 5.5 5.4 5.7 6.0 6.3 6.6 6.7 

STD 1.4 1.5 1.4 1.4 1.7 1.5 1.7 1.9 1.5 

Route-2 

one-train 
Mean 9.7 * 8.7 * 5.9 4.1 4.8 5.1 5.0 4.2 5.8 

STD 4.5 * 6.1 * 2.9 1.2 2.1 1.8 2.3 1.6 2.7 

no-train 
Mean 5.6 * 4.8 * 4.5 4.3 4.9 5.0 4.9 4.4 4.8 

STD 2.9 * 1.9 * 2.0 1.6 1.8 1.7 2.2 1.4 1.9 

Route-3 

one-train 
Mean 13.3 * 11.0 * 10.3 10.0 9.9 8.9 7.4 7.6 9.7 

STD 1.8 * 1.6 * 1.6 1.5 1.1 1.4 1.4 1.7 1.5 

no-train 
Mean 7.4 * 7.1 * 7.8 7.6 7.4 6.9 7.3 7.6 7.6 

STD 1.6 * 1.7 * 1.7 1.5 1.4 1.7 1.6 1.8 1.6 

Route-4 no-train 
Mean 9.9 10.7 10.5 10.6 11.4 10.9 11.0 14.2 11.2 

STD 1.4 2.0 1.5 2.0 1.7 1.9 1.5 1.8 1.8 

Note: 

1) Routes-1 and 4 are minimally impacted by train traffic. Therefore, only no-train scenarios are listed in this table.  

2) Routes-2 and 3 shown in bold are the two routes impacted by HRGCs. 

3) Cells with (*) indicate the intervals impacted by train presences at the HRGCs. 

4) Cells with underlined values indicate the impacted periods after a train has left. During these impacted periods, the difference between the 

means for one-train and no-train scenarios are higher than one minute.  
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Table 5.15 A-B travel time reliability interval information 

8:10-8:15 Route-1 Route-2 Route-3 Route-4 

Average (min) 6 7 13 10 

+/- (min) 1 3 2 2 

 

 

5.4.4 Reliability Evaluation for System Operators 

System managers may be interested in quantifying the impact of train traffic on 

the route performance and network performance for a given OD pair. This section 

demonstrates how the metrics and techniques developed in this dissertation may be 

helpful for this application. 

 

5.4.4.1 Impact on Route Performance 

It is assumed in this dissertation that system operators want to evaluate the 

network in terms of the degree to which the network meets drivers’ expectations. System 

operators first need to define the evaluation thresholds that represent drivers’ 

expectations. For example, drivers may expect a longer travel time if they choose a route 

with a longer distance and more signals. Therefore, the evaluation threshold, 𝐸𝑟, is 

defined based on the ideal route travel time, as shown in equation 5.9. The ideal route 

travel time 𝑡𝑖 is based on the free flow travel time 𝑡𝑓 and reasonable waiting time at 

signals 𝑡𝑠, as shown in equation 5.10. It is assumed in this dissertation that drivers expect 

to pass 75 percent of the signals without stopping and stop once at the other 25 percent of 

the signals. Each stop at a signal is assumed to result in a 0.5 min delay. Note that this 

method can be readily supplemented with empirical data with no loss in generality. 
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𝐸𝑟 = 𝑎 ∗ 𝑡𝑖 (5.9) 

where:   

𝐸𝑟 = the evaluation threshold of rth route. 

𝑎 = the inflation factor to reflect driver expectation. It maybe postulated that in 

large cities such as Chicago and Los Angeles, this factor will be larger, and 

in smaller cities it may be smaller. In this dissertation, 𝑎 = 1.5. 

𝑡𝑖 = the ideal travel time of rth route, calculated by equation 5.10a. 

 

𝑡𝑖 = 𝑡𝑓 + 𝑡𝑑 (5.10a) 

𝑡𝑓 =
𝑑𝑟

𝑣𝑟
× 60 (5.10b) 

𝑡𝑑 = 𝑡𝑠 ∙ 𝑛 ∙ 𝑝1 (5.10c) 

 

where: 

𝑡𝑓 = the free flow travel time of rth route in minute,  

𝑑𝑟 = the distance of rth route in mile, 

𝑣𝑟 = the speed limit of rth route in mph, 

𝑡𝑑 = the reasonable delay at signals, 

𝑡𝑠 = the average delay of each stop at a signal (𝑡𝑠 = 0.5 min), 

𝑛 = the number of signals of rth route, and 

𝑝1 = the expected percentage of signals where a vehicle needs to stop (𝑝1 =

25%). 
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Table 5.16 summarizes the evaluation results and route travel time reliability of 

Route-2 and Route-3. The route performance reliability is measured by the probability of 

the reliability intervals of route travel time included by the threshold. Consider Route-2 

as an illustration. Figure 5.15 displays the time-dependent reliability intervals for Route-2 

under the no-train scenario and the one-train scenario. The x-axis shows the elapsed 

seconds in simulation, and the y-axis shows the travel time in minutes. The red line is the 

evaluation threshold, and the green line indicates the presence of a train at the HRGC 

near the intersection of 35th Street and Cornhusker Highway. The reliability of Route-2 is 

lowered to 49 percent from 72 percent due to the presence of the train. 

 

Table 5.16 Route information and reliability analysis under one-train scenario 

Route No. 
Evaluation threshold 

(min) 

Reliability for 

1-train scenario 

Reliability for 

no-train scenario 
Degradation 

Route-2 4 0.49 0.72 32% 

Route-3 9 0.23 0.95 76% 
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No-train scenario 

 

One-train scenario 

 
 

Figure 5.15 Time-dependent route travel time reliability intervals under with- and 

without-train scenarios 
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5.4.4.2 Impact on OD Level 

The evaluation of OD service is based on the major routes serving a given OD 

pair. In the previous section, four routes were selected based on initial engineering 

judgment for the sample OD pair. In this section, the four routes are further separated into 

section components so that the route network can be analyzed as a complex system with 

parallel and series sub-systems, as shown in figures 5.16 and 5.17. The shared sections of 

different routes are defined as “components”. For this example, there are three 

components. The independent sections of each route are defined as a “sub-route”. There 

are four sub-routes for this example. All the “components” and “sub-routes” are 

illustrated in figure 5.16. The evaluation thresholds 𝐸𝑟 for each component and sub-route 

are calculated based on equations 5.9 and 5.10. They are summarized together with the 

resulting reliability metrics for no-train and one-train scenarios in table 5.17.  
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Figure 5.16 Section components for the route network connecting the OD pair 

 

 

 

Figure 5.17 The complex system for the OD network 
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Table 5.17 Reliability of each components in the OD network 

Components 

Distance 

(km) 

𝑡𝑓 

(min) 

Number 

of signals 
𝑡𝑑 

(min) 𝑡𝑖 𝐸𝑟 

Reliability 

0-train 1-train 

Component 1 0.45 0.48 1.00 0.13 0.61 0.91 0.92 0.93 

Component 2 2.77 3.24 3.00 0.38 3.61 5.42 0.96 0.98 

Component 3 0.16 0.14 1.00 0.13 0.26 0.40 0.71 0.71 

Sub-route 1 3.49 3.33 5.00 0.63 3.95 5.93 0.71 0.78 

Sub-route 2 1.81 1.95 3.00 0.38 2.32 3.48 0.76 0.40 

Sub-route 3 1.71 1.84 3.00 0.38 2.21 3.32 0.56 0.14 

Sub-route 4 3.20 3.56 6.00 0.75 4.31 6.46 0.53 0.63 

Note: The results are in two decimal digits because some components are shorter than 1 

km in length, and the corresponding travel times are less than one minute. 

 

In reliability engineering, the reliability of a parallel system can be calculated by 

equation 5.11a, and the reliability of a series system can be calculated by equation 5.11b.  

𝑅(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑦𝑠𝑡𝑒𝑚) = 1 − ∏(1 − 𝑅𝑗)

𝑘

𝑗=1

 (5.11a) 

𝑅(𝑆𝑒𝑟𝑖𝑒𝑠 𝑠𝑦𝑠𝑡𝑒𝑚) = 1 − ∏ 𝑅𝑗

𝑘

𝑗=1

 (5.11b) 

where: 

k = the number of components/sub-routes in the system, and 

𝑅𝑗 = the reliability of jth components/sub-routes connecting the OD,  j=1, …, k. 

 

The reliability calculation of the OD network shown in figure 5.17 is based on 

equation 5.11. The overall OD network reliability is 0.93 for the no-train scenario. In the 

one-train scenario, the overall OD reliability is decreased to 0.78, which is a reduction of 

16 percent. These types of analyses enable a reliability evaluation at the network level. It 

quantifies the impact of train traffic on reliability for an OD pair of interest and would 
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allow benefits for increasing reliability to be considered in benefit-cost studies for 

infrastructure improvements such as viaduct construction. 

 

5.5 Concluding Remarks 

This chapter provided a case study of a local bi-modal transportation system in 

order to illustrate the benefits of the reliability metrics developed in this dissertation. The 

confidence interval based reliability metric for system evaluation was applied to evaluate 

the left-turn movement at one intersection located near a HRGC. A comparison between 

the reliability based LOS and the traditional LOS evaluation indicated the reliability 

metric has the ability to reflect a more detailed system performance when the system is 

impacted by train traffic. 

The travel time reliability interval was calculated for 4 selected routes for a 

sample OD pair in the test network. The arrival time interval information can be provided 

via a traveler traffic information system in order to assist drivers in choosing routes based 

on estimated mean travel times and travel time reliability. In addition, the real-time 

interval information can be used in dynamic message signs to notify drivers of reliability 

issues when a train is present in the corridor.  

The presence of train traffic increased the mean and standard deviation of travel 

times on the routes passing through a HRGC so that they become the less attractive 

choices. The duration of the impacted period depends on the train speed, traffic demand 

at the intersection, and the intersection operation condition. In this study, Route-3 has an 

impacted period about 15 minutes longer than Route-2. Given the evaluation thresholds 

defined in this dissertation, the reliability of Route-3 is degraded by 76 percent while the 
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reliability of Route-2 is degraded by 32 percent for the one-hour analysis period. This 

result can also assist system operators in identifying the priority of improvement projects. 

Lastly, the travel time reliability intervals over a one-hour period were used to 

evaluate the overall network performance with respect to the test OD pair. This OD-based 

reliability analysis provides an example of how the reliability metrics and estimation 

methodologies developed in this dissertation can be used to evaluate the reliability issue 

on a network level.   
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

This dissertation has proposed innovative metrics to evaluate reliability for 

transportation systems, and presented methodologies to implement these metrics under 

different application scenarios. Although the methodologies are tested using Bluetooth 

data and simulation data in this dissertation, their applications can be readily extended to 

other data collection methods that generate individual travel time observations, such as 

automatic vehicle identification and GPS. As these technologies advance, they will 

provide more reliable data with increased sample sizes to further improve the 

performance of the presented methodologies. This chapter summarizes the key findings 

in this dissertation. 

 

6.1 An Innovative Metric for Reliability Analysis in Transportation Engineering 

Previous studies defined travel time reliability “in terms of how travel times vary 

over time” (e.g., hour-to-hour, day-to-day). To represent the influences of random events 

such as bad weather and unexpected incidents, current reliability metrics are calculated 

based on travel time measurements over a substantial portion of time (e.g., 6 months of 

data without the influence of winter weather). This definition takes on a macroscopic 

level to study the long-term reliability of traffic systems.  

This dissertation proposes a new generic reliability metric that enables a 

reliability-based performance evaluation to account for dynamic and stochastic properties 

in transportation networks. It can be tailored for different evaluation objectives by 

specifying the performance measurement and statistic for different system levels ranging 

from a node to a network, and for both short-term and long-term scales. 
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This dissertation applies this new metric for a level of service evaluation which 

resulted in the reliability of certain levels of service for transportation systems. To 

evaluate long-term reliability, the confidence interval of performance measurements 

observed within a six-month period is calculated to represent the system performance 

variation. In addition, the level of service thresholds defined in the HCM are used to 

represent the satisfactory system performance. The overall reliability is measured by the 

probability that the level of service thresholds are able to include the time-dependent 

confidence intervals within the period of interest. This new metric can be used as a 

complement of the current reliability metrics, and to improve the level of service 

evaluation to a reliability-based level. To evaluate short-term travel time reliability within 

the peak period of a single day, an application example for a bimodal transportation 

network including highway-railway at-grade crossings is discussed in this dissertation. 

The reliability metric is calculated based on the user-defined travel time reliability 

intervals and evaluation intervals. 

 

6.2 An Innovative Metric for Real-Time Reliability Information 

Current real-time advanced traffic information systems (ATIS) focus on the 

average estimates of traffic parameters, such as average travel speeds and average travel 

times, for a section of the roadway. Existing ATIS generally include limited travel time 

reliability information which has been getting more attention as the uncertainty in traffic 

systems increases due to continuously growing congestion. In practice, the buffer index is 

usually used as a reliability indicator to help drivers plan their upcoming trips. A buffer 

index is calculated as the difference between the 95th percentile and the average travel 
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time, divided by the average. Based on travel time observations during a relatively long 

period (e.g., one year), the buffer index represents the extra travel time in relation to the 

average travel time needed to accomplish a trip on time, 95 percent of the time. However, 

the buffer index provides very little information regarding short-term travel time 

variability.  

This dissertation proposes a short-term reliability indicator, the time-dependent 

reliability interval of the arrival time, to provide drivers with real-time information 

representing travel time variability for the current day. Using the reliability interval at the 

15-minute level as an example, the reliability interval can be predicted for departure time 

in the next 15-minute interval. The real-time prediction enables drivers to decide their 

best departure time and route choice based on more recent traffic information compared 

with the long-term buffer index. The predicted reliability interval of corridor travel time 

is computed as the predicted mean travel time within the next 15-minute interval, and 

bounded by one predicted standard deviation in this case study. Based on the reliability 

interval of corridor travel times, the time-dependent reliability interval of arrival time is a 

predicted interval that can include at least x percent of the arrival times for trips departing 

during the next 15-minute interval, on average. The value of x needs to be validated after 

an experimental study on a target segment or corridor. In the case study of this 

dissertation, x is 95 under the overall situations. 

 

6.3 Investigation of an Outlier Identification Method to Obtain Reliable Bluetooth Data 

Most of traffic data analyses start with data “cleaning”, which includes outlier 

identification, outlier removal, and missing data estimation. For example, Bluetooth 
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technology may detect travel times of non-vehicle modes and trip chains, resulting as 

outliers in the final dataset. This is particularly true for arterial corridor applications 

because urban arterials also serve for pedestrians and bicyclists. This dissertation 

proposed a new outlier identification algorithm, and compared its performance with the 

moving standard deviation method that is commonly used in current applications. The 

proposed method evaluates data points based on their corresponding residuals in a robust 

local regression scatter smoothing model, which is able to fit a regression surface with no 

constraint on parametric distributions and limited influences from outliers. In contrast, 

the moving standard deviation method generates a threshold that is used to identify 

outliers by adding one or two local standard deviations to the mean. The disadvantage of 

the moving standard deviation method is the assumption of an independent and normal 

distribution for the travel time dataset. For the arterial travel time dataset in this case 

study, it was shown that this assumption does not hold.  

The advantage of the proposed methods over the moving standard deviation 

method was validated for the arterial corridor in this case study. The residuals in the local 

regression models were more adaptive to changing means and standard deviations, and 

thus the proposed method resulted in more efficient thresholds under unstable traffic 

conditions.  

 

6.4 Investigation of Corridor Travel Time Mean and Variance Estimates 

To analyze the travel time variability on a corridor or path level, different 

estimation methodologies are investigated to estimate corridor travel time mean and 

variance using link-based travel time observations. This is because the number of direct 
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travel time observations generally decreases as the length of a corridor or path increases. 

Because of the setup of the Bluetooth-based anonymous wireless address matching 

(AWMA) system, both corridor travel times and travel times on its component links can 

be generated for the test bed in this dissertation. This enables comparing the accuracy of 

different methods using real observations.  

For the estimation of the corridor travel time mean, the four methods evaluated in 

this study are: the naïve addition method, the cumulative addition method, the first-order 

approximation method, and the second-order approximation method. The naïve addition 

method assumes independence between link travel times, and estimates corridor travel 

time by summing up the mean travel times on the component links for the departure time 

interval. This assumption generally holds for freeway corridors where vehicles travel 

under stable traffic conditions. However, for arterial corridors and urban streets during 

the period when traffic conditions change rapidly, the travel time on a certain link is very 

likely related to the arrival time on that link, which in turn depends on the travel time on 

preceding links. The other three methods address such correlation between link travel 

times by modeling link travel time as a function of the time of day. The accumulative 

summation method uses the step function that calculates the mean corridor travel time as 

the sum of the mean link travel time on link i within the time interval, corresponding to 

the arrival time at link i. The first-order and second-order approximation methods 

approximate the mean corridor travel time based on the Taylor series around the expected 

arrival time truncated at the linear and second-order terms, respectively. In this 

dissertation, the functions to model the link travel times are second order polynomials. 

The average of all the absolute percentage errors for the 15-minute intervals during PM 
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peaks from January to July of 2011 was used as a performance indicator of the different 

estimation methods. The second-order approximation method improves the performance 

by 26 percent compared with the naïve addition method. It is important to note that there 

is not much of a difference between the cumulative addition method and the naïve 

addition method. This is because the corridor test bed in this case study is about 5 km in 

length, while the estimation methods are applied for 15-minute intervals. Therefore, 

approximately 90 percent of vehicles travelled through the whole corridor within the 

same 15-minute interval during which they departed. It is hypothesized that the 

advantage of the cumulative addition would become more distinguishable if the study 

was conducted on a longer corridor and/or at a finer interval level. 

For the estimation of arrival time variance for the studied corridor, the four 

methods evaluated in this study are the naïve addition method, the covariance based 

method, and the first-order and second-order approximation methods. The approximation 

methods had a 16 percent and 12 percent improvement in the median of absolute 

percentage errors compared with the naïve addition and the covariance based method, 

respectively.  

 

6.5 Investigation of Prediction Models for Real-time Travel Time Reliability Information 

Reliable short-term traffic parameter prediction models are very important for the 

successful implementation of a variety of ATIS applications, such as dynamic message 

signs and en-route guidance. This dissertation investigated one subclass of the dynamic 

recurrent neural networks, the nonlinear autoregressive with exogenous inputs (NARX) 
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model, to predict the short-term information of a corridor’s travel time mean and 

variability information in the form of a reliability interval.  

Previous research revealed that direct corridor travel time observations could 

produce more accurate mean corridor travel time predictions than link-level travel time 

observations while using Kalman filter techniques (Chen and Chien 2001). This 

dissertation investigated NARX models using corridor-level and link-level travel time 

data and compared the performance with naïve prediction methods – the historical 

average method and the instantaneous travel time (ITT) method – which are widely 

applied in current applications. Model performances are evaluated by the mean absolute 

percentage errors of the corridor travel time mean predictions, and by the coverage rate 

and average range of predicted reliability intervals (RI) of the arrival time. The coverage 

rate is the percentage of drivers arriving at the end of the corridor within the predicted 

reliability intervals. An efficient reliability interval should have a high coverage rate and, 

at the same time, be as small as possible. 

For the three-link corridor studied in this dissertation, the NARX outperformed 

both the historical average method and the ITT model. Overall, the corridor-based NARX 

model was able to generate reliability intervals to include 99 percent of the corridor travel 

times. This coverage rate decreased to 84 percent for a non-recurrent incident period. The 

link-based NARX model provided comparable prediction results to the corridor-based 

NARX model in terms of the coverage rate of predicted reliability intervals of the arrival 

time. Furthermore, for the example non-recurrent incident period, the resulting reliability 

intervals of the link-based NARX model were able to provide the same coverage rate, 84 
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percent, with an average interval range that is 22 seconds smaller than that of the 

corridor-based NARX model.  

For the non-recurrent incident period, the link-based second-order ITT model was 

able to provide the highest RI coverage rate among all the tested models. This high RI 

coverage rate, however, came with an increase in the RI average range. The RI average 

range was 52 seconds wider than that of the link-based NARX model for the three-link 

corridor.  

 

6.6 Investigation of the Impact of Train Arrivals on Travel Time Reliability 

Reliability issues in transportation systems are concerned with travel time 

uncertainty. Generally, the sources of travel time uncertainty can be categorized into 

recurrent and non-recurrent. The systematic demand pattern, such as the regular rush 

hours within the course of a day, is recurrent. Examples of non-recurrent sources include 

traffic incidents, weather, and malfunctions of traffic control devices. In bi-modal 

transportation networks with highway-railway at-grade crossings (HRGCs), the signal 

preemption for train traffic will incur an additional uncertainty on waiting times at the 

intersection and travel times on the associated routes. Using the proposed reliability 

metrics, this dissertation investigated the impact of train arrivals on the level of service at 

the intersection near HRGCs, and the travel time reliability on alternative routes of one 

impacted OD. 

The reliability-based level of service analysis reveals that the impact of train 

traffic depends on the train speed, the resulting dwelling time at the intersection, and the 

arrival time. The time-dependent confidence intervals of the delay time illustrate the start 
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and dissipation of the impact in a more straightforward and detailed fashion. This 

analysis can serve as a supplement to the exposure factor that is currently used to warrant 

state train tax and federal rail safety funding for crossing improvements, and is calculated 

as a multiplication of the number of cars and the number of trains at an intersection each 

day.  

To inform drivers with the travel time reliability related to train traffic, the time-

dependent reliability intervals of four routes connecting one OD pair are estimated for 

with- and without-train scenarios. The presence of one train per hour can degrade the 

performance of the routes passing HRGCs, and thus, change the optimal route for the 

selected OD. This example validates the necessity of providing real-time route travel time 

reliability information to drivers. In combination with train arrival detection, the 

simulation model can be used to estimate the reliability information in real time. The 

proposed reliability metric can play a significant role in improving the traffic operations 

on such bi-modal transportation networks by guiding drivers to more efficient routes 

when there is a train coming. 

 

6.7 Recommendations for Future Research 

There are several directions to further extend the concepts and methodologies 

regarding reliability analysis in transportation engineering. The test bed used to develop 

and evaluate the estimation and prediction methodologies on the corridor level is 5 km in 

length. There is a need to validate the methodologies for longer corridor and path levels. 

This will become feasible as data collection technologies advance. 



212 

  

 

 

Another direction is to determine a well-agreed k value for the reliability interval 

through more empirical studies. The variable k is the number of the standard deviation 

that forms the reliability interval of the arrival time. In this case study, it is represented as 

one. Overall, the reliability intervals of the standard deviation of one are able to include 

99 percent of the detected corridor trip makers’ arrival times through a certain 

combination of the prediction model and the input dataset format. In real applications, k 

will probably depend on local traffic conditions and prediction model performance. In 

addition, other indicators like the 95th percentile could also be used to provide real-time 

reliability information. Studies related to the efficiency of associated prediction models 

for these indicators are needed to investigate the usability of various indicators. 

This dissertation applied the proposed metrics and methodologies in several 

scenarios to assist decision-making in transportation engineering, such as how to evaluate 

the impact of train traffic on different routes for a certain OD pair. However, there are 

many other problems that can be addressed using the metrics presented in this 

dissertation. For example, real-time travel time reliability information can be used to 

develop automatic incident identification systems, or to identify the start and the end of 

congestion so that immediate traffic management strategies can be applied in time.
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GLOSSARY 

capacity reliability: the probability that a network successfully accommodates a given 

level of travel demand (Chen et al. 1999). 

CDF: the cumulative distribution function (CDF) describes the probability that a real-

valued random variable X with a given probability distribution will be found to have a 

value less than or equal to x. 

connectivity reliability: the probability that there is at least one route connecting the 

specific OD pair, while links and nodes are subjected to random failure events with 

known probability in real-world lifeline networks (Ching and Hsu 2007). 

confidence interval: is an interval associated with a parameter which is assumed to be 

non-random but unknown. It is a type of interval estimate of a population parameter, 

indicating the reliability of an estimate. After a sample is taken, the population parameter 

is either in the interval made or not, there is no chance. The significance level of a 

confidence interval indicates the probability that the confidence range captures this true 

population parameter given a distribution of samples (Hyndman 2013). 

demand: the number of vehicle-based trips made within a particular unit of time in the 

traffic system. It is also OD specific. 

dynamic: the state of traffic system changes over time because of the interactions 

between traffic control and the stochastic OD demand. 

emergent property: all the performance properties in a transportation system (or any 

other man-made systems) result from the interacting individuals in the system, through 

dynamics (Nagel and Rasmussen 1994).  
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estimation: to obtain the statistics of traffic parameters using an available dataset that is 

always a sample of the population. 

flexibility: the ability of a system to adapt to external changes while maintaining a 

satisfactory system performance. External changes include uncontrolled conditions that 

affect the system such as long-term changes of demand influenced by economics and 

population, a shift in spatial traffic patterns, changes in the price of fuel, etc. (Morlok and 

Chang 2004).  

highway-railway at-grade crossing (HRGC): is an intersection where a railway track 

crosses a road at the same grade level, as opposed to the railway line crossing over or 

under using a bridge or tunnel.  

level of service reliability: the probability that for the whole analysis period, the short-

term confidence intervals of the performance measurement of interest are able to be 

included by a specified interval corresponding to the stratification of the performance 

measurements in level of service analyses. 

long-term reliability: focuses on day-to-day variability in system performance within a 

relatively long period (e.g., one year). 

MAC address: the unique electronic address of each enabled Bluetooth device. 

metrics: a set of measurements that quantifies results. In this dissertation, metrics are 

performance measurements that quantify the efficiency of traffic systems. 

network emergence: may be defined as the temporal process by which the macroscopic 

properties of a system or network alter due to the microscopic changes of its constituent 

parts (Manley and Cheng 2010). 
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OD connectivity reliability: the probability that there is at least one route connecting the 

specific OD pair while links and nodes are subjected to random failure events (Ching 

2008). 

OD: Origin-Destination, the start and ending points of a trip. 

PDF: a probability distribution function of a continuous random variable is a function 

that describes the relative likelihood for this random variable to take on a given value. 

prediction interval: is an interval associated with a random variable yet to be observed 

with a specified probability of the random variable lying within the interval. The 

significance level of a prediction interval indicates the probability that the predicted range 

captures the next actual travel time observation. (Hyndman 2013). 

prediction: to make known in advance the traffic parameters in the next time interval 

based on current and historical data. 

q-q Plot: the quantile-quantile (q-q) plot is a graphical technique for determining if two 

data sets come from populations with a common distribution. A q-q plot is a plot of the 

quantiles of the first data set against the quantiles of the second data set. A q-q plot also 

includes a 45-degree reference line. If the two sets come from a population with the same 

distribution, the points should fall approximately along this reference line. 

railway preemption of traffic signals: a type of signal control at the traffic signals 

located in close proximity to a railroad crossing that allows the normal operation of signal 

lights to be preempted to assist the passage of trains (Ogden 2007). 

reliability: is the ability of a system to adapt to internal changes while maintaining a 

satisfactory system performance. Internal changes include the variations of demand and 

capacity under prevailing conditions. 
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reliability interval of travel time: an interval associated with the predicted mean and 

standard deviation of travel times, which is expected to include the travel times departing 

at the next time interval (e.g., 15-minute) with a certain coverage rate. 

resilience: is the system’s ability to return to its stable state after strong perturbations 

from failure, disaster, or attack (Ip and Wang 2009).  

short-term reliability: focuses on within-day variability in system performance for a 

relatively short period less than 24 hours (e.g., one hour or fifteen minutes). 

stochastic: The performance parameters (e.g., travel time, speed) of a traffic system have 

a state or distribution that is randomly determined and that can be analyzed statistically, 

but is unlikely to have a precise prediction. 

supply: the capacity of the roadway to accommodate vehicles within a unit of time in the 

traffic system. 

travel time reliability: the probability that a trip between a given OD pair can be made 

successfully within a specific interval of time (Chen et al. 2002). 

vulnerability: The concept of vulnerability can be divided into two parts: the probability 

of a hazardous event and the consequences of the event in a certain place or a node 

(Jenelius 2006).
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