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A number of steel, multi-beam bridges exist in the United States that contain pin 

and hanger assemblies. Pin and hanger assemblies are fracture critical members whose 

failure would result in collapse of the bridge or render it unable to perform its expected 

functions. As these bridges continue to age, many assemblies have deteriorated to a point 

where retrofit or replacement has to be considered and performed to maintain intended 

safety and performance. States have taken various approaches to address the pin and 

hanger assembly retrofit and replacement options. However, there is no single document 

that summarizes these approaches.  

This research documents steel pin and hanger assembly retrofit and replacement 

options via a literature review, extensive survey, and analysis that explore the 

performance of options that have been studied and implemented in the United States. In 

association with the literature review, a survey was developed in conjunction with the 

Bureau of Sociological Research (BOSR) at the University of Nebraska-Lincoln to assist 

with identifying implemented strategies and evaluate best practices. Information was 

solicited from 50 states and was used in conjunction with the literature review to develop 

flowcharts that would assist engineers with assessing various options and their 

consequences when pin and hanger assembly retrofit or replacement options are being 

considered. 



 
 
 

The performance of prevailing retrofit and replacement options obtained from the 

literature review and survey was examined computationally using ABAQUS. These 

examinations were accomplished by creating 7 models. For the girder that was modeled 

and loads were applied, findings indicated that as expected the bolted splice delivers the 

highest level of continuity but re-evaluation of superstructure behavior and capacity 

needs to considered. The link slab provides degradation protection over the pin and 

hanger assembly and achieves higher level of continuity at the piers as that of original pin 

and hanger assembly, girder capacity may need to be re-evaluated at piers and maximum 

positive moment location. Catcher beam system installed when pin and hanger 

assemblies fail to carry the design loads, and still behaves similar to the original pin and 

hanger assembly. The frozen pin condition has higher level of continuity as that of 

original pin and hanger assembly, results indicated that deterioration have continuity. 

Girder capacity needs to be re-evaluated at piers and maximum positive moment location. 
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Chapter 1   Introduction 

1.1 Background 

Pin and hanger assemblies are structural components that have been used in many 

steel bridge systems around the United States (Mosavi et al. 2011). These assemblies are 

often used in steel girder systems and were traditionally implemented to reduce analysis, 

design, and construction complexity. The primary function of the pin and hanger 

assemblies is to mimic the rotational freedom provided by an idealized hinge in a 

continuous structural system, thereby reducing levels of indeterminacy and facilitating 

construction. The additional rotational degrees of freedom provided by the assemblies 

also help accommodate thermal movements of the bridge superstructure (Graybeal et al. 

2000). As bridges continue to age, water, deicing chemicals, and debris that fall through 

the deck joint above the pin and hangers can accumulate on these assemblies and 

accelerate their degradation, possibly adversely affecting their performance and leading 

to a need for retrofit or replacement (Graybeal et al. 2000). 

Pin and hanger assemblies are considered fracture critical members (FCMs), 

meaning they are non-redundant and their failure could cause partial or complete 

collapse. Non-redundant systems have traditionally contributed to major steel bridge 

collapses. The collapse of the Mianus River Bridge in Connecticut in 1983 is an example 

of a pin and hanger bridge that suffered a catastrophic failure (Connor et al. 2005).  

The American Association of State Highway and Transportation Officials, Load 

and Resistance Factor Design Specifications (AASHTO LRFD) defines redundancy as 

“the quality of a bridge that enables it to perform its design function in a damaged state,” 
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and redundant member as “a member whose failure does not cause failure of the bridge” 

(AASHTO LRFD, 2014). Different ways to enhance bridge redundancy include: 

• Increasing the number of main supporting elements between points of structural 

support; 

• Providing load redistribution mechanisms or providing continuity for main 

elements over interior supports elements; or 

• Properly detailing structural elements using built-up cross sections, which provide 

division of elements to restrict increasing fracture propagation across the entire 

cross section.  

States have taken various approaches to address the pin and hanger assembly 

retrofit and replacement, but there is no single research work summarizing these 

approaches. This research work documents a literature review that explores steel pin and 

hanger assembly replacement and retrofit options that have been studied and 

implemented in the United States. In addition to the literature review, a survey was 

developed in conjunction with the Bureau of Sociological Research at the University of 

Nebraska-Lincoln (BOSR) to assist with determining implemented strategies and 

evaluate best practices. In this survey, information was solicited from 50 states on current 

engineering practices related to addressing the steel pin and hanger assembly replacement 

options. Of these 50 solicitations, 38 (76%) were returned. Literature review and survey 

information was used to design an organized decision-making tool in the form of 

flowcharts that would assist engineers with assessing various options and their 

consequences when the pin and hanger assembly replacement and retrofit are being 

considered. In conjunction with information obtained from the literature review and 
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survey, finite element analyses of the pin and hanger assembly retrofit to replacement 

options were carried out using finite element software (ABAQUS/CAE, 2013). These 

studies examined variations in the levels of continuity of the girder and were assessed by 

creating 7 FE models using ABAQUS for retrofit and replacement options which 

includes, original pin and hanger assembly, providing the catcher beam system, providing 

the continuous girder (bolted splice), by including the link slab in the pin and hanger 

assembly and by examining a from pin and hanger condition caused by corrosion and 

accompanying deterioration.  

1.2 Objectives and Scope  

The objectives of this research study were to review, summarize and analyze 

research related to pin and hanger assembly behavior, repair and replacement while also 

determining and summarizing retrofit and replacement options being used by states in the 

U.S. Computational studies were carried out for retrofit and replacement options. These 

objectives were accomplished via the following steps: 

1. Review relevant literature related to the pin and hanger assembly replacement 

options that have been studied and implemented in the United States; 

2. Survey U.S. State Departments of Transportation (DOTs) to investigate current 

practices for addressing pin and hanger assembly retrofit to replacement; 

3. Develop and present flowcharts that would assist engineers with assessing various 

options and their consequences when the pin and hanger assembly retrofit and 

replacements options are being considered in the future. 

4.  Examine and compare the levels of continuity in the girder for different retrofit to 

replacement options by finite element models using ABAQUS. 
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5. Provide design considerations based on level of continuity in the girder for 

different retrofit to replacement options. 
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Chapter 2   Literature Review 

2.1 Introduction  

A major element of this study consisted of an in-depth literature review. The 

purpose of this review was to collect and summarize information related to pin and 

hanger assembly retrofit and replacement options and also information related to 

modeling of the girder using finite element analysis. The literature review also provides 

information successfully implemented options in different parts of the United States and 

served as a resource for other portions of this study.  

In this chapter, Section 2.2 Pin and Hanger Literature, summarizes the review of 

literature related to pin and hanger assembly retrofit and replacement options. Section 2.3 

State and Federal DOT Provisions, describes available state DOT design provisions and 

protocols for various retrofit and replacement options, and Section 2.Computational 

Studies, describes previous efforts focused on developing computational models of pin 

and hanger assemblies and isolated girder modeling techniques.  

2.2 Pin and Hanger Literature 

In 1983, the I-95 Mianus River Bridge in Greenwich, Connecticut collapsed 

(Figure 2.1). The collapse was determined to occur when one of the pin and hanger 

assemblies fractured. This assembly was subjected to excessive corrosion due to water 

leaking through the deck joints and from drainage modifications (NTSB, 1984).  
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Figure 2.1 Mianus River Bridge collapse (Connor et al. 2005) 

As a result of the Mianus River Bridge collapse, the Pennsylvania Department of 

Transportation (PennDOT) instructed its districts to identify and establish the current 

condition of pin and hanger assemblies on all bridges in Pennsylvania (Britt, 1990). A 

subsequent condition inspection of twin structures carrying I-80 over the Susquehanna 

River at Mifflinville, Pennsylvania discovered multiple fractured lower pin retainer bolts 

in its pin and hanger assemblies (Christie & Kulicki, 1991). Further investigation 

determined that the major cause of the fractures was significant build-up of corrosion on 

the pin and hangers. PennDOT had identified additional problems in similar bridges, such 

as pin cracking on the Wysox Bridge in the northeastern part of the state. As a result of 

this discovery and in an attempt to ensure future safety of similar bridges in the state, 

Modjeski and Masters (M&M) developed and proposed cost-effective methods to provide 
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a higher level of redundancy for these bridges. M&M proposed the following pin and 

hanger assembly retrofit and replacement options:  

• Providing continuity by removing the pin and hanger assembly and splicing the 

flange and web at that location; 

• Providing a secondary system under the floor beams at the pin and hanger 

assembly; or 

• Providing a secondary system under girders at the pin and hanger assembly. 

PennDOT engineers, after several major studies (Christie & Kulicki, 1991), decided that 

providing continuity was the most advantageous solution from both aesthetic and safety 

points of view. However, preliminary study shows that this approach would only be 

economical when re-decking was programmed. Continuity would be established by 

designing splices into the girders following provisions established in the AASHTO 

Standard Specifications for Highway Bridges.  

In 1989, the Loma Prieta earthquake in California demonstrated that bridges 

designed following pre-1983 AASHTO seismic criteria were sensitive to strong 

earthquakes (Shirole & Malik, 1993). As a result of these findings it was determined that 

a considerable retrofitting program was needed to address this issue. The program 

included improving the strength of the existing bridges whenever practical to improve 

their seismic resistance and global efficiency. Pin and hanger assemblies were deemed to 

be seismically sensitive components and global structural efficiency would be improved 

via their removal, which would provide continuity and enhance the redundancy of the 

structure.  
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In response to work in California, the New York State Department of 

Transportation (NYSDOT) initiated part of study on seismically sensitive bridges in New 

York to evaluate their resiliency and to provide a cost data for various seismic retrofits 

(Shirole & Malik, 1993). The project included a case study of five-span, continuous, 

steel, multi-girder bridge having pin and hanger assemblies that produced drop-in spans. 

The study recommended removal of the pin and hanger assembly replacing it with top 

flange, bottom flange and web splices following AASHTO Standard Specifications for 

Highway Bridges guidelines. It was also recommended that cumulative dead and live 

load stresses be checked in the vicinity of the replaced pin and hanger assembly 

locations. 

Another possible retrofit option, termed a “link slab”, has also been discussed in 

the research (Caner & Zia, 1998). In this method, expansion joints are removed at the pin 

and hangers, the deck is debonded from the girders for a minimum of 5 % of the span 

length on each side of the splice, and the joint is replaced with link slab, which renders 

the deck continuous while maintaining some level of rotational freedom for the girders 

beneath the link slab (Figure 2.2). Reducing the number of expansion joints via the 

placement of link slabs (Caner & Zia, 1998) would minimize or eliminate corrosion 

damage due to water leaking through the deck joints. Further discussion of this retrofit 

option can be found in Section 4.2.2 Link Slab.  
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Figure 2.2 Link Slab detail 

 

A national effort to identify and synthesize inspections and repairs appropriate for 

FCMs was conducted in association with the National Cooperative Highway Research 

Program (NCHRP). The subsequent report provided a comprehensive investigation of 

bridges with fracture critical details and focused on inspection and maintenance of FCMs. 

One of the outcomes was identifying and briefly discussing prevailing pin and hanger 

assembly retrofit and replacement options in the U.S. The final report summarized two 

common techniques for the replacement and retrofit of pin and hanger assemblies 

(Connor et al. 2005): 

• Complete removal of the pin and hanger assembly. In this method, the pin and 

hanger assembly is completely removed and replaced with a new section of the 

girder having bolted splices. The girders are made continuous for live load and a 

proportion of dead load given that these splices would be placed after the large 

part of the deck has been cast. Continuity would be established by designing 
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splices into the girders following AASHTO LRFD Bridge Design Specifications; 

and  

• Placement of a catcher beam system. These systems are added below the location 

of the pin and hanger assembly to catch the suspended girder when the existing 

pin and hanger assembly fails (Figure 2.3).  

 

Figure 2.3 Catcher beam system. (Connor et al. 2005) 

 

In 2009, further investigation on link slab was carried out by (Lepech & Li, 

2009). In this study they have developed a chart (Figure 2.4) for required reinforcement 

ratio of the link slab with respect to slab thickness. Moment demand is determined based 

on the following equations. Specific reinforcement steel bar is selected with respect to 

obtained reinforcement ratio from the chart for the link slab region. 

𝑀!" =
2𝐸!""𝐼!"0.001

𝐿!"
𝜃!"#                                                            (2.1) 
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𝐼!" =
1000 𝑚𝑚 𝑡!!

12                                                                        (2.2) 

Where Mls stands for moment demand (kN-m); Ils denotes uncracked moment of inertia 

for the link slab; 𝜃!"# as maximum end rotation (radians); ts as thickness of the bridge 

deck (mm); Ldz as length of the link slab (mm); and EECC as elastic modulus of ECC 

material (GPa). 

 

 

Figure 2.4 Link slab required reinforcement ratio design chart (Lepech & Li, 2009) 

In 2010, PennDOT further investigated pin and hanger assembly rehabilitation via 

a preservation program associated with the I-579 Crosstown Boulevard Bridge in 

Pittsburgh (Sirianni & Tricini, 2010). The program included complete replacement of pin 

and hanger assemblies with new stainless pins and high strength hangers. By replacing 

the existing assemblies with new, more durable components, the assemblies would be 

strengthened and maintenance requirements for the fracture critical bridges could be 

reduced. 

In 2014, the Manitoba Infrastructure and Transportation Department conducted a 

detailed structural survey of the Pinawa Bridge, a bridge that contained pin and hanger 
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assemblies. The study identified that steel girders near the existing pin and hanger 

assemblies had severe corrosion and deterioration due to deck expansion joint leakage 

(Banthia et al. 2014), which, subsequently,caused corrosion at the pin and hanger 

assembly that could possibly lead to catastrophic failure of the assembly. A number of 

possible failure mechanisms were identified, including: 

• Reduction of pin cross section that could lead to crack initiation;   

• Locking of the pin, which could produce considerable amount of torsional stresses 

on a reduced cross-section, stresses that, when combined with direct shear 

stresses, could provide an area for development and increases of cracks which 

leads to pin failure (Banthia et al. 2014); and 

• Corrosion and packrust formation of hanger plates that could cause the pin to 

move out of the assembly and result in failure of the structure at the location of 

the assembly. 

The study did not directly observe any cracks or loss in pin cross-sectional area or 

prevention of rotation. Despite these observations, it was recommended to replace all pin 

and hanger assemblies with bolted splices following guidelines provided in the AASHTO 

Standard Specifications for Highway Bridges and Manual for Bridge Evaluation. 

2.3 State and Federal DOT Provisions 

As this study aims for identifying other State and Federal agencies who have 

implemented retrofit and replacement options and developed design specifications and 

supporting documents. Identified DOTs and their implemented options and 

documentation are summarized below. 
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The 2002 edition of the Montana Department of Transportation’s “Montana 

Structural Manual” provides rehabilitation alternatives for pin and hanger assemblies 

(MDT, 2002). It was stated that pin and hangers are sensitive to corrosion because of 

leaking deck joints and subsequent accumulation of debris on the assembly. This could 

result in the pin misplacements due to unseating of hangers and frozen pins and in 

initiation of fatigue cracks in the hangers. They recommended the following pin and 

hanger rehabilitation techniques (MDT, 2002): 

• Unlocking the frozen pin and hanger assembly. Provide alternative support beam 

system to the suspended girder and remove the pin and hanger assembly. The 

elements of the assembly could be replaced or cleaned of corrosion before re-

assembling the elements; 

• Complete elimination of pin and hanger assembly. In this method, pin and hanger 

assemblies should be completely replaced with bolted splices. This approach 

requires a structural analysis of the continuous girder to show that revised load 

paths do not exceed the resistance of the superstructure. Continuity would be 

established by designing splices into girders following appropriate AASHTO 

Standard Specifications for Highway Bridges; and 

• Providing a catcher beam system. In a catcher beam system, a supplemental 

support beam system is provided to catch the suspended girder ends if the pin and 

hanger assembly fails. Similar structural system could also be provided 

temporarily when frozen pin and hanger assemblies are slated to be unlocked.  
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PennDOT further investigated pin and hanger assembly rehabilitation in 2010 and 

recommended installation of a catcher beam system when pin and hanger assembly 

failure is a concern so that bridge integrity and safety is maintained (PennDOT, 2010). 

They stated that the catcher beam system should be designed to be active only if the pin 

and hanger fails and must accommodate anticipated thermal movements. The gap 

between the girder and the catcher beam system must be kept as small as possible to limit 

impact loading if failure occurs. They recommended use of auxiliary neoprene bearings 

on the catcher beam system to reduce any impact effects (PennDOT, 2010). 

In 2011, the Illinois Department of Transportation published a report that 

recommended that steel girders with pin and hanger assemblies be examined for 

assembly elimination and to make the superstructure system continuous whenever 

feasible and economical (IDOT, 2011). Continuity would be established by designing 

splices into the girders following the AASHTO Standard Specifications for Highway 

Bridges. 

In 2012, the Federal Highway Administration stated that pin and hanger assembly 

failure is caused by formation of corrosion between the hanger and the girder web due to 

deck expansion joint leakage. As steel corrodes, it can occupy up to 10 times its original 

volume and cause unwanted forces in a limited space (FHWA-BIRM , 2012), which 

results in packrust and possible failure of the assembly. Additional pin and hanger 

assembly defects that were identified in the report were corrosion, fatigue cracking and 

coating failures. Various retrofit and replacement options were discussed as summarized 

below: 
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• Catcher beam system. The catcher beam system is added to the structure to carry 

a load if the pin and hanger assembly fails. The gap between the girder and the 

catcher beam should be kept as small as possible to reduce impact. Auxiliary 

neoprene bearings on the catcher beam system could be provided to reduce impact 

effects should failure occur;  

• Removal and replacement of pin and hanger assembly with bolted splices. This 

approach requires a structural analysis to determine if other members can support 

continuous girders instead of cantilevered and drop-in spans. Analyses should 

investigate both positive and negative moment regions in the superstructure; and 

• Replacing the pin and hanger assembly with a structural grade stainless steel pin 

and hanger, which results in reduction in corrosion mitigation. 

In 2014, the Minnesota Department of Transportation published a study on a 

rehabilitation of the Kennedy Bridge over the Red River. This study focused on 

rehabilitation alternatives and showed that its pin and hanger assemblies had sufficient 

load carrying capacity. However, failure of multiple hangers could result in failure of the 

structure (MnDOT, 2014). Part of this study focused on increasing reliability of a bridge 

containing a pin and hanger assembly. It was reported that pin and hanger assembly 

retrofit and replacement options can include removing existing pins and hangers, re-

machining pin holes to accommodate new pins as required to remove corrosion and 

pitting and the installation of new, higher strength pins and reinforced hangers. It was 

stated that each girder must be temporarily supported while work is occurring and that 

temporarily supports must be able to accommodate hanger fit up.  
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2.4 Computational Studies  

The number of computational studies examining steel, multi-beam, and bridge 

behavior is quite extensive. However, a smaller number of studies have been completed 

that strictly focused on the behavior of isolated girders and of girders containing pin and 

hangers using computational (i.e. finite element) models. These studies were completed 

to predict accurate analysis results with field or lab test results and studies are 

summarized below. 

2.4.1 Isolated Girder Modeling 

Finite element modeling techniques for the steel bridge girder was studied by 

(Richardson, 2012) for predicting the cracks. Study states that providing constraints 

between the components is considerably important for the accurate model to obtain a 

detailed results. In this study, for modeling the girder, tie constraints were used and these 

constraints protects deformation equally between master and slave surfaces. The tie 

constraints were applied to prevent the sliding and intersection between the parts and 

provides node-to-node connection. Analysis time reduces when both slave and master 

surfaces were partitioned equally and master surfaces have courser mesh than the slave 

surface. Cracks were modeled using XFEM (Extended Finite Element Analysis). 

Torsional behavior of reinforced concrete trough girder was studied by (Shang & 

Guo, 2012) using ABAQUS. In this study, embedded constraint were used to embed 

rebars into the concrete slab. In embedded constraint, the translational degrees of freedom 

of the node on the rebars were constrained to the respective interposition nodes of the 

corresponding degree of freedom of the concrete deck. Study concluded that finite 
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element analysis can be a better method to mimic the torsional behavior of reinforced 

trough girder. 

2.4.2 Pin and Hanger Modeling 

Computational investigation of pin and hanger assembly was studied by 

(Achenbach, 2008) to examine the stress analysis, thermal effects, and elastic plastic 

analysis by modeling elements using 8-node, reduced-integration, brick elements in 

ABAQUS. Contact between the pin and hanger assembly components were modeled 

using surface-to-surface contact between the elements in the assembly. Accurate results 

indicated that the design calculations are in close agreement with FEA results which 

confirms that the model with proper constrained and selection of the contact algorithm is 

very important.  

2.5 Summary 

This chapter documented the results of a literature search that focused on research 

related to retrofit and replacement of pin and hanger assemblies, prevailing practices and 

procedures used for retrofit and replacement along with a summary previous efforts used 

to computationally studies. These efforts indicated are summarized below. 

Retrofit options: 

• Bolted Splices -Provide continuity by removing the existing pin and hanger 

assembly and splicing the flange and web at that location following appropriate 

AASHTO Specifications (AASHTO Standard Specifications for Highway 

Bridges, and AASHTO LRFD Bridge Design Specifications) and/or relevant state 

specifications.  
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Rehabilitation options: 

• Link Slab - Providing a link slab is a rehabilitation option that would remove 

expansion joints by linking two adjacent girder sections together using a 

continuous slab design. This approach would render the deck continuous while 

maintaining some level of rotational freedom for the girders.  

 

• Catcher Beam System - A secondary catcher beam system could be added below 

the location of the pin and hanger assembly. This system should provide to carry 

loads if the existing pin and hanger fails. The use of auxiliary neoprene bearings 

on the catcher beam system was recommended to use, reduce any impact effects 

should failure occur. 

Removal and replacement option: 

• New Pin and Hanger Assembly - In this option existing pins and hangers are 

removed and replaced with new, higher strength pins and reinforced hangers. It 

was recommended to use stainless steel pins and hangers according to AASHTO 

LRFD Bridge Design Specifications (Article 6.4.7), this could results in reduction 

in corrosion failure.  

Finite element techniques: 

• Few methods have been reviewed and considered to develop a FE model that 

would applicable for this research.   
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Chapter 3   U.S. State Departments of Transportation Survey 

3.1 Survey Objectives 

In December 2015 a survey was sent to 50 State Departments of Transportation 

(DOTs). The objective of the survey was to assemble additional information on variety of 

topics related to pin and hanger retrofit and replacement options. These topics included: 

a) types of steel bridges that contain pin and hanger assemblies; b) pin and hanger 

assemblies that need retrofitted and/or replacements; and c) designs, procedures, or 

criteria for retrofit and/or replacements. Of the 50 surveys, 38 were received as of March 

2016. Results from these surveys were examined to: a) document current practices and 

level of success concerning pin and hanger assembly retrofit and replacement options; b) 

identify practical application of retrofit and replacement options documented in the 

literature; and c) identify new or innovative retrofit and replacement options that have not 

yet been recorded in the literature. 

The survey was divided into three sections. Section 1 (General) collected general 

information related to types of steel bridges that contain pin and hanger assemblies. 

Section 2 (Options) intended to identify various options, criteria and procedures related to 

retrofit and replacement of pin and hanger assemblies in each of the states. In addition, 

data related to retrofit and replacement options that have been implemented and 

programmed for future was requested. Section 3 (Future Contact) requested that 

additional information related to pin and hanger assemblies be provided, information that 

included: to share the respective state DOTs that have developed their own criteria and 

procedures for retrofits and /or replacements.  A copy of the survey is included in 

Appendix A and responses are provided in Appendix B. 
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3.2 Survey History and Timeline 

The questionnaire was designed by BOSR with technical input being provided by 

UNL Civil Engineering personnel assigned to the project and NDOT. Prior to the initial 

mailing, NDOT notified and encouraged State Bridge Engineers to complete the survey. 

The initial mailing occurred in mid-December 2015. Non-responders were mailed survey 

packets a second time in early January 2016. Completed surveys were collected by BOSR 

through early March with findings summarized and provided to UNL Civil personnel. 

3.3 Findings of the Survey 

Surveys that were completed and returned were initially examined by BOSR, who 

performed data analysis, processing and filtering. BOSR’s used Statistical Package for 

the Social Sciences (SPSS) software for processing and documenting the dataset. BOSR 

personnel assigned to the project, in turn, analyzed each survey question in detail and 

prepared a report. As stated earlier, of the 50 State Bridge Engineers who were sent the 

survey, 38 were completed and returned (Figure 3.1), a 76% response rate based on the 

American Association for Public Opinion Research’s (AAPOR) standard definition for 

Response Rate 2 (RR2), which counts partial interviews as respondents (AAPOR, 2015). 

The following sections summarize survey responses to each question. 
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Figure 3.1 Geographic representation of states that responded to the survey 

3.3.1 Question 1 

Do you have steel bridges that contain pin and hanger assemblies? 

Figure 3.2 and Figure 3.3 show that, of the 38 states who answered the question, 

35 have steel bridges that contain pin and hanger assemblies and 3 states have steel 

bridges without pin and hanger assemblies. 
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Figure 3.2 Visual representation of responses to question 1 

 

 

 

Figure 3.3 Geographic representation of state responses to question 1  

92% 

8% 

Steel bridges with pin and hanger assemblies 

Steel bridges without pin and hanger assemblies 
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3.3.2 Question 2 

Does your agency view the pin and hanger assemblies as components that need to be 

retrofitted and/or replaced? 

Figure 3.4 and Figure 3.5 shows state agencies were nearly evenly split between 

viewing pin and hanger assemblies as components that need to be retrofit and/or replaced 

and feeling that these assemblies do not need retrofitted and/or replaced. A complete list 

of reasons for non-action can be found in Appendix B. 

 

 

Figure 3.4 Visual representation of state response to question 2 

 

 

47% 
53% 

Does not need retrofitted and/or replaced  Need retrofitted and/or replaced 
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Figure 3.5 Geographical representation of states responded to question 2 

 

Question 2(a) 

If yes, please provide the number of retrofit and/or replacement options that you have 

implemented or programmed for each category below. If you have implemented or 

scheduled retrofit and/or replacement options other than those listed below, please 

describe and provide the number for each option in the additional table rows. 

Figure 3.6 shows that, for those that view retrofitting and/or replacement as 

necessary, most states have implemented a secondary system, such as a catcher beam 

(79%). Few responses indicated that replacements had taken place using new pin and 

hanger assemblies (43%) or bolted splices (33%). Despite fewer states implementing 

replacement using new pin and hanger assemblies or bolted splices, nearly one-quarter of 

states who responded to the question have new pin and hanger replacement projects 
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planned for the future (21%), while 8% have replacements with bolted splice repairs 

planned. Details are found in Table 3.1. 

Other retrofit and/or replacement options implemented or planned by survey 

respondents included: (a) replacing the bridge or entire superstructure with concrete 

girders; (b) supporting the assembly using an “under-running bearing beam,” which is 

akin to a catcher beam; and replacing the assembly with a “ship lap joint”. Complete 

detail on these retrofit and replacement options can be found in Table 3.2 and Appendix 

B. 

 

 

Figure 3.6 Visual representation of state response to question 2 (a) 
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Table 3.1 Implemented and programmed retrofit and/or replacement options 

 

 

*Acronym definitions in Appendix C.  

 

 

  

Number 
implemented

Number
programmed 

Number 
implemented

Number
programmed 

Number
 implemented

Number
programmed 

Arkansas State 
Highway and Transportation 

Department 
1

Delaware DOT 1

Illinois DOT 0 0 92 92 0 0

Indiana DOT 1 0 0 0 0 0

 Maine DOT 4 0 0 0 1 0

 Massachusetts DOT 2 0 0 0 0 0

Minnesota DOT 1 0 5 0 2 0

Mississippi DOT 1 1

Missouri DOT 20 0 30 4 0 0

New Hampshire DOT 0 8

North Carolina DOT 1 0 0 0 0 0

Oklahoma DOT 1 0 0 0 0 0

Tennessee DOT 1 0 0 0

Utah DOT 0 5 2 3

West Virginia DOT 3 0 0 0 0 0

Wyoming DOT 0 0 1 0 0 0

Catcher beam
 system

Replace with 
P & H assembly

Replace with
bolted splice

Retrofit/replacement options

DOTs



27 
 

 
 

 

Table 3.2 Other implemented and programmed retrofit and/or replacement options 

 

*Acronym definitions in Appendix C.  

 

 

 

 

 

DOTs Other options Number 
implemented 

Number 
programmed

Maine DOT Superstructure replace 1 1

Massachusetts  DOT
Ship lap joint.
Replace P & H assembly with 
under running beam

0

1

1

0

Mississippi DOT Replace bridge 1 3

Nebraska Department of Roads Replace bridge or superstructure 50/102

North Carolina DOT Replace with concrete girder 0 1

Virginia DOT Replace bridge

Wyoming YDOT Suspension hanger/seismic 1 0

Other, Specify
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3.3.2.1 Ship Lap Joint  

The Massachusetts DOT has utilized a different type of pin and hanger 

replacement option they refer to as a “ship lap joint.”  In this option, which performs in 

similar fashion to the original pin and hanger assembly, bearings were used to carry loads 

at the joint location, with girder sections being modified to act as short “cantilevers” that 

transfer loads across the joint in shear and bending. This detail is depicted for a specific 

project, the I-91 viaduct in Springfield, Massachusetts, in Figure 3.7 and Figure 3.8. 

 

 

Figure 3.7 Ship lap joint at bearing at joint locations (Mass DOT, 2014) 
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Figure 3.8 Ship lap joint detail (Mass DOT, 2014) 

3.3.3 Question 3 

For the retrofits and /or replacements you indicated above as implemented or 

programmed, did you follow any of the designs, procedures, or criteria below? 

The survey indicated that multiple designs, procedures, and/or criteria are used to 

complete pin and hanger assembly retrofit or replacement. Nearly all state bridge 

engineers who answered the inventory question reported using AASHTO Standard 

Specifications for Highway Bridges criteria and procedures, while some states use 

AASHTO LRFD Bridge Design Specifications criteria and procedures as shown in Figure 

3.9 and Figure 3.10. Five states reported using their own developed criteria and 

procedures. 
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Figure 3.9 Geographical representation of federal design Specification usage 

 

Figure 3.10 Visual representation of state responses to question 3 

3.3.4 Question 4 

Have you developed your own criteria and procedures for retrofits and/or replacements? 

One-quarter of states in the (24%) reported developing their own criteria and 

procedures for retrofits and /or replacements (Figure 3.11 and Figure 3.12). More states 
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use their own procedures in conjunction with the AASHTO Standard Specifications for 

Highway Bridges. Additional details are found in Table 3.3, Table 3.4 and Appendix B. 

 

Figure 3.11 Visual representation of states response to question 4 

 

 

Figure 3.12 Geographical representation of states that have developed own criteria and 

procedures 

24% 

76% 

Developed Not developed 
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Table 3.3 Design Specifications 

 

 

Table 3.4 Developed own criteria & procedures. 

 

 

*Acronym definitions in Appendix C.  

 

  

Total number of
States

11

16

5

Design 
Specfications 

AASHTO LRFD criteria and procedures

AASHTO Standard Specfication criteria and procedures

Developed own criteria and procedures 

DOTs Comments

Arkansas State Highway and 
Transportation Department 

Internally developed.

Illinois DOT It is part of our structural services manual. Bureau of Bridges and Structures. 

Mississippi DOT
Our bridge replacement program prioritizes bridges with pins & hanger high enough to 
systematically replacethe bridge with another (usually concrete) bridges.

Missouri DOT No set criteria. Details are case-by-case.

Utah DOT Is not documented.

Developed own criteria & 
 procedures for retrofits/replacements
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3.3.5 Question 5 

Does your agency view the pin and hanger assemblies as components that need no 

further action at this time? 

Of the 32 state bridge engineers who answered the question, half reported that 

their agency views pin and hanger assemblies as not needing further action at this time as 

shown in Figure 3.13 and Figure 3.14. Reasons for non-action included: a) bridges being 

in good condition and functioning properly; b) routine inspections and adequate 

maintenance; and c) a lack of concern about these assemblies. A complete list of reasons 

for non-action can be found in Table 3.5 and Appendix B. 

 

Figure 3.13 Visual representation of states response to question 5 

 

44% 

56% 

Need further action Does not need further action 
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Figure 3.14 Geographical representation of states need or not need for further action 
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Table 3.5 Reasons for pin and hanger assembly non-action 

  

 

*Acronym definitions in Appendix C. 

DOTs Comments

Alaska DOT & PF
Pin & hangers are functioning properly. 
No pack rust present.

Colorado DOT
No section loss due to corrosion &
 no crack on hanger.

Delaware DOT
We are not as concerned with pin & hanger assemblies for multi-beam bridges. 
Pin & hanger assemblies on truss bridges are treated as a fracture critical member and 
are scrutinized more.

Iowa DOT
Proper inspection should identify deficiencies in time to address them without impacts to 
public safety.

Louisiana DOT Bridges are in good condition.

Montana DT
Pins and hangers are usually inspected every 2 years and UT inspected every 4 years. 
With our relatively dry climate and large temperature swings the p & h assemblies usually 
stay moving as designed with little rust impact.

Minnesota DOT
We will include repairs or improvements to pin and hanger elements as conditions 
warrant. We have not developed projects solely on pin and hanger detail unless condition 
justifies.

North Carolina DOT Inspection reports indicate the condition of the pin and hang is “good”.

Nebraska Department 
of Transportation 

All bridges are inspected by certified inspectors at least every  2 years and all bridges that 
this agency manages directly have redundant secondary systems should failure occur.

Nevada DOT We haven't identified problems with the hangers, aside from minor corrosion.

Ohio DOT We retrofit when they are deteriorated.

Oklahoma DOT We used ultrasonic inspection on our pins. No problems were found.

Oregon DOT
 We inspect & monitor p & h's and only r & r  or provide supplemental support when their 
condition indicates a need.

Pennsylvania DOT
We have retrofitted the inventory of 2 girder and truss bridges with 
suspended assemblies.

South Dakota DOT
These assemblies are part of annual NBIS inspections and the pins get a periodic NDT 
inspection   as well.

Virginia DOT We evaluate each one individually.

Washington State DOT Routine inspections and painting when needed.

West Virginia DOT We monitor during routine inspections and provide action as needed

Agency view P & H assemblies that 
 need no further action at this time 
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3.4 Summary 

The State DOT survey produced the following information: 

• States who responded were roughly split between seeing such retrofits and 

replacements as necessary and unnecessary; 

• Pin and hanger assemblies are most commonly found bridges having four and 

more girders (86%); 

• Implementing a secondary system, such as a catcher beam (79%), is a more 

widely used retrofit and/or replacement option than replacing with either a new 

pin or hanger assembly(43%) or with bolted splices (33%), although at the time of 

the inventory study no future secondary system retrofits were programmed; 

• Nearly all of the states utilize AASHTO Standard Specifications for Highway 

Bridges (94%),while fewer states use the AASHTO LRFD Bridge Design 

Specifications (65%),and some states developed  their own criteria and 

procedures; and 

• Additional retrofit and/or replacement options that were revealed by the survey 

included replacing with a “ship lap joint,” providing an “under-running bearing 

beam,” and, as expected, replacing the entire bridge or superstructure. 
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Chapter 4 Flowcharts Summarizing Retrofit and/or Replacement 

Options 

4.1 Introduction 

The objective of this chapter is to provide flowcharts that describe steps 

associated with completing feasible options associated with addressing pin and hanger 

assembly retrofit and/or replacement. Approaches for which flowcharts are provided are 

categorized as retrofit, rehabilitation, or removal and replacement options as shown in 

Figure 4.1. The intention is that these flowcharts will provide an organized decision-

making tool that would assist engineers with assessing options and their consequences 

when pin and hanger assembly retrofit and/or replacement are being considered. As 

appropriate, each cell in the flowcharts refers to corresponding articles in appropriate 

state and federal design specifications. These include the AASHTO Standard 

Specifications for Highway Bridges, the AASHTO LRFD Bridge Design Specifications 

and NDOT’s Bridge Office Policies and Procedures (BOPP) manual.  
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Figure 4.1 Flowchart demonstrates decision – making process 
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4.2 Retrofit and/or Replacement Options Process Summaries  

This section summaries retrofit, rehabilitation and, removal and replacement 

options based on the literature review and survey of DOTs and provided along with pros 

and cons of each respective options. Each section organized into brief summary followed 

by pros, cons and flowcharts with description. 

4.2.1 Replace with Bolted Splices 

This section summarizes the option that involves removing pin and hanger 

assemblies and replacing them with bolted splices. Items that are discussed and presented 

in the corresponding flowchart incorporate relevant information from the literature 

search, DOT survey and appropriate federal and state specifications. 

When a major retrofit of a bridge structure is programmed, pin and hanger 

assemblies should be examined for elimination. The pin and hanger assembly would be 

replaced with continuity web and flange splices and existing deck expansion joints at the 

hinges would be removed and replaced to make these locations continuous. By making 

the drop-in section spans locations to continuity support the demand of the girder 

changes, so demand should be recalculated. While the pin and hanger assembly is being 

replaced with bolted splices, the girders should be temporarily supported from below or 

above the deck.  

The state DOT survey produced a comment related to replacing pin and hanger 

assemblies with bolted splices (Appendix B). For drop-in section spans, the method 

implemented to eliminate the assemblies completely and replace with bolted splices 
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involved installation of counterweights at the ends of the span. A flow-chart detailing 

general steps involved in the process is located in Figure 4.2. 

Pros: 

• Pin and hanger assembly is removed and continuity is provided through splices, 

possibly eliminating non-redundancy and making the structure more efficient; and 

• Expansion joints eliminated to reduce and mitigate superstructure corrosion.  

Cons: 

• Changing the structural system from containing a drop-in span to being 

completely continuous necessitates a re-evaluation of superstructure behavior and 

capacity; and 

• Higher construction cost.  
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Figure 4.2 Bolted splice design process 
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As shown in Figure 4.2, when considering replacing the assemblies with bolted 

splices, the process starts with following steps. While replacing the pin and hanger 

assemblies with bolted splices, the girder should be supported by temporarily support 

beam and this support should be provided according to Standard Specifications, Division 

II-Construction (Article 3). The portion of the deck along the expansion joints are 

removed as per the design dimensions of the splices according to Standard Specifications, 

Division II-Construction (Article 2.3.3). The portion of the girder section near the pin and 

hanger location, pin and hanger assembly, and the expansion joints are removed 

according to Standard Specifications, Division II-Construction (Article 2). The drop-in 

span is completely converted into continuity support which is provided through bolted 

splices connection according to Standard Specifications, Division I-Design (Article 

10.18) and BOPP Specifications (Article 3.4.2). Here demand of the girder changes, so 

demand should be recalculated. Provide shear connectors along the newly constructed 

girder, shear connectors are designed to provide a composite action between the slab and 

the girders according to Standard Specifications, Division I-Design (Article 10.38.2) and 

BOPP Specifications (Article 3.4). Place the deck according to BOPP Specifications 

(Article 3.1.1). Finally, after construction temporarily support should be removed 

according to Standard Specifications, Division II-Construction (Article 2). 

4.2.2 Link Slab 

This section summarizes the option that involves removing expansion joints and 

replacing them with link slab. Items that are discussed and presented in the corresponding 

flowchart incorporate relevant information from the literature search. 
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The deck expansion joint is a significant component in the functioning of bridge 

structures (Chang & Lee, 2002). Deck expansion joints accompany the pin and hanger 

assemblies. The elimination or reduction of expansion joints reduces costs. One identified 

option that would help eliminate deck joints is via providing “link slabs” at joint 

locations. Figure 4.3 referred from (Caner & Zia, 1998). A flow-chart detailing general 

steps involved in the process is located in Figure 4.3.  

  

Figure 4.3 Link Slab detail 

Pros: 

• Reduced construction and maintenance of bridge via reduction of joints, moisture 

intrusion and subsequent corrosion control.   

Cons: 

• Continuity achieved by providing link slab influences shrinkage, creep and 

thermal stress which causes structural damages; and 

• Continuous slab has high stresses developed due to repeated load will lead to 

fracture and cracking of the structures along the slab. 
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Figure 4.4 Link slab design process. 

 

As shown in Figure 4.4, when considering rehabilitation with link slab, the 

process starts with following steps according to (Caner & Zia, 1998).  While replacing 

the pin and hanger assembly with a link slab, the girder should be supported by 

temporarily support beam and this support should be provided according to Standard 
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Specifications, Division II-Construction (Article 3). Expansion joints and a portion of the 

concrete deck along the expansion joints are removed according to Standard 

Specifications, Division II-Construction (Article 2). Debond the concrete deck on each 

side of the beam at least 5% of the span length according to AASHTO LRFD 

Specifications, (Article 5.11.4.3) along the debonded region, the shear connectors are 

removed to prevent composite action. Further, the top flange of the girder is provided 

with debonding mechanism in the form of standard roofing tar paper which acts as a 

water proofing material. Provide reinforcement steel lap splice for continuity of deck 

reinforcement according to Standard Specifications, Division I-Design (Article 8.32.1). 

Join the adjacent beams with a continuous concrete deck according to AASHTO LRFD 

Specifications (Article 9) and BOPP Specifications (3.1.1). Finally, after construction 

temporarily support should be removed according to Standard Specifications, Division II 

-Construction (Article 2). 

4.2.3 Catcher Beam System 

This section summarizes the option that involves rehabilitation of pin and hanger 

assemblies with catcher beam system. Items that are discussed and presented in the 

corresponding flowchart incorporate relevant information from the literature search, DOT 

survey and appropriate federal and state specifications. A secondary catcher beam system 

is provided to carry loads across the expansion joint when the existing pin and hanger 

fails at the location of the pin and hanger assembly. The retrofit should be detailed to 

resist applied load and the gap between the girder and the catcher beam must be kept as 

small as possible to the limit impact loading. To reduce impact, the use of auxiliary 
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neoprene bearings on the catcher beam is also recommended (PennDOT, 2010). A flow-

chart detailing general steps involved in the process is located in Figure 4.7. 

 

Figure 4.5 Catcher beam system. (Connor et al. 2005) 

 

Figure 4.6 Catcher beam system representative detail 
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Pros: 

• A catcher beam system provides a mechanically independent alternate load path 

to prevent a sudden loss of span when a pin and hanger assembly is deemed 

insufficiently reliable to carry required loads. 

Cons: 

• This is a temporary system, which has a shorter service life due to fatigue related 

problems in catcher beam system, and replacement needs to be considered.  

 

Figure 4.7 Catcher beam design process 
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As shown in Figure 4.7, when considering retrofit of pin and hanger assemblies 

with catcher beam, the design process is explained below. Catcher beam system design 

consists of two components: design of the beam and the connecting elements. 

• Design of beam: The web and flanges of the beam is designed according to 

Standard Specifications, Division I-Design (Article 10.34.2 & 10.34.3). Stiffeners 

are designed according to Standard Specifications, Division I-Design (Article 

10.34) and BOPP Specifications (Article 3.4). 

• Connecting elements: For connecting the catcher beam and the supported girder, 

bearing systems are used and this bearing system is designed according to 

Standard Specifications, Division I-Design (Article 14). For connecting the 

catcher beam and the supporting girder, bearing systems and tension systems like 

bolts are designed according to Standard Specifications, Division I-Design 

(Article 14 & 10.24) and BOPP Specifications (Article 3.5 & 2.2.3). 

 

4.2.4 Replace with Pin and Hanger Assembly. 

This section summarizes the option that involves removing pin and hanger 

assemblies and replacing them with new similar pin and hanger assembly. Items that are 

discussed and presented in the corresponding flowchart incorporate relevant information 

from the literature search, DOT survey and appropriate federal and state specifications.  

When pin and hanger assembly is found to be frozen, they should be considered 

for examination and should be replaced with new pin and hanger assembly. The hanger 

plates and pins should be designed according to AASHTO Standard Specifications for 

Highway Bridges. While replacing the new pin and hanger assembly, the suspended span 
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should be temporarily supported from below or above the deck. FHWA recommended to 

use new stainless steel pins and hangers according to AASHTO LRFD Bridge Design 

Specifications (Article 6.4.7), which reduces corrosion damage. Higher strength pins and 

larger hanger cross sections are also recommended to use so that by replacing existing 

assemblies with new, more durable components the assembly would be strengthened and 

maintenance requirements could be reduced.  (Sirianni & Tricini, 2010). 

From the DOTs survey, the approach of replacing new pins and hangers is 

programmed in more states than any other approaches. A flow-chart detailing general 

steps involved in the process is located in Figure 4.8. 

Pros: 

• Replacement with similar design can be cost efficient and cause minimal 

disruption to traffic; and  

• By using stainless pins and hangers, corrosion could be controlled. 

Cons:  

• Still provides non-redundant system; and 

• Pin and hanger assembly needs regular ultrasonic inspection every two years. So 

there is a higher inspection and maintenance cost. 

  



50 
 

 
 

 

Figure 4.8 New pin and hanger assembly design process 

As shown in Figure 4.8, when considering replacing the assemblies with new 

assemblies, the process starts with the following steps. When replacing the pin and 

hanger assemblies with new similar design section, the girder should be temporarily 

supported and this support should be provided according to Standard Specifications, 

Division II-Construction (Article 3). Removal of the pin and hanger assembly is carried 
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out according to Standard Specifications, Division II-Construction (Article 2). Then 

provide a new pin and new hanger according to Standard Specifications, Division I-

Design (Article 10.25). Providing stainless steel pins and hangers are recommended to 

use and these are designed according to AASHTO LRFD Specifications (Article 6.4.7), 

which reduces corrosion damage. Finally, after construction, temporarily support beam 

should be removed according to Standard Specifications, Division II- Construction 

(Article 2). 

4.3 Summary 

This chapter summarized and provided flowcharts that describe steps associated 

with completing feasible options associated with addressing pin and hanger assembly 

retrofit and/or replacement. The intention was that the described flowcharts will provide 

an organized decision-making tool that would assist bridge engineers with assessing 

options and their consequences when pin and hanger assembly retrofit and/or 

replacement are being considered.  The respective flowcharts in this chapter are designed 

based on the relevant information from the literature search, DOT survey and appropriate 

federal and state Specifications. These included the AASHTO Standard Specifications for 

Highway Bridges, the AASHTO LRFD Bridge Design Specifications and NDOT’s Bridge 

Office Policies and Procedures (BOPP) manual. 
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Chapter 5   Finite Element Modeling and Analysis 

5.1 Bridge Specifications 

Three-dimensional finite element modeling (FEM) of an in-service, single bridge 

girder containing pin and hanger assemblies was completed to assess the influence of 

selected retrofit and replacement options on the levels of continuity. Seven FEA models 

were created and analyzed under the influence of self-weight and superimposed dead 

loads from the barriers and wearing surface; and resulting moment and shear diagrams 

were compared. Models included the original pin and hanger detail and the following 

retrofit and/or replacement options:  

• Bolted splice 

• Link slab 

• Catcher beam systems 

The selected girder was taken from a 3-span, continuous, plate girder bridge 

having an overall length of 65.00 meters (214 feet).  This bridge is located in Lincoln, 

Nebraska and was built in 1961. The model focused on an exterior (fascia) girder and an 

elevation view of the girder is shown in Figure 5.2. NDOT design drawings were used to 

create the models, with the original girder curved haunch shown in Figure 5.2 being 

replaced by a linear haunch. Figure 5.3 provides details on the pin and hanger assembly.  
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Figure 5.1 Modeled bridge 

 

 

Figure 5.2 Original girder elevation 

Pier 1
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    Figure 5.3 Pin and hanger assembly 

5.2 Finite Element Model 

The selected girder was modeled linear elastically (6 models) with small 

deformations using ABAQUS 6.13 (ABAQUS/CAE, 2013). ABAQUS was selected 

because it is commonly used to model steel bridge systems and, as such, has been proven 

to effectively model bridge girder response in the literature (Achenbach, 2008; Issa-Ei-

Khoury et al. 2014). These studies were completed to predict accurate analysis results 

with field or lab test results. Modeling details and analysis methods are briefly discussed 

in the following sections.  

5.2.1 Discretization, Element Selection and Interaction 

The girder’s flanges, web and stiffeners were discretized as 4-noded, reduced 

integration, shell elements (S4R). S4R elements are commonly used to model structural 

components with thin elements as they are computationally inexpensive (Bathe K.J et al. 

2000; Laulusa et al. 2006). The pin and hanger assemblies, tension rods (for the catcher 

beam retrofit), and deck were modeled using 8-noded, reduced integration, brick 

elements (C3D8R). Reinforcement in the deck was modeled using 2-noded, linear, beam 

elements (B31) that were embedded in the deck brick elements using embedded region 

Cantilever Span

Suspended Span

Pin and Hanger Assembly

0.18 m
(7 in)

0.04 m
(1.5 in)

0.80 m
(32 in)
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constraint (Gli & Bayo, 2008). Composite action between the girder and the deck was 

accomplished by node-to-node coupling.  

The ABAQUS TIE constraint was used to couple the pin to the hanger plates. 

Deck reinforcement was coupled to the deck brick elements using the embedded region 

constraint where nodes are directly coupled with the host element (deck).  

The model was discretized using a structured meshing technique with the selected 

mesh density obtained from the literature it was found that for a height H, an element size 

should be of H/10 is sufficient for the study of moment and forces of the girder response   

(Bapat, 2009). This resulted in 4 elements across the girder flanges, 10 elements through 

the web depth, and with nodal lines positioned along the length so that the element aspect 

ratios were close to 1:1. 

5.2.2 Geometric and Material Properties. 

All steel was nominally assumed to be ASTM A36 (ASTM A36/A36M Standard 

Specification for Carbon Structural Steel) with Young’s modulus being 200 GPa (29000 

Ksi), a Poisson’s ratio of 0.3 and a density of 7700 kg/m3 (0.286 lb/in3). The deck slab 

was been transformed to an equivalent area of steel using a modular ratio with modulus 

of elasticity of concrete being 25 Gpa (3600 Ksi). Engineering stress/strain relationships 

from the literature were converted into true stress/strain relationships and used for 

ABAQUS modelling. For all retrofit to replacement options results indicated that the 

stresses are below the yield stress and, as a result, the ultimate stress state was not 

considered, as expected when subjected only to dead loads. However, for the frozen pin 

and hanger condition, analysis results indicated that stresses induced in the hanger from a 
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combination of axial and flexural stresses could be appreciably higher than yield, 

potentially violating linear elastic assumptions. 

 

5.2.3 Boundary Conditions and Applied Loads 

Based on a review of site plans coupled with a site visit, boundary conditions for 

the girder model were assumed as a pinned support at the pier 1 and remaining were 

roller supports. For the sake of the analytical study, loads consisted of girder self-weight 

(AASHTO DC1) and superimposed dead loads (AASHTO DC2 and DW), which were 

uniformly applied along the girder (AASHTO LRFD, 2014).  

5.2.4 Unique Modeling Aspects. 

In addition to modeling techniques described in the previous section, certain 

analyses required application of additional, unique modeling techniques in place of, or in 

addition to, the pin and hanger assembly to effectively mimic the structural behavior. 

These techniques are summarized below. 

5.2.4.1 Pin and Hanger Assembly 

The pins and hanger plates were modeled using 8-noded, reduced integration, 

brick elements (C3D8R) elements. Solid-to-shell coupling was used to couple these solid 

elements to girder shell elements (Figure 5.4). Results indicated that the stresses are 

below the yield stress, as expected when subjected only to dead loads. 
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Figure 5.4 Pin and hanger assembly model 

5.2.4.2 Link slab 

The link slab case included in the pin and hanger assembly items discussed in 

Chapter 2 and Chapter 4 modeled by utilizing 8-noded, reduced integration, brick 

elements (C3D8R) for the transformed section of concrete deck and was modeled linear 

elastically with small deformations. Reinforcement rebars using 2-noded, linear, beam 

elements (B31) for the rebar.  The interactions shown in Figure 5.5 were used to render 

the link slab continuous over the assembly. The link slab was minimally reinforced of  

0.002ρ based on moment induced in the link slab due to end rotation with respect to deck 

thickness (Lepech & Li, 2009) Figure 2.4. Results indicated that the stresses are below 

the yield stress. 

 

 

Girder_ pin: Shell-to-solid coupling 

Pin _hanger: Tie Constraint 
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Figure 5.5 Link slab 

5.2.4.3 Catcher beam system 

The modeled catcher beam system was based on the previous NDOT projects that 

utilized this retrofit.  The system was modeled by utilizing 4-noded, reduced integration, 

shell elements (S4R) for I-beams. Tension rods were modeled using 8-noded, reduced 

integration, brick elements (C3D8R) as shown in 	

Deck_girder: Node-to-node  
coupling 

Link slab_deck:  
Surface–to-surface: Tie Constraint 
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Figure 5.6

.  

A catcher beam system provides a mechanically independent alternate load path 

to prevent a sudden loss of span when a pin and hanger assembly is deemed insufficiently 

reliable to carry required loads. Three models were generated at the two pin and hanger 

locations (Figure 5.7), with catcher beams provided at each location and with them 

simultaneously provided at both locations. Providing catcher beam at one location (north 

or either south) is feasible option by assuming assembly as failed at either of these 

locations. But, in this study separate models were generated for north and south location 

due to the unsymmetrical in span length. Providing catcher beam at both locations is not a 

feasible option because it shows that both assemblies has failed but modeled to check 

how it behaves having catcher beams at both locations.  
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Figure 5.6 Catcher beam system 

 

 

 

 

  

Catcher beam I-beam: Tie constraint  
Tension rods_ I-beams: Shell-to-solid 

coupling 
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a) North 

 

 

b) Both 

 

c) South 

 

Figure 5.7 Modeled catcher beam cases  

 

5.2.4.4 Frozen Pin and Hanger  

The frozen pin and hanger case, representing severe corrosion and accompanying 

pack rust, was included in the original pin and hanger assembly by assuming pins were 

nonfunctional. The hanger plates were modeled using 8-noded, reduced integration, brick 

elements (C3D8R). Surface-to–surface, tied constraints were used to couple the hanger 
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plates to the girder (Figure 5.8). The analyses performed for the previously described 6 

models were all linearly elastic, an assumption confirmed upon review of the results. 

However, for the frozen condition, analysis results indicated that stresses induced in the 

hanger from a combination of axial and flexural stresses could be appreciably higher, 

potentially violating linear elastic assumptions.  This study was limited to dead load 

analyses, so the findings for the locked hanger condition are preliminary and limited to 

examining the effect of frozen pin and hanger assemblies on continuity.  

 

                                   

Figure 5.8 Frozen pin and hanger condition 

 

 

  

 

Surface-to-Surface Tie Constraint 
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5.3 Analysis Results and Comparisons 

This section examines predicted behavior for modeled retrofit and replacement 

options and compares it against the bolted splice replacement option, which achieves 

complete continuity. Non-dimensionalized moments and shears were compared at the 

adjacent piers and at the maximum positive moment location along the girder. Results for 

combined dead load comparisons are shown in Figure 5.9 to Figure 5.13 and are 

summarized in Table 5.1, to Table 5.4. Individual dead load comparisons for DC-1, DC-2 

and DW are found in Appendix E. 

 

5.3.1 Comparisons 

As stated earlier, behaviors of each case were discussed in Chapter 2   Literature 

Reviewand Chapter 4 Flowcharts Summarizing Retrofit and/or Replacement Optionsand 

was accomplished via FEM. Results from the comparisons of models are non-

dimensionalized with respect to the bolted splices with that of the cases including the 

original pin and hanger, the link slab, the catcher beam systems and, the pin locked 

condition for the largest negative moments at adjacent piers, see Figure 5.9 to Figure 

5.14. In Figure 5.13 the aforementioned comparison is performed for associated positive 

maximum moment. 

5.3.1.1 Largest negative moments at adjacent piers 

Pier 1 

As indicated in Figure 5.9, the retrofit options providing the highest level of continuity 

when compared against the bolted splice for each model were presented in Table 5.1. 
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When looking at the non-dimensionalized ratios along the girder, the ratio for dead loads 

at pier 1 and pier 2 are nearly the same for the pin and hanger assembly (0.31-0.32), the 

catcher beam system (0.31-0.35), and the link slab (0.41-0.36) (Table 5.1). Similarly, at 

maximum positive moment location, the original pin and hanger assembly, the catcher 

beam systems are 1.32 and 1.30 and the link slab is 1.12. With regard to the shear 

diagram, indicates that the shear force plays a very negligible role when compared with 

the moment. Example of non-dimensionlized equation shown in the below section. 

 

 

 

Figure 5.9  Non-dimensionalized moment diagrams for dead loads at pier 1  
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Figure 5.10  Non-dimensionalized shear diagrams for dead loads at pier 1 

Table 5.1 Non-dimensionalized moment ratio at pier 1 
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𝑀𝑜𝑚𝑒𝑛𝑡(𝑃𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟)

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑡 𝑝𝑖𝑒𝑟 1 (𝑏𝑜𝑙𝑡𝑒𝑑 𝑠𝑝𝑙𝑖𝑐𝑒 )
………… .5.1 
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Pier 2 

As indicated in Figure 5.11, the retrofit options providing the highest level of 

continuity when compared against the bolted splice for each model were presented in 

Table 5.2. When looking at the non-dimensionalized ratios along the girder, the ratio for 

dead loads at pier 1 and pier 2 are nearly the same for the pin and hanger assembly (0.41-

0.42), the catcher beam system (0.41-0.47), and the link slab  (0.54-0.50) (Table 5.2). 

Similarly, at maximum positive moment location, the original pin and hanger assembly, 

the catcher beam systems are1.74 and 1.70 and the link slab is 1.50. From the shear 

diagram shown in Figure 5.12 it is implied that shear force plays a negligible role when 

compared with the moment. Example of non-dimensionlized equation shown in the 

below section. 

 

 

Figure 5.11 Non-dimensionalized moment diagrams for dead loads at Pier 2  
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Figure 5.12 Non-dimensionalized shear diagrams for dead loads at Pier 2 

Table 5.2 Non-dimensionalized moment ratio at pier 2	
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5.3.1.2 Maximum positive moment 

As indicated in Figure 5.13, the retrofit options providing the highest level of 

continuity when compared against the bolted splice for each model was presented in 

Table 5.3. When looking at the non-dimensionalized ratios along the girder, the ratio for 

dead loads at pier 1 and pier 2 are nearly the same for pin and hanger assembly(0.41-

0.42), catcher beam system (0.41-0.47) and link slab is (0.54-0.50) (Table 5.3). At 

maximum positive moment location, original pin and hanger assembly, catcher beam 

systems are 1.74 and 1.70 and link slab is 1.50. Example of non-dimensionlized equation 

shown in the below section. 

 

 

 

Figure 5.13 Non-dimensionalized moment diagrams for dead loads at maximum positive 

moment 
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Table 5.3 Non-dimensionalized moment ratio at maximum positive moment 

	

 

𝑁𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟 =
𝑀𝑜𝑚𝑒𝑛𝑡(𝑃𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟)

𝑀𝑎𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑏𝑜𝑙𝑡𝑒𝑑 𝑠𝑝𝑙𝑖𝑐𝑒)
……… 5.2 
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5.3.2 Frozen Pin and Hanger 

Figure 5.14 and Table 5.4 compare levels of continuity for the bolted splice to the 

original pin and hanger assembly and to the frozen assembly caseTable 5.1. When 

looking at the non-dimensionalized ratios along the girder, which indicates that the ratio 

for dead loads at pier 1 and pier 2 locations for the original pin and hanger assembly 

(0.32-0.31), and for the locked pin condition is (0.76-0.45) (Table 5.4). Similarly, at 

maximum positive moment location, the original pin and hanger assembly is 1.32, and 

the locked pin condition is 1.10. Example of non-dimensionlized equation shown in the 

below section.  

 

 

Figure 5.14 Non-dimensionalized moment diagrams for dead loads at pier 1 for locked 

condition 
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Table 5.4 Non-dimensionalized moment ratio at pier 1 

 

𝑁𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟 =
𝑀𝑜𝑚𝑒𝑛𝑡(𝑃𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟)

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑡 𝑝𝑖𝑒𝑟 1 (𝑏𝑜𝑙𝑡𝑒𝑑 𝑠𝑝𝑙𝑖𝑐𝑒)
………… .5.4 
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5.4 Summary 

Studying models of bolted splice, original pin and hanger assembly, link slab, 

catcher beam systems and pin locked condition were examined and summarized results 

for largest negative moments at the adjacent piers and at the maximum positive moment 

location along the girder are discussed here below. 

Non-dimensionalized ratios of bending moment along the girder, with fully bolted 

splices being the values taken against which the other retrofit cases were compared and 

examined. Results indicated that for the combined dead loads, levels of continuity were 

nearly the same for the original pin and hanger assemblies, the catcher beam systems and 

higher for link slab at pier 1 and pier 2 locations. Similarly, at maximum positive moment 

location, the original pin and hanger assembly features the same level of continuity with 

that of the catcher beam system, and is followed by the link slab.  

The locked up case (representing severe pack rust) was included in the original 

pin and hanger assembly. To examine and compare the level of continuity along the 

girder when pins were locked with that of original pin and hanger assembly and the 

bolted splice (highest level of continuity). Non-dimensionalized ratios for the locked pin 

case indicated that the deterioration of pins have higher level of continuity than that of 

original pin and hanger assembly. 
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Chapter 6 Conclusions 

The focus of the initial study summarized herein was to review and summarize 

information related to pin and hanger assembly retrofit to replacement options and also 

information related to computational study of the girder. An extensive survey was 

conducted among U.S. State Departments of Transportation (DOTs) for investigating 

additional information on variety of topics related to pin and hanger retrofit to 

replacement options. Finally, with reference to state and federal design specifications 

which include the AASHTO Standard Specifications for Highway Bridges; the AASHTO 

LRFD Bridge Design Specifications; and NDOT’s Bridge Office Policies and Procedures 

(BOPP) manual, a number of flowcharts were developed and presented that would assist 

engineers with assessing various options and their consequences when the pin and hanger 

assembly retrofit to replacements options are being considered in the future.  

At the completion of initial study, prevailing retrofit and replacement options 

were further examined by creating 7 finite element models using ABAQUS, to examine 

and compare the level of continuity in the girder for different retrofit and replacement 

options. 

Retrofit options providing the highest level of continuity when compared against 

the bolted splice indicated that the ratio for combined dead loads at pier 1 and pier 2 are 

similar for pin and hanger, catcher beam system and followed by link slab. At maximum 

positive moment location, the original pin and hanger and the catcher beam systems are 

the most similar, followed by the link slab.  

 

 



74 
 

 
 

Implications of these results on the design and implementation of the examined 

retrofit and replacement options include: 

• The bolted splice delivers the highest level of continuity at the adjacent piers. 

However, before considering retrofit of the bridge, structural re-evaluation of the 

superstructure behavior is to be determined so that the member can support 

continuous span instead of drop-in and cantilever spans. Design should be 

consider for both positive and negative moments.  

• The link slab provides degradation protection over the pin and hanger assembly 

and achieves higher level of continuity at the piers as that of original pin and 

hanger assembly. Girder capacity may need to be re-evaluated at piers.  

• A catcher beam system provides a mechanically independent alternate load path 

to prevent a sudden loss of span when a pin and hanger assembly is deemed 

insufficiently reliable to carry required loads. Catcher beam behavior mainly 

depends on the stiffness of the tension rods, and the gap between the catcher beam 

and the main girder. 

The pin locked condition (representing severe deterioration) has a highest level of 

continuity than that of the original pin and hanger assembly. Results indicated that girder 

capacity needs to be re-evaluated at piers.  
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6.1 Recommendations for Future Research 

The present study focused on synthesis of various retrofit to replacement options 

and their computational analysis, focused on examination of the level of continuity in 

girder for various assembly options for the self-weight and superimposed dead loads. 

Future research should focus on examination of level of continuity in girder for the live 

loads and distortion induced fatigue cracking at the connections between the girders, one 

of the severe problems of steel bridges. Fatigue analysis should be carried out by 

computational studies also in conjunction with corrosion simulation studies, as the 

literature has shown that major cause of the fractures of pin and hanger assembly was 

significant build-up of corrosion. 
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Appendix A 

Survey 
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Appendix B 

Response to Survey of DOTs 

Question 1 

Other types of steel bridges that have pin and hanger assemblies other than listed 

are: 

• Arizona DOT: Arch Bridge (85). 

• Arkansas State Highway and Transportation Department: Arch deck (2). 

• Alaska Department of Transportation and Public Facilities: Box girders (1). 

• Colorado DOT: Tie down. 

• Illinois DOT: Truss with eye bars & pins (1). 

• Iowa DOT: Secondary highway steel girders, secondary highway truss. 

• Michigan DOT: All girder bridges (1099). 

• Minnesota DOT: Arch (1), Suspension (1). 

• Ohio DOT: Riveted steel arch (2). 

• Oregon DOT: RGDG (9). 

• Utah DOT: Pinned arches (7), Suspension arch (1). 

• Washington State DOT: Concrete box -2 (132). 

• West Virginia DOT: Tied thru arch (1), Suspension bridge (1). 

Question 2 

• Maine DOT: Superstructure replace (number implemented-1, number 

programmed -1). 
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• Massachusetts DOT: Ship lap joint (number programmed -1), replace p & h 

assembly with under running bearing beam (number implemented-1). 

• Michigan DOT: Replace bridge (number implemented-1, number programmed -

3). 

• North Carolina DOT: Replace w/ concrete girder (number programmed -1). 

• Nebraska Department of Roads: replace bridge or superstructure- (of the 102 pin 

and hanger bridges on the state system 50 are scheduled for replacement of either 

the entire bridge or the entire superstructure). 

• Virginia DOT: replace Bridge. 

• Wyoming DOT: suspension hanger/seismic (number implemented-1). 

Question 4 

• Arkansas State Highway and Transportation Department: Internally developed. 

• Illinois DOT: It is part of our structural services manual. Bureau of bridges and 

structures IDOT. 

• Michigan MDOT: Our bridge replacement program prioritizes bridges with pins 

& hanger high enough to systematically replace the bridge with another (usually 

concrete) bridge. 

• Missouri DOT: No set criteria. Details are case-by-case. 

• Utah DOT: Is not documented. 

Question 5 

• Alaska Department of Transportation and Public Facilities: Pin & hangers are 

functioning properly. No pack rust present. 

• Colorado DOT: No section loss due to corrosion & no crack on hanger. 
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• Delaware DOT: We are not as concerned with pin & hanger assemblies for multi-

beam bridges. Pin & hanger assemblies on truss bridges are treated as a fracture 

critical member and are scrutinized more. 

 

• Iowa DOT: Proper inspection should identify deficiencies in time to address them 

without impacts to public safety. 

• Louisiana Department of Transportation and Development: Bridges are in good 

condition. 

• Montana DOT: Pins and hangers are usually inspected every 2 years and UT 

inspected every 4 years. With our relatively dry climate and large temperature 

swings the p & h assemblies usually stay moving as designed with little rust 

impact. 

• Minnesota DOT: We will include repairs or improvements to pin and hanger 

elements as conditions warrant. We have not developed projects solely on pin and 

hanger detail unless condition justifies. 

• North Carolina DOT: Inspection reports indicate the condition of the pin and 

hanger is “good”. 

• Nebraska Department of Roads: All bridges are inspected by certified inspectors 

at least every 2 years and all bridges that this agency manages directly have 

redundant secondary systems should failure occur. 

• Nevada DOT: We haven't identified problems with the hangers, aside from minor 

corrosion. 
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• New Hampshire DOT: Framing plan varies from 10 to 7 girder lines, condition is 

satisfactory. 

• Ohio DOT: We retrofit when they are deteriorated. 

• Oklahoma DOT: We used ultrasonic inspection on our pins. No problems were 

found. 

• Oregon DOT: We inspect & monitor p & h's and only r & r or provide 

supplemental support when their condition indicates a need. 

• Pennsylvania DOT: We have retrofitted the inventory of 2 girder and truss bridges 

with suspended assemblies. 

• South Dakota DOT: These assemblies are part of annual NBIS inspections and the 

pins get a periodic NDT inspection   as well. 

• Virginia DOT: We evaluate each one individually. 

• Washington State DOT: Routine inspections and painting when needed. 

• West Virginia DOT: We monitor during routine inspections and provide action as 

needed 
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Additional Comments 

• Arkansas State Highway and Transportation Department: We usually have 1 or 2 

bridges a year that have pin/hanger issues. Our fix is normally to replace pin and 

hanger. Sometimes we keep the hanger and just flip it around. When we have 

wear we will bore and replace with bigger pins. 

• Illinois DOT: As a result of a fractured pin is one of our structures in the mid 

1990's the Illinois Department of Transportation developed an aggressive program 

for the replacement of pins and link assemblies. Between 1995 and 1997 over 90 

structures on our primary system were retrofitted. Over 2000 pins and 

corresponding links or plate assemblies were replaced throughout the state. In 

general the retrofit replaced the old style “shoulder” pin (with no bushings) with a 

constant diameter solid pin made of a stronger material (Nitronic 60) using Teflon 

bushings. The intent was to provide a better pin assembly as well as one that was 

easier to inspect in the future. 

• Iowa DOT: We have replaced bushings in pin & hanger assemblies due to 

corrosion/wear. 

• Massachusetts DOT :For the replacement of the p & h assembly with the under 

running bearing beam, the detail looks just like a catcher beam except that the 

suspended span sits on a bearing on that beam and the p & h assembly was 

removed in its entirely. 

• Michigan DOT: MDOT does not automatically view pin & hangers as needing 

replacement. We replace them on a case-by case basis based on condition and 
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load capacity. Although pin & hangers are not utilized on new bridges, we do not 

have any focused efforts to remove them from our inventory. 

• Mississippi DOT: We have replace pins & links on our large scale MS River 

crossing bridges in Watchez, MS. It is the only bridge we intend to remain in 

service with these details. The replacements were very large scale. These are long 

span truss bridges. 

• Montana DOT: Our pin and hanger assemblies tend to work well. We have 

replaced pins over the years due to wear and also a few assemblies when they 

were ruined by impacts to girders from overweight loads. 

• Minnesota DOT: MnDOT stopped building bridges w/ pin and hanger details in 

1960's. We have not rehabilitated that many as the bridge width is typically too 

narrow therefore we have done mostly bridge replacements for those vintage. It 

has been over 10 years since last pin and hanger rehab and that one was caused by 

no cotter pin on pin and there was a condition concern the hanger may come off 

of pin. Call w/ questions. 

• Missouri DOT: We only replace or repair them after they deteriorate. We don't 

have a program to do so. 

• New Mexico DOT: Performs ultrasonic testing on all pins every 60 months. We 

have found and replaced compromised/broken pins. 

• Ohio DOT: Number of retrofits performed - you did not give a time frame for this 

work. This makes it difficult to answer. This type of work has gone on for many 

years. We do not track this work so there is no way to answer that question 

beyond the memory of current group. 
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• Utah DOT: Please contact me for additional details on the bridge retrofit projects 

we have completed or programmed. I would like a copy of the results. 

• Wyoming DOT: The pin & hanger we replaced was due to damage from gunshot. 
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Appendix C 

              List of Abbreviations 

Alabama Department of Transportation (ALDOT) 

Alaska Department of Transportation and Public Facilities (Alaska DOT & PF) 

American Association for Public Opinion Research (AAPOR) 

American Association of State Highway and Transportation Officials, Load and 

Resistance Factor Design (AASHTO LRFD) 

Arizona Department of Transportation (ADOT) 

Arkansas State Highway and Transportation Department (AHTD) 

Average Daily Truck Traffic (ADTT) 

Bridge Office Policies and Procedures (BOPP) 

Bureau of Sociological Research (BOSR) 

Colorado Department of Transportation (CDOT) 

Delaware Department of Transportation (DelDOT) 

Federal Highway Administration (FHWA) 

Florida Department of Transportation (FDOT) 

Fracture Critical Members (FCMs) 

Georgia Department of Transportation (GDOT) 

Hawaii Department of Transportation (Hawaii DOT) 

Illinois Department of Transportation (IDOT) 

Indiana Department of Transportation (INDOT) 

Iowa Department of Transportation (IOWADOT) 

Louisiana Department of Transportation and Development (LADOTD) 
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Maine Department of Transportation (Maine DOT) 

Massachusetts Department of Transportation (Mass DOT) 

Michigan Department of Transportation (MDOT) 

Minnesota Department of Transportation (MnDOT) 

Mississippi Department of Transportation (Mississippi DOT) 

Missouri Department of Transportation (MoDOT) 

Montana Department of Transportation (MDT) 

National Bridge Inspection Standards (NBIS) 

National Cooperative Highway Research Program (NCHRP)  

National Transportation Safety Board (NTSB) 

Nebraska Department of Transportation (NDOT)  

Nevada Department of Transportation (NDOT) 

New Hampshire Department of Transportation (NHDOT) 

New Mexico Department of Transportation (NMDOT) 

New York State Department of Transportation (NYSDOT) 

Non-destructive Testing (NDT) 

North Carolina Department of Transportation (NCDOT) 

North Dakota Department of Transportation (NDDOT) 

Ohio Department of Transportation (ODOT) 

Oklahoma Department of Transportation (OklahomaDOT) 

Oregon Department of Transportation (OregonDOT) 

Pennsylvania Department of Transportation (PennDOT) 

Rhode Island Department of Transportation (RIDOT) 
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South Dakota Department of Transportation (SDDOT) 

South Carolina Department of Transportation (SCDOT) 

Tennessee Department of Transportation (TDOT) 

Texas Department of Transportation (TxDOT) 

Transportation Research Board (TRB) 

Utah Department of Transportation (UDOT) 

Virginia Department of Transportation, Central Office (VDOT) 

Washington State Department of Transportation (WSDOT) 

West Virginia Department of Transportation (WVDOT) 

Wyoming Department of Transportation (WYDOT) 
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Appendix D 

Table D.1 Summary 
Table D.1 Summary of various retrofit and replacement options pros and cons 

 
 
Retrofit/replacement 

options 

 

Pros 

 

Cons 

 

 

Bolted splices 

 
Eliminates non-redundant system, 
make structure more efficient.  
 
Reduces and mitigate 
superstructure corrosion. 

 
Need to re-evaluate superstructure 
behavior and capacity. 
 
Higher construction cost. 
 

 

Link slab 

 
Reduction of joints controls 
corrosion and moisture intrusion. 
 

 

 
Structural damages-(thermal 
stress, shrinkage & creep). 
 
Higher stress lead to fracture & 
cracking along the slab. 
 

 

Catcher  beam system 

 
Immediate option, controls sudden 
failure of bridge. 

 
 

 
Temporarily system. 
 
Fatigue related problems 
replacement need to be considered. 

 
 
 

New pin and hanger 
assembly 

 
Similar design can be cost-
effective and minimal traffic 
disruption. 

 

 
Regular ultrasonic inspection. 

 
Still provides non-redundant 
system. 
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Appendix E 

E.1 Dead load calculations 

In the following dead load calculation, the unit weight of concrete is taken as 

2400 kg/m3 (0.087 lb. /in3). Future wearing surface of 1kpa (20psf) consider from BOPP 

specifications. 

Table E.1 Geometric dimensions 

Components SI units 

Deck thickness 0.17 m (7 in) 

Deck width 11 m (426 in) 

Haunch thickness 0.05 m (2 in) 

Barrier width 0.38 m (15 in) 

 

 

Component dead load (DC1): 

• Concrete deck = (0.17x11x2400)/100/5 girder = 9.10 kn/m/girder [0.052 

kip/in/girder] 

• Concrete deck haunches = (0.05x0.3048x2400/100) = 0.36 kn/m = [0.0020 

kip./in] 

• Stay- in place forms = 5 psf = 0.2394 KPa  

• Stiffeners and details = 1.75 kn/m [ 0.011 kip/in ] 

• Self-weight of the girder is directly used from ABAQUS as a gravity load. 

1.  Component dead load (DC1)/girder = 11.55 kn/m (0.066 kip/in) + self-weight 

of the girder 



97 
 

 
 

 

2.  Component dead load (DC2) = (0.20) (2400/100) = 4.753 kn/m/girder [0.026 

kip/in/girder] 

3. Wearing surface load (DW) = [11.00 - 2 (0.381)] /5] = 2.45 kn/m/girder 

(0.0140 kip/in) 

   

E.2 Largest negative moments at the pier1. 

Non-dimensionlized results from the comparisons of models are show against 

bolted splices with that of cases including the original pin and hanger, link slab and 

catcher beam system for the largest negative moments at pier 1 are shown below for 

individual dead loads conditions (DC-1, DC-2 and DW).  

Pier 1 – DC1 

As indicated in the Figure E.1, the retrofit options providing the highest level of 

continuity when compared against the bolted splice for each model were presented. This 

finding is supported when looking at the non-dimensionalized ratios show in Table E.2 , 

which indicate that the ratio for DC1 is identical for pin and hanger, link slab and catcher 

beam system at pier1 (0.32-0.33), pier2 (0.30-0.35) and, maximum positive moment (1.3-

1.28). From the shear diagram Figure E.2 indicates that shear force as very negligible 

effect compare to moment. Example of non-dimensioned equation is presented below. 
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Figure E.1 Non-dimensionalized DC1 moment diagrams at pier 1 

 

Figure E.2 Non-dimensionalized DC1 shear diagrams at pier 1 

 

𝑁𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟 =
𝑀𝑜𝑚𝑒𝑛𝑡(𝑃𝑖𝑛 𝑎𝑛𝑑 ℎ𝑎𝑛𝑔𝑒𝑟)

𝑀𝑎𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑏𝑜𝑙𝑡𝑒𝑑 𝑠𝑝𝑙𝑖𝑐𝑒)
……… 5.2 
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Pier 1- DC2  

As indicated in the Figure E.3, the retrofit options providing the highest level of 

continuity when compared against the bolted splice for each model were presented. This 

finding is supported when looking at the non-dimensionalized ratios show in Table E.2, 

which indicate that for link slab as a ratio at pier1 (0.52), pier2 (0.0.44) and, maximum 

positive moment (0.9) followed by catcher beam system (3 locations) and pin and hanger 

assembly with ratio of pier1 (0.32-0.34), pier2 (0.301-0.35) and, maximum positive 

moment (1.31-1.28) level of continuity. From the shear diagram Figure E.4 indicates that 

shear force as very negligible effect compare to moment.  

 

 

Figure E.3 Non-dimensionalized DC2 moment diagrams at pier 1 
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Figure E.4 Non-dimensionalized DC2 shear diagrams at pier 1 

 

Pier 1- DW 

As indicated in the Figure E.5, the retrofit options providing the highest level of 

continuity when compared against the bolted splice for each model was presented. This 

finding is supported when looking at the non-dimensionalized ratios show in Table E.2, 

which indicate that for link slab as a ratio at pier1 (0.52), pier2 (0.44) and, maximum 

positive moment (0.9) followed by catcher beam system (3 locations) and pin and hanger 

assembly with ratio of pier1 (0.32-0.34), pier2 (0.30-0.36) and, maximum positive 

moment (1.30-1.28) level of continuity. From the shear diagram Figure E.6 indicates that 

shear force as very negligible effect compare to moment.  
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Figure E.5 Non-dimensionalized DW moment diagrams at pier 1 

 

Figure E.6 Non-dimensionalized DW shear diagrams at pier 1 
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Table E.2 Non-dimensionalized moment ratio at pier 1 

 

 

 

 

Point Pin & Hanger Link Slab
North Catcher

 Beam
South Catcher  Beam

Pier1 0.32 0.32 0.33 0.31

Maximum  
moment

1.31 1.32 1.30 1.28

Pier 2 0.32 0.32 0.31 0.35

Point Pin & Hanger Link Slab
North Catcher

 Beam
South Catcher  Beam

Pier1 0.32 0.52 0.33 0.32

Maximum  
moment

1.31 0.90 1.30 1.28

Pier 2 0.31 0.44 0.31 0.34

Point Pin & Hanger Link Slab
North Catcher

 Beam
South Catcher  Beam

Pier1 0.32 0.52 0.32 0.32

Maximum  
moment

1.31 0.90 1.29 1.28

Pier 2 0.31 0.44 0.31 0.36

DW

0.34

1.29

0.35

Pier 1 -Largest Negative Moment

 DC1

 DC2

Both Catcher Beams

0.33

1.28

0.35

Both Catcher 
Beams

Both  Catcher 
Beams

0.34

1.28

0.36
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