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Improving structural resilience (i.e., reducing service interruptions and improving 

rapidity of function restoration) following extreme events is one of the primary 

contemporary challenges in structural engineering. While massive casualties have 

successfully been avoided through the adoption of modern building codes, the sole 

codified performance objective has been limited to the life safety/collapse prevention 

range of response. Christchurch, NZ, highlighted the insufficiency of this approach, with 

large sections of the city nonfunctional after a major earthquake, and with subsequent 

collapses induced by significant aftershocks. Engineering advances to improve building 

and community resilience are necessary to mitigate hazards from becoming disasters. 

This study explores the influence and potential benefits of introducing a hyperelastic 3D 

printed fusing component on global performance outcomes, focusing primarily on direct 

economic loss estimates. This work identifies potentially beneficial combinations of 

hyperelastic component phenomenological parameters (i.e., stiffness, ductility, resisting 

force), presenting the results as a performance comparison between the hyperelastic and 

conventional hysteretic systems. Current 3D printing technologies allow the easy creation 

of complex geometries, hence it is expected that 3D printed steel fuses can provide a 

strategically defined multi-linear hyperelastic constitutive response through geometric 

configuration and small-scale elastic buckling. The hyperelastic component behavior 



 

permits shared participation of mechanical and inertial effects at the global structure 

level, while also achieving self-centering after extreme loading has concluded. 

Additionally, the lack of residual drift combined with the lack of significant structural 

damage will permit continued occupation with minimal functional disruption.  
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CHAPTER 1. INTRODUCTION 

Indirect economic losses from societal disruptions caused by recent seismic events 

suggest that traditional (code-based) prescriptive structural engineering outcomes should 

become less of a final design and more of a preliminary step for structural engineering in 

the future. Continuous operation and avoiding prolonged disruption times are desirable, 

next-generation performance objectives for civil structures.  

The mismatch between societal expectations and code-based structural 

engineering outcomes was recently highlighted during the 2010-2011 Christchurch 

earthquakes in New Zealand, which were some of the most expensive hazards for 

insurance companies on record (over 16 NZ billion). The main shock hit Christchurch in 

September 2010, where very few casualties were reported due to the excellent life-safety 

performance of typical construction. At the same time, considerable structural damage 

was incurred (some undetectable by non-destructive evaluation). Five months later, in 

February 2011, an aftershock impacted the Canterbury community, while the region was 

still under recovery. The aftershock hit structures with reduced stiffness that had already 

incurred permanent drifts, which caused partial or total collapse of several structures and 

over 180 casualties. Two-thirds of the casualties occurred after the six-story CTV news 

office building collapsed, a structure that was marked as safe after the 2010 September 

quake. The New Zealand authorities, alongside insurance companies, have been working 

to reconstruct the Christchurch community with the primary goal of minimizing 

infrastructure disruption and assuring sufficient aftershock resistance (Stevenson et al. 

2011). Discussions about these scenarios that address resilience are timely and relevant at 

an international level. 
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In the United States, President Barack Obama issued an executive order in 

February 2016 urging the U.S. Department of Housing and Urban Development (HUD) 

to adopt resilient construction for all federal buildings, stating that existing construction 

requirements should be reviewed and revised to meet higher standards that ensure federal 

buildings will perform with improved earthquake resilience (Exec. Order No. 13717 

(2016)).  

This executive order also highlighted the prominent role of higher learning 

centers in addressing this challenge.  

“The Administration is announcing a coalition of 97 colleges, universities, 

associations, and academic centers around the country that are committing 

to ensure that the next generation of design professionals are prepared to 

design and build for extreme weather events and impacts of climate 

change”  

A significant step toward facilitating higher performance standards was taken in 

2006, before Christchurch, by the US Federal Emergency Management Agency (FEMA). 

FEMA published FEMA 445, providing guidance produced through a joint project titled 

“Next-Generation Performance-Based Seismic Design Guidelines Program Plan for New 

and Existing Buildings.” FEMA 445 highlighted the limitations of current structural 

design procedures, including the challenges of accurately estimating new performance 

measures such as repair costs, probability and quantity of casualties, and operational 

disruption time. These new performance measurements are critical for project investors, 

insurance companies, and other decision makers. (FEMA 2006) 
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To achieve higher performance levels, societies cannot rely on traditional design 

bases and techniques because extrapolating their characteristics will not meet advanced 

and emerging performance objectives, such as resiliency. Therefore, exploring and 

developing new or modified structural systems is a prominent requirement for resilient 

structural engineering.  

Currently, there are high-performance systems under evaluation such as rocking, 

self-centering, energy dissipating fuses, and combinations thereof (Hajjar et al. 2013). In 

the last decade, structural configurations using Shape Memory Alloy (SMA) metals 

(DeRosches et al. 2007; Gao et al. 2016; Qiu and Zhu 2017a) and systems incorporating 

Self Centering Energy-Dissipative (SCED) Braces (Christopoulos et al. 2008; Tremblay 

et al. 2008; Erochko and Christopoulos 2014) have been rigorously investigated to 

advance the potential implementation of self-centering in practice. While the present 

study also focuses on a physical component that provides multi-linear elastic response to 

the structure, the components under consideration in this study can be distinguished from 

pre-existing literature because the components do not rely on material nonlinearity but on 

strategically varying system stiffness through geometric configuration.  

This thesis assumes the availability of a 3D printed steel fuse device (see Figure 

1), and presents the results of a parametric study conducted to characterize preferential 

behavior for such a device. The fuse provides the structural system with hyperelasticity, 

which renders in a multi-linear elastic force-displacement response, so that yielding of 

the Lateral Force Resisting System (LFRS) and the fuse itself are largely avoided. 

Additionally, and more importantly, this component would help the structure return to its 

initial position after the ground shaking has ceased. 
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Figure 1. Idealized hyperelastic braced frame 
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To exhibit such behavior, the proposed hyperelastic fuse is equipped with an 

elastic-controlled, buckling mechanism as shown in Figure 2 and Figure 3, which consists 

of a combination of stocky and slender compression elements. During an intense seismic 

excitation, the slender supports are allowed to buckle elastically once a predefined force 

level is reached. This buckling creates a reduction of the system stiffness (similar to 

material yielding), allowing the system to displace with minimal additional induced load. 

This stage of response continues up to the point where the gap closes, and the stocky 

supports are also engaged in compression, increasing the system stiffness and induced 

force demands (tri-linear elastic).  

 

 

Figure 2. Idealized Hyperelastic Structural Fuse. Right: General Description; left: Sketch of the internal 

buckling mechanism.  
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Figure 3. 3D Rendering of Idealized Hyperelastic fuse.  

 

Figure 4 is presented to illustrate the sequence of configuration and corresponding 

behavioral response stages, where the force-displacement behavior is divided into three 

loading stages and one unloading phase. The first stage, the line between points 1-2, is 

when the force in the brace (f) is less than the buckling force of the slender elements (fe). 

At this stage, we encounter a typical linear elastic response. The buckling elements are 

shown with exaggerated out-of-straightness. Printed components are intended to be 

produced with nearly perfect straightness to minimize buckled strength reduction. 

Second, the line between 2-3 is when “f” exceeds “fe”; the slender elements buckle, 

allowing the structure to displace without a considerable increase in force. Lastly, the 

third loading stage is reached when the gap has closed, and the stocky elements carry the 

load again up to a predefined maximum system force (fmax).  



7 

 

 

Figure 4. Force-Displacement curve of the Hyperelastic system. 

 

Once the load has been removed, the component response trajectory flows along 

4-5-6-7. The slender elements come back to their initial position (elastic buckling), 

forcing the system to self-center. Furthermore, 3D printed metal fuse fabrication and 

post-processing is expected to considerably reduce or eliminate the residual stresses 

exhibited by traditionally fabricated steel shapes. Additionally, a small out of straightness 

can be introduced to ensure monotonically increasing load-deformation response during 

buckling.  
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In conclusion, higher performance systems are needed to attain resilience in steel 

construction. Numerous authors have studied this problem and have developed an array 

of potential solutions as a result (refer to Chapter 2. Literature Review). The concepts 

underlying the proposed device, such as elastic buckling of slender elements, have been 

studied for decades and thus are well understood. However, the potential application of 

strategically configured buckling to achieve self-centering has not been sufficiently 

explored. The hyperelastic 3D printed fuse concept described in this study provides a 

wide range of possibilities for structural engineers to achieve resilient structural response 

using geometric nonlinearity and self-centering capabilities.  
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CHAPTER 2. LITERATURE REVIEW  

2.1. Fuses in Braced Frames 

Braced frames have been one of the preferred structural systems used to resist 

lateral load effects in steel building construction. Concentrically-braced frames (CBFs) 

were favored when metal framing was becoming more commonplace, and lateral 

resisting systems were primarily focused on resisting wind loads.  Seismic demands 

exposed the potential instability of CBFs under repeated, cyclic, inelastic excursions.  

Undesirable structural behavior observed under seismic loading included rapid stiffness 

degradation due to buckling of the compression braces, and damage concentration in 

certain stories (inability to redistribute seismic forces along the building height) 

(Christopoulos et al. 2002b; Roeder and Popov 1978). 

More recently, Japanese engineers developed Buckling Restrained Braces (BRBs) 

to avoid global buckling of compression braces between end attachments.  BRBs 

represent a major step forward in achieving full hysteretic behaviors and improved 

seismic performance (Vargas and Bruneau 2005, AISC 341). Alternatively, eccentrically-

braced frames (EBFs), which include a localized fusing region (i.e., the “link” segment), 

can provide stable hysteretic behavior and excellent energy dissipation. EBF links are 

intended to bear most of the inelastic deformation induced by seismic (lateral) 

excitations. EBF shear links studied by Popov in the 1970s and 1980s and knee bracing 

studied by Aristizábal-Ochoa in 1986 constitute the first fuses widely reported in the 

literature. Roeder and Popov later referred to these links as ductile fuses. (Malley et al. 

n.d.; Roeder and Popov 1978; Vargas and Bruneau 2009).  
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Figure 5. Hysteretic behavior of conventional structural systems: (a) Steel moment resisting frame; (b) 

Single steel brace; (c) Concrete shear wall. (Nathan Chancellor et al. 2014) 

 

Based on the definition above, the fuse concept has been widely used in the past 

30 years of structural engineering, but two aspects are primarily and actively being 

researched: damaged fuse replacability and self-centering capabilities (Tremblay, 2008). 

This work aims to contribute advances with respect to self-centering features, which are 

rarely found in current structural systems, such BRB frames. Despite the fact that these 

conventional systems have performed successfully at the life-safety/collapse prevention 

level in the past, they have also exhibited localized damage compromising the global 

stability of the structure against potential aftershocks, and resulted in economic and social 

disruption. 

Research to create innovative systems with self-centering capabilities in on-going 

in current literature. For instance, Songye Zhu (2008) and DeRosches (2004, 2016) have 

studied the use of Shape Memory Alloys (SMAs) to achieve resilient buildings. SMAs 

are smart nickel/titanium-based metals that have excellent ductility and can recover to an 

original, undeformed shape after load removal (super-elasticity). However, despite these 

remarkable features, SMA metals are still expensive to produce and do not exhibit 

sufficient fatigue resistance (Rahimatpure 2012). Similarly, Christopoulos at al. (2008) 
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introduced a Self-Centering Energy-Dissipative (SCED) Brace, which incorporates 

springs within the fuse that force the structure to return to the original position.  

Significant steps have been made to enhance replaceability of structural fuses. 

However, self-centering capabilities have advanced at a slower pace. Within the pool of 

self-centering systems, few solutions or studies have been found viable, because they 

either rely on expensive materials (like SMAs) or in rather complex component 

assemblies (like SCED).  

 

2.2. State of the Art in Resilient Structural Systems  

There are many definitions for structural resilience, but the various definitions 

consistently share two main points in common: robustness and rapid restoration 

(“rapidity”). The first is related to the capability of the structure to withstand a rare event, 

and the second is related to how quickly the structure can be operational again 

(Rodriguez-Nikl 2015). Increasing robustness within a reasonable budget would only 

reduce the probability of structural collapse while downtime can still be a problem. 

Today, implementing low-damage technologies is structural engineers’ main contribution 

to mitigating the lack of rapidity. Several studies have been conducted to address these 

issues.  

Hajjar et al. (2013) conducted an extensive literature review consigned in a report 

called “A synopsis of sustainable structural systems with rocking, self-centering, and 

articulated energy dissipating fuses.” This document summarized more than 100 

innovative structural systems and their key features, covering a broad range of the 
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relevant research up to 2011, two years before the document was published (Hajjar et al. 

2013). 

Relevant research conducted after or not included in the report by Hajjar et al. is 

presented below:  

 

2.2.1. “Development of a ratcheting, tension-only fuse mechanism for seismic 

energy dissipation” (2015) 

J. Cook, G.W. Rodgers, G.A. MacRae & J.G. Chase 

 

The authors present an innovative tension-only mechanism, which aims to fix the 

residual compression force problems that current post-tensioned rocking systems face. 

The device incorporates a linear ratcheting mechanism that guarantees tension-only 

structural participation of the brace (Figure 6a).  

 

Figure 6. (a) Ratchet mechanism assembly; (b) Force displacement hysteresis (Cook et al. 2015). 

 

To guarantee single direction engagement, a tension spring maintained 

engagement between the two pawls and the strategically orientated teeth on the sliding 

rack. Figure 6b illustrates the hysteresis behavior of the tested device, showing that the 

brace behaves identically to a conventional brace in tension, but when in compression the 

Xfree-travel 

(a) (b) 
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device enters a free travel zone, which offsets the zero (0) datum for the next tension 

incursion. Experimental component validation tests were carried out showing that 

residual compressive forces were reduced and thus implementing this technology could 

enhance self-centering capabilities when incorporated into rocking systems. (Cook et al. 

2015) 

2.2.2. “Optimal Seismic Performance of Friction Energy Dissipating Devices” 

(2008) 

Sanjaya K. Patro and Ravi Sinha.  

 

This system is equipped with a sliding plate, which has slotted holes. Attached to 

this plate are two clamping plates with pre-stressed connection bolts (see Figure 7, right). 

The slotted holes allow for displacement, creating a multi-linear elastic force-

displacement behavior.  

 

 

Figure 7. Right: Schematic diagram of four-story building with friction devices (Dimova et al. 1995), left: 

Dry Friction Models (a) Coulomb Friction Model (b) Realistic Friction Model (Patro and Sinha, 2008).  

 

Patro and Sinha found that using the Coulomb friction model (Figure 7a, left) is 

not a good approximation of real behavior. The authors found that including stiction and 

Stribeck effects yielded considerable differences for a realistic dry fiction model. The 
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study concluded that more realistic models should be used when designing this brace 

configuration, paying special attention to the pre-stress force applied by the bolts. Bolt 

prestressing was identified as the most important parameter in this study. (Patro and 

Sinha 2008) 

2.2.3. “Shake table test and numerical study of self-centering steel frame with 

SMA braces” (2016) 

Canxing Qiu, and Songye Zhu.  

 

Qiu and Zhu present a numerical study on the response of Shape Memory Alloy 

Braced Frames (SMABF), accompanied by experimental validation. The system 

incorporates an SMA-based damper similar to the one shown in Figure 8. The authors 

highlighted the good agreement between the analytical models and the test results.  

 

 

Figure 8. SMA-based damper: (a) configuration of SMA damper; (b) deformation under tension and 

compression; and (c) idealized flag-shaped hysteresis (Qiu and Zhu 2017b) 

 

The specimens showed strong self-centering capabilities for all earthquake levels. 

The Lateral Force Resisting System (LFRS) remained elastic, suggesting that economic 

or social disruption would not be significant for structures implementing this system (Qiu 

and Zhu 2017b).  
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2.2.4.  “Analytical Response and Design of Buildings with Metallic Structural 

Fuses. I” (2009) 

Ramiro Vargas and Michel Bruneau.  

 

The authors propose a simplified design procedure to assess systems with 

structural fuses. The proposed procedure assumes that the inelastic deformations will 

concentrate only on the fuse element, serving as a fast approach to have reasonable 

estimates without engaging in tedious nonlinear time-history analyses. The procedure 

states that the structural fuse concept is fully satisfied once specific ductility and period 

combinations are met (i.g., ductility <1.0 and T<TLimit). 

 

Figure 9. (a) Sample model of an SDOF system with metallic fuses; (b) general pushover curve 

 

SDOF Nonlinear dynamic analyses were conducted using synthetic ground 

motions to characterize Passive Energy Dissipation (PED) devices. After that, an 

example showing the proposed design procedure is developed. The authors considered 

examples for which reference conventional BRBs (taken from SAC joint project) were 

used as a comparison to metallic fuses (see Figure 9), demonstrating the advantages of 

implementing such Passive Energy Dissipation Devices (Vargas and Bruneau 2009). 
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2.2.5.  “Seismic Response of Multistory Buildings with Self-Centering Energy 

Dissipative Steel Braces” (2008) 

Robert Tremblay; M. Lacerte; and C. Christopoulos.  

 

The authors presented the results of an analytical study where five steel buildings 

equipped with different bracing systems were compared. Some of the buildings used self-

centering energy dissipative braces (SCED), and the others used buckling restrained 

braces (BRBs). This comparison aimed to support a hypothesis that smarter structural 

systems, such as the SCED, are competitive and worth implementation. The force-

displacement idealized curves of the systems are shown in Figure 10 (Tremblay et al. 

2008). 

 

 

Figure 10. Brace hysteretic response: (a) conventional brace; (b) buckling restrained brace; and (c) SCED 

brace. (Tremblay et al. 2008)  

 

Detailing for ductility in steel structures usually leads to lower design forces in 

most seismic codes, because these well-detailed structures are assumed to withstand 

larger deformations without rupture. However, there are special considerations to account 

for when dealing with braced steel frames. Attention should be given to damage 

concentrations at certain story levels and the inability of the system to redistribute loads 

along the height of the entire structural system (Christopoulos et al. 2002b).  
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2.2.6.  “Self-Centering Energy-Dissipative (SCED) Brace: Overview of Recent 

Developments and Potential Applications for Tall Buildings” (2014) 

J. Erochko and C. Christopoulos 

 

The authors summarize recent advances in self-centering energy dissipative 

braces, which include the increase of axial and elongation capacity. Such enhancements 

are under investigation to make the devices more suitable for tall structures. Finally, 

Erochko and Christopoulos present several configurations where the use of SCED braces 

could improve the performance of tall buildings (see Figure 11). 

 

 
Figure 11. Potential Tall Building Configurations using SCED Braces presented by Erochko and 

Christopoulos n.d. 

 

2.2.7. “Seismic Assessment of Concentrically-braced Steel Frames with Shape 

Memory Alloy Braces” (2007) 

Jason McCormick, S.; Reginald DesRoches; Davide Fugazza; and Ferdinando Auricchio. 
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The high self-centering capability of Shape Memory Alloy Braces was exhibited by 

comparing one three story and one six story conventional steel braced frame with 

equivalent frames equipped with SMA braces. Maximum interstory drift and residual 

roof displacement were compared with and without SMA braces. The SMA braces were 

more effective in the shorter building, and similarly for the first floors of the taller 

building. For the tall and higher floors, no significant favorable effects were observed 

(McCormick et al. 2007).  

 

2.2.8. “An innovative seismic bracing system based on a shape memory alloy 

ring,” (2016).  

Nan Gao, Jong-Su Jeon, Darel E Hodgson and Reginald DesRoches.  

 

 

Figure 12. Right: Experimental setup: (a) loading test frame, (b) SMA ring and steel connections, (c) 

turnbuckle and custom-made load cell, and (d) pad-eye connection and LVDT. Left: a Cross-braced system 

based on an SMA ring (Gao et al. 2016) 
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The authors introduced a new bracing system using SMA rings and wires (see 

Figure 12, right). Analyses were performed using an Abaqus finite element model to 

simulate the SMA ring behavior. The experimental design used to calibrate the FE model 

is also shown. The main difference between this study and its predecessors is the 

adoption of a ring as the key structural component (see Figure 12, left), which Gao et al. 

argued had a higher capacity (larger sections) and was easier to fabricate than other 

competing SMA designs. This proposed bracing system showed less self-centering 

capability compared with previous SMA-based braces, but exhibited larger energy 

dissipation and lateral stiffness. Gao et al. acknowledged that the system did not perform 

as expected, and urged that further studies on SMA sensitivity to temperature and loading 

rate have to be conducted before drawing final conclusions about the capabilities of their 

bracing system. 

 

2.2.9. “Seismic resistant rocking coupled walls with innovative Resilient Slip 

Friction (RSF) joints” (2017)  

Ashkan Hashemi, Pouyan Zarnani, Reza Masoudnia, Pierre Quenneville. 

 

 
Figure 13. Right: RSF joint: a) Cap plates and slotted center plates b) Belleville springs c) High strength 

bolts d) Assembly of the joint. Left: Schematic load-deformation loop for the RSF joint.  
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This study examines the performance of Resilient Slip Friction (RSF) joints when 

applied to coupling timber walls. The RSF joint, consisting of friction plates with grooves 

and springs assembled into a compact device (Figure 13), was first introduced by Dr. 

Zarnani (Provisional patent no.7083, 2015). The device provides the structural system 

with extra damping and self-centering capabilities. The authors concluded that RDF 

joints significantly help to dissipate energy through friction. The authors also noted the 

potential for implementation in steel and reinforced concrete structures (Hashemi et al. 

2017).  

 

2.3. Earthquake Loss Assessment 

 A thorough understanding of strong ground motion effects on societal 

functionality is a crucially important step toward hazard mitigation. For many years, the 

structural engineering field was almost exclusively concerned with avoiding casualties 

during seismic events. As the field became more proficient at this task, efforts have been 

redirected towards measuring and quantifying socio-economic impacts. One example of 

primary impacts is the repair cost to return a structure to a safe condition after incurring 

damage. A secondary effect is the economic impact of business disruption caused by 

inability to occupy a damaged structure. Would it be economically sound to retrofit 

particular structures to mitigate potential losses? Would the cost of demolishing and 

reconstructing the full structure offset any reparability effort? These are questions that 

joint programs like HAZUS and P-58 developed by FEMA, the NIST Community 

Resilience Program, and the Resilient Design Institute (RDI), have sought to address for 
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the last two decades. The following literature highlights the importance of rethinking 

structural engineering regarding resiliency.  

  

2.3.1. “Lessons from the February 22nd Christchurch Earthquake” 

(2012) 

Helen M. Goldsworthy 

 

This work summarized the main structural flaws observed during the Christchurch 

earthquake in 2011. There was a direct correlation between the age of the building and 

the damage incurred. The older the structure, the greater the amount of damage that was 

observed. This pattern found its explanation in the improved (especially at detailing) new 

codes that have been implemented (Tremblay et al. 2008). Despite the fact that this work 

was focused on reinforced concrete structures, it provides valuable insights that can be 

extrapolated to other kinds of construction, such as soft story failures, damage 

concentration, and non-structural damage. Goldsworthy concluded by urging the use of 

displacement-based methods to quantify performance and recommending the adoption of 

resilient solutions for high importance buildings (Goldsworthy 2012). 

 

2.3.2. “Steel Building Damage from The Christchurch Earthquake Series of 

2010 And 2011” (2012) 

Charles Clifton, Michel Bruneau, Greg MacRae, Roberto Leon, and Alistair 

Fussell 

  

 Selected steel structures were assessed to quantify damage suffered due to the 

robust and successive ground motions. Special focus was placed on eccentrically braced 

frames and moment resisting frames.  
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The preferred structural material for building construction in Christchurch has 

historically been reinforced concrete due to easy access to aggregates in the area. 

Therefore, by 2010 when the first strong earthquake happened, most relevant steel 

structures had been built recently (Goldsworthy 2012). Overall, these steel structures 

showed outstanding performance at the life-safety level because they met the most 

current code standards. 

 

Figure 14. Christchurch parking lot [Photos by M. Bruneau]; (a) inelastic deformations at top level EBF; 

(b) Fractured link at lower level EBF. (Clifton et al. 2011) 

Steel-frame connections generally performed as expected. Eccentrically-braced 

frames also showed satisfactory response with limited exceptions where link fracture was 

observed (see Figure 14b). On the other hand, concentrically-braced frames commonly 

experienced brace fractures (see Figure 15). 

 The steel structures’ overall performance has encouraged Christchurch authorities 

to implement more steel construction and to increase the research and development of 

innovative self-centering devices to reduce downtime, building content losses, and non-

structural damage.  

 

(a) (b) 
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Figure 15. Low‐rise CBF parking garage [Photos by M. Bruneau]. (a) Buckled brace; (b) Fractured non‐

ductile brace‐to‐column connection (Clifton et al. 2011). 

 

2.3.3.  “Estimation of Seismic Acceleration Demands in Building Components” 

(2004) 

  Shahram Taghavi, Eduardo Miranda 

 

 
Figure 16. Acceleration-sensitive nonstructural components (Taghavi, Shahram; Miranda 2004). 

 

 Generally, after a strong ground motion, nonstructural damage represents a 

significant portion of the total cost of building repair. Thus, Taghavi and Miranda 

(a) (b) 
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conducted a parametric study supporting the efficacy of their method to estimate 

accelerations demands. The study explores sensitivities of the floor peak acceleration 

demand to parameters like the natural period (Tn), damping (ξ), and stiffness ratio (α). 

The results suggested that both the Tn and α affect the acceleration demands 

considerably while reducing stiffness along the height of the building was not 

influential (Taghavi, Shahram; Miranda 2004).  
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CHAPTER 3. OBJECTIVES AND SCOPE. 

3.1. Objectives 

To identify preferable characteristics for a hyperelastic fuse, the following research 

objectives were selected.  

 Identify beneficial combinations of the hyperelastic component parameters (i.e. 

stiffness, ductility, elastic buckling force), that provide superior or comparable 

mechanical responses to those of conventional hysteretic systems. Performance 

was evaluated based on peak mechanical force and displacements.  

 Perform earthquake loss assessment estimates to evaluate the competitiveness of 

hyperelastic systems compared to hysteretic systems available in current practice, 

such as Buckling Restrained Braces (BRBs). These evaluations were conducted 

regarding earthquake mainshock repair cost.  

3.2. Scope  

The extent of this work is limited as follows: 

 Buildings with significant irregularities and thus torsional and higher mode effects 

are not considered. Therefore, simplified SDOF models were reasonably 

representative for the analyses. 

 The prototype buildings used in the study were assumed to be located in high 

seismicity areas. Specifically, Los Angeles, CA was used as the referenced 

location in this work.  

 Steel-braced, low-rise buildings, with a natural period (Tn) ranging from 0.1 to 

0.4 seconds. 
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 The multi-linear behavior of the hyperelastic system was characterized using three 

stiffness categories: initial (K0), buckled (K2), and arresting (K3).  

 Comparable hyperelastic and hysteretic systems were assumed to have equal 

initial stiffnesses (K0).  

 It is intended that all lateral loads have to be resisted by the braces exclusively. 

Hence, all building connections are pinned (i.e. column-foundation, beam-

column, brace-column.)  

 Second order effects (P-Delta) were not explicitly addressed.  
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CHAPTER 4. METHODOLOGY 

Over 1500 single degree of freedom (SDOF) analyses were carried out using 

various combinations of constitutive parameters and nonlinear time history methods with 

a suite of scaled ground motions. The analyses sought to identify beneficial combinations 

of hyperelastic component parameters.  The findings present hyperelastic system 

performance in context relative to performance available from an alternative hysteretic 

system. Hyperelastic models were parameterized with respect to a buckling force limit, 

ductility to an arresting stiffening branch, and the ratio of arresting to initial stiffness. 

Four low-rise, concentrically-braced, buildings were used as prototypes for the 

comparisons. These structures were modeled as SDOFs by isolating the first mode 

response. 

Performance is quantified in terms of direct capital-related loss, defined as the 

repair expenses as a percentage of total building replacement cost (total cost of structure, 

nonstructural components, and contents). Moreover, sensitivities of loss measures to 

hyperelastic characteristics were examined with respect to nonlinear dynamic ground 

motion response using a representative suite of ground motions for Southern California.  

 

4.1. Prototype Buildings  

This study was conducting using structural characteristics representative of 

single- and three-story, concentrically-braced frame (CBF) buildings that might be found 

in metropolitan Los Angeles or sites with similar seismic demands.  

Preliminary design for prototype buildings was performed to satisfy ASCE 7-10 

seismic requirements for new commercial office buildings. Ordinary (OCBFs) and 
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Special (SCBFs) seismic detailing scenarios were selected as baseline hysteretic options 

to explore design ductility influence on the relative performance of hysteretic and 

hyperelastic systems. Hence, four prototype buildings were examined as shown in Table 

1: 

Table 1. Prototype buildings (CASES) 

No. of 

Stories  

Seismic Detailing  

 Ordinary  Special 

1 CASE C CASE A 

3 CASE D CASE B 

 

A building plan and elevation were adapted from the 3-story LA building (see 

Figure 17) reported by the SAC Joint Venture (FEMA 2000). Floor dimensions were 80 x 

120 ft (24x36 m) for all buildings. Floor framing spans were 20 ft (6 m) in both 

directions. The bold lines in Figure 17a represent the braced frame locations (A3-6, E3-6, 

1A-D, and 7A-D). Story heights were 13 ft (4 m) for both 1-story and 3-story buildings 

(see Figure 17b Figure 17c).  
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Figure 17. Prototype Buildings. (a) Plan view; (b) 3-Story Elevation view; (c) 1-Story Elevation view 

 

4.2. Design of Prototype Buildings  

Preliminary analyses were performed using SAP2000 (see Figure 18), in which all 

floors were assumed to have a total dead load (self plus superimposed weight) of 100 

lb/ft2 (488 kg/m2). The study considered a uniform live load of 80 lb/ft2 (390 kg/m2). 

These loads approximately represent the concrete on steel deck flooring (~50 psf), 

partitions (~25 psf), ceiling (~7psf), supporting steel floor framing (~18psf), office 

personnel traffic (~50 psf), and furniture of commercial office buildings (~30 psf). All 

columns and beams were assumed to be W-shapes A992 Grade 50 steel, and all braces 

were assumed to be HSS with A500 Grade B steel. All load combinations related to the 

1-STORY

3-STORY

(a) 

(b) 

(c) 

N
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dead, live, and earthquake load cases were considered for both analysis and design. All 

elements’ boundary conditions were pinned (no moments). 

 

 

Figure 18. 3D analysis models; SAP2000; (a) 3-Story; (b) 1-Story 

 

4.2.1. Equivalent Lateral Force (ELF) 

Figure 17 shows that the lateral force resisting system of the buildings is 

symmetric and orthogonal, which permits uncoupling the braced frames’ contributions to 

the LFRS. In this context, the buildings’ nature (short, symmetric, and orthogonal) 

validates the applicability of the ELF procedure to design all prototype buildings 

(ASCE/SEI 2010). 

 

(a) 

(b) 
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4.2.2. Response Modification Coefficient R. 

The CBFs under consideration are either Ordinary or Special with respect to 

seismic detailing. Therefore, the two base response modifications factors (R) used were 

3.25 and 6, respectively, as shown in Table 2. 

 

Table 2. Design Coefficients and Factors for Seismic Force-Resisting Systems of the ASCE/SEI 2010. 

 

 

4.2.2.1. Design Category, Spectral Accelerations (SDS and SD1) 

 Based on the site conditions assumed (Site Class D, Los Angeles) and the risk 

category of typical commercial office buildings (II), the USGS U.S. Seismic Design 

Maps  provided a design spectral acceleration in the short period range (SDS) of 1.36 g 

and design spectral acceleration at 1 second (SD1) of 0.717 g. Accordingly, the prototype 

buildings fall in the most severe design category, D, in accordance with Table 11.61 and 

11.62 (ASCE/SEI 2010; USGS 2015).  
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4.2.2.2. Approximate Period 

In order to compute the seismic load distribution by the ELF method, approximate 

periods had to first be calculated. Approximate periods were calculated using ASCE 

equation (12.8-7) 

𝑇𝑎  =  𝐶𝑡 ∗ ℎ𝑛
𝑥, 

where, according to Table 3, 𝐶𝑡 = 0.02; 𝑥 = 0.75; and ℎ𝑛 =  𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 [𝑓𝑡]. 

For instance, for the 3-story building 𝑇𝑎2 =  0.02 ∗ 390.75 = 0.312 𝑠𝑒𝑐; while for the 1-

Story building 𝑇𝑎1 =  0.137 sec.  

 

Table 3. ASCE 7-10 Parameters to compute Approximate Period. 

 

 

4.2.2.3. Vertical Distribution of Lateral Loads  

Preliminary design base shear (V) was computed as follows. First, base shear 

coefficients (Cs) were determined for each prototype structure: 

𝐶𝑆 =
𝑆𝐷𝑆 ∗ 𝐼𝑒

𝑅
 ≤  

  𝑆D1 ∗ 𝐼𝑒

𝑅 ∗ 𝑇
   𝑓𝑜𝑟 𝑇 ≤ 𝑇𝐿 

Where:  

𝑆𝐷1 =  0.717 𝑔 
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𝑆𝐷𝑆 =  1.360 𝑔 

𝑇𝐿 =  8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

For the 3-story building (Tn ≈ 0.312 sec) with high ductility (R = 6):  

  𝐶𝑆 =
1.36 ∗ 1

6
≤  

0.717 ∗ 1

6 ∗ 0.312
 

  𝐶𝑆 = 0.22667 ≤ 0.3829 

  𝑪𝑺 = 𝟎.22667 

Check if 𝐶𝑆  > 0.044 ∗  𝑆𝐷𝑆 ∗  𝐼𝑒  ≥ 0.01  

  𝐶𝑆  > 0.044 ∗  1.360 ∗  1 ≥ 0.01  

  𝐶𝑆  > 0.05984 ≥ 0.01  

Because 𝑆𝐷1 = 0.717 ≥ 0.6 𝑔, it is required to check that 𝐶𝑆 ≥
0.5∗𝑆1∗𝐼𝑒

𝑅
 

 𝐶𝑆 ≥
0.5 ∗ 0.717 ∗ 1

6
 

 𝐶𝑆 ≥ 0.0598 

Then the 𝑪𝑺 for the 3-story building with special seismic design (R=6) equals:  

𝑪𝑺 = 𝟎.2267 

Performing a similar analysis for the other three prototype building confirmed that all 

cases were governed by the acceleration-controlled region of the elastic design spectrum. 

The design 𝑪𝑺 values were as shown in Table 4: 

 

Table 4. Seismic Response Coefficients (Cs) for all Prototype Buildings  

3-story SCBF 

(R = 6) 

One story – SCBF 

(R = 6) 

Three story – OCBF  

(R = 3.25) 

One story – OCBF 

(R = 3.25) 

0.2267 0.2267 0.4185 0.4185 
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After inputting these Cs values into the corresponding SAP 2000 models, the base 

shears were computed and subsequently distributed through the structures’ height as 

equivalent lateral forces. The general equation for seismic base shear is found from the 

product of the seismic response coefficient (Cs) and the seismic weight (W, i.e., the 

assumed dead load of each structure): 

𝑉 = 𝐶𝑆 ∗ 𝑊, 

While the vertical distribution of lateral forces computed by the program used the following 

equations:  

𝐹𝑖 =  𝐶𝑣𝑖 ∗ 𝑉, 

where:  

𝐶𝑣𝑖 =  
𝑊𝑖 ∗  ℎ𝑖

𝑘

∑ 𝑊𝑗 ∗  ℎ𝑗
𝑘𝑁

𝑗=1

 

𝑘 = 1 𝑓𝑜𝑟 𝑇 ≤ 0.5𝑠; 

𝑘 = 2 𝑓𝑜𝑟 𝑇 => 2.5𝑠; 

 𝑘 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑎𝑛𝑑 2 𝑓𝑜𝑟 𝑇 =  0.5 − 2.0𝑠 

Furthermore, after designing the buildings using SAP2000 (beam, columns, and braces) 

to satisfy the AISC requirements and obtaining the final natural periods, they were 

checked to be less than 𝑇𝑆𝐴𝑃2000  ≤  𝐶𝑢 ∗ 𝑇𝑎.  

𝑇𝑆𝐴𝑃2000 ≤  𝐶𝑢 ∗ 𝑇𝑎 =  1.4 ∗ 0.312 = 0.44 𝑠𝑒𝑐      

Where; 𝐶𝑢 = 1.4 from Table 5.  

𝑇𝑆𝐴𝑃2000 = 0.4 ≤  0.44 sec OK! 

. 
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Table 5. ASCE 7-10 Upper Limit on Calculated Period (from Table 12.8-1). 

 

 

The final calculated periods are listed in Table 6.  

 

Table 6. Natural Periods of Prototype Buildings 

Parameters 

under 

Evaluation 

Period Tn [s] 

3-story SCBF 

(R = 6) 
1 story – SCBF 

(R = 6) 
3 stories – OCBF 

(R = 3.25) 
1 story – OCBF 

(R = 3.25) 

𝐶𝑢 ∗ 𝑇𝑎 0.44 0.20 0.44 0.19 

X direction 0.40 0.21 0.32 0.18 

Y direction 0.40 0.20 0.29 0.17 

Tn SDOF 0.40 0.20 0.31 0.17 

 

4.3. Prototype Buildings Simplification to Single Degree of 

Freedom (SDOF) Systems 

Once all columns, beams, and braces were proportioned to meet preliminary 

strength design requirements, the 3-story buildings were converted into equivalent SDOF 

systems by using the modal participation factor to isolate the first mode response. The 

analysis of MDOF systems (3-story cases) based on a single mode is valid because more 

than 90% of the seismic mass participated effectively in the first mode.  Additionally, the 

symmetry of the buildings suppresses torsional effects. The equivalent SDOF systems 

consist of an effective modal mass (Msdof), and effective modal height (hsdof) (damping: 
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5% of the critical). This simplification is illustrated in Figure 19, an illustration from the 

book “Dynamics of Structures” by Anil K. Chopra, 2012. 

 

 

Figure 19. Chopra illustration for effective modal masses and heights (Chopra 2012). 

 

The floor seismic mass of the buildings (labeled ‘m’ in Figure 19) was computed by 

factoring the floor area times the distributed dead load, 𝑚 = 𝐴𝑓𝑙𝑜𝑜𝑟 ∗ 𝐷𝐿. With the 

stiffness and mass matrices assembled, natural frequencies and mode shapes were 

computed through the eigenvalue formulation. After that, modal participation factors and 

SDOFs masses (mSDOF) were calculated. Representative modal stiffnesses were calculated 

using natural periods and modal masses from SAP2000.  

A summary of the SDOF characteristics systems considered in this study is presented 

below (Table 7).  
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Table 7. Summary table equivalent SDOF systems 

Calculated 
Parameters 

Equations 

3-story- 

High 

Ductility 

(R = 6) 

1 story – 

High 

Ductility 

(R = 6) 

3 stories – Low 

Ductility 

(R = 3.25) 

1 story – Low 

Ductility 

(R = 3.25) 

mSDOF [kg] 
𝛤1

∗ ∑ 𝑚𝑗𝛷1𝑗

𝑗

 891781 297260 891781 297260 

ωn_SDOF Eigen Value 15.7 31.4 20.2 36.9 

Tn_SDOF [sec] 
2𝜋

𝜔𝑛
 0.4 0.2 0.31 0.17 

K0_SDOF [N/m] 𝜔𝑛
2 ∗ 𝑚𝑆𝐷𝑂𝐹 220038142 293383860.4 366348623.6 406067627 

ξ [% of CR] 
𝐶

2 ∗ 𝑚𝑆𝐷𝑂𝐹 ∗ 𝜔𝑛
 5 5 5 5 

4.4. Ground Motions  

A suite of 16 records was selected to match some of those considered in the 

“Seismic response of self-centring hysteretic SDOF systems” conducted by professors 

Chirstopolous et al. in 2001. The ground motions were scaled to a target 5% damped 

elastic design spectrum for soil type D conditions in Los Angeles area. These historically 

strong ground motions were used to evaluate the seismic performance of all prototype 

buildings. The scaled suite is intended to represent earthquakes with a probability of 

exceedance of 10% in a 50-year hazard level, approximated as 2/3 of the MCE 

(maximum considered earthquake), consistent with ASCE 7-10. (FEMA 2000; Tremblay 

et al. 2008). 

The motions were obtained from the NGA-West2 on-line Ground-Motion 

Database created by experts at the Pacific Earthquake Engineering Research Center 

(PEER) (Ancheta et al. 2013). Table 8 and Table 9 present the main characteristics of the 

ground motions used in this study. 
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Table 8. Ground Motions (Metadata) 

# Matlab ID  Magnitude  Spectral Ordinate time step (sec)  Mechanism 

1 CENTROH1 6.54 H1 0.005  strike slip 

2 CENTROH2 6.54 H2 0.005  strike slip 

3 PLASTERH1 6.54 H1 0.01  strike slip 

4 PLASTERH2 6.54 H2 0.01  strike slip 

5 BRAH1 6.54 H1 0.01  strike slip 

6 BRAH2 6.54 H2 0.01  strike slip 

7 mulholH1 6.69 H1 0.01  Reverse 

8 mulholH2 6.69 H2 0.01  Reverse 

9 glandaleH1 6.69 H1 0.01  Reverse 

10 glandaleH2 6.69 H2 0.01  Reverse 

11 CanogaH1 6.69 H1 0.01  Reverse 

12 CanogaH2 6.69 H2 0.01  Reverse 

13 CapitolaH1 6.93 H1 0.005  Reverse Oblique 

14 CapitolaH2 6.93 H2 0.005  Reverse Oblique 

15 fortunaH1 7.01 H1 0.02  Reverse 

16 fortunaH2 7.01 H2 0.02  Reverse 

 

Ground motions were scaled by minimizing Sum of Squared Errors (SSE) 

between the target design spectrum of each motion and the 5% damped elastic response 

spectrum at 0.1, 0.25, 0.5, 1, and 2 seconds periods. The sum of the square error is 

represented by 𝑆𝑆𝐸𝑡 in the equation below, while 𝑆𝑚𝑜𝑡𝑖𝑜𝑛 and 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 correspond to the 

scaled spectral acceleration and design spectral accelerations at a particular period, Tn, 

respectively.  

𝑆𝑆𝐸𝑡 = ∑ (𝑆𝑚𝑜𝑡𝑖𝑜𝑛 − 𝑆𝑡𝑎𝑟𝑔𝑒𝑡)2
𝑇𝑛=0.1,0.2,0.5,1,2     

Figure 20 shows the sum of squared errors for each ground motion record plotted 

versus scaling factor. From this figure, scaling factors can be identified by selecting the 

value corresponding to the lowest error for each motion. For instance, for the BRAH1 

motion, a scaling factor of 4 would render the minimum dispersion in accelerations 

between the target and response spectra at the periods noted above. 
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Scaling factors are reported in the last column of Table 9 for each ground motion. 

Additionally, the response spectrums of the scaled motions are plotted against the target 

design spectrum for visual comparison in Figure 21. 

 

 
Figure 20. Scaling Factors 

Each recorded direction was considered separately in analyses (as obtained from 

the PEER strong motion database). Moreover, the end of all of the records was filled with 

20 zeros to measure residual displacements accurately; this created a free vibration phase 

until the damping abates inertial effects.  
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Table 9. Ground Motions’ Scaling Factors  

# Matlab ID Record 
 Earthquake 

Name 
 Year  Station Name 

 Vs30 

(m/sec) 

 Scale 

Factor 

1 CENTROH1 
 RSN721-

ICC000 

 Superstition 

Hills-02 
1987 

 El Centro Imp. Co. 

Cent 
192.05 2 

2 CENTROH2 
 RSN721-

ICC090  

 Superstition 

Hills-02 
1987 

 El Centro Imp. Co. 

Cent 
192.05 2.1 

3 PLASTERH1 
 RSN724-

PLS045 

 Superstition 

Hills-02 
1987  Plaster City 316.64 5 

4 PLASTERH2 
 RSN724-

PLS135 

 "Superstition 

Hills-02" 
1987  Plaster City 316.64 2.7 

5 BRAH1 
RSN719 - 

BRA225 

 Superstition 

Hills-02 
1987  Brawley Airport 208.71 4 

6 BRAH2 
RSN719-

BRA315 

 Superstition 

Hills-02 
1987  Brawley Airport 208.71 3.4 

7 mulholH1 
 RSN953-

MUL009 
 Northridge-01 1994 

 Beverly Hills - 

14145 Mulhol 
355.81 1 

8 mulholH2 
 RSN953-

MUL279 
 Northridge-01 1994 

 Beverly Hills - 

14145 Mulhol 
355.81 0.7 

9 glandaleH1 
 RSN974-

GLP177 
 Northridge-01 1994 

 Glendale - Las 

Palmas 
371.07 1.3 

10 glandaleH2 
 RSN974-

GLP267 
 Northridge-01 1994 

 Glendale - Las 

Palmas 
371.07 2.5 

11 CanogaH1 
 RSN959-

CNP106 
 Northridge-01 1994 

 Canoga Park - 

Topanga Can 
267.49 1.5 

12 CanogaH2 
 RSN959-

CNP196 
 Northridge-01 1994 

 Canoga Park - 

Topanga Can 
267.49 1.4 

13 CapitolaH1 
 RSN752-

CAP000 
 Loma Prieta 1989  Capitola 288.62 1.1 

14 CapitolaH2 
 RSN752-

CAP090 
 Loma Prieta 1989  Capitola 288.62 1.5 

15 fortunaH1 
 RSN827-

FOR000 

 Cape 

Mendocino 
1992 

 Fortuna - Fortuna 

Blvd 
457.06 4.4 

16 fortunaH2 
 RSN827-

FOR090 

 Cape 

Mendocino 
1992 

 Fortuna - Fortuna 

Blvd 
457.06 4.2 
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Figure 21. Elastic Spectrums of Scaled Ground Motions 

 

4.5. Earthquake Estimates of Direct Physical Building Damage  

This section is based on the Hazus® –MH 2.1 Technical Manual for multi-hazard 

loss estimation methodology, especially chapter 5 (“Direct Physical Damage”). Here, 

building damage caused by a strong ground motion is measured as the cumulative 

probability of being in or exceeding a damaged state (slight, moderate, extensive, or 

complete). This procedure is supported on the same principles as performance-based 

engineering described extensively in the FEMA 273 and the ATC-40 (FEMA 2015).  

4.5.1. Fragility Curves  

Fragility curves represent the cumulative distribution function (CDF) of the 

logarithm of an engineering demand parameter, such as spectral displacement (Sd) or 
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spectral acceleration (Sa). In other words, these curves (see Figure 22) represent the 

vulnerability in terms of probability of a building being in or exceeding a particular 

damage state. For instance, in Figure 22, a building with 5 inches of peak displacement 

would have approximately 100%, 50%, 5%, and 0% probabilities of exceeding the slight, 

moderate, extensive, or complete damage stages, respectively.  

Regarding the engineering demand parameters, the direct economic loss module 

of HAZUS-MH uses displacement to assess damage to structural and drift-sensitive 

nonstructural components. Whereas, acceleration is used to calculate acceleration-

sensitive nonstructural damage and contents losses. 

 

 

Figure 22 HAZUS-MH Example of Fragility Curves for Slight, Moderate, Extensive and Complete 

Damage 
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The probability of being in or exceeding a damage state is given by the equation below, 

which was taken from HAZUS-MH technical manual, page 1-40.  

 

𝑃[𝑑𝑠|𝑆𝑑] = 𝛷 [
1

𝛽𝑑𝑠
ln (

𝑆𝑑

𝑆𝑑,𝑑𝑠
)]                  

where: 

𝑺𝒅,𝒅𝒔: the median value of spectral displacement at which the building reaches the 

threshold of the damage state, ds.  

𝜷𝒅𝒔: the standard deviation of the natural logarithm of spectral displacement of 

damage state, ds. 

𝜱: the standard normal cumulative distribution function. 

 

All prototype building structures were labeled as S2L, which stands for the low-

rise steel-braced frame (see Table 10). Moreover, because buildings were assumed to be 

commercial, the corresponding occupancy classification was COM4, which stands for 

offices offering technical or professional services. Structure classifications determine 

damage state thresholds, and occupancy classifications determine relative proportions of 

building value associated with structural and nonstructural components and contents. 

 

Table 10. Building Model Classification (from Table 3.1 HAZUS-MH). 
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Table 11. Building occupancy classification (from Table 3.2 HAZUS-MH) 

 

 

 Fragility curve parameters (𝑺𝒅,𝒅𝒔, 𝜷𝒅𝒔) were selected to corresponded to high-

code seismic design and construction, which is appropriate for modern construction in a 

high seismic region such as Los Angeles. Fragility parameters were used as appropriate 

per the HAZUS loss estimation methodology to assess structural versus nonstructural 

component damage. Excerpts from the HAZUS-MH Technical Manual are provided in 

Table 12, Table 13, and Table 14 highlighting the lognormal damage state parameters for 

structural, drift-sensitive nonstructural, and acceleration-sensitive nonstructural 

components, respectively.  

 

Table 12. Structural Fragility Curve Parameters for High-Code seismic design level (from Table 5.9a 

HAZUS-MH) 
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Table 13. Nonstructural Drift‐Sensitive Fragility Curve Parameters for High‐Code Seismic Design Level 

(from Table 5.11 HAZUS-MH) 

 

 

Table 14 Nonstructural Acceleration‐Sensitive Fragility Curve Parameters ‐High‐Code Seismic Design 

Level (from Table 5.13a HAZUS-MH) 

 

 

Once the probabilities of reaching each particular limit state have been computed, 

they are converted into Percentage of Total Building Replacement Cost (% TBRC). The 

factors used for this conversion were derived from statistical data associated with 

building occupancy. The repair cost conversion factors are shown in Table 15, Table 16, 

and Table 17 for structural, nonstructural acceleration-sensitive, and nonstructural drift-

sensitive components, respectively. 

 

Table 15. Drift-sensitive Non-structural Repair Costs [% TBRC] (from HAZUS-MH table 15.2). 
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Table 16. Acceleration-sensitive Non-structural Repair Cost Ratios [% TBRC] (from HAZUS-MH table 

15.3). 

 

 

Table 17. Structural Repair Cost Ratios [% TBRC] (from HAZUS-MH table 15.4). 

 

 

On the other hand, strong ground motions can also induce damage to building 

contents. Therefore, contents losses were taken into account for all analyses. Contents 

include any equipment or furniture that is not integrally attached to the structure, such as 

computers, screens, and projectors. Contents damage is usually associated with building 

accelerations. Therefore, quantifying contents damage can be related to the nonstructural 

acceleration-sensitive estimations. For this task, FEMA developed Table 18 to estimate 

contents losses based on the state of nonstructural acceleration-sensitive damage.  

 

Table 18. Contents Damage Ratios (in % of contents replacement cost) (from Table 5.15 HAZUS-MH) 
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An example to clarify this process is presented in Table 19. Here, loss estimates 

for structural (STR), nonstructural drift-sensitive (NSDS), nonstructural acceleration-

sensitive (NSAS), and contents of an example structure are calculated using the HAZUS-

MH methodology. For this task, 𝑃[𝑑𝑠|𝑆𝑑] equation (page 42) was applied three times. 

The inputs were the spectral (peak) displacement (Sd) for STR and NSDS loss projections, 

and the spectral (peak) acceleration (Sa) for NSAS loss assessments. For all cases the 

values of 𝑺𝒅,𝒅𝒔 (Sd_bar) and 𝜷𝒅𝒔(beta) are found in Table 12, Table 13, and Table 14. Once 

the probability of being in or exceeding a limit state is determined (PE), the probability of 

not reaching such a state of damage (PDS) can be directly computed. For instance, in 

Table 19 it was shown that the PE for at least slight structural damage was 33% and 

therefore the PDS for “no damage” would equal 66% (66% chance of having zero 

structural damage in the structure). Similarly, the PE for moderate structural damage was 

23.5%, which rendered a 10% PDS for the slight structural damage state, 10% chance of 

having slight structural damage (33% at least Slight (including Moderate and greater) - 

23.5% at least Moderate = 10% probability of Slight damage).  

An identical process was followed for all STR, NSDS, and NSAS damage states 

[None, Slight (S), Moderate (M), and Complete (C)]. Then all PDS values were multiplied 

by the appropriate repair cost ratios (from Table 15, Table 16, and Table 17) to obtain 

building repair costs as a percentage of the total building replacement cost. For the 

contents damage assessment, the process is slightly shorter because the previously 

calculated PDS values for of the nonstructural acceleration-sensitive components (NSAS) 

are multiplied by the content damage ratios (Table 18) to produce the content repair 

costs. 
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Once all the repair costs have been estimated for individual components and 

damage states, the costs are summed to produce a total estimated repair cost (loss). For 

this particular example (Table 19), the HAZUS methodology indicated that repair costs 

for a commercial office building, which sustained a 0.49 in (12.5 mm) peak displacement 

and 0.4185 g (4.1 m/s2) peak acceleration, would cost, on average, approximately 24.9% 

of the total building replacement cost. Here, it can also be seen that most of the damage 

came from nonstructural acceleration-sensitive and building contents losses. 

Analogous direct economic capital-related loss estimates were conducted for 

hundreds of structural hyperelastic structural configurations as well as their hysteretic 

counterparts. The structural damage was considered negligible for all hyperelastic models 

because of the intended lack of inelastic deformations in the lateral load resisting system. 
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Table 19. Example of Direct Physical Building Damage Computation using HAZUS-MH, inputs’ units 

Sd=[in] and Sa=[g] 
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4.6. Parametrization 

The performance of two structural models is evaluated in this work: a bilinear 

elastoplastic (fully hysteretic without degradation) and a trilinear hyperelastic model. The 

hyperelastic model represents a concentrically-braced frame equipped with innovative 

hyperelastic fuses. The idealized force-displacement relationships of both systems are 

shown in Figure 23. The main parameters describing the systems are:  

 

 

 

 

Figure 23. (a) hysteretic system behavior; (b) hyperelastic system. 

Hyperelastic 

 fe: Buckling force 

 k0: Initial stiffness 

 k2: Buckling stiffness 

 k3: Arresting stiffness 

 Δg: Gap closure displacement  

 Δe: Buckling displacement 

Hysteretic 

 fy:   Yielding force  

 kh0: Elastic stiffness and a  

 kh2: Plastic stiffness.  

 Δy: Yielding displacement 

 

(a) (b) 



51 

 

The initial stiffness was assumed equal (kh0=K0) for both systems, hyperelastic 

and hysteretic, through the entire study, and the yielding (kh2) and first post-buckling (K2) 

stiffness were assumed zero for simplicity, disregarding potential strain hardening in the 

hysteretic system or post-buckling strength in the hyperelastic system. Three independent 

response parameters were selected for parameterization in the hyperelastic model: the 

ratio of initial to buckling stiffness (α1), the ratio of initial stiffness to arresting stiffness 

(α2), and ductility to the arresting stiffness (μ). Additionally, the hyperelastic buckling 

force was taken as a fraction of the hysteretic yielding force (fy), then the force ratio 

(fy/fe) became the fourth parameter evaluated.  

μ =
∆g

∆y
;  α1 =

𝑘2

𝑘0
= 0; α2 =

𝑘3

𝑘0
 

4.6.1. Sensitivity Analysis.  

In this part of the study, the primary goal was to identify how induvial 

hyperelastic parameters affect the structural response (peak displacements and 

mechanical force). First, using a single ground motion response, peak response trends 

were identified. These trends were confirmed by running all ground motions. If such a 

trend was valid for more than nine of the sixteen motions, this trend was studied in more 

detail.  

An example of this procedure is presented in Figure 24, where the influence of the 

arresting stiffness (𝑘3 = α2 ∗ 𝑘0) in the final response was investigated. For this purpose, 

the arresting stiffness ratio (α2) was varied from 0 (flat) up to 0.25 (K3 equals 25% of the 

initial stiffness), while the ductility equals 1.5 and a buckling force is equivalent to half 
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the yielding force (fy/fe=2) of the reference hysteretic model (see Figure 24a). The 

response pattern here suggested that increasing the arresting stiffness yields a linear 

decrease in displacement and a linear increase in maximum force. In order to see if this 

trend remained while changing the ductility, maximum response trend lines (MRTLs) 

were created. One of these lines is shown in Figure 24b. This line was created by joining 

the maximum displacement and force (Δmax, fmax) of every hyperelastic system in Figure 

24a (steps 1 and 2). Once the line was generated, the MRTL was mirrored to the opposite 

region (step 3) to compare maximum displacements against the hysteretic system at both 

zones (blue lines in Figure 24c). Finally, Figure 24c shows several MRTLs plotted for 

ductilities varying from 1.5 to 10 in 0.5 increments. Base on this figure, it was 

demonstrated that the linear trend remained independent of the ductility used. Similar 

sensitivity analyses were conducted for all three parameters evaluated (α2, μ, fy/fe ratio). 

Once a trend was identified, the validity of the trend was verified.  A trend was 

considered valid if it was observed with at least nine of the sixteen considered ground 

motion records.  

In summary, this study identified the parameters governing the seismic behavior 

of concentrically-braced frames equipped with hyperelastic structural fuses. Additionally, 

it was analytically verified that it is possible to calibrate hyperelastic fuses to achieve 

better or comparable performances (regarding peak mechanical force and displacements) 

to that of comparable hysteretic systems.  
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Figure 24. Trend identification example by using maximum response trend lines (MRTLs) 

(a) (b) 

1 2 

3 

(c) 
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CHAPTER 5. RESULTS 

5.1. Overview 

The body of this chapter is divided between bilinear and trilinear hyperelastic system 

evaluations. Within these two sections, the results for each prototype building are 

discussed one by one (case D through case A). Comparative results for bilinear 

hyperelastic systems are shown starting on page 55, and the trilinear system results are 

discussed starting on page 63. Comprehensive summaries of observations are shown for 

the main findings of the bilinear system evaluations as a whole and individually for each 

trilinear system. 

 

 

μ =
∆g

∆y
;  α1 =

𝑘2

𝑘0
= 0; α2 =

𝑘3

𝑘0
 

 

 

 

 

 

 

 

 

Figure 25. Idealized Force- Displacement curve. Hysteretic and Hyperelastic 
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5.2. Evaluation of Bilinear Hyperelastic Models 

This section explores the possibility of obtaining competitive self-centering features 

from bilinear hyperelastic systems by trading off reductions in brace force and, ideally, 

acceleration demands, in exchange for higher average peak displacements. Such bilinear 

behavior is achieved by using a fuse with enough gap space so that the arresting stiffness 

(K3) is never reached. 

The main question to address is how much additional displacement will occur for a 

bilinear hyperelastic system relative to a full hysteretic system? Figure 26 illustrates this 

comparison, where a hysteretic reference system is plotted against possible bilinear 

hyperelastic models. Although the hyperelastic (K0) and hysteretic (Kh0) initial stiffnesses 

are portrayed as having different values (different elastic stiffness slopes), the numerical 

values were equivalent (Kh0 = K0) for each of the four considered Cases (A through D). 
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Figure 26. Force-Displacement curve for bilinear hyperelastic systems. 

 

5.2.1. Bilinear, 3-Story Building, Low-Ductility (CASE D)  

As described in the Methodology chapter, case D refers to a building with a 

natural period (Tn) of 0.31s. This period approximates a three story concentrically-braced 

frame (CBF) building, such as the structure shown in figure 2. According to ASCE/SEI 

2010, a response modification factor (R) of 3.25 can be used for seismic design when the 

frame is proportioned and detailed in accordance with Ordinary CBF requirements. 

Analysis results are presented in Table 20 and Figure 27, showing that the peak 

displacement increased from 44% when fy/fe=1 to 1039% when the buckling force level 

of the hyperelastic system was reduced to a third of the corresponding hysterestic system 

yield strength, fy/fe=3. The viability of increasing the fy/fe ratio was explored further 

while computing loss assessment estimates, results of which are presented in Figure 31. 
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Table 20. CASE D. Peak Ductility comparisons between Hysteretic and Bilinear Hyperelastic systems 

(different fy/fe ratios.) 

CASE D- Ductility 

3-Story, Ordinary Seismic Design 
3 Stories R=3.25 Tn=0.31 

Ground 

Motions 

Duct_Hysteretic Duct_Hyperelastic -- (fy/fe) 

0 1 1.1 1.2 1.5 2 3 

CENTRO H1 4 7.43 9 10 22 44 51 

CENTRO H2 4.16 5 8 8 13 23 78 

PLASTERH1 6.8 9 9 13 16 28 33 

PLASTERH2 5.4 5.7 8 8 8 18 39 

BraH1 3.6 3.15 4 5 11 18 28 

BraH2 2.3 1.55 3 3 6 7 13 

MulholH1 2.93 2.67 7 9 59 85 127 

MulholH2 2 5.5 8 9 11 16 47 

GlandaleH2 1.4 1.79 2 3 3 7 8 

GlandaleH1 1.45 2.5 3 4 5 6 8 

CanogaH2 5.6 11.24 14 15 19 31 45 

CanogaH1 5.3 6.64 8 8 15 26 41 

CapitolaH2 6.8 9.1 14 15 17 18 28 

CapitolaH1 4.6 4.8 5 5 17 23 42 

FurtuneH2 4 8.64 9 13 20 26 69 

FurtuneH1 6.8 12 8 15 18 23 108 

Average 4.2 6.0 7.4 8.9 16.3 24.9 47.8 

Max 6.8 12 14 15 59 85 127 

 

 

 
Figure 27. CASE D. Ductility required for a Bilinear Hysteretic system, different fy/fe ratios. 
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5.2.2. Bilinear, 1-story Building, Low-Ductility (CASE C)  

As described in the methods chapter, case C refers to a building with a natural period 

of 0.17 seconds. As with case D discussed previously, the R factor equals 3.25. 

Table 21 and Figure 28 show the results for this particular building. Here, the increase 

in displacement demands was more pronounced with a shorter period (higher elastic 

stiffness). When fy equals fe, the average ductility for the hyperelastic system was 12 

(116% increase over the hysteretic) while for fe=fy/3 the average ductility reached 94 

(1593% increase over the hysteretic). Hence, the viability of increasing fy/fe was further 

explored through HAZUS-MH. Those results are presented in Figure 31.  

 

Table 21. CASE C. Peak Ductility comparisons between Hysteretic and Bilinear Hyperelastic systems 

(different fy/fe ratios.) 

CASE C- Ductility 

1-Story, Ordinary Seismic Design 
1 Stories R=3.25 Tn=0.17 

Ground Motions 
Duct_Hysteretic Duct_Hyperelastic -- (fy/fe) 

0 1 1.1 1.2 1.5 2 3 

CENTRO H1 7.13 22.2 25 31 45 87 164 

CENTRO H2 9.56 10.33 14 17 21 46 126 

PLASTERH1 8.12 22.4 21 26 35 46 93 

PLASTERH2 9.5 22.95 25 28 26 36 66 

BraH1 4 6.76 7 8 19 26 71 

BraH2 3.6 2.4 2 3 3 20 30 

MulholH1 3.58 4.3 7 9 59 85 127 

MulholH2 2.13 5.74 7 21 27 42 81 

GlandaleH2 3 7.4 7 9 10 18 26 

GlandaleH1 2.65 7.6 8 8 10 15 20 

CanogaH2 6.5 26 28 32 51 65 96 

CanogaH1 7.1 11.68 13 13 25 46 109 

CapitolaH2 9.8 15.77 10 42 42 48 72 

CapitolaH1 5.79 13.6 14 14 17 46 73 

FurtuneH2 2.72 6.2 13 8 32 57 163 

FurtuneH1 3.67 7 35 34 55 56 187 

Average 5.6 12.0 14.8 18.9 29.8 46.2 94.0 

Max 9.8 26 35 42 59 87 187 
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Figure 28. CASE C. Ductility required for a Bilinear Hysteretic system, different fy/fe ratios. 

 

5.2.3. Bilinear, 3-story Building, High Ductility (CASE B)  

As described in the methods chapter, case B refers to a 3-story building with a natural 

period of 0.4 seconds. Case B represents a building designed for high seismic demands. 

Therefore, the response modification factor (R) equals 6, corresponding to a structure 

meeting requirements for Special CBFs (ASCE/SEI 2010). Table 22 and Figure 29 show 

the results for this particular building. When the same force capacity is used for 

hyperelastic and hysteretic systems (fy/fe=1), the average peak ductility required increases 

60%, a ductility of 8.5 in the hysteretic versus a 13.6 of the hyperelastic. If the buckling 

force in the hyperelastic (fe) is set to one-third of the hysteretic system yield strength (fy/fe 

=3), the average ductility demand is 671% greater than that of the hysteretic system. The 

economic viability of increasing the fy/fe was further explored through HAZUS-MH. The 

results are presented in Figure 31.  

 

 

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3

D
U

C
TI

LI
TY

 

FY/FE [0 = HYSTERETIC]

CENTRO H1 CENTRO H2

PLASTERH1 PLASTERH2
BraH1 BraH2
MulholH1 MulholH2
GlandaleH2 GlandaleH1
CanogaH2 CanogaH1
CapitolaH2 CapitolaH1
FurtuneH2 FurtuneH1



60 

Table 22. CASE B. Peak Ductility comparisons between Hysteretic and Bilinear Hyperelastic systems 

(different fy/fe ratios.) 

 

 

Figure 29. CASE B. Ductility required for a Bilinear Hysteretic system, different fy/fe ratios. 
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CASE B - Ductilities 

3-Story, design for seismic 
 3 Stories R=6 Tn=0.4 

Ground 

Motions 
Duct_Hysteretic Duct_Hyperelastic -- (fy/fe) 

0 1 1.1 1.2 1.5 2 3 

CENTRO H1 15 20.2 28 31 40 43 92 

CENTRO H2 9.2 13 19 20 52 89 118 

PLASTERH1 6.5 18 18 19 24 47 59 

PLASTERH2 9.7 8.5 17 19 25 39 70 

BraH1 8.6 10 11 13 16 22 32 

BraH2 5.12 4.8 4 4 20 34 43 

MulholH1 9.24 23 25 27 36 41 57 

MulholH2 5.58 15.6 19 20 29 37 47 

GlandaleH2 4 4 4 5 5 7 9 

GlandaleH1 2.65 3.37 4 4 5 6 7 

CanogaH2 10.35 20.3 20 25 34 55 93 

CanogaH1 6.18 16.7 19 20 22 34 54 

CapitolaH2 11.43 12.2 13 14 16 26 43 

CapitolaH1 9.22 10 18 22 27 35 42 

FurtuneH2 7.17 20.5 29 32 36 96 149 

FurtuneH1 16.7 18 29 44 66 84 138 

Average 8.5 13.6 17.3 19.9 28.3 43.4 65.8 

Max 16.7 23 29 44 66 96 149 
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5.2.4. Bilinear, 1-Story Building, High Ductility (Case A).  

Case A refers to a low-rise steel concentrically-braced frame designed with high 

seismic standards. ASCE 7-10 assigns a response modification factor of 6 to buildings 

designed and detailed with Special CBFs.  

Table 23 and Figure 30 show the results for this building. When fy equals fe, peak 

ductility demands increase by 67% relative to the baseline hysteretic case. When fy/fe=3, 

a 752% increase in peak displacement demand (relative to the hysteretic) is observed for 

the selected ground motions. The viability of this system is further explored by using 

HAZUS-MH. Results are presented in Figure 31. 

 

Table 23. CASE A. Peak Ductility comparisons between Hysteretic and Bilinear Hyperelastic systems 

(different fy/fe ratios.) 

CASE A - Ductilities 

low-rise, Design for seismic 
1 Stories R=6 Tn=0.2 

Ground Motions 
Duct_Hysteretic Duct_Hyperelastic -- (fy/fe) 

0 1 1.1 1.2 1.5 2 3 

CENTRO H1 30 60 71 87 117 117 237 

CENTRO H2 24.9 34 37 42 113 190 303 

PLASTERH1 22 39 21 53 71 93 189 

PLASTERH2 35 21 29 38 52 89 151 

BraH1 9.7 14 29 32 45 66 93 

BraH2 7.48 14 15 18 23 80 116 

MulholH1 24 56 68 80 98 120 162 

MulholH2 11.2 32 23 30 63 101 152 

GlandaleH2 4.74 10 14 15 18 21 30 

GlandaleH1 7.3 18.85 12 13 15 18 23 

CanogaH2 20 42 52 55 74 110 235 

CanogaH1 9.42 39.33 42 53 77 103 150 

CapitolaH2 54 39 37 40 49 70 110 

CapitolaH1 10.4 32 37 41 57 92 123 

FurtuneH2 18.3 43.6 45 70 100 221 292 

FurtuneH1 31.5 39.5 48 57 133 216 361 

Average 20.0 33.4 36.3 45.3 69.1 106.7 170.4 

Max 54 60 71 87 133 221 361 
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Figure 30. CASE A. Ductility required for a Bilinear Hysteretic system, different fy/fe ratios. 

 

5.2.5. Summary and Loss Assessment Estimates for Bilinear Hyperelastic 

Models. 

Figure 31 shows the direct economic loss estimates for bilinear hyperelastic systems 

at each prototype building discussed above (cases A, B, C, and D). In Figure 31, the 

normalized cost of hyperelastic system loss to hysteretic system loss 

(Cost_Hyper/Cost_Hysteretic) is plotted versus several fy/fe and different ductility levels. A 

value of 1 in the vertical axes means same repair cost for both systems while higher 

values than one mean that the hyperelastic repair cost exceeded that of the hysteretic. 

These results show that none bilinear hyperelastic systems are expected to increase 

the direct economic impact of an earthquake. Accelerations only correlate directly to 

forces for linear systems, so the considered scenarios with reduced system forces did not 

produce proportionately reduced accelerations.  
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Favorable relative repair costs will depend on whether or not the nonstructural 

damage due to additional displacements offset the savings of preventing structural 

damage and reduced accelerations. The buildings with a higher period (case B and D) 

showed direct repair costs closer to the hysteretic, suggesting that for more flexible 

structures with reduced elastic stiffness, a bilinear hyperelastic system could yield better 

performance. 

 

Figure 31. Loss assessment estimate for Bilinear Hyperelastic models. 

 

5.3. Trilinear Hyperelastic Evaluations  

Figure 32 shows different hyperelastic configurations contrasted against a 

conventional hysteretic model. An infinite array of hyperelastic system permutations 

could be considered. However, during the analysis, the pool of systems was significantly 

reduced by considering only parametric combinations that result in equal or reduced force 

compared to the hysteretic system (fe, max<fy). This requirement limited the valid range of 

arresting stiffness (K3) considerably. As had been implemented for the bilinear 
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hyperelastic study, the same initial stiffness was used for both reference hysteretic and 

hyperelastic systems. 

 
Figure 32. Different Hyperelastic configurations (Force-Displacement) 

 

During the analysis, it was noticed that the hyperelastic peak brace forces were 

highly influenced by variations in frequency content of each motion, especially low-

frequency content. For instance, when motions that exhibit higher acceleration demands 

(compared to those of the target spectrum) in the long period range were used, the 

hyperelastic system required stricter parameter combinations to meet the mechanical 

force level (i.e. FortuneH1, FortuneH2). On the other hand, when motions with lower 

acceleration demands in the long period range (Tn>0.7s) were used, the hyperelastic 
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Trends were identified from an extensive parametric study, with main findings 

presented below in a case by case format.  

5.3.1. Trilinear, 3-Story Building, Low-Ductility (CASE D)  

The analyses revealed that the arresting stiffness (K3) must be kept less than 0.1K0 to 

ensure that the hyperelastic maximum brace force will be equal to or less than the 

complementary hysteretic brace. An example is shown in Figure 33a, where the buckling 

force in the hyperelastic system is three times less than the yielding force in the hysteretic 

system (fy/fe = 3), and the ductility from buckling to the arresting stiffness is 2.5. In this 

figure, the blue lines demarcate the maximum displacement and force in the reference 

hysteretic system. When α2 is set higher than 0.1, all hyperelastic maximum forces 

surpass the brace force of the reference hysteretic system. This happens to be true for the 

majority of fy/fe ratios, but the lowest peak displacements were obtained with fy/fe ratios 

close to 1.0. Similarly, it was found that ductility (Figure 33b) did not have considerable 

influence in the force demand when lower fy/fe values were used (1 to 2). 

Three values of α2 (0.1, 0.05, and 0.025) were evaluated for ductility values of 7 

to 15 and fy/fe ratios from 1 to 6. the optimal combinations of K3 (α2) and ductility 

with respect to peak force and displacement demands were:  

  α2= 0.1, μ=9 to have fe, max<fy for most fy/fe  

 α2= 0.05, μ>6 to have fe, max<fy for all fy/fe 

 α2= 0.025, any ductility allows that fe, max<fy for all fy/fe (but when fy/fe equals 1, μ 

>7 is required) 
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Figure 33. CASE D- fy/fe equals 3. (a) Right: α2= [0 to 0.25] for μ=2.5; (b) Left: μ = [1 to 10] for α2 [0-

0.25]. 

(a) 

(b) 
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In summary, for all combinations of μ and the fy/fe ratio, the arresting stiffness (K3) 

has to be less than 10% of the initial stiffness (K0). This range of stiffness was used to 

meet the force limit in the brace. The best displacement responses were found when fy/fe 

was closer to 1.0 (similar force level on both systems), and the highest K3 considered was 

used (α2 close to 0.1).  

5.3.1.1. Case D. Loss Assessment Estimates 

The structural responses of hyperelastic systems with peak forces not exceeding 

the comparable hysteretic system force were used to assess seismic consequences with 

respect to direct building repair costs. Building accelerations and peak displacements 

were mapped to direct economic loss by using the HAZUS-MH loss assessment 

methodology. 

 Three loss estimates are presented, which provide meaningful insights about the 

advantages of using either system.  

 Previously, it was noted that the max brace force developed in hyperelastic 

systems with α2= 0.1 and μ=9 generally did not exceed the yielding force of the 

reference hysteretic system (fe,max<fy for most fy/fe considered). However, when 

the induced peak accelerations and displacements were mapped to direct 

economic losses, only the fy/fe ratios greater than three (3) yielded considerable 

savings in final repair costs (20% less than the hysteretic). This reduction is 

illustrated in Figure 34, where the normalized repair cost (hyperelastic repair cost 

normalized by corresponding hysteretic repair cost) is plotted against the fy/fe 

ratio for several ductilities. This repair cost was compute based on the average 
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hyperelastic response obtained after running all ground motions (9 out of 16 was 

the minimum number of motions needed to add a point in Figure 34). 

 In this figure, it is also shown that hyperelastic systems with fy/fe ratio 

lower than two (2) exceeded the unity threshold, which means that such 

configurations would be expected to require higher repair costs than a comparable 

conventional hysteretic system.  

 

 

Figure 34. CASE D- α2=0.1; Normalized repair cost, ductility, and fy/fe ratio. 

 

 Similarly, some hyperelastic systems were modeled with an α2 = 0.05 and μ>6. 

Figure 35 shows that even though such systems met the force level (fe, max<fy), the 

direct economic impact is not likely to be an improvement over hysteretic 

systems.  
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Figure 35. CASE D- α2=0.05; Normalized repair cost, ductility, and fy/fe ratio. 

 

 Third, the loss assessment in Figure 36, showed that no hyperelastic trilinear 

systems with α2= 0.025 were competitive with hysteretic systems based solely on 

direct economic loss estimation.  

 

 

Figure 36. CASE D- α2=0.025; Normalized repair cost, ductility, and fy/fe ratio. 
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5.3.1.2. Case D. Summary  

The best hyperelastic performance was observed when the highest arresting (K3) 

stiffness was used (10% of K0) because this minimized displacement demands while 

brace forces were maintained similar or lower than the reference hysteretic system. This 

configuration yielded a repair cost reduction of 20% over a comparable conventional 

hysteretic system. 

 

 

Figure 37. CASE D. (a) Acc. Vs Disp.; (b) Disp. vs. time; (c) normalized brace force vs. Displ.; (d) Acc. 

vs. time. 

 

To understand the unfavorable performance outcomes when a lower K3 was used, 

the data was further examined and confirmed that the additional displacement demands 

caused by the softened stiffness were not compensated by a significant reduction in 
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(c) 
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acceleration demands. Having similar damage coming from acceleration-sensitive 

elements (Figure 37a, Figure 37d) and larger peak displacements (Figure 37b, Figure 

37c) resulted in higher repair cost estimates for these hyperelastic systems.  

Direct economic losses attributed to displacements (drift-sensitive nonstructural) 

and accelerations (acceleration-sensitive nonstructural and contents) were aggregated 

separately for each combination of ductility and fusing force ratio (fy/fe). The aggregated 

displacement- and acceleration-based losses were then normalized by their sum for each 

combination, providing a relative measure of displacement vs. acceleration demand 

parameter significance. Figure 38 presents the results of these calculations for Case D at 

each of α2 equal to 0.1, 0.05, and 0.025. A fy/fe ratio equal to zero (0) corresponds to the 

reference hysteretic system loss distribution. Filled markers correspond to displacement-

induced damage (associated with Sd in HAZUS), and unfilled markers correspond to 

acceleration-induced damage (associated with Sa in HAZUS). Structural damage was 

assumed negligible for all hyperelastic models, but was included in the displacement-

based damage for the hysteretic system losses. 
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Figure 38. CASE D. (a) loss distribution for α2=0.1; (b) loss distribution for α2=0.05; (c) loss distribution 

for α2=0.025. 

For hyperelastic systems with low fy/fe ratios (fy/fe approaching 1, when the 

hyperelastic buckling force approaches the hysteretic yielding force), the damage in the 

hyperelastic structure was mainly attributable to acceleration-sensitive components (e.g., 

damaged suspended ceilings and/or mechanical, electrical, or plumbing components in 

ceiling spaces, or falling shelves and damage to building contents). As the fy/fe ratio 

increased, peak displacements rise correspondingly and become the primary source of 

damage in the building (at drift-sensitive nonstructural elements such as partitions or 

curtain walls). The damage distribution for each of the examined K3 options is shown in 

(a) 

(b) (c) 
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Figure 38a, Figure 38b, and Figure 38c. These figures also show that the role of ductility 

diminished when systems were modeled with low α2. 

5.3.2. Trilinear, 1-Story Building, Low-Ductility (CASE C) 

Similarly, to the Case D building, the same initial stiffness was used for both 

hysteretic and hyperelastic systems. The Case C building differs from Case D with a 

shorter natural period (0.17 sec for Case C versus 0.31 sec for Case D). This building 

presented a greater challenge to find hyperelastic systems that develop less or equal brace 

force and comparable displacements to those of the comparable hysteretic system. These 

complications were due to the excellent responses exhibited by the hysteretic model. 

Testing hundreds of different hyperelastic configurations revealed that: 

 Systems with α2= 0.1 did not meet the force limit fe, max<fy until high ductilities 

were used (μ>45). However, when the fy/fe ratio was kept below three (fy/fe <3), 

ductility values as low as thirty (μ> 30) could satisfy the peak force limit.  

 Hyperelastic systems with α2= 0.05 required ductilities larger than twenty (μ>20) 

to have fe, max<fy for all fy/fe ratios less than three (3); the rest of the fy/fe 

combinations would require μ>35 to satisfy the peak force limit.  

 When α2= 0.025 or lower, ductilities higher than five (μ>5) are enough to 

guarantee that the fe, max is less than fy. This applies to all fy/fe ratios.  

5.3.2.1. Case C. Loss Assessment Estimates 

HAZUS-MH estimates provided meaningful insights about the magnitudes of direct 

economic loss when using hysteretic versus hyperelastic systems.  
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 The analysis of hyperelastic systems with α2= 0.1, see Figure 39, shows that the 

vast majority of hyperelastic models rendered higher repair costs than the 

traditional hysteretic. 

 

Figure 39. CASE C- α2=0.1; Normalized repair cost, ductility, and fy/fe ratio. 

 Hyperelastic systems with a α2 = 0.05 and μ>20 were evaluated. Figure 40 shows 

that systems with a fy/fe ratio higher than 3 produce an estimated 10% direct 

repair saving over the hysteretic model. 
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Figure 40. CASE C- α2=0.05; Normalized repair cost, ductility, and fy/fe ratio. 

 

 The loss assessment results presented in Figure 41, using α2= 0.025, showed that 

increasing the flexibility generated higher total losses, while the fy/fe ratio did not 

display substantial influence in either reducing or increasing direct economic loss 

outcomes. In general, none of the hyperelastic systems considered were 

competitive (regarding direct economic damage only) with traditional hysteretic 

systems.  
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Figure 41. CASE C- α2=0.025; Normalized repair cost, ductility, and fy/fe ratio. 

5.3.2.2. Case C. Summary  

The most favorable hyperelastic performance relative to hysteretic performance 

was observed when the arresting stiffness was set to 0.05 (5% of K0), providing a 

reduction in direct economic loss of 10% over the conventional hysteretic. The rest of the 

arresting stiffness, ductility and fy/fe variations considered did not result in expected 

direct economic loss savings.  

These adverse outcomes were further examined to find the cause of the overruns. 

Figure 42 shows a representative comparison of hysteretic and hyperelastic system 

responses for Case C, for one ground motion. The hyperelastic system behaved correctly, 

but the reason why it was not competitive (regarding direct economic repair cost) was 

due to the excellent hysteretic response that eclipsed it. The residual displacements 

incurred by the hysteretic system and avoided in the hyperelastic system (structural 

damage savings) were not significant enough to offset the damage caused by large 
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relative displacements (damage to nonstructural drift-sensitive elements) that result in 

higher earthquake direct capital-related costs.  

 

  

Figure 42. CASE C. (a) Acc. Vs Disp.; (b) Disp. vs. time; (c) normalized brace force vs. Displ.; (d) Acc. vs. 

time.  

 

Furthermore, the loss assessment distribution illustrated below (see Figure 43a) 

showed that when K3 equals 10% of K0, displacement-induced and acceleration-induced 

losses are approximately evenly distributed for most of the evaluated hyperelastic models 

(those meeting the hysteretic mechanical force threshold). A similar loss distribution was 

observed in hyperelastic systems when K3 was 5% of K0 (see Figure 43b), but a wider 

pool of systems passed the force limit. Optimal combinations of fusing force ratio and 

ductility produced hyperelastic systems expected to incur approximately 5% to 10% less 

direct economic loss than a comparable hysteretic system. 

(a)

(c) (d) 

(b)
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Systems with a shallower arresting stiffness (K3 less than 2.5% of K0) did not 

provide economic savings in terms of mainshock direct economic effects. The loss 

distribution (see Figure 43c) showed that most of the building damage was due to large 

displacements causing the loss of nonstructural drift-sensitive elements. 

 

Figure 43. CASE C. (a) Loss distribution for α2=0.1; (b) loss distribution for α2=0.05; (c) loss distribution 

for α2=0.025. 

In summary, lowering the arresting stiffness (α2) diminishes the influence of ductility 

in the response. The transition to re-stiffening would not generate significant response 

(a) 

(b) (c) 
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variations because of the smooth change in the system stiffness (the trilinear system 

approaches a bilinear response, similar to those previously analyzed in section 5.2.2). 

Regarding the fy/fe ratio, when low ratios were used (fy/fe=1), the damage in the 

hyperelastic structure was mainly because of acceleration-sensitive component failures. 

Increasing the ratio reversed the loss distribution proportions.  

5.3.3. Trilinear, 3-Story Building, High Ductility (CASE B) 

As mentioned in the scope of this work, the same initial stiffness (K0=Kh0) was used 

for both hysteretic and hyperelastic systems. The Case B prototype building was similar 

to Case D, but designed to withstand high seismic demands with greater ductility. The 

code provides a response modification factor, R, of 6 for structures with SCBFs. As 

discussed in the Methodology chapter, the natural period associated with this Case was 

estimated to be 0.4 sec. 

As observed for Case D and C structures, hyperelastic Case B parameter evaluations 

with arresting stiffness ratio, K3, greater than 10% of K0 did not meet the force limit 

(equal or less elastic force than the corresponding hysteretic system). Accordingly, the 

SDOF analyses conducted were limited to K3 equal 10%, 5%, and 2.5%. The main 

findings for each modeled K3 value are summarized as follow:  

• When K3 equals 10% of the initial stuffiness (α2 = 0.1), a ductility greater than 35 

(μ>35) was required to meet the force limit (fy>fe,max) for all fy/fe ratios that complied (one 

to four). However, low fy/fe ratios (1 to 1.5) complied with the force limit while rendering 

lower ductility demands (μ>25). This means that for a system with a response 

modification factor, R, of 6, the hyperelastic buckling force should preferably be selected 
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close to the corresponding yield force of the hysteretic system to minimize 

uneconomically large structural peak displacements. 

• When K3 was set equal to 5% of K0 (α2 = 0.05), parameter permutations that 

included ductilities higher than 15 (μ>15) and fy/fe ratios between one and five met the 

force limit.  

• For the shallowest arresting stiffness analyzed, K3 equals 2.5% of K0 (α2= 0.025), 

ductilities higher than 16 (μ>16) were required when fy/fe equaled one (fy=fe) to ensure 

that the hyperelastic brace force will be equal to or less than the complementary 

hysteretic brace. However, for higher fy/fe (2 to 5) ratios ductilities as low as five (μ>5) 

secured peak mechanical forces below the threshold (fe,max<fy). 

5.3.3.1. Case B. Loss Assessment Estimates  

Loss assessments using the HAZUS-MH methodology were conducted for each 

arresting stiffnesses noted previously (10%, 5%, and 2.5% of K0) and the results are 

summarized in Figure 44, Figure 45, and Figure 46, respectively.  

The analyses indicated that none of the hyperelastic systems discussed above would 

reduce the cost of replacing nonstructural and contents elements. Despite the savings 

from structural system protection, the repair cost would rise to around 20% over the 

traditional hysteretic.  
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Figure 44. CASE B- α2=0.1; Normalized repair cost, ductility, and fy/fe ratio. 

 

 

Figure 45. CASE B- α2=0.05; Normalized repair cost, ductility, and fy/fe ratio. 
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Figure 46. CASE B- α2=0.025; Normalized repair cost, ductility, and fy/fe ratio. 

 

5.3.3.2. Case B. Summary  

Most of the hyperelastic systems that rendered less or equal peak force demand than 

the hysteretic system (fe,max<fy) did not produce direct economic loss reductions. 

However, in Figure 45, there was a single hyperelastic system that produced a lower 

repair cost than that of the hysteretic system. This system has a ductility of 24 and a fy/fe 

ratio of 1 (fy=fe). Analyzing the only beneficial response may help to understand why the 

rest that were examined failed. Figure 48 presents response plots for a single ground 

motion. In Figure 47b, the hysteretic system experienced a large permanent displacement 

(Δhmax>100 mm, 3.93 in), while there were not significant differences regarding peak 

accelerations (Figure 48a). Furthermore, the loss distribution plot (see Figure 49b) 

showed that when fe is set to equal fy, the vast majority of damage comes from 

acceleration-sensitive elements. Based on this scenario, this particular hyperelastic 

system saves 10% in repair costs over the hysteretic, because the structural damage was 

avoided while damage to acceleration-sensitive elements was comparable. 
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Figure 47. CASE B. (a) Acc. Vs Disp.; (b) Disp. vs. time; (c) normalized brace force vs. Displ.; (d) Acc. vs. 

time. 

 

The loss distribution analysis illustrated by Figure 48 shows that for all systems, 

the loss of drift-sensitive elements accounted for most of the damage for all systems 

evaluated (independently of the K3, fy/fe ratio, and ductility). 

 

(a) (b) 

(c) (d) 
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Figure 48. CASE B. (a) Loss distribution for α2=0.1; (b) loss distribution for α2=0.05; (c) loss distribution 

for α2=0.025. 

 

5.3.4. Trilinear, 1-Story Building, High Ductility (Case A). 

Similar to previous cases, three values of α2 were evaluated (0.1,0.05, and 0.025) for 

all ductility and fy/fe variations that rendered superior or competitive peak responses to 

that of the reference hysteretic. After extensive parameter changes, the optimal 

combinations of K3 (α2), ductility, and hyperelastic peak force (fe, max) are:  

(a) 

(c) (b) 
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 For α2= 0.1, a ductility higher than sixty (μ>60) is required to meet the force limit, 

only fy/fe ratios between 1 to 1.5 passed the force limit criterion. Furthermore, 

systems equipped with lower fy/fe ratios met the hysteretic force threshold with 

lower ductility demands (μ>45). Regarding peak displacements, the closer fe was 

to fy, the better. 

 For systems with α2= 0.05, ductilities higher than forty-five were needed (μ>45) 

to ensure that fe, max<fy. This was true for fy/fe ratios between 1 and 1.3. For fy/fe 

ratios between 1.3 and 1.5, a ductility higher than sixty (μ>60) was needed to 

ensure that fe, max remained below fy. Higher fy/fe ratios than 1.5 did not meet the 

force limit criterion.  

 For hyperelastic configurations with α2= 0.025, μ>45 allowed that fe, max<fy for all 

fy/fe ratios between 1 to 1.5. Higher fy/fe ratios did not meet the force cap.  

5.3.4.1. Case A. Loss Assessment Estimates 

For this building (case A, R = 6, Tn = 0.2 sec), the loss assessment estimates 

conducted using HAZUS-MH are shown in Figure 49, Figure 50, and Figure 51, where α2 

equals 0.1, 0.05, and 0.025%, respectively. These analyses indicated that implementing 

none of the above hyperelastic systems would produce reductions in repair costs. 

Conversely, they would increase direct economic loss up to 40%.  
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Figure 49. CASE A- α2=0.1; Normalized repair cost, ductility, and fy/fe ratio. 

 

 

Figure 50. CASE A- α2=0.5; Normalized repair cost, ductility, and fy/fe ratio. 

 

 

Figure 51. CASE A- α2=0.025; Normalized repair cost, ductility, and fy/fe ratio. 
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5.3.4.2. Case A. Summary  

None of the examined hyperelastic systems produced direct economic loss savings. 

Even though hyperelastic systems had a lower peak force than that of the hysteretic 

reference model (fe,max<fy), the accelerations reached by the hyperelastic system were 

equal or even higher to those in the hysteretic (see Figure 52a). Furthermore, the loss 

distribution shown in Figure 53 proves that displacement-induced damage constituted 

most of the total building loss. Therefore, avoiding structural damage by incorporating 

the hyperelastic fuse was not enough to render repair cost savings. 

 

Figure 52. CASE A. (a) Acc. Vs Disp.; (b) Disp. vs. time; (c) normalized brace force vs. Displ.; (d) Acc. 

vs. time.  

 

(d) 

(a) (b) 

(c) 
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Figure 53. CASE A. (a) Loss distribution for α2=0.1; (b) loss distribution for α2=0.05; (c) loss distribution 

for α2=0.025. 

(c) (b) 

(a) 
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CHAPTER 6. CONCLUSIONS 

Findings related to economic loss were drawn solely based on HAZUS direct 

economic loss assessments. HAZUS guidelines and procedures were developed by a team 

of earthquake loss experts, including earth scientists, engineers, architects, economists, 

emergency planners, social scientists, and software developers. (Schneider and Schauer 

2006)  

6.1. Case Specific  

6.1.1. CASE D. (3 stories, R=3.1/4) 

 In comparison with its hysteretic equivalent, the best trilinear hyperelastic 

performance rendered an average 20% total loss reduction to mitigate earthquake 

mainshock’s effects.  

 The buckling force of the slender elements must be three to six times less than the 

comparable hysteretic yielding force, while the gap of the fuse should remain 

within six to nine times the displacement corresponding to slender fusing element 

elastic buckling.  

 Displacements were the primary source of damage for the hyperelastic models. 

Conversely, accelerations accounted for most of the direct economic loss in the 

reference hysteretic system.  

6.1.2. CASE C (1 story, R=3.1/4) 

 The trilinear hyperelastic alternative rendered an average 10% reduction of the 

direct repair cost (response to mainshock only). 
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 The buckling force of the slender elements must be three to six times lesser than 

the comparable hysteretic yielding force, while the gap of the fuse should remain 

within 19 to 39 times the buckling displacement of the slender elements.  

 Displacements and accelerations contributed evenly to the final loss estimates for 

the hyperelastic system. On the other hand, the hysteretic direct loss was 85% due 

to acceleration-induced damage. 

6.1.3. CASE B (3 stories, R=6) 

 None of the hyperelastic parametric combinations having equal or reduced 

force compared to the hysteretic system produce reductions in mainshock 

direct economic loss. Alternative, multi-linear, hyperelastic combinations may 

reduce accelerations demands and thus reduce hyperelastic repair cost.  

 Displacements are the primary source of damage for all hyperelastic systems as 

well as for the reference hysteretic.  

6.1.4. CASE A (1-Story Building, High Ductility) 

 None of the included trilinear hysteretic models rendered mainshock 

reparability savings. The accelerations reached were equal or higher, while the 

displacements were larger than the reference hysteretic system. Therefore, the 

advantages of using hyperelastic systems in this scenario are reduced to 

aftershock resistance to prevent casualties and reduced indirect economic and 

social impacts.  

 Displacements were the primary source of damage (for hysteretic and 

hyperelastic models).  
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6.2. General 

 Loss assessments for nominally comparable hysteretic systems were premised on 

full hysteresis under cyclic loading. However, OCBF and SCBF systems are 

expected to exhibit pinched hysteresis associated with global buckling of the 

brace between the end connections. The modeled hysteretic behavior is more 

representative of a buckling-restrained brace (BRB) system than a CBF system. 

Therefore, the loss estimates for hysteretic systems were unconservative (higher 

losses should be expected), which led to hysteretic-to-hyperelastic comparisons 

unfairly favorable to hysteretic systems. 

 Loss assessment estimations for all prototype buildings discussed above (cases A, 

B, C, and D) provided with bilinear hyperelastic systems showed that none of 

such bilinear hyperelastic systems would produce reductions in repair costs. The 

results highlighted that reducing the peak mechanical force does not guarantee 

proportionate reductions in the system accelerations.  

 Analyses of the considered trilinear hyperelastic systems suggested that the 

arresting stiffness (K3) should generally remain below 10% of the initial stiffness 

(K0) to prevent hyperelastic system maximum LFRS forces from exceeding the 

force demands for comparable hysteretic systems. Additionally, lowering the 

arresting stiffness diminishes the influence of ductility in the response. The 

transition to re-stiffening would not generate significant response variations 

because of the smooth change in the system stiffness (the trilinear system 

approaches a bilinear response). The fusing force ratio (ratio of hysteretic yield to 
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hyperelastic buckling, fy/fe) was the most important parameter, because it was 

strongly correlated to the peak displacement demands.  

 The mainshock response of hysteretic stiff systems (low period) was outstanding. 

Therefore, more complex hyperelastic systems (i.e. more than two post-buckling 

stiffness [staircase]) should be explored to enhance reparability outcomes. 

Generally, for stiff systems, the hyperelastic savings from avoiding structural 

damage were not enough to offset drift-sensitive nonstructural losses. 

 

6.3. Future Research Needs and Opportunities  

 Hyperelastic systems will commonly display more flexible responses than those 

of conventional hysteretic structures. Therefore, their effectiveness could be 

highly dependent on site condition (stiff, dense, rock) and the interdependency 

of site motion and hyperelastic response.  

  Second order effects (P-Δ) were not explicitly considered in this study. 

Additional studies accounting for full material and geometric nonlinearity are 

required to investigate the degree to which P-Δ may influence expected 

hyperelastic system performance.  

 Additional studies should be performed to examine the relative performance 

outcomes across wider dimensions than addressed in this thesis. The study in this 

thesis was limited to direct economic loss (repair and replacement costs for 

structural, nonstructural, and contents). Hysteretic systems are susceptible to 

permanent deformations after inelastic excursions, whereas hyperelastic systems 

will return to the original configuration. This potential difference in residual 



93 

structure configuration can lead to indirect economic loss and social impacts due 

to interrupted occupancy and operational functionality that were not within the 

scope of this thesis, as well as susceptibility to aftershocks.  

 The spectrum of possible hyperelastic systems using a controlled elastic-

buckling mechanism is infinite, and more complex multi-linear hyperelastic 

systems could render better responses. For instance, it may be worth exploring 

various initial stiffnesses (K0), or fuses with multiple buckling levels, in which 

slender elements with different lengths are strategically arranged to produce a 

staircase force-displacement response. Additionally, the medium  in which the 

slender elements of the fuse displace once they have buckled could be modified 

to add damping and dissipate energy (e.g., exchange air for a denser fluid).  
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