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Investigating Environmental Inequities in Terms of Street Greenery using Google Street
View

Xiaojiang Li, Ph. D.

University of Connecticut, [2016]

As an important component of the urban ecosystem, the urban greenery provides a series of
benefits to urban residents and plays an important role in maintaining the urban sustainability.
Unequal access to urban greenery represents environmental disparities when some urban
residents are deprived of the benefits provided by urban greenery. As an important component of
the urban greenery, the street greenery provides a series of benefits to urban residents, such as
energy saving, provision of shade and aesthetic values. In addition, the street greenery is a kind
of publicly financed amenity and the spatial distribution of the street greenery is influenced
heavily by different policies. In this study, I studied the distribution of street greenery in dozens
of major American cities and investigated whether racial/ethnic minorities and economically
disadvantaged groups are living in neighborhoods with less street greenery. The modified green
view index (MGVI), which literally represents the visibility of street greenery or how much
street greenery people can see and feel on the ground, was used to represent the distribution of
street greenery. The MGVI was calculated based on the publicly accessible Google Street View
(GSV) images captured at different horizontal and vertical view angles. Tens of millions GSV
images were downloaded for all the selected cities based on the static Google Street View
images API to calculate MGVI in the study areas. The environmental inequity in terms of street
greenery was further investigated by examining the relationships between the spatial
distributions of residential street greenery and socioeconomic variables in different cities at
census tract level. Results showed that people with various social conditions have different

amounts of street greenery in their living environments in different cities. Generally, people with
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higher incomes tend to live in places with more street greenery. The percentage of home
ownership also plays a positive role in the spatial distribution of street greenery. In summary, this
study contributes to literature by providing insights into the living environments of urban
residents in terms of street greenery, and it generates a valuable reference data for future urban

greening programs.
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Chapter 1 Introduction

1.1. Urban greenery

Urban areas are the places of mass interactions between human and the natural world. Urban
areas are also homes to a large proportion of the world population. In 1900, only 10% of the
global population lived in urban areas, the percentage exceeds 50% in 2008 (Grimm et al., 2008).
The number of urban population is still increasing rapidly. The increasing population and the
spatial prominence of urban areas make them an important focus of many studies (Pickett et al.,
2011). Human beings are increasingly living in urban areas, while continuing to depend on the
natural world for survival (Bolund and Hunhammar, 1999). Urban ecosystems serve as a
foundation for human’s survival in cities.

Based on definition of Konijnendijk et al (2006), urban greenery mainly includes urban parks,
woodlands, street and square trees, lawns, and other kinds of vegetation. Urban greenery is an
important part of urban ecosystem and has long been recognized for their importance in urban

environment (Li et al, 2015a). Urban greenery provides a lot of environmental, economic, social,



and health benefits (Chen et al, 2006; Jim and Chen, 2008; Onishi et al, 2010; Miller, 1997,
Gidlow et al, 2012; van Dillen et al, 2012; Wendel et al, 2011) meeting diverse and overlapping
goals (Bain et al., 2012). The existing of urban greenery is regarded as an important
environmental amenity (Dwivedi et al., 2009; Nichol and Wong, 2005; Seymour et al., 2010).
However, there are only a few of studies have examined the distribution of street greenery in
residential areas. As one component of urban greenery, residential street greenery makes an
important contribution to the attractiveness and walkability of streets (Schroeder and Cannon,
1983; Wolf, 2005; Bain et al., 2012). Street trees growing on Rights-of-Way provide a range of
health benefits by promoting outdoor exercises (Wolch et al., 2005; Takano et al., 2002). Street
greenery also provides sensory functions addressing the visual effects of greenery. It can mitigate
the visual intrusions of vehicular traffics, and contribute to the beauty of cityscapes. This
dissertation mainly focuses on the spatial distribution of residential street greenery in different

cities of United States.

1.2. Environmental injustice and urban greenery

Uneven distribution of environmental amenities and disamenities in cities lead to unequal
distribution of social benefits and burdens across people and places (Landry and Chakraborty,
2009). Since 1980s, with growth of U.S environmental justice movements, urban environmental
injustice has received considerable attentions in urban studies. Initially, the environmental justice
studies focused majorly on disproportionate exposure to environmental burdens (include locally

unwanted land uses, air pollution, and hazardous waste risks) of racial/ethnic minorities and
2



economically disadvantaged groups (Been, 1994; Liu, 1997; Mohai and Bryant, 1992; Brainard
et al, 2002). Recently, the accident of toxic tap water in Flint, Michigan reminds us the
environmental injustice is still a serious problem in United States. Proliferating results show that
the minorities are living in neighborhoods with more hazardous waste risks and air pollution. A
study conducted by Clark et al (2014) at national scale shows that people of color are
disproportionately hurt by air pollution in United States. Based on the National Land Cover
Dataset, Jesdale et al. (2013) examined the distribution of heat risk—related land cover across
racial/ethnic groups at the national scale and found that racial/ethnic minorities tend to live in
neighborhoods with higher heat risk-related land cover.

The environmental justice studies were later broadened to include the environmental goods
or amenities, like urban parks (Boone et al, 2009; Dai, 2011; Wolch et al, 2005), recreational
facilities (Hewko et al, 2002; Wells et al, 2008). As an important kind of environmental
amenities and an important element of urban socio-ecosystem (Nichol and Wong, 2005; Dwivedi
et al., 2009; Seymour et al., 2010), the uneven distribution of urban greenery or unequal
accessibility of urban greenery represents environmental disparities when some urban residents
are deprived of the benefits that the urban greenery provides. Greenery on private lands usually
results from natural colonization and private investments, however, trees on public Right-of-Way
areas are majorly planted and maintained by public agencies (Landry and Chakraborty, 2009).
Therefore, the spatial distribution of the publicly financed street greenery is more affected by the
public investment, and the uneven distribution of the street greenery may reflect the potential

environmental injustice or environmental racism.
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However, there are still a few studies about the uneven distribution of street greenery in
United States (Landry and Chakraborty, 2009; Li et al., 2015b). In this study, | studied the
distributions of residential street greenery in dozens of major American cities. This study also
investigated whether the racial/ethnic minorities and the economically disadvantaged groups are

living in neighborhoods with the same amount of street greenery as other groups.

1.3. The problem of green metrics based on overhead view data

Remote sensing seems to be one of the most commonly used objective methods for
measuring the distribution of urban greenery (Gupta et al. 2012). Metrics derived from remotely
sensed data have been widely used as indicators of the spatial distribution of urban greenery and
the proxies for environmental conditions (Pearsall and Christman, 2012). This is probably due to
a number of virtues (e.g., repeatability, synoptic view, and larger area coverage) of remotely
sensed data. Percentage of vegetation cover, green space/built area ratio, green space density and
other measures, have been calculated for analyzing, assessing, and visualizing urban greenery
(Ruagrit and sokhi 2004; Faryadi and Taheri 2009; Li et al., 2014; Li et al., 2016a; Zhu et al.
2003).

The aesthetic attractiveness of a neighborhood is greatly influenced by the amount of
greenery that can be visually and aesthetically enjoyed. Studies have shown that urban greenery
with more visible vegetation can obtain stronger public support than that with less visible
vegetation, even though they may have the same coverage (Yang et al., 2009). The visibility of

greenery helps to increase the satisfaction of citizens to their residential environments and plays
4



an important role in comforting citizens. While green indices derived from remotely sensed data
may be good for quantifying urban greenery, they are not suitable for assessing profile views of
street greenery. The profile view of street greenery that people can see on the ground is different
from the overhead view captured by remotely sensed data (Li et al., 2015a). By using Stand
Visualization System developed by the USDA Forest Service, Yang et al. (2009) showed that two
urban forests with the same canopy cover look completely different in their profile views. Fig.
1.1 (a) shows the profile view of a green wall on ground. When viewing a green wall from above
using remotely sensed data, the wall is missed. In addition, an overhead view from remotely
sensed imagery may miss the shrubs and lawns under tree canopies in case of a multi-layer green
space (Fig. 1.1 (b)). Therefore, while aerial/space remotely sensed imagery might provide useful
information for measuring urban greenery, it usually fails to acquire what people actually see at

street-level on ground.

(a) Profile view of a green wall (b) Profile view of a multi-layer green space

Fig.1.1. Profile views of different types of green spaces: (a) profile view of a green wall, (b) profile
view of a multi-layer green space (Li ef al, 2015a).



Previous studies show that there is little agreement between human perceived greenness and
the objectively derived greenness from remotely sensed images (Leslie et al., 2010). However, it
is the perceived greenness has a direct connection with the benefits provided by street greenery.
Leslie et al. (2010) criticized the mixed findings on the relationship between neighborhood
greenness and physical activities in terms of the discrepancy between perceived and objectively
measured greenness. The greenness indicators based on remotely sensed images or aerial
photographs may not fully represent the neighborhood greenness, especially the greenness
perceived by residents. The green metrics derived from remotely sensed data may not fully
represent neighborhood greenness (Li et al., 2015b).

In addition, for studying fine scale street greenery, high spatial resolution remotely sensed
data are usually required (Li et al., 2014; Pham et al., 2012, 2013; Landry and Chakraborty, 2009;
Zhou and Troy, 2008). However, in real applications, high-resolution remotely sensed datasets
are not always available and are expensive to collect. New and cheap data sources are in need for

the street greenery study.

1.4. Street level images for urban greenery study

To date it has been difficult to efficiently and accurately represent and quantify street
greenery. Using color photographs or slides as surrogates for the natural environment has been
chosen as a cost-effective method for evaluating urban greenery (Yao et al., 2012; Meitner, 2004;
Stamps, 1990). This method had been validated by various independent studies (Daniel and

Boster, 1976; Shuttleworth, 1980; Stamps, 1990). Using street view images to map the amount of
6



street greenery represents a new and promising approach (Yang 2009; Li et al. 2015a, b).
Recently, Yang et al. (2009) used color pictures to evaluate the visibility of surrounding urban
forests as representative of pedestrians’ view of greenery through developing a Green View
Index (GVI). Four pictures were taken in four directions (north, south, east, and west) for each
street intersection in their study area. Those pictures were processed to extract green areas, which
were further used for calculating their proposed GVI. A drawback, however, is that the data
collection and processing processes in their study are tedious and time consuming because the
whole workflow (from collection of the pictures to extraction of the green areas) was conducted
manually. This limits the application of the GVI to only a very small area. In addition, people’s
perception to surrounding environment is influenced by hemispherical scene (Asgarzadeh et al.,
2012; Bishop, 1996). The method proposed by Yang et al. (2009) has limitations in measuring
the amount of visible greenery because only pictures in four directions were used to calculate the
GVI, which cannot cover the spherical view field of an observer.

To overcome those limitations of overhead view datasets, this study proposed to use Google
Street View (GSV) images (which have view angles similar to those of pedestrians and open
access) for assessing the street greenery. GSV, first introduced in 2007, is a library of video
footage captured by cars driven down streets (Rundle et al., 2010). By stitching the pictures
together, GSV images can create a continuous 360-degree image of a streetscape. GSV creates
what feels like a seamless tour of city streets and it is quite similar to what you or we can see
when exploring a city by cars, bikes, or foot.

GSV images have been proposed as an effective potential data source for urban studies
7



(Rundle et al., 2010). These applications include: identification of commercial entities (Zamir et
al., 2011), 3D city modeling (Torii et al., 2009; Micusik and Kosecka, 2009), public open space
audit (Edwards et al., 2013; Taylor et al., 2011), and neighborhood environmental audit
(Charreire et al., 2014; Rundle et al., 2011; Odgers et al., 2012; Griew et al., 2013).

Different from previous studies using the canopy cover or vegetation indices (Grove et al.,
2006; Mennis, 2006; Landry and Chakraborty, 2009; Leslie et al., 2010; Jenerette et al., 2013),
this study used the GSV-based modified green view index (MGVI) to represent the distribution
of greenness in residential areas. The MGVI is the averaged value of the area proportions of
green vegetation in street-level images captured in eighteen different directions. It quantitatively
represents how much greenery a pedestrian can see from ground level (Li et al., 2015a).

GSV covers streetscapes of most of American cities, and it provides a new tool for national
scale street greenery study. In this study, the GSV based MGVI was applied to map the spatial
distribution of street greenery for dozens of major cities in United States. In order to investigate
the environmental inequities in terms of street greenery in residential areas, the MGVI maps of
different cities were further compared with social variables, which were derived from American

Census Survey (ACS) data.

1.5. The highlights and dissertation outline

The highlights of the study include:
1. This study first investigated the national scale street greenery in major American cities

using Google Street View (GSV) data. The GSV data is publicly accessible and has global
8



coverage. This study presents an example to utilize the GSV for large-scale urban studies.

2. Different from traditional green metrics derived from remotely sensed imagery with
overhead view or zoning data, this study used the GSV based MGVI for measuring the street
greenery. The GSV based MGVI covers the profile view of street greenery, which would be more
suitable to represent the visibility of street greenery.

3. This study then investigated the environmental inequities in terms of street greenery in
dozens of major cities in different regions of United States. The results of this study could
provide a reference for future urban greening projects to narrow the gap of environmental
qualities of different neighborhoods with different social groups.

The outline of the dissertation is listed as following:

Chapter 2 reviews the environmental, economic, social, and esthetic benefits provided by
urban greenery. Since this study focuses on the street greenery, the benefits of street greenery
were specified. Previous studies about environmental inequities in terms of urban greenery were
also reviewed in this section.

Chapter 3 describes the chosen 26 major cities and the data sources used in this study. Ten
major cities, which located in different regions of U. S., were finally selected for the further
analysis.

Chapter 4 introduces the methods for geographical sampling, Google Street View static
images collection, static images processing, and calculation of the MGVI. This chapter also
analyzes the spectral signatures of green vegetation in different seasons for different cities

located in different climate zones.



Chapter 5 compares the MGVI with traditional derived green metrics derived from remotely
sensed data. Hartford and Boston were selected as the case study area to compare the MGVI and
traditional green metrics. The relations and discrepancies between these metrics were analyzed.

Chapter 6 analyzes the environmental inequities in terms of street greenery in ten major cities
of United States. Bivariate correlation analysis and regression models were deployed to analyze
the relationships between street greenery index and social variables derived from census data.

Chapter 7 comes to the conclusions and potential directions for future study.
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Chapter 2 Literature Review

2.1 Urban greenery and its benefits

As an integral part of urban ecosystem, urban greenery is important for the stability and
sustainability of urban ecosystem. Urban greenery can absorb carbon dioxide and release oxygen
(Hough, 1984), which is very important for urban dwellers. The existing of urban greenery helps
to regulate urban microclimate and mitigate the urban heat island (Chen et al., 2006; Onishi et al.,
2010). In hot summers, the tree canopies can block the sunshine from radiating the ground
directly and provide shades for pedestrians. Urban trees help to filter airborne pollutants and
particulates from the air (Lawrence, 1995; Jim et al., 2008). The filtering capability increases
with availability of the more leaf areas (Givoni, 1991). The urban greenery helps to attenuate
storm-water runoff and reduce surface water runoff, which will then prevent the floods after
heavy rainfalls (Zhang et al., 2012; Liu et al., 2014). This is extremely important for densely
urban areas, where are paved with impervious surfaces. The attenuated water runoff can further
help to reduce the soil erosion. In addition, the root system of greenery helps to hold soil in the

place and keeps sediments out of lakes, streams, both of which help to decrease the possibility of
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urban floods and protect the water quality.

In terms of the economic benefits, the existing of urban greenery helps to increase the value of
properties (Jim and Chen, 2006; Kong and Nakagoshi, 2007; Mansfield et al, 2005). Urban forest
in central business areas positively affects people’s judgment of visual quality and further
significantly influences consumer responses and behaviors (Wolf, 2005). Compared with stores
along streets with no street greenery, those stores along streets with more street greenery could
attract more customers (Wolf, 2005). In addition, the existing of urban greenery could help to
decrease the energy consumption in summer by providing shades and mitigating urban heat island
effects (Akbari et al, 2001).

About the social benefits, urban greenery offers urban residents opportunities for recreations,
physical exercises (e.g., walking and bicycling), and social activities (Zhou and Kim, 2013; Maas
et al, 2006; Ellaway et al, 2005; Dai, 2011; Wolch et al, 2011). All of these further benefit human
mental health (Leslie et al., 2010; Lee and Maheswaran, 2011; Bain et al., 2012; Coutts, 2008)
and reduce aggression and crimes (Kuo and Sullivan, 2001; Troy et al., 2012; Wolfe and Mennis,
2012). However, the role of urban greenery in reducing aggression and crimes appears
ambiguous. The urban greenery may provide hiding places for potential criminal activities
(Fisher and Nasar, 1992; Nasar et al., 1993). In addition, shrubs could obstruct the “eyes on
street”, which could further facilitate the potential crime activities. Evidences from Donovan and
Prestemon (2012) shows that low trees obstructing views from first floor windows on private lots
are associated with increased crime occurrences.

The urban greenery also brings some health benefits to urban residents (Gidlow et al., 2012;
12



van Dillen et al., 2012; Wendel et al., 2011). People’s accessibility to views of greenery seems to
influence their recovery from surgery, increase restorative potential, and improve psychological
wellbeing (Ulrich, 1984; Pazhouhanfara and Kamal, 2014; Kaplan, 2001). Urban greenery also
provides a range of health benefits by promoting outdoor exercises (Wolch et al, 2005; Takano et
al, 2002; Arbogast, 2009).

In addition, urban greenery also adds to the aesthetics of urban areas. There are evidences
that living in a greener environment makes people feel closer to nature. Urban street greenery
makes an important contribution to the attractiveness and walkability of residential streets
(Schroeder and Cannon, 1983; Wolf, 2005; Bain et al., 2012). Street greenery also provides
aesthetic benefits by mitigating visual intrusions of traffics in densely populated urban areas (Li
et al, 2015). The existence of urban greenery usually increases people’s aesthetic rating of urban
scenes (Camacho-Cervantes et al., 2014; Balram and Dragicevié¢, 2005).

Different types of urban greenery play different roles in providing benefits (Li et al., 2016b).
As a public facility, urban parks are important for the quality of life in cities. Urban parks
provide public places for recreations, physical exercises, and social activities, which can promote
both personal health and social cohesion within communities (Zhou and Kim, 2013; Maas et al.,
2006; Ellaway et al., 2005; Dai, 2011; Wolch et al., 2011). The private backyard vegetation is
usually managed by private owners and not directly accessible to other people (Lachowycz and
Jones, 2013; Li et al, 2014). View of backyard greenery through window is helpful to increasing
restorative potentials and improving psychological wellbeing (Ulrich, 1984; Pazhouhanfar and

Kamal, 2014; Kaplan, 2001). In addition, residential tree canopy cover reduces cooling energy
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use in summer by providing shades (Akbari et al, 2001). Street greenery makes an important
contribution to the attractiveness and walkability of residential streets (Schroeder and Cannon,
1983; Wolf, 2005; Bain et al., 2012; Lachowycz and Jones, 2013; Li et al., 2014). Planting street
trees may provide more benefits to urban residents than planting trees in parks and private
backyards (Kardan et al., 2015). Street greenery also provides a range of health benefits by
promoting outdoor exercise (Wolch et al., 2005; Takano et al., 2002) and beautifies a
neighborhood while mitigating the visual intrusion of traffics (Li et al., 2015a).

However, urban greenery is not always an environmental amenity. It increases the budget for
cleaning the dead leaves and branches. The roots of the street trees could break the road
conditions along the streets, especially the walkways. This study assumes the urban greenery as

kind of amenity in urban areas.

2.2 Environmental inequities in terms of urban greenery

Previous studies have reported the environmental inequities in terms of urban greenery in
North American cities (Heynen et al, 2006; Boone et al., 2009; Zhou and Kim, 2013; Dai, 2011;
Pham et al., 2012; Landry and Chakraborty, 2009; Li et al., 2015b; Li et al., 2016b). Current
environmental inequity studies mainly focus on the uneven distribution of vegetation
coverage/indices (Pham et al., 2011, 2012, 2013; Jennings et al., 2012; Zhou and Kim, 2013;
Jesdale et al., 2013; Leslie et al., 2010; Landry and Chakraborty., 2009; Jensen et al., 2004) and
visiting distances to green spaces (Zhou and Kim, 2013; Boone et al., 2009; Leslie et al., 2010;

Lotfi and Koohsari, 2011). Proliferating evidences show that racial/ethnic minorities,
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low-income people, and underprivileged populations are living in neighborhoods with
disproportionally less vegetation coverage than affluent groups across North American cities
(Pham et al., 2012; Jesdale et al., 2013; Zhou and Kim, 2013). Heynen et al. (2006) found a
negative relationship between urban-forest canopy cover and proportion of Hispanics in
Milwaukee, Wisconsin, but a positive relationship between urban-forest canopy cover and
proportion of non-Hispanic Whites. Jensen et al. (2004) found a positive relationship between
leaf area index and median household income in Terre Haute, Indiana. Jesdale et al. (2013)
investigated the distribution of heat risk-related land cover across racial/ethnic groups at the
national scale, and found vegetation coverage disparities among different racial/ethnic groups in
the United States. However, the findings on disparities of accessibility to green spaces are not
consistent in different cities. Boone et al. (2009) examined the distribution proximity to parks in
Baltimore, Maryland, and found that a higher proportion of African Americans have access to
parks within walking distances than do other groups, while Whites have access to a larger
acreage of parks. Dai (2011) evaluated the disparities in green space access in Atlanta, Georgia
across different racial/ethnic and socio-economic groups, and found neighborhoods with higher
proportions of African Americans have significantly less access to green spaces. Zhou and Kim
(2013) studied the accessibility to urban parks in six Illinois cities based on the Google Map
application programming interface. Results show that there is no significant accessibility
difference among different racial/ethnic groups in those six cities.

Different types of urban greenery play different roles in providing benefits to urban residents

(Li et al., 2016b). As an important component of urban greenery, street greenery makes streets
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more beautiful and walkable. The street greenery is an important publicly financed amenity and
would be affected by the different policies. Landry and Chakraborty (2009) investigated the
environmental equity implication of public right-of-way trees in Tampa, Florida, USA. Results
show that neighborhoods with higher proportions of African Americans, low-income residents
have significantly lower proportions of public right-of-way tree cover. Different from previous
studies using the canopy cover or vegetation indices (Grove et al., 2006; Mennis, 2006; Landry
and Chakraborty, 2009; Leslie et al., 2010; Jenerette et al., 2013), Li et al (2015b) used a green
view index to represent the distribution of street greenery in residential areas and checked
whether or not the minorities and economically disadvantaged groups live in places with less
street greenery in Hartford, Connecticut. The green view index is calculated based on street-level
images, and it quantifies how much street greenery people can see and feel on the ground (Li et
al, 2015a). Results show that people with various social conditions have different amounts of
street greenery in their living environments in Hartford. Those people with higher incomes live
in neighborhoods with more street greenery and there exists no significant relationship between

the street greenery and racial/ethnic variables.
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Chapter 3 Study areas and Data Sources

3.1 Study areas

Most of the chosen cities (Table 3.1.1) are large cities in United States. In addition, some
other cities, which have environmental inequities reported previously, were also included in the
list. Different climate zones could affect the cost of maintaining urban greenery and the cost of
urban greening projects. In addition, the phenology of urban greenery in different climate zones
varies, which may further affect the benefits it provides to urban residents. Therefore, the
corresponding climate zones were also included in this study based on previous studies (Kottek
et al., 2006; Yang et al., 2015) (Fig. 3.1). More details about the phenology of urban greenery are

showed in Chapter 4.

Table 3.1.1

The climate zones of the chosen cities, the climate zone is adopted from Kottek et al (2006) and
Yang et al (2015).

Climate Cities

Humid continental (warm summer) Boston, Philadelphia, Pittsburgh, Chicago, Detroit,
Indianapolis, Cincinnati, Kansas City, St. Louis,
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Humid continental (cool summer)

Humid subtropical

Mediterranean

Louisville
Minneapolis, Milwaukee

Washington D.C, Baltimore,
Houston, San Antonio, Memphis

Los Angeles, San Francisco

Tropical (wet/dry) season Miami
Marine west coast Seattle
Highland (alpine) climate Denver
Midattitude desert Phoenix
)N\ Climate zones and divisions in U.S.

Legend

[ IHot arid

[ Arid steppe climate

Bl Humid subtropical

I Warm humid (cool summ er)

Il Warm steppe (hot summ er)
TIWarm stepp e (cool summ er)

[ Humid continental (warm summ er)
I Humid continental (cool summ er)
B Humid cold

Fig.3.1. The climate zones and divisions in U.S. (modified from Kottek et al., 2006).
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Table 3.1.2 lists the chosen cities and the corresponding divisions in United States,
respectively. Fig. 3.2 shows the locations of different cities in different regions and divisions of
United States. The Northeastern region, which consists of ten states — Connecticut, Maine,
Massachusetts, New Hampshire, Rhode Island, Vermont, New York, Pennsylvania, New Jersey
and Delaware, is the nation’s most economically developed and densely populated region. Three
of the most populous cities (Philadelphia, Boston, and Pittsburgh) in Northeastern region were
chosen in this study. As the most populous city in Northeast, New York City was not included in
this study considering the different urban forms and the very different urban structures in New
York City compared with other cities.

According to geographic region definition of US census bureau, the Midwest includes 12
states: Illinois, Indiana, lowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota,
Ohio, South Dakota, and Wisconsin. The major cities (Chicago, IL, Indianapolis, IN, Detroit, MI,
Milwaukee, WI, Minneapolis, MN, Kansas City, MO, St. Louis, MO, and Cincinnati, OH) in this
region were chosen in this study.

Several major cities from the South were also included in this study. These cities are
Baltimore, MD, Washington D.C, Tampa, FL, Miami, FL, Memphis, TN, Atlanta, GA, Louisville,
KY, Dallas, TX, Houston, TX, and San Antonio, TX.

The West is the largest and most geographically diverse region of United States. The West is
split into two sub-regions, Pacific States (Washington, Oregon, California, Alaska, and Hawaii)

and Mountain States (Montana, Wyoming, Colorado, New Mexico, Idaho, Utah, Arizona, and
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Nevada). The major cities of this region chosen in this study include three cities from Pacific
States (Los Angeles, CA, San Francisco, CA, and Seattle, WA) and two cities from the Mountain

States (Phoenix, AZ and Denver, CO).

Pacific

Mountain

Phoenix

0 375 750 1,500 km

Fig.3.2 The selected cities from different U.S. census Bureau Regions and Divisions.

Table 3.1.2

The chosen major cities and their divisions in United States.

Cities States Divisions Regions
Boston Massachusetts Division 1: New England Northeast
Philadelphia Pennsylvania Division 2: Mid-Atlantic

Pittsburgh Pennsylvania

Detroit Michigan Division 3: East North Central Midwest
Chicago Illinois
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Milwaukee
Indianapolis
Kansas City
Minneapolis
St. Louis
Cincinnati

Tampa
Baltimore
D.C
Miami

Memphis
Atlanta
Louisville

Houston
San Antonio
Dallas

Phoenix
Denver

Los Angeles
San Francisco
Seattle

Wisconsin
Indiana
Kansas
Minnesota
Missouri
Ohio

Florida
Maryland

Washington D.C.

Florida

Tennessee
Georgia
Kentucky

Texas
Texas
Texas

Arizona
Colorado

California
California
Washington

Division 4: West North Central
Division 5: South Atlantic

Division 6: East South Central

Division 7: West South Central

Division 8: Mountain

Division 9: Pacific

South

West

3.2 Data sources

The major data sources in this study include administrative boundary maps, road maps, and
land use or zoning maps. The administrative boundary and road maps for all cities were obtained
from U.S. Census Bureau TIGER (Topologically Integrated Geographic Encoding and
Referencing) products (https://www.census.gov/geo/maps-data/data/tiger.html). Because this
study focuses on residential street greenery, only the residential streets were considered in this

study. Other roads, like interstate high ways and state high ways, were removed from further
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analysis.

Land use maps and zoning maps were used to delineate the residential areas for different

cities. Land use maps and zoning maps for different cities were downloaded or requested from

different geospatial data portal websites or municipal departments. Table 3.1.3 shows the

summary of the data sources of land use maps or zoning maps for all selected cities in this study.

Table 3.1.3

The data sources of land use map or zoning map of the chosen cities.

Cities Data types/year Data sources

Boston Land use map, 2005  http://www.mass.gov/anf/research-and-tech/it-serv-and-supp
ort/application-serv/office-of-geographic-information-massg
is/datalayers/lus2005.html

Philadelphia Land use map, 2014  https://www.opendataphilly.org/dataset/land-use

Pittsburgh Land use map, 2010  http:/Pittsburghhpa.gov/dcp/gis/gis-data-new

Detroit Zoning map, 2015 http://portal.datadrivendetroit.org/datasets/bbe90203edcd4c
51af2f6c697ab5216¢ 0

Chicago Zoning map, 2012 https://data.cityofchicago.org/

Milwaukee Land use map, 2010  Requested from Milwaukee County Land Information
Office

Indianapolis Land use map, 2014  http://datal.indygis.opendata.arcgis.com/datasets/97398cf4e
faa4556b0c57356d5818b76 3

Kansas City Land use map, 2012  http://maps.kcmo.org/apps/parcelviewer/

Minneapolis Primary zoning areas, http://opendata.minneapolismn.gov/datasets/eac15cee3f2d4e

2015 c4887e1f8995955¢ef1l 0

St. Louis Land use map, 2015  http://dynamic.stlouis-mo.gov/citydata/downloads/

Cincinnati Not available

Tampa Zoning map, 2015 http://city.tampa.opendata.arcgis.com/

Baltimore Land use, 2008 https://data.baltimorecity.gov/

D.C Land use map, 2010  http://opendata.dc.gov/

Miami Not available

Memphis Not available

Louisville Land use map https://portal.louisvilleky.gov/dataset/landuse-data

Houston Land use map, 2014  http:/data.ohouston.org/dataset/harris-county-land-use
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San Antonio Land use map, 2015  http://www.sanantonio.gov/G1S/GISData.aspx

Dallas Land use map http://www.dallascad.org/GISDataProducts.aspx,
http://gis.dallascityhall.com/homepage/shapezip.htm

Phoenix Zoning data, 2015 http://maps.phoenix.opendata.arcgis.com/datasets/d438c29d
14ef407593279041e42fc015 0

Denver Zoning data http://www.denvergov.org/maps/map/zoning

Los Angeles Zoning data, 2009 http://egis3.lacounty.gov/dataportal/2012/04/10/countywide-
zoning/

San Francisco Zoning data, 2012 https://data.sfgov.org/Geographic-Locations-and-Boundaries
/Zoning-Districts/mici-sct2

Seattle Not available
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Chapter 4 Utilizing Google Street View

Google Street View (GSV), first introduced in 2007, is a free online service featured in
Google Maps and Google Earth that provides panoramic views from positions along streets in
the world (Fig. 4.1). It is a library of video footage captured by cars (Fig. 4.1) driven down
streets (Rundle et al., 2010). GSV creates what feels like a seamless (if pixelated) tour of city
streets and it can give one the feeling of “being there” (Li et al., 2015a). It is quite similar to
what people on ground can see when exploring a city by cars, bikes, or foot. GSV panoramas are
generated by stitching the pictures taken in different directions together (Fig. 4.2). GSV images
can create a continuous 360-degree image of a streetscape.

GSV, which has a similar view angle with people on the ground, could be a very suitable
dataset to study the urban environment. In this study, | developed a workflow to utilize static
GSV images to measure the spatial distribution of street greenery. The workflow consists of four
major steps: geographical sampling, GSV images collection, GSV images processing, and model

developing for urban greenery assessment.
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Google maps

Street View

Fig.4.2. Image composition of a GSV panorama.
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4.1 Geographical sampling

GSV panoramas are distributed discretely along roads. In order to collect available GSV
panoramas in the study areas, geographical sampling is required. The geographical sampling is a
process to create discrete sample sites along streets. In order to represent the overall greenness
level of residential areas, only those streets in residential areas were selected in this study. The
road maps were intersected with the corresponding residential land use maps to get the
residential street maps for all chosen cities in this study.

However, the land use maps for different cities are in different forms. For regular residential
land use maps, in which roads are not a separate land use type and the residential land use maps
are continuous patches, the residential street maps were created by intersecting the residential
land use maps and the road maps directly (Fig. 4.3 (a)). In some cities, the residential land use
types are shown as residential parcels (Fig. 4.3 (b)). In this case, it is not suitable to use the
feature intersection operations to extract the residential streets directly. Therefore, for those
parcel-level land use maps, the buffer analysis was first conducted on the residential land use
map with a buffer distance of 10m. Then, the residential street map was derived by intersecting

the buffered land use map with the street map (Fig. 4.3 (b)).
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Fig.4.3. The overlap of residential land use map with street map.

Commercial software ESRI ArcGIS provides a tool — CreateRandomPoints for generation of
random points in an extent window, inside polygon features, on point features, or along line

features. Users can set the minimum distance between the created points. However, the created
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points usually do not meet the minimum allowed distance restrictions and are usually too
aggregated or too sparse. Fig. 4.4 (a) shows the created points along residential streets using the
CreateRandomPoints tool of ArcGIS 10.2 in a small area of Milwaukee, WI. It can be seen
clearly that some generated points are congested together and do not meet the condition of the
100 meters minimum allowed distance. Therefore, in this study, | used the positionAlongLine
tool in console to create points evenly along streets. The minimum distance between any nearby
points was set to 100m, in order to make sure there is one point every 100m along streets in
residential areas in each city. Fig 4.4 (b) shows the created sample points along the residential
streets using the positionAlongLine tool. Compared with the created sample points in Fig 4.4 (a),
the created sample points using the positionAlongLine are evenly distributed along the streets,
and would be better to represent the greenness of residential neighborhoods.

The same workflow for geographical sampling was applied to all cities. Fig 4.5 shows an

example of the workflow for geographical sampling in Hartford, Connecticut.

Algorithm 1. Geographical sampling along residential streets using ArcGIS.

input: inputStreetMap': the input residential street map
output: outputSampleMap the create sample sites map
# comments: Chose appropriate projections for different regions
sr = arcpy.SpatialReference(102686)
points = []
for row in arcpy.da.SearchCursor(* inputStreetMap', ["'SHAPE@"],spatial_reference=sr):
length = int(row[0].length)
for i in xrange(10m,length,10m):
point = row[0].positionAlongLine(i)
points.append(point)
... arcpy.CopyFeatures_management(points, outputSampleMap)
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Fig.4.4. The difference of the created points using different methods in ArcGIS, (a) the created
random sample sites using the CreateRandomPoints tool with the minimum distance of 100m; (b)
the created sample sites using the positionAlongLine tool.
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a b c

Fig.4.5. An example of geographical sampling in Hartford, Connecticut, (a) administrative
boundary of Hartford, (b) residential street map, (c) created sample sites along the residential streets.

4.2 Google Street View images collection

GSV panorama is a 360° surrounding image generated by stitching together the eight original

images captured by the eight horizontal cameras in sequences (Tsai and Chang, 2013). The static
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GSV images can be requested using a HTTP URL form through the Google Street View Image
API (Google, 2014). By specifying the coordinate, direction, and pitch angle in a HTTP URL
requested form, users can get the corresponding static GSV image in any direction with any
angle for any available site (Li et al., 2015a). An example of requesting a static GSV image is

shown below.

GSV URL example:

http://maps.googleapis.com/maps/api/streetview? size=400x400 &location=41.935,-87.80524300000002
&fov=60&heading=180&pitch=0&sensor=false

Fig.4.6. A static Google Street View image.

Fig. 4.6 shows a static GSV image obtained using the above URL request. In this example,
the parameter size specifies the output size of the requested GSV image, location provides the

geo-location of the GSV image (the GSV Image API will snap to the panorama photographed
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closest to this location), heading indicates the compass heading of the camera (the heading
values range from 0 to 360), pitch specifies the up or down angle of the camera relative to the
street view vehicle, and fov determines the horizontal field view of the image. Previous visual
assessment studies chose the horizontal field view setting between 50° to 60° (Yang et al., 2009;
Walker et al., 1990; Li et al, 2015a; Li et al, 2015b). Therefore, in this study, the fov was set to

60°, so that six images can cover the 360° horizontal surroundings.

4.3 Green vegetation extraction from GSV images

In this study, green vegetation extraction is a prerequisite step for utilizing GSV images for
street greenery study. However, extracting green vegetation from GSV images is challenging due
to many factors, such as the existence of shadows, seasonal variability, and the spectral
confusion between vegetation and other manmade green features (e.g. green brands, green doors).
What more important is that GSV images are stored in three dimensions using RGB color space,
and have no near-infrared bands, which are commonly used for vegetation extraction. Thus, the
limited spectral information makes extracting green vegetation from street view images more
difficult.

Previous vegetation extract algorithms mainly focus on crop extraction (Guijarro et al., 2011;
Woebbecke et al., 1995; Ribeiro et al., 2005). While the bi-classes (vegetation and soil) in crop
images are simple and easy to be separated, urban features in street-level images are much more
complex and difficult to differentiate. Many artificial features, such as green brands and green

doors and windows, share similar spectral signatures with green vegetation in RGB bands. In
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addition, green vegetation may show different spectral signatures in those street view images
captured under different illumination conditions (e.g., sunny days with good illumination, cloudy
days with poor illumination). Moreover, the shadow problem is much more serious in street-level
images than in crop images due to the stronger heterogeneity of urban landscapes. All of these
make the vegetation extraction from street-level images difficult using spectral information alone.
In this study, a robust and time-efficient object based image analysis method was used to classify
the green vegetation (Li et al, 2015b; Li et al, 2015¢c). The vegetation classification algorithm is
based on a two-step methodology. The first step is to segment the original GSV images using the
mean-shift segmentation algorithm (Comaniciu and Meer, 2002). A simple automatic threshold
method — OTSU method (Otsu, 1979) was then used to extract the green vegetation based on the
segmented images. Since GSV images were captured in different seasons and different years,
therefore, prior to the image classification, the spectral analyses of GSV images at different

seasons and years were also conducted.

4.3.1 Spectral Analyses of GSV images at different seasons

Green vegetation extraction from multispectral remotely sensed imagery has been studied
for three decades (Almeer, 2012). The near infrared band and red band are the most frequently
used bands for detecting vegetation because vegetation shows high reflectance at near infrared
band but shows high absorption at red band (Fig. 4.7). However, GSV images only cover the red,
green, blue bands, and the near infrared band is not available. By checking the Red-Green-Blue

spectrum of green vegetation, it is can be seen clearly that green vegetation shows higher
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reflectance at green band than other bands (Fig. 4.7), although the contrast is not as large as red

and near infrared. This phenomenon is further proved by the spectral analysis of green vegetation

using GSV images. In this study, 8,187 green vegetation pixels were chosen from the GSV

images captured under different illumination conditions as samples for the spectral analysis. Fig.

4.8 (b) shows the mean values (u,» = [0.301, 0.332, 0.230]) and the standard variances (J,g =

[0.186, 0.178, 0.221]) of the selected green vegetation pixels in the red, green, and blue bands.
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Fig.4.7. The spectral

signature of vegetation, source from: http://www.seos-project.eu
/modules/agriculture/agriculture-c01-s01.html.
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Fig.4.8. GSV images and spectral signature of green vegetation, (a) GSV images under different
illumination conditions in green seasons, (b) averaged spectral signatures and corresponding
standard variances of the selected vegetation samples in RGB bands.

However, the spectral signatures of vegetation could be affected by seasons. In different

climate zones, urban greenery has different green seasons. In Northeast and Midwest, street trees
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turn to yellow or red after the end of September (Fig. 4.9). However, in the Deep South or
California and Arizona, street trees may keep the green in September or even October (Fig. 4.9).
Table 4.3.1 lists the green seasons in different cities based on the visual inspection of the GSV
images in those cities. In addition, different tree types also have very different spectral signatures.
Pine trees usually are evergreen, and some street trees are not shown as green even in summer.
For example, a cultivar of Norway maple, Acer platanoides ‘Crimson King’ has purple leaves in

summer (Fig. 4.10).
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Fig.4.9. GSV images of different seasons in different cities. Note: For some cities, no image taken
in some months, therefore only GSV images in some available months are presented here.
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Fig.4.10. Non-green purple leaf Maple Acer platanoides ‘Crimson King’.

Table 4.3.1
The different green seasons in different climate zones.

Cities Green seasons Regions

Boston May, June, July, August, September Northeast

Philadelphia May, June, July, August, September

Pittsburgh May, June, July, August, September

Detroit May, June, July, August, September Midwest

Chicago May, June, July, August, September

Milwaukee June, July, August, September

Indianapolis May, June, July, August, September

Kansas City May, June, July, August, September, October

Minneapolis June, July, August, September

St. Louis May, June, July, August, September, October

Baltimore May, June, July, August, September

Washington DC  May, June, July, August, September

Tampa January, February, March, April, May, June, July, South
August, September, October, November, December

Louisville June, July, August, September, October

Houston --

San Antonio April, May, June, July, August, September, October,
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November

Dallas April, May, June, July, August, September, October

Phoenix -- West
Denver May, June, July, August, September

Los Angeles
San Francisco

Seattle --

4.3.2 Timing GSV images

Unfortunately, the current version of the Google Street View static image API is not able to
directly access to the time information of the GSV images for any specific location. However,
Google has provided the time stamps for GSV images, and the time information of the GSV
images is accessible through the Google Maps JavaScript APl (Google, 2015). GSV panorama
ID, longitude, latitude, and time information of the GSV panorama can be accessed through the
Google Maps JavaScript API (Google, 2015). The following JavaScript code shows how to get
the time information of the GSV images using the Google Map API (Google, 2015). Using the
coordinates of the chosen sample sites as the input, the panorama IDs and time information can
be accessed.

In the code, the getPanoramaByLocation is a function provided by the Google Maps API, the
second parameter of this function is used to define the search area. Therefore, if the site
(longitude, latitude) has no GSV panorama, then the function will snap a panorama from the
surrounding 5 meters region. This method can help to guarantee that there are as many sites

having available GSV panoramas as possible. The code can also save the panorama IDs and time
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information of these panoramas together with the coordinates in JavaScript Arrays.

Pseudo code 1. Meta-data collection of GSV images

Input: Coordinates of sample sites
Output: arrays of panorama IDs and time information of panoramas
Comment: latlng is the coordinate of a sample site
Comment: panoldArr is the array to store the panorama ID of a sample site
Comment: panoDateArr is the array to store the time information of a sample site
var sv = new google.maps.StreetViewService();
sv.getPanoramaByLocation(lating, 5, storeGSV_Info);
function storeGSV_Info(data, status) {
if (status == google.maps.StreetViewStatus.OK) {
panoldArr.push(data.location.pano);
panoDateArr.push(data.imageDate);
}else {
console.log('street view is not available in this point’);

}

}
}

Fig. 4.11 shows the tool I developed in this study to harvest the metadata of the GSV images.
By imputing the coordinates of sample points in geojson format, the tool can return the metadata
(pano ID, time information, and coordinates) of GSV panoramas for the input sample sites and
save the metadata in a local text file.

Although Google has published the GSV images taken in different times, the static GSV
image is only accessible for one time point. It is still impossible to access the GSV images at
different time points for one site, which means that it is difficult to investigate the temporal
changes of street greenery using the GSV. However, it could be possible to access static GSV

images at different time points in future, since Google already collected historical GSV data and
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published it online. Considering the fact that GSV images were all collected along streets, and

not all cityscapes were covered, so, the GSV based method is more suitable for assessing street

greenery but not suitable for other types of urban green spaces.
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Fig.4.11. The developed tool for harvesting GSV metadata (panorama ID, panorama
geo-coordinates, and time information). This tool can also save the panorama information locally

for further analysis.
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Coordinate: http://maps.googleapis.com/maps/api/streetview?size=400x400&location=41.935 -
87.80524300000002&fov=060&heading=180&pitch=0&sensor=false

Pano ID: http://maps.googleapis.com/maps/api/streetview?size=400x400&pano=H{F YW
KnZItamBeJxJPX51A&fov=60&heading=180&pitch=0&sensor=false

Fig.4.12. A GSV image and its corresponding Uniform Resource Locators (URLS).

In the GSV static image API, instead of using the location parameter, GSV images can also
be requested using pano parameter, which represents the panorama ID. Using the pano parameter
is usually more stable than the location parameter (Google, 2015). Fig. 4.12 shows the URLSs of
a static GSV image using both location and pano parameters.

A Python script was developed to download GSV images with meta-data based on the
coordinates, panorama ID, and time information collected by GSV _TIME TOOL (Fig. 4.11) for
all selected sample sites. The script was used to collect GSV images and map the spatial
distribution of time information of GSV images for all chosen cities in this study. Fig. 4.13 (a-b)
shows the spatial distribution and statistics of time information for all sample sites in Hartford,
Connecticut. Of the 3,000 sample sites in Hartford, Connecticut, only 2,838 sites have GSV
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panorama coverage. Fig. 4.13(a) shows the spatial patterns of image date information for all
2,838 GSV panorama sites. The GSV images for most of the sites (2,042) were taken in June
2011 (Fig. 4.13(b)). Other time points include July 2015 (390 sites), August 2012 (216 sites),
July 2011 (79 sites), and October 2011 (84 sites). A few sites have GSV images captured in

August 2007 (13 sites), August 2011 (10 sites), October 2012 (3 sites), and July 2008 (1 site).
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Fig.4.13. Selected sample sites and related image date information in a case study in Hartford,
Connecticut: (a) the spatial distribution of date information for all chosen GSV images, (b) the
statistics of the date information for all chosen samples.

4.3.3 Image segmentation
Image segmentation is a process of delineating an image into homogeneous polygons that are

physically meaningful. It also can differentiate objects based on available geometric information
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(Blaschke, 2010). The mean-shift image segmentation method is a simple iterative procedure for
locating the maxima of density functions given discrete sample data. It was initially proposed by
Fukunaga and Hostetler (1975). Later, this method was refined by Cheng (1995) through adding
a kernel function, which further rekindled the interest in it. Since then, the mean-shift
segmentation algorithm has been widely used in various applications due to its robustness and
capability of generating qualified cluster results. In the mean-shift algorithm, the first step is to
build a kernel function to estimate the possibility of the density function based on the original
image. There are many methods to estimate the possibility of the density function. In this study, a

normal kernel function

X

(272_) d/2
)= h

K(x;h
(¢ h

exp(— I| ") (4.1)

was used to estimate the probability distribution. In Eq. (4.1), d represents the dimensions of a
space, x is the feature vector of the central pixel in a kernel, % is the window size of a kernel
function and also acts as the scale parameter, and ||.|| is a norm.

For n data points x; (i = 1, 2,..., n) in the d-dimensional space, the multivariate density

function estimator is
1 n
P00 =2 KOG =xh), (4.2)
i1

where x; stands for the feature vector of each pixel. In this study, the x; stands for pixel values at
RGB bands, for example, x; = [10, 255, 255].

Introducing the kernel function (4.1) into Eq. (4.2), we get the multivariate density function
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estimator as

109 = E0— 3 -3 1 X2 1) @3

(272_) d/2
, we can simplify the notation of Eq. (4.3) to

By writing k(u) = exp(—% u) and C=

f(x)= CZ k(120 (4.4)
The density gradient for f{x) or the derivative of f(X) is,
VE(x )— Y Z(X— (R 'II) (4.5)

Define the function g(x) = -k’(x), we get
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Since the Zg(ll Xi |I?) is assumed to be a positive number (Comaniciu and Meer, 2002),

the maximum of the density function f'(x) occurs when
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The mean-shift algorithm is an iterative procedure of updating x; as Eq. (4.8) until it

converges (Comaniciu and Meer, 2002).
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When Eq. (4.8) converges, the original image is segmented into different objects and those
neighboring pixels sharing similar spectral signatures are clustered into one object. The size of
window and the kernel function affect the mean-shift segmentation results. In this study, after
trials and errors, the size of window was set to 5 for its best segmentation quality.

The meanshift Python module — pymeanshift was used in this study for image segmentation.
The spectral R, G and B components in original 8-bit color RGB GSV images were first
normalized to the range of [0,1] for segmentation. Fig. 4.14 (b) shows the segmented results.
Neighborhoring pixels in the original GSV images (Fig. 4.14(a)) were grouped together. After
segmentation, the new thematic images (Fig. 4.14(c)) were generated by setting the attribute of
each object to the average value of pixels in that object at each of the three RGB bands.
Compared with the original GSV images, the thematic images are smoothed spectrally, and the
contrast between green features and non-green features is enhenced. Both of these make the
thematic images more suitable for vegetation classification, therefore, the thematic images were

used to extract geen vegetation in the next step.
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Fig.4.14. The image segmentation results for GSV images, (a) the original GSV images, (b) the
segmented objects, (c) the thematic results (the value of each object is the mean value of all pixels in

it).
4.3.4 Vegetation classification and validation

There are many developed image-processing algorithms for separating green vegetation from
non-vegetation using RGB colorful images (Guijarro et al., 2011; Meyer et al. 2004; Zheng et al.
2009, 2010; Li et al., 2015a, 2015b). Current algorithms for green vegetation extraction fall into
three categories (Guijarro et al., 2011). The first one comprises the visible spectral index based
methods, including the excess green index (ExG = 2G-R-B) (Woebbecke et al., 1995; Ribeiro et

al., 2005), the normalized difference index (NDI = (G-R)/(G+R)) (Woebbecke, 1992), the excess
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red index (ExR=1.4R-G) (Meyer et al., 1998), and the excess green minus excess red index
(ExGR = ExG — ExR) (Neto, 2004). The second category belongs to dynamic thresholding
approaches, including the Otsu-based methods (Ling and Ruzhitsky, 1996; Shrestha et al., 2004)
and the histogram entropy based methods (Tellaeche, 2008). The third category contains machine
learning based methods, which use supervised or unsupervised algorithms to separate green
vegetation from non-vegetated features (Meyer et al. 2004; Zheng et al. 2009, 2010).

In this study, based on the spectral signature of vegetation in RGB bands, a rule based on the
spectral characteristics of green vegetation was set for the green extraction. The rule combines
Diff based method (Li et al., 2015a) and ExG based method (Li et al., 2015b).

There are several steps in the Diff based method (Li et al., 2015a). Firstly, two difference
images Diff1 and Diff2 were generated through the operations of Diff] = green band - red band
and Diff2 = green band - blue band, respectively. Then the two difference images were multiplied
to generate the Diff image. Considering the fact that green vegetation pixels normally have higher
values in the green band than in the other two bands, they will generally show positive values in
the Diff image. Those pixels that have lower values in the green band than in the blue or red bands
will show negative values in the Diff image. However, if a pixel has a lower value in the green
band than in both the red and the blue bands, its corresponding value in the Diff image will still be
positive. To avoid this confusion, an additional rule that the values of green vegetation pixels in
the green band must be higher than in the red band is added to extract the green pixels.

Excess green index EXG was calculated through the operation of EXG = 2green band — red

band — blue band. Considering the fact that green vegetation shows higher value in green band
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than red band and blue band, the ExG would enhance the contrast between green vegetation and
non-green urban features in the segmented GSV images. The Otsu algorithm was then used for
choosing the optimum threshold to differentiate green vegetation and non-green features.

In the thematic GSV images, only those pixels meet both of these two rules (Diff rule and ExG
rule) would be classified as the green vegetation. The pseudo code for green vegetation extraction

algorithm is listed below as pseudo code 2.

Pseudo code 2. Algorithm for extracting greenery from segmented GSV images

Spectral rules for vegetation classification based on segmented GSV images

Comment: green, red, and blue are three bands in segmented images
Comment: \egetation is the vegetation extraction result
ExG = 2green — red — blue
Diff1 = green — red
Diff2 = green — blue
Diff = Diff1x Diff2
Threshold = OTSU(EXG)
for each pixel [i, j]:
if EXG [i, j] > Threshold and Diff [i,j]>0 and Diff2>0:
Classify \egetation [i, j] as green vegetation
Mask out pixels with values in green, red, blue bands higher than 0.7 in
\egetation image

Fig. 4.15 shows the image segmentation results and green vegetation classification results of
three GSV images. The image segmentation algorithm first clustered nearby pixels, which have
similar spectral characteristics into different objects (Fig. 4.15 (b-c)). A comparison of
segmentation results and the original GSV images shows that the image segmentation algorithm

can help to keep the urban feature boundaries and smooth the noises in the GSV image. From the
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vegetation extraction results (Fig. 4.15 (d)), it can be seen that the proposed vegetation

classification method extracts the green vegetation correctively from GSV images.

a a b c

Fig.4.15. Vegetation extraction results, (a) the original GSV images, (b) segmentation results
(red lines are the boundaries of objects), (c) thematic results, (d) the vegetation classification
results.

This proposed vegetation classification algorithm only classified the vegetation shown as
green in the GSV images. The proposed vegetation classification method is not suitable to
classify vegetation from those GSV images captured in non-green seasons. Based on the spectral
analysis of the green vegetation in different seasons, those sites have GSV images captured in

non-green seasons were excluded from the analysis. The classification results of green seasons

and non-green seasons for different studied cities can be found in Table 4.3.1 and Fig.4.9 in
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section 4.3.1.
One hundred GSV images were randomly chosen to validate the classification results. The
validation result shows that the overall accuracy of the vegetation extraction is higher than 85%,

thus it is qualified for further analysis.

4.4 Green View indices

The sensory benefits provided by the street greenery are majorly through the visibility of the
street greenery. Yang et al (2009) proposed a green view index (GVI) to evaluate the visibility of
urban forests. Their GVI was defined as the percentage of the total green pixels from four
pictures taken at a street intersection to the total pixel numbers of the four pictures, calculated

using the Eq. (4.9),

4

D Area,
GreenView= =L x100% (4.9)

4

> Areg,

i=1
where Areag ; is the number of green pixels in the picture taken in the ith direction among the
four directions (true north, true east, true south and true west) for one intersection, and Area ; is
the total pixel number of the picture taken in the ith direction.
The green view index was proposed to represent how much greenery people can see on the
ground based on the street-level images. However, using the images captured in the four
directions to calculate the green view index inevitably misses some vegetation around, because

only four pictures at the field of view of 55° cannot cover the whole scene pedestrians can see
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(Liet al, 2015a). In this study, the modified green view index (MGVI) was used. The MGVI uses
six images covering the 360° horizontal surroundings to calculate the index for each sample site
along streets. Furthermore, to effectively represent the surrounding greenness that pedestrians
can see, three different vertical view angles (Fig. 4.16(b)) were also considered in each direction
for calculating the MGV (Li et al, 2015a). Consequently, the final MGVI used in this study was
calculated using 18 GSV images for each site. Therefore, using the MGV1 could better represent
the distribution of street greenery, considering the fact that the Google Street View has a similar

view angle with pedestrians on the ground. The MGV!I calculation formula is written as,

6 3

2.2 Area,

GVI=EE  <100% (4.10)

6 3

D> Area ;

i=1 j=1
where Areay j; is the number of green pixels in one of these images captured in 6 directions with
three vertical view angles (-45°, 0°, 45°) for each sample site, and Area, j is the total pixel

number in one of the 18 GSV images.
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Fig.4.16. GSV images captured in six horizontal directions at a sample site and three vertical view
angles.

The GSV has a national coverage, and most cities in U.S. have the GSV coverage. Using the
Google Street View static image API, street-level images can be collected for any site with GSV
panorama available (Li et al, 2015a). This makes the GSV based MGVI can be calculated for any
site with GSV available. In this study, the sample sites are located evenly along residential streets,
which make the GSV based MGVI better to represent the street greenery in cities. In addition,

there is no need to collect in situ street-level images to calculate MGV using GSV.
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Chapter 5 MGVI and vegetation characteristics

There are many developed green metrics to evaluate the distribution of urban greenery.
However, most of the previously proposed methods study the urban greenery from the overhead
view. What human being feel or see on the ground is very different from the overhead view
captured or represented by remote sensing data and zoning data. The Google Street View (GSV)
based method gives us a new perspective to study the urban greenery. It is important to
investigate the relationship and discrepancy between the GSV based MGVI with the previously
proposed green metrics and the vegetation characteristics.

Previous studies investigated the relationship between the metrics derived from street-level
images and remotely sensed data (Yang et al., 2009; Chen et al, 2015; Li et al, 2015a). Yang et al
(2009) first proposed to use green view index (GVI), which is calculated base on in situ street
level pictures, to assess the visibility of urban forest. Correlation analysis shows that the GVI
values have a strong correlation with the tree/shrub covers (Yang et al, 2009). The ANOVA
analysis shows that the GVI is influenced by the size of trees, the distance between the trees and

viewers, and other kinds of greenery. Chen et al (2015) built a regression model between the GVI
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and vegetation parameters derived from LIiDAR data. The distances between the trees and the
viewer, the perimeter of tree crown, and canopy height parameters were found to be the best
explaining variables of GVI. However, there exist a few studies about the association between
the GSV based MGVI and the overhead view green metrics, except Li et al (2015a). In Li’s paper,
only the canopy cover and the grass cover were selected to compare with the MGVI. In addition,
the comparison study was conducted in a very small area. In this chapter, the comparison study
of the GSV based MGVI and overhead view data based green metrics was conducted on a large
scale. In addition, this chapter also compared the difference between the distribution of MGVI

and different types of urban greenery.

5.1 Case study areas and data sources

Boston, MA and Hartford, CT were chosen as the case study areas to compare the MGVI and
the traditional green metrics. Boston and Hartford are the capital cities of Massachusetts and
Connecticut, respectively (Fig.5.1). Boston is the largest cities in both Massachusetts and New
England. According to recent census data (American Census Survey 2009-2014 data), Boston
has a total population about 660,000. African American, Hispanics, and Asians account for
24.1%, 18.8, and 9.0% of the total population, respectively. Hartford is the capital city and
fourth-largest city in Connecticut, USA, with population of approximately 125,000. Based on the
5-year aggregated census data from American Community Survey (US Census Bureau, 2012),
African Americans and Hispanics are the two largest racial/ethnic groups in Hartford, which

account for 37.65% and 43.05% of the total population, respectively. Recently, satellite imagery
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based analysis shows that more than 2,870 acres of Hartford are covered by tree canopy,

representing 26% of landmass in the city.

01020 40 60 80
O —

Fig.5.1. The location of Boston, MA and Hartford, CT.

The datasets of Boston include a vegetation cover map (Fig. 5.2 (a)) and a DSM (Digital
Surface Model) derived from LiDAR data (Fig. 5.2 (b)). The LIDAR data products of Boston, in
the form of pre-processed x, y, z points cloud files, were obtained from NOAA Digital Coast

(http://coast.noaa.gov/dataviewer/index.html?#). The horizontal accuracy is 50 cm, and vertical

accuracy is reported as 15cm. The LIDAR point cloud data includes two geo-spatial layers
representing the first returns and the ground. The point cloud file was converted to a raster file
using ArcGIS 10.2. The DSM was then created by subtracting the ground model from the first

returns layer. The vegetation cover map was obtained from Raciti et al (2014), which was
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derived from 2.4 resolution QuickBird images and 1m resolution LiDAR data. The vegetation
cover map represents the urban canopy cover, because those vegetation areas less than 1m in
height were removed (Raciti et al, 2014). Accuracy assessment result shows that the canopy map

has an overall accuracy of 95%.
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(b) The DSM model of Boston derived from LiDAR data.

Fig.5.2. The canopy cover and DSM in Boston.
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The land cover map of Hartford (http://gis.w3.uvm.edu/utc/) was derived from 1-meter
resolution remotely sensed data of 2008 (Fig. 5.3). The land cover classification was performed
by Spatial Analysis Laboratory (SAL) at the University of Vermont, in consultation with the

USDA Forest Service’s Northern Research Station.
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Fig.5.3. The land cover map of Hartford, Connecticut.

5.2 Modified Green View index (MGVI)
Sample sites were first created along residential streets in Hartford and Boston respectively.
The created sample sites were then used as inputs to the GSV_TIMING tool (see Section 4.3.2) to

request the meta-data of GSV panoramas for all selected sample sites. Fig. 5.4 shows the spatial
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distribution of the time information for all chosen sample sites in Boston and Hartford,
respectively. In Hartford, among the total 2,838 GSV sites, most of these GSV sites (2,042) have
their static images taken in June 2011 (Fig. 5.5(a)). Other time points include July 2015 (390
sites), August 2012 (216 sites), July 2011 (79 sites), and October 2011 (84 sites). In Boston, the
GSV images were updated very frequently. Therefore, only the year information is listed here
(Fig. 5. 5(b)), although all available GSV panoramas have time information at month level. Most
GSV panoramas in Boston were taken in 2013 (2,777) and 2014 (2,907). There are few
panoramas taken in 2007 (55), 2009 (30), and 2012 (8).

In order to keep the time consistency of all chosen sample sites, those sites that have GSV
images taken in non-green seasons were excluded in this study, because it is difficult to extract
the vegetation from those GSV images. Based on the spectral analysis of GSV images captured
in different seasons, May, June, July, August, and September were defined as green seasons in
Boston and Hartford. Other months were categorized as non-green seasons and those GSV
images taken in non-green seasons were removed from further analysis. Fig. 5.6 shows the
spatial distributions of sample sites have GSV panoramas taken in green seasons and non-green
seasons in Hartford (Fig.5.6 (a)) and Boston (Fig.5.6 (b)). By checking the spatial distribution of
sample sites having GSV images taken in non-green seasons, it can be seen clearly that those
non-green sites are not aggregated and the relatively small number of non-green GSV sites have

no much influence on the further analysis.
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Fig.5.4. The spatial distributions of captured dates of GSV sample sites in Hartford (a) and Boston
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Fig.5.5. The statistics of captured date in the images in Hartford (a) and Boston (b).
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Fig.5.6. The spatial distributions of non-green GSV sites in Hartford, CT (a) and Boston, MA (b).

The spatial distributions of the MGVI in Hartford and Boston are shown in Fig. 5.7. Among
all chosen sample sites in Hartford (Fig. 5.7 (a)), most sites with low MGVI values are located in
the east and south of the study area. Sites with high MGVI values are mainly distributed in the
west, north, and southwest subareas. In Boston (Fig. 5.7 (b)), most sites with high MGVI values
are located in the southwest and west regions. Most sites with low MGVI values are located in
the eastern region.

Fig. 5.8 presents several sites in Hartford and Boston with different MG VI values. In general,
those sites with more street trees tend to have higher MGVI values, and those sites with
large-size street trees, multi-layer vegetation, and lawns along streets usually have higher MGVI
values. This is not difficult to understand because the MGVI was calculated by 18 GSV images

captured in six horizontal and three vertical angles and the lawns and large street trees were
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counted.
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(b)The spatial distribution of the MGV1 in Boston, MA
Fig.5.7. The spatial distributions of the MGVI in Hartford, CT and Boston, MA.
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Green view index:
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(a) MGVI values for different sites in Hartford, CT (Li ef al., 2015c¢)
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(b) MGVI values for different sites in Boston, MA
Fig.5.8. GSV sites in Hartford and Boston with different MGVI values.

65



5.3 Correlation analysis of MGV and vegetation characteristics

Different from the previous green metrics, the MGVI indicates the visibility of greenery on
the ground. Previous studies show that the green view index values are influenced by the patterns
of trees, the size of trees, and the distances between trees and viewers (Yang et al., 2009). In
order to better illustrate the difference of MGVI with the previous green metrics, correlation
analysis between MGVI and the previous green metrics was conducted in this study. For
Hartford, the LIDAR data is not available, therefore, the chosen green metrics were based on a
land cover map, which was derived from multispectral remotely sensed imagery. In Boston,
because of the availability of the LIDAR data, the canopy height was also considered in the

correlation analysis.
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Fig.5.9. The MGVI map and land cover map in a small portion of Hartford. The sizes of the solid
dots represent the magnitudes of MGVI values.
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Fig. 5.9 shows the distribution of MGVI values and land cover map in a small portion of
Hartford, CT. Table 5.1 provides the Pearson’s correlation coefficients between MGVI values
and vegetation coverage at different buffer distances around the sample points. From Table 5.1,
it can be seen that the MGVI has a significantly positive correlation with the canopy coverage in
the buffered zones. However, the correlation coefficients decrease with increase of the buffer
distances. Compared with the significant correlation between MGVI and canopy coverage, the
correlation between the MGVI and lawn coverage is not statistically significant. The correlation
analysis results show that the MGV is significantly influenced by nearby canopy covers, but the
correlations decrease with the increase of buffer distances. It is not difficult to understand this
phenomenon, because the trees in faraway look smaller than those closer trees. The
non-significant correlation between the MGVI shows that the nearby lawns do not influence the
MGVI values significantly. This may be because the MGVI used in this study covers 6
horizontal directions and 3 vertical directs (see section 4.4 for more details). Some lawns are
invisible in those GSV images with vertical angles of 0 and 45. In addition, most lawns in
residential areas are located in the backyard and blocked by the building blocks. This to some
extent may further explain the non-significant correlation between the MGVI and the lawn

coverage.

Table 5.1. The Pearson’s correlation coefficients between MGVI and the canopy characteristics.
ACH: Average Canopy Height, PCC: Percentage of Canopy Cover.
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Pearson’s correlation coefficients

Buffer distances N
Canopy Coverage Lawn coverage
20m 0.735" -0.005 2752
40 m 0.694" 0.006
60 m 0.637" 0.028
80 m 0.598" 0.052
100 m 0.575" 0.061

** Correlation is significant at the 0.01 level (2-tailed).

In Boston, the canopy height was further considered in the correlation analysis with the
availability of LIDAR data. Fig. 5.10 shows the overlap of the MGVI values with the canopy
cover map and the canopy height map in a small portion of Boston. For simplicity, the averaged
canopy height was calculated as the indicator of height of nearby trees. Table 5.2 shows the
Pearson’s correlation coeffiencts between the MGVI values and the canopy characteristics at

different buffer distances around the sample points in whole Boston.
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Fig.5.10. The MGVI map and canopy cover map in a small portion of Boston (a) and a Digital
Surface Model (DSM) of canopy (b).
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Table 5.2. The Pearson’s correlation coefficients between the MGVI and the canopy
characteristics in Boston, MA. ACH: Averaged Canopy Height, PCC: Percentage of Canopy
Cover.

Pearson’s correlation coefficients

Buffer distances N
PCC ACH
20m 0.7017 0.594™ 5925
40 m 0.621" 0.555"
60 m 0.547" 0.507"
80m 0.512" 0.482"
100 m 0.489" 0.466

** Correlation is significant at the 0.01 level (2-tailed).

In Boston, the correlation analysis results show that the correlation between the canopy
coverage and the MGVI has a similar pattern with the correlation in Hartford. The canopy
coverage is strongly correlated with the MGVI, and the correlation becomes weaker as the
increase of the buffer distances. The MGVI also has a very significant correlation with the ACH
(Averaged Canopy Height) of nearby canopy. And the MGVI has a stronger correlation with the
closer canopy covers than those canopies far away.

The MGVI is proposed to measure the neighborhood greenness in terms of the visibility of
street greenery. The correlation analysis results in Boston and Hartford show that the MGVI can
reflect the amount of tree canopy coverages of the street greenery. The MGVI cannot directly
represent the coverages of lawns. Therefore, the MGVI is more suitable for measurement of

street trees rather than lawns. Different from the 2D green metrics based on remote sensing data,
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the MGV can also reflect the 3D structural information of street greenery. Those sites with large
canopy coverages or higher canopies tend to have large MGVI1 values. Therefore, the MGVI is a
new indicator, which reflect both the canopy coverage and the 3D vertical structure information

of the street trees.

5.4 Distribution of different vegetation types of urban greenery

Different types of urban greenery, which are managed differently, provide different kinds of
nature experiences to urban residents. The GSV based MGVI is more suitable for the
assessement of street greenery rather than other types of urban greenery, such as backyard
vegetation and urban parks. This section compares the spatial distributions of the MGVI and

different types of urban greenery in Hartford, CT.

5.4.1 Percentage of private yard vegetation coverage

The private yard vegetation mainly locates on private residential parcels and provides
benefits directly to property owners. In this study, the percentage of total vegetation coverage
(Per\eg) and the percentage of tree/shrub coverage (PerTree) in residential property parcels were
used to represent the distribution of private yard greenery. These two green metrics — Per\eg and
PerTree were calculated by intersecting the residential parcel map and the vegetation cover map

for each residential parcel using the following formulas,

Are
%8 100% (5.1)

parcel

PerVeg=
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PerTree= A& 10004 (5.2)

aparcel

where Areayeq iS the area of total vegetation coverage in a residential parcel, Areaeesshrub IS the
area of tree/shrub coverage in a residential parcel, and Areaparcer IS the area of the parcel. These
parcel-level green metrics were then aggregated at block group level using their median values.
The residential parcel map was delineated manually based on a parcel map and the land
cover map by checking Google Map and Google Street View. Fig. 5.11 shows the satellite image,

the land cover map, and the residential parcel map of a small portion of the study area.
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Fig.5. 11. The vegetation in private yards, shown by (a) a satellite image from Google Map, (b) a
land cover map derived from the remotely sensed data, () a residential property parcel map (Li et
al., 2016b).
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5.4.2 Proximity to urban parks

Based on previous studies, | used a buffer analysis method to measure park’s accessibility in
this study. | used a 400-meter buffer zone around each park, a distance most people are willing to
walk to an urban park (Boone et al., 2009; Lindsey et al., 2001; Wolch et al., 2005; Leslie et al.,
2010). The proportion of residential parcels in the buffer zones for all block groups was further
used as the indicator of proximity to urban parks at the block group level. If the centroid of a
residential parcel is in the buffer zone of an urban park, then this parcel will be treated as in the
service area of the park.

The urban park map in Hartford was obtained from the Hartford Open Data website
(https://data.hartford.gov/). The small cemeteries, monuments, and other small green spaces that
should not be defined as parks were removed by checking Google Map and Google Street View,

since those parks are too small to offer significant benefits to residents.

0

Fig.5.12. The overlap of the urban park map and the residential parcel map in Hartford, CT, (a) the
urban park map, (b) and the residential parcel map, (c) the overlap of the buffer map of urban parks
and the residential parcel map.
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5.4.3 Distributions of different types of vegetation in Hartford, CT

Fig. 5.13 shows the spatial distributions of the aggregated green metrics at block group level,
which were used to indicate the street greenery (Fig. 5.13a), proximity to urban parks (Fig.
5.13b), percentage of total yard vegetation coverage (Fig. 5.13c), and percentage of yard
tree/shrub coverage (Fig. 5.13d), respectively. The street greenery (Fig. 5.13a) has a very
different distribution compared with other types of urban greenery in Hartford. In the street
greenery map, block groups in the west, northwest, and southwest of the study area have higher
MGVI values than block groups in the east. That means neighborhoods in west, southwest and
northwest have more street greenery than the eastern region. The eastern and middle regions
have closer proximity to urban parks than the other regions (Fig. 5.13b). Yard vegetation and

yard trees/shrubs (Figs. 5.13c and d) are more abundant in the north than in the south.
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Fig.5.13. Green metrics mapped at the block group level: (a) the MGVI values, (b) proximity to
urban parks (proportion of residential parcels in 400m buffer zones of urban parks), (c) percentage
of yard vegetation coverage, and (d) percentage of yard tree/shrub coverage (Li et al., 2016b).

5.5 Summary

The comparision analysis of the MGVI with nearby canopy coverage, lawn coverage, and
canopy height proves that the MGVI measures street tree canopy coverage and the vertical
structural information of street trees. The size and height of street trees influence the MGVI

positively. Those neighborhoods with more street trees, larger canopy covers, and higher
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canopies tend to have larger MGVI values. In addition, the GSV based MGVI is more suitable to
indicate the distribution of street greenery rather than backyard vegetation or vegetation in urban

parks.
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Chapter 6 Environmental inequity analyses

Different from previous studies using the canopy cover or vegetation indices derived from
remotely sensed data (Grove et al., 2006; Mennis, 2006; Landry and Chakraborty, 2009; Leslie et
al., 2010; Jenerette et al., 2013), in this study, the MGVI was used to investigate the distribution
of urban street greenery among different socio-economic and racial/ethnic groups. The objective
of this study is to test the hypothesis that environmental disparities in terms of street greenery are
linked to the racial/ethnic makeup and socioeconomic status of residents. Chapter 4 gives details
about the workflow for calculating the MGVI based on Google Street View images. The
calculated MGVI values represent the spatial distribution of street greenery at site level. In order
to make the MGVI maps and census data comparable, the site level MGVI maps were further
aggregated at census tract level. The median MGVI values were summarized by census tract.
Sites on the borders of census tract were not counted in order to eliminate the neighborhood
effect. Bivariate correlation analysis and regression models were then used to investigate

environmental inequity in terms of street greenery in different cities.
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6.1 Extraction of social variables from census data

Based on previous studies (Landry and Chakraborty, 2009; Huang et al., 2011; Pham et al,,
2012), eight social variables at the census tract level were selected to represent the racial/ethnic
and socio-economic status of residents in this study (Table 6.1). These eight chosen variables
include per capita income, proportion of African Americans, proportion of Asians, proportion of
non-Hispanic Whites, proportion of Hispanics, proportion of owner-occupied units, proportion of
people with bachelor or higher degrees, and proportion of people without high school degree.

Economic status affects people’s capability to improve their living space, which may further
influence their physical living environments. There are many developed variables to indicate the
economic status of residents, such as household income (Landry and Chakraborty, 2009; Heynen,
2006), per capita income (Li et al, 2015b), and proportion of households with income below the
poverty line (Huang et al., 2011). In this study, the per capita income rather than household
income was chosen as the indicator of a resident’s economic status, considering the fact that
household income does not consider the household size. The race/ethnicity variables include
proportion of African Americans, proportion of Asians, proportion of Hispanics, and the
proportion of non-Hispanic Whites. Previous studies have showed that vegetation coverage is
associated with people’s education levels. Therefore, in this study, two educational variables (the
proportion of people with bachelor or higher degrees and the proportion of people without high
school degree) were included in the analysis. In order to control the impact of built environment
on the distribution of street greenery, a built environment variable (median building age) was

considered (Grove et al., 2006; Pham et al., 2012; Landry and Chakraborty, 2009). In addition,
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two age variables (proportion of people under 18 years of age and proportion of people older

than 65 years of age) were also included in the analysis.

Table 6.1.

The chosen social variables from American Community Survey (ACS) census data

Category Variables

Economic status Per capita income

Education Proportion of people without high school degree
Proportion of people with bachelor or higher degrees

Lifestyle Proportion of owner-occupied units

Built environment Median building age

Race/Ethnicity Proportion of non-Hispanic Whites

Proportion of Hispanics
Proportion of Asians
Proportion of African Americans

Age Proportion of people under 18 years of age
Proportion of people older than 65 years of age

In 2010, the American Community Survey (ACS) replaced the decennial census as the sole
national source of demographic and economic data for small areas like block group and census
tract (Spielman and Singleton, 2015). Although the questions in the survey for ACS data
collecting are very similar to those for the 2000 decennial census, there are some important
differences between the collections of these two datasets. While the decennial census has
provided a snapshot of the U.S. population once every 10 years, the ACS is kind of “rolling
survey” (Spielman and Singleton, 2015), and has been described as a "moving video image,

continually updated to provide much needed data about our nation in today's fast-moving world”
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(Cooper, 2005). Compared with the decennial data, the ACS is based on a relatively smaller
sample size.

The Google Street View, which was firstly launched in 2007, keeps updating to represent
what the most recent streetscapes look like. To some extent, the ACS data and Google Street
View use the same method to represent the real world, which both can be described as “moving
video image, continually updated to provide much needed data”. Therefore, the ACS data was
used as the data source for extraction of social variables in this study. Although the ACS data is
criticized by many users for its uncertainty and large margin of error in small areas, the ACS data
is still used in this study since it is the only national scale census data, which includes all social
variables in this study.

Although block group is the finest-level areal unit for most social variables used in ACS data,
in order to increase the accuracy of both MGVI map and the census data, the census tract was
used as the common boundary for all geospatial operations in this study. This is because
choosing a large geographical unit means more GSV sample sites in each unit, which may
further help to increase the reliability of estimation at areal units. The census data in census tract
usually has smaller margin of error compared with block group level. In addition, since this
study focused on residential housing units, census tracts located in non-residential areas were
excluded from the analysis.

In order to keep the time consistency between the census data and the GSV images, ACS
census data of different years was chosen for different cities correspondingly based on the time

information of the GSV images in different cities.
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6.2 Statistical Analysis

To determine whether the street greenery has an unequal distribution across different
racial/ethnic and socio-economic groups in the study areas, statistical analyses were performed
between the MGVI and the selected social variables. The statistical analyses were conducted in
three steps. Bivariate correlation analysis was first used to explore the correlations between the
MGVI and each of the social variables at census tract level for each of the selected cities. Second,
ordinary least square (OLS) multivariate regression analyses were conducted to model the
associations between dependent variable (the MGVI) and independent variables (social variables)
in each of the selected city. Since this study focuses on investigating the environmental inequities
among different socio-economic groups, the confounded variables of racial/ethnic variables and
economic variables were excluded from the further multivariate regression analyses. The finalist
variables in the regression models include, proportion of African American, proportion of Asians,
proportion of Hispanics, per capita income, proportion of owner-occupied units, and median
building age.

Finally, global Moran’s [-statistics were used to analyze the spatial autocorrelation of
residuals in regression models to determine whether the regression results were spatially biased
(Landry and Chakraborty, 2009). In Moran’s / analyses, Euclidean distances among centroids of
census tracts were used to generate the spatial weight matrix, which were used to represent the
strength of spatial interactions. When spatial dependence was detected in the residuals of an OLS

model, a spatial regression model was then conducted to include an additional term to account
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for the spatial autocorrelation.

In geography, the spatial autocorrelation has been a frequently faced problem for the analysis
of socioeconomic data (Talen and Anselin, 1998). Geographical features usually are spatially
auto-correlated, because geographical features near each other are more similar than those
features further away (Tobler, 1970). The spatial dependence could cause spatial dependence of
residuals in regression models, which would further violate the assumption of independent
observations in traditional OLS multivariate regression models (Landry and Chakraborty, 2009).
The simultaneous autoregressive (SAR) model is a spatial regression model to augment the
standard linear regression model by incorporating spatial interrelationship structure of the units
of analysis (Anselin and Bera, 1998). In SAR models, the spatial weight matrices are used to
represent the strength of the interaction of neighboring sites. The spatial weight matrices can be
defined in various ways, in this study, due to irregularity of census tract sizes and shapes in
different cities, Euclidean distances among census tract centroids were used to generate the
spatial weight matrices (Pastor et al, 2005; Landry and Chakraborty, 2009). There are two major
SAR models, spatial lag regression model and spatial error regression model, which incorporate
the spatial dependence into the dependent variable and error terms, respectively. The spatial lag
regression model (SARj,;) assumes that the spatial dependence effect exists in the dependent
variables. A pure spatial lag regression model simply consists of a spatially lagged version of the
dependent variable, and takes the matrix algebra model form of:

y=pWy+e (6.1)

Where W is the predefined nxn spatial weighting matrix, y is the observed variable, and p is a
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spatial autoregression parameter, which typically has to be estimated from the data. SARy,, mixes
spatial autoregressive model with standard regression. A first order SAR},; model can be written
as,
y=pNy+XB+& (6.2)
Where pWy is the pure spatial autoregression part, and X is the vector of explanatory
variables, f is the vector of regression coefficients, and & is the error term. The mixed
regressive-spatial autoregressive model incorporates spatial autocorrelation together with the
influence of predictor variables. The mixed model improved the standard OLS model, and the
level of improvement is dependent on how well the weighting matrix represents the spatial
relation between geographic features of different locations and how well the mixed model
represents or explains the source data (de Smith, 2015).
SAR¢: model is another kind of mixed regressive-spatial autoregressive model. Different
from SARj, model, SAR.; model incorporates the spatial effect into the error term,
y=Xp+e,
where &=AWeg+U (6.3)
In this study, the spatial regression models for different cities were implemented in GeoDA
(Anselin, 2005). Here, the y is the MGVI, and X represents the selected independent variables.
The spatial weight matrix W was calculated as the Euclidean distances among census tract
centroids. The spatial models of SARj,; and SAR.; were compared and the choice of either

spatial lag or error model was determined based on the Lagrange Multiplier and Robust
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Lagrange Multiplier tests for each city, which indicate whether the spatial dependence occurs at

the error term or the dependent variable (Anselin, 2005).

6.3 Results
6.3.1 Descriptive statistics of the MGVI in major cities

Based on the spectral analysis of the GSV images in different seasons (see section 4.3.1) and
the time information of GSV sites in different cities, several cities were excluded from the study.
This is because the image analysis in this study is based on the assumption that street greenery
will be shown as green in GSV images. The method used in this study is not suitable for those
cities with too many sample sites having their GSV images captured in non-green seasons. As an
example, Fig. 6.1 shows the spatial distribution of green GSV sample sites and non-green GSV
sample sites in cities of Chicago, IL Milwaukee, WI, Atlanta, GA, and Louisville, KY based on
the previous spectral analysis in Chapter 4. It can be seen clearly that these four cities have large
percentages of non-green sample sites. In addition, those non-green sample sites are distributed
in clusters. Excluding those aggregated non-green sites will decrease the representation of GSV
sample sites for the street greenery. Therefore, those cities having too many clustered non-green
GSV sample sites may not be suitable in the GSV based street greenery analysis and should be
removed from the study areas. By checking the spatial distribution of non-green GSV sites in all
study areas, cities of Chicago, Indianapolis, Minneapolis, Cincinnati, Louisville, Milwaukee,
Atlanta, Houston, San Antonio, Dallas, Los Angeles, San Francisco, and Seattle were removed

from the city list of the study areas (Table 3.1.1). In the finally selected cities (Table 6.2), most
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of the sample sites having their corresponding GSV images captured in green seasons and those
non-green GSV sample sites are distributed randomly and evenly in cities. By controlling the
spatial distribution of non-green GSV sample sites, the GSV based analysis helps to represent the
street greenery in different cities more reasonably without much influence by seasons. In

addition, cities without land use maps available were also removed.

Legend
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Legend

0 3 6 12 km ©  Green sites
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(c) Atlanta, GA (d) Louisville, KY

Fig.6.1. The spatial distributions of the green GSV sites and non-green GSV sites in Chicago,
Milwaukee, Atlanta, and Louisville.
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Fig.6.2. The histograms of MGVI values at site level for all studied cities.

The Fig. 6.2 shows the histograms of MGVI values of the finally selected cities. These

MGVI histograms give us an overview of the street greenery level in different cities. For

example, Philadelphia has a very skewed MGVI histogram and most GSV sample sites have

their MGV values less than 10. Most of these cities have relatively skewed MGV histograms,
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such as, Boston, Denver, Baltimore, Detroit, Pittsburgh, and St. Louis. Most of the GSV sample
sites in these cities have the MGVI values in the range of 5 to 20. However, Cities, like
Washington D.C, Tampa, and Kansas City have perfect normal histograms and most GSV sample
sites have their MGV values in the range of 10 to 30 in these three cities. These three cities have
greener neighborhoods compared with other cities in term of street greenery. This can be further
proved by the relatively larger mean and median site level MGVI values in Washington D.C,
Tampa, and Kansas City (Table 6.2). On the contrary, with the most skewed MGVI histogram
and the lowest site level mean and median MGVI values, the City of Philadelphia has the least

street greenery compared with other cities.

Table 6.2
The description of MGVI values in different cities at site level and census tract level.

Cities Site level Census tract level
Mean Median  Std Min Max Std

Boston 12.45 11.14 7.32 2.79 25.47 3.94
Washington D.C ~ 17.88 17.53 7.38 7.01 25.92 4.08
Philadelphia 8.73  6.67 7.11 1.13 31.84 4.34
Denver 1490 13.87 6.99 2.84 24.44 4.29
Baltimore 15.70 14.38 9.57 2.21 28.26 6.00
Detroit 17.18 16.08 7.75 3.64 26.60 3.68
Pittsburgh 1520 13.63 8.34 3.66 23.06 3.95
Tampa 19.10 18.97 6.65 7.65 23.82 2.92
St. Louis 1558 14.28 7.82 7.75 34.70 4.04
Kansas City 20.25 20.28 8.91 3.30 33.57 5.35
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In order to make the MGVI maps and census data comparable, the point level MGVI maps
were further aggregated to areal level. The census tract was used as the uniform geographic unit
and the median value of the MGVI in each census tract was chosen to represent the MGVI
values of the census tracts. Those census tracts with less than three GSV sample sites in it were
excluded from further analysis.

Table 6.2 gives the descriptive statistics of MGVI values at census tract level for all chosen
cities. In most census tracts of those selected cities, the MGVI values range from 1.13 to 33.57,
with standard deviations in a range of 2.92 — 6.00.

Fig. 6.3 presents the spatial distributions of MGVI values in different cities at both the site
level and census tract level. Most cities share a similar pattern that those sites with high MGVI
values are located in the periphery regions and those sites with low MGVI values are located in
the inner part of cities. The census tract level MGVI maps have similar patterns with the site
level maps. This distribution pattern is especially obvious in cities of Boston, Baltimore, D. C,
Philadelphia, Pittsburgh, Detroit, and St. Louis. This is not difficult to understand considering the
fact that the inner part of a city has less open space for tree planting. Other than this general
pattern, different cities also have specific spatial patterns in terms of the distribution of the
MGVI values. In Boston (Fig. 6.3(a)), most sites with high MGVI values are mostly distributed
in the southwest and southern areas. Those sites with low MGVI values are mostly located in the
north and the northeastern regions. In Washington D.C and Detroit (Fig. 6.3 (¢, g)), the western
regions have obviously higher MGVI values than the eastern regions. In St. Louis and Kansas

City (Fig. 6.3 (i, j)), GSV sample sites in south usually have higher MGVI values than sites in
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north. However, in some cities, like Denver and Tampa (Fig. 6.3 (f, h)), there exists no obvious
pattern in terms of the MGVI values.
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(c) Washington D.C

Green View Index
+ 0-10.0
10.0-15.0
15.0-20.0
© 20.0-25.0
¢ 25.0-30.0

+ >30

Green View Index
[ INun
Hlo-120
[]12.0-15.0

[ 1150-18.0
[118.0-21.0

I >21.0

(d) Philadelphia, PA

Green View Index
0-4.0
4.0-8.0
8.0-12.0
12.0 - 16.0
16.0 - 20.0
>20

Green View Index

[ INull

B 0-6.0
[16.0-9.0
[19.0-12.0
[7112.0-15.0
B >15.0

89




(e) Pittsburgh, PA
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(g) Detroit, MI
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(i) St.Louis, MO
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Fig.6.3. The spatial distribution of MGVI maps at site level and census tract level for the chosen
cities.

92



6.3.2 Bivariate analysis results

Fig. 6.4 shows the histograms of GSV time information in different cities. All cities have
most of their GSV images taken after 2009. Therefore, the 2010-2014 American Community
Survey (ACS) census data was used to calculate the social variables for all cities in this study.
Bivariate analyses reveal significant correlations between the MGVI social variables derived
from census data (Table 6.3). However, the signs of the correlation coefficients and the
significant levels were not consistent across different cities.

The correlation between the MGVI and per capita income varies in different cities, however,
the sign of the correlation is consistently positive. In cities of Baltimore, Washington D.C,
Philadelphia, St. Louis, Denver, the per capita income is positively and significantly correlated
with the MGVI. However, in Boston, Pittsburgh, Detroit, and Tampa, there exists no significant

correlation between per capita income and the MGVI.
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Fig.6.4. The statistics of the GSV image time information in different cities.
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There exist relatively consistent correlations between the educational variables (proportion of
people without high school degree and proportion of people with bachelor or higher degrees) and
MGVI. Consistent across all cities except Pittsburgh, Tampa, and Kansas City are significantly
positive correlations between the MGVI and the proportion of people with bachelor or higher
degrees, and significantly negative correlations between the MGVI and the proportion of people
without high school degree (Table 6.3). In Pittsburgh, Tampa, and Kansas City, the MGVI is not
significantly correlated with both of the two educational variables (proportion of people without
high school degree and proportion of people with bachelor or higher degrees).

Consistent relationships were also detected between the MGVI and the lifestyle variable
(proportion of owner-occupied units) across different cities (Table 6.3). Only in Philadelphia and
Denver, the correlation between MGVI and the proportion of owner-occupied units is not
significant. In the rest of cities (Boston, Baltimore, Washington D.C, Pittsburgh, St. Louis,
Detroit, Tampa, Kansas City), the MGVI is positively and significantly correlated with the
proportion of owner-occupied units.

Different from the consistent correlations between the MGVI and economic variables, the
correlations between the MGVI and racial/ethnic variables vary across different cities. In Boston,
Baltimore, Detroit, Tampa, and Kansas City, the MGVI has no significant correlation with the
proportion of non-Hispanic Whites. However, in Washington D.C, Philadelphia, St. Louis, and
Denver, the proportion of non-Hispanic Whites has a significantly positive correlation with the
MGVI at significance level of 0.01. Different from other cities, in Pittsburgh, the MGVI is

significantly and negatively correlated with the proportion of non-Hispanic Whites at
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significance level of 0.05 (=-0.228, p=0.013).

There are no consistent correlations between the MGVI and the proportion of African
Americans across different cities. In Boston, Baltimore, Tampa, and Kansas City, no significant
correlation was found between the MGVI and the proportion of African Americans. In
Washington D.C, Philadelphia, St. Louis, and Denver, the MGVI has a negative correlation with
the proportion of African Americans at significance level of 0.01. However, in Pittsburgh and
Detroit, the MGVI is positively correlated with the proportion of African Americans at
significance level of 0.05.

No consistent correlation was detected between the MGVI and the proportion of Hispanics in
different cities. In Boston, Baltimore, Philadelphia, Denver, the MGVI is significantly and
negatively correlated with the proportion of Hispanics at 0.01 significance level. In St. Louis, the
MGVT has a significant and positive correlation with the proportion of Hispanics at significance
level of 0.05 (+=0.21, p=0.036). No significant correlation was detected between the MGVI and
the proportion of Hispanics in Washington D.C, Pittsburgh, Detroit, Tampa, and Kansas City.

The proportion of Asians is not significantly correlated with the MGVI in all cities except St.
Louis. In St. Louis, the proportion of Asians has a significant and positive correlation with the
MGVI (=0.36, p=0.000).

Bivariate correlation analyses results show mixed findings about the correlations between the
MGVI and the two selected age variables (proportion of people under 18 years of age and
proportion of people older than 65 years of age). In Boston, Baltimore, Washington D.C, Detroit,

Tampa, and Kansas City, there exists no significant correlation between the proportion of people
96



under 18 years of age and the MGVI. The proportion of people under 18 years of age is
negatively correlated with the MGVI in Philadelphia, St. Louis, and Denver. However, in
Pittsburgh, the proportion of people under 18 years of age has a significant and positive
correlation with the MGVI. Among the chosen cities in the study, the proportion of people older
than 65 years of age generally has a positive correlation with the MGVI. In Boston, Baltimore,
Washington D.C, Philadelphia, Pittsburgh, Denver, and Kansas City, the proportion of people
older than 65 years of age has a significant and positive correlation with the MGVI. In Detroit,
Tampa the MGVI has no significant correlation with the proportion of people under 18 years of
age and the proportion of people older than 65 years of age.

As an indicator of the built environment of neighborhoods, the median building age is not
consistently correlated with the MGVI in this study. In cities of Boston, Pittsburgh, St. Louis,
and Detroit, there is no significant correlation between the MGVI and the median building age.
In cities of Baltimore and Philadelphia, the MGVI is significantly and negatively correlated with
the median building age at significance level of 0.01. The MGVI has a significant and positive
correlation with the median building age in cities of Washington D.C, Denver, Tampa, and

Kansas City.
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6.3.3 Multivariate Analyses

In general, the multivariable regression models investigate environmental inequities in terms
of street greenery by controlling socio-economic variables other than environmental justice
variables (race/ethnicity, and income). In regression models, the environmental justice variables
were selected as the independent variables, and other socio-economic variables were selected as
the cofounding variables. Results of regression models in different cities, such as coefficients,
z-values, and significance levels are presented in Table 6.4.

In Boston, the OLS regression model shows that there is no significant association between
the MGVI and the per capita income. The MGVI increases significantly with the proportion of
Asians. No significant association was found between the MGVI and other minority variables
(proportion of African Americans and proportion of Hispanics). The proportion of
owner-occupied units is significantly and positively associated with the MGVI. Significant
Moran’s [ value (Moran’s / = 0.23, z score =5.54) shows that residuals of the OLS regression
model suffer from a significant spatial autocorrelation. Therefore, the spatial lag regression
model (SARyp,) was further used to investigate the associations between the MGVI and
independent variables. Same as the OLS regression model, the SAR|,, regression model results
show that the MGVI has no significant association with the per capita income, proportion of
Hispanics, and proportion of African Americans. In the SARj,, model, the proportion of
owner-occupied units is still significantly and positively associated with the MGVI, which

further proves that the census tracts with higher proportion of owner-occupied units tend to have
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higher MGVI values or more street greenery. However, different from the significant association
between the MGVI and proportion of Asians in the OLS model, in the SAR},; model, the MGVI
is not significantly associated with the proportion of Asians after controlling the spatial
autocorrelation.

In Washington D.C, the OLS regression model explains 20% of the variation in MGVI
changes in 169 census tracts. Diagnostics for spatial dependence of the residuals show that the
Moran’s [ value was significant (Moran’s / = 0.46, z score =17.37). This means that the OLS
regression suffers from spatial autocorrelation in terms of the residuals. The SARj,, was then
deployed to conduct a further analysis of the relationship between the MGVI and the chosen
independent variables. The higher R* for SARj,e than that for OLS model suggests the improved
goodness of fit for the SARy,,. The significant value of the spatial lag coefficient, rho (coeff=0.84,
z score=15.42), for SARy,, indicates there is a strong spatial dependence in the MGVI map. For
both the OLS and SAR;,, models, the MGVI values increase significantly with the per capita
income (p<0.01). The significantly positive coefficient of the per capita income indicates that
those census tracts with higher per capita income have more street greenery. Although in the
bivariate analysis the MGVI is negatively correlated with the proportion of African Americans,
there is no significant association between the MGVI and the proportion of African Americans in
both the OLS model and SARj,, model after controlling other social variables and spatial
autocorrelation. Similar with the bivariate analysis results, both the proportion of Hispanics and
the proportion of Asians are not significantly associated with the MGVI in regression models.

Philadelphia is located in the similar climate zone with Boston and Washington D.C. The
100



OLS regression model shows that the MGVI is significantly associated with the per capita
income, proportion of Asians, and proportion of Hispanics. The MGVI increases significantly
with the per capita income, and decreases with the proportion of Asians and proportion of
Hispanics. No significant association between the MGVI and the proportion of African
Americans was detected in the OLS regression model. In addition, the proportion of
owner-occupied units is not significantly associated with the MGVI. The SARj,, model was
further applied to investigate the associations between the MGVI and independent variables
because of the significant spatial autocorrelation in terms of residuals in the OLS regression
model. After incorporating the spatial dependence, the association between the MGVI and the
proportion of Hispanics becomes insignificant. The MGVI is still positively and significantly
associated with the per capita income, and negatively associated with the proportion of Asians.
The situation in Baltimore is very similar with Boston. The OLS regression result shows that
the MGVI is significantly associated with the proportion Asians and proportion of
owner-occupied units. The MGVI increases significantly with increases of the proportion of
Asians and proportion of owner-occupied units. Since there is a significant spatial dependence of
residuals in OLS regression model (Moran’s / = 0.26, z score = 16.68), the SAR},; model was
also applied. After controlling the spatial dependence, the MGVI is still significantly associated
with the proportion of Asians and the proportion of owner-occupied units and the MGVI
increases significantly with increases of the proportion of Asians and the proportion of
owner-occupied units. Both the proportion of Hispanics and proportion of African Americans are

not significantly associated with the MGVI in both OLS and SAR regression models. The per
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capita income is not a significant contributor of the MGVI in Baltimore, since there is
non-significant association between the MGVI and per capita income in both OLS and SAR
regression models.

Denver is in the semi-arid climate zone, and maintaining street greenery is more expensive
than humid regions. The associations between the MGVI and social variables are different
compared with other cities in humid climate zones. The MGVI is significantly associated with
the per capita income, median building age, proportion of Hispanics, and proportion of African
American in both OLS and SAR},, models. The MGVI increases significantly with the per capita
income and median building age, and decreases significantly with the proportion of African
Americans and the proportion of Hispanics. This means that neighborhoods with a higher
proportion of African Americans or higher proportion of Hispanics tend to have significantly less
street greenery. There is no significant association between the MGVI and the proportion of
owner-occupied units in Denver. The MGVI may have less to do with the home ownership in
Denver than it has with income and proportion of minorities. The proportion of Asians is not
significantly associated with the MGVI in both OLS regression model and SAR,, regression
model.

In Detroit, a significant spatial dependence of residual (Moran’s / =0.51, z score =13.53) was
detected in OLS model. Thus, the spatial regression model was used to investigate the
associations between the MGVI and independent variables. The high pseudo R* (0.51) for the
SAR},, model suggests a better model fit compared with the OLS model. Bivariate correlation

analysis result shows that the MGVI has a significantly positive correlation with the proportion
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of African Americans (p<0.05), and has no significant correlation with the proportion of Asians
and Proportion of Hispanics. However, in both the OLS model and SAR},; model, the MGVI is
not significantly associated with all racial/ethnic variables (proportion of African Americans,
proportion of Asians, and proportion of Hispanics). The regression results show that the
significant correlation between the MGVI and the proportion of African Americans may be
spurious, and the apparent negative relationship disappears when per capita income, proportion
of owner-occupied units and spatial dependence were taken into account. The regression results
also show that there exists no significant association between the MGVI and per capita income.
In both OLS and SARj,, regression models, the significant and positive coefficients of proportion
of owner-occupied units show that neighborhoods with higher owner-occupied units tend to have
more street greenery in Detroit. This means that the MGVI may have less to do with the issue of
race/ethnicity and per capita income than it does with the issue of home ownership in Detroit.

Non-significant spatial dependence of residual (Moran’s / = 0.04, z score =1.68) was detected
in the OLS model in Pittsburgh, therefore, only the OLS model was used to investigate the
association between the MGVI and independent variables. The OLS regression model explains
44% of the variation in MGVI changes in 120 census tracts. The MGVI is significantly and
positively associated with per capita income, proportion of African Americans, proportion of
Asians, and proportion of owner-occupied units. There is no significant association between the
MGVI and proportion of Hispanics. The built environment variable has a weakly significant
association with the MGVI.

Tampa is in the tropical and humid climate zone, tree planting and growth are supposed to be
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much easier. Since a significant spatial autocorrelation of the error term was detected in the
residuals of OLS regression model, the spatial regression analysis was also conducted in Tampa.
The results of the ordinary linear regression model and the spatial regression model are presented
in Table 6.4. The coefficients, z-values, and significance levels are shown in the table. The
ordinary linear regression model and the spatial regression model (SARj,,) show similar results.
In both models, the MGVI is significantly associated with the proportion of owner-occupied
units, and increases significantly with increases of the proportion of owner-occupied units.
However, no significant association was found between the MGVI and racial/ethnic variables
(proportion of African Americans, proportion of Asians, and proportion of Hispanics). There
exists no significant association between the MGVI and the per capita income. Regression
analysis results prove that in Tampa, the MGVI may have less to do with the issue of
race/ethnicity and per capita income than it does with the issue of home ownership.

The OLS regression results show that in St. Louis, the MGVI increases significantly with the
proportion of Asians, and declines significantly with the proportion of African Americans.
However, in the SAR model, there exists no significant association between the MGVI and the
proportion of African Americans after controlling the spatial dependence effects. In both the OLS
model and the SAR},; model, the MGVI is not significantly associated with the per capita income,
proportion of owner-occupied units, and proportion of Hispanics. Regression results show that in
St. Louis, the environmental inequity is not serious in terms of the street greenery among
different racial/ethnic groups and social classes.

In Kansas City, the SAR regression model was used because of the significant spatial
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dependence of the residuals in the OLS regression model (Moran’s I = 0.20, z score=7.25). The
SARe: was used in Kansas City based on the results of Lagrange Multiplier and Robust
Lagrange Multiplier tests. The regression results show that in Kansas City, the MGVI is
significantly associated with the proportion of owner-occupied units and the median building age.
The MGVI increases significantly with the proportion of owner-occupied units and the median
building age. The proportion of Asians, proportion of Hispanics, and proportion of African
Americans have no significant association with the MGVI. No significant association between
the per capita income and the MGVI was detected. The regression analysis results prove that in
Kansas City, the MGVI may have less to do with the issue of race/ethnicity and per capita

income than it does with the issue of home ownership.

Table 6.4

The ordinary Least Squares (OLS) regression models and SAR regression models of MGVI and
environmental justice variables for different cities.

OLS SAR
Cities Variables
Coefficient  z-values Coefficient  z-values
Boston Constant 9.21 4.84" 4.16 2.26°
Per capita income 0.01 0.78 0.003 0.24
Proportion of African Americans 2.04 1.45 1.09 0.91
Proportion of Asians 9.81 266" 5.00 1.59
Proportion of Hispanics 21.36 0.85 22.88 1.07
Proportion of owner-occupied units ~ 8.14 4.40" 4.41 273"
Median building age -0.04 -1.60 -0.03 -1.22
Rho 0.55 6.74"
R 0.17 0.37
Adjusted R’ 0.13
F-statistic 4.98"
Akaike info criterion 823.94
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D.C.

Philadelphia

Baltimore

Moran’s [ of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R2

Adjusted R’

F-statistic

Akaike info criterion

Moran’s [ of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R

Adjusted R’

F-statistic

Akaike info criterion

Moran’s / of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R2

Adjusted R’

F-statistic

0.23 (5.54")

12.29
0.09
0.58
-21.29
-1.74
-0.04
0.01

0.23
0.20

7.93"

924.47

0.46 (17.377)

13.00
0.09
-0.934
-8.21
-4.72
-1.10
-0.07

0.28
0.27

23.08
1974.04

0.42 (14.39™)

11.84
0.01

2.03

33.90
-9.97
14.02
-0.12

0.27
0.25
11.15"
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*

3.86"
3377
0.26
-1.63
-0.46
-0.02
0.42

8.45
6.00”
-1.17

-2.90°
337
-0.98

387

*

*

*

3.017
0.29
0.91
2.54°
-1.42
6.15"
-3.43°

*

-3.24
0.06
2.50
-7.71
-2.26
-1.57
0.05
0.84

0.62

820.67

5.00
0.05
-0.75
-5.00
-2.00
-0.69
-0.03
0.66
0.56

1834.71

-0.66
0.04
-0.07
21.30
0.36
6.34
-0.04
0.94

0.58

-1.35
3.337
1.61
-0.87
-0.86
-1.30
2.50
15.42"

*

3.74”
3.66"
-1.20
227
-1.78
-0.79
2.01°
13.85"

*

-0.22
1.05
-0.04
2.15°
0.07
3.737
-1.40
26.28"

*



Denver

Detroit

Pittsburgh

Akaike info criterion

Moran’s / of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R2

Adjusted R2

F-statistic

Akaike info criterion

Moran’s I of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R

Adjusted R’

F-statistic

Akaike info criterion

Moran’s 7 of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics

Proportion of owner-occupied units
Median building age

Rho

RZ

1161.14
0.26 (16.68™)

10.72
0.06
-12.60
0.21
-8.00
-3.78
0.12

0.72
0.71
48.85%*
556.01
0.064
(2.74%%)

15.16
0.03
-1.23
-10.62
-3.32
6.05
-0.003

0.10
0.08

476"
1509.54

0.51 (13.537)

7.31
0.12
8.41
12.49
0.11
12.46
-0.07

0.47
107

7.08%*
3.20%*
-5.24%*
0.02
-5.70%*
-3.25%%
7.90%*

577"
0.08
-0.61
-1.94
-1.18
422"
-0.13

3.08"
3.94”
7.09”
2.36°
0.01
775"

*

-2.53

1068.64
6.48 3.08%*
0.05 2.85%%*
-11.30 -4.79%%
0.58 0.07
-5.93 -3.83%*
2.26 -1.86
0.09 5.52%%
0.31 2.88%*
0.74

552.45

430 2.09"
0.06 0.21
-0.94 -0.64
-5.83 -1.47
-1.19 -0.58
3.28 3.107
0.003 0.14
0.68 14.22%
0.51

1370.32



Tampa

St. Louis

Kansas City

Adjusted R’
F-statistic
Akaike info criterion

Moran’s [ of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R2

Adjusted R’

F-statistic

Akaike info criterion

Moran’s [ of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics
Proportion of owner-occupied units
Median building age

Rho

R

Adjusted R’

F-statistic

Akaike info criterion

Moran’s 7 of residuals

Constant

Per capita income

Proportion of African Americans
Proportion of Asians

Proportion of Hispanics

Proportion of owner-occupied units
Median building age

LAMBDA

0.44
16.817
606.48
0.04 (1.68)

16.71
-0.02
-0.58
-14.64
-0.74
5.18
0.01

0.15
0.10

2.52"
436.30

0.10 (4.517)

18.03
0.004
-5.67
26.17
-15.00
0.000
0.74

0.37
0.33

9.06

529.99

0.10 (3.287)

8.57
-0.03
-0.83
5.51
0.30
8.49
0.15
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7.23"
-0.57
-0.30
-1.26
-0.31
2.58"
0.47

5227
0.08
23137
2.46
-1.14
0.02
0.32

3.76
-0.70
-0.42
0.34

0.07

4.18"
6.76°

*

*

1.81
0.01
-0.42
-14.15
-0.35
3.81
0.02
0.77

0.32

424.61

11.38
0.01
-3.60
26.38
-19.16
0.42
-0.01
0.42

0.43

524.63

8.74
-0.01
-0.08
4.58
3.72
7.83
0.14
0.69

0.64
0.21
-0.24
-1.41
-0.17
2.19"
0.70
6.82"

272"
-0.34
-1.95
2.69”
-1.58
0.20
-0.34
2.94"

3.29
-0.26
-0.04
0.32
0.94
3.99"
4.24"
6.66"



R? 0.31

. 5 0.44
Adjusted R 0.28
F-statistic 10.28™
Akaike info criterion 857.86 834.17
Moran’s [ of residuals 0.20 (7.25™)

**Significant at the 0.01 level (2-tailed).
*Significant at the 0.05 level (2-tailed).
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Chapter 7 Discussion

In this study, the GSV based MGVI was used to explore the uneven distributions of urban
street greenery in residential areas among different socioeconomic and racial/ethnic groups in ten
U.S. major cities. The objective of this study is to test the hypothesis that the environmental
inequity in terms of street greenery is linked to the racial/ethnic makeup or socioeconomic status
of residents. The GSV based MGVI, which is calculated based on static GSV images captured in
different directions, was used to indicate the distribution of the street greenery.

Different cities and different parts of cities have very different residential street greenery
levels. Generally, the periphery parts of cities have more street greenery than the inner part of
cities. The environmental inequities in terms of street greenery in different cities are different
among different racial/ethnic and socio-economic groups. No consistent inequity was detected in

different cities in terms of uneven distribution of the residential street greenery.

7.1 The GSV based MGVI

The MGVI method is more suitable for measuring the distribution of street greenery rather
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than other types of urban greenery, like backyard greenery and urban parks. The MGVI was
calculated based on street-level images at different horizontal and vertical view angles, thus
representing the amount of street greenery people can see from the ground. Compared with the
canopy cover and vegetation indices, the MGVI may be more suitable for quantifying the
amount of street greenery in residential areas (Yang et al., 2009; Leslie et al., 2010). Although
the canopy coverage and vegetation indices can be used to map the overall level of greenness in
a specific area, it is difficult to quantify the amount of street greenery, which is distributed along
linear features. Chapter 5 compared the MGVI with surrounding canopy coverage and averaged
canopy height. Results show that the MGVI has a strong and positive correlation with the
surrounding canopy coverage and canopy height. Therefore, the MGVI not just represents the
amount the street tree canopies but also reflects the vertical structure information of street tree
canopies. More street trees, larger canopy cover, and higher canopy height all contribute to large
MGVI values.

A map of the MGVI can effectively provide urban planners with detailed information on the
spatial distribution of street greenery at the site level. Based on the site level MGVI map, the
potential street greening sites can be easily delineated, which seems difficult using the canopy
coverage indicators for this purpose. In urban settings, the MGVI is also affected by the layout of
buildings and vegetation and the distance between trees and viewers. Therefore, in urban
greening projects, planting trees close to pedestrians, choosing tree species with large canopies,
or using large-size trees along streets all help to augment the MGVI.

As a free online service provided by Google, Google Street View (GSV) covers cityscapes of
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most U.S. cities. The GSV static images can be accessed and downloaded through the Google
Street View static image API (Google, 2015) for any place with GSV available. Compared with
Yang’s (2009) in situ image collection and manual green vegetation delineation method for
calculating the green view index, the GSV-based MGVI in this study is calculated by
downloading and processing online GSV images automatically. Therefore, the GSV-based MGVI
method is time-efficient and suitable for street greenery assessment at large-scale level. In
addition, the MGVI considers GSV images at three vertical angles and six horizontal angles,
which could better represent what people on the ground really see or feel. What more important
is that the GSV-based method can be used for street greenery assessment for any place where
GSV images are available. This is very important for some areas, where high resolution remotely
sensed data are not available. GSV would provide a free data source for mapping the spatial
distribution of street greenery. Even for those areas with inventory data or high-resolution
remotely sensed data available, the MGVI derived from GSV images would also provide an
additional information about the distribution of street greenery, which is different from
vegetation indicators derived from a land cover map or remotely sensed imagery. GSV images
may be seen as an additional data source for geographers and urban planners in future urban

studies and urban greening practices.

7.2 Distributions of street greenery
The MGVI maps show that different cities and different parts of cities have very different

distributions of street greenery. Since this study focuses on the residential area, the MGVI maps
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represent the residential street greenery level in living neighborhoods of different cities. Fig. 6.2
presents the histograms of MGVI values at site level for all studied cities. Histograms show that
different cities have very different amounts of residential street greenery. Cities of Washington
D.C, Tampa, and Kansas City have relative normal histograms, and are greener than other cities
in terms of street greenery. However, cities like Philadelphia and Boston have quite skewed
histograms, and have less street greenery compared with other cities. In future, Philadelphia and
Boston may consider taking measures to increase the street greenery level to develop more
environmental friendly neighborhoods. Aoki (1991) suggested that most people would have a
favorable impression of a street landscape if more than 30% of the view includes greenery. Based
on Aoki’s criterion, many streets in the residential areas in these cities, should be given a higher
priority in future urban greening projects. Considering the fact that street greenery is managed
and maintained by public agencies, municipal governments can make some differences to the
amount of street greenery by different policies and initiatives.

Fig. 6.3 shows the spatial distribution of the MGVI at both site level and census tract level
for all cities. Generally, the periphery parts of cities have larger MGVI values than inner parts in
both of these two types of maps. This is not difficult to understand, because planting trees in
densely urban areas is not as easy as the suburban areas. The physical environment in inner parts
of city is usually hash for tree growth. In addition, there is no much space in the inner parts of

cities for tree planting.

7.3 Environmental inequities in terms of street greenery
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The statistical results show that there is no consistent relationship between the MGVI and
residents’ racial/ethnic and socio-economic statuses across different cities. The per capita income
is not consistently correlated with the MGVI (Table 6.3). For example, in cities of Baltimore,
Washington D.C, Philadelphia, St. Louis, Denver, significant positive correlations are detected
between the MGVI and per capita income. However, in cities of Boston, Detroit, Pittsburgh,
Tampa, and Kansas City, the correlations between per capita income and MGVI are not
significant. The regression results show that there is no consistent relationship between the
MGVI and per capita income after controlling other social variables. Generally, residents with
higher per capita incomes tend to live in areas with more street greenery compared with those
with lower per capita incomes (Jesdale et al., 2013; Schwarz et al., 2014; Pedlowski et al., 2002;
Landry and Chakraborty, 2009). This trend could be explained by the fact that people with higher
incomes tend to spend more money to choose or improve their living environments with more
greenery for a series of benefits. Those areas with less street greenery may be more affordable
for low-income people (Pham et al., 2012), and low-income people have less budget to maintain
or increase the greenery around their properties. However, the relationships between the street
greenery and residents’ socio-economic statuses are complex issues, and are affected by many
social and environmental factors. Different cities have different urban planning histories, urban
patterns, climate environments, soil types, racial/ethnic compositions, etc. All of these factors
could affect the people’s incentives to greening their neighborhoods. For example, there exists a
strong positive correlation between the per capita income and the MGVI in Denver (» = 0.652,

sig < 0.01). After controlling the effect of building age, racial/ethnic variables, and lifestyle
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variable, the association between the MGVI and per capita income is still very significant (coeff
= 0.06, sig < 0.01). Denver is located in the semi-arid region, planting or maintaining street
greenery is supposed to be much more difficult that other humid regions. This to some extent
could explain the significant and positive coefficients for the per capita income in the regression
models of Denver. However, in Tampa, results of both the bivariate correlation analysis and
regression models show that there exists no significant correlation and association between the
MGVI and per capita income. Different from the semiarid Denver, Tampa is located in a humid
tropical climate zone. Its physical environment is much better than that of Denver for tree
planting and growth. The different climates could explain the different associations between the
per capita income and the MGVI in different cities.

The relationships between the MGVI and the racial/ethnic variables vary across cities. Both
bivariate analysis and regression models results show that there are no significant relationships
between the MGVI and proportion of Hispanics in Washington D.C, Pittsburgh, Detroit, Tampa,
and Kansas City. There is a weakly and significantly positive correlation between the MGVI and
proportion of Hispanics in St. Louis. However, regression models show that the weak
significance disappears in regression models after controlling other social variables (Table 6.4,
St. Louis). In Denver and northeastern cities (Boston, Baltimore, Philadelphia, with exception of
Washington D.C), the MGVI is significantly and negatively correlated with the proportion of
Hispanics (Table 6.3). However, after controlling other social variables and spatial dependence,
these associations in Boston, Baltimore, and Philadelphia become insignificant (Table 6.4).

These statistical analyses show that there is no significantly less street greenery in neighborhoods
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with Hispanics in these cities. In Denver, the association between the MGVI and the proportion
of Hispanics is still very significant and negative in OLS and SARy,, regression models. The
negative coefficient (OLS model: coeff = -8.0, sig<0.01; SAR,, model: coeft = -5.93, sig<0.01)
of proportion of Hispanics shows that the MGVI decreases significantly with increases of the
proportion of Hispanics even after controlling the effect of spatial dependence and other social
variables. This clearly shows that Hispanics tend to live in neighborhoods with less street
greenery in Denver.

Bivariate analysis results show that the correlations between the MGVI and the proportion of
African Americans vary in different cities. Regression results show that, generally, after
controlling other social variables and spatial dependence, the significances disappear in all cities
except Denver, Colorado. The relationships between the MGVI and the proportion of Asians are
mixed across different cities. Bivariate correlation analyses show that the MGVI is significantly
and positively correlated only in cities of Baltimore and St. Louis. The correlations are not
significant in the rest cities. Regression results show that, after controlling the effect of other
social variables and spatial dependence, the MGVI is negatively associated with proportion of
Asians in Philadelphia, but positively associated with proportion of Asians in St. Louis,
Pittsburgh, and Baltimore. In Philadelphia, the negative association between the proportion of
Asians and the MGVI shows that Asians live in neighborhoods with less street greenery in
Philadelphia. Considering the lowest street greenery level in Philadelphia compared with other
cities, this situation is supposed to be even worse. Future urban greening projects and practices

should put more efforts on neighborhoods with more Asians to decrease the environmental
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inequities in terms of street greenery in Philadelphia.

In accordance with previous studies (Li et al, 2015), bivariate correlation analysis shows that
in almost all cities in this study, the MGVI is significantly and positively correlated with the
lifestyle variable — proportion of owner-occupied units. Regression models further proved the
relatively consistent positive associations between the MGVI and proportion of owner-occupied
units in those chosen cities in this study. It seems that the homeowners are more willing to live in
neighborhoods with more street greenery. The homeowners can also help to maintain the street

greenery, which may also contribute to more street greenery.

7.4 Limitations and future studies

While this study demonstrates that GSV is feasible for assessing street greenery and may
deliver useful street greenery information that was unavailable previously, there are still some
issues that need to be resolved in future studies. The first issue concerns the time consistency of
GSV images. Google provides the acquisition date of street view images, which provides the
information for researchers and practitioners to better match environmental conditions with their
data analysis and study outcome. Since this study analyzed the street greenery over a period of
five years, the neglect of accurate image dates may not have a great effect on the analysis.
However, for some studies focusing at a specific time point, the time consistency could matter.
Therefore, how to keep the time consistency is an important issue for future GSV applications in

assessing urban green spaces.
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Secondly, too many GSV images captured in non-green seasons may affect the applications
of GSV for urban greenery studies. Originally, this study selected 26 major U.S. cities; however,
more than half of these cities were removed from the further analyses because of the clustered
non-green sample sites in those cities. Actually, Google is still updating the Google Street View
images, and there could have GSV images captured in different seasons or different years for one
site. Although it is possible to collect the time information of GSV images, it is still impossible
or difficult to use Google Street View to investigate the multi-temporal changes of street
greenery, because the current method is still not able to access the GSV images for any specific
time point. In this study, many major cities were not included in the analyses because there are
too many sites have GSV images captured in non-green seasons in these cities. It could be
possible to access GSV images at different time points in future, since Google has already
collected historical GSV data and presented it online. In future, the new version of the Google
Street View Image API may let users to access to GSV images for any available time point.
Therefore, future studies should also focus on the temporal changes of the MGVI in different
cities.

Thirdly, different types of urban greenery show very different distributions across different
neighborhoods. Different types of urban greenery are managed and maintained in different ways,
therefore, different measures should be taken to reduce the environmental inequities in terms of
different types of urban greenery. The proposed GSV based MGVI measures the amount of
street greenery from the perspective of the visibility of urban greenery. The visibility of urban

greenery may have direct connections with the sensory functions of urban greenery, since the
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green view would influence human perception of the environment and human activities.
However, the visibility of urban greenery may have no direct connection with other physical
benefits provided by the urban greenery, such as mitigation of urban heat island, air pollution,
and urban floods. Therefore, different methods should be used to thoroughly evaluate the
benefits of urban greenery from different perspectives. In addition, the GSV images were all
collected along streets, and not all cityscapes are covered. Therefore, the proposed GSV based
MGVTI is more suitable for the assessment of street greenery but not suitable for other types of
urban greenery, although the MGVI may also cover some backyard greenery.

This study used the fixed census tract as the geographic unit for the statistical analysis. There
would have the modifiable areal unit problem (MAUP). This is because the MGVI was
calculated at site level along streets. However, aggregating site level maps to census tract level
will inevitably cause some loss of information or bias. In this study, those GSV sites on the
border of two neighboring census tracts were removed to solve the MAUP problem to some
extent. Future studies should investigate the effect of the MAUP on the reliability of the
environmental inequity analysis results thoroughly.

The relationship between the street greenery and residents’ socio-economic status is a
complex issue. Climate, demographics, policy, density of city, and city size could all be the
potential factors for influencing the relationships between MGVI and social variables (Schwarz
et al., 2015). In this study, only the social variables from census data were considered on
investigating the environmental inequities among different racial/ethnic and socio-economic

groups. In future studies, more factors should be considered, such as the different residential land
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use types (downtown, multifamily residential land, single-family residential land), residents’
cultural backgrounds, climate zones, etc. Trees need many years to grow, and tree-planting
projects cannot get immediate effects on the local greenness. The mismatch between the physical
environment and the social status could also make the relationships between street greenery and
social variables vary. In addition, the ACS data has large margin-of-errors, which will also
increase the uncertainty in investigating the relations between street greenery and social statuses
of local residents.

In addition, urban greenery is not always an environmental amenity. It may increase the
budget for cleaning the dead leaves and branches. The root of the street greenery could break the
road conditions along the streets, especially the walkways. It could enhance the damage of
storms. The dead branches could cut the wire, which further bring inconvenience to local
residents. In rural areas, there have enough space for tree planning and there have no as much
impervious surface as the densely populated cities, the importance of street greenery of other
kinds of green spaces may not be highlighted. Planting trees in the dense urban areas is not easy,
and it could be a big financial burden to the municipal governments. In addition, people from
different cultural backgrounds may have very different opinions about the urban greenery. Future

study should also investigate public opinions on different types of urban greenery.
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Chapter 8 Conclusions and Contributions

The study used millions of static Google Street View (GSV) images to investigate the
environmental inequities in terms of street greenery in ten U. S. major cities. As a novel data
driven geographical study based on GSV, this study provides an example to geographers to
utilize geo-tagged GSV images for geographical analyses. Different from the traditional
remotely sensed data, which usually represent the overhead view of geographic features, the
GSV images capture the profile view of cityscapes. The profile view of cityscapes is closer to
what people can see or feel on the ground than the overhead view. Therefore, the GSV based
MGVI may be more suitable to represent the greenness of neighborhoods in terms of what
people see or feel on the ground. In addition, the Google Street View cars have taken pictures
of streetscapes all over the world. Google keeps updating the GSV images on Google Maps
periodically. It is a great data source for urban studies in future.

Different cities and different parts of cities have very different residential street greenery
levels. Generally, the periphery parts of cities have more street greenery than the inner part of
cities. The cities of Washington D.C, Tampa, and Kansas City generally have more residential
street greenery than other cities. Philadelphia and Boston have the lowest residential street
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greenery levels compared with other cities in this study.

The environmental inequities in terms of street greenery in different cities are different
among different racial/ethnic and socio-economic groups. No consistent inequity was
detected in different cities in terms of uneven distribution of residential street greenery. In
cities of Washington D.C, Philadelphia, Pittsburgh, and Denver, people with lower income
levels tend to live in areas with less greenery while those with higher incomes live in greener
areas. In cities of Boston, Baltimore, Pittsburgh, Detroit, Tampa, and Kansas City, the
proportion of owner-occupied units is positive associated with street greenery levels. The
proportion of Hispanics and the proportion of African Americans are not significantly
associated with the amount of street greenery in almost all cities except in Denver. In Denver,
the environmental inequity problem among different racial/ethnic groups is significant. The
Hispanics and African Americans tend to live in neighborhoods with less street greenery.

The street greenery provides many benefits to urban residents meeting various and
overlapping goals. The existence of the street greenery is an important factor of life quality in
densely urban areas. The street greenery is a kind of publicly financed facilities, and it relies
heavily on the public investment. In other way, the public agencies or municipal governments
can do something to modify the distribution of street greenery to reduce the environmental
inequities. In the future, more attention needs to be paid on increasing the residential street
greenery in those critical areas where environmental inequities exist. This could help to

balance the living greenness among different socioeconomic groups in different cities.
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