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Investigating Environmental Inequities in Terms of Street Greenery using Google Street 

View 

Xiaojiang Li, Ph. D. 

University of Connecticut, [2016] 

 

As an important component of the urban ecosystem, the urban greenery provides a series of 

benefits to urban residents and plays an important role in maintaining the urban sustainability. 

Unequal access to urban greenery represents environmental disparities when some urban 

residents are deprived of the benefits provided by urban greenery. As an important component of 

the urban greenery, the street greenery provides a series of benefits to urban residents, such as 

energy saving, provision of shade and aesthetic values. In addition, the street greenery is a kind 

of publicly financed amenity and the spatial distribution of the street greenery is influenced 

heavily by different policies. In this study, I studied the distribution of street greenery in dozens 

of major American cities and investigated whether racial/ethnic minorities and economically 

disadvantaged groups are living in neighborhoods with less street greenery. The modified green 

view index (MGVI), which literally represents the visibility of street greenery or how much 

street greenery people can see and feel on the ground, was used to represent the distribution of 

street greenery. The MGVI was calculated based on the publicly accessible Google Street View 

(GSV) images captured at different horizontal and vertical view angles. Tens of millions GSV 

images were downloaded for all the selected cities based on the static Google Street View 

images API to calculate MGVI in the study areas. The environmental inequity in terms of street 

greenery was further investigated by examining the relationships between the spatial 

distributions of residential street greenery and socioeconomic variables in different cities at 

census tract level. Results showed that people with various social conditions have different 

amounts of street greenery in their living environments in different cities. Generally, people with 
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higher incomes tend to live in places with more street greenery. The percentage of home 

ownership also plays a positive role in the spatial distribution of street greenery. In summary, this 

study contributes to literature by providing insights into the living environments of urban 

residents in terms of street greenery, and it generates a valuable reference data for future urban 

greening programs.  
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Chapter 1 Introduction 

 

 

 

1.1. Urban greenery 

Urban areas are the places of mass interactions between human and the natural world. Urban 

areas are also homes to a large proportion of the world population. In 1900, only 10% of the 

global population lived in urban areas, the percentage exceeds 50% in 2008 (Grimm et al., 2008). 

The number of urban population is still increasing rapidly. The increasing population and the 

spatial prominence of urban areas make them an important focus of many studies (Pickett et al., 

2011). Human beings are increasingly living in urban areas, while continuing to depend on the 

natural world for survival (Bolund and Hunhammar, 1999). Urban ecosystems serve as a 

foundation for human’s survival in cities.  

Based on definition of Konijnendijk et al (2006), urban greenery mainly includes urban parks, 

woodlands, street and square trees, lawns, and other kinds of vegetation. Urban greenery is an 

important part of urban ecosystem and has long been recognized for their importance in urban 

environment (Li et al, 2015a). Urban greenery provides a lot of environmental, economic, social, 
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and health benefits (Chen et al, 2006; Jim and Chen, 2008; Onishi et al, 2010; Miller, 1997; 

Gidlow et al, 2012; van Dillen et al, 2012; Wendel et al, 2011) meeting diverse and overlapping 

goals (Bain et al., 2012). The existing of urban greenery is regarded as an important 

environmental amenity (Dwivedi et al., 2009; Nichol and Wong, 2005; Seymour et al., 2010). 

However, there are only a few of studies have examined the distribution of street greenery in 

residential areas. As one component of urban greenery, residential street greenery makes an 

important contribution to the attractiveness and walkability of streets (Schroeder and Cannon, 

1983; Wolf, 2005; Bain et al., 2012). Street trees growing on Rights-of-Way provide a range of 

health benefits by promoting outdoor exercises (Wolch et al., 2005; Takano et al., 2002). Street 

greenery also provides sensory functions addressing the visual effects of greenery. It can mitigate 

the visual intrusions of vehicular traffics, and contribute to the beauty of cityscapes. This 

dissertation mainly focuses on the spatial distribution of residential street greenery in different 

cities of United States.  

 

1.2. Environmental injustice and urban greenery 

Uneven distribution of environmental amenities and disamenities in cities lead to unequal 

distribution of social benefits and burdens across people and places (Landry and Chakraborty, 

2009). Since 1980s, with growth of U.S environmental justice movements, urban environmental 

injustice has received considerable attentions in urban studies. Initially, the environmental justice 

studies focused majorly on disproportionate exposure to environmental burdens (include locally 

unwanted land uses, air pollution, and hazardous waste risks) of racial/ethnic minorities and 
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economically disadvantaged groups (Been, 1994; Liu, 1997; Mohai and Bryant, 1992; Brainard 

et al, 2002). Recently, the accident of toxic tap water in Flint, Michigan reminds us the 

environmental injustice is still a serious problem in United States. Proliferating results show that 

the minorities are living in neighborhoods with more hazardous waste risks and air pollution. A 

study conducted by Clark et al (2014) at national scale shows that people of color are 

disproportionately hurt by air pollution in United States. Based on the National Land Cover 

Dataset, Jesdale et al. (2013) examined the distribution of heat risk–related land cover across 

racial/ethnic groups at the national scale and found that racial/ethnic minorities tend to live in 

neighborhoods with higher heat risk-related land cover.  

The environmental justice studies were later broadened to include the environmental goods 

or amenities, like urban parks (Boone et al, 2009; Dai, 2011; Wolch et al, 2005), recreational 

facilities (Hewko et al, 2002; Wells et al, 2008). As an important kind of environmental 

amenities and an important element of urban socio-ecosystem (Nichol and Wong, 2005; Dwivedi 

et al., 2009; Seymour et al., 2010), the uneven distribution of urban greenery or unequal 

accessibility of urban greenery represents environmental disparities when some urban residents 

are deprived of the benefits that the urban greenery provides. Greenery on private lands usually 

results from natural colonization and private investments, however, trees on public Right-of-Way 

areas are majorly planted and maintained by public agencies (Landry and Chakraborty, 2009). 

Therefore, the spatial distribution of the publicly financed street greenery is more affected by the 

public investment, and the uneven distribution of the street greenery may reflect the potential 

environmental injustice or environmental racism.  
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However, there are still a few studies about the uneven distribution of street greenery in 

United States (Landry and Chakraborty, 2009; Li et al., 2015b). In this study, I studied the 

distributions of residential street greenery in dozens of major American cities. This study also 

investigated whether the racial/ethnic minorities and the economically disadvantaged groups are 

living in neighborhoods with the same amount of street greenery as other groups.  

 

1.3. The problem of green metrics based on overhead view data 

Remote sensing seems to be one of the most commonly used objective methods for 

measuring the distribution of urban greenery (Gupta et al. 2012). Metrics derived from remotely 

sensed data have been widely used as indicators of the spatial distribution of urban greenery and 

the proxies for environmental conditions (Pearsall and Christman, 2012). This is probably due to 

a number of virtues (e.g., repeatability, synoptic view, and larger area coverage) of remotely 

sensed data. Percentage of vegetation cover, green space/built area ratio, green space density and 

other measures, have been calculated for analyzing, assessing, and visualizing urban greenery 

(Ruagrit and sokhi 2004; Faryadi and Taheri 2009; Li et al., 2014; Li et al., 2016a; Zhu et al. 

2003).  

The aesthetic attractiveness of a neighborhood is greatly influenced by the amount of 

greenery that can be visually and aesthetically enjoyed. Studies have shown that urban greenery 

with more visible vegetation can obtain stronger public support than that with less visible 

vegetation, even though they may have the same coverage (Yang et al., 2009). The visibility of 

greenery helps to increase the satisfaction of citizens to their residential environments and plays 
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an important role in comforting citizens. While green indices derived from remotely sensed data 

may be good for quantifying urban greenery, they are not suitable for assessing profile views of 

street greenery. The profile view of street greenery that people can see on the ground is different 

from the overhead view captured by remotely sensed data (Li et al., 2015a). By using Stand 

Visualization System developed by the USDA Forest Service, Yang et al. (2009) showed that two 

urban forests with the same canopy cover look completely different in their profile views. Fig. 

1.1 (a) shows the profile view of a green wall on ground. When viewing a green wall from above 

using remotely sensed data, the wall is missed. In addition, an overhead view from remotely 

sensed imagery may miss the shrubs and lawns under tree canopies in case of a multi-layer green 

space (Fig. 1.1 (b)). Therefore, while aerial/space remotely sensed imagery might provide useful 

information for measuring urban greenery, it usually fails to acquire what people actually see at 

street-level on ground.  

 

       

    (a) Profile view of a green wall              (b) Profile view of a multi-layer green space 

Fig.1.1. Profile views of different types of green spaces: (a) profile view of a green wall, (b) profile 

view of a multi-layer green space (Li et al, 2015a). 
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Previous studies show that there is little agreement between human perceived greenness and 

the objectively derived greenness from remotely sensed images (Leslie et al., 2010). However, it 

is the perceived greenness has a direct connection with the benefits provided by street greenery. 

Leslie et al. (2010) criticized the mixed findings on the relationship between neighborhood 

greenness and physical activities in terms of the discrepancy between perceived and objectively 

measured greenness. The greenness indicators based on remotely sensed images or aerial 

photographs may not fully represent the neighborhood greenness, especially the greenness 

perceived by residents. The green metrics derived from remotely sensed data may not fully 

represent neighborhood greenness (Li et al., 2015b).  

In addition, for studying fine scale street greenery, high spatial resolution remotely sensed 

data are usually required (Li et al., 2014; Pham et al., 2012, 2013; Landry and Chakraborty, 2009; 

Zhou and Troy, 2008). However, in real applications, high-resolution remotely sensed datasets 

are not always available and are expensive to collect. New and cheap data sources are in need for 

the street greenery study.  

 

1.4. Street level images for urban greenery study 

To date it has been difficult to efficiently and accurately represent and quantify street 

greenery. Using color photographs or slides as surrogates for the natural environment has been 

chosen as a cost-effective method for evaluating urban greenery (Yao et al., 2012; Meitner, 2004; 

Stamps, 1990). This method had been validated by various independent studies (Daniel and 

Boster, 1976; Shuttleworth, 1980; Stamps, 1990). Using street view images to map the amount of 
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street greenery represents a new and promising approach (Yang 2009; Li et al. 2015a, b). 

Recently, Yang et al. (2009) used color pictures to evaluate the visibility of surrounding urban 

forests as representative of pedestrians’ view of greenery through developing a Green View 

Index (GVI). Four pictures were taken in four directions (north, south, east, and west) for each 

street intersection in their study area. Those pictures were processed to extract green areas, which 

were further used for calculating their proposed GVI. A drawback, however, is that the data 

collection and processing processes in their study are tedious and time consuming because the 

whole workflow (from collection of the pictures to extraction of the green areas) was conducted 

manually. This limits the application of the GVI to only a very small area. In addition, people’s 

perception to surrounding environment is influenced by hemispherical scene (Asgarzadeh et al., 

2012; Bishop, 1996). The method proposed by Yang et al. (2009) has limitations in measuring 

the amount of visible greenery because only pictures in four directions were used to calculate the 

GVI, which cannot cover the spherical view field of an observer.  

To overcome those limitations of overhead view datasets, this study proposed to use Google 

Street View (GSV) images (which have view angles similar to those of pedestrians and open 

access) for assessing the street greenery. GSV, first introduced in 2007, is a library of video 

footage captured by cars driven down streets (Rundle et al., 2010). By stitching the pictures 

together, GSV images can create a continuous 360-degree image of a streetscape. GSV creates 

what feels like a seamless tour of city streets and it is quite similar to what you or we can see 

when exploring a city by cars, bikes, or foot.  

GSV images have been proposed as an effective potential data source for urban studies 
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(Rundle et al., 2010). These applications include: identification of commercial entities (Zamir et 

al., 2011), 3D city modeling (Torii et al., 2009; Mičušík and Košecká, 2009), public open space 

audit (Edwards et al., 2013; Taylor et al., 2011), and neighborhood environmental audit 

(Charreire et al., 2014; Rundle et al., 2011; Odgers et al., 2012; Griew et al., 2013).  

Different from previous studies using the canopy cover or vegetation indices (Grove et al., 

2006; Mennis, 2006; Landry and Chakraborty, 2009; Leslie et al., 2010; Jenerette et al., 2013), 

this study used the GSV-based modified green view index (MGVI) to represent the distribution 

of greenness in residential areas. The MGVI is the averaged value of the area proportions of 

green vegetation in street-level images captured in eighteen different directions. It quantitatively 

represents how much greenery a pedestrian can see from ground level (Li et al., 2015a).  

GSV covers streetscapes of most of American cities, and it provides a new tool for national 

scale street greenery study. In this study, the GSV based MGVI was applied to map the spatial 

distribution of street greenery for dozens of major cities in United States. In order to investigate 

the environmental inequities in terms of street greenery in residential areas, the MGVI maps of 

different cities were further compared with social variables, which were derived from American 

Census Survey (ACS) data.  

 

1.5. The highlights and dissertation outline 

The highlights of the study include: 

1. This study first investigated the national scale street greenery in major American cities 

using Google Street View (GSV) data. The GSV data is publicly accessible and has global 
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coverage. This study presents an example to utilize the GSV for large-scale urban studies.  

2. Different from traditional green metrics derived from remotely sensed imagery with 

overhead view or zoning data, this study used the GSV based MGVI for measuring the street 

greenery. The GSV based MGVI covers the profile view of street greenery, which would be more 

suitable to represent the visibility of street greenery.  

3. This study then investigated the environmental inequities in terms of street greenery in 

dozens of major cities in different regions of United States. The results of this study could 

provide a reference for future urban greening projects to narrow the gap of environmental 

qualities of different neighborhoods with different social groups.  

The outline of the dissertation is listed as following:  

Chapter 2 reviews the environmental, economic, social, and esthetic benefits provided by 

urban greenery. Since this study focuses on the street greenery, the benefits of street greenery 

were specified. Previous studies about environmental inequities in terms of urban greenery were 

also reviewed in this section.  

Chapter 3 describes the chosen 26 major cities and the data sources used in this study. Ten 

major cities, which located in different regions of U. S., were finally selected for the further 

analysis.  

Chapter 4 introduces the methods for geographical sampling, Google Street View static 

images collection, static images processing, and calculation of the MGVI. This chapter also 

analyzes the spectral signatures of green vegetation in different seasons for different cities 

located in different climate zones.  
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Chapter 5 compares the MGVI with traditional derived green metrics derived from remotely 

sensed data. Hartford and Boston were selected as the case study area to compare the MGVI and 

traditional green metrics. The relations and discrepancies between these metrics were analyzed.  

Chapter 6 analyzes the environmental inequities in terms of street greenery in ten major cities 

of United States. Bivariate correlation analysis and regression models were deployed to analyze 

the relationships between street greenery index and social variables derived from census data.  

Chapter 7 comes to the conclusions and potential directions for future study.  
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Chapter 2 Literature Review 

 

 

 

2.1 Urban greenery and its benefits 

As an integral part of urban ecosystem, urban greenery is important for the stability and 

sustainability of urban ecosystem. Urban greenery can absorb carbon dioxide and release oxygen 

(Hough, 1984), which is very important for urban dwellers. The existing of urban greenery helps 

to regulate urban microclimate and mitigate the urban heat island (Chen et al., 2006; Onishi et al., 

2010). In hot summers, the tree canopies can block the sunshine from radiating the ground 

directly and provide shades for pedestrians. Urban trees help to filter airborne pollutants and 

particulates from the air (Lawrence, 1995; Jim et al., 2008). The filtering capability increases 

with availability of the more leaf areas (Givoni, 1991). The urban greenery helps to attenuate 

storm-water runoff and reduce surface water runoff, which will then prevent the floods after 

heavy rainfalls (Zhang et al., 2012; Liu et al., 2014). This is extremely important for densely 

urban areas, where are paved with impervious surfaces. The attenuated water runoff can further 

help to reduce the soil erosion. In addition, the root system of greenery helps to hold soil in the 

place and keeps sediments out of lakes, streams, both of which help to decrease the possibility of 
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urban floods and protect the water quality.  

In terms of the economic benefits, the existing of urban greenery helps to increase the value of 

properties (Jim and Chen, 2006; Kong and Nakagoshi, 2007; Mansfield et al, 2005). Urban forest 

in central business areas positively affects people’s judgment of visual quality and further 

significantly influences consumer responses and behaviors (Wolf, 2005). Compared with stores 

along streets with no street greenery, those stores along streets with more street greenery could 

attract more customers (Wolf, 2005). In addition, the existing of urban greenery could help to 

decrease the energy consumption in summer by providing shades and mitigating urban heat island 

effects (Akbari et al, 2001).  

About the social benefits, urban greenery offers urban residents opportunities for recreations, 

physical exercises (e.g., walking and bicycling), and social activities (Zhou and Kim, 2013; Maas 

et al, 2006; Ellaway et al, 2005; Dai, 2011; Wolch et al, 2011). All of these further benefit human 

mental health (Leslie et al., 2010; Lee and Maheswaran, 2011; Bain et al., 2012; Coutts, 2008) 

and reduce aggression and crimes (Kuo and Sullivan, 2001; Troy et al., 2012; Wolfe and Mennis, 

2012). However, the role of urban greenery in reducing aggression and crimes appears 

ambiguous. The urban greenery may provide hiding places for potential criminal activities 

(Fisher and Nasar, 1992; Nasar et al., 1993). In addition, shrubs could obstruct the “eyes on 

street”, which could further facilitate the potential crime activities. Evidences from Donovan and 

Prestemon (2012) shows that low trees obstructing views from first floor windows on private lots 

are associated with increased crime occurrences.  

The urban greenery also brings some health benefits to urban residents (Gidlow et al., 2012; 
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van Dillen et al., 2012; Wendel et al., 2011). People’s accessibility to views of greenery seems to 

influence their recovery from surgery, increase restorative potential, and improve psychological 

wellbeing (Ulrich, 1984; Pazhouhanfara and Kamal, 2014; Kaplan, 2001). Urban greenery also 

provides a range of health benefits by promoting outdoor exercises (Wolch et al, 2005; Takano et 

al, 2002; Arbogast, 2009).  

In addition, urban greenery also adds to the aesthetics of urban areas. There are evidences 

that living in a greener environment makes people feel closer to nature. Urban street greenery 

makes an important contribution to the attractiveness and walkability of residential streets 

(Schroeder and Cannon, 1983; Wolf, 2005; Bain et al., 2012). Street greenery also provides 

aesthetic benefits by mitigating visual intrusions of traffics in densely populated urban areas (Li 

et al, 2015). The existence of urban greenery usually increases people’s aesthetic rating of urban 

scenes (Camacho-Cervantes et al., 2014; Balram and Dragićević, 2005).  

Different types of urban greenery play different roles in providing benefits (Li et al., 2016b). 

As a public facility, urban parks are important for the quality of life in cities. Urban parks 

provide public places for recreations, physical exercises, and social activities, which can promote 

both personal health and social cohesion within communities (Zhou and Kim, 2013; Maas et al., 

2006; Ellaway et al., 2005; Dai, 2011; Wolch et al., 2011). The private backyard vegetation is 

usually managed by private owners and not directly accessible to other people (Lachowycz and 

Jones, 2013; Li et al, 2014). View of backyard greenery through window is helpful to increasing 

restorative potentials and improving psychological wellbeing (Ulrich, 1984; Pazhouhanfar and 

Kamal, 2014; Kaplan, 2001). In addition, residential tree canopy cover reduces cooling energy 
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use in summer by providing shades (Akbari et al, 2001). Street greenery makes an important 

contribution to the attractiveness and walkability of residential streets (Schroeder and Cannon, 

1983; Wolf, 2005; Bain et al., 2012; Lachowycz and Jones, 2013; Li et al., 2014). Planting street 

trees may provide more benefits to urban residents than planting trees in parks and private 

backyards (Kardan et al., 2015). Street greenery also provides a range of health benefits by 

promoting outdoor exercise (Wolch et al., 2005; Takano et al., 2002) and beautifies a 

neighborhood while mitigating the visual intrusion of traffics (Li et al., 2015a). 

However, urban greenery is not always an environmental amenity. It increases the budget for 

cleaning the dead leaves and branches. The roots of the street trees could break the road 

conditions along the streets, especially the walkways. This study assumes the urban greenery as 

kind of amenity in urban areas. 

 

2.2 Environmental inequities in terms of urban greenery 

Previous studies have reported the environmental inequities in terms of urban greenery in 

North American cities (Heynen et al, 2006; Boone et al., 2009; Zhou and Kim, 2013; Dai, 2011; 

Pham et al., 2012; Landry and Chakraborty, 2009; Li et al., 2015b; Li et al., 2016b). Current 

environmental inequity studies mainly focus on the uneven distribution of vegetation 

coverage/indices (Pham et al., 2011, 2012, 2013; Jennings et al., 2012; Zhou and Kim, 2013; 

Jesdale et al., 2013; Leslie et al., 2010; Landry and Chakraborty., 2009; Jensen et al., 2004) and 

visiting distances to green spaces (Zhou and Kim, 2013; Boone et al., 2009; Leslie et al., 2010; 

Lotfi and Koohsari, 2011). Proliferating evidences show that racial/ethnic minorities, 
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low-income people, and underprivileged populations are living in neighborhoods with 

disproportionally less vegetation coverage than affluent groups across North American cities 

(Pham et al., 2012; Jesdale et al., 2013; Zhou and Kim, 2013). Heynen et al. (2006) found a 

negative relationship between urban-forest canopy cover and proportion of Hispanics in 

Milwaukee, Wisconsin, but a positive relationship between urban-forest canopy cover and 

proportion of non-Hispanic Whites. Jensen et al. (2004) found a positive relationship between 

leaf area index and median household income in Terre Haute, Indiana. Jesdale et al. (2013) 

investigated the distribution of heat risk–related land cover across racial/ethnic groups at the 

national scale, and found vegetation coverage disparities among different racial/ethnic groups in 

the United States. However, the findings on disparities of accessibility to green spaces are not 

consistent in different cities. Boone et al. (2009) examined the distribution proximity to parks in 

Baltimore, Maryland, and found that a higher proportion of African Americans have access to 

parks within walking distances than do other groups, while Whites have access to a larger 

acreage of parks. Dai (2011) evaluated the disparities in green space access in Atlanta, Georgia 

across different racial/ethnic and socio-economic groups, and found neighborhoods with higher 

proportions of African Americans have significantly less access to green spaces. Zhou and Kim 

(2013) studied the accessibility to urban parks in six Illinois cities based on the Google Map 

application programming interface. Results show that there is no significant accessibility 

difference among different racial/ethnic groups in those six cities.  

Different types of urban greenery play different roles in providing benefits to urban residents 

(Li et al., 2016b). As an important component of urban greenery, street greenery makes streets 
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more beautiful and walkable. The street greenery is an important publicly financed amenity and 

would be affected by the different policies. Landry and Chakraborty (2009) investigated the 

environmental equity implication of public right-of-way trees in Tampa, Florida, USA. Results 

show that neighborhoods with higher proportions of African Americans, low-income residents 

have significantly lower proportions of public right-of-way tree cover. Different from previous 

studies using the canopy cover or vegetation indices (Grove et al., 2006; Mennis, 2006; Landry 

and Chakraborty, 2009; Leslie et al., 2010; Jenerette et al., 2013), Li et al (2015b) used a green 

view index to represent the distribution of street greenery in residential areas and checked 

whether or not the minorities and economically disadvantaged groups live in places with less 

street greenery in Hartford, Connecticut. The green view index is calculated based on street-level 

images, and it quantifies how much street greenery people can see and feel on the ground (Li et 

al, 2015a). Results show that people with various social conditions have different amounts of 

street greenery in their living environments in Hartford. Those people with higher incomes live 

in neighborhoods with more street greenery and there exists no significant relationship between 

the street greenery and racial/ethnic variables.  
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Chapter 3 Study areas and Data Sources 

 

 

 

3.1 Study areas  

Most of the chosen cities (Table 3.1.1) are large cities in United States. In addition, some 

other cities, which have environmental inequities reported previously, were also included in the 

list. Different climate zones could affect the cost of maintaining urban greenery and the cost of 

urban greening projects. In addition, the phenology of urban greenery in different climate zones 

varies, which may further affect the benefits it provides to urban residents. Therefore, the 

corresponding climate zones were also included in this study based on previous studies (Kottek 

et al., 2006; Yang et al., 2015) (Fig. 3.1). More details about the phenology of urban greenery are 

showed in Chapter 4.  

 

Table 3.1.1 

The climate zones of the chosen cities, the climate zone is adopted from Kottek et al (2006) and 

Yang et al (2015).  

Climate Cities 

Humid continental (warm summer) Boston, Philadelphia, Pittsburgh, Chicago, Detroit, 

Indianapolis, Cincinnati, Kansas City, St. Louis, 
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Louisville 

Humid continental (cool summer) Minneapolis, Milwaukee 

Humid subtropical  Washington D.C, Baltimore, Tampa, Dallas, 

Houston, San Antonio, Memphis 

Mediterranean  Los Angeles, San Francisco 

Tropical (wet/dry) season Miami 

Marine west coast Seattle 

Highland (alpine) climate Denver 

Midattitude desert Phoenix 

 

 

 

Fig.3.1. The climate zones and divisions in U.S. (modified from Kottek et al., 2006). 
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Table 3.1.2 lists the chosen cities and the corresponding divisions in United States, 

respectively. Fig. 3.2 shows the locations of different cities in different regions and divisions of 

United States. The Northeastern region, which consists of ten states – Connecticut, Maine, 

Massachusetts, New Hampshire, Rhode Island, Vermont, New York, Pennsylvania, New Jersey 

and Delaware, is the nation’s most economically developed and densely populated region. Three 

of the most populous cities (Philadelphia, Boston, and Pittsburgh) in Northeastern region were 

chosen in this study. As the most populous city in Northeast, New York City was not included in 

this study considering the different urban forms and the very different urban structures in New 

York City compared with other cities.  

According to geographic region definition of US census bureau, the Midwest includes 12 

states: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, 

Ohio, South Dakota, and Wisconsin. The major cities (Chicago, IL, Indianapolis, IN, Detroit, MI, 

Milwaukee, WI, Minneapolis, MN, Kansas City, MO, St. Louis, MO, and Cincinnati, OH) in this 

region were chosen in this study.  

Several major cities from the South were also included in this study. These cities are 

Baltimore, MD, Washington D.C, Tampa, FL, Miami, FL, Memphis, TN, Atlanta, GA, Louisville, 

KY, Dallas, TX, Houston, TX, and San Antonio, TX.  

The West is the largest and most geographically diverse region of United States. The West is 

split into two sub-regions, Pacific States (Washington, Oregon, California, Alaska, and Hawaii) 

and Mountain States (Montana, Wyoming, Colorado, New Mexico, Idaho, Utah, Arizona, and 
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Nevada). The major cities of this region chosen in this study include three cities from Pacific 

States (Los Angeles, CA, San Francisco, CA, and Seattle, WA) and two cities from the Mountain 

States (Phoenix, AZ and Denver, CO).  

 

Fig.3.2 The selected cities from different U.S. census Bureau Regions and Divisions. 

 

Table 3.1.2 

The chosen major cities and their divisions in United States. 

Cities States Divisions Regions 

Boston Massachusetts Division 1: New England  Northeast 

Philadelphia Pennsylvania  Division 2: Mid-Atlantic  

Pittsburgh Pennsylvania   

Detroit Michigan Division 3: East North Central Midwest 

Chicago Illinois   
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Milwaukee  Wisconsin   

Indianapolis Indiana   

Kansas City Kansas   

Minneapolis Minnesota   

St. Louis Missouri   

Cincinnati Ohio   

Tampa Florida Division 4: West North Central South 

Baltimore Maryland Division 5: South Atlantic  

D. C Washington D.C.   

Miami Florida   

Memphis Tennessee Division 6: East South Central  

Atlanta Georgia   

Louisville Kentucky   

Houston Texas Division 7: West South Central   

San Antonio Texas   

Dallas Texas   

Phoenix Arizona Division 8: Mountain West 

Denver Colorado   

Los Angeles California Division 9: Pacific  

San Francisco California   

Seattle Washington   

 

3.2 Data sources 

The major data sources in this study include administrative boundary maps, road maps, and 

land use or zoning maps. The administrative boundary and road maps for all cities were obtained 

from U.S. Census Bureau TIGER (Topologically Integrated Geographic Encoding and 

Referencing) products (https://www.census.gov/geo/maps-data/data/tiger.html). Because this 

study focuses on residential street greenery, only the residential streets were considered in this 

study. Other roads, like interstate high ways and state high ways, were removed from further 
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analysis.  

Land use maps and zoning maps were used to delineate the residential areas for different 

cities. Land use maps and zoning maps for different cities were downloaded or requested from 

different geospatial data portal websites or municipal departments. Table 3.1.3 shows the 

summary of the data sources of land use maps or zoning maps for all selected cities in this study.  

 

Table 3.1.3 

The data sources of land use map or zoning map of the chosen cities. 

Cities Data types/year Data sources 

Boston Land use map, 2005 http://www.mass.gov/anf/research-and-tech/it-serv-and-supp

ort/application-serv/office-of-geographic-information-massg

is/datalayers/lus2005.html 

Philadelphia Land use map, 2014  https://www.opendataphilly.org/dataset/land-use 

Pittsburgh Land use map, 2010 http://Pittsburghhpa.gov/dcp/gis/gis-data-new 

Detroit Zoning map, 2015 http://portal.datadrivendetroit.org/datasets/bbe90203edcd4c

51af2f6c697ab5216c_0 

Chicago Zoning map, 2012 https://data.cityofchicago.org/ 

Milwaukee Land use map, 2010 Requested from Milwaukee County Land Information 

Office 

Indianapolis Land use map, 2014 http://data1.indygis.opendata.arcgis.com/datasets/97398cf4e

faa4556b0c57356d5818b76_3 

Kansas City Land use map, 2012 http://maps.kcmo.org/apps/parcelviewer/ 

Minneapolis Primary zoning areas, 

2015 

http://opendata.minneapolismn.gov/datasets/eac15cee3f2d4e

c4887e1f8995955ef1_0 

St. Louis Land use map, 2015 http://dynamic.stlouis-mo.gov/citydata/downloads/ 

Cincinnati  Not available 

Tampa Zoning map, 2015 http://city.tampa.opendata.arcgis.com/ 

Baltimore Land use, 2008 https://data.baltimorecity.gov/ 

D. C Land use map, 2010 http://opendata.dc.gov/ 

Miami  Not available 

Memphis  Not available 

Louisville Land use map https://portal.louisvilleky.gov/dataset/landuse-data 

Houston Land use map, 2014 http://data.ohouston.org/dataset/harris-county-land-use 

http://pittsburghpa.gov/dcp/gis/gis-data-new
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San Antonio Land use map, 2015 http://www.sanantonio.gov/GIS/GISData.aspx 

Dallas Land use map http://www.dallascad.org/GISDataProducts.aspx, 

http://gis.dallascityhall.com/homepage/shapezip.htm 

Phoenix Zoning data, 2015 http://maps.phoenix.opendata.arcgis.com/datasets/d438c29d

14ef407593279041e42fc015_0 

Denver Zoning data http://www.denvergov.org/maps/map/zoning 

Los Angeles Zoning data, 2009 http://egis3.lacounty.gov/dataportal/2012/04/10/countywide-

zoning/ 

San Francisco Zoning data, 2012 https://data.sfgov.org/Geographic-Locations-and-Boundaries

/Zoning-Districts/mici-sct2 

Seattle  Not available 

 

 

  

http://www.dallascad.org/GISDataProducts.aspx
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Chapter 4 Utilizing Google Street View  

 

 

 

Google Street View (GSV), first introduced in 2007, is a free online service featured in 

Google Maps and Google Earth that provides panoramic views from positions along streets in 

the world (Fig. 4.1). It is a library of video footage captured by cars (Fig. 4.1) driven down 

streets (Rundle et al., 2010). GSV creates what feels like a seamless (if pixelated) tour of city 

streets and it can give one the feeling of “being there” (Li et al., 2015a). It is quite similar to 

what people on ground can see when exploring a city by cars, bikes, or foot. GSV panoramas are 

generated by stitching the pictures taken in different directions together (Fig. 4.2). GSV images 

can create a continuous 360-degree image of a streetscape.  

GSV, which has a similar view angle with people on the ground, could be a very suitable 

dataset to study the urban environment. In this study, I developed a workflow to utilize static 

GSV images to measure the spatial distribution of street greenery. The workflow consists of four 

major steps: geographical sampling, GSV images collection, GSV images processing, and model 

developing for urban greenery assessment.  
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Fig.4.1. A GSV car and a snapshot of Google Maps. 

 

 

Fig.4.2. Image composition of a GSV panorama. 
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4.1 Geographical sampling 

GSV panoramas are distributed discretely along roads. In order to collect available GSV 

panoramas in the study areas, geographical sampling is required. The geographical sampling is a 

process to create discrete sample sites along streets. In order to represent the overall greenness 

level of residential areas, only those streets in residential areas were selected in this study. The 

road maps were intersected with the corresponding residential land use maps to get the 

residential street maps for all chosen cities in this study.  

However, the land use maps for different cities are in different forms. For regular residential 

land use maps, in which roads are not a separate land use type and the residential land use maps 

are continuous patches, the residential street maps were created by intersecting the residential 

land use maps and the road maps directly (Fig. 4.3 (a)). In some cities, the residential land use 

types are shown as residential parcels (Fig. 4.3 (b)). In this case, it is not suitable to use the 

feature intersection operations to extract the residential streets directly. Therefore, for those 

parcel-level land use maps, the buffer analysis was first conducted on the residential land use 

map with a buffer distance of 10m. Then, the residential street map was derived by intersecting 

the buffered land use map with the street map (Fig. 4.3 (b)). 
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(a) Intersection of street map with residential land use map 

 

(b) Intersection of street map with buffered residential land use map 

Fig.4.3. The overlap of residential land use map with street map. 

 

Commercial software ESRI ArcGIS provides a tool – CreateRandomPoints for generation of 

random points in an extent window, inside polygon features, on point features, or along line 

features. Users can set the minimum distance between the created points. However, the created 
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points usually do not meet the minimum allowed distance restrictions and are usually too 

aggregated or too sparse. Fig. 4.4 (a) shows the created points along residential streets using the 

CreateRandomPoints tool of ArcGIS 10.2 in a small area of Milwaukee, WI. It can be seen 

clearly that some generated points are congested together and do not meet the condition of the 

100 meters minimum allowed distance. Therefore, in this study, I used the positionAlongLine 

tool in console to create points evenly along streets. The minimum distance between any nearby 

points was set to 100m, in order to make sure there is one point every 100m along streets in 

residential areas in each city. Fig 4.4 (b) shows the created sample points along the residential 

streets using the positionAlongLine tool. Compared with the created sample points in Fig 4.4 (a), 

the created sample points using the positionAlongLine are evenly distributed along the streets, 

and would be better to represent the greenness of residential neighborhoods.  

The same workflow for geographical sampling was applied to all cities. Fig 4.5 shows an 

example of the workflow for geographical sampling in Hartford, Connecticut.  

 

Algorithm 1. Geographical sampling along residential streets using ArcGIS. 

input: inputStreetMap': the input residential street map 

output: outputSampleMap the create sample sites map 

# comments: Chose appropriate projections for different regions 

sr = arcpy.SpatialReference(102686) 

points = [] 

for row in arcpy.da.SearchCursor(' inputStreetMap', ["SHAPE@"],spatial_reference=sr): 

...     length = int(row[0].length) 

...     for i in xrange(10m,length,10m): 

...         point = row[0].positionAlongLine(i) 

...         points.append(point) 

... arcpy.CopyFeatures_management(points, outputSampleMap) 
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Fig.4.4. The difference of the created points using different methods in ArcGIS, (a) the created 

random sample sites using the CreateRandomPoints tool with the minimum distance of 100m; (b) 

the created sample sites using the positionAlongLine tool. 

 

 

Fig.4.5. An example of geographical sampling in Hartford, Connecticut, (a) administrative 

boundary of Hartford, (b) residential street map, (c) created sample sites along the residential streets.  

 

4.2 Google Street View images collection 

GSV panorama is a 360° surrounding image generated by stitching together the eight original 

images captured by the eight horizontal cameras in sequences (Tsai and Chang, 2013). The static 
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GSV images can be requested using a HTTP URL form through the Google Street View Image 

API (Google, 2014). By specifying the coordinate, direction, and pitch angle in a HTTP URL 

requested form, users can get the corresponding static GSV image in any direction with any 

angle for any available site (Li et al., 2015a). An example of requesting a static GSV image is 

shown below.  

 

GSV URL example:  

http://maps.googleapis.com/maps/api/streetview?size=400x400&location=41.935,-87.80524300000002

&fov=60&heading=180&pitch=0&sensor=false 

 

 

Fig.4.6. A static Google Street View image. 

 

Fig. 4.6 shows a static GSV image obtained using the above URL request. In this example, 

the parameter size specifies the output size of the requested GSV image, location provides the 

geo-location of the GSV image (the GSV Image API will snap to the panorama photographed 

http://maps.googleapis.com/maps/api/streetview?size=400x400&location=41.935,-87.80524300000002&fov=60&heading=180&pitch=0&sensor=false
http://maps.googleapis.com/maps/api/streetview?size=400x400&location=41.935,-87.80524300000002&fov=60&heading=180&pitch=0&sensor=false
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closest to this location), heading indicates the compass heading of the camera (the heading 

values range from 0 to 360), pitch specifies the up or down angle of the camera relative to the 

street view vehicle, and fov determines the horizontal field view of the image. Previous visual 

assessment studies chose the horizontal field view setting between 50° to 60° (Yang et al., 2009; 

Walker et al., 1990; Li et al, 2015a; Li et al, 2015b). Therefore, in this study, the fov was set to 

60°, so that six images can cover the 360° horizontal surroundings.  

 

4.3 Green vegetation extraction from GSV images 

In this study, green vegetation extraction is a prerequisite step for utilizing GSV images for 

street greenery study. However, extracting green vegetation from GSV images is challenging due 

to many factors, such as the existence of shadows, seasonal variability, and the spectral 

confusion between vegetation and other manmade green features (e.g. green brands, green doors). 

What more important is that GSV images are stored in three dimensions using RGB color space, 

and have no near-infrared bands, which are commonly used for vegetation extraction. Thus, the 

limited spectral information makes extracting green vegetation from street view images more 

difficult.  

Previous vegetation extract algorithms mainly focus on crop extraction (Guijarro et al., 2011; 

Woebbecke et al., 1995; Ribeiro et al., 2005). While the bi-classes (vegetation and soil) in crop 

images are simple and easy to be separated, urban features in street-level images are much more 

complex and difficult to differentiate. Many artificial features, such as green brands and green 

doors and windows, share similar spectral signatures with green vegetation in RGB bands. In 
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addition, green vegetation may show different spectral signatures in those street view images 

captured under different illumination conditions (e.g., sunny days with good illumination, cloudy 

days with poor illumination). Moreover, the shadow problem is much more serious in street-level 

images than in crop images due to the stronger heterogeneity of urban landscapes. All of these 

make the vegetation extraction from street-level images difficult using spectral information alone. 

In this study, a robust and time-efficient object based image analysis method was used to classify 

the green vegetation (Li et al, 2015b; Li et al, 2015c). The vegetation classification algorithm is 

based on a two-step methodology. The first step is to segment the original GSV images using the 

mean-shift segmentation algorithm (Comaniciu and Meer, 2002). A simple automatic threshold 

method – OTSU method (Otsu, 1979) was then used to extract the green vegetation based on the 

segmented images. Since GSV images were captured in different seasons and different years, 

therefore, prior to the image classification, the spectral analyses of GSV images at different 

seasons and years were also conducted.  

 

4.3.1 Spectral Analyses of GSV images at different seasons  

Green vegetation extraction from multispectral remotely sensed imagery has been studied 

for three decades (Almeer, 2012). The near infrared band and red band are the most frequently 

used bands for detecting vegetation because vegetation shows high reflectance at near infrared 

band but shows high absorption at red band (Fig. 4.7). However, GSV images only cover the red, 

green, blue bands, and the near infrared band is not available. By checking the Red-Green-Blue 

spectrum of green vegetation, it is can be seen clearly that green vegetation shows higher 
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reflectance at green band than other bands (Fig. 4.7), although the contrast is not as large as red 

and near infrared. This phenomenon is further proved by the spectral analysis of green vegetation 

using GSV images. In this study, 8,187 green vegetation pixels were chosen from the GSV 

images captured under different illumination conditions as samples for the spectral analysis. Fig. 

4.8 (b) shows the mean values (µrgb = [0.301, 0.332, 0.230]) and the standard variances (δrgb = 

[0.186, 0.178, 0.221]) of the selected green vegetation pixels in the red, green, and blue bands.  

 

 

Fig.4.7. The spectral signature of vegetation, source from: http://www.seos-project.eu 

/modules/agriculture/agriculture-c01-s01.html. 
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Fig.4.8. GSV images and spectral signature of green vegetation, (a) GSV images under different 

illumination conditions in green seasons, (b) averaged spectral signatures and corresponding 

standard variances of the selected vegetation samples in RGB bands.  

 

However, the spectral signatures of vegetation could be affected by seasons. In different 

climate zones, urban greenery has different green seasons. In Northeast and Midwest, street trees 
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turn to yellow or red after the end of September (Fig. 4.9). However, in the Deep South or 

California and Arizona, street trees may keep the green in September or even October (Fig. 4.9). 

Table 4.3.1 lists the green seasons in different cities based on the visual inspection of the GSV 

images in those cities. In addition, different tree types also have very different spectral signatures. 

Pine trees usually are evergreen, and some street trees are not shown as green even in summer. 

For example, a cultivar of Norway maple, Acer platanoides ‘Crimson King’ has purple leaves in 

summer (Fig. 4.10).  

 

Boston, Massachusetts 

 

Philadelphia, Pennsylvania 

 
 

Pittsburg, Pennsylvania 

 

Detroit, Michigan 
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Chicago, Illinois 

 
Milwaukee, Wisconsin 

 

Indianapolis, Indiana  

 

Kansas City, Missouri  
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Minneapolis, Minnesota 

 

St. Louis, Missouri  

 

Baltimore, Maryland 

 

Washington D.C 

 

Tampa, Florida 
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Louisville, Kentucky 

 

San Antonio, Texas 

 

Dallas, Texas 

 

Denver, Colorado 

 

 

Fig.4.9. GSV images of different seasons in different cities. Note: For some cities, no image taken 

in some months, therefore only GSV images in some available months are presented here.  
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Fig.4.10. Non-green purple leaf Maple Acer platanoides ‘Crimson King’. 

 

Table 4.3.1 

The different green seasons in different climate zones. 

Cities Green seasons Regions 

Boston May, June, July, August, September Northeast 

Philadelphia May, June, July, August, September  

Pittsburgh May, June, July, August, September  

Detroit May, June, July, August, September Midwest 

Chicago May, June, July, August, September  

Milwaukee June, July, August, September  

Indianapolis May, June, July, August, September  

Kansas City May, June, July, August, September, October  

Minneapolis June, July, August, September  

St. Louis May, June, July, August, September, October  

Baltimore May, June, July, August, September  

Washington DC May, June, July, August, September  

Tampa January, February, March, April,  May, June, July, 

August, September, October, November, December 

South 

Louisville June, July, August, September, October  

Houston --  

San Antonio April, May, June, July, August, September, October,  
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November 

Dallas April, May, June, July, August, September, October  

Phoenix -- West 

Denver May, June, July, August, September  

Los Angeles --  

San Francisco --  

Seattle --  

 

4.3.2 Timing GSV images 

Unfortunately, the current version of the Google Street View static image API is not able to 

directly access to the time information of the GSV images for any specific location. However, 

Google has provided the time stamps for GSV images, and the time information of the GSV 

images is accessible through the Google Maps JavaScript API (Google, 2015). GSV panorama 

ID, longitude, latitude, and time information of the GSV panorama can be accessed through the 

Google Maps JavaScript API (Google, 2015). The following JavaScript code shows how to get 

the time information of the GSV images using the Google Map API (Google, 2015). Using the 

coordinates of the chosen sample sites as the input, the panorama IDs and time information can 

be accessed.  

In the code, the getPanoramaByLocation is a function provided by the Google Maps API, the 

second parameter of this function is used to define the search area. Therefore, if the site 

(longitude, latitude) has no GSV panorama, then the function will snap a panorama from the 

surrounding 5 meters region. This method can help to guarantee that there are as many sites 

having available GSV panoramas as possible. The code can also save the panorama IDs and time 
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information of these panoramas together with the coordinates in JavaScript Arrays.  

 

Pseudo code 1. Meta-data collection of GSV images 

Input: Coordinates of sample sites 

Output: arrays of panorama IDs and time information of panoramas 

Comment: latlng is the coordinate of a sample site 

Comment: panoIdArr is the array to store the panorama ID of a sample site 

Comment: panoDateArr is the array to store the time information of a sample site 

var sv = new google.maps.StreetViewService(); 

sv.getPanoramaByLocation(latlng, 5, storeGSV_Info); 

function storeGSV_Info(data, status) { 

    if (status == google.maps.StreetViewStatus.OK) { 

        panoIdArr.push(data.location.pano); 

        panoDateArr.push(data.imageDate); 

    } else { 

        console.log('street view is not available in this point'); 

    } 

  } 

} 

 

Fig. 4.11 shows the tool I developed in this study to harvest the metadata of the GSV images. 

By imputing the coordinates of sample points in geojson format, the tool can return the metadata 

(pano ID, time information, and coordinates) of GSV panoramas for the input sample sites and 

save the metadata in a local text file.  

Although Google has published the GSV images taken in different times, the static GSV 

image is only accessible for one time point. It is still impossible to access the GSV images at 

different time points for one site, which means that it is difficult to investigate the temporal 

changes of street greenery using the GSV. However, it could be possible to access static GSV 

images at different time points in future, since Google already collected historical GSV data and 
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published it online. Considering the fact that GSV images were all collected along streets, and 

not all cityscapes were covered, so, the GSV based method is more suitable for assessing street 

greenery but not suitable for other types of urban green spaces. 

 

 

Fig.4.11. The developed tool for harvesting GSV metadata (panorama ID, panorama 

geo-coordinates, and time information). This tool can also save the panorama information locally 

for further analysis. 
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Fig.4.12. A GSV image and its corresponding Uniform Resource Locators (URLs). 

In the GSV static image API, instead of using the location parameter, GSV images can also 

be requested using pano parameter, which represents the panorama ID. Using the pano parameter 

is usually more stable than the location parameter (Google, 2015). Fig. 4.12 shows the URLs of 

a static GSV image using both location and pano parameters.  

A Python script was developed to download GSV images with meta-data based on the 

coordinates, panorama ID, and time information collected by GSV_TIME_TOOL (Fig. 4.11) for 

all selected sample sites. The script was used to collect GSV images and map the spatial 

distribution of time information of GSV images for all chosen cities in this study. Fig. 4.13 (a-b) 

shows the spatial distribution and statistics of time information for all sample sites in Hartford, 

Connecticut. Of the 3,000 sample sites in Hartford, Connecticut, only 2,838 sites have GSV 
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panorama coverage. Fig. 4.13(a) shows the spatial patterns of image date information for all 

2,838 GSV panorama sites. The GSV images for most of the sites (2,042) were taken in June 

2011 (Fig. 4.13(b)). Other time points include July 2015 (390 sites), August 2012 (216 sites), 

July 2011 (79 sites), and October 2011 (84 sites). A few sites have GSV images captured in 

August 2007 (13 sites), August 2011 (10 sites), October 2012 (3 sites), and July 2008 (1 site). 

 

 

Fig.4.13. Selected sample sites and related image date information in a case study in Hartford, 

Connecticut: (a) the spatial distribution of date information for all chosen GSV images, (b) the 

statistics of the date information for all chosen samples. 

 

 

4.3.3 Image segmentation  

Image segmentation is a process of delineating an image into homogeneous polygons that are 

physically meaningful. It also can differentiate objects based on available geometric information 
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(Blaschke, 2010). The mean-shift image segmentation method is a simple iterative procedure for 

locating the maxima of density functions given discrete sample data. It was initially proposed by 

Fukunaga and Hostetler (1975). Later, this method was refined by Cheng (1995) through adding 

a kernel function, which further rekindled the interest in it. Since then, the mean-shift 

segmentation algorithm has been widely used in various applications due to its robustness and 

capability of generating qualified cluster results. In the mean-shift algorithm, the first step is to 

build a kernel function to estimate the possibility of the density function based on the original 

image. There are many methods to estimate the possibility of the density function. In this study, a 

normal kernel function  
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was used to estimate the probability distribution. In Eq. (4.1), d represents the dimensions of a 

space, x is the feature vector of the central pixel in a kernel, h is the window size of a kernel 

function and also acts as the scale parameter, and ||.|| is a norm. 

For n data points xi (i = 1, 2,…, n) in the d-dimensional space, the multivariate density 

function estimator is  
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where xi stands for the feature vector of each pixel. In this study, the xi stands for pixel values at 

RGB bands, for example, xi = [10, 255, 255].  

Introducing the kernel function (4.1) into Eq. (4.2), we get the multivariate density function 
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estimator as 
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The density gradient for f(x) or the derivative of f(x) is,  
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Define the function g(x) = -k’(x), we get 
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 is assumed to be a positive number (Comaniciu and Meer, 2002), 

the maximum of the density function f (x) occurs when  
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The mean-shift algorithm is an iterative procedure of updating xi as Eq. (4.8) until it 

converges (Comaniciu and Meer, 2002).  
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When Eq. (4.8) converges, the original image is segmented into different objects and those 

neighboring pixels sharing similar spectral signatures are clustered into one object. The size of 

window and the kernel function affect the mean-shift segmentation results. In this study, after 

trials and errors, the size of window was set to 5 for its best segmentation quality. 

The meanshift Python module – pymeanshift was used in this study for image segmentation. 

The spectral R, G and B components in original 8-bit color RGB GSV images were first 

normalized to the range of [0,1] for segmentation. Fig. 4.14 (b) shows the segmented results. 

Neighborhoring pixels in the original GSV images (Fig. 4.14(a)) were grouped together. After 

segmentation, the new thematic images (Fig. 4.14(c)) were generated by setting the attribute of 

each object to the average value of pixels in that object at each of the three RGB bands. 

Compared with the original GSV images, the thematic images are smoothed spectrally, and the 

contrast between green features and non-green features is enhenced. Both of these make the 

thematic images more suitable for vegetation classification, therefore, the thematic images were 

used to extract geen vegetation in the next step.  
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Fig.4.14. The image segmentation results for GSV images, (a) the original GSV images, (b) the 

segmented objects, (c) the thematic results (the value of each object is the mean value of all pixels in 

it).  

 

4.3.4 Vegetation classification and validation 

There are many developed image-processing algorithms for separating green vegetation from 

non-vegetation using RGB colorful images (Guijarro et al., 2011; Meyer et al. 2004; Zheng et al. 

2009, 2010; Li et al., 2015a, 2015b). Current algorithms for green vegetation extraction fall into 

three categories (Guijarro et al., 2011). The first one comprises the visible spectral index based 

methods, including the excess green index (ExG = 2G-R-B) (Woebbecke et al., 1995; Ribeiro et 

al., 2005), the normalized difference index (NDI = (G-R)/(G+R)) (Woebbecke, 1992), the excess 
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red index (ExR=1.4R-G) (Meyer et al., 1998), and the excess green minus excess red index 

(ExGR = ExG − ExR) (Neto, 2004). The second category belongs to dynamic thresholding 

approaches, including the Otsu-based methods (Ling and Ruzhitsky, 1996; Shrestha et al., 2004) 

and the histogram entropy based methods (Tellaeche, 2008). The third category contains machine 

learning based methods, which use supervised or unsupervised algorithms to separate green 

vegetation from non-vegetated features (Meyer et al. 2004; Zheng et al. 2009, 2010). 

In this study, based on the spectral signature of vegetation in RGB bands, a rule based on the 

spectral characteristics of green vegetation was set for the green extraction. The rule combines 

Diff based method (Li et al., 2015a) and ExG based method (Li et al., 2015b).  

There are several steps in the Diff based method (Li et al., 2015a). Firstly, two difference 

images Diff1 and Diff2 were generated through the operations of Diff1 = green band - red band 

and Diff2 = green band - blue band, respectively. Then the two difference images were multiplied 

to generate the Diff image. Considering the fact that green vegetation pixels normally have higher 

values in the green band than in the other two bands, they will generally show positive values in 

the Diff image. Those pixels that have lower values in the green band than in the blue or red bands 

will show negative values in the Diff image. However, if a pixel has a lower value in the green 

band than in both the red and the blue bands, its corresponding value in the Diff image will still be 

positive. To avoid this confusion, an additional rule that the values of green vegetation pixels in 

the green band must be higher than in the red band is added to extract the green pixels.  

Excess green index ExG was calculated through the operation of ExG = 2green band – red 

band – blue band. Considering the fact that green vegetation shows higher value in green band 



50 
 

than red band and blue band, the ExG would enhance the contrast between green vegetation and 

non-green urban features in the segmented GSV images. The Otsu algorithm was then used for 

choosing the optimum threshold to differentiate green vegetation and non-green features.  

In the thematic GSV images, only those pixels meet both of these two rules (Diff rule and ExG 

rule) would be classified as the green vegetation. The pseudo code for green vegetation extraction 

algorithm is listed below as pseudo code 2. 

 

Pseudo code 2. Algorithm for extracting greenery from segmented GSV images 

Spectral rules for vegetation classification based on segmented GSV images 

Comment: green, red, and blue are three bands in segmented images 

Comment: Vegetation is the vegetation extraction result 

ExG = 2green – red – blue 

Diff1 = green – red 

Diff2 = green – blue 

Diff = Diff1× Diff2 

Threshold = OTSU(ExG) 

for each pixel [i, j]: 

    if  ExG [i, j] > Threshold and Diff [i,j]>0 and Diff2>0: 

       Classify  Vegetation [i, j] as green vegetation  

Mask out pixels with values in green, red, blue bands higher than 0.7 in 

Vegetation image 

 

Fig. 4.15 shows the image segmentation results and green vegetation classification results of 

three GSV images. The image segmentation algorithm first clustered nearby pixels, which have 

similar spectral characteristics into different objects (Fig. 4.15 (b-c)). A comparison of 

segmentation results and the original GSV images shows that the image segmentation algorithm 

can help to keep the urban feature boundaries and smooth the noises in the GSV image. From the 
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vegetation extraction results (Fig. 4.15 (d)), it can be seen that the proposed vegetation 

classification method extracts the green vegetation correctively from GSV images.  

 

Fig.4.15. Vegetation extraction results, (a) the original GSV images, (b) segmentation results 

(red lines are the boundaries of objects), (c) thematic results, (d) the vegetation classification 

results. 

 

This proposed vegetation classification algorithm only classified the vegetation shown as 

green in the GSV images. The proposed vegetation classification method is not suitable to 

classify vegetation from those GSV images captured in non-green seasons. Based on the spectral 

analysis of the green vegetation in different seasons, those sites have GSV images captured in 

non-green seasons were excluded from the analysis. The classification results of green seasons 

and non-green seasons for different studied cities can be found in Table 4.3.1 and Fig.4.9 in 
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section 4.3.1. 

One hundred GSV images were randomly chosen to validate the classification results. The 

validation result shows that the overall accuracy of the vegetation extraction is higher than 85%, 

thus it is qualified for further analysis.  

 

4.4 Green View indices 

The sensory benefits provided by the street greenery are majorly through the visibility of the 

street greenery. Yang et al (2009) proposed a green view index (GVI) to evaluate the visibility of 

urban forests. Their GVI was defined as the percentage of the total green pixels from four 

pictures taken at a street intersection to the total pixel numbers of the four pictures, calculated 

using the Eq. (4.9),  
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where Areag_i is the number of green pixels in the picture taken in the ith direction among the 

four directions (true north, true east, true south and true west) for one intersection, and Areat_i is 

the total pixel number of the picture taken in the ith direction.  

The green view index was proposed to represent how much greenery people can see on the 

ground based on the street-level images. However, using the images captured in the four 

directions to calculate the green view index inevitably misses some vegetation around, because 

only four pictures at the field of view of 55° cannot cover the whole scene pedestrians can see 
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(Li et al, 2015a). In this study, the modified green view index (MGVI) was used. The MGVI uses 

six images covering the 360° horizontal surroundings to calculate the index for each sample site 

along streets. Furthermore, to effectively represent the surrounding greenness that pedestrians 

can see, three different vertical view angles (Fig. 4.16(b)) were also considered in each direction 

for calculating the MGVI (Li et al, 2015a). Consequently, the final MGVI used in this study was 

calculated using 18 GSV images for each site. Therefore, using the MGVI could better represent 

the distribution of street greenery, considering the fact that the Google Street View has a similar 

view angle with pedestrians on the ground. The MGVI calculation formula is written as,  
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where Areag_ij is the number of green pixels in one of these images captured in 6 directions with 

three vertical view angles (-45°, 0°, 45°) for each sample site, and Areat_ij is the total pixel 

number in one of the 18 GSV images.  
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Fig.4.16. GSV images captured in six horizontal directions at a sample site and three vertical view 

angles. 

 

The GSV has a national coverage, and most cities in U.S. have the GSV coverage. Using the 

Google Street View static image API, street-level images can be collected for any site with GSV 

panorama available (Li et al, 2015a). This makes the GSV based MGVI can be calculated for any 

site with GSV available. In this study, the sample sites are located evenly along residential streets, 

which make the GSV based MGVI better to represent the street greenery in cities. In addition, 

there is no need to collect in situ street-level images to calculate MGVI using GSV.   
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Chapter 5 MGVI and vegetation characteristics  

 

 

 

There are many developed green metrics to evaluate the distribution of urban greenery. 

However, most of the previously proposed methods study the urban greenery from the overhead 

view. What human being feel or see on the ground is very different from the overhead view 

captured or represented by remote sensing data and zoning data. The Google Street View (GSV) 

based method gives us a new perspective to study the urban greenery. It is important to 

investigate the relationship and discrepancy between the GSV based MGVI with the previously 

proposed green metrics and the vegetation characteristics.  

Previous studies investigated the relationship between the metrics derived from street-level 

images and remotely sensed data (Yang et al., 2009; Chen et al, 2015; Li et al, 2015a). Yang et al 

(2009) first proposed to use green view index (GVI), which is calculated base on in situ street 

level pictures, to assess the visibility of urban forest. Correlation analysis shows that the GVI 

values have a strong correlation with the tree/shrub covers (Yang et al, 2009). The ANOVA 

analysis shows that the GVI is influenced by the size of trees, the distance between the trees and 

viewers, and other kinds of greenery. Chen et al (2015) built a regression model between the GVI 
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and vegetation parameters derived from LiDAR data. The distances between the trees and the 

viewer, the perimeter of tree crown, and canopy height parameters were found to be the best 

explaining variables of GVI. However, there exist a few studies about the association between 

the GSV based MGVI and the overhead view green metrics, except Li et al (2015a). In Li’s paper, 

only the canopy cover and the grass cover were selected to compare with the MGVI. In addition, 

the comparison study was conducted in a very small area. In this chapter, the comparison study 

of the GSV based MGVI and overhead view data based green metrics was conducted on a large 

scale. In addition, this chapter also compared the difference between the distribution of MGVI 

and different types of urban greenery.  

 

5.1 Case study areas and data sources  

Boston, MA and Hartford, CT were chosen as the case study areas to compare the MGVI and 

the traditional green metrics. Boston and Hartford are the capital cities of Massachusetts and 

Connecticut, respectively (Fig.5.1). Boston is the largest cities in both Massachusetts and New 

England. According to recent census data (American Census Survey 2009-2014 data), Boston 

has a total population about 660,000. African American, Hispanics, and Asians account for 

24.1%, 18.8, and 9.0% of the total population, respectively. Hartford is the capital city and 

fourth-largest city in Connecticut, USA, with population of approximately 125,000. Based on the 

5-year aggregated census data from American Community Survey (US Census Bureau, 2012), 

African Americans and Hispanics are the two largest racial/ethnic groups in Hartford, which 

account for 37.65% and 43.05% of the total population, respectively. Recently, satellite imagery 
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based analysis shows that more than 2,870 acres of Hartford are covered by tree canopy, 

representing 26% of landmass in the city.  

 

Fig.5.1. The location of Boston, MA and Hartford, CT. 

 

The datasets of Boston include a vegetation cover map (Fig. 5.2 (a)) and a DSM (Digital 

Surface Model) derived from LiDAR data (Fig. 5.2 (b)). The LiDAR data products of Boston, in 

the form of pre-processed x, y, z points cloud files, were obtained from NOAA Digital Coast 

(http://coast.noaa.gov/dataviewer/index.html?#). The horizontal accuracy is 50 cm, and vertical 

accuracy is reported as 15cm. The LiDAR point cloud data includes two geo-spatial layers 

representing the first returns and the ground. The point cloud file was converted to a raster file 

using ArcGIS 10.2. The DSM was then created by subtracting the ground model from the first 

returns layer. The vegetation cover map was obtained from Raciti et al (2014), which was 

http://coast.noaa.gov/dataviewer/index.html?
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derived from 2.4 resolution QuickBird images and 1m resolution LiDAR data. The vegetation 

cover map represents the urban canopy cover, because those vegetation areas less than 1m in 

height were removed (Raciti et al, 2014). Accuracy assessment result shows that the canopy map 

has an overall accuracy of 95%.  

 

(a) Canopy cover map of Boston 

 

 (b) The DSM model of Boston derived from LiDAR data. 

Fig.5.2. The canopy cover and DSM in Boston. 
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The land cover map of Hartford (http://gis.w3.uvm.edu/utc/) was derived from 1-meter 

resolution remotely sensed data of 2008 (Fig. 5.3). The land cover classification was performed 

by Spatial Analysis Laboratory (SAL) at the University of Vermont, in consultation with the 

USDA Forest Service’s Northern Research Station.  

 

 

Fig.5.3. The land cover map of Hartford, Connecticut.  

 

 

5.2 Modified Green View index (MGVI) 

Sample sites were first created along residential streets in Hartford and Boston respectively. 

The created sample sites were then used as inputs to the GSV_TIMING tool (see Section 4.3.2) to 

request the meta-data of GSV panoramas for all selected sample sites. Fig. 5.4 shows the spatial 
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distribution of the time information for all chosen sample sites in Boston and Hartford, 

respectively. In Hartford, among the total 2,838 GSV sites, most of these GSV sites (2,042) have 

their static images taken in June 2011 (Fig. 5.5(a)). Other time points include July 2015 (390 

sites), August 2012 (216 sites), July 2011 (79 sites), and October 2011 (84 sites). In Boston, the 

GSV images were updated very frequently. Therefore, only the year information is listed here 

(Fig. 5. 5(b)), although all available GSV panoramas have time information at month level. Most 

GSV panoramas in Boston were taken in 2013 (2,777) and 2014 (2,907). There are few 

panoramas taken in 2007 (55), 2009 (30), and 2012 (8).  

In order to keep the time consistency of all chosen sample sites, those sites that have GSV 

images taken in non-green seasons were excluded in this study, because it is difficult to extract 

the vegetation from those GSV images. Based on the spectral analysis of GSV images captured 

in different seasons, May, June, July, August, and September were defined as green seasons in 

Boston and Hartford. Other months were categorized as non-green seasons and those GSV 

images taken in non-green seasons were removed from further analysis. Fig. 5.6 shows the 

spatial distributions of sample sites have GSV panoramas taken in green seasons and non-green 

seasons in Hartford (Fig.5.6 (a)) and Boston (Fig.5.6 (b)). By checking the spatial distribution of 

sample sites having GSV images taken in non-green seasons, it can be seen clearly that those 

non-green sites are not aggregated and the relatively small number of non-green GSV sites have 

no much influence on the further analysis.  
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Fig.5.4. The spatial distributions of captured dates of GSV sample sites in Hartford (a) and Boston 

(b). 

 

 

Fig.5.5. The statistics of captured date in the images in Hartford (a) and Boston (b). 
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Fig.5.6. The spatial distributions of non-green GSV sites in Hartford, CT (a) and Boston, MA (b). 

 

The spatial distributions of the MGVI in Hartford and Boston are shown in Fig. 5.7. Among 

all chosen sample sites in Hartford (Fig. 5.7 (a)), most sites with low MGVI values are located in 

the east and south of the study area. Sites with high MGVI values are mainly distributed in the 

west, north, and southwest subareas. In Boston (Fig. 5.7 (b)), most sites with high MGVI values 

are located in the southwest and west regions. Most sites with low MGVI values are located in 

the eastern region.  

Fig. 5.8 presents several sites in Hartford and Boston with different MGVI values. In general, 

those sites with more street trees tend to have higher MGVI values, and those sites with 

large-size street trees, multi-layer vegetation, and lawns along streets usually have higher MGVI 

values. This is not difficult to understand because the MGVI was calculated by 18 GSV images 

captured in six horizontal and three vertical angles and the lawns and large street trees were 
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counted.  

 

(a) The spatial distribution of the MGVI in Hartford, CT 

 

(b)The spatial distribution of the MGVI in Boston, MA 

Fig.5.7. The spatial distributions of the MGVI in Hartford, CT and Boston, MA. 
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(a) MGVI values for different sites in Hartford, CT (Li et al., 2015c) 

 

(b) MGVI values for different sites in Boston, MA 

Fig.5.8. GSV sites in Hartford and Boston with different MGVI values. 
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5.3 Correlation analysis of MGVI and vegetation characteristics 

Different from the previous green metrics, the MGVI indicates the visibility of greenery on 

the ground. Previous studies show that the green view index values are influenced by the patterns 

of trees, the size of trees, and the distances between trees and viewers (Yang et al., 2009). In 

order to better illustrate the difference of MGVI with the previous green metrics, correlation 

analysis between MGVI and the previous green metrics was conducted in this study. For 

Hartford, the LiDAR data is not available, therefore, the chosen green metrics were based on a 

land cover map, which was derived from multispectral remotely sensed imagery. In Boston, 

because of the availability of the LiDAR data, the canopy height was also considered in the 

correlation analysis. 

 

Fig.5.9. The MGVI map and land cover map in a small portion of Hartford. The sizes of the solid 

dots represent the magnitudes of MGVI values.  
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Fig. 5.9 shows the distribution of MGVI values and land cover map in a small portion of 

Hartford, CT. Table 5.1 provides the Pearson’s correlation coefficients between MGVI values 

and vegetation coverage at different buffer distances around the sample points. From Table 5.1, 

it can be seen that the MGVI has a significantly positive correlation with the canopy coverage in 

the buffered zones. However, the correlation coefficients decrease with increase of the buffer 

distances. Compared with the significant correlation between MGVI and canopy coverage, the 

correlation between the MGVI and lawn coverage is not statistically significant. The correlation 

analysis results show that the MGVI is significantly influenced by nearby canopy covers, but the 

correlations decrease with the increase of buffer distances. It is not difficult to understand this 

phenomenon, because the trees in faraway look smaller than those closer trees. The 

non-significant correlation between the MGVI shows that the nearby lawns do not influence the 

MGVI values significantly. This may be because the MGVI used in this study covers 6 

horizontal directions and 3 vertical directs (see section 4.4 for more details). Some lawns are 

invisible in those GSV images with vertical angles of 0 and 45. In addition, most lawns in 

residential areas are located in the backyard and blocked by the building blocks. This to some 

extent may further explain the non-significant correlation between the MGVI and the lawn 

coverage.  

 

Table 5.1. The Pearson’s correlation coefficients between MGVI and the canopy characteristics. 

ACH: Average Canopy Height, PCC: Percentage of Canopy Cover.  
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Buffer distances 
Pearson’s correlation coefficients 

N 
Canopy Coverage Lawn coverage 

20 m 0.735
**

 -0.005 2752 

40 m 0.694
**

 0.006  

60 m 0.637
**

 0.028  

80 m 0.598
**

 0.052  

100 m 0.575
**

 0.061  

** Correlation is significant at the 0.01 level (2-tailed). 

In Boston, the canopy height was further considered in the correlation analysis with the 

availability of LiDAR data. Fig. 5.10 shows the overlap of the MGVI values with the canopy 

cover map and the canopy height map in a small portion of Boston. For simplicity, the averaged 

canopy height was calculated as the indicator of height of nearby trees. Table 5.2 shows the 

Pearson’s correlation coeffiencts between the MGVI values and the canopy characteristics at 

different buffer distances around the sample points in whole Boston.  

 
Fig.5.10. The MGVI map and canopy cover map in a small portion of Boston (a) and a Digital 

Surface Model (DSM) of canopy (b). 
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Table 5.2. The Pearson’s correlation coefficients between the MGVI and the canopy 

characteristics in Boston, MA. ACH: Averaged Canopy Height, PCC: Percentage of Canopy 

Cover.  

Buffer distances 
Pearson’s correlation coefficients 

N 
PCC ACH 

20 m 0.701
**

 0.594
**

 5925 

40 m 0.621
**

 0.555
**

  

60 m 0.547
**

 0.507
**

  

80 m 0.512
**

 0.482
**

  

100 m 0.489
**

 0.466
**

  

** Correlation is significant at the 0.01 level (2-tailed). 

 

In Boston, the correlation analysis results show that the correlation between the canopy 

coverage and the MGVI has a similar pattern with the correlation in Hartford. The canopy 

coverage is strongly correlated with the MGVI, and the correlation becomes weaker as the 

increase of the buffer distances. The MGVI also has a very significant correlation with the ACH 

(Averaged Canopy Height) of nearby canopy. And the MGVI has a stronger correlation with the 

closer canopy covers than those canopies far away.  

The MGVI is proposed to measure the neighborhood greenness in terms of the visibility of 

street greenery. The correlation analysis results in Boston and Hartford show that the MGVI can 

reflect the amount of tree canopy coverages of the street greenery. The MGVI cannot directly 

represent the coverages of lawns. Therefore, the MGVI is more suitable for measurement of 

street trees rather than lawns. Different from the 2D green metrics based on remote sensing data, 



70 
 

the MGVI can also reflect the 3D structural information of street greenery. Those sites with large 

canopy coverages or higher canopies tend to have large MGVI values. Therefore, the MGVI is a 

new indicator, which reflect both the canopy coverage and the 3D vertical structure information 

of the street trees.  

 

5.4 Distribution of different vegetation types of urban greenery 

Different types of urban greenery, which are managed differently, provide different kinds of 

nature experiences to urban residents. The GSV based MGVI is more suitable for the 

assessement of street greenery rather than other types of urban greenery, such as backyard 

vegetation and urban parks. This section compares the spatial distributions of the MGVI and 

different types of urban greenery in Hartford, CT.  

 

5.4.1 Percentage of private yard vegetation coverage 

The private yard vegetation mainly locates on private residential parcels and provides 

benefits directly to property owners. In this study, the percentage of total vegetation coverage 

(PerVeg) and the percentage of tree/shrub coverage (PerTree) in residential property parcels were 

used to represent the distribution of private yard greenery. These two green metrics – PerVeg and 

PerTree were calculated by intersecting the residential parcel map and the vegetation cover map 

for each residential parcel using the following formulas,  

                         (5.1) %100
parcel

veg

Area

Area
PerVeg
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                       (5.2) 

where Areaveg is the area of total vegetation coverage in a residential parcel, Areatree/shrub is the 

area of tree/shrub coverage in a residential parcel, and Areaparcel is the area of the parcel. These 

parcel-level green metrics were then aggregated at block group level using their median values. 

The residential parcel map was delineated manually based on a parcel map and the land 

cover map by checking Google Map and Google Street View. Fig. 5.11 shows the satellite image, 

the land cover map, and the residential parcel map of a small portion of the study area.  

 

 

Fig.5. 11. The vegetation in private yards, shown by (a) a satellite image from Google Map, (b) a 

land cover map derived from the remotely sensed data, (c) a residential property parcel map (Li et 

al., 2016b). 

%100/ 
parcel

shrubtree

Area

Area
PerTree

(a)

(b)

(c)
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5.4.2 Proximity to urban parks  

Based on previous studies, I used a buffer analysis method to measure park’s accessibility in 

this study. I used a 400-meter buffer zone around each park, a distance most people are willing to 

walk to an urban park (Boone et al., 2009; Lindsey et al., 2001; Wolch et al., 2005; Leslie et al., 

2010). The proportion of residential parcels in the buffer zones for all block groups was further 

used as the indicator of proximity to urban parks at the block group level. If the centroid of a 

residential parcel is in the buffer zone of an urban park, then this parcel will be treated as in the 

service area of the park.  

The urban park map in Hartford was obtained from the Hartford Open Data website 

(https://data.hartford.gov/). The small cemeteries, monuments, and other small green spaces that 

should not be defined as parks were removed by checking Google Map and Google Street View, 

since those parks are too small to offer significant benefits to residents.  

 

Fig.5.12. The overlap of the urban park map and the residential parcel map in Hartford, CT, (a) the 

urban park map, (b) and the residential parcel map, (c) the overlap of the buffer map of urban parks 

and the residential parcel map. 
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5.4.3 Distributions of different types of vegetation in Hartford, CT  

Fig. 5.13 shows the spatial distributions of the aggregated green metrics at block group level, 

which were used to indicate the street greenery (Fig. 5.13a), proximity to urban parks (Fig. 

5.13b), percentage of total yard vegetation coverage (Fig. 5.13c), and percentage of yard 

tree/shrub coverage (Fig. 5.13d), respectively. The street greenery (Fig. 5.13a) has a very 

different distribution compared with other types of urban greenery in Hartford. In the street 

greenery map, block groups in the west, northwest, and southwest of the study area have higher 

MGVI values than block groups in the east. That means neighborhoods in west, southwest and 

northwest have more street greenery than the eastern region. The eastern and middle regions 

have closer proximity to urban parks than the other regions (Fig. 5.13b). Yard vegetation and 

yard trees/shrubs (Figs. 5.13c and d) are more abundant in the north than in the south.  
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Fig.5.13. Green metrics mapped at the block group level: (a) the MGVI values, (b) proximity to 

urban parks (proportion of residential parcels in 400m buffer zones of urban parks), (c) percentage 

of yard vegetation coverage, and (d) percentage of yard tree/shrub coverage (Li et al., 2016b).  

 

5.5 Summary 

The comparision analysis of the MGVI with nearby canopy coverage, lawn coverage, and 

canopy height proves that the MGVI measures street tree canopy coverage and the vertical 

structural information of street trees. The size and height of street trees influence the MGVI 

positively. Those neighborhoods with more street trees, larger canopy covers, and higher 
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canopies tend to have larger MGVI values. In addition, the GSV based MGVI is more suitable to 

indicate the distribution of street greenery rather than backyard vegetation or vegetation in urban 

parks.  
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Chapter 6 Environmental inequity analyses 

 

 

 

Different from previous studies using the canopy cover or vegetation indices derived from 

remotely sensed data (Grove et al., 2006; Mennis, 2006; Landry and Chakraborty, 2009; Leslie et 

al., 2010; Jenerette et al., 2013), in this study, the MGVI was used to investigate the distribution 

of urban street greenery among different socio-economic and racial/ethnic groups. The objective 

of this study is to test the hypothesis that environmental disparities in terms of street greenery are 

linked to the racial/ethnic makeup and socioeconomic status of residents. Chapter 4 gives details 

about the workflow for calculating the MGVI based on Google Street View images. The 

calculated MGVI values represent the spatial distribution of street greenery at site level. In order 

to make the MGVI maps and census data comparable, the site level MGVI maps were further 

aggregated at census tract level. The median MGVI values were summarized by census tract. 

Sites on the borders of census tract were not counted in order to eliminate the neighborhood 

effect. Bivariate correlation analysis and regression models were then used to investigate 

environmental inequity in terms of street greenery in different cities.  
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6.1 Extraction of social variables from census data 

Based on previous studies (Landry and Chakraborty, 2009; Huang et al., 2011; Pham et al., 

2012), eight social variables at the census tract level were selected to represent the racial/ethnic 

and socio-economic status of residents in this study (Table 6.1). These eight chosen variables 

include per capita income, proportion of African Americans, proportion of Asians, proportion of 

non-Hispanic Whites, proportion of Hispanics, proportion of owner-occupied units, proportion of 

people with bachelor or higher degrees, and proportion of people without high school degree.  

Economic status affects people’s capability to improve their living space, which may further 

influence their physical living environments. There are many developed variables to indicate the 

economic status of residents, such as household income (Landry and Chakraborty, 2009; Heynen, 

2006), per capita income (Li et al, 2015b), and proportion of households with income below the 

poverty line (Huang et al., 2011). In this study, the per capita income rather than household 

income was chosen as the indicator of a resident’s economic status, considering the fact that 

household income does not consider the household size. The race/ethnicity variables include 

proportion of African Americans, proportion of Asians, proportion of Hispanics, and the 

proportion of non-Hispanic Whites. Previous studies have showed that vegetation coverage is 

associated with people’s education levels. Therefore, in this study, two educational variables (the 

proportion of people with bachelor or higher degrees and the proportion of people without high 

school degree) were included in the analysis. In order to control the impact of built environment 

on the distribution of street greenery, a built environment variable (median building age) was 

considered (Grove et al., 2006; Pham et al., 2012; Landry and Chakraborty, 2009). In addition, 
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two age variables (proportion of people under 18 years of age and proportion of people older 

than 65 years of age) were also included in the analysis.  

 

Table 6.1. 

The chosen social variables from American Community Survey (ACS) census data 

Category Variables 

Economic status Per capita income 

Education Proportion of people without high school degree 

Proportion of people with bachelor or higher degrees 

Lifestyle Proportion of owner-occupied units 

Built environment Median building age 

Race/Ethnicity Proportion of non-Hispanic Whites 

Proportion of Hispanics 

Proportion of Asians 

Proportion of African Americans 

Age Proportion of people under 18 years of age 

Proportion of people older than 65 years of age 

 

In 2010, the American Community Survey (ACS) replaced the decennial census as the sole 

national source of demographic and economic data for small areas like block group and census 

tract (Spielman and Singleton, 2015). Although the questions in the survey for ACS data 

collecting are very similar to those for the 2000 decennial census, there are some important 

differences between the collections of these two datasets. While the decennial census has 

provided a snapshot of the U.S. population once every 10 years, the ACS is kind of “rolling 

survey” (Spielman and Singleton, 2015), and has been described as a "moving video image, 

continually updated to provide much needed data about our nation in today's fast-moving world” 
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(Cooper, 2005). Compared with the decennial data, the ACS is based on a relatively smaller 

sample size. 

The Google Street View, which was firstly launched in 2007, keeps updating to represent 

what the most recent streetscapes look like. To some extent, the ACS data and Google Street 

View use the same method to represent the real world, which both can be described as “moving 

video image, continually updated to provide much needed data”. Therefore, the ACS data was 

used as the data source for extraction of social variables in this study. Although the ACS data is 

criticized by many users for its uncertainty and large margin of error in small areas, the ACS data 

is still used in this study since it is the only national scale census data, which includes all social 

variables in this study.  

Although block group is the finest-level areal unit for most social variables used in ACS data, 

in order to increase the accuracy of both MGVI map and the census data, the census tract was 

used as the common boundary for all geospatial operations in this study. This is because 

choosing a large geographical unit means more GSV sample sites in each unit, which may 

further help to increase the reliability of estimation at areal units. The census data in census tract 

usually has smaller margin of error compared with block group level. In addition, since this 

study focused on residential housing units, census tracts located in non-residential areas were 

excluded from the analysis.  

In order to keep the time consistency between the census data and the GSV images, ACS 

census data of different years was chosen for different cities correspondingly based on the time 

information of the GSV images in different cities.  
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6.2 Statistical Analysis 

To determine whether the street greenery has an unequal distribution across different 

racial/ethnic and socio-economic groups in the study areas, statistical analyses were performed 

between the MGVI and the selected social variables. The statistical analyses were conducted in 

three steps. Bivariate correlation analysis was first used to explore the correlations between the 

MGVI and each of the social variables at census tract level for each of the selected cities. Second, 

ordinary least square (OLS) multivariate regression analyses were conducted to model the 

associations between dependent variable (the MGVI) and independent variables (social variables) 

in each of the selected city. Since this study focuses on investigating the environmental inequities 

among different socio-economic groups, the confounded variables of racial/ethnic variables and 

economic variables were excluded from the further multivariate regression analyses. The finalist 

variables in the regression models include, proportion of African American, proportion of Asians, 

proportion of Hispanics, per capita income, proportion of owner-occupied units, and median 

building age.  

Finally, global Moran’s I-statistics were used to analyze the spatial autocorrelation of 

residuals in regression models to determine whether the regression results were spatially biased 

(Landry and Chakraborty, 2009). In Moran’s I analyses, Euclidean distances among centroids of 

census tracts were used to generate the spatial weight matrix, which were used to represent the 

strength of spatial interactions. When spatial dependence was detected in the residuals of an OLS 

model, a spatial regression model was then conducted to include an additional term to account 
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for the spatial autocorrelation. 

In geography, the spatial autocorrelation has been a frequently faced problem for the analysis 

of socioeconomic data (Talen and Anselin, 1998). Geographical features usually are spatially 

auto-correlated, because geographical features near each other are more similar than those 

features further away (Tobler, 1970). The spatial dependence could cause spatial dependence of 

residuals in regression models, which would further violate the assumption of independent 

observations in traditional OLS multivariate regression models (Landry and Chakraborty, 2009). 

The simultaneous autoregressive (SAR) model is a spatial regression model to augment the 

standard linear regression model by incorporating spatial interrelationship structure of the units 

of analysis (Anselin and Bera, 1998). In SAR models, the spatial weight matrices are used to 

represent the strength of the interaction of neighboring sites. The spatial weight matrices can be 

defined in various ways, in this study, due to irregularity of census tract sizes and shapes in 

different cities, Euclidean distances among census tract centroids were used to generate the 

spatial weight matrices (Pastor et al, 2005; Landry and Chakraborty, 2009). There are two major 

SAR models, spatial lag regression model and spatial error regression model, which incorporate 

the spatial dependence into the dependent variable and error terms, respectively. The spatial lag 

regression model (SARlag) assumes that the spatial dependence effect exists in the dependent 

variables. A pure spatial lag regression model simply consists of a spatially lagged version of the 

dependent variable, and takes the matrix algebra model form of:  

  Wyy                                   (6.1) 

Where W is the predefined n×n spatial weighting matrix, y is the observed variable, and ρ is a 
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spatial autoregression parameter, which typically has to be estimated from the data. SARlag mixes 

spatial autoregressive model with standard regression. A first order SARlag model can be written 

as, 

  XWyy                                  (6.2) 

Where ρWy is the pure spatial autoregression part, and X is the vector of explanatory 

variables, β is the vector of regression coefficients, and ɛ is the error term. The mixed 

regressive-spatial autoregressive model incorporates spatial autocorrelation together with the 

influence of predictor variables. The mixed model improved the standard OLS model, and the 

level of improvement is dependent on how well the weighting matrix represents the spatial 

relation between geographic features of different locations and how well the mixed model 

represents or explains the source data (de Smith, 2015).  

SARerr model is another kind of mixed regressive-spatial autoregressive model. Different 

from SARlag model, SARerr model incorporates the spatial effect into the error term,  

                 
  Xy , 

               where uW                                     (6.3) 

In this study, the spatial regression models for different cities were implemented in GeoDA 

(Anselin, 2005). Here, the y is the MGVI, and X represents the selected independent variables. 

The spatial weight matrix W was calculated as the Euclidean distances among census tract 

centroids. The spatial models of SARlag and SARerr were compared and the choice of either 

spatial lag or error model was determined based on the Lagrange Multiplier and Robust 
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Lagrange Multiplier tests for each city, which indicate whether the spatial dependence occurs at 

the error term or the dependent variable (Anselin, 2005).  

 

6.3 Results 

6.3.1 Descriptive statistics of the MGVI in major cities 

Based on the spectral analysis of the GSV images in different seasons (see section 4.3.1) and 

the time information of GSV sites in different cities, several cities were excluded from the study. 

This is because the image analysis in this study is based on the assumption that street greenery 

will be shown as green in GSV images. The method used in this study is not suitable for those 

cities with too many sample sites having their GSV images captured in non-green seasons. As an 

example, Fig. 6.1 shows the spatial distribution of green GSV sample sites and non-green GSV 

sample sites in cities of Chicago, IL Milwaukee, WI, Atlanta, GA, and Louisville, KY based on 

the previous spectral analysis in Chapter 4. It can be seen clearly that these four cities have large 

percentages of non-green sample sites. In addition, those non-green sample sites are distributed 

in clusters. Excluding those aggregated non-green sites will decrease the representation of GSV 

sample sites for the street greenery. Therefore, those cities having too many clustered non-green 

GSV sample sites may not be suitable in the GSV based street greenery analysis and should be 

removed from the study areas. By checking the spatial distribution of non-green GSV sites in all 

study areas, cities of Chicago, Indianapolis, Minneapolis, Cincinnati, Louisville, Milwaukee, 

Atlanta, Houston, San Antonio, Dallas, Los Angeles, San Francisco, and Seattle were removed 

from the city list of the study areas (Table 3.1.1). In the finally selected cities (Table 6.2), most 
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of the sample sites having their corresponding GSV images captured in green seasons and those 

non-green GSV sample sites are distributed randomly and evenly in cities. By controlling the 

spatial distribution of non-green GSV sample sites, the GSV based analysis helps to represent the 

street greenery in different cities more reasonably without much influence by seasons. In 

addition, cities without land use maps available were also removed. 

 

Fig.6.1. The spatial distributions of the green GSV sites and non-green GSV sites in Chicago, 

Milwaukee, Atlanta, and Louisville.  
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Fig.6.2. The histograms of MGVI values at site level for all studied cities. 

 

The Fig. 6.2 shows the histograms of MGVI values of the finally selected cities. These 

MGVI histograms give us an overview of the street greenery level in different cities. For 

example, Philadelphia has a very skewed MGVI histogram and most GSV sample sites have 

their MGVI values less than 10. Most of these cities have relatively skewed MGVI histograms, 
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such as, Boston, Denver, Baltimore, Detroit, Pittsburgh, and St. Louis. Most of the GSV sample 

sites in these cities have the MGVI values in the range of 5 to 20. However, Cities, like 

Washington D.C, Tampa, and Kansas City have perfect normal histograms and most GSV sample 

sites have their MGVI values in the range of 10 to 30 in these three cities. These three cities have 

greener neighborhoods compared with other cities in term of street greenery. This can be further 

proved by the relatively larger mean and median site level MGVI values in Washington D.C, 

Tampa, and Kansas City (Table 6.2). On the contrary, with the most skewed MGVI histogram 

and the lowest site level mean and median MGVI values, the City of Philadelphia has the least 

street greenery compared with other cities.  

 

 

Table 6.2 

The description of MGVI values in different cities at site level and census tract level. 

 

Cities 
Site level 

 
Census tract level 

Mean Median Std Min Max Std 

Boston 12.45 11.14 7.32  2.79 25.47 3.94 

Washington D.C 17.88 17.53 7.38  7.01 25.92 4.08 

Philadelphia 8.73 6.67 7.11  1.13 31.84 4.34 

Denver 14.90 13.87 6.99  2.84 24.44 4.29 

Baltimore 15.70 14.38 9.57  2.21 28.26 6.00 

Detroit 17.18 16.08 7.75  3.64 26.60 3.68 

Pittsburgh 15.20 13.63 8.34  3.66 23.06 3.95 

Tampa 19.10 18.97 6.65  7.65 23.82 2.92 

St. Louis 15.58 14.28 7.82  7.75 34.70 4.04 

Kansas City 20.25 20.28 8.91  3.30 33.57 5.35 
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In order to make the MGVI maps and census data comparable, the point level MGVI maps 

were further aggregated to areal level. The census tract was used as the uniform geographic unit 

and the median value of the MGVI in each census tract was chosen to represent the MGVI 

values of the census tracts. Those census tracts with less than three GSV sample sites in it were 

excluded from further analysis.  

Table 6.2 gives the descriptive statistics of MGVI values at census tract level for all chosen 

cities. In most census tracts of those selected cities, the MGVI values range from 1.13 to 33.57, 

with standard deviations in a range of 2.92 – 6.00.  

Fig. 6.3 presents the spatial distributions of MGVI values in different cities at both the site 

level and census tract level. Most cities share a similar pattern that those sites with high MGVI 

values are located in the periphery regions and those sites with low MGVI values are located in 

the inner part of cities. The census tract level MGVI maps have similar patterns with the site 

level maps. This distribution pattern is especially obvious in cities of Boston, Baltimore, D. C, 

Philadelphia, Pittsburgh, Detroit, and St. Louis. This is not difficult to understand considering the 

fact that the inner part of a city has less open space for tree planting. Other than this general 

pattern, different cities also have specific spatial patterns in terms of the distribution of the 

MGVI values. In Boston (Fig. 6.3(a)), most sites with high MGVI values are mostly distributed 

in the southwest and southern areas. Those sites with low MGVI values are mostly located in the 

north and the northeastern regions. In Washington D.C and Detroit (Fig. 6.3 (c, g)), the western 

regions have obviously higher MGVI values than the eastern regions. In St. Louis and Kansas 

City (Fig. 6.3 (i, j)), GSV sample sites in south usually have higher MGVI values than sites in 
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north. However, in some cities, like Denver and Tampa (Fig. 6.3 (f, h)), there exists no obvious 

pattern in terms of the MGVI values.  

 (a) Boston, MA 

 

 

(b) Baltimore, MD 
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(c) Washington D.C 

 

 

 (d) Philadelphia, PA 
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(e) Pittsburgh, PA 

 

(f) Denver, CO  
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(g) Detroit, MI 

 

 (h) Tampa, FL 
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(i) St.Louis, MO 

 

 (j) Kansas City 

 
 

Fig.6.3. The spatial distribution of MGVI maps at site level and census tract level for the chosen 

cities. 
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6.3.2 Bivariate analysis results 

Fig. 6.4 shows the histograms of GSV time information in different cities. All cities have 

most of their GSV images taken after 2009. Therefore, the 2010–2014 American Community 

Survey (ACS) census data was used to calculate the social variables for all cities in this study. 

Bivariate analyses reveal significant correlations between the MGVI social variables derived 

from census data (Table 6.3). However, the signs of the correlation coefficients and the 

significant levels were not consistent across different cities.  

The correlation between the MGVI and per capita income varies in different cities, however, 

the sign of the correlation is consistently positive. In cities of Baltimore, Washington D.C, 

Philadelphia, St. Louis, Denver, the per capita income is positively and significantly correlated 

with the MGVI. However, in Boston, Pittsburgh, Detroit, and Tampa, there exists no significant 

correlation between per capita income and the MGVI.  
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Fig.6.4. The statistics of the GSV image time information in different cities. 
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There exist relatively consistent correlations between the educational variables (proportion of 

people without high school degree and proportion of people with bachelor or higher degrees) and 

MGVI. Consistent across all cities except Pittsburgh, Tampa, and Kansas City are significantly 

positive correlations between the MGVI and the proportion of people with bachelor or higher 

degrees, and significantly negative correlations between the MGVI and the proportion of people 

without high school degree (Table 6.3). In Pittsburgh, Tampa, and Kansas City, the MGVI is not 

significantly correlated with both of the two educational variables (proportion of people without 

high school degree and proportion of people with bachelor or higher degrees).  

Consistent relationships were also detected between the MGVI and the lifestyle variable 

(proportion of owner-occupied units) across different cities (Table 6.3). Only in Philadelphia and 

Denver, the correlation between MGVI and the proportion of owner-occupied units is not 

significant. In the rest of cities (Boston, Baltimore, Washington D.C, Pittsburgh, St. Louis, 

Detroit, Tampa, Kansas City), the MGVI is positively and significantly correlated with the 

proportion of owner-occupied units.  

Different from the consistent correlations between the MGVI and economic variables, the 

correlations between the MGVI and racial/ethnic variables vary across different cities. In Boston, 

Baltimore, Detroit, Tampa, and Kansas City, the MGVI has no significant correlation with the 

proportion of non-Hispanic Whites. However, in Washington D.C, Philadelphia, St. Louis, and 

Denver, the proportion of non-Hispanic Whites has a significantly positive correlation with the 

MGVI at significance level of 0.01. Different from other cities, in Pittsburgh, the MGVI is 

significantly and negatively correlated with the proportion of non-Hispanic Whites at 
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significance level of 0.05 (r=-0.228, p=0.013).  

There are no consistent correlations between the MGVI and the proportion of African 

Americans across different cities. In Boston, Baltimore, Tampa, and Kansas City, no significant 

correlation was found between the MGVI and the proportion of African Americans. In 

Washington D.C, Philadelphia, St. Louis, and Denver, the MGVI has a negative correlation with 

the proportion of African Americans at significance level of 0.01. However, in Pittsburgh and 

Detroit, the MGVI is positively correlated with the proportion of African Americans at 

significance level of 0.05.  

No consistent correlation was detected between the MGVI and the proportion of Hispanics in 

different cities. In Boston, Baltimore, Philadelphia, Denver, the MGVI is significantly and 

negatively correlated with the proportion of Hispanics at 0.01 significance level. In St. Louis, the 

MGVI has a significant and positive correlation with the proportion of Hispanics at significance 

level of 0.05 (r=0.21, p=0.036). No significant correlation was detected between the MGVI and 

the proportion of Hispanics in Washington D.C, Pittsburgh, Detroit, Tampa, and Kansas City.  

The proportion of Asians is not significantly correlated with the MGVI in all cities except St. 

Louis. In St. Louis, the proportion of Asians has a significant and positive correlation with the 

MGVI (r=0.36, p=0.000).  

Bivariate correlation analyses results show mixed findings about the correlations between the 

MGVI and the two selected age variables (proportion of people under 18 years of age and 

proportion of people older than 65 years of age). In Boston, Baltimore, Washington D.C, Detroit, 

Tampa, and Kansas City, there exists no significant correlation between the proportion of people 
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under 18 years of age and the MGVI. The proportion of people under 18 years of age is 

negatively correlated with the MGVI in Philadelphia, St. Louis, and Denver. However, in 

Pittsburgh, the proportion of people under 18 years of age has a significant and positive 

correlation with the MGVI. Among the chosen cities in the study, the proportion of people older 

than 65 years of age generally has a positive correlation with the MGVI. In Boston, Baltimore, 

Washington D.C, Philadelphia, Pittsburgh, Denver, and Kansas City, the proportion of people 

older than 65 years of age has a significant and positive correlation with the MGVI. In Detroit, 

Tampa the MGVI has no significant correlation with the proportion of people under 18 years of 

age and the proportion of people older than 65 years of age.  

As an indicator of the built environment of neighborhoods, the median building age is not 

consistently correlated with the MGVI in this study. In cities of Boston, Pittsburgh, St. Louis, 

and Detroit, there is no significant correlation between the MGVI and the median building age. 

In cities of Baltimore and Philadelphia, the MGVI is significantly and negatively correlated with 

the median building age at significance level of 0.01. The MGVI has a significant and positive 

correlation with the median building age in cities of Washington D.C, Denver, Tampa, and 

Kansas City.  
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6.3.3 Multivariate Analyses 

In general, the multivariable regression models investigate environmental inequities in terms 

of street greenery by controlling socio-economic variables other than environmental justice 

variables (race/ethnicity, and income). In regression models, the environmental justice variables 

were selected as the independent variables, and other socio-economic variables were selected as 

the cofounding variables. Results of regression models in different cities, such as coefficients, 

z-values, and significance levels are presented in Table 6.4. 

In Boston, the OLS regression model shows that there is no significant association between 

the MGVI and the per capita income. The MGVI increases significantly with the proportion of 

Asians. No significant association was found between the MGVI and other minority variables 

(proportion of African Americans and proportion of Hispanics). The proportion of 

owner-occupied units is significantly and positively associated with the MGVI. Significant 

Moran’s I value (Moran’s I = 0.23, z score =5.54) shows that residuals of the OLS regression 

model suffer from a significant spatial autocorrelation. Therefore, the spatial lag regression 

model (SARlag) was further used to investigate the associations between the MGVI and 

independent variables. Same as the OLS regression model, the SARlag regression model results 

show that the MGVI has no significant association with the per capita income, proportion of 

Hispanics, and proportion of African Americans. In the SARlag model, the proportion of 

owner-occupied units is still significantly and positively associated with the MGVI, which 

further proves that the census tracts with higher proportion of owner-occupied units tend to have 
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higher MGVI values or more street greenery. However, different from the significant association 

between the MGVI and proportion of Asians in the OLS model, in the SARlag model, the MGVI 

is not significantly associated with the proportion of Asians after controlling the spatial 

autocorrelation.  

In Washington D.C, the OLS regression model explains 20% of the variation in MGVI 

changes in 169 census tracts. Diagnostics for spatial dependence of the residuals show that the 

Moran’s I value was significant (Moran’s I = 0.46, z score =17.37). This means that the OLS 

regression suffers from spatial autocorrelation in terms of the residuals. The SARlag was then 

deployed to conduct a further analysis of the relationship between the MGVI and the chosen 

independent variables. The higher R
2
 for SARlag than that for OLS model suggests the improved 

goodness of fit for the SARlag. The significant value of the spatial lag coefficient, rho (coeff=0.84, 

z score=15.42), for SARlag indicates there is a strong spatial dependence in the MGVI map. For 

both the OLS and SARlag models, the MGVI values increase significantly with the per capita 

income (p<0.01). The significantly positive coefficient of the per capita income indicates that 

those census tracts with higher per capita income have more street greenery. Although in the 

bivariate analysis the MGVI is negatively correlated with the proportion of African Americans, 

there is no significant association between the MGVI and the proportion of African Americans in 

both the OLS model and SARlag model after controlling other social variables and spatial 

autocorrelation. Similar with the bivariate analysis results, both the proportion of Hispanics and 

the proportion of Asians are not significantly associated with the MGVI in regression models.  

Philadelphia is located in the similar climate zone with Boston and Washington D.C. The 
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OLS regression model shows that the MGVI is significantly associated with the per capita 

income, proportion of Asians, and proportion of Hispanics. The MGVI increases significantly 

with the per capita income, and decreases with the proportion of Asians and proportion of 

Hispanics. No significant association between the MGVI and the proportion of African 

Americans was detected in the OLS regression model. In addition, the proportion of 

owner-occupied units is not significantly associated with the MGVI. The SARlag model was 

further applied to investigate the associations between the MGVI and independent variables 

because of the significant spatial autocorrelation in terms of residuals in the OLS regression 

model. After incorporating the spatial dependence, the association between the MGVI and the 

proportion of Hispanics becomes insignificant. The MGVI is still positively and significantly 

associated with the per capita income, and negatively associated with the proportion of Asians.  

The situation in Baltimore is very similar with Boston. The OLS regression result shows that 

the MGVI is significantly associated with the proportion Asians and proportion of 

owner-occupied units. The MGVI increases significantly with increases of the proportion of 

Asians and proportion of owner-occupied units. Since there is a significant spatial dependence of 

residuals in OLS regression model (Moran’s I = 0.26, z score = 16.68), the SARlag model was 

also applied. After controlling the spatial dependence, the MGVI is still significantly associated 

with the proportion of Asians and the proportion of owner-occupied units and the MGVI 

increases significantly with increases of the proportion of Asians and the proportion of 

owner-occupied units. Both the proportion of Hispanics and proportion of African Americans are 

not significantly associated with the MGVI in both OLS and SAR regression models. The per 
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capita income is not a significant contributor of the MGVI in Baltimore, since there is 

non-significant association between the MGVI and per capita income in both OLS and SAR 

regression models.  

Denver is in the semi-arid climate zone, and maintaining street greenery is more expensive 

than humid regions. The associations between the MGVI and social variables are different 

compared with other cities in humid climate zones. The MGVI is significantly associated with 

the per capita income, median building age, proportion of Hispanics, and proportion of African 

American in both OLS and SARlag models. The MGVI increases significantly with the per capita 

income and median building age, and decreases significantly with the proportion of African 

Americans and the proportion of Hispanics. This means that neighborhoods with a higher 

proportion of African Americans or higher proportion of Hispanics tend to have significantly less 

street greenery. There is no significant association between the MGVI and the proportion of 

owner-occupied units in Denver. The MGVI may have less to do with the home ownership in 

Denver than it has with income and proportion of minorities. The proportion of Asians is not 

significantly associated with the MGVI in both OLS regression model and SARlag regression 

model. 

In Detroit, a significant spatial dependence of residual (Moran’s I = 0.51, z score =13.53) was 

detected in OLS model. Thus, the spatial regression model was used to investigate the 

associations between the MGVI and independent variables. The high pseudo R
2
 (0.51) for the 

SARlag model suggests a better model fit compared with the OLS model. Bivariate correlation 

analysis result shows that the MGVI has a significantly positive correlation with the proportion 
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of African Americans (p<0.05), and has no significant correlation with the proportion of Asians 

and Proportion of Hispanics. However, in both the OLS model and SARlag model, the MGVI is 

not significantly associated with all racial/ethnic variables (proportion of African Americans, 

proportion of Asians, and proportion of Hispanics). The regression results show that the 

significant correlation between the MGVI and the proportion of African Americans may be 

spurious, and the apparent negative relationship disappears when per capita income, proportion 

of owner-occupied units and spatial dependence were taken into account. The regression results 

also show that there exists no significant association between the MGVI and per capita income. 

In both OLS and SARlag regression models, the significant and positive coefficients of proportion 

of owner-occupied units show that neighborhoods with higher owner-occupied units tend to have 

more street greenery in Detroit. This means that the MGVI may have less to do with the issue of 

race/ethnicity and per capita income than it does with the issue of home ownership in Detroit. 

Non-significant spatial dependence of residual (Moran’s I = 0.04, z score =1.68) was detected 

in the OLS model in Pittsburgh, therefore, only the OLS model was used to investigate the 

association between the MGVI and independent variables. The OLS regression model explains 

44% of the variation in MGVI changes in 120 census tracts. The MGVI is significantly and 

positively associated with per capita income, proportion of African Americans, proportion of 

Asians, and proportion of owner-occupied units. There is no significant association between the 

MGVI and proportion of Hispanics. The built environment variable has a weakly significant 

association with the MGVI. 

Tampa is in the tropical and humid climate zone, tree planting and growth are supposed to be 
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much easier. Since a significant spatial autocorrelation of the error term was detected in the 

residuals of OLS regression model, the spatial regression analysis was also conducted in Tampa. 

The results of the ordinary linear regression model and the spatial regression model are presented 

in Table 6.4. The coefficients, z-values, and significance levels are shown in the table. The 

ordinary linear regression model and the spatial regression model (SARlag) show similar results. 

In both models, the MGVI is significantly associated with the proportion of owner-occupied 

units, and increases significantly with increases of the proportion of owner-occupied units. 

However, no significant association was found between the MGVI and racial/ethnic variables 

(proportion of African Americans, proportion of Asians, and proportion of Hispanics). There 

exists no significant association between the MGVI and the per capita income. Regression 

analysis results prove that in Tampa, the MGVI may have less to do with the issue of 

race/ethnicity and per capita income than it does with the issue of home ownership. 

The OLS regression results show that in St. Louis, the MGVI increases significantly with the 

proportion of Asians, and declines significantly with the proportion of African Americans. 

However, in the SAR model, there exists no significant association between the MGVI and the 

proportion of African Americans after controlling the spatial dependence effects. In both the OLS 

model and the SARlag model, the MGVI is not significantly associated with the per capita income, 

proportion of owner-occupied units, and proportion of Hispanics. Regression results show that in 

St. Louis, the environmental inequity is not serious in terms of the street greenery among 

different racial/ethnic groups and social classes.  

In Kansas City, the SAR regression model was used because of the significant spatial 
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dependence of the residuals in the OLS regression model (Moran’s I = 0.20, z score=7.25). The 

SARerr was used in Kansas City based on the results of Lagrange Multiplier and Robust 

Lagrange Multiplier tests. The regression results show that in Kansas City, the MGVI is 

significantly associated with the proportion of owner-occupied units and the median building age. 

The MGVI increases significantly with the proportion of owner-occupied units and the median 

building age. The proportion of Asians, proportion of Hispanics, and proportion of African 

Americans have no significant association with the MGVI. No significant association between 

the per capita income and the MGVI was detected. The regression analysis results prove that in 

Kansas City, the MGVI may have less to do with the issue of race/ethnicity and per capita 

income than it does with the issue of home ownership.  

 

Table 6.4 

The ordinary Least Squares (OLS) regression models and SAR regression models of MGVI and 

environmental justice variables for different cities. 

 

Cities Variables 
OLS  

 
SAR 

Coefficient z-values Coefficient z-values 

Boston Constant 9.21 4.84
**

  4.16 2.26
*
 

 Per capita income 0.01 0.78  0.003 0.24 

 Proportion of African Americans 2.04 1.45  1.09 0.91 

 Proportion of Asians 9.81 2.66**  5.00 1.59 

 Proportion of Hispanics 21.36 0.85  22.88 1.07 

 Proportion of owner-occupied units 8.14 4.40**  4.41 2.73** 

 Median building age -0.04 -1.60  -0.03 -1.22 

 Rho    0.55 6.74** 

 R2 

Adjusted R2 

0.17 

0.13 

  0.37  

 F-statistic 

Akaike info criterion 

4.98**    

823.94 
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 Moran’s I of residuals 0.23 (5.54**)     

       

D.C. Constant 12.29 3.86**  -3.24 -1.35 

 Per capita income 0.09 3.37**  0.06 3.33** 

 Proportion of African Americans 0.58 0.26  2.50 1.61 

 Proportion of Asians -21.29 -1.63  -7.71 -0.87 

 Proportion of Hispanics -1.74 -0.46  -2.26 -0.86 

 Proportion of owner-occupied units -0.04 -0.02  -1.57 -1.30 

 Median building age 0.01 0.42  0.05 2.50 

 Rho    0.84 15.42** 

 R2 

Adjusted R2 

0.23 

0.20 

  
0.62 

 

 F-statistic 

Akaike info criterion 

7.93** 

924.47 

   

820.67 

 

 Moran’s I of residuals 0.46 (17.37**)     

       

Philadelphia Constant 13.00 8.45  5.00 3.74** 

 Per capita income 0.09 6.00**  0.05 3.66** 

 Proportion of African Americans -0.934 -1.17  -0.75 -1.20 

 Proportion of Asians -8.21 -2.90**  -5.00 -2.27* 

 Proportion of Hispanics -4.72 -3.37**  -2.00 -1.78 

 Proportion of owner-occupied units -1.10 -0.98  -0.69 -0.79 

 Median building age -0.07 -3.87**  -0.03 -2.01* 

 Rho    0.66 13.85** 

 R2 

Adjusted R2 

0.28 

0.27 

  0.56  

 F-statistic 

Akaike info criterion 

23.08 

1974.04 

   

1834.71 

 

 Moran’s I of residuals 0.42 (14.39**)     

       

Baltimore Constant 11.84 3.01**  -0.66 -0.22 

 Per capita income 0.01 0.29  0.04 1.05 

 Proportion of African Americans 2.03 0.91  -0.07 -0.04 

 Proportion of Asians 33.90 2.54*  21.30 2.15* 

 Proportion of Hispanics -9.97 -1.42  0.36 0.07 

 Proportion of owner-occupied units 14.02 6.15**  6.34 3.73** 

 Median building age -0.12 -3.43**  -0.04 -1.40 

 Rho    0.94 26.28** 

 R2 

Adjusted R2 

0.27 

0.25 

   

0.58 

 

 F-statistic 11.15**     
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Akaike info criterion 1161.14 1068.64 

 Moran’s I of residuals 0.26 (16.68**)     

       

Denver Constant 10.72 7.08**  6.48 3.08** 

 Per capita income 0.06 3.20**  0.05 2.85** 

 Proportion of African Americans -12.60 -5.24**  -11.30 -4.79** 

 Proportion of Asians 0.21 0.02  0.58 0.07 

 Proportion of Hispanics -8.00 -5.70**  -5.93  -3.83** 

 Proportion of owner-occupied units -3.78 -3.25**  -2.26 -1.86 

 Median building age 0.12 7.90**  0.09 5.52** 

 Rho    0.31 2.88** 

 R2 

Adjusted R2 

0.72 

0.71 

  0.74  

 F-statistic 

Akaike info criterion 

48.85** 

556.01 

   

552.45 

 

 Moran’s I of residuals 0.064 

(2.74**) 

    

       

Detroit Constant 15.16 5.77**  4.30 2.09* 

 Per capita income 0.03 0.08  0.06 0.21 

 Proportion of African Americans -1.23 -0.61  -0.94 -0.64 

 Proportion of Asians -10.62 -1.94  -5.83 -1.47 

 Proportion of Hispanics -3.32 -1.18  -1.19 -0.58 

 Proportion of owner-occupied units 6.05 4.22**  3.28 3.10** 

 Median building age -0.003 -0.13  0.003 0.14 

 Rho    0.68 14.22** 

 R2 

Adjusted R2 

0.10 

0.08 

  
0.51 

 

 F-statistic 

Akaike info criterion 

4.76** 

1509.54 

   

1370.32 

 

 Moran’s I of residuals 0.51 (13.53**)     

       

Pittsburgh Constant 7.31 3.08**    

 Per capita income 0.12 3.94**    

 Proportion of African Americans 8.41 7.09**    

 Proportion of Asians 12.49 2.36*    

 Proportion of Hispanics 0.11 0.01    

 Proportion of owner-occupied units 12.46 7.75**    

 Median building age -0.07 -2.53*    

 Rho      

 R2 0.47     
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Adjusted R2 0.44 

 F-statistic 

Akaike info criterion 

16.81** 

606.48 

    

 Moran’s I of residuals 0.04 (1.68)     

       

Tampa Constant 16.71 7.23**  1.81 0.64 

 Per capita income -0.02 -0.57  0.01 0.21 

 Proportion of African Americans -0.58 -0.30  -0.42 -0.24 

 Proportion of Asians -14.64 -1.26  -14.15 -1.41 

 Proportion of Hispanics -0.74 -0.31  -0.35 -0.17 

 Proportion of owner-occupied units 5.18 2.58*  3.81 2.19* 

 Median building age 0.01 0.47  0.02 0.70 

 Rho    0.77 6.82** 

 R2 

Adjusted R2 

0.15 

0.10 

  
0.32 

 

 F-statistic 

Akaike info criterion 

2.52* 

436.30 

   

424.61 

 

 Moran’s I of residuals 0.10 (4.51**)     

       

St. Louis Constant 18.03 5.22**  11.38 2.72** 

 Per capita income 0.004 0.08  0.01 -0.34 

 Proportion of African Americans -5.67 -3.13**  -3.60 -1.95 

 Proportion of Asians 26.17 2.46*  26.38 2.69** 

 Proportion of Hispanics -15.00 -1.14  -19.16 -1.58 

 Proportion of owner-occupied units 0.000 0.02  0.42 0.20 

 Median building age 0.74 0.32  -0.01 -0.34 

 Rho    0.42 2.94** 

 R2 

Adjusted R2 

0.37 

0.33 

  
0.43 

 

 F-statistic 

Akaike info criterion 

9.06 

529.99 

   

524.63 

 

 Moran’s I of residuals 0.10 (3.28**)     

       

Kansas City Constant 8.57 3.76**  8.74 3.29** 

 Per capita income -0.03 -0.70  -0.01 -0.26 

 Proportion of African Americans -0.83 -0.42  -0.08 -0.04 

 Proportion of Asians 5.51 0.34  4.58 0.32 

 Proportion of Hispanics 0.30 0.07  3.72 0.94 

 Proportion of owner-occupied units 8.49 4.18**  7.83 3.99** 

 Median building age 0.15 6.76**  0.14 4.24** 

 LAMBDA         0.69 6.66** 
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 R2 

Adjusted R2 

0.31 

0.28 

  
0.44 

 

 F-statistic 

Akaike info criterion 

10.28** 

857.86 

   

834.17 

 

 Moran’s I of residuals 0.20 (7.25**)     

**Significant at the 0.01 level (2-tailed). 

*Significant at the 0.05 level (2-tailed). 
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Chapter 7 Discussion 

 

 

 

In this study, the GSV based MGVI was used to explore the uneven distributions of urban 

street greenery in residential areas among different socioeconomic and racial/ethnic groups in ten 

U.S. major cities. The objective of this study is to test the hypothesis that the environmental 

inequity in terms of street greenery is linked to the racial/ethnic makeup or socioeconomic status 

of residents. The GSV based MGVI, which is calculated based on static GSV images captured in 

different directions, was used to indicate the distribution of the street greenery.  

Different cities and different parts of cities have very different residential street greenery 

levels. Generally, the periphery parts of cities have more street greenery than the inner part of 

cities. The environmental inequities in terms of street greenery in different cities are different 

among different racial/ethnic and socio-economic groups. No consistent inequity was detected in 

different cities in terms of uneven distribution of the residential street greenery.  

 

7.1 The GSV based MGVI 

The MGVI method is more suitable for measuring the distribution of street greenery rather 
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than other types of urban greenery, like backyard greenery and urban parks. The MGVI was 

calculated based on street-level images at different horizontal and vertical view angles, thus 

representing the amount of street greenery people can see from the ground. Compared with the 

canopy cover and vegetation indices, the MGVI may be more suitable for quantifying the 

amount of street greenery in residential areas (Yang et al., 2009; Leslie et al., 2010). Although 

the canopy coverage and vegetation indices can be used to map the overall level of greenness in 

a specific area, it is difficult to quantify the amount of street greenery, which is distributed along 

linear features. Chapter 5 compared the MGVI with surrounding canopy coverage and averaged 

canopy height. Results show that the MGVI has a strong and positive correlation with the 

surrounding canopy coverage and canopy height. Therefore, the MGVI not just represents the 

amount the street tree canopies but also reflects the vertical structure information of street tree 

canopies. More street trees, larger canopy cover, and higher canopy height all contribute to large 

MGVI values.  

A map of the MGVI can effectively provide urban planners with detailed information on the 

spatial distribution of street greenery at the site level. Based on the site level MGVI map, the 

potential street greening sites can be easily delineated, which seems difficult using the canopy 

coverage indicators for this purpose. In urban settings, the MGVI is also affected by the layout of 

buildings and vegetation and the distance between trees and viewers. Therefore, in urban 

greening projects, planting trees close to pedestrians, choosing tree species with large canopies, 

or using large-size trees along streets all help to augment the MGVI. 

As a free online service provided by Google, Google Street View (GSV) covers cityscapes of 
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most U.S. cities. The GSV static images can be accessed and downloaded through the Google 

Street View static image API (Google, 2015) for any place with GSV available. Compared with 

Yang’s (2009) in situ image collection and manual green vegetation delineation method for 

calculating the green view index, the GSV-based MGVI in this study is calculated by 

downloading and processing online GSV images automatically. Therefore, the GSV-based MGVI 

method is time-efficient and suitable for street greenery assessment at large-scale level. In 

addition, the MGVI considers GSV images at three vertical angles and six horizontal angles, 

which could better represent what people on the ground really see or feel. What more important 

is that the GSV-based method can be used for street greenery assessment for any place where 

GSV images are available. This is very important for some areas, where high resolution remotely 

sensed data are not available. GSV would provide a free data source for mapping the spatial 

distribution of street greenery. Even for those areas with inventory data or high-resolution 

remotely sensed data available, the MGVI derived from GSV images would also provide an 

additional information about the distribution of street greenery, which is different from 

vegetation indicators derived from a land cover map or remotely sensed imagery. GSV images 

may be seen as an additional data source for geographers and urban planners in future urban 

studies and urban greening practices.  

 

7.2 Distributions of street greenery 

The MGVI maps show that different cities and different parts of cities have very different 

distributions of street greenery. Since this study focuses on the residential area, the MGVI maps 
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represent the residential street greenery level in living neighborhoods of different cities. Fig. 6.2 

presents the histograms of MGVI values at site level for all studied cities. Histograms show that 

different cities have very different amounts of residential street greenery. Cities of Washington 

D.C, Tampa, and Kansas City have relative normal histograms, and are greener than other cities 

in terms of street greenery. However, cities like Philadelphia and Boston have quite skewed 

histograms, and have less street greenery compared with other cities. In future, Philadelphia and 

Boston may consider taking measures to increase the street greenery level to develop more 

environmental friendly neighborhoods. Aoki (1991) suggested that most people would have a 

favorable impression of a street landscape if more than 30% of the view includes greenery. Based 

on Aoki’s criterion, many streets in the residential areas in these cities, should be given a higher 

priority in future urban greening projects. Considering the fact that street greenery is managed 

and maintained by public agencies, municipal governments can make some differences to the 

amount of street greenery by different policies and initiatives.  

Fig. 6.3 shows the spatial distribution of the MGVI at both site level and census tract level 

for all cities. Generally, the periphery parts of cities have larger MGVI values than inner parts in 

both of these two types of maps. This is not difficult to understand, because planting trees in 

densely urban areas is not as easy as the suburban areas. The physical environment in inner parts 

of city is usually hash for tree growth. In addition, there is no much space in the inner parts of 

cities for tree planting.  

 

7.3 Environmental inequities in terms of street greenery 
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The statistical results show that there is no consistent relationship between the MGVI and 

residents’ racial/ethnic and socio-economic statuses across different cities. The per capita income 

is not consistently correlated with the MGVI (Table 6.3). For example, in cities of Baltimore, 

Washington D.C, Philadelphia, St. Louis, Denver, significant positive correlations are detected 

between the MGVI and per capita income. However, in cities of Boston, Detroit, Pittsburgh, 

Tampa, and Kansas City, the correlations between per capita income and MGVI are not 

significant. The regression results show that there is no consistent relationship between the 

MGVI and per capita income after controlling other social variables. Generally, residents with 

higher per capita incomes tend to live in areas with more street greenery compared with those 

with lower per capita incomes (Jesdale et al., 2013; Schwarz et al., 2014; Pedlowski et al., 2002; 

Landry and Chakraborty, 2009). This trend could be explained by the fact that people with higher 

incomes tend to spend more money to choose or improve their living environments with more 

greenery for a series of benefits. Those areas with less street greenery may be more affordable 

for low-income people (Pham et al., 2012), and low-income people have less budget to maintain 

or increase the greenery around their properties. However, the relationships between the street 

greenery and residents’ socio-economic statuses are complex issues, and are affected by many 

social and environmental factors. Different cities have different urban planning histories, urban 

patterns, climate environments, soil types, racial/ethnic compositions, etc. All of these factors 

could affect the people’s incentives to greening their neighborhoods. For example, there exists a 

strong positive correlation between the per capita income and the MGVI in Denver (r = 0.652, 

sig < 0.01). After controlling the effect of building age, racial/ethnic variables, and lifestyle 
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variable, the association between the MGVI and per capita income is still very significant (coeff 

= 0.06, sig < 0.01). Denver is located in the semi-arid region, planting or maintaining street 

greenery is supposed to be much more difficult that other humid regions. This to some extent 

could explain the significant and positive coefficients for the per capita income in the regression 

models of Denver. However, in Tampa, results of both the bivariate correlation analysis and 

regression models show that there exists no significant correlation and association between the 

MGVI and per capita income. Different from the semiarid Denver, Tampa is located in a humid 

tropical climate zone. Its physical environment is much better than that of Denver for tree 

planting and growth. The different climates could explain the different associations between the 

per capita income and the MGVI in different cities. 

The relationships between the MGVI and the racial/ethnic variables vary across cities. Both 

bivariate analysis and regression models results show that there are no significant relationships 

between the MGVI and proportion of Hispanics in Washington D.C, Pittsburgh, Detroit, Tampa, 

and Kansas City. There is a weakly and significantly positive correlation between the MGVI and 

proportion of Hispanics in St. Louis. However, regression models show that the weak 

significance disappears in regression models after controlling other social variables (Table 6.4, 

St. Louis). In Denver and northeastern cities (Boston, Baltimore, Philadelphia, with exception of 

Washington D.C), the MGVI is significantly and negatively correlated with the proportion of 

Hispanics (Table 6.3). However, after controlling other social variables and spatial dependence, 

these associations in Boston, Baltimore, and Philadelphia become insignificant (Table 6.4). 

These statistical analyses show that there is no significantly less street greenery in neighborhoods 
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with Hispanics in these cities. In Denver, the association between the MGVI and the proportion 

of Hispanics is still very significant and negative in OLS and SARlag regression models. The 

negative coefficient (OLS model: coeff = -8.0, sig<0.01; SARlag model: coeff = -5.93, sig<0.01) 

of proportion of Hispanics shows that the MGVI decreases significantly with increases of the 

proportion of Hispanics even after controlling the effect of spatial dependence and other social 

variables. This clearly shows that Hispanics tend to live in neighborhoods with less street 

greenery in Denver.  

Bivariate analysis results show that the correlations between the MGVI and the proportion of 

African Americans vary in different cities. Regression results show that, generally, after 

controlling other social variables and spatial dependence, the significances disappear in all cities 

except Denver, Colorado. The relationships between the MGVI and the proportion of Asians are 

mixed across different cities. Bivariate correlation analyses show that the MGVI is significantly 

and positively correlated only in cities of Baltimore and St. Louis. The correlations are not 

significant in the rest cities. Regression results show that, after controlling the effect of other 

social variables and spatial dependence, the MGVI is negatively associated with proportion of 

Asians in Philadelphia, but positively associated with proportion of Asians in St. Louis, 

Pittsburgh, and Baltimore. In Philadelphia, the negative association between the proportion of 

Asians and the MGVI shows that Asians live in neighborhoods with less street greenery in 

Philadelphia. Considering the lowest street greenery level in Philadelphia compared with other 

cities, this situation is supposed to be even worse. Future urban greening projects and practices 

should put more efforts on neighborhoods with more Asians to decrease the environmental 
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inequities in terms of street greenery in Philadelphia.  

In accordance with previous studies (Li et al, 2015), bivariate correlation analysis shows that 

in almost all cities in this study, the MGVI is significantly and positively correlated with the 

lifestyle variable – proportion of owner-occupied units. Regression models further proved the 

relatively consistent positive associations between the MGVI and proportion of owner-occupied 

units in those chosen cities in this study. It seems that the homeowners are more willing to live in 

neighborhoods with more street greenery. The homeowners can also help to maintain the street 

greenery, which may also contribute to more street greenery. 

 

7.4 Limitations and future studies 

While this study demonstrates that GSV is feasible for assessing street greenery and may 

deliver useful street greenery information that was unavailable previously, there are still some 

issues that need to be resolved in future studies. The first issue concerns the time consistency of 

GSV images. Google provides the acquisition date of street view images, which provides the 

information for researchers and practitioners to better match environmental conditions with their 

data analysis and study outcome. Since this study analyzed the street greenery over a period of 

five years, the neglect of accurate image dates may not have a great effect on the analysis. 

However, for some studies focusing at a specific time point, the time consistency could matter. 

Therefore, how to keep the time consistency is an important issue for future GSV applications in 

assessing urban green spaces.  



118 
 

Secondly, too many GSV images captured in non-green seasons may affect the applications 

of GSV for urban greenery studies. Originally, this study selected 26 major U.S. cities; however, 

more than half of these cities were removed from the further analyses because of the clustered 

non-green sample sites in those cities. Actually, Google is still updating the Google Street View 

images, and there could have GSV images captured in different seasons or different years for one 

site. Although it is possible to collect the time information of GSV images, it is still impossible 

or difficult to use Google Street View to investigate the multi-temporal changes of street 

greenery, because the current method is still not able to access the GSV images for any specific 

time point. In this study, many major cities were not included in the analyses because there are 

too many sites have GSV images captured in non-green seasons in these cities. It could be 

possible to access GSV images at different time points in future, since Google has already 

collected historical GSV data and presented it online. In future, the new version of the Google 

Street View Image API may let users to access to GSV images for any available time point. 

Therefore, future studies should also focus on the temporal changes of the MGVI in different 

cities.  

Thirdly, different types of urban greenery show very different distributions across different 

neighborhoods. Different types of urban greenery are managed and maintained in different ways, 

therefore, different measures should be taken to reduce the environmental inequities in terms of 

different types of urban greenery. The proposed GSV based MGVI measures the amount of 

street greenery from the perspective of the visibility of urban greenery. The visibility of urban 

greenery may have direct connections with the sensory functions of urban greenery, since the 
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green view would influence human perception of the environment and human activities. 

However, the visibility of urban greenery may have no direct connection with other physical 

benefits provided by the urban greenery, such as mitigation of urban heat island, air pollution, 

and urban floods. Therefore, different methods should be used to thoroughly evaluate the 

benefits of urban greenery from different perspectives. In addition, the GSV images were all 

collected along streets, and not all cityscapes are covered. Therefore, the proposed GSV based 

MGVI is more suitable for the assessment of street greenery but not suitable for other types of 

urban greenery, although the MGVI may also cover some backyard greenery.   

This study used the fixed census tract as the geographic unit for the statistical analysis. There 

would have the modifiable areal unit problem (MAUP). This is because the MGVI was 

calculated at site level along streets. However, aggregating site level maps to census tract level 

will inevitably cause some loss of information or bias. In this study, those GSV sites on the 

border of two neighboring census tracts were removed to solve the MAUP problem to some 

extent. Future studies should investigate the effect of the MAUP on the reliability of the 

environmental inequity analysis results thoroughly.  

 The relationship between the street greenery and residents’ socio-economic status is a 

complex issue. Climate, demographics, policy, density of city, and city size could all be the 

potential factors for influencing the relationships between MGVI and social variables (Schwarz 

et al., 2015). In this study, only the social variables from census data were considered on 

investigating the environmental inequities among different racial/ethnic and socio-economic 

groups. In future studies, more factors should be considered, such as the different residential land 
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use types (downtown, multifamily residential land, single-family residential land), residents’ 

cultural backgrounds, climate zones, etc. Trees need many years to grow, and tree-planting 

projects cannot get immediate effects on the local greenness. The mismatch between the physical 

environment and the social status could also make the relationships between street greenery and 

social variables vary. In addition, the ACS data has large margin-of-errors, which will also 

increase the uncertainty in investigating the relations between street greenery and social statuses 

of local residents.  

In addition, urban greenery is not always an environmental amenity. It may increase the 

budget for cleaning the dead leaves and branches. The root of the street greenery could break the 

road conditions along the streets, especially the walkways. It could enhance the damage of 

storms. The dead branches could cut the wire, which further bring inconvenience to local 

residents. In rural areas, there have enough space for tree planning and there have no as much 

impervious surface as the densely populated cities, the importance of street greenery of other 

kinds of green spaces may not be highlighted. Planting trees in the dense urban areas is not easy, 

and it could be a big financial burden to the municipal governments. In addition, people from 

different cultural backgrounds may have very different opinions about the urban greenery. Future 

study should also investigate public opinions on different types of urban greenery.
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Chapter 8 Conclusions and Contributions 

 

 

 

The study used millions of static Google Street View (GSV) images to investigate the 

environmental inequities in terms of street greenery in ten U. S. major cities. As a novel data 

driven geographical study based on GSV, this study provides an example to geographers to 

utilize geo-tagged GSV images for geographical analyses. Different from the traditional 

remotely sensed data, which usually represent the overhead view of geographic features, the 

GSV images capture the profile view of cityscapes. The profile view of cityscapes is closer to 

what people can see or feel on the ground than the overhead view. Therefore, the GSV based 

MGVI may be more suitable to represent the greenness of neighborhoods in terms of what 

people see or feel on the ground. In addition, the Google Street View cars have taken pictures 

of streetscapes all over the world. Google keeps updating the GSV images on Google Maps 

periodically. It is a great data source for urban studies in future.  

Different cities and different parts of cities have very different residential street greenery 

levels. Generally, the periphery parts of cities have more street greenery than the inner part of 

cities. The cities of Washington D.C, Tampa, and Kansas City generally have more residential 

street greenery than other cities. Philadelphia and Boston have the lowest residential street 
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greenery levels compared with other cities in this study.  

The environmental inequities in terms of street greenery in different cities are different 

among different racial/ethnic and socio-economic groups. No consistent inequity was 

detected in different cities in terms of uneven distribution of residential street greenery. In 

cities of Washington D.C, Philadelphia, Pittsburgh, and Denver, people with lower income 

levels tend to live in areas with less greenery while those with higher incomes live in greener 

areas. In cities of Boston, Baltimore, Pittsburgh, Detroit, Tampa, and Kansas City, the 

proportion of owner-occupied units is positive associated with street greenery levels. The 

proportion of Hispanics and the proportion of African Americans are not significantly 

associated with the amount of street greenery in almost all cities except in Denver. In Denver, 

the environmental inequity problem among different racial/ethnic groups is significant. The 

Hispanics and African Americans tend to live in neighborhoods with less street greenery. 

The street greenery provides many benefits to urban residents meeting various and 

overlapping goals. The existence of the street greenery is an important factor of life quality in 

densely urban areas. The street greenery is a kind of publicly financed facilities, and it relies 

heavily on the public investment. In other way, the public agencies or municipal governments 

can do something to modify the distribution of street greenery to reduce the environmental 

inequities. In the future, more attention needs to be paid on increasing the residential street 

greenery in those critical areas where environmental inequities exist. This could help to 

balance the living greenness among different socioeconomic groups in different cities. 
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