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ABSTRACT 

 

REMOTELY SENSED HEAT: VARIATION AND CHANGE IN SURFACE URBAN 

HEAT ISLANDS IN A TEMPERATE ECO-REGION OF THE UNITED STATES 

Jeremy Sandifer 

April 21st, 2017 

 

  Urban heat island (UHI) is a term used to describe increased surface and 

atmospheric temperatures in an urban core relative to surrounding non-urbanized areas.  

To examine the variability introduced into derived estimates of the surface UHI, this 

study constructs and compares multiple remotely sensed indicators of the surface UHI for 

major metropolitan cities of a temperate eco-region of the United States.  The Moderate 

Resolution Imaging Spectroradiometer (MODIS) 8-day, 500-meter product (MOD11A2) 

is the source data used to calculate six different RS-derived UHI indicators for the year 

2002 to 2012. The different SUHI indicators are evaluated using the Spearmans Rho 

rank-order correlation statistic to assess agreeability for 2012 and consistency over time 

2002 to 2012.  Inconsistencies exist in monthly rankings between indicators, and the 

degree to which the indicators detect change over time.  Results suggest that land cover 

based indicators are highly correlated compared to urban heat island driven indicators in 

terms of magnitude and change over time. 
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CHAPTER 1.  GENERAL INTRODUCTION 

Introduction to the Urban Heat Island 

 Since the Industrial Revolution, humanity has acquired the technology and energy 

resources to sustain high levels of economic activity, resulting in large-scale changes to 

the surface of the Earth, with perhaps the most obvious being our local weather (Oke 

1997). One of the most prevalent impacts from the changes to Earth’s surface is the 

subsequent increase in impervious surfaces coincident with the increased number people 

living in urban areas. Less than 1 billion people lived in urban areas in 1950 and that 

increased to 3.9 billion by 2014, corresponding to 54% of the global population residing 

in all urban areas with some of the highest growth rates observed in developing regions 

of the African, Asian, and South American continents (U.N. 2015).  While the meaning 

of the term urban will vary according to where in the world one is looking, in the U.S., 

systemically designated urbanized areas are defined by the United States Census Bureau 

as any spatial clustering of populations greater than 50,000 people and the adjacent 

supporting infrastructure and commercial developments to be included. These urban 

developments have generally replaced predominantly vegetation-covered environments 

with a range of impervious building materials, such as concrete and asphalt that are 

effective sinks (absorbers) of daytime solar energy and efficient radiators of that energy 

as well, generally resulting in an overall increase in temperatures.  As a result, the term 

urban heat island (UHI) was coined to describe the diurnal-to-seasonally variable effect 
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of air and surface temperature difference between the urban core and its surrounding 

areas (Oke 1982; Hung et al. 2006).  It is generally agreed upon that the most important 

underlying driver of the UHI effect is the amount of impervious surface relative to the 

surrounding areas (Yuan and Bauer 2007; Stone, Hess, and Frumkin 2010), and that 

increasing vegetation densities effectively dampen the magnitude of the effect (Shi, Tao, 

and Liu 2014; Zhang, Wu, and Chen 2010).   

Voogt and Oke (2003) distinguish two classes of UHI phenomena, atmospheric UHI- 

a warming of the air of both the urban canopy layer and boundary layer circulation, and 

surface UHI- representing only the emitted thermal energy or ‘skin’ temperature of the 

urban surface.  Active investigations of the urban heat island effect begin to appear 

starting in the 19th century (e.g. Howard 1833; Gordon 1921) and continue consistently 

on a global basis and using a variety of spatial scales and approaches.   Local ground 

based observations (measurements taken from less than 2 meters from the surface) are 

generally used to observe local atmospheric temperatures and regional stations are 

commonly combined to generate more widespread empirical studies using this kind of 

field data (Kopec 1970; Westendorf, Leuhart, and Howarth 1989).  Recently, the 

magnitude of UHI effects in major U.S. metropolitan areas with urban populations 

greater than one (1) million were calculated using meteorological data drawn from the 

Global Historical Climatological Network (GHCN) and found to be increasing over time, 

particularly in the Southeast and Mid-west regions (Stone 2007).  Louisville, Kentucky, 

in particular, has been ranked among the largest UHI signals in the U.S. (Kenward et al. 

2014) as well as the highest decadal rate of increase in UHI magnitude from 1961 to 2010 

(Stone 2012).    
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 The UHI effect for larger metropolitan areas across the United States is 

increasingly viewed as a health and environmental problem with the highest UHI signals 

measured for cities such as Phoenix, AZ, Indianapolis, IN, and Atlanta, GA (Stone 2012; 

Kenward et al. 2014).  Indeed, previous research has shown that the greatest potential 

temperature difference between urban areas and the surrounding landscape exist within 

the temperate forested eco-regions, precisely, where the majority of urbanization took 

place in the U.S. (Imhoff et al. 2010; Stone 2012).  The growth in urbanization displaced 

some of the richest agriculturally productive land areas and had a surprisingly 

disproportionate impact on the environment (Shi, Tao, and Liu 2013).  For perspective, 

consider that the conversion of only 3% of the U.S. natural land areas to urbanized areas 

essentially off set the coincident gains in the Net Primary Productivity (NPP) associated 

with the conversion of another 29% of the natural land areas to intensive crop agriculture 

during that same period (Imhoff et al. 2010).  Seemingly, small changes to the 

environment, in this case a small change in proportional land cover, can potentially have 

outsize impacts, especially in the temperate mixed forest ecoregions. As cities continue to 

expand (spatially) in this region of the U.S., it is important to observe and understand 

how localized changes compare to other places and to understand how the changes are 

directly affecting the local environmental conditions.  Negative impacts associated with 

the urban heat island effect are expected to increase along with the rise in temperatures 

due to climate change (Altman 2012) including the loss of native biodiversity (Alberti 

2005; Ernstson et al. 2010), reduced air quality (Stone, 2008) and other impacts to human 

health (Tan et al. 2010).  The specific focus here on the temperate eco-region ensures the 

differences detected are attributable to the unique physical characteristics of the 
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individual study cities as opposed to other underlying, large-scale influences such as 

predominate weather patterns or extreme elevation, for example, that would otherwise 

complicate comparisons between locations. 

Modeling the Urban Heat Island Effect 

 Conceptually, a model of the UHI as a physical phenomenon is an appropriate 

simplified representation of the real-world inter-relationships that exist between the 

constituent parts of the environment that collectively drive the distribution of surface 

temperatures in an urban area (Mirzaei 2015).  There are various model types and each 

type necessarily designed to highlight some particular attribute of the UHI at the expense 

of others, all in an effort to minimize the number of complexities associated with 

representing the “real-world” ground conditions.  The finest spatial scale or “micro-scale” 

includes the use of localized urban geometries to describe the urban heat dynamics that 

result from, among other things, restricted horizontal air advection and increased 

convective forcing from adjacent surfaces and how they impact levels of human comfort 

and building performance (Mirzaei 2015).  The information derived from the use of these 

models is used to design and measure the efficiency of various strategies for mitigating 

the undesirable impacts of the UHI effect, green roofs or reflective concrete, for example 

(Stone 2012).  While very high in spatial detail and information, the relationships 

quantified using micro-scale models are typically very limited in the spatial extent at 

which they are to remain accurate and useful. The computational effort can be quite large 

too and require specialized equipment.    

 Meso-scale models, on the other hand, generally apply to larger geographic 

extents and represent more broadly the generalized spatial relationships that exist 
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between ambient environmental conditions (total portion of forestland cover or elevation, 

for instance) and the distribution of urban heat.  The relationships described using meso-

scale models broadly describe common behaviors of the UHI process across large areas 

and can be summarized using statistical functions and applied directly to estimate the 

distribution of urban heat where data may not be available, both spatially and temporally.  

Many contemporary examples employ a range of meso-scale models in conjunction with 

other spatial data to describe changes in surface temperatures based on changes in, for 

example, land-cover (Yuan and Bauer 2007; Zhang, Wu, and Chen, 2010), land-use 

(Middel et al. 2012), and levels of urbanization (Zhou, Huang, and Cadenasso 2011; 

Clinton and Gong 2013; Zheng, Myint, and Fan 2014).  This utility comes at a price, 

however, in the form of a decreased ability to detect unique or localized influences 

specific to relatively few locations. 

 Most recently, efforts have involved the use of a combination of models that 

encompass co-variant information at many different spatial and temporal scales.  The 

widespread adoption of geographic information systems (GIS) paralleled with 

improvements in computational efficiency have allowed for easy access to enormous 

amounts of data that can be accurately placed within the appropriate geographic context 

and overlaid with various other data types of different spatial extents and resolutions to 

be summarized using any of a number of statistical functions.  In theory, generated 

functions can “couple” or fill the void between the different spatial scales of the layered 

data, and so offer potential for modeling information not readily apparent using one of 

the datasets alone (Mirzaei 2015).  The models are important and especially useful 

because the parameters of the generated models can then be manipulated to project 
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changes in urban heat distribution when given a quantity of change in the modeled co-

variant data.  Other contemporary meso-scale studies have projected changes in urban 

heat distribution by incorporating measures of spatial-temporal variation of socio-

economic attributes of the population (e.g. Buyantuyev and Wu 2010) and effects of 

proposed land-use policy of human mortality (e.g. Stone et al. 2014).  This diverse range 

of studies and models has provided general confirmation that the UHI is a consistent 

modern environmental process across a wide range of geographic settings. 

Remote Sensing-Derived Estimates of SUHI Effect 

 While air temperature comparisons made using meteorological station data is the 

most direct measure of the UHI (Voogt and Oke 2003), it is often the case that permanent 

spatially dispersed meteorological stations lack sufficient spatial resolution for regional 

comparative studies.  Studies utilizing station-based data typically use a single 

representative meteorological station within the city center and compare readings from 

that single location to one or more proximate rural stations to assess the observed 

differences in air temperature, the urban heat island.  While valuable in terms of tracking 

long-term trends at regional and continental scales (i.e. Hanson et al. 2001), it lacks a 

spatially explicit component and can only be expected to represent the land areas 

immediately upwind of the station (Voogt and Oke 2003).  Extrapolating point-based 

measurements to larger areas necessarily, but arbitrarily, simplifies heterogeneity in 

surface conditions and leaves in question the actual relative differences between and 

within cities in terms of the UHI effect, especially for geographically complex locations.  

Remote sensing of the UHI, in contrast, can potentially yield more spatially explicit detail 
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regarding the distribution of signal intensity quantified using a variety of surface UHI 

indicators (Schwarz, Lautenbach, and Seppelt. 2011). 

 Remote sensing based studies of the surface urban heat island effect have provided a 

basis of evaluation in terms of understanding the dynamics of these complex 

environmental phenomena.  For example, Jin, Dickinson, and Zhang (2005) utilized the 

global coverage of the Moderate Resolution Imaging Spectro-radiometer (MODIS) to 

characterize the SUHI for most continental land areas between approximately 30 and 60-

degree N latitude at 5km spatial pixel resolution.  Urban and rural areas delineated using 

the 250m MODIS land cover product confirm the constant presence of the SUHI and 

support generally the known effects of the urban heat island, that larger cities tend to 

have higher temperatures, as much as 1 degree Celsius per 100 km2 of developed land 

area, for example.  More significantly, that increased land area also has 

disproportionately higher near surface atmospheric temperatures during heat waves; 

values amplified by the concentration of developed land cover of as much as 56% (~ 0.5⁰ 

C) or nearly double the additional contribution of 29% (~ 0.25⁰ C)  increase due to 

anthropogenic heat releases (Chen, Wang, and Zhu 2014).  Furthermore, the casual 

relationships were significantly stronger in the temperate mixed forested ecological 

settings compared to coastal or grassland settings, for example.   Interesting ecological 

anomalies include northern latitude urban areas that are cooler than the surrounding rural 

lands during the summer daytime (Ontario, Canada), and the little or reversed UHIs in 

arid environments where the relatively moist vegetated center cities surrounded by 

generally high albedo (Tempe, AZ), but shrubby and transpiration-limited desert 

surroundings (Imhoff et al. 2010).   
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While each of these SUHI modeling approaches have something to contribute to our 

overall understanding of the generation of the SUHI phenomena, they can lack 

consistency in their respective estimates when used for large geographic extents 

(Schwarz et al. 2012) and across different varying ecological contexts (Imhoff et. 2010).  

These inconsistencies are explained in large part by project oversights in explicitly 

defining how the representative areas (urban vs non-urban) are delineated, accounting for 

urban area spatial extents, and differences in the particular time of year analyzed (Stewart 

2011).  Among the most important (and commonly overlooked) considerations of the 

remote sensing approach for deriving estimates of SUHI intensity involves the 

delineation of representative urban and non-urban land areas from which surface 

temperatures are aggregated and summarized.   

Schwarz, Lautenbach, and Seppelt (2011) distinguished two primary classes of 

surface UHI indicators, 1) UHI-driven as relative difference in mean LSTs of the ‘urban 

core’ versus the surrounding ‘rural’ areas and 2) land-cover driven measures that quantify 

differences in mean LST of representative land covers.  These conceptual models differ 

primarily in how the non-urban or ‘rural’ is defined and the types of additional input data 

needed to calculate the UHI measure.  The land-cover based model (i.e. Tomlinson et al. 

2010) use a priori definitions of land cover to differentiate the urbanized land areas 

(built-up, impervious cover) from the non-urban areas (natural or agricultural land) where 

the difference in mean LST of each representative class is used to calculate the UHI 

magnitude.  The UHI-driven model (i.e. Zhang and Wang 2008) involves creating a 

single representative measure of the ‘urban core’ LST and then subtracting the 

surrounding ‘rural’ or non-urban land area mean LST to calculate UHI magnitude. The 
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UHI-driven measurements most closely resemble those derived using data from 

permanent meteorological stations and help to explain the spatially-explicit nature of 

increased urban temperatures and account for the full spatial extent of the affected areas.  

Given the inconsistencies, noted above, between the various SUHI indicators 

implemented across studies, a major contribution of this current study is to systemically 

compare estimates of SUHI intensity obtained using a set of common SUHI indicators 

across multiple locations to quantify the degree of variability in results. 

This study uses multiple approaches to constructing the surface UHI indicators (Table 

1) for each of the cities while systematically controlling for urban spatial extent and the 

real fractional representation of land cover types.  Controlling for these variables makes it 

easier to assess the variation that may be attributable to the selection of a specific SUHI 

indicator. I compare six (6) different SUHI indicators found in the literature (Table 1) 

that rely on the MODIS sensor for regional analysis.  This particular group of indicators 

are previously utilized in similarly situated regional comparative studies investigating the 

variation introduced by use of different SUHI metrics for continental Europe (Schwarz, 

Lautenbach, and Seppelt 2011) and so gives good context for assessing the results for this 

current study 
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Table 1.  Surface Urban Heat Island Indicators with associated references listed. 
 

 

The importance of the various characteristics of each study location varies according 

to the indicator selected and all indicators may not always be appropriate for all selected 

locations, even within the same ecological context.  To avoid the kind of bias propagated 

by the use of a single indicator, combinations of multiple indicators better accommodate 

site-specific spatial heterogeneity in surface urban heat island conditions across 

observations (Schwarz, Lautenbach, and Seppelt 2011).   Land cover driven comparative 

indicators compare representative urban versus a surrounding buffer: difference urban-

rural (Tomlinson et al. 2010), or the difference between local representative land cover 

types: difference urban – agricultural (Jin, Dickinson, and Zhang 2005) and difference 

urban-other (Zhou et al. 2010) and so highlight the broadest range of conditions for each 

area.  Urban heat island driven indicators efficiently summarize the distribution of the 

values and indicate single highest values such as magnitude (Rajasekar and Weng 2009) 
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or the amount of land area impacted by increased heat such as, hot island area (Zhang 

and Wang 2008), and the micro island (Aniello et al. 2005).   

Research Question 

 The overarching research question addresses the spatiotemporal distribution of 

surface urban heat island effects for large metropolitan areas within a temperate eco-

region of the conterminous United States.  As detailed above, the temperate mixed 

forested eco-region is especially sensitive to changes in the composition of the landscape, 

even when the overall change in spatial extent seems relatively minor.  This research is 

assessing the useful of the various indicators for systemically comparing multiple 

locations in order to determine relative urban heat island intensity and to determine the 

degree to which the indicators consistently measure any change over time.  This 

overarching research question further divided into three parts for clarity: 

1. What is the spatial variation in SUHI values based on individual indicators for 

each metropolitan area aggregated by month for the year 2012?   

2. When ranked according to SUHI value, do these rankings remain relatively 

consistent throughout the year and across each of the SUHI indicators?  

3. Do the derived surface UHI indicators suggest a pattern of overall increases in 

monthly SUHI intensity from 2002 to 2012 for Louisville, KY and other locations 

within the same temperate region?   

Recent studies suggest that cities such as Louisville, KY, Atlanta, GA, and 

Philadelphia, PA are undergoing significant increases in urban heat compared to other 

U.S. metropolitan areas (Stone 2012; Kentward et al. 2014) and I will assess whether this 

increase is consistently detected regardless of the type of indicator used to measure that 
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change.  In a similarly organized integrated study, surface and atmospheric temperatures 

were mostly consistent (~ 0.1⁰C difference) during the day and only modestly divergent 

(within 2⁰C) at night (Schwarz et al. 2012).  Furthermore, when the locations 

(corresponding pixel and associated station location) are ranked and evaluated using 

Pearson coefficients, the relationship is significant, though only for the immediate 

sampling area.  The larger an area used to aggregate the LST sample caused the 

correlation of the ranks (LSTs vs air) to decrease proportional to size of the sampling 

area.  By evaluating the various indicators, I will assess whether or not consistently in 

measurements exists across each of the indicators as would be suggested by the 

documented relationship between LST and air temperatures. 

Objectives and Hypotheses 

 In order to address these research questions, this study focuses on two primary 

objectives.   The study objectives are to 1) determine the distribution of SUHI values for 

the study location by month and over time and 2) examine the degree to which the 

various indicators produce consistent results, both, on an annual basis and over time.  The 

following hypotheses are addressed: 1) that the monthly value rankings for metropolitan 

areas are consistent across each SUHI indicator for the year 2012.  In other words, does 

each indicator produce similar rankings for each time step?  2) That the SUHI value 

rankings for each metropolitan area are consistent across each month for the year 2012 

regardless of SUHI indicator used for analysis. In other words, for a given indicator, do 

you get the same order each month of the year in 2012?  3) That the monthly SUHI 

indicators are consistent over time for all study locations for 2002 to 2012.  Do we see 
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any significant change during this time period for any of the locations for any of the 

indicators?  

Rationale for Study 

 The urban heat island is a direct result of anthropogenic changes to the physical 

composition of the landscape over time and, as such, serves as a vivid example of man-

made climate change (Stone 2012).  The global human population is continuing to 

urbanize rapidly (U.N. 2015) and continued transformation of land surface from 

vegetative to impervious materials will contribute to increases in urban heat island 

intensity.  Given this reality, the significance of the study involves the practical matter of 

creating a record of observation (baseline) of the UHI and the recent rate of growth in 

intensity as it relates to using the various remotely sensed metrics for the assessment of 

mitigation strategies. Identification of past and on-going patterns of urban heat 

development can assist urban managers and decision makers in coping with the 

uncertainty associated with planning for the impacts of future developments.  In addition, 

through the comparison of the different remote-sensing metrics, this study will potentially 

yield important insights regarding the selection of appropriate measures of the surface 

UHI for further study within this temperate eco-region to determine the precise mix of 

casual factors that lead to the development of extreme urban heat.  Lastly, this study will 

help us understand what exactly each UHI indicator is able to tell us about the size, 

intensity, and, more importantly, the impact (inferred from spatial-temporal distribution) 

of the UHI effect across this biologically important region.  
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CHAPTER 2. METHODS 

Study Area 

The UHI process of urban heating is driven primarily by the conversion of naturally 

vegetated landscapes to impervious surfaces and subsequent reductions in the latent heat 

flux (i.e. reduction in evapotransipirative cooling potential) compared to the surrounding 

(and still vegetated) hinterlands (Oke 1982).  The magnitude of the urban heating is 

therefore not only a function of the amount of land cover change (i.e. size of urban area), 

but of the pre-existing ecological context (eco-regions) within which this change occurs.  

Therefore, to minimize the influence from differing climatic and vegetation regimes, the 

study region (Figure 1) is constrained to the land area contained within the temperature 

broadleaf and mixed forest eco-region of the U.S. as defined by Olson et al. (2001).   

Within this temperate eco-region, the metropolitan areas selected for analysis are non-

coastal urban areas with populations greater than 750,000 persons, for a total of 26.  As 

the UHI effect is primarily a manifestation of urban development associated with 

increases in human population (Oke 1982), it is appropriate to use estimates of population 

density for delimiting urban settlements.  United States Census Bureau designations of 

urbanized areas (UAs) include only those contiguous census tracts with densely settled 

populations of 50,000 people or more (Ratcliffe et al. 2016) including areas containing 

adjacent supporting infrastructure such as roads and shopping centers.  Land areas falling 
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within the delineated boundaries serve as the urban core for each of our study cities, 

while the land area falling beyond these boundaries serve as the non-urban or ‘rural’ 

areas. 

 

 
 

Figure 1. Study region is constrained to U.S. Temperate Broadleaf and Mixed Forest Eco-
region (Olson et al. 2001) and urban areas with populations of at least 750,000. 

 

 

Land Surface Temperature (LST) Data 

 This study uses the Moderate Resolution Imaging Spectroradiometer (MODIS) 

MOD11A2 8-day mean composite data for day-time land surface temperatures (LSTs) 

resampled to a spatial resolution of 500 meters using the cubic convolution resampling 
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method before being zonally summarized.  Many remote sensing-based studies have 

proven the suitability of the MODIS LST data products for use in urban heat analysis 

across a wide range of geographic settings and focused at regional spatial scales (i.e. 

Hung et al. 2006; Tomlinson et al. 2010; Imhoff et al. 2010; Schwarz, Lautenbach, and 

Seppelt. 2011).  The larger extent of the MODIS imagery allows for the simultaneous 

measurements of much more land area at once and provides coincident measurements of 

each study location, potentially reducing the uncertainty associated with the observations. 

The data was captured by NASA’s Terra satellite over the study region at 

approximately 10:30-11 EST (15:30-16 UTC) and 2:30-3:30 EST (19:30-20 UTC).  

MODIS data level-1 pre-processing includes a generalized split window algorithm (Wan 

and Dozier 1996) that corrects for absorption and emission effects of the atmosphere. The 

MODIS composite data has proven consistent with in situ LST measurements with root 

mean squared differences of less than 0.5 K (Wan 2008).  It has shown, however, that 

temporally aggregating MODIS data can inflate the difference in LSTs between urban 

and rural areas with the largest increases observed for summer months (Hu and Brunsell 

2013). 

 Data procurement procedure was adapted from pre-existing work using the R 

programming language, exploiting the ftp download capabilities associated with the 

MODIS archive and evaluating the quality of each image before generating date specific 

image mosaics (Stevens 2015).  Calculations on each 8-day MOD11A2 image layer 

implemented using the ArcPy package in Python resulted in 8-day SUHIx database 

tables.  Data summaries compiled and hypothesis evaluations performed using a range of 



17 

 

statistical packages and adapted code available for the R programming language. 

Complete references and adapted code attached in the appendix for reference. 

 

 
 

Figure 2.  Diagram illustrates (approx.) the processing of the MODIS LST images to 
create the mean SUHI values used in the analysis for 2012 calendar year. 

 

Land Cover Classification Data 

Many of the SUHI indicators utilized in this study are derived from comparisons 

between zonal aggregations of LST pixels that fall within given land cover types.  To 

represent the land cover characteristics of the study region, this study utilizes the 500m 

MODIS MCD12Q1 Collection 5 global land cover product derived from MODIS satellite 

multi-spectral imagery, ground-based ‘truth-ing’ data, and a range of supporting ancillary 

information.  The land cover estimates are derived from ensemble decision-tree 

classification algorithms that are fed additional information describing the a-priori 

probability of land cover classes based on the prior years’ data.  Overall classifications 
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accuracies are reported above 75% (Friedl et al. 2010) and generally within 85% 

agreement with the commonly utilized National Land Cover Dataset (NLCD) (Imhoff et 

al. 2010). 

 The land cover imagery downloaded for all available dates from 2002 to 2012, so 

land cover-specific measurements were constrained to those years only.  The land cover 

classification product algorithms are based on an evolving ensemble of models, ancillary 

data and iterative training samples and have been shown to be 75% accurate in forest 

dominated areas, class-specific accuracies are varied (Friedl et al. 2010).  Land cover 

classification labels are probabilistic and mostly appropriate for coarse representation of 

spectrally distinct classes, so small changes in area or in density may not be properly 

represented within.  The global vegetation classification scheme (IGBP) layer extracted 

and reclassified from the original 17 classes into the four (4) composite classes and 

utilized to calculate the indicators in Table 2.  Land cover proportions were quantified for 

each of the included study cities and incorporated below as attributes (or characteristics) 

of the observations.  The land covers quantified include agriculture, forest, urban, and an 

‘other’ category containing all other land covers, with water excluded.   

 Land cover proportions for each location are summarized for each annual time 

step by simply counting the number of pixels classified as each land cover type that falls 

within each urban boundary.  The difference in land cover totals between the year 2012 

and 2002 is used to describe any land change trajectories taking shape in the study region. 
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Figure 3.  MODIS-derived land cover distribution across the land area within the 
temperate mixed forested eco-region at 250-meter spatial resolution (2012 is shown for 
reference). 

 

Calculation of the Surface Urban Heat Island Effect 2012 

 For this study, six remote-sensing (6) indices were constructed from each MODIS 

LST image and then aggregated to monthly mean surface urban heat island (SUHI) effect 

for each of the twenty-six (26) largest major metropolitan areas within the temperate 

mixed forest eco-region for the year 2012.  For each study location (N=26) six (6) 

different SUHI indicators are calculated; three based on the urban heat island-driven 

approach and three based on the land cover driven approach for each time step, and then 

summarized by month. Specific discussion of these indicators found in above sections 
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highlight significant differences between them while original references provided in 

Table 1 provide additional source overview. 

 The land cover driven SUHI indicators (Table 1) differ primarily in how they 

represent the differences in land surface temperatures between representative ‘urban’ 

spaces versus ‘natural’ or ‘rural’ environments and each provides a different perspective 

(i.e. mean of area vs max value observed)  Each of the land cover based calculations 

conveniently expressed as: 

Mean LST of urban area – Mean LST of rural area = SUHIx  (Eq. 1) or 

Mean LST of urban cover – Mean LST of non-urban cover = SUHIx  (Eq. 2), 

where, the difference (SUHIx) in land surface temperatures (LST) between the urban 

and rural (non-urban) environments is aggregated by month for each of the indicators 

(SUHIx) for time period.  The UHI driven indicators are statistical evaluations of the all 

observations that highlight highest individual occurrences (MAG) or measure the spatial 

extent (HIA, MIC) of increased LSTs and percentages (%) of total land area that meet 

some summary threshold expressed simply: 

(CountP = = SC) / TotalP * 100 = SUHIx (Eq. 3), 

where, all of the land area pixels (CountP)  that meet a certain numeric threshold 

(==SC) are measured as a fraction of the total number of land area pixels (TotalP) that 

make up each study location.  The fractional value is multiplied by 100 to convert to new 

value of percentage units (%).  Calculations carried out for calendar year 2012 to evaluate 

hypotheses 1 and 2 to coincide with the latest available MODIS global land cover dataset, 

while the full length of the dataset (2002 to 2012) was considered for hypothesis 3.  

Complete code attached in the appendix for reference. 
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Calculation of Change over time 2002 to 2012 

 Much of the interest in this project involves the temporal patterns of SUHI 

intensity for each location in terms of change over time.  In testing for significant change 

over time, each of the SUHI indicators that use only boundary designations (HIA, MAG, 

and DUR) are composed of LST values from the period during January 2002 to 

December 2012. The land cover driven indicators relied on MODIS land cover estimates 

that were not available for the full temporal extent of the MODIS LST data, so these 

indicators (DUA, DUO, and MIC)   consider only January 2002 to December 2012.  A 

simple linear model (SUHI ~ time) applied using R: 

Ym = C + T β m  +  ɛ                (Eq. 4) 

where T is the length of time of each location’s (m) LST record (Y) and β equals the 

increase in Y per time step in T.  C is the y-intercept constant and the error (ɛ) is assumed 

to be zero for the purposes here.  The generated Beta coefficients (β) describe the 

approximate increase in SUHI over time with significance evaluated according to 

calculated p-values (p < 0.05).   This simple analysis applied to all of the locations 

separately for each month and each indicator.
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CHAPTER 3.  RESULTS 

Descriptive Overview of Surface Temperatures  2012 

Here a summary is presented to outline the relevant measurements used to derive the 

estimates of the SUHI effect so that the reader gets a sense of the numeric distribution of 

values for this study region. Figure 3 below provides a good example of the way LSTs 

vary according to the distribution of the land cover.  In the bottom left of the image is an 

automotive factory surrounded by impervious surfaces and, consequently, has higher 

temperatures relative to the still developing residential areas in the upper right of the 

image.   
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Figure 4.  MODIS land surface temperature data (500m) with underlying RGB natural 
color image illustrates how temperatures graduate between land cover types.  Image of 
northeast Louisville, KY in April 2012. 
 

Figure 4 highlights the seasonal nature of mean LSTs for both the inner urban 

boundary as well as the mean LSTs of an associated 20km buffer representing the 

surrounding “rural” comparison.  The relative difference in magnitude between the mean 

urban and rural temperatures is at a maximum during the summer months and converges 

significantly during the winter months.  Annually, the urban and rural area mean LSTs 

for all of the study locations range from 5 - 35⁰C.   Figure 5 highlights the similar 

seasonal trends for other statistical summaries of LSTs within the urban boundaries of the 

study locations, including the minimum, maximum, and calculated range. The seasonal 

nature of the summary values is evident as it coincides with the peak observations in the 

summer months and are significantly cooler during the winter months.   Rural and urban 
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means essentially follow the same pattern as the summary statistics sharing coincident 

maximum and minimum mean temperatures trends. 

 

 

Figure 5.  Box plot distributions of the LSTs within the urban boundary areas versus the 
surrounding rural area summarized by each month of 2012. 
 

 

 

Figure 6.  Descriptive summaries for within urban area boundaries by month for 2012.  The 
maximum, minimum, and range shown as MAX, MIN, RANGE, respectively. 
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Land cover portions of land cover type for each urban area are quantified and 

summarized in Figure 6.  Proportions of each land area vary considerably across each 

location, with a few areas having minimal coverage for some land types, minimal 

agricultural land in Hartford, CT or the sparsity of forested land cover in Indianapolis, IN 

for example.  The land cover product does not make a distinction between different types 

of built-up areas, classified pixels tend to be permanent and are classified as urban when 

the amount of all impervious built areas (parking lots, building roofs, etc.) contained 

within the pixel boundary reaches a certain size (>50% of the overlying pixel).  This type 

of land cover summary allows us to put into context the observed SUHI values for each 

location, for example, areas containing more classified urban pixels would presumably 

have highest SUHI values compared to an area dominated by forest.    The land cover 

classes can be a bit limiting in terms of detail as a wide range of potential urban area 

types with, very different physical characteristics, are included in the same class, heavy 

industrial locations and more pedestrian locations like city-parks, for example.  It is the 

case too that the newest urban developments do not show up in the data in terms of the 

generation of new urban classified pixels.   
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Figure 7.  Land cover distribution (2012) calculated from the MODIS land cover data 
(250m) for each of the study areas.  Original IGBP data are reclassified from the original 
17 classes into 4 land cover classes needed as input for SUHI indicators. 

 

 

Surface temperatures are aggregated spatially according to each land cover type and 

the difference taken between the mean values from each class (urban, ag, etc.) to obtain 

the relative differences between particular land cover types (difference urban-

agricultural or difference urban-other, for example) as discussed in the methods above.  

Land surface temperature values, shown in Figure 7, show a similar seasonal pattern to 

summary statistics above in terms of the timing of peak values, seasonal trends in 

magnitude of the values, and the decreased intra-class variance during the summer 

months.  Timing is especially important in this region because of the wide range in 

latitude and longitude included in this study region, particularly as it relates to the timing 

of the greening up of vegetation, as southern cities like Baton Rouge, LA are likely to 

begin the process earlier than Minneapolis, MN.  This differential timing presumably is 
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accounting for the higher variance in SUHI values leading up to the summer where the 

variance is considerably less.  Surprisingly, classified urban land cover is generally cooler 

than agriculture lands for each time step, though this difference gets smaller as the year 

progresses to June and July.  Agricultural land covers are the warmest throughout the 

year followed closely by classified urban, the other covers, while forested areas are the 

coolest as expected. 

 

 
 

Figure 8.  Box plot distributions of classified land cover-specific LSTs values for all 
locations and summarized by each month of 2012. 
 

Descriptive Overview of Surface Urban Heat Island 2012 

Calculation of the surface urban heat island were summarized into monthly mean 

values for the year 2012 for each of the indicators described in Table 1.  The land cover 

driven indicators are highlighted together in Figure 8.  This approach looks at the 

numeric distribution of LSTs for each representative land cover within each study 

location, per Equation 1 above.  Each of the indicators follow the same general seasonal 
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behavior as exhibited by the various land cover samples with smaller ranges in the winter 

months and the greatest variance in the summer times.  The DUA indicator too highlights 

the higher temperatures observed year round for agricultural land, indicated by the 

continuous negative values, particularly during the summer months. 

The urban heat island- driven indicators were summarized into monthly mean 

values for the year 2012 for each of the SUHIx indicators.  Only the land areas within the 

urban boundaries are considered when aggregating surface temperature values for 2012, 

shown in Figure 9.  In contrast to the land cover based comparisons treated above that 

indicate a highly seasonal pattern of variation, two of the three here do not reflect that 

pattern, instead, the HIA indicator is remarkably consistent throughout while the more-

land-cover-sensitive MIC indicator follows multi phase pattern of high and low variance, 

presumably, coinciding with leaf on/off conditions.  The timing of the phase shifts 

generally coincide with the start of the growing season and at the end of the growing 

season when most areas are cleared.  The HIA is relatively consistent over the course of 

the year and does not share the same seasonal patterns seen with the previous indicators.   

Overall, the DUR indicator is higher than the other indicators every month of the year 

and peaks in July, as do the urban and rural land area LSTs.  Each of the remaining 

indicators peak earlier in the year in May, long before the peaks in LSTs for the 

respective land cover types.  This behavior is shared among all types of generated values 

(land cover LSTs and calculated SUHIs) and each has the minimum variance in the peak 

annual warming (June-July) and substantially greater variance during spring and fall 

months, again coinciding with the leaf on/off transition periods. 
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Figure 9.  Box plot distributions of calculated SUHI indicators difference urban-ag, 

difference urban-other, and difference urban-rural, shown in legend as DUA, DUO, and 
DUR, respectively and summarized by month. 

 

 

 

Figure 10.  Box plot distributions of calculated SUHI indicators hot-island area, 

magnitude, and micro-island area, shown in legend as HIA, MAG, and MIC, 
respectively and summarized by month. 
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Ranking Locations According to SUHIx for 2012 

The numeric data represented in the graphs above are converted to rankings in order 

to compare the cities according to how large the respective SUHI is for each area.  

Rankings for each of the land cover driven indicators are shown in Tables 2-5 and 

illustrate very well the seasonal nature of the rankings.  For example, if you look at Baton 

Rouge, LA the position of the DUR ranking shifts vry abruptly from near the bottom 

(19th ) in August to the top (1st) for the next 3 months.  Albany, NY ranks at the top 

(DUR) and near the bottom for each of the other indicators during the first several 

months of the year (February – June), highlighting again the differences in how each 

SUHI describes different aspects of each location.  The behavior witnessed for other 

study locations like Birmingham, AL, Louisville, KY, and Nashville, TN, show abrupt 

changes in rank position connected to the seasonal nature of agricultural activities and the 

leaf on/off patterns of deciduous-dominated forest.  The changes in SUHI rankings from 

month to month are likely influenced by site-specific localized and seasonal atmospheric 

conditions (weather) and associated environmental conditions (ecological context) and 

fall within the same context as the differential timing of the leaf on-off transitions. 
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Table 2.  Surface urban heats island (SUHI) rankings for all study locations for each 
month of the year.  Noted here are the difference urban-rural (DUR) area (top) and 
difference urban-ag (DUA) land cover (bottom) indicators. 
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Table 3.  Surface urban heats island (SUHI) rankings for all study locations for each 
month of the year.  Noted here are the difference urban-other land cover (top) and micro-
island area (bottom) indicators. 

 



33 

 

 

Table 4.  Surface urban heats island (SUHI) rankings for all study locations for each 
month of the year.  Noted here the hot-island area (top) and magnitude (bottom) 
indicators. 
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Do the indicators give us the same monthly rankings 2012 (H 1)? 

 

The next item involves the degree to which the rankings derived from each indicator 

agree at each time step.  Here, The Spearman’s Rho matrix is used to compare the 

correlation in the monthly rankings for each of the indicators.  Results are summarized in 

Tables 5- 7.  

Overall, the indicators do not consistently provide the same rankings, though July is a 

noteworthy exception.  In July of 2012, the rankings generated from all of the indicators 

are correlated with one another except the MIC, likely because this is the warmest part of 

the year and the difference in LST is maximized between land covers and so too the 

SUHIs derived from them.  This lends support to most urban heat island studies choosing 

to focus on this part of the year and this finding suggest that the chance of varying results 

due to choice of indicator is minimized for this period.  

Regarding matches among particular indicators, the DUR and HIA are correlated 

during the months of February – June, August, October, and November.  This pairing 

certainly makes sense given that high HIA values indicate a great portion of the local 

land area is relatively warmer and so likely to be still warmer than the rural areas.  Each 

of these indicators describe a slightly different aspect of the SUHI, on the difference 

between the urban and rural (DUR) and the total land area that is impacted by LST 

greater than the local mean (HIA) and both of them generally reinforce each other in 

terms of the physical processes involved in the UHI.  This reinforces the idea that a larger 

percentage of urban land as a total portion of land area drives a larger difference in the 

overall mean temperatures in that urban area, relative to the surroundings.  Essentially, 
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the large warm core of LST increases the mean of the urban area, leading to a larger 

difference between those local urban and rural areas.  The HIA indicator is also often 

correlated (January, October, and November) with the MAG variable, which makes sense 

too considering that higher large spatial clusters of warmer temperatures (HIA) and likely 

to have at least a few extreme values, which are particularly emphasized by the MAG 

indicator, especially during the cooler months of the year.   

Another pair frequently correlated with one another are the DUA and the MIC 

indicators, significant in February to April and September to November.  The relationship 

here though is less clear, though, it seems that the seasonal changes in vegetation, 

including forest leaf-on/off conditions and the agricultural cycle, are likely the factors 

here.  As noted above, locations with heavy portions of agricultural lands, such as 

Birmingham, AL and Indianapolis, IN, lack corresponding areas of forest.  Other 

indicators seem to have often matches, such as the correlation between the DUA and 

DUO indicators, or the high correlations between the MIC and MAG indicators; 

however, they are not always consistent throughout the year compared to the instances 

just noted.   

  



36 

 

 

Table 5.  Spearman’s Rho rank correlation values and associated p-values for January 
thru April for the difference urban-agriculture, difference urban-other, difference urban-
rural, hot-island, magnitude, and micro-island indicators. 
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Table 6.  Spearman’s Rho rank correlation values and associated p-values for May thru 
August for the difference urban-agriculture, difference urban-other, difference urban-
rural, hot-island, magnitude, and micro-island indicators. 
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Table 7.  Spearman’s Rho rank correlation values and associated p-values for Sept thru 
December for the difference urban-agriculture, difference urban-other, difference urban-
rural, hot-island, magnitude, and micro-island indicators. 
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Do the rankings stay the same during 2012 (H 2)? 

Here I answer the second hypothesis that deals with whether or not the indicators will 

generate the same order of rankings each month, given a particular indicator. As before, I 

make use of the Spearman’s Rho ranking order correlation statistic for comparing the 

ranking of each indicator for correlation at each monthly time step. Results are 

summarized in Tables 8-10. 

The land cover based indicators (DUA, DUO, MIC) that exploit the differences 

between land cover types show almost perfect stability throughout the year with 

significant rankings for each time step, as evidenced by the p-values.  This suggest that 

the difference between each of the land cover types is fixed for a given location in a 

categorical sense and has little to no variation during the year.  This further suggests that 

the relative difference in temperatures for a given set of land cover types is fairly 

consistent across cities, and that perhaps these LST are a function of the physical 

attributes of the location (i.e. relative portion of built land area). 

The urban heat island based indicators (DUR, HIA, MAG) that compare only the 

distribution of values within the urban boundary is less consistent during the year.  The 

DUR indicator, for instance, is less stable compared to the land cover indicators whereas 

the mid-year months do not correlate to the periods before and after.  The summer 

months of June and July are not correlated with the other months, so that apparently, the 

rankings in the spring are no indication of the rankings to be observed in the summer.  

The HIA indicator is also is less stable during the first months of the year, but does show 

some consistency in the summer months when potential inter-class land cover differences 

are maximized.  It certainly makes sense that the locations with the overall warmest 
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surface features are likely to remain as such during the warmest months of the year.  The 

HIA indicator follows the same general pattern as the MAG and does not correlate 

consistently with the other months.   
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Table 8.  Spearman’s Rho rank correlation values, associated p-values (shaded) for each 
month of 2012 for the difference urban-rural (DUR) and the difference urban-agriculture 
(DUA) indicators.  Significant change denoted (p < 0.05). 
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Table 9.  Spearman’s Rho rank correlation values, associated p-values (shaded) for each 
month of 2012 for the difference urban-other (DUO) and the micro-island area (MIC) 
indicators.  Significant change denoted (p < 0.05). 
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Table 10.  Spearman’s Rho rank correlation values, associated p-values (shaded) for each 
month of 2012 for the hot-island area (HIA) and the magnitude (MAG) indicators.  
Significant change denoted (p < 0.05). 
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Do the SUHI indicators show change 2002 to 2012 (H 3)? 

The land cover driven indicators relied on MODIS land cover data that were not 

available for the full temporal extent of the MODIS LST data, so the analysis here is 

constrained to the 2002 to 2012 timeframe.  Table 11 highlights the major trends in land 

cover change for each of the study locations.  The most significant trend observed 

involves the almost universal loss of agricultural land compared to 2002 levels, such as 

the steep declines in Louisville, Syracuse, NY, and Washington, D.C. of 40%, 63%, and 

36%, respectively. The major exception in terms of agriculture land loss is Atlanta’s gain 

of 84% and other comparatively modest increases in Memphis, TN and Baton Rouge, 

LA, at 6% and 1.5%, respectively.  The amount of urban land cover is nearly all 

consistent (0%) with small increase observed in Pittsburg, PA of 0.2% and the only 

registered negative growth in urban land in Minneapolis, MN at -0.1% compared to 2002 

levels.  The other significant trend in the land cover is the large increase in forested land 

cover, including a tremendous increase of 180% in Syracuse, NY and other substantial 

increases in Columbus, OH, Indianapolis, IN, Philadelphia, PA, at 122%, 56%, and 46%, 

respectively.  This increase in classified forested land cover is not as widespread as the 

loss of cropland, however, and some places like Louisville, KY, Atlanta, GA, and 

Raleigh, NC have significant decreases in overall forested land cover of 10%, 48%, and 

21%, respectively.   

While this study is not directly concerned with the specific mix of casual factors 

driving the variation in surface urban heat island values, observing the trajectory of land 

cover change lends additional context within which I can interpret the findings.  Based on 
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the observed trends above, I have some reasonable expectations as to how the SUHIx 

values have likely changed during the time 2002 to 2012.   
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Table 11.  Change in land cover portions (2002 to 2012) for each of the land cover 
classes used to derive the SUHI indicators are tabulated and the difference describes the 
trajectory of change. 
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Tables 12-14 below highlight the significant changes detected using the simple linear 

model (SUHI ~ time).  The beta coefficients represent the modeled change in SUHI per 

time step (2002-2012?)for a given indicator for a given location.   

Very evident among the land urban heat island-based indicators (DUR, HIA, MAG) 

are small, but consistent increases over time for most of the locations, particularly during 

the spring months of March, April May, coinciding with the early part of the temperate 

growing season.  Many of the significant changes for these indicators are in 

geographically dispersed locations and are statistically significant during this time 

including Albany, NY, Atlanta, GA, and Charlotte, NC, each with significant increases in 

the spring months.  It is certainly noteworthy that none of the locations register a decrease 

in the DUR indicator over time, no matter the situation with land cover trajectories as 

discussed in the previous section, perhaps suggesting a the link between vegetation 

increase and SUHI is less important at this particular time.  Conversely, the same 

locations that have experienced large increases in forest cover have experienced a 

commensurate decrease in the HIA indicator, which is more a measure of the area 

impacted by high temperatures, as opposed to a measure of the potential difference 

between urban and non-urban areas.  This is important to consider further, especially in 

terms of measuring the efficiency of common mitigation efforts undertaken by public 

agencies, particularly tree planting efforts.  The MAG indicator is less telling and shows 

no discernible trends in terms of timing or direction of change.   Only sporadic significant 

change is detected such as small increase in Louisville, KY in February and Albany, NY 

in June, and most locations indicate none at all. 
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Highly prominent among the land cover-based indicator (DUA, DUO, MIC) results is 

a consistent negative growth in the DUA indicator, which means the potential LST 

difference between the land cover classes in increasing, agricultural lands are apparently 

warming up compared to the urban areas, as evidence by the consistent significance.   

These increases, many of which are statistically significant, are particularly found during 

the growing season, both in early spring (March) and in the peak of summer growing 

season (July).  This behavior is observed not only in places where agricultural land is 

decreasing such as Charlotte, NC and Louisville, KY, but also in the few locations that 

have increased their agricultural land holdings, such as Atlanta, GA and Baton Rouge, 

LA.  The other land cover based indicators are more consistent and stable over time while 

the DUO indicator is less conclusive in terms of any popular trending or change over 

time.  In most cases, the DUO indicator shows no change over time, is not consistent in 

terms of direction of any change, and is not statistically significant in most cases.  The 

“other” land cover category is a kind of catch for land cover pixel falling outside of the 

major categories, so lack of systemic behavior is not unexpected.  The MIC indicator 

likewise is highly variable in terms of strength of measured change, the direction of 

change, timing of change, and the statistical significance of that change.  Many site 

specific exceptions are found, however, with particularly strong examples of increases 

over time for this indicator found at Birmingham, AL, Cincinnati, OH, and Indianapolis, 

IN that all show significant increases during several months of the year.  Conversely, 

Grand Rapids MI, and Albany, NY, Columbia, SC each register significant decreases for 

multiple months of the year, particularly during the summer. 
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Table 12.  Regression generated beta coefficients (β) estimate change over each time step 
of the record for each indicator.  Significant change denoted (*).  N ≈ 48 for each 
iteration. 
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Table 13.  Regression generated beta coefficients (β) estimate change over each time step 
of the record for each indicator.  Significant change denoted (*).  N ≈ 48 for each 
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Table 14.  Regression generated beta coefficients (β) estimate change over each time step 
of the record for each indicator.  Significant change denoted (*).  N ≈ 48 for each 
iteration. 
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In order to see the specific areas of change, I simply apply the linear model to each of 

the pixels in Louisville, for example, against time (same analysis perform for H3) to see 

how each individual has changed from 2002 to 2012.  Figure 13 indicates the distribution 

of calculated p-values for the month of March (2002 to 2012), where values less than 

0.05 indicate significant change.  It is evident that the areas most impacted by the 

conversion of agriculture land to some other class is where the majority of the significant 

pixels lie.  Figure 10 shows the distribution of the corresponding beta values and indicate 

the magnitude of change experienced during 2002 to 2012, in some places as much as 0.2 

per time step.  While all pixels in the Louisville area are calculated to have some positive 

change in LSTs, the areas with the largest changes in land cover are the most likely to be 

of any significance, particularly the areas in the northeast section of the Louisville urban 

boundary where high population growth has driven that change in land cover, 

presumably. 
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Figure 11.  Pixel based analysis of LST changes for the Louisville, Kentucky area.  P-
values of 0.05 or lower indicate significant change over time (March 2002 to 2012). 
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CHAPTER 4.  DISCUSSION 

 

I have examined the seasonal distribution of LSTs for urban and rural areas and for 

classified land cover types urban, agriculture, forest, and other to derive estimates of the 

SUHI DUA, DUO, DUR, MAG, MIC, and HIA for 26 U.S. cities with populations greater 

than 750k.  Land cover portions were also summarized for each location on an annualized 

basis from 2002 to 2012.  This study has answered all of the stated hypothesis to the 

degree that I can generalize the results and understand what they mean in terms of better 

understanding spatial and temporal variation in the distribution of LSTs and SUHIs in 

this region.  All locations were ranked according to the observed SUHI on a monthly 

basis for the year 2012, those rankings were subjected to a Spearman’s Rho Ranking 

Correlation analysis to quantify the degree to which the indicators agreed (H1) and the 

whether or not those rankings remained consistent throughout the year (H2).  SUHI 

values were calculated for each location (2002-2012) and those temporal records were 

subjected to simple linear regression against time to check for significant change over 

time (H3).  Here I discuss how the various results further an understanding of the 

overarching research question involving the spatial and temporal distribution of the 

SUHI. 
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Comparison of the Different SUHI Approaches 2012 

All classes of measurements show the same general annual variation for 2012, though 

the timing of the maximum values varies according to the land covers involved in the 

calculation.  Maximum for most LST and SUHI values were observed in July and the 

minimum occurred in January coinciding with the seasonal nature of Earth-Sun geometry 

confirming at least that these indicators are responding to broad changes in the physical 

environment in a consistent manner. Overall, the Spearman’s Rho test suggest that not all 

of the SUHI indicators are generating the same rankings each time, in line with previous 

studies comparing the similarities between various indicators (Schwarz, Lautenbach, and 

Seppelt. 2011; Steutker 2002), however, each indicator is genuinely describing some 

aspect of the SUHI that will affected by various underlying factors.  Comparisons 

between locations using different time steps would not be appropriate, especially 

considering the examples of cities holding positions at both the top and bottom positions 

simultaneously.  This study area is vast and so has an extensive north-south component 

and so too a significant timing differential between when the seasonal vegetation will 

begin and end. based on this difference in latitude.  Previous studies have noted changes 

in the variance of LSTs and the direct link to latitude dependent seasonality (Imhoff et al. 

2011; Jin, Dickinson, and Zhang 2005).  

Interestingly, all indicators share a pattern where the classified agricultural land cover 

is consistently warmer than the other land cover types, inconsistent with expectations 

based on previous results (i.e. Jin, Dickinson, and Zhang 2005).  One possible reason for 

this could be the timing of the LSTs measurements of the day-time MOD11A2 product, 

which occur before the peak warming of the diurnal cycle and thereby are cooler than the 
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maximum potential at the time of the measurement.  On a global basis, agricultural land 

cover has a lower maximum temperature than urban area Jin, Dickinson, and Zhang 

2005), but an induced warming effect of 0.5⁰C was detected when considering the impact 

of increased use of irrigation on daily minimum temperatures in eastern China (Shi, Tao, 

and Liu 2013).  The irrigated farmland has a higher minimum surface temperature (i.e. 

nighttime temperature) due to its specific capacity to absorb energy during the day and 

therefore responds faster to increases in daily insolation, relative to the classified urban 

land areas.  This study was unable to distinguish between the various land use activities 

taking place within the classified agricultural areas, such as irrigated versus rain fed 

farming or the small urban developments that may have occurred.  We know too, from 

the correlation ranking results, that the rankings derived from land cover based indicators 

DUA and DUO are consistent during the year and that in Louisville, KY, for example, 

but the difference in urban and agriculture cover is getting incrementally smaller over 

time.  This would further suggest that we are missing activities that are taking place 

within the classified land cover.  Here, the small increases in residential developments 

(urbanization) that are in fact lowering the capacity of the land cover to absorb and retain 

heat, in line with previous indications of the potential for urbanization in former farmland 

to reduce maximum temperatures (Shi, Tao, and Liu 2013). 

Recall that almost no urban areas experienced an increase in urban areas, yet each 

cities would have accommodated some increase in population at the expense of some 

preexisting land cover, presumably agricultural land.  The mixing of the agricultural land 

cover with the new developments should serve to lower temperatures and is supported by 

the decrease in the difference between classified urban and agricultural land cover.  At 
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the same time, the area based DUR indicator is mostly stable over time for most 

locations, suggesting the processes are at work in both the urban and surrounding areas, 

and therefore, the net change in area-based measurements is minimal.  Essentially, the 

difference in surface temperatures between land cover types (DUA, DUO) is the same in 

all places (~ 1⁰C), but the aggregate SUHI indicators (DUR) for each location is more a 

factor of the amount of each of the land cover present in each location and so has a larger 

variance than would be suggested otherwise. 

The HIA and MIC indicators have very different distributions compared to the other 

indicators and so offer perhaps the most informative perspective of the SUHI that 

indicates how much of the total land areas of each location is actually impacted by 

extreme LSTs.  The fact that these two indicators lack a seasonal component similar 

would seem to indicate that the areas impacted by extreme heat is fixed for a given area, 

and this is partially supported by the almost perfect monthly correlations of the MIC 

rankings for 2012, though the HIA monthly ranking are not as stable.  These results are 

consistent with previous findings derived from continental Europe that compared these 

same indicators for the months of June and January (Schwarz, Lautenbach, and Seppelt. 

2011).  

Spatial Distribution of Surface Urban Heat Island 2012 

The rankings resulted in a mixed bag, at times producing simultaneous high and low 

rankings for a single locations including Albany, NY in the summer months (as the most 

extreme example) and other cities like Syracuse, NY, Baton Rouge, LA, and Louisville, 

KY periodically holding positions at both ends of the spectrum.  The correlation data 

generated for H1 highlights the moderate degree of agreeability among the land cover-
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derived indicators, though H2 shows these indicators to be very consistently ranked 

during the year, except for the winter months (where potential differences are at a 

minimum).  The urban heat island driven indicators, shown by H1 to do not agree among 

each other, yet are highly correlated with other individual indicators and complement our 

understanding of the SUHI, including HIA to DUR (relationship between urban cover 

percent and increased LSTs) and the MIC to MAG (inverse relationship of forested cover 

to increased LSTs).  The urban heat island driven indicators are shown by H2 to be 

considerably less consistent throughout the year, though the summer months are 

relatively consistent and presumably follow the trajectory of the growing season. 

As an example of the growing season based timing differential, the cities of Baton 

Rouge, LA is among the highest ranked location for the DUR indicator and the city of 

Minneapolis, MN is ranked near last, until the positions flip later in the growing season, 

presumably once the vegetation in MN has had a chance to grow.   

Surface Urban Heat Island Change over Time 2002 to 2015 

Evaluation of H3 also gives mixed results where many locations have SUHI values 

that are actually decreasing over time; some locations even have simultaneous positive 

and negative growths depending on the indicator considered.  Many locations show 

significant increases over time, especially in the spring and summer, include 

Philadelphia, PA, Columbus, SC, and St. Louis, MO of up to 0.1, 0.2, and 0.2⁰C/year, 

respectively.  Perhaps more importantly, many other locations such as Baltimore, MD, 

and Cincinnati, OH are indicating significant summer increases in the portion of total 

land area impacted by high LSTs of anywhere from 0.02 to 0.08 % per year, while other 

SUHIs for those locations may indicate little or even negative growth during that same 
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time.  Interestingly, Louisville, KY has shown a significant increase in the overall LST 

difference between the urban areas relative to the surrounding 20km buffer summer 

months of up to 0.01⁰C/year (June) while the LST difference between urban and 

agricultural land has been decreasing by 0.01⁰C/year during a co-incident period.  

Furthermore, this location is actually experiencing a decrease for total land area impacted 

by extreme heat (greater than 1 standard deviation above the local mean) in March, the 

start of the growing season. 

While this current study did not attempt to address the individual factors contributing 

to changes in LSTs, a simple examination of the landscape change trajectories in the 

study locations can clarify why we may be witnessing sometimes-contradictory trends 

across the various indicators.  Recall from Figure 7 that agricultural lands demarcated by 

the MODIS land cover product have the highest mean temperatures for most of the year.  

Compared to 2012, nearly all locations had considerably more agricultural land areas in 

2002 within the urban boundary areas.  A significant decrease in the amount of 

agricultural land, as per the mean land cover temperatures, would necessarily result in 

some decrease in the aggregate LST, therefore, a drop in the agriculture land within the 

urban boundaries lowers LSTs overall.  However, a larger coincident decrease in 

agriculture land for the corresponding rural area would then necessarily experience an 

even larger decrease in LST and result in a comparatively smaller relative difference 

between the urban and rural land areas.   

Limitations in Current Study 

While the remote sensing approach, as detailed above, has proven especially useful 

for quantifying and integrating spatially explicit distributions of environmental 
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parameters (e.g. LST and land cover type), there are other important limitations to 

consider for this study.  First, this study relies on the use of SUHI indicators that 

emphasize different features and may not accurately portray all of the contributing 

elements important to the formation of the SUHI (Stewart 2011).  This over 

simplification of SUHI formation is necessary due to the complexity and effort involved 

in assembling a comprehensive dataset that mimics the spatial scale of the individual 

processes contributing to SUHI formation (Mirzaei and Haghighat 2010). Simplification 

creates additional uncertainty because influences at differing scales (i.e. regional 

atmospheric circulation versus urban geometry) are not included, so any emerging results 

offer an incomplete picture at best.  This study emphasizes a range of indicators based on 

urban area boundaries and classified land cover because land cover, both proxy measures 

of the anthropogenic influences on the physical environment, to development more 

comprehensive understanding of the SUHI at a regional spatial scale (Stone 2012).  The 

use of multiple types of SUHI indicators compensates for the specific focus of the 

individual indicators (Schwarz, Lautenbach, and Seppelt 2011) and yields a more diverse 

perspective than could be obtained otherwise.   

The primary limitation of the MODIS land cover data in this study is the large surface 

area aggregated for each pixel (500 meters) that obscures the small-scale features within 

this complex area limiting the degree of detail represented in the dataset.  Whether or not 

a small (but significant) patch of forested land cover is represented in the land cover data 

depends on the exact alignment of the product pixel boundaries and the underlying land 

cover orientation.  The individual patches are sometimes bisected and therefore less 

likely to meet the surface area threshold (majority) required to label that pixel as forest.  
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The significant impact or this current study is that many features and land cover patches 

(such as newly planted tree clusters) will be underrepresented in the final product (Friedl 

et al. 2010) and possible not detected at all in the coarse land cover product.  Land cover 

products with better spatial resolution exist, such the National Land Cover Dataset (30 

meters), but the temporal resolution is every 5 years and so fails then to capture the year 

to year variation in land cover distribution.  This study compromises high spatial 

resolution of land cover types for temporal consistency due to the short interval of time 

we have to work with (2002 to 2012). 

Another issue limiting the potential usefulness of the research is that the imagery 

collected was specific to the daytime overpass.  Many previous studies focus on the 

daytime due to the greatest potential for differences between representative urban and 

non-urban sites (Oke and Voogt 2013; Schwarz, Lautenbach, and Seppelt. 2011), yet the 

greatest potential risk to human health due to local elevated temperatures is at night, 

when elevated temperatures prevent needed cooling (Altman 2012).  The overall 

magnitude of the SUHI is generally smaller at night, especially for temperate mid latitude 

locations (Imhoff et al. 2010), but the impact to public health of seemingly small increase 

is potentially large for urban residents (Stone 2012).  Future efforts for this project will 

focus on integrating nighttime measurements for a more complete understanding of the 

dynamics of the SUHI. 

 This current study has illustrated several approaches to quantifying the status and 

trajectory of the SUHI for many of the largest U.S. cities and reported seemingly 

contradictory outcomes, highlighting the importance of properly constructing the research 

objectives to align with the information provided by the selected indicator. For example, 
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recall that Albany, NY experienced an increase in forested land cover of 132% from 2002 

and 2012, yet observed a co-incident increase in temperature difference between the 

urban and surrounding rural areas.  The impact of the canopy increases on the change in 

temperature difference between urban and rural is unclear, but trending up while the 

micro-island indicator clearly shows that the total area impacted by high temperatures 

decreased significantly during this time.  The perspective regarding how well the 

increased forest area has helped to mitigate increased temperatures could be interpreted in 

multiple ways depending upon the perspective of the question, the difference between 

magnitudes of SUHI as oppose to extent of, for example.  This finding reinforces earlier 

findings (Schwarz et al 2011) and further highlights the importance of proper selection of 

one or more indicators for SUHI comparisons in alignment with research objectives. 
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CHAPTER 5.  CONCLUSION 

 

Within the context of the research question posed and the results generated from the 

evaluation of each hypothesis, three main conclusions are drawn from this study: 1) that 

choice of indicator and 2) timing of observation affects the outcomes (sometimes), and 3) 

the amount of change detected for any place is dependent on the choice of indicator.   

The choice of indicator can substantially influence the SUHI effect observed for a 

given location.  When ranked according to value magnitude, some locations occupied 

conflicting positions within those rankings, holding both high and low positions 

simultaneously.  This behavior is witnessed across multiple locations and has been 

reported previously in similar regional based studies (Schwarz et al. 2012: Schwarz, 

Lautenbach, and Seppelt. 2011).  The occurrence of that behavior here too suggest that 

the rankings based on any one kind of indicator (i.e. Stone 2012; Kenward et al. 2014) 

should be considered as only a partial explanation the overall dynamics of the urban heat 

island effect.   

Just as important, in terms of consistent measuring of the SUHI, the timing of the 

measurement matters more for some indicators than it does for others.  In the case of the 

land cover driven SUHIs, the relative LST difference between particular land cover types 

remains consistent throughout the year for a given location and therefore timing is less 

important for capturing differences using the SUHI rankings.  The urban heat island 
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driven indicators, on the other hand, show considerably less correlation over time and 

tend to produce varying rankings for each new time step, and so are likely to give 

different results each observation.  The temperature mixed forested eco-region is spatially 

and temporally complex, mostly due to the seasonal nature of the natural landscape (leaf 

on/off) and the differences in timing of these cycles across the multiple study locations 

and so should be treated using a range of approaches.  The first two parts of the research 

question posed here involve the usability of the indicators for fair and consistent 

measuring LST temperature differences within a given ecoregion and over time.  The 

results generated here inform the use of these indicators by showing which indicators are 

correlated, and so provide the same information, and those indicators that are not 

correlated, and so provide additional, or even complementary, information about each 

study location.   

Several locations from the subset of US cities in the study have some form of 

statistically significant change in SUHI over time, though the direction of change was not 

always consistent and could be misleading.  For example, urban Louisville, KY 

seemingly is experiencing a significant increase in temperatures over time (2000 to 2015) 

relative to the surrounding areas (DUR), however, another indicator (DUA) instead 

indicates a relative “cooling” of the surrounding lands due to a decrease in agricultural 

land, which we know from above to be consistently the warmest land cover type.  This 

example further highlights the necessity of providing for a range of indications when 

quantifying and comparing values across locations that are essentially unique individuals.   

Finally, this project has been successful in terms of generating results that help us 

understand the kind of information we can derive from the use of surface urban heat 



65 

 

island indicators for monitoring of change over time.  The primary contribution involves 

findings that highlight how the indicators can behave in less than intuitive ways and 

produce misleading outcomes if extreme care is not taken in the selection proper 

indicators.  In terms of future assessments of the effectiveness of ongoing mitigation 

efforts at combating the impacts of the SUHI.  Multiple indicators provide validation and 

a better overall understanding of the forces at work in the urban heat island.  The 

apparent conflict in findings clearly highlighted for Louisville, KY to illustrate one of the 

biggest challenges to understanding regional change over time, particularly the 

misinterpretation of results.  Louisville is seemingly experiencing an increase in the 

overall difference between urban and non-urban areas, but the overall land area impacted 

by warmer temperatures has actually been decreasing over time. It is clear that relying on 

a single approach to conceptualizing the SUHI is problematic and will not provide 

sufficient understanding of the real world conditions.  Decision makers and community 

stakeholders could potentially benefit from the findings generated here by better 

understanding the important of considering multiple persoective when assessing issues of 

the public benefit.  
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APPENDIX ITEMS 

A1.  Code implemented in Python and ArcPy to sample MODIS data 
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A2.  Code implemented in R for month to month correlations (H1) 

Import all packages 

############################################################# 
##### Install needed libraries and packages  ################ 
 
#install.packages("spacetime") 
require("spacetime") 
#install.packages("xts") 
require(xts) 
#install.packages("tidyr") 
require("tidyr") 
library("dplyr") 
#install.packages("reshape2") 
require("reshape2") 
require(foreign) 
require(ggplot2) 
#install.packages("season") 
require(scales) 
require(Hmisc) 

library(stats) 

Set a few global variables. This section will be expanded later to reduce the number 
of overall code blocks. Need a little help in making my blocks fit within functions 
that I can call over and over. 

### Set pathway to be appended to each output.   
path <- "C:/GISdata/NewUHI/output/"  
## Create a master list that will hold all of the data 
AllData <- data.frame()  
## subset to 2012 only 
time1<-as.Date("2012-01-01") 
time2<-as.Date("2012-12-26") 

We will go through the steps necesary to import the data generated from the .py 
sampling doc. Here we import all of the .dbfs and start to summarize and visualize 
the data in support of our research objectives. 

1. Import Urban LSTs for each location 
#######################################################################################
############## 
######################################### 
####  Start Urban Metric  ################ 
 
### set directory by appending above pathway. Then create 
### vector contining the names of each of the visible files in the working directory. 
setwd(paste(path, "/UrbanTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
## Create a new vector to retain combined urban data 
urban_data <- data.frame() 
 
##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 8, 14) 
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  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  ## grab the variables we need 
  new_data <- table_data[,c(1,6)] 
  ## create new column called 'year' to store the label (factor?) we created above 
  new_data[,"DOY"] <- DOY 
  ## create new column for ZONE type 
  new_data[,"ZONE"] <- "Urban" 
  ## append this newly created data frame to the master we created earlier  
  urban_data <- rbind(urban_data, new_data) 
} 
#head(urban_data) 
# clean house (just in case) 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
# rename variables to your liking 
names(urban_data) <- c("name", "value", "date", "type") 
## recognize the date 
urban_data[,"date"] <- as.Date(urban_data$date, format="%Y%j") 
 
## merge with the master sheet 
AllData <- rbind(AllData, urban_data) 
rm(urban_data) ## clean up to conserve memory 
 
 
######################################################################### 
####################################### End Urban Metric 

2. Import Rural Buffer LSTs for each location 

 
############################################ 
####  Start Rural Metric ################ 
 
### set new directory and list files 
setwd(paste(path, "/RuralTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
## Create a new vector to retain combined rural data 
rural_data <- data.frame() 
 
##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 7, 13) 
  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  ## grab the variables we need 
  new_data <- table_data[,c(1,6)] 
  ## create new column called 'year' to store the label (factor?) we created above 
  new_data[,"DOY"] <- DOY 
  ## create new column for ZONE type 
  new_data[,"ZONE"] <- "Rural" 
  ## append this newly created data frame to the master we created earlier  
  rural_data <- rbind(rural_data, new_data) 
} 
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#head(rural_data) 
 
# clean house (just in case) 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
# rename variables to your liking 
names(rural_data) <- c("name", "value", "date", "type") 
 
## recognize the date 
rural_data[,"date"] <- as.Date(rural_data$date, format="%Y%j") 
 
## merge with the master sheet 
AllData <- rbind(AllData, rural_data) 
rm(rural_data) ## clean up to conserve memory 
 
######################################################################### 
####################################### End Rural Metric 

3. Calculate the difference between the Urban and Rural zones for each location. 

 
#################################################################################### 
####  Start Calculation of UHI "Urban-Rural Difference" Metric  ################ 
 
## http://seananderson.ca/2013/10/19/reshape.html  
 
## convert "long" data to "wide" using reshape2 package 
AllData_wide <- dcast(AllData, date + name ~ type, value.var = "value") 
## do the calculations 
AllData_wide$DiffUHI <- AllData_wide$Urban - AllData_wide$Rural 
## reform the data as "long" format 
AllData_melted <- melt(AllData_wide, id.vars = c("name", "date")) 
## Re-select the variables in the order we want 
AllData <- AllData_melted[,c(1,4,2,3)] 
## rename the columns accordingly 
names(AllData) <- c("name", "value", "date", "type") 
 
## clean up for memory's sake.. 
rm(AllData_melted) 
rm(AllData_wide) 

5. Summarize by month and visualize that distribution 
####  Summarize the data according to class label 
#subsetData <- filter(AllData, date > time1 & date < time2 & name == "Louisville/Jeffer
son County, KY--IN" & type =="DiffUHI") 
subsetData <- filter(AllData, date > time1 & date < time2 & type=="Urban"|type=="Rural"
) 
 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
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subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
subsetData$Temp<- subsetData$value 
 
## vectorize as df for plotting 
df <- subsetData 
 
######################################### 
#####  Simple Boxplot of all three variables used for the SUHI calculations 
ggplot(df, aes(x=Month, y=value, fill=type)) + geom_boxplot() + ylim(0,40) + 
    ggtitle("All Locations SUHI: Urban, Rural LST Means (2012)") 

## Warning: Removed 1530 rows containing non-finite values (stat_boxplot). 

 

6. Convert each value a ranking and test for correlation for each month. The 
question being answered here involves whether or not the rankings are staying 
in roughly the same order each step. The code presented probably more 
complicated than it should be, but I didnt map this out ahead of time and so 
missed oppurtunities tom catch the individual variables being isolated here. 

####################################################################### 
######################  Start Ranking of DUR Values 2012   ######## 
 
## subset the above to include only the SUHI indicator 
subsetData <- filter(AllData, date > time1 & date < time2 & type=="DiffUHI") 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
subsetData_wide <- dcast(subsetData, name ~ Month, mean) 
## check it out 
head(subsetData_wide) 

##                      name       jan      feb      mar    april      may 
## 1 Albany--Schenectady, NY 1.2276340 2.240340 2.430183 3.287900 3.479167 
## 2       Allentown, PA--NJ 1.1426017 1.137170 1.979775 2.669400 3.226800 
## 3             Atlanta, GA 0.4722233 1.033645 1.671875 2.349850 2.891167 
## 4           Baltimore, MD 0.8824700 1.554670 1.140550 1.454550 2.272100 
## 5         Baton Rouge, LA 1.1924000 1.849325 2.463575 3.512275 3.847000 
## 6          Birmingham, AL 1.0730633 1.259670 1.954600 2.283975 3.118400 
##        jun     july      aug     sept      oct       nov       dec 
## 1 3.885650 4.461900 3.710775 1.912425 1.618465 1.0904100 0.9443323 
## 2 3.683500 3.983500 3.286225 2.616625 1.540538 0.4680367 1.6188533 
## 3 3.166625 2.506100 2.086350 2.264825 1.179175 0.7013333 0.5352400 
## 4 2.748200 3.234375 2.542400 1.797650 1.220695 1.0070233 0.9623733 
## 5 3.274450 2.063700 2.696200 3.036775 2.194525 1.6617667 1.2911333 
## 6 3.259100 2.500175 2.364850 2.267600 1.593850 1.2503333 0.8897333 

## reform the data back to "long" format 
subsetData_melted <- melt(subsetData_wide, id.vars = "name") 
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## Create a new attribute to rank the variables for each time step. 
rankings <- subsetData_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
## check the rankings 
 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
 
# ### Generate Corrwlation visuale or Rhos or p-vals 
# cordata = melt(cormatrix$P) 
# ggplot(cordata, aes(x=Var1, y=Var2, fill=value)) +  
#   geom_tile() + xlab("") + ylab("") 
 
### Generate with all info included 
## https://www.r-bloggers.com/spearman-correlation-heat-map-with-correlation-coefficien
ts-and-significance-levels-in-r/ 
 
abbreviateSTR <- function(value, prefix){  # format string more concisely 
  lst = c() 
  for (item in value) { 
    if (is.nan(item) || is.na(item)) { # if item is NaN return empty string 
      lst <- c(lst, '') 
      next 
    } 
    item <- round(item, 2) # round to two digits 
    if (item == 0) { # if rounding results in 0 clarify 
      item = '<.01' 
    } 
    item <- as.character(item) 
    item <- sub("(^[0])+", "", item)    # remove leading 0: 0.05 -> .05 
    item <- sub("(^-[0])+", "-", item)  # remove leading -0: -0.05 -> -.05 
    lst <- c(lst, paste(prefix, item, sep = "")) 
  } 
  return(lst) 
} 
 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
cordata = melt(cormatrix$r) 
cordata$labelr = abbreviateSTR(melt(cormatrix$r)$value, 'r') 
cordata$labelP = abbreviateSTR(melt(cormatrix$P)$value, 'P') 
cordata$label = paste(cordata$labelr, "n",  
                      cordata$labelP, sep = "") 
cordata$strike = "" 
cordata$strike[cormatrix$P > 0.05] = "X" 
 
txtsize <- par('din')[2] / 2.25  ## change demoninator for txt size 
ggplot(cordata, aes(x=Var1, y=Var2, fill=value)) + geom_tile() +  
  theme(axis.text.x = element_text(angle=90, hjust=TRUE)) + 
  xlab("") + ylab("") +  
  geom_text(label=cordata$label, size=txtsize) +  
  geom_text(label=cordata$strike, size=txtsize * 4, color="red", alpha=0.4) 
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7. That brings us to the end of the DUR Indicator.  Now, Import Land cover 
specific data.. 

#######################################################################################
### 
#################################################### 
####  Start Landcover Metrics ################ 
 
### set new directory and list files 
 
setwd(paste(path, "/LandCoverTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
 
## Create a new vector to retain combined rural data 
LC_data <- data.frame() 
##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 2, 8) 
  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  ## create new column called 'year' to store the label (factor?) we created above 
  table_data[,"DOY"] <- DOY 
  ## grab the variables we need 
  new_data <- table_data[,c(1,4,5,2)] ## remove this 
  ## append this newly created data frame to the master we created earlier  
  LC_data <- rbind(LC_data, new_data) 
} 
 
# clean house 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
## Make a few needed changes to the data 
# rename variables to your liking 
names(LC_data) <- c("name", "value", "date", "type") 
 
# go ahead and unscale the value 
LC_data$value <- LC_data$value * 0.02 - 273.15 
 
# set type as factor 
LC_data$type <- as.factor(LC_data$type) 
LC_data$type <- factor(LC_data$type, 
                    levels = c(1,2,3,4,5), 
                    labels = c("forest", "other", "ag", "urban", "bare")) 
#                    labels = c("forest", "other", "ag", "urban", "urban")) 
## recognize the date 
LC_data[,"date"] <- as.Date(LC_data$date, format="%Y%j") 
 
 
head(LC_data) 

##                      name      value       date   type 
## 1 Albany--Schenectady, NY -3.2659852 2002-01-01 forest 
## 2 Albany--Schenectady, NY -3.0555670 2002-01-01  other 
## 3 Albany--Schenectady, NY -3.7444220 2002-01-01     ag 
## 4 Albany--Schenectady, NY -3.2965133 2002-01-01  urban 
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## 5       Allentown, PA--NJ -0.2369192 2002-01-01 forest 
## 6       Allentown, PA--NJ  0.3079781 2002-01-01  other 

8. Visualize the distribution of LSTs by land cover type 
######################################################### 
####  Start Plot of Land Covers  ################ 
## subset data 
subsetData <- filter(LC_data, date > time1 & date < time2) 
 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
subsetData$Temp<- subsetData$value 
 
## vectorize as df for plotting 
df <- subsetData 
 
######################################### 
#####  Simple Boxplot of all three variables used for the SUHI calculations 
ggplot(df, aes(x=Month, y=value, fill=type)) + geom_boxplot() +  
    ggtitle("All Locations Land Cover LSTs: Forest, Other, Ag, Developed, Bare (2012)") 

 

9. Calculate the relevant land cover driven SUHIs and then summarize by month 
############### 
## make the other necesary calculations using reshape2  ## http://seananderson.ca/2013/
10/19/reshape.html  
 
## convert "long" data to "wide" using reshape2 package 
LCdata_wide <- dcast(LC_data, date + name ~ type, value.var = "value") 
 
## do the calculations for Difference Urban - Other UHI metric 
LCdata_wide$Diff_UrbanOther <- LCdata_wide$urban - LCdata_wide$other 
## do the calculations for Difference Urban - Ag UHI metric 
LCdata_wide$Diff_UrbanAg <- LCdata_wide$urban - LCdata_wide$ag 
## do the calculations for Difference Urban - Forest UHI metric 
LCdata_wide$Diff_UrbanForest <- LCdata_wide$urban - LCdata_wide$forest 
 
## reform the data as "long" format 
LCdata_melted <- melt(LCdata_wide, id.vars = c("name", "date")) 
 
## Re-select the variables in the order we want 
LC_data_processed <- LCdata_melted[,c(1,4,2,3)] 
## rename the columns accordingly 
names(LC_data_processed) <- c("name", "value", "date", "type") 
 
## merge with the master sheet 
AllData <- rbind(AllData, LC_data_processed) 
 
## resubset data to get all years 
subsetData <- filter(LC_data_processed) 
## Grab the variables we need for the summary 
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subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 

11. Generate DUA boxplots, rankings, and Rho 
######################################### 
## Pull out only the DUA indicator and generate boxplot 
df <- filter(subsetData, date > time1 & date < time2 & type=="Diff_Urba
nAg") 
 
ggplot(df, aes(x=Month, y=value)) + geom_boxplot() +  
    ggtitle("2012 All Locations SUHI: Difference Urban - Ag (DUA)") 

## Warning: Removed 1 rows containing non-finite values (stat_boxplot). 

 

###### Generate Rankings 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
df_wide <- dcast(df, name ~ Month, mean) 
 
## reform the data back to "long" format 
df_melted <- melt(df_wide, id.vars = "name") 
 
## Create a new attribute to rank the variables for each time step. 
rankings <- df_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 

12. Generate DUO boxplots, rankings, and Rho 
## Pull out only the DUA indicator and generate boxplot 
df <- filter(subsetData, date > time1 & date < time2 & type=="Diff_UrbanOther") 
 
ggplot(df, aes(x=Month, y=value)) + geom_boxplot() +  
    ggtitle("2012 All Locations SUHI: Difference Urban - Other (DUO)") 

## Warning: Removed 1 rows containing non-finite values (stat_boxplot). 

###### Generate Rankings 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
df_wide <- dcast(df, name ~ Month, mean) 
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## reform the data back to "long" format 
df_melted <- melt(df_wide, id.vars = "name") 
 
## Create a new attribute to rank the variables for each time step. 
rankings <- df_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
 
 
 
######################################################################### 
####################################### End Land Covers 

13. Visualize for change over time for the land cover SUHIs 
## resubset data to get all years 
subsetData <- filter(AllData, name == "Louisville/Jefferson County, KY--IN") 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
subsetData$Temp<- subsetData$value 
 
## vectorize as df for plotting 
df <- subsetData 
 
 
################################################### 
## Complete summary of year and month measurements.  All Data repersented! 
devData <- subset(df, type=="Urban", select=c(type, Year, Month, value)) 
meanDevData <- subset(df, type=="Rural", select=c(type, Year, Month, value)) 
medDevData <- subset(df, type=="DiffUHI", select=c(type, Year, Month, value)) 
 
ggplot(df,aes(Year,value,colour=type)) + 
  #geom_point(data=devData,size=I(2),alpha=I(0.6)) +  
  #geom_line(data=meanDevData,size=I(1.5),alpha=I(0.6)) +  
  geom_line(data=medDevData,size=I(1.5),alpha=I(0.4)) +  
  theme_grey(base_size=15) + 
  theme(legend.title = element_blank(), legend.position=c(.5,.25), axis.title.y=element
_blank(),axis.text.x=element_blank()) +  
  ggtitle("Louisville, Kentucky: DUR SUHI by Month (2000 to 2015)") + facet_grid(. ~ Mo
nth) +  
  xlab("Years: 2000 to 2015") 

 



87 

 

14. Start Micro Island SUHI indicator.. 
################################################################################## 
############################################################# 
####  Start Micro Island Area % Metric ################ 
 
## This metric is an estimate of the portion of the total land 
## area within the urban area is warming than the coolest forested 
## LST for each time step. 
 
### set new directory and list files 
 
setwd(paste(path, "/MicroIslandAreaTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
## Create a new vector to retain combined rural data 
MicroIsland_data <- data.frame() 
 
##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 8, 14) 
  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  ## grab the variables we need 
  new_data <- table_data[,c(2,14)] 
  ## create new column called 'year' to store the label (factor?) we created above 
  new_data[,"DOY"] <- DOY 
  ## append this newly created data frame to the master we created earlier  
  MicroIsland_data <- rbind(MicroIsland_data, new_data) 
} 
 
head(MicroIsland_data) 

##                   NAME10   MicArea     DOY 
## 1           Hartford, CT  0.220501 2002001 
## 2         Pittsburgh, PA  0.963750 2002001 
## 3          Baltimore, MD  4.212750 2002001 
## 4 Washington, DC--VA--MD  4.408420 2002001 
## 5         Birmingham, AL 35.939900 2002001 
## 6 Cincinnati, OH--KY--IN  6.585990 2002001 

# clean house 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
## create new column for  type 
MicroIsland_data[,"type"] <- "MicroArea%" 
# rename variables to your liking 
names(MicroIsland_data) <- c("name", "value", "date", "type") 
## recognize the date 
MicroIsland_data[,"date"] <- as.Date(MicroIsland_data$date, format="%Y%j") 
 
## merge with the master sheet 
AllData <- rbind(AllData, MicroIsland_data) 
 
## Subset only the variables we want to look at 
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subsetData <- filter(MicroIsland_data, date > time1 & date < time2 , type=="MicroArea%"
) 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
 
## vectorize as df for plotting 
df <- subsetData 
 
######################################### 
#####  Simple Boxplot of all three variables used for the SUHI calculations 
ggplot(df, aes(x=Month, y=value, fill=type)) + geom_boxplot() +  
    scale_y_continuous(limits=c(0,100), breaks=seq(0,100,10), expand = c(0, 0)) + 
    ggtitle("All Locations: MicroIsland % (2012)") 

##################################################### Generate Rankings 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
df_wide <- dcast(df, name ~ Month, mean) 
 
## reform the data back to "long" format 
df_melted <- melt(df_wide, id.vars = "name") 
 
## Create a new attribute to rank the variables for each time step. 
rankings <- df_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
 
######################################################################### 
####################################### End Micro Island Area %  

15. Start UHI-driven indicators.. 
#######################################################################################
############## 
########################################################### 
####  Start Max & Range Metric  ################ 
 
## The name of this metric is a bit misleading.  The Range is just that, 
## the difference between the MIN and MAX.  The Max UHI, here, is defined 
## as the difference between the mean of all LST and the absolute highest LST. 
 
### Set pathway to be appended to each output.   
path <- "C:/GISdata/NewUHI/output/"  
 
### set new directory and list files 
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setwd(paste(path, "/MaxRangeTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
## Create a new vector to retain combined rural data 
range_data <- data.frame() 
##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 12, 18) 
  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  ## grab the variables we need 
  new_data <- table_data[,c(1,15,5,6,7)] 
  ## create new column called 'year' to store the label (factor?) we created above 
  new_data[,"DOY"] <- DOY 
  ## append this newly created data frame to the master we created earlier  
  range_data <- rbind(range_data, new_data) 
} 
 
# clean house (just in case) 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
## Now make some conversions to make the data more readable 
range_data$MIN <- range_data$MIN * 0.02 - 273.15 
range_data$MAX <- range_data$MAX * 0.02 - 273.15 
range_data$RANGE <- range_data$RANGE * 0.02  
 
## rename variables to your liking 
names(range_data) <- c("name", "MAG", "MIN", "MAX", "RANGE", "date") ## mag was called 
maxuhi in python by accident! 
 
## recognize the date 
range_data[,"date"] <- as.Date(range_data$date, format="%Y%j") 
 
## reform the data as "long" format using melt() 
range_data_melted <- melt(range_data, id.vars = c("name", "date")) 
 
## Re-select the variables in the order we want 
range_data <- range_data_melted[,c(1,4,2,3)] 
 
## rename the columns accordingly 
names(range_data) <- c("name", "value", "date", "type") 
 
## merge with the master sheet 
AllData <- rbind(AllData, range_data) 
 
## clean up for memory's sake.. 
rm(range_data_melted) 
 
 
######################################################################### 
####################################### End Max & Range Metric 

16. Plot the Summary Stats of Min, Max, Range for All locations 
######################################################### 
####  Start Plot of Max Min Range Values   ################ 
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## Subset only the variables we want to look at 
subsetData <- filter(range_data, date > time1 & date < time2 , type=="MAX" | type=="MIN
" | type=="RANGE") 
 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
 
## vectorize as df for plotting 
df <- subsetData 
 
######################################### 
#####  Simple Boxplot of all three variables used for the SUHI calculations 
ggplot(df, aes(x=Month, y=value, fill=type)) + geom_boxplot() +  
    ggtitle("All Locations: Min, Max, Range Value Distribution (2012)") 

17. Now Generate Range SUHI boxplots, rankings, and Rho 
## Pull out only the DUA indicator and generate boxplot 
df <- filter(subsetData, type=="RANGE") 
 
ggplot(df, aes(x=Month, y=value)) + geom_boxplot() +  
    ggtitle("2012 All Locations SUHI: Range") 

###### Generate Rankings 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
df_wide <- dcast(df, name ~ Month, mean) 
 
## reform the data back to "long" format 
df_melted <- melt(df_wide, id.vars = "name") 
 
## Create a new attribute to rank the variables for each time step. 
rankings <- df_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
 
############### 

18. Plot the Magnitude for All locations by month 
######################################################### 
####  Start Plot of Magnitude Values   ################ 
 
## Subset only the variables we want to look at 
subsetData <- filter(range_data, date > time1 & date < time2 , type=="MAG") 
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## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
 
## vectorize as df for plotting 
df <- subsetData 
 
######################################### 
#####  Simple Boxplot of all three variables used for the SUHI calculations 
ggplot(df, aes(x=Month, y=value, fill=type)) + geom_boxplot() +  
    ggtitle("All Locations SUHI: Magnitude  (2012)") 

19. Now Generate Magnitude SUHI boxplots, rankings, and Rho 
###### Generate Rankings 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
df_wide <- dcast(df, name ~ Month, mean) 
 
## reform the data back to "long" format 
df_melted <- melt(df_wide, id.vars = "name") 
 
## Create a new attribute to rank the variables for each time step. 
rankings <- df_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
 
 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
 
############### 

20. Bring in the Hot Island Area Data 
#######################################################################################
############## 
######################################################## 
####  Start Hot Island Area % Metric ################ 
 
### set new directory and list files 
 
setwd(paste(path, "/HotIslandAreaTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
## Create a new vector to retain combined rural data 
HotIsland_data <- data.frame() 
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##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 6, 12) 
  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  ## grab the variables we need 
  new_data <- table_data[,c(2,14)] 
  ## create new column called 'year' to store the label (factor?) we created above 
  new_data[,"DOY"] <- DOY 
  ## append this newly created data frame to the master we created earlier  
  HotIsland_data <- rbind(HotIsland_data, new_data) 
} 
 
# clean house 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
head(HotIsland_data) 

##                   NAME10 HotArea     DOY 
## 1           Hartford, CT 18.2281 2000065 
## 2         Pittsburgh, PA 15.7133 2000065 
## 3          Baltimore, MD 11.9101 2000065 
## 4 Washington, DC--VA--MD 12.4524 2000065 
## 5         Birmingham, AL 17.0660 2000065 
## 6 Cincinnati, OH--KY--IN 16.2713 2000065 

## create new column for ZONE type 
HotIsland_data[,"type"] <- "HotArea%" 
# rename variables to your liking 
names(HotIsland_data) <- c("name", "value", "date", "type") 
## recognize the date 
HotIsland_data[,"date"] <- as.Date(HotIsland_data$date, format="%Y%j") 
 
## merge with the master sheet 
AllData <- rbind(AllData, HotIsland_data) 
 
############################################################################# 
####################################### End Hot Island Area % Metric 

21. Plot the HIA data for 2012 
######################################################### 
####  Start Plot of Hot Island Area Metric   ################ 
 
## subset  
subsetData <- filter(HotIsland_data, date > time1 & date < time2, type=="HotArea%") 
 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
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subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
 
## vectorize as df for plotting 
df <- subsetData 
 
######################################### 
#####  Simple Boxplot of all three variables used for the SUHI calculations 
ggplot(df, aes(x=Month, y=value, fill=type)) + geom_boxplot() +  
  scale_y_continuous(limits=c(0,25), breaks=seq(0,100,10), expand = c(0, 0)) + 
    ggtitle("All Locations SUHI: Hot Island Area %  (2012)") 

## clen up for memory's sake... 
rm(HotIsland_data)  

22. Now Generate Hot Island Area SUHI boxplots, rankings, and Rho 
###### Generate Rankings 
## convert "long" data to "wide" using reshape2 package and 
## calculate the mean in the process 
df_wide <- dcast(df, name ~ Month, mean) 
 
## reform the data back to "long" format 
df_melted <- melt(df_wide, id.vars = "name") 
 
## Create a new attribute to rank the variables for each time step. 
rankings <- df_melted %>%  
  group_by(variable) %>%  
  mutate(yrrank = row_number(-value))   
 
## convert "long" data to "wide" using reshape2 package 
rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
 
## remove the names 
rankings_wide <- rankings_wide[,-1] 
## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (cormatr
ix$P) to access output) 
cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
 
############### 

Now save off the data to save us up to this point! 

## Save off a copy in case something happens... 
 
## save the work history for this analysis 
#save(AllData, file="C:/GISdata/NewUHI/data/UHI2017.R") 
 
## save the dataframe off as a .csv or .dbf so that it can be shared wi
th non-R'ers 
#write.dbf(as.data.frame(AllData), file="C:/GISdata/NewUHI/data/new_All
Data_saved.dbf") 
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A3.  Code implemented in R for  indicator to indicator correlation (H2) 

1. Import all packages as always 

############################################################# 
##### Install needed libraries and packages  ################ 
 
#install.packages("spacetime") 
require("spacetime") 
#install.packages("xts") 
require(xts) 
## Install all of the needed packages here 
# install.packages(c("tidyr", "dplyr", "ggplot2", 
#                    "reshape2","foreign", "Hmisc")) 
 
require("tidyr") 
library("dplyr") 
require("reshape2") 
require(foreign) 
require(ggplot2) 
require(scales) 
require(Hmisc) 
library(stats) 

2. Grab that data from the previous workflow to reveal each measurement type 
we have 

## bring in the data saved from H1 and prep as before.. 
file="C:/GISdata/NewUHI/data/new_AllData_saved.dbf" 
## read in the data  
H1_data <- read.dbf(file, as.is = TRUE) 
## make sure the variables are as you expect 
# H1_data$type <- factor(H1_data$type, 
#                        labels = c("ag", "bare", "built", "DUA", "DUF",  
#                                   "DUO", "DUR", "forest", "HIA", "MAG",  
#                                   "MAX", "MIC", "MIN", "other","RANGE",  
#                                   "Rural","Urban")) 
unique(H1_data$type) 

##  [1] "Rural"            "Urban"            "DiffUHI"          
##  [4] "forest"           "other"            "ag"               
##  [7] "urban"            "bare"             "Diff_UrbanOther"  
## [10] "Diff_UrbanAg"     "Diff_UrbanForest" "MicroArea%"       
## [13] "MAG"              "MIN"              "MAX"              
## [16] "RANGE"            "HotArea%" 

## Make the variables we need for the summary 
H1_data$month <- as.factor(substr(H1_data$date, 6, 7)) 
H1_data$month <- factor(H1_data$month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
H1_data$day <- as.factor(substr(H1_data$date, 9, 10)) 
H1_data$year<- as.factor(substr(H1_data$date, 1, 4)) 
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3. Remember, we are doing these test 1 month at a time, so subset 1 month and 
build the functions to work for that. 

4. First thing bring over those functions we will be using. 1) Function to 
summarize, rank, and generate covariant matrix, and 2) Function to generate 
lots of cool additional info for the Spearman plots. 

### Generate function for generating Spearman plots with all included info. 
## https://www.r-bloggers.com/spearman-correlation-heat-map-with-correlation-coefficien
ts-and-significance-levels-in-r/ 
 
abbreviateSTR <- function(value, prefix){  # format string more concisely 
  lst = c() 
  for (item in value) { 
    if (is.nan(item) || is.na(item)) { # if item is NaN return empty string 
      lst <- c(lst, '') 
      next 
    } 
    item <- round(item, 2) # round to two digits 
    if (item == 0) { # if rounding results in 0 clarify 
      item = '<.01' 
    } 
    item <- as.character(item) 
    item <- sub("(^[0])+", "", item)    # remove leading 0: 0.05 -> .05 
    item <- sub("(^-[0])+", "-", item)  # remove leading -0: -0.05 -> -.05 
    lst <- c(lst, paste(prefix, item, sep = "")) 
  } 
  return(lst) 
} 
 
 
## Generate function that will Summarize, rank, and run the SPearmans test 
RankTheData <- function(H4_data){  # format string more concisely 
## start function  
  ## convert "long" data to "wide" using reshape2 package and 
  ## calculate the mean in the process 
  subsetData_wide <- dcast(H4_data, name ~ newtype, mean) ## is either type or new type 
  ## check it out 
  #head(subsetData_wide) 
  #write.csv(subsetData_wide, file="C:/GISdata/NewUHI/output/Value_data.csv") 
 
  ## reform the data back to "long" format 
  subsetData_melted <- melt(subsetData_wide, id.vars = "name") 
   
  ## Create a new attribute to rank the variables for each time step. 
  rankings <- subsetData_melted %>%  
    group_by(variable) %>%  
    mutate(yrrank = row_number(-value))   
   
  ## convert "long" data to "wide" using reshape2 package 
  rankings_wide <- dcast(rankings, name ~ variable,value.var="yrrank") 
  ## check the rankings 
  #write.csv(rankings_wide, file="C:/GISdata/NewUHI/output/r_data.csv") 
  #write.csv(rankings_wide, file="C:/GISdata/NewUHI/output/p_data.csv") 
 
   
  ## remove the names 
  rankings_wide <- rankings_wide[,-1] 
  ## generate covariate matrix using require "Hmisc"" package ((cormatrix$r) and (corma
trix$P) to access output) 
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  cormatrix = rcorr(as.matrix(rankings_wide), type='spearman') 
  #print(cormatrix) 
  ## save the dataframe off as a .csv or .dbf so that it can be shared with non-R'ers 
  #write.csv(as.data.frame(cormatrix), file="C:/GISdata/NewUHI/ind2ind.csv") 
 
  cordata = melt(cormatrix$r) 
  cordata$labelr = abbreviateSTR(melt(cormatrix$r)$value, 'r') 
  cordata$labelP = abbreviateSTR(melt(cormatrix$P)$value, 'P') 
  cordata$label = paste(cordata$labelr, "n",  
                        cordata$labelP, sep = "") 
  cordata$strike = "" 
  cordata$strike[cormatrix$P > 0.05] = "X" 
   
  txtsize <- par('din')[2] / 1  ## change demoninator for txt size 
  ggplot(cordata, aes(x=Var1, y=Var2, fill="white")) + geom_tile() +  
  #ggplot(cordata, aes(x=Var1, y=Var2, fill=value)) + geom_tile() +  
    theme(axis.text.x = element_text(angle=90, hjust=TRUE)) + 
    xlab("") + ylab("") +  
    geom_text(label=cordata$label, size=txtsize) +  
    geom_text(label=cordata$strike, size=txtsize * 4, color="blue", alpha=0.4) 
  #return(cormatrix) 
## end function   
} 

5. Use RankTheData() function to check for correlation between each set of 
rankings for each month of 2012. this will answer the First Hypothesis (Jan = 
Feb) Do the Monthly Rankings agree with each other each month when each 
indicator is used? 
Do you get the same rankings each month of the year when using each 
indicator? 
How else to say in easy to understand way? 

## Only interested in the year 2012 for now. 
H2_data <- filter(H1_data, year=="2012") 
head(H2_data) 
H2_data$newtype <- as.character(H2_data$type) 
           
 
H3_data <- filter(H2_data, month=="jan") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
 
H3_data <- filter(H2_data, month=="feb") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="mar") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="april") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
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"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="may") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="jun") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="july") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="aug") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="sept") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="oct") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 
H3_data <- filter(H2_data, month=="nov") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
H3_data <- filter(H2_data, month=="dec") 
H4_data <- filter(H3_data, newtype=="Diff_UrbanAg"|newtype=="Diff_UrbanOther"|newtype==
"DiffUHI"| 
                    newtype=="MAG"|newtype=="HotArea%"|newtype=="MicroArea%") 
H4_data$newtype <- as.factor(H4_data$newtype) 
RankTheData(H4_data) 

Make boxplots to highlight the land cover and area LSTs distributions for 2012. 

## Only interested in the year 2012 for now. 
H4_data <- filter(H1_data, year=="2012")  
 
########################### 
#### Boxplot of Urban Rural Only 
H5_data <- filter(H4_data,type=="Urban"|type=="Rural") 
ggplot(H5_data, aes(x=month, y=value, fill=type)) + geom_boxplot() + ylim(0,40) + 
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    ggtitle("All Locations SUHI: Urban and Rural Land Areas (2012)") 
########################### 
#### Boxplot of Land Covers only 
H6_data <- filter(H4_data,type=="urban"|type=="ag"|type=="forest"|type=="other") 
ggplot(H6_data, aes(x=month, y=value, fill=type)) + geom_boxplot() + ylim(-10,40) + 
    ggtitle("All Locations SUHI: Land Cover Areas (2012)") 
########################## 
#### Boxplot of SUHI land cover driven indicators of 2012 
H7_data <- filter(H4_data,type=="DUA"|type=="DUO"|type=="DUR") 
ggplot(H7_data, aes(x=month, y=value, fill=type)) + geom_boxplot() + ylim(-2,5) + 
    ggtitle("All Locations: Land Cover Driven Indicators (2012)") 
########################### 
#### Boxplot of Numeric Stat Summaries (min, max, range, magnitude) 
H8_data <- filter(H4_data,type=="MAX"|type=="MIN"|type=="RANGE") 
ggplot(H8_data, aes(x=month, y=value, fill=type)) + geom_boxplot() + ylim(-2,42) + 
    ggtitle("All Locations SUHI: Summaries for Urban Areas (2012)") 
########################### 
#### Boxplot of Distribution measures (HIA and MIC) 
H9_data <- filter(H4_data,type=="HIA"|type=="MIC"|type=="MAG") 
ggplot(H9_data, aes(x=month, y=value, fill=type)) + geom_boxplot() + ylim(0,20) +  
    ggtitle("All Locations SUHI: Distribution Summaries for Urban Areas (2012)") 
########################## 
#### Same as above 
ggplot(H9_data, aes(x=month, y=value, fill=type)) + geom_boxplot() + ylim(0,20) + 
    ggtitle("All Locations SUHI: Distribution Summaries (2012)") 
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A4.  Code implemented in R for Linear model (H3) 

1. LM() for change over time at significant levels for all locations.  The variables 
will seem to be Louisville specific because it originally written to accommodate 
only one location, and then later expanded to accommodate all of them.  Will 
later make changes when defining functions.  The difference simply replaces 
the individual pixels with individual cities.  Simple. 

## grab each pixel data and run 2 regression tests, 1) with all of  
## the  months included 
## subset to 2012 only 
time1<-as.Date("2002-01-01") 
time2<-as.Date("2012-12-26") 
new_time <- filter(H1_data, date > time1 & date < time2)  
lou_data <- filter(new_time, date > time1 & date < time2 & 
                     type=="Diff_UrbanAg"|type=="Diff_UrbanOther"| 
                     type=="DiffUHI"|type=="HotArea%"|type=="MicroArea%"|type=="MAG") 
## tend to the data factors 
lou_data$type <- as.factor(lou_data$type) 
lou_data$name <- as.factor(lou_data$name) 
lou_data$type <- factor(lou_data$type, 
                       levels = c("Diff_UrbanAg", "Diff_UrbanOther", "DiffUHI",  
                                  "HotArea%", "MicroArea%", "MAG"), 
                       labels = c("DUA", "DUO", "DUR", "HIA", "MIC","MAG")) 
 
#summary(lou_data) 
#str(lou_data) 
#head(lou_data) 
 
## create a list of all pixels and the months to be analyzed 
pixels <- unique(lou_data$name) 
suhis <- unique(lou_data$type) 
months <- unique(lou_data$month) 
length(pixels) 

## [1] 26 

length(suhis) 

## [1] 6 

length(months) 

## [1] 12 

## create data.frame() to hold the change data as it comes in 
lou_change <- data.frame(matrix(0, ncol = 15, nrow = 12)) 
names(lou_change) <- c("test_val", "jan", "feb", "mar", "april", "may",  
                       "jun", "july", "aug", "sept",  
                       "oct", "nov", "dec","name", "suhi") 
 
n = 0 
for (pixel in pixels){  ## cycle through each location 
#  print(pixel) 
  ## Grab only the data that for that pixel 
  pixel_data <- filter(lou_data, name==pixel) 
   
  for (suhi in suhis){ 
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    suhi_data <- filter(pixel_data, type==suhi) 
    n = n + 1 
     
    for (j in months){  ## cycle through each month 
      #j=1 
      n2 = n * 2 
      n1 = n2 - 1  
      #    print(j) ## name the month 
      month_data <- filter(suhi_data, month==j) ## pull out that SUHI's data 
      tim <- c(1:length(month_data$value)) ############  THIS IS THE FEW CHANGES 
      val <- month_data$value  ############  THIS IS THE FEW CHANGES 
      #lou_change[n,j] <- lm(val~tim)$coefficients[2] ## beta-value 
      lou_change[n1,j] <- summary(lm(val~tim))$coefficients[2] ## beta-value 
      lou_change[n2,j] <- summary(lm(val~tim))$coefficients[8] ## p-value 
      lou_change$name[n1] <- pixel 
      lou_change$name[n2] <- pixel 
      lou_change$test_val[n1] <- "beta" 
      lou_change$test_val[n2] <- "pval" 
      lou_change$suhi[n1] <- suhi 
      lou_change$suhi[n2] <- suhi 
    } ## close 3rd loop 
   
  } 
    #kept_data <- rbind(kept_data, ktm_change) ## grab the data 
} 
 
## check this out for reference of last test 
summary(lm(val~tim)) 

Print the model for reference 

##  
## Call: 
## lm(formula = val ~ tim) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -7.1309 -0.8131  0.1417  1.8955  4.1662  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 14.52430    0.87894  16.525   <2e-16 *** 
## tim          0.01234    0.03480   0.355    0.725     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.832 on 41 degrees of freedom 
## Multiple R-squared:  0.003056,   Adjusted R-squared:  -0.02126  
## F-statistic: 0.1257 on 1 and 41 DF,  p-value: 0.7247 

head(lou_change) 

##   test_val          jan          feb           mar        april 
## 1     beta  0.000844642  0.023510544  0.0461446041 -0.003356396 
## 2     pval  0.962007742  0.060405158  0.0074846060  0.832376953 
## 3     beta -0.001161064 -0.003009231 -0.0041002354 -0.001181710 
## 4     pval  0.808820812  0.310051621  0.0765268056  0.767252875 
## 5     beta -0.013429536 -0.014362610 -0.0296394905 -0.008426230 
## 6     pval  0.166040241  0.327535394  0.0005909365  0.391481291 
##             may          jun          july          aug         sept 
## 1  0.0137153659  0.026217851  1.127824e-02  0.015860437 -0.001548203 
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## 2  0.2060167357  0.011768201  2.828568e-02  0.061638356  0.859421067 
## 3 -0.0004595315  0.001798006  3.243540e-03  0.001305083  0.004067680 
## 4  0.8883082678  0.557304281  1.568293e-01  0.610767401  0.099353491 
## 5 -0.0151146617 -0.011090038 -4.600096e-06 -0.002894554  0.008762724 
## 6  0.0661550835  0.142259426  9.992784e-01  0.671750053  0.255485095 
##            oct          nov           dec                    name suhi 
## 1 0.0039162934 -0.018750187 -0.0197521332 Albany--Schenectady, NY  DUR 
## 2 0.7570949297  0.056032951  0.1421881884 Albany--Schenectady, NY  DUR 
## 3 0.0050173267  0.002129092 -0.0005774411 Albany--Schenectady, NY  DUO 
## 4 0.2639546380  0.267734939  0.8670620103 Albany--Schenectady, NY  DUO 
## 5 0.0003810412  0.003822383  0.0040171857 Albany--Schenectady, NY  DUA 
## 6 0.9581102394  0.354787470  0.7154715851 Albany--Schenectady, NY  DUA 

2.   Now we simply select the ones that have p-values lower than 0.05 and mark 
them. That where the significant change lies.. 

#### save p-values off to the "all change data table" 
pvals <- lou_change[lou_change$test_val== "pval",] 
head(pvals) 

##    test_val       jan        feb          mar        april         may 
## 2      pval 0.9620077 0.06040516 0.0074846060 0.8323769534 0.206016736 
## 4      pval 0.8088208 0.31005162 0.0765268056 0.7672528755 0.888308268 
## 6      pval 0.1660402 0.32753539 0.0005909365 0.3914812909 0.066155084 
## 8      pval 0.6040084 0.67480290 0.9797565451 0.0002879495 0.005216514 
## 10     pval 0.9626739 0.18458747 0.0004887326 0.7491596096 0.324251600 
## 12     pval 0.5599902 0.83887127 0.0010088720 0.5588767399 0.737957173 
##             jun         july        aug       sept        oct        nov 
## 2  0.0117682014 0.0282856770 0.06163836 0.85942107 0.75709493 0.05603295 
## 4  0.5573042814 0.1568292804 0.61076740 0.09935349 0.26395464 0.26773494 
## 6  0.1422594259 0.9992784274 0.67175005 0.25548509 0.95811024 0.35478747 
## 8  0.0003380564 0.0005107186 0.14640751 0.01249958 0.07075597 0.45152875 
## 10 0.0167375753 0.0785325241 0.03691197 0.30636813 0.73531817 0.27659342 
## 12 0.9815336420 0.6257441843 0.06422276 0.41340524 0.81637595 0.21757023 
##          dec                    name suhi 
## 2  0.1421882 Albany--Schenectady, NY  DUR 
## 4  0.8670620 Albany--Schenectady, NY  DUO 
## 6  0.7154716 Albany--Schenectady, NY  DUA 
## 8  0.5211228 Albany--Schenectady, NY  MIC 
## 10 0.1638665 Albany--Schenectady, NY  MAG 
## 12 0.6398247 Albany--Schenectady, NY  HIA 

#all_change_data <- rbind(all_change_data, pvals) 
#### save p-values off to the "all change data table" 
betas <- lou_change[lou_change$test_val== "beta",] 
head(pvals) 

##    test_val       jan        feb          mar        april         may 
## 2      pval 0.9620077 0.06040516 0.0074846060 0.8323769534 0.206016736 
## 4      pval 0.8088208 0.31005162 0.0765268056 0.7672528755 0.888308268 
## 6      pval 0.1660402 0.32753539 0.0005909365 0.3914812909 0.066155084 
## 8      pval 0.6040084 0.67480290 0.9797565451 0.0002879495 0.005216514 
## 10     pval 0.9626739 0.18458747 0.0004887326 0.7491596096 0.324251600 
## 12     pval 0.5599902 0.83887127 0.0010088720 0.5588767399 0.737957173 
##             jun         july        aug       sept        oct        nov 
## 2  0.0117682014 0.0282856770 0.06163836 0.85942107 0.75709493 0.05603295 
## 4  0.5573042814 0.1568292804 0.61076740 0.09935349 0.26395464 0.26773494 
## 6  0.1422594259 0.9992784274 0.67175005 0.25548509 0.95811024 0.35478747 
## 8  0.0003380564 0.0005107186 0.14640751 0.01249958 0.07075597 0.45152875 
## 10 0.0167375753 0.0785325241 0.03691197 0.30636813 0.73531817 0.27659342 
## 12 0.9815336420 0.6257441843 0.06422276 0.41340524 0.81637595 0.21757023 
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##          dec                    name suhi 
## 2  0.1421882 Albany--Schenectady, NY  DUR 
## 4  0.8670620 Albany--Schenectady, NY  DUO 
## 6  0.7154716 Albany--Schenectady, NY  DUA 
## 8  0.5211228 Albany--Schenectady, NY  MIC 
## 10 0.1638665 Albany--Schenectady, NY  MAG 
## 12 0.6398247 Albany--Schenectady, NY  HIA 

#all_change_data <- rbind(all_change_data, betas) 
 
## have a look at the data 
#head(all_change_data) ## should see lst or ndvi as type 
#tail(all_change_data) ## should see the other one as type 
 
## save p-values off to dbf if needed 
# write.dbf(pvals, file="C:/GISdata/NewUHI/output/pvals_change_00_12.dbf") 
# write.csv(pvals, file="C:/GISdata/NewUHI/output/pvals_change_00_12.csv") 
# write.dbf(betas, file="C:/GISdata/NewUHI/output/betas_change_00_12.dbf") 
# write.csv(betas, file="C:/GISdata/NewUHI/output/betas_change_00_12.csv") 
 
resulttable <- data.frame() 
resulttable <- rbind(resulttable,pvals) 
resulttable <- cbind(resulttable,betas) 
#head(resulttable) 
 
names(resulttable) <- c("test_val","jan","feb","mar","april","may","jun","july", ## 1-8 
                        "aug","sept","oct","nov","dec","name", "suhi","test_val", ## 9- 
16 
                        "jan1", "feb1", "mar1","april1","may1","jun1" ,"july1" , ## 17 
- 23 
                        "aug1","sept1","oct1","nov1","dec1","name1","suhi")      ## 24 
- 30 
 
 
for (j in c(1:12)){ 
  nc  <- j + 1 ## jan pval at 2nd column 
  nc1 <- nc + 15 ## jan beta at 17th colum 
  nc2 <- nc1 + 14 ## jan sig-beta at 31st 
 
  for (i in 1:length(resulttable$test_val)){ 
    val <- resulttable[i,nc] ## grab the pval 
    bet <- resulttable[i,nc1] ## grab the beta 
    #print(i) 
    if (val <= 0.05) { ## evaluate the pval 
      #print("yes") 
      ## and record the beta with an (*) for ID purposes.. 
      resulttable[i,nc2] <- paste(substr(bet,1,4), "*", sep=" ") ## label as sig! 
    } else { 
      #print("no") 
      resulttable[i,nc2] <- paste(substr(bet,1,4), "", sep="")} ## label with value 
  }  
}   
##############  end the down direction 
head(resulttable) 

##    test_val       jan        feb          mar        april         may 
## 2      pval 0.9620077 0.06040516 0.0074846060 0.8323769534 0.206016736 
## 4      pval 0.8088208 0.31005162 0.0765268056 0.7672528755 0.888308268 
## 6      pval 0.1660402 0.32753539 0.0005909365 0.3914812909 0.066155084 
## 8      pval 0.6040084 0.67480290 0.9797565451 0.0002879495 0.005216514 
## 10     pval 0.9626739 0.18458747 0.0004887326 0.7491596096 0.324251600 
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## 12     pval 0.5599902 0.83887127 0.0010088720 0.5588767399 0.737957173 
 
## 12 -5.306835584  0.159796047 -0.021273458  0.0146329213  0.0006842445 
##            july1         aug1        sept1          oct1         nov1 
## 2   1.127824e-02  0.015860437 -0.001548203  0.0039162934 -0.018750187 
## 4   3.243540e-03  0.001305083  0.004067680  0.0050173267  0.002129092 
## 6  -4.600096e-06 -0.002894554  0.008762724  0.0003810412  0.003822383 
## 8  -4.908760e-01 -0.243690297 -0.355080032 -0.3135967788 -0.086102843 
## 10  3.086399e-02 -0.035737139 -0.012861875 -0.0057338936  0.018294425 
## 12 -7.918499e-03  0.074839031 -0.603068191  0.0176384902  0.059109808 
##             dec1                   name1 suhi.1  V31  V32    V33    V34 
## 2  -0.0197521332 Albany--Schenectady, NY    DUR 0.00 0.02 0.04 *   -0.0 
## 4  -0.0005774411 Albany--Schenectady, NY    DUO -0.0 -0.0   -0.0   -0.0 
## 6   0.0040171857 Albany--Schenectady, NY    DUA -0.0 -0.0 -0.0 *   -0.0 
## 8  -0.0346920436 Albany--Schenectady, NY    MIC 0.02 0.04   -0.0 -0.5 * 
## 10  0.0408819088 Albany--Schenectady, NY    MAG -0.0 -0.0 -0.0 *   0.00 
## 12 -2.1203214479 Albany--Schenectady, NY    HIA 1.01 -5.3 0.15 *   -0.0 
##       V35    V36    V37    V38    V39  V40  V41  V42 
## 2    0.01 0.02 * 0.01 *   0.01   -0.0 0.00 -0.0 -0.0 
## 4    -0.0   0.00   0.00   0.00   0.00 0.00 0.00 -0.0 
## 6    -0.0   -0.0   -4.6   -0.0   0.00 0.00 0.00 0.00 
## 8  -0.5 * -0.5 * -0.4 *   -0.2 -0.3 * -0.3 -0.0 -0.0 
## 10   0.01 0.04 *   0.03 -0.0 *   -0.0 -0.0 0.01 0.04 
## 12   0.01   0.00   -0.0   0.07   -0.6 0.01 0.05 -2.1 

#write.csv(resulttable, file="C:/GISdata/NewUHI/output/rework_pvals_change_00_12.csv") 
 
rm(nc,nc1,nc2,val,bet,i,j) 
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A5.  Code implemented for Louisville specific analysis 

1. Pixel Based Measurements.  Import Urban LSTs for Louisville pixels only  

#######################################################################################
############## 
######################################### 
####  Start Louisville pixel data  ################ 
 
### set directory by appending above pathway. Then create 
### vector contining the names of each of the visible files in the working directory. 
setwd(paste(path, "/LouisvillePixelTables/", sep="")) 
files <- list.files(pattern = "\\.dbf$") 
 
## Create a new vector to retain combined urban data 
pix_data <- data.frame() 
##### set the looping structure to cycle through each file returned from dir() 
for (file in files) { 
  ##  extract day of year (DOY) from file name  
  DOY <- substr(file, 2, 8) 
  ## read in the data  
  table_data <- read.dbf(file, as.is = TRUE) 
  if (nrow(table_data) != 0){ 
    ## grab the variables we need 
  new_data <- table_data[,c(1:3)] 
  ## create new column called 'year' to store the label (factor?) we created above 
  new_data[,"DOY"] <- DOY 
  ## append this newly created data frame to the master we created earlier  
  pix_data <- rbind(pix_data, new_data) 
  } else {} 
} 
 
#head(urban_data) 
# clean house (just in case) 
rm(DOY) 
rm(table_data) 
rm(new_data) 
rm(file) 
rm(files) 
 
# rename variables to your liking 
names(pix_data) <- c("value", "ID", "raster", "doy") 
## recognize the date 
pix_data[,"date"] <- as.Date(pix_data$doy, format="%Y%j") 
 
pix_data$month <- as.factor(substr(pix_data$date, 6, 7)) 
pix_data$month <- factor(pix_data$month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may",  
                                  "jun", "july", "aug", "sept",  
                                  "oct", "nov", "dec")) 
pix_data$day <- as.factor(substr(pix_data$date, 9, 10)) 
pix_data$year<- as.factor(substr(pix_data$date, 1, 4)) 
pix_data$lst <- pix_data$value * 0.02 - 273.15 
head(pix_data) 
 
 
## create a list of all pixels and the months to be analyzed 



105 

 

pixels <- unique(pix_data$ID) 
months <- unique(pix_data$month) 
length(pixels) 
length(months) 
 
## create data.frame() to hold the change data as it comes in 
pixel_change <- data.frame(matrix(0, ncol = 14, nrow = 12)) 
names(pixel_change) <- c("test_val", "jan", "feb", "mar", "april", "may",  
                       "jun", "july", "aug", "sept",  
                       "oct", "nov", "dec","ID") 
#kept_data <- data.frame() 
n = 0 
for (pixel in pixels){  ## cycle through each location 
#  print(pixel) 
  ## Grab only the data that for that pixel 
  pixel_data <- filter(pix_data, ID==pixel) 
   
  n = n + 1 
  for (j in months){  ## cycle through each month 
    #j=1 
    n2 = n * 2 
    n1 = n2 - 1  
#    print(j) ## name the month 
    month_data <- filter(pixel_data, month==j) ## pull out that SUHI's data 
    tim <- c(1:length(month_data$lst)) 
    val <- month_data$lst 
    #lou_change[n,j] <- lm(val~tim)$coefficients[2] ## beta-value 
    pixel_change[n1,j] <- summary(lm(val~tim))$coefficients[2] ## beta-value 
    pixel_change[n2,j] <- summary(lm(val~tim))$coefficients[8] ## p-value 
    pixel_change$ID[n1] <- pixel 
    pixel_change$ID[n2] <- pixel 
    pixel_change$test_val[n1] <- "beta" 
    pixel_change$test_val[n2] <- "pval" 
  } ## close 3rd loop 
    #kept_data <- rbind(kept_data, ktm_change) ## grab the data 
} 
 
rm(j,i,n,n1,n2,pixel,pixels, tim, val) 
 
######################################################################### 
####################################### End Louisville pixel data 

3. Visualize for change over time (come back to this after addressing each of the 
indicators) for Louisville.   

## resubset data to get all years 
subsetData <- filter(H1_data, name == "Louisville/Jefferson County, KY--IN") 
## Grab the variables we need for the summary 
subsetData$Month <- as.factor(substr(subsetData$date, 6, 7)) 
subsetData$Month <- factor(subsetData$Month, 
                       levels = c("01", "02", "03", "04", "05", "06", 
                                  "07", "08", "09", "10", "11", "12"), 
                       labels = c("jan", "feb", "mar", "april", "may", 
                                  "jun", "july", "aug", "sept", 
                                  "oct", "nov", "dec")) 
subsetData$Day <- as.factor(substr(subsetData$date, 9, 10)) 
subsetData$Year<- as.factor(substr(subsetData$date, 1, 4)) 
subsetData$Temp<- subsetData$value 
 
## vectorize as df for plotting 
df <- filter(subsetData, type=="DUR"|type=="HIA") 
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################################################# 
## By month of Measurment and Type across each year to highlight seasonality 
cbPalette <- c( "#009E73", "#FF9900", "#0072B2", "#D55E00", "#CC79A7") 
cbPalette <- c( "#009E73", "#FF9900") 
 
ggplot(df,aes(Month,value,fill=type)) +  
  geom_bar(stat = "identity", position=position_dodge()) +  
  ggtitle("All Locations: DUR SUHI by Month by Type (2000 to 2015)") +  
  theme_grey(base_size=15) + theme(legend.position=c(.5,.125), axis.title.y=element_bla
nk()) +  
  scale_fill_manual(values=cbPalette) + ylim(0, 30) 
 
################################################### 
## Complete summary of year and month measurements.  All Data repersented! 
DURData <- subset(df, type=="DUR", select=c(type, Year, Month, value)) 
HIAData <- subset(df, type=="HIA", select=c(type, Year, Month, value)) 
medDevData <- subset(df, type=="DiffUHI", select=c(type, Year, Month, value)) 
 
ggplot(df,aes(Year,value,colour=type)) + ylim(0, 7) + 
  #geom_point(data=devData,size=I(2),alpha=I(0.6)) + 
  #geom_line(data=meanDevData,size=I(1.5),alpha=I(0.6)) + 
  geom_line(data=DURData,size=I(1.5),alpha=I(0.4)) + 
  theme_grey(base_size=15) + 
  theme(legend.title = element_blank(), legend.position=c(.5,.1), axis.title.y=element_
blank(),axis.text.x=element_blank()) + 
  ggtitle("Louisville, Kentucky: DUR SUHI by Month (2000 to 2015)") + facet_grid(. ~ Mo
nth) + 
  xlab("Years: 2000 to 2015") 
 
ggplot(df,aes(Year,value,colour=type)) + ylim(0, 25) + 
  #geom_point(data=devData,size=I(2),alpha=I(0.6)) + 
  #geom_line(data=meanDevData,size=I(1.5),alpha=I(0.6)) + 
  geom_line(data=DURData,size=I(1.5),alpha=I(0.4)) + 
  theme_grey(base_size=15) + 
  #theme(legend.title = element_blank(), legend.position=c(.5,.10), #axis.title.y=eleme
nt_blank(),axis.text.x=element_blank()) + 
  ggtitle("Louisville, Kentucky: HIA SUHI by Month (2000 to 2015)") + facet_grid(. ~ Mo
nth) + 
  xlab("Years: 2000 to 2015") 
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