

1

PARALLELIZING THE EXECUTION OF ARCGIS GEOPROCESSING TOOLS
TO IMPROVE THE PERFORMANCE OF COMPUTING AND PROCESSING MASSIVE

GEOGRAPHIC DATASETS: A HEURISTIC RESEARCH ON BIG DATA
PROCESSING IN THE PLANNING FIELD

By

CHANGJIE CHEN

A THESIS PRESENTED TO THE GRADUATE SCHOOL

OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS IN URBAN AND REGIONAL PLANNING

UNIVERSITY OF FLORIDA

2014

2

© 2014 Changjie Chen

3

To my Dad and Mom

4

ACKNOWLEDGMENTS

I thank the faculty in the Department of Urban and Regional Planning for their

continuous guidance and support during the studies of my master program. I would like

to express my most sincere gratitude to my committee chair Prof. Paul Zwick who

introduces me to the area of spatial analysis in the planning field and leads me to

research this particular topic of parallel processing in ArcGIS environment. I thank my

committee co-chair Prof. Ilir Bejleri for initiating me in planning thoughts and theories

when I was beginning my master program, and his guidance in strengthening this

thesis.

I need to especially thank my parents for all kinds of supports they give to me,

without which I cannot go this far. I want to thank my friends for their company during

both tough and happy times.

5

TABLE OF CONTENTS
page

ACKNOWLEDGMENTS .. 4

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

LIST OF ABBREVIATIONS ... 8

ABSTRACT ... 11

CHAPTER

1 INTRODUCTION .. 13

Research Purpose .. 13
Research Questions ... 15

Contributions of This Research ... 16

2 LITERATURE REVIEW .. 17

Python and Scripting for ArcGIS ... 17

What Is ArcPy ... 20
Parallel Computing ... 21

Key Concepts in Parallel Processing .. 22
Thread vs. Process .. 22

Other Terminologies ... 23

3 RESEARCH METHODOLOGY ... 24

Theoretical Basis .. 24

Data Usage ... 25
Conceptual Model ... 25

Parallel Processing One Dataset with Large Numbers of Features 26
Parallel Processing Large Numbers of Individual Datasets 27

Hardware Description ... 28

4 RESULTS ... 35

Performance Comparison In Terms of Time Consumption 35
Parallel Processing One Dataset with Large Numbers of Features 35
Parallel Processing Large Numbers of Individual Datasets 35

Performance Comparison In Terms of Output .. 35

5 DISCUSSION ... 43

6 CONCLUSION .. 45

6

Parallelizing with ArcGIS Functions .. 45
Evaluating the Performance .. 47

7 FUTURE RESEARCH .. 49

APPENDIX

A A SIMPLE PARALLEL PROGRAMMING TEST SOURCE CODE 51

B PARALLEL PROGRAMMING arcpy.Buffer_analysis SOURCE CODE 53

C PARALLEL PROGRAMMING arcpy.sa.EucDistance SOURCE CODE 56

D PARALLEL PROGRAMMING arcpy.PolygonToRaster_conversion SOURCE
CODE ... 59

LIST OF REFERENCES ... 63

BIOGRAPHICAL SKETCH .. 68

7

LIST OF TABLES

Table page

3-1 LODES Workplace Area Characteristics (WAC) File Structure (LEHD Origin-

Destination Employment Statistics (LODES) Dataset Structure Format
Version 7.0, 2013) .. 29

3-2 List of Hardware’s the Main Parameters ... 31

4-1 Statistical Results of Cell Statistics Function .. 37

8

LIST OF FIGURES

Figure page

3-1 Major Roads in the State of Florida .. 32

3-2 Interface for Downloading LODES Dataset .. 32

3-3 Conceptual Model for Parallel Processing One Dataset with Large Numbers
of Features ... 33

3-4 Conceptual Model for Parallel Processing Large Numbers of Individual
Datasets ... 33

3-5 Illustration of Euclidean Distance (Euclidean Distance (Spatial Analyst),
2014) .. 34

3-6 Illustration of Cell Statistics (Cell Statistics (Spatial Analyst), 2014) 34

4-1 CPU Usage While Performing an Eight-Processor Parallelization 38

4-2 Time Consumption by Employing Different Number of Processors 38

4-3 Multiple of Time Consumption Comparing with Non-parallelization 39

4-4 Time Saved by Performing Euclidean Distance of Different Cell Size 39

4-5 Non-Parallelized Result (Parallel Processing One Dataset with Large
Numbers of Features) ... 40

4-6 Parallelized Result (Parallel Processing One Dataset with Large Numbers of
Features) .. 41

4-7 Cell Statistics Output .. 42

9

LIST OF ABBREVIATIONS

API Application Programming Interface

CEM Conflict Evaluation Matrix

CPU Central Processing Unit

COM Component Object Model

CSV Comma Separated Variable

CTPP Component Object Model

DOT Department of Transportation

ESRI Environmental Systems Research Institute

FGDL Florida Geographic Data Library

FLOPS Floating Point Operations Per Second

FOSS Free and Open Source Software

GIS Geographic Information System

GIL Global Interpreter Lock

HDD Hard Disk Drive

I/O Input/Output

OD Origin-Destination

OOP Object-oriented Programming

LED Local Employment Dynamics

LEHD Longitudinal Employer-Household Dynamics

LODES LEHD Original-Destination Employment Statistics

LUCIS Land-Use Conflicts Identification Strategy

PSF Python Software Foundation

RAC Residence Area Characteristic

RAM Random-Access Memory

10

SSD Solid State Drive

VBA Visual Basic for Application

WAC Workplace Area Characteristic

11

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master in Arts of Urban and Regional Planning

PARALLELIZING THE EXECUTION OF ARCGIS GEOPROCESSING TOOLS
TO IMPROVE THE PERFORMANCE OF COMPUTING AND PROCESSING MASSIVE

GEOGRAPHIC DATASETS: A HEURISTIC RESEARCH ON BIG DATA
PROCESSING IN THE PLANNING FIELD

By

Changjie Chen

December 2014

Chair: Paul. D. Zwick
Cochair: Ilir Bejleri
Major: Urban and Regional Planning

The term big data has become pervasive in recent years. Successful applications

can be seen in every field from science to technology, and from public domains to

private sectors. In the planning field, this arriving era is moving the data that we used

towards a more real-time and particularized direction. Institutions such as the United

States Census Bureau and DOT (Department of Transportation), they are releasing new

data in a shorter cycle and with richer detail. Meanwhile, a growing number of devices

are installed around the world, which are automatically and ceaselessly generating new

geographic data.

In face of the opportunities coming with the explosion of data, planners should

find out their way to catch them. As a widely-used tool in the planning realm, ArcGIS

possesses the potential to accomplish this task with its powerful functions in analyzing

and processing geographic data. Through parallel programming ArcGIS Geoprocessing

Tools, this research serves as an icebreaking effort in leveraging big data processing in

the planning field. The positive results indicated a huge potential in performing the

12

parallelism on a supercomputer, such as HiPerGator1, which is the next level of the

research. Being able to process and analyze the big data could induce a shift from a

traditional long-term strategic planning to a more flexible and adjustable short-term

tactical planning, which would definitely change the way we do planning today.

1 HiPerGator: A supercomputer owns by University of Florida, which has 16,384 cores and 65,536 GB
memory, with the peak speed of 119.3 TFLOPS (Tera- floating point operations per second; 1 TFLOPS =
1012 FLOPS). (Strohmaier, 2013)

13

CHAPTER 1
INTRODUCTION

Research Purpose

The first decade of 21st century has witnessed a great leap in information

technology advances. By the meantime, the explosion of billions of records of data lead

us to an era of the so-called Big Data. There is no such a limit of size in defining what

big data is, however, a commonly accepted statement is any datasets whose size

beyond the processing ability of typical database software. With the panoramic

perspective provided by big data, people are able to look at the whole spectrum of a

problem and can be as precise as possible. Successful applications of big data can be

found in almost every domain, such as business, industrial production, social science

and even criminal prevention.

In fact, what really lighted the fuse of big data blast is the collection of data

pertaining to human activities. Another notable fact is that, today, most human activities

happen within cities. Therefore, the successfulness of being able to analyze big data is

undoubtedly meaningful to manage and regulate human activities in urban areas in

return, which is also the ultimate goal of urban planning.

In planning area, the term of big data seems to be not as fresh as it to other

fields. Planners are familiar with working with and making decisions (suggestions in

reality) based on a large amount of data and information. Rather than the scale of data,

the more attractive aspect to planning professionals about big data is the temporal

connotation it contains. Since human activities are the results of people’s judgment of

their surrounding environment and adaptive responses to its change, human activities

can be totally varied in time. In face of this great variation, traditional planning, which

14

usually has a range of 5 to10 or 10 to 20 years, seems to be strengthless. An emerging

trend that has been spurred by big data in planning field is the shifting of emphasis from

longer term strategic planning to short-term thinking about how cities function and can

be managed (Batty, 2013).

In 2010, more than 30 million networked sensor nodes are present in the

transportation, automotive, industrial, utilities, and retail sectors around the world. The

number of these sensors is increasing at a rate of more than 30 percent a year

(Manyika, et al., 2011). These devices are generating thousands of millions of records

of highly detailed data day after day. It should be noted that, in order to depict the real

world, there is no “too detailed” data in big data realm. Seemingly irrelevant data can be

linked together to generate meaningful information. With the datasets advancing in a

direction towards real time and particularization, in terms of making a better plan, both

researchers and practitioners must be able to take advantage of the opportunities

generated by this increasing scale of data availability.

Modern computer hardware technology makes the computation speed keep

increasing. However, the traditional way of data processing in the planning field has no

way to leverage that capability. Although ArcGIS software, as a commonly used tool in

the planning field, has powerful functions in processing geographic data, it cannot

satisfy planners’ needs in quickly processing large amount of data. Since ArcGIS

functions can only employ a single processor at any point of time, planners are

prohibited to utilize the power of multiple processors.

Through combing Python’s multiprocessing package and the ArcPy site package,

the research aims to find out the possible way to improve the performance of

15

processing geographic data Chapter 2 reviews the relating literatures. In chapter 3, the

author discusses the methods to realize the parallelization in the ArcGIS environment.

The result are explained and discussed in chapter 4 and 5. Conclusions are made in

chapter 6 which also pointed out the imperfections of this research. With chapter 7, the

direction of future research is discussed.

This research is all about seeking the possibilities of utilizing big data in the

planning field. The chapters included in this paper concentrate on articulating the

theories and approaches which supported those possibilities. Although the research

included a huge amount of Python coding to realize parallelism, this paper is not a

“Python Programming for ArcGIS” tutorial. However, since parallel programming is

difficult, especially when working with ArcPy module to process geographic data, it has

significant meaning to discuss about it. Therefore, the author included four parallel

programing source code in the appendix. Interested readers are welcome to contact the

author to explore more possibilities together.

Research Questions

In order to get better performance in processing geographic datasets, this

research seeks the possibilities of incorporating ArcPy functions into Python

multiprocessing package to leverage the computational power of multiple processors.

The research will answer the following questions:

1) Is it possible to utilize multiple processors to run more than one ArcGIS tasks at

the same time?

2) How to take the full capability of multiple processors of CPU to improve the

performance of geographic data processing?

16

3) How much faster it could be comparing parallelized processing with the

conventional single-core processing? and

4) In what scenarios, should we do parallel processing to increase the speed of

processing geographic data?

Contributions of This Research

This research explores the possibility of combining Python’s capability in parallel

processing and the capability of ArcGIS in processing geographic dataset, so that, to

improve the performance of processing large amount of datasets. Planners can directly

employ the methodology developed in the research to process planning related data in

a much faster speed than the way it used to be. As the result claims that it is possible to

take advantage of the computational power offered by multiple cores in executing

functions in the ArcPy site package, the research create a way for servers with

hundreds of cores to be able to perform geographic data processing. Therefore, the

research could also be seen as an icebreaking effort in leveraging big data analysis in

the planning field.

17

CHAPTER 2
 LITERATURE REVIEW

Python and Scripting for ArcGIS

Python is a popular open source programming language used for both

standalone programs and scripting applications in a wide variety of domains. Several

notable features of Python contribute to its prevalence and make it an ideal

programming language for working with ArcGIS.

It’s simple and easy to learn. Python is well known as a relatively easy

programming language, especially for starters. Thus, ArcGIS users could focus more on

tackling the real GIS (Geographic Information System) problems, instead of dealing with

the language difficulties.

It’s free and open source. Python is free and open source software (FOSS). This

feature makes Python accessible and free to distribute. Python published very detailed

documentations of every syntax of the language. Also, there are a great amount of

sources to learn about it on the internet. The free distribution feature makes a third-

party, like Esri (Environmental Systems Research Institution), could use it, build their

own site package, and distribute the ArcPy to everyone.

It’s object-oriented. Object-oriented Programming (OOP) allows users to write

programming scripts to model objects and how they interacts with other data. Each

individual ArcGIS’s geoprocessing task, by its nature, is an OOP code. Essentially, an

object is set as input; run through a particular method; and an object is generated as an

output. Thus, Python qualifies a perfect programming language that could work with

ArcGIS in this respect.

18

It’s interpreted. Many programming languages require that a program be

converted from the source language, such as C++ or Visual Basic, into binary code that

the computer can understand. This requires a compiler with various options. Python is

an interpreted language, which means it does not need compilation to binary code

before it can be run. You simply run the program directly from the source code, which

makes Python easier to work with and much more portable than other programming

language. (Zandbergen, 2013)

Python’s 2.X/3.X story is worth to tell to any user who wants to learn Python. PSF

(Python Software Foundation) released version 2.6 in October 2008. However, only two

months later, they released an entire new generation of Python 3.0 in December.

Python is now dual-version world, with many users running both 2.X and 3.X according

to their software goals and dependencies (Lutz, 2013). Different from most other

software, Python is not backward compatible, which means 3.X cannot substitute or

cover the whole range of capability provided by 2.X. Python 3.X is seen as the future.

Although the latest version of 2.X, Python 2.7, is still supported by Python developer, it

would be the last 2.X. Nevertheless, at present, the new generation cannot simply

replace its predecessor, with the fact that 2.X is still downloaded more often than 3.X.

Python is regarded as both a programming language and scripting language. A

programming language has the ability to develop advanced and sophisticated software

and applications. It’s also capable of dealing with raw resources of computer to build an

operating system. On the other hand, scripting language is the “gear” that links each

individual parts and makes them work together. In other words, scripting languages use

19

higher-level built-in functions to perform a related new application. Therefore, scripting

always works as a part of a bigger programming task.

ArcGIS IS COM (Component Object Model) compliant, which is the most widely

used software architecture. This makes scripting languages can access to all the tools

available in ArcGIS to automate tasks and workflows. Although this automation can be

achieved by programming, scripting always requires less effort on coding itself, but

allowing programmers focus on the real problem.

With the attractive feature of both a programming and scripting language, Python

quickly displaced the former widely used language – VBA (Visual Basic for Application)

– in ArcGIS software. The reason is largely because Python has the advantage of ease

of use of a scripting language, as well as the programming capability of a highly-

structured developer language. ArcGIS 10 has seen further integration of Python within

the ArcGIS Interface, and Esri has officially embraced Python as the preferred scripting

tool for working with ArcGIS (Zandbergen, 2013).

Like Microsoft built the “Windows” operating system based on C++, an advanced

OOP language, Esri also relies on C++ to develop their software with the key

components named ArcObjects. Programmers could use C++ to call these objects as

well as create their own objects to realize a particular goal of a project. However, it

could be even easier and efficient to utilize scripting language to connect the existing

functions in a new way to fulfill the same task as well. To most GIS professionals who

are not in the field of computer science, planners as an example, the latter way is more

realizable and it is much more pervasive indeed. Esri makes scripting much more

productive in ArcGIS environment by introducing ArcPy.

20

What Is ArcPy

ArcPy (often referred to as the ArcPy site package) provides Python access for

all geoprocessing tools, including extensions, as well as a wide variety of useful

functions and classes for working with and interrogating GIS data (Essential ArcPy

vocabulary, 2014). It is included with a typical installation of ArcGIS software. Besides

the fundamental tools stored in ArcPy module, the site package also includes four

modules to offer the accessibility to all the functions that you have with the conventional

ArcMap application. They are:

 Data Access Module (arcpy.da),

 Mapping Module (arcpy.mapping),

 ArcGIS Spatial Analyst Extension Module (arcpy.sa),

 ArcGIS Network Analyst Extension Module (arcpy.na).

ArcGIS 10.2.2, the latest version of the software, relies upon Python 2.7.5, which

means the successfulness of working with ArcPy site package depends on a proper

installation of a corresponding version of Python. Since the 2.X version of Python would

be unsupported in a foreseeable future, ArcGIS would eventually adopt the 3.X as an

alternative. By then, users may encounter a considerable changes, however, the new

capability of 3.X, on the beneficial side, could also create new possibilities and be a

great experience to users working with ArcGIS.

Generally speaking, ArcPy is organized in tools, functions, classes and modules.

The most absorbing benefit of using ArcPy is being able to access and work with the

comprehensive toolset that developed by GIS programmers for the sake of automating

the workflow of geographic data analysis.

21

ArcPy is a great invention that makes professionals with less knowledge of

programming programmers. It lifts users up to a certain level, on which you do not need

to know how a particular function coded, but only need to know what result it can

provide. By calling different tools in ArcPy and combine them in different ways, users

are able to build very sophisticated and customized scripts to reach their objectives.

Parallel Computing

Parallel Computing is a terminology used in the field of Computer Science, which

defines a computing approach evolved from the traditional Serial Computing. Serial

computing utilizes one CPU (Central Processing Unit) of one computer; breaks a

problem into a discrete series of instructions; executes only one instruction at a given

point in time. Parallel computation, on the other hand, takes advantage of multiple

CPUs to improve the computing performance.

While the progress in hardware technology has significantly increased the

capability that we have with computer, it triggered higher expectations to hardware

itself. However, as the computational requirements are continually raised up, we face

some limitations, for example overheating, which could not be handled. As the silicon-

based processor chip is reaching its physical limits in processing speed, chip makers

launched a major shift from inventing faster single-processor chip to build chips with

connected multiple processors working in coordination with each other.

Modern chips consist of multiple microprocessors (also called cores), buses, and

cache memory on the same chip. Server processors such as Intel’s Single Chip Cloud

Computer demonstrate that it’s possible to integrate 48 general-purpose processors on

just 567 mm2 (Pankratius, Schutle, & Keutzer, 2011). As of this writing, oct-core (eight

22

multiprocessors) chips are widely used on desktop, and this number is likely to

increase.

With the ability offered by multi-processor CPU, a big task could be divided into

smaller subtasks which can be executed simultaneously, or many tasks can be

executed at the same time by individual cores. The course change of hardware

development also causes the according adaptions to software. Programming and

scripting languages, such as Java and C++, are able to take advantage of multiple

cores through parallelism. Python is one of them.

Key Concepts in Parallel Processing

Thread vs. Process

Generally speaking, there are two ways of doing computation simultaneously.

Multithreading, on the one hand, run multiple tasks by using a single processor. When

one thread is utilizing the processor, the other threads are waiting. The threads quickly

switch from one another to keep the single processor being used. It works like an

internet browser, with which you can have multiple web pages open, but only one of

them is currently viewed. Multithreading is a perfect solution in dealing with I/O bound

tasks. However, it cannot really use multiple processors of CPU.

On the other hand, multiprocessing utilizes multiple processors of CPU at the

same time. It is a new package coming with the release of Python 2.6. It uses the same

API (Application Programming Interface) as multithreading. But, it work around with the

GIL by copying multiple interpreters to multiple processors. Multiprocessing allows

programmers to really take advantage of the computational power of multiple

processors on CPU, and it work very well to solve CPU bound tasks.

23

Other Terminologies

To fully understand the theory of parallel processing, some other concepts have

to be clarified.

 Concurrency, when applied to application/program logic, is the simultaneous
execution of tasks (Noller, 2009)

 Compiler vs. Interpreter. Programming languages can be generalized categorized
by using compiler or using interpreter. They are both for translating human-readable
programming language to computer-understandable binary language. The difference
between them is compiler translate the whole script first before running the code. So
that, if there was a grammar error, the code would not run. The example of compiled
language is VBA (Visual Basic for Application). Interpreter, on the other hand,
translating the language while the code is running. As a result, even if there was a
grammar error in coding, the script would still run until it meet the error line. Python
is an interpreted programming language, the most commonly used interpreter of
Python is CPython which is written in the C language. Examples of some other
interpreters for python are Jython, IronPython, RubyPython, and PyPy.

 GIL (Global Interpreter Lock) is a mutex that prevents multiple native threads from
executing Python bytecodes at once. This lock is necessary mainly because
CPython's memory management is not thread-safe. (Athanasias, 2014)

 I/O bound is short for Input/Output bound, which described a situation that the
computing speed is restricted by the reading and writing speed from and to a hard
drive.

 CPU bound is the opposite of I/O bound, which which described a situation that the
computing time is restricted by the computational power of CPU.

 Process and Pool are both objects in the multiprocessing package of Python. They
have similar functionalities in utilizing multiple processors. One little difference might
be that Process is able to work with Queue object. Combining Process with Queue
objects can make parallel programming safer.

24

CHAPTER 3
RESEARCH METHODOLOGY

Theoretical Basis

The application of ArcGIS software in the planning field has been a long story.

However, with the scale of data availability continually increasing, the conventional way

of using ArcGIS appears to be less powerful in satisfying the need of processing big

data. This situation is going to get worse, as planning data is moving towards a direction

of real-time and particularized. In order to be productive, being able to process big data

is a desire to professionals in planning field. A promising solution is parallel processing.

PSF (Python Software Foundation) introduced the new multiprocessing package,

when they released the Python 2.6 version. It provides the objects and methods that

support users to utilize multiple processors on one computer. Different from the

previous thread which mainly focused on solve I/O bound tasks, the new package work

around the GIL and allow multiple processes to run simultaneously, so that machine

with multiple cores can really do computation much faster in dealing with CPU bound

tasks.

The ArcPy site package provided by Esri offers the programming accessibility to

each individual tool that can be found in the ArcMap application. Since ArcPy was

written in Python language, incorporating the ArcPy objects and functions into Python

programming is possible. Programming Python together with the ArcPy module can

create more possibilities than only use either one of them. With Arcpy’s powerful

functions in geographic data processing and the ability possessed by multiprocessing

package, parallelism in the ArcGIS environment can be realized.

25

Data Usage

To see the performance of parallel processing with an individual huge dataset,

major roads of Florida was employed. Since Euclidean Distance function was applied, a

processing extent covered the whole region of Florida is qualified, in terms of the

purpose of the test. Figure 3-1 shows the major roads of the state of Florida.

To test parallel processing with large numbers of datasets, the LODES (LEHD1

Origin-Destination Employment Statistics) datasets are employed. Figure 3-2 shows the

downloading interface of LODES data on Census website. LODES datasets consists of

a large number of CSV (Comma Separated Variable) files, which have three categories:

OD (Origin-Destination) data, RAC (Residence Area Characteristic) data, and WAC

(Workplace Area Characteristic) data. This research used the Florida 2010 WAC

dataset. The specific file name is “fl_wac_S000_JT00_2010.csv”. The LODES data

offers a high degree of geographic detail, with information available at the Census block

level. However, to serve the test purpose, the data used in this research was

aggregated to the Census block group level. Furthermore, the number of fields used is

reduced to forty from the original fifty-three. Table 3-1 shows the field names and

explanations that are being used.

Conceptual Model

Theoretically, there are two general situations in which parallelism can improve

the performance of data processing. One is processing one dataset with large numbers

1 LEHD: Longitudinal Employment-Household Dynamics program was launched by U.S. Census Bureau
in 1999. It is part of the Center for Economic Studies at the U.S. Census Bureau. The LEHD
program produces new, cost effective, public-use information combining federal, state and Census
Bureau data on employers and employees under the Local Employment Dynamics (LED) Partnership.
(LEHD Origin-Destination Employment Statistics (LODES) Dataset Structure Format Version 7.0, 2013)

26

of features, the other is processing large numbers of individual datasets. Figure 3-3 and

Figure 3-4 described these two cases respectively.

Parallel Processing One Dataset with Large Numbers of Features

To be able to process one big dataset with multiple processors, a large dataset

will be divided into several smaller datasets, so that individual processor can be

employed to do the separate work. Euclidean Distance is used to evaluate this type of

parallel processing. It is a function of ArcPy in the ArcGIS spatial analyst extension

module (arcpy.sa). Generally speaking, this function calculates the Euclidean distance

to the closest source for each cell and returns an output raster with the value of the

calculations. Figure 3-5 shows the illustration of this function. The following formula

explains how the Euclidean distance is calculated in the two-dimensional space.

22)()(),(baba yyxxbad 

 Where,

d(a, b) is the Euclidean distance from point a to point b;

xa and xb are the X-axis coordinate values;

ya and yb are the Y-axis coordinate values.

As discussed above, to parallelize the task of performing a Euclidean distance

analysis for major roads in the whole state of Florida, the big task should be divided into

small pieces, so that, multiple cores can compute simultaneously. A logic and proper

division is to divide the processing extent by counties. Through setting the Extent

parameter in ArcPy’s environment class, sixty-seven counties in Florida become sixty-

seven small tasks which are processed by multiple processors by turns. To eliminate

the boarder effect, a 2-mile buffer is applied to each processing extent.

27

The research employed Mosaic dataset which allows users to store, manage,

view, and query a collection of raster data. These capabilities make the Mosaic dataset

a perfect solution to merge the individual results of parallel back together. Because of

the 2-mile buffer, there would be overlaps on the boarder of each county. Mosaic

dataset also allows users to set the mosaic operation to calculate the cell value in

overlapping areas. These operations include: first, last, min, max, mean, blend, and

sum. In this case, since Euclidean distance is calculating the distance to the closest

source, the min (minimum) operation will be applied. This part of research will create

two outputs, one of which is generated by executing in ArcMap application without

parallelization, and the other is by mosaicked individual results processed by

parallelizing. To test the similarity of the two outputs, the ArcGIS Cell Statistics Tool is

utilized. Figure 3-6 shows the illustration of this function. The “Statistic Type” applied in

this case is “Range” which calculates the difference between the largest and smallest

value of cells on the same geographic location.

Parallel Processing Large Numbers of Individual Datasets

To test the performance of parallelizing large numbers of individual datasets, the

Polygon to raster function was applied. This function allow users to convert a polygon

shapefile to a raster dataset. The idea comes from the LUCIS1 model developed by Dr.

Paul Zwick. The first step of building the model is to create a CEM (Conflict Evaluation

Matrix). Essentially, a CEM is a raster dataset that contains multiple fields. Each of

1 LUCIS stands for Land-Use conflict identification strategy. It is a goal-driven GIS model that produces a
spatial representation of probable patterns of future land use. (Carr & Zwick, 2007) A newer model called
LUCISPLUS, of which PLUS stands for planning land-use scenario. The new model focuses on the
allocation of future population and employment. It provides different scenarios of future land-use plan,
whose product can be directly utilized by planning organizations.

28

these fields represent an attribute associated with the particular cell. The creation of

CEM needs to combine more than ten raster datasets (the maximum value is twenty).

Also, in the reality, the CEM is going to be generated multiple times to find a best one

that matches a certain analytical purpose. Therefore, it is efficient to prepare all raster

datasets which would possibly be used before doing the analysis. That’s where parallel

processing fits in this case.

As stated in the previous section of this chapter, forty fields of Florida 2010 wac

LODES dataset is used to accomplish the purpose of the research. Each field is joined

to a GIS shapefile of the state of Florida with a geographic unit of census block group.

So that, forty shapefiles with field values represented different columns in LODES

dataset will be converted to forty raster datasets. This scenario fulfills the purpose of

evaluating parallel processing with large numbers of individual datasets.

Hardware Description

The performance of Parallelism, similar to the conventional single-processor

computation, also highly depends on the capability of hardware. This research is being

completed on a laptop whose major components’ parameters are shown in Table 3-2.

The CPU contains four physical cores. Because of Intel’s Hyper-threading technology,

each physical consists two logical processors. (Hyper-threading, 2014)

29

Table 3-1. LODES Workplace Area Characteristics (WAC) File Structure (LEHD Origin-Destination Employment Statistics
(LODES) Dataset Structure Format Version 7.0, 2013)

Pos Variable Type Explanation

1 w_geocode Char15 Workplace Census Block Code

2 C000 Num Total number of jobs

3 CA01 Num Number of jobs for workers age 29 or younger

4 CA02 Num Number of jobs for workers age 30 to 54

5 CA03 Num Number of jobs for workers age 55 or older

6 CE01 Num Number of jobs with earnings $1250/month or less

7 CE02 Num Number of jobs with earnings $1251/month to $3333/month

8 CE03 Num Number of jobs with earnings greater than $3333/month

9 CNS01 Num Number of jobs in NAICS sector 11 (Agriculture, Forestry, Fishing and Hunting)

10 CNS02 Num Number of jobs in NAICS sector 21 (Mining, Quarrying, and Oil and Gas Extraction)

11 CNS03 Num Number of jobs in NAICS sector 22 (Utilities)

12 CNS04 Num Number of jobs in NAICS sector 23 (Construction)

13 CNS05 Num Number of jobs in NAICS sector 31-33 (Manufacturing)

14 CNS06 Num Number of jobs in NAICS sector 42 (Wholesale Trade)

15 CNS07 Num Number of jobs in NAICS sector 44-45 (Retail Trade)

16 CNS08 Num Number of jobs in NAICS sector 48-49 (Transportation and Warehousing)

17 CNS09 Num Number of jobs in NAICS sector 51 (Information)

18 CNS10 Num Number of jobs in NAICS sector 52 (Finance and Insurance)

19 CNS11 Num Number of jobs in NAICS sector 53 (Real Estate and Rental and Leasing)

20 CNS12 Num Number of jobs in NAICS sector 54 (Professional, Scientific, and Technical Services)

21 CNS13 Num Number of jobs in NAICS sector 55 (Management of Companies and Enterprises)

22 CNS14 Num
Number of jobs in NAICS sector 56 (Administrative and Support and Waste Management
and Remediation Services)

23 CNS15 Num Number of jobs in NAICS sector 61 (Educational Services)

24 CNS16 Num Number of jobs in NAICS sector 62 (Health Care and Social Assistance)

25 CNS17 Num Number of jobs in NAICS sector 71 (Arts, Entertainment, and Recreation)

26 CNS18 Num Number of jobs in NAICS sector 72 (Accommodation and Food Services)

30

Table 3-1. Continued

Pos Variable Type Explanation

27 CNS19 Num Number of jobs in NAICS sector 81 (Other Services [except Public Administration])

28 CNS20 Num Number of jobs in NAICS sector 92 (Public Administration)

29 CR01 Num Number of jobs for workers with Race: White, Alone

30 CR02 Num Number of jobs for workers with Race: Black or African American Alone

31 CR03 Num Number of jobs for workers with Race: American Indian or Alaska Native Alone

32 CR04 Num Number of jobs for workers with Race: Asian Alone

33 CR05 Num Number of jobs for workers with Race: Native Hawaiian or Other Pacific Islander Alone

34 CR07 Num Number of jobs for workers with Race: Two or More Race Groups

35 CT01 Num Number of jobs for workers with Ethnicity: Not Hispanic or Latino

36 CT02 Num Number of jobs for workers with Ethnicity: Hispanic or Latino

37 CD01 Num Number of jobs for workers with Educational Attainment: Less than high school

38 CD02 Num
Number of jobs for workers with Educational Attainment: High school or equivalent, no
college

39 CD03 Num
Number of jobs for workers with Educational Attainment: Some college or Associate
degree

40 CD04 Num
Number of jobs for workers with Educational Attainment: Bachelor's degree or advanced
degree

31

Table 3-2. List of Hardware’s the Main Parameters

Component Producer Model Main parameters

Motherboard Lenovo W530 2436 CTO
CPU Intel i7-3610 QM 2.30 GHz
Memory bank 1 G skill F3-1600C9D-16GRSL Capacity: 8 GB

Speed: PC3 12800
Voltage: 1.35V

Memory bank 2 G skill F3-1600C9D-16GRSL Capacity: 8 GB
Speed: PC3 12800
Voltage: 1.35V

Memory bank 3

Hynix HMT351S6CFR8C Capacity: 4 GB
Speed: PC3 12800
Voltage: 1.5 V

Hard drive Samsung MZ-7TE1T0BW Device Type: Solid state drive
Capacity: 1 TB
Read speed: 540 MB/s
Write speed: 520 MB/s

32

Figure 3-1. Major Roads in the State of Florida

Figure 3-2. Interface for Downloading LODES Dataset

33

Figure 3-3. Conceptual Model for Parallel Processing One Dataset with Large Numbers
of Features

Figure 3-4. Conceptual Model for Parallel Processing Large Numbers of Individual
Datasets

34

Figure 3-5. Illustration of Euclidean Distance (Euclidean Distance (Spatial Analyst),
2014)

Figure 3-6. Illustration of Cell Statistics (Cell Statistics (Spatial Analyst), 2014)

35

CHAPTER 4
RESULTS

Performance Comparison In Terms of Time Consumption

Parallel Processing One Dataset with Large Numbers of Features

Figure 4-1 shows the CPU usage when eight processors are being used in a

parallelization. The average time consumption for performing a typical Euclidean

distance analysis within the ArcMap application on researcher’s laptop is about 18.5

minutes. Using four processors to parallel Processing sixty-seven counties individually

took 4.06 minutes. It also took about 1.25 minutes to merge the individual raster

datasets back through Add Raster to Mosaic Dataset function. Therefore, using 4 cores

is 3.48 times faster than only employ single processor.

Parallel Processing Large Numbers of Individual Datasets

Figure 4-2 shows the general time consumption of performing Euclidean distance

function with different cell size by employing different numbers of processors. Figure 4-3

describes the speed differences among using two processors, four processors and eight

logical processors comparing with single processor. Figure 4-4 explains how much time

could save by using two processors, four processors and eight logical processors

comparing with only applying a single processor. Generally speaking, in terms of time

consumption, employing two processors is 1.85 times faster than using single

processor. The numbers for four processors and eight processors (logically) are 3.16

and 4.32 respectively.

Performance Comparison In Terms of Output

Regarding parallel processing with large numbers of datasets, because each

individual dataset is treated separately by multiple processes, the outputs will be exactly

36

the same with using single processor. Therefore, this type of parallel processing is

unnecessary and will not be included in this comparison. Figure 4-5 is the images of the

output raster dataset of the non-parallelized processing. And, its counterpart Figure 4-6

shows the output of the parallelized process. Figure 4-7 shows the result of the analysis

of Cell Statistic function whose statistical values are listed in Table 4-1. The minimum

difference is 0. However, the maximum difference is 27409.83.

37

Table 4-1.Statistical Results of Cell Statistics Function

Statistics Value

Count 1470549742
Minimum 0
Maximum 27,409.82813
Sum 230,823,154,700
Mean 156.9638538
Standard Deviation 1,024.2925

38

Figure 4-1. CPU Usage While Performing an Eight-Processor Parallelization

Figure 4-2. Time Consumption by Employing Different Number of Processors

41
71

165

636

24 39
87

327

13 23
52

193

10 16 40

141

0

100

200

300

400

500

600

700

40 30 20 10

Ti
m

e
C

o
n

su
m

p
ti

o
n

 (
m

in
)

Raster Cell Size (meters)

No Parallel 2 Processors 4 Processors 8 Processors (Logical)

39

Figure 4-3. Multiple of Time Consumption Comparing with Non-parallelization

Figure 4-4. Time Saved by Performing Euclidean Distance of Different Cell Size

1

1

1

1

1.739259889

1.810424119

1.91039261

1.943430266

3.033382789

3.113356766

3.190742527

3.294764126

4.254942768

4.379480841

4.145326986

4.507837435

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

40

30

20

10

Multiple of Time Consumption Comparing with No Parallelization (No Parallelization = 1)

R
as

te
r

C
el

l S
iz

e
(m

et
er

s)
8 Processors (Logical) 4 Processors 2 Processors No Parallel

0

100

200

300

400

500

600

40 30 20 10

Ti
m

e
C

o
n

su
m

p
ti

o
n

 D
if

fe
re

n
ce

 C
o

m
p

ar
in

g
w

it
h

 N
o

 P
ar

al
le

liz
at

io
n

 (
m

in
)

Raster Cell Size (meters)

No Parallel 2 Processors 4 Processors 8 Processors (Logical)

40

Figure 4-5. Non-Parallelized Result (Parallel Processing One Dataset with Large
Numbers of Features)

41

Figure 4-6. Parallelized Result (Parallel Processing One Dataset with Large Numbers of
Features)

42

Figure 4-7. Cell Statistics Output

43

CHAPTER 5
DISCUSSION

Figure 4-6 has distinctly shown the differences between parallelized and non-

parallelized outputs, in terms of parallel processing one dataset with large numbers of

features. Although a 2-mile buffer was applied to each county, big differences can still

be found on the boarders of each county. Increase the distance of the buffer may

reduce this effect, however, it will also increase the time consumption. Besides, even

though there is a perfect buffer distance that can one-hundred percent eliminate this

issue, finding out this number is time consuming and difficult. Therefore, parallelization

should not be used in processing one dataset, although it can increase the speed of

processing.

On the other hand, the positive results of parallel processing with large numbers

of individual datasets indicates a big potential of parallelizing ArcGIS tasks in this way.

The performance has apparently improved by using multiple processors. With the

capability of the laptop used in the research, performing a 10-meter cell size parallel

processing saved the author more than eight hours. It is excited by only imagining how

fast the speed would be, if performing the parallelism on a server with hundreds of

cores. Besides, the high performance, some other key findings are also worthy to be

discussed here.

The heavier the task is, the more time it would be saved by parallelization. Figure

4-3 has vividly explained this point. When the cell size used by Euclidean distance is 40

meters, the difference between using single processor and multiple processors is not

very obvious. The differences become bigger as the cell size become smaller.

44

Parallelizing the tasks requires a little period of time. Instead of two times, using

two processors is 1.85 times faster than a single-core process. This means the CPU

would take some time before it can enter into the parallelizing mode. In addition, the

performance improvement gained by increasing the processor number from two to four,

is not as much as it gained from single to two. A possible explanation to this situation

would be the performance gained from single to two processors is the biggest

performance improvement can be get. It is very similar to a change from nothing to one.

However, with a four physical core laptop, there are not so many scenarios can be test

to find out the real reason. Future research on servers may be able to give us an

answer.

Logical processor is not equivalent to physical processor in terms of processing

capability. The performance improvement gained by increasing the processor number

from four to eight, is not as much as it gained from two to four. The reason is because

the two logical processors share the same resources from one physical processor.

45

CHAPTER 6
CONCLUSION

Parallelizing with ArcGIS Functions

It is important to point out that parallel processing may not always increase the

speed of computation, unless one utilizes it in the right way. First of all, parallel

programming is difficult, and it becomes even trickier when it works with ArcPy

functions. To avoid fatal errors, parallelism can only be called once in one script. In fact,

Programmers always write long scripts to meet their goals. Sometimes, these codes

can be longer than hundreds of lines. However, in parallel programming, it is irrational

and inefficient to run all the codes in parallelizing mode. Before writing the scripts,

researchers have to think about what the most CPU-consuming task is, and only

parallelize that part. In other words, only the most difficult part should be handed to

multiple processors.

Moreover, when working with ArcPy, researchers should keep in mind couples of

additional rules besides what are wrote in Python documents.

Do not use Geodatabase. An ArcGIS geodatabase would apply an exclusive

schema lock to prevent other applications or users from accessing it, at any time while

the dataset is open or being modified. Similar to GIL applied to CPython, this schema

lock blocked the way of doing parallel processing with ArcGIS Geodatabase. The

solution to this issue is to create an ArcInfo workplace for storing both the input and

output data.

Do not include more than one parallelism in one script. Because of the

differences in scale and complexity among different geographic datasets, time

consumed to process them varies greatly. Thus, two processes that started together

46

could be finished at different point of time. If there were two or more parallelisms

included in one script, a very likely result would be, with one parallelism not finished, the

other parallelism already started. It may lead to a fatal error, if cores are in different

parallelisms.

Work with ArcGIS ModelBuilder to keep script organized. Researchers have to

think through all the steps required in order to fulfill the final purpose. Besides, it is even

more important to be aware of the “major function”, that is, what function really needs to

parallelize, because only one ArcPy function is necessary to be parallelized in most

cases. In terms of setting an effective workflow, ArcGIS ModelBuilder could be a helpful

tool in this circumstances.

Do not use 100% of CPU. The key point of using parallel processing is to keep all

the available cores installed in CPU working until the total work is completed. However,

with some big projects, it would be good to avoid using one-hundred percent of the

CPUs’ capacity, since it would cause the CPU overheating, especially with laptops

whose CPU fan is not as powerful as a desktop computers, not to mention servers.

Not only CPU matters. The performance of parallel processing is not only

affected by the capability of CPU. The computer performing its functionality with all its

components working together as a whole. The author used to only have 4GB of

computer RAM (Random-access memory) on the laptop. For the purpose of this

research, the laptop has been upgraded to 20 GB RAM, which significantly increase the

computation speed of CPU. Another important component is the hard drive which

determines the reading and writing speed of a computer. The author also upgraded the

47

previous hard disk drive (HDD) to a solid state drive (SSD). With the new drive, the

computer possesses a 540 MB/s reading speed and 520 MB/s writing speed.

Thirdly, individual tasks should be similar to one another, in terms of time

consumption. For example, if a parallelized code had four tasks, one of which was much

bigger than the other three, the three smaller tasks would spend most of time in waiting

for the big one. Researchers should distribute the general task evenly to each individual

processor to leverage all of the CPU’s capability.

Last but not least, parallel processing, in most cases, should be used in a pre-

analyzing stage. Although it is possible to do higher level analysis with parallel, it is

much more efficient and powerful in the data-preparation phase. For one thing, it is not

easy to code a whole analytical process, especially included parallelizing. On the other

hand, purpose of programming, by its nature, is to utilize the computational power of

computers to automate regular tasks, which could save people from doing repeated and

meaningless works. Obviously, analysis is not one of those works. Thus, the best

scenario is to do parallel processing at the beginning of research. With the power

possessed by parallelism, planners can access to all the data that would be possibly

used in the research.

Evaluating the Performance

The result of the research proved parallelism can significantly improve the

performance of geographic datasets processing. It also told us the best situation to

apply parallelization is parallel processing large numbers of individual datasets. Two

general conclusions can be made, one of which is that, the more processors are

employed, the less time it cost. On the other hand, as the task gets heavier, the more

benefits in parallelization can be gained.

48

The number of tests that can be done in this research is limited by the resources

available to the author. With only four physical cores available, the performance of

parallel processing with more than four cores cannot be known by current research.

This situation hindered us to get deeper understanding with characteristics of

parallelizing the ArcGIS functions. Future research on servers may be able to find out

the answer. Another imperfection of this research is the application of parallel

processing. Serving as a test, only two functions in ArcGIS are tested in the research.

However, better applications need to be considered to utilize the big potential of

parallelism.

Utilizing parallel processing would make planners more efficient in the data

processing stage and save planner both a lot of time and energy, so that they can

concentrate more on the real analysis. The research opened a door for planners to

leverage the so-called big data analysis to solve planning problems.

49

CHAPTER 7
FUTURE RESEARCH

This research proved that it is possible to combine Python’s capability in parallel

programming and the capability of ArcPy in processing geographic data together to

leverage the computational power of multiple processors. The results indicated a

positive correlation between the processing speed and the number of processors. This

conclusion strongly suggests moving the research to the next level, which is, processing

big geographic data on servers.

The performance of geographic data processing would be tremendously

magnified by thousands of processors installed on server. Specifically, planners can

process more than one thousand geographic datasets using the same time as they

used to process one dataset. Moreover, possibilities are not only restricted to

processing the newly generated data, but also let us go back to the history to process

historical datasets with high performance. By doing that, we can get a better

understanding of the courses of the development of our cities.However, more

researches need to be done to realize parallelization on a server. As most servers are

not organized in Windows operation system, the interface and operations are

completely different from running applications on a laptop or desktop computer.

Predictably, a good amount of tests and explorations is down the road, before we can

employ the entire range of capability provided by servers.

Another direction of future research is to parallel programming a series of ArcPy

functions to be able to do more advanced data processing with parallelization. In this

research, the author tests the feasibility of parallelizing Euclidean distance and Polygon

to raster functions respectively. However, the parallelization was performed by only

50

executing one function at a time. In most cases, the raw data is stored in a .csv or .txt

format. This is for the purpose of storing and managing the data easily. But, it is not able

to directly use these format to do geographic data process, since the table of

geographic datasets are stored in .dbf format or as a geodatabase object.

To be able to use those raw data, several steps of transformations have to be

made. Therefore, parallelizing a series of functions to realize the transformations has

significant meanings, in terms of utilizing raw data. Although the research concluded

that it is not such a good application for using parallel processing in the analytical stage,

parallel programming more than one ArcPy functions can be realized. In fact,

theoretically, any combination of ArcPy functions following a regular pattern is possible

to be parallelized.

Some programmers said: if one thing is worth to do, it is worth to do in

parallelization. With further researches being done in this topic, planners will have more

capabilities in processing “big data” that supports them to make a better plan.

51

APPENDIX A
A SIMPLE PARALLEL PROGRAMMING TEST SOURCE CODE

import math

import time

from multiprocessing import Process, Queue

from Queue import Empty

def PythagoreanNum(n):

 for c in range (n+1, n+9):

 for a in range (1, c):

 for b in range (a, c):

 c_square = a**2 + b**2

 if c == math.sqrt(c_square):

 print a, b, c

 return

def do_jobs(q):

 while True:

 try:

 x = q.get(block=False)

 PythagoreanNum(x)

 except Empty:

 break

if __name__ == '__main__':

 t1 = time.time()

 workqueue = Queue()

52

 for i in range(0, 3000, 8):

 workqueue.put(i)

 jobs = [Process(target = do_jobs, args=(workqueue,)) for i in range(8)]

 for job in jobs:

 job.start()

 for job in jobs:

 job.join()

 t2 = time.time()

 TimeTaken = (t2-t1)/60

print TimeTaken

53

APPENDIX B

PARALLEL PROGRAMMING arcpy.Buffer_analysis SOURCE CODE

import arcpy

from arcpy import env

import arcpy.sa

from multiprocessing import Process, Queue

from Queue import Empty

import time

import os

def select(fc, fieldname, attribute, output):

 env.overwriteOutput = True

 whereclause1 = '"' + fieldname + '" = ' + "\'" + attribute + "\'"

 out = output

 arcpy.Select_analysis(fc, out, whereclause1)

 return

def GetAttributes(fc, field):

 valueList = []

 valueSet = set()

 rows = arcpy.SearchCursor(fc)

 for row in rows:

 value = row.getValue(field)

 if value not in valueSet:

 valueList.append(value)

 valueSet.add(value)

54

 valueList.sort()

 return valueList

def do_buffer(q, location, distance):

 while True:

 try:

 x = q.get(block=False)

 cntfolder = location + "\\" + x

 arcpy.env.workspace = cntfolder

 arcpy.Buffer_analysis(x.upper() + "_MASK.shp", x.upper() + "_BUFF.shp",

distance, "", "ROUND", "", "")

 except Empty:

 break

 return

if __name__ == "__main__":

 T1 = time.time()

 env.overwriteOutput = True

 env.workspace = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData"

 arcpy.CreateFolder_management(env.workspace, "output")

 outputfolder = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData\\output"

 for cnt in GetAttributes("cntbnd_jul11.shp", "NAME"):

 arcpy.CreateArcInfoWorkspace_management(outputfolder, cnt.split('-')[0])

 cntfolder = outputfolder + "\\" + cnt.split('-')[0]

55

 select("cntbnd_jul11.shp", "NAME", cnt, cntfolder + "\\" + cnt.split('-')[0] +

"_MASK.shp")

 arcpy.Copy_management("majrds_feb11.shp", cntfolder + "\\majrds_feb11.shp",

"")

 workqueue = Queue()

 for cnt in os.listdir(outputfolder):

 workqueue.put(cnt.upper())

 jobs = [Process(target = do_buffer, args=(workqueue, outputfolder, "2 Miles")) for i in

range(8)]

 for job in jobs:

 job.start()

 for job in jobs:

 job.join()

 T2 = time.time()

print "Total time taken: {} minutes.".format((T2-T1)/60)

56

APPENDIX C
PARALLEL PROGRAMMING arcpy.sa.EucDistance SOURCE CODE

import arcpy

from arcpy import env

import arcpy.sa

from multiprocessing import Process, Queue

from Queue import Empty

import time

import os

def Extent(fc):

 extent = arcpy.Describe(fc).extent

 west = extent.XMin

 south = extent.YMin

 east = extent.XMax

 north = extent.YMax

 return [west, south, east, north]

def euc(location, cnt, fc, cellsize):

 arcpy.CheckOutExtension("spatial")

 arcpy.env.workspace = location

 arcpy.env.mask = location + "\\" + cnt + "_MASK.shp"

 bufferextent = location + "\\" + cnt + "_BUFF.shp"

 arcpy.env.extent = arcpy.Extent(Extent(bufferextent)[0], Extent(bufferextent)[1],

Extent(bufferextent)[2], Extent(bufferextent)[3])

 print arcpy.env.extent

57

 EUC = arcpy.sa.EucDistance(fc, "", cellsize, "")

 EUC.save(location + "\\ed" + cnt[:5])

 return

def do_euc(q, location, fc, cellsize):

 while True:

 try:

 x = q.get(block=False)

 cntfolder = location + "\\" + x

 euc(cntfolder, x.upper(), fc, cellsize)

 except Empty:

 break

 return

if __name__ == "__main__":

 T1 = time.time()

 arcpy.env.overwriteOutput = True

 arcpy.env.workspace = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData"

 outputfolder = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData\\output"

 workqueue = Queue()

 for cnt in os.listdir(outputfolder):

 workqueue.put(cnt)

 jobs = [Process(target = do_euc, args=(workqueue, outputfolder, "E:\\UFL\\Thesis

Relative\\Parallel with Mosaic\\WorkingData\\majrds_feb11.shp", 10)) for i in range(4)]

 for job in jobs:

58

 job.start()

 for job in jobs:

 job.join()

 T2 = time.time()

print "Total time taken: {} minutes.".format((T2-T1)/60)

59

APPENDIX D
PARALLEL PROGRAMMING arcpy.PolygonToRaster_conversion SOURCE CODE

import arcpy

from arcpy import env

import arcpy.sa

from multiprocessing import Process, Queue

from Queue import Empty

import time

import os

def Extent(fc):

 extent = arcpy.Describe(fc).extent

 west = extent.XMin

 south = extent.YMin

 east = extent.XMax

 north = extent.YMax

 return [west, south, east, north]

def grid(location, tbl, fc, cellsize):

 arcpy.CheckOutExtension("spatial")

 arcpy.env.workspace = location

 arcpy.env.mask = fc

 arcpy.env.extent = arcpy.Extent(Extent(fc)[0], Extent(fc)[1], Extent(fc)[2],

Extent(fc)[3])

 print arcpy.env.extent

 arcpy.PolygonToRaster_conversion(fc, tbl, tbl + "", "", "", cellsize)

60

 return

def do_grid(q, location, fc, cellsize):

 while True:

 try:

 x = q.get(block=False)

 folder = location + "\\" + x

 arcpy.env.workspace = folder

 grid(folder, x.upper(), fc, cellsize)

 except Empty:

 break

 return

if __name__ == "__main__":

 arcpy.env.overwriteOutput = True

 arcpy.env.workspace = "E:\\UFL\\Thesis Relative\\Parallel with

Census\\WorkingData"

 arcpy.CreateFolder_management(env.workspace, "output")

 outputfolder = "E:\\UFL\\Thesis Relative\\Parallel with Census\\WorkingData\\output"

 fieldnames = [f.name for f in arcpy.ListFields("FL_WAC.dbf")]

 for field in fieldnames:

 if field <> "CREATEDATE" and field <> "BLKGRPID" and field <> "OID":

 print field

 arcpy.CreateArcInfoWorkspace_management(outputfolder, field)

 tblfolder = outputfolder + "\\" + field.lower()

61

 fm = arcpy.FieldMap()

 fm1 = arcpy.FieldMap()

 fms1 = arcpy.FieldMappings()

 fm1.addInputField("FL_WAC.dbf", "BLKGRPID")

 fm.addInputField("FL_WAC.dbf", field)

 fms1.addFieldMap(fm)

 fms1.addFieldMap(fm1)

 arcpy.TableToTable_conversion("FL_WAC.dbf", tblfolder, field + ".dbf", "", fms1,

"")

 arcpy.MakeFeatureLayer_management ("cenblkgrp10.shp", "blkgrp_lyr")

 arcpy.AddJoin_management("blkgrp_lyr", "GEOID10", tblfolder + "\\" + field +

".dbf", "BLKGRPID", "KEEP_ALL")

 fm2 = arcpy.FieldMap()

 fm3 = arcpy.FieldMap()

 fms2 = arcpy.FieldMappings()

 fm2.addInputField("blkgrp_lyr", "cenblkgrp10.GEOID10")

 fm3.addInputField("blkgrp_lyr", field + "." + field)

 fms2.addFieldMap(fm2)

 fms2.addFieldMap(fm3)

 arcpy.FeatureClassToFeatureClass_conversion("blkgrp_lyr", tblfolder,

"CBG10.shp", "", fms2, "")

 T1 = time.time()

 workqueue = Queue()

62

 for tbl in os.listdir(outputfolder):

 workqueue.put(tbl)

 jobs = [Process(target = do_grid, args=(workqueue, outputfolder, "CBG10.shp", 40))

for i in range(2)]

 for job in jobs:

 job.start()

 for job in jobs:

 job.join()

 T2 = time.time()

 print "Total time taken: {} minutes.".format((T2-T1)/60)

63

LIST OF REFERENCES

A Quick Tour of ArcPy. (2014, March). (Esri) Retrieved from ArcGIS Resources -
ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/#/A_quick_tour_of_ArcPy/000v000
00001000000/

Allen, D. W. (2011). Getting to Know ArcGIS ModelBuilder. Redlands, CA: Esri Press.

Allen, D. W. (2014). GIS Tutorial for Python Scripting. Redlands, CA: Esri Press.

Application Programming Interface. (2014, September). Retrieved from Wikipedia, The
Free Encyclopedia:
http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldi
d=623906555

Athanasias, D. (2014, 5 11). Global Interpreter Lock. (Python Software Foundation)
Retrieved from Python Wiki: https://wiki.python.org/moin/GlobalInterpreterLock

Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human
Geography, 3(3), 274-279.

Beazley, D. (2012, October). Secrets of the Multiprocessing Module. Login, 37(5).

Beazley, D., & Jones, B. K. (2013). Python Cookbook. Sebastopol, CA: O'Reilly &
Associates.

Bettencourt, L. M. (2013, September 17). The Uses of Big Data in cities. Santa Fe, NM,
United States of America.

Buffer (Analysis). (2014, March). (Esri) Retrieved from ArcGIS Resources - ArcGIS Help
10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//00080000001900000
0

Carr, M. H., & Zwick, P. D. (2007). Smart Land-Use Analysis. Redlands, CA: Esri Press.

Cell Statistics (Spatial Analyst). (2014, April). (Esri) Retrieved from ArcGIS Resources -
ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//009z0000007q00000
0

Create ArcInfo Workspace (Data Management). (2014, August). (Esri) Retrieved from
ArcGIS Resources - ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000ps00000
0

64

Create Mosaic Dataset (Data Management). (2014, August). (Esri) Retrieved from
ArcGIS Resources - ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//00170000008n00000
0

Crim, S. (2012, July). I'll take you there -- Using Census Longitudinal Employer-
Household Dynamics Data For Assessing Transit Service Coverage. Retrieved
from Ride New Orleans: http://rideneworleans.org/

Dalcin, L. D., Paz, R. R., Kler, P. A., & Cosimo, A. (2011). Parallel Distributed
Computing Using Python. Advances in Water Resources, 34(9), 1124-1139.

(2013). Designing with data: Shaping our future cities. Royal Institute of British
Architects; ARUP. London: ARUP.

Durgaprasad, P. (2011, December). Parallel Computing: High Performance.
International Journal of Emerging Technology and Advanced Engineering, 1(2),
97-101.

Essential ArcPy vocabulary. (2014, March). Retrieved from ArcGIS Resources - ArcGIS
Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/#/Essential_ArcPy_vocabulary/000
v000000v6000000/

Euclidean Distance (Spatial Analyst). (2014, April). (Esri) Retrieved from ArcGIS
Resources - ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//009z0000001p00000
0

FieldMap (arcpy). (2014, March). (Esri) Retrieved from ArcGIS Resources - ArcGIS
Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//018z0000007p00000
0

FieldMappings (arcpy). (2014, March). (Esri) Retrieved from ArcGIS Resources -
ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//018z0000007800000
0

Flynn, M. J. (1966). Very High-Speed Computing Systems. IEEE. 54, pp. 1901-1909.
Evanston: IEEE. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1447203&isnumber=3
1091

Forum, M. (1994). Mpi: A message-passing interface standard. International Journal of
Supercomputer Applications.

65

Geodatabase Locks. (2012, October). (Esri) Retrieved from ArcGIS Resources - ArcGIS
Help 10.1:
http://resources.arcgis.com/en/help/main/10.1/index.html#//01900000000400000
0

Hinsen, K. (n.d.). Parallel scripting with python. Computing in Science & Engineering,
9(6), pp. 82-89. doi:10.1109/MCSE.2007.117

History of Python. (2014, August 15). (Wikipedia, The Free Encyclopedia) Retrieved
October 3, 2014, from
http://en.wikipedia.org/w/index.php?title=History_of_Python&oldid=621406482

Hyper-threading. (2014, September). Retrieved from Wikipedia, The Free Encyclopedia:
http://en.wikipedia.org/wiki/Hyper-threading

I/O bound. (2014, September). Retrieved from Wikipedia, The Free Encyclopedia:
http://en.wikipedia.org/w/index.php?title=I/O_bound&oldid=625147905

Kerr, N. T. (2009). Alternative Approaches to Parallel GIS Processing. Master Thesis,
Arizona State Universtiy, Department of Computer Science, Tempe.

LEHD Origin-Destination Employment Statistics (LODES) Dataset Structure Format
Version 7.0. (2013, June 6). LODES 7.0 Tech Doc. Washington D.C. Retrieved
from United States Census Bureau:
http://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.0.pdf

ListFeatureClasses (arcpy). (2014, March). (Esri) Retrieved from ArcGIS Resources -
ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#/ListFeatureClasses/03
q300000023000000/

Longitudinal Employer-Household Dynamics. (2014). Retrieved from United States
Census Bureau: http://lehd.did.census.gov/

Lutz, M. (2013). Learning Python (5th ed.). O'Reilly Media, Inc.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H.
(2011, June). Big data: The next frontier for innovation, competition, and
productivity. McKinsey Global Institute. McKinsey & Company.

Matloff, N. (2012). Programming on Parallel Machines. Davis, CA.

Mattson, T. (2009, August 10). How to sound like a Parallel Programming Expert Part 1:
Introducing concurrency and parallelism. Retrieved from Intel Developer Zone:
https://software.intel.com/sites/default/files/m/d/4/1/d/8/09MC03_Part_1_Concurr
ency_par_expert_intro_2.pdf

66

Miller, P. (2002, May 24). Parallel, Distributed Scripting with Python. Retrieved from
http://www.osti.gov/scitech/servlets/purl/15013331

Multiprocessing - Process-based "threading" interface. (2014, September). Retrieved
from Python 2.7.8 standard library:
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing

Noller, J. (2008). Getting Started with Concurrency - Using Multiprocessing and
Threading. Atlanta, GA. Retrieved August 20, 2014

Noller, J. (2009, February 1). Python Threads and the Global Interpreter Lock.
Retrieved from http://jessenoller.com/blog/2009/02/01/python-threads-and-the-
global-interpreter-lock

Pankratius, V., Schutle, W., & Keutzer, K. (2011, January). Parallelism on the Desktop.
IEEE SOFTWARE, 28(1), 14-16. doi:10.1109/MS.2011.8

Parallel Processing. (2014, May). Retrieved from Wikipedia, The Free Encyclopedia:
http://en.wikipedia.org/w/index.php?title=Parallel_processing&oldid=610389787

Peters, A., & MacDonald, H. (2004). Unlocking the Census with GIS. Redlands, CA:
Esri Press.

Polygon to Raster (Conversion). (2014, March). (Esri) Retrieved from ArcGIS
Resources - ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//00120000003000000
0

Strohmaier, E. (2013, November). November 2013. Retrieved from Top 500
Supercomputer Sites: http://www.top500.org/system/178260

Supercomputer. (2014). Retrieved from Wikipedia, The Free Encyclopedia:
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Supercomputer&id=
628507120

Thread - Multiple threads of control. (2014, September). Retrieved from Python 2.7.8
Standard Library:
https://docs.python.org/2/library/thread.html?highlight=thread%20module#modul
e-thread

Walters, G., & Winiberg, M. (2014). The Python Quick Syntax Reference. New York:
Apress. doi:10/1007/978-1-4302-6479-8

What is a mosaic dataset? (2014, September). (Esri) Retrieved from ArcGIS Resources
- ArcGIS Help 10.2, 10.2.1, and 10.2.2:
http://resources.arcgis.com/en/help/main/10.2/index.html#//009t00000037000000

67

Worboys, M. F., & Duckham, M. (2004). GIS: A Computing Perspective (2nd ed.). Boca
Raton, FL: CRC Press.

Zandbergen, P. A. (2013). Python Scripting for ArcGIS (1st ed.). Redlands, CA: ESRI
Press.

68

BIOGRAPHICAL SKETCH

Mr. Chen received his Master of Arts in Urban and Regional Planning from the

University of Florida in December 2014. He has an educational background in urban

and regional planning, which specialized in spatial analysis. Mr. Chen’s research

interest has been directed at the land use and transportation modeling and analyzing.

His research emphasis has been concentrated on customizing and automatizing GIS

(Geographic Information System) tools and applications to improve the performance of

data processing in the planning field.

Mr. Chen got his bachelor’s degree in urban and regional planning in Liaoning

Technical University in China. Upon his completion of his master’s degree, he will

continue pursuing a doctoral degree in the Department of Urban and Regional Planning

at the University of Florida.

