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The term big data has become pervasive in recent years. Successful applications 

can be seen in every field from science to technology, and from public domains to 

private sectors. In the planning field, this arriving era is moving the data that we used 

towards a more real-time and particularized direction. Institutions such as the United 

States Census Bureau and DOT (Department of Transportation), they are releasing new 

data in a shorter cycle and with richer detail. Meanwhile, a growing number of devices 

are installed around the world, which are automatically and ceaselessly generating new 

geographic data.  

In face of the opportunities coming with the explosion of data, planners should 

find out their way to catch them. As a widely-used tool in the planning realm, ArcGIS 

possesses the potential to accomplish this task with its powerful functions in analyzing 

and processing geographic data. Through parallel programming ArcGIS Geoprocessing 

Tools, this research serves as an icebreaking effort in leveraging big data processing in 

the planning field. The positive results indicated a huge potential in performing the 
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parallelism on a supercomputer, such as HiPerGator1, which is the next level of the 

research. Being able to process and analyze the big data could induce a shift from a 

traditional long-term strategic planning to a more flexible and adjustable short-term 

tactical planning, which would definitely change the way we do planning today.         

                                            
1 HiPerGator: A supercomputer owns by University of Florida, which has 16,384 cores and 65,536 GB 
memory, with the peak speed of 119.3 TFLOPS (Tera- floating point operations per second; 1 TFLOPS = 
1012 FLOPS). (Strohmaier, 2013)  
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CHAPTER 1 
INTRODUCTION 

Research Purpose 

The first decade of 21st century has witnessed a great leap in information 

technology advances. By the meantime, the explosion of billions of records of data lead 

us to an era of the so-called Big Data. There is no such a limit of size in defining what 

big data is, however, a commonly accepted statement is any datasets whose size 

beyond the processing ability of typical database software. With the panoramic 

perspective provided by big data, people are able to look at the whole spectrum of a 

problem and can be as precise as possible. Successful applications of big data can be 

found in almost every domain, such as business, industrial production, social science 

and even criminal prevention. 

In fact, what really lighted the fuse of big data blast is the collection of data 

pertaining to human activities. Another notable fact is that, today, most human activities 

happen within cities. Therefore, the successfulness of being able to analyze big data is 

undoubtedly meaningful to manage and regulate human activities in urban areas in 

return, which is also the ultimate goal of urban planning.  

In planning area, the term of big data seems to be not as fresh as it to other 

fields. Planners are familiar with working with and making decisions (suggestions in 

reality) based on a large amount of data and information. Rather than the scale of data, 

the more attractive aspect to planning professionals about big data is the temporal 

connotation it contains. Since human activities are the results of people’s judgment of 

their surrounding environment and adaptive responses to its change, human activities 

can be totally varied in time. In face of this great variation, traditional planning, which 
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usually has a range of 5 to10 or 10 to 20 years, seems to be strengthless. An emerging 

trend that has been spurred by big data in planning field is the shifting of emphasis from 

longer term strategic planning to short-term thinking about how cities function and can 

be managed (Batty, 2013).  

In 2010, more than 30 million networked sensor nodes are present in the 

transportation, automotive, industrial, utilities, and retail sectors around the world. The 

number of these sensors is increasing at a rate of more than 30 percent a year 

(Manyika, et al., 2011). These devices are generating thousands of millions of records 

of highly detailed data day after day. It should be noted that, in order to depict the real 

world, there is no “too detailed” data in big data realm. Seemingly irrelevant data can be 

linked together to generate meaningful information. With the datasets advancing in a 

direction towards real time and particularization, in terms of making a better plan, both 

researchers and practitioners must be able to take advantage of the opportunities 

generated by this increasing scale of data availability. 

Modern computer hardware technology makes the computation speed keep 

increasing. However, the traditional way of data processing in the planning field has no 

way to leverage that capability. Although ArcGIS software, as a commonly used tool in 

the planning field, has powerful functions in processing geographic data, it cannot 

satisfy planners’ needs in quickly processing large amount of data. Since ArcGIS 

functions can only employ a single processor at any point of time, planners are 

prohibited to utilize the power of multiple processors.  

Through combing Python’s multiprocessing package and the ArcPy site package, 

the research aims to find out the possible way to improve the performance of 
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processing geographic data Chapter 2 reviews the relating literatures. In chapter 3, the 

author discusses the methods to realize the parallelization in the ArcGIS environment. 

The result are explained and discussed in chapter 4 and 5. Conclusions are made in 

chapter 6 which also pointed out the imperfections of this research. With chapter 7, the 

direction of future research is discussed. 

This research is all about seeking the possibilities of utilizing big data in the 

planning field. The chapters included in this paper concentrate on articulating the 

theories and approaches which supported those possibilities. Although the research 

included a huge amount of Python coding to realize parallelism, this paper is not a 

“Python Programming for ArcGIS” tutorial. However, since parallel programming is 

difficult, especially when working with ArcPy module to process geographic data, it has 

significant meaning to discuss about it. Therefore, the author included four parallel 

programing source code in the appendix. Interested readers are welcome to contact the 

author to explore more possibilities together.  

Research Questions 

In order to get better performance in processing geographic datasets, this 

research seeks the possibilities of incorporating ArcPy functions into Python 

multiprocessing package to leverage the computational power of multiple processors. 

The research will answer the following questions:  

1) Is it possible to utilize multiple processors to run more than one ArcGIS tasks at 

the same time?  

2) How to take the full capability of multiple processors of CPU to improve the 

performance of geographic data processing? 
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3) How much faster it could be comparing parallelized processing with the 

conventional single-core processing? and 

4) In what scenarios, should we do parallel processing to increase the speed of 

processing geographic data? 

Contributions of This Research 

This research explores the possibility of combining Python’s capability in parallel 

processing and the capability of ArcGIS in processing geographic dataset, so that, to 

improve the performance of processing large amount of datasets. Planners can directly 

employ the methodology developed in the research to process planning related data in 

a much faster speed than the way it used to be. As the result claims that it is possible to 

take advantage of the computational power offered by multiple cores in executing 

functions in the ArcPy site package, the research create a way for servers with 

hundreds of cores to be able to perform geographic data processing. Therefore, the 

research could also be seen as an icebreaking effort in leveraging big data analysis in 

the planning field. 
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CHAPTER 2 
 LITERATURE REVIEW 

Python and Scripting for ArcGIS 

Python is a popular open source programming language used for both 

standalone programs and scripting applications in a wide variety of domains. Several 

notable features of Python contribute to its prevalence and make it an ideal 

programming language for working with ArcGIS.   

It’s simple and easy to learn. Python is well known as a relatively easy 

programming language, especially for starters. Thus, ArcGIS users could focus more on 

tackling the real GIS (Geographic Information System) problems, instead of dealing with 

the language difficulties. 

It’s free and open source. Python is free and open source software (FOSS). This 

feature makes Python accessible and free to distribute. Python published very detailed 

documentations of every syntax of the language. Also, there are a great amount of 

sources to learn about it on the internet. The free distribution feature makes a third-

party, like Esri (Environmental Systems Research Institution), could use it, build their 

own site package, and distribute the ArcPy to everyone.  

It’s object-oriented. Object-oriented Programming (OOP) allows users to write 

programming scripts to model objects and how they interacts with other data. Each 

individual ArcGIS’s geoprocessing task, by its nature, is an OOP code. Essentially, an 

object is set as input; run through a particular method; and an object is generated as an 

output. Thus, Python qualifies a perfect programming language that could work with 

ArcGIS in this respect. 
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It’s interpreted. Many programming languages require that a program be 

converted from the source language, such as C++ or Visual Basic, into binary code that 

the computer can understand. This requires a compiler with various options. Python is 

an interpreted language, which means it does not need compilation to binary code 

before it can be run. You simply run the program directly from the source code, which 

makes Python easier to work with and much more portable than other programming 

language. (Zandbergen, 2013) 

Python’s 2.X/3.X story is worth to tell to any user who wants to learn Python. PSF 

(Python Software Foundation) released version 2.6 in October 2008. However, only two 

months later, they released an entire new generation of Python 3.0 in December. 

Python is now dual-version world, with many users running both 2.X and 3.X according 

to their software goals and dependencies (Lutz, 2013). Different from most other 

software, Python is not backward compatible, which means 3.X cannot substitute or 

cover the whole range of capability provided by 2.X. Python 3.X is seen as the future. 

Although the latest version of 2.X, Python 2.7, is still supported by Python developer, it 

would be the last 2.X. Nevertheless, at present, the new generation cannot simply 

replace its predecessor, with the fact that 2.X is still downloaded more often than 3.X.  

Python is regarded as both a programming language and scripting language. A 

programming language has the ability to develop advanced and sophisticated software 

and applications. It’s also capable of dealing with raw resources of computer to build an 

operating system. On the other hand, scripting language is the “gear” that links each 

individual parts and makes them work together. In other words, scripting languages use 
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higher-level built-in functions to perform a related new application. Therefore, scripting 

always works as a part of a bigger programming task.  

ArcGIS IS COM (Component Object Model) compliant, which is the most widely 

used software architecture. This makes scripting languages can access to all the tools 

available in ArcGIS to automate tasks and workflows. Although this automation can be 

achieved by programming, scripting always requires less effort on coding itself, but 

allowing programmers focus on the real problem.  

With the attractive feature of both a programming and scripting language, Python 

quickly displaced the former widely used language – VBA (Visual Basic for Application) 

– in ArcGIS software. The reason is largely because Python has the advantage of ease 

of use of a scripting language, as well as the programming capability of a highly-

structured developer language. ArcGIS 10 has seen further integration of Python within 

the ArcGIS Interface, and Esri has officially embraced Python as the preferred scripting 

tool for working with ArcGIS (Zandbergen, 2013). 

Like Microsoft built the “Windows” operating system based on C++, an advanced 

OOP language, Esri also relies on C++ to develop their software with the key 

components named ArcObjects. Programmers could use C++ to call these objects as 

well as create their own objects to realize a particular goal of a project. However, it 

could be even easier and efficient to utilize scripting language to connect the existing 

functions in a new way to fulfill the same task as well. To most GIS professionals who 

are not in the field of computer science, planners as an example, the latter way is more 

realizable and it is much more pervasive indeed. Esri makes scripting much more 

productive in ArcGIS environment by introducing ArcPy. 
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What Is ArcPy 

ArcPy (often referred to as the ArcPy site package) provides Python access for 

all geoprocessing tools, including extensions, as well as a wide variety of useful 

functions and classes for working with and interrogating GIS data (Essential ArcPy 

vocabulary, 2014). It is included with a typical installation of ArcGIS software. Besides 

the fundamental tools stored in ArcPy module, the site package also includes four 

modules to offer the accessibility to all the functions that you have with the conventional 

ArcMap application. They are: 

 Data Access Module (arcpy.da), 

 Mapping Module (arcpy.mapping), 

 ArcGIS Spatial Analyst Extension Module (arcpy.sa), 

 ArcGIS Network Analyst Extension Module (arcpy.na). 

ArcGIS 10.2.2, the latest version of the software, relies upon Python 2.7.5, which 

means the successfulness of working with ArcPy site package depends on a proper 

installation of a corresponding version of Python. Since the 2.X version of Python would 

be unsupported in a foreseeable future, ArcGIS would eventually adopt the 3.X as an 

alternative. By then, users may encounter a considerable changes, however, the new 

capability of 3.X, on the beneficial side, could also create new possibilities and be a 

great experience to users working with ArcGIS.  

Generally speaking, ArcPy is organized in tools, functions, classes and modules. 

The most absorbing benefit of using ArcPy is being able to access and work with the 

comprehensive toolset that developed by GIS programmers for the sake of automating 

the workflow of geographic data analysis.  
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ArcPy is a great invention that makes professionals with less knowledge of 

programming programmers. It lifts users up to a certain level, on which you do not need 

to know how a particular function coded, but only need to know what result it can 

provide. By calling different tools in ArcPy and combine them in different ways, users 

are able to build very sophisticated and customized scripts to reach their objectives.  

Parallel Computing 

Parallel Computing is a terminology used in the field of Computer Science, which 

defines a computing approach evolved from the traditional Serial Computing.  Serial 

computing utilizes one CPU (Central Processing Unit) of one computer; breaks a 

problem into a discrete series of instructions; executes only one instruction at a given 

point in time. Parallel computation, on the other hand, takes advantage of multiple 

CPUs to improve the computing performance.  

While the progress in hardware technology has significantly increased the 

capability that we have with computer, it triggered higher expectations to hardware 

itself. However, as the computational requirements are continually raised up, we face 

some limitations, for example overheating, which could not be handled. As the silicon-

based processor chip is reaching its physical limits in processing speed, chip makers 

launched a major shift from inventing faster single-processor chip to build chips with 

connected multiple processors working in coordination with each other.  

Modern chips consist of multiple microprocessors (also called cores), buses, and 

cache memory on the same chip. Server processors such as Intel’s Single Chip Cloud 

Computer demonstrate that it’s possible to integrate 48 general-purpose processors on 

just 567 mm2 (Pankratius, Schutle, & Keutzer, 2011). As of this writing, oct-core (eight 
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multiprocessors) chips are widely used on desktop, and this number is likely to 

increase.  

With the ability offered by multi-processor CPU, a big task could be divided into 

smaller subtasks which can be executed simultaneously, or many tasks can be 

executed at the same time by individual cores. The course change of hardware 

development also causes the according adaptions to software. Programming and 

scripting languages, such as Java and C++, are able to take advantage of multiple 

cores through parallelism. Python is one of them.  

Key Concepts in Parallel Processing 

Thread vs. Process 

Generally speaking, there are two ways of doing computation simultaneously. 

Multithreading, on the one hand, run multiple tasks by using a single processor. When 

one thread is utilizing the processor, the other threads are waiting. The threads quickly 

switch from one another to keep the single processor being used. It works like an 

internet browser, with which you can have multiple web pages open, but only one of 

them is currently viewed. Multithreading is a perfect solution in dealing with I/O bound 

tasks. However, it cannot really use multiple processors of CPU. 

On the other hand, multiprocessing utilizes multiple processors of CPU at the 

same time. It is a new package coming with the release of Python 2.6. It uses the same 

API (Application Programming Interface) as multithreading. But, it work around with the 

GIL by copying multiple interpreters to multiple processors. Multiprocessing allows 

programmers to really take advantage of the computational power of multiple 

processors on CPU, and it work very well to solve CPU bound tasks. 
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Other Terminologies 

To fully understand the theory of parallel processing, some other concepts have 

to be clarified.  

 Concurrency, when applied to application/program logic, is the simultaneous 
execution of tasks (Noller, 2009) 

 Compiler vs. Interpreter. Programming languages can be generalized categorized 
by using compiler or using interpreter. They are both for translating human-readable 
programming language to computer-understandable binary language. The difference 
between them is compiler translate the whole script first before running the code. So 
that, if there was a grammar error, the code would not run. The example of compiled 
language is VBA (Visual Basic for Application). Interpreter, on the other hand, 
translating the language while the code is running. As a result, even if there was a 
grammar error in coding, the script would still run until it meet the error line. Python 
is an interpreted programming language, the most commonly used interpreter of 
Python is CPython which is written in the C language. Examples of some other 
interpreters for python are Jython, IronPython, RubyPython, and PyPy. 

 GIL (Global Interpreter Lock) is a mutex that prevents multiple native threads from 
executing Python bytecodes at once. This lock is necessary mainly because 
CPython's memory management is not thread-safe. (Athanasias, 2014) 

 I/O bound is short for Input/Output bound, which described a situation that the 
computing speed is restricted by the reading and writing speed from and to a hard 
drive. 

 CPU bound is the opposite of I/O bound, which which described a situation that the 
computing time is restricted by the computational power of CPU. 

 Process and Pool are both objects in the multiprocessing package of Python. They 
have similar functionalities in utilizing multiple processors. One little difference might 
be that Process is able to work with Queue object. Combining Process with Queue 
objects can make parallel programming safer.  
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CHAPTER 3 
RESEARCH METHODOLOGY 

Theoretical Basis 

The application of ArcGIS software in the planning field has been a long story. 

However, with the scale of data availability continually increasing, the conventional way 

of using ArcGIS appears to be less powerful in satisfying the need of processing big 

data. This situation is going to get worse, as planning data is moving towards a direction 

of real-time and particularized. In order to be productive, being able to process big data 

is a desire to professionals in planning field. A promising solution is parallel processing.  

PSF (Python Software Foundation) introduced the new multiprocessing package, 

when they released the Python 2.6 version. It provides the objects and methods that 

support users to utilize multiple processors on one computer. Different from the 

previous thread which mainly focused on solve I/O bound tasks, the new package work 

around the GIL and allow multiple processes to run simultaneously, so that machine 

with multiple cores can really do computation much faster in dealing with CPU bound 

tasks.  

The ArcPy site package provided by Esri offers the programming accessibility to 

each individual tool that can be found in the ArcMap application. Since ArcPy was 

written in Python language, incorporating the ArcPy objects and functions into Python 

programming is possible. Programming Python together with the ArcPy module can 

create more possibilities than only use either one of them. With Arcpy’s powerful 

functions in geographic data processing and the ability possessed by multiprocessing 

package, parallelism in the ArcGIS environment can be realized. 
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Data Usage 

To see the performance of parallel processing with an individual huge dataset, 

major roads of Florida was employed. Since Euclidean Distance function was applied, a 

processing extent covered the whole region of Florida is qualified, in terms of the 

purpose of the test. Figure 3-1 shows the major roads of the state of Florida. 

To test parallel processing with large numbers of datasets, the LODES (LEHD1 

Origin-Destination Employment Statistics) datasets are employed. Figure 3-2 shows the 

downloading interface of LODES data on Census website. LODES datasets consists of 

a large number of CSV (Comma Separated Variable) files, which have three categories: 

OD (Origin-Destination) data, RAC (Residence Area Characteristic) data, and WAC 

(Workplace Area Characteristic) data. This research used the Florida 2010 WAC 

dataset. The specific file name is “fl_wac_S000_JT00_2010.csv”. The LODES data 

offers a high degree of geographic detail, with information available at the Census block 

level. However, to serve the test purpose, the data used in this research was 

aggregated to the Census block group level. Furthermore, the number of fields used is 

reduced to forty from the original fifty-three. Table 3-1 shows the field names and 

explanations that are being used.  

Conceptual Model 

Theoretically, there are two general situations in which parallelism can improve 

the performance of data processing. One is processing one dataset with large numbers 

                                            
1 LEHD: Longitudinal Employment-Household Dynamics program was launched by U.S. Census Bureau 
in 1999. It is part of the Center for Economic Studies at the U.S. Census Bureau. The LEHD 
program produces new, cost effective, public-use information combining federal, state and Census 
Bureau data on employers and employees under the Local Employment Dynamics (LED) Partnership. 
(LEHD Origin-Destination Employment Statistics (LODES) Dataset Structure Format Version 7.0, 2013)  
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of features, the other is processing large numbers of individual datasets. Figure 3-3 and 

Figure 3-4 described these two cases respectively. 

Parallel Processing One Dataset with Large Numbers of Features 

To be able to process one big dataset with multiple processors, a large dataset 

will be divided into several smaller datasets, so that individual processor can be 

employed to do the separate work. Euclidean Distance is used to evaluate this type of 

parallel processing. It is a function of ArcPy in the ArcGIS spatial analyst extension 

module (arcpy.sa). Generally speaking, this function calculates the Euclidean distance 

to the closest source for each cell and returns an output raster with the value of the 

calculations. Figure 3-5 shows the illustration of this function. The following formula 

explains how the Euclidean distance is calculated in the two-dimensional space. 

22 )()(),( baba yyxxbad   

  Where, 

d(a, b) is the Euclidean distance from point a to point b; 

xa and xb are the X-axis coordinate values; 

ya and yb are the Y-axis coordinate values. 

As discussed above, to parallelize the task of performing a Euclidean distance 

analysis for major roads in the whole state of Florida, the big task should be divided into 

small pieces, so that, multiple cores can compute simultaneously. A logic and proper 

division is to divide the processing extent by counties. Through setting the Extent 

parameter in ArcPy’s environment class, sixty-seven counties in Florida become sixty-

seven small tasks which are processed by multiple processors by turns. To eliminate 

the boarder effect, a 2-mile buffer is applied to each processing extent. 
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The research employed Mosaic dataset which allows users to store, manage, 

view, and query a collection of raster data. These capabilities make the Mosaic dataset 

a perfect solution to merge the individual results of parallel back together. Because of 

the 2-mile buffer, there would be overlaps on the boarder of each county. Mosaic 

dataset also allows users to set the mosaic operation to calculate the cell value in 

overlapping areas. These operations include: first, last, min, max, mean, blend, and 

sum. In this case, since Euclidean distance is calculating the distance to the closest 

source, the min (minimum) operation will be applied. This part of research will create 

two outputs, one of which is generated by executing in ArcMap application without 

parallelization, and the other is by mosaicked individual results processed by 

parallelizing. To test the similarity of the two outputs, the ArcGIS Cell Statistics Tool is 

utilized. Figure 3-6 shows the illustration of this function. The “Statistic Type” applied in 

this case is “Range” which calculates the difference between the largest and smallest 

value of cells on the same geographic location. 

Parallel Processing Large Numbers of Individual Datasets 

To test the performance of parallelizing large numbers of individual datasets, the 

Polygon to raster function was applied. This function allow users to convert a polygon 

shapefile to a raster dataset. The idea comes from the LUCIS1 model developed by Dr. 

Paul Zwick. The first step of building the model is to create a CEM (Conflict Evaluation 

Matrix). Essentially, a CEM is a raster dataset that contains multiple fields. Each of 

                                            
1 LUCIS stands for Land-Use conflict identification strategy. It is a goal-driven GIS model that produces a 
spatial representation of probable patterns of future land use. (Carr & Zwick, 2007) A newer model called 
LUCISPLUS, of which PLUS stands for planning land-use scenario. The new model focuses on the 
allocation of future population and employment. It provides different scenarios of future land-use plan, 
whose product can be directly utilized by planning organizations.  
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these fields represent an attribute associated with the particular cell. The creation of 

CEM needs to combine more than ten raster datasets (the maximum value is twenty). 

Also, in the reality, the CEM is going to be generated multiple times to find a best one 

that matches a certain analytical purpose. Therefore, it is efficient to prepare all raster 

datasets which would possibly be used before doing the analysis. That’s where parallel 

processing fits in this case. 

As stated in the previous section of this chapter, forty fields of Florida 2010 wac 

LODES dataset is used to accomplish the purpose of the research. Each field is joined 

to a GIS shapefile of the state of Florida with a geographic unit of census block group. 

So that, forty shapefiles with field values represented different columns in LODES 

dataset will be converted to forty raster datasets. This scenario fulfills the purpose of 

evaluating parallel processing with large numbers of individual datasets.   

Hardware Description 

The performance of Parallelism, similar to the conventional single-processor 

computation, also highly depends on the capability of hardware. This research is being 

completed on a laptop whose major components’ parameters are shown in Table 3-2. 

The CPU contains four physical cores. Because of Intel’s Hyper-threading technology, 

each physical consists two logical processors. (Hyper-threading, 2014) 
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Table 3-1. LODES Workplace Area Characteristics (WAC) File Structure (LEHD Origin-Destination Employment Statistics 
(LODES) Dataset Structure Format Version 7.0, 2013) 

Pos Variable Type Explanation 

1 w_geocode Char15 Workplace Census Block Code             

2 C000 Num Total number of jobs             

3 CA01 Num Number of jobs for workers age 29 or younger        

4 CA02 Num Number of jobs for workers age 30 to 54        

5 CA03 Num Number of jobs for workers age 55 or older        

6 CE01 Num Number of jobs with earnings $1250/month or less         

7 CE02 Num Number of jobs with earnings $1251/month to $3333/month         

8 CE03 Num Number of jobs with earnings greater than $3333/month         

9 CNS01 Num Number of jobs in NAICS sector 11 (Agriculture, Forestry, Fishing and Hunting)     

10 CNS02 Num Number of jobs in NAICS sector 21 (Mining, Quarrying, and Oil and Gas Extraction)   

11 CNS03 Num Number of jobs in NAICS sector 22 (Utilities)         

12 CNS04 Num Number of jobs in NAICS sector 23 (Construction)         

13 CNS05 Num Number of jobs in NAICS sector 31-33 (Manufacturing)         

14 CNS06 Num Number of jobs in NAICS sector 42 (Wholesale Trade)        

15 CNS07 Num Number of jobs in NAICS sector 44-45 (Retail Trade)        

16 CNS08 Num Number of jobs in NAICS sector 48-49 (Transportation and Warehousing)       

17 CNS09 Num Number of jobs in NAICS sector 51 (Information)         

18 CNS10 Num Number of jobs in NAICS sector 52 (Finance and Insurance)       

19 CNS11 Num Number of jobs in NAICS sector 53 (Real Estate and Rental and Leasing)    

20 CNS12 Num Number of jobs in NAICS sector 54 (Professional, Scientific, and Technical Services)     

21 CNS13 Num Number of jobs in NAICS sector 55 (Management of Companies and Enterprises)     

22 CNS14 Num 
Number of jobs in NAICS sector 56 (Administrative and Support and Waste Management 
and Remediation Services) 

23 CNS15 Num Number of jobs in NAICS sector 61 (Educational Services)        

24 CNS16 Num Number of jobs in NAICS sector 62 (Health Care and Social Assistance)     

25 CNS17 Num Number of jobs in NAICS sector 71 (Arts, Entertainment, and Recreation)      

26 CNS18 Num Number of jobs in NAICS sector 72 (Accommodation and Food Services)      
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Table 3-1. Continued 

Pos Variable Type Explanation 

27 CNS19 Num Number of jobs in NAICS sector 81 (Other Services [except Public Administration])     

28 CNS20 Num Number of jobs in NAICS sector 92 (Public Administration)        

29 CR01 Num Number of jobs for workers with Race: White, Alone 

30 CR02 Num Number of jobs for workers with Race: Black or African American Alone 

31 CR03 Num Number of jobs for workers with Race: American Indian or Alaska Native Alone 

32 CR04 Num Number of jobs for workers with Race: Asian Alone 

33 CR05 Num Number of jobs for workers with Race: Native Hawaiian or Other Pacific Islander Alone 

34 CR07 Num Number of jobs for workers with Race: Two or More Race Groups 

35 CT01 Num Number of jobs for workers with Ethnicity: Not Hispanic or Latino 

36 CT02 Num Number of jobs for workers with Ethnicity: Hispanic or Latino 

37 CD01 Num Number of jobs for workers with Educational Attainment: Less than high school 

38 CD02 Num 
Number of jobs for workers with Educational Attainment: High school or equivalent, no 
college 

39 CD03 Num 
Number of jobs for workers with Educational Attainment: Some college or Associate 
degree 

40 CD04 Num 
Number of jobs for workers with Educational Attainment: Bachelor's degree or advanced 
degree 
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Table 3-2. List of Hardware’s the Main Parameters 

Component Producer Model Main parameters 

Motherboard Lenovo W530 2436 CTO 
CPU Intel  i7-3610 QM 2.30 GHz 
Memory bank 1 G skill F3-1600C9D-16GRSL Capacity: 8 GB 

Speed: PC3 12800 
Voltage: 1.35V 

Memory bank 2 G skill F3-1600C9D-16GRSL Capacity: 8 GB 
Speed: PC3 12800 
Voltage: 1.35V 

Memory bank 3 
 

Hynix HMT351S6CFR8C Capacity: 4 GB 
Speed: PC3 12800 
Voltage: 1.5 V 

Hard drive Samsung MZ-7TE1T0BW Device Type: Solid state drive 
Capacity: 1 TB 
Read speed: 540 MB/s 
Write speed: 520 MB/s 
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Figure 3-1. Major Roads in the State of Florida 

 
Figure 3-2. Interface for Downloading LODES Dataset 
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Figure 3-3. Conceptual Model for Parallel Processing One Dataset with Large Numbers 
of Features 

 

 
Figure 3-4. Conceptual Model for Parallel Processing Large Numbers of Individual 
Datasets 
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Figure 3-5. Illustration of Euclidean Distance (Euclidean Distance (Spatial Analyst), 
2014) 

 

 
Figure 3-6. Illustration of Cell Statistics (Cell Statistics (Spatial Analyst), 2014) 
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CHAPTER 4 
RESULTS 

Performance Comparison In Terms of Time Consumption 

Parallel Processing One Dataset with Large Numbers of Features 

Figure 4-1 shows the CPU usage when eight processors are being used in a 

parallelization. The average time consumption for performing a typical Euclidean 

distance analysis within the ArcMap application on researcher’s laptop is about 18.5 

minutes. Using four processors to parallel Processing sixty-seven counties individually 

took 4.06 minutes. It also took about 1.25 minutes to merge the individual raster 

datasets back through Add Raster to Mosaic Dataset function. Therefore, using 4 cores 

is 3.48 times faster than only employ single processor.  

Parallel Processing Large Numbers of Individual Datasets 

Figure 4-2 shows the general time consumption of performing Euclidean distance 

function with different cell size by employing different numbers of processors. Figure 4-3 

describes the speed differences among using two processors, four processors and eight 

logical processors comparing with single processor. Figure 4-4 explains how much time 

could save by using two processors, four processors and eight logical processors 

comparing with only applying a single processor. Generally speaking, in terms of time 

consumption, employing two processors is 1.85 times faster than using single 

processor. The numbers for four processors and eight processors (logically) are 3.16 

and 4.32 respectively.  

Performance Comparison In Terms of Output 

Regarding parallel processing with large numbers of datasets, because each 

individual dataset is treated separately by multiple processes, the outputs will be exactly 
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the same with using single processor. Therefore, this type of parallel processing is 

unnecessary and will not be included in this comparison. Figure 4-5 is the images of the 

output raster dataset of the non-parallelized processing. And, its counterpart Figure 4-6 

shows the output of the parallelized process. Figure 4-7 shows the result of the analysis 

of Cell Statistic function whose statistical values are listed in Table 4-1. The minimum 

difference is 0. However, the maximum difference is 27409.83.  
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Table 4-1.Statistical Results of Cell Statistics Function 

Statistics Value 

Count 1470549742 
Minimum 0 
Maximum 27,409.82813 
Sum 230,823,154,700 
Mean 156.9638538 
Standard Deviation 1,024.2925 
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Figure 4-1. CPU Usage While Performing an Eight-Processor Parallelization 

 

 

Figure 4-2. Time Consumption by Employing Different Number of Processors 
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Figure 4-3. Multiple of Time Consumption Comparing with Non-parallelization 

 

 
Figure 4-4. Time Saved by Performing Euclidean Distance of Different Cell Size 
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Figure 4-5. Non-Parallelized Result (Parallel Processing One Dataset with Large 
Numbers of Features) 
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Figure 4-6. Parallelized Result (Parallel Processing One Dataset with Large Numbers of 
Features) 
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Figure 4-7. Cell Statistics Output 
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CHAPTER 5 
DISCUSSION 

Figure 4-6 has distinctly shown the differences between parallelized and non-

parallelized outputs, in terms of parallel processing one dataset with large numbers of 

features. Although a 2-mile buffer was applied to each county, big differences can still 

be found on the boarders of each county. Increase the distance of the buffer may 

reduce this effect, however, it will also increase the time consumption. Besides, even 

though there is a perfect buffer distance that can one-hundred percent eliminate this 

issue, finding out this number is time consuming and difficult. Therefore, parallelization 

should not be used in processing one dataset, although it can increase the speed of 

processing.  

On the other hand, the positive results of parallel processing with large numbers 

of individual datasets indicates a big potential of parallelizing ArcGIS tasks in this way. 

The performance has apparently improved by using multiple processors. With the 

capability of the laptop used in the research, performing a 10-meter cell size parallel 

processing saved the author more than eight hours. It is excited by only imagining how 

fast the speed would be, if performing the parallelism on a server with hundreds of 

cores. Besides, the high performance, some other key findings are also worthy to be 

discussed here.  

The heavier the task is, the more time it would be saved by parallelization. Figure 

4-3 has vividly explained this point. When the cell size used by Euclidean distance is 40 

meters, the difference between using single processor and multiple processors is not 

very obvious. The differences become bigger as the cell size become smaller. 
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Parallelizing the tasks requires a little period of time. Instead of two times, using 

two processors is 1.85 times faster than a single-core process. This means the CPU 

would take some time before it can enter into the parallelizing mode. In addition, the 

performance improvement gained by increasing the processor number from two to four, 

is not as much as it gained from single to two. A possible explanation to this situation 

would be the performance gained from single to two processors is the biggest 

performance improvement can be get. It is very similar to a change from nothing to one. 

However, with a four physical core laptop, there are not so many scenarios can be test 

to find out the real reason. Future research on servers may be able to give us an 

answer.  

Logical processor is not equivalent to physical processor in terms of processing 

capability. The performance improvement gained by increasing the processor number 

from four to eight, is not as much as it gained from two to four. The reason is because 

the two logical processors share the same resources from one physical processor.   
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CHAPTER 6 
CONCLUSION 

Parallelizing with ArcGIS Functions  

It is important to point out that parallel processing may not always increase the 

speed of computation, unless one utilizes it in the right way. First of all, parallel 

programming is difficult, and it becomes even trickier when it works with ArcPy 

functions. To avoid fatal errors, parallelism can only be called once in one script. In fact, 

Programmers always write long scripts to meet their goals. Sometimes, these codes 

can be longer than hundreds of lines. However, in parallel programming, it is irrational 

and inefficient to run all the codes in parallelizing mode. Before writing the scripts, 

researchers have to think about what the most CPU-consuming task is, and only 

parallelize that part. In other words, only the most difficult part should be handed to 

multiple processors. 

Moreover, when working with ArcPy, researchers should keep in mind couples of 

additional rules besides what are wrote in Python documents.  

Do not use Geodatabase. An ArcGIS geodatabase would apply an exclusive 

schema lock to prevent other applications or users from accessing it, at any time while 

the dataset is open or being modified. Similar to GIL applied to CPython, this schema 

lock blocked the way of doing parallel processing with ArcGIS Geodatabase. The 

solution to this issue is to create an ArcInfo workplace for storing both the input and 

output data.  

Do not include more than one parallelism in one script. Because of the 

differences in scale and complexity among different geographic datasets, time 

consumed to process them varies greatly. Thus, two processes that started together 
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could be finished at different point of time. If there were two or more parallelisms 

included in one script, a very likely result would be, with one parallelism not finished, the 

other parallelism already started. It may lead to a fatal error, if cores are in different 

parallelisms.  

Work with ArcGIS ModelBuilder to keep script organized. Researchers have to 

think through all the steps required in order to fulfill the final purpose. Besides, it is even 

more important to be aware of the “major function”, that is, what function really needs to 

parallelize, because only one ArcPy function is necessary to be parallelized in most 

cases. In terms of setting an effective workflow, ArcGIS ModelBuilder could be a helpful 

tool in this circumstances.  

Do not use 100% of CPU. The key point of using parallel processing is to keep all 

the available cores installed in CPU working until the total work is completed. However, 

with some big projects, it would be good to avoid using one-hundred percent of the 

CPUs’ capacity, since it would cause the CPU overheating, especially with laptops 

whose CPU fan is not as powerful as a desktop computers, not to mention servers.  

Not only CPU matters. The performance of parallel processing is not only 

affected by the capability of CPU. The computer performing its functionality with all its 

components working together as a whole. The author used to only have 4GB of 

computer RAM (Random-access memory) on the laptop. For the purpose of this 

research, the laptop has been upgraded to 20 GB RAM, which significantly increase the 

computation speed of CPU. Another important component is the hard drive which 

determines the reading and writing speed of a computer. The author also upgraded the 
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previous hard disk drive (HDD) to a solid state drive (SSD). With the new drive, the 

computer possesses a 540 MB/s reading speed and 520 MB/s writing speed. 

Thirdly, individual tasks should be similar to one another, in terms of time 

consumption. For example, if a parallelized code had four tasks, one of which was much 

bigger than the other three, the three smaller tasks would spend most of time in waiting 

for the big one. Researchers should distribute the general task evenly to each individual 

processor to leverage all of the CPU’s capability.  

Last but not least, parallel processing, in most cases, should be used in a pre-

analyzing stage. Although it is possible to do higher level analysis with parallel, it is 

much more efficient and powerful in the data-preparation phase. For one thing, it is not 

easy to code a whole analytical process, especially included parallelizing. On the other 

hand, purpose of programming, by its nature, is to utilize the computational power of 

computers to automate regular tasks, which could save people from doing repeated and 

meaningless works. Obviously, analysis is not one of those works. Thus, the best 

scenario is to do parallel processing at the beginning of research. With the power 

possessed by parallelism, planners can access to all the data that would be possibly 

used in the research.  

Evaluating the Performance 

The result of the research proved parallelism can significantly improve the 

performance of geographic datasets processing. It also told us the best situation to 

apply parallelization is parallel processing large numbers of individual datasets. Two 

general conclusions can be made, one of which is that, the more processors are 

employed, the less time it cost. On the other hand, as the task gets heavier, the more 

benefits in parallelization can be gained.   
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The number of tests that can be done in this research is limited by the resources 

available to the author. With only four physical cores available, the performance of 

parallel processing with more than four cores cannot be known by current research. 

This situation hindered us to get deeper understanding with characteristics of 

parallelizing the ArcGIS functions. Future research on servers may be able to find out 

the answer. Another imperfection of this research is the application of parallel 

processing. Serving as a test, only two functions in ArcGIS are tested in the research. 

However, better applications need to be considered to utilize the big potential of 

parallelism.  

Utilizing parallel processing would make planners more efficient in the data 

processing stage and save planner both a lot of time and energy, so that they can 

concentrate more on the real analysis. The research opened a door for planners to 

leverage the so-called big data analysis to solve planning problems.  
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CHAPTER 7 
FUTURE RESEARCH 

This research proved that it is possible to combine Python’s capability in parallel 

programming and the capability of ArcPy in processing geographic data together to 

leverage the computational power of multiple processors. The results indicated a 

positive correlation between the processing speed and the number of processors. This 

conclusion strongly suggests moving the research to the next level, which is, processing 

big geographic data on servers.  

The performance of geographic data processing would be tremendously 

magnified by thousands of processors installed on server. Specifically, planners can 

process more than one thousand geographic datasets using the same time as they 

used to process one dataset. Moreover, possibilities are not only restricted to 

processing the newly generated data, but also let us go back to the history to process 

historical datasets with high performance. By doing that, we can get a better 

understanding of the courses of the development of our cities.However, more 

researches need to be done to realize parallelization on a server. As most servers are 

not organized in Windows operation system, the interface and operations are 

completely different from running applications on a laptop or desktop computer. 

Predictably, a good amount of tests and explorations is down the road, before we can 

employ the entire range of capability provided by servers.  

Another direction of future research is to parallel programming a series of ArcPy 

functions to be able to do more advanced data processing with parallelization. In this 

research, the author tests the feasibility of parallelizing Euclidean distance and Polygon 

to raster functions respectively. However, the parallelization was performed by only 
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executing one function at a time. In most cases, the raw data is stored in a .csv or .txt 

format. This is for the purpose of storing and managing the data easily. But, it is not able 

to directly use these format to do geographic data process, since the table of 

geographic datasets are stored in .dbf format or as a geodatabase object.  

To be able to use those raw data, several steps of transformations have to be 

made. Therefore, parallelizing a series of functions to realize the transformations has 

significant meanings, in terms of utilizing raw data. Although the research concluded 

that it is not such a good application for using parallel processing in the analytical stage, 

parallel programming more than one ArcPy functions can be realized. In fact, 

theoretically, any combination of ArcPy functions following a regular pattern is possible 

to be parallelized. 

Some programmers said: if one thing is worth to do, it is worth to do in 

parallelization. With further researches being done in this topic, planners will have more 

capabilities in processing “big data” that supports them to make a better plan.  
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APPENDIX A 
A SIMPLE PARALLEL PROGRAMMING TEST SOURCE CODE 

import math 

import time 

from multiprocessing import Process, Queue 

from Queue import Empty 

def PythagoreanNum(n): 

    for c in range (n+1, n+9): 

        for a in range (1, c): 

            for b in range (a, c): 

                c_square = a**2 + b**2 

                if c == math.sqrt(c_square): 

                    print a, b, c 

    return 

def do_jobs(q): 

    while True: 

        try: 

            x = q.get(block=False) 

            PythagoreanNum(x) 

        except Empty: 

            break 

if __name__ == '__main__': 

    t1 = time.time() 

    workqueue = Queue() 
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    for i in range(0, 3000, 8): 

        workqueue.put(i) 

    jobs = [Process(target = do_jobs, args=(workqueue,)) for i in range(8)] 

    for job in jobs: 

        job.start() 

    for job in jobs: 

        job.join() 

    t2 = time.time() 

    TimeTaken = (t2-t1)/60 

print TimeTaken 
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APPENDIX B 

PARALLEL PROGRAMMING arcpy.Buffer_analysis SOURCE CODE 

import arcpy 

from arcpy import env 

import arcpy.sa 

from multiprocessing import Process, Queue 

from Queue import Empty 

import time 

import os 

def select(fc, fieldname, attribute, output): 

    env.overwriteOutput = True 

    whereclause1 = '"' + fieldname + '" = ' + "\'" + attribute + "\'" 

    out = output 

    arcpy.Select_analysis(fc, out, whereclause1) 

    return 

def GetAttributes(fc, field): 

    valueList = [] 

    valueSet = set() 

    rows = arcpy.SearchCursor(fc) 

    for row in rows: 

        value = row.getValue(field) 

        if value not in valueSet: 

            valueList.append(value) 

        valueSet.add(value) 
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    valueList.sort() 

    return valueList 

def do_buffer(q, location, distance): 

    while True: 

        try: 

            x = q.get(block=False) 

            cntfolder = location + "\\" + x 

            arcpy.env.workspace = cntfolder 

            arcpy.Buffer_analysis(x.upper() + "_MASK.shp", x.upper() + "_BUFF.shp", 

distance, "", "ROUND", "", "") 

        except Empty: 

            break 

    return 

if __name__ == "__main__": 

    T1 = time.time() 

    env.overwriteOutput = True 

    env.workspace = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData" 

    arcpy.CreateFolder_management(env.workspace, "output") 

    outputfolder = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData\\output" 

    for cnt in GetAttributes("cntbnd_jul11.shp", "NAME"): 

        arcpy.CreateArcInfoWorkspace_management(outputfolder, cnt.split('-')[0]) 

        cntfolder = outputfolder + "\\" + cnt.split('-')[0] 
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        select("cntbnd_jul11.shp", "NAME", cnt, cntfolder + "\\" + cnt.split('-')[0] + 

"_MASK.shp") 

        arcpy.Copy_management("majrds_feb11.shp", cntfolder + "\\majrds_feb11.shp", 

"") 

    workqueue = Queue() 

    for cnt in os.listdir(outputfolder): 

        workqueue.put(cnt.upper()) 

    jobs = [Process(target = do_buffer, args=(workqueue, outputfolder, "2 Miles")) for i in 

range(8)] 

    for job in jobs: 

        job.start() 

    for job in jobs: 

        job.join() 

    T2 = time.time() 

print "Total time taken: {} minutes.".format((T2-T1)/60) 
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APPENDIX C 
PARALLEL PROGRAMMING arcpy.sa.EucDistance SOURCE CODE 

import arcpy 

from arcpy import env 

import arcpy.sa 

from multiprocessing import Process, Queue 

from Queue import Empty 

import time 

import os 

def Extent(fc): 

    extent = arcpy.Describe(fc).extent 

    west = extent.XMin 

    south = extent.YMin 

    east = extent.XMax 

    north = extent.YMax 

    return [west, south, east, north] 

def euc(location, cnt, fc, cellsize): 

    arcpy.CheckOutExtension("spatial") 

    arcpy.env.workspace = location 

    arcpy.env.mask = location + "\\" + cnt + "_MASK.shp" 

    bufferextent = location + "\\" + cnt + "_BUFF.shp" 

    arcpy.env.extent = arcpy.Extent(Extent(bufferextent)[0], Extent(bufferextent)[1], 

Extent(bufferextent)[2], Extent(bufferextent)[3]) 

    print arcpy.env.extent 
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    EUC = arcpy.sa.EucDistance(fc, "", cellsize, "") 

    EUC.save(location + "\\ed" + cnt[:5]) 

    return 

def do_euc(q, location, fc, cellsize): 

    while True: 

        try: 

            x = q.get(block=False) 

            cntfolder = location + "\\" + x 

            euc(cntfolder, x.upper(), fc, cellsize) 

        except Empty: 

            break 

    return 

if __name__ == "__main__": 

    T1 = time.time() 

    arcpy.env.overwriteOutput = True 

    arcpy.env.workspace = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData" 

    outputfolder = "E:\\UFL\\Thesis Relative\\Parallel with Mosaic\\WorkingData\\output" 

    workqueue = Queue() 

    for cnt in os.listdir(outputfolder): 

        workqueue.put(cnt) 

    jobs = [Process(target = do_euc, args=(workqueue, outputfolder, "E:\\UFL\\Thesis 

Relative\\Parallel with Mosaic\\WorkingData\\majrds_feb11.shp", 10)) for i in range(4)] 

    for job in jobs: 
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        job.start() 

    for job in jobs: 

        job.join() 

    T2 = time.time() 

print "Total time taken: {} minutes.".format((T2-T1)/60) 
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APPENDIX D 
PARALLEL PROGRAMMING arcpy.PolygonToRaster_conversion SOURCE CODE 

import arcpy 

from arcpy import env 

import arcpy.sa 

from multiprocessing import Process, Queue 

from Queue import Empty 

import time 

import os 

def Extent(fc): 

    extent = arcpy.Describe(fc).extent 

    west = extent.XMin 

    south = extent.YMin 

    east = extent.XMax 

    north = extent.YMax 

    return [west, south, east, north] 

def grid(location, tbl, fc, cellsize): 

    arcpy.CheckOutExtension("spatial") 

    arcpy.env.workspace = location 

    arcpy.env.mask = fc 

    arcpy.env.extent = arcpy.Extent(Extent(fc)[0], Extent(fc)[1], Extent(fc)[2], 

Extent(fc)[3]) 

    print arcpy.env.extent 

    arcpy.PolygonToRaster_conversion(fc, tbl, tbl + "", "", "", cellsize) 
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    return 

def do_grid(q, location, fc, cellsize): 

    while True: 

        try: 

            x = q.get(block=False) 

            folder = location + "\\" + x 

            arcpy.env.workspace = folder 

            grid(folder, x.upper(), fc, cellsize) 

        except Empty: 

            break 

    return 

if __name__ == "__main__": 

    arcpy.env.overwriteOutput = True 

    arcpy.env.workspace = "E:\\UFL\\Thesis Relative\\Parallel with 

Census\\WorkingData" 

    arcpy.CreateFolder_management(env.workspace, "output") 

    outputfolder = "E:\\UFL\\Thesis Relative\\Parallel with Census\\WorkingData\\output" 

    fieldnames = [f.name for f in arcpy.ListFields("FL_WAC.dbf")] 

    for field in fieldnames: 

        if field <> "CREATEDATE" and field <> "BLKGRPID" and field <> "OID": 

            print field 

            arcpy.CreateArcInfoWorkspace_management(outputfolder, field) 

            tblfolder = outputfolder + "\\" + field.lower() 
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            fm = arcpy.FieldMap() 

            fm1 = arcpy.FieldMap() 

            fms1 = arcpy.FieldMappings() 

            fm1.addInputField("FL_WAC.dbf", "BLKGRPID") 

            fm.addInputField("FL_WAC.dbf", field) 

            fms1.addFieldMap(fm) 

            fms1.addFieldMap(fm1) 

            arcpy.TableToTable_conversion("FL_WAC.dbf", tblfolder, field + ".dbf", "", fms1, 

"") 

            arcpy.MakeFeatureLayer_management ("cenblkgrp10.shp", "blkgrp_lyr") 

            arcpy.AddJoin_management("blkgrp_lyr", "GEOID10", tblfolder + "\\" + field + 

".dbf", "BLKGRPID", "KEEP_ALL") 

            fm2 = arcpy.FieldMap() 

            fm3 = arcpy.FieldMap() 

            fms2 = arcpy.FieldMappings() 

            fm2.addInputField("blkgrp_lyr", "cenblkgrp10.GEOID10") 

            fm3.addInputField("blkgrp_lyr", field + "." + field) 

            fms2.addFieldMap(fm2) 

            fms2.addFieldMap(fm3) 

            arcpy.FeatureClassToFeatureClass_conversion("blkgrp_lyr", tblfolder, 

"CBG10.shp", "", fms2, "") 

    T1 = time.time() 

    workqueue = Queue() 
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    for tbl in os.listdir(outputfolder): 

        workqueue.put(tbl) 

    jobs = [Process(target = do_grid, args=(workqueue, outputfolder, "CBG10.shp", 40)) 

for i in range(2)] 

    for job in jobs: 

        job.start() 

    for job in jobs: 

        job.join() 

    T2 = time.time() 

    print "Total time taken: {} minutes.".format((T2-T1)/60) 
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