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ABSTRACT

Genomic databases are exhibiting a growth rate that is outpacing Moore's Law,

which has made database search algorithms a popular application for use on emerging

processor  technologies.   NCBI  BLAST is  the  standard  tool  for  performing  searches

against these databases, which operates by transforming each database query into a filter

that is  subsequently applied to the database.   This requires a database scan for every

query, fundamentally limiting its performance by I/O bandwidth.  In this dissertation we

present  a  functionally-equivalent  variation on the  NCBI BLAST algorithm that  maps

more suitably to an FPGA implementation.  This variation of the algorithm attempts to

reduce  the  I/O  requirement  by  leveraging  FPGA-specific  capabilities,  such  as  high

pattern matching throughput and explicit on-chip memory structure and allocation.  Our

algorithm  transforms  the  database—not  the  query—into  a  filter  that  is  stored  as  a

hierarchical arrangement of three tables, the first two of which are stored on-chip and the

third off-chip.  Our results show that it is possible to achieve speedups of up to 8x based

on the relative reduction in I/O of our approach versus that of NCBI BLAST, with a

minimal  impact  on  sensitivity.   More  importantly,  the  performance relative  to  NCBI

BLAST improves with larger databases and query workload sizes.
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CHAPTER 1

INTRODUCTION

In the field of computational biology, there is often a need to identify a genetic or

protein sequence, or to recognize related sequences.  Identifying sequences is performed

by comparing samples against databases of known sequences in vast search operations,

sometimes against billions of possible matches.  Performing this search efficiently is the

subject of a large body of prior work, and contributions to this area have the potential for

significant impact for computational biology.  As of 2015, BLAST, a popular database

search algorithm, has been cited in over 50,000 other publications.

Genomic database search relies on approximate string matching, and the process

of comparing two non-equal sequences in an attempt to discover how closely they line up

is a problem known as sequence alignment.  Smith-Waterman is a dynamic programming

algorithm that  serves  as  the  basis  for  several  sequence  alignment  algorithms,  and  is

optimal in the sense that it always provides the best alignment of sequences for a given

scoring criteria.  Dynamic programming techniques have the drawback that they require

quadratic  time  and  memory,  and  for  problems  of  an  interesting  size  they  are  often

infeasible to use in practice.

As a result, algorithms have been derived from it that seek to improve its running

time without a significant sacrifice in sensitivity in the alignment.  BLAST is an example

of a heuristic algorithm that is run before traditional dynamic programming algorithms in

an effort  to  rapidly discover  potential  matches  between sequences.   BLAST is  much
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faster,  but  has  the  drawback  that  its  heuristic  approach  may  miss  some  sequence

alignments because it is not exhaustive.

Due to the importance of sequence alignment and its common usage, BLAST has

been  the  subject  of  substantial  research,  with  many  proposed  enhancements  and

implementations on specialized hardware such as FPGAs.  While great speedups over

CPU implementations have been achieved using such hardware,  most state of the art

implementations focus on directly translating the hash table-based design used in the

reference implementation into FPGA hardware.

BLAST is  fundamentally  memory  bound,  and  translating  the  traditional  hash

table-based algorithm to FPGAs does not address this limitation.  BLAST's runtime is

bounded by how long it takes to transfer the database being searched from memory or

disk,  and  traditional  designs  must  pay  this  transfer  penalty  for  every  query.   Thus,

improving  BLAST's  performance  requires  some means  of  reducing  the  transfer  size,

either by compressing or indexing the database.  FPGAs are well suited to this approach

since they are able to efficiently perform decompression or rapid table lookups as an

early stage of a computational pipeline.

In this work we develop an alternate implementation of BLAST's two-hit filtering

stage  using  sets  of  regular  expressions  built  from protein  databases  that  allow us  to

eliminate the need to scan the entire database for each query sequence, as well as the

need for a large DRAM-backed hash table.  By leveraging these regular expressions and

eliminating the hash table, we can devote the FPGA's resources to pattern matching.

Pattern matching on FPGAs has a long history in the literature, such as network

intrusion detection and real time packet inspection using databases of regular expressions
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that match malicious traffic.  However, to the best of our knowledge, there are no existing

designs that utilize this approach for genomic database search.

In this research, we address the gap in the literature regarding the use of finite

automata  on  FPGAs  for  genomic  database  search.   Specifically,  we  present  a  novel

implementation of BLAST's two-hit filtering stage utilizing finite automata in the form of

synthesized regular expressions.  We show that this implementation of BLAST results in

a substantial reduction in I/O, which is the bottleneck for state of the art FPGA designs

for BLAST.  By reducing the I/O bottleneck, we achieve projected speedups of nearly 8x

compared  to  these  designs,  while  maintaining  high  sensitivity  and  selectivity  in  the

search operation.
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CHAPTER 2

BACKGROUND

2.1 SEQUENCE ALIGNMENT

Sequence alignment is a way of arranging sequences of data to find regions of

similarity.   It  is  commonly  used  in  bioinformatics  to  find  functional  or  ancestral

similarities between DNA, RNA or protein sequences, but it also has applications in other

fields, such as natural language processing and the social sciences [1].

These problems are usually solved by arranging the sequences in question into a

matrix and trying to find the best corresponding regions between them using dynamic

programming techniques.

2.2 SMITH-WATERMAN AND DYNAMIC PROGRAMMING

Dynamic  programming is  a  technique  used  in  optimization  problems where  a

problem has optimal substructure and where it repeatedly solves the same subproblems.

In this case, having optimal substructure means that an optimal solution to a problem can

be found by finding an optimal solution to its subproblems.  By reusing the solutions to

subproblems, such a problem can be solved much faster than by naively resolving its

constituent components.

The first described sequence alignment algorithm to use dynamic programming in

this  fashion was presented by Needleman  et al  [2],  and is known as the Needleman-

Wunsch algorithm.  A very similar algorithm, later used as the basis for the much faster
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FASTA and BLAST algorithms, was described by Smith et al [3], and is known as the

Smith-Waterman algorithm.

Both algorithms construct a table using two strings to compare on its axes and a

scoring system to fill in the table cells, which is then used to find the best alignments of

the two strings.  A brief example of the Needleman-Wunsch algorithm follows.

Suppose we have the following sequences: A  C  C  T  G and A  C  G  T  C and

want  to  find  the  best  alignment  between  the  two.   We  begin  by  arranging  the  two

sequences on the axes of a table, as shown in Figure 2.1.

The table is populated by going from cell-to-cell and comparing the characters in

the  corresponding  row  and  column.   For  matches,  the  score  increases  by  1,  for

mismatches it  decreases by 1, and for insertions or deletions (called "indels"), it  also

decreases by 1.  This change is added to the highest previous value, which comes from

the left,  top or upper-left  neighboring cells,  and represents a previous alignment step.

When populating the cell, it is important to keep track of which cell was used as the prior

value, as this will be used to trace back the alignment.  In the following figures, this will

be represented as arrows pointing to the prior values.  Note that it's  possible to have

5

 Figure 2.1: Empty Needleman-Wunsch Table



multiple  equal  choices,  represented  by  multiple  outgoing  arrows.   These  represent

multiple equally valid alignments.

The first row and column are simple: they can only choose from the left or top

cell's value,  and since they have no character to compare to,  are always a mismatch.

After populating these cells, the table should appear like in Figure 2.2.

Proceeding from here, the next step would be to compare A to A.  Since this a

match, the score goes up by 1, and the highest prior value is 0.  The table would now

appear like in Figure 2.3.  By continuing the procedure for the remaining cells, the table

can be completed, as shown in Figure 2.4.
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 Figure 2.3: Partial Needleman-Wunsch Table



Once the  table  has  been populated,  alignments  can  be  found by backtracking

through the table, starting with the bottom right cell and working backward to a score of

0.  Diagonal arrows represent a match or mismatch, while vertical arrows represent an

insertion from the query (on the left) and horizontal arrows represent a deletion (denoted

by a dash in the alignment).  A possible alignment is shown by the highlighted arrows,

and given by:   A  C  -  G  T  C

Different scoring systems can be used for different problems.  For example, if

insertions or deletions are strongly discouraged, then a severe penalty can be imposed for

them.  For genetic sequence alignment, it is typical to use a value of 1 for a match and

either a value of 0 or -1 for a mismatch.

The Smith-Waterman algorithm, by comparison, is better suited to finding local

alignments, which are subregions of sequences with high similarity.   This is done by

setting the minimum value of any table cell to 0, which allows any number of mismatches

to occur between matching elements without drastically reducing the score.

2.3 BLAST AND HEURISTIC APPROACHES

Although  Smith-Waterman  is  optimal  in  the  matches  found  for  a  given

substitution matrix, its greatest drawback is that, as a dynamic programming algorithm, it
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uses quadratic time and space and is infeasible to use directly on large problems.  To

address this shortcoming, several approaches using heuristic algorithms were devised to

improve the alignment speed with a minimal sacrifice in sensitivity.

FASTA was one of the first heuristic algorithms for sequence alignment, proposed

by Pearson et al [4][5].  Its speed benefit comes from identifying promising small local

alignments first, rather than building an entire scoring table.  FASTA works by defining a

ktup parameter, which is the length of matching elements that must be found for a local

alignment to be considered.  A ktup value of 4, for example, means that a sequence of 4

characters must match exactly between the two sequences before it will be considered

further.  These local alignments, known as regions of identity,  are then scored by the

Wilbur-Lipman algorithm [6].  The Wilbur-Lipman algorithm finds local alignments by

using the Dot Matrix projection proposed by Maizel et al. [7], and finding diagonal runs

of at least ktup length.

The Dot Matrix projection takes two sequences and places them at the top and left

sides of a matrix, and marks every cell in the matrix where the value of the column and

row are  identical.   Diagonal  lines  running from the  upper  left  to  lower  right  corner

represent possible alignments of the two sequences, and for consecutively marked cells

on a diagonal, the sequences are identical.  An example of this is shown in Figure 2.5.

FASTA proceeds by rescoring the best 10 diagonals (termed regions in FASTA) 

by using a scoring matrix, which allows amino acid substitutions that are common in 

nature to maintain a positive score.  This improves the sensitivity of the algorithm, and by

not considering gaps or deletions at this stage FASTA retains high speed.
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The next step of FASTA is to try to merge local alignments that are on the same

diagonal, using a penalty metric similar to the insertion and deletion metrics used by

Smith-Waterman.  Any merged alignments are then rescored, and the best scoring results

are returned.

Altschul et al. later proposed an algorithm inspired by FASTA, known as BLAST

[8].   BLAST also  employs  heuristics  to  perform  local  alignments,  but  differs  from

FASTA in that it instead relies on the concept of seeding and uses a user defined cutoff

threshold for the seeding operation.

The scores computed in BLAST are based on statistical analysis performed by

Karlin  et  al.  [9],  who provided models that  give the probabilities of combinations of

protein sequences occurring.  Commonly occurring amino acids are given comparatively

low scores, while rarely occurring amino acids are given higher scores.  The score of a

sequence of amino acids can be summed up, with a high score effectively indicating a

sequence that is less likely to occur by chance and thus more significant.  These models
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can also be used to describe the probability of mismatches between sequences, which is

used to allow significant but different subsequences to be related to one another.

The threshold used in the BLAST search is directly related to the score and is

used as a filter so that only subsequences of comparatively high value are considered.  A

subsequence with a low score is unlikely to be useful in helping to distinguish between

two sequences, so a minimum threshold is enforced.  Seeds whose sequence score is

below the threshold are not considered.

Seeding  itself  is  the  primary  difference  between  BLAST  and  FASTA,  and

proceeds by decomposing the search query into a set of W-mers, which are overlapping

sequences of a fixed length.  For example, for protein searches in BLAST, W-mers of size

3 are typically used.  If the following query was being considered,

A B C C D

then the following W-mers would be produced:

A B C    B C C    C C D

Each W-mer's  self-score is then computed using a matrix of scores, which is in

turn produced using probabilities as described above. As an example, consider the scoring

matrix in Figure 2.6.
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Using this scoring matrix, these seeds have self scores of:

If we were using a threshold value of 9, then only the seeds A B C and C C D

would  be  considered.   B  C C would  be  too  likely  to  occur  at  random to  be  worth

considering.

The process of finding hits in a database sequence uses the same scoring matrix

and  proceeds  by  "sliding"  the  seed  over  the  database  query,  checking  the  possibly

mismatched  characters  between  the  seed  and  database  query  for  their  scores,  and

summing them up.  If the summed score is above the threshold, then a hit is reported.

For example, if we consider the second seed we kept from above, C C D, and the

database entry A D C C D, then the seeding operation would proceed as follows:

If a threshold value of 9 were being employed, then this would produce a single

hit for the seed C C D at position 2.

After all of the hits for the query sequence above a threshold value have been

found and recorded, BLAST proceeds by performing gap extension in a similar fashion to

FASTA.  Seed hits are arranged along a diagonal determined by the offsets into the query

and database string, and seed hits along the same diagonal are subject to merging.
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A B C Score: 9 (A to A = +5, B to B = +3, C to C = +1)
B C C Score: 5 (B to B = +3, C to C = +1, C to C = +1)
C C D Score: 10 (C to C = +1, C to C = +1, D to D = +8)

A D C C D
C C D Score: -13 (A to C = -1, D to C = -6, C to D = -6)
    C C D Score: -11 (D to C = -6, C to C = +1, C to D = -6)
        C C D Score: 10 (C to C = +1, C to B = +1, D to D = +8)



Extensions are performed by adding a single character at a time from the query

and database and using the scoring matrix to evaluate the new score.  If the score drops

by a threshold, then extension terminates, but if it continues then several seeds may be

consolidated into a single hit.  Extensions are performed such that seeds are merged first,

if possible, before extending outward.  A visualization of this, from Gapped BLAST [10]

is shown in Figure 2.7.

After  all  of  the  seeds  have  been  evaluated  for  extension,  the  highest  scoring

results are returned.
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Figure 2.7: Example of seed hits from Gapped BLAST (Becchi). 
Hits indicated by a plus sign have a score of at least 15.  Dots are 
a score of 11-14.  The lines indicate hits along the same diagonal 
that were close enough to trigger potential extensions (a distance 
of 40 in this case).



BLAST's  importance  and  ubiquity  in  computational  biology has  led  to  much

effort in improving its performance.  A common way of improving the speed that BLAST

operates at is to use specialized hardware platforms, such as FPGAs and GPUs.

2.4 FPGAS

FPGAs  (Field  Programmable  Gate  Arrays)  are  a  type  of  reprogrammable

hardware that are often used to create high speed application-specific hardware designs

that  may  offer  substantially  higher  performance  than  conventional  software

implementations on CPUs for some problems [11].

While FPGAs can be used as a prototyping tool for embedded system design, they

are  often  used  as  hardware  accelerators  to  speed  up  CPUs.   They  have  drawbacks

however, having comparatively high cost and requiring their designs to be specified in

specialized hardware description languages.  They are also not suited to all applications,

and there are situations where a CPU can outperform them [12].

FPGAs can be well suited to computation using finite automata however [13][14],

and it is this aspect that we are interested in.  See section 2.6 for background information

on finite automata.

2.5 GPUS (GRAPHICAL PROCESSING UNITS)

GPUs  are  specialized  processors  that  were  created  to  accelerate  the

computationally expensive process of rendering 3D graphics for computer design tools

and computer games.  Rendering 3D graphics requires repetitive processing of very large

numbers of pixels and vertices, which trended toward the development of highly parallel

processing architectures with extremely high memory bandwidths to accommodate these

requirements.
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GPUs operate using a SIMD architecture – single instruction, multiple data.  In

effect, this means that multiple processors are executing the same instruction in a shared

program, but operating on different streams of data.  GPU programming languages, such

as Nvidia's CUDA [15] and Khronos Group's OpenCL [16] organize work into a  grid,

which consists of a 3D array of threads and data.

One consequence of this design model is that since each GPU processor runs its

threads  in  lockstep  in  a  SIMD  manner,  each  thread  must  be  executing  the  same

instruction.   If  they  diverge,  the  processor  replays  the  program  and  masks  off  the

diverging threads, reducing performance.  In the worst case, only a single thread is active

as all individual threads take different paths.

Memory bandwidth is  also highly sensitive to locality,  and especially in older

CUDA versions,  memory  bandwidth  suffers  extremely  if  processing  elements  don't

access coalesced memory addresses that are adjacent to one another.

GPUs are  able  to  perform a  wide  range of  high  speed  calculations  when  the

operations  are  independent,  highly parallel  and free of  complex control  flow,  but  the

limitations  explained  above  prevent  GPUs  from  achieving  high  performance  on  all

problems.

2.6 FINITE AUTOMATA

As an abstract model, finite automata, or finite state machines, represent one of

the simplest forms of computation.  Informally, they are a series of states connected by

transitions, with one state considered active, a starting state, and a set of accepting states.

Each transition is labeled by a character from an input alphabet, such that the currently

active state transitions to the connected state if that character is provided as input to the
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machine.   The  goal  is  to  determine  whether  an  input  string  from  that  alphabet  is

recognized by the machine, which is indicated by one of the accepting states being the

currently active state when the entire input string has been processed.  The set of strings

recognized by a finite automaton is said to be the language it recognizes.  An example of

such a machine is shown in Figure 2.8.

Formally, finite automata are expressed as the 5-tuple (Σ, S, s0, δ, F) where these

are defined as:

• Σ – The input alphabet, which  is a finite and non-empty set of symbols

• S – The set of states, which is finite and non-empty

• s0 – The starting state
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Figure 2.8: Example of DFA.  This DFA recognizes any string 
of length at least 2 which begins with "ab."  In this example, Σ 
= {a,b}, S = {1,2,3,4}, s0 = {1}, δ is represented by the image 
above, and F = {3}. 



• δ – The transition function, which maps each state to another state for each

element of the input alphabet

• F – The final (accepting) states, which is finite but may be empty

Finite automata can be further classified into one of many varieties.  Two of the

most commonly described versions are the DFA (Deterministic Finite Automaton) and

NFA (Nondeterministic Finite Automaton).  DFAs are characterized by allowing only a

single  state  to  be  active  at  once  and  by requiring  that  each  state  have  exactly  one

transition for each element of the alphabet.  NFAs instead allow each state to transition to

multiple,  or  even  no,  other  states  for  each  element  of  the  alphabet.   While  this  has

implications  for  how  the  two  machines  are  defined,  in  theory  they  have  the  same

expressive power and algorithms exist  to transform NFAs into equivalent DFAs [17],

although the resulting DFA may be exponentially larger in the number of states.

In this sense, DFAs and NFAs represent opposite ends of computation and storage

complexity spectra [18].  NFAs may have multiple active states, and in the worst case

every state may be active.  This means that processing an input character may require

every state to be evaluated, resulting in a time complexity of O(n), where n is the number

of states.  NFAs are efficient to store, and require O(n) storage for n states.  An equivalent

DFA may take up to O(2n) states in the worst case, but since only a single state is ever

active at once processing each input character takes constant time O(1).

By their  nature of attempting to recognize input strings as belonging to some

language, finite automata are well suited to the problem of string matching, which is an

important  subproblem  of  sequence  alignment.   Specifically,  finite  automata  can  be
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constructed to recognize regular expressions,  which are a compact way of specifying

languages of strings.

2.7 REGULAR EXPRESSIONS

Regular expressions are a means of specifying  regular languages, which are in

turn defined as languages that can be recognized by some finite state machine [19].  As a

result,  regular  expressions  are  effectively a  means  of  expressing  finite  automata  in  a

compact form.

There are multiple common syntaxes for describing regular expressions, but as an

example we will consider a subset of the POSIX Extended Regular Expression (ERE)

syntax [20].  ERE regular expressions are given as a sequence of characters consisting of

anything from the language alphabet plus a number of metacharacters which give special

meaning to the regular characters.  These metacharacters are shown in Table 2.1.
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 Table 2.1: POSIX ERE Metacharacters

Character(s) Meaning

. Matches any single character from the alphabet.

[ ] A bracket expression.  This matches any single character contained
within the brackets.  For example, [abc] would match any of a, b or
c.

( ) A grouped subexpression, for use with the alternation operator '|'.

* Matches the preceding element any number of times, including not at
all.

+ Matches the preceding character at  least  once,  but any number of
times.

? Matches the preceding character zero or one times.

| Alternation,  matching  either  the  expression  before  or  after  the
operator.  For example, abc|def matches "abc" or "def".



Using these metacharacters, it is possible to build compact expressions that can

recognize large classes of strings.  Some examples are shown in Table 2.2.

As mentioned previously, regular expressions are defined as being equivalent to

finite automata, so it is possible to transform any regular expression into its equivalent

NFA or DFA using Thompson's Construction Algorithm [21].  Thompson's Construction

Algorithm defines a set of rules that are applied recursively to a regular expression to

generate its equivalent NFA by transforming metacharacters into sets of states that are

connected together.  This NFA can in turn be converted to a DFA separately [22].
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 Table 2.2: Example Posix ERE regular expressions.

Expression Recognized Language

ab.* Equivalent  to  the  DFA in  the  previous  section:  it  recognizes  any
string of length at least 2 that begins with "ab."

(a|b).* Matches any string beginning with 'a' or 'b'.

[abc]a+b Matches strings beginning with 'a', 'b' or 'c', followed by at least one
'a' and ending with 'b'.

a?[bcd] Matches one of 'b', 'c' or 'd', optionally prefixed by 'a'.



CHAPTER 3

RELATED WORK

In this chapter, we summarize various implementations of the BLAST algorithm.

We begin by presenting software implementations and move on to specialized hardware

implementations.   We then present  examples  of using regular  expressions  to perform

pattern matching on FPGAs.

3.1 SEQUENCE ALIGNMENT

In this section we describe various software implementations of BLAST.  First we

describe the well-known baseline implementation from NCBI, then move on to describe

alternative implementations and their advantages and disadvantages.

3.1.1 NCBI BLAST

The original implementation was created and is still  maintained by NCBI (the

National  Center  for  Biotechnology  Information),  which  also  maintains  large  online

catalogs of protein and genetic data for performing sequence alignments [23].  NCBI's

implementation sees extensive use, with their web interface seeing over 100,000 queries

per day as of 2004 [24], and is commonly used as a baseline in the literature.  NCBI

BLAST follows the general algorithm for BLAST outlined in the previous section, but

specific details on its implementation follow.

On initialization, NCBI BLAST constructs a hash table to store the offsets of any

seeds from the query sequence being considered.  The hash function uses a mapping from

the alphabet being considered to integers, using the fewest possible bits per character.
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For example, BLASTN (BLAST for nucleotides) has a four letter alphabet:  A  C  G  T.

By mapping these characters to the integers 1-4, only 2 bits (log2 4 = 2) are needed per

character.  This bit representation of each character is then packed together into a single

memory word and used as the hash value for a possible seed.  Packing the values allows

the seed to be stored compactly, and subsequent seed values can be calculated by a single

left shift and binary OR operation to append the next character.

The  advantage  of  this  approach  is  that  it  allows  repeated  seed  values  to  be

collapsed into a single entry in the hash table and save memory.  If a seed value appears

multiple times in the query sequence, up to three offsets can be stored directly in the hash

table, and if there are more a dynamically sized array is allocated and pointed to in the

table.  This allows efficient use of the memory hierarchy in the case of relatively few

repeated seed values, since the hash table entries should fit into the CPU's cache and only

relatively rarely would a more expensive lookup into main memory be needed.

Substitutions are handled by computing every possible permutation of each seed

value over the alphabet and computing a "self score" against the original seed using a

scoring matrix that maps each character in the alphabet to all others and gives a positive

score for likely substitutions or negative scores for unlikely substitutions.  If the new seed

value has a high enough score then it is retained and added to the list of possible seeds

that can generate hits, else it is discarded.

Searching the database sequences is performed by dividing the sequence up into

seed values in the same way as for the query string.  Each sequence is hashed in the same

way, and if a hit is found in the hash table, the offset into the database query is stored.
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After searching is completed, all of the seeds are arranged into diagonals based on

the query and database hit  offsets,  and extensions  are  performed along the diagonals

using  a  substitution  matrix  and  scoring  threshold.   The  extender  attempts  to  merge

multiple hits on a single diagonal by extending toward nearby hits first, and if successful,

extends as far as possible past the hits until the score drops below the given threshold.

3.1.2 DFA SEARCHING

One alternate way to perform the seeding and searching stage of BLAST is to

implement it using finite automata instead of a hash table.  One such implementation is

given by Cameron et al. [25], where they achieve a 15-30% increase in performance over

the  NCBI  implementation  using  DFAs  and  careful  management  of  data  so  as  to

efficiently  use  the  CPU  cache.   They  go  on  to  describe  that  NCBI's  oldest

implementations  used  a  complex  DFA structure  before  moving  on  to  the  hash  table

currently employed, and the DFA structure was reasonable for the available workstations

of the time that rarely had onboard caches.

Their approach is to carefully plan the order of the DFA's state table so as to

improve cache performance.   They do this by clustering frequently used states in the

center of the table, predicted by using the expected frequency of the state's amino acid

sequence.  The outgoing edges from each state are also ordered by frequency.  Lastly, the

authors store the query positions outside of the state table, reducing the probabilities of

cache  misses  when  the  positions  are  referenced.   Together,  these  changes  improve

memory locality and thus cache performance.
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This structure also uses considerably less memory than the old NCBI BLAST

DFA and hash table  architectures.   By using  state  minimization and smaller  position

variables (16-bits where possible), their approach uses as little as 2% of the memory.

The authors note that their approach requires more computation since there are

more  pointers  to  dereference,  but  the  results  they present  imply that  it  is  more  than

compensated for by the improved memory performance.

3.1.3 MASKING

One method for reducing the number of seeds found, which has a dramatic impact

on  performance  due  to  the  slowness  of  the  extension  operations,  is  to  allow

nonconsecutive matches to be considered for alignments.

PatternHunter  [26]  is  an  example  of  such  an  implementation,  which  uses  bit

masks to denote positions in the W-mer that must match between the source and query

strings.  For example, the bit mask 1  0  1  would require that the first and third characters

in a 3-mer to match, and not care about the second.  PatternHunter calls these patterns

models,  and using  a  specific  model  that  is  tuned  against  BLAST,  they were  able  to

achieve a 4-5 fold decrease in runtime and memory consumption compared to BLAST.

They also demonstrate that it produces significantly better results than MegaBLAST [27],

which  it  also  outperformed  in  runtime  and  memory  consumption.   However,

PatternHunter is slower than BLAST for small data sets (hundreds of kilobytes).

Masking in this fashion, also called spaced seeds, is also used by other tools, such

as BLAT [28] and BLASTZ [29] and even recent versions of MegaBLAST.
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3.1.4 DISTANCE SEARCHING

Rather than trying to compute the similarity between two alignments, it's possible

to use a distance metric instead.  MegaBLAST is an example of an implementation that

computes distances between two sequences and uses that to rapidly cull entire diagonals

from being extended.  MegaBLAST uses a simplistic scoring scheme that assigns small

positive  and  negative  scores  for  matches  and  mismatches  respectively,  with  the

assumption that it can greedily discard diagonals after a small drop in score.  This has the

advantage of being potentially very fast, but loses some sensitivity, and the authors don't

provide any performance results.

3.1.5 COMPRESSED ALPHABETS

The size of the hash table generated by NCBI BLAST limits the ability to use

larger seed sizes in an attempt to improve performance.  This is because the hash table

grows very rapidly, at a rate of n32 table slots where n is the length of the seed.  NCBI

BLAST puts a hard limit on the seed size at 5 for this reason.

Sergey et al. [30] proposed a new means of encoding seed values in the hash table

in  order  to  allow longer  seeds  to  be  used.   Their  algorithm compresses  the  protein

alphabet  by  grouping  together  amino  acids  that  are  “similar”  enough  that  not

distinguishing  between  them does  not  severely  affect  the  accuracy  of  BLAST.   By

compressing the alphabet in this manner, they are able to extend BLAST so that it can

accept seed sizes of up to 7, although the authors say that results for seeds of size 8 or

larger were “not promising.”

They  use  these  longer  seeds  to  improve  BLAST's  performance  by  also

implementing fractional threshold values.  The increased length of the seeds allows these
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more precise  threshold values  to  be specified,  which  can maintain  the  same level  of

sensitivity while generating substantially fewer seeds.  This is implemented by converting

the fractional threshold into integer thresholds for use in other phases of the BLAST

search, using amino acid background probabilities and rounding.

The authors  are  able  to  improve BLAST's  runtime by up to  30% using these

alterations.

3.2 HARDWARE IMPLEMENTATIONS OF BLAST

In this section we describe various implementations of BLAST using specialized

hardware, such as PLAs, FPGAs and GPUs.

3.2.1 SEEDING ON FPGAS

Some  FPGA  implementations  of  BLAST  focus  primarily  on  the  seeding

operation.  This is likely due to the fact that this takes up 70-90% of the time spent in

BLAST [31].  As a result, the greatest benefits are expected to be seen by accelerating

this portion of the algorithm, although by Amdahl's Law the theoretical maximum global

speedup would be a factor of about 10x.

RC-BLAST was  an  early  attempt  to  implement  the  seeding  operation  on  an

FPGA,  using  a  Xilinx  XC4085XLA FPGA.   RC-BLAST implements  a  lookup table

similar to NCBI BLAST, and as the authors discovered, this was poorly suited to the

architecture of the FPGA they chose.  RC-BLAST was about 5x slower than the software

version using a conventional processor of the time, which the authors attribute to poor

RAM speeds, PCI bus speeds and poor utilization of the FPGA's resources.

A more successful implementation of BLAST was realized with TreeBLAST [32],

which was implemented on a Xilinx Virtex-II Pro XC2VP70-5 FPGA.  TreeBLAST is an

24



example  of  an  implementation  using  systolic  arrays,  which  are  a  form of  pipelining

computations by pushing data elements through an array of specialized processors one

cycle at a time [33].  TreeBLAST uses a tree merging structure to calculate alignment

scores, which allows it to compute a score every clock cycle while reducing the number

of registers needed.  The query is stored in an array of registers, with each register storing

the binary representation of an element of the query.  The database entry is systolically

"slid" over the registers, and each register compares to its corresponding entry in the

database entry.  The scores are fed forward, two at a time, into a leaf, which continues

until a single score is left, representing the alignment of the query against the database at

that position.  A high level view of TreeBLAST can be seen in Figure 3.1.

The performance of TreeBLAST varies with the size of the query, but results of

up to about 35x speedup per query were reported compared to NCBI BLAST on a 2.8Ghz

Xeon processor, at a rate of 1.7x108 characters per second peak throughput achieved with

nucleotide searches.

3.2.2 FULL BLAST ON FPGAS

There are also full implementations of BLAST on FPGAs, which also perform

extension of hits in hardware.

One early implementation of BLAST on an FPGA that included the full algorithm

was performed by Chen Chang on a BEE2 system [34].   The BEE2 is  a  specialized

hardware  system  that  uses  conventional  hardware  where  possible,  such  as  DRAM

modules, but includes a fully programmable FPGA as its processing elements (in this

case, a Xilinx Virtex 2 Pro).  BLAST is implemented in a similar way to NCBI BLAST,

using a hash table to index seed values.  However, one of the design goals is to maximize
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memory efficiency since it is the primary bottleneck, and as a result the hash table values

are bitpacked to eliminate storage waste.  Hit indexing and expansion are done using a

second table that is indexed by the alignment's diagonal, which is expanded in parallel to

maximize performance.

The author goes on to show that performance is highly dependent on memory

access  patterns,  and  a  lot  of  effort  was  put  into  optimizing  them.   The  overall
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Figure 3.1: TreeBLAST.  Top: How TreeBLAST 
proceeds along the diagonals in a "wavefront."  
Bottom: The tree merging structure used by 
TreeBLAST.  Each level represents a clock cycle.



performance was a substantial improvement over CPU implementations, with 4 BEE2

systems operating at about 10x the speed of a 128-node cluster of 667 Mhz CPUs.

The  TUC  (Technical  University  of  Crete)  architecture  is  a  different  take  on

BLAST that implements a highly parallel system to increase throughput [35].  TUC is

fundamentally a systolic system which pushes 2-bit encodings of nucleotide characters

into a shift array, which stores 11 characters in total as is the standard for BLASTn.  The

11 characters are combined into a single register value, which is then sliced off into a 10-

bit 'tag' which is used to index a 1000 word RAM of w-mer positions, which takes up the

remaining 12 bits.  This RAM is prepopulated before the system begins by finding all

seeds in the query and noting down their indices.  If hits are found the position and tag

are forwarded to an extension unit which performs extensions in both directions as per

the normal BLAST extension algorithm.

TUC is able to achieve extremely high throughput by arranging multiple copies of

this  computational hardware into independent  nodes,  each of which can operate on a

database query.  The authors were able to fit 69 parallel computational units onto their

Xilinx Virtex 4 FPGA, which were able to achieve a speedup of 215.12 against a single

core of a 2Ghz Xeon processor running NCBI BLAST.  The peak throughput for a single

computational unit is 1.21 x 108 characters per second.  Curiously, they report that 69

computational units only perform 5.76x as well as 16 cores of the same Xeon processor,

implying better than linear speedup for NCBI BLAST on a CPU.
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Another architecture was designed by Guo et al. [36], which uses systolic arrays

in  the seeding phase to  find  multiple  hits  per  clock cycle.   This  is  accomplished by

feeding 32 characters from the database sequence in at a time and forwarding groups of

three comparator units into binary AND gates.  Any AND gates that output a high signal

are in effect indicating a hit, so up to 10 hits can be detected per clock cycle.

Although  the  authors  don't  go  into  details  on  how their  gapped  or  ungapped

extensions work, they show that it achieves considerable speedup over NCBI BLAST in

all cases.  BLASTp is about 17x faster for large queries, but for small queries there is
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Figure 3.2: TUC functional unit overview.  Rocket I/O channels feed into finder units, 
which feed into extender units, which are aggregated before being returned to the host.



relatively little  improvement  in  speed.   Peak performance was  cited  as  1.445 x  1010

characters per second.

Mahram and Herbordt designed a full FPGA implementation of NCBI BLASTp

that  makes  use  of  successive  layers  of  filters,  similar  to  the  Bloom filters  used  by

MercuryBLAST (described later), to dramatically reduce the workload and thus achieve

high performance.  The first step is to apply a filter that discards most database queries

that are not promising matches to the search query, reducing the database size by 97-

99.7%.  Afterward, depending on which type of extension is to be performed, additional

filters  are applied to further reduce the work load,  where each filter  is tuned to give

results at least as good as NCBI BLASTp's results.  Total peak speedup is approximately
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Figure 3.3: Guo et al's architecture overview.  Characters are shifted through the 
systolic array, where groups of AND gates aggregate multiple hits per clock cycle.



5x over the CPU of the Convey system used in the tests, compared to a single FPGA

card. 

3.2.3 SEQUENCE ALIGNMENT ON GPUS

Relatively  few  implementations  of  BLAST  exist  for  GPUs,  but  several

implementations  of  Smith-Waterman  are  described  in  the  literature.   These

implementations are able to take advantage of the very high computational throughput

and memory bandwidth of GPUs to perform the calculations needed for the dynamic

programming algorithm.  Performance for Smith-Waterman implementations is usually

given in CUPS – cell updates per second, and is a number that reflects how many cells in

the dynamic programming matrix are populated per second.

Liu et al. [37] produced the earliest implementation, predating modern GPGPU

languages and implementing Smith-Waterman in programmable graphics pipelines.  They

were  able  to  achieve  about  a  20x  speedup  over  CPU  implementations  of  the  time,

peaking at around 0.65 GCUPS.

Manavski et al. [38] designed an implementation using CUDA that was able to

achieve about 3x speedup over Liu's implementation, peaking at about 1.89 GCUPS.  The

authors also give performance comparisons to NCBI BLAST on CPUs, and by using two

GeForce  8800 GTX cards  they were  able  to  outperform BLAST by a factor  of  2.4.

Ligowski et al. [39] revised this design, which uses horizontal strides over the matrix to

achieve a 4x improvement over Manavski's implementation, peaking at 7.5 GCUPS per

GPU.

In 2010, Ling et al. [40] produced a BLAST implementation using CUDA that

was able to achieve a peak of 2.7x better performance than a Pentium 4 at 3.4 Ghz.  Their
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design followed the NCBI algorithm closely and used the GPU to search for many seeds

at  once  in  parallel  while  leveraging  its  very  high  memory  bandwidth  to  maximize

performance.   Extensions  are  performed  in  a  separate  kernel  and  require  some

synchronization between threads, so performance hinges on the number of hits found by

the first kernel and their distribution.

Vouzis et al. [41] later produced an implementation that modified NCBI BLAST

directly to replace the ungapped word finder and extender with kernels that ran on both

the GPU and CPU at the same time to maximize performance.  To minimize performance

degradation from the SIMD nature of GPU kernels, they sorted database samples so that

each thread operated on approximately the same length strings.   Some operations are

performed exclusively on the CPU, such as gapped extensions, which are not well suited

to the massively parallel SIMD architecture.  Using a Fermi C2050 GPU and a six core

Xeon at 2.67 Ghz, the authors were able to get a peak of slightly over 3x speedup when

using only a  single  CPU core,  but  with  all  six  cores  they only managed about  1.5x

speedup.

3.2.4 OTHER HARDWARE IMPLEMENTATIONS

MercuryBLASTN [42] is an example of BLASTn implemented on the Mercury

system, which is a specialized hardware platform designed to use reconfigurable logic in

the form of an FPGA to process streams of data from a disk backed storage system [43].

MercuryBLASTN implements  only the  hit  finding component  of  BLAST,  but

uses  a  multi-stage  design  to  do  so  that  achieves  significant  speedup.   Hit  finding  is

performed by sending in 11-character nucleotide seeds from the query sequence, which

are then compared against streamed database entries by using a Bloom filter.  Bloom
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filters are a means of quickly testing membership in a large set through the application of

hashing functions  on  the  set  [44],  but  have  the  drawback that  they may report  false

positives when queried due to loss of information in the hashing step.

In MercuryBLASTN, Bloom filters are used to reduce the amount of data that

must be checked by later stages of the hit finding algorithm.  Database entries are run

through the bloom filter using the query seeds and hits are forwarded on to the second

stage.  The second stage is a hash table implementation similar to NCBI BLAST's hash

table, and is used to store indexes for hits from the first stage.  The third and final stage is

a redundancy filter that is used to eliminate false positives generated from the first stage

and  cull  hits  that  aren't  at  the  maximum extent  along  a  diagonal  as  they  would  be

unnecessary in the extension phase.

Performance for the hit finder reaches a peak speedup of about 45x over NCBI

BLAST's hit finder running on a CPU, but overall performance is hindered by the fact

that  the  remaining  parts  of  the  BLAST algorithm are  not  implemented  in  hardware.

Overall peak performance was only about 7x better than NCBI BLAST, at about 2.128

x109 characters per second.

An implementation of BLASTp on the Mercury system was described by Jacob et

al.  [45],  called  MercuryBLASTP.   Unlike  Mercury  BLASTN,  MercuryBLASTP

implements the entire BLAST algorithm in hardware and does not use Bloom filters to

process potential hits.  Instead, a lookup table, similar to the hash table used by NCBI

BLAST, is used to perform hit finding.  By using an encoding scheme that only stores the

difference in position between hits, the authors are able to pack more hits directly into the

table without having to resort to secondary lookups, which improves performance.  To
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improve  performance  and  get  around  hardware  limitations  on  the  number  of  ports

available to on chip memories,  the extension phase divides  the results  into diagonals

using a modulo operation that efficiently maps the hits to multiple extender units without

requiring them all to share data.  With this architecture, the authors achieved a speedup of

about 37x over a 2 Ghz AMD Opteron processor.

3.3 PATTERN MATCHING WITH REGULAR EXPRESSIONS ON FPGAS

In this section, we present some implementations of pattern matching on FPGAs,

with a particular focus on doing so using regular expressions and finite automata.

Regular expression matching has been implemented in hardware as far back as the

use of PLAs, predating FPGAs, such as the implementation by Floyd et al [46].  Their

implementation  is  a  means  of  encoding  regular  expressions  directly  into  hardware

circuitry through the use of lookup tables that store next state transitions for specific input

characters.   Their  design  implements  regular  expression  matching  in  NFAs  directly,

allowing multiple states to be active at once.

Sidhu et al [47] describe one of the first regular expression matching designs on

FPGAs that use NFAs.  Their design uses an extension of the One-Hot Encoding scheme

which allows multiple  states to  be active at  once.   One-Hot Encoding is  a means of

implementing finite automata wherein the set of states are represented as a bit string with

only one bit active (hot) at a time.  The active bit is used to index into a table indicating

which state should be active next for a given input.  In their implementation, each state is

represented as a flip-flop, having on or off status.  By connecting the output of a flip-flop

to  multiple  flip-flop  inputs,  a  single  state  can  trigger  more  than  one  other  state  and

trivially implement a state machine where multiple states are active.  Furthermore, their
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design is able to implement a regular expression as an NFA at run time, using only O(n)

time and O(n2) space, where n is the length of the regular expression of interest.

Using DFAs with One-Hot  Encoding has  the advantages  of  being  simple  and

usually  allowing  the  FPGA to  run  at  a  higher  clock  rate,  which  can  otherwise  be

constrained by complex logic introducing delays in the circuit.   DFAs created from NFAs

(which are in turn generated from regular expressions) can potentially have exponentially

large numbers of states, so doing this in a naive fashion is rarely possible for interesting

problem sizes.

Various authors have proposed means of either reducing the complexity of the

regular expression to combat this, such as removing ambiguities [48], or by proposing

extensions to DFAs, such as counters to recognize previously seen parts of the expression

[49], that enable the state tree to be collapsed in some fashion.

Becchi et al. [50] provide several techniques for reducing the complexity of NFAs

generated  from  regular  expressions,  focusing  on  reducing  the  number  of  states  or

transitions.  The authors propose a reduction operation to eliminate epsilon transitions

(those that occur on no input character), as they tend to increase the total number of states

as well as the average number of active states.  They also propose an algorithm that is

able to reduce the number of transitions in the NFA by reducing it to matching on a

reduced  alphabet.   If  multiple  elements  of  the  alphabet  always  follow  the  same

transitions, they can be merged into a single character in a reduced alphabet.  Lastly, the

authors propose a multi-stride NFA that processes multiple input characters at a time.

They  present  an  algorithm for  generating  a  2-NFA from a  normal  NFA,  which  has
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approximately  the  same number  of  states  but  may have  more  transitions.   Alphabet

reduction can help reduce the number of transitions afterward.

 An observation by Korenek et al. [51] is that oftentimes only a small number of

the  total  NFA states  might  be active  at  a  time,  and go on to  show that  for  network

intrusion detection using regular expressions, as little as 3% of the states might be active

when other states are active.  They use a split NFA / DFA architecture that keeps states

that are always active alone in memory and use a DFA to process them, while using an

NFA for  the  other  states.   It  is  unclear  how  well  this  would  perform  for  regular

expressions used for biosequencing however.
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CHAPTER 4

APPROACH

In this chapter we provide an overview of our proposed replacement of BLAST's

two-hit filtering stage.  Unlike NCBI BLAST, which performs this as separate hit finding

and HSP generation steps, our approach combines both into a single operation that can be

offloaded onto accelerator hardware.

We have developed a framework for decomposing FASTA protein databases into

regular expressions that directly map to HSPs, which are then used to build an index for

the database.  When queries are fed into the regular expressions, matches can be cross

referenced into the index to generate hits that can be evaluated like BLAST's normal seed

hits.  An overview of our framework is shown in Figure 4.1.

4.1 DATABASE PREPROCESSING

Before we can search a database, we must preprocess it to generate a set of tables

that are used at runtime to rapidly filter the database to a subset that is passed on to be

aligned.  Preprocessing the database consists of building up a set of regular expressions

that represent potential HSPS, then indexing the database by these HSPs.

4.1.1 GENERATING REGULAR EXPRESSIONS

Database preprocessing begins by generating a set of regular expressions that are

able to map queries to database records.  To do this, we have extended and modified the

normal hit finding phase of BLAST, which as described in Chapter 2, is the stage where

BLAST attempts  to  find  significant  segments  (called  seeds)  of  a  sequence  using  its
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scoring criteria.  Instead of just locating seeds in a database sequence, we seek to fully

form sets of High Scoring Pairs (HSPs) at this stage to generate regular expressions.

First,  we seek  to  establish  the  practicality  of  our  approach  by estimating  the

number of HSP regular expressions that will be needed to describe a database.  There are

a finite number of possible seeds for a given seed length and alphabet size,  which is

further constrained by the threshold parameter.  Protein BLAST is typically performed

with a seed length of 3 with a standard protein alphabet consisting of 23 amino acids

represented  by  the  uppercase  characters  from  the  English  alphabet.   Thus,  before

elimination  of  seeds  by  the  threshold  parameter,  there  are  233,  or  12,167  possible

combinations of characters used to generate seeds.

Recall that after finding seed hits in a query or database record, BLAST proceeds

to combine nearby pairs of hits into HSPs.  NCBI BLAST applies two criteria to possible
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Figure 4.1: Overall Approach.  The database is preprocessed to produce the HSP suffix 
table and HSP index table.  Queries are filtered through both tables to produce a set of 
potential database matches.



HSP candidates  before accepting them: pairs  of  hits  must  not  overlap and they must

appear  within a certain distance of one another  in the original  sequence.   For NCBI

BLAST, this HSP Window Size is typically specified as a distance of 40 characters.

Based on this, we can design a regular expression template that all HSPs would

match, as shown in Figure 4.2.

The first three characters represent the first seed hit, or prefix, that wold produce

the HSP, while the second three characters represent the second hit, or suffix of the HSP.

The wildcard, ranging from 0 to 40 characters, represents the HSP Window Size, forcing

matches to be equivalent to two seed hits that would be close enough to generate an HSP

in NCBI BLAST's two-hit filtering stage.

Because there are a finite number of seeds, there are a finite number of possible

unique HSPs needed to describe all possible hits in a database of arbitrary size.  In the

worst case, every possible seed is paired up with every possible seed, including itself, in

some sequence, giving us a maximum of 12,1672 or about 148 million possible HSPs.

Applying the seed score threshold reduces this number by reducing the number of seeds

meeting the minimum self-score, as shown in Figure 4.3.

As Figure 4.3 shows, a typical threshold value of 13 gives around 130 million

HSPs.  130 million HSPs is too large to fit in an on-chip filter, so we are forced to find

some way to further reduce the number of HSP regular expressions.
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ABC.{0,40}DEF
Figure 4.2: HSP Regular 
Expression Template



As Figure 4.3 shows, even very high threshold values (which reduce sensitivity)

are not enough to reduce the number of HSPs to an acceptable level.  To accomplish a

substantial reduction in the number of seeds and HSPs, we use 2-character seeds, or 2-

mers, instead of 3-mers.  Using 2-mers instead of 3-mers reduces the number of possible

seeds down to 232, or 529.  In turn, the maximum number of possible HSPs drops to 5292,

or 279,841.  This represents a savings of 99.8% in the number of regular expressions

needed.   To compensate  for  reducing the  size  of  the  seeds,  we have  to  use  a  lower

threshold value, and in Chapter 5 we present data to show that this does not substantially

alter the results of the search.

In addition to these base regular expressions, we must also allow inexact matches

like BLAST.  While the wildcard HSP window allows insertions and deletions, we must

modify our regular expressions to allow substitutions in the prefixes and suffixes.  This
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Figure 4.3: Total HSPs By Threshold.  Increasing the threshold results in fewer 
candidate seeds, and as a result, possible HSPs.



does not alter the total number of HSPs, but does influence the indexing operation by

allowing mismatches when scanning the database records.

In  NCBI BLAST this  inexact  matching  is  handled  by enumerating  all  of  the

possible substitutions for each seed and computing the substitution scores.  Any seed

whose score remains equal to or above the threshold is kept and used in the seed finding

phase.

We produce similar behavior by also enumerating all possible substitutions for

each seed and retaining those seeds whose scores remain equal to or above the threshold.

In order to express the allowed substitutions in the regexes, all prefixes and suffixes that

are generated from a seed are grouped together in alternation clauses.  An example of a

regular expression allowing substitutions is shown in Figure 4.4.

Continuing  the  example  in  Figure  4.4,  a  database  sequence  containing  the

subsequence H I A B C C Q could now be matched up against a query that contained the

subsequence H J A B C C E.

4.1.2 INDEXING FASTA DATABASES

After the set of possible HSPs has been generated, the FASTA protein database is

scanned and a set of index files are generated.  The first, which we term the HSP Index

File, contains a comprehensive index that maps all of the HSP regular expressions to HSP

hits in the input database.  Each hit stores the index of the FASTA database record that

produced the hit, the offset into the record where the hit begins and how long the match

was in the database record.  This file is larger than the input database and its size grows

linearly with input size, which we cover in further detail in Chapter 5.
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The hits in the HSP Index Table are sorted so that all of the hits for a given regular

expression can be read in a single batch operation.  To permit this, a secondary, small and

fixed size table of contents is generated that maps each combination regular expression

and match length (0 through 40) to its corresponding hits in the HSP Index Table.

Lastly, the HSP regular expressions are stored in a specialized encoded format,

called the HSP Suffix Table, that allows the FPGA hardware to identify hits in a query

sequence as it is streamed in.  Details for the FPGA implementation and the format of this

table are presented later in this chapter.

The  indexing  operation  proceeds  by  tokenizing  each  database  record  into

overlapping 2-character  chunks,  or  2-mers.   These 2-mers  then have their  self-scores
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Figure 4.4: HSP Regular Expression With Substitutions.  This assumes a
threshold value of 11.



evaluated using a scoring matrix, and 2-mers with a sufficiently high self score are kept,

and others are discarded.  An example of this is shown in Figure 4.5.

After tokenizing the record, the 2-mers are paired up into HSP hit candidates.  All

of the 2-mers are paired up with all non overlapping 2-mers following them, within the

HSP Window Size.   By producing HSPs  from all  possible  combinations  of  hits,  we

maintain high sensitivity and mirror the behavior of NCBI BLAST.

An  example  of  the  pairing  process  is  shown  in  Figure  4.6,  using  the  seeds

generated in the example from Figure 4.5.
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Figure 4.5: 2-mer Tokenization Example.  Scores for each 2-mer are 
shown above the component characters, and are computed using self 
scores from the BLOSUM62 scoring matrix.  All seeds with a score 
equal to or above the threshold (11 in this example) are listed below the 
sequence.



As Figure 4.6 illustrates, the starting and ending 2-mers for each hit correspond to

a  resulting  regular  expression  HSP.   For  regular  expressions  that  allow  mismatches

through alternations, the hit is associated with whichever regular expression contains the

prefix  and  suffix  of  the  hit.   Once  the  corresponding  regular  expression  has  been

identified for  the hit,  the hit's  starting offset  into the database record,  length and the

record number of the corresponding database record are stored in the HSP Index File for

use during the two-hit filter stage while evaluating queries.
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Figure 4.6: Hit Pairing Example.  Note that pairs that would overlap in 
the original sequence are not used to generate HSPs (see Figure 4.4 for 
the original sequence).



4.2 RUNTIME BEHAVIOR

At runtime, the filter tables produced during the preprocessing step are used by

the FPGA to transform a batch of queries into a set of database records that must be

aligned.  In this section, we first describe the overall query matching behavior and then

provide a more thorough description of the FPGA architecture.

4.2.1 QUERY HIT FINDING

In  NCBI  BLAST,  the  tokenization  and  HSP generation  phases  described  in

Chapter  3  are  done for  both  the  query and all  database  records  at  runtime.   This  is

necessary because NCBI BLAST does not have a pregenerated database index.

Our approach performs an offline indexing operation for database records, but the

query that is being searched for is not available until runtime.  To generate hits for the

query,  we now leverage  the  HSP regular  expressions  that  were  generated  during the

database indexing phase.

For every query, every HSP regular expression is evaluated and all of the matches

and their lengths are recorded.  The regular expressions are evaluated in an ungreedy

fashion, ensuring that no hits are missed.   Details  on specific implementations of the

regular expression evaluation stage are presented in the following sections.

After all of the matches from the query have been located, they must be cross

referenced to the HSP hits generated during the offline indexing phase.  Each regular

expression that generated at least one match in the query has its hits loaded from the HSP

Index File, as well as all of the database records associated with its hits.  The final list of

HSP candidates is generated by producing diagonals using the regular expression matches

from the query against database hits.
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In NCBI BLAST the concept of  diagonals is used to represent alignments that

occur at different offsets between two sequences.  In NCBI BLAST, this is computed by

finding the distance between hits that occur in the query sequence and candidate database

sequence.  NCBI BLAST only extends hits that occur on the same diagonal.

In our approach, we must also take the length of matches into account, since a

change in the length of the match between the query and sequence would indicate that the

prefix and suffix seeds would have different diagonals in NCBI BLAST.  Since we use

the same extension algorithm as NCBI BLAST, which requires seeds forming HSPs to be

on  the  same diagonal,  we  must  enforce  the  same constraint  that  query matches  and

database HSP hits be of the same length.  For each query match and database HSP hit of

the same length, a candidate HSP is generated and placed on the diagonal calculated as

the difference between the query match starting position and the database HSP hit starting

position.

An example of an insertion causing a possible HSP to be discarded is shown in

Figure 4.7.  Note that while this HSP is discarded, other HSP matches could still be found

at later positions in the two sequences, but would now be on a different diagonal. 

After all of the hits have been extended and their expectation values calculated,

alignment proceeds exactly as in NCBI BLAST.
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4.2.2 FPGA PATTERN MATCHER DESIGN

An overview of our FPGA design is shown in Figure 4.8.

The design consists of a query processor, which is given a query stream to process

and outputs a stream of HSP matches on the query indicating which HSP generated the

match, where it begins and how long the match is.  The query processor is composed of a

set of processing elements (PEs), an HSP suffix table and an arbitrator for aggregating

output hits from the PEs.

Each PE contains the logic needed to recognize an HSP hit from the incoming

character stream.  It takes as input the current characters from the stream that are being

evaluated, the encoded corresponding suffixes that generate a hit from the suffix table

and busy signals from the other PEs.  Using counters, it is able to record the starting cycle

and ending cycle of a match (needed for the start and length), and to abort matching once

the HSP Window Size has been reached.
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Figure 4.7: Diagonal Calculation Example.  The insertion in the database
sequence causes the second HSP match length to be longer (6 characters)
than on the query (5 characters).  Since this would cause the 
corresponding seeds to have different diagonals in NCBI BLAST, it is 
discarded.



       Figure 4.8: FPGA Two-Hit Filter Architecture



The HSP suffix table is a RAM that contains an encoding of HSPs in a compact

and rapidly accessible form.  Each address line of the RAM corresponds to the beginning

of an HSP that uses a modified ASCII encoding.  Since the protein alphabet consists of 23

characters,  each  character  can  be  represented  uniquely  by  5  bits,  meaning  that  the

beginning of an HSP requires 10 bits of address space, or 1024 lines.  Each line is a bit

vector where each column represents an ending suffix.  For every regular expression HSP

that begins with a given HSP prefix, all of its suffix values are encoded in the RAM by

converting the suffix to  a 10-bit  value and toggling the corresponding column in the

prefix's row.  Each line must be 1024 bits wide to accommodate this, leading to a total

usage  of  1  Mb per  query processor.   An example  of  encoding a  single  HSP regular

expression in the HSP Suffix Table is shown in Figure 4.9.

During evaluation, the query is streamed into the query processor, which buffers

incoming characters to create 10-bit character hashes that can be used to directly address

the prefix table.  This hash, as well as its corresponding prefix table value, are passed to

all of the query processor's PEs, which begin to compare against it.

Each PE will begin to match on the incoming character hash only if all of the PEs

before it are currently busy.  On its first active cycle, it stores the incoming hash value as

its prefix.  On subsequent cycles, it begins counting the length of a possible match and

begins comparing the incoming hash to the prefix table's output using a 1024-bit wide

decoder.  If the decoder detects that the prefix table has a column matching the incoming

character hash, then a match is reported.  If the counter exceeds the HSP Window Size,

then the PE resets and goes idle.
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Each query processor contains 42 PEs, which are enough to ensure that with an

HSP Window Size of 40, there are enough to process a character every cycle without

needing to stall.  We verified that 42 PEs are enough through the use of the software

model described below in Section 4.5.

Hits  generated  by the  query processors  are  stored  in  DRAM, which  are  then

processed by the HSP generator to produce a final list of HSP hits to be passed back to

the host.  The HSP generator is responsible for sorting the hits by HSP ID and length so

that database hits can be referenced from the HSP Index File with the minimum number

of transactions possible.  It then calculates the diagonal for each hit by subtracting the
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Figure 4.9: HSP Suffix Table Generation.  Rows are addressed by the encoded version 
of each prefix, and columns are toggled for each suffix of each prefix.



database record hit start position from the query hit start position, and adds it to the final

hit to be sent back to the host for extension and alignment.

4.3 SOFTWARE MODEL

To evaluate the feasibility of this approach, a software model was implemented

using C++ that  emulated the functional  behavior  of  the FPGA model.   We used this

model to prove the correctness of the algorithm in the absence of a complete physical

implementation, and to verify the minimum number of PEs needed per query processor to

ensure no stalls would be needed to process a character every cycle.

This model also allowed us to make estimations of performance on a real system.

We were able estimate the I/O overhead of loading HSP hits from disk during the seed

search phase, and gather timing information on how long the host system would spend

performing an equivalent search operation in software.

4.4 SUMMARY

In this  chapter we provided an overview of the offline database preprocessing

algorithm needed to build the HSP Hit Index table, as well as an overview of the FPGA

two-hit filter architecture that would leverage the regular expressions generated by the

preprocessing stage to perform streaming rate pattern matching on query sequences.

In Chapter 5, we present results gathered from our software emulation model of

the  FPGA  architecture  that  show  projected  performance  on  a  real  world  system,

accounting for the measured overhead of reading the HSP Hit Index table from disk.  We

also show results comparing the relative time spent in the two-hit filter stage by NCBI

BLAST and provide estimated maximum speedups.
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CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, we provide experimental results showing that our framework has

comparable sensitivity to NCBI BLAST as well as performance estimations that show

that we expect significant speedups on real hardware.  We also present projections on

disk utilization for our index files as well  as hardware utilization for both the FPGA

architecture.

5.1 RESULT VERIFICATION

To verify that our framework produces equivalent results to NCBI BLAST, we

used the four protein databases NR [52], Uniref50, Uniref90 and Uniref100 [53].  NR is a

commonly used protein database aggregating records from several other sources in a non-

redundant fashion.  The Uniref databases are generated from the UniProt Knowledgebase,

which serves as another hub of aggregating protein sequences from multiple sources.

The Uniref databases attempt to merge multiple sequences from different sources which

have high overlap into a single sequence to reduce the size of the database and search

times at the loss of resolution.  Uniref50 combines sequences of 50% identity (that is,

sequences which are identical in 50% or more of their characters), Uniref90 combines

sequences of 90% identity,  and Uniref100 combines sequences of exact identity.   We

chose  these  databases  with  the  expectation  that  we  would  see  different  numbers  of

extensions and alignments for a given query due to the varying levels of redundancy.
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We performed  tests  by selecting  random sequences  from these  databases  and

feeding them back in as queries using NCBI BLAST and our framework.  All of our tests

were performed using the default parameters for NCBI BLAST: threshold of 13 and seed

size of 3, and using threshold 11 and seed size 2 for our framework.  We chose this

threshold  based  on  backward  extrapolation  from  the  original  BLAST  paper,  which

suggested a threshold step of 2 for each step of seed length gives similar sensitivities [8].

Our experiments show that highly significant alignments, that is, those with very

low  expectation  values,  are  equivalent  between  our  framework  and  NCBI  BLAST.

However, both NCBI BLAST and our framework return alignments with much higher

expectation values,  and these results  were less consistent.   In  Tables 5.1 and 5.2 we

present an example of the output obtained by running the database sequence gi|49187252

from the NR database as a query against the first 10,000 records of the NR database in

both NCBI BLAST and our framework.

In the following tables, the SW Rank column indicates the relative ranking of the

alignment  in  a  list  sorted by expectation value when Smith-Waterman is  run directly

between the query and database records.  Running Smith-Waterman on the query record

and  its  database  counterpart  gives  the  highest  possible  score  and  lowest  possible

expectation value, for example, and thus receives a SW Rank of 1.  This gives optimal

alignments for every database record and allows us to directly compare the results from

NCBI BLAST and our framework by showing gaps (indicating missed alignments) in the

results.

For brevity's sake we present only this example, but its results are typical of all

queries tested from the four databases mentioned.
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In  addition  to  the  SW Rank,  we  are  also  interested  in  the  E-value  of  each

alignment.  The E-Value column indicates the number of times that one would expect to
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Table 5.1: Results of Using gi|49187252 as a Query in NCBI BLAST against NR.

Sequence Name Score (Bits) E-Value SW Rank

gi|49187252 299 6.53e-86 1

gi|15925512 75.1 1.17e-18 2

gi|15924184 59.7 5.1e-14 3

gi|22537123 30.8 2.54e-05 4

gi|19746167 28.9 9.65e-05 5

gi|66823573 28.5 1.26e-04 6

gi|15924499 26.9 3.67e-04 9

gi|22537145 26.6 4.79e-04 10

gi|30265243 25.8 8.17e-04 13

Table 5.2: Results of Using gi|49187252 as a Query in Our Framework against NR.

Sequence Name Score (Bits) E-Value SW Rank

gi|49187252 299 6.53e-86 1

gi|15925512 75.1 1.17e-18 2

gi|15924184 59.7 5.1e-14 3

gi|19746167 28.9 9.65e-05 5

gi|66823573 28.5 1.26e-04 6

gi|15924499 26.9 3.67e-04 9

gi|22537145 26.6 4.79e-04 10

gi|66819553 25.8 8.17e-04 11

gi|85083718 25.8 8.17e-04 14



see a sequence with such a score by chance, so smaller values are better.  We can use E-

values to gauge whether an alignment is significant, irrespective of its relative SW Rank.

As  expected,  since  the  query  was  taken  straight  from  the  database  without

modification,  it  matches itself  with a very high score,  a very low E-Value and is the

highest ranked match when performing Smith-Waterman directly on the results.

There are several observations we can take away by comparing the results  of

NCBI  BLAST and  our  framework.   First,  both  agree  in  the  first  three  alignments,

indicating that for this query, there is no difference between BLAST implementations for

high scoring alignments.

Past this, it is clear that there are discrepancies between the two.  NCBI BLAST

manages to align against the 4th highest ranked alignment, where our framework does not.

Similarly, our framework finds an alignment the 11th and 14th highest ranking alignments

where NCBI BLAST does not.  It  should be noted that while missing the 4th highest

ranking  alignment  sounds  significant,  by  this  point  the  E-Values  are  ten  orders  of

magnitude  higher,  and  therefore,  the  alignments  are  correspondingly  less  significant.

Both NCBI BLAST and our  framework begin to  experience large gaps  in SW Rank

between alignments at this point.

The  major  cause  of  differences  in  the  results  is  that  NCBI  BLAST has  an

advantage over our framework when using higher thresholds for seed generation.  This is

because when processing a query, NCBI BLAST will use a 3-mer from the query even if

it is below the threshold score.  Our framework is unable to do this because it must index

the  database  without  any queries  available  and  so,  to  achieve  completely  equivalent

results it would be forced to use a much lower threshold, with a corresponding increase in

54



the  size  of  the  HSP Index  File.   This  is  the  reason  that  our  framework  missed  the

alignment for gi|22537123.

5.2 DATA TRANSFER RATIO

As described in Chapter 4, we assume that, independent of the storage medium,

performance is I/O bound.  Calculations are performed by the FPGA quickly enough that

the majority of time spent will be waiting on data from the database or HSP Index Table,

whether they are stored in RAM or on disk.  We then are interested in the amount of data

transferred  by  by  our  framework  and  how  it  compares  to  state  of  the  art  FPGA

implementations,  but  not  in  specifics  on the  hardware  model  such as  random access

latency or throughput.

To gather these numbers, we modified our framework to count the number of

database HSP hits read from the HSP Index File, each of which is 8 bytes, as well as the

total size of all the database records for which at least one HSP hit was matched to a

query.   If  we  assume  the  records  are  of  average  size  for  the  database  then  we  can

calculate the number of bytes of the database that we must read.

In Figure 5.1 below, we show the bytes read from the HSP Index Table when

searching for batches of 20, 40, 60, 80 and 100 queries randomly selected from the NR

database using the first 200K records of the database.
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From the figure we can see that the number of bytes read is linear on the number

of  query  characters  being  processed.   To  place  these  numbers  into  perspective,  the

database used contained the first 200K records of NR and was approximately 800MB in

size.  By comparison, 100 queries totaling 36,789 characters required less than 80MB of

data to be transferred,  indicating that  the overhead for the HSP Index Table is  small

compared to rereading the database.

To also  account  for  the  database  transfer  required,  we present  the  number  of

records for which there was at least one match below in Figure 5.2:
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Figure 5.1: HSP Index Table bytes read vs. Query Characters for query batches 
against the first 200K records of NR.xz
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Figure 5.2 shows that the number of database records read rapidly approaches the

limit of the full size of the database.  For the sample database, searching for 20 queries

used approximately 170K out of 200K records, or 85%, but this reaches 195K out of

200K, or 97.5% by the time we search for 100 queries.  In practice, this would mean that

for large numbers of queries we expect to have to read most of the database.

5.3 TWO-HIT FILTER SPEEDUP

State of the art implementations of BLAST on FPGAs, such as CAAD BLAST

[31], must reread the entire database for each query so that the two-hit filtering stage can

be reconfigured for the query.  Our approach eliminates this requirement and only needs

to read the database in its entirety at most once for a batch of queries, but still has the

overhead of reading the HSP Index Table for any matches found in the queries.

57

Figure 5.2: Database records read vs. Query Characters for query batches against 
the first 200K records of NR.
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We expect speedup in the two-hit filter if the overhead for reading the HSP Index

Table is less than the need to reread the database per query.  We define speedup as:

Speedup=
BytesReadDatabase+BytesReadsHSP Index File

BytesTotalDatabase×Queries

Our  projections  of  speedup  for  the  two-hit  filter  using  the  same  selection  of

queries and database are shown below in Figure 5.3:

Given the total bytes read from the HSP Index Table shown in Figure 5.1, it is

unsurprising that we are able to realize substantial speedup with increasing numbers of

queries.  For these queries, each query, on average, requires only approximately 1% of

the database's size in bytes to be read from the HSP Index Table, as opposed to 100% for

CAAD BLAST.

The  two-hit  filter  speedup  does  not  vary  significantly  with  the  size  of  the

database.  The total bytes read from the HSP Index Table is directly proportional to the
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Figure 5.3: Two-Hit Filter Speedup vs. Queries for query batches against the first 
200K records of NR.
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size of the database used to generate it, causing the ratio of total bytes read vs. rereading

the database per query to remain nearly constant.

5.4 TWO-HIT FILTER TIME RATIO

While we are able to achieve substantial speedups in the two-hit filter stage of

BLAST, the two-hit filter is only part of the total runtime.  Extension and alignment come

afterward and are not accelerated by our framework.  As such, our overall speedup is

limited by the time spent in the two-hit filter.

To estimate the time spent in the two-hit filter, we modified NCBI BLAST and

inserted timing code around its word finding and HSP generation routines.  We then ran it

on a Dell PowerEdge R710 server using a single thread of a Xeon E5520 CPU and the

same queries we examined in our framework.  We gathered the time spent in the two-hit

filter  stage  and  compared  it  to  the  overall  time  spent  executing  NCBI  BLAST  to

determine the ratio of execution time that we could accelerate.

The relative time spent in the two-hit filter is shown in Figures 5.4 and 5.5.

From Figure 5.4 we can see that there is little change from simply using more or 

longer queries.  When using the first 200K records of the NR database, NCBI BLAST 

ranges from spending 78% of its total runtime in the two-hit filter for a batch of 20 

queries totaling 6,449 characters up to only 81% for using nearly 6 times the query 

characters.  We can also see that from these batches of queries, the total relative time 

spent does not strictly increase with more queries.

Figure 5.5 however shows a clear increase in the relative time spent in the two-hit

filter  with  increasingly  larger  databases.   Using  the  same  20  queries  totaling  6,449

characters, NCBI BLAST ranges from using 82% of its runtime at 200K records up to
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Figure 5.4: Relative Time Spent in Two-Hit Filter
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Figure 5.5: Two-Hit Filter Speedup vs. Database Size using 20 queries totaling 
6,449 characters.
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93% for 1 million records.  Since our speedup is dependent on accelerating the two-hit

filter, we thus conclude that using searching larger databases will see more benefit than

smaller databases.

5.5 OVERALL SPEEDUP

In  order  to  calculate  the  overall  expected  speedup  of  our  approach,  we  must

consider both the speedup of the two-hit filter and limit it by the relative time spent by

BLAST in the two-hit filter.  We define speedup as follows:

Speedup=
TTOTAL

(T TOTAL−T TWO−HIT)+
T TWO−HIT

SpeedupTWO−HIT

SpeedupTWO-HIT was defined previously as the ratio of data transferred between our

framework and CAAD BLAST.  As a result, we expect overall speedup to increase with

more queries, which would improve the two-hit filter speedup, and with larger databases,

which would increase the relative time spent in the two-hit filter.  We show these effects

below in Figures 5.6 and 5.7.

Using  increasing  numbers  of  queries  shows  a  small  improvement  in  overall

speedup for the same size database, ranging from about 4x to 5x.  In this case, overall

speedup is limited by the relative time spent in the two-hit filter, which we can improve

by increasing the size of the database being searched.

A clear improvement in overall  speedup is shown by ranging from 200K to 1

million records using the same 20 queries.  In this case we get from about 4x to nearly 8x

overall projected speedup.
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Figure 5.6: Overall Speedup vs. Queries using the first 200K records of the NR 
database.
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Figure 5.7: Overall Speedup vs. Database Size using 20 random queries totaling 
9,942 characters.
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5.6 HSP INDEX TABLE SIZE

In this section we provide results showing the size of the HSP Index File as a

function of the input database size.  As mentioned in Chapter 4, this file is larger than the

input database because it is an exhaustive index of all HSPs contained in the database, for

which there is considerable overlap.  The results in Table 5.3 were generated using a

threshold value of 11 for 2-character seeds.

As the results  show, the  HSP Index File  is  substantially larger  than  the  input

database, from 10x-11x the size.  Despite its large size, the file is sorted and organized

such that only a single disk seek is required before all hits to a relevant HSP regular

expression can be read, emphasizing disk bandwidth over seek times.

The size is also a function of the seed score threshold, and using higher thresholds

would decrease the size of the HSP Index File while sacrificing sensitivity.  While we

have not performed rigorous analysis on the effects of using thresholds other than 11 on

search results, below we present data showing the effects on the HSP Index File's size

when using different threshold values.
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Table 5.3: HSP Index File Size as a Function of Database Size

Entries
Processed

NR Uniref50

Size of Raw Database Size of HSP Index File Size of Raw Database Size of HSP Index File

200K 81.3 MB 0.8 GB 93.3 MB 0.92 GB

400K 153 MB 1.4 GB 166 MB 1.5 GB

600K 221 MB 2.0 GB 265 MB 2.4 GB

800K 291 MB 2.8 GB 365 MB 3.5 GB 

1M 361 MB 3.5 GB 467 MB 4.5 GB

Full (est.) 3.7 GB 38.5 GB 6.7 GB 72 GB



As Figure 5.8 shows, the number of seeds decreases with increasing threshold,

indicating fewer seeds whose self scores meet the minimum threshold value.  For these

thresholds the relationship is roughly linear.

In  Figure  5.9,  the  number  of  candidate  HSPs  that  these  seeds  translate  to  is

shown.  Since the number of candidate HSPs is the square of the number of seeds, we see

a quadratic falloff with increasing threshold and fewer seeds.

While  we  chose  a  threshold  value  of  11  based  on  preliminary  results  from

Altschul et. al [8], Figure 5.9 shows that a threshold value of 11 also represents a point

where increasing the threshold produces diminishing returns on reducing the number of

HSPs.
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Figure 5.8: Seed Growth as a Function of Threshold
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We would expect that the size of the HSP Index File would correlate strongly to

the number of HSPs, which is borne out and shown below in Figure 5.10.

Just  like  the  number  of  HSPs,  the  size  of  the  HSP  Hit  Index  decreases

quadratically with increasing threshold.  Again we can see that a threshold of 11 gives a

natural point at which increasing the threshold further produces diminishing returns on

reducing the file size.
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Figure 5.9: Total HSP Growth as a Function of Threshold

9 10 11 12 13
0

50000

100000

150000

200000

250000

HSPs vs. Threshold

HSPs

Threshold

H
S

P
s



66

Figure 5.10: HSP Index File Growth as a Function of Threshold, using the first 
200K records of the NR database.
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CHAPTER 6

CONCLUSION

In this dissertation we have presented a novel alternative architecture for the two-

hit  filter  stage  of  BLAST that  utilizes  regular  expressions  implemented  as  dedicated

processing elements in an FPGA to efficiently search a genomic database.  Our design

implements the seed finding and HSP creation stages in a single query HSP detection step

and uses a preprocessed table of HSPs from a subject database to produce a set of final

HSPs that can be extended and aligned on a host processor.

We  have  shown  that  our  framework  presents  the  possibility  for  significant

speedups  over  state  of  the  art  BLAST implementations  on  FPGAs,  such  as  CAAD

BLAST, through a substantial  reduction in data  I/O allowed by reading only a small

fraction of the database per query processed.   Our results  indicate that we can attain

increasing speedups for the two-hit filter by using increasing numbers of queries, while

searching increasingly large databases leads to greater overall speedups.

We have also shown that while the preprocessing has limitations that prevent it

from producing identical  results  to NCBI BLAST at  comparable seed thresholds,  the

results are accurate for high scoring matches and only very poor matches differ between

our framework and NCBI BLAST.

6.1 FUTURE RESEARCH DIRECTIONS

Future work could involve improving the FPGA implementation or improving the

offline database indexing operation.

67



6.1.1 FPGA ARCHITECTURE

The FPGA implementation presented in this dissertation implements only the two-

hit  filter  components of BLAST in hardware,  which is a limitation on our maximum

speedups.  By moving the extension and alignment stages onto the FPGA, such as in

CAAD  BLAST,  we  could  accelerate  more  of  the  algorithm  and  reduce  some

communication between the host and coprocessor.

6.1.2 DATABASE INDEXING

The need to generate the HSP Index File reduces the flexibility of our framework,

since it fixes the threshold parameter at the time of generating the index.  Furthermore,

generating the index is time intensive and uses a considerable amount of disk space.

Future research could focus on ways to improve the speed of generating this index

as well as its final size.  There is substantial redundancy in the index caused by many

HSPs  being generated  for  the  same database  sequence  characters,  which  mirrors  the

behavior of NCBI BLAST but is very inefficient in space.  It is possible that some of

these HSP candidates may be unnecessary, or there may be better ways to store them that

require less space.
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