
University of South Carolina
Scholar Commons

Theses and Dissertations

2016

Regular Expression Synthesis for BLAST Two-Hit
Filtering
Jordan Bradshaw
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Bradshaw, J.(2016). Regular Expression Synthesis for BLAST Two-Hit Filtering. (Doctoral dissertation). Retrieved from
http://scholarcommons.sc.edu/etd/3815

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F3815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F3815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3815?utm_source=scholarcommons.sc.edu%2Fetd%2F3815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

Regular Expression Synthesis for BLAST Two-Hit Filtering

by

Jordan Bradshaw

Bachelor of Science
University of South Carolina, 2009

Master of Engineering
University of South Carolina, 2011

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2016

Accepted by:

Jason D. Bakos, Major Professor

Duncan Buell, Chair, Examining Committee

John R. Rose, Committee Member

Yan Tong, Committee Member

Phil Moore, Committee Member

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies

© Copyright by Jordan Bradshaw, 2016
All Rights Reserved.

ii

ACKNOWLEDGEMENTS

First and foremost, I must thank my advisor, Dr. Jason Bakos for working with me

to complete this research and my graduate studies. The difficulties surrounding the time

that I had to devote to this work made it challenging for both of us, and I appreciate being

given the opportunity to work with him despite them. He has always been a source of

useful advice and direction throughout the entire process, and there is no doubt I would

not have completed this work without him. Likewise, I thank Rasha Karakchi for

assistance in implementing some of the design work covered in this dissertation.

I would also like to thank my other committee members, Dr. Duncan Buell, Dr.

John Rose, Dr. Yan Tong and Dr. Phil Moore for taking their time to serve on my

committee.

My family has also always been supportive, and I will always appreciate them for

everything they have and will do for me.

Lastly, I must thank my friends. They have always been an endless source of

interesting distractions, without which I may have finished years sooner but would be a

much less happy person for it.

iii

ABSTRACT

Genomic databases are exhibiting a growth rate that is outpacing Moore's Law,

which has made database search algorithms a popular application for use on emerging

processor technologies. NCBI BLAST is the standard tool for performing searches

against these databases, which operates by transforming each database query into a filter

that is subsequently applied to the database. This requires a database scan for every

query, fundamentally limiting its performance by I/O bandwidth. In this dissertation we

present a functionally-equivalent variation on the NCBI BLAST algorithm that maps

more suitably to an FPGA implementation. This variation of the algorithm attempts to

reduce the I/O requirement by leveraging FPGA-specific capabilities, such as high

pattern matching throughput and explicit on-chip memory structure and allocation. Our

algorithm transforms the database—not the query—into a filter that is stored as a

hierarchical arrangement of three tables, the first two of which are stored on-chip and the

third off-chip. Our results show that it is possible to achieve speedups of up to 8x based

on the relative reduction in I/O of our approach versus that of NCBI BLAST, with a

minimal impact on sensitivity. More importantly, the performance relative to NCBI

BLAST improves with larger databases and query workload sizes.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..iii

ABSTRACT..iv

LIST OF TABLES...vii

LIST OF FIGURES...viii

CHAPTER 1 INTRODUCTION..1

CHAPTER 2 BACKGROUND...4

2.1 SEQUENCE ALIGNMENT..4

2.2 SMITH-WATERMAN AND DYNAMIC PROGRAMMING...4

2.3 BLAST AND HEURISTIC APPROACHES..7

2.4 FPGAS..13

2.5 GPUS (GRAPHICAL PROCESSING UNITS)...13

2.6 FINITE AUTOMATA...14

2.7 REGULAR EXPRESSIONS...17

CHAPTER 3 RELATED WORK..19

3.1 SEQUENCE ALIGNMENT..19

3.2 HARDWARE IMPLEMENTATIONS OF BLAST..24

3.3 PATTERN MATCHING WITH REGULAR EXPRESSIONS ON FPGAS.....................................33

CHAPTER 4 APPROACH..36

4.1 DATABASE PREPROCESSING...36

v

4.2 RUNTIME BEHAVIOR..44

4.3 SOFTWARE MODEL..50

4.4 SUMMARY..50

CHAPTER 5 EXPERIMENTAL EVALUATION..51

5.1 RESULT VERIFICATION...51

5.2 DATA TRANSFER RATIO...55

5.3 TWO-HIT FILTER SPEEDUP...57

5.4 TWO-HIT FILTER TIME RATIO..59

5.5 OVERALL SPEEDUP..61

5.6 HSP INDEX TABLE SIZE..63

CHAPTER 6 CONCLUSION...67

6.1 FUTURE RESEARCH DIRECTIONS..67

BIBLIOGRAPHY...69

vi

LIST OF TABLES

Table 2.1 POSIX ERE Metacharacters..17

Table 2.2 Example POSIX ERE Regular Expressions..18

Table 5.1 Results of Using gi|49187252 as a Query in NCBI BLAST..............................53

Table 5.2 Results of Using gi|49187252 as a Query in Our Framework...........................53

Table 5.3 HSP Index File Size as a Function of Database Size...63

vii

LIST OF FIGURES

Figure 2.1 Empty Needleman-Wunsch Table..5

Figure 2.2 Partial Needleman-Wunsch Table..6

Figure 2.3 Partial Needleman-Wunsch Table..6

Figure 2.4 Completed Needleman-Wunsch Table...7

Figure 2.5 Dot Matrix Comparison of Two Sequences...9

Figure 2.6 Sample BLAST Scoring Matrix...10

Figure 2.7 Example of Seed Hits From Gapped BLAST..12

Figure 2.8 Example of DFA...15

Figure 3.1 TreeBLAST..26

Figure 3.2 TUC Functional Unit Overview...28

Figure 3.3 Guo et al's Architecture Overview..29

Figure 4.1 Overall Approach..37

Figure 4.2 HSP Regular Expression Template...38

Figure 4.3 Total HSPs by Threshold..39

Figure 4.4 HSP Regular Expression With Substitutions..41

Figure 4.5 2-mer Tokenization Example..42

Figure 4.6 Hit Pairing Example...43

Figure 4.7 Diagonal Calculation Example...46

Figure 4.8 FPGA Two-Hit Filter Architecture...47

Figure 4.9 HSP Suffix Table Generation...49

viii

Figure 5.1 HSP Index Table Bytes Read vs. Query Characters...56

Figure 5.2 Database Records Read vs. Query Characters...57

Figure 5.3 Two-Hit Filter Speedup vs. Queries...58

Figure 5.4 Relative Time Spent in Two-Hit Filter...60

Figure 5.5 Two-Hit Filter Speedup vs. Database Size...60

Figure 5.6 Overall Speedup vs. Queries..62

Figure 5.7 Overall Speedup vs. Database Size..62

Figure 5.8 Seed Growth as a Function of Threshold...64

Figure 5.9 Total HSP Growth as a Function of Threshold...65

Figure 5.10 HSP Index File Growth as a Function of Threshold.......................................66

ix

CHAPTER 1

INTRODUCTION

In the field of computational biology, there is often a need to identify a genetic or

protein sequence, or to recognize related sequences. Identifying sequences is performed

by comparing samples against databases of known sequences in vast search operations,

sometimes against billions of possible matches. Performing this search efficiently is the

subject of a large body of prior work, and contributions to this area have the potential for

significant impact for computational biology. As of 2015, BLAST, a popular database

search algorithm, has been cited in over 50,000 other publications.

Genomic database search relies on approximate string matching, and the process

of comparing two non-equal sequences in an attempt to discover how closely they line up

is a problem known as sequence alignment. Smith-Waterman is a dynamic programming

algorithm that serves as the basis for several sequence alignment algorithms, and is

optimal in the sense that it always provides the best alignment of sequences for a given

scoring criteria. Dynamic programming techniques have the drawback that they require

quadratic time and memory, and for problems of an interesting size they are often

infeasible to use in practice.

As a result, algorithms have been derived from it that seek to improve its running

time without a significant sacrifice in sensitivity in the alignment. BLAST is an example

of a heuristic algorithm that is run before traditional dynamic programming algorithms in

an effort to rapidly discover potential matches between sequences. BLAST is much

1

faster, but has the drawback that its heuristic approach may miss some sequence

alignments because it is not exhaustive.

Due to the importance of sequence alignment and its common usage, BLAST has

been the subject of substantial research, with many proposed enhancements and

implementations on specialized hardware such as FPGAs. While great speedups over

CPU implementations have been achieved using such hardware, most state of the art

implementations focus on directly translating the hash table-based design used in the

reference implementation into FPGA hardware.

BLAST is fundamentally memory bound, and translating the traditional hash

table-based algorithm to FPGAs does not address this limitation. BLAST's runtime is

bounded by how long it takes to transfer the database being searched from memory or

disk, and traditional designs must pay this transfer penalty for every query. Thus,

improving BLAST's performance requires some means of reducing the transfer size,

either by compressing or indexing the database. FPGAs are well suited to this approach

since they are able to efficiently perform decompression or rapid table lookups as an

early stage of a computational pipeline.

In this work we develop an alternate implementation of BLAST's two-hit filtering

stage using sets of regular expressions built from protein databases that allow us to

eliminate the need to scan the entire database for each query sequence, as well as the

need for a large DRAM-backed hash table. By leveraging these regular expressions and

eliminating the hash table, we can devote the FPGA's resources to pattern matching.

Pattern matching on FPGAs has a long history in the literature, such as network

intrusion detection and real time packet inspection using databases of regular expressions

2

that match malicious traffic. However, to the best of our knowledge, there are no existing

designs that utilize this approach for genomic database search.

In this research, we address the gap in the literature regarding the use of finite

automata on FPGAs for genomic database search. Specifically, we present a novel

implementation of BLAST's two-hit filtering stage utilizing finite automata in the form of

synthesized regular expressions. We show that this implementation of BLAST results in

a substantial reduction in I/O, which is the bottleneck for state of the art FPGA designs

for BLAST. By reducing the I/O bottleneck, we achieve projected speedups of nearly 8x

compared to these designs, while maintaining high sensitivity and selectivity in the

search operation.

3

CHAPTER 2

BACKGROUND

2.1 SEQUENCE ALIGNMENT

Sequence alignment is a way of arranging sequences of data to find regions of

similarity. It is commonly used in bioinformatics to find functional or ancestral

similarities between DNA, RNA or protein sequences, but it also has applications in other

fields, such as natural language processing and the social sciences [1].

These problems are usually solved by arranging the sequences in question into a

matrix and trying to find the best corresponding regions between them using dynamic

programming techniques.

2.2 SMITH-WATERMAN AND DYNAMIC PROGRAMMING

Dynamic programming is a technique used in optimization problems where a

problem has optimal substructure and where it repeatedly solves the same subproblems.

In this case, having optimal substructure means that an optimal solution to a problem can

be found by finding an optimal solution to its subproblems. By reusing the solutions to

subproblems, such a problem can be solved much faster than by naively resolving its

constituent components.

The first described sequence alignment algorithm to use dynamic programming in

this fashion was presented by Needleman et al [2], and is known as the Needleman-

Wunsch algorithm. A very similar algorithm, later used as the basis for the much faster

4

FASTA and BLAST algorithms, was described by Smith et al [3], and is known as the

Smith-Waterman algorithm.

Both algorithms construct a table using two strings to compare on its axes and a

scoring system to fill in the table cells, which is then used to find the best alignments of

the two strings. A brief example of the Needleman-Wunsch algorithm follows.

Suppose we have the following sequences: A C C T G and A C G T C and

want to find the best alignment between the two. We begin by arranging the two

sequences on the axes of a table, as shown in Figure 2.1.

The table is populated by going from cell-to-cell and comparing the characters in

the corresponding row and column. For matches, the score increases by 1, for

mismatches it decreases by 1, and for insertions or deletions (called "indels"), it also

decreases by 1. This change is added to the highest previous value, which comes from

the left, top or upper-left neighboring cells, and represents a previous alignment step.

When populating the cell, it is important to keep track of which cell was used as the prior

value, as this will be used to trace back the alignment. In the following figures, this will

be represented as arrows pointing to the prior values. Note that it's possible to have

5

 Figure 2.1: Empty Needleman-Wunsch Table

multiple equal choices, represented by multiple outgoing arrows. These represent

multiple equally valid alignments.

The first row and column are simple: they can only choose from the left or top

cell's value, and since they have no character to compare to, are always a mismatch.

After populating these cells, the table should appear like in Figure 2.2.

Proceeding from here, the next step would be to compare A to A. Since this a

match, the score goes up by 1, and the highest prior value is 0. The table would now

appear like in Figure 2.3. By continuing the procedure for the remaining cells, the table

can be completed, as shown in Figure 2.4.

6

 Figure 2.2: Partial Needleman-Wunsch Table

 Figure 2.3: Partial Needleman-Wunsch Table

Once the table has been populated, alignments can be found by backtracking

through the table, starting with the bottom right cell and working backward to a score of

0. Diagonal arrows represent a match or mismatch, while vertical arrows represent an

insertion from the query (on the left) and horizontal arrows represent a deletion (denoted

by a dash in the alignment). A possible alignment is shown by the highlighted arrows,

and given by: A C - G T C

Different scoring systems can be used for different problems. For example, if

insertions or deletions are strongly discouraged, then a severe penalty can be imposed for

them. For genetic sequence alignment, it is typical to use a value of 1 for a match and

either a value of 0 or -1 for a mismatch.

The Smith-Waterman algorithm, by comparison, is better suited to finding local

alignments, which are subregions of sequences with high similarity. This is done by

setting the minimum value of any table cell to 0, which allows any number of mismatches

to occur between matching elements without drastically reducing the score.

2.3 BLAST AND HEURISTIC APPROACHES

Although Smith-Waterman is optimal in the matches found for a given

substitution matrix, its greatest drawback is that, as a dynamic programming algorithm, it

7

 Figure 2.4: Completed Needleman-Wunsch Table

uses quadratic time and space and is infeasible to use directly on large problems. To

address this shortcoming, several approaches using heuristic algorithms were devised to

improve the alignment speed with a minimal sacrifice in sensitivity.

FASTA was one of the first heuristic algorithms for sequence alignment, proposed

by Pearson et al [4][5]. Its speed benefit comes from identifying promising small local

alignments first, rather than building an entire scoring table. FASTA works by defining a

ktup parameter, which is the length of matching elements that must be found for a local

alignment to be considered. A ktup value of 4, for example, means that a sequence of 4

characters must match exactly between the two sequences before it will be considered

further. These local alignments, known as regions of identity, are then scored by the

Wilbur-Lipman algorithm [6]. The Wilbur-Lipman algorithm finds local alignments by

using the Dot Matrix projection proposed by Maizel et al. [7], and finding diagonal runs

of at least ktup length.

The Dot Matrix projection takes two sequences and places them at the top and left

sides of a matrix, and marks every cell in the matrix where the value of the column and

row are identical. Diagonal lines running from the upper left to lower right corner

represent possible alignments of the two sequences, and for consecutively marked cells

on a diagonal, the sequences are identical. An example of this is shown in Figure 2.5.

FASTA proceeds by rescoring the best 10 diagonals (termed regions in FASTA)

by using a scoring matrix, which allows amino acid substitutions that are common in

nature to maintain a positive score. This improves the sensitivity of the algorithm, and by

not considering gaps or deletions at this stage FASTA retains high speed.

8

The next step of FASTA is to try to merge local alignments that are on the same

diagonal, using a penalty metric similar to the insertion and deletion metrics used by

Smith-Waterman. Any merged alignments are then rescored, and the best scoring results

are returned.

Altschul et al. later proposed an algorithm inspired by FASTA, known as BLAST

[8]. BLAST also employs heuristics to perform local alignments, but differs from

FASTA in that it instead relies on the concept of seeding and uses a user defined cutoff

threshold for the seeding operation.

The scores computed in BLAST are based on statistical analysis performed by

Karlin et al. [9], who provided models that give the probabilities of combinations of

protein sequences occurring. Commonly occurring amino acids are given comparatively

low scores, while rarely occurring amino acids are given higher scores. The score of a

sequence of amino acids can be summed up, with a high score effectively indicating a

sequence that is less likely to occur by chance and thus more significant. These models

9

Figure 2.5: Dot Matrix comparison of two sequences. The left shows the raw
comparison, and the right shows FASTA regions of ktup = 4 highlighted

can also be used to describe the probability of mismatches between sequences, which is

used to allow significant but different subsequences to be related to one another.

The threshold used in the BLAST search is directly related to the score and is

used as a filter so that only subsequences of comparatively high value are considered. A

subsequence with a low score is unlikely to be useful in helping to distinguish between

two sequences, so a minimum threshold is enforced. Seeds whose sequence score is

below the threshold are not considered.

Seeding itself is the primary difference between BLAST and FASTA, and

proceeds by decomposing the search query into a set of W-mers, which are overlapping

sequences of a fixed length. For example, for protein searches in BLAST, W-mers of size

3 are typically used. If the following query was being considered,

A B C C D

then the following W-mers would be produced:

A B C B C C C C D

Each W-mer's self-score is then computed using a matrix of scores, which is in

turn produced using probabilities as described above. As an example, consider the scoring

matrix in Figure 2.6.

10

 Figure 2.6: Sample BLAST Scoring Matrix

Using this scoring matrix, these seeds have self scores of:

If we were using a threshold value of 9, then only the seeds A B C and C C D

would be considered. B C C would be too likely to occur at random to be worth

considering.

The process of finding hits in a database sequence uses the same scoring matrix

and proceeds by "sliding" the seed over the database query, checking the possibly

mismatched characters between the seed and database query for their scores, and

summing them up. If the summed score is above the threshold, then a hit is reported.

For example, if we consider the second seed we kept from above, C C D, and the

database entry A D C C D, then the seeding operation would proceed as follows:

If a threshold value of 9 were being employed, then this would produce a single

hit for the seed C C D at position 2.

After all of the hits for the query sequence above a threshold value have been

found and recorded, BLAST proceeds by performing gap extension in a similar fashion to

FASTA. Seed hits are arranged along a diagonal determined by the offsets into the query

and database string, and seed hits along the same diagonal are subject to merging.

11

A B C Score: 9 (A to A = +5, B to B = +3, C to C = +1)
B C C Score: 5 (B to B = +3, C to C = +1, C to C = +1)
C C D Score: 10 (C to C = +1, C to C = +1, D to D = +8)

A D C C D
C C D Score: -13 (A to C = -1, D to C = -6, C to D = -6)
 C C D Score: -11 (D to C = -6, C to C = +1, C to D = -6)
 C C D Score: 10 (C to C = +1, C to B = +1, D to D = +8)

Extensions are performed by adding a single character at a time from the query

and database and using the scoring matrix to evaluate the new score. If the score drops

by a threshold, then extension terminates, but if it continues then several seeds may be

consolidated into a single hit. Extensions are performed such that seeds are merged first,

if possible, before extending outward. A visualization of this, from Gapped BLAST [10]

is shown in Figure 2.7.

After all of the seeds have been evaluated for extension, the highest scoring

results are returned.

12

Figure 2.7: Example of seed hits from Gapped BLAST (Becchi).
Hits indicated by a plus sign have a score of at least 15. Dots are
a score of 11-14. The lines indicate hits along the same diagonal
that were close enough to trigger potential extensions (a distance
of 40 in this case).

BLAST's importance and ubiquity in computational biology has led to much

effort in improving its performance. A common way of improving the speed that BLAST

operates at is to use specialized hardware platforms, such as FPGAs and GPUs.

2.4 FPGAS

FPGAs (Field Programmable Gate Arrays) are a type of reprogrammable

hardware that are often used to create high speed application-specific hardware designs

that may offer substantially higher performance than conventional software

implementations on CPUs for some problems [11].

While FPGAs can be used as a prototyping tool for embedded system design, they

are often used as hardware accelerators to speed up CPUs. They have drawbacks

however, having comparatively high cost and requiring their designs to be specified in

specialized hardware description languages. They are also not suited to all applications,

and there are situations where a CPU can outperform them [12].

FPGAs can be well suited to computation using finite automata however [13][14],

and it is this aspect that we are interested in. See section 2.6 for background information

on finite automata.

2.5 GPUS (GRAPHICAL PROCESSING UNITS)

GPUs are specialized processors that were created to accelerate the

computationally expensive process of rendering 3D graphics for computer design tools

and computer games. Rendering 3D graphics requires repetitive processing of very large

numbers of pixels and vertices, which trended toward the development of highly parallel

processing architectures with extremely high memory bandwidths to accommodate these

requirements.

13

GPUs operate using a SIMD architecture – single instruction, multiple data. In

effect, this means that multiple processors are executing the same instruction in a shared

program, but operating on different streams of data. GPU programming languages, such

as Nvidia's CUDA [15] and Khronos Group's OpenCL [16] organize work into a grid,

which consists of a 3D array of threads and data.

One consequence of this design model is that since each GPU processor runs its

threads in lockstep in a SIMD manner, each thread must be executing the same

instruction. If they diverge, the processor replays the program and masks off the

diverging threads, reducing performance. In the worst case, only a single thread is active

as all individual threads take different paths.

Memory bandwidth is also highly sensitive to locality, and especially in older

CUDA versions, memory bandwidth suffers extremely if processing elements don't

access coalesced memory addresses that are adjacent to one another.

GPUs are able to perform a wide range of high speed calculations when the

operations are independent, highly parallel and free of complex control flow, but the

limitations explained above prevent GPUs from achieving high performance on all

problems.

2.6 FINITE AUTOMATA

As an abstract model, finite automata, or finite state machines, represent one of

the simplest forms of computation. Informally, they are a series of states connected by

transitions, with one state considered active, a starting state, and a set of accepting states.

Each transition is labeled by a character from an input alphabet, such that the currently

active state transitions to the connected state if that character is provided as input to the

14

machine. The goal is to determine whether an input string from that alphabet is

recognized by the machine, which is indicated by one of the accepting states being the

currently active state when the entire input string has been processed. The set of strings

recognized by a finite automaton is said to be the language it recognizes. An example of

such a machine is shown in Figure 2.8.

Formally, finite automata are expressed as the 5-tuple (Σ, S, s0, δ, F) where these

are defined as:

• Σ – The input alphabet, which is a finite and non-empty set of symbols

• S – The set of states, which is finite and non-empty

• s0 – The starting state

15

Figure 2.8: Example of DFA. This DFA recognizes any string
of length at least 2 which begins with "ab." In this example, Σ
= {a,b}, S = {1,2,3,4}, s0 = {1}, δ is represented by the image
above, and F = {3}.

• δ – The transition function, which maps each state to another state for each

element of the input alphabet

• F – The final (accepting) states, which is finite but may be empty

Finite automata can be further classified into one of many varieties. Two of the

most commonly described versions are the DFA (Deterministic Finite Automaton) and

NFA (Nondeterministic Finite Automaton). DFAs are characterized by allowing only a

single state to be active at once and by requiring that each state have exactly one

transition for each element of the alphabet. NFAs instead allow each state to transition to

multiple, or even no, other states for each element of the alphabet. While this has

implications for how the two machines are defined, in theory they have the same

expressive power and algorithms exist to transform NFAs into equivalent DFAs [17],

although the resulting DFA may be exponentially larger in the number of states.

In this sense, DFAs and NFAs represent opposite ends of computation and storage

complexity spectra [18]. NFAs may have multiple active states, and in the worst case

every state may be active. This means that processing an input character may require

every state to be evaluated, resulting in a time complexity of O(n), where n is the number

of states. NFAs are efficient to store, and require O(n) storage for n states. An equivalent

DFA may take up to O(2n) states in the worst case, but since only a single state is ever

active at once processing each input character takes constant time O(1).

By their nature of attempting to recognize input strings as belonging to some

language, finite automata are well suited to the problem of string matching, which is an

important subproblem of sequence alignment. Specifically, finite automata can be

16

constructed to recognize regular expressions, which are a compact way of specifying

languages of strings.

2.7 REGULAR EXPRESSIONS

Regular expressions are a means of specifying regular languages, which are in

turn defined as languages that can be recognized by some finite state machine [19]. As a

result, regular expressions are effectively a means of expressing finite automata in a

compact form.

There are multiple common syntaxes for describing regular expressions, but as an

example we will consider a subset of the POSIX Extended Regular Expression (ERE)

syntax [20]. ERE regular expressions are given as a sequence of characters consisting of

anything from the language alphabet plus a number of metacharacters which give special

meaning to the regular characters. These metacharacters are shown in Table 2.1.

17

 Table 2.1: POSIX ERE Metacharacters

Character(s) Meaning

. Matches any single character from the alphabet.

[] A bracket expression. This matches any single character contained
within the brackets. For example, [abc] would match any of a, b or
c.

() A grouped subexpression, for use with the alternation operator '|'.

* Matches the preceding element any number of times, including not at
all.

+ Matches the preceding character at least once, but any number of
times.

? Matches the preceding character zero or one times.

| Alternation, matching either the expression before or after the
operator. For example, abc|def matches "abc" or "def".

Using these metacharacters, it is possible to build compact expressions that can

recognize large classes of strings. Some examples are shown in Table 2.2.

As mentioned previously, regular expressions are defined as being equivalent to

finite automata, so it is possible to transform any regular expression into its equivalent

NFA or DFA using Thompson's Construction Algorithm [21]. Thompson's Construction

Algorithm defines a set of rules that are applied recursively to a regular expression to

generate its equivalent NFA by transforming metacharacters into sets of states that are

connected together. This NFA can in turn be converted to a DFA separately [22].

18

 Table 2.2: Example Posix ERE regular expressions.

Expression Recognized Language

ab.* Equivalent to the DFA in the previous section: it recognizes any
string of length at least 2 that begins with "ab."

(a|b).* Matches any string beginning with 'a' or 'b'.

[abc]a+b Matches strings beginning with 'a', 'b' or 'c', followed by at least one
'a' and ending with 'b'.

a?[bcd] Matches one of 'b', 'c' or 'd', optionally prefixed by 'a'.

CHAPTER 3

RELATED WORK

In this chapter, we summarize various implementations of the BLAST algorithm.

We begin by presenting software implementations and move on to specialized hardware

implementations. We then present examples of using regular expressions to perform

pattern matching on FPGAs.

3.1 SEQUENCE ALIGNMENT

In this section we describe various software implementations of BLAST. First we

describe the well-known baseline implementation from NCBI, then move on to describe

alternative implementations and their advantages and disadvantages.

3.1.1 NCBI BLAST

The original implementation was created and is still maintained by NCBI (the

National Center for Biotechnology Information), which also maintains large online

catalogs of protein and genetic data for performing sequence alignments [23]. NCBI's

implementation sees extensive use, with their web interface seeing over 100,000 queries

per day as of 2004 [24], and is commonly used as a baseline in the literature. NCBI

BLAST follows the general algorithm for BLAST outlined in the previous section, but

specific details on its implementation follow.

On initialization, NCBI BLAST constructs a hash table to store the offsets of any

seeds from the query sequence being considered. The hash function uses a mapping from

the alphabet being considered to integers, using the fewest possible bits per character.

19

For example, BLASTN (BLAST for nucleotides) has a four letter alphabet: A C G T.

By mapping these characters to the integers 1-4, only 2 bits (log2 4 = 2) are needed per

character. This bit representation of each character is then packed together into a single

memory word and used as the hash value for a possible seed. Packing the values allows

the seed to be stored compactly, and subsequent seed values can be calculated by a single

left shift and binary OR operation to append the next character.

The advantage of this approach is that it allows repeated seed values to be

collapsed into a single entry in the hash table and save memory. If a seed value appears

multiple times in the query sequence, up to three offsets can be stored directly in the hash

table, and if there are more a dynamically sized array is allocated and pointed to in the

table. This allows efficient use of the memory hierarchy in the case of relatively few

repeated seed values, since the hash table entries should fit into the CPU's cache and only

relatively rarely would a more expensive lookup into main memory be needed.

Substitutions are handled by computing every possible permutation of each seed

value over the alphabet and computing a "self score" against the original seed using a

scoring matrix that maps each character in the alphabet to all others and gives a positive

score for likely substitutions or negative scores for unlikely substitutions. If the new seed

value has a high enough score then it is retained and added to the list of possible seeds

that can generate hits, else it is discarded.

Searching the database sequences is performed by dividing the sequence up into

seed values in the same way as for the query string. Each sequence is hashed in the same

way, and if a hit is found in the hash table, the offset into the database query is stored.

20

After searching is completed, all of the seeds are arranged into diagonals based on

the query and database hit offsets, and extensions are performed along the diagonals

using a substitution matrix and scoring threshold. The extender attempts to merge

multiple hits on a single diagonal by extending toward nearby hits first, and if successful,

extends as far as possible past the hits until the score drops below the given threshold.

3.1.2 DFA SEARCHING

One alternate way to perform the seeding and searching stage of BLAST is to

implement it using finite automata instead of a hash table. One such implementation is

given by Cameron et al. [25], where they achieve a 15-30% increase in performance over

the NCBI implementation using DFAs and careful management of data so as to

efficiently use the CPU cache. They go on to describe that NCBI's oldest

implementations used a complex DFA structure before moving on to the hash table

currently employed, and the DFA structure was reasonable for the available workstations

of the time that rarely had onboard caches.

Their approach is to carefully plan the order of the DFA's state table so as to

improve cache performance. They do this by clustering frequently used states in the

center of the table, predicted by using the expected frequency of the state's amino acid

sequence. The outgoing edges from each state are also ordered by frequency. Lastly, the

authors store the query positions outside of the state table, reducing the probabilities of

cache misses when the positions are referenced. Together, these changes improve

memory locality and thus cache performance.

21

This structure also uses considerably less memory than the old NCBI BLAST

DFA and hash table architectures. By using state minimization and smaller position

variables (16-bits where possible), their approach uses as little as 2% of the memory.

The authors note that their approach requires more computation since there are

more pointers to dereference, but the results they present imply that it is more than

compensated for by the improved memory performance.

3.1.3 MASKING

One method for reducing the number of seeds found, which has a dramatic impact

on performance due to the slowness of the extension operations, is to allow

nonconsecutive matches to be considered for alignments.

PatternHunter [26] is an example of such an implementation, which uses bit

masks to denote positions in the W-mer that must match between the source and query

strings. For example, the bit mask 1 0 1 would require that the first and third characters

in a 3-mer to match, and not care about the second. PatternHunter calls these patterns

models, and using a specific model that is tuned against BLAST, they were able to

achieve a 4-5 fold decrease in runtime and memory consumption compared to BLAST.

They also demonstrate that it produces significantly better results than MegaBLAST [27],

which it also outperformed in runtime and memory consumption. However,

PatternHunter is slower than BLAST for small data sets (hundreds of kilobytes).

Masking in this fashion, also called spaced seeds, is also used by other tools, such

as BLAT [28] and BLASTZ [29] and even recent versions of MegaBLAST.

22

3.1.4 DISTANCE SEARCHING

Rather than trying to compute the similarity between two alignments, it's possible

to use a distance metric instead. MegaBLAST is an example of an implementation that

computes distances between two sequences and uses that to rapidly cull entire diagonals

from being extended. MegaBLAST uses a simplistic scoring scheme that assigns small

positive and negative scores for matches and mismatches respectively, with the

assumption that it can greedily discard diagonals after a small drop in score. This has the

advantage of being potentially very fast, but loses some sensitivity, and the authors don't

provide any performance results.

3.1.5 COMPRESSED ALPHABETS

The size of the hash table generated by NCBI BLAST limits the ability to use

larger seed sizes in an attempt to improve performance. This is because the hash table

grows very rapidly, at a rate of n32 table slots where n is the length of the seed. NCBI

BLAST puts a hard limit on the seed size at 5 for this reason.

Sergey et al. [30] proposed a new means of encoding seed values in the hash table

in order to allow longer seeds to be used. Their algorithm compresses the protein

alphabet by grouping together amino acids that are “similar” enough that not

distinguishing between them does not severely affect the accuracy of BLAST. By

compressing the alphabet in this manner, they are able to extend BLAST so that it can

accept seed sizes of up to 7, although the authors say that results for seeds of size 8 or

larger were “not promising.”

They use these longer seeds to improve BLAST's performance by also

implementing fractional threshold values. The increased length of the seeds allows these

23

more precise threshold values to be specified, which can maintain the same level of

sensitivity while generating substantially fewer seeds. This is implemented by converting

the fractional threshold into integer thresholds for use in other phases of the BLAST

search, using amino acid background probabilities and rounding.

The authors are able to improve BLAST's runtime by up to 30% using these

alterations.

3.2 HARDWARE IMPLEMENTATIONS OF BLAST

In this section we describe various implementations of BLAST using specialized

hardware, such as PLAs, FPGAs and GPUs.

3.2.1 SEEDING ON FPGAS

Some FPGA implementations of BLAST focus primarily on the seeding

operation. This is likely due to the fact that this takes up 70-90% of the time spent in

BLAST [31]. As a result, the greatest benefits are expected to be seen by accelerating

this portion of the algorithm, although by Amdahl's Law the theoretical maximum global

speedup would be a factor of about 10x.

RC-BLAST was an early attempt to implement the seeding operation on an

FPGA, using a Xilinx XC4085XLA FPGA. RC-BLAST implements a lookup table

similar to NCBI BLAST, and as the authors discovered, this was poorly suited to the

architecture of the FPGA they chose. RC-BLAST was about 5x slower than the software

version using a conventional processor of the time, which the authors attribute to poor

RAM speeds, PCI bus speeds and poor utilization of the FPGA's resources.

A more successful implementation of BLAST was realized with TreeBLAST [32],

which was implemented on a Xilinx Virtex-II Pro XC2VP70-5 FPGA. TreeBLAST is an

24

example of an implementation using systolic arrays, which are a form of pipelining

computations by pushing data elements through an array of specialized processors one

cycle at a time [33]. TreeBLAST uses a tree merging structure to calculate alignment

scores, which allows it to compute a score every clock cycle while reducing the number

of registers needed. The query is stored in an array of registers, with each register storing

the binary representation of an element of the query. The database entry is systolically

"slid" over the registers, and each register compares to its corresponding entry in the

database entry. The scores are fed forward, two at a time, into a leaf, which continues

until a single score is left, representing the alignment of the query against the database at

that position. A high level view of TreeBLAST can be seen in Figure 3.1.

The performance of TreeBLAST varies with the size of the query, but results of

up to about 35x speedup per query were reported compared to NCBI BLAST on a 2.8Ghz

Xeon processor, at a rate of 1.7x108 characters per second peak throughput achieved with

nucleotide searches.

3.2.2 FULL BLAST ON FPGAS

There are also full implementations of BLAST on FPGAs, which also perform

extension of hits in hardware.

One early implementation of BLAST on an FPGA that included the full algorithm

was performed by Chen Chang on a BEE2 system [34]. The BEE2 is a specialized

hardware system that uses conventional hardware where possible, such as DRAM

modules, but includes a fully programmable FPGA as its processing elements (in this

case, a Xilinx Virtex 2 Pro). BLAST is implemented in a similar way to NCBI BLAST,

using a hash table to index seed values. However, one of the design goals is to maximize

25

memory efficiency since it is the primary bottleneck, and as a result the hash table values

are bitpacked to eliminate storage waste. Hit indexing and expansion are done using a

second table that is indexed by the alignment's diagonal, which is expanded in parallel to

maximize performance.

The author goes on to show that performance is highly dependent on memory

access patterns, and a lot of effort was put into optimizing them. The overall

26

Figure 3.1: TreeBLAST. Top: How TreeBLAST
proceeds along the diagonals in a "wavefront."
Bottom: The tree merging structure used by
TreeBLAST. Each level represents a clock cycle.

performance was a substantial improvement over CPU implementations, with 4 BEE2

systems operating at about 10x the speed of a 128-node cluster of 667 Mhz CPUs.

The TUC (Technical University of Crete) architecture is a different take on

BLAST that implements a highly parallel system to increase throughput [35]. TUC is

fundamentally a systolic system which pushes 2-bit encodings of nucleotide characters

into a shift array, which stores 11 characters in total as is the standard for BLASTn. The

11 characters are combined into a single register value, which is then sliced off into a 10-

bit 'tag' which is used to index a 1000 word RAM of w-mer positions, which takes up the

remaining 12 bits. This RAM is prepopulated before the system begins by finding all

seeds in the query and noting down their indices. If hits are found the position and tag

are forwarded to an extension unit which performs extensions in both directions as per

the normal BLAST extension algorithm.

TUC is able to achieve extremely high throughput by arranging multiple copies of

this computational hardware into independent nodes, each of which can operate on a

database query. The authors were able to fit 69 parallel computational units onto their

Xilinx Virtex 4 FPGA, which were able to achieve a speedup of 215.12 against a single

core of a 2Ghz Xeon processor running NCBI BLAST. The peak throughput for a single

computational unit is 1.21 x 108 characters per second. Curiously, they report that 69

computational units only perform 5.76x as well as 16 cores of the same Xeon processor,

implying better than linear speedup for NCBI BLAST on a CPU.

27

Another architecture was designed by Guo et al. [36], which uses systolic arrays

in the seeding phase to find multiple hits per clock cycle. This is accomplished by

feeding 32 characters from the database sequence in at a time and forwarding groups of

three comparator units into binary AND gates. Any AND gates that output a high signal

are in effect indicating a hit, so up to 10 hits can be detected per clock cycle.

Although the authors don't go into details on how their gapped or ungapped

extensions work, they show that it achieves considerable speedup over NCBI BLAST in

all cases. BLASTp is about 17x faster for large queries, but for small queries there is

28

Figure 3.2: TUC functional unit overview. Rocket I/O channels feed into finder units,
which feed into extender units, which are aggregated before being returned to the host.

relatively little improvement in speed. Peak performance was cited as 1.445 x 1010

characters per second.

Mahram and Herbordt designed a full FPGA implementation of NCBI BLASTp

that makes use of successive layers of filters, similar to the Bloom filters used by

MercuryBLAST (described later), to dramatically reduce the workload and thus achieve

high performance. The first step is to apply a filter that discards most database queries

that are not promising matches to the search query, reducing the database size by 97-

99.7%. Afterward, depending on which type of extension is to be performed, additional

filters are applied to further reduce the work load, where each filter is tuned to give

results at least as good as NCBI BLASTp's results. Total peak speedup is approximately

29

Figure 3.3: Guo et al's architecture overview. Characters are shifted through the
systolic array, where groups of AND gates aggregate multiple hits per clock cycle.

5x over the CPU of the Convey system used in the tests, compared to a single FPGA

card.

3.2.3 SEQUENCE ALIGNMENT ON GPUS

Relatively few implementations of BLAST exist for GPUs, but several

implementations of Smith-Waterman are described in the literature. These

implementations are able to take advantage of the very high computational throughput

and memory bandwidth of GPUs to perform the calculations needed for the dynamic

programming algorithm. Performance for Smith-Waterman implementations is usually

given in CUPS – cell updates per second, and is a number that reflects how many cells in

the dynamic programming matrix are populated per second.

Liu et al. [37] produced the earliest implementation, predating modern GPGPU

languages and implementing Smith-Waterman in programmable graphics pipelines. They

were able to achieve about a 20x speedup over CPU implementations of the time,

peaking at around 0.65 GCUPS.

Manavski et al. [38] designed an implementation using CUDA that was able to

achieve about 3x speedup over Liu's implementation, peaking at about 1.89 GCUPS. The

authors also give performance comparisons to NCBI BLAST on CPUs, and by using two

GeForce 8800 GTX cards they were able to outperform BLAST by a factor of 2.4.

Ligowski et al. [39] revised this design, which uses horizontal strides over the matrix to

achieve a 4x improvement over Manavski's implementation, peaking at 7.5 GCUPS per

GPU.

In 2010, Ling et al. [40] produced a BLAST implementation using CUDA that

was able to achieve a peak of 2.7x better performance than a Pentium 4 at 3.4 Ghz. Their

30

design followed the NCBI algorithm closely and used the GPU to search for many seeds

at once in parallel while leveraging its very high memory bandwidth to maximize

performance. Extensions are performed in a separate kernel and require some

synchronization between threads, so performance hinges on the number of hits found by

the first kernel and their distribution.

Vouzis et al. [41] later produced an implementation that modified NCBI BLAST

directly to replace the ungapped word finder and extender with kernels that ran on both

the GPU and CPU at the same time to maximize performance. To minimize performance

degradation from the SIMD nature of GPU kernels, they sorted database samples so that

each thread operated on approximately the same length strings. Some operations are

performed exclusively on the CPU, such as gapped extensions, which are not well suited

to the massively parallel SIMD architecture. Using a Fermi C2050 GPU and a six core

Xeon at 2.67 Ghz, the authors were able to get a peak of slightly over 3x speedup when

using only a single CPU core, but with all six cores they only managed about 1.5x

speedup.

3.2.4 OTHER HARDWARE IMPLEMENTATIONS

MercuryBLASTN [42] is an example of BLASTn implemented on the Mercury

system, which is a specialized hardware platform designed to use reconfigurable logic in

the form of an FPGA to process streams of data from a disk backed storage system [43].

MercuryBLASTN implements only the hit finding component of BLAST, but

uses a multi-stage design to do so that achieves significant speedup. Hit finding is

performed by sending in 11-character nucleotide seeds from the query sequence, which

are then compared against streamed database entries by using a Bloom filter. Bloom

31

filters are a means of quickly testing membership in a large set through the application of

hashing functions on the set [44], but have the drawback that they may report false

positives when queried due to loss of information in the hashing step.

In MercuryBLASTN, Bloom filters are used to reduce the amount of data that

must be checked by later stages of the hit finding algorithm. Database entries are run

through the bloom filter using the query seeds and hits are forwarded on to the second

stage. The second stage is a hash table implementation similar to NCBI BLAST's hash

table, and is used to store indexes for hits from the first stage. The third and final stage is

a redundancy filter that is used to eliminate false positives generated from the first stage

and cull hits that aren't at the maximum extent along a diagonal as they would be

unnecessary in the extension phase.

Performance for the hit finder reaches a peak speedup of about 45x over NCBI

BLAST's hit finder running on a CPU, but overall performance is hindered by the fact

that the remaining parts of the BLAST algorithm are not implemented in hardware.

Overall peak performance was only about 7x better than NCBI BLAST, at about 2.128

x109 characters per second.

An implementation of BLASTp on the Mercury system was described by Jacob et

al. [45], called MercuryBLASTP. Unlike Mercury BLASTN, MercuryBLASTP

implements the entire BLAST algorithm in hardware and does not use Bloom filters to

process potential hits. Instead, a lookup table, similar to the hash table used by NCBI

BLAST, is used to perform hit finding. By using an encoding scheme that only stores the

difference in position between hits, the authors are able to pack more hits directly into the

table without having to resort to secondary lookups, which improves performance. To

32

improve performance and get around hardware limitations on the number of ports

available to on chip memories, the extension phase divides the results into diagonals

using a modulo operation that efficiently maps the hits to multiple extender units without

requiring them all to share data. With this architecture, the authors achieved a speedup of

about 37x over a 2 Ghz AMD Opteron processor.

3.3 PATTERN MATCHING WITH REGULAR EXPRESSIONS ON FPGAS

In this section, we present some implementations of pattern matching on FPGAs,

with a particular focus on doing so using regular expressions and finite automata.

Regular expression matching has been implemented in hardware as far back as the

use of PLAs, predating FPGAs, such as the implementation by Floyd et al [46]. Their

implementation is a means of encoding regular expressions directly into hardware

circuitry through the use of lookup tables that store next state transitions for specific input

characters. Their design implements regular expression matching in NFAs directly,

allowing multiple states to be active at once.

Sidhu et al [47] describe one of the first regular expression matching designs on

FPGAs that use NFAs. Their design uses an extension of the One-Hot Encoding scheme

which allows multiple states to be active at once. One-Hot Encoding is a means of

implementing finite automata wherein the set of states are represented as a bit string with

only one bit active (hot) at a time. The active bit is used to index into a table indicating

which state should be active next for a given input. In their implementation, each state is

represented as a flip-flop, having on or off status. By connecting the output of a flip-flop

to multiple flip-flop inputs, a single state can trigger more than one other state and

trivially implement a state machine where multiple states are active. Furthermore, their

33

design is able to implement a regular expression as an NFA at run time, using only O(n)

time and O(n2) space, where n is the length of the regular expression of interest.

Using DFAs with One-Hot Encoding has the advantages of being simple and

usually allowing the FPGA to run at a higher clock rate, which can otherwise be

constrained by complex logic introducing delays in the circuit. DFAs created from NFAs

(which are in turn generated from regular expressions) can potentially have exponentially

large numbers of states, so doing this in a naive fashion is rarely possible for interesting

problem sizes.

Various authors have proposed means of either reducing the complexity of the

regular expression to combat this, such as removing ambiguities [48], or by proposing

extensions to DFAs, such as counters to recognize previously seen parts of the expression

[49], that enable the state tree to be collapsed in some fashion.

Becchi et al. [50] provide several techniques for reducing the complexity of NFAs

generated from regular expressions, focusing on reducing the number of states or

transitions. The authors propose a reduction operation to eliminate epsilon transitions

(those that occur on no input character), as they tend to increase the total number of states

as well as the average number of active states. They also propose an algorithm that is

able to reduce the number of transitions in the NFA by reducing it to matching on a

reduced alphabet. If multiple elements of the alphabet always follow the same

transitions, they can be merged into a single character in a reduced alphabet. Lastly, the

authors propose a multi-stride NFA that processes multiple input characters at a time.

They present an algorithm for generating a 2-NFA from a normal NFA, which has

34

approximately the same number of states but may have more transitions. Alphabet

reduction can help reduce the number of transitions afterward.

 An observation by Korenek et al. [51] is that oftentimes only a small number of

the total NFA states might be active at a time, and go on to show that for network

intrusion detection using regular expressions, as little as 3% of the states might be active

when other states are active. They use a split NFA / DFA architecture that keeps states

that are always active alone in memory and use a DFA to process them, while using an

NFA for the other states. It is unclear how well this would perform for regular

expressions used for biosequencing however.

35

CHAPTER 4

APPROACH

In this chapter we provide an overview of our proposed replacement of BLAST's

two-hit filtering stage. Unlike NCBI BLAST, which performs this as separate hit finding

and HSP generation steps, our approach combines both into a single operation that can be

offloaded onto accelerator hardware.

We have developed a framework for decomposing FASTA protein databases into

regular expressions that directly map to HSPs, which are then used to build an index for

the database. When queries are fed into the regular expressions, matches can be cross

referenced into the index to generate hits that can be evaluated like BLAST's normal seed

hits. An overview of our framework is shown in Figure 4.1.

4.1 DATABASE PREPROCESSING

Before we can search a database, we must preprocess it to generate a set of tables

that are used at runtime to rapidly filter the database to a subset that is passed on to be

aligned. Preprocessing the database consists of building up a set of regular expressions

that represent potential HSPS, then indexing the database by these HSPs.

4.1.1 GENERATING REGULAR EXPRESSIONS

Database preprocessing begins by generating a set of regular expressions that are

able to map queries to database records. To do this, we have extended and modified the

normal hit finding phase of BLAST, which as described in Chapter 2, is the stage where

BLAST attempts to find significant segments (called seeds) of a sequence using its

36

scoring criteria. Instead of just locating seeds in a database sequence, we seek to fully

form sets of High Scoring Pairs (HSPs) at this stage to generate regular expressions.

First, we seek to establish the practicality of our approach by estimating the

number of HSP regular expressions that will be needed to describe a database. There are

a finite number of possible seeds for a given seed length and alphabet size, which is

further constrained by the threshold parameter. Protein BLAST is typically performed

with a seed length of 3 with a standard protein alphabet consisting of 23 amino acids

represented by the uppercase characters from the English alphabet. Thus, before

elimination of seeds by the threshold parameter, there are 233, or 12,167 possible

combinations of characters used to generate seeds.

Recall that after finding seed hits in a query or database record, BLAST proceeds

to combine nearby pairs of hits into HSPs. NCBI BLAST applies two criteria to possible

37

Figure 4.1: Overall Approach. The database is preprocessed to produce the HSP suffix
table and HSP index table. Queries are filtered through both tables to produce a set of
potential database matches.

HSP candidates before accepting them: pairs of hits must not overlap and they must

appear within a certain distance of one another in the original sequence. For NCBI

BLAST, this HSP Window Size is typically specified as a distance of 40 characters.

Based on this, we can design a regular expression template that all HSPs would

match, as shown in Figure 4.2.

The first three characters represent the first seed hit, or prefix, that wold produce

the HSP, while the second three characters represent the second hit, or suffix of the HSP.

The wildcard, ranging from 0 to 40 characters, represents the HSP Window Size, forcing

matches to be equivalent to two seed hits that would be close enough to generate an HSP

in NCBI BLAST's two-hit filtering stage.

Because there are a finite number of seeds, there are a finite number of possible

unique HSPs needed to describe all possible hits in a database of arbitrary size. In the

worst case, every possible seed is paired up with every possible seed, including itself, in

some sequence, giving us a maximum of 12,1672 or about 148 million possible HSPs.

Applying the seed score threshold reduces this number by reducing the number of seeds

meeting the minimum self-score, as shown in Figure 4.3.

As Figure 4.3 shows, a typical threshold value of 13 gives around 130 million

HSPs. 130 million HSPs is too large to fit in an on-chip filter, so we are forced to find

some way to further reduce the number of HSP regular expressions.

38

ABC.{0,40}DEF
Figure 4.2: HSP Regular
Expression Template

As Figure 4.3 shows, even very high threshold values (which reduce sensitivity)

are not enough to reduce the number of HSPs to an acceptable level. To accomplish a

substantial reduction in the number of seeds and HSPs, we use 2-character seeds, or 2-

mers, instead of 3-mers. Using 2-mers instead of 3-mers reduces the number of possible

seeds down to 232, or 529. In turn, the maximum number of possible HSPs drops to 5292,

or 279,841. This represents a savings of 99.8% in the number of regular expressions

needed. To compensate for reducing the size of the seeds, we have to use a lower

threshold value, and in Chapter 5 we present data to show that this does not substantially

alter the results of the search.

In addition to these base regular expressions, we must also allow inexact matches

like BLAST. While the wildcard HSP window allows insertions and deletions, we must

modify our regular expressions to allow substitutions in the prefixes and suffixes. This

39

Figure 4.3: Total HSPs By Threshold. Increasing the threshold results in fewer
candidate seeds, and as a result, possible HSPs.

does not alter the total number of HSPs, but does influence the indexing operation by

allowing mismatches when scanning the database records.

In NCBI BLAST this inexact matching is handled by enumerating all of the

possible substitutions for each seed and computing the substitution scores. Any seed

whose score remains equal to or above the threshold is kept and used in the seed finding

phase.

We produce similar behavior by also enumerating all possible substitutions for

each seed and retaining those seeds whose scores remain equal to or above the threshold.

In order to express the allowed substitutions in the regexes, all prefixes and suffixes that

are generated from a seed are grouped together in alternation clauses. An example of a

regular expression allowing substitutions is shown in Figure 4.4.

Continuing the example in Figure 4.4, a database sequence containing the

subsequence H I A B C C Q could now be matched up against a query that contained the

subsequence H J A B C C E.

4.1.2 INDEXING FASTA DATABASES

After the set of possible HSPs has been generated, the FASTA protein database is

scanned and a set of index files are generated. The first, which we term the HSP Index

File, contains a comprehensive index that maps all of the HSP regular expressions to HSP

hits in the input database. Each hit stores the index of the FASTA database record that

produced the hit, the offset into the record where the hit begins and how long the match

was in the database record. This file is larger than the input database and its size grows

linearly with input size, which we cover in further detail in Chapter 5.

40

The hits in the HSP Index Table are sorted so that all of the hits for a given regular

expression can be read in a single batch operation. To permit this, a secondary, small and

fixed size table of contents is generated that maps each combination regular expression

and match length (0 through 40) to its corresponding hits in the HSP Index Table.

Lastly, the HSP regular expressions are stored in a specialized encoded format,

called the HSP Suffix Table, that allows the FPGA hardware to identify hits in a query

sequence as it is streamed in. Details for the FPGA implementation and the format of this

table are presented later in this chapter.

The indexing operation proceeds by tokenizing each database record into

overlapping 2-character chunks, or 2-mers. These 2-mers then have their self-scores

41

Figure 4.4: HSP Regular Expression With Substitutions. This assumes a
threshold value of 11.

evaluated using a scoring matrix, and 2-mers with a sufficiently high self score are kept,

and others are discarded. An example of this is shown in Figure 4.5.

After tokenizing the record, the 2-mers are paired up into HSP hit candidates. All

of the 2-mers are paired up with all non overlapping 2-mers following them, within the

HSP Window Size. By producing HSPs from all possible combinations of hits, we

maintain high sensitivity and mirror the behavior of NCBI BLAST.

An example of the pairing process is shown in Figure 4.6, using the seeds

generated in the example from Figure 4.5.

42

Figure 4.5: 2-mer Tokenization Example. Scores for each 2-mer are
shown above the component characters, and are computed using self
scores from the BLOSUM62 scoring matrix. All seeds with a score
equal to or above the threshold (11 in this example) are listed below the
sequence.

As Figure 4.6 illustrates, the starting and ending 2-mers for each hit correspond to

a resulting regular expression HSP. For regular expressions that allow mismatches

through alternations, the hit is associated with whichever regular expression contains the

prefix and suffix of the hit. Once the corresponding regular expression has been

identified for the hit, the hit's starting offset into the database record, length and the

record number of the corresponding database record are stored in the HSP Index File for

use during the two-hit filter stage while evaluating queries.

43

Figure 4.6: Hit Pairing Example. Note that pairs that would overlap in
the original sequence are not used to generate HSPs (see Figure 4.4 for
the original sequence).

4.2 RUNTIME BEHAVIOR

At runtime, the filter tables produced during the preprocessing step are used by

the FPGA to transform a batch of queries into a set of database records that must be

aligned. In this section, we first describe the overall query matching behavior and then

provide a more thorough description of the FPGA architecture.

4.2.1 QUERY HIT FINDING

In NCBI BLAST, the tokenization and HSP generation phases described in

Chapter 3 are done for both the query and all database records at runtime. This is

necessary because NCBI BLAST does not have a pregenerated database index.

Our approach performs an offline indexing operation for database records, but the

query that is being searched for is not available until runtime. To generate hits for the

query, we now leverage the HSP regular expressions that were generated during the

database indexing phase.

For every query, every HSP regular expression is evaluated and all of the matches

and their lengths are recorded. The regular expressions are evaluated in an ungreedy

fashion, ensuring that no hits are missed. Details on specific implementations of the

regular expression evaluation stage are presented in the following sections.

After all of the matches from the query have been located, they must be cross

referenced to the HSP hits generated during the offline indexing phase. Each regular

expression that generated at least one match in the query has its hits loaded from the HSP

Index File, as well as all of the database records associated with its hits. The final list of

HSP candidates is generated by producing diagonals using the regular expression matches

from the query against database hits.

44

In NCBI BLAST the concept of diagonals is used to represent alignments that

occur at different offsets between two sequences. In NCBI BLAST, this is computed by

finding the distance between hits that occur in the query sequence and candidate database

sequence. NCBI BLAST only extends hits that occur on the same diagonal.

In our approach, we must also take the length of matches into account, since a

change in the length of the match between the query and sequence would indicate that the

prefix and suffix seeds would have different diagonals in NCBI BLAST. Since we use

the same extension algorithm as NCBI BLAST, which requires seeds forming HSPs to be

on the same diagonal, we must enforce the same constraint that query matches and

database HSP hits be of the same length. For each query match and database HSP hit of

the same length, a candidate HSP is generated and placed on the diagonal calculated as

the difference between the query match starting position and the database HSP hit starting

position.

An example of an insertion causing a possible HSP to be discarded is shown in

Figure 4.7. Note that while this HSP is discarded, other HSP matches could still be found

at later positions in the two sequences, but would now be on a different diagonal.

After all of the hits have been extended and their expectation values calculated,

alignment proceeds exactly as in NCBI BLAST.

45

4.2.2 FPGA PATTERN MATCHER DESIGN

An overview of our FPGA design is shown in Figure 4.8.

The design consists of a query processor, which is given a query stream to process

and outputs a stream of HSP matches on the query indicating which HSP generated the

match, where it begins and how long the match is. The query processor is composed of a

set of processing elements (PEs), an HSP suffix table and an arbitrator for aggregating

output hits from the PEs.

Each PE contains the logic needed to recognize an HSP hit from the incoming

character stream. It takes as input the current characters from the stream that are being

evaluated, the encoded corresponding suffixes that generate a hit from the suffix table

and busy signals from the other PEs. Using counters, it is able to record the starting cycle

and ending cycle of a match (needed for the start and length), and to abort matching once

the HSP Window Size has been reached.

46

Figure 4.7: Diagonal Calculation Example. The insertion in the database
sequence causes the second HSP match length to be longer (6 characters)
than on the query (5 characters). Since this would cause the
corresponding seeds to have different diagonals in NCBI BLAST, it is
discarded.

 Figure 4.8: FPGA Two-Hit Filter Architecture

The HSP suffix table is a RAM that contains an encoding of HSPs in a compact

and rapidly accessible form. Each address line of the RAM corresponds to the beginning

of an HSP that uses a modified ASCII encoding. Since the protein alphabet consists of 23

characters, each character can be represented uniquely by 5 bits, meaning that the

beginning of an HSP requires 10 bits of address space, or 1024 lines. Each line is a bit

vector where each column represents an ending suffix. For every regular expression HSP

that begins with a given HSP prefix, all of its suffix values are encoded in the RAM by

converting the suffix to a 10-bit value and toggling the corresponding column in the

prefix's row. Each line must be 1024 bits wide to accommodate this, leading to a total

usage of 1 Mb per query processor. An example of encoding a single HSP regular

expression in the HSP Suffix Table is shown in Figure 4.9.

During evaluation, the query is streamed into the query processor, which buffers

incoming characters to create 10-bit character hashes that can be used to directly address

the prefix table. This hash, as well as its corresponding prefix table value, are passed to

all of the query processor's PEs, which begin to compare against it.

Each PE will begin to match on the incoming character hash only if all of the PEs

before it are currently busy. On its first active cycle, it stores the incoming hash value as

its prefix. On subsequent cycles, it begins counting the length of a possible match and

begins comparing the incoming hash to the prefix table's output using a 1024-bit wide

decoder. If the decoder detects that the prefix table has a column matching the incoming

character hash, then a match is reported. If the counter exceeds the HSP Window Size,

then the PE resets and goes idle.

48

Each query processor contains 42 PEs, which are enough to ensure that with an

HSP Window Size of 40, there are enough to process a character every cycle without

needing to stall. We verified that 42 PEs are enough through the use of the software

model described below in Section 4.5.

Hits generated by the query processors are stored in DRAM, which are then

processed by the HSP generator to produce a final list of HSP hits to be passed back to

the host. The HSP generator is responsible for sorting the hits by HSP ID and length so

that database hits can be referenced from the HSP Index File with the minimum number

of transactions possible. It then calculates the diagonal for each hit by subtracting the

49

Figure 4.9: HSP Suffix Table Generation. Rows are addressed by the encoded version
of each prefix, and columns are toggled for each suffix of each prefix.

database record hit start position from the query hit start position, and adds it to the final

hit to be sent back to the host for extension and alignment.

4.3 SOFTWARE MODEL

To evaluate the feasibility of this approach, a software model was implemented

using C++ that emulated the functional behavior of the FPGA model. We used this

model to prove the correctness of the algorithm in the absence of a complete physical

implementation, and to verify the minimum number of PEs needed per query processor to

ensure no stalls would be needed to process a character every cycle.

This model also allowed us to make estimations of performance on a real system.

We were able estimate the I/O overhead of loading HSP hits from disk during the seed

search phase, and gather timing information on how long the host system would spend

performing an equivalent search operation in software.

4.4 SUMMARY

In this chapter we provided an overview of the offline database preprocessing

algorithm needed to build the HSP Hit Index table, as well as an overview of the FPGA

two-hit filter architecture that would leverage the regular expressions generated by the

preprocessing stage to perform streaming rate pattern matching on query sequences.

In Chapter 5, we present results gathered from our software emulation model of

the FPGA architecture that show projected performance on a real world system,

accounting for the measured overhead of reading the HSP Hit Index table from disk. We

also show results comparing the relative time spent in the two-hit filter stage by NCBI

BLAST and provide estimated maximum speedups.

50

CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, we provide experimental results showing that our framework has

comparable sensitivity to NCBI BLAST as well as performance estimations that show

that we expect significant speedups on real hardware. We also present projections on

disk utilization for our index files as well as hardware utilization for both the FPGA

architecture.

5.1 RESULT VERIFICATION

To verify that our framework produces equivalent results to NCBI BLAST, we

used the four protein databases NR [52], Uniref50, Uniref90 and Uniref100 [53]. NR is a

commonly used protein database aggregating records from several other sources in a non-

redundant fashion. The Uniref databases are generated from the UniProt Knowledgebase,

which serves as another hub of aggregating protein sequences from multiple sources.

The Uniref databases attempt to merge multiple sequences from different sources which

have high overlap into a single sequence to reduce the size of the database and search

times at the loss of resolution. Uniref50 combines sequences of 50% identity (that is,

sequences which are identical in 50% or more of their characters), Uniref90 combines

sequences of 90% identity, and Uniref100 combines sequences of exact identity. We

chose these databases with the expectation that we would see different numbers of

extensions and alignments for a given query due to the varying levels of redundancy.

51

We performed tests by selecting random sequences from these databases and

feeding them back in as queries using NCBI BLAST and our framework. All of our tests

were performed using the default parameters for NCBI BLAST: threshold of 13 and seed

size of 3, and using threshold 11 and seed size 2 for our framework. We chose this

threshold based on backward extrapolation from the original BLAST paper, which

suggested a threshold step of 2 for each step of seed length gives similar sensitivities [8].

Our experiments show that highly significant alignments, that is, those with very

low expectation values, are equivalent between our framework and NCBI BLAST.

However, both NCBI BLAST and our framework return alignments with much higher

expectation values, and these results were less consistent. In Tables 5.1 and 5.2 we

present an example of the output obtained by running the database sequence gi|49187252

from the NR database as a query against the first 10,000 records of the NR database in

both NCBI BLAST and our framework.

In the following tables, the SW Rank column indicates the relative ranking of the

alignment in a list sorted by expectation value when Smith-Waterman is run directly

between the query and database records. Running Smith-Waterman on the query record

and its database counterpart gives the highest possible score and lowest possible

expectation value, for example, and thus receives a SW Rank of 1. This gives optimal

alignments for every database record and allows us to directly compare the results from

NCBI BLAST and our framework by showing gaps (indicating missed alignments) in the

results.

For brevity's sake we present only this example, but its results are typical of all

queries tested from the four databases mentioned.

52

In addition to the SW Rank, we are also interested in the E-value of each

alignment. The E-Value column indicates the number of times that one would expect to

53

Table 5.1: Results of Using gi|49187252 as a Query in NCBI BLAST against NR.

Sequence Name Score (Bits) E-Value SW Rank

gi|49187252 299 6.53e-86 1

gi|15925512 75.1 1.17e-18 2

gi|15924184 59.7 5.1e-14 3

gi|22537123 30.8 2.54e-05 4

gi|19746167 28.9 9.65e-05 5

gi|66823573 28.5 1.26e-04 6

gi|15924499 26.9 3.67e-04 9

gi|22537145 26.6 4.79e-04 10

gi|30265243 25.8 8.17e-04 13

Table 5.2: Results of Using gi|49187252 as a Query in Our Framework against NR.

Sequence Name Score (Bits) E-Value SW Rank

gi|49187252 299 6.53e-86 1

gi|15925512 75.1 1.17e-18 2

gi|15924184 59.7 5.1e-14 3

gi|19746167 28.9 9.65e-05 5

gi|66823573 28.5 1.26e-04 6

gi|15924499 26.9 3.67e-04 9

gi|22537145 26.6 4.79e-04 10

gi|66819553 25.8 8.17e-04 11

gi|85083718 25.8 8.17e-04 14

see a sequence with such a score by chance, so smaller values are better. We can use E-

values to gauge whether an alignment is significant, irrespective of its relative SW Rank.

As expected, since the query was taken straight from the database without

modification, it matches itself with a very high score, a very low E-Value and is the

highest ranked match when performing Smith-Waterman directly on the results.

There are several observations we can take away by comparing the results of

NCBI BLAST and our framework. First, both agree in the first three alignments,

indicating that for this query, there is no difference between BLAST implementations for

high scoring alignments.

Past this, it is clear that there are discrepancies between the two. NCBI BLAST

manages to align against the 4th highest ranked alignment, where our framework does not.

Similarly, our framework finds an alignment the 11th and 14th highest ranking alignments

where NCBI BLAST does not. It should be noted that while missing the 4th highest

ranking alignment sounds significant, by this point the E-Values are ten orders of

magnitude higher, and therefore, the alignments are correspondingly less significant.

Both NCBI BLAST and our framework begin to experience large gaps in SW Rank

between alignments at this point.

The major cause of differences in the results is that NCBI BLAST has an

advantage over our framework when using higher thresholds for seed generation. This is

because when processing a query, NCBI BLAST will use a 3-mer from the query even if

it is below the threshold score. Our framework is unable to do this because it must index

the database without any queries available and so, to achieve completely equivalent

results it would be forced to use a much lower threshold, with a corresponding increase in

54

the size of the HSP Index File. This is the reason that our framework missed the

alignment for gi|22537123.

5.2 DATA TRANSFER RATIO

As described in Chapter 4, we assume that, independent of the storage medium,

performance is I/O bound. Calculations are performed by the FPGA quickly enough that

the majority of time spent will be waiting on data from the database or HSP Index Table,

whether they are stored in RAM or on disk. We then are interested in the amount of data

transferred by by our framework and how it compares to state of the art FPGA

implementations, but not in specifics on the hardware model such as random access

latency or throughput.

To gather these numbers, we modified our framework to count the number of

database HSP hits read from the HSP Index File, each of which is 8 bytes, as well as the

total size of all the database records for which at least one HSP hit was matched to a

query. If we assume the records are of average size for the database then we can

calculate the number of bytes of the database that we must read.

In Figure 5.1 below, we show the bytes read from the HSP Index Table when

searching for batches of 20, 40, 60, 80 and 100 queries randomly selected from the NR

database using the first 200K records of the database.

55

From the figure we can see that the number of bytes read is linear on the number

of query characters being processed. To place these numbers into perspective, the

database used contained the first 200K records of NR and was approximately 800MB in

size. By comparison, 100 queries totaling 36,789 characters required less than 80MB of

data to be transferred, indicating that the overhead for the HSP Index Table is small

compared to rereading the database.

To also account for the database transfer required, we present the number of

records for which there was at least one match below in Figure 5.2:

56

Figure 5.1: HSP Index Table bytes read vs. Query Characters for query batches
against the first 200K records of NR.xz

6449 13289 20124 27048 36789
0

10

20

30

40

50

60

70

80

HSP Index File Bytes Read vs. Query Characters

Query Characters

B
yt

e
s

 R
e

a
d

 (
M

B
)

Figure 5.2 shows that the number of database records read rapidly approaches the

limit of the full size of the database. For the sample database, searching for 20 queries

used approximately 170K out of 200K records, or 85%, but this reaches 195K out of

200K, or 97.5% by the time we search for 100 queries. In practice, this would mean that

for large numbers of queries we expect to have to read most of the database.

5.3 TWO-HIT FILTER SPEEDUP

State of the art implementations of BLAST on FPGAs, such as CAAD BLAST

[31], must reread the entire database for each query so that the two-hit filtering stage can

be reconfigured for the query. Our approach eliminates this requirement and only needs

to read the database in its entirety at most once for a batch of queries, but still has the

overhead of reading the HSP Index Table for any matches found in the queries.

57

Figure 5.2: Database records read vs. Query Characters for query batches against
the first 200K records of NR.

6449 13289 20124 27048 36789
155000

160000

165000

170000

175000

180000

185000

190000

195000

200000

Database Records Read vs. Query Characters

Query Characters

D
a

ta
b

a
s

e
 R

e
co

rd
s

 R
e

a
d

We expect speedup in the two-hit filter if the overhead for reading the HSP Index

Table is less than the need to reread the database per query. We define speedup as:

Speedup=
BytesReadDatabase+BytesReadsHSP Index File

BytesTotalDatabase×Queries

Our projections of speedup for the two-hit filter using the same selection of

queries and database are shown below in Figure 5.3:

Given the total bytes read from the HSP Index Table shown in Figure 5.1, it is

unsurprising that we are able to realize substantial speedup with increasing numbers of

queries. For these queries, each query, on average, requires only approximately 1% of

the database's size in bytes to be read from the HSP Index Table, as opposed to 100% for

CAAD BLAST.

The two-hit filter speedup does not vary significantly with the size of the

database. The total bytes read from the HSP Index Table is directly proportional to the

58

Figure 5.3: Two-Hit Filter Speedup vs. Queries for query batches against the first
200K records of NR.

20 40 60 80 100
0

10

20

30

40

50

60

Two-Hit Filter Speedup vs. Queries

Queries

S
p

e
e

d
u

p

size of the database used to generate it, causing the ratio of total bytes read vs. rereading

the database per query to remain nearly constant.

5.4 TWO-HIT FILTER TIME RATIO

While we are able to achieve substantial speedups in the two-hit filter stage of

BLAST, the two-hit filter is only part of the total runtime. Extension and alignment come

afterward and are not accelerated by our framework. As such, our overall speedup is

limited by the time spent in the two-hit filter.

To estimate the time spent in the two-hit filter, we modified NCBI BLAST and

inserted timing code around its word finding and HSP generation routines. We then ran it

on a Dell PowerEdge R710 server using a single thread of a Xeon E5520 CPU and the

same queries we examined in our framework. We gathered the time spent in the two-hit

filter stage and compared it to the overall time spent executing NCBI BLAST to

determine the ratio of execution time that we could accelerate.

The relative time spent in the two-hit filter is shown in Figures 5.4 and 5.5.

From Figure 5.4 we can see that there is little change from simply using more or

longer queries. When using the first 200K records of the NR database, NCBI BLAST

ranges from spending 78% of its total runtime in the two-hit filter for a batch of 20

queries totaling 6,449 characters up to only 81% for using nearly 6 times the query

characters. We can also see that from these batches of queries, the total relative time

spent does not strictly increase with more queries.

Figure 5.5 however shows a clear increase in the relative time spent in the two-hit

filter with increasingly larger databases. Using the same 20 queries totaling 6,449

characters, NCBI BLAST ranges from using 82% of its runtime at 200K records up to

59

60

Figure 5.4: Relative Time Spent in Two-Hit Filter

6449 13289 20124 27048 36789
0.77

0.77

0.78

0.78

0.79

0.79

0.8

0.8

0.81

0.81

0.82

Two-Hit Filter Time Ratio vs. Query Characters

Query Characters

Tw
o

-H
it

F
ilt

e
r

T
im

e
 R

a
tio

Figure 5.5: Two-Hit Filter Speedup vs. Database Size using 20 queries totaling
6,449 characters.

200K 400K 600K 800K 1M
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Two-Hit Filter Time Ratio vs. Database Size

Database Size

Tw
o

-H
it

F
ilt

e
r

T
im

e
 R

a
tio

93% for 1 million records. Since our speedup is dependent on accelerating the two-hit

filter, we thus conclude that using searching larger databases will see more benefit than

smaller databases.

5.5 OVERALL SPEEDUP

In order to calculate the overall expected speedup of our approach, we must

consider both the speedup of the two-hit filter and limit it by the relative time spent by

BLAST in the two-hit filter. We define speedup as follows:

Speedup=
TTOTAL

(T TOTAL−T TWO−HIT)+
T TWO−HIT

SpeedupTWO−HIT

SpeedupTWO-HIT was defined previously as the ratio of data transferred between our

framework and CAAD BLAST. As a result, we expect overall speedup to increase with

more queries, which would improve the two-hit filter speedup, and with larger databases,

which would increase the relative time spent in the two-hit filter. We show these effects

below in Figures 5.6 and 5.7.

Using increasing numbers of queries shows a small improvement in overall

speedup for the same size database, ranging from about 4x to 5x. In this case, overall

speedup is limited by the relative time spent in the two-hit filter, which we can improve

by increasing the size of the database being searched.

A clear improvement in overall speedup is shown by ranging from 200K to 1

million records using the same 20 queries. In this case we get from about 4x to nearly 8x

overall projected speedup.

61

62

Figure 5.6: Overall Speedup vs. Queries using the first 200K records of the NR
database.

20 40 60 80 100
0

1

2

3

4

5

6

Speedup vs. Queries

Queries

S
p

e
e

d
u

p

Figure 5.7: Overall Speedup vs. Database Size using 20 random queries totaling
9,942 characters.

200K 400K 600K 800K 1M
0
1
2
3
4
5
6
7
8
9

Speedup vs. Database Size

Using 20 queries totaling 9942 characters

Database Size

S
p

e
e

d
u

p

5.6 HSP INDEX TABLE SIZE

In this section we provide results showing the size of the HSP Index File as a

function of the input database size. As mentioned in Chapter 4, this file is larger than the

input database because it is an exhaustive index of all HSPs contained in the database, for

which there is considerable overlap. The results in Table 5.3 were generated using a

threshold value of 11 for 2-character seeds.

As the results show, the HSP Index File is substantially larger than the input

database, from 10x-11x the size. Despite its large size, the file is sorted and organized

such that only a single disk seek is required before all hits to a relevant HSP regular

expression can be read, emphasizing disk bandwidth over seek times.

The size is also a function of the seed score threshold, and using higher thresholds

would decrease the size of the HSP Index File while sacrificing sensitivity. While we

have not performed rigorous analysis on the effects of using thresholds other than 11 on

search results, below we present data showing the effects on the HSP Index File's size

when using different threshold values.

63

Table 5.3: HSP Index File Size as a Function of Database Size

Entries
Processed

NR Uniref50

Size of Raw Database Size of HSP Index File Size of Raw Database Size of HSP Index File

200K 81.3 MB 0.8 GB 93.3 MB 0.92 GB

400K 153 MB 1.4 GB 166 MB 1.5 GB

600K 221 MB 2.0 GB 265 MB 2.4 GB

800K 291 MB 2.8 GB 365 MB 3.5 GB

1M 361 MB 3.5 GB 467 MB 4.5 GB

Full (est.) 3.7 GB 38.5 GB 6.7 GB 72 GB

As Figure 5.8 shows, the number of seeds decreases with increasing threshold,

indicating fewer seeds whose self scores meet the minimum threshold value. For these

thresholds the relationship is roughly linear.

In Figure 5.9, the number of candidate HSPs that these seeds translate to is

shown. Since the number of candidate HSPs is the square of the number of seeds, we see

a quadratic falloff with increasing threshold and fewer seeds.

While we chose a threshold value of 11 based on preliminary results from

Altschul et. al [8], Figure 5.9 shows that a threshold value of 11 also represents a point

where increasing the threshold produces diminishing returns on reducing the number of

HSPs.

64

Figure 5.8: Seed Growth as a Function of Threshold

9 10 11 12 13
0

50

100

150

200

250

300

350

400

450

500

Seeds vs. Threshold

Seeds

Threshold

S
e

e
d

s

We would expect that the size of the HSP Index File would correlate strongly to

the number of HSPs, which is borne out and shown below in Figure 5.10.

Just like the number of HSPs, the size of the HSP Hit Index decreases

quadratically with increasing threshold. Again we can see that a threshold of 11 gives a

natural point at which increasing the threshold further produces diminishing returns on

reducing the file size.

65

Figure 5.9: Total HSP Growth as a Function of Threshold

9 10 11 12 13
0

50000

100000

150000

200000

250000

HSPs vs. Threshold

HSPs

Threshold

H
S

P
s

66

Figure 5.10: HSP Index File Growth as a Function of Threshold, using the first
200K records of the NR database.

9 10 11 12 13
0

500

1000

1500

2000

2500

HSP Index File Size vs. Threshold

Threshold

H
S

P
 In

d
e

x
F

ile
 S

iz
e

 (
M

B
)

CHAPTER 6

CONCLUSION

In this dissertation we have presented a novel alternative architecture for the two-

hit filter stage of BLAST that utilizes regular expressions implemented as dedicated

processing elements in an FPGA to efficiently search a genomic database. Our design

implements the seed finding and HSP creation stages in a single query HSP detection step

and uses a preprocessed table of HSPs from a subject database to produce a set of final

HSPs that can be extended and aligned on a host processor.

We have shown that our framework presents the possibility for significant

speedups over state of the art BLAST implementations on FPGAs, such as CAAD

BLAST, through a substantial reduction in data I/O allowed by reading only a small

fraction of the database per query processed. Our results indicate that we can attain

increasing speedups for the two-hit filter by using increasing numbers of queries, while

searching increasingly large databases leads to greater overall speedups.

We have also shown that while the preprocessing has limitations that prevent it

from producing identical results to NCBI BLAST at comparable seed thresholds, the

results are accurate for high scoring matches and only very poor matches differ between

our framework and NCBI BLAST.

6.1 FUTURE RESEARCH DIRECTIONS

Future work could involve improving the FPGA implementation or improving the

offline database indexing operation.

67

6.1.1 FPGA ARCHITECTURE

The FPGA implementation presented in this dissertation implements only the two-

hit filter components of BLAST in hardware, which is a limitation on our maximum

speedups. By moving the extension and alignment stages onto the FPGA, such as in

CAAD BLAST, we could accelerate more of the algorithm and reduce some

communication between the host and coprocessor.

6.1.2 DATABASE INDEXING

The need to generate the HSP Index File reduces the flexibility of our framework,

since it fixes the threshold parameter at the time of generating the index. Furthermore,

generating the index is time intensive and uses a considerable amount of disk space.

Future research could focus on ways to improve the speed of generating this index

as well as its final size. There is substantial redundancy in the index caused by many

HSPs being generated for the same database sequence characters, which mirrors the

behavior of NCBI BLAST but is very inefficient in space. It is possible that some of

these HSP candidates may be unnecessary, or there may be better ways to store them that

require less space.

68

BIBLIOGRAPHY

1. Abbott A., Tsay A. (2000). "Sequence Analysis and Optimal Matching Methods in
Sociology, Review and Prospect". Sociological Methods and Research 29 (1): 3–
33.

2. Needleman, Saul B., and Christian D. Wunsch. "A general method applicable to
the search for similarities in the amino acid sequence of two proteins." Journal of
molecular biology 48.3 (1970): 443-453.

3. Smith, Temple F., and Michael S. Waterman. "Identification of common
molecular subsequences." Journal of molecular biology 147.1 (1981): 195-197.

4. Pearson, William R., and David J. Lipman. "Improved tools for biological
sequence comparison." Proceedings of the National Academy of Sciences 85.8
(1988): 2444-2448

5. Lipman, David J., and William R. Pearson. "Rapid and sensitive protein similarity
searches." Science 227.4693 (1985): 1435-1441.

6. Wilbur, W. John, and David J. Lipman. "Rapid similarity searches of nucleic acid
and protein data banks." Proceedings of the National Academy of Sciences80.3
(1983): 726-730.

7. Maizel Jr, Jacob V., and Robert P. Lenk. "Enhanced graphic matrix analysis of
nucleic acid and protein sequences."Proceedings of the National Academy of
Sciences of the United States of America 78.12 (1981): 7665.

8. Altschul, Stephen F., et al. "Basic local alignment search tool." Journal of
molecular biology 215.3 (1990): 403-410

9. Karlin, Samuel, and Stephen F. Altschul. "Methods for assessing the statistical
significance of molecular sequence features by using general scoring schemes."
Proceedings of the National Academy of Sciences 87.6 (1990): 2264-2268.

10. Becchi, Michela. "Data Structures, Algorithms and Architectures for Efficient
Regular Expression Evaluation." Diss. Washington U in St. Louis, 2009. 01 May
2009. Web. 1 Apr. 2015.

69

11. Fidanci, Osman Devrim, et al. "Performance and overhead in a hybrid
reconfigurable computer." Parallel and Distributed Processing Symposium, 2003.
Proceedings. International. IEEE, 2003

12. Harkins, John, et al. "Performance of sorting algorithms on the SRC 6
reconfigurable computer." Field-Programmable Technology, 2005. Proceedings.
2005 IEEE International Conference on. IEEE, 2005

13. Floyd, Robert W., and Jeffrey D. Ullman. "The compilation of regular expressions
into integrated circuits." Journal of the ACM (JACM) 29.3 (1982): 603-622.

14. Sidhu, Reetinder, and Viktor K. Prasanna. "Fast regular expression matching
using FPGAs." Field-Programmable Custom Computing Machines, 2001.
FCCM'01. The 9th Annual IEEE Symposium on. IEEE, 2001.

15."CUDA Toolkit Documentation, v 6.5." http://docs.nvidia.com/cuda/cuda-c-
programming-guide/. 2015.

16."OpenCL – The open standard for parallel programming of heterogeneous
systems." https://www.khronos.org/opencl/. 2015.

17. Rabin, M. O.; Scott, D. (1959). "Finite automata and their decision problems".
IBM Journal of Research and Development 3 (2): 114–125

18. Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. "Introduction to
automata theory, languages, and computation." ACM SIGACT News 32.1 (2001):
60-65.

19.Sheng Yu (1997). "Regular languages". In Grzegorz Rozenberg and Arto
Salomaa. Handbook of Formal Languages: Volume 1. Word, Language, Grammar

20. ISO/IEC 9945-2:1993 Information technology – Portable Operating System
Interface (POSIX) – Part 2: Shell and Utilities, successively revised as ISO/IEC
9945-2:2002 Information technology – Portable Operating System Interface
(POSIX) – Part 2: System Interfaces, ISO/IEC 9945-2:2003, and currently
ISO/IEC/IEEE 9945:2009 Information technology – Portable Operating System
Interface (POSIX®) Base Specifications, Issue 7

21. Ken Thompson (Jun 1968). "Programming Techniques: Regular expression
search algorithm". Communications of the ACM 11 (6): 419–422.

22. Rabin, M. O.; Scott, D. (1959). "Finite automata and their decision problems".
IBM Journal of Research and Development 3 (2): 114–125

23."BLAST: Local Alignment Search Tool" http://blast.ncbi.nlm.nih.gov/Blast.cgi.
2015.

70

24.McGinnis, S. and Madden, T. (2004). Blast: at the core of a powerful and diverse
set of sequence analysis tools. Nucleic Acids Research, 32:W20–W25.

25. Cameron, Michael, Hugh E. Williams, and Adam Cannane. "A deterministic finite
automaton for faster protein hit detection in BLAST." Journal of Computational
Biology 13.4 (2006): 965-978.

26.Ma, Bin, John Tromp, and Ming Li. "PatternHunter: faster and more sensitive
homology search." Bioinformatics 18.3 (2002): 440-445.

27. Zhang, Zheng, et al. "A greedy algorithm for aligning DNA sequences." Journal
of Computational biology 7.1-2 (2000): 203-214.

28. Kent, W. James. "BLAT—the BLAST-like alignment tool." Genome research 12.4
(2002): 656-664.

29. Mahram, Atabak, and Martin C. Herbordt. "NCBI BLASTP on High-Performance
Reconfigurable Computing Systems." ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 7.4 (2015): 6.

30. Shiryev, Sergey A., et al. "Improved BLAST searches using longer words for
protein seeding." Bioinformatics 23.21 (2007): 2949-2951.

31.Muriki, Krishna, Keith D. Underwood, and Ron Sass. "RC-BLAST: Towards a
portable, cost-effective open source hardware implementation." Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International.
IEEE, 2005.

32. Herbordt, Martin C., et al. "Single pass, BLAST-like, approximate string
matching on FPGAs." Field-Programmable Custom Computing Machines, 2006.
FCCM'06. 14th Annual IEEE Symposium on. IEEE, 2006.

33. Kung, Hsiang Tsung, and Charles E. Leiserson. "Algorithms for VLSI processor
arrays." Introduction to VLSI systems (1980): 271-292.

34. Chang, Chen. "BLAST implementation on BEE2." Electrical Engineering and
Computer Science, Univ. of Cal Berkeley (2004).

35. Sotiriades, Euripides, Christos Kozanitis, and Apostolos Dollas. "FPGA based
architecture for DNA sequence comparison and database search." Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE,
2006.

36. Guo, Xinyu, Hong Wang, and Vijay Devabhaktuni. "A Systolic Array-Based
FPGA Parallel Architecture for the BLAST Algorithm." International Scholarly
Research Notices 2012 (2012).

71

37. Liu, Weiguo, et al. "Bio-sequence database scanning on a GPU." Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE,
2006

38.Manavski, Svetlin A., and Giorgio Valle. "CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence alignment." BMC
bioinformatics 9.Suppl 2 (2008): S10.

39. Ligowski, Lukasz, and Witold Rudnicki. "An efficient implementation of Smith
Waterman algorithm on GPU using CUDA, for massively parallel scanning of
sequence databases." Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on. IEEE, 2009.

40. Ling, Cheng, and Khaled Benkrid. "Design and implementation of a CUDA-
compatible GPU-based core for gapped BLAST algorithm." Procedia Computer
Science 1.1 (2010): 495-504.

41. Vouzis, Panagiotis D., and Nikolaos V. Sahinidis. "GPU-BLAST: using graphics
processors to accelerate protein sequence alignment." Bioinformatics27.2 (2011):
182-188.

42. Krishnamurthy, Praveen, et al. "Biosequence similarity search on the Mercury
system."The Journal of VLSI Signal Processing Systems for Signal, Image, and
Video Technology 49.1 (2007): 101-121.

43. Chamberlain, Roger D., et al. "The Mercury system: Exploiting truly fast
hardware for data search." Proc. of Int’l Workshop on Storage Network
Architecture and Parallel I/Os. 2003.

44. Bloom, Burton H. "Space/time trade-offs in hash coding with allowable
errors."Communications of the ACM 13.7 (1970): 422-426.

45. Chamberlain, Roger D., et al. "The Mercury system: Exploiting truly fast
hardware for data search." Proc. of Int’l Workshop on Storage Network
Architecture and Parallel I/Os. 2003.

46. Floyd, Robert W., and Jeffrey D. Ullman. "The compilation of regular expressions
into integrated circuits." Journal of the ACM (JACM) 29.3 (1982): 603-622.

47. Sidhu, Reetinder, and Viktor K. Prasanna. "Fast regular expression matching
using FPGAs." Field-Programmable Custom Computing Machines, 2001.
FCCM'01. The 9th Annual IEEE Symposium on. IEEE, 2001.

48. Sidhu, Reetinder, and Viktor K. Prasanna. "Fast regular expression matching
using FPGAs." Field-Programmable Custom Computing Machines, 2001.
FCCM'01. The 9th Annual IEEE Symposium on. IEEE, 2001.

72

49. Smith, Randy, et al. "Deflating the big bang: fast and scalable deep packet
inspection with extended finite automata." ACM SIGCOMM Computer
Communication Review. Vol. 38. No. 4. ACM, 2008.

50. Becchi, Michela, and Patrick Crowley. "Efficient regular expression evaluation:
theory to practice." Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems. ACM, 2008.

51. Korenek, Jan, and Vlastimil Kosar. "Efficient mapping of nondeterministic
automata to FPGA for fast regular expression matching." Design and Diagnostics
of Electronic Circuits and Systems (DDECS), 2010 IEEE 13th International
Symposium on. IEEE, 2010.

52.NR Database, available from http://nih.gov.

53.Uniprot Protein Databases, available from http://www.uniprot.org/downloads.

73

	University of South Carolina
	Scholar Commons
	2016

	Regular Expression Synthesis for BLAST Two-Hit Filtering
	Jordan Bradshaw
	Recommended Citation

	tmp.1499272584.pdf.5oBDS

