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Abstract 

OLFACTION AS THE PARADIGM FOR PERCEPTUAL PHILOSOPHY 

by 

Andreas Keller 

Advisor: Professor Jesse Prinz 

 

Plato wrote that smell is of a "half-formed nature" and that not much can be said about it, and 

Kant identified smell as the "most ungrateful" and "most dispensable" of the senses. Because 

contemporary philosophers share this distaste for smell perception, olfaction is often dismissed 

or ignored in philosophical accounts of perception. Instead, contemporary philosophy of 

perception is based almost exclusively on visual perception. The goal of this dissertation is to 

show that this focus on a single modality distorts our understanding of what perception is. 

 

I am not the first to realize the potential of opening up perceptual philosophy to the non-visual 

modalities. Bill Lycan asked "how the philosophy of perception would be different if smell had 

been taken as a paradigm rather than vision." (Lycan 2000) (page 273). In this dissertation, I will 

try to answer this question. My analysis will show that philosophy of perception would be very 

different, were it based on olfaction. Many of the most basic concepts of philosophy of 

perception are based on peculiarities of visual perception that do not generalize to other 

modalities.  
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Introduction 

The main difference between this work and other works on perceptual philosophy is the focus on 

olfaction (Figure 1). The main advantage of olfaction as the paradigm for perceptual philosophy 

is that, compared with vision or audition, olfaction is a computational and anatomical simple 

modality. In addition to the focus on smells, the account of perception presented in this 

dissertation also differs from most other approaches in its appreciation of the fact that perception 

is an evolved mechanism. As such, we can only understand perception within an evolutionary 

framework. The questions addressed in this dissertation are the questions of perceptual 

philosophy. The answers to these questions that I will present combine insights and results from 

a variety of disciplines other than philosophy. Most of the interdisciplinary work surveyed here 

will involve empirical results from neuroscience, cognitive science, and psychology.  
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Figure 1: The olfactory system. Odor sources give off a mix of different types of odor 

molecules (represented in this figure by blue rectangles, red stars, and green circles). 

During sniffing, the odor molecules enter the nasal cavity. At the top of the nasal cavity is 

the olfactory epithelium, which contains the odor-sensitive endings of the olfactory 

sensory neurons. The olfactory sensory neurons form the olfactory nerve, which connects 

the nasal cavity with the brain through small holes in the skull (in the cribriform plate). In 

the brain, the olfactory sensory neurons terminate in the olfactory bulb, the first 

processing center for odor information. The olfactory bulb is connected to other brain 

regions through the olfactory tract. (modified from original work by The Emirr (diagram 

of nasal cavity) and Takkk (flower) (in the public domain under the Creative Commons 

license (CC BY 3.0)) 

 

This dissertation is divided into three parts: "Perceptual qualities", "Percepts", and "Cognitive 

processes". In the first part, I will discuss topics related to perceptual qualities1. Philosophically 

important issues related to perceptual qualities that will be addressed are the nature of perceptual 

qualities, modality-individuation, and the possibility of third-person access to perceptual 

qualities. I will discuss perceptual qualities as they are revealed by behavioral or psychophysical 

experiments in which different behaviors are shown in response to different stimuli. In the first 

chapter, I will suggest a strategy to arrange the perceptual qualities perceived by an individual 

perceiver in a perceptual space that reflects the similarity relations between the perceptual 

qualities. In the second chapter, the problem of comparing perceptual qualities between different 

perceivers is addressed. I will suggest that it is possible to compare perceptual qualities 

perceived by two different perceiver by aligning their perceptual spaces. Aligning two perceptual 

spaces is however only possible under certain conditions.  

                                                           
1 A variety of terms has been used for what I will call "perceptual qualities". Daniel Dennett lists  

"raw feels", "sensa", "phenomenal qualities", "intrinsic properties of conscious experiences", 

"qualitative content of mental states", and "qualia" Dennett, D. C. (1991). Consciousness 

Explained. Boston, Little, Brown and Company. (page 372). Each term tacitly imports 

assumptions about the phenomena that is labeled. I mean by "perceptual qualities" the mental 

qualities which are different in cases in which two colors, smells, tastes, and so on can be 

behaviorally discriminated. 
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Typically, perception is much more complex than a series of discriminable perceptual qualities. 

In the second part, these complexities will be addressed. Perceptual qualities can be combined in 

time and space, which is the topic of chapter 3. I will argue that olfactory perception has no 

spatial structure and that its temporal structure is impoverished compared with other modalities. 

In the modalities in which perception has a rich spatial and temporal structure, perception is 

often thought of as the perception of objects that are spatially and temporally extended and 

bounded. In chapter 4, I will apply common notions of perceptual objects to olfaction and show 

that odor perception is not the perception of objects. Chapter 5, which is a bit of a digression, 

will address the question of the evolutionary function of perception. I will argue that it is the 

function of perception to guide behaviors and defend this idea against alternative proposals. The 

general goal of the second part is to demonstrate that many of the complexities that are taken to 

be an integral part of perception in other modalities are absent in olfactory perception. These 

complexities therefore play no role in an account of perception that is based on olfaction. 

 

Perception and non-perceptual cognitive processes are not always clearly separated. Perceptual 

systems coevolved with cognitive systems that process perceptual information and motor 

systems that execute an organism's behavior. Perception depends on these systems for being 

useful for the organism. Perception itself has no adaptive advantages unless it results in a 

stimulus-dependent modification of behavior2.  In part III, I will address the tight connection 

                                                           
2 As an illustration of the uselessness of perception for perception's sake, consider sea squirts. 

Many species of sea squirts have a free-swimming larval form and a sedentary adult form. 

During the development from the free-swimming to the adult form, both the muscular system 

and the nervous system degenerate. The function of the brain is to guide behaviors and in the 
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between perceptual systems and non-perceptual cognitive systems. A review of the connections 

between olfaction and cognitive systems in chapter 6 will show that the connections between 

perceptual and cognitive processes are modality-dependent. The olfactory system evolved to be 

closely connected to emotional systems, but not to language systems. Other perceptual 

modalities are more closely connected to language than to emotion. In chapter 7, I will discuss 

the structure of the mind more generally. I reject common approaches to describing the structure 

of the mind and instead suggest a description of the mind as overlapping sets of functionally 

coupled networks.   

 

Throughout this dissertation, perception is discussed with respect to its ability to guide behaviors 

and to make information available to cognitive processes. In many instances, the perception is 

conscious. However, the conclusions drawn throughout this dissertation are supposed to hold for 

conscious and non-conscious instances of perception (except when noted otherwise). Guiding 

behaviors and making information available to cognitive processes are functions that do not 

necessarily require consciousness. My goal is to investigate general features of perception that 

are independent of consciousness. 

 

  

                                                           

absence of behavioral options, there is no need for a brain. Sensing a predator is only adaptive 

for an organism that has behavioral strategies for predator avoidance.  
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Part I: Perceptual qualities 

The basic building blocks of perception are perceptual qualities with no spatial or temporal 

structure, like the redness of a tomato or the characteristic smell of a rose3. These perceptual 

qualities are mental qualities that, in humans, are usually considered to be conscious. The 

redness of the rose is experienced by the perceiver. Although this is the most familiar way in 

which we encounter them, perceptual qualities are not necessarily consciously experienced 

(Rosenthal 2010; Young, Keller et al. 2014; Rosenthal in press)). The fact that perceptual 

qualities can be either conscious or non-conscious is best illustrated by cases in which behavioral 

decisions are made based on perceptual qualities in the absence of consciousness. For example, 

at very low odor concentrations people often report verbally that they cannot detect any odor, 

although they discriminate stimuli successfully when they are asked to make a choice (Sobel, 

Prabhakaran et al. 1999). At slightly higher concentrations, when the sensory information is 

processed consciously, two odors are discriminated based on differences in their perceptual 

qualities. It is parsimonious to assume that the same two odors at lower concentrations are also 

discriminated based on differences in their perceptual qualities, even though the information is 

not consciously processed. Denying the existence of non-conscious perceptual qualities would 

require two theories of perception. One theory would have to explain how we can consciously 

distinguish a green object from a red object based on the different perceptual qualities associated 

with the objects. The second theory would have to explain how we execute stimulus-dependent 

behaviors in the absence of conscious processes. The second theory would have to be different 

from the first theory because if there are no non-conscious perceptual qualities, then the 

                                                           
3 As will be discussed in part II, these perceptual qualities often occur in complicated spatial and 

temporal arrangements. However, for the treatment in the first part, I will abstract away from 

spatial and temporal structures.   
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differential responses to different stimuli in the absence of consciousness cannot be based on 

perceptual qualities. 

 

To avoid the need for two different theories of perception depending on whether the perception 

is conscious or not, one can also deny the existence of non-conscious perception. In olfaction, 

evidence for non-conscious perception comes from experiments that have shown that odors can 

have specific behavioral effects in the absence of conscious processing of olfactory information. 

For example, sniffs are shorter and shallower when an unpleasant odor is encountered than when 

a pleasant odor is encountered. This effect is independent of conscious experience (for a detailed 

treatment of this topic in olfaction, see (Young 2014)). Influences of unconscious perceptual 

qualities on behaviors are not peculiar to olfactory perception; they are also found in other 

modalities. In vision, masked priming effects, for example, depend on the features of the masked 

(e.g. not consciously perceived) stimulus (for reviews, see (Cruse, Kälberer et al. 2007; Hallett 

2007). Evidence for non-conscious perception has accumulated over the last decade. However, 

the complete absence of consciousness is difficult to prove and some researchers are not 

convinced that non-conscious perception exists in humans  

(Phillips). The account of perceptual qualities presented in part I does not depend on the 

existence of non-conscious perception and non-conscious perceptual qualities in humans. 

Instead, whether perception is conscious or not is irrelevant for this account because it is based 

on the outcome of behavioral or psychophysical experiments alone. The results of this analysis 

apply to perception in humans, birds, bacteria, robots, or any other system that shows differential 

responses to different physical stimuli. 
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Perceptual qualities are the building blocks of perception and all instances of perception involve 

perceptual qualities. All visual perception, for example, involves colors, although sometimes 

they are achromatic colors (black, white, and all the shades of grey). Similarly, all olfactory 

perception involves smells. There are myriads of colors and tones and smells. Attempts to bring 

order to the diversity of perceptual qualities go back to the earliest days of philosophy. The most 

promising approach has been to arrange perceptual qualities relationally according to their 

similarities in a multi-dimensional mathematical space (Goodman 1951; Clark 1993; Matthen 

2005; Rosenthal 2014; Young, Keller et al. 2014). Using this approach, researchers have 

arranged all colors in a three-dimensional perceptual space (Figure 2), with the dimensions hue, 

brightness, and saturation. All tones have been arranged in a two-dimensional space according to 

their pitch and loudness4. 

 

Arranging things depending on their relations has been a successful approach to order biological 

diversity outside of perceptual research. The most prominent example is the arrangement of all 

living things based on their evolutionary relationships in a phylogenetic tree.  One of the reasons 

                                                           
4 I am ignoring timbre in the context of perceptual spaces. Timbre is the quality of sound that 

allows us to discriminate between the sound made by a piano and by a guitar when they have the 

same pitch and loudness. Timbre has been called, "...the psychoacoustician's multidimensional 

waste-basket category for everything that cannot be labeled pitch or loudness." McAdams, S. and 

A. Bregman (1979). "Hearing musical streams." Computer Music Journal 3(4): 26-43. (page 34). 

The rationale for ignoring timbre is that it is determined by temporal characters of the sound, like 

its onset and time envelope. The perceptual spaces discussed in the first part of this dissertation 

are meant to be arrangements of perceptual qualities, abstracted away from their temporal and 

spatial structure. Abstracting away from temporal structure is more difficult in audition than in 

other modalities. Pitch, which is usually included as a dimension of tone spaces, is determined by 

the frequency of a sound and therefore also dependent on the sound's temporal features. To 

include pitch but exclude temporal features that contribute to timbre is admittedly arbitrary. I do 

not think that expanding the tone space into a sound space by including the features that 

contribute to timbre would have important theoretical consequences beyond increasing 

complexity. However, this question may be worthwhile more consideration. 
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the phylogenetic tree is so important for evolutionary biology is that it includes all living things 

and the relations between them. The perceptual space that I suggest similarly includes all 

perceptual qualities, regardless of their modality. This is the philosophically most important 

difference between the approach presented here and previous approaches which it is based on 

(Goodman 1951; Clark 1993; Matthen 2005; Rosenthal 2014; Young, Keller et al. 2014). 

Previous approaches usually focused on constructing perceptual spaces for individual modalities 

(color space, smell space, etc.). It is my hope that a perceptual quality space that includes all 

perceptual qualities is an interesting alternative. In the first chapter, I will outline an approach to 

construct such a perceptual quality space that individuates perceptual qualities by arranging them 

according to the similarity relations between them. Each perceptual quality is individuated by its 

unique position in the perceptual quality space. I will suggest using triadic comparisons to 

determine relative similarity between three stimuli to arrange the stimuli in a multidimensional 

space. I will explain and justify this method and then speculate about the features that the 

resulting perceptual quality space can be expected to have. 

 

The obvious disanalogy between the phylogenetic tree and the perceptual quality space is that 

there is only one phylogenetic tree. On the other hand, there are many different perceptual 

quality spaces. Individuals with red-green-colorblindness have a different perceptual space from 

normal-sighted individuals. Furthermore, an individual's perceptual quality space can change 

depending on experiences and changes or deterioration of the sensory systems. In the second 

chapter, I will first discuss this diversity of perceptual quality spaces to set up the problem of 

comparing perceptual qualities between different perceivers. I will then show that, under certain 

circumstances, individuating perceptual qualities without reference to subjective experience 
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through quality spaces makes it possible to compare perceptual qualities that are perceived by 

different perceivers.  
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Chapter 1: Perceptual quality space 

In this chapter, I will focus on how to construct the perceptual quality space for a given 

individual at a given point in time. I will not concern myself with questions about how stable this 

space is over time or how similar one individual's space is to another's. These topics will be 

addressed in chapter 2. In chapter 1, I will only attempt to develop and defend a strategy that 

arranges perceptual qualities in a way that reliably reflects the similarities between how they are 

perceived by an individual perceiver. Traditionally, the problem of putting order to the 

bewildering diversity of perceptual qualities has been addressed in two steps. In a first step, each 

perceptual quality was assigned to a sensory modality. In the second step, the perceptual qualities 

of each modality were arranged in a multidimensional space according to the similarities 

between the perceptual qualities. The result of this two-step process is a list of modalities and 

separate perceptual quality spaces for each modality. What is missing from this result is an 

explanation of similarities between stimuli in different modalities. It can be argued that there are 

no stable, meaningful similarity relations between tones, colors, tastes, and smells. However, 

empirical results that suggest that perceived similarities between perceptual qualities do not 

respect traditional modality boundaries. For example sugar, which is an odorless tastant, is 

consistently experienced to be more similar to the tasteless odorant vanillin than to salt, another 

odorless tastant (Rankin and Marks 2000). If all we have is a list of modalities and the structure 

of the perceptual quality spaces for each of the modalities, then we cannot account for this fact. 

To address this problem, I propose one-step strategy of arranging all perceptual qualities 

regardless of their modality in a multidimensional space based on their similarity relations. The 

resulting space will be exhaustive and relational "all the way down".  
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Figure 2: The perceptual color quality space. (A) The perceptual quality space is three-

dimensional and asymmetric. By convention, the hue dimension is represented as a 

closed circle. The vertical dimension is brightness and saturation increases from the 

inside of the circle formed by the hue dimension. (B) A section through the perceptual 

color quality space at a given brightness. The asterisk marks the position of a color that 

does not exist in normal perception. A perceptual quality with this combination of hue, 

brightness, and saturation is not normally perceived by humans. (modified from original 

work by SharkD (in the public domain under the Creative Commons Attribution-Share 

Alike license (CC BY-SA 3.0)) 

 

1.1. Constructing an exhaustive perceptual quality space 

An exhaustive perceptual quality space is a space in which all smells, colors, tones, tastes, and 

other perceptual qualities are arranged according to the similarity relations between them. 

Perceptual quality spaces consist of multi-dimensional coordinate systems in which different 

locations represent different perceptual qualities. Partial perceptual quality spaces for tones and 

colors (Figure 2) have already been established. As far as these partial spaces reflect similarity 

relations between the perceptual qualities of a modality, they will become part of the exhaustive 

perceptual space. A possible way to arrive at an exhaustive perceptual space is to first 

individuate the modalities, then construct perceptual spaces for each modality, and then arrange 

these perceptual spaces in a modality space. A modality space is a multidimensional space in 

which modalities are arranged according to the similarities between them (Keeley 2002; Gray 
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2013; Macpherson 2015). I think that this strategy does not address the problem I am interested 

in; the resulting modality space of perceptual spaces will not explain why sugar is more similar 

to vanillin than to salt (Rankin and Marks 2000). I therefore propose a one-step procedure of 

arranging all perceptual qualities in an exhaustive perceptual space based on psychophysical 

measures of similarity. 

 

Determining similarity between perceptual qualities 

It is difficult to overestimate the importance of similarity judgments for an organism's survival. 

Similarity judgments play a much more pronounced role in perception-based behaviors than 

discrimination. Discrimination is not very useful because we almost never encounter 

indiscriminable things. An apple can perceptually be discriminated from all (or most) other 

apples perceptually. It can also be discriminated from all bananas and all other things in the 

world. The capacity to discriminate a large, ripe, intact apple from another large, ripe, intact 

apple is not a useful evolutionary adaptation. What is useful is to be able to judge that one large, 

ripe, intact apple is similar to another large, ripe, intact apple. This allows us to respond similarly 

to things that are perceived similarly. That we are able to make very fine discriminations is a 

consequence of a perceptual system that evolved to judge similarities. As Quine wrote, "surely 

there is nothing more basic to thought and language than our sense of similarity; our sorting of 

things into kinds" (Quine 1970). 

 

Experimentally, perceived similarities can be revealed in different ways (for a detailed 

discussion of the advantages and disadvantages of different strategies, see (Wise, Olsson et al. 

2000)). Many of these experiments can be used in humans as well as in animals, and often they 
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produce similar results (Chen and Gerber 2014). A reliable psychophysical method for 

determining similarity relations between stimuli are triadic comparisons. In triadic comparisons, 

three stimuli are presented to subjects who are instructed to pick the two stimuli that are the most 

similar (MacRae, Howgate et al. 1990; MacRae, Rawcliffe et al. 1992). Other methods for 

determining perceived similarities between stimuli include direct ratings of the similarity of two 

odors, and measuring similarity between verbal descriptors that are applied to odors (Wise, 

Olsson et al. 2000). Each of these methods has advantages and disadvantages and using different 

psychophysical methods to determine stimulus similarity will undoubtedly lead to slightly 

differently structured perceptual spaces. However, this dependence on the procedure used for its 

construction does not diminish the explanatory power of the perceptual quality space. This can 

be illustrated by comparison to the phylogenetic trees. A phylogenetic tree can be build based on 

skeletal anatomy, on genomic sequences, or on a combination of both. The resulting trees will be 

different. Mostly the differences will be small, but sometimes they will be consequential. The 

extent evidence is unlikely to be sufficient to resolve all uncertainties about shifts in populations 

that occurred hundreds of millions of years ago. There is a phylogenetic tree that accurately 

reflects all relationships between all living things; however, it is likely that science will never be 

able to represent all aspects of it in a phylogenetic tree with great certainty. This uncertainty does 

not diminish the importance of phylogenetic trees for biology. Similarly, there are, for a given 

perceiver at a given time, true similarity relations between all perceptual qualities. Different 

psychophysical methods or combinations of these methods will result in slight differences in 

how these relations are represented in a perceptual quality space. However, the importance of the 

perceptual quality space is not undermined by ambiguities due to different methods of 

constructing it. 
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Different methods can be used to establish similarity relations between stimuli. Using triadic 

comparisons has several advantages over other methods. One advantage of this method is that it 

requires only ordinal judgments. The similarity between stimuli does not have to be quantified, 

which is a cognitively very demanding task. Another advantage is that, as forced-choice tests, 

triadic comparisons are independent of conscious perception of similarities. Subjects that report 

that all three stimuli are the same may still perform non-randomly when asked to pick the two 

that are the most similar. A further advantage is that triadic comparisons, or equivalent stimulus 

generalization experiments, can be performed by all species and in all modalities. Presenting 

three stimuli in a row and asking subjects to group them according to similarity is possible in all 

modalities. Other methods to gain information about the similarity relations between stimuli are 

based on presenting two stimuli, for example colors, simultaneously. These types of experiments 

are only possible for modalities in which stimuli can be perceived simultaneously. 

 

A complication for all attempts to constructing a perceptual quality space is the existence of 

perceptual qualities that are not directly associated with physical stimuli. There are, for example, 

"impossible" perceptual color qualities that can be only produced by combining the perception of 

the afterimage of one color with the perception of another color. If one looks at a pale blue-green 

surface and immediately afterwards at a maximally saturated orange surface, for example, the 

combination of the orange afterimage and the orange perception results in the perception of a 

hyperbolic orange that is more ostentatiously orange than every orange normally seen 

(Churchland 2005). Producing such color qualities poses a practical problem for constructing the 

perceptual space. Instead of simply presenting the stimulus, the whole sequence of stimuli that 
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reliably leads to the perceptual quality has to be presented. However, as long as the perceptual 

qualities are predictably inducible, the problem is only practical. If some perceptual qualities are 

only perceived in hallucinations, and this perception is independent of a stimulus and impossible 

to predict, then these qualities cannot be captured by the method I propose.  

 

Relation between similarity measures and discrimination tasks 

Similarity-based psychophysics are not usually used to construct perceptual spaces. More 

commonly, perceptual quality spaces are constructed using just-noticeable-differences between 

stimuli (Goodman 1951; Clark 1993; Matthen 2005; Rosenthal 2014; Young, Keller et al. 2014). 

The just noticeable difference between two stimuli can be determined by forced-choice-

discrimination tasks. The experiments start with two discriminable stimuli. The subject is asked 

to discriminate the stimuli and when they do so reliably, the physical properties of one of the two 

stimuli are gradually made more similar to the physical properties of the other stimulus. When 

the point is reached at which they can no longer be discriminated, the just-noticeable-difference 

between the two stimuli has been discovered. If the two stimuli cannot be made to be 

indiscriminable, then they belong to different modalities (Rosenthal 2014). The just-noticeable-

difference-method results in a color space, a smell space, and several other quality spaces. It does 

not reveal anything about the relations between these spaces. 

 

The results of forced-choice discrimination tasks are the subset of the results of triadic 

comparisons. When the subject in a triadic comparison task is presented with three stimuli, two 

of which are identical, then the grouping of the stimuli depends on whether the subject can 

discriminate the two identical stimuli from the third stimulus. When the difference between the 
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stimulus that is presented in duplicate and the third stimulus is just noticeable, the subject will 

rate the two identical stimuli as being the most similar pair. When the third stimulus is then 

altered so that it can no longer be discriminated from the two identical stimuli, then the responses 

will be random, with each pair being identified as the most similar pair with equal likelihood. In 

this way, triadic comparisons provide information about just-noticeable-differences.  

 

Triadic comparison delivers the same information that forced-choice discrimination tasks 

deliver. However, in addition to the information whether two stimuli can be discriminated, it 

delivers information about the relative perceptual similarity of discriminable pairs of stimuli. 

This information is necessary to arrange all perceptual qualities, even those that are associated 

with stimuli that cannot be altered so that they cannot be discriminated. This information is 

necessary to construct an exhaustive perceptual quality space and account for similarity relations 

between perceptual qualities in different modalities. 

 

Despite the additional information that can be obtain through similarity-based psychophysics, 

psychophysicists are usually more comfortable with discrimination tasks than with similarity-

based psychophysics. One reason why discrimination tasks are often preferred to similarity 

judgments is that discrimination tasks are the paradigmatic example of psychological measures 

of performance that probe human abilities. Similarity judgments on the other hand, are often 

considered to be based on the report of mental content rather than on performance (Wise, Olsson 

et al. 2000). However, when triadic comparisons are used to determine similarity relations, this is 

not the case. There are objectively correct facts about perceptual similarities and similarity tasks 

are a test of the ability to identify them. The length of three-inch nail is more similar to the length 
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of a four-inch nail than to the length of an eight-inch nail. Similarly, of the distances between 

three perceptual qualities in a perceptual space, one distance is in most cases shorter than the 

other two distances. To deny that there are correct answers to triadic comparisons is to deny that 

the perceptual qualities involved in the triadic comparison can be arranged according to 

similarity in a perceptual quality space.  

 

I said that, in triadic comparisons in most cases one of three distances between the three 

perceptual qualities is shorter than the other two. The only situation in which no distance is 

shorter that the other two is when all three distances are the same. They can all be zero, in which 

case the three stimuli are indiscriminable, or all three distances can have the same non-zero 

length. In this case, the stimuli can be discriminated, but the similarities between the stimuli are 

indiscriminable. This will most often occur when the three stimuli are all very dissimilar. With 

increasing dissimilarity, differences in similarity become irrelevant. The function of similarity 

judgments is to cluster, generalize, or categorize things, and when things are so dissimilar that 

they clearly are not in the same cluster, it is not necessary to be capable of comparing 

similarities. This failure to perform in triadic comparisons of three very different stimuli is not a 

bug, but a feature. Whether people can or cannot compare the similarities between stimuli has to 

be found out experimentally for individual cases. I predict that a triadic comparison between the 

color red, cold temperature, and bitter taste will not reveal anything about the similarity relations 

of these perceptual qualities. If this is the case, then the data from this triadic comparison will not 

contribute to the construction of the perceptual quality space. However, I may be wrong about it 

and people group cold temperature with bitter taste. Then this data-point can be used in the 

construction of the perceptual quality space.  
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Another common objection to using similarity judgments in psychophysics is that similarity can 

be judged along different criteria (Wise, Olsson et al. 2000). Imagine for example a triadic 

comparison of dark blue, light blue, and dark green. Some subjects may use darkness as a 

criterion whereas others may use hue. Imagine, as suggested by Matthen (Matthen 2005) (page 

131), that you are asked whether the US, Russia, or China is more similar to Canada. Your 

answer will depend on the context in which the question is asked, and depending on the context, 

you will privilege different criteria (climate, political system, size, population, etc.) in answering. 

However, there is an important methodological difference between the cases of judging 

similarity between countries and between perceptual qualities. Unlike for countries, for 

perceptual qualities there are always comparisons available in which the perceptual qualities that 

are compared differ in only one criterion. Perceptual color qualities can be matched for 

brightness and saturation and then the similarity between them will be judged only according to 

hue. This is not the case for judging similarities between countries. It is not possible to compare 

two countries that differ in their population while they have the same climate, political system, 

and size. That similarities can be judged along different criteria is therefore not as big a problem 

for assessing similarities between perceptual qualities than it is for assessing similarities between 

countries. It merely is a practical problem in that it requires a very large number of comparisons 

to tease apart all the different criteria along which perceptual qualities can differ. 

 

A further objection against similarity-based groupings is that similarity judgments are not stable 

over time. Instead, similarity judgments can be altered by experiences. In some cases, for 

example, odors that are presented in a mixture with another odor can take on some qualities of 
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the odor they were mixed with. An odor smells different depending on what other odors it has 

been experienced with previously (Stevenson 2001). Presumably, this change in perceived 

quality results in changes in similarity judgments of the odors involved. It is certainly true that 

similarity-judgments depend to some degree on experience. However, these experience-

dependent effects on similarity judgments are minute compared to the effects of innate standards 

of similarity5. Although similarity judgments for very dissimilar odors change slightly depending 

on what other odors they were paired with, it seems unlikely that one could get a subject to rate 

fir oil as smelling more like fish than like pine oil by repeatedly exposing the subject to a mix of 

fir oil and fish. There are strong innate mechanisms of similarity perception that are unchanging. 

Furthermore, experience-dependence of performance is common in all types of psychophysical 

testing. The capacity to discriminate odors, for example, is also affected by experience (Rabin 

1988; Jehl, Royet et al. 1995). 

 

In summary, for constructing a perceptual space that reflects similarity relations, similarity-based 

methods are the obvious choice. However, psychophysical similarity judgments can be 

problematic because they are cognitively more demanding than discrimination tasks. Humans 

are, for example, not good at comparing similarities between very dissimilar stimuli. For this 

reason, discrimination tasks are more stable and reliable and they have been the method of 

choice for constructing perceptual quality spaces. My goal is to construct an exhaustive 

perceptual quality space that includes the perceptual qualities of all modalities arranged by 

                                                           
5 As Quine pointed out, if all stimuli would be equally alike and equally different, we could 

never acquire generalized behavioral responses Quine, W. V. (1970). Natural kinds. Essays in 

Honor of Carl G. Hempel. N. Rescher. Dordrecht, D. Reidel Publishing Company., and all our 

behavioral responses are generalized responses that will be elicited by a group of similar yet 

discriminable stimuli. 
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similarity relations between them. I do not know how this could be accomplished using 

discrimination tasks. I therefore propose to give up the methodological advantages of 

discrimination tasks to gain the possibility of constructing a perceptual space that arranges 

perceptual qualities regardless of their modality according to their similarities. One can disagree 

whether this is a good trade. If there were no interesting similarity relations between different 

modalities, one would not gain anything from such a move. In the next section, I will speculate 

how the exhaustive perceptual space would look, in an attempt to show that interesting things 

about the relations between perceptual qualities in different modalities could be learned from 

such a space. 

 

1.2. Features of the perceptual quality space 

Using triadic comparisons to construct an exhaustive perceptual space is an ambitious empirical 

project. It would take a large number of triadic comparisons to reveal the detailed structure of 

this space. However, we already know enough about perceptual qualities and their similarity 

relations that one can speculate about the most important features of the perceptual quality space. 

In this section, I will speculate about the number of dimensions of the exhaustive perceptual 

space and about what the dimensions represent. I will then introduce a method of individuating 

modalities based on the distribution of perceptual qualities in the exhaustive perceptual quality 

space. 

 

Dimensionality of the perceptual quality space 

An important question about the perceptual space is how many dimensions it has. The number of 

dimensions is a direct result of the similarity relations (Clark 1993) (pages 84-89). For every set 
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of similarity relations, the lowest-dimensional space in which all of them can be represented can 

be found. Figure 3 illustrates how arranging the same number of stimuli by similarity can require 

one, two, or three dimensions, based on the similarity relations between them.  

 

 

 

Figure 3: Determining the number of dimensions of a perceptual space. Depending on the 

experimentally determined relations between perceptual qualities on the left, one (top), 

two (middle), or three (bottom) dimensions are required to arrange them in perceptual 

space (modified after (Clark 1993) (pages 84 to 89). 

 

To illustrate how the dimensionality of the perceptual space is revealed by the similarity relations 

between perceptual qualities, consider sets of qualities that are all equally similar to one another. 

Consider three perceptual qualities: A, B, and C. If A is as similar to B as it is to C and as B is to 

C, then these three qualities cannot be arranged in a one-dimensional space in a way that reflects 

all three similarity relations. The simplest way to arrange three equidistant perceptual qualities in 

space is to place them in the corners of an equilateral triangle. Triangles are two-dimensional 

structures and the existence of three equidistant perceptual qualities shows that the perceptual 
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space they belong to has to be at least two-dimensional. The simplest way to arrange four 

equidistant perceptual qualities is to place them into the four vertices of a regular tetrahedron, 

which is the only possible arrangement of four equidistant points in three-dimensional space. 

This means that a perceptual quality space that contains four equidistant perceptual qualities has 

to be at least three-dimensional. 

 

We do not know yet how many dimensions are required to accommodate all perceptual qualities. 

However, partial quality spaces in which perceptual qualities from a single modality are arranged 

have been constructed. These quality spaces illustrate the explanatory power of this approach by 

arranging large numbers of perceptual qualities in low-dimensional spaces. The millions of 

colors can be arranged in a space that has three dimensions (hue, saturation, and brightness) 

(Hardin 1988; Hilbert and Kalderon 2000). The approximately 340,000 tones can be arranged in 

a two-dimensional space (loudness and pitch) (Stevens and Davis 1938). Temperature space and 

pressure space presumably only have a single dimension. There are many more smells than 

colors and tones (Bushdid, Magnasco et al. 2014). Accordingly, no smell space has yet been 

constructed. However, it has been speculated that an olfactory perceptual space would have 

many more dimensions than the quality spaces that we know now (Auffarth 2013). 

 

Having an X-dimensional perceptual quality space does not mean that each perceptual quality in 

the space can only be fully described by X dimensions. It is possible that some perceptual 

qualities have zero values for many of the dimensions. Just because an X-dimensional space is 

required to accommodate all perceptual qualities does not mean that the X-dimensional space is 

required to accommodate each perceptual quality (Figure 4). Greys are colors that differ only in 
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their brightness. However, although the greys could be arranged in a one-dimensional quality 

space, they are commonly included in the three-dimensional space that can accommodate also 

those colors that have hue and saturation. Let us assume that the exhaustive perceptual space has 

ten dimensions. This does not mean that color perceptual qualities gain seven dimensions in 

addition to hue, brightness, and saturation. 

                                   

 

Figure 4: Not all dimensions in a perceptual space are shared by all perceptual qualities. 

A hypothetical distribution of perceptual qualities in a three-dimensional quality space is 

shown. The perceptual qualities form two clusters, shown in red and blue. Both 

modalities share the y-axis, but only the perceptual qualities in the red cluster vary along 

the x-axis and only perceptual qualities in the blue cluster vary along the z-axis. 

 

Dimensions of the perceptual quality space 

Once we know how many dimensions the perceptual space has, we will want to know what the 

dimensions represent; we will want to label the dimensions. Ultimately, it is a matter of 

convention how to label the dimensions of a perceptual space. The dimensions of the perceptual 

space may align with words that are used in pre-theoretic vocabulary to talk about perceptual 

qualities. However, it is also possible that the newly discovered dimensions of the perceptual 
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space require new labels. Consider the labels for the dimensions of the color or tone space. 

"Hue" was an obscure Old English word for color that was revived by scientists in the 19th 

century to have a specific word for the perceptual property that is distinct from "color". In 

German, "hue" is "Farbton", which translates to "tone of the color", in analogy to auditory 

perception. "Pitch" was first used to describe perceptual auditory qualities in 1590, and the 

relations to the other meanings of the word are unclear. In German, "pitch" is "Tonhöhe", which 

translates to "height of the tone", reflecting the spatial position of tones in musical annotation. 

These examples show that labels for the dimensions of perceptual quality spaces were invented 

or re-appropriated by experts after the structure of the underlying perceptual space was 

understood. The same approach should be followed for labeling the dimensions of the exhaustive 

perceptual space. 

  

That scientific progress brings with it a new vocabulary instead of relying on pre-theoretical 

language is a common occurrence. One example in which bringing systematic order to biological 

diversity required a new vocabulary is phylogenetic systematics and the naming of animal 

species. The pre-scientific vocabulary to refer to animals was not systematic. The many species 

of flying insects that bite or sting are called "mosquitoes". Myriads of small invertebrate species 

are referred to as "bugs". Only species that are of ecological importance to humans, like 

domesticated species or important pests, have common names. In some cases, cultivars or 

varieties also have proper names. With the rise of the biological sciences, a second vocabulary 

for talking about living things has been developed. Scientific names of species are based on the 

structure of the phylogenetic tree. The new names for the species were invented by scientists. 

This scientific vocabulary was developed without any regard as to whether it aligns well with the 
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established ways of referring to living things. The scientific vocabulary had little impact on 

language. We still say that we have been bitten by a mosquito, not that we have been bitten by 

Anopheles gambiae. However, the scientific vocabulary has the advantage that it reflects the 

empirically determined structure of the phylogenetic tree. 

 

New scientific discoveries commonly require a new vocabulary. Otherwise, there would be no 

need for experiments and one could deduce the structure of reality from language use. The lack 

of pre-theoretical verbal labels for the dimensions of the perceptual space is not a surprise and 

does not pose a problem because our vocabulary has "no more of a representational relation to 

an intrinsic nature of things than does the anteater's snout or the bowerbird's skill at weaving" 

(Rorty 1998) (page 48). Contrary to this insight, a strong preference for an account of perception 

that aligns with the pre-theoretical vocabulary has also been expressed:  

"It is therefore crucial to my thesis to emphasize that sense impressions or raw feels are 

common sense theoretical constructs introduced to explain the occurrence, not of white 

rat type discriminative behavior, but rather of perceptual propositional attitudes, and are 

therefore bound up with the explanation of why human language contains families of 

predicates having the logical properties of words for perceptible qualities and relations" 

(Sellars 1965). 

 

My preferred strategy is to first construct the perceptual quality space and then attempt to 

describe it using non-scientific nomenclature. If this turns out to be impossible, a scientific 

vocabulary has to be invented. Admittedly, an account that would explain both perception and 

the way we talk about perception would be more powerful than an account of perception alone. 

However, I do not believe that such an account exists. Why we have words for some parts of the 

perceptual space and how these words relate to each other is a linguistic question. The structure 

of perceptual quality spaces, which can be constructed for bats or bacteria in the same manner 
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they are constructed for humans, is independent of this linguistic question (for interesting 

treatments of the language used to describe perceptual qualities, see (Berlin and Kay 1969) for 

colors, and (Castro, Ramanathan et al. 2013) for smells). 

 

Even though building a perceptual space proceeds without regard of pre-theoretic language, it is 

likely that at least some of the dimensions of the perceptual space can be interpreted in pre-

theoretical language. One of the dimensions of the exhaustive perceptual space will presumably 

represent perceptual intensity. Intensity is a quality shared by perception in many modalities, and 

stimuli of similar intensity in different modalities are perceived to be more similar than stimuli of 

different intensity. It has for example been shown that darker colors are matched to stronger 

odors (Kemp and Gilbert 1997). It is also likely that stronger odors will be matched to louder 

sounds and stronger pains. These results show that intensity is an important feature of perceptual 

qualities across modalities. This will likely be reflected by the structure of the perceptual space. 

A separate dimension of the perceptual space may correlate with perceived pleasantness, which 

is also a quality of perception that is found in different modalities. Pleasantness, for example, 

plays an important role in the non-random matching of odors to sounds (Crisinel and Spence 

2011). For tastes and smells, pleasantness may even be the dominant perceptual dimension 

(Khan, Luk et al. 2007)6.  

                                                           
6 There is a question whether pleasantness should count as a dimension of perceptual qualities. 

The question mirrors by the question whether painfulness should count as a feature of perceptual 

qualities, which has been discussed by Austen Clark Clark, A. (2005). Painfulness is Not a 

Quale. Pain: New Essays on Its Nature and the Methodology of Its Study. M. Aydede. 

Cambridge, MIT Press: 177-197.. According to Clark, pain is accompanied by specific sensory 

qualities, but it is not one itself. The intuitive test whether one agrees with this is whether two 

equally painful pains, for example the pain of a sunburn and of a pulled muscle share a common 

sensory quality or not. The olfactory equivalent would be to ask whether two equally pleasant 

smells, for example the smell of bacon and that of vanilla share a common quality or not. Clark 
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Beyond intensity and pleasantness, correspondences between perceptual qualities in different 

modalities are more difficult to interpret using pre-theoretical language. Some crossmodal 

correspondences are easily explained through associations. The color green is matched to the 

smell of grass because the color and the smell are properties of the same object (Levitan, Ren et 

al. 2014). Other crossmodal correspondences, for example between pitch and smell, cannot be 

explained through associations and are grounded in perceptual similarities across modalities (for 

a review of crossmodal correspondences between smells and perceptual qualities in other 

modalities, see (Deroy, Crisinel et al. 2013)). However, ordinary language has no word for a 

perceptual quality dimension that is shared by pitch and smell that could be used to label this 

emerging dimension of the perceptual quality space. A new label has to be invented for this 

dimension and presumably also for many other dimensions.  

 

Modality-representing clusters of perceptual qualities 

Many methods of bringing order to perceptual qualities start by assigning each perceptual quality 

to one of the sensory modalities7. The method suggested here arranges all perceptual qualities 

according to their similarities in a perceptual space. The modalities, rather than being categories 

used to arrange perceptual qualities emerge from the arrangement of perceptual qualities. 

                                                           

concludes that pain is not a perceptual quality, instead, the close connection between certain 

perceptual qualities and pain is that the sensory qualities are wired "directly into the creature's 

preference functions" ibid.. Whether something that is directly wired into perception is part of 

perception or not is part of the difficult problem of drawing the line between perception and 

cognition.  
7 A notable exception is Rosenthal, who uses the just-noticeable-difference-method to both 

construct perceptual quality spaces and individuate modalities Rosenthal, D. (2014). Quality 

spaces and sensory modalities. The Nature of Phenomenal Qualities: Sense, Perception, and 

Consciousness. P. Coates and S. Coleman. Oxford, Oxford University Press.. 
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The coordinate system that contains the exhaustive perceptual space is not fully packed with 

perceptual qualities. Instead, it is sparsely populated by perceptual qualities that are interspersed 

by empty areas that do not correspond to any perceptual qualities. Presumably, there is no 

continuum of perceptual qualities between a color of a certain hue, brightness, and saturation, 

and a tone of a certain pitch and loudness. We cannot start with a perceptual color quality and 

change it in small steps until we have changed it into a perceptual tone quality. If this is correct, 

then the area between colors and smells in the coordinate system that contains the exhaustive 

perceptual space is empty. Presumably, there will be many other empty areas surrounding 

perceptual qualities8. It is very likely that the perceptual qualities are not distributed at random in 

the coordinate system; presumably, they form clusters. These clusters of perceptual qualities can 

be interpreted as modalities. If people perceive colors to be more similar to other colors than to 

any other perceptual quality, then all colors will be close to each other in a cluster that can be 

interpreted as the visual modality. 

 

Modality-representing clusters of perceptual qualities emerge when perceptual qualities are 

arranged according to their similarities. However, because a variety of different formalized 

algorithms (Everitt, Landau et al. 2011) can be employed to detect clusters, cluster analysis 

                                                           
8 Some of the empty space in the coordinate system corresponds to potential perceptual qualities. 

The perceptual color space in Figure 2 shows that only certain combinations of hue, brightness, 

and saturation are perceived by humans. Very bright yellows are for example sometimes more 

saturated than maximally saturated less bright yellows. The asterisk in Figure 2B marks the 

position of a yellow that is never perceived because yellows of this brightness cannot be that 

saturated. The asterisk marks the position of a potential perceptual quality. Many other areas in 

the coordinate system that contains the exhaustive perceptual quality space, like the area between 

colors and tones, will not correspond to any actual or potential perceptual qualities. 



29 

allows for several different outcomes. The same arrangement can be interpreted as three 

modalities (Figure 5A), five modalities (Figure 5B), or three modalities with two of the 

modality-representing clusters subdivided into sub clusters (Figure 5C). The hierarchical 

organization of modalities that is shown in Figure 5C is probably the most accurate reflection of 

the relations between perceptual qualities. The best-known illustration of such a hierarchical 

structure is the arrangement of the perceptual qualities associated with touch. Touch includes 

every perception that is not vision, audition, gustation, or olfaction. Touch can therefore be 

further subdivided into proprioception (sensing relative positions of body parts), mechanoception 

(pressure), thermoception (temperature), nociception (pain), and maybe others.  

 

 

Figure 5: Modality individuating clusters of perceptual qualities. A hypothetical 

distribution of perceptual qualities in a three-dimensional quality space is shown. 

Depending on the parameters that one uses for identifying modality-representing clusters, 

this distribution can be interpreted as three (A) or five (B) modalities, or as three 

modalities, two of which can be further subdivided (C) . 

 

Because the results of applying cluster analysis to the perceptual space depend on the criteria 

used to individuate clusters, cluster analysis cannot decide unambiguously how many modalities 

there are and where the boundaries between them are located. However, the advantage of cluster 
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analysis is that it can be used to test accounts of modalities for their consistency. For example, 

the set of algorithms that clusters smells, tastes, colors, and tones all in their own modality-

representing cluster can be investigated. If no algorithm in this set clusters all other perceptual 

qualities together in a single touch modality, then the classic account of the five human senses is 

wrong. 

 

The big advantage of modality individuation through modality-representing clusters over other 

strategies of modality individuation is that it not only individuates modalities, but also reveals 

the relation between modalities. The distance between two modality-representing clusters in the 

perceptual space is a measure of the similarity between the two modalities. More interestingly, 

the cluster analysis also reveals the relative orientation of modality-representing clusters to each 

other. The distance between these clusters and how they are oriented with respect to each other 

represent similarity relations between perceptual qualities in different modalities. Consider again 

that sugar, an odorless tastant, is consistently experienced to be more similar to the tasteless 

odorant vanillin than to salt, another odorless tastant (Rankin and Marks 2000). The traditional 

two-step procedure of modality individuation and subsequent quality space construction cannot 

account for this fact. In contrast, the perceptual quality space that contains all perceptual qualities 

can account for all similarity relations between perceptual qualities, regardless of the modality-

representing cluster they belong to. In Figure 6, a hypothetical arrangement of the cluster of 

gustatory perceptual qualities and olfactory perceptual qualities is shown. This arrangement 

preserves the distinction between the olfactory modality and the gustatory modality while also 

explaining why sweet taste is more similar to vanilla odor than to salty taste. 
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Figure 6: Similarity between perceptual qualities in different modalities. A hypothetical 

arrangement of smells and tastes in perceptual space that would explain why sweet taste 

is more similar to vanilla odor than to salty taste despite sweet and salty being perceptual 

qualities in the same modality is shown. 

 

Interpreting clusters of perceptual qualities in the perceptual space as modalities is a form of 

individuating modalities based on behaviors, because the perceptual space was constructed 

through behavioral experiments. This is an unusual strategy. It is more common that modality 

individuation is based on representations, phenomenal character, the proximal stimulus, or the 

sense-organs (Grice 1962; Macpherson 2011)9. However, behavior-based modality individuation 

                                                           
9 How the sense modalities should be individuated has been a topic of philosophical 

investigations since Aristotle's De Anima Aristotle (2011). Excerpt from On the Soul (De 

Anima). The Senses: Classical and Contemporary Philosophical Perspectives. F. Macpherson. 

New York, Oxford University Press: 47-63, Sorabji, R. (2011). Aristotle on Demarcating the 

Five Senses. The Senses: Classical and Contemporary Perspectives. F. Macpherson. New York, 

Oxford University Press: 64-82.. Traditionally, modality individuation has been based on 

representations, phenomenal character, the proximal stimulus, or the sense organs. All four 

approaches largely agree when individuating vision and audition. Vision, for example, is the only 

sense that represents colors, the proper sensible of vision. Our eyes are at all levels of description 
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has also been suggested previously. Most notably, the just-noticeable-difference-method that has 

been used to construct quality spaces has recently been extended to provide a method for 

individuating modalities based on discriminative abilities (Rosenthal 2014). The just-noticeable-

difference-method and the method proposed in section 1.1. have many similarities. The most 

notable difference between the two methods is that the method proposed in this chapter arranges 

perceptual modalities relative to each other according to the similarities between their perceptual 

qualities. As was pointed out above, the discriminative abilities that are revealed by the just-

noticeable-difference-method are also revealed by relative similarity judgments. When subjects 

                                                           

(anatomical, cellular, and molecular) sufficiently distinct from other sensory structures. Photons, 

the proximal stimulus, are also sufficiently distinct from other stimuli. The phenomenal character 

of all visual experiences allows distinguishing these experiences from other sensory experiences. 

However, it is merely a contingent fact of the biology of human vision that all four approaches 

agree on how to individuate it. With olfaction and other modalities they often produce 

contradictory results, as has been anticipated by Aristotle, who wrote "the distinguishing 

characteristic of smell is less obvious than those of sound or colour" Aristotle (2011). Excerpt 

from On the Soul (De Anima). The Senses: Classical and Contemporary Philosophical 

Perspectives. F. Macpherson. New York, Oxford University Press: 47-63. (page 52). One 

example of chemosensory perception that is difficult to categorize is the perception mediated by 

the TRPV1 receptor. TRPV1 is a type of molecular receptor that is sensitive both to hot 

temperature and to capsaicin, the pungent chemical found in chili peppers Caterina, M. J., M. A. 

Schumacher, et al. (1997). "The capsaicin receptor: a heat-activated ion channel in the pain 

pathway." Nature 389(6653): 816-824.. This receptor is expressed in sensory neurons on the 

tongue and these neurons therefore respond equally to chili peppers and to hot water. If the sense 

organ criterion is applied, capsaicin and heat are considered two stimuli in the same modality. 

However, if the stimulus criterion is applied, then the TRPV1 receptor mediates perception in 

two different modalities. Two stimuli that are sensed by the same molecular receptor will result 

in the same neuronal activity and therefore in the same phenomenal character; therefore the 

phenomenal character criterion would judge heat and capsaicin to be two stimuli in the same 

modality. However, what is represented by the two stimuli is a botanical compound and hot air, 

respectively. TRPV1 is just one of many examples of chemical receptors that are sensitive to 

physically different stimuli Dhaka, A., V. Viswanath, et al. (2006). "Trp ion channels and 

temperature sensation." Annual Review of Neuroscience 29: 135-161.. A prominent example 

from the olfactory system is the TRPM8 receptor, which is activated by the odor menthol as well 

as by cold air. In all these cases of receptors sensitive to two physically very different stimuli, the 

stimulus and representation criteria come to the conclusion that the receptor mediates perception 

in two different modalities whereas the phenomenal character and sensory organ criteria come to 

the contradictory conclusion that the two different stimuli are stimuli in the same modality. 
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are presented with three stimuli, two of which are identical and the third different, triadic 

comparisons mimic discrimination tasks. It can therefore be suspected that the modality 

individuation through both methods results in the same set of modalities. The method proposed 

in section 1.1. individuates the modalities in a similar way to the just-noticeable-difference-

method and constructs similar perceptual spaces for each individual modality. However, it also 

arranges the modality-representing clusters of perceptual qualities in a way that reflects the 

similarities between perceptual qualities in different modalities. 

 

1.3. Orderliness of the perceptual quality space 

The perceptual tone space and the perceptual color space have explanatory power because they 

arrange a large number of perceptual qualities in orderly spaces. The  approximately 340,000 

tones (Stevens and Davis 1938) can be arranged in a two-dimensional space (loudness and pitch) 

and the millions of discriminable colors (Nickerson and Newhall 1943; Pointer and Attridge 

1998) can be arranged in three dimensions (hue, saturation, and brightness) (Hardin 1988; 

Hilbert and Kalderon 2000). This means that each of millions of colors can be identified by three 

coordinates that represent hue, saturation, and brightness. Giving a full account of perceived 

colors therefore does not require a description of millions of colors, but only a description of 

three dimensions.   

 

The reduction in complexity from hundreds of thousands or even millions of perceptual qualities 

to two or three dimensions is what makes the color space and the tone space useful. They would 

lose their usefulness if they were less orderly and arrange perceptual qualities in spaces with 

hundreds instead of two or three dimensions. If it were not possible to arrange all perceptual 
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qualities in a low-dimensional space, the exhaustive perceptual space would not contribute to our 

understanding of perception. The perceptual qualities that so far have been most resistant to 

being arranged in a perceptual space are smells. There have been so many failed attempts to 

construct a smell space that some doubt that it is possible (Lycan 2000). If there would be no 

orderly smell space, there also would be no orderly space that includes all perceptual qualities 

and the project outlined in this dissertation would not succeed. 

 

Orderliness in the olfactory perceptual space 

After reviewing the many failed attempts to put order to the olfactory perceptual space, Lycan 

writes, "... smell may catch up to color and hearing in the orderliness of its quality space and in 

the accompanying explanatoriness of the underlying neurophysiology. But that is not 

overwhelmingly likely." (Lycan 2000) (page 280). Such pessimism is based on the failure of all 

previous attempts to arrange smells in a perceptual space (Berglund and Höglund 2012; Kaeppler 

and Mueller 2013). However, these failures could also be due to three main shortcomings in the 

attempts to build smell spaces.  

 

One common mistake is that many approaches are not driven by perceptual qualities but by 

verbal labels for smells. Researchers often take odor labels like "burnt", "fragrant", and "spicy", 

and then arrange olfactory perceptual qualities according to how burnt, fragrant, and spicy they 

smell. An example that is still found in psychology textbooks is Henning's smell prism (Henning 

1916), which is a triangular prism, the six corners of which are labeled "flowery", "foul", 

"fruity", "spicy", "burnt", and "resinous". All olfactory perceptual qualities are supposed to be 

located within this three-dimensional space. Projects like this conflate constructing a perceptual 
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smell space with establishing smell categories. The dimensions of the three-dimensional 

perceptual color space are hue, saturation, and brightness. This space could have never been 

discovered using an approach in which color categories like "red", "green", and "blue" are taken 

to be foundational. On closer examination, it turns out that most of the projects that seem like 

failed attempts to establish a smell space were instead successful attempts to establish an "odor 

descriptor space" (Castro, Ramanathan et al. 2013). These attempts were successful in 

establishing the odor descriptor space. However, the odor descriptor space does not correspond 

to a perceptual space. This lack of correspondence is to be expected since it is also seen with the 

color space that the linguistic analysis of color terms does not result in in a better understanding 

of the structure of the perceptual color space. 

 

The second problem faced by researchers trying to elucidate the structure of the smell space is 

the difficulty of finding the right odorants to use for such a project. The number and diversity of 

odorous molecules is immense. More than one billion different chemicals have a smell (Joel 

Mainland, personal communication). Choosing a few dozens of these stimuli to use in 

psychophysical experiments is a daunting task. Traditionally, there was no attempt to find 

representative stimuli for psychophysics. Instead, especially salient, interesting, and ecologically 

or economically important stimuli have been used. Avery Gilbert and Mark Greenberg succinctly 

summarized the danger of this predominant approach when they wrote that "we are creating a 

science of olfaction based on cinnamon and coffee" (Gilbert and Greenberg 1992) (page 329). 

This is equivalent to a color science based on the colors of earth, fire, and water. It is not 

surprising that attempts to construct smell spaces based on perfumery raw materials failed. 

Thanks to the work of Noam Sobel and his group, now sets of odorants that are representative of 
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all odorants can be identified. Sobel and coworkers accomplished this by arranging odorous 

chemicals according to the similarity of their chemical and physical properties in a stimulus 

space. Once such a stimulus space has been established, sets of odorants that are representative 

for this stimulus space can be identified (Haddad, Khan et al. 2008). It is therefore, for the first 

time, possible to use representative odorants in psychophysical experiments and then generalize 

the results of these experiments to all of olfaction. 

 

The third shortcoming of most attempts to construct a smell space is that they are based on 

individual odorous molecules (benzaldehyde, hexanal, vanillin, and so on) (Wise, Olsson et al. 

2000).  A perceptual space that is based on the smells of individual molecules only covers a tiny 

fraction of all olfactory qualities because mixtures of odorous molecules frequently have 

qualities that are different from the qualities of its components and of all other odorous 

molecules. To construct an olfactory perceptual space that covers all olfactory perceptual 

qualities, the olfactory qualities of odor mixtures have to be included. The perceptual qualities of 

odor mixtures are the qualities we are familiar with because the smells encountered in nature are 

usually mixtures.  The characteristic scents of a rose (Ohloff 1994) (pages 154-158), coffee 

(Grosch 1998), and red wine (Aznar, López et al. 2001) are all complex mixtures of hundreds of 

components. The components of these mixtures interact in a variety of ways that are not well 

understood (Ferreira 2012; Ferreira 2012). 

 

Previous attempts to reveal the structure of the smell space have failed. However, concluding 

from these failures that no orderly smell space exists would be premature. Before coming to this 

conclusion, it is worthwhile to try an approach that does not rely on our limited olfactory 
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vocabulary and uses mixtures of representative odorants. Such a semantic-free approach, which 

is more similar to the approaches that were successfully applied to colors and tones, may result 

in the discovery of an orderly smell space. 

 

Size of the olfactory perceptual space 

How orderly the space that contains all perceptual qualities is depends on how orderly the smell 

space is. Most perceptual qualities that we can discriminate are olfactory perceptual qualities. 

There are more than one trillion discriminable olfactory stimuli (Bushdid, Magnasco et al. 2014). 

The actual number is higher because the estimate of one trillion is based on mixtures of 30 out of 

a collection of 126 different odorous molecules. However, many more than 126 different 

odorous molecules exist (Joel Mainland, personal communication) and molecules can be mixed 

into mixtures of more than 30 components. Furthermore, the odors can be mixed at different 

proportions. Whatever the actual number of olfactory qualities is, it is several orders of 

magnitude higher than the number of visual and auditory qualities.   

 

A human takes less than one billion breaths in his or her lifetime. We encounter only relatively 

few ecologically relevant odors regularly. It is therefore surprising that we can discriminate so 

many different smells. We did not evolve to be able to distinguish such a large number of smells. 

Instead, we evolved to be able to discriminate minute differences between two olfactory stimuli. 

The large number of discriminable smells is a consequence of our evolved discriminatory 

capacity. Olfactory systems evolve to discriminate complex mixtures that differ in few of their 

components. In prehistoric times, it may have been important to distinguish the smell of several 

babies that were raised together to avoid feeding unrelated babies in times of scarcity. The body 



38 

odors of related babies that live together are very similar. Body odors are complex mixtures that 

share many components but also differ in a few. Similarly, the odor of food and the same food 

that shows the first signs of being spoiled can be very similar. Again, the two different stimuli 

have many shared components, but they also differ in the components that are produced by the 

bacteria as the food starts to spoil. Detecting this difference can mean the difference between a 

nutritious meal and food poisoning. The ease with which we detect cork taint is a good example 

of the incredible resolution of our olfactory system. Detecting cork taint amounts to detecting the 

presence of a small amount of the chemical 2,4,6-trichloroanisole in the mixture of hundreds of 

diverse molecules that make up the wine aroma (Aznar, López et al. 2001). 

 

Because minute amounts of chemicals that are added to complex mixtures of other chemicals 

usually lead to a change in the perceived smell of the mixture, and because the number of 

potentially odorous chemicals is in the billions (Joel Mainland, personal communication), it has 

been suggested that the number of distinguishable olfactory stimuli is "unlimited" (Wright 1964) 

(p. 80). If the number of perceptual qualities were indeed unlimited, no perceptual quality space 

that contains all of them could be constructed. However, a recent breakthrough in olfactory 

psychophysics showed that our ability to discriminate smells is limited. Tali Weiss and 

colleagues showed that mixtures with many components, when each component is diluted so that 

all components have similar intensity, converge perceptually. This means that mixtures of 

random odorous molecules with a large enough number of components smell similar and share 

an olfactory quality that has been called, in analogy to vision, "olfactory brown" or "olfactory 

white" (Weiss, Snitz et al. 2012).  The reason why the complex mixtures of odorous molecules 

that we encounter when we smell roses or coffee do not smell similar is that the components of 
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these mixtures are not a random sampling of odorous molecules and they do not contribute 

equally to the smell of the mixture. Instead, in many cases, the smell of a natural mixture is 

dominated by a few components. How many components are necessary in mixtures to render 

them indistinguishable from one another is not yet known (Weiss, Snitz et al. 2012). However, 

that larger mixtures converge perceptually shows that the resolution of the olfactory system is 

limited. The number of perceptual qualities is finite and they therefore can be arranged in a finite 

perceptual quality space. 

 

There are two possibilities of how a perceptual space can accommodate a very large number of 

perceptual qualities. A large number of perceptual qualities can either result from a high 

resolution along the dimensions of the quality space or from a large number of dimensions. 

Quality spaces are mathematical constructs that have whatever number of dimensions is needed 

to capture the similarity relations of the relevant qualities (see Figure 3). It is unlikely that the 

odor space will have only two or three dimensions like the tone or color space. Smell space has 

been suggested to have a higher dimensionality than quality spaces in other modalities (Berglund 

and Höglund 2012; Auffarth 2013). It simply is not possible to arrange all olfactory qualities in a 

low-dimensional space.  However, it is also unlikely that the number of dimensions of the smell 

space is very high. The number of perceptual qualities that can be accommodated in a perceptual 

space increases exponentially with the number of dimensions of the space. Maybe the smell 

space will reduce the complexity by a similar degree as perceptual spaces in other modalities. 

Approximately 5 million discriminable colors are arranged in a three-dimensional space and 

around 340,000 tones are arranged in a two-dimensional space. The cube root of 5,000,000 is 

171 and the square root of 500,000 is 583, which means that each dimension of these spaces can 
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be divided into a few hundred discrimination steps. If in the olfactory space 500 discriminable 

perceptual qualities are arranged along each dimension, then five dimensions would be required 

to accommodate a trillion olfactory perceptual qualities. 

 

How orderly the exhaustive perceptual space is, is an empirical question that can only be 

answered with certainty after the psychophysical experiments required to construct the 

exhaustive perceptual space have been performed. Partial perceptual spaces are already known. 

The color and the tone space arrange a large number of perceptual qualities in spaces with three 

and two dimensions. It is likely that spaces for temperature or touch qualities will also have few 

dimensions. The only potential problem is how to arrange smell qualities. I have shown in this 

section that there are many more discriminable smells than other perceptual qualities. 

Accordingly, the smell space is likely have more dimensions than the color space or the tone 

space. However, although we will have to await the construction of the smell space to be sure, I 

am optimistic that the smell space will not have more than a few dozen dimensions. It is likely 

that the smell space will increase order by a similar degree as the perceptual spaces in the other 

modalities10. There is hope that it will reduce complexity enough to be a useful construct for 

perceptual philosophy. If this is the case, then the exhaustive perceptual space will be orderly 

enough to play an important role in our understanding of how perception works. 

 

                                                           
10 The procedure for constructing perceptual spaces described in section 1.1. will result in a 

perceptual space regardless of the similarity relations between the perceptual qualities. Any set 

of perceptual qualities can be arranged in a multidimensional space according to their similarity. 

It is therefore not possible that there is no perceptual smell space. However, a perceptual space in 

which a trillion perceptual qualities are arranged in a trillion-dimensional perceptual space would 

be nothing more than a list of the perceptual qualities and not a useful theoretical construct. 
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1.4. Conclusion: Perceptual qualities can be individuated by their position in a similarity 

space 

All perceptual qualities perceived by a perceiver can be individuated based on their similarity 

relations with other perceptual qualities (Goodman 1951; Clark 1993; Matthen 2005). Sensory 

modalities can then be interpreted as clusters of perceptual qualities in this exhaustive perceptual 

space. The relational account of perceptual qualities that I developed here is based on the Quality 

Space Theory (Rosenthal 2005; Rosenthal 2010), but it uses different behavioral methods and 

therefore can account for similarity relations between perceptual qualities in different modalities. 

Relational accounts of perceptual qualities are alternatives to accounts that determine perceptual 

qualities by their intrinsic properties. Accounts that individuate perceptual qualities by intrinsic 

properties often lead to the conclusion that the only thing that can provide access to perceptual 

qualities is first-hand conscious experience. A relational account avoids this conclusion by 

showing how we can describe every perceiver's perceptual qualities. 

 

Importantly, perceptual qualities are arranged in the perceptual space based on behavioral 

experiments and regardless of whether they are consciously perceived or not. What it feels like to 

perceive a certain perceptual quality is not used as a basis to construct the perceptual space. 

Instead, what it feels like to perceive a certain perceptual quality reflects its position in the 

perceptual space. The perceptual space is a mechanistic explanation of the qualities of subjective 

awareness. Individual instances of subjective awareness are not necessarily relational. At any 

time, we just smell a single odor. There are no relations to other perceptual olfactory qualities. 

However, how the odor smells is determined by its position in the perceptual space. This position 

can be expressed by coordinates along the dimensions of the perceptual space. 
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Chapter 2: Third-person access to perceptual qualities  

In chapter 1, I have introduced a strategy to arrange all perceptual qualities according to the 

similarity relations between them that are revealed through behavioral experiments. The resulting 

exhaustive perceptual space makes it possible to individuate each perceptual quality through its 

position within the space. This is an important step towards a science of perceptual qualities 

because it makes it possible to identify and compare perceptual qualities without having to refer 

to the subjective experiences of the perceiver. 

 

However, the strategy presented in the previous chapter does not give us a universal perceptual 

space, or the human perceptual space, or even the stable perceptual space of a given individual. 

This is not a shortcoming of the proposed strategy. There is neither a universal perceptual space, 

nor the human perceptual space, nor an individual's unchanging perceptual space. The 

experimental strategy introduced in chapter 1 produces an exhaustive perceptual space for a 

given perceiver at a given time. If one is interested in another perceiver's perceptual space, the 

strategy has to be repeated with the other perceiver. The perceptual spaces of two perceivers will 

differ. It is therefore necessary to develop a strategy of comparing perceptual qualities in 

different perceptual spaces. If no such strategy is available, then third-person access to 

perceptual qualities would not be possible and studying perceptual qualities in a systematic way 

would be a very daunting task. 

 

In this chapter, I will present a strategy for comparing perceptual qualities that are perceived by 

different perceivers by first constructing and then aligning the perceptual spaces of the two 

perceivers. To set up the problem, I will first review the diversity of perceptual spaces and the 
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different ways in which they can differ. In the second part of the chapter, I will then explain how 

other perceiver's perceptual qualities can be accessed under certain circumstances. 

 

2.1. Diversity of perceptual spaces 

Perceptual quality spaces can be constructed for every perceiver that can be made to respond 

differently to different stimuli. The perceivers can be humans, animals, plants, machines, robots, 

or extraterrestrials. Each perceiver has a different mechanism for perceiving and for processing 

sensory information. Different types of robots and machines are built according to different 

specification. Different species evolved different perceptual systems and brains that are adapted 

to the perceptual needs of their ecological niche. Different individuals of the same species can 

also vary considerable, and even the brain and sense organs of an individual change over time. 

This diversity of perceptual systems is reflected by the diversity of perceptual spaces.  

 

The realization that there are as many perceptual spaces as there are perceivers could be 

discouraging and interpreted as a sign that perceptual spaces are not useful constructs for 

theorizing about perception. However, this would be the wrong response. The diversity and 

malleability of perceptual spaces does not reduce the explanatory power of these constructs. That 

diversity can increase explanatory power can be illustrated by the role of genomes in 

understanding phenotype determination. Like perceptual quality spaces, genomes are diverse. 

Different species have different genomes, and individuals of the same species carry different 

genetic variants of many genes in their genomes. Genomes also change over time due to 

mutations. Rather than diminishing the explanatory power of genomes, this diversity is the 

reason why genomes have become so important for our understanding of biology. Differences in 
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genomes explain anatomical and physiological differences between species. The differences 

between the genomes of members of the human species explain why some humans have blue 

eyes while others are lactose intolerant. Changes in the genomes of our cells over time are the 

cause of cancer. That it is not possible to identify the genome, or the human genome, or the 

genome of a given individual does not diminish the important role that genomes play in 

understanding biology. Similarly, the diversity of perceptual spaces does not reduce their 

usefulness for our understanding of perception. 

  

However, the diversity of perceptual spaces has to be acknowledged and the differences between 

perceptual spaces have to be known for perceptual spaces to be a useful theoretical construct. In 

this section, I will use the relatively well-understood color space as an example of how 

perceptual spaces differ between different perceivers. Perceptual spaces are arrangements of 

perceptual qualities according to similarities between them within a multidimensional coordinate 

system. Two perceptual spaces can have the same coordinate system, but differ in the 

arrangement of perceptual qualities within that coordinate system. Alternatively, perceptual 

spaces can differ in the coordinate system in which the perceptual qualities are arranged. 

 

Diversity of the arrangement of perceptual qualities in perceptual spaces 

In humans, the perceptual color quality space of has three dimensions: hue, saturation, and 

brightness. In this section, I will consider how color spaces that have these three dimensions can 

differ from one another. In the next section, I will then speculate about color quality spaces with 

different dimensions.  
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The color spaces of different mammalian species differ considerably. Color perception in these 

animals is the consequence of differential activation of sensory neurons that carry different types 

of cone photopigments. These cone photopigments, like all proteins, are encoded by genes and 

these genes, called opsin genes, are subject to evolution through natural selection. In mammals, 

there have been many dramatic evolutionary changes in the opsin genes (Jacobs 2009). Opsin 

genes can change, which can alter their sensitivity to light of specific wavelengths. More 

dramatically, opsin genes can duplicate and then change, which results in species that have more 

opsin genes than their ancestral species. Not only can species gain opsin genes, they can also lose 

them. An opsin gene is lost when a mutation that renders the photopigment non-functional 

occurs. Humans have three opsin genes and it is therefore said that they are trichromatic. Most 

other mammals have only two opsin genes. They are dichromatic. Some species, like the owl 

monkey, are monochromats that have only a single opsin gene. Some birds have more than three 

opsin genes. Most birds are tetrachromatic, while pigeons are pentachromatic. Behavioral 

experiments have shown that species with fewer opsin genes generally are worse at 

discriminating colored stimuli (for a review of comparative color vision, see (Jacobs 1981)). 

Additional opsin genes convey the ability to discriminate more color stimuli.11. The distribution 

                                                           
11 Having more types of receptors with different sensitivities does not always lead to more 

discriminable perceptual color qualities. The direct relation between the number of different 

receptors and the number of discriminable perceptual qualities only holds when the information 

collected by the receptors is processed in the same way. This has been illustrated by research into 

species of mantis shrimp that have up to twelve different photoreceptors, each sampling a 

different narrow range of wavelengths Marshall, J., T. W. Cronin, et al. (2007). "Stomatopod eye 

structure and function: A review." Arthropod Structure & Development 36(4): 420-448.. Based 

on the large number of photoreceptors with different sensitivities, it has been speculated that 

mantis shrimp have a very large and complex color space. However, behavioral experiments 

revealed that this is not the case, which led to the suggestion that mantis shrimp do not use 

comparisons between different channels to discriminate between colors Thoen, H. H., M. J. 

How, et al. (2014). "A Different Form of Color Vision in Mantis Shrimp." Science 343(6169): 

411-413.. Assuming that the processing of color information is relatively conserved, a relation 
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of these qualities in the hue-saturation-brightness-space is different depending on the number of 

types of receptors with which light is perceived. 

 

In addition to the differences between different species, there are also substantial differences 

between individuals that belong to the same species, as can be illustrated by human variability in 

color vision. There are different forms of color blindness in humans. Some humans are 

dichromats. They lack one of the three cone photopigments. Depending on which of the three 

cone photopigments is missing, this condition is known as protanopia, deuteranopia, or 

tritanopia. In Figure 7, how individuals with those conditions perceive the color spectrum is 

simulated. As can be seen by comparing the colors perceived by individuals with these 

conditions with the colors perceived by individuals with normal trichromatic vision (top of 

Figure 7), dichromats perceive fewer distinguishable colors. Some wavelength that are 

associated with yellow or cyan in trichromats are indistinguishable from white for them. 

Furthermore, they cannot distinguish some wavelength pairs that are easily distinguishable by 

trichromats. In protanopia, some colors that are perceived as green, yellow, or red by those with 

normal color vision are indistinguishable. Individuals with tritanopia cannot discriminate what in 

the normal case is perceived as yellow from what in the normal case is perceived as pink. If on 

would construct the color spaces for dichromats based on similarity relations between perceptual 

qualities, these spaces would be different from the normal color space shown in Figure 2. 

However, the colors that are perceived by dichromats all have hue, saturation, and brightness, 

like colors perceived by normal perceiver. Each perceptual color quality, regardless whether it is 

                                                           

between the number of opsin genes and the number of colors that the species can discriminated 

can be expected in vertebrates. 
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perceived by human trichromats or dichromats can be individuated by its position in the color 

space that has three dimensions representing hue, brightness, and saturation.  

 

 

Figure 7: Variability in color perception between individuals. How lights along the 

frequency spectrum are perceived by humans with different systems for color perception 

is shown. A color blindness simulator was used to generate this figure. (modified from 

original work by Nanobot (in the public domain)) 

 

Diversity of the dimensions of perceptual spaces 

Very rarely, individuals have even more impoverished color vision than dichromats. Individuals 

that suffer from total colorblindness, or achromatopsia, see the world only in different shades of 

grey. This condition can be caused by mutations that disrupt the molecular mechanisms with 

which cone cells respond to light. When this mechanism is disrupted, none of the three types of 

cone cells functions. Individuals with such mutations are not blind because in addition to cone 

cells, humans also have photosensitive rod cells. However, in the absence of functioning cone 

cells, humans only perceive different shades of grey. The visual perceptual qualities perceived by 

achromatopsic individuals all have the same hue and saturation. They differ from one another 

only in their brightness. The visual perceptual qualities of achromatopsic individuals can 
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therefore be arranged in a one-dimensional space. The same is true for the visual perceptual 

qualities of monochromats such as seals and owl monkeys. 

 

Brightness, the one dimension of an achromatopsic individual's color space is also one of the 

three dimensions of the three-dimensional color space of individuals with normal vision. The 

one-dimensional achromatopsia color space is a subspace of the three-dimensional normal color 

space. The one-dimensional achromatopsia color space can therefore be transformed into a three-

dimensional normal color space by adding two dimensions (saturation and hue) and assigning 

each color the value zero for both of these dimensions. In general, a low-dimensional perceptual 

space that is a subspace of a higher-dimensional perceptual space can be represented in the same 

coordinate system as the higher-dimensional perceptual space. The difference in coordinate 

systems is then reduced to a difference in the number and arrangement of perceptual qualities. 

 

Since there are some species with lower dimensional color spaces than humans, it is likely that 

some species have visual perceptual quality spaces that have more than three dimensions. We 

know that many animals can perceive features of light that we cannot perceive. Some species, for 

example, can perceive the pattern of polarized light in the sky. When this pattern is visualized in 

textbooks, the differences of polarization angle are represented as differences in hue or 

brightness of the color of the clear blue sky, which looks homogeneous and uniform to us. 

However, we would have to construct the perceptual color space for such a species to find out 

how the polarization pattern is actually perceived by them. It is possible that polarizations angles 

of light change the perceived hue, saturation, or brightness in species that are sensitive to 

polarization of light. However, it is also possible that the physical feature "angle of polarization" 
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corresponds to a fourth dimension of color quality space that is inaccessible to humans. 

Similarly, we do not know whether pigeons, which are believed to be able to discriminate several 

billion colors, discriminate all colors depending on their hue, brightness, and saturation. 

Alternatively, the pigeon color space could have a fourth dimension that makes it easier to 

accommodate the large number of colors. 

 

It would be arrogant to assume that no other species has a higher dimensional color space than 

us. However, it is also understandable. It is very easy to accept that the achromatopsic, who 

cannot perceive saturation or hue, is missing an important part of what makes visual perceptual 

qualities. However, it is much more difficult to imagine that we are also missing an important 

dimension of visual perceptual qualities. What else could there be to colors other than hue, 

saturation, and brightness? That this question is impossible to answer for somebody whose first-

hand visual experience consists only of hue, saturation, and brightness illustrates the importance 

of relying on behavioral experiments rather than subjective experience in individuating 

perceptual qualities. 

 

2.2. Third-person access to perceptual qualities 

Every perceiver perceives similarities between perceptual qualities differently and the perceptual 

spaces between different perceiver therefore differ either in their dimensions, or in the 

arrangement of the perceptual qualities. These differences in perceptual spaces make it difficult 

to compare perceptual qualities between perceivers. However, comparing perceptual qualities 

between perceivers is necessary for third-person access to perceptual qualities which, in turn, is 

necessary for a science of perceptual qualities. 
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In this section, I will suggest that it is possible to compare perceptual qualities that are perceived 

by different perceivers even if their perceptual spaces differ. The question how similar two 

perceivers' perceptions of the color of a ripe tomato are can therefore be answered objectively. 

However, I will also show that comparing perceptual qualities between perceivers is only 

possible when the two perceivers' perceptual spaces can be aligned either directly or through 

intermediates.  

 

Possibility of third-person access to perceptual qualities 

How can we measure the similarity between perceptual qualities that are perceived by different 

perceivers? The similarity between perceptual qualities that are perceived by the same perceiver 

is represented by the distance between the two perceptual qualities in the exhaustive perceptual 

space. However, as discussed above, perceptual spaces differ between perceivers. This 

introduces a problem for comparing perceptual qualities that are not perceived by the same 

perceiver. As an illustration, consider a city map. I can mark locations on a city map and then 

compare one location to another. When the marks are close on the map, the positions they 

represent are geographically close. When the marks are far apart, then they represent 

geographically distant locations. Two marks at the same spot on the map represent the same 

location in the city. Now imagine that a friend of mine has the same city map and that she marks 

locations on her map. It will be easy, at least theoretically, to compare locations marked on the 

two maps. All that needs to be done is to transfer the marks from one map to the other identical 

map and then measure the distances between them. This is analogous to comparing perceptual 

qualities between two perceivers that have the same perceptual space. However, as reviewed 
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above, no two perceivers have the same perceptual space. The analogous situation is therefore a 

situation in which different locations have been marked on two different maps of the city. 

Imagine that one map is a 1:10,000-scale map and the other a 1:20,000-scale map. In this 

situation, the two maps have to be aligned before locations that are marked on the different maps 

can be compared. In the case of a 1:10,000-scale map and 1:20,000-scale map, aligning them 

simply requires rescaling one of the maps. The solution to the problem of comparing perceptual 

qualities in different perceptual spaces is similar to the problem of comparing locations marked 

on different maps: the two perceptual spaces have to be aligned before perceptual spaces on them 

can be compared. 

 

Consider a hypothetical example. In the top row of Figure 8A-C, the two perceptual spaces of 

two different perceivers and the position of the perceptual quality associated with a light stimulus 

of 430 nm in each of the spaces are shown. The question we want to answer is whether the 

perceptual quality that is associated with a light stimulus of 430 nm is the same for both 

perceivers. To answer this question, the two perceptual spaces have to be aligned based on their 

overall structure (lower row in Figure 8A-C)12. When the two spaces are aligned, the distance 

between the perceptual qualities associated with light of 430 nm wavelength in the two 

perceivers can be measured. In Figure 8A, the perceptual qualities of perceiver 1 and 2 are at the 

                                                           
12 The two spaces have to be aligned depending on their structure not depending on their 

dimensions. As Jerry Fodor and Ernie Lepore discussed in the context of State Space Semantics 

Fodor, J. and E. Lepore (1996). Paul Churchland and State Space Semantics. The Churchlands 

and their critics. R. N. McCauley. Cambridge, Blackwell Publishing: 145-159., attempts to align 

similarity spaces based on their dimensions merely succeed in shifting the problem from third-

person access to perceptual qualities to third-person access to the dimensions of perceptual 

spaces. Instead of wondering whether your blue is the same as my blue, we wonder whether your 

saturation is the same as my saturation. Aligning the spaces depending on their structures avoids 

this problem. 
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same position in the combined perceptual space, which means that the same perceptual quality is 

associated with this stimulus in those two perceivers. In Figure 8B and C, different perceptual 

qualities are associated with the same stimulus in different perceivers. The perceptual qualities 

associated with light of 430 nm wavelength in perceiver 1 and 3 are similar (Figure 8B), whereas 

radically different perceptual qualities are associated with this stimulus in perceivers 1 and 4 

(Figure 8C). 

 

Another question one can ask is which stimuli elicit the same perceptual qualities in two 

perceivers. The strategy to answer this question is illustrated in Figure 8D-F. To answer this 

question, the two perceptual spaces have to be aligned and the position of the perceptual quality 

under study in them has to be marked (upper row in Figure 8D-F). Then, the physical stimulus 

that elicits this perceptual quality can be identified (lower row in Figure 8D-F). For perceivers 1 

and 2, the same stimulus elicits the perceptual quality under study (Figure 8D). In perceiver 3, 

light of 460 nm wavelength elicits the same perceptual quality that is elicited by light of 430 nm 

wavelength in perceiver 1 (Figure 8E). In perceiver 4, light of 650 nm wavelength elicits the 

same perceptual quality (Figure 8F). 
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Figure 8: Determining similarity of perceptual qualities perceived by different perceivers. 

(A-C) The perceptual quality associated with light of 430 nm wavelength in perceiver 1 is 

compared to the perceptual quality associated with light of 430 nm wavelength in three 

other perceivers. (A) In perceivers 1 and 2, the same perceptual quality is associated with 

light of 430 nm wavelength. (B) In perceivers 1 and 3, a similar perceptual quality is 

associated with light of 430 nm wavelength. (C) In perceivers 1 and 4, very different 

perceptual qualities are associated with the same stimulus. (D-F) The stimulus that is 

associated with a specific perceptual quality in perceiver 1 is compared to the stimuli 

associated with the same perceptual quality in three other perceivers. (D) In perceivers 1 

and 2, the same stimulus (light of 430 nm wavelength) is associated with the perceptual 

quality. (E) The perceptual quality associated with light of 430 nm wavelength in 

perceiver 1 is associated with light of 460 nm wavelength in perceiver 3. (F) The 

perceptual quality associated with light of 430 nm wavelength in perceiver 1 is associated 

with light of 650 nm wavelength in perceiver 4. 

 

It is important to understand that the physical nature of the stimulus cannot play a role in 

aligning two perceptual spaces. It may be tempting to use salient physical stimuli that are 

perceived by both perceivers to anchor the two perceivers' perceptual spaces. One could for 
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example align the perceptual color space of a bee and the perceptual color space of a human by 

distorting them so that the perceptual qualities that are associated with 480 nm light (blue for 

humans), 560 nm light (green for humans), and 710 nm light (red for humans) are in the same 

position. Then, one could identify the position of the perceptual quality associated with UV light 

(which can be perceived by bees, but not by humans) in the bee's perceptual space and measure 

what the closest perceptual quality in the human's perceptual space is. This, one might believe, 

would be a way to identify the human color perception that is most similar to how bees perceive 

UV light. However, this strategy is flawed because it assumes that the perceptual qualities blue, 

green, and red are elicited by the same stimuli in humans and bees, and there is no evidence 

supporting this assumption. 

 

Let us return to the city map analogy. That the physical nature of the stimulus cannot play a role 

in aligning perceptual spaces in analogous to saying that the marks on the maps cannot play a 

role in aligning the maps. Imagine two different maps of the city. On one, I have marked the 

location of my home, my workplace, my barber, and my favorite restaurant. On the other, you 

have marked your home, your workplace, your barber, and your favorite restaurant. We want to 

know how close our favorite restaurants are. We cannot achieve this by distorting one of our 

maps so that the marks marking your home and my home, your workplace and my workplace, 

and your barber and my barber are at the same position and then measuring the distance between 

the marks marking your favorite restaurant and my favorite restaurant. The marks on the maps 

cannot be used to align the maps. Only features of the maps themselves can be used to align 

them. Similarly, the only way to find out which of your perceptual qualities is most similar to the 

perceptual quality associated with UV light in bees is to construct your own perceptual space and 
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the perceptual space of the bee. If the two spaces can be aligned, the position of the perceptual 

quality associated with UV light in the bee can be compared to your perceptual space and the 

perceptual quality in your perceptual space closest to it can be identified.  

 

Examples of third-person access to perceptual qualities 

Consider, as an example of how two perceptual spaces can be aligned, the perceptual space of 

someone who suffers from specific anosmia for musks. Specific anosmias are conditions in 

which people with an otherwise normal sense of smell cannot smell a certain type of odor, for 

example musk odors (Amoore 1967). This condition can be caused by a disruptive mutation in 

the odorant receptor sensitive for these odors (Whissell-Buechy and Amoore 1973; Keller, 

Zhuang et al. 2007; Mainland, Keller et al. 2014). How could somebody with specific anosmia to 

musk find out something about the perceptual qualities that are associated with musk? 

Knowledge about the musk-sensitive odorant receptors and about the musk molecules is not 

going to be helpful because neither similarity between odorous molecules, nor between odorant 

receptors is a reliable predictor of similarities between olfactory perceptual qualities. The way to 

learn about the perceptual qualities of musk is therefore to build two smell spaces, one for an 

individual with a normal sense of smell and one for an individual with specific musk anosmia. 

The two smell spaces will be identical except that one will have a hole at the position at which 

the musk perceptual qualities are located in the smell space of the normal subject (Figure 9A, 

left). This hole represents the blind spot for musks and it is surrounded by the perceptual 

qualities that constitute the border of the hole. The smell of musk is between the smell of 

perceptual qualities on opposing sides of the hole that represents the musk blind spot. The 
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individual with musk anosmia can find out what the physical stimuli are that are associated with 

the perceptual qualities around the blind spot and then smell them.   

 

The advantage of specific anosmia as an example is that it is an actual condition. The 

disadvantage is that the smell space is not known yet and the example can therefore only be 

discussed in abstract terms. To complement the example of specific anosmia, imagine a fictional 

example that is similar to Hume's Missing Shade of Blue. Imagine someone having a normal 

auditory system with the exception of the inability of hearing the pitch D3. When somebody is 

playing a scale on a piano, there will be a moment of silence between C3 and E3 for this person. 

People with an intact auditory system will hear D3 between C3 and E3. The tone space is two-

dimensional. One dimension is pitch and the other loudness. D3-deaf people will not hear 

anything at the pitch D3 at any loudness, so the tone space of the D3-deaf person will differ from 

that of a person with normal hearing by lacking a stripe along the pitch dimension. The tone 

space will be cut into two tone spaces, one space for tones higher than D3 and one space for 

tones lower than D3 (Figure 9A middle). Because in a scale, the perceptual qualities are ordered 

along the dimension (pitch) in which there is the specific blindness, the note before and after the 

moment of silence will provide information about the perceptual quality of D3 to the D3-deaf 

subject. 

 

Consider a third example. People suffering from ageusia have no sense of taste. Constructing a 

perceptual quality space of such an individual will result in a space in which one modality-

representing cluster, the one that represents taste qualities, is missing. It will likely be possible to 

align such a perceptual quality space with the perceptual quality space of a person that has all 
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senses (Figure 9A right). There is no continuum of perceptual qualities between the gustatory 

qualities and qualities in other modalities, so there are no perceptual qualities that are directly 

adjacent to the missing taste qualities. However, there are proximity relations between perceptual 

qualities in non-gustatory modalities in the ageusia patient's perceptual space and taste qualities 

in the normal perceptual space the patient's perceptual space is aligned with. Unless the 

experiments are performed and the exhaustive perceptual spaces are constructed, the nature of 

the proximity relations between these perceptual qualities is unknown. However, it can be 

speculated that the alignment will reveal to the ageusia patient that the gustatory perceptual 

quality associated with chili peppers is similar to the perceptual quality associated with high 

temperature perceived at the tongue. The gustatory perceptual quality associated with sugar is 

close to the perceptual qualities associated with vanilla smell and soft touch perceived at the 

tongue. 

 

These examples show that the strategy for third-person access to perceptual qualities outlined 

above can be successful. It is possible for the individual with musk anosmia to have information 

about how an individual with a normal sense of smell experiences musks. There is no ontological 

or epistemological barrier that precludes us from knowing other minds. This is a very important 

result because without a way to compare perceptual qualities regardless of who perceives them, 

there could be no objective science of perception. The fact that nothing precludes knowledge of 

other minds in principle does not mean that there are no practical problems with third-person 

access to perceptual qualities. In the next section, I will discuss these practical problems and 

show that some of them are unsurmountable and can be considered limits to third-person access 

to perceptual qualities. 
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Limits of third-person access to perceptual qualities 

The strategy for third-person access to perceptual qualities outlined above depends on aligning 

the perceptual spaces of the two perceivers whose perceptual qualities we want to compare. 

Aligning perceptual spaces however may not always be possible. In other situations, there may 

be more than one possible alignment, so the two perceptual spaces cannot be aligned 

unambiguously. 

 

In general, the more similar two spaces are, the easier it is to align them. In Figure 9A, three 

hypothetical examples of pairs of perceptual spaces with sufficient similarity in shape to align 

them are shown. The perceptual space pairs correspond to the examples of musk anosmia (left), 

D3-deafness (middle), and ageusia (right). In each of these three examples, the space on the right 

is derived from the space on the left by subtracting a small area. This makes it easy to align the 

two spaces. In Figure 9B, three pairs of perceptual spaces that are so dissimilar that it is not 

possible to align the grey space with the red space unambiguously are shown. In most cases in 

which two perceptual spaces have to be aligned, the decision whether it is possible to align them 

unambiguously or not is presumably not as clear-cut as in the examples in Figure 9 A-B. The 

perceptual spaces of two human individuals with normal perceptual capacities will presumably 

have very similar overall shapes. However, when zooming in, one will discover small differences 

between the spaces. Maybe the cluster representing colors is slightly elongated in one of the 

spaces, and the distance between the cluster of smells and tastes is not the same. It will certainly 

be possible to align the two exhaustive perceptual spaces, but it may be that several, slightly 

different, alignments are possible. One then has to use an algorithm to decide which alignment is 
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the best. Which algorithm is chosen will be to some degree arbitrary. Another complication for 

deciding whether two spaces can be aligned is that it has to be decided which transformations of 

the spaces should be allowed to align them. If any type of transformation is acceptable, then 

every space can be distorted so that it will perfectly align with every other space. Because of 

these complications, there will be cases in which it is disputable whether two exhaustive 

perceptual space can be aligned or not. However, in other cases it will be clear whether two 

perceptual cases can be aligned or not. 

 

When two perceptual spaces that clearly cannot be aligned directly are found in different animal 

species, a strategy to align them despite their very different structures is sometimes available. 

The strategy is to find intermediates that can be used to create a chain of aligned perceptual 

spaces. The two dissimilar perceptual spaces I and VIII in Figure 9C cannot be aligned directly. 

They are the same pair of perceptual spaces shown on the right in Figure 9B as an example of 

spaces that cannot be aligned. However, as is shown in Figure 9C, I and VIII can be aligned 

indirectly through the series of perceptual spaces II to VII. Perceptual space I can be aligned with 

perceptual space II, perceptual space II can be aligned to perceptual space III, and so on until 

spaces I to VIII form a chain of unambiguously aligned perceptual spaces. The direct alignment 

between I and VIII has not been possible because of the different shapes of the two perceptual 

shapes. This is symbolized by the red arrow connecting I and VIII directly in Figure 9C. The 

indirect alignment of I and VIII through a series of intermediates has however been possible. 

This is symbolized by the circle of black arrows connecting I and VIII indirectly in Figure 9C. 

To provide a hypothetical example, it may not be possible to align the human perceptual space 

directly with the perceptual space of the mouse. However, if the human perceptual space can be 
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directly aligned with the monkey perceptual space, and the monkey perceptual space can be 

directly aligned with the rabbit perceptual space and the rabbit perceptual space can be directly 

aligned with the mouse perceptual space, it would still be possible to compare the perceptual 

qualities associated with 480 nm light in mice and in humans.  
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Figure 9: Aligning perceptual quality spaces. (A) Three pairs of perceptual spaces that are 

sufficiently similar in their shape to be aligned. (B) Three pairs of perceptual spaces that 

are too dissimilar to be unambiguously aligned. (C) Perceptual space I and perceptual 

space VIII are not similar enough to be directly aligned. However, through a chain of 

intermediates (perceptual spaces II to VII), they can be aligned indirectly. (D, E) 

Symmetrical perceptual spaces can be aligned in more than one orientation. 
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Perceptual spaces that are too different to be aligned are not the only possible problem for 

aligning two perceptual spaces unambiguously. Another possible problem for comparing 

perceptual qualities between different perceivers are symmetrical perceptual spaces that can be 

aligned in more than one orientation (Figure 9 D, E). Mirror symmetric perceptual spaces can be 

aligned in two different orientations (Figure 9D). Radial symmetric perceptual spaces can be 

aligned in any orientation (Figure 9D). Symmetry is more likely in simple perceptual spaces. In 

humans, neither the three-dimensional color space, nor the two-dimensional tone space is 

symmetrical. The structure of perceptual spaces in other modalities is not well known. Maybe the 

one-dimensional temperature space that goes from hot to cold is symmetrical. Your hot may be 

my cold. The exhaustive perceptual space that contains all perceptual qualities is complex and 

contains the non-symmetrical color and tone spaces, so the worry about symmetry is not pressing 

for the account of human perceptual qualities that I propose. However, if a symmetrical 

perceptual space were to be discovered in an animal species, the correct orientation could 

probably be found by studying the perceptual space of closely related species with a similar, yet 

not symmetrical, perceptual space. The most likely situation in which symmetry of the space will 

limit third-person access to perceptual qualities is when it comes to the perceptual spaces of 

machines, which can be purposefully designed to have symmetrical perceptual spaces.  

 

In the philosophical literature, discussions of the possibility of symmetrical perceptual quality 

spaces has a long tradition since John Locke's discussion of the possibility of spectrum inversion 

in color perception (Locke 1689/1975) (for an overview of the literature, see (Byrne 2010)).  

Locke, writing long before the human perceptual color space had been established, discussed the 

hypothetical case of a symmetrical color space. In this case discussed by Locke, strawberries 
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elicit the perceptual qualities that are elicited by cucumbers in normal perceivers. Cucumbers 

elicit the perceptual qualities normally elicited by strawberries. Locke goes on to assure the 

reader that despite this possibility of an inverted color spectrum, he thinks that the same object 

will elicit the same, or very similar, mental qualities in different individuals. Because the 

perceptual spaces of humans are not symmetrical, it is now possible to empirically test this 

proposal and search for individuals that perceive as green what others perceive as red. John 

Dalton discovered more than hundred years after Locke's hypothetical case that some individuals 

are red-green colorblind. In these individuals, cucumbers and strawberries elicit some of the 

same perceptual qualities. 

 

Because the exhaustive perceptual quality space containing all perceptual qualities is not 

symmetrical, undetectable inversion is not possible in humans. However, it is possible in 

creatures with symmetrical perceptual quality spaces (if such creatures exist). This theoretical 

possibility of undetectable spectrum inversion is sometimes used in arguments against 

behaviorism and functionalism (Fodor and Lepore 1996). The argument is that, in undetectable 

spectrum inversion, two behaviorally or functionally identical perceivers could perceive different 

perceptual qualities in identical situations. It would however be impossible to prove the existence 

of an actual case of spectrum inversion (hence "undetectable" spectrum inversion). 

 

2.3. Conclusion: Aligning perceptual spaces enables third-person access to perceptual 

qualities 

Different perceivers perceive stimuli and the similarity between stimuli with different perceptual 

systems and they therefore have different perceptual quality spaces. This diversity of perceptual 
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spaces complicates comparisons between perceptual qualities that are perceived by different 

perceivers. In this chapter. I proposed a strategy for third-person access to perceptual qualities 

that is based on aligning perceptual spaces. Quantifying the distance between perceptual qualities 

that are perceived by two different perceivers is possible by aligning the two perceptual spaces 

and then measuring the distance between the perceptual qualities in the combined space. This 

objective measure of similarity between perceptual qualities regardless of whom they are 

perceived by could provide the basis for the scientific study of perceptual qualities. 

 

Because the strategy for third-person access depends on the ability to align the perceptual spaces 

of the two perceivers that are compared unambiguously, it is not always possible. One problem 

are perceptual spaces with structures that are so different that they cannot be aligned. The 

structure of the perceptual space of a perceiver depends on its perceptual systems and on the 

processing of sensory information. The perceptual systems of two biological perceivers are 

connected through the perceptual system of their last common ancestor. It is therefore unlikely to 

find perceptual spaces so radically different that they cannot be aligned among close relatives. It 

is also possible, when two perceptual spaces cannot be aligned directly, to use a chain of 

intermediates to align them indirectly. However, this is not always possible. Humans are 

evolutionary so distant from bacteria that it will very likely not be possible to align the human 

perceptual space through intermediate steps with the perceptual space of a bacterium. It is 

probably not possible to compare a given human perceptual quality with a given bacterial 

perceptual quality. The situation becomes even more hopeless when the two perceivers that are 

to be compared are not connected through a common ancestor. The perceptual space of an 

animal is unlikely to be similar enough to the perceptual space of a robot or of an extraterrestrial 
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for the two spaces to be aligned unambiguously. It will therefore not be possible to find a 

stimulus that is associated with the same perceptual quality in a robot and in a bat.  

 

Another problem case for the strategy of comparing perceptual qualities between perceivers by 

aligning the perceivers' perceptual spaces are symmetrical perceptual spaces. Symmetrical spaces 

can be aligned in more than one orientation. The exhaustive perceptual space in humans is not 

symmetrical, so this is not a concern when it comes to comparing our own perceptual qualities to 

those of other perceivers. However, it is possible that some perceivers have symmetrical 

perceptual spaces13. It is most likely that symmetrical perceptual spaces will be found in very 

simple organisms, or in machines, which can be purposefully designed to have symmetrical 

perceptual spaces.  

  

                                                           
13 Rosenthal argues that it is impossible for a space that is based on an individual's discrimination 

abilities to be symmetrical because a symmetrical space would collapse around the axis of 

symmetry Rosenthal, D. M. (2010). "How to think about mental qualities." Philosophical Issues: 

Philosophy of Mind 20: 368-393.. This is not the case for the perceptual spaces discussed here. 

To illustrate that symmetrical perceptual spaces are possible, let us consider a simple perceiver 

that can only perceive two discriminable perceptual qualities. The perceptual space of this 

perceiver would consist of two points that represent the two perceptual qualities. This space 

would be symmetric because it is always possible to draw a symmetry axis between two points. 

If one would collapse this space around the axis of symmetry, the two perceptual qualities would 

fall into the same location. Since the two perceptual qualities can be discriminated, the collapsed 

space would not represent the similarity relations between the perceptual qualities accurately. 
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Part II: Percepts 

In the first part of this dissertation, I have discussed perceptual qualities abstracted away from 

the spatial and temporal structure of perception. Perceptual qualities are the basic building blocks 

of perception. However, many normal instances of perception are much richer and more complex 

than a series of changing perceptual qualities. In this second part, I will describe how this 

complexity emerges through the combination of perceptual qualities. In chapter 3, I will describe 

how percepts are formed through the combination of perceptual qualities in space and time. In 

chapter 4, the notion of objecthood in the context of perception will be examined, and in chapter 

5, I will discuss the function of perception. Specifically, I will argue against the proposal that it is 

the function of perception to collect correct information about the physical world. Instead, I will 

show that it is the function of perception is to guide behaviors. 

 

In this part, I will cash in the promise from the title and focus heavily on olfactory perception. I 

hope that it will become apparent that notions like object-oriented perception and the idea of 

perception as a mirror of reality, which seem intuitive when considering visual perception, fail to 

capture the nature of olfactory perception. 
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Chapter 3: Olfaction in space and time 

Percepts are formed by temporal and spatial arrangements of perceptual qualities. A visual 

scenery is a spatial arrangement of colors. A noise is a temporal arrangement of tones. In this 

chapter, I will discuss the structure of olfactory percepts. I will first discuss spatial structure and 

then temporal structure. As is always the case in perceptual philosophy, it is important to 

distinguish between the structure of the stimulus and the structure of the perception and I will 

therefore discuss these two topics separately. The review will reveal that olfactory percepts are 

much less structured than percepts in vision or audition. Olfactory perception has no spatial 

structure and a very impoverished temporal structure. For the most part, olfactory perception is 

the perception of a series of changing perceptual qualities. 

 

3.1. Olfaction in space 

Introspectively, it does not seem that the perception of odors is spatially structured. Olfactory 

perception has been called "a single unitary experience" (Stevenson 2009) (page 1010), "a state 

of consciousness, having neither geometry nor articulate individuation" (page 282) (Lycan 

2000), and a "nominal sense" that simply provides "data of qualitatively different odors in our 

surroundings" (Köster 2002) (page 28). On the other hand, humans can indisputably use 

olfactory information for navigation. This is only superficially a contradiction because the ability 

to navigate using olfactory stimuli does not imply that olfactory perception is spatially 

structured. 
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Spatial structure of the olfactory environment 

Our olfactory environment is spatially structured at different scales. At the largest scale, New 

Delhi, the Bavarian Forest, the Mexican resort town of Cancún, and the Mojave Desert in the 

southwestern United States can all easily be distinguished from one another based on the odorous 

molecules in the air at these locations. Each of these places has a different distinct smell. On a 

smaller scale, different ecosystems also have different smells. The ocean smells different from 

the tidal zone, which smells different from the beach, which smells different from the marshland. 

If one walks towards the ocean from a few miles inland, the odor environment will change in a 

predictable pattern. On a yet smaller scale, the bakery in the mall smells different from the shoe 

store. At an even smaller scale, my apartment smells different from the hallway and from my 

neighbors' apartments. Within my apartment, the kitchen, the bathroom, and the bedroom all 

have unique smells. Within the kitchen, the area by the oven smells different from the sink or the 

trashcan. Finally, my hands, feet, and armpits all have characteristically different smells. 

 

The spatial distribution of odorants in the world is due to the spatial arrangement of the odor 

sources that release characteristic odorants. The concentration of the released molecules is, on 

average, higher close to the source than further away. Some odor sources remain at the same 

position in the environment and give off the same odorants for a long time. The ocean, for 

example, is a reliable olfactory landmark. Many other odor sources are much less permanent and 

reliable. The bakery in the mall will stop giving off bakery smells when it closes for the night. 

Apple trees may be good olfactory landmarks when they are flowering and then again when the 

apples are rotting under them, but not during the winter months. The difference between 
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olfactory landmarks and visual landmarks, like trees, rivers, buildings, and mountains, is that 

olfactory landmarks are less stable over time.  

 

The distribution of odorous molecules in the environment is especially unstable at the scale 

between meters and kilometers that is behaviorally relevant to humans. At this scale, the spatial 

distribution of odorous molecules is determined mostly by turbulent airflow (Weissburg 2000). 

At a lower scale between millimeters and centimeters, odor distribution is mainly determined by 

diffusion. The diffusion of odorants results in the formation of gradients and odor gradients can 

be used to locate the odor source. This is how insect larvae use smell for navigation. At a larger 

scale of tens or hundreds of kilometers, odor distribution is determined by climate events that 

produce stable spatial gradients in ratios of atmospheric trace gases (Wallraff and Andreae 

2000). These stable gradients at a kilometer scales allow homing pigeons to smell their way 

home (Gagliardo 2013). At the human scale, stable patterns of odor distribution are 

comparatively rare, even in the presence of stable odor sources. 

 

Dogs, rats, and other animals successfully use odors for navigation, which shows that, at least 

sometimes, odorants have stable spatial distributions at the scale that is behaviorally relevant for 

humans. However, dogs, rats, and all other terrestrial mammals normally do not use odorous 

molecules in the air for navigation. Instead, they use odors deposited on the ground as trails or 

markings. Trails and markings are much more stable over time than clouds of molecules. 

However, trails and markings are not accessible to humans because with the development of 

bipedalism our noses have been moved too high above the ground. Other species found solutions 

for similar problems. The elephant's olfactory epithelium is far from the ground, but it 
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compensates for this with its trunk that constitutes a vacuum system to suck the odorous 

molecules from trails and markings on the ground up to the nasal cavity. Humans may be the 

only species of terrestrial mammals that is not aware of the trails and markings that structure the 

ground they walk on.  

 

In summary, in the physical world, some non-random distributions of odorous molecules are 

stable over certain periods, for example odor gradients at the centimeter scale in soil. However, 

in the air several feet above ground, where our noses are, the distribution of odorous molecules is 

generally strongly influenced by turbulent airflows and very unreliable. 

 

Spatial structure of olfactory perception 

Our odor environment has a spatial structure and it would be possible that this structure is 

reflected in the structure of olfactory perception. However, laboratory experiments have shown 

that human olfactory perception is spatially unstructured. The simplest possible spatial structure 

of olfactory perception, a division of the perception into left nostril and right nostril, would be 

revealed by the ability to tell whether an odor is applied to the left or to the right nostril. Subjects 

fail even at this simplest task. It is usually not possible to discriminate between a stimulus being 

presented in the left nostril and the same stimulus being presented in the right nostril (Radil and 

Wysocki 1998; Frasnelli, Charbonneau et al. 2008). In seeming contradiction, it has also been 

reported that humans can compare the olfactory input between their two nostrils (von Békésy 

1964; Porter, Anand et al. 2005; Porter, Craven et al. 2007). It has subsequently been shown that 

the performance in these experiments was not based on the spatial structure of olfactory percepts, 

but on chemesthesis (Kleemann, Albrecht et al. 2009; Croy, Schulz et al. 2014). 
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Chemesthesis is, by all accounts except those that individuate modalities solely on the physical 

properties of the stimuli, a different modality than olfaction. Chemesthesis is the chemical 

sensitivity of the skin or mucous membrane. The hotness when eating chili peppers, but also the 

burning when fingers touch the eye after handling chili peppers is mediated by chemesthesis. 

The sting when smelling vinegar and the perceived coolness of the smell of menthol are other 

examples of chemesthetic perception. Chemesthesis is mediated through receptors that mediate 

pain, touch, and temperature, which explains why chemesthetic experiences are described in 

terms of temperature and touch perception. The mucous membrane inside our nasal cavity has 

chemesthetic sensitivity. Like the entire surface or our body, this membrane is spatially mapped 

in our brain and we can tell whether the skin in our left or in our right nostril is being irritated. 

Chemesthesis in the nasal cavity is mediated by the trigeminal nerve. Experimentally 

dissociating olfaction and chemesthesis is notoriously difficult because at high concentrations 

many volatile molecules activate both the olfactory system and the trigeminal nerve. However, 

other than sharing the same stimuli, olfaction and chemesthesis have little in common (Figure 

10). Olfaction is not involved in the ability to locate certain stimuli that was demonstrated by von 

Békésy and others (von Békésy 1964; Porter, Anand et al. 2005; Porter, Craven et al. 2007). We 

can tell that a jar of menthol is placed to our left because the skin in our left nostril feels colder 

than in our right nostril. The reason why we can tell that acetic acid is to our right is that it 

induces a stronger stinging in our right nostril than in the left. These perceptions are mediated by 

the trigeminal nerve. Abolishing olfactory perception by cutting the olfactory nerve would not 

affect this ability to locate the multimodal stimulus.  
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Figure 10: Perception mediated by the olfactory and by the trigeminal nerve. (A) The 

olfactory nerve and the trigeminal nerve enter the brain in different locations. (B) The 

olfactory nerve innervates the olfactory epithelium in the nasal cavity, whereas branches 

of the trigeminal nerve innervate the respiratory epithelium in the nasal cavity. (C, D) 

Different brain areas are involved in the processing of trigeminal information (C) and of 

olfactory information (D). (in (C) and (D) primary cortex is represented in blue, 

secondary cortex in green, and non-cortical regions in violet). ((A) modified from 

original work by Patrick J. Lynch (in the public domain under the Creative Commons 

license (CC BY 2.5); (B) modified from original work by FrozenMan (in the public 

domain under the Creative Commons license (CC BY-SA 4.0)) 

 

Odor-guided navigation without spatially structured perception 

A possible objection to the thesis that our olfactory perception has no spatial structure is to point 

out that humans can successfully navigate using olfactory information. It is possible to find the 

source of an odor in a room. When humans navigate towards an object based on visual or 
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auditory information, they use the spatial structure of the visual or auditory perception for 

guidance. The parsimonious assumption is that humans use the same strategy when using odor 

information to navigate towards an object. However, investigating instances of odor-guided 

navigation shows that this is not the case. Humans use different strategies for navigating based 

on olfactory perception than for navigating based on perception in modalities in which 

perceptions have spatial structure. 

 

Although humans do not routinely use olfaction for navigation, there can be no doubt that it is 

possible. The paradigm example for olfactory navigation in humans is the nipple search 

behavior, in which infants use olfactory cues to orient towards their mothers' breasts (Varendi, 

Porter et al. 1994; Varendi and Porter 2001). There are also other examples. In dense tropical 

forests, visual navigation can be difficult, but there are many distinct odor sources available for 

olfactory navigation. Consequently, people living in this environment sometimes develop smell 

maps which they use for navigation (Classen, Howes et al. 1994) (pages 97-99). Smell can also 

provide valuable information about one's position with respect to an odor source, for example a 

lion. One can, using olfactory information, avoid areas that have a strong lion smell. 

Undoubtedly, this ability has saved many human lives. 

 

These observations show that humans can use their sense of smell for orientation. That humans 

have the ability to navigate using odors has also been shown experimentally. It has been 

demonstrated that blindfolded human subjects have the ability to follow, crawling on all fours, a 

scent trail of chocolate essential oil (Porter, Craven et al. 2007). In another experiment, subjects 

were shown to be able to determine their position with respect to two odor sources by analyzing 
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the ratio of the two smells (Jacobs, Arter et al. 2014). In institutions for mentally or visually 

handicapped people in the Netherlands, odorizing different hallways with different odors reduced 

the number of inhabitants that got lost trying to find their rooms (Köster, Møller et al. 2014). 

 

That humans can use olfactory perception to navigate is not surprising. All perception of stimuli 

that are spatially structured in the environment provides the necessary information for 

navigation. If, in the experiment by Porter and colleagues (Porter, Craven et al. 2007) a salt trail 

would have been laid on the ground instead of a chocolate odor trail, blindfolded subjects 

presumably could have licked their way along the salt trail. Similarly, in a gustatory version of 

the study by Jacobs and coworkers (Jacobs, Arter et al. 2014), the floor of a room would have to 

be covered by a salt gradient and a perpendicular sugar gradient. In this situation, each location 

in the room can be gustatorily identified by the intensity and the salt/sugar-ratio.  

 

However, that a stimulus is used for navigation does not mean that the perception of the stimulus 

has spatial structure. Even the most simple and unstructured signal can be used for navigation. 

Imagine an individual that gets headaches when standing close to a power line. Let us assume 

that the headaches have no spatial structure and that there are no qualitative differences between 

two headaches, but the intensity of the headache depends on the distance to the power line. This 

individual could use their headache to find a power line and to follow it from one city to another 

using electricity-guided navigation. If, while walking in a straight line, the headache decreases, 

the individual knows that they are moving away from the power line. The ability to use the taste 

of salt or an electricity-induced headache for navigation does not show that the salt perception or 
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the headache have a spatial structure. Any perception of a stimulus can be used for navigation 

when the stimulus has spatial structure.  

 

The strategy that humans most commonly use to navigate with the help of olfactory information 

is the same as used by the individual who uses electricity-induced headaches for navigation: 

active exploration of the spatial distribution of the stimulus through movement. We move our 

body, or at least our nose, to find out where the smell is coming from (Richardson 2011). When 

the intensity of a smell decreases during movement, we know that we are moving away from the 

odor source. This strategy of sampling odors at different positions and comparing the intensities 

is often applied for finding the source of an odor. 

 

Another way of using olfactory perception for navigation despite its lack of spatial structure is to 

combine olfactory information with other sensory information. The wind provides especially 

useful information. When we perceive the odor of a barbeque and simultaneously perceive 

airflow from the left, then we can infer that there is a barbeque to our left. This is how many 

flying insects use olfaction to find an odor source. Smelling the odor they are interested in, most 

commonly pheromones released by other members of the species, elicits flight against the 

airflow. When they lose the trail, they change their flight path into a random search pattern until 

they pick it up again, at which point they continue to fly upwind. 

 

The fact that some instances of perception have no spatial structure has drastic consequences for 

philosophy of perception, as has been discussed previously (Lycan 2000; Smith 2002; Matthen 

2005; Peacocke 2008; Batty 2010). Due to the lack of spatial structure of olfactory perception, 
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concepts depending on spatial relations such as position, orientation, directedness, and 

movement, which play a very important role in philosophy of perception that is based on visual 

perception, play no role in an alternative account of the philosophy of perception for which 

olfaction is the paradigm. As a consequence, many theories that have been developed with the 

visual system in mind are incoherent when the paradigmatic sense is olfaction. Views that 

consider the body and its movements to be central for perceptual consciousness (for an overview, 

see (Prinz 2009); for an example, see the sensory motor contingency theory (O'Regan and Noë 

2001)), for example, may be plausible for vision or other forms of perception that involve "an 

actively-explorable anisotropic field" (Humphrey 2001), but not for olfaction. 

 

Olfaction is probably the only major human sensory modality that never perceives perceptual 

qualities that are arranged spatially (although it is possible to design stimuli that result in 

spatially unstructured percepts in every modality). In vision, touch, and taste, sensory neurons 

are arranged spatially and their patterns of activation are mapped onto perception so that the 

spatial structure of the percepts resembles the spatial structure of the perceived stimulus. In 

vision and touch, this spatial mapping is central to the function of these senses. In gustation, the 

mapping does not seem to be central to the function of taste perception. However, although this 

information does not seem to be important, it is easy to tell the difference between a few grains 

of salt on the left part on the tongue versus on the right part of the tongue. In audition the main 

strategy for structuring perception spatially is to compare input to the two ears. This comparison 

makes it easy to auditorily distinguish a car approaching from the left from a car approaching 

from the right.  
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3.2. Olfaction in time 

Although olfactory perception has no spatial structure, it certainly has some type of temporal 

structure. All perception has temporal structure because perception by definition involves 

changes depending on the presence or absence of a stimulus over time. There would be no 

adaptive value to perceiving an unchanging stimulus. The temporal structure of olfactory 

perception is determined by the temporal structure of odor stimuli and by the characteristics of 

the olfactory sensory system. The stimulus, odor molecules floating through the air, is much 

slower than light, sound, and other stimuli. As expected, the olfactory sensory system is therefore 

not optimized to sense stimuli with great temporal resolution. Although olfactory perception is 

temporally structured, the structure is much less complex and carries much less important 

information than the temporal structure of vision or audition.  

 

Temporal structure of olfactory stimuli 

The ratio of different types of odorous molecules in the air at a given position changes over time. 

Large cities often smell like rotten garbage during the summer and like burnt coal during the 

winter. Farther away from cities, the smell of flowers fills the air in spring, the smell of burnt 

grass in summer, and the smell of decaying leaves in fall. Some societies have used such 

seasonal regularities in the temporal patterns of odors to construct calendars based on olfaction 

(Classen, Howes et al. 1994) (pages 95-97). Different times of the day also have different smells. 

For some, mornings smells like coffee, mid-day like cafeteria food, and evenings like beer. 

 

In addition to these regular annual and circadian fluctuations in odors, regularly occurring events 

are also sometimes associated with specific smells. These can be natural events, like the 



78 

blooming period of a certain flower, or cultural events like Christmas or Thanksgiving. 

Successions of smells can also form olfactory events on shorter time-scales. An example of such 

a temporally structured olfactory event is the grilling of a steak. The smell of the meat will 

intensify as it heats up on the grill. Then the smell will change in quality from cooked meat to 

burned meat. After the steak is entirely burned, the smell will become less intense and eventually 

disappear.  

 

Because of the difference in physical nature between odorant molecules, vibrating air, and 

photons, olfactory events unfold several orders of magnitude slower than auditory or visual 

events. To illustrate the difference, let us consider an event that can be perceived both visually 

and olfactorily: the removal of a bouquet of fragrant flowers from a room. The visual perception 

is mediated by the photons that are reflected by the flowers. When somebody comes in, picks up 

the bouquet of flowers, and takes it away, the photons that are reflected by the flowers no longer 

reach the perceivers eye. The photons that were reflected by the flowers before they were 

removed from the room have been absorbed by matter. In contrast, the olfactory perception is 

mediated by odorous molecules given off by the flowers. When somebody comes in, picks up the 

bouquet of flowers, and takes it away, all the molecules that have been given off by the flowers 

before the flowers were removed remain in the room. As long as the flowers were in the room, 

there was an equilibrium. The flowers gave off a certain amount of odorous molecules per time 

unit and a certain amount of odorous molecules escaped from the room through the gaps under 

the door, etc. After the flowers have been removed, the concentration of odorous flower 

molecules in the room will slowly decline. How long it will take until the concentration is 

appreciably reduced depends on the circumstances. It can take hours or days. A perfectly 
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insulated room that is filled with an odorant will remain filled with the odorant for weeks or 

months. When a different bouquet of flowers is brought into the room, the odorous molecules 

from the new flowers will mix with the odorous molecules from the flowers that were in the 

room before. The stimuli in olfaction are, under normal conditions, rarely temporally separated. 

Instead sequential stimuli overlap and mix. 

 

Temporal structure of olfactory perception 

Not surprisingly, our olfactory sensory system is adapted to the slow-moving stimulus that it 

detects and not optimized for high temporal resolution. Before an odor molecule can be sensed, it 

has to be transported to the top of the nasal cavity through sniffing. Once it reached the olfactory 

epithelium, it has to diffuse through the olfactory mucus, a gel-like secretion that protects the 

sensory neurons from physical damage, but allows odor molecules to diffuse from the nasal 

cavity to the surface of the sensory neurons. The molecular processes at the surface of the 

sensory neurons through which odorants activate sensory neurons are also much slower than 

those through which photons activate photoreceptors.  

 

In addition to the relative slowness with which it unfolds, olfactory perception also differs from 

other modalities in that it is temporally discontinuous. Olfactory perception is discontinuous 

because it depends on sniffing (Mainland and Sobel 2006). We perceive our chemical 

environment as parceled by sniffs: in short, discreet olfactory experiences every 1.6 seconds 

(Laing 1983; Mainland and Sobel 2006). Because of this discontinuity, human olfaction has been 

called "a constant state of change-blindness" (Sela and Sobel 2010). The analogy between 

olfaction and change blindness in vision is that change in an image is easy to detect when the 
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altered image appears immediately after the original image. In contrast, when the two images are 

temporally separated by a mask, the change is more difficult to detect due to change-blindness 

(Simons and Rensink 2005). Similar phenomena have also been described in touch (Gallace, Tan 

et al. 2006) and audition (Vitevitch 2003). However, in olfaction, two percepts are always 

separated by a period of no perception. The special experimentally induced conditions under 

which change detection fails in other modalities are very similar to the normal condition of 

olfactory perception. Consequently, the detection of temporal changes in olfaction is more 

challenging than in other modalities. To overcome this challenge, the olfactory system has 

adopted an adaptation-based strategy of change detection (Wilson and Stevenson 2006). If 

sequential sniffs bring the same stimulus to the olfactory sensory neurons, the neurons will adapt 

to the stimulus and their response rate will decline. If a novel stimulus is encountered, neurons 

will start firing again. This is how change is perceived in olfaction. 

 

The combination of the temporal structure of odor stimuli and the characteristics of the olfactory 

sensory apparatus result in a very impoverished temporal structure of olfaction. The main 

temporal aspect of odor perception is that intensity and quality of the perceived smell change 

over time. In vision and audition, in contrast, temporal structure can add much more information. 

Consider for example bird song, or language, in which the temporal sequence within an auditory 

perception carries all the relevant information. Similarly, the sequence within a visual perception 

makes the difference between a movement from left to right and a movement from right to left. 

In olfaction, neither the encoding of information in sequences that is seen in audition, nor the 

combination of spatial and temporal perception to perceive motion is possible. All that the 
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temporal structure in olfaction informs us about is the change of the type and number of odorous 

molecules in our nasal cavity.  

 

3.4. Conclusion: Olfactory perception is the perception of a sequence of spatially 

unstructured perceptual qualities 

In this chapter, I have shown that olfactory perception has no spatial structure and a severely 

impoverished temporal structure. On the other hand, as discussed in chapter 1, olfaction has 

many more discriminable qualities than other perceptual qualities. This suggests that in olfaction, 

the nature of the perceptual qualities is the important information. In vision, it is how the 

perceptual qualities are arranged in space, and in audition, the important information is the 

temporal arrangement of perceptual qualities. The differences are differences of degree; 

however, they are the cause of how we tend to think about these three modalities. In this 

conclusion, I will illustrate these differences using thought experiments. 

 

In visual perception, the behaviorally most relevant information is in the spatial structure of the 

perception. Wearing goggles that invert the visual field so that what is on the left in physical 

space is perceived to be on the right and vice versa severely reduces the ability to use vision to 

guide the behaviors it usually guides. Inverted visual perception is of no help in winning a fight, 

hunting a boar, or manipulating tools. Punching to the left when one's opponent is to one's right 

is not adaptive. Eventually, people adjust to inversion goggles and start to punch to the left when 

they perceive their opponent on their right. However, one can imagine goggles that present the 

visual field in continuously changing, random orientations. It is not possible to adjust to such 

goggles and to the individual wearing those goggles, vision will be almost completely useless. 
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The goggle leave the temporal structure of visual perception intact. Colors are also perceived the 

same with the goggles as they are perceived without them. This shows that disrupting the spatial 

orientation of the percepts alone, while leaving other aspects of perception unchanged, has a very 

strong impact on the usefulness of visual perception. Seeing a boar does not help in hunting the 

boar when one cannot see where it is. Seeing that a fist is about to strike does not help in 

blocking the blow when one cannot see from where it is about to strike. Seeing a tool does not 

help manipulate that tool when one cannot see where the tool is. It is only through its spatial 

structure that visual perception enables us to do all those things. 

 

In auditory perception, the spatial arrangement of perceptual qualities is much less important 

than in vision. Instead, most of the behaviorally relevant information in audition is in the 

temporal sequence of perception. To illustrate the importance of temporal information for 

auditory perception, imagine headphones that temporally rearranged the sequences of perceived 

auditory perceptual qualities. This would make audition almost completely useless, because we 

usually recognize auditory events through their typical temporal structure. Listening to 

recordings backwards makes it difficult to identify auditory events. It is possible to learn to 

recognize temporally inverted events. However, when the perceptual qualities that make up those 

events are randomly rearranged, it will be very difficult to recognize them. The headphones that 

rearrange auditory perceptual qualities in time leave the spatial structure of auditory perception 

intact and do not change the pitch and loudness of tones. However, without the temporal 

sequence information, auditory information would be almost completely useless. The impact of 

such a manipulation of auditory perception on its utility would be much more severe than the 

impact of manipulating the spatial arrangement of auditory perceptual qualities. Redirecting the 
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input that normally reaches the left ear to the right ear and vice versa will affect some behaviors 

guided by audition, like turning away from an explosion to protect one's face. However, many 

other auditorily guided behaviors, for example those dependent on communication, are 

independent of the spatial information reflecting the source of the sounds.  

 

In olfaction, neither the manipulation that would dramatically disrupt visually guided behaviors 

nor the manipulation that would dramatically disrupt auditorily guided behaviors would have a 

noticeable effect. Redirecting the air that would normally go into the left nostril to the right 

nostril at random would not change perception at all, because humans cannot tell the difference 

between the two conditions. Dividing the olfactory stimuli into short temporal sections and then 

presenting these sections out of sequence would presumably be noticeable under certain 

circumstances, depending on how long the temporal sections are. However, in contrast to the 

effect on sound-guided behaviors, such a manipulation would not affect odor-guided behaviors 

dramatically.  In olfaction, all the behaviorally important information is in what type of 

perceptual quality is perceived. This is why there are trillions of different smells and only a few 

hundred thousand tones. 

 

Of course, the perceptual qualities are central to perception in all modalities. It is the 

arrangement of these perceptual qualities in space or time that provide the behaviorally most 

relevant information in vision and audition. If there were no perceptual visual qualities, they 

could not be arranged in space or time. The difference between olfaction and the other senses is 

that in olfaction the nature of the perceptual qualities carries all the behaviorally relevant 

information. Imagine goggles that change each type of color quality into a random other type of 
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color quality. Bright and fully saturated orange would be perceived as dark, unsaturated blue. 

Many visually guided behaviors -- manipulating tools, hunting boars, fighting -- would be little 

affected by such a change. The effect of changing each type of perceptual quality in audition into 

another type would be similarly limited. Imagine headphones that change each type of auditory 

quality to a different type of auditory quality. This would not have a large impact on our 

auditorily guided behaviors. In contrast to the limited effect in vision and audition, if a device 

would change each type of olfactory perceptual quality into another type, olfaction would be 

completely useless. Perceiving vanilla smell as leather smell and rose smell as rotten meat smell 

will make it impossible for any adaptive behavior to be executed in response to olfactory 

perception14. 

  

                                                           
14 The importance of the type of perceptual quality over their position in space and time that is 

found in olfaction is presumably the original, and most common, state of perception. When it is 

cold, we know to wear a coat or show other heat preserving behaviors, regardless of the spatial 

and temporal structure of the cold. When we taste sugar, we should swallow what is in our 

mouth because it likely has high caloric content. The spatial and temporal structure of the 

gustatory perception is not important for guiding this behavior. Human vision and human 

audition are highly specialized evolutionary derived instances of perception in which 

arrangement in space and time has become more important. 
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Chapter 4: Olfactory objects 

In the first three chapters, I have discussed perceptual qualities and how perceptual qualities can 

be arranged in space and time to form percepts. Introspectively, it usually does not appear to us 

as if we perceive arranged perceptual qualities. Instead, it appears as if we perceive objects and 

their properties. Based on this introspective evidence, object-based accounts of perception have 

been developed. Objects of perception are most often associated with vision and touch. The 

traditional auditory counterpart to the visual object is the auditory event (Blauert 1997). In the 

name of identifying commonalities between modalities, talk of "auditory objects" has become 

more common both in neuroscience (Griffiths and Warren 2004; Bizley and Cohen 2013) and in 

the philosophy of perception (O'Callaghan 2008; Matthen 2010; Nudds 2010)15.  

 

The modality to which an object-based account of perception has been most difficult to 

generalize is olfaction16. Barwich writes: "The more we understand about the 

multidimensionality of olfactory experiences and the processes of smell perception with which 

they resonate, the more apparent it should become that object-based talk about perceptions is no 

longer tenable, if it ever was" (Barwich 2014). I agree with Barwich and in in the first part of this 

chapter, I will show that the common criteria for objecthood fail to pick out olfactory objects. It 

                                                           
15 As reasons why it is justified to think of audition as involving objects, it has been pointed out 

that "audible individuals are temporally extended and bounded, serve as the locus for auditory 

attention, prompt completion effects, and are subject to figure-ground distinctions in pitch space"  

O'Callaghan, C. (2014). "Auditory Perception." The Stanford Encyclopedia of Philosophy, from 

http://plato.stanford.edu/archives/sum2014/entries/perception-auditory/.  O'Callaghan 

O'Callaghan, C. (2008). "Object perception: Vision and audition." Philosophy Compass 3: 803-

829. proposed that objects in vision and in audition are mereologically complex individuals. In 

vision, complexity is conveyed by the perception's spatial features, whereas in audition temporal 

structure makes perception complex. 
16 For a defense of olfactory objects, see Stevenson, R. J. (2014). "Object concepts in the 

chemical senses." Cognitive Science 38(7): 1360-1383. 
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is possible to relax the criteria for objecthood so far that by definition all perception, including 

olfactory perception, is the perception of objects. In the second part of this chapter, I will show 

that under these circumstances, when olfactory perception is postulated to be the perception of 

objects, there are no satisfying candidates for what the objects of olfactory perception could be.  

 

4.1. Is olfactory perception the perception of objects? 

If a given instance of perception can be either the perception of objects or objectless perception, 

then criteria to decide whether a given instance of perception involves objects or not has to be 

developed. I will discuss in this section the two criteria that are most frequently applied. The first 

criterion, which dominates the scientific literature, is that perception is the perception of objects 

when it involves figure-ground segregation ((Kubovy and Van Valkenburg 2001) (page 102) 

(Stevenson and Wilson 2007) (page 1823)). The second criterion for perceptual objecthood that 

will be discussed in this section is that perception involves perceptual objects when the Many 

Properties Problem can be solved (Batty 2014; Carvalho). The Many Properties Problem is the 

problem of distinguishing stimuli in which the same properties are instantiated in different 

arrangements. That we can tell the difference between a painting of a blue triangle next to a red 

square and a painting of a red triangle next to a blue square shows that vision can solve the Many 

Properties Problem.  

 

Figure-ground segregation 

Seeing a person standing in front of a wall or a banana lying on top of a table are instances of 

perceiving a figure (the person or the banana) that can be distinguished from the ground (the wall 

or table). For smell, whether percepts have a figure-ground structure is less obvious than for 
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instances of visual perception. It has been argued that there is figure-ground segregation, and 

therefore an object of perception, in olfaction (Stevenson and Wilson 2007). I will investigate 

this claim here. I will consider whether there is figure-ground segregation in olfaction first for 

olfactory perception without temporal structure and then for instances of olfactory perception in 

which the potential figure has a temporal structure. 

 

At any given moment, a mixture of different odor molecules at different ratios activates our 

olfactory system. This ratio carries no spatial information (see section 3.1.). A rose under your 

nose will produce the exact same activity of the olfactory sensory neurons as an intricate spatial 

arrangement of 275 vials, each of which containing the appropriate concentration of one of the 

275 chemicals that are found in rose oil (Ohloff 1994) (pp. 154-158). An apple under your nose 

in a vineyard can produce the exact same pattern of activity in the olfactory sensory neurons as a 

bunch of grapes under your nose in an orchard. More generally, a weak source of odor A that is 

placed close to the perceiver in front of a strong background of odor B can be indiscriminable 

from a weak source of odor B close to the perceiver in front of a strong background of odor A. 

Olfactory perception does not have a figure-background structure that reflects position of the 

stimuli in physical space like the figure-background structure in visual perception.   

 

The conclusion that there is no figure-ground segregation in olfaction because olfactory percepts 

do not reflect positions of stimuli in physical space can be challenged in several ways. First, 

instead of being based on the perceived spatial relation between figure and ground, the 

distinction between figure and ground in olfaction could be based on intensity. Smells in nature 

are usually mixtures of many different odorants. When one of these odorants within the mixture 
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dominates the perceived smell, it could metaphorically be thought of as "rising above the 

background". This could be interpreted as intensity-based figure-ground segregation. Imagine 

smelling a wine that smells strongly of apple as well as weakly of pineapple, cinnamon, and 

cherry. Smelling this wine could be described as a figure of apple with a background of 

pineapple, cinnamon, and cherry. Another way in which olfaction could accomplish figure-

ground segregation is through differential familiarity. An odor mixture could acquire a figure-

ground-structure when its components differ in their familiarity. Imagine smelling a wine that 

has a weak apple smell as well as weak cardamom, turmeric, and elderberry smells. Imagine 

further that you never before smelled cardamom, turmeric, and elderberry. This situation can be 

described as perceiving an apple object and an unidentifiable background. Finally, a similar 

phenomenology can emerge due to violation of expectation. A wine that smells like a normal 

wine but also has an unexpected fishy smell can be described as a fish object and a wine 

background. In all these examples of olfactory perceptions that could be considered as having a 

figure-background structure, the distinction between figure and background is based on the 

prominence of some aspect of the olfactory percept. The prominence can be conveyed through 

intensity, familiarity, or unexpectedness. The prominent aspect is interpreted as the figure while 

the less prominent aspects form the background. 

 

To decide if any of these situations should be considered as evidence for figure-ground 

segregation in olfaction, it is informative to compare them to analogous situations in visual 

perception. The first case, strong apple odor perceived simultaneously with weaker other odors, 

corresponds to the visual scenery of looking at a tiled bathroom wall with differently colored 

tiles. The color of one tile is darker and more saturated than the colors of the other tiles. The 
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second situation, apple odor together with an unknown mix of odors, corresponds to the visual 

experience of seeing a pile of unfamiliar-looking alien artefacts with a dead cow in between 

them. The third situation, unexpected fish odor mixed with regular wine odors, corresponds to 

the visual perception of a pink banana in a bunch of yellow bananas. A review of the literature 

on visual perception shows that such situations would be described as allocation of spatial 

attention depending on stimulus salience. They would not be considered instances of figure-

ground segregation. Since salience-based attention allocation is not considered to be evidence for 

figure-ground segregation in vision, it should also not count as evidence for figure-ground 

segregation in olfaction. 

 

My discussion of figure-ground segregation in olfaction so far has abstracted away from the 

temporal structure of perception. I have only shown that stationary olfactory snapshots do not 

have a figure-ground structure. Differential prominence of different features of an olfactory 

percept does not amount to figure-ground segregation. However, olfactory perception does also 

have a temporal structure. The figure-ground segregation in olfaction could be based on the fact 

that different sets of features of an olfactory percept covary over time (Wilson and Stevenson 

2006; Carvalho 2014). This is an intriguing idea because our sense of smell is optimized to 

detect changes rather than states. We adapt quickly to any temporally constant odor and therefore 

stay sensitive to changes (Dalton 2000; Stevenson and Wilson 2007). The constant odor to which 

we are adapted, and therefor perceive only weakly, can be considered "background odor". Any 

change "in front" of this background can then be considered an object. Olfactory objects, 

according to this description, are similar to auditory events. There may be an olfactory 

background consisting of a mix of body odors and low-grade pollution and then a strawberry 
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odor appears and lasts for a few moments before it disappears again. The strawberry odor that 

changed while the other odors remained constant can be thought of as an olfactory perceptual 

object. 

 

As with prominence-based attention, it is informative to consider whether covariation over time 

would be considered as evidence for figure-ground segregation in visual perception. Consider the 

banana as a figure and the table as a background. Now imagine that there is some localized 

damage and skin abrasion to the banana. Over time, the damaged spots of the banana will turn 

brown while the rest of the banana and the table do not change color. This would not result in a 

reassessment of the figure-ground segregation so that the brown spots on the banana are now 

considered the object and the yellow part of the banana and the table the background. Temporal 

changes do not introduce figure-ground relations in vision. It is therefore parsimonious that such 

temporal changes also do not introduce figure-ground relations in other modalities. 

 

Another reason to resist a notion of perceptual objecthood that is based on the temporal structure 

of perception is that such a notion would be so inclusive that "perceptual object" would become a 

synonym of "percept". If appearance and disappearance of a perception is sufficient to make it 

the perception of an object, then all perceptual systems that detect change over time detect 

perceptual objects. A hypothetical sensory system that consists of a single sensory neuron can 

distinguish objects from background, when objects are defined by their temporal structure. The 

neuron will permanently be activated at an intermediate level due to background levels of the 

stimulus. Occasionally, it will be strongly activated for a certain period of time when it 

encounters high levels of the stimulus. Afterward it will go back to the intermediate level of 
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activation. The periods of strong activation can be interpreted as the objects that can be 

segregated from the constant background. Under this notion of perceptual object, all perception 

is the perception of objects and the dispute about objecthood becomes a dispute about 

terminology. 

 

The Many Properties Problem 

Instead of using figure-ground segregation as the criterion of objecthood in perception, it has 

been suggested that perception is only the perception of objects when the Many Properties 

Problem can be solved. The Many Properties Problem (Jackson 1977) is the problem of 

assigning properties to objects in situations in which several objects are perceived 

simultaneously. When we see a blue circle and a red square, we can solve the Many Properties 

Problem and assign the properties "blue" and "round" to one object and the properties "red" and 

"square" to the other object. The way the Many Properties Problem is solved in visual perception 

is by grouping properties together based on their location in perceived space. Properties that 

move through space together are properties of the same object. In olfaction, there is no perceived 

space. Regardless, two different identifiable smells can be identified at the same time. We can 

simultaneously perceive wine smell and sausage smell. If either the sausage smell or the wine 

smell has a spicy quality, can we assign the spiciness to one of the two smells? If we can, then 

olfaction can solve the Many Properties Problem. 

 

It has been suggested that olfaction can solve the Many Properties Problem and that "spicy wine, 

and sausage" does in fact smell different from "wine, and spicy sausage" (Carvalho) (page 12). 

However, no biological mechanism on which this capacity could be based has been suggested. 
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The molecules that arrive at the olfactory epithelium and elicit the percept of "spicy wine and 

sausage" are identical to the molecules that elicit the percept of "wine and spicy sausage". One of 

the many molecules that are perceived as spicy is cuminaldehyde. Cuminaldehyde is found in 

some wines and it gives the smell of those wines a spicy note. However, cuminaldehyde is also 

given off by some spicy sausages. When the cuminaldehyde molecules reach the olfactory 

sensory neurons, they do not carry information about their source. The perception is the same 

regardless of whether the cuminaldehyde is given off by the sausage or by the wine. Olfaction 

cannot solve the Many Properties Problem (Batty 2010; Batty 2011). Because we cannot tell 

which property belongs to which potential olfactory object, we also cannot tell how many 

potential olfactory objects contribute to a given instance of perception. Instead of smelling spicy 

sausage and wine, or spicy wine and sausage, we may smell wine, sausage, and a jar of cumin 

oil. 

 

The finding that we cannot assign properties to smells seems to defy everyday experience. When 

an anchovy and garlic pizza is delivered, we know that the anchovy smell and the garlic smell 

are both properties of the pizza smell. However, this knowledge is based on background 

knowledge and assumptions rather than on perceptual grouping of the anchovy and garlic smell. 

If the pizza that is delivered does not have anchovies on it, but the pizza deliveryman carries 

some anchovies in his pocket to snack on, we will incorrectly assume that both the garlic smell 

and the anchovy smell are properties of the pizza. This is because our assigning of properties to 

smells is not based on the structure of our percepts, but on our assumptions about the most likely 

scenarios. Similarly, an individual familiar with spicy sausages but not with spicy wine will 

interpret the stimulus discussed above as the perception of wine and spicy sausage. An individual 
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that is familiar with spiced wines, but not with spiced sausages will interpret the same stimulus 

as the perception of spiced wine and sausage. Nothing in the olfactory percept itself enables us to 

assign the spiciness to either of the two smells.  

 

Just like figure-ground segregation, solving the Many Properties Problem is possible in olfaction 

when the temporal structure of olfactory perception is taken into account. Covariance between 

the sausage and spice smell over time are good evidence that they are released by the same odor 

source and that they are properties of the same object. However, as discussed above, if temporal 

criteria would be sufficient for objecthood, then all perception with temporal structure would be 

the perception of objects and "object-based perception" would just be a different word for 

"perception". 

 

4.2. What could be an olfactory object? 

In section 4.1., I used two different criteria for objecthood to investigate whether olfactory 

perception involves the perception of objects. The result of this investigation was that the only 

conceptual framework under which olfactory perception is the perception of objects is one under 

which every instance of perception is the perception of objects. If such a definition of objecthood 

is endorsed, the question whether olfactory perception is the perception of objects is not an 

empirical question. Instead, olfactory perception is by definition the perception of olfactory 

objects. In this section, I will investigated what the objects of olfactory perception that are 

postulated by such an approach could be. 
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I will first discuss candidates for olfactory objects that have been suggested in the literature. The 

most obvious candidates for olfactory objects are the source of the odorous molecules, the clouds 

of odorous molecules that are given off by the source, and the molecules themselves. In the 

second part of this section, I will use phenomenal presence as the criterion for what the objects of 

olfactory perception are. This criterion has been suggested by Budek and Farkas, who propose 

that the causes of an instance of perception that are present in phenomenology are the objects of 

that instance of perception (Budek and Farkas 2014). 

 

Potential odor objects 

A straightforward proposal about olfactory objects is that the source of the odorous molecules is 

the object of the olfactory perception. Benjamin Young  calls this view, which is based on naive 

realism about perception (Gibson 1966), the "ordinary object view" (Young) (page 46). 

According to the ordinary object view, the objects of the smell of lions are lions. One problem 

with this view is that the source of odorous molecules can be specified at different levels. What 

appears to be lion smell is mostly the smell of lion urine, so both the urine and the lions 

themselves are possible objects of the perception. Somebody driving by the zoo may think of the 

entire zoo as the object of the lion smell. Lion urine, individual lions, the pack of lions, the lion 

enclosure, and the zoo all can be considered as the source of the lion smell and therefore as its 

object. 

 

Another problem of the ordinary object view of olfactory perception is that the link between the 

source of molecules that cause olfactory perception and the perception is much weaker and less 

direct than the link between the source of the light that causes visual perception and the 
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corresponding visual perception. The smell of lions will linger for a long time after the lions 

have been moved to another zoo. The lion odor will also stick to their zookeeper's clothes so that 

when she comes home, she will smell of lions. Are the zookeeper's clothes now the object of 

perception? These examples show that smells, after they are given off by their sources, are no 

longer linked to them. It is therefore difficult to identify the "original" source of a smell, and 

practically often impossible to track a smell back to its source17. 

 

Because of these problems with applying the ordinary object view to olfaction, several 

alternatives have been proposed. One alternative suggestion is that the cloud of odorous 

molecules given off by the odor source is the object of olfactory perception (Lycan 2000). This 

cloud object view avoids the problems of unambiguously identifying the source of the cloud of 

molecules that make the ordinary object view unattractive for olfaction. The disadvantage of this 

view is that it cannot be integrated into an evolutionary account of perception. The perception of 

lions provides useful information that can guide behaviors that increase the perceiver's fitness by 

decreasing the likelihood of being eaten by a lion. The perception of a cloud of odor molecules, 

                                                           
17 How strongly the messengers of perception are linked to their source is a matter of degree. The 

difficulties pointed out here are not unique to olfaction; they are however much more 

pronounced in olfaction than in other modalities. An example of a weak link between the 

messengers of perception and their source in vision is our visual perception of objects that are 

very far away. We can see stars that no longer exist, because the light from the stars takes a long 

time to reach our eyes and sometimes a star will cease to exist while the light is travelling from it 

to the earth. Even the stars that still exist are perceived to be at the position in the sky where they 

were when they gave off the light and not where they are when we perceive them. The path of 

light can also be changed through gravitational deflection. All these phenomena make the link 

between light and its source less direct. In most cases of everyday perception, the connection 

between light and its source is however much more direct than the connection between an odor 

and its source.  
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on the other hand, is in most cases not adaptive (as has been pointed out by Ruth Millikan in 

conversation with Bill Lycan (Lycan 2014) (page 7)). 

 

A more technical problem with the cloud object view is that an odor source usually gives off 

hundreds of different odorous molecules. Presumably, under the cloud object view, each type of 

molecule is considered to form its own cloud. The perception of the smell of lions therefore is 

the perception of hundreds of different objects. Alternatively, all the different types of molecules 

given off by the lions could be considered to form a single cloud. However, at any time, different 

types of molecules that have been given off by different odor sources are in the air. The only 

thing the different types of molecules that are given off by a lion have in common is that they 

have been released from the same source. The only way to determine which of the many 

molecules in the air belong to the lion odor cloud is therefore by reference to the odor source. 

This reintroduces all the problems of the ordinary object view that the cloud object view was 

supposed to solve.   

 

An alternative to the ordinary object view and the cloud object view is the molecule object view, 

according to which the odorous molecules that bind to our odorant receptors are the olfactory 

objects. Benjamin Young has developed a proposal along these lines, although he does not 

consider the entire odorous molecule, but just its chemical structure, to be the object of olfaction 

(Young 2011). The advantage of a molecule object view over the cloud object view and the 

ordinary object view is that the perceptual qualities associated with olfactory perception are 

related to properties of the molecules, not to properties of the ordinary object or the cloud. 

Depending on the different chemical and physical properties of the molecules, they interact with 
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different combinations of odorant receptors. This combinatorial code determines the perceived 

smell. Differences in molecules therefore result in differences in perception. With the molecule 

object view, the correlation between physical differences between two objects and differences in 

the perceptual qualities associated with the two objects is much higher than with the ordinary 

object view or the cloud object view. 

 

Accounting for the differences and similarities in perceived smells is an important advantage of 

the molecule object view. However, the molecule object view faces the same problems faced by 

the cloud object view. It fails to provide a connection between perception and adaptive behavior. 

Smelling macrocyclic rings with two hydrogen bonds at the central oxygen conveys no adaptive 

advantage. Another problem that the molecule object view inherits from the cloud object view is 

the unsatisfying account of the perception of odorant mixtures. Wine gives off hundreds of 

different types of molecules that have different chemical structures (Aznar, López et al. 2001). If 

molecules (or their structure) are the objects of olfactory perception, then we perceived hundreds 

of different objects when opening a bottle of Chardonnay.  

 

The ordinary object view, the cloud object view, and the molecule object view all have their 

advantages and disadvantages. Maybe it is not necessary to pick one over the others. Instead, the 

advantages of all three views could be combined. The zoo, the lions, their urine, the cloud of 

molecules that forms above the urine, and the structure of the molecules in that cloud could all 

be objects of olfaction. Such a layered account of objecthood has been suggested by Lycan 

(Lycan 2014; Lycan 2014). This layered account of objecthood is inspired by the layered 

accounts of referring. Lycan's example of a layered account of referring is that we can point at a 
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chalk mark on a board and thereby refer to a number; thereby we refer to a room; thereby we 

refer to the occupant of that room. The analogous account for olfaction would be that by 

smelling a certain molecule, we smell the cloud of molecules it belongs to; thereby smelling the 

lions that gave off the cloud of molecules; thereby smelling the zoo in which the lions are 

housed. 

 

Phenomenal presence as a criterion for objecthood 

There are different suggestions about what the objects of olfactory perception could be. How can 

we decide which of the different proposals correctly identifies the olfactory object? It may be 

counterintuitive that we perceive hundreds of different objects when we perceive a Chardonnay. 

However, if a theorist is willing to accept this consequence of her view of olfactory objects, what 

procedure can be used to find out whether she is right? One proposal for identifying the object of 

an instance of perception is to use phenomenal presence as the criterion for objecthood. 

Following this proposal, the objects of an instance of perception are the causes of that instance of 

perception that are present in phenomenology (Budek and Farkas 2014) 18. 

 

Every instance of perception has causes. The perception of rose odor is caused by the rose and by 

the clouds of odor molecules given off by the rose and by the binding of those molecules to 

                                                           
18 The investigation of phenomenal presence as a criterion for objecthood is the only part of this 

dissertation in which it is important whether perception is conscious or not. Phenomenal 

presence requires conscious perception, so non-conscious perception cannot involve objects. 

Even when unconscious perception involves the perception of figures with properties that are 

correctly assigned to them in front of a background, it is not the perception of objects. On the 

other hand, according to the proposal by Budek and Farkas, every instance of conscious 

perception is an instance of the perception of objects because in every instance of conscious 

perception something is phenomenally present. That something is the object of the instance of 

perception. 
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olfactory sensory neurons. One could consider these causes of the instance of perception to be its 

objects. Lycan's layered account of objecthood suggests something similar. However, calling the 

causes of an instance of perception its objects does not result in an interesting notion of 

objecthood. Instead, it merely results in a change in terminology from "causes" to "objects". The 

proposal suggested by Budek and Farkas is that only a subset of the causes of perception, namely 

those causes that are phenomenally present are the objects of that instance of perception (Budek 

and Farkas 2014). We may "see" that it is cold outside because it is snowing, but the temperature 

is not present in our visual phenomenology and therefore not an object of our visual perception. 

The snow, on the other hand, is present in our phenomenology, and is therefore an object of this 

instance of perception. The objects are whatever is phenomenally present in a given instance of 

perception. What would this be in the case of olfactory perception? 

 

The methods of determining what is phenomenally present are problematic because the main 

evidence for phenomenal presence is introspection, and introspections differ between 

individuals. This variability has resulted in different proposals about the objects of visual 

perception. Some theorists have argued that in instances of visual perception only colors and 

shapes are present in phenomenology (for example (Tye 1995)). Others have reported that  

objects such as pine trees are present (for example (Siegel 2006)). I hope that in the case of 

phenomenal presence in olfactory perception things are so clear-cut that there are no 

disagreements about introspections. 

 

For people who are unaware of the advances in smell research, the only things that can be 

phenomenally present in olfaction are ordinary objects. It has been a scientific discovery that 
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odor perception is mediated through molecules that form clouds. Not that long ago, it was 

speculated that olfaction could be mediated by waves in a way similar to the way in which 

audition and vision are mediated. It is not uncommon to meet people who are not aware that 

olfaction is mediated by molecules. An even more recent scientific discovery was that the 

structure of a molecule determines its smell. This discovery is so recent that it is still disputed 

and not universally accepted. The alternative suggestion is that intramolecular vibrations of the 

molecule determine the molecule's smell (Turin 1996). What does this mean for the phenomenal 

presence of clouds of molecules and of features of those molecules? Is the object of olfactory 

perception for scholars who believe in the vibrational theory of olfaction the vibrations of the 

molecules, whereas it is the structure of the molecules for those who believe that the structure 

determines a molecule's smell, and for the vast majority of humans who have no knowledge 

about these things, it is neither? Such an account of perceptual olfactory objecthood as dependent 

on the perceiver's believes and knowledge about olfactory perception is unsatisfying. A scholar 

who believes in the vibrational theory of perception would perceive the odor molecules' 

vibrations, whereas a supporter of the shape theory of olfaction would perceive the odor 

molecules' shape. Which of the two perceptions is veridical (if any of them is) depends on yet 

unknown facts about the perceiver's olfactory system. The perceptual objects are perceiver-

dependent. 

 

Perceiver-depend olfactory objects have also been suggested in the context of the perceived 

valence of perceived odors. In this context, what the object of olfactory perception is does not 

depend on the perceiver's textbook knowledge about olfaction, but on the perceiver's attitude 

towards the odor. Yeshurun and Sobel write: 
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We suggest that an odor object is the integration of the odor’s inherent pleasantness (...) 

with the subjective state at the moment of coding: mood, hunger, fear, etc. Therefore, an 

odor object is not the odor of the banana but rather an integration of the pleasantness of 

the banana odor with the subjective state at which it was encountered. (Yeshurun and 

Sobel 2010) (page 229) 

 

A similar proposal suggests that the object of olfactory perception is the biological value to the 

perceiving organism (Castro and Seeley 2014). What is phenomenally present when an odor is 

perceived, according to these proposals, is the pleasantness, or the value, of the odor. As a 

consequence, if objecthood depends on phenomenal presence, what the object of a given instance 

of olfactory perception is does not depend on the physical features of what is perceived or on the 

perceptual system with which it is perceived. Instead, what the perceptual object of an instance 

of olfaction is depends on the current behavioral goals and motivational states of the perceiver. 

 

4.3. Conclusion: Olfactory perception is not the perception of objects 

I do not want to deny that most instances of perception appear to us as if they are the perception 

of objects. Consider for example the tactile perception of an object that is stuck in your throat, or 

under your eyelid. The object that is stuck under the eyelid has a certain size and it is located at a 

certain position. The object also has non-spatial properties. It may be hot or rough, for example. 

As we know, the perception of an object stuck under the eyelid is in many cases illusionary. 

Such a perception is often not caused by a physical object. Instead, the perception of something 

being stuck in the perceiver's throat or under her eyelid, similar to the perception of an insect 

walking over the perceiver's skin, is usually caused by localized irritation of the skin or mucosa. 

This illusion of objecthood shares many features with other types of illusions. The illusion of 

objecthood, for example, resists cognitive influence. Even when my doctor inspects the inside of 
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my eyelid and informs me that the perception is caused by localized irritation and not by a 

physical object, the illusion of perceiving an object under my eyelid continues.  

 

A thought experiment shows how tightly illusory objecthood is linked to the spatial arrangement 

of perceptual qualities. Imagine that the skin irritation under the eyelid starts to spread. Once the 

perceptual qualities have spread to cover half of the perceiver's face, they are not perceived as an 

object that covers a large area of the face. Instead, they are now perceived as spatially arranged 

perceptual qualities. Because the perception of perceptual qualities that are spatially localized 

has a strong tendency to induce the perception of illusory objects, olfaction, in which perceptual 

qualities are not arranged spatially, is an ideal system to investigate perceptual objecthood 

without this complication. 

 

There are two ways to think of the role of objects in perception. One approach is to establish 

criteria for when an instance of perception involves objects and then investigate whether a given 

instance of perception is the perception of an object or not. The alternative approach is to 

postulate that all perception is the perception of objects. This makes sense when one believes that 

perception is best described in terms of perceptual objects. The question, when all perception is 

postulated to be perception of objects, is what the object of a given instance of perception is. 

 

In this chapter, I investigated two criteria that allow for an empirical test whether an instance of 

perception involves objects or not. The two criteria for objecthood I investigated are 

susceptibility to figure-ground segregation and capacity to solve the Many Property Problem. I 
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argued that olfactory perception fails to satisfy both criteria19. I have shown that those that 

claimed otherwise stretched the notion of figure-ground segregation so that it includes figures 

that are delineated only by temporal structure. Because every perception has a beginning and an 

end, this results in the conclusion that all instances of perception are instances of object 

perception. Any proposal of an empirical test that judges some instances of perception to be the 

perception of objects and other instances of perception to not be the perception of objects, judges 

olfactory perception to be not object-directed. 

 

However, testing for objecthood can be dispensed off when the olfactory perception is postulated 

to be perception of objects. There are many notions of objecthood that are so loose that they 

include all instances of olfactory perception. Jonas Olofsson for example writes that the unified 

olfactory percept is "commonly referred to as an olfactory object" (Olofsson 2014) (page 2). This 

approach suggests that there is no difference between the perception of objects and other 

perception, but that it is preferable, for theoretical reasons, to think about all instances of 

perception as involving objects. The important question, when perception is postulated to involve 

objects, is the nature of those objects. It is not easy to see what could count as a criterion for 

objecthood in such a situation20.  

                                                           
19 That olfactory perception in humans does not satisfy these criteria for objecthood is contingent 

on the structure of our olfactory system. If our body were covered in odor-sensitive cells, then 

some instances of olfactory perception could have a spatial structure and we could sometimes 

segregate odor figures from an odor ground. Olfaction's ability for figure-ground segregation 

would under these circumstances be similar to figure ground segregation in thermoperception. 

We can segregate the sun's heat radiation from background radiation. The sun is then the object 

of our perception of heat. Similarly, a hot potato that we hold in our hand can easily be 

discriminated from the temperature background. 
20 Lycan comes to a similar conclusion, that it is hard to argue for a claim for what vision does 

and does not represent Lycan, W. G. (2014). What does vision represent? Does Perception have 
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I have reviewed some suggested objects of olfactory perception: the odor source, clouds of odor 

molecules, and the molecular structure of the odor molecules. I then used phenomenal presence 

as the criterion to decide what the object of olfactory perception is. What is phenomenally 

present in olfactory perception depends on the perceiver. When a perfumer's olfactory sensory 

neurons are activated by the synthetic molecule Galaxolide, the Galaxolide molecule, or its 

structure, are phenomenally present for the perceiver. When the same molecule activates the 

olfactory sensory neurons of an average consumer, laundry detergent, or fresh laundry is 

phenomenally present. Galaxolide is added to laundry detergent to give it its characteristic smell. 

In 1964, before Galaxolide was first synthetized, the object of perception that is triggered by 

Galaxolide would have been "something smelly", because nobody could have associated the 

perceptual quality associated with Galaxolide with a specific molecule, or a specific source of 

odor molecules. In general, for all odors for which the perceiver neither knows the molecule nor 

the source, what is phenomenally present is "something smelly". This is unsatisfying, because it 

means that the perception of an unidentified extremely unpleasant and an unidentified extremely 

pleasant odor would have the same object. It has therefore been suggested to add an additional 

level of complexity by making the perceiver-dependent pleasantness of the odor a part of the 

olfactory object. 

 

The proliferation of different concepts of olfactory objects and the suggestions to make the 

relation between the perceiver and the odorous molecule part of the olfactory object show that no 

                                                           

Content? B. Brogaard. Oxford, Oxford University Press: 311-328.. So maybe these problems are 

not unique to olfaction. 
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candidate for olfactory object resembles the common notion of perceptual object. This, I suggest, 

is because olfaction is not an object-directed process. It is therefore not justified to postulate that 

all perception is the perception of objects. The notion of objects unnecessarily complicates the 

description of olfactory perception. An alternative view, which I endorse, has been proposed by 

Clare Batty, who holds that what we perceive in olfaction is not objects, but existentially 

quantified properties ("There is F-ness here") (Batty 2010; Batty 2011). According to Batty, 

olfactory perception does not involve objects that have properties. Instead, in olfaction, 

perceptual properties are "free-floating" or "object-less" (Matthen 2005; Batty 2010). Batty calls 

this view, which is motivated by many of the same considerations discussed in this chapter, the 

abstract view of olfactory content. 
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Chapter 5: The function of perception 

An important step to understanding any biological system is to identify its evolutionary function. 

What is the evolutionary function of perception21? Why have so many living things evolved 

elaborate systems to distinguish perceptual properties and to arrange them in spatial and 

temporal patterns? In this chapter, I will argue, perhaps uncontroversially, that it is the function 

of perception to guide behaviors. I will contrast this proposal with the alternative proposal that it 

is the function of perception to collect accurate information about the physical world22. In many 

instances of perception, this seems like a false dichotomy. Is it not possible that perception 

guides behaviors by collecting accurate information about the world? In this chapter, I will show 

that this is not possible. In some situations, guiding behaviors and collecting accurate 

information about the world are in conflict. In these situations, behavior guidance is always 

given priority over perceptual accuracy. I therefore propose that perception was shaped by 

natural selection to guide behaviors adaptively. The fact that in many cases it also collects 

accurate information about the physical world is due to the constraint that in some, or maybe 

even most, situations, behavioral guidance requires correct information about the physical 

                                                           
21 There are diverse philosophical theories about what "functions" in biology are (for a collection 

of essays on the topic, see Buller, D. J., Ed. (1999). Function, Selection, and Design. Albany, 

SUNY Press.). Functions can be either teleological functions, or causal (or systemic) functions. 

The teleological function of a biological structure or mechanism is what it was selected for 

Millikan, R. (1984). Language, Thought, and Other Biological Categories. Cambridge, MIT 

Press.. The causal function of a mechanism is the role of a structure or mechanism within a 

complex system Cummins, R. (1975). "Functional analysis." The Journal of Philosophy 72: 741-

765.. This discussion is about the teleological function of perception. The teleological function is 

supposed to explain why something is there. The teleological function of something is the same 

as its adaptive value or the reason why it was selected. 
22 I chose “collecting accurate information” as the alternative possibility of what perception’s 

non-behavioral function cold be. However, there are many similar proposals. One suggestion 

would be that perception maps the physical world accurately another that it represents the 

physical world accurately. My arguments that it is the function of perception to guide behaviors 

works against all of these non-behavioral proposals equally. 
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features of the environment. The collection of accurate information through perceptual systems 

is not a direct product of evolution. Perception-dependent behaviors are the direct products of 

evolution and the collection of correct information is a spandrel23. 

 

Let me illustrate the difference between correctness of information and behavioral-guidance 

using subway maps as an example. The function of subway maps is to help people navigate the 

subway system. It is not the function of subway maps to provide accurate information about the 

physical location of subway lines and stations. Of course, in many cases subway maps do 

provide accurate geographical information. However, whenever the map designer has to make a 

decision between two designs, one of which is more accurate and the other more useful, she will 

decide to make the map as useful as possible for those trying to navigate the subway system. 

This is because it is the function of the subway map to help riders navigate the subway system. 

That is what the map is for24. 

 

How can it be that reduced geographical accuracy of a subway map increases its usefulness as a 

tool for navigating the subway system? For the answer to this question, one has to compare a 

city's subway map with a geographical accurate map of the same city. Take New York City as an 

                                                           
23 Evolutionary biologists call byproducts of the evolution of other characteristics that 

themselves are not direct products of adaptive selection "spandrels" Gould, S. J. and R. C. 

Lewontin (1979). "The spandrels of San Marco and the Panglossian Paradigm: A critique of the 

adaptationist programme." Proceedings of the Royal Society of London, Series B 205(1161): 

581-598., 
24 Helping riders navigate the subway system is the function of the subway maps on display in 

subway stations. One can imagine other subway maps with other functions. There could be a 

map of the subway system used by the fire department for emergencies. In this map, 

geographical accuracy is important and it is irrelevant how helpful it is for navigating the subway 

system.  
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example. In Figure 11A, a section of the official Metropolitan Transportation Authority subway 

map of New York City is shown. In Figure 11B, the same section form an alternative, 

geographically more accurate, map is shown for comparison. The designers of the official 

subway map have sacrificed accuracy in the geographical information conveyed by the map to 

increase the map's usefulness in many instances. Most obviously, in the official map, Manhattan 

is represented as less narrow than it is. This makes it easier to discriminate and follow the many 

parallel train lines connecting uptown Manhattan to downtown Manhattan. The official subway 

map also smoothens the tracks of the lines, as can be seen for example in the section of the B and 

D train within the red rectangle in Figures 11A and B. In the red circle at the southern tip of 

Manhattan, it can be seen how the designers of the official map distorted the map to separate 

stations that are very close to one another. This makes it easier to identify and distinguish these 

stations. 

 

Another geographical inaccuracy that has been purposefully introduced by the designers of the 

official subway map to make it more useful is that they exaggerated the width of the Harlem 

River that separates Manhattan and the Bronx (black rectangles in Figures 11A and B). How 

does representing the river to be wider than it is make the map more useful? The river is a barrier 

and people taking the subway should be made aware of this barrier so that they can plan to exit 

the subway at a station that is on the same side of the river as their destination. How wide the 

river is does not matter, what matters is that it cannot be crossed. This is a typical situation in 

which geographical accuracy of a map and usefulness of a map are in conflict. Whenever a 

decision between accuracy and usefulness has to be made, the designer decides to make the map 

as useful as possible. 
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Figure 11: Two ways of representing the subway stations and tracks in Manhattan. A 

section of the official MTA subway map of New York City (A) and the corresponding 

section of a geographically more accurate alternative subway map (B) are shown. There 

rectangles, red squares, and black rectangles mark corresponding locations on the two 

maps. ((A) modified from the official MTA subway map; (B) modified from original 

work by SPUI (in the public domain under the Creative Commons License). 

 

Just as it is the function of subway maps to help riders navigate the subway system, the function 

of perception is to guide the perceiver's behavior. Subway maps often, but not always, use 

accurate geographical representations to help riders navigate the subway system and perception 

often collects accurate information about the physical world to guide behavior. However, 

collecting accurate information about the physical world is only one of many different strategies 

used by perception to fulfill its function. Collecting accurate information is the intermediate 

function of some forms of perception, whereas guiding behaviors is the ultimate function of all 

perception.  

 

In this chapter, I will show that chemosensory perception, and perception in general, fails 

spectacularly at collecting accurate information about the physical world. By "accurate" or 

"correct" perception, I mean perception that reflects similarities in the physical world in 

similarities in perception. Similar things are correctly perceived when they are perceived to be 

similar. In section 5.1., I will review evidence that different individuals, especially when they 

belong to different species, often perceive the same stimulus or object differently. Identical 

things are usually not perceived identically by two different perceivers, which shows that at least 

one of the perceivers perceives incorrectly. In section 5.2., I will then show that even within the 

same perceiver similarity relations in the physical world are not accurately reflected in 

perception. In all the cases that I will discuss, perceivers have evolved to perceive the physical 
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world less accurately than they could. In contrast, they perceive in all those cases the world in a 

way that ensures that they interact with it behaviorally in the most beneficial way for them. This 

discrepancy indicates that perception evolved to fulfill behavioral needs rather than to collect 

accurate information about the world. Those who resist a behavior-centered conception of the 

function of perception have responded to the type of evidence I will present in sections 5.1. and 

5.2. by redefining "correctness". In section 5.3., I will discuss the alternative notions of 

correctness that have been proposed and show that they result in a notion of correctness 

according to which perception is correct when it elicits an adaptive behavioral response. When 

such a behavior-based notion of correctness of perception is endorsed, then guiding behaviors 

and collecting correct information are the same thing and the conflicts  between them that exist 

when correctness of perception is based on a relation between what is perceived and how it is 

perceived disappear. 

 

5.1. Perceptual variability 

If all living things had evolved to collect accurate information about the physical world, one 

would expect all living things to collect very similar information, since they all live in the same 

physical world. In this section, I will show that this is not the case. I will provide a few examples 

of perceptual differences between different species, as well as examples of how the same stimuli 

are perceived differently by members of the same species, depending on their behavioral goals. 

Perceptual variability between species 

Comparative ecology has shown that different animal species often differ dramatically in how 

they perceive the physical world. Often this variability can be explained by the ecological niche 

inhabited by the species in question and by the behavioral repertoire with which the species 
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interacts with the environment. Bees, for example, visit flowers, where they collect nectar. It is 

therefore important for bees to be able to distinguish flowers. Since many flowers have UV 

patterns, bees evolved the ability to detect UV light, so they can distinguish flowers using the 

UV patterns on the flowers' petals25. Another example of animal species that have evolved the 

capacity to sense stimuli that humans are blind to are those species that can perceive electrical 

stimuli. Because water is a much better conductor of electricity than air, electroreception is most 

often found in aquatic animals. Sharks, for example, can sense the weak electric fields generated 

by the nerve and muscle activity of potential prey. Some shark species, such as the lemon shark, 

use this information to coordinate their attacks. Other animal species lost some perceptual 

capacities because they moved into an ecological niche in which there was no need to detect 

certain aspects of the physical world. Some species of cavefish, which live in dark caves, have 

lost their eyes and therefore their ability to perceive light (Jeffery 2009). Similarly, carnivorous 

mammals, which have a sugar-free, meat-only diet, do not need to perceive sweet tastants. 

Consequently, many species like the cat, the spotted hyena, and the fur seal, have lost their sweet 

taste receptor, Tas1r2 (Jiang, Josue et al. 2012). 

 

One could argue that in all these cases, the different species do not perceive the physical world 

differently; instead, they perceive different properties of the physical world. For example bees, 

with their capacity to perceive UV light, perceive the UV-reflecting property of the physical 

world. The blind cavefish, in contrast, do not perceive any light-reflecting properties of the 

physical world. However, in many cases, different animal species perceive the same properties of 

                                                           
25 The flowers provide from being visited by nectar-collecting bees because the bees carry pollen 

from one flower to the other, pollinating them. The bees' capacity to detect the UV patterns of 

flowers and the UV patterns of flowers therefore presumably coevolved. 
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the physical world, but the properties are perceived differently. Many examples have been 

discussed in section 2.1., where I discussed the diversity of perceptual spaces. However, not only 

the perceptual qualities themselves can differ between different species. The spatial and temporal 

arrangements of the perceptual qualities can also differ. Visual perception in fruit flies, for 

example, has higher temporal, but lower spatial resolution than human vision. The properties of 

the physical world that fruit flies and human perceive visually overlap largely, but how the two 

species perceive the physical world visually differs dramatically. 

 

Perceptual variability within the same species 

How the physical world is perceived differs not only between different species. Even members 

of the same species can have different behavioral goals and therefore different ways of 

perceiving their environment. In some species, for example, the perceptual systems differ 

between the sexes. The best-known examples are perceptual systems that are specialized for 

finding mates or facilitating courtship. Male moths, for example, have sensory organs that are 

specialized for the detection of the pheromones released by the females of the species. In other 

species, perceptual systems that are not involved in guiding sexual behaviors are sexually 

dimorphic. Some species of anglerfish, for example, show extreme sexual dimorphism. The male 

anglerfish are tiny compared to the females and spend most of their life as parasitic appendages 

attached to a much larger female. These males have very different behaviors than the females 

and therefore perceive the physical world very differently from them. Before the males attach to 

the female, they have large eyes that are specialized for detecting the bioluminescent lure of the 

female. After they attach to the female, the eyes degenerate. 
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Even within the same individual, the behaviors and therefore the demands on perception can 

change. Consider for example the fruit fly, which lives as a larva before it pupates and then 

emerges as an adult fly. The behaviors that need to be guided by perception for the larva are very 

different from the behaviors that perception has to guide in adults. The larva hatches from the 

egg on rotten fruit and spends the entire time before pupation eating. The adult fly that emerges 

from the pupae has a much richer repertoire of behaviors that includes finding a mate, mating, 

finding an appropriate site to lay eggs, laying eggs, and so on. Consequently, the same individual 

has a much richer perception of its environment as an adult. Most notably, adults fly whereas 

larvae cannot fly. The high temporal resolution of visual perception that flies need to execute 

flight maneuvers is therefor only found in the adult. 

 

In other cases, perception changes with the behavioral demands within the same individual in the 

same developmental stage. Female mosquitoes, for example, have to find an animal to bite 

because blood is their main source of protein. They need protein to produce eggs. After filling up 

with blood, the mosquito has to find a puddle of water to lay eggs in. This abrupt change from 

having to find a source of blood to having to find a place to lay eggs is mediated by a change in 

the olfactory sensory neurons of the animal. These neurons become less sensitive to body odors 

and more sensitive to odors given off by potential egg-laying sites  (Davis 1984). Similar 

changes in the activity of the most peripheral olfactory sensory neurons have also been found in 

other species (see for example (Root, Ko et al. 2011; Saveer, Kromann et al. 2012)).  

 

In humans, a good example to illustrate the dependence of perception on changes in behavioral 

goals is the change in is the change in olfactory perception during pregnancy (for a review, see 
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(Doty and Cameron 2009)). A large number of self-reports indicate that the perception of food 

smells changes during pregnancy. The reason for this is that the most adaptive eating behavior is 

different during pregnancy. A pregnant woman has to not only feed herself, but also the embryo 

growing in her. An adult usually eats for energy, but during pregnancy, there is rapid tissue 

growth that needs to be sustained with a different combination of nutrients. In addition to the 

need to fuel the embryonic growth, pregnant women also need to be more vigilant than usual to 

avoid food that, although save for adults, might endanger the embryo. The most adaptive 

behaviors towards the same food items are therefore different during pregnancy as during other 

times. Consequently, the smell of these food items is perceived differently during pregnancy. 

 

Different perceivers all encounter the same physical world. How they perceive this world differs 

dramatically. The largest differences are found between members of different species, but 

members of the same species can also differ dramatically in how they perceive the same 

stimulus. If correctness of perception is based on a relation between what is perceived and how it 

is perceived, then there are instances in which animals evolve to perceive the physical world less 

accurately, which is a strong indication that perceiving the world accurately is not the 

evolutionary function of perception. 

 

5.2. Similarity of percepts and similarity of stimuli 

"Perception and desire have to meet certain standards of accuracy to enable creatures to 

survive in the world: they have to enable us to respond similarly to things that are similar 

and differently to things that are different, to avoid what is harmful, and to pursue what is 

beneficial" (page 73) (Nagel 2012). 
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In this quote from Thomas Nagel, two standards that have to be met by perception are 

mentioned. First, perception has to enable us to respond similar to similar things. Second, 

perception has to enable us to avoid what is harmful and pursue what is beneficial. These two 

standards are alternative formulations of the two proposals about the function of perception that 

are compared in this chapter. Retaining similarity relations is the criterion for accurate or correct 

perception. Avoiding harmful things and pursuing beneficial things is the criterion for guiding 

adaptive behaviors. Plainly, the two standards mentioned by Nagel are often in conflict with one 

another. The deadly coral snake and the harmless milk snake are very similar in their visual 

appearance. However, one is harmful and the other, for a hungry hunter, beneficial. We cannot 

simultaneously respond to these two visually similar snakes similarly, while also avoiding what 

is harmful and pursuing what is beneficial.  

 

Situations in which perceiving what is physically similar as similar is in conflict with perceiving 

things that are harmful as different from things that are beneficial are interesting for 

understanding what the function of perception is. Examining such situations will reveal whether 

perception prioritizes guiding behaviors or collecting correct information. When evolutionary 

processes can shape our perceptual systems either to ensure that we avoid what is harmful and 

pursue what is beneficial or to respond similar to things that are similar, what is the outcome? In 

this section, I will show that the outcome is that evolution through natural selection selects the 

perceptual system that ensures adaptive behaviors over the alternative perceptual system that 
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ensures correctness of the collected information. The chemical senses, especially the perception 

of bitter tastants, provide good case studies to illustrate this outcome26. 

 

Bitter tastants 

Smell, taste, and other modalities combine to form the experience of flavor. One of the basic 

tastes that contribute to flavor is bitter taste. Extremely diverse chemicals, like hydrolyzed 

proteins, alkaloids, rancid fats, and poisons (Martin 2013) (page 65), all have a bitter taste 

(Figure 12). These bitter tastants are produced by a large variety of different plants. What most 

of the plants in which bitter tastants are found have in common is that they are inedible, 

unhealthy, or even toxic. As a consequence, whenever a bitter tastant is perceived, the 

appropriate behavioral response is to spit out what is in your mouth. Bitter tastants are therefore 

an excellent example of physically diverse stimuli that all require the same behavioral response. 

The perceptual qualities associated with these stimuli correlate much stronger with the 

appropriate behavioral response than with any physical feature of the stimuli. Hydrolyzed 

proteins and rancid fats are perceived as being similar, although they are physically very diverse. 

Non-rancid fat is physically more similar to rancid fat than hydrolyzed proteins. However, 

because rancid fat and hydrolyzed proteins have reduced nutritional value and because 

                                                           
26 The perception of temperature also provides excellent examples that have been discussed in 

detail by Akins Akins, K. (1996). "Of sensory systems and the "aboutness" of mental states." The 

Journal of Philosophy 93(7): 337-372.. As Akin shows, the thermoreceptive system does not 

have the function of measuring the temperature in the environment as accurately as possible. 

Instead, its function is to help the perceiver execute behaviors that aim at avoiding damage 

through cold or heat. Evidence that this is the case is that the same physical stimulus is perceived 

to be of different temperature with different parts of the skin. Areas of skin that cover structures 

that are more delicate "exaggerate" temperature extremes. Similarly, the endpoint of (more 

dangerous) rapid temperature changes are perceived to be of different temperature than when the 

same endpoint has been reached through (less dangerous) gradual temperature change.  
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rancidification can produce toxic compounds, they are perceived as bitter. Because non-rancid 

fat is an excellent source of energy, it is not perceived as bitter. The physical similarity between 

the stimuli is not reflected by perception. This shows that, when efficiently guiding behaviors 

involves misrepresenting similarity relations between stimuli, as it is the case in bitter 

perception, then perception will misrepresent the physical world. 

 

Figure 12: Six structurally diverse molecules that are perceived as bitter (Laska, Rivas 

Bautista et al. 2009). 

 

The correlation between bitter perceptual qualities and the appropriate behavioral response of 

spitting out whatever is perceived is good, but it is not perfect. Sometimes, bitter foods and 

drinks are incorporate into our diet, which seems to contradict the idea that bitter taste is a 

signature of inedibility. Theobromine in chocolate and caffeine in coffee are two examples of 

bitter alkaloids consumed by humans. However, these chemicals are not examples of non-toxic 
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bitter tastants. Instead, they have been incorporated into our diet because they are toxic. At low 

enough doses, these toxins, like many others, act as stimulants. To bypass the evolved response 

to bitter substances, large amounts of sugar can be added to coffee or chocolate to make bitter 

stimulants palatable. 

 

Other bitter compounds are edible even at high doses. Evolution is an ongoing arms race 

between those who try to eat plants, and plants that try to avoid being eaten. A good defense 

against being eaten available to plants is to become toxic. Once toxic plants evolved, an equally 

good defense against being eaten is to taste like a toxic plant. This strategy of imitating the 

warning signal of a harmful species is known as Batesian mimicry. The similarity between 

harmless milk snakes and venomous coral snakes is the result of Batesian mimicry. Bitter tasting 

compounds that are edible may also be the result of Batesian mimicry. To avoid being eaten by 

humans, announcing that one is inedible through bitter taste is sufficient as long as many plants 

that taste bitter are actually inedible. Because our perceptual systems coevolve with the natural 

environment they perceive, the correlation between the perception of bitterness and the optimal 

behavioral response is not perfect. Some inedible compounds are not bitter and some bitter 

compounds are edible. However, the correlation between the perceptual quality and the 

appropriate behavior is much better than the correlation between the perceptual quality and the 

physical properties of the stimuli. 

 

Evolution of perceived similarity 

Bitter tastants are not the only case of perception that successfully guides behavior in the absence 

of a system that is concerned with collecting accurate information about similarity relations in 
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the physical world. In olfaction, perceptual qualities are also more closely related to the 

appropriate adaptive behavioral responses than to the physical features of the stimulus (Castro 

and Seeley 2014). Consider for example molecules with a musky smell, which are found in 

glandular secretions of a wide variety of animals as well as in many different plants. The 

different molecules that are perceived as musky have very different chemical structures (Kraft 

2004). The same is true for other smells like camphor or almond. In both cases, diverse sets of 

stimuli are perceived to have similar perceptual qualities. 

 

One can speculate how chemical sensors that are sensitive to a wide variety of different 

chemicals that are physically different but require the same behavioral response, like the bitter 

tastant receptors, have evolved. The first step in the perception of tastants is that they are bound 

by a receptor molecule on the surface of a sensory neuron. There are different types of receptor 

molecules that bind to different types of taste molecules. Whether a given type of receptor 

molecule binds to a taste molecule or not depends on the receptor's molecular structure. The 

molecular structure of the receptor is determined by its amino acid sequence, which in turn is 

determined by the DNA sequence of its gene. Mutations in the receptor gene can alter the 

structure of the receptor and therefore change which chemicals can activate the receptor. Imagine 

that the first receptor in evolutionary history that bound a bitter tastant did bind to solanine, a 

bitter tasting toxin found in many plants. To be adaptive, activation of the receptor must have 

triggered the spitting out of the solanine-containing food that activated the receptor. Over time, 

random mutations have produced slight variants of this receptor. If any of these variants gained 

sensitivity to a second chemical that is found in a different inedible plant species, then the 

mutation was advantageous, because it increased the ratio of edible over inedible plants 
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consumed. If the mutation made the receptor sensitive to a chemical found in edible plant 

species, it resulted in the edible plant being not consumed. This mutation therefore decreased the 

ratio of edible over inedible plants consumed and therefore was non-advantageous. In this 

manner, a receptor that detects the difference between edible and inedible plants can evolve. 

"Edible" and "inedible" are not features of the physical world, but they are properties that are 

relative to the perceiver27. As the hypothetical bitter receptor evolved into a reliable indicator of 

whether the perceiving organism should swallow or spit out the perceived food, it evolved away 

from accurately representing similarity of chemicals. The stimuli the receptor responded to 

became more and more physically diverse.  

 

The mechanistic explanation of the evolution of a receptor sensitive to diverse molecules that all 

require the same behavioral response illustrates how a chemosensory system that guides behavior 

without collecting accurate information about similarity relations in the physical world can 

evolve from a system that collects accurate information. The mechanistic explanation also 

illuminates why cases like this are more likely to be found in the chemical senses than in vision. 

The reason for this difference is that the visual system perceives identity and location of objects, 

whereas the olfactory system only perceives identity of odorants. Just like many taste molecules 

require the same behavioral responses, there are instances of visual perception in which different 

visual objects require the same behavioral response. Whether somebody throws a rock, a book, 

or a shoe at you, the right response in all three cases is to move out of the object's trajectory. The 

                                                           
27 Whether a compound is edible and how nutritious it is for a given organism depends on the 

organism's digestive system and physiology. Cows have a specialized stomach for digesting 

grass. Termites can digest wood with the help of symbiotic bacteria in their guts. Neither grass 

not wood are good food sources for humans who lack the adaptations to make use of these food 

types. 
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same behavioral response is required regardless of what is perceived, just like in the case of 

bitter tastants. However, the required behavioral response to having any object thrown at you 

depends strongly on where the object is perceived. If it is perceived at eyelevel in the front, 

ducking is the best response. If it is perceived lower, stepping to the side will be more 

appropriate. If it is perceived to the left, the left arm should be raised to cover the face. If it is 

perceived to the right, the right arm should be raised to cover the face. When it comes to the 

perception of location, each location requires a different behavioral response because behaviors 

that are responses to the location of a perceived object are directed behaviors. 

 

Consider a fictional situation to illustrate how the need for accurate presentation of the location 

of objects in vision results in a perceptual system in which similarity in the physical world is 

often reflected in similarity in perception. Assume that the presence of a lion, a rattlesnake, and 

an alligator all require the same behavioral response: freezing. Being able to discriminate these 

three animals is not advantageous because the optimal behavior in response to detecting them is 

the same. Now, if the three animals are perceived olfactorily, the olfactory system may evolve 

into a system that does not discriminate between lions, snakes, and alligators. An odorant 

receptor that mediates the freezing behavior could evolve to bind the different odors given off by 

the three different animals. We would lose the ability to discriminate these animals olfactorily 

because discriminating them has no adaptive value. 

 

Now consider an alternative scenario. Assume that the appropriate behavioral response to lions, 

rattlesnakes, and alligators is running away from them. Further, assume that the animals are 

perceived visually. In this situation, we would not only need to know that we are encountering a 
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lion, rattlesnake, or lion, but also where the animal is. Running away from it requires locating it 

in space. In this situation, the visual system would not lose the ability to discriminate the three 

animals, although discriminating them has no adaptive advantage. The reason for this is that how 

the animal's identity is perceived is severely constraint by the need to perceive its location. A 

system that has to perceive the location of objects will automatically also perceives the shape and 

the movements of objects, and rattlesnakes are shaped very differently from lions. They therefore 

also move differently through the visual space. This is why in vision and other modalities in 

which spatial perception plays an important role, guiding behaviors adaptively and collecting 

accurate information about the physical world often coincide. 

 

The perception of space (and the perception of time, which I have not discussed here) is a 

notable exception to the rule that the similarity of percepts does not reflect similarity in the 

perceived stimuli but similarity in the adaptive behavior that the stimuli require. The reason for 

this exception is that successfully executing behaviors directed towards objects in the physical 

space requires accurate information about the position of the objects in physical space. 

 

5.3. Alternative notions of correctness 

Members of different animal species perceive the same physical stimuli vastly different. Even 

individuals of the same species evolved to perceive the same stimulus differently depending on 

their behavioral goals. Furthermore, when perceiving similar things similarly is in conflict with 

perceiving harmful things to be different from beneficial things, perceptual similarity reflects 

behavioral relevance rather than physical similarity of the stimuli. This type of evidence shows 

that perception is not about perceiving the physical world correctly, but about guiding beneficial 
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behaviors. However, this conclusion only holds when correct perception is defined as perception 

in which the physical similarities in the world are reflected in similarities between percepts. A 

possible way to continue to resist a behavior-centered function of perception in light of this 

evidence is therefore to adjust the notion of perceptual correctness. Two alternative notions of 

correctness have been suggested in this context28. 

 

Perceptual system-dependent correctness 

One alternative way of thinking about correctness in the context of perception is to define correct 

perception as perception that is triggered by its ordinary causes. When this definition is applied, 

then the gustatorily perception of bitterness is correct if it is triggered by the molecules that 

ordinarily activate the bitter receptor. This is akin to the proposal that perception represents 

open-ended disjunctive properties (Lycan 2014). The information that is collected by the 

perception of bitterness therefore is "What I currently have in my mouth is either sucrose 

octaacetate or denatonium benzoate or quinine or naringin or salicin or caffeine........". This 

information is correct when I have one of these chemicals in my mouth. An alternative and 

shorter way of saying the same thing is that the information about the physical world that I 

collect when perceiving bitterness is "What I currently have in my mouth is capable of activating 

the bitter receptor". This information is correct when something I have in my mouth is capable of 

activating the bitter receptor. Correctness of perception, under this notion, is dependent on the 

perceptual system. As the human bitter receptor evolves, the molecules it binds change. 

                                                           
28 Both of these possible responses are discussed by Akins as potential defenses of what she calls 

"the traditional view". She calls the first possibility I discuss in this section "the a priori defense" 

and the second the "appeal to biologically salient properties" Akins, K. (1996). "Of sensory 

systems and the "aboutness" of mental states." The Journal of Philosophy 93(7): 337-372.. 
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However, under the notion of perceptual system-dependent correctness, this change does not 

result in a change of how correct the receptor perceives the physical world. The old version of 

the receptor and the new version of the receptor perceive the world differently, but both perceive 

it correctly. The visual perception of an animal with a single photosensitive cell is as correct as 

the visual perception of the animal with the most sophisticated apparatus. Indeed, all perception 

by properly functioning perceptual system is by definition correct perception when correctness is 

defined in terms of the perceptual system (Akins 1996). 

 

Perceiver-dependent correctness 

A notion of perceptual correctness that, like perceptual system-dependent correctness, does not 

rely on the relation between the content of the perception and the stimulus is perceiver-dependent 

correctness. The difference between perceptual system-dependent correctness and perceiver-

dependent correctness is that perceptual system-dependent correctness depends on the interaction 

between the stimulus and the perceptual system, whereas perceiver-dependent correctness 

depends on the interaction between the stimulus and the perceiver. The perception of bitterness is 

perceptual system-dependent correct when the perceived stimulus is capable of activating the 

bitter receptor. It is perceiver-dependent correct when the stimulus is inedible or toxic for the 

perceiver. In the first case the correctness depends on facts about the perceiver's perceptual 

system, in the second case, it depends on facts about the perceiver. This difference can be 

illustrated using the example of artificial sweeteners. The perceptual quality of sweetness is 

usually associated with tastants that have high caloric value. The appropriate behavioral response 

to it is to swallow. Sugars like glucose are typical examples of chemicals that taste sweet and 

have high caloric value. Artificial sweeteners are molecules that taste sweet but have low caloric 



126 

value. Under the notion of perceptual system-dependent correctness, perceiving artificial 

sweeteners as sweet is correct perception because the perception is triggered by molecules that 

ordinarily activate the sweet receptor. Under the notion of perceiver-dependent correctness, the 

perception of artificial sweeteners as sweet is not correct because the behavior triggered by sweet 

perception (swallowing) is not adaptive for molecules with no caloric content. The reason why 

the sweet receptor misinforms us about the caloric content of artificial sweeteners is that these 

non-natural molecules were not present in the environment in which the perceptual system 

evolved.  

 

Matthen has suggested perceiver-dependence of perceptual correctness in the form of species-

specific standards of correctness (Matthen 2005). According to Matthen, every species has 

different perceptual systems and different ecological needs and therefore needs to perceive the 

physical world in a way specific to that species. As was reviewed above, perceptual systems and 

perception do not only differ between different species, but also between the sexes and life stages 

of the same species. Species-specific standards of correctness are therefore not enough. What is 

required are species-, sex-, life stage-, situation-specific standards of correctness. 

 

Perceptual system-dependence and perceiver-dependence of perceptual correctness both propose 

that correctness of perception is independent of the relation between the stimulus and percepts. 

Instead of a mechanism that collects information about the stimulus, perception becomes a 

mechanism to collect correct information about the relation between the perceiver and the 

physical world. The molecule binds to my bitter receptor. The bitter plant is inedible for me. 
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5.4. Conclusion: Perception evolved for guiding behaviors 

I have set this chapter up as a comparison between two proposals about the evolutionary function 

of perception: collecting correct information about the environment and guiding behaviors. 

Investigating chemosensory perception reveals that perception did not evolve to correctly 

represent, map, or collect information about the physical world. Instead, it evolved to guide 

adaptive behaviors of the perceiver. Adaptive behaviors are driving evolution with no regard to 

the correctness of the underlying perceptions, beliefs, or calculations. For example, there is no 

scientific evidence that an individual continues to exist in some form after death. Nevertheless, 

the belief in the afterlife, although almost certainly false, is widespread among human societies. 

It may have evolved not because it is a true belief, but because it is a false belief that induces 

behaviors that lead to increased fitness. 

 

The impression that perception guides behavior by collecting accurate information about the 

physical world is most seductive when considering the perception of space in vision. 

Successfully hunting a boar requires information about the position of the boar in space 

accurately so that boar-directed movements can be executed. Other aspects of visual perception 

are constrained by this need for accurate spatial representation and much of visual perception 

therefore accurately reflects similarities in position and shape. As I have shown in this chapter, 

collecting accurate information about the physical world is not a function of chemosensory 

perception or other forms of non-spatial perception. The only function of perceiving smells and 

tastes is guiding adaptive behaviors.  Collecting accurate information by itself has no adaptive 

value, and when perception guides adaptive behaviors by other means, collecting correct 

information provides no additional benefit for the organism. 
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The conclusion that collecting correct information is not the function of perception depends on a 

notion of correctness that defines correct perception as a perception in which similarities 

between stimuli are reflected in similarities between perceptions. Some scholars who resist the 

behavior-based function of perception have defended the collection of correct information as a 

function by redefining perceptual correctness. According to these alternative notions of 

perceptual correctness, whether a given instance of perception is an instance of correct 

perception does not depend on facts about the stimuli, but on facts about the perceiver. For 

example, different species need to respond differently to different stimuli. Whether a given 

chemical is toxic for the perceiver depends on the perceiver's physiology. A substance that is 

toxic for a human is not necessarily toxic for a trout and the other way around. The similarity in 

perception does not reflect the similarity of the chemicals, which would be the same for all 

perceivers, but the similarity in toxicity, which depends on the perceiver and differs between 

different species. Ultimately, these perceiver-dependent accounts of correctness define 

correctness as being dependent on behavior: the correct perception of something toxic is the 

perception that results in the evolved adaptive response to toxins. 
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Part III: Cognitive processes 

So far, I have discussed the perception of perceptual qualities. I have also explored how these 

qualities can be combined in time and space, whether these combinations amount to something 

like perceptual objects, and what the function of perceiving and combining perceptual qualities 

is. Throughout, I have pretended that perception is separate from other cognitive processes and 

that the different perceptual modalities are not connected. Now, in the last part of my 

dissertation, I will acknowledge that the distinction between perceptual and non-perceptual 

processes is largely arbitrary. A satisfying account of olfactory perception has therefore to 

include an analysis of the relation between olfaction and non-perceptual cognitive processes, as 

well as of the relation between olfaction and other perceptual modalities. 

 

In chapter 6, I will discuss the privileged connection between olfaction and emotional processes 

and the weakness of the connection between olfaction and language. I will contrast olfaction 

with vision to show that how perception is connected to specific non-perceptual processes 

depends on the modality under investigation. The connections between olfaction and emotional 

processes reflect the evolutionary history of olfactory perception. Because each modality has a 

different evolutionary history, it is not possible to generalize from the connectivity observed in 

one modality to the connectivity of all other modalities. In chapter 7, I will address the structure 

of the mind more generally. I will argue against using the concept of modularity to describe the 

structure of the mind and instead propose that the mind, much like the brain, is best thought of as 

a collection of overlapping functionally coupled networks. In the second part of chapter 7, I will 

investigate some of the functionally coupled networks involving olfaction with a special focus on 

cognitive penetration and crossmodal perception.  
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Chapter 6: Connections between olfaction and cognitive processes  

Olfaction is often considered the most animalistic and primitive of our senses. Odor stimuli 

induce desires, emotions, and physiological responses that make us respond to certain smells in 

automatic ways. Reason is powerless to intervene. In contrast, vision is said to provide us with 

information that is used in rational analysis that leads to us deliberately choosing the most 

appropriate behavior. In this chapter, I will show that these caricatures of smell perception and 

visual perception have a basis in reality. The results of behavioral experiments, as well as 

neuroanatomical and functional evidence, demonstrate that olfaction has a privileged connection 

to emotional processing. On the other hand, plenty of evidence shows that the connection 

between olfaction and language centers is comparably weak. This heterogeneity of the relations 

between a given perceptual modality and different cognitive processes has to be acknowledged 

by any account of perception. There are no paradigm examples for the relation between 

perception and cognition. Instead, the relation between a given perceptual system and a given 

cognitive process depends on their shared evolutionary history. 

 

In this chapter, I will discuss the connectivity between olfaction and two non-perceptual 

processes: language and emotional processing. This discussion will confirm that the connections 

between perception and non-perceptual processes differ substantially between olfaction and 

vision. This heterogeneity of the connections between perceptual systems and cognitive 

processes reflects the different evolutionary history of these systems and defies a generalizable 

account of the relation between perception and cognition. 

 

6.1. Olfaction and language 
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The sight in my opinion is the source of the greatest benefit to us, for had we never seen 

the stars, and the sun, and the heaven, none of the words which we have spoken about the 

universe would ever have been uttered. But now the sight of day and night, and the 

months and the revolutions of the years, have created number, and have given us a 

conception of time, and the power of enquiring about the nature of the universe; and from 

this source we have derived philosophy, than which no greater good ever was or will be 

given by the gods to mortal man. This is the greatest boon of sight. 

          Plato's Timaeus 

 

Plato tells us that visual perception is a requirement for language; without sight, "none of the 

words we have spoken about the universe would ever have been uttered"29. Language, in turn, is 

the tool of philosophy. Without vision, there would therefore be no philosophy, which is 

probably why philosophers concerned with perception have such a strong preference for vision 

over all other modalities. That Plato's intuition has some truth to it has been confirmed by 

psychology and neuroscience. It is easier for us to name and talk about colors then to name and 

talk about smells. There are two aspects of this difficulty to talk about smells. One problem is the 

lack of a smell vocabulary. Many languages have words for colors, like "blue" and "green" 

                                                           
29 A similar proposal has been made by Michael Tomasello in his Origins of Human 

Communication Tomasello, M. (2008). Origins of Human Communication. Cambridge, MIT 

Press.. Tomasello argues that human communication evolved from joint attention and shared 

intentionality. Joint attention is the phenomenon of an individual attending to an object after 

observing that another individual attends to the object. When we come across a group of people 

looking out the window, we are likely to join them to find out what interesting thing is going on 

outside. Joining others attention seems natural and does not require any conscious reasoning. 

However, being able to do that requires understanding what others perceive when their eyes are 

directed in a certain direction. This ability is sometimes referred to as "mindreading", because it 

requires inferring the content of another individual's mind in the absence of communication. This 

cognitively complex process is so sophisticated that it is rarely found in non-human animals. 

Joint attention in humans is only possible for visual attention. We can see what someone is 

looking at, but not hear what they are listening to, feel what they are touching, or smell what they 

are sniffing. Only through vision can one individual observe another individual in the process of 

perceiving Tomasello, M., M. Carpenter, et al. (2005). "Understanding and sharing intentions: 

The origins of cultural cognition." Behavioral and Brain Sciences 28(5): 675-+..  
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(Berlin and Kay 1969). At least the English language does not have equivalent words for smells. 

Words used to describe smells are either judgments about the smell and its effects ("horrid", 

"soothing"), or, most frequently, the name of the source ("flowery", "leathery"). Why do we lack 

a smell vocabulary? It is possible that the lack of a smell vocabulary is caused by cognitive 

architecture. However, it is also possible that language coding is, for some reason, better suited 

to express some sensations rather than others. A third alternative explanation is that the cultural 

forces that shaped language happened to shape English in a way that reflects the relatively higher 

importance of colors compared to smells for the culture in which it evolved (for a review of these 

three possible explanations and of modality-dependent ineffability in general, see (Levinson and 

Majid 2014)). Because there are alternative explanations, the difference between our smell 

vocabulary and our color vocabulary do not show that there is an impoverished connection 

between olfaction and language centers. However, our limited abilities to talk about smells are 

not only due to the lack of an appropriate vocabulary. A second problem with talking about 

smells is that, even when there is an appropriate word to label a smell, we often fail to access it. 

This inability to access language to name smells or talk about them provides the evidence for a 

poor connection between olfactory processing and the language center that I will discuss in this 

section. 

 

Naming smells 

It is difficult for us to name a smell. To some degree, this is because, during development, we 

form much fewer associations between smells and verbal labels than between sights and verbal 

labels. Adults spend considerable time with preverbal children looking at picture books and 

pointing at drawn objects while saying, "this is a fire truck" or "this is a cow". Much less time is 
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spent holding odors under children's' noses while uttering the odors' names. As a consequence, 

most of us have many more associations between visual appearances and names than between 

smells and names. However, for some odors, like coffee, sweat, gasoline, or garlic, there have 

been (for people with life histories similar to mine) many chances to learn the name of the odor. 

Interestingly, even for those very common and familiar odors, naming the odor is astoundingly 

difficult. In one experiment, the majority of participants were unable to name the smells of beer, 

urine, roses, or motor oil (Desor and Beauchamp 1974). 

 

The inability to name an odor can have different reasons. The process of naming odors, just like 

any naming process, consists of three steps. First, the odor has to be identified. After the odor has 

been identified, the verbal label that is associated with the odor has to be activated. Finally, the 

response has to be generated (Johnson, Paivio et al. 1996). The identification step can be further 

subdivided. To identify an odor, it has to be detected, discriminated from other odors, and 

recognized. Odor recognition consists in matching the perceived smell to a previously perceived 

smell. Recognition does not imply the ability to name. One can recognize an actress in a movie 

from having seen her previously in another movie without being able to name her (Chobor 1992) 

(page 356). The poor performance of subjects in odor naming experiments could be due to 

difficulties at any of the steps involved in the naming process. The most likely explanation for 

the difficulties with odor naming is that accessing linguistic semantic information about odors is 

difficult (for the evidence that this is the case, see (Stevenson 2009)). This would mean that the 

subjects do recognize the odor, but are unable to name it. To test whether subjects recognized the 

odor but cannot name it, one would have to add a test for odor recognition that does not depend 

on verbal report to the experiment. One could, for example, ask subjects who could not name the 
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odors of motor oil, urine, or beer, which one of the three they would rather drink. My prediction 

is that subjects would decide to drink beer more frequently than urine or motor oil. Similarly, I 

predict that they would be unlikely to pour the beer in their car's engine. If these predictions are 

true, then the deficits in odor naming are due to the difficulty of accessing linguistic labels for 

the odors. Either way, correct odor identification cannot be revealed by naming. Naming requires 

that, in addition to identification of the smell, the associated verbal label is activated and the 

response generated. From a failure to name an odor, it cannot be concluded that the odor was not 

identified correctly. 

 

That the poor performance in odor naming is not due to problems in identifying the odor, but due 

to problems in making the connection between the perception and the appropriate verbal label is 

illustrated by the prevalence of the tip-of-the-nose phenomenon (Sulmont-Rosse 2005). The tip-

of-the-nose phenomenon occurs when people are incapable of retrieving from memory the word 

that is associated with an odor, although they correctly identified the odor. The tip-of-the-nose 

phenomenon is named in analogy to the tip-of-the-tongue phenomenon, which is the failure to 

retrieve a word from memory in combination with the feeling that retrieval is immanent 

(Schwartz and Metcalfe 2011). Tip-of-the-nose phenomena are not caused by problems with 

odor identification, but by our inability to name odors. This is demonstrated by experiments in 

which subjects fail to name an odor correctly, but after they are provided with a list of odor 

names that includes the name of the odor that they have to name, or other semantic information 

about the odor, they can name the odor (Sulmont-Rosse 2005) (Gilbert 2008) (page 127). 
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Talking about smells 

It is very difficult to name an odor, even for a subject who knows the odor name and does 

recognize the odor. Another striking difference between olfaction and vision with respect to 

language is how difficult it is to say anything about an odor that we recognize, but cannot name. 

In vision, we commonly talk about things we cannot name. We can talk about someone's visual 

appearance and behavior without knowing his or her name. In fact, knowledge of the person's 

name would not make a difference in what we are able to say about them. In vision, when an 

object cannot be named, it is still possible to retrieve a large amount of information about the 

object from memory (Lambon Ralph, Sage et al. 2000). We can describe the appearance of an 

actor whose name is on the tip of our tongue. We can list the movies he was in and describe his 

appearance in the hope that somebody else will help us out and provide the name of the actor that 

we currently cannot access. In olfaction, this is not the case. Very little can be said about an odor 

unless we are able to name it (Jönsson, Tchekhova et al. 2005). Stevenson writes: "What this 

suggests is that access to semantic information in vision is partially (if not fully) independent of 

the ability to name an object, while for olfaction a name appears necessary to access the same 

store of semantic information." (Stevenson 2009) (page 1008). It can be argued whether 

Stevenson is right and the problem is access to semantic information or more specifically access 

to linguistic semantic information. In an experiment that compared perfume experts with 

novices, it has been shown that the ability to perform actions that depend on semantic 

information like grouping of perfumes is to some degree independent of the ability to apply 

linguistic descriptors to those same perfumes (Veramendi, Herencia et al. 2013). This, like the 

speculation above that even subjects who are not able to name the odors of beer and motor oil are 

unlikely to drink motor oil instead of beer, suggests that it is not all semantic information, but 
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specifically linguistic semantic information that is difficult to access in olfaction. Regardless of 

whether accessing any type of semantic information, or only accessing linguistic semantic 

information is problematic, the difficulty to access information about recognized odors that 

cannot be named further illuminates the fragility of the connection between olfactory perception 

and language processes.  

 

It can be speculated that we did not evolve a stronger connection between olfaction and language 

because language is not necessary for olfaction to perform its function. Olfactory information is 

not used for abstract problem solving. Instead, olfactory-guided behavior is mainly concerned 

with executing simple behaviors when an odor is encountered (Herz 2001; Herz 2005). In 

addition to this speculative evolutionary explanation, several neuroanatomic explanations for the 

poor connection between olfaction and language have been suggested. The lack of a thalamic 

relay in olfaction  (Herz 2005), the fact that odor information is  predominantly processed in the 

right hemisphere of the brain (for a review, see (Royet and Plailly 2004)) whereas language is 

predominantly expressed in the  left hemisphere (Binder, Frost et al. 1997), and potential 

competition for computational resources  (Lorig 1999) have all been suggested as contributors to 

our diminished capacity to name and talk about odors.  

 

Whatever the reason for our inability to semantically process odor information is, it dramatically 

influences verbal reports about multimodal perceptions. Visual information always dominates 

when a verbal report is produced based on sensory information from different modalities. When 

visual and olfactory information are in conflict, the verbal report unfailingly reflects visual 

perception. This has been demonstrated in an experiment that set up a direct competition 
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between conflicting visual and olfactory perceptions. Students of the Faculty of Oenology of the 

University of Bordeaux were asked to describe the taste of different wines. They tasted, in 

different sessions, a red wine (a cabernet-sauvignon/merlot) and a white wine 

(sémillon/sauvignon), as well as the same white wine, but with odorless red color added to it. 

The students described the taste of the white wine using words that are usually used to describe 

white wines. The red wine was described using words that are commonly found in descriptions 

of red wines. The interesting outcome of the experiments were the words that the students used 

to described the taste of the wine that tasted like white wine but looked like red wine. The 

description of this wine was more similar to the description of the red wine than to the 

description of the white wine (Morrot, Brochet et al. 2001). In other words, when visual 

information is available, the experts' description of wine taste is dominated by color rather than 

smell. 

 

As part of the same study, the authors also analyzed the words used in thousands of wine tasting 

comments that they obtained from wine critics. They divided the tasting comments into those 

about white wines and those about red wines. What they found is that "the odors of a wine are, 

for the most part, represented by objects that have the color of the wine" (Morrot, Brochet et al. 

2001). Descriptors like "honey", "lemon", "grapefruit", "straw", and "banana" are often used to 

describe white wines, but never to describe red wines. On the other hand, the most common 

descriptors that are more frequently applied to red wines than to white wines are "cherry", 

"blackcurrant", "raspberry", "violet", and "redcurrant". Morrot and colleagues did not test the 

winemaking students whether they are capable of telling which of the three wines taste the same. 

It is likely that the students would have been able to distinguish between the red wine and the 
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white wine with the red food color despite the color of the two wines being indiscriminable. 

Despite the inability to base verbal reports on olfactory perception, humans have an excellent 

sense of smell and perform very well in olfactory discrimination tasks (Bushdid, Magnasco et al. 

2014). That experts can be tricked into verbally describing the taste of a white wine that is 

colored red as if they would describe a red wine is not a consequence of an underdeveloped 

sense of smell. It is a consequence of the dominance of vision over olfaction when it comes to 

producing a verbal report. Vision has a privileged connection to language processes and 

therefore has a stronger impact on verbal reports than conflicting information from other 

modalities such as olfaction30. 

 

6.2. Olfaction and evaluation 

While olfaction has little impact on verbal reports about perception, it is often thought to play an 

important role in inducing and regulating certain emotions. Nabokov wrote, "Smells are surer 

than sights or sounds to make your heartstring crack." The same thought has been less poetically 

expressed by the psychologist Rachel Herz: "... the sense of smell and emotional experience are 

fundamentally interconnected, bidirectionally communicative and functionally the same." (Herz 

2007) (page 15). That smell and emotions are "functionally the same" means that there are 

striking similarities between how both odors and emotions motivate behaviors. It has been said 

that "More than any other sensory modality, olfaction is like emotion in attributing positive 

                                                           
30 Dominance of vision over information from other modalities during multi-modal perception is 

often observed. A famous example is the ventriloquism effect. Although the voice attributed to 

the ventriloquist's dummy comes from the speaker's mouth, it is perceived as coming from the 

dummy's mouth because visually, the dummy's mouth is perceived as moving whereas the 

speaker's mouth is not. What is special about the cases discussed here is that vision does not 

appear to change the olfactory perception as much as it specifically changes the verbal report. 
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(appetitive) or negative (aversive) valence to the environment." (Soudry, Lemogne et al. 2011) 

(page 21). Humans use olfactory information mainly to evaluate food, locations, and other 

humans (Stevenson 2009). These evaluations result in changes in affective states and they are 

associated with highly adaptive behaviors.  

 

Paradigmatic examples of the olfaction-emotion-connection (which has been reviewed in detail 

before: (Ehrlichman and Bastone 1992; Köster 2002; Herz 2007; Stevenson 2009)) are the 

influence of odors on emotions involved in romantic love and sexual arousal (Herz 2007; 

Stevenson 2009), and the close connection between olfaction and disgust (McBurney, Levine et 

al. 1977; Stevenson 2009; Stevenson, Oaten et al. 2010). Disgust, love, and sexual desire are 

examples of evaluative emotions, and the parallels between emotions and olfaction are only 

found for simple evaluative emotions. Regulating more complex emotions that are based on 

understanding complex social relations and other people's intentions require a semantic analysis 

that cannot be performed based on olfactory information. These more complex emotions are 

therefore mainly regulated by visual and auditory input that can convey social relations and 

intentions. Listening to a dark and tormented poem is more efficient at inducing sadness than any 

olfactory stimulus. Jealousy or gratitude are usually induced and regulated by visually observing 

people act in certain ways. 

 

The simple evaluative emotions that are closely connected to olfaction are also usually 

associated with physiological responses. Being disgusted increases the likelihood of shuddering, 

retching, and vomiting. Being sexually aroused increases heart rate and blood flow to the 

genitals. Emotions also are closely related to moods, which can be considered longer lasting 
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states that increase the likelihood of specific emotions. Squeamish people are more easily and 

frequently disgusted and people with a high libido are more frequently and easily sexually 

aroused. It is an important and unresolved question what the relations between moods, emotions, 

and physiological responses are. The most notable dispute is whether, as proposed by William 

James, emotions are the perception of physiological responses. For the purpose at hand, it will 

not be necessary to answer these questions. Instead, I will limit myself to providing evidence for 

an exceptionally close connection between olfactory processing on the one side and evaluative 

emotions, moods, and physiological responses on the other side. 

 

Olfaction as inducer and regulator of evaluative emotions 

Odor perception is largely the perception of odor valence. Plato suggested that "pleasant" and 

"painful" are the only odor categories (Plato). More recently, multidimensional scaling 

techniques uncovered that valence is the most important perceptual dimension in olfaction 

(Haddad, Khan et al. 2008). For colors and tones, valence is not an important perceptual 

dimension. When we are asked to arrange several odors in a one-dimensional space, we will 

likely order them at least in part according to their pleasantness. Colors, on the other hand, are 

more likely to be ordered from blue to red, and tones from low to high. This does not mean that 

all colors or all tones are equally pleasant. Very high tones are usually considered unpleasant and 

people tend not to like yellow-greenish colors. However, the difference in valence between the 

smell of rotting corpses and vanilla smell is larger than the difference in valence between yellow-

green and your favorite color. Most people would rather live in an apartment in which the walls 

are painted in the least pleasant color than in an apartment that is filled with the least pleasant 

smell. 
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A well-known effect of the strong affective quality of smells is olfaction's capacity to elicit vivid 

memories. Odor-induced memories are often very emotive and produce a strong feeling of 

"being there" (Stevenson 2009). This capacity of odors to generate detailed vivid memories is 

called "Proust effect" after the author Marcel Proust (Chu and Downes 2000). Proust described 

in In Search of Lost Time, involuntary vivid childhood memories that were induced by the smell 

of madeleines. Memories like those described by Proust are so remarkably vivid because the 

close connection between olfaction and emotion can give even mundane odors strong affective 

relevance. Affectively relevant memories, like those of weddings and car crashes, are always 

more vivid than other memories. In odor-triggered vivid memory, everyday situations can gain 

the same vividness by hi-jacking the affective power of odors. 

 

Further evidence for the close connection between olfaction and evaluative emotions is that 

emotional and physiological responses are more difficult to voluntarily modulate when they are 

odor-induced than when induced by other means. Olfaction induces evaluative responses in an 

unmediated, direct, and automatic fashion. The smell of a preferred food is a potent inducer of 

salivation and subsequent consumption of the food. The smell of rotten corpses is a potent 

inducer of vomiting and subsequent behavioral odor avoidance. In comparison, pictures of food 

and pictures of rotten corpses are far less potent in inducing salivation or vomiting. Furthermore, 

the emotional and physiological responses induced by visual stimuli are easily modified by 

background information. The sight of a rotting corpse will not induce a strong affective response 

when the perceiver knows that it is an actor in make-up or a digital special effect in a movie. For 

smells, such background information is powerless to attenuate the affective response. The smell 
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of decaying bodies can be recreated in the laboratory from synthetic molecules that have names 

like "putrescine" and "cadaverine". Exposing people to the synthetic corpse smell is likely to 

induce vomiting even when the subjects of the experiment have been told prior to the experiment 

that the smell they are about to perceive is a mixture of molecules that were synthesized in a 

factory, rather than the odor coming off rotten corpses. Overcoming visually-induce emotions is 

much easier than overcoming odor-induced emotions. This difference shows that the connection 

between visual perception and emotional processes is much more flexible and fragile than the 

connection between emotion and olfaction. 

 

All of the observations and experiments discussed above suggest that there is a privileged 

connection between olfaction and evaluative emotions. Skeptics will ask for an experiment in 

which the modalities are directly compared. However, comparisons between modalities are 

difficult because the results of the comparisons depends on the stimuli that were chosen for 

comparison (Ehrlichman and Bastone 1992). In one experiment, it was shown that odor stimuli 

elicited stronger affective responses than the corresponding visual stimuli. Subjects were asked 

to smell an odor, for example the odor of freshly brewed coffee, or view a corresponding scene, 

for example somebody pouring coffee from a pot into a cup. Then they were asked to write down 

"whatever immediately came to mind". Subjects wrote shorter reports in response to the 

olfactory stimulus that in response to the visual stimulus, indicating that verbal reports are 

dominated by visual input. However, the reports in response to the olfactory stimulus contained 

more affective words than the reports in response to the visual display (Hinton and Henley 

1993).  
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Shared neuroanatomy of olfactory and emotional processes 

Mechanistically, the close connection between olfaction and evaluative emotions can be 

explained in terms of neuroanatomy. There is large overlap between the brain regions that 

process emotions and smells (for a review, see (Soudry, Lemogne et al. 2011)). Much of the 

processing of emotions and olfactory information occurs in an evolutionary ancient brain 

structure called the limbic system31. Many of the brain structures in the limbic system play 

important roles both in the processing of olfactory information, and in the processing of 

emotions. Consider for example the amygdala, an almond-shaped group of nuclei that is part of 

the limbic system. The amygdala is involved in the regulation of emotion (Aggleton and Young 

2000; Salzman and Fusi 2010). Especially well studied is the role of the amygdala in regulating 

fear and aggression. In addition to this role, the amygdala also processes olfactory information. 

The amygdala receives strong direct input from the primary olfactory cortex, but very little direct 

input from the visual system (Zald and Pardo 1997; Gutiérrez-Castellanos, Martínez-Marcos et 

al. 2010; Pessoa and Adolphs 2010). In rats, around 40% of the neurons in the amygdala are 

responsive to odors (Cain and Bindra 1972). Even more intriguingly, the connection between the 

primary olfactory cortex and the amygdala is bidirectional (Zald and Pardo 1997). 

 

A second brain structure that is involved in both olfactory processing and the processing of 

emotions is the olfactory bulb. The olfactory bulb receives direct input from the olfactory 

sensory neurons. It is where the first steps of olfactory information processing happen. The 

                                                           
31 This part of the brain is also known as "reptilian brain", because we share it with reptiles, or 

"rhinencephalon" (literally, "nose brain"), because it processes smells. It is not a functionally 

unified system but rather a set of neighboring brain structures including the primary olfactory 

cortex, the limbic lobe, the hippocampus, and the amygdala.  
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olfactory bulb also plays a role in emotional regulation, which is surprising for such a peripheral 

structure that is only one synapse removed from sensory neurons. The olfactory bulb is so 

important for the processing of emotion, that rodents in which the olfactory bulb has been 

removed surgically are an animal model for depression. The behavioral, endocrinological, and 

molecular changes seen in these animals are similar to those observed in patients with 

depression. Furthermore, these changes can be reversed by the same interventions that are used 

to treat patients suffering from depression, including antidepressants and electroconvulsive 

shock. The depression-like symptoms in mice without an olfactory bulb are not merely a 

response to the lack of olfactory input. Mice with an intact olfactory bulb in which olfactory 

input has been interrupted through other methods do not show depression-like symptoms. These 

results suggest that the olfactory bulb, which is the first and most important center of olfactory 

processing, also plays an important role in regulating emotions (for a review, see: (Song and 

Leonard 2005)). 

 

The part of the neocortex that processes olfactory information is the orbitofrontal cortex, which 

is located above the orbits in which the eyes are situated. The orbitofrontal cortex is only found 

in mammals (Gottfried 2007) and it is, unlike the visual cortex, not well connected to the frontal 

areas that are involved in semantic analysis (Price 2007). The role of the orbitofrontal cortex in 

olfactory processing is a matter of ongoing research. A lesion study of a single patient showed 

that brain injury that was largely limited to the right orbitofrontal cortex did completely abolish 

conscious processing of olfactory information. The patient's ability to modulate his sniffing 

behavior in response to olfactory stimuli was unaffected and he showed normal skin conductance 

responses to odors (Li, Lopez et al. 2010). Based on this study, which is broadly consistent with 
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previous studies of patients with orbitofrontal damage or lesions (see references in (Li, Lopez et 

al. 2010)), it has been proposed that the orbitofrontal cortex is the neural correlate of olfactory 

consciousness. Others have suggested that the main role of the orbitofrontal cortex is to process 

the hedonic value of smells (Rolls, Kringelbach et al. 2003). In addition to its role in olfactory 

perception, the orbitofrontal cortex also plays a key role in regulating affect, emotion, and 

motivation (Zald and Rauch 2008; Gottfried and Zelano 2011). The main role of the orbitofrontal 

cortex in this context seems to be to link reward to hedonic experience (Kringelbach 2005). 

Damage to the orbitofrontal cortex can lead to disinhibited behavior that can include gambling, 

swearing, drug addiction, and hypersexuality. 

 

The amygdala, the olfactory bulb, and the orbitofrontal cortex are just three examples of brain 

structures that play important roles in olfactory processing as well as in the processing of 

emotions. Other structures within the limbic system show similar profiles. The large overlap of 

brain regions that process emotions and brain regions that process olfactory information provide 

the mechanistic explanation for the privileged connection between olfaction and the processing 

of evaluative emotions. 

 

6.3. Conclusion: Olfaction is well connected to emotional, but not to linguistic processing 

The evidence presented in this chapter shows that olfaction has a strong impact on evaluations 

and emotions, while our capacity to process olfactory information linguistically is very limited. 

This is not a new insight. Over 2,000 years ago Plato wrote that odors "have no name and they 

have not many, or definite and simple kinds; but they are distinguished only as painful and 

pleasant" (Plato). Today we know that the reason for the privileged connection between olfaction 
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and evaluative emotions is that the same neuronal networks in the brain that process olfactory 

information also process emotions. The connection between olfaction and emotions is 

presumably not the only privileged connection between a perceptual modality and a non-

perceptual cognitive process. Vision seems to have a privileged connection to language 

processes. An analysis of proprioception, the sensing of the relative position and movement of 

body parts, would reveal a strong connection between proprioception and motor regulation. That 

one can find this type of modality-specific connections shows that sensory information from a 

given modality is made available only to those processes that can use the information for 

adaptive behaviors. The motor system needs to know the current angle between the forearm and 

upper arm, so that it can execute directed arm movements. The language system does not need to 

know the current elbow angle because being able to report the position of your forearm verbally 

does not convey strong adaptive advantages. 

 

The sense of smell has evolved to be an evaluative rather than a descriptive sense. Olfactory 

information is used mainly to make decisions about rejecting or accepting food or mates 

(Stevenson 2009). Describing verbally the smell of spoiled meat is not crucial for survival; 

having a negative emotional response to spoiled meat that is stronger than hunger is crucial for 

an adaptive, odor-guided, behavioral response. The connection between olfaction and emotion is 

so close that Rachel Herz wondered "whether we would have emotions if we did not have a 

sense of smell; I smell therefore I feel?" (Herz 2007) (page 14). Herz's thoughts mirror those of 

Plato, who wondered whether we would have reason without vision and those of Michael 

Tomasello, who wondered whether we would have language without vision. Summarizing the 

different relations between perceptual modalities and cognitive processes, Trygg Engen wrote: 
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"Functionally, smell may be to emotion what sight or hearing is to cognition" (Engen 1982) 

(page 3). 

 

The philosophical impact of the heterogeneity in the connections between perceptual systems 

and non-perceptual systems is that epistemological accounts that deal with perception have to 

confront the fact that they dealt with only one form of perception. However, the more profound 

point is metaphilosophical. The privileged connection between vision and language is the main 

reason why I felt that it was necessary to undergo the current research project to expose and 

correct the misguided ideas in the philosophy of perception that are based on the exclusive 

engagement with visual perception. The tool of philosophy is language and the connection 

between vision and language is stronger than the connected between other modalities and 

language, which gives vision privileged access to the minds of philosophers. 
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Chapter 7: The structure of the mind 

The privileged connection between olfactory perception and emotional processing that I 

discussed in the previous chapter is a result of the interdependence and coevolution of the two 

processes. It is just one example of a non-perceptual process that evolved together with the 

sensory system from which it receives its input. The proprioceptor system, which provides 

information about the relative position and movement of body parts, would not have evolved in 

the absence of a motor system that can use the information provided by it. On the other hand, the 

motor system would not have evolved the capacity to quickly adjust and correct ongoing motor 

patterns, if it had evolved in the absence of a sensory system that provides the information about 

the position of body parts that is necessary for guiding these corrective movements. A perceptual 

system only conveys an adaptive advantage in the presence of a non-perceptual system that can 

make use of the information that the perceptual system provides. Similarly, cognitive systems 

can only contribute to guiding adaptive behaviors when they receive information about the 

environment from sensory systems. 

 

To which other systems a perceptual system is connected determines how the perceptual system 

functions and what role it plays for the organism. In this chapter, I will therefore consider the 

structure of the mind and olfaction's position in this structure. The first section of this chapter 

will be methodological. I will discuss how to individuate the parts of which the mind is made up 

and discuss how connections between the parts can be discovered. I will argue against the 

popular strategy of dividing the mind into modules and instead propose to think of the mind in 

terms of functionally coupled networks. In the second section, I will address two specific 

questions using the methods developed in the first section. The first question is whether there is 
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information flow from non-perceptual parts of the mind to olfaction. The second question is 

whether there is flow of information between olfaction and the other sensory modalities. 

 

7.1. Uncovering the structure of the mind 

Before strategies to uncover the structure of the mind are considered, one should question 

whether the mind is structured in an interesting way that is worth discovering. Strong evidence 

for a structure of the mind is provided by the study of individuals with localized damage to the 

brain. The effects of localized brain damage are often restricted to specific mental processes. In 

many cases, perception in a specific modality is compromised while the other modes of 

perception remain intact. Language comprehension or production can also be specifically 

impaired. In many cases, memory formation or retrieval are impacted without a strong effect on 

other mental processes. This shows that the mind is divided into relatively independent parts. 

One part can be damaged while the others remain intact. The functional decomposition of the 

mind into distinct parts is only one aspect of the structure of the mind. The parts of the mind are 

also interconnected in interesting ways. It is not the case that every part of the mind is connected 

to every other part of the mind equally, as I have shown in the previous chapter, using the 

connections between olfaction and language and between olfaction and emotion as examples. 

The structure of the mind therefore consists of parts and connections between the parts. There are 

tensions between dividing the mind into parts and describing connections between the parts. 

When two parts of the mind have a very strong exclusive connection, on what basis can they be 

described as two connected parts as opposed to a single part of the mind? I will argue below that 

the best way to account for these tensions is to describe the structure of the mind as a collection 
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of networks. Before I discuss this suggestion, I will critique the common strategy to describe the 

mind as a collection of modules. 

 

A critique of the concept of modularity 

Current accounts of the structure of the mind usually refer to the parts of the mind as "modules". 

In this context, "module" is a technical term that can be defined in different ways. Most of its 

definitions are unrelated to the word's dictionary definition that considers modules to be 

"distinct, self-contained units from which are larger structure can be build". The terminology of 

modularity of the mind goes back to Fodor (Fodor 1983). Fodor defined modules as those parts 

of the mind that satisfy nine criteria. The nine criteria, as paraphrased by Prinz (Prinz 2006), are: 

(1) Localized: modules are realized in dedicated neural architecture 

(2) Subject to characteristic breakdowns: modules can be selectively impaired 

(3) Mandatory: modules operate in an automatic way 

(4) Fast: modules generate outputs quickly 

(5) Shallow: modules have relatively simple outputs (e.g., not judgments) 

(6) Ontogenetically determined: modules develop in a characteristic pace and sequence 

(7) Domain-specific: modules cope with a restricted class of inputs 

(8) Inaccessible: higher levels of processing have limited access to the representations 

within a module 

 (9) Informationally encapsulated: modules cannot be guided by information at higher 

 levels of processing 

The different definitions of "module" that can be found in the literature are derivatives of Fodor's 

original definition. Different definitions mainly differ in which criteria they emphasize. The two 
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criteria that have received the most attention are informational encapsulation and domain-

specificity (Samuels 2006). A part of the mind is informationally encapsulated if it does not 

receive information from higher centers of processing in the brain. Fodor, in later writings, 

focuses on informational encapsulation as a sufficient criterion for modularity (Fodor 2000). A 

part of the mind is domain-specific when it processes a restricted type of information, for 

example olfactory information or information about linguistic rules. Many theorists consider 

domain-specificity to be the most important, if not only, criterion that needs to be satisfied for a 

part of the mind to be a module (Cosmides and Tooby 1994; Sperber 1994). Others have picked 

different subsets of the criteria for their definition of "module". For Carruthers, for example, five 

of Fodor's nine criteria are relevant to decide whether a part of the mind is a module (Carruthers 

2006) (page 12). 

 

Not surprisingly, how the structure of the mind is described depends on the definition of 

"module" that is employed. If parts of the mind have to be informationally encapsulated to be 

considered modules, then the mind is not modular, except for the perceptual systems, which are 

modules (Fodor 1983). If modules are identified as parts of the mind that are domain-specific, 

then the mind is a large collection of modules (Sperber). The thesis that the mind is modular 

through and through, known as the massive modularity thesis, has been especially popular with 

evolutionary psychologists (Pinker 1997). If modules have to satisfy all of Fodor's nine criteria 

for modularity, then no part of the mind qualifies as a module (Prinz 2006). Other combinations 

of the modularity criteria that have not been explored in detail presumably will result in different 

distributions of modules in the mind. 
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This is only a very brief overview over the concept of modularity and how it has been used to 

investigate the structure of the mind (for a more detailed review, see (Robbins 2010)). However, 

it should be sufficient to unpack the concept and see what it can contribute to uncovering the 

structure of the mind. The strategy for identifying modules of the mind is to test parts of the 

mind whether they satisfy certain criteria. What is rarely discussed is that this strategy can only 

be applied after the parts of the mind have been individuated through some other process. Only 

after the mind has been divided into parts can the parts be tested for modularity. Many 

disagreements about the modularity of a certain part of the mind are, on closer inspection, based 

on disagreements about what the part that is tested for modularity is. Take for example the 

question whether vision is modular, when "module" is defined as an informationally 

encapsulated part of the brain. The main argument against informational encapsulation are top-

down influences on visual perception. Pylyshyn avoids the discussion of these top-down 

influences by dividing vision into "early vision" and the rest. He then moves on to argue that 

early vision is informationally encapsulated (Pylyshyn 1999). Instead of discussing whether a 

given part of the mind is informationally encapsulated or not, the parts of the mind are 

individuated so that they fit the desired outcome. If we accept that early vision is informationally 

encapsulated, then we will also accept that edge-detection in the visual system is informationally 

encapsulated. Why is edge-detection in the visual system then not considered a module?  

 

In another example how conclusions about the modularity of the mind depend on how the parts 

of the mind are individuated, Prinz and Samuels exchange silly examples of potential domains 

that would influence conclusions about the domain-specificity of parts of the mind (Prinz 2006; 

Samuels 2006). Prinz suggests, "the particular animal used by Lawrence to cross the Arabian 
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Desert", while Samuels offers "camels in London on Tuesdays" and "planning wheat-free picnics 

in 2005". Neither of them offers an individuation procedure that would avoid the result that there 

are parts of the mind concerned with these domains. I hope that these examples suffice to show 

that we need to know what the parts of the mind are, before there can be a fruitful discussion 

about which parts qualify as modules. Furthermore, we have to be careful not to confuse testing 

parts of the mind for modularity for individuating parts of the mind. 

 

The structure of the mind consists not only of the parts of the mind, but also of the connections 

between those parts. Modules, as discussed, are a subset of the parts of the mind that satisfy the 

criteria required for being a module. We have seen that the relation between modules and the 

parts of the mind is that some parts of the mind, for example those that are domain-specific or 

those that are informationally encapsulated, are modules. What is the relation between modules 

and the connection between the parts of the mind? The two most frequently discussed criteria for 

modularity, informational encapsulation and domain-specificity, are both network properties that 

concern the inputs received by a module. Fodor's criteria that do not concern a module's role 

within a network, but the module itself (that it is fast and automatic, and that the underlying 

neuroanatomy is localized in the brain and develops in a characteristic way) have largely been 

abandoned.  

 

The analysis of the relation between modules and the structure of the mind shows that the 

concept of modularity is only of limited usefulness when the goal is a comprehensive description 

of the structure of the mind. There are two limitations of the concept of modularity. First, 

modules are parts of the mind with certain properties, which means that the modular structure 
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only captures the parts of the mind that show a certain property (or set of properties). Whatever 

property is used as a criterion for modularity, it is certainly wrong to postulate that the portions 

of the mind that do not fulfill the criterion cannot be structured. Nobody would argue, I think, 

that there can be no structure in the absence of informational encapsulation or in the absence of 

domain specificity. This structure is not included in an account of the structure of the mind based 

on modules. The second inadequacy of using modularity as a framework to describe the structure 

of the mind is that, although the most common definitions of "module" all define modules as 

parts of the brain that have a certain position within a network, modularity does not explicitly 

acknowledge the network structure of the mind. I suggest that describing the mind in terms of 

overlapping functionally coupled networks instead of in terms of modules will give a more 

accurate view of how the mind is structured. 

 

Functionally coupled networks that connect parts of the mind 

Functionally coupled networks that connect the parts of the mind can be investigated using 

different methods. One possibility is to use introspection. When smelling food is more likely to 

make us hungry than touching food, this can be interpreted as evidence for a closer connection 

between olfaction and hunger regulation than between touch and hunger regulation. However, 

introspection has three disadvantages. One disadvantage is that it is better suited for discovering 

connections between parts of the mind than for individuating parts of the mind. It is not clear 

how introspection could be useful to decide between the proposal that there is a part of the mind 

concerned with planning wheat-free picnics in 2005 and the proposal that there is a part of the 

mind that is concerned with planning in general. The second disadvantage is that a project to 

elucidate the structure of the mind based on introspection would come up with a very 
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impoverished structure. Just because we are not aware that one process influence another process 

does not mean that there is no such influence. Investigating the structure of the mind will 

therefore miss many connections. Finally, it is a disadvantage of using introspective evidence to 

discover the structure of the mind that there is no procedure for weighing the evidence in cases 

of disagreeing introspections between individuals. 

 

Another possibility to study the networks of the mind is with behavioral experiments. Behavioral 

experiments avoid two of the problems of introspective evidence. When touching food makes us 

eat more food in a behavioral experiment, then this is evidence for a connection between the 

parts of the mind that process tactile information and the parts of the mind that regulate food 

intake, regardless of the subjects' self-reports about the existence of such a connection. 

Furthermore, in behavioral experiments the sample size is larger than in introspection and it is 

therefore possible to discover inter-individual variability or agreement. The structure of the mind 

is likely to be partly hard-wired and partly shaped by previous experiences and it is interesting to 

distinguish innate and acquired structure. 

 

A limitation that behavioral experiments share with introspection is that they are better suited to 

discover connections between parts of the mind than to individuate the parts of the mind. I 

cannot imagine a behavioral experiment that could distinguish between the proposal that vision 

is one of the parts of the mind and the competing proposal that early vision is one of the parts of 

the mind. A further disadvantage of using behavioral experiments to reveal the structure of the 

mind is that behavioral experiments treat the mind as a black box. When a behavioral experiment 

shows that smells induce emotions, it shows that olfaction and emotional processing are 
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connected. However, the results do not show how they are connected. There may be a direct 

connection, but many alternative explanations are possible. There may be, for example, 

connections between olfaction and memory and between memory and emotion. Smells may elicit 

memories and memories, in turn, elicit emotions. Combining evidence from introspection and 

from behavioral experiments can be helpful to decide between the alternative structures that may 

underlie the behavior. 

 

In addition to introspection and behavioral experiments, neuroanatomy, and especially functional 

neuroanatomy can also provide evidence about the structure of the mind. Like the other source of 

evidence, functional neuroanatomy has its disadvantages. The most troubling problem with 

drawing conclusions about the structure of the mind from observing the brain is that it 

presupposes an association between brain areas and parts of the mind. That there is such an 

association has become apparent when methods of visualizing brain activities were invented. The 

associations between brain and mind are most robust in sensory areas. Activity in the olfactory 

bulb is much more likely to be associated with smelling than with seeing whereas the visual 

cortex is most active during visual perception. Many structure-function-associations have also 

become apparent in the central brain. Activity in the amygdala is more likely to be associated 

with experiencing fear than with counting. The functional mapping of the brain is a large and 

ongoing research project with more than 1,000 new publications added to the literature every 

year (Smith 2012).  

 

The big advantage of using evidence from functional neuroanatomy to discover the structure of 

the mind is that it can potentially provide a basis for individuating parts of the mind based on 
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specified criteria. This would not be possible using introspection or behavioral experiments. The 

general approach for individuating parts of the mind through functional neuroanatomy that I 

have in mind is to group mental activities that are associated with the same patterns of brain 

activities together as parts of the mind. Obviously, much more work would have to be done to 

show that this approach would be successful. There are many problems, both theoretical 

problems and practical problems. Theoretically, it has to be decided what counts as the same 

pattern of activation. Practically, the limited temporal and spatial resolution of functional brain 

imaging limits the precision with which patterns of brain activity can be compared. Regardless of 

these problems, considering the lack of alternatives, I believe that functional neuroanatomy 

provides a promising path to individuating parts of the mind. 

 

Once the parts of the mind have been individuated in such a way, the functional connections 

between them can be studied. A powerful method of elucidating connections between different 

brain regions is intrinsic functional connectivity magnetic resonance imaging (Buckner, Krienen 

et al. 2013). This method visualizes brain activity in the resting state and uncovers the spatial 

patterns along which activity spreads through the brain. Activity in one area of the brain that 

regularly follows after activity in another area of the brain is evidence for information flow 

between the two areas. The two areas are functionally coupled. Functionally coupled networks in 

the brain are a subsystem of the anatomical networks and they are severely constraint by them. 

When two regions are not anatomically connected, then they are not directly functionally 

coupled. However, a direct anatomical connection does not imply that the two regions are 

functionally coupled. To illustrate how the study of functional coupling goes beyond the study of 

neuroanatomy, consider a hypothetical example. Region A may be anatomically coupled to 



158 

region B and region B to regions C, D, E, and F. Visualizing brain activity may however reveal 

that, after region A is active, region B is active and afterwards regions D and F, but not region C 

and E. A further refinement over the anatomical network that the functional network provides is 

that it allows assigning directions to the connections between nodes. Activity in region G may 

frequently follow activity in region F, but activity in region G does not induce activity in region 

F. However, anatomical connectivity provides an important framework for the study of 

functional connectivity. 

 

Together, introspection, behavioral experiments, and functional neuroanatomy can individuate 

the parts of the mind and reveal the connections between them. Evidence from all sources has to 

be considered, but the biological evidence should be given special consideration. Describing the 

mind in terms of parts and connections between them instead of describing it in terms of modules 

does not just mean that "modules" are now called "parts" and connections between the parts are 

added to the description. Instead, it means that the structure of the mind is described in terms of 

functionally coupled networks. The parts of the mind are nodes in the network. Nodes are 

defined by their position within the network. They are points at which connections intersect or 

branch. None of the criteria that are used to identify modules applies necessarily to all nodes of 

functionally coupled networks. Informational encapsulation is not a necessary feature of nodes in 

functionally coupled networks. Each node receives the input that is necessary for it to play its 

role within the network. Some of these nodes may not receive input from central processes and 

would therefore be informationally encapsulated modules. Domain-specificity is also not a 

necessary feature of nodes in a network. In some nodes, only a certain type of information is 

processed. These are domain-specific nodes with only a single input, like "cognitive process 2" 
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in Figure 13. Other nodes receive many different inputs and are therefore not domain-specific, 

like "cognitive process 3" in Figure 13. The relation between the functionally coupled networks 

and modules is therefore that the modules are subsets of the nodes of the functionally coupled 

networks. Which subset of the nodes can be considered modules depends on the criteria for 

modularity. Researchers, who find nodes that receive input from only a single source interesting, 

will define modules in terms of domain-specificity. For those that are more interested in where 

the nodes' input comes from, informational-encapsulation is the relevant criterion. Both 

approaches have in common that they illuminate only a very small subset of the entire structure 

of the mind. 

 

Perhaps I am overly optimistic that a combination of different sources of evidence will reveal the 

functionally coupled network that constitute the mind. Given the failure of the concept of 

modularity to capture how our minds are structured, I think that it is a worthwhile attempt. If the 

approach I proposed here will work, it will reveal a complex structure of the mind with no 

overarching organizing principles. Different evolutionary pressures at different times throughout 

the evolution of brains and minds have resulted in a collection of diverse, highly effective, yet 

inelegant solutions. Functionally coupled networks can overlap; nodes can be part of several 

networks, like "cognitive process 3" in Figure 13, which is part of both the blue and the black 

network. A further level of complexity is added by the fact that connections within networks can 

have different strength (reflected by the different widths of the arrows in Figure 13). All these 

complications show that the structure of the mind is very complex and much less orderly and 

elegant than often assumed. It has no resemblance to engineered modular software packages, as 

the metaphor of "modules of the mind" suggests. 
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7.2. Olfaction's position in the mind 

Two questions about the structure of the mind have received much attention. Is perception 

influenced by higher cognitive processes? Are the senses separated? These two questions can be 

addressed using the framework of functionally coupled networks that I have introduced in the 

previous section. Within this framework, the questions are whether there are connections from 

cognitive processes to perceptual processes and whether perceptual processes in different 

modalities are connected. The connections between olfaction and non-perceptual processes that 

have been discussed in chapter 6 are parts of networks in which information flows from the 

periphery to the center. In this section, networks in which information flows in the opposite 

direction or perpendicular to the flow from periphery to center will be discussed. 

 

Cognitive penetration 

The effect of cognition on perception has been termed the "cognitive penetration of perception". 

Examples of cognitive penetration of perceptual systems are counterexamples to the thesis that 

perceptual systems are informationally encapsulated and therefore to Fodor's proposal that the 

perceptual systems are modules (defined as informationally encapsulated parts of the mind). The 

term "cognitive penetration" has been coined by Pylyshyn, who argued that early vision is 

cognitively impenetrable (Pylyshyn 1999). The most intuitive argument for cognitive 

impenetrability of early visual perception is that several visual illusions resist cognitive 

influence. Take for example the Müller-Lyer illusion: a straight line segment with two 

arrowheads on both ends looks shorter than a line segment of the same length with two arrow 

tails on both ends. That this illusion persists after the subject understands that it is an illusion is 
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shown by the fact that even after one measures the two line segments to confirm that they have 

the same length, the line segment with the arrowheads on its ends looks shorter than the one with 

the arrow tails32. 

 

Contrary to Pylyshyn, it has been argued that there are convincing examples of cognitive 

penetration in the visual system. Siegel likes to use the example of a pine tree (Siegel 2006). 

According to her, the perception of a pine tree changes when the perceiver learns to identify pine 

trees and distinguish them from other types of trees. Similar examples can be given for other 

kinds of acquired expertise. To a trained pathologist, a tissue sample under the microscope may 

look different than it looked to her before she trained as a pathologist. The problem with these 

examples is that it is easy to simply deny that the perception changed. Macpherson discusses an 

interesting example of cognitive penetration in which this is more difficult to deny the changes in 

perception because they are confirmed through performance-based psychophysics (Macpherson 

2012). In an experimental setting, subjects were given shapes cut out of orange paper. Some of 

the shapes were the shapes of objects that are characteristically thought of as red (like a heart) 

whereas others were of the shapes of objects not characteristically red (like a mushroom). The 

task was to match each of the shapes to a colored background. The background color that the 

subjects matched to shapes of characteristically red objects was, on average, redder than the 

                                                           
32 It is perhaps an unrealistically high standard for cognitive penetrability to expect additional 

information to always have the expected effect on other cognitive mechanisms. Our knowledge 

that matter consists mainly of empty space between atoms does not change how a table looks or 

feels to the touch. I have perhaps read more books on playing squash than most professional 

players. The fact that I still could not beat a professional player does not show that my motor 

systems are cognitively impenetrable. The flexibility and plasticity of biological processes is 

limited. That a cognitive process does not change in the expected way when additional 

information is provided does not necessarily mean that the information is not available to the 

process. There are other explanations.  
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background color that was matched to shapes of objects that are not characteristically red. When 

the cutout was in the shape of a not characteristically red object, the subjects selected a more 

yellowish color (remember that the color of the cutouts was orange) (Delk and Fillenbaum 

1965). This result provides strong evidence that the belief that a perceiver holds about the 

characteristic color of the object that is perceived can influence the perceived color. 

 

The discussion of cognitive penetration in the literature is mainly concerned with cognitive 

penetration in vision. As I have discussed in chapter 6, the connections between perception and 

cognition evolved differently in each of the modalities. All modalities have to be investigated 

individually. Olfaction is a good modality for the study of cognitive penetration because 

introspection and behavioral experiments suggest that olfactory perception is strongly modulated 

by cognitive processes (for reviews, see (Stevenson and Boakes 2003; Gottfried and Wu 2009; 

Yeshurun and Sobel 2010). An example of cognitive penetration in olfaction is the influence of 

verbal labels on perception. The pleasantness of the same stimulus is rated very differently when 

it is labeled "cheddar cheese" than when it is labeled "body odor". These differences in reported 

perception are also accompanied by differences in brain activity (de Araujo, Rolls et al. 2005). 

Anecdotal reports also suggest that odor perception differs between different cultural groups. An 

impact of culture on perception indicates that beliefs and background information can penetrate 

perception. Unfortunately, the presumed cross-cultural differences in odor perception have not 

been studied systematically yet.  

 

Introspective evidence is difficult to defend against skepticism and behavioral experiments 

cannot discriminate between an influence on perception and an influence on how behaviors are 
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linked to perception. To investigate whether there is cognitive penetration in olfaction, it is 

therefore helpful to study the brain in an attempt to identify the potential neural correlate of 

cognitive penetration in the olfactory system. This is the same strategy of investigating the 

structure of the mind through investigating how it is implemented in the networks of the brain. In 

this section, this general strategy is applied to the specific question of cognitive penetration in 

olfaction. 

 

The brain structures in which olfactory information is processed have been identified. If the 

olfactory brain receives input from cognitive areas and this input alters the processing of 

olfactory information, then perception is influenced by cognition. Cognitive penetration has to be 

relativized to processing stage (Lycan 2014). There could be an influence of cognition on the 

very peripheral sensory neurons, or, at any of the higher levels of olfactory processing. I will 

investigating the potential neural correlates for cognitive penetration in the olfactory system 

starting with the olfactory sensory neurons. 

 

Olfactory sensory neurons are the neurons in the nose that bind to odors. In humans, the 

responses of olfactory sensory neurons to the odors they encounter do not depend on cognitive 

processes. However, in other species strong influences of the perceiver's state on the activity of 

these sensory neurons have been described (see for example the dependence of the sensitivity of 

olfactory sensory neurons on the perceivers' state in many insects discussed in section 5.1.: 

(Davis 1984; Root, Ko et al. 2011; Saveer, Kromann et al. 2012)). The strategy behind such 

changes is to perceive only behaviorally relevant stimuli. When stimuli are relevant only in 
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specific situations, they should only be perceived during these situations. Humans have not 

developed such a system. We do not become smell-blind to food odors after lunch. 

 

In the next step of olfactory processing, the olfactory sensory neurons project to the olfactory 

bulb, where information about the molecular structure of odorant molecules is processed 

(Shepherd et al., 2004). In addition to the input from olfactory sensory neurons, the olfactory 

bulb also receives information through massive and diverse centrifugal fibers. These fibers 

originate in brain areas including the olfactory cortex, the brain stem, and the basal forebrain 

(Matsutani and Yamamoto, 2008). The information processing in the olfactory bulb is influenced 

by activity in all these diverse regions of the brain. Consistent with these anatomical findings, 

information processing in the olfactory bulb of rodents differs markedly depending on the 

behavior the animal is engaged in and its prior experiences (Kay and Laurent, 1999). Processing 

in the olfactory bulb is for example modulated by prior experiences with the perceived odor 

(Kato et al., 2012). The massive feedback from higher brain areas to the olfactory bulb is the 

neural correlate of cognitive penetration in human olfaction. Through these connections, 

memories and mental states can influence how odors are perceived. 

 

As it is the case with other modalities, in some instances olfactory perception appears penetrable 

whereas in other instances it appears impenetrable. Perhaps overall olfactory perception is more 

pliable than vision. The suggestion that a "grilled 40-oz. dry-aged porterhouse steak" smells 

different after one has just consumed such a steak (Gottfried 2007) is more plausible than the 

suggestion that the way the steak looks depends on whether the perceiver is hungry or satiated. 

However, this can also be denied. It is difficult to convincingly and reliably differentiate between 
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changes in perception, and changes in the preferences, tastes, or evaluations of the perception. 

However, a striking fact about olfaction is that the olfactory bulb, the first processing station of 

olfactory information, receives massive input from central brain structures. Unless these 

structures are vestigial structures that have lost their function, olfaction is cognitively penetrated. 

 

Crossmodal perception 

Behavioral experiments and evidence from introspection show that perception in one modality 

can influence perception in another modality. One of the most dramatic examples is the McGurk 

effect, which is a demonstration of how watching the movements of a speaker's lips influences 

how the sounds they are making with their lips are perceived (McGurk and MacDonald 1976). 

Subjects report a strong influence of the lip movements on what they hear. Demonstrations of the 

McGurk effect can be found online. Another example of the influence of perception in one 

modality on perception in another modality that can easily be experienced first-hand is the 

dependence of visual perception on the perception of gravity. If you look at the rows in front of 

you in an airplane before take-off, they seem to be at the same level with you. If you look at 

them again while the plane is taking-off, they seem to be elevated although the relative position 

between you and the rows in front of you has not changed. The visual perception changes 

depending on information about relative position from other modalities.  

 

The influence of perception in other modalities on olfactory perception is very pronounced. 

There is some evidence that orthonasal olfaction (in which the odor molecules reach the 

olfactory sensory neurons through the nostrils) can be influenced by perception in other 

modalities. However, the most dramatic cases of crossmodal perception are found in retronasal 
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olfaction. When smells are perceived retronasally, the odor molecules reach the olfactory sensory 

neurons through the throat when the odor source is in the mouth. Although retronasal olfaction 

has the same stimuli and the same sensory organ as orthonasal olfaction, it is not usually referred 

to as "smell" Instead, it is a component of what is usually called "taste". When a wine taster says 

that a wine tastes like apple, she is not referring to a perception that is caused by tastants 

activating taste buds. Instead, she is referring to a perception that is caused by odorous molecules 

that smell of apple and activate the olfactory sensory neurons. Odorants from wine in the mouth 

reach the olfactory sensory neurons in the nasal cavity through the pharynx to elicit this aspect of 

the wine's taste. The scientific term for what is commonly called "taste" is "flavor". Scientists use 

the word "taste" for the perception that is mediated by the taste buds on the tongue whereas they 

use the word "flavor" for the multisensory perceptions elicited by food in the oral cavity. 

Scientists would not say that the wine tastes like apples, but instead that it has an apple flavor. 

Flavor has been called, maybe paradoxically, a "multisensory modality" (Taylor and Roberts 

2004; Shepherd 2011; Small and Green 2012). The chemical senses work together with texture 

and temperature perception to produce flavor perception.  

 

Taste is the main contributor to flavor. Humans perceive five basic taste qualities: sweetness, 

sourness, saltiness, bitterness, and umami (a savory taste). Recent research suggests that we also 

have dedicated sensory neurons for other tastants, like fat (Laugerette, Gaillard et al. 2007) and 

calcium (Tordoff, Alarcón et al. 2012). Flavor nuances are added to these basic tastes through the 

contribution of olfaction. When perceived through taste alone, all Jelly Beans have the same 

flavor: sweet. However, when olfaction is added, some Jelly Beans have coconut flavor whereas 

others have popcorn flavor. One can experience this difference by pinching the nose shut with 
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two fingers, then starting to chew a Jelly Bean and then opening the nose. The shift in flavor 

from sweet to sweet pineapple is due to the odorous molecules released by the Jelly Beans that 

can reach the olfactory epithelium only when air flows from the mouth to the nose through the 

pharynx. In addition to taste and olfaction, chemesthesis also contributes to perceived flavors. 

Chemesthesis is the sensitivity to chemicals of areas of the skin or mucous membranes. The 

mucous membrane of the oral cavity contains many chemesthesis-mediating neurons (Green 

2004). The "hotness" of chili peppers and the "coolness" of menthol do not involve temperature 

perception, but chemesthetic perception of molecules that are sensed by temperature sensors. 

Similarly, the "tingling" induced by carbonated drinks is not touch but chemesthesis (Green 

2004). In addition to the chemical senses, touch, temperature, and other senses also contribute to 

flavor perception. 

 

"Flavor" is not just a term for the simultaneous occurrence of perceptions in these modalities. 

Instead, the different modalities involved in flavor perception influence each other. The 

perceptual qualities experienced when drinking chilled, sweet, fruity Riesling can be different 

from the sum of the perception of drinking water chilled to the same temperature as the Riesling, 

tasting a sugar solution of the same concentration as the wine, and smelling the fruity odorants 

found in it. For reviews of the crossmodal interactions in flavor perception, see (Taylor and 

Roberts 2004; Shepherd 2011). Examples of intermodal modulation of olfactory perception 

during flavor perception is that combining a tastant with an odorant can enhance the perceived 

intensity of the odorant (Green, Nachtigal et al. 2011) as well as its detectability (Dalton, 

Doolittle et al. 2000). 
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The principal evidence for crossmodal perception, like the principal evidence for any structure of 

the mind, comes from introspection and behavioral studies. Such evidence is easily disputed. In 

fact, some of the top comments on the websites hosting the demonstration video of the McGurk 

effect are from people reporting to be immune to the influence of the perception of lip movement 

on their auditory perception. As in the case of cognitive penetration, it becomes therefore 

important to investigate whether there are neural correlates of crossmodal perception in 

olfaction. If some neurons connect photoreceptors to olfactory sensory neurons in the human 

brain, we can conclude that information is exchanged between the two modalities. 

 

Neuroanatomy and functional connectivity can tell us whether the required wiring for 

crossmodal penetration of perception is present. There are two complication to evaluating 

whether a neuronal structure should count as a potential neuronal correlate of crossmodal 

perception. The first complication is that interactions between two modalities may be direct or 

indirect. In the section of cognitive penetration, I have already discussed the massive feedback 

from central brain structures to the olfactory system. This feedback could carry information 

about perception in other modalities, thereby providing the basis for crossmodal perception. The 

second complication is that the interaction can be at different levels of processing. A neuronal 

connection between photoreceptors and olfactory sensory neurons would be a very clear 

indication of information exchange between vision and olfaction. But what about a connection 

between two modalities at a much higher level of sensory processing? 

 

A review of the wiring at the level of the neocortex has concluded that there are so many 

interactions that modalities can penetrate each other. In fact, the interactions are so ubiquitous 
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that it is difficult to identify individual modalities (Shimojo and Shams 2001). However, 

anatomical connections between the olfactory system and the other sensory systems at lower 

level of processing than the neocortex are sparse. The lowest levels of processing at which 

visual, gustatory, and olfactory information are thought to converge are the orbitofrontal cortex 

and the amygdala (Rolls and Baylis 1994; Rolls, Critchley et al. 2009). Despite the lack of direct 

anatomical connections between olfaction and other sensory systems in the periphery, it has been 

shown that in rodents piriform cortex neurons are influenced by gustatory stimuli (Maier, 

Wachowiak et al. 2012).  If these findings generalize to the human brain, the feedback neurons 

that are the substrate of cognitive penetration are also the best candidate for the neural correlate 

of the strong crossmodal influences on olfactory perception. 

 

7.3. Conclusion: The mind is a collection of functionally coupled networks 

Our mind has a complex structure of interconnected parts. A metaphor that reflects this structure 

much better than that of the modular mind is to consider the mind is a collection of functionally 

coupled networks. Each of these networks consists of different nodes that are interconnected. 

Nodes can be shared between networks and the connections between them have different 

strengths. The structure of the functionally coupled networks does not follow an overarching 

design principle. Each network followed its own evolutionary trajectory and found its own 

unique, idiosyncratic solutions to the problem it evolved in response to. The lack of order and 

homogeneity that has been discovered in our mind prompted Gary Marcus in his book Kluge: 

The Haphazard Construction of the Mind, to call the mind a "kluge" (Marcus 2008). A "kluge" is 

a solution to a problem that is effective yet inelegant and clumsy. 
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Discovering the clumsy, inelegant functionally coupled networks that structure the mind requires 

a combination of different methods. Introspection and behavioral experiments should be 

supplemented by neuroanatomy and functional neuroanatomy, which provide the neural 

correlates for the networks of the mind. Because there are no general principles of how the 

networks are organized, each question has to be addressed individually. There are no general 

answers about how perception connects to cognition, or if and how different perceptual 

modalities are connected to each other. Questions such as these have to be addressed case by 

case. Some sensory processes probably receive very little input from cognitive processes (like 

"sense 1" in Figure 13), whereas others receive much cognitive input (like "sense 3" in Figure 

13). Each sense was shaped through evolution through natural selection by different needs and 

constraints. The mind needs to be described to be understood.  

 

 

 

Figure 13: The mind as a collection of overlapping functionally coupled networks. In this 

hypothetical example, three networks are shown. A red network, which consist of sense 1 

and cognitive process1, a blue network, which consists of sense 1, sense 2, cognitive 

process 3, and sense 3, and a black network, which consists of sense 2, and cognitive 

processes 1 to 3. 

 

In this chapter, I have described the inputs that olfaction receives from non-perceptual processes, 

as well as the inputs it receives from other perceptual modalities. Olfaction, probably more so 
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than some other perceptual modalities, is modulated by both types of input. However, from this 

observation, no general conclusions about cognitive penetration and crossmodal perception can 

be drawn.  
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Conclusion: Comparing olfaction and vision 

The primacy of vision over other modalities has led to a bias in our understanding of perception. 

The visuocentrism that dominates our thinking has very deep roots that are reflected in our 

philosophical vocabulary. We can "glimpse" or "see" the meaning of a proposition. Using a 

tactile instead of visual metaphor, we can also "grasp" it. After we grasped enough propositions, 

we will form a certain "view" or "outlook" on the topic. Ideas are talked about as if they are 

visual objects that are placed before us. They can be "viewed" from certain "angles". Different 

"positions" can be taken with respect to a certain "view". There are no comparable olfactory 

metaphors. Undoubtedly, this way of speaking has given vision a special status in philosophy of 

perception. Philosophy books have titles such as "Seeing and Knowing" (Dretske 1969) or 

"Philosophy and the Mirror of Nature" (Rorty 1981). Philosophers always have a "point of 

view", whether it is a logical point of view, a scientific point of view, or the view from nowhere.  

 

I hope that this dissertation will trigger a reexamination of the assumptions about perception that 

are built into the philosopher's vocabulary. I do not mean to deny that in humans vision is the 

most important and interesting modality. Humans happen to be active during the day, when the 

light from the sun allows us to perceive the space around us visually. If humans were active at 

night, we might have evolved echolocation like bats, to navigate in the dark. The current state of 

philosophy of perception is in large parts due to the fact that at some point in evolutionary 

history our ancestors were more likely to be eaten at night than during the day. Once our 

ancestors become active during the day, it was important to optimize visual perception, even if it 

meant to reduce further the usefulness of olfaction. The most important evolutionary event that 

shifted importance from olfactory perception to visual perception was the shift from walking on 
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all fours to walking only on the hind legs. Our head, and with it the sense organs for both vision 

and olfaction, were moved up from the ground when we became bipedal. This further accelerated 

the evolution away from an olfactory creature to a visual creature. Close to the ground, down in 

the bushes, there is much less to see and much more to smell. However, at eyelevel (or 

noselevel) vision is much more useful than olfaction. 

 

Understanding that the different ways in which humans perceive visual stimuli and odors have 

been shaped by the unique evolutionary history of our species leads to the realization that there 

are no differences between how visual stimuli are perceived in all species and how olfactory 

stimuli are perceived in all species. The differences between the two modalities that I have 

discussed in this dissertation are differences between how visual perception is implemented in 

contemporary humans and how olfactory perception is implemented in contemporary humans. 

Many of the features that are associated with one modality in humans are associated with another 

modality in other species. In humans, visual perception has spatial structure whereas olfactory 

perception does not. For us, colors can be, and usually are, arranged in a spatial pattern, while it 

is not possible for humans to perceive a spatial arrangement of smells. The presence of spatial 

structure in vision and its absence in olfaction are due to the structure of the human sensory 

systems. Nothing in the nature of olfactory perceptual qualities prevents them from being 

spatially arranged. It is easy to imagine an olfactory system that mediates spatially structured 

olfactory perception. Our whole body could be covered in odor-sensitive cells. We then would 

experience the smell stronger at the side of our body that is facing the odor source. This is how 

we perceive heat and why we can tell whether we walk towards or away from the sun based on 

the pattern of heat perception on our skin. Similarly, we cannot conclude that visual perception is 
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inherently spatial from the fact that human visual perception has spatial structure. Many animal 

species can perceive visual stimuli, but do not have image-resolving eyes, and therefore do not 

perceive spatially arranged visual perceptual qualities. The simplest eye consist of only a single 

photoreceptor (Jékely, Colombelli et al. 2008). With such an eye, all that can be perceived is the 

level of illumination. A species of marine mollusks has hundreds of small simple eyes distributed 

over their body surface (Boyle 1969). They perceive a light source in the same way in which 

humans perceive a heat source. 

 

In the light of this diversity between different perceptual systems, the focus on human vision as a 

basis for philosophy of perception seems misguided. To make progress, other forms of 

perception have to be investigated. In this dissertation, I have considered human olfaction. 

Throughout the rest of this conclusion, I will compare the central findings about olfactory 

perception with what we know about visual perception to show what kinds of biases one can 

except when the focus is on a single modality. 

 

At the level of perceptual qualities, olfaction is more complex than other senses. There are more 

smells than colors or tones. Consequently, arranging the perceptual qualities of olfaction into a 

similarity space has not been possible yet. For colors or tones, this first step of putting order to 

perception has been accomplished. However, once the perceptual qualities are individuated, 

olfaction is much less complicated than vision. What is perceived during olfactory perception in 

normal cases are individual olfactory perceptual qualities. The olfactory perceptual qualities are 

not arranged spatially and the temporal structure of odor perception is much impoverished 

compared to the other senses. This is in contrast with visual perception, which normally is the 
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perception of visual scenes that are arrangements of color qualities in space. A philosophy of 

perception based on smells would focus heavily on the nature of perceptual qualities rather than 

on how they are arranged in time and space. As a consequence, entities that consist of spatially 

and temporally arranged perceptual qualities, like perceptual events and perceptual objects, 

would not be part of perceptual philosophy if olfaction would be the paradigm sense. 

 

The lack or relative unimportance of spatial and temporal information in odor perception also has 

consequences for our understanding of the relation between the physical world and our percepts. 

In vision, space and time are mapped through perception; perception represents the temporal and 

spatial relations in the physical world. Relative position and distance in the physical are often 

accurately represented through perception. This is adaptive because when the perceiving 

organism responds behaviorally to a stimulus, the responses have to be directed and timed based 

on the spatial and temporal structure of the physical world to have the intended effect on the 

physical world. This large overlap between similarities in the physical world and similarities in 

percepts has resulted in the idea of perception as a representation of the physical world. In 

olfactory perception, perceptual qualities are not arranged in space. When perception without 

spatial structure is considered, the similarities found in the physical world between stimuli do not 

appear to be conserved in perception. I have discussed this here for tastants and smells, but it is 

also apparent in the case of colors, where each perceived color can be the consequence of a very 

large number of physically very different stimuli33. In olfaction, physical similarity between odor 

molecules is not reliably mapped onto similarities between the perceptual qualities associated 

                                                           
33 Different mixtures of light of different wavelengths that result in the same perceptual color are 

called metamers Rodrigues, A. B. J. and R. Besnoy (1980). "What is metamerism?" Color 

Research and Application 5(4): 220-221.. 
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with the stimuli34. Because olfactory perception consists of the perception of perceptual qualities 

with no spatial structure, the relation between similarities in olfactory stimuli and similarities in 

olfactory perception is weak. If olfaction were the paradigm, the idea that perception represents 

the physical world would not have the same appeal it has when visual perception is considered. 

In olfaction, perceptual qualities are closer aligned with appropriate behavioral responses to the 

stimuli than with the physical features of the molecules. Olfactory perception illustrates that what 

perception does is not mirroring reality, but guiding behaviors. 

 

Another striking difference between vision and olfaction is that olfaction is more difficult to 

demarcate than vision. While differentiating vision or audition from other forms of perception, 

olfaction is in some respects closely related to other chemical senses and involved in the 

multimodal perception of flavors. Individuating modalities based on representations, phenomenal 

character, the proximal stimulus, or the sense organs will lead to dramatically different results in 

the case of the chemical senses, while all four methods largely agree about how to individuate 

vision or audition. The difficulty of individuating olfaction may have contributed to its relative 

unpopularity among philosophers of perception. Some apparent disagreements in the philosophy 

of olfactory perception are a consequence of olfaction being individuated differently by different 

scholars. 

 

                                                           
34 Of course, it is possible to some degree to predict the perceptual quality of a molecule based 

on its physical features. Molecules containing a sulphur atom, for example, have a distinct smell. 

It is also possible that future research will show that the relationship between physical features of 

molecules and perceptual olfactory qualities is closer than currently appreciated (for a review of 

structure-odor relationship research, see Rossiter, K. J. (1996). "Structure−Odor Relationships." 

Chemical Reviews 96(8): 3201-3240.) 
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In addition to the more fluid boundaries between olfaction and other sense modalities, olfaction 

is also difficult to distinguish from non-perceptual processes like emotion processing. Olfactory 

and emotional processing share the same neuronal substrate and evaluative emotions such as 

disgust are intricately linked to odor processing. There is also widespread cognitive penetration 

of the olfactory sensory system. Olfaction illustrates therefore the interconnectedness of the mind 

better than many other modalities that have a different evolutionary history. 

 

That the different evolutionary histories of the different modalities result in differences in how 

they are connected to cognitive processes is also reflected by the differential ineffability of the 

senses. Naming and talking about what is perceived through olfaction is more difficult than 

naming and talking about what is perceived visually. This also has far-reaching consequences. 

As speculated above, the perception that is most easy to talk about is the obvious candidate for 

philosophers to investigate. This may have contributed to the bias towards visual perception in 

philosophy. The strong connection between vision and language also has methodological 

consequences for the empirical study of perception. In visual psychophysics, the ability to name 

a stimulus is often used as a read-out. Often the reliance on verbal report is pushed so far that the 

absence of a verbal report is interpreted as the absence of perception, or at least the absence of 

conscious perception. In olfaction, the danger of drawing conclusions about perception based 

exclusively on verbal reports is less pronounced. 

 

Taken together, an olfaction-based philosophy or perception would be much different from the 

familiar version based on visual perception. Where to go from here? One possibility is that the 

account of olfactory perception given here is seen as a supplementing the well-established 
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account of visual perception. The two accounts differ, but the differences between them do not 

amount to different suggestions about how we should think about perception. Instead, the 

differences between the account of visual perception and the account of olfactory perception 

reflect the fact that visual perception in humans is fundamentally different from human olfactory 

perception. An alternative to embracing the heterogeneity of perception is to try to identify 

features that are shared by all instances of perception. The differences between the perceptual 

systems are so pronounced that some are skeptic that a unified account that applies to all types of 

perception can be developed (Martin 1992). I am more optimistic and believe that enough 

features are shared between all forms of perception that an interesting general account of 

perception can be developed. The most striking similarities between olfaction and vision that the 

analysis presented in this dissertation revealed are that both types of perception involve 

perceptual qualities and that they both serve to guide behaviors. This, I propose, could be a 

starting point for a modality-neutral theory of perception. 
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