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Abstract

In the past few decades, network architectures and protocols are often designed to

achieve a high throughput and a low latency. Security was rarely considered during

the initial design phases. As a result, many network systems are insecure by design.

Once they are widely deployed, the inherent vulnerabilities may be difficult to elimi-

nate due to the prohibitive update cost. In this dissertation, we examine such types of

vulnerabilities in various networks and design end-to-end-based solutions that allow

end systems to address such loopholes.

The end-to-end argument was originally proposed to let end hosts implement

application-specific functions rather than letting intermediate network nodes (i.e.,

routers) perform unneeded functions. In this dissertation, we apply the end-to-end

principle to address three problems in wireless networks that are caused by design

flaw with following reasons: either because integrating solutions into a large number

of already deployed intermediate nodes is not a viable option or because end hosts

are in a better position to cope with the problems. First, we study the problem

of jamming in a multihop wireless network. Jamming attacks are possible because

wireless networks communicate over a shared medium. It is easy to launch a jamming

attack but is difficult to defend against it. To ensure the end-to-end packet delivery,

we propose a jamming-resilient multipath routing algorithm that maximizes end-to-

end availability based on the availability history between sources and destinations.

Second, we investigate caller ID spoofing attacks in telephone networks in which an

attacker can send a fake caller ID to a callee rather than her real one to impersonate as

someone else. Such attacks are possible because there is no caller ID authentication
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mechanism in operator interconnection protocols. Modifying current protocols to

verify caller ID between operators may be infeasible due to the scale of deployed

systems. So, we propose two schemes to detect caller ID spoofing attacks based on

end-to-end verification. Finally, we examine evil twin access point attacks in wireless

hotspots. In such attacks, an adversary sets up a phishing access point that has the

same Service Set IDentification (SSID) as the legitimate ones in the hotspot. Such

attacks are easy to launch because of how 802.11 standards are designed. Existing

solutions take away convenience from the user while providing security. Our aim is

to detect evil twin access point attacks in wireless hotspots without modifying how

access point works in hotspots and without additional infrastructure support. We

propose an end-to-end-based mechanism that can effectively detect evil twin access

point attacks in wireless hotspots.
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Chapter 1

Introduction

1.1 Motivation

Wireless technologies are becoming increasingly popular, because they can offer per-

vasive services at an affordable price. In the past few decades, a variety of wireless

technologies have been proposed to cover almost all possible communication scenarios.

For instance, Bluetooth [17] technologies are designed for short-distance communica-

tion (several meters), 803.11 (Wi-Fi) [58] for medium-distance communication (up to

250 meters), LTE [105] for high-speed long-distance communication (up to 70 miles),

etc. Apart from providing last-hop Internet services to end users, wireless networks

have been applied to various situations to improve the quality of our life like never

before, including smart meters for improving the efficiency of power grids, medical

devices for continuous treatment outside hospitals, vehicular ad hoc networks for

improving road safety, etc. Often wireless networks were designed with the goal of

achieving a high throughput and a low latency; security was not always considered

in the initial design phase. Consequently, security and reliability problems of the

wireless communication may appear after wireless systems are deployed.

Since systems were often designed without security in-mind, many network sys-

tems have been widely deployed with inherent vulnerabilities, i.e., such systems may

fail to satisfy one or more properties of secure and reliable wireless communication:

(a) confidentiality, which means that the content of messages is accessible only by

authorized users, i.e., an attacker can eavesdrop on the communication but cannot
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read the content, (b) integrity, which means that a receiver can verify whether a mes-

sage has been altered or corrupted, (c) authentication, which means that a receiver

can verify the identity of a sender, and (d) availability, which represents quality of

service. Failure to satisfy the above properties may lead to different types of attacks,

e.g., evil twin access point attack in Wi-Fi networks. Although these properties may

be achieved using traditional cryptographic solutions [103][53][55][54][124][69], many

deployed systems were not designed to ensure all of them, e.g., Wi-Fi networks, tele-

phone interconnection networks, etc. As a result, inherent vulnerabilities may be

difficult to eliminate either because the update cost may be prohibitive for a large-

scale system, or a cryptographic solution may take away convenience and degrade

usability. In some cases, even if we could redesign the protocol, we may not elimi-

nate all vulnerabilities. In this dissertation, we address such vulnerabilities. Rather

than modifying the core network components in existing infrastructures, we design

end-to-end-based solutions that enable end systems to address such loopholes.

End-to-end principle [102] is one of the well-known principles of computer net-

working. This principle suggests that end hosts should implement application-specific

functions rather than letting intermediate network nodes (i.e., routers) perform func-

tions that are unnecessary to all applications, provided that the application-specific

functions can be completely and correctly implemented in end hosts. Transmission

Control Protocol (TCP) is an example that utilizes such a principle. End-to-end prin-

ciple allows us to design solutions that can be applied/installed in end hosts without

modifying the core network infrastructure or without taking away the convenience

of existing systems. Additionally, end-to-end solutions ensure that end-users are at

liberty to utilize solutions, and not forced to use the existing vulnerable systems.
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1.2 Problem Overview

In this dissertation, we examine problems in wireless networks that are caused by

how the networks were designed. Our problem domain covers from multi-hop ad

hoc networks, widely popular Wi-Fi networks to several types of widely deployed

telephone networks. We apply the end-to-end principle to address the problems either

because integrating solutions into a large number of already deployed intermediate

nodes is not an option or because end hosts are in a better position to cope with

the problems. In particular, we investigate three attacks in three different types of

networks and address these vulnerabilities through end-to-end-based solutions. We

discuss these attacks in the following.

Jamming Attacks. Jamming attacks are especially harmful to the reliability of

wireless communication, as they can effectively disrupt communication between any

node pairs. Jamming attacks are possible because wireless networks communicate

over a shared medium. It is easy to launch jamming attacks using off-the-shelf de-

vices, but is difficult to defend against them. Existing jamming defense techniques

primarily focus on repairing connectivity between adjacent nodes. We take a dif-

ferent point of view; rather than repairing network communication locally, we aim

to achieve end-to-end availability at the network layer. Our basic idea is to choose

multiple fault-independent paths between a pair of communication nodes; as long as

all paths do not fail concurrently, the end-to-end availability is maintained. Exist-

ing multipath routing algorithms choose multiple disjoint paths, i.e., paths do not

share common nodes or links. However, through our experiments using MicaZ nodes,

we found that disjointness is not sufficient for selecting fault-independent paths in

the presence of jamming attacks. Instead, we choose multiple paths that maximize

the end-to-end availability based on the historic availability measurements of

wireless links between nodes.
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Caller ID Spoofing Attacks. Caller ID (caller identification) is a service pro-

vided by telephone operators, where the phone number and/or the name of the caller

are transmitted to inform the callee who is calling. Today, most people trust the

caller ID information, and it is increasingly used to authenticate customers (e.g., by

banks or credit card companies). However, with the proliferation of smartphones and

VoIP, it is easy to spoof caller ID by installing corresponding Apps on smartphones

or by using fake ID providers. This vulnerability has already been exploited with

crucial consequences such as faking caller IDs to emergency services (e.g., 9-1-1) or

to commit fraud. As telephone networks are fragmented between enterprises and

countries, modifying existing protocols to add caller ID verification mechanisms may

not be financially feasible due to the cost of upgrading large deployments. No mech-

anism is available today to easily detect such spoofing attacks. In this dissertation,

we propose an end-to-end caller ID verification mechanism CallerDec that

works with existing combinations of landlines, cellular and VoIP networks. CallerDec

can be deployed at the liberty of users, and does not require any modification to the

existing infrastructures.

Evil Twin Access Point Attacks. Internet usage through wireless networks,

Wi-Fi in particular, has gained rapid popularity in the last few years. Wi-Fi is

now de facto network interface for many state of the art devices, e.g., smartphones,

tablets, laptops, smart televisions, etc. To take advantage of such popularity, many

shops, cafés, airports, and parks provide wireless hotspot services to users free of cost.

Wireless hotspots allow users to use Internet via Wi-Fi interface. However, there is no

authentication mechanism available in such hotspots which makes them vulnerable

to evil twin access point (AP) attacks. To launch such attacks, an adversary sets up

a phishing AP that has the same Service Set IDentification (SSID) as a legitimate

AP in the victim hotspot. The phishing AP could be a laptop, a smartphone, or

any types of Wi-Fi-enabled devices. Such an attack can be harmful to users when

4



the attack is used for stealing sensitive data from the wireless users. Cryptographic

solutions could be used to counter evil twin AP attacks. However, these solutions

would take away convenience of the hotspot, and hotspot providers are less likely

to adopt them. Thus, end-user mechanism that can effectively detect evil twin AP

attacks in wireless hotspots is necessary but not available today. Instead of changing

how an AP of a hotspot operates, we focus on detecting evil twin access point attacks

by executing an end-to-end-based solution at the hotspot client.

1.3 Overview of the Dissertation

In this dissertation, we analyze three security vulnerabilities in wireless networks

and present end-to-end-based solutions to address all of the vulnerabilities. The

organization of the dissertation is as follows:

In Chapter 2, we briefly overview the problem of wireless interference or jamming

attacks in wireless mesh networks. We propose to select multiple paths based on the

knowledge of a path’s availability history. Using Availability History Vectors (AHVs)

of paths, we present a centralized AHV-based algorithm to select fault-independent

paths, and a distributed AHV-based routing protocol that is built on top of Ad hoc

On-Demand Distance Vector (AODV) routing protocol. Our extensive simulation

results validate that both AHV-based algorithm and AHV-based routing protocol can

effectively overcome the jamming impact by maximizing the end-to-end availability

of the selected paths.

In Chapter 3, we examine caller ID spoofing attacks in telephone networks and

identify the underlying factors that allow an adversary to launch such attacks. We

propose two end-to-end caller ID verification schemes which we call CallerDec.

CallerDec requires no modification of the existing telephone network infrastructure.

We design an SMS-based CallerDec scheme for phones that have SMS services and

a timing-based CallerDec for landlines, cell phones and VoIP phones. We imple-

5



mented both CallerDec schemes as Apps for Android based phones and validated

their effectiveness in detecting caller ID spoofing attacks in various scenarios.

In Chapter 4, we overview the problem of evil twin access point attacks in wireless

hotspots and discuss the potential effects of such attacks to end users. We propose an

end-user mechanism, CETAD, that can effectively detect evil twin access point attacks

in wireless hotspots without any infrastructure support or without prior training.

Our proposed mechanism leverages public servers and only requires installing an App

at the client device without changing the hotspot APs. Through our implementation

and evaluation, we show that CETAD can detect evil twin AP attacks in various

scenarios effectively.

Finally, we conclude the dissertation with a summary of the research and outline

directions for future work in Chapter 5.
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Chapter 2

Multipath Routing Maximizing End-to-End

Availability

2.1 Background

Wireless networks communicate through a shared medium and thus are vulnerable

to both malicious jamming attacks and radio interference. With little effort, an

adversary can purchase an off-the-shelf programmable radio (e.g., a software-defined

radio) and build a jammer to continuously disturb wireless communication. Even

without adversaries, the tension between the proliferation of wireless technologies and

the limited number of unlicensed bands will continue to make the radio environment

crowded. Already, an increasing number of companies are manufacturing various

types of wireless devices using the 2.4 GHz radio spectrum, such as Wi-Fi network

adapters, 2.4 GHz cordless phones, Bluetooth headsets, ZigBee-enabled appliances,

microwave ovens, etc. Those devices can experience throughput degradation from

unintended radio interference among co-existing devices. Whether intentional or not,

both jamming attacks and radio interference will continue to be one of the most

serious threats to the dependability of wireless communication. Since both threats

can prevent networks from delivering information, we use the term jamming to refer

to both in the rest of the chapter.

To cope with jamming, much research effort has focused on local repairing, i.e.,

restoring communication between adjacent nodes. Those anti-jamming measures in-

clude the conventional physical-layer techniques that rely on advanced transceivers [98]
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(e.g., frequency hopping) and MAC-layer mechanisms [88][136] that adjust error cor-

recting codes, channel adaptation [136], or physical location [76]. Although those

techniques are important to defend against jamming, we take a different viewpoint

and focus on defending against jamming at the network level, i.e., restoring reliability

of end-to-end data delivery.

In this study, we examine multipath routing protocols that will react to communi-

cation disturbance on-demand. In particular, a source node selects multiple different

paths for reaching the destination in advance. When one of the paths fails, other work-

ing paths will be used to deliver packets and thereby maintain end-to-end availability,

as long as not all paths between the source and the destination fail concurrently. Such

end-to-end availability provided by multiple paths between a source-destination pair

is referred to as multipath availability. A crucial component of multipath routing is

multipath selection (i.e., the decision process of determining which paths to use), as

the selection tactic and resulting path qualities will directly influence the effectiveness

of multipath routing. In this study, we design multipath selection algorithms that will

optimize multipath availability even when one or more jammers may disrupt network

communication occasionally or continuously.

Most existing multipath selection algorithms in both wireless and wired net-

works [83][127][2][139][142] choose node-disjoint paths or link-disjoint paths, i.e.,

paths without common nodes or shared links, in an attempt to minimize the prob-

ability that all the paths simultaneously fail. While such an approach is simple and

intuitive, it relies on the assumption that the disjointness among multiple paths is

sufficient to guarantee failure-independence. However, in a wireless network, disjoint

paths can still be failure-correlated, especially in the presence of multiple interference

sources. We illustrate this by the following two scenarios. In both scenarios, a wire-

less ad hoc network with each node equipped with an 802.11b/g network adaptor is

deployed in a square area. Consider three disjoint paths between the source node
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Figure 2.1 An illustration that disjoint paths are still correlated with regard to
jamming (shaded areas represent jamming regions): (a) one non-isotropic jamming
area and (b) two jamming areas far apart.

S and the destination node D, as illustrated in Figure 2.1. In the first example, a

stationary interferer J with an irregular jamming area (e.g., a mounted microwave)

becomes active occasionally, as shown in Figure 2.1(a). Upon turning on, J disturbs

all three disjoint routes (Rt1, Rt2, Rt3) and causes them to fail concurrently. As

another example, two sets of 2.4 GHz cordless phones call each other from time to

time, as denoted by J1 and J2 in Figure 2.1(b). They start to interfere with the

network communication whenever they are connected. As a result, J1 and J2 turn all

three routes to be fault-correlated. In both cases, the disjointness is necessary but

not sufficient to guarantee fault-independence between paths.

To address the failure correlation between disjoint paths in the presence of jam-

ming, one natural way is to mathematically model the impact of jamming on the

network links. However, electromagnetic signals propagate in complex environments

full of absorption, reflection, scattering and diffraction, and the resulting jamming

impact on the network is highly irregular [73]. Figure 2.2 shows packet delivery con-

tours of a sender in the presence of a jammer obtained using MicaZ nodes. The pink

(dark-shaded) areas within which a receiver can successfully receive messages exhibit
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Figure 2.2 PDR contours of a sender located at (20,0) in the presence of a
jammer located (-20,0) to illustrate the irregularity of jamming effect in a real
system. To obtain the PDR contours, a receiver was placed at the grid with a grid
size of 5 inches in an indoor environment. The sender, receiver, and the jammer are
all implemented on MicaZ nodes with the same transmission power levels.

high irregularity. This indicates that even given accurate information of jammers’

locations and jamming power levels, it is still difficult, if even possible, to quantify

their impacts with reasonable accuracy.

Rather than relying on inaccurate models, our key insight is to address multipath

selection based on the knowledge of a path’s availability history, granted that failure

correlation between paths can be automatically derived from their availability history.

Specifically, if two paths tend to exhibit a history of concurrent failures, we regard

them as failure-correlated, otherwise as failure-independent. Admittedly, two failure-

independent paths may also present certain concurrent failures by chance, but such a

random correlation will not harm the multipath selection as it will not lead to choosing

failure-dependent paths. Additionally, by using the historical failure correlation of

links to predict future correlation, our scheme is most resilient to the types of failures

that can repeat in the future, while we will show that it is still effective in improving

network reliability when the failures happen only once or new types of failures occur

in the future.
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Our underlying rationale for leveraging availability history to exploit failure-

correlation lies in the following: The intricate factors that cause failure-correlation

between different paths (Section 2.3) are difficult to identify, but their impacts on a set

of links may be deterministic and long-lasting. Thus, the best we can do is to derive

such correlation after the failures take place, while it is an open challenge to detect

failure-correlation before failures happen. In our prior work [143], we have proposed

the availability history approach for the Internet. In this chapter, we demonstrate

that availability history is particularly effective to defend against jamming attacks in

wireless networks and also present how to integrate it with classic ad hoc network

routing protocols.

The rest of this chapter is organized as follows. We specify our network and

threat model in Section 2.2 and overview the Availability History Vector (AHV)-based

approach in Section 2.3. In Section 2.4, we present an AHV-Based Link-State (ALS)

algorithm that selects multiple paths based on the global network information, and

evaluate the ALS algorithm in our customized simulator. In Section 2.5, we discuss

a distributed AHV-based routing algorithm built on top of AODV and present our

evaluation effort using ns-3. Finally, we discuss the related work in Section 2.6 and

summarize the chapter in Section 2.7.

2.2 Network and Threat Models

In this section, we summarize the network model and the threat model for our study.

Network Model

To focus our effort in examining the resilience of multipath selection against jamming

and radio-interference, we consider ad hoc wireless networks with limited mobility,

e.g., wireless mesh networks. That is, the link state is primarily affected by jamming

and interference but not by the mobility of network nodes. Furthermore, we assume
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that each node will maintain a neighbor table recording the link states between its

neighbors and itself. Such a neighbor table is supported by most routing protocols

and can be easily implemented by periodically broadcasting beacons.

Threat Model

Besides jamming, our scheme is resilient to other types of failures that can change

disjoint paths into fault-dependent ones. For instance, network nodes belonging to

the same carrier may be far apart but leave/join the network at the same time.

Nevertheless, we focus on studying the multipath selection problem under the threat

of jamming. In particular, we examine the following representative jammers to mimic

radio interference sources and malicious jammers.

• Stationary Jammers. One or more stationary jammers alternate between

on and off mode but do not move around. This type of jammers can be a

radio interferer that becomes active at times, e.g., a mounted microwave or a

ZigBee-enabled appliance. Specifically, when interferers are active, they emit

energy to the channel without following the MAC protocol implemented by the

network. When multiple interferers are present, they can start to emit signals

simultaneously, independently, or in a manner such that at least one of them

is active at any time instant. Regardless of their activation patterns, they will

disturb the network communication inside the same regions occasionally.

• Mobile Jammers. A mobile jammer will move around in the network while

emitting signals continuously, and it will disrupt the network communication

within its vicinity. Such a jammer can either be a malicious jammer or an

interferer with mobility, e.g., a Bluetooth device in a moving vehicle. Whether

intentional or malicious, a mobile jammer can travel following a specific pattern

or can move randomly.
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Figure 2.3 A simplified topology of a wireless network with three paths.

The distinction between the stationary and mobile jammer is that the latter,

especially the jammer moving randomly, affects a wider range of links but not simul-

taneously. As a result, it is challenging to predict future link states with the history

information when a mobile jammer is present.

2.3 AHV-Based Routing Overview

The success of multipath selection algorithm necessitates two components, namely,

(a) a metric that can accurately reflect failure correlation between different paths,

and (b) a selection algorithm that can effectively leverage the metric to rule out

failure-correlated paths from being selected together.

In this Section, we first present a mechanism which can not only evaluate individ-

ual path availability, but can also derive a multipath availability metric even in the

presence of failure correlation between links. Then, we sketch how our mechanism

helps to select multiple paths based on the derived availability metric.

We use the following standard notations: “∧” is the logical AND bit-operation;

“∨” stands for the logical OR bit-operation; “|X |” operation returns the cardinality

of the set X ; and “‖X ‖” operation returns the norm of the vector X .
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Figure 2.4 An illustration of converting PDR to AHV for the link 1➞2 by
applying a threshold value of γ0 = 0.6.

Availability History Vector

Given the increasing possibility of cross-platform interference and jamming in wireless

networks, as well as the overwhelming complexity of the wireless propagation envi-

ronment that a wireless network relies on, it is difficult (if not impossible) to precisely

predict or analyze the correlation between different paths. To bypass such complex-

ity while still exploring the failure correlation between different paths, we propose a

mechanism called an Availability History Vector (AHV) [143], to record path avail-

ability histories, from which the failure correlation between different paths can be

learned. We first define an AHV on a per-link basis, from which path (multipath)

availability can be then easily derived.

AHV of a Single Link

One natural metric to determine the availability of a wireless link is the Packet

Delivery Ratio (PDR), i.e., the percentage of packets successfully delivered to the

destination node over the link. Recording the PDR time series directly requires at

least 1 byte for each data point, and calculating the aggregated PDR of a path requires
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multiplication. Thus, direct PDR recording is not an efficient option considering the

packet and computation overhead it will incur. To store and compute availability

history efficiently, we utilize a binary vector for recording, and bitwise operations for

calculating path availability.

In particular, we map a PDR to a 0-1 value, where ‘1’ corresponds to the time

instant when the link is available (acceptable PDR), while ‘0’ corresponds to the

time instant when the link is unavailable (unacceptable PDR). A threshold γ0 is

predefined to determine whether a PDR is acceptable, and γ0 should be sufficiently

high to ensure acceptable end-to-end PDRs. Furthermore, we divide time into epochs

with a fixed duration. The length of each epoch can be chosen based on the network

characteristics. At the lth epoch, let PDRl
ij be the average PDR between node i and

j, then the availability record of the link between node i and node j at the lth epoch

is calculated as:

rl
ij =























1 if PDRl
ij ≥ γ0,

0 otherwise.

(2.1)

The AHV of this link for e epochs is:

aij = [r1
ij, r2

ij, . . . , re
ij]. (2.2)

To facilitate an observation, we depict an AHV as a continuous line and illustrate

an example of converting the PDR into the AHV with γ0 being 0.6 in Figure 2.4;

except for Epoch 9, the availability of other epochs is ‘1’.

So far, AHV is used to characterize individual links between a pair of nodes. Now

we present how to derive an AHV for an entire path consisting of concatenating links

or sub-paths. We achieve this by using a series combination operation as discussed

in the following.
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Figure 2.5 The calculation of AHVs for Path-1 in Figure 2.3. Path-1 has three
links: 1➞2, 2➞3, and 3➞8.
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Figure 2.6 The calculation of multipath AHVs for three paths from Figure 2.3.

AHV of One Path

The AHV of a complete path is computed as the logical bitwise AND of all AHVs of

the links or sub-paths. The AHV of path pi can be formulated as

Ai = aI1I2
∧ aI2I3

∧ . . . ∧ aIqIq+1
, (2.3)

where Iq is the qth node ID on the path pi.

For example, recall that Path-1, shown in Figure 2.3, consists of links 1➞2➞3➞8.

Figure 2.5 illustrates the series combination for calculating its AHV. The top three

lines present the AHVs of links 1➞2, 2➞3, and 3➞8, and the last line is the AHV of

Path-1, computed as the bitwise AND of the first three AHVs.
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AHV of Multiple Paths

Recall that in multipath routing, we aim at selecting multiple paths that provide the

highest multipath availability; thus we derive the AHV of a given set of k paths using

the following parallel combination operation.

Let M be the set of k paths between a source-destination pair. The AHV of M

is computed as the logical bitwise OR of all AHVs of the paths, denoted as

AM = A1 ∨ A2 ∨ . . . ∨ Ak. (2.4)

Figure 2.6 shows an example of the AHVs of three paths along with the combined

AHV of two paths. The top three lines present the AHVs of Path-1, Path-2, and Path-

3 respectively. The last line is the combined AHV of Path-1 and Path-3, obtained by

a logical bitwise OR of the Path-1 and Path-3’s AHVs.

Multipath Availability Metric θ

From the availability history carried by AHVs, we can infer that two paths are highly

correlated if they tend to fail at the same time, and similarly, two paths are failure-

independent if they do not fail at the same time. To facilitate selecting failure-

independent routing paths, we define an availability metric θ, which is computed as

the number of 1-epochs (i.e., availability bit equals ‘1’ in that epoch) in the AHV of

multiple paths between a source-destination pair. Specifically, the availability of a

multipath set M is

θ(M) = ‖AM‖. (2.5)

Consider the example shown in Figure 2.6, θ of the set of Path-1 and Path-3 is 9.
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Figure 2.7 A 5-by-5 Network where each pair has sixteen (16) disjoint loop-free
paths to each other.

Multipath Selection

The goal of our multipath selection scheme is to select k AHVs that can produce the

largest θ, to ensure that failure-correlated paths are bound to be less likely chosen

together. Formally, given the set H containing h candidate paths, the multipath

selection problem can be defined as the following:

Definition 1.

maximize
M

θ(M)

subject to |M | ≤ k, M ⊆ H.

Multipath Selection Framework

Obtaining the optimal M containing k paths encounters two challenges. First, the

multipath selection problem in Definition 1 is NP-complete, according to our prior

work [143]. Second, a huge number of possible paths may exist between nodes in

a multi-hop wireless network. Consider a 5-by-5 grid network with each node con-

nected with the other four nodes, as shown in Figure 2.7. Sixteen disjoint, loop-free

paths exist from 1 to 4: 1➞4, 1➞3➞4, 1➞2➞4, 1➞2➞3➞4, 1➞3➞2➞4, etc. It is

foreseeable that as the number of nodes increases, the number of paths will increase
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exponentially. Solving the NP-Complete problem of Definition 1 with a large number

of candidate paths can be computationally prohibitive.

To address both issues, we propose a two-stage framework to select multiple paths,

1. the path pre-selection stage

2. the greedy multipath selection stage,

as shown in Algorithm 1. In particular, we model the network as a weighted graph

G = (N, E, W ) with N being the node set, E being the link set, and W being the map

from edges to weights. Given the network graph G, the function PreSelectPath()

selects h paths as the candidates in the path pre-selection stage. Then, in greedy

multipath selection stage, the function AHVSelect() selects k paths using an approx-

imation algorithm (as shown in Algorithm 2).

Greedy Multipath Selection

Essentially, AHVSelect() (Algorithm 2) is a greedy algorithm to choose k paths out

of h candidate paths that produce a high level of availability according to the AHVs.

In each iteration, the algorithm greedily selects the path that can maximize the

multipath availability accumulated so far, and it has a time complexity of O(hk).

To illustrate, recall the example topology shown in Figure 2.3 with the AHV

of each path given in Figure 2.6. Suppose Path-1 has already been selected where

θ(Path-1) = 8. If we further select Path-2 which is failure-correlated with Path-

Algorithm 1 AHV-Based Multipath Selection Framework
Require: INPUT:

G = (N, E, W ), h, k, {Ai};
OUTPUT:
M ;
PROCEDURES:

1: H = PreSelectPath(G, h)
2: M = AHVSelect(H, k, {Ai}i∈H)
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Algorithm 2 AHVSelect: AHV-Based Multipath Selection
Require: INPUT:

H, k, {Ai}i∈H

OUTPUT:
M ;
PROCEDURES:

1: M = ∅, θ(M) = 0
2: while |M | ≤ k do
3: select a path p ∈ H that maximizes θ(M ∪ p)
4: add p to M , update θ(M) = θ(M ∪ p)
5: end while

1, the resulting combined AHV gains no increase in the total number of 1-epochs,

i.e., θ(Path-1 V Path-2) is also 8. In contrast, if we parallel-combine Path-3 with

Path-1, the resulting combined AHV θ(Path-1 V Path-3) is 9. Since Path-3 is failure

independent with Path-3, this combination benefits from a significant increase in θ;

thus Path-3 is chosen over Path-2 in our selection mechanism even though Path-2 is

more stable than Path-3.

2.4 AHV-Based Link-State Algorithm

In this section, we present an AHV-Based Link-State (ALS) algorithm that selects

multiple fault-independent paths utilizing the individual AHV information. Specifi-

cally, each node maintains a history table recording the AHVs and PDRs between its

neighbors and itself, and such history tables for every link are accessible by the ALS

algorithm. In practice, collecting the history tables across the entire network might

be prohibitive. Nevertheless, the discussion of the ALS algorithm serves as a means

to understand and validate the theoretical underpinning of AHV-based multipath

selection strategies. In Section 2.5, we present a distributed algorithm that selects

multiple fault-independent paths without global knowledge.
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Algorithm Description

The AHV-based Link-State algorithm follows the two-stage framework: path pre-

selection and greedy multipath selection.

Path Pre-Selection

The combined quality of the h candidate paths directly affects the achievable multi-

path availability to be obtained in the greedy multipath selection stage. To improve

the combined quality, we defined a few pre-selection rules. Formally, we denote the

quality of path pi as w(pi) and Ni as the node set on the path pi. The candidate path

set H will satisfy the following requirements:

1. |H| ≤ h,

2. ∀pj , pi ∈ H,
|Ni∩Nj |

min(|Ni|,|Nj |) ≤ ρ,

3. ∀pu /∈ H, pi ∈ H, w(pi) ≥ w(pu) OR

∃pj ∈ H,
|Nj∩Nu|

min(|Nj |,|Nu|) ≥ ρ,

where ρ is a threshold and ρ ∈ [0, 1].

The first condition requires that the size of set H must not exceed h.

The second condition requires that any pairs of paths belonging to H should have

less than ρ percent of shared nodes. The parameter ρ controls the level of overlapping

between paths in H. When ρ = 0, H only contains node-disjoint paths, while when

ρ = 1, H consists of any paths without the disjointness restriction. Setting ρ = 0 may

sound appealing at first glance, but strictly choosing h disjoint paths can filter out

‘good’ candidates, some of which in combination can be highly failure-independent.

At the other extreme, setting ρ = 1 can include several candidate paths that are

highly correlated with each other, reducing the diversity of H. Thus, ρ serves as a
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tunable value to strike the balance between those extreme cases. In our study, we

choose ρ = 0.8 based on our empirical analysis (Section 2.4).

The third condition requires that a top-ranked candidate path should be selected,

unless many of its nodes overlap with a higher ranking one, where the paths are ranked

with regard to link quality. We continue to use PDR as a link quality indicator.

Considering that the PDRs of links are independent, the PDR of a path from node

i to node j with q links is,

PDRij =
q

∏

i=1

PDRIiIi+1

To obtain h paths, we utilized Yen’s ranking algorithm [79], a classic algorithm

to determine the K shortest paths. A few issues arise when applying Yen’s ranking

algorithm to obtain H: (a) it assumes the end-to-end weight of two consecutive links

equals the sum of individual link weight while the end-to-end PDR is the product of

individual PDRs; (b) it returns paths with the top minimum weight while we are

interested in top maximum weighted ones, and (c) it returns paths regardless of the

number of shared nodes among them. To address those issues, we define the weight

of a path from nodes i to j as

wij = − log(PDRij) = −
j

∑

i=1

log(PDRIiIi+1
)

and simply discard a path from H if it shares more than ρ percent of nodes with a

higher ranking path.

Greedy Multipath Selection

In this stage, we use Algorithm 2 to select k paths from the candidate path set

H obtained at the path pre-selection stage. Here, we first select the path with the

highest availability, and then we iteratively select the remaining k−1 path maximizing

combined availability.
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Algorithm Evaluation

In this section, we evaluate the performance of the AHV-based Link-State algorithm

in our customized simulator that was implemented in Java. Our customized simulator

has the flexibility of adopting various physical propagation models and hardware

models for decoding packets. The focus is to validate the algorithm performance

without the influence of network traffic.

Simulation Methodology

Propagation Model. To prepare for the extensive performance study, we chose

a simple yet representative model that captures the essence of signal propagation

without using computer-aided modeling tools, i.e., log-normal shadowing model [44].

Our model captures both path loss versus distance and the random attenuation due

to blockage from objects in the signal path, and it has the following form,

PL(d) = PL(d0) − 10 · η · log(
d

d0

) + Xσ,

where PL(d) is the path loss at distance d, PL(d0) is the known path loss at a

reference distance d0, η is the Path Loss Exponent, and Xσ is a Gaussian zero-mean

random variable with standard deviation σ. To emulate a real environment, we tune

the variables obtained from our prior empirical study [73]: η = 2.11, σ = 1.8, and

PL(d0) = 33dB.

Essentially, the link quality (PDR) between a pair of directly connected nodes

is determined by the physical-layer metric, i.e., signal-to-noise ratio (SNR) at the

receiver. When the SNR is larger than a threshold value ξo, a message can be decoded

and will be received successfully, otherwise it will not. We measured the PDRs by

examining the SNR for each link periodically while setting ξo to 0dB. After obtaining

the PDR between node i and j for the lth epoch, the availability, rl
ij, can be derived

according to Equation 2.1.
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Figure 2.8 The end-to-end PDR and availability of ALS in no-jammer cases.

Network Setup and Scenarios. We simulated a random wireless network

consisting of 1000 nodes in a 700m-by-700m square. The nodes were deployed with a

uniform density and each node had a transmission range of about 40m, which resulted

in approximately 10 neighbors per node.

We evaluated our ALS algorithm with k = 2 and compared it with two other

baseline algorithms: (a) single path: selecting the path with the highest average end-

to-end PDR; (b) double disjoint paths: selecting two paths that are disjoint and have

the top PDRs. We denote those three algorithms as AvPath, single, and double,

respectively.

We studied the following scenarios: no jammer, one stationary jammer, two sta-

tionary jammers, and a mobile jammer with two types of moving patterns. For each

scenario, we ran our experiment 100 times to collect the statistical characteristics.

For each simulation run, the nodes built their neighbor tables and history tables prior

to time t1 = 600s. At time t1, all algorithms selected paths based on the link infor-

mation observed so far. Then the average availability between a pair of nodes (S and

D) that were approximately 20 hops apart was measured for 600 seconds, and the

normalized availability is depicted.
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Figure 2.9 The CDF of end-to-end availability of ALS for one jammer scenarios
where Jammer Transmission Range (JTR) is the same or larger than regular
network nodes.

Evaluation Results

No Jammer. Figure 2.8 shows the histogram of the end-to-end PDR and Cu-

mulative Distribution Function (CDF) of the normalized availability between node S

and node D with no active jammers. The vertical lines are the average normalized

availability for the three cases. Overall, selecting two disjoint paths did increase the

average availability slightly: by 4%. However, by selecting two fault-independent

paths, our ALS algorithm boosted the average availability more: from 75% to 98%.
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Figure 2.10 The CDF of end-to-end availability of ALS algorithm in two-jammer
cases with various Jammer Transmission Range (JTR).

This result suggests that the AHV-based algorithm can improve network communi-

cation even without the disturbance of jamming.

Stationary Jammers. In this set of experiments, we studied two scenarios:

a one-stationary-jammer scenario and a two-stationary-jammer scenario. In both

scenarios, the stationary jammers were present at the beginning of the simulations,

and they alternated between ON and OFF for random amount of time, e.g., a random

duration uniformly distributed between 5 and 20 seconds. The jammers were placed

somewhere on the shortest path between nodes D and S, so that it would affect the
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shortest path between the source and the destination. We assumed that the jammers

were capable of transmitting at a higher power level than the network nodes, and

we evaluated cases when the jammer had (i) the same, (ii) 50% more, (iii) 100%

more, and (iv) 200% more transmission range than the network nodes. The average

availability between S and D for the one jammer case is depicted in Figure 2.9,

and two jammer case is depicted in Figure 2.10. In all cases, the ALS algorithm

outperforms the other two baseline algorithms by 60% − 70%.

Additionally, the average availability of all algorithms decreases as the transmis-

sion range of the jammer increases, since a larger jamming range will affect more

paths and will reduce the end-to-end availability.

Mobile Jammers. In our experiment, we studied two types of mobile jam-

mers: one traveling in a circle (Circular Walk or CW jammer) and the other moving

randomly (Random Walk or RW jammer), as illustrated in Figure 2.11(a) and (c).

Regardless of their moving patterns, both mobile jammers’ transmission range is

100% more than network nodes, and both jammers remained active throughout the

simulation.

Specifically, the circular-walk jammer constantly disturbed communication be-

tween node D and node S, as it hovered around the destination node D (affecting

node D about 40% of the time). As a result, the single-path algorithm generated a

path that is only available 18% of the time, on average. The double-disjoint-path al-

gorithm selected two paths that in combination have slightly higher availability than

the single path, even though twice the number of paths were used. In comparison,

the AvPath also selected two paths but two fault-independent paths, and thus the

availability of those paths is 60% more than the other two algorithms.

Finally, the RW-mobile jammer represents a jammer whose behavior is not fully

captured in the availability history prior to multipath selection, i.e., it creates ‘future’

failures. The simulation results in this case show that the ALS algorithm can improve
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Figure 2.11 The two types of mobile jamming scenarios: a circular-walk jammer
(CW) and a random-walk jammer (RW). Here in (a) and (c), the red (shaded) dots
denote the positions of the mobile jammer; (b) and (d) show the CDF of end-to-end
availability of ALS for CW and RW jammer respectively.

the availability even when unexpected new faults may appear after multipath selection

is done. This is because the failure-dependence caused by jamming and other factors

is also affected by the positions of network nodes, radio propagation environments,

etc. Although the ‘future’ failure has not occurred yet, the influencing factors have

already been partially encoded in the historical failure correlation implicitly.
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Figure 2.12 The average end-to-end availability of ALS algorithm for different
jamming scenarios as number of paths selected by the algorithm increases.
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Figure 2.13 The average end-to-end availability of ALS algorithm in no jammer
cases for different values of ρ where 2 paths were selected in (a), and 3 paths were
selected in (b).

Availability with Additional Paths.

We did most of our simulation setting k = 2, i.e., two failure-independent paths are

chosen by the ALS algorithm. To find out the relation between availability and k, we

ran some more simulations varying k. The result is depicted in Figure 2.12. From the

figure, we can see that the end-to-end availability increases with k while it is evident

that setting k = 2 is enough as the higher values of k does not gain significant increase

in end-to-end availability.
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Figure 2.14 The average end-to-end availability of ALS algorithm in one jammer
cases for different values of ρ where 2 paths were selected in (a), and 3 paths were
selected in (b).

Analysis of ρ

As we discussed in Section 2.4, when multiple paths are selected by ALS algorithm,

the parameter ρ controls the level of overlapping between paths. Thus, the selected

paths are node-disjoint when ρ = 0, and do not have any disjointness restriction

when ρ = 1. To find the appropriate value of ρ, we ran a set of experiments for no

jammer and one jammer scenarios by varying the value of ρ. In particular, we ran

experiments for six discrete values of ρ which are 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. We

depict the average end-to-end availability for the no jammer cases in Figure 2.13. As

we can see, our ALS algorithm performs well for all the values of ρ, however it worked

best when ρ = 0.8. The average end-to-end availability for the one jammer scenarios

is depicted in Figure 2.14. As we can see, the same observation holds for one jammer

scenarios as well. Consequently, we choose ρ = 0.8 in ALS algorithm. Even though

we use ρ = 0.8 in all our experiments, we note that ρ is a tunable parameter and can

be set depending on the network size and density.
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2.5 AHV-Enhanced AODV Routing

The evaluation results for the AHV-based multipath selection are promising and en-

courage us to design a distributed routing algorithm utilizing Availability History Vec-

tors (AHVs). Note that the AHV-based multipath selection can be applied to a wide

variety of routing algorithms for wireless ad hoc networks, such as Dynamic Source

Routing (DSR) [67] and Ad-Hoc On-Demand Distance Vector Routing (AODV) [36].

Because of the source routing feature, the integration to DSR is less involved than

AODV. Nevertheless, we illustrate the key requirements of applying AHVs, using

AODV as a case study; we call the integrated algorithm the AHV-Enhanced AODV

(AvAODV) routing. We briefly review the key elements of AODV and then present

the AvAODV routing.

AODV

AODV is one of the classic on-demand routing protocols for wireless ad hoc networks.

It specifies two operations for routing: route discovery and route maintenance. To

discover a route to a specific destination, the source node broadcasts a Route Request

(RREQ) packet with a unique broadcast-ID and its own address. Upon receiving the

RREQ packet for the first time, the intermediate node forwards the packet, and the

destination node replies with a Route Reply (RREP) packet. In particular, the RREP

packet is unicast back to the source via the reverse path that was set up when the

RREQ packet traveled from the source to the destination. Meanwhile, each receiving

node updates its routing table to keep track of the latest route to that destination.

As part of the route maintenance, when a link is no longer available, a special Route

Error (RERR) packet is sent to the affected source nodes. Once receiving the RERR

packets, the source node initiates another round of route discovery. Additionally,

HELLO packets are broadcast locally to enable nodes to keep track of its neighbors.
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Algorithm Description

After integrating the availability-based multipath routing with AODV, AHV-enhanced

AODV (AvAODV) routing protocol will have the following capabilities.

• AHV Recording. To utilize availability histories, the AHV of each link will

be measured and collected distributedly.

• Path Pre-Selection. When a source node wants to discover routes to a specific

destination, AvAODV will discover h candidate paths and will report their path

AHVs to the source node distributedly. To coordinate the path-AHV collection

and to ensure that the AHVs of different nodes are roughly aligned, loose-

synchronization is required [95].

• Multipath Selection. The source node will select k paths out of the h can-

didate paths so that those k paths are correlated least in terms of failures, i.e.,

failure-independent. Moreover, those k paths will be ranked according to their

availability histories.

• Active-Duty Route Switching. Although multiple paths are selected, only

one path will be chosen to deliver packets at a given time; we call this path

the active-duty path. Initially, the most available path (e.g., top-ranked one)

will be used as the active-duty path. After a while, the active-duty path may

be unavailable. To maintain the end-to-end availability with small disturbance,

the source node will execute a fast route switching strategy to quickly select

another available path out of the remaining k −1 paths, without another round

of route discovery.
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Table 2.1 Control packet formats for AHV-Enhanced AODV derived from AODV.

AODV RREQ
AHV

Intermediate node 1
Intermediate node 2

. . .
Intermediate node i

AODV RREP
AHV

Intermediate node 1
Intermediate node 2

. . .
Intermediate node i

AHV Recording

To facilitate multipath selection leveraging AHVs, the AHV of each link is measured

and recorded locally, and the AHV of each path is calculated on-demand and accu-

mulatively, as the AHV is propagated from one end to the other.

Measure the AHV of a link. In AODV, each node can broadcast HELLO

packets and create a neighbor table collecting the local connectivity information. The

AvAODV re-uses the HELLO packets to derive the link availability. In particular, a

node records an m-bit AHV for each of its neighbors in the neighbor table, and each

bit of AHV maps to the availability in one epoch. Whenever an epoch has passed,

the node shifts the AHVs to the left by one bit to include the latest availability in

the least-significant bit.

Calculate the AHV of a Path. The AHVs of paths is calculated distributedly

when a route discovery is preformed. To facilitate AHV calculation, two additional

entries are added to the original AODV routing control packets and routing tables: the

AHV accumulated so far and the IDs of the nodes on the path. Table 2.1 illustrates

sample packet formats for RREQ and RREP packets, and Table 2.3 shows an example

routing table of node 1 in the topology depicted in Figure 2.31.

As RREQ packets travel from the source to the destination, each node will update

the AHV field by performing a bitwise AND with the immediate upstream link AHV,

1Note that the routing table includes one more entry, i.e., the priorities of the paths, which is
used for fast active-duty route switching.
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Table 2.2 An illustration of calculating AHV accumulatively, as RREQ packets
travel along Path 1 (Figure 2.3).

Link Link AHV Path Path AHV
- - - 0xFFFFFFFF
1-2 0xFFFFFFF7 1➞2 0xFFFFFFF7
2-3 0xFFFFFFEF 1➞2➞3 0xFFFFFFE7
3-8 0xFFFFFFFB 1➞2➞3➞8 0xFFFFFFE3

and will append its address to the intermediate node list. Algorithm 3 summarizes

the forwarding operation at each intermediate node. In addition, when the source

node receives an RREP packet, it will add the path reported in this RREP packet to its

routing table.

To walk through an example, consider Path 1 in the topology shown in Figure 2.3.

The AHVs for each link and intermediate AHV calculation are listed in Table 2.2.

After receiving an RREQ packet from node 1 with AHV=0xFFFFFFFF , node 2 will

calculate the AHV of path 1➞2 as the bitwise AND of the received AHV and the AHV

of the link 1➞2, i.e., 0xFFFFFFFF ∧ 0xFFFFFFF7 = 0xFFFFFFF7. Then,

node 3 will derive the AHV of path 1➞2➞3 as 0xFFFFFFF7∧0xFFFFFFEF =

0xFFFFFFE7. Finally, node 8 will update the AHV of path 1➞2➞3➞8 as AHV

= 0xFFFFFFE3.

Algorithm 3 RREQForward: AVH-Based RREQ Forwarding
Require: INPUT:

P : RREQ_PACKET

PROCEDURES:
1: if ((ForwardingCount(P.id) ≤ MaxForward) &&

(|P.AHV | > γo )) ||
(P.destination ∈ this.neighbors) then

2: if this.IP ∩ P.nodeList = ∅ then
3: update P.AHV = P.AHV ∧ AHVReceivingLink

4: update P = AddIPAddress(P, this.IP )
5: forward P

6: IncreaseCount(P.id)
7: end if
8: end if
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Table 2.3 The routing table for node 1 (Figure 2.3) containing paths to node 8.

Destination Path AHV Priority
8 1➞2➞3➞8 0xFFFFFFE3 1
8 1➞4➞5➞8 0xFFFCFFBD 3
8 1➞6➞7➞8 0xFDFFFAE0 2

Path Pre-Selection

Since AODV aims to select the shortest path, forwarding RREQ packets with the same

broadcast-ID once suffices for discovering one path. However, such restriction cannot

be applied to AvAODV since the goal of AvAODV is to choose several paths and

to record their end-to-end availability. Therefore, each node has to forward RREQ

packets with the same broadcast-ID several times, provided the intermediate nodes

are different.

Essentially, the path pre-selection algorithm is performed distributedly as each

node determines whether to forward an RREQ packets or not. For instance, on one

extreme, if the intermediate node always forwards an RREQ packet containing a new

path, then the source node will receive all possible routes, at the cost of excessive

RREQ packets. To balance the communication overhead and performance, we apply

the following heuristics.

• To reduce the total number of broadcast packets for each route discovery, each

node is only allowed to forward the RREQ packets with the same broadcast-ID

at most MaxForward times. As a result, AvAODV tends to select paths with

reletively small hop counts.

• Each node will forward an RREQ packet only if the availability of the AHV

reported in the packet is greater than a threshold, γo. Thus, AvAODV reduces

unnecessary control overhead by actively discarding paths at each intermediate

node if the discovered paths have low availability.
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• A node always forward RREQ packets regardless of the aforementioned two re-

strictions, if the destination node is one of its neighbors. The motivation is

that such an RREQ packet has collected almost the entire information of a path,

and the benefit of forwarding it exceeds the concern of increasing the control

overhead.

The path pre-selection process ends at the destination node. After receiving the

RREQ packet that contains a new path, the destination node creates an RREP packet

by copying the intermediate node list and the end-to-end AHV from the RREQ packet,

and then unicasts it back to the source.

Greedy Multipath Selection

After receiving h RREP packets, the source node will start the greedy multipath se-

lection by executing Algorithm 2. It will select k paths that in combination produce

high availability to the destination. Additionally, it will rank the k paths based on

their individual availability, θ.

Active-Duty Route Switching

Out of k selected paths, only one path will be chosen as the active-duty path. Right

after performing the greedy multipath selection, the path with the highest θ will

be the active-duty route. To cope with cases where the active-duty path becomes

unavailable, AvAODV contains a fast route switching strategy that can quickly select

another active-duty route, without initiating the route discovery. In particular, the

AvAODV utilizes RERR packets to inform the source about the broken path and to

report the corresponding AHVs. In particular, once a node on the active-duty path

detects that its downstream link is no longer available, it initiates an RERR packet

containing the latest AHV. Each node that receives the RERR packet updates and

forwards the RERR packet. Upon receiving the RERR packet, the source updates the
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routing table and immediately selects the highest priority path from the remaining

paths. As such, a route discovery is avoided, and it is foreseeable that AvAODV can

reduce the route discovery overhead when links tend to fail frequently.

Algorithm Evaluation

In this section, we evaluate the performance of AvAODV protocol. Without loss of

generality, we studied the performance of AvAODV when choosing at most two paths.

Simulation Methodology

Network Setup. We studied the AvAODV in ns-3 [89], a packet-level network

simulator. In particular, we simulated a network of 100 nodes placed in a 2000m-

by-2000m square, where each node had a transmission range of 300m. Similar to

the setup for evaluating the ALS algorithm, each node was positioned randomly yet

resulted in a uniform density, i.e., roughly 10 neighbors per node.

In total, we compared the performance of the following three algorithms: (a) the

original AODV, (b) the AvAODV algorithm with k = 1, (c) the AvAODV algorithm with

k = 2. The parameters selected for simulation setup are summarized in Table 2.4. For

all algorithms, every node sent one HELLO packet per second to build up the neighbor

table. At the 200th second, a source node S started to unicast UDP messages to

a destination node D at a constant rate (CBR traffic) until the 500th second. The

locations of nodes S and D are illustrated in Figure 2.15. Unless specified, we focused

on the scenarios of one data stream between S and D. In the later section, we

examined multiple streams between multiple node pairs.

For both AvAODV protocols, in every epoch (5 seconds), each node calculated the

average PDR and converted it to availability using a threshold value of 0.6. When

the source node S discovered that it did not have a route to the destination node

D, it would initiate a route discovery. As the RREQ packets flood the network, each
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Table 2.4 Simulation parameters and values used in NS-3 for evaluation.

Variable Name Value
MaxForward 10
HELLO_INTERVAL 1s
Availability Threshold, γo 0.6
AHV Epoch 5s
Simulation time 500s
WiFi:FragmentationThreshold 2200 bytes
WiFi:RtsCtsThreshold 0 bytes

intermediate node was allowed to forward up to 10 RREQ packets for the same route

discovery. Thus, the node S will receive more than 10 candidate paths.

Similar to the evaluation setup of ALS algorithm, we studied the following scenar-

ios: no jammer (NJ), one stationary jammer (1J), two stationary jammers (2J), and

a mobile jammer walking randomly (RW). In all scenarios, the transmission power

of the jammers is the same as the regular network nodes. We customized those jam-

mers by using the ns-3 jamming package developed by the Network Security lab at

the University of Washington [86]. For each scenario, we ran our experiment 50 times

to collect statistical characteristics.

Evaluation Metrics. We examined both the performance and the overhead of

all three routing algorithms.

Performance. Since the responsibility of networks is to deliver packets, we used

the average end-to-end PDR between the source node S and the destination node D

to evaluate the performance of routing algorithms. If node D received no messages

in a measurement interval, then the end-to-end PDR was considered as 0.

Control Overhead. Collecting information of multiple paths may impose additional

overhead compared to the baseline AODV protocol. To evaluate the overhead for

each algorithm, we measured all routing control packets (RREQ, RREP, and RERR)

broadcasted across the entire network, and calculated the normalized control overhead

in terms of packet counts and packet sizes, e.g., the average packet counts.
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Figure 2.15 The positions of jammers for the stationary jammers and the mobile
jammer: (a) Stationary jammers. The green (shaded) circle shows the approximate
area covered by a single stationary jammer and the two black circles shows the
areas affected by two stationary jammers; (b) A mobile jammer. The green
(shaded) dots denote the positions of the mobile jammer.

Simulation Results for Performance

The average end-to-end PDR between a pair of nodes S and D for various scenarios

are depicted in Figure 2.16, and the results of multiple pairs of nodes are summarized

in Figure 2.17. We discuss the cases for no jammer, stationary jammers, mobile

jammers, and multiple concurrent streams in the following.

No Jammers. As expected, even in cases when no jammer was present, AvAODV

outperformed AODV, as shown in Figure 2.16 (a). Although AvAODV (k=1) selected one

path, it achieved an average PDR that is 17% better than AODV. This is because

AvAODV (k=1) selects the path that has the highest availability in the past rather

than the path with least hop count. Moreover, selecting two paths, AvAODV (k=2),

can boost the average PDR by 22% over AODV.

Note that compared with the results of the ALS algorithm in Figure 2.8, AvAODV

achieved similar performance, which is promising. The ALS algorithm has a global

view of the network connectivity and can pick k paths out of a larger candidate pool.
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Figure 2.16 Performance comparison between AODV and AvAODV: the CDF of

end-to-end PDRs for various jamming scenarios.
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In comparison, AvAODV relies on the route discovery to search for a few candidate

paths. The concern of prohibitive overhead and packet collisions restricts the total

number of paths discovered. Despite the limited number of discovered paths, AvAODV

can still perform as good as the centralized algorithm.

Stationary Jammers. For stationary jamming scenarios, we considered a

one-jammer case and a two-jammer case. In either case, one jammer alternated

between ON and OFF state every 20s, while a second jammer was always ON in

the two-jammer case. The stationary jammers were placed between node S and

node D so that they woulld disturb the shortest path in between, as illustrated in

Figure 2.15 (a). Figure 2.16 (b-c) depicts the corresponding results and demonstrates

that both AvAODV protocols can improve the average PDR by at least 32% in the

presence of jamming. Furthermore, since a larger area of the network was disrupted

in two-jammer cases than in one-jammer cases, the average PDR obtained by AODV

in the two-jammer case was 9% lower than the one-jammer case. In contrast, AvAODV

can accomplish a higher PDR in the two-jammer case. This is because a stronger

jammer reduced control overhead of AvAODV (which will be explained in Section 2.5)

and helped to choose paths with high availability. This suggests that the stronger

the jammer is, the higher resilience the AvAODV protocols may achieve.

Mobile Jammers. In the stationary-jammer scenarios, we studied the cases

where future faults were already embedded in the AHVs. To examine the situation

that new faults may appear after the multipath selection, we implemented a mobile

jammer that moved randomly within the network area, and called it a random-walk

(RW) jammer. The moving speed of the RW jammer was set to {25, 50, 75} meter

per second (mps). Figure 2.15 (b) shows a position trace of a RW-jammer in one of

the simulation runs, which shows that the RW-jammer is highly unpredictable. Even

in such a case, the AvAODV (k=2) provides an average PDR 27% higher than AODV

for the RW jammer with various speeds, as shown in Figure 2.16 (d-f).
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Figure 2.17 Performance comparison between AODV and AvAODV for two
concurrent data streams between two pairs of source-destination nodes.

Interestingly, we found that the performance of AvAODV increased slightly as the

speed of the RW jammer increased. This is because given the same amount of time,

a faster jammer affects a larger number of links than a slower one. Thus, its jamming

impact is likely to be recorded in a larger number of AHVs, which enables AvAODV

to select multiple paths with a higher level of failure-independence based on AHVs of

the pre-selected paths.

Multiple Concurrent Streams. In this set of experiments, two pairs of

source-destination nodes maintained two streams (CBR traffic) simultaneously, and

the locations of the second node pair are randomly chosen such that the candidate

paths for both streams may overlap.

The experimental result for multiple concurrent streams is depicted in Figure 2.17,

where (a) shows the two-jammer scenarion and (b) shows one RW-jammer scenario.

As we can see, the AvAODV (k = 2) outperforms AODV by at least 32%, similar to the

improvement in one-stream scenarios.
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(a) all control packets (500s) (b) all control packets (3200s)

(c) categorized packets (500s) (d) categorized packets (3200s)

Figure 2.18 Control overhead comparison between AODV and AvAODV (k = 2) for
the simulation time 500s and 3200s. It shows the control overhead by packet counts
(e.g. the numbers of control packets per second per node). Rxxx stands for the Rxxx

packets in AODV, and AvRxxx stands for the Rxxx packets in AvAODV.

Simulation Results for Control Overhead

To evaluate the control overhead, we measured the total number of RREQ, RREP, and

RERR packets sent by every node across the entire network, when AODV and AvAODV

algorithms (k = 2) were used, respectively. Additionally, to understand whether the

duration of a communication session affects the control overhead, we measured the

routing overhead for both short-lived and long-lived sessions, i.e., S kept sending

UDP messages to D until the 500th second and until the 3200th second, respectively.

Figure 2.18 depicts the total numbers of all control packets, and individual numbers of
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Figure 2.19 Control overhead comparison between AODV and AvAODV (k = 2) for
the simulation time 500s and 3200s. It shows the control overhead by packet sizes
(e.g., (e.g. the bytes of control packets per second per node). Rxxx stands for the
Rxxx packets in AODV, and AvRxxx stands for the Rxxx packets in AvAODV.

packets in each category (i.e., RREQ, RREP, and RERR packets) for both types of sessions.

We also analyzed the control overhead in terms of packet size. Figure 2.19 depicts

the total size of all control packets, and individual sizes of packets in each category

(i.e., RREQ, RREP, and RERR packets) for both types of sessions. In the no-jammer

cases, for the short-lived sessions, AODV sent 27% less control packets than AvAODV.

However, for the long-lived sessions, AODV sent 932.7% more control packets than

AvAODV. Examining the categorized control overhead reveals the underlying causes:

For each round of route discovery, AvAODV sent a larger amount of RREQ packets than
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AODV as a result of allowing each node to forward multiple RREQ packets. Over the

entire duration of a session, less numbers of route discoveries were performed and less

RERR packets were generated for AvAODV than for AODV, because AvAODV can switch

the active-duty route quickly without initiating route discovery when a link failure

occurs. Thus, on average, AvAODV incurs a less amount of overhead, when node pairs

tend to communicate for a long period of time.

In the presence of one or more jammers, AODV generated 89% (one jammer) or

295% (two jammers) more control packets than AvAODV for the short-lived sessions

and incurred 23 times more or 29 time more overhead for the long-lived sessions.

Interestingly, for both types of sessions, the numbers of control packets of AODV in-

creased as an increasing number of jammers interfered the network, while the numbers

of control packets of AvAODV decreased. When the jammers disturbed the network

communication, the delivery failures will incur RERR packets. As a result, the num-

bers of RERR in AODV increased as the level of disturbance increased. In comparison,

AvAODV chose paths that have failed the least in the past. It excluded those that

have been and would be affected by jamming heavily, greatly reducing the number

of RERR packets. Finally, AvAODV produced less RREQ packets with the increasing

amount of interference from jammers, because intermediate nodes will not forward a

RREQ packet if its availability was lower than the threshold value. Considering that

we have added the AHV and complete paths into control packets for AvAODV, we

compared the total bytes sent by both AODV and AvAODV algorithms. As shown in

Figure 2.19(a)-(d), although in the short-lived sessions, AvAODV sent more bytes for

routing, in the long-lived sessions, the overhead of AODV are 13 times, 38 times, or 45

times more than AvAODV for no jammer, one jammer, and two jammer cases.

In summary, by choosing multiple fault-independent paths, AvAODV achieves a

much higher PDR than AODV at a modest cost for short-lived session and at a lower

cost for long-lived sessions.
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2.6 Related Work

While we present a jamming-resilient multipath routing scheme maximizing end-to-

end availability between source-destination pair, there has also been extensive study

using multipath routing in benign scenarios without jamming attacks. We discuss

some multipath routing schemes in the following.

Multipath Selection

The challenges of employing multipath routing have been recognized [83], and a

number of protocols focus on how to efficiently discover and select multiple paths.

For example, CHAMP [115] uses cooperative packet caching and shortest multipath

routing to reduce packet loss due to frequent route breakdowns. However, CHAMP

simply selects the shortest multiple paths with equal length. Wu et al. [127, 128]

proposed to use IP-layer topological disjointness and connectivity as an indicator of

the potential interference across paths, and select multiple paths that are the ‘least

connected’ at the IP-layer topology. Similarly, TORA [94] uses multiple topological

disjoint paths to increase network adaptivity; Nasipuri et al. [85] extended DSR with

multipath routing by which each source node can learn a set of topologically disjoint

paths; and Marina et al. [78] proposed AOMDV which is a multipath extension

for AODV that computes multiple IP-layer link-disjoint paths. Furthermore, Ye et

al. [140] proposed to strategically deploy some “reliable” nodes to maximize path

diversity in the topology. However, as argued by Zhang et al. [143], this IP-layer

disjointness cannot reflect interference and failure correlation between routes, such as

physical-layer correlation due to jamming attacks.
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Multipath Utilization

As a separate line of research, various approaches have been proposed to minimize

congestion or achieve security via multipath routing, assuming multiple paths are

already selected. For example, Zhang et al. [141] studied how to distribute traf-

fic along the already selected multiple paths to achieve load balancing. Tsirigos et

al. [114] developed a theoretical model and coding scheme to spread traffic across

the given disjoint paths in order to maximize the packet delivery ratio. Setton et

al. [106] proposed an analytical model to minimize network congestion based on the

global real-time traffic distribution in the network. Similarly, MR-CS [26] relies on

centralized scheduling to achieve load balancing, QoS, and throughput optimization

on the given multiple paths. In addition, SPREAD [75] uses multipath routing to

protect data confidentiality; it transforms a secret message into multiple shares, and

then delivers the shares via multiple paths to the destination so that even if a certain

number of message shares are compromised, the secret message as a whole is not

compromised.

Sensor Networks

Researchers have proposed multipath routing schemes tailored for sensor networks,

where the base station is the common destination, sensor nodes are grouped in clusters

and are extremely energy and storage constrained. For example, M-MPR [37] lever-

ages a meshed multipath routing together with selective forwarding and forward-error

correction to increase end-to-end throughput. Baek et al. [11] and Liant et al. [71]

propose different multi-pathing schemes to minimize energy consumption and stor-

age expense. Finally, I2MR [112] uses zone-disjoint paths to minimize cross-path

interference in a sensor network which is divided into multiple zones.
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Jamming Resilience

Jamming and radio interference are known threats and have attracted much attention.

Jamming detection was studied by Xu et al. [138] in the context of commodity wireless

devices, and was also studied in the context of sensor networks [24].

Countermeasures for coping with jamming have been intensively investigated.

Traditional PHY-layer techniques provide resilience to interference [98] at the expense

of advanced transceivers. For commodity wireless networks, defense strategies include

the use of error correcting codes [88] to increase the likelihood of decoding corrupted

packets, channel hopping [136] to adapt the working channel to escape from jamming,

anti-jamming timing channels [137], wormhole-based anti-jamming techniques [22],

and binary-key-tree-based mitigation schemes [29]. Additionally, the combination

of mask framing, frequency hopping, packet fragmentation, and redundant encoding

techniques is proposed to cope with multiple types of jammers [126].

In the area of routing, to the best of our knowledge, few multipath routing pro-

posals addressed the jamming resilience. Recent work by Tague et al. [109][110]

studied the optimal traffic allocation scheme over already selected multiple paths and

aimed at maximizing the throughput in the presence of jammers; while our scheme

effectively incorporates jamming-resilience into multipath selection.

2.7 Summary

In this chapter, we first addressed the problem of multipath selection with the goal of

improving jamming resilience in wireless networks. Our key insight is to select mul-

tiple paths that are unlikely to fail concurrently, based on the knowledge of paths’

availability histories. The availability histories of paths are efficiently recorded and

calculated via availability history vectors (AHVs). Leveraging AHVs, we presented

two AHV-based multipath selection algorithms: one selects multiple paths with the

full knowledge of AHVs in the network, and the other computes the path in a dis-
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tributed manner. Our simulation results have validated that AHV-based algorithms

can effectively identify multiple paths that provide high end-to-end availability, even

in the presence of a new jammer that did not affect the network before path se-

lection. Additionally, the proposed distributed AHV-based algorithm accomplishes

higher availability than AODV at a smaller communication cost for long-lived com-

munication sessions. Compared with schemes utilizing jamming models, our AHV-

based algorithms work in a plug-and-play fashion and are resilient to a wide variety

of jammers.
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Chapter 3

CallerDec: End-to-End Detection of Caller ID

Spoofing Attack

3.1 Introduction

In a caller ID service, a telephone carrier transmits the phone number and/or the

name of a caller to the recipient (callee) side as caller ID. While a call is being

dialed, the caller ID is automatically extracted and transmitted to the callee during

the signalling phase, and is displayed at the receiving phone. The caller ID service

was first introduced in 1969 in several patents [93][92]. Since then leading telephone

companies started to design their own caller ID protocols. For instance, Bellcore [14]

and SIN227 [20] are the de facto caller ID standards for landline services in America

and Europe. In addition, dominating cellular standards (e.g., GSM and CDMA) and

VoIP have designed their own built-in caller ID protocols.

Regardless of the protocol types, caller ID service is intended to provide informed

consent to the receiver before answering calls. Recently, caller ID has also been used to

authenticate users in several automated systems: (a) In the 9-1-1 emergency service,

the authority relies on the caller ID to obtain the physical location of the caller; (b) In

automatic telephone banking systems, caller ID is used by the authentication process

to grant customers access to their accounts1; (c) In voicemail service, some telephone

providers grant users access to their voicemail boxes based on their caller ID [7].

1For example, Bank of America only requires a customer to enter a debit/credit card number to
access account information when the caller ID matches their records.
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However, existing caller ID protocols lack authentication mechanisms and hence are

vulnerable to spoofing attacks; i.e., an attacker can send a fake caller ID to a callee.

As such, caller ID is untrustworthy for authenticating callers’ locations or identities.

This vulnerability has already been exploited in variety of misuse and fraud incidents:

(a) In 2010, a group of police officers arrived at a residence in response to a 9-1-1 call,

prepared to rescue hostages from armed criminals. However, the call was the result

of swatting, in which pranksters spoof the caller ID and appear to be calling near

the house of the victim [35]. As a consequence, the unaware victims were at risk of

injury, and the police were tied up responding to a prank; (b) Spoofers were reported

to have stolen sensitive personal and financial information using fake caller ID [5];

(c) In the US, thousands of people were victimized by credit card fraud with the help

of caller ID spoofing [100, 5], causing a loss of more than $15 million dollars annually;

(d) Drugs were misused as a result of spoofed pharmacists’ phone numbers [100];

(e) Other incidents include identity theft, dangerous fire prank at several hotels [6],

purchase scams [104], etc.

Caller ID spoofing has become a real threat to the phone user and needs to

be addressed [47]. The existing caller ID systems were designed based on strong as-

sumptions that (a) the telephone infrastructure is tightly controlled, and no intruders

could tap into the infrastructure to create an arbitrary caller ID, and (b) the tele-

phone service providers are trustworthy and will not manipulate caller IDs. Due to

the assumed mutual trust between carriers, caller ID is not authenticated while a call

is routed between different carriers; and a callee’s carrier will simply accept the caller

ID claimed by a caller’s carrier. In early days, since the phone network used dedicated

lines operated by a monopoly, this trust model was reasonable. However, today with

current converging phone/data networks, trust relations are weak, and equipment

hacking has become affordable. Hence an authentication mechanism is required and

necessary, but not in place yet. Moreover, leveraging the lack of authentication, a

51



special type of service provider has emerged allowing their customers to claim their

chosen caller ID; a user only needs to dial a special phone number, and then enter

the callee’s phone number and a chosen fake number. Alternatively, a smartphone

user can utilize readily available apps to spoof caller ID (e.g., Caller ID Faker [25]).

Finally, caller ID spoofing is trivially possible in VoIP, where many VoIP providers

allow users to claim any caller ID through VoIP client software (e.g., x-lite [130]).

Obviously a fundamental solution against caller ID spoofing attacks is to redesign

the entire telephone infrastructure and to add built-in caller ID verification mecha-

nisms. However, in today’s practice this would not be an option since the telephone

infrastructure comprises a variety of technologies that are owned by several telephone

carriers with their own trust domains. One proprietary commercial solution, TrustID,

offers to detect caller ID spoofing attacks for business customers, but it is not de-

signed for end users [113]. To the best of our knowledge, no mechanism is currently

available to end users for detecting caller ID spoofing without answering the call first

or without a special interface provided by the carrier, as in TrustID.

We thus focus on detecting caller ID spoofing attacks at end users in an end-to-end

fashion, i.e., at the caller and callee sides without altering the existing protocols. Such

detection mechanisms are challenging to realize: First, only limited information and

resources are available at end users. The route of call signalling is unknown. Second,

compatibility to different protocols (GSM, VoIP, PSTN) limits the design space.

Third, any deviation from the regular calling procedure is unlikely to be accepted

by most people. Thus, naive solutions such as rejecting an incoming call and then

calling back, are not an option. The detection mechanisms shall be automated and

should require few inputs from users. Fourth, a few legitimate services provided by

telephone companies allow the caller IDs to be different from the calling numbers,

making those caller IDs appear to be spoofed. However, those scenarios should not be

classified as caller ID spoofing attacks. We address all these requirements and design
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an end-to-end caller ID verification scheme which we call CallerDec. We summarize

our contributions as follows:

• We analyze the problem of caller ID spoofing and survey available means to

launch caller ID spoofing attacks. The key weakness in this context concerns

the interconnection protocols between operators.

• We propose CallerDec, an end-to-end caller ID verification scheme that requires

no modification to existing telephone infrastructure and is applicable to calling

parties using any telephone services.

• We present two use cases of CallerDec, one for an emergency call scenario (e.g.,

9-1-1 call) and the other for a regular call scenario. In both cases, the end users,

(e.g., a 9-1-1 service or an individual customer) can utilize CallerDec to verify

caller IDs.

• We implement CallerDec for Android-based smartphones and study its perfor-

mance in various scenarios. Our results show that CallerDec can detect spoofed

caller ID effectively and efficiently.

While we implemented CallerDec in Android-based phones as a case study, it can

also be integrated in any other telephone devices.

The rest of the chapter is organized as follows. In Section 3.2, we discuss the

background of caller ID and describe various caller ID spoofing attacks in Section 3.3.

In Section 3.4, we introduce the system model, summarize the requirements, and

discuss underlying design principles of CallerDec. Then, we present and evaluate

SMS-based CallerDec in Section 3.5. After presenting and evaluating Timing-based

CallerDec in Section 3.6, we discuss related works in Section 3.7 and summarize the

chapter in Section 3.8.
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Figure 3.1 An example telephone network architecture, where different carriers are
connected using peering architecture. Here, each telephone network follows there
own protocol for internal communication, but uses SS7 or VoIP for inter-network
communication.

3.2 Background

Three categories of telephone carriers are in service: Public Switched Telephone Net-

work (PSTN), cellular networks, and Voice over Internet Protocol (VoIP) providers.

In all these telephone networks, creating a phone call typically involves two types of

channels: an end-to-end control channel for signalling, and an end-to-end voice chan-

nel for transmitting voice data. In addition, all telephone carriers support caller ID

which works as follows. When a caller dials a number, the carrier first authenticates

the caller, and then generates or looks up the associated caller ID. Finally, the caller

ID is forwarded to the callee, possibly from one carrier to another.

In the following, we give an overview of the popular caller ID standards used within

each type of carrier and between different carriers with the goal of understanding the

feasibility of injecting spoofed caller IDs.
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30B of 55H 130+/-25ms 1B 1B 15-18B 4B
(a) Channel Seizure Signal Carrier Signal Msg. Type Msg. Length Data Checksum

Min 12B 55 bits 1B 1B 0-255B 1B
(b) Tone Alert Channel Seizure Mark Signal Msg. Type Msg. Length Msg. Checksum

Figure 3.2 Message formats for Bellcore and SIN227 where (a) shows Bellcore and
(b) shows SIN227 format. For Bellcore, the caller ID is in the Data field and for
SIN227, it is in the Message field.

Public Switched Telephone Network

Architecture

The PSTN is a circuit-switched telephone network, known as landline telephone. The

PSTN generally has a hierarchical architecture [74] with Central Exchanges (CEs) at

the top level of the hierarchy, and Local Exchanges (LEs) that provide service in a

local neighborhood. Figure 3.1 shows a simple PSTN architecture with one CE and

two LEs.

LEs play the key role in the caller ID service. Each LE consists of several PSTN

switches and after a customer subscribes for the telephone service, a switch port in

the LE is assigned to him/her with the corresponding caller ID, i.e., the customer’s

phone number, possibly with a name. When a customer dials a number, the LE sends

the pre-configured caller ID in the outgoing call.

Protocols

There are several caller ID standards in PSTN, e.g., Bellcore FSK, SIN227, DTMF,

V23, ETSI FSK, etc. We introduce two popular standards while skipping the rest,

since they work in a similar manner.

BellCore FSK. Developed by Bell Communications Research, Inc., Bellcore FSK [14]

is the most widely-used caller ID standard (e.g., North America and Asia). At the

signal level, the caller ID information is modulated using Frequency Shift Keying

(FSK), and the signal is transmitted between the first and second phone ring, while
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the telephone unit is still in an onhook state (i.e., still ringing). Figure 3.2(a) shows

the message format of Bellcore FSK, whereby the Data field contains the caller ID in

an ASCII format. The first 8 bytes of the Data field record the time of the day, and

the remaining 7-10 bytes are used for caller ID.

SIN227 (Suppliers Information Note). Designed by British Telecommunica-

tion PLC, SIN227 [20] is mostly used in Europe. SIN227 also uses an FSK-based

analog signal to deliver caller ID. However, unlike Bellcore, a caller ID message in

SIN227 may contain the name of a caller in addition to the phone number. As shown

in Figure 3.2(b), the Message field in a SIN227 message contains the caller ID and

has a length up to 255 bytes.

Feasibility of Caller ID Spoofing

In addition to the aforementioned standards in PSTN, all other standards transmit

the caller ID information in plaintext. However, it is not easy to launch the attack in-

side PSTN because the caller ID signal is generated automatically by the LE, based

on the pre-configured information. Such information cannot be changed by unau-

thorized entities, because the switches (LEs) are generally kept in secured cabinets,

inaccessible to the general public. However, we identified one particular scenario

where an attacker can manipulate the standards to spoof the caller ID, which we will

discuss in detail in Section 3.3.

Cellular Network

Architecture

Universal Mobile Telecommunication System (UMTS) [41] and Wide-band Code-

Division Multiple Access (W-CDMA) [42] are the two most popular technologies for

providing cellular telephone services. Despite which technology is used, a cellular

telephone network follows a hierarchical structure. As illustrated in Figure 3.1, the
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simplest cellular network consists of the following entities for voice services (from the

top to bottom levels): Mobile Switching Centers (MSC), Base Station Controllers

(BSC), and Base Transceiver Stations (BTS). The upper level entities control the

lower level ones, and the bottom ones (BTS) directly interact with nearby Mobile

Stations (MS), i.e., mobile phones. One important entity that assists caller ID services

is the Home Location Register (HLR), which interfaces with MSC directly. The HLR

stores all necessary data for caller ID services, authentication and billing purposes.

Upon subscription, each customer gets a Subscriber Identity Module (SIM) and

inserts it in a mobile station (MS). A mobile carrier authenticates an MS based on

the SIM information. When an MS makes a phone call, the call setup process always

goes through BTS, BSC, and MSC. Then, the MSC obtains the caller ID associated

with the MS from the HLR and encodes it in a control packet for call setup.

Protocols

In UMTS and W-CDMA, the caller ID is encoded in call setup packets (in the Calling

Party BCD Number field) using the Binary Coded Decimal (BCD) format and has a

variable length of 3-14 bytes [3]. It is possible that a call is set up without caller

ID, and the Presentation Indicator field is used to indicate whether caller ID is

present in the packet.

Feasibility of Caller ID Spoofing

3GPP specification has security mechanisms which include MS authentication, ran-

dom session keys and SIM security [87]. Although the communication between MS

and BTS is encrypted with a session key, cracking the session key [18] and man-in-

the-middle attacks [80] have been reported. An attacker can take advantage of such

vulnerabilities to spoof caller IDs. However, to the best of our knowledge, no caller

ID spoofing attacks that take advantage of the 3GPP protocol vulnerabilities have

been reported.
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Voice over Internet Protocol

Architecture

VoIP technology takes advantage of IP where both voice and control data are trans-

mitted in IP packets. Unlike PSTN or cellular networks, VoIP usually follows a

flat/p2p architecture [50] where all the clients and servers must be connected to the

Internet. The control channel always follows the client-server model but the voice

channel between a caller and a callee may use a direct connection. For the call setup,

VoIP uses protocols such as Session Initiation Protocol (SIP) [59] or H.323 [63]. Irre-

spective of the used protocol, each customer is assigned a user name and a password

for authentication and billing purposes, but the customer can often set up any caller

ID for an outgoing call.

Protocols

Both SIP and H.323 have built-in support for caller ID. SIP uses the From field in

the INVITE packet to send the caller ID, and the caller ID can be any ASCII char-

acters with an arbitrary length. For instance, the caller ID in SIP has the form

sip:callerID@ip_address and is typically encapsulated in SIP packets in plain-

text. Although secured SIP is available to encrypt caller IDs, they are not authenti-

cated [91]. In H.323, during the call setup, the caller ID is encoded in the Information

Element (IE) field of a signaling packet in a binary format and it may have variable

length. Similar to SIP, caller ID is also transmitted in plaintext in H.323.

Feasibility of Caller ID Spoofing

Unlike PSTN or cellular network scenarios, in VoIP the caller ID originates at the

client end; i.e., the clients could generate control packets with arbitrarily chosen caller

IDs. Most VoIP software provides an interface allowing a caller to specify his/her
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caller ID for each phone call, making caller ID spoofing trivial; e.g. x-lite [130],

sipdroid [32], etc. In fact, many VoIP carriers manipulate caller ID to avoid long

distance charge [40].

Network Interconnection Protocols

Different telephone networks are interconnected using a peering architecture, as shown

in Figure 3.1. In the following, we discuss how a call is routed and caller ID is

forwarded between carriers.

Call Routing

In telephone systems, phone numbers are assigned based on geographic locations to

discriminate between local and long-distance calls. In the US, each carrier is assigned

a unique prefix in each geographic location by the North American Numbering Plan

Administration (NANPA) [133] and the call routing is done based on prefix-matching.

For example, in Washington, the 360-269 prefix is assigned to AT&T and 360-270 to

Sprint. When a customer calls 360-269-XXXX, the originating carrier must forward

the call to AT&T2.

Caller ID Forwarding

Signaling System No.7 (SS7) [66] is the de facto standard for interconnecting carriers,

even though many regulators have suggested using VoIP [116]. When a caller and a

callee have subscribed to different carriers, the call has to go through either an SS7

or VoIP connection. The originating carrier sends the caller ID as part of the control

packets. In both cases, the receiving carrier passes the caller ID data to the callee

without any modification or validation. Hence, caller ID is not verified in either case.

2Unless the phone number is ported, i.e., a customer of carrier A switches service to carrier B
and still uses the same phone number. In this case, the call will be routed to the carrier B instead
of carrier A.
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Feasibility of Caller ID Spoofing

Since there is no verification mechanisms between carriers, it is possible for an at-

tacker to get connected with a carrier using either SS7 or VoIP, and then exploit the

lack of authentication between carrier networks to spoof caller ID. Such an attack,

while valid, is costly and complex to carry out because the attacker has to establish

an SS7/VoIP connection with a carrier, which requires the attacker to complete an

interconnection agreement with the carrier, to install necessary hardware and soft-

ware, to pay a premium, etc. Thus, it is not meant for casual adversaries with a

limited budget.

Summary

It is difficult to launch caller ID spoofing attacks by exploiting the caller ID protocol

within PSTN or cellular networks, but it is possible by exploiting VoIP. Additionally,

an adversary can spoof caller ID by exploiting the lack of caller ID authentication

between carriers.

3.3 Caller ID Spoofing Attacks

Caller ID spoofing is defined in the US legislation act titled Truth in Caller ID Act

of 2009 [33] as follows:

“A caller ID spoofing attack is a malicious action that causes any caller

identification service to knowingly transmit misleading or inaccurate caller

identification information with the intent to defraud, cause harm, or

wrongfully obtain anything of value.”

This definition makes it difficult to detect caller ID spoofing, since there are a few

standard, non-malicious telecommunication services that result in a mismatch of the

displayed number and should not be classified as caller ID spoofing. In this section,

60



���������

����	��

���������

����	��


�����

����	���

���

�
�
�
��
�
��

�
�
�
��
�
��

��
�
�
� ���

�
�
��
� ���

�
�
� �

��
 �

�
��
�
���
 �

�
�
�

���

��������

Figure 3.3 An illustration of how existing fake caller ID service provider spoofs a
caller ID leveraging the loophole in network interconnection protocols.

we first discuss spoofing attacks that can be carried out in different telephone setups,

and then discuss scenarios that should not be identified as spoofing attacks.

Spoofing During Call Signalling

As mentioned before, caller ID spoofing attacks are possible because VoIP protocols

and network interconnection protocols lack caller ID validation mechanisms. While

it takes an extra endeavor to establish an SS7 or VoIP connection with a telephone

carrier for spoofing attacks, adversaries could carry out spoofing attacks with little

effort in several ways. We discuss three such attacks in the following.

Spoofing via Fake ID Providers.

A special service provider, which we refer to as Fake ID Provider, provides caller ID

spoofing services by exploiting the lack of authentication in caller ID protocols. A

Fake ID Provider establishes SS7/VoIP connections with various telephone carriers.

Such interconnection options are supported by all the leading carriers in the US for

business customers (e.g., AVOICS [10]). Then, the Fake ID Provider acts as the

middle man between attackers and victims to relay caller IDs specified by its cus-

tomers (attackers in this case). Figure 3.3 illustrates an example, where an attacker

(Eve) tries to call the victim (Bob) faking Alice’s caller ID. First, Eve calls a Fake
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ID Provider, and supplies Bob’s phone number as the destination number and Alice’s

phone number as the desired spoofed caller ID. Then, the Fake ID Provider estab-

lishes a call to Bob with Alice’s caller ID, and finally connects Eve with Bob once

the call is answered. Since the Fake ID Provider is connected to the callee’s carrier

via an SS7/VoIP link, the callee’s carrier simply accepts and forwards the caller ID

of the incoming call to Bob, making spoofing attacks simple and effective.

An attacker can subscribe to a Fake ID Provider and carry out spoofing attacks

towards any victim from any type of phone, provided that the Fake ID Provider is

connected to the victim’s network.

Spoofing via VoIP Services.

Many VoIP carriers allow their customers to specify their own caller ID, and will

forward the caller ID to the callee’s carrier without modifications. To launch an

attack, an adversary can subscribe to a VoIP carrier that allows caller ID manipulation

and can either use VoIP client software or a VoIP phone to claim arbitrary caller IDs.

Spoofing via Automated Phone Systems.

An increasing number of businesses use automated phone systems to provide Inter-

active Voice Response (IVR) services, so that they can computerize phone calls for

purposes of marketing, survey collection, appointment reminders, etc. To simplify the

development of automated phone systems, a group of emerging service providers (e.g.,

Voxeo [118], Nuance Cafe [15]) allow their subscribers to customize automated phone

systems by using a scripting language, such as VoiceXML [119] and select their own

caller IDs. These providers connect to major telephone carriers via SS7 or VoIP pro-

tocols so that their customers can call their target callee [39]. Such providers allows

their customer to configure desired caller ID for outgoing calls and will deliver pre-

configured caller IDs for their subscribers regardless of their intentions. Because of
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the loophole of the network interconnection protocols (Section 3.2), the downstream

telephone carriers will simply accept any caller IDs, including the spoofed ones. An

adversary can subscribe to such a service to launch caller ID spoofing attacks.

Summary

Regardless of which types of the aforementioned spoofing attack is being launched,

our proposed solution is capable of detecting all of them. In this work, we only

evaluate our caller ID spoofing detection schemes utilizing Fake ID Provider, and we

believe that our experimental results will provide important insight to other types of

spoofing attacks since our detection scheme is independent of how caller ID spoofing

attacks are launched.

Spoofing After Call Establishment

When a caller and a callee belong to the same PSTN carrier, it is virtually impossible

to spoof a caller ID during signalling processes, as we discussed in Section 3.2. It

is, however, feasible to spoof the caller ID after a call is established: An attacker

can transmit a fake caller ID for a second call (call waiting). After the first call

is answered, an end-to-end voice channel is established between the calling parties,

and if there is a new call, the caller ID of that call is transmitted over this voice

channel. The attacker has no access to the control channel during the call setup, but

can manipulate information transmitted over the voice channel. To launch such an

attack, the adversary makes a phone call to the victim and once the call is answered,

she transmits a packet according to the caller ID protocol of the carrier, e.g., Bellcore

FSK, with the desired fake caller ID. Immediately after receiving the caller ID packet,

the displayed caller ID in the victim’s phone will change to the fake one. An adversary

can install already available software, e.g., the Software Orange Box, to launch such

an attack.
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A disadvantage of this technique is that the spoofed ID can only be transmitted

once the call is answered. As a result, unless the call is answered right after the first

ring3, the callee would observe the original caller ID until the call is answered and the

FSK packet with the spoofed caller ID is received. Additionally, the callee will also

hear a call waiting beep when the spoofed ID appears on the phone. Although this

attack may not always be practical, we included it in the discussion for completeness,

and our detection scheme can detect such an attack anyway.

A Mismatched Caller ID but not Spoofing

The caller ID blocking services and Primary Rate Interface (PRI) lines generate a

mismatched caller ID, but should not be classified as caller ID spoofing. For caller

ID blocking service, a carrier will transmit the text BLOCKED or UNAVAILABLE

instead of the real caller ID to the callee.

PRI lines are designed for business organizations that want to support multiple

simultaneous calls (i.e., 32 channels for an E1 line [111]) while sharing one single caller

ID for all their phone lines. In a PRI system, each phone line inside an organization is

connected to the PRI line through a Private Branch Exchange (PBX), which assigns

the same caller ID to all outgoing calls. The mismatched caller IDs in PRI lines

are different from caller ID spoofing because the caller ID associated with a PRI

line is officially owned by the business organization and once assigned, the caller ID

cannot be changed without the permission from telephone carriers. Our CallerDec

will mechanism will recognize both scenarios as non-spoofing cases.

3The caller ID is transmitted between first and second ring; thus if an incoming call is answered
before the caller ID is received, the caller ID cannot be shown in the display.
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3.4 Caller ID Spoofing Detection

In this section, we specify the system model and discuss design requirements and give

an overview of our end-to-end detection scheme.

System Model

For the rest of the chapter, we will refer to Alice as the caller, Bob as the callee, and

Eve as the attacker who tries to spoof Alice’s caller ID while calling Bob. We note

that, Alice may not be in Bob’s contact list (unknown), and Alice’s number could be

invalid (unreachable). Since the verification operation is preformed automatically, we

expand our definition of the names and refer Alice, Bob, and Eve to their devices as

well. We envision that Alice, Bob, and Eve can be a smartphone, a mobile phone, a

PSTN phone, a VoIP phone, or an automated system (e.g., bank), etc. Regardless of

the type, we assume that Bob has a strong incentive to verify the caller ID of a caller,

e.g., he can be a bank that needs to verify the caller ID of a customer. Thus, Bob

integrates CallerDec in his device (e.g., by installing an app in a smartphone, or by

upgrading the firmware of a PSTN phone, or by updating the software of a Private

Branch Exchange (PBX)4, etc). In comparison, Alice may or may not integrate

CallerDec.

We consider that telephone carriers are trusted; they route outgoing calls to dialed

numbers and do not collude with Eve in any way. Thus, Eve cannot capture or inject

any type of packets into the telephone networks. Neither can she answer or reject a

call unless she is the callee. Additionally, we assume that Alice does not collude with

Eve and will not help Eve with caller ID validation. Otherwise, we consider that Eve

is authorized to use Alice’s caller ID.

4Business organizations use PBX as phone exchanges which offer internal phones service, multiple
simultaneous calls with the same caller ID, etc.
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Requirements

Security

The detection scheme should guarantee that an honest caller can prove the validity

of his/her caller ID, and an adversary cannot pretend to be calling from an arbitrary

number.

Compatibility

The detection solution should only change telephone terminals but not the existing

telephone infrastructure, because adding any extra hardware to the existing infras-

tructure or introducing new protocols to the core telephone networks would be a

great expense to all telephone carriers. Additionally it should be compatible to vari-

ous telephone networks (e.g., GSM, VoIP, PSTN).

Usability

The detection strategies should be user-friendly, i.e., they should be automated, re-

quire almost no effort from either a caller or a callee, and should not change common

procedures of phone calls. Otherwise, the callee could just dial the displayed caller

ID and verify verbally.

Efficiency

The detection scheme should have low computational overhead so that it can be

integrated into telephone terminals that have limited resources, e.g., PSTN phones,

mobile phones, etc.
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End-to-End Detection Scheme Overview

How can CallerDec, a program running on a telephone, verify who is indeed calling?

Similar to the design principle of TCP in Internet, CallerDec considers a telephone

network as a black box and rely on the feedback of end-to-end communication services

supported by this black box for verification. In total, we have identified two services

as the basis for CallerDec.

i. Short Message Service (SMS). SMS enables a user to send short text mes-

sages to another user with a mobile, VoIP [65], or a PSTN line [43], even though

not all PSTN phones support SMS. Given a recipient number, the telephone op-

erator will route SMS to the intended destination via control channels, unless the

destination is unreachable. In such a case, the operator can notify the sender of

the failed SMS delivery.

ii. Traditional phone calls. Given a number, the operator will try to establish

a phone call for the caller over a control channel, and create a voice channel

after the call is answered. We choose to use control channels for caller ID ver-

ification, since a caller cannot manipulate the control channels in a traditional

telephone network but can acquire the status of the phone calls, e.g., through

distinguishable ringback tones (e.g., busy) or voicemail greetings.

Leveraging either SMS or the call setup procedure, we design two types of CallerDec

for caller ID verification, an SMS-based CallerDec and a Timing-based CallerDec.

Overall, CallerDec works as follows. When Bob receives a phone call, CallerDec will

automatically initiate the caller ID verification by sending a challenge to Alice over

one of the end-to-end communication services, e.g., either SMS or a phone call. Then,

the challenge will be delivered to Alice if it is reachable. Once the challenge reaches

Alice, the CallerDec at Alice’s end will respond to Bob whether she has indeed made

the phone call. Collaboratively, CallerDec on both ends can achieve automated caller
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Figure 3.4 SMS-based CallerDec involves performing challenge-response between a
caller and a callee before a call initiation.

ID verification. There are, however, several challenges to be addressed: How should

Alice respond? How should Bob infer the response based on the feedback of the end-

to-end communication channel? Is it possible to automate the verification process?

Is it possible to use a second end-to-end communication channel while there is an

incoming call? We address all these challenges in the design of CallerDec. We will

discuss details of SMS-based CallerDec in Section 3.5 and timing-based CallerDec in

Section 3.6.

3.5 SMS-based CallerDec

Our first scheme is SMS-based CallerDec (hereafter SMS-CallerDec) and is designed

for devices with SMS capability. We will discuss timing-based CallerDec that does

not require SMS services in Section 3.6. The idea is that in parallel to a phone call,

Bob (the callee’s phone) will send a Challenge SMS to Alice (the owner of the claimed

caller ID), who will reply with a Response SMS, indicating whether she has made the

phone call. The goal of the verification mechanism is to inform a user the validity of

the displayed caller ID and to ensure that a spoofed caller ID will not be marked as

valid by mistakes.
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Although it is natural to let Bob initiate the SMS challenge right after he receives

a call and before answering it, we found that it is impossible to implement for some

telephone networks. For instance, in CDMA mobile networks, it is impossible to send

an SMS while there is a pending incoming call because the mobile will be in System

Access State where channel assignment is performed. No SMS can be sent until the

channel assignment is complete [4]. Thus, mobile phone OS, such as Android [46],

does not allow SMS transmission while a call is waiting to be answered. To overcome

this restriction, SMS-CallerDec lets the caller initiate the challenge-response proce-

dure prior to making a phone call. As long as the challenge-response SMS exchange

is performed sufficiently close to a phone call, we consider the verification bound to

this phone call.

Protocol Description

As shown in Figure 3.4, dialing a phone call with the SMS-CallerDec consists of 4

steps, and the verification output can be one of the three results: VALID, SPOOFED, and

NOTSUPPORTED. VALID means that the caller ID has been successfully verified, SPOOFED

indicates that the caller does not own the caller ID, and NOTSUPPORTED indicates that

the caller ID cannot be verified because the caller does not have CallerDec.

(1) Call Intent. When a user (Alice) wants to make a voice call, she sends a special

call-intent SMS to Bob, which contains the caller ID of Alice and the intended

destination phone number (e.g. Bob’s number):

SMS_Intent = IntentHeader; CallerNumber; CalledNumber

(2) SMS Challenge. Bob, upon receiving an SMS_Intent, sends a Challenge SMS

to Alice. A Challenge SMS consists of a random nonce of m bits (m = 128 in

our systems). This SMS is formatted as follows.

SMS_Challenge = ChallengeHeader; CallerNumber; CalledNumber; Nonce;
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If the caller ID is unreachable, e.g., it is an invalid phone number, the phone is off

or out of service region, then the SMS_Challenge will fail to be delivered. In this

case, Bob will consider the caller ID SPOOFED, since it contradicts to the fact that

Bob just received an SMS_Intent from ‘Alice’. If the SMS delivery report confirms

a successful delivery, Bob will start a timer, waiting for the response message.

The timer ensures that the verification process does not wait indefinitely for the

response SMS, and the verification session will be terminated after a while.

We note that telephone operator returns SMS delivery reports upon requests.

For instance, Android phone users can select this option in the SMS settings or

insert a special header in every SMS, e.g., *noti# for T-Mobile.

(3) SMS Response. After receiving the SMS_Challenge SMS, Alice replies an SMS

Response acknowledging or dis-acknowledging the challenge. In cases that Alice

does try to call Bob, she generates a positive-response SMS with the following

format.

SMS_Response_ACK = ACK; F (SMS_Challenge, ACK)

Here F is a hash function that will return n-bit hash generated based on nonce,

CallerNumber, and ACK/NACK. For instance, F can be MD5 [101] or SHA-

1 [48].

In cases that Alice does not intend to call Bob, she generates a negative-response

SMS with the following format:

SMS_Response_NACK = NACK; F (SMS_Challenge, NACK)

(4) Voice Call. After sending the Response SMS, Alice checks SMS delivery sta-

tus using SMS delivery report. If SMS is delivered successfully, she starts the

voice call to Bob. When Bob’s phone starts to ring, the notification from SMS-
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Algorithm 4 SMS-CallerDec
Require: INPUT:

CN = CallerNumer
OUTPUT:
verified ∈ {V ALID, SPOOFED, NOTSUPPORTED}
PROCEDURES:

1: verified = NOTSUPPORTED

2: C = GenerateChallenge(CN)
3: s = SendSMS(C, CN)
4: if s = failed then
5: verified = SPOOFED

6: return verified

7: end if
8: StartT imer(t)
9: while true do

10: if timeout then
11: return verified

12: else if ReceivedResponse then
13: verified = V erifyResponse(C, CN)
14: return verified

15: end if
16: end while

CallerDec will be displayed so that Bob can make an informed decision, e.g.,

either answer or reject the call.

Algorithm 4 shows the pseudo code of SMS-CallerDec running at the callee’s

(Bob) end. In particular, if the response SMS is received before a timeout, then Bob

checks the correctness of the response by comparing the received response with locally

calculated hash. He considers caller ID VALID for a correct SMS_Response_ACK and

caller ID SPOOFED for SMS_Response_NACK or an incorrect response SMS. If no

response SMS is received prior to a timeout or ringing, then caller ID is considered

NOTSUPPORTED.
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Security Analysis

The SMS-CallerDec requires no secret exchange beforehand. Instead, its correctness

is ensured by the observation that the telephone operator is trusted and the challenge

SMS will be delivered to the intended recipient of the SMS, not to or via attacker. In

a telephone system, when a user requests to send an SMS, the SMS first goes to an

SMS Controller (SMSC) of the operator through BTS, BSC, and MSC. Then, it is in

turn routed through the destination MSC, BSC, BTS, and finally to the destination.

Since the network devices are tightly controlled by operators and it is difficult for

attackers to compromise, when Bob verifies Alice, the challenge SMS from Bob will

be delivered to Alice, instead of Eve.

In this section, we show that leveraging the SMS-CallerDec, an honest caller can

always prove the validity of her caller ID, and an attacker cannot pretend to be calling

from random numbers. We divide the cases into normal and attacking scenarios.

Normal Scenario: Alice is calling Bob

We envision that Alice is motivated to prove that her caller ID is valid. Thus, she

will install the SMS-CallerDec. When Alice calls Bob, she will participate in the

challenge-response procedure, and make Bob conclude that her caller ID is VALID.

In cases where Alice does not support the SMS-CallerDec, SMS-CallerDec at Bob’s

end can identify that the caller ID verification is NOTSUPPORTED at Alice’s end, since

neither SMS_Intent nor SMS_Response is received.

Attack Scenario: Eve is calling Bob spoofing Alice’s caller ID

The goal of Eve is to fool Bob, and she can perform a few operations, trying to achieve

it. We will show that none of Eve’s attempt will work because of the SMS-CallerDec.

For instance, Eve can choose not to send any SMS_Intent or SMS_Response, which

will make Bob conclude that the caller ID verification is NOTSUPPORTED. Alterna-
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(a) (b) (c)

Figure 3.5 Three outcomes of the SMS-based verifier: the caller ID is (a) VALID,
(b) SPOOFED, and (c) NOTSUPPORTED.

tively, Eve can send a SMS_Intent with a colluder’s phone number and let the col-

luder generate a SMS_Response. In this case, Bob will still conclude NOTSUPPORTED,

since this challenge-response exchange is not associated with the incoming caller ID,

i.e., Alice’s number. Finally, Eve can send an SMS_Intent with Alice’s phone num-

ber, and send a spoofed SMS_Response_ACK. Given that SMS_Response_ACK is

an n-bit hash generated based on SMS_Challenge, the chance of creating a cor-

rect SMS_Response_ACK is only 1
2n , not to mention that Bob may receive an

SMS_Response_NACK from Alice in response to his SMS_Challenge. Thus, Bob

will consider this caller ID SPOOFED, and it is impossible for Eve to convince Bob that

Alice’s number is her VALID caller ID.

If Alice’s caller ID is BLOCKED, SMS-CallerDec considers it a non-spoofing case

and will not initiate verification process.
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Implementation

We implemented the proposed protocol in Android (version 2.3.3) and automated

all steps. In particular, we used the standard Android SMS API which includes an

option to obtain a delivery report for each SMS. To avoid interfering users with our

control SMSs, we added a special HEADER field in each verification SMS so that

regular SMSs and SMS-CallerDec SMSs are distinguishable. We set the priority of

our SMS-CallerDec app higher than built-in SMS app to make sure that a new SMS

is delivered to it first. Upon matching the header, we suppress user notification for

verification SMS and delete these SMSs from user inbox. We generated the hash

using SHA-1 and converted it to SMS encoding before transmission. Fig. 4.17 shows

three screenshots SMS-CallerDec, where (a), (b), and (c) show the cases when the

caller ID is VALID, SPOOFED, and NOTSUPPORTED respectively. At this point, the callee

can make an informed decision to accept or reject the call.

Performance

We evaluated the performance of SMS-CallerDec by measuring the delay of end-to-

end verification, and studied the impact of the type of phones, the operators, and

the time of the day. We selected three Android devices and classified them as fast

devices or slow devices based on the processor speeds, and the device specifications

are summarized in Table 3.1. We chose some common telephone operators in the

USA, which are AT&T, T-Mobile, and SimpleMobile. We used two cases in the

experimental setup: (a) The caller and the callee belong to the same operator, i.e.,

T-Mobile, and (b) the caller and the callee belong to different operators, i.e., a T-

Mobile user calls an AT&T user, or a T-Mobile user calls a SimpleMobile user.

In total, we have measured the delay of end-to-end verification in four scenarios:

(a) DOFD: Different Operators and using two Fast Devices. (b) DOSD: Different

Operators and using one fast and one Slow Device. (c) SOFD: The Same Operator
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Figure 3.6 Timing analysis for SMS-CallerDec.

and using two Fast Devices, and (d) SOSD: The Same Operator and using one fast

and one Slow Device. We measured the end-to-end delay every three hours from

8AM to 11PM, on both weekdays and weekends. At each measuring hour, we ran

the whole verification process at least 20 times for each scenario.

From the experiment results depicted in Figure 3.6, we observed that the end-to-

end verification delay was not affected by the specification of devices or the day of the

week, rather it is affected by whether the SMS have to traverse different operators

and the network traffic load.

Table 3.1 Configurations of Android devices used in the experiments.

Device Name Processor RAM Class
Google Nexus One 1 GHz 512 MB Fast
HTC Sense 1 GHz 576 MB Fast
MyTouch 528MHz 192 MB Slow
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When the caller and callee belong to the same operator, the verification process

was completed within 13.8 seconds on average both on weekdays and weekends. When

the caller and the callee belong to different operators, the process took 16.8 seconds

on average on weekdays and 16.5 seconds on weekends. In addition, the average

end-to-end delay peaked at 2PM for both weekdays and weekends. We note that

SMS delivery delays dominate the end-to-end verification delay. Typically, telephone

operators allocate a limited number of channels for SMS services, and thus besides

the regular network delays, an SMS may be queued in the SMS controller for an

extended period of time, resulting in a long delay.

We acknowledge that the SMS delay could be higher than expected. However, the

end-to-end delay can be hidden if SMSs are transmitted in concurrence to a phone

call. After the channel assignment is completed, one can answer the phone call and

perform SMS-based caller ID verification simultaneously. For instance, in a 9-1-1 call,

the caller ID can be verified while the emergency situation is reported.

In summary, despite the short delay overhead, SMS-CallerDec can be used effec-

tively to detect caller ID spoofing attacks.

3.6 Timing-based CallerDec

An End-to-End Covert Channel

Forming an end-to-end covert channel is difficult as CallerDec considers a telephone

network as a black box and hence, only the services that are available to end systems

can form a covert channel, e.g., SMS, control channel during traditional phone call,

etc. We utilize SMS channel in SMS-CallerDec (Section 3.5). To make CallerDec

independent of telephone networks and SMS compatibility, we utilize the traditional

phone call service and design Timing-based CallerDec (hereafter T-CallerDec). Nev-

ertheless, similar services can be chosen to form a covert channel.
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Utilizing traditional phone call service, we form an end-to-end timing channel

between Alice and Bob for spoofing detection. Essentially, the timing channel is built

on top of the control channel that is used for call signalling in a traditional telephone

network. Even though Alice and Bob cannot manipulate control channels directly,

they can acquire the status of the phone call between them, for instance, through

distinguishable ringback tones (e.g., busy) or call status (e.g., the call is answered

or rejected). Since Eve cannot control the calls between Alice and Bob, they form

a trusted timing channel by initializing, answering, or rejecting phone calls between

them.

When Bob receives a call from Alice, he will initiate a new call to Alice after an

interval τsv and Alice will respond to the new call according to whether she is indeed

calling Bob. We refer to the first call from Alice to Bob as the original call denoted by

Co
A→B and the second call from Bob to Alice as the verification call denoted by Cv

B→A.

Bob determines whether the original call Co
A→B is indeed from Alice by examining

two information that is sent over the control channel: (a) how Alice responds to

the verification call Cv
B→A, and (b) how long Alice waits before responding. For

instance, if Alice is calling Bob, Bob will observe that she rejects the verification call

Cv
B→A after a pre-defined interval τv. Both τv and τsv are security parameters used

to differentiate whether Alice has installed T-CallerDec or not, and these parameters

are selected and agreed upon by all users in advance. Because timing estimation

of Alice’s waiting time τv is performed at Bob’s side and its accuracy depends on

the packet delivery delays inside telephone networks, we use a probabilistic classifier

instead of a threshold-based approach to improve the estimation accuracy. As we

discuss in Section 3.6, we use a light-weight Bayesian classifier [49] that is suitable to

resource constrained phone terminals.

The idea of forming a covert timing channel between Alice and Bob is simple.

However, several open problems remain, such as: (a) Bob must be able to estimate
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Figure 3.7 Call establishment and verification process when Alice is calling Bob:
Bob initiates a verification call after τsv interval and Alice rejects the verification
call after τv interval to prove her caller ID.

Alice’s waiting time τv at his end, (b) the protocol must handle all possible scenarios,

i.e., caller ID is valid, caller ID is spoofed, Alice does not support T-CallerDec, Bob’s

verification call goes to Alice’s voicemail, etc. We address all these issues in the design

of T-CallerDec protocol.

Protocol Description

T-CallerDec protocol is depicted in Figure 3.7 where Alice and Bob belong to carrier-

A and carrier-B respectively. Assuming that the two carriers communicate through

SS7, we describe regular call setup process and T-CallerDec protocol in the following.

Regular Call Setup: Co
A→B

In a telephone network where carriers use SS7 for communication, when Alice dials

Bob’s number, a SETUP request is sent to carrier-A. Then, carrier-A sends carrier-B
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an Initial Address Message(IAM), which is equivalent to SETUP. After carrier-B

sends a SETUP to Bob, he responds with an ALERTING message and starts the ringing

tone at the device. The ALERTING message indicates that Bob is available and the

ringing has started. At this point, carrier-B sends carrier-A an Address Complete

Message(ACM). Subsequently, carrier-A sends Alice an ALERTING message, and Alice

starts to play the ringback tone.

T-CallerDec Verification Protocol

In this section, we introduce the protocol using the following scenarios: (a) normal

scenario: Alice is indeed calling Bob and both of them installed T-CallerDec, (b) at-

tack scenario - spoof a reachable user: Eve is spoofing Alice’s number, and Alice is

reachable with T-CallerDec installed, (c) attack scenario - spoof an unreachable user:

Eve is spoofing Alice’s number, and Alice is unreachable, and (d) not-supported sce-

nario: Alice does not install T-CallerDec. For simplicity, assume for now that Bob

can make two concurrent phone calls. Later, we will relax this assumption.

Normal Scenario. As shown in Figure 3.7, after receiving a phone call Co
A→B

from Alice, Bob will start the verification process according to the following steps.

1. After an interval T1 = τsv, Bob initiates a verification call Cv
B→A to Alice that

triggers a sequence of six messages: SETUP, IAM, SETUP, ALERTING, ACM, and

ALERTING.

2. When Alice receives the verification call Cv
B→A, she will reject it after an in-

terval T2 = τv. As a result, Bob will receive a REJECT message from carrier-B

indicating that Cv
B→A has been rejected.

3. After receiving a REJECT message, Bob will measure the time difference T3

between the moment of sending the SETUP message and receiving the REJECT

message (Figure 3.7). Examining T3 using the classifier, Bob will verify whether
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(a) a simplified version of Figure 3.7 in a normal scenario

(b) attack scenario when Alice is reachable

(c) attack scenario when Alice is unreachable

Figure 3.8 Simplified T-CallerDec verification protocol and outcomes in normal
and attack scenarios.

Alice has waited for the expected time τv before rejecting verification call Cv
B→A.

If the original call Co
A→B is still active, then Bob will conclude that the caller

ID is VALID.

As we discussed in Section 3.4, Eve cannot inject packets to the traditional tele-

phone networks, neither can she reject or answer the verification call directed to Alice.

Thus the verification process between Bob and Alice is protected, and the response

from Alice is trusted. We show a simplified version of this scenario in Figure 3.8(a)

and discuss how to identify Alice’s response, and why Bob does not use T4 (Figure 3.7)

for estimating τv in Section 3.6.
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Attack Scenario - Spoof a Reachable User. In this scenario, Eve is calling

Bob and Alice is reachable, as shown in Figure 3.8(b). Similar to the normal scenario,

Bob will first initiate a verification call Cv
B→A to Alice once he receives a call from Eve

who pretends to be Alice. Alice will treat Bob’s verification call Cv
B→A as a regular

call Co
B→A since she is not calling Bob. As a result, instead of rejecting it, she will

initiate a new verification call Cv
A→B after an interval τsv. When Bob identifies that

Alice has initiated a verification call Cv
A→B, he concludes that Alice was not calling

him. Instead, Alice is trying to verify Bob’s verification call Cv
B→A. After confirming

that Alice’s verification call Cv
A→B was initiated after a duration of τsv, Bob will

conclude that the caller ID is SPOOFED. He will terminate his verification call Cv
B→A

(Co
B→A for Alice) and reject Alice’s verification call Cv

A→B after an interval τv. On the

other hand, Alice detects that her verification call Cv
A→B has been rejected and the

original call Co
B→A she received is terminated. As a result, she concludes that Bob

may have received a call with spoofed caller ID and terminates her own verification

process.

Attack Scenario - Spoof an Unreachable User. In this scenario, Eve is call-

ing Bob, and Alice is unreachable, e.g., her phone can be powered off, out of range,

or Alice is an invalid number. In such cases, as shown in Figure 3.8(c), the verifica-

tion call from Bob Cv
B→A will be directed immediately to either Alice’s voicemail or

carrier’s voicemail. When Cv
B→A goes straight to voicemail, it contradicts to the fact

that “Alice” was calling Bob, and Bob will conclude that the caller ID is SPOOFED.

Not-supported Scenario. Now, we discuss the case when Alice does not support

T-CallerDec, i.e., T-CallerDec is not installed in Alice’s phone. In this case, the

verification call Cv
B→A will be considered as a regular call. Since T-CallerDec is not

installed, Alice herself may reject the call after a random interval, answer the call,

or even not respond to the call. Regardless of the response, T-CallerDec verification

can handle the following cases correctly:
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Figure 3.9 This flowchart shows how T-CallerDec handles different cases at callee’s
end to detect caller ID spoofing. Verification process is initiated as soon as there is
a new incoming call.

(a) Alice rejects the verification call after a random interval. Once the call is rejected,

Bob will measure T3 and will use the classifier to verify whether Alice has waited

for an interval τv before rejecting the call. In this case, it is unlikely that Alice

happens to wait for τv, and thus T-CallerDec concludes NOTSUPPORTED.

(b) Alice answers the verification call. To leverage Alice’s knowledge, T-CallerDec

will play a pre-recorded voice instruction to advise Alice so that she can confirm

whether she is indeed calling by pressing “1” or pressing “2” to reject the veri-

fication. Based on the input from Alice, Bob can conclude that the caller ID is

either VALID or SPOOFED. Of course, Alice may refuse to enter a proper digit, and

Bob will conclude NOTSUPPORTED.

(c) No answer. If the call was not answered at all, then the verification call will

go to Alice’s voicemail after ringing timeout period. In such cases, Bob makes a
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(a) emergency call scenario (b) regular call scenario

Figure 3.10 Two use cases of T-CallerDec. T-CallerDec follows the same
verification protocol for both cases, because the verification procedure is
independent to whether the original call is answered or not.

conservative decision and concludes that Alice does not support T-CallerDec, i.e.,

NOTSUPPORTED. Bob cannot conclude SPOOFED because Alice (the person) could

be indeed calling and does not want to answer another incoming phone call.

The overall decision process is illustrated in Figure 3.9.

Use Cases

We envision two use cases of T-CallerDec: emergency call, where calls need to be

answered immediately, and regular call, where Caller IDs are expected to be verified

before calls are answered. In both cases, T-CallerDec follows the same verification

protocol, because verification relies on an end-to-end covert channel that is inde-

pendent to whether the original call is answered or not. However, caller ID will be

verified before call is answered in a regular call scenario, and after call is answered in

an emergency call scenario, as we discuss in the following.

Emergency Calls

In emergency call cases, such as 9-1-1 services, caller ID verification is performed

in parallel to the voice call. As shown in Figure 3.10(a), the callee (e.g., an 9-

1-1 service) answers the call from Alice upon ringing, and T-CallerDec starts the
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verification process in the background. After the caller ID is verified, T-CallerDec

will notify the callee, and sensitive information may be exchanged thereafter. Since

the duration of 9-1-1 calls are reported to be between 1-2 minutes on average [72][34],

the verification results shall be returned before the call is terminated.

Regular Calls

Eve may spoof Alice’s caller ID with the goal of winning a chance talking to Bob,

who would refuse otherwise (e.g., Eve may be an unknown number or is on Bob’s

block list). Thus, in regular call scenarios, T-CallerDec performs the verification

before a call is answered. As shown in Figure 3.10(b), once Bob receives an incoming

call, T-CallerDec starts to verify the caller ID and notifies Bob after the verification

completes. While T-CallerDec may introduce delay in answering phone calls, it allows

users to answer or reject spoofed calls. �

The verification protocol is independent of both the above use cases, however, the

number of required concurrent calls for T-CallerDec depends on the type of use cases.

For regular call cases, Bob only requires one call control channel for verification. On

the other hand, for emergency call cases, two concurrent call control channels are

required since the verification shall be performed in parallel to the original call.

Security Analysis

The security of this mechanism relies on the observation that the verification call from

Bob to Alice will be routed to Alice if she is available, and Eve cannot manipulate

the verification call. Based on the choice of use cases, Bob can determine when to

answer a call, e.g., before the caller ID is verified or after. We stress that when a call

is answered is independent to the caller ID verification process. Hence, regardless of

the use cases (Section 3.6), Bob can utilize the same T-CallerDec to fulfil the security

requirement discussed in Section 3.4. The type of use cases do require different num-
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ber of concurrent calls. For regular call cases, Bob only requires one call. However,

for emergency call cases, two concurrent calls are required since the verification shall

be performed in parallel to the original call. We analyze the security of T-CallerDec

by considering the normal scenarios and attacking scenarios.

Correctness: Alice is Calling Bob

As we discussed in Section 3.6, utilizing T-CallerDec, Alice will reject the verification

call after an interval τv to prove her caller ID, and Bob will conclude that the caller

ID is VALID. Without T-CallerDec, Alice may answer the call from Bob, and listen

to the pre-recorded voice instruction. With the proper input from Alice, Bob is

able to confirm her caller ID. In cases that Bob receives no input or his verification

call gets rejected by Alice at a random time, Bob can conclude that T-CallerDec is

NOTSUPPORTED. We note that Alice is motivated to protect her caller ID and is likely

to install T-CallerDec to detect that Eve spoofs her caller ID.

Security: Eve is Spoofing Alice’s ID to Bob

As we discussed in Section 3.6, Alice will treat Bob’s verification call as a new call

and will initiate a new verification call to Bob. Consequently, Bob concludes that the

caller ID is SPOOFED and Alice will conclude that Bob received a SPOOFED call and

will terminate her verification process. Without T-CallerDec, when Alice receives

the verification call from Bob, she may answer the call and enter proper input which

leads Bob to conclude that the caller ID is SPOOFED. If Alice rejects the call after a

random amount of time or does not respond, then Bob will conservatively conclude

NOTSUPPORTED. The bottom line is that Eve cannot send any signal to convince Bob

that Alice is calling.
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Discussion

Special Cases

In this section, we discuss three special cases whereby the claimed caller ID is different

from the true caller ID. Yet they should not be tagged as spoofed caller ID as we

discussed in Section 3.3.

i. Blocked caller IDs. T-CallerDec depends on the caller ID of an incoming call

for verification and T-CallerDec cannot initiate verification process if caller ID

is BLOCKED or UNAVAILABLE. However, if Bob supports the mechanism to

uncover caller ID of such calls, then T-CallerDec can be integrated seamlessly. For

instance, the commercial service TrapCall5 claims to have the ability to unmask

blocked numbers, and T-CallerDec can utilize such a service to first unmask the

blocked number, and then perform caller ID verification if it is needed. The 9-1-1

service also has such capability, and if integrated, T-CallerDec can perform caller

ID verification effectively.

ii. PBX systems. T-CallerDec can be integrated easily in a PBX system of an orga-

nization, e.g., a bank. Since such systems generally have resources for multiple

concurrent calls, they can adopt parallel verification, as discussed in use case 2

(Section 3.6). Furthermore, if Alice is reachable via an extension number of the

PBX system and she calls Bob, Bob can verify the caller ID as usual.

iii. Legitimate caller ID ‘spoofing’. It is possible that Alice intentionally spoofs her

own caller ID when calling Bob, e.g., Alice uses skype to call Bob, while pre-

tending to call from her cell phone. In this case, she can control T-CallerDec on

her cell phone, and thus can proof her identity. We consider this scenario as a

legitimate caller ID ‘spoofing,’ and T-CallerDec will conclude VALID.

5www.trapcall.com
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Race Conditions

In a regular call scenario, both Alice and Bob may try to call each other simultane-

ously. In such cases, both calls will go straight to the voicemail. This is because most

standards allow to signal at most one call at a time for each user, i.e., neither Alice

nor Bob can receive an incoming call while making an outgoing one [62]. In this sce-

nario, T-CallerDec is not triggered. In the case where one of the calling parties starts

the call earlier than the other, at most one call will go through6 and T-CallerDec

handles the case as usual. The party that successfully receives the call will trigger its

T-CallerDec to initiate the verification process, and validate the caller ID.

When Eve tries to spoof both Alice and Bob simultaneously, both Alice and Bob

will initiate verification call to each other. But these calls would go straight to the

voicemail and T-CallerDec will correctly conclude SPOOFED.

Denial of Service (DoS) Attack

The online forum [120][51] has reported several “DoS attacks” caused by the spoofed

caller ID. In particular, attackers have spoofed a victim’s caller ID (hereafter Alice).

As a result, Alice received repeated calls from strangers who thought to have received

calls from her. T-CallerDec can effectively address this problem. As the attacker calls

Bob while spoofing Alice’s caller ID, verification calls will be directed to Alice. With

the help of T-CallerDec, the verification process will be carried out automatically as

a background process. Without answering the call, Bob can learn that he received a

spoofed call and shall ignore it; Alice’s T-CallerDec automatically confirms that she

didn’t call. This way, the spoofed calls will not disturb Alice or Bob. Furthermore,

Alice can collect the number of verification calls and thus detect the “DoS attacks”

launched by the attacker.

6Alice can receive a second call while she is on another active call because the call signaling for
the active call has ended and the call waiting protocol kicks in.
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Advanced Configuration

T-CallerDec can be configured to verify only pre-selected numbers and balance the

trade off between delays and trust. Similarly, verification can be disabled for certain

numbers, e.g., premium rate numbers.

Implementation Challenges

When implementing T-CallerDec in Android, we encountered several challenges. Par-

ticularly, T-CallerDec requires to estimate the ringing duration at the other end, to

obtain the status of that call, and to automatically initiate a verification call. How-

ever, Android does not contain APIs for identifying the status of an outgoing phone

call or estimating the ringing duration at the other end. Neither does it allow two

concurrent phone calls, and it hides the APIs for automating phone calls. We discuss

how we overcome these challenges in the following.

Verify Caller ID Using Timing Estimation

One key issue to verify Alice’s caller ID is to estimate her ringing duration (denoted by

T2). As shown in Figure 3.7, the ringing duration (T2) is the time difference between

the moments when Alice sends an ALERTING message, and a REJECT message.

In an ideal scenario, when the end-to-end transmission latency for ALERTING and

REJECT messages is the same, T2 equals T4, where T4 is the time difference between

the moment when Bob receives an ALERTING and the one when he receives an ANSWER

or REJECT message (shown in Figure 3.7). This makes T4 a perfect candidate for

estimating T2. However our analysis on T4 shows that it can vary from 50ms to

several seconds. This is because some carriers start playing the ringback tone before

receiving an ALERTING message. For instance, AT&T starts the ringback tone even

when the callee is unavailable. Due to such a high variance in the time difference, we

ruled out using T4 to estimate T2.
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We found that T3 (as shown in Figure 3.7), which is roughly the sum of T2 and

the round trip time from Bob to Alice, is independent of the types of carriers, since it

does not depend on when the ringback tone starts. Hence we chose T3 for estimating

T2 and consequently use it to classify caller ID as VALID, SPOOFED, or NOTSUPPORTED.

Unlike the Internet where the round trip time varies, the round trip time in a tele-

phone network is relatively stable due to the quality of service (QoS) requirements of

telephone standards [41][42] and the circuit-switched nature of communication. This

makes it possible to estimate T2 using T3. Our experiments also confirm this hypoth-

esis. To make T-CallerDec compatible to devices with low computational power, e.g.,

mobile phones, we choose Bayesian Classifier [49]. The Bayesian classifier is an

efficient method for calculating posterior probability based on prior probability and

likelihood in the training data. Although the classifier needs prior training, our exper-

imental results involving various geographic locations and time of the day show that

the same trained model can be used on different phones for effective classification.

For the training dataset, we recorded the values of T2, T3, time of day (Tday), and

status of the verification call (Scall), i.e., rejected, answered or voicemail. We label

each dataset with appropriate class: VALID, SPOOFED, or NOTSUPPORTED. For each test

sample, we employ the following Bayes equation [49] to calculate the probability of

each class, Ci.

p(Ci

∣

∣

∣

∣

T3, Tday, Scall) =
p(T3, Tday, Scall

∣

∣

∣

∣

Ci) p(Ci)

p(T3, Tday, Scall)
(3.1)

Here, p(Ci) is the probability of Ci in the training dataset. T-CallerDec classifies the

test sample as the class with the highest probability. Thus, based on the estimated

duration of T2 and Alice’s action, T-CallerDec detects caller ID spoofing attacks.

Identify the Status of the Verification Call

T-CallerDec scheme requires Bob to identify the status of the verification call, i.e.,

whether the call has been answered, rejected, or directed to the voicemail. This
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task poses several challenges. Android does not allow users to access call signalling

messages during call setup. As a result, we cannot identify call status directly from

call setup messages, e.g., REJECT message. Neither does Android provide any API

that returns whether the callee’s phone is ringing or the call is answered. The status

of an outgoing call is always OFFHOOK7. So, we seek alternatives to identify the status

of an outgoing call.

To identify the status of the verification call, we utilized system logs. Logs of

each Android app are printed in the system shell and T-CallerDec continuously mon-

itors real-time logs using Runtime APIs. In particular, T-CallerDec monitors logs

of three built-in system apps: CallNotifier, AudioService, and Ringer. Once a

DISCONNECT log is printed by CallNotifier, T-CallerDec concludes that the ver-

ification call is rejected. To identify the answer or voicemail status, T-CallerDec

searches for an audioOn entry from AudioService and a stopRing() entry from

Ringer. To differentiate between answered and voicemail, T-CallerDec can record

voice data using the microphone and identify the patterns of voicemail greeting using

available tools [27]. If the pattern matches, T-CallerDec has reached the voicemail,

otherwise the verification call is answered. This identification process is summarized

in Table 3.2.

7OFFHOOK traditionally indicates that the handset of a PSTN phone is off the base and the
user could be dialing a number or on an active call. It is used in the same context in Android.

Table 3.2 Identifying call status using Android system logs and matching
voicemail patterns.

Call System App & Search String VM
Status CallNotifier AudioService Ringer Pattern?
Rejected DISCONNECT - - -
Answered - audioOn stopRing No
Voicemail - audioOn stopRing Yes
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Initiate the Verification Call

Depending on the number of concurrent phone calls, two categories of phone services

exist: (a) primary rate interface (PRI) [64] lines, and (b) regular lines (e.g., a mobile

phone or a residential landline). PRI supports multiple concurrent phone calls using

the same caller ID. Thus, a second line can be used to initiate the verification call

while the first call may be in progress. Regular end users can dial a secondary phone

call but at most one call can be active at a time. For instance, UMTS requires to put

an incoming call on hold before initiating a new call [62] and Android enforces this

requirement. As a result, when implementing T-CallerDec in Android, we have to

put the incoming call from Alice on hold before initiating the verification call. Fur-

thermore, Android provides no official APIs for putting a call on hold. To overcome

the problem, we leverage Android hidden APIs of ITelephony interface using java

reflection. We created an interface ITelephony in T-CallerDec App with the package

name set as com.android.internal.telephony and added the function definition

from the original ITelephony interface with an empty body. As a result, T-CallerDec

is able to call the hidden functions from ITelephony at runtime and can perform call

control operations (e.g., initiate a new call).

After overcoming the challenges, we implemented T-CallerDec on Android. Fig-

ure 4.17 shows three screenshots of T-CallerDec when the caller ID is VALID and

SPOOFED. and NOTSUPPORTED respectively.

Performance

To evaluate the performance of T-CallerDec, we measured time of day and end-

to-end delay of completing caller ID verification for the following scenarios which

we discussed in Section 3.6: (a) normal, (b) spoof a reachable user, (c) spoof an

unreachable user, and (d) not-supported scenarios. Additionally, we studied the

impact of the type of phones, the carriers, and the time of the day in the verification
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Figure 3.11 End-to-end verification delay in (a) the normal scenario when caller
ID is VALID, and in the attack scenarios when caller ID is SPOOFED with Alice is
(b) reachable and (c) unreachable.

delay. We selected three Android devices and classified them as fast devices or slow

devices based on the configurations, and the device specifications are summarized in

Table 3.1. We chose some common telephone carriers in the USA, which are AT&T,

T-Mobile, and SimpleMobile. We used two cases in the experimental setup: (a) Alice

and Bob belong to the same carrier, e.g., T-Mobile, and (b) Alice and Bob belong to

different carriers, e.g., a T-Mobile user calls an AT&T user. In total, we measured

data at six different times of the day in four experimental setup: (a) DCFD: Different

Carriers and using two Fast Devices, (b) DCSD: Different Carriers and using one fast

and one Slow Device, (c) SCFD: The Same Carrier and using two Fast Devices,

and (d) SCSD: The Same Carrier and using one fast and one Slow Device. We set

τv = τsv = 0 seconds in our implementation to minimize verification delay. Note that

other threshold values can be used depending on the network parameters.

End-to-end Verification Delay

We measure end-to-end verification delay as the time difference between the moment

when Bob receives an incoming call and the one when he identifies Alice’s action. In

the normal scenario, when caller ID was valid and the verification call was rejected

after τv seconds, (Figure 3.11(a)), the verification was done in 8.40 seconds on average
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Figure 3.12 End-to-end verification delay of T-CallerDec based on geographic
locations. The caller was always in State-1 and the callee was in one of the four
states.

with variance between 0.1 to 0.3 seconds. In the worst case, when the caller and the

callee were under different carriers, and one of them was using a slow device, the

delay was 8.61 seconds. In all cases, the verification delay peaked at 2PM, which

indicates that the verification delay of T-CallerDec is affected by network load but

not much. The call setup delay dominates the delays. For instance, a recent study

reported that call setup in 3G networks is between 4-7 seconds on average for various

scenarios [99].

In the spoofing a reachable user scenario, Alice initiated a verification call after

τsv seconds in response to Bob’s verification call. As shown in Figure 3.11(b), the

verification was done in 8.35 seconds on average. with a variance of 0.1 to 0.3 seconds,

and in 8.49 seconds in the worst case. Similar to regular scenarios, the call setup delay

dominates the end-to-end delay.

In the spoofing an unreachable user scenario, Alice’s phone was turned-off and

the verification call went straight to the voicemail. As shown in Figure 3.11(c), the

verification delay was less than 2 seconds on average with a variance less than 0.04

seconds and 2.13 seconds in the worst case. Note that verification delay is low in this

scenario because the call is not routed to its destination since the caller is unreachable.

Although T-CallerDec takes a few seconds for end-to-end verification, our analysis

shows that such delay is mainly caused by telephone networks, and end devices or
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Figure 3.13 Mean and standard deviation of the respond time for 10 volunteers to
reject or answer incoming calls, which represents the respond time in NOTSUPPORTED

scenarios.

network loads have minor effects. However, the verification delay can be hidden in

case of emergency calls (Figure 3.10(a)) because the verification is done in parallel to

the phone call. Although T-CallerDec adds delay overhead before a user may answer

calls in case of regular calls (Figure 3.10(b)), the actually experienced overhead should

be lower since it generally takes a few seconds to answer a call [38].

Impact of Geography

We also analyzed the latency of T-CallerDec based on the geographic locations of

the caller and the callee, as depicted in Figure 3.12. We selected four states located

across the US which are California, Michigan, South Carolina, and Washington. In

our experiments, the caller was always in South Carolina and the callee was in one of

the four states. The result indicates that geographic locations of the caller and the

callee have minor effects on the delay with variance in delay less than 1.1 seconds in

all cases.

94



0 50 100
0.5

0.6

0.7

0.8

0.9

1

Training data (%)

A
cc

u
ra

cy

0 50 100
0.5

0.6

0.7

0.8

0.9

1

Training data (%)

P
re

ci
si

o
n

 

 

VALID
SPOOFED
NOTSUPPORTED

0 50 100
0.5

0.6

0.7

0.8

0.9

1

Training data (%)

R
e

ca
ll

 

 

VALID
SPOOFED
NOTSUPPORTED

(a) accuracy (b) precision (c) recall

Figure 3.14 Performance of our Bayesian spoof detection classifier where (a) shows
the accuracy, (b) shows the precision and (c) shows the recall of the 1classifier.

Timing Estimation

To verify caller ID, Bob estimates Alice’s waiting time τv using a Bayesian classifier to

decide whether a call is VALID, SPOOFED or NOTSUPPORTED. To analyze the performance

of our classifier, we collected more than 3000 instances of calls labelled with appro-

priate class, e.g., approximately 1100 VALID, 1100 SPOOFED, and 800 NOTSUPPORTED

instances. Both the VALID and SPOOFED instances were collected by T-CallerDec.

In particular, the VALID samples were collected when Alice was indeed calling Bob,

and the SPOOFED samples were collected when Eve spoofed her caller ID. For the

NOTSUPPORTED samples, we asked 10 volunteers to reject or answer incoming calls at

their will. No T-CallerDec was installed, but we wrote a customized app to collect the

delay between the start of ringing and the moment of the users’ operation. From the

mean and standard deviation of the user’s response time (Figure 3.13), we observed

that the average response time of an incoming call varied from 5.9 seconds to 10.6

seconds, indicating that it is unlikely to confuse the user operation with T-CallerDec

responses that are triggered with no delay.

We divided the dataset into training and test sets at various proportions p, where

p = [0.1 - 0.9]. For instance, with p = 0.1, 10% (approximately 300 instances) of the

dataset was used for training and the rest 90% (approximately 2700 instances) was
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used for testing. We use the following metrics for evaluating T-CallerDec classifier

where 100% is the desired outcomes for each metric:

i. Accuracy which is the percentage of correct outcomes of T-CallerDec,

ii. Precision which is the percentage of correct outcome for a class out of all the

T-CallerDec outcomes for that class (e.g., correct VALID outcomes out of all the

VALID outcomes), and

iii. Recall which is the percentage of correct outcome out of all the correct outcomes

for a class (e.g., correct VALID outcomes of T-CallerDec out of all the outcomes

that should be VALID).

As depicted in Figure 3.14(a), the accuracy of the classifier is more than 99% even

when the percentage of the training dataset is only 10%, and 99.26% on average.

Furthermore, the precision and recall are fairly constant: a 99.98% precision and a

98.91% recall when caller ID is VALID, a 100% precision and recall when caller ID is

SPOOFED, and 95.62% precision and 99.93% recall when T-CallerDec is NOTSUPPORTED.

The results also suggest that a small number of training data is sufficient for efficient

classification.

In summery, T-CallerDec can be used effectively to detect caller ID spoofing. It

provides high accuracy in caller ID spoofing detection.

Power Consumption Overhead

To evaluate the power consumption of T-CallerDec, we measured the millivolts con-

sumed per hour of the entire phone. In this setup, apart from the default apps comes

with Android OS, the phone only executed one battery logger app. Additionally, the

Wi-Fi interface was turned-off in all cases.

Since T-CallerDec is triggered on demand by incoming calls, we measured the

power consumption of T-CallerDec in two experiment setups: no incoming calls;
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Figure 3.15 Analysis of power consumption overhead for T-CallerDec in four
scenarios: no incoming call, with incoming calls, T-CallerDec is installed, and
T-CallerDec is active. In all the experiments, the phone operated on batteries and
the average millivolts used per hour was measured on average.

10 incoming calls per one hour with each call lasted for approximately 1 minute.

For both setups, we compared the scenarios that T-CallerDec was installed with

not installed; In the case that T-CallerDec was not installed, the user answered the

calls at a random moment during ringing. In the case that T-CallerDec was in-

stalled, T-CallerDec became active right after receiving an incoming call, and the

user answered the calls after he received the verification results. Each experiment

lasted for six hours. We depict the experimental results in Figure 3.15, which shows

that T-CallerDec almost consumed no extra power when T-CallerDec remained idle.

This is because T-CallerDec is implemented as a background process with intent

android.intent.action.PHONE_STATE [46] and the android operating system wakes

T-CallerDec only when there is a new incoming call. In the case of receiving 10

incoming calls, T-CallerDec consumes little power, i.e., approximately 0.01 mV per

call, compared to the case when T-CallerDec was not installed. In summary, our

T-CallerDec ensures caller ID spoofing detection with almost no extra power con-

sumption.
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3.7 Related Work

While the problem of caller ID spoofing is generally known, previously proposed solu-

tions typically require the cooperation and modification of phone provider networks,

which imposes extra cost. For instance, TrustID is a corporate service offered to

banks or large institutions [113] and it leverages special interfaces with the carriers

to detect caller ID spoofing.

Cai [23] proposes a system to validate caller ID information based on “originating

node information” of the respective call. In his design, a phone network provider

should validate the claimed caller ID information based on additional meta-data

associated with the call. Several ways of comparing the call’s meta-data with the

claimed caller ID are proposed, however, it does not address the problem of fake

ID providers, which have both incentive and means to fake most of this meta-data.

Additionally, customers must rely on their respective phone providers to verify the

claimed caller ID.

Another approach is the RealName Registry by Chow et al. [30]. They propose

that telephone providers establish authenticated name registries within their respec-

tive jurisdictions. Specifically, customers should register to their providers and be

issued cryptographic certificates that can then be validated by the respective callee’s.

Note that this mechanism also allows the reverse authentication of the callee’s to-

wards the caller. However, while spoofing is a serious issue in many transactions, the

cost imposed by introducing cryptographic authentication and a PKI is significant.

This is aggravated by the fact that the proposed authentication scheme is only useful

if widely deployed, so that unauthenticated calls can be rejected.

PinDrop by Balasubramaniyan et al. [13] determines the “provenance” of a call by

evaluating audio artifacts introduced by digital encoding and analog noise patterns.

As the call is routed through the network, the different deployed types of network

technology succinctly manipulate the audio signal, creating a characteristic water-
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mark that can be used to reconstruct and recognize the employed techniques, and

thus also the path taken by a call. The approach is closest to our work as it does

not require cooperation of the involved network providers and can be realized on an

on-demand basis, by unilaterally modifying the callee’s device software. However,

PinDrop requires that the receiver answers the call before the source can be verified,

and cannot by itself validate the origin of a previously unseen caller ID. As such,

PinDrop is complementary to our scheme. Their approach could be integrated with

ours to increase the detection certainty once the call was answered, or warn if a known

caller ID originates from an unusual network location.

Piotrowski et al. [96] consider voice spoofing as an extension of caller ID spoofing

and propose a watermarking mechanism for mitigating the threat. However, their ap-

proach requires modification of both the caller’s and callee’s devices and is therefore

mainly useful for closed environments. In such scenarios, where arbitrary modifica-

tions to the caller as well as callee can be assumed, a wide range of well-known cryp-

tographic and steganographic approaches can be considered (e.g., CryptoPhone [1]).

3.8 Summary

In this chapter, we investigated caller ID spoofing attacks and identified that it is

the network interconnection protocols that make caller ID spoofing possible. There

is no evidence that telephone carriers will change their networks to support caller

ID verification. Thus, we seek an end-to-end solution to detect a spoofed caller ID.

We designed CallerDec end-to-end verification mechanisms: SMS-CallerDec and T-

CallerDec, implemented both CallerDec in Android-based phones. Our experimental

analysis validates that CallerDec can effectively verify caller ID. Although the end-

to-end delay for completing a verification takes a few seconds, such delay can be

hidden when a verification is performed in parallel to the voice call. Moreover, we

studied CallerDec on Android-based phones as a case study, but CallerDec can be
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integrated to other types of phone terminals to effectively protect end users from

caller ID spoofing attacks.
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Chapter 4

CETAD: Detecting Evil Twin Access Point

using End-to-End-based Solution

4.1 Problem Overview

Internet has become a part of our everyday life and Wi-Fi has gained much popular-

ity in the last few years for accessing Internet. Wi-Fi market reached 6.4 billion in

2011 [57] and a rapid growth is forecasted in the upcoming years [84] as most the of

mobile devices, e.g., smartphones, tablets, etc., have Wi-Fi capability. Due to such

popularity, many shops, cafés, airports, etc., provide free Wi-Fi hotspot services to

attract customers. JiWire reports that there are more than 840,000 Wi-Fi hotspots

worldwide with more than 150,000 in the US [52] and these numbers are growing

rapidly. Since the goal of the hotspots is to provide convenience and to attract cus-

tomers, in the US, few or no security mechanism is in place. For instance, McDonalds,

Starbucks, etc., provide free , open, and zero liability1 access to customers.

The openness of Wi-Fi hotspot makes it vulnerable to evil twin access point (AP)

attack [97]. In an evil twin AP attack, the adversary sets up a phishing AP that

pretends to be the legitimate one as it uses the same Service Set IDentification (SSID)

as a legitimate AP. Evil twin AP attacks can be harmful to users and have been used

to launch a Man-in-the-Middle (MITM) attack [56][82] because all the packets from

the client to any web server must go through the AP. An adversary can use MITM

1Customers have to agree to terms and conditions that the provider has no liability in case of
security issues during hotspot use.
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attacks for hijacking a session [82], or stealing sensitive data from the user by message

falsification [90].

An evil twin AP attack is easy to launch, especially in a Wi-Fi hotspot due

to the lack of security mechanisms of hotspots. An adversary can launch an evil

twin AP attack using a laptop, a smartphone, or other Wi-Fi enabled devices by

exploiting the loopholes of Wi-Fi client software implementation: Existing built-

in Wi-Fi client implementation assumes that all the APs with the same SSID are

legitimate and automatically connects to the AP with the maximum Received Signal

Strength Indication (RSSI) value. As a result, if the RSSI of the evil twin AP is

higher than that of a legitimate AP, a client will associate with the evil twin AP. An

adversary can setup an evil twin AP with the same SSID in the following methods:

• She can configure the SSID of a mobile Wi-Fi AP with 3G/4G data connection,

e.g., a Linksys mobile router, to same one as the legitimate Wi-Fi hotspot.

• She can install an app [31] in her smartphone to impersonate the legitimate

Wi-Fi hotspot.

• She can use two Wi-Fi interfaces; one to connect to a legitimate Wi-Fi hotspot

and configure the other in ad hoc mode pretending to be the legitimate Wi-Fi

hotspot AP.

• She can install a software, e.g., Virtual Wi-Fi Router [117], to use a single Wi-Fi

interface to setup an evil twin AP as well as connect to the legitimate Wi-Fi

hotspot.

Much work is focused on detecting rogue AP2, however most solutions are de-

signed for infrastructure network rather than for client devices. For instance, sev-

eral mechanisms have been proposed to monitor packets at the network gateways

2Evil twin AP is one type of rogue AP. Additionally, rogue AP can be an unauthorized AP
connected to a network.
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or routers [122][16][107][121] or to install extra custom devices for monitoring the

network infrastructure, e.g., mobile agents [8], distributed radios [12], trusted wire-

less clients [19], etc. Those solutions are not applicable to Wi-Fi hotspots. A Wi-Fi

hotspot provides free Internet service to attract customers; it has little motivation to

guarantee no attack nor will setup additional devices or install detection software in

the router to detect an evil twin AP attack. Moreover, most hotspot providers free

themselves of any responsibilities from any damages due to security vulnerabilities of

their system through “Terms and Conditions”. Thus, it is the responsibility of the

Wi-Fi clients to look out for themselves and a client side scheme to detect evil twin

attack is necessary to ensure security of the Wi-Fi access. To the best of our knowl-

edge, existing client side mechanisms for detecting evil twin AP attacks requires to

install additional hardware in each hotspot [108] or needs prior training [45]. Thus,

we focus on designing a plug-and-play mechanism to detect evil twin AP attacks that

only requires to install software at the client device.

Designing a client side mechanism to detect evil twin AP attack is challenging

for several reasons. First, the client has limited resources. Neither he has access

nor prior information about the hotspot architecture. Second, hotspots use various

Wi-Fi setup and the mechanism must consider all of them. Third, adding custom

hardware, e.g., routers or servers, is not an option as it would limit the applicability

and universal acceptance. We overcome these challenges in our detection mechanism

which we call CETAD (Client end Evil Twin Access point Detector). We design CETAD

based on the following observation: when multiple APs are legally configured to form

a hotspot, besides the same SSID, they also share similar network parameters such

as ISP names, Global IP addresses, Round Trip Time (RTT), temporal network

behavior, etc. However, when an evil twin AP is present, discrepancies can be found

among the APs. Our detection mechanism explores such similarities and discrepancies

to verify that all available APs belong to the same group. In particular, we use three
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techniques in our detection mechanism: similarity of ISP information, difference in

RTT values, and standard deviation of RTT values. Using these techniques, we

can identify multiple groups of APs during an evil twin AP attack with one group

containing the legitimate AP(s) and the other group(s) containing evil twin AP(s);

we identify such scenario as an evil twin AP attack. Even though CETAD is designed

for a client device in a hotspot, it can be extended to to detect evil twin APs in an

infrastructure network as well.

The rest of the chapter is organized as follows. In Section 4.2 we give an overview

of the network architectures used in a Wi-Fi hotspot. We specify the threat model

in Section 4.3 and overview our solution in Section 4.4. Then we present CETAD in

Section 4.5 and implementation details, and results in Section 4.6. Finally, we discuss

related works in Section 4.7 and summarize the chapter in Section 4.8.

4.2 Background

We consider the scenarios of Wi-Fi hotspots because hotspots generally allow open

access and are vulnerable to evil twin AP attacks. Since our detection scheme lever-

ages network elements and characteristics, we give a brief overview of Wi-Fi hotspot

architecture in the following for better understanding of the scheme.

A Wireless Local Area Network (WLAN) is generally implemented using IEEE

802.11 standards [58], popularly known as Wi-Fi. IEEE 802.11 standards defines the

communication protocol between a client and an AP. To access Internet, a client first

associates with an AP by selecting the desired SSID. If multiple APs have the same

SSID, the client associates with the AP that has the highest RSSI. Once associated,

the client gets network parameters for the hotspot using Dynamic Host Configuration

Protocol (DHCP) [61](details to follow) and 3. then, can start surfing Internet.

3Most routers support built-in DHCP server capability by default.
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Figure 4.1 A simple WLAN network which is connected to Internet via an access
network with a single access point and a router.

The popularity of Wi-Fi has made it one of the must-have properties for laptops,

tablets, etc., for accessing Internet. A typical Wi-Fi network has four components:

an access network, a router, a Wi-Fi access point (AP), and one or more wireless

clients, as shown in Figure 4.1. An AP communicates with users in wireless channels

and is connected to the router via wires. Many times APs are mistakenly considered

as a router that connects an access network. In fact, an AP works in Open Systems

Interconnect (OSI) layer 1-2, and connects wireless clients to a Local Area Network

(LAN). Then, a router, a layer 3 device with Network Address Translation (NAT)

capability, serves multiple LAN clients and connects to a Internet Service Provider

(ISP) through one of the access networks. A wireless router has the functionalities

of both a router and an AP, e.g., Cisco Linksys E100 Wireless-N Router. In the

rest of the chapter, we use the terms AP and wireless router interchangeably. In the

following, we discuss different types of access networks, possible hotspot architecture,

and automatic network configuration in detail.

Type of Access Networks

A router can connect to an ISP through one of the following access networks:

i. Cable network. In this case, ISPs use cable television wired network to provide

Internet service to households, e.g., Time Warner Cable [134] in the US.

ii. 2G/3G/4G network. Mobile operators provide Internet service to mobile cus-

tomers using their own networks. This type of access network is completely
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wireless. All leading operators in the US, e.g., AT&T, Verizon [135], etc., offer

mobile Internet services to customers.

iii. Ethernet. Some ISPs also provide Internet service through high speed Ether-

net cable, e.g., Comcast [21]. Such services are generally available for business

customers.

iv. Digital Subscriber Line (DSL) network. In this case, ISPs use landline tele-

phone infrastructure to provide Internet service to users. For instance, AT&T [129]

offers DSL Internet service in the US.

v. Optical Fiber. In this case, ISPs set up or utilize custom optical fiber network

to provide ultra-fast Internet service to customers. Google Fiber [131] offers this

service in Kansas, USA.

Among these access networks, cable network has the largest market share in wireless

hotspots in the US. CableWiFi initiative4 has 165, 000 Wi-Fi hotspots in the US that

uses cable networks [70]. AT&T has more than 32, 000 Wi-Fi hotspots in the US

that mostly uses DSL and cable networks [9]. Regardless of which access network is

used, a wireless hotspot adopts one of two network architectures as discussed in the

following.

Hotspot Architecture

Single AP Architecture

In this setup, there is one AP that supports multiple wireless clients using a Wi-Fi

standard, e.g., 802.11b/g. The AP is connected to a modem or a router through a

Wide Area Network (WAN) interface. The modem/router is connected to the ISP

via one of the possible access networks. We show a single AP network in Figure 4.1.

4The partner companies are Cablevision Systems, Comcast, Time Warner Cable, Cox Commu-
nications and Bright House Networks.
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(a) multiple AP architecture

(b) multiple AP architecture with WDS

Figure 4.2 A simple WLAN network with multiple APs which is connected to
Internet via an access network.

Multiple AP Architecture

The range of a Wi-Fi network is limited. For instance, 802.11b has range of 120 ft

indoors and 300 ft outdoors [58]. As a result, multiple APs are required to cover a

large area. The APs form a set named Extended Service Set (ESS) and all the

APs in the ESS have the same SSID and similar configurations so that a user can

automatically switch to another AP with a higher RSSI value when he moves towards

the new AP. There are two possible architectures a WLAN with multiple APs can

use.

• In one architecture, the APs are not required to have routing capabilities, in-

stead they are connected to a router that is connected to the ISP via an access

network. In this architecture, the neighbouring APs are configured to use dif-

ferent channel frequencies to avoid packet collision and to increase network

throughput. A simple WLAN network for this architecture with two APs is

shown in Figure 4.2(a).
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• In an alternative architecture, the APs can be configured in wireless distribu-

tion system (WDS) [58] mode. In WDS mode, only one AP is connected to

the router and all the APs can communicate between themselves over wireless

channels. WDS APs are statically configured and use MAC layer for communi-

cation. WDS mode allows the users to roam from one AP to another without

terminating any ongoing sessions, i.e., supports wireless handover. In WDS, all

the APs use the same channel frequency so that they can communicate with

each other. A simple WDS network with two APs is shown in Figure 4.2(b).

We note that WDS architecture has not been standardized yet and most WDS

capable APs do not support inter-operability. Thus, in this work, we do not

consider multiple AP architecture with WDS mode.

A hotspot can implement either single or multiple AP architecture based on the

area it plans to cover. However, there is no way for a wireless client to determine

the architecture of a hotspot. Thus, evil twin AP attacks are possible in both single

AP and multiple APs architectures. For multiple AP architecture, most Wi-Fi client

software show only AP that has the highest RSSI value and allow the users to associate

with it without validation.

Automatic Network Configuration

When a Wi-Fi client associates with an AP, it requires to configure network interface

for using Internet and most WLANs have at least one DHCP server for automatic

network configuration. The DHCP protocol works as follows. Upon associating with

an AP, the client broadcasts a DHCP DISCOVER packet. In response, each DHCP server

in the WLAN sends a DHCP OFFER to the client. If there are multiple DHCP offers, the

client accepts one offer by broadcasting a DHCP ACK. A DHCP offer contains at least

5 fields: (a) Host IP address, (b) Subnet mask, (c) Router IP address, (d) Domain

Name System (DNS) [60] servers, and (e) Server identifier. The client uses these
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Figure 4.3 Mobi attack model where an adversary uses a Wi-Fi interface to create
an evil twin AP and connects to Internet through 3G/4G.

information to configure his W-Fi interface automatically. At this point, the client

can start surfing Internet.

In a WLAN with multiple APs, typically the router acts as a DHCP server so

that the local IP address of the user remains same when he moves from one AP to

another. However, each AP can act as a DHCP server instead of the router. In this

scenario, the client will loose active network connections while roaming because he

will receive different DHCP information from each AP.

4.3 Evil Twin AP Attacks

In a Wi-Fi network, the AP periodically broadcasts SSID, which allows a Wi-Fi client

to discover the existence of the AP and associate with it. In an evil twin AP attack,

the adversary sets up her AP using the SSID of the targeted Wi-Fi network. As a

result, a client receives SSID broadcast from both the legitimate AP and the evil

twin AP, but it cannot differentiate between these APs. The client simply assumes

that both the APs are legitimate and associates with the one that has a higher RSSI

value. For a successful attack, an adversary can increase the transmission power of

the evil twin AP, or set it closer to the client to ensure that the client gets a higher

RSSI value for the evil twin AP. There are several ways an adversary can launch an

evil twin AP attack as we discuss below.
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Figure 4.4 Multihop attack model where an adversary uses a laptop’s Wi-Fi
interface to create an evil twin AP and connects to Internet through the legitimate
AP.

Launching Evil Twin AP Attacks

Attacks using Mobile Internet Access

For this attack, the adversary uses mobile Internet, e.g., 2G/3G/4G, as the access

network for connecting to the Internet. We denote these attacks as Mobi Attacks and

depict this attack model in Figure 4.3. There are two types of devices an adversary

can use to launch Mobi attacks:

i. Hotspot Router. The adversary can use an off-the-shelf hotspot router to

create an evil twin AP, e.g., Linksys WRT54G-TM hotspot router. Such routers

require mobile Internet subscription for Internet connectivity. The adversary can

simply configure the SSID of the AP to the SSID of the Wi-Fi hotspot to launch

the attack.

ii. Smartphone. A smartphone can act as an AP and thus can allow Wi-Fi clients

to use mobile Internet service of the smartphone. Sharing mobile Internet con-

nection via Wi-Fi interface is also known as tethering [31]. The adversary can

configure a tethering app with the SSID of the hotspot and turn it on, e.g.,

Android Wi-Fi Tether app.
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Attacks utilizing the Victim AP’s Internet Access

This attack eliminates the requirement of a device with mobile Internet service. In

this attack, the adversary associates with a victim AP as a Wi-Fi client and shares

this Internet connection as an AP. We denote these attacks as Multihop Attacks,

as shown in Figure 4.4. An adversary can launch this attack using either one or two

Wi-Fi interfaces as we discuss in the following.

i. Single Wi-Fi Interface (Si-Fi Attack). The adversary can install a software

to use a laptop as an AP with victim hotspot’s SSID, e.g., Virtual Router [117].

This software creates two virtual Wi-Fi interfaces, one for associating with the

legitimate AP and the other for acting as an evil twin AP, using a single physical

interface. In this case, the evil twin AP must use the same wireless channel as

the legitimate AP.

ii. Dual Wi-Fi Interfaces (Du-Fi Attack). In this model, the adversary has two

Wi-Fi interfaces. For instance, she can use the built-in Wi-Fi interface and use an

additional USB Wi-Fi interface. The adversary can configure one Wi-Fi interface

in ad hoc mode using the SSID of the Wi-Fi hotspot. In the ad hoc mode, the

device can communicate with other Wi-Fi devices directly and thus pose as an

evil twin AP. The adversary can use the other Wi-Fi interface to associate with

the legitimate AP and share its Internet connection. In this case, the evil twin

AP can use any wireless channel.

The Consequence of Evil Twin AP Attacks

An evil twin AP attack can be used to for stealing sensitive data from a user, or

for identity theft, etc. For instance, session hijacking can be used to hack an email

account, facebook account, etc [125]. This attack is feasible because most users enable

automatic login to their online accounts to avoid repeated password entry, e.g., email
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accounts. In such a configuration, a session key is saved both on the client side and

server side for each account. To steal the session key, the adversary simply injects

<img> element in the HTTP response message for a user. For instance, let the victim

has automatic login setup for mail.yahoo.com and he is associated with an evil twin

AP. When the victim visits a webpage, e.g., www.bing.com, the adversary will inject

a <img src=“http://mail.yahoo.com”> element in the HTTP response message.

As a result, the victim’s browser will transmit yahoo cookies. Thus, the adversary

will be able to sniff the cookies and use these to log in to victim’s mail.yahoo.com

account. MITM attacks are possible even when the victim uses Wi-Fi Protected

Access (WPA) [82]. For instance, the adversary can be an insider and have the WPA

key, e.g., hotel customer.

Threat Model

It is easy for an adversary to create an evil twin AP in a Wi-Fi hotspot using a Wi-

Fi-enabled device, e.g., laptop, smartphone, etc. The adversary may have her own

access network, e.g., mobile Internet, for Internet connectivity or she may connect

her device to a legitimate AP for accessing the Internet. We envision that the evil

twin AP may have the following capabilities to avoid detection: it can (a) control

the timing for sending out a packet from the client, (b) reply the client with locally

generated spoofed packet, (c) modify packet content while forwarding a packet to the

client, or (d) use Virtual Private Network (VPN) for tunneling. Irrespective of the

above capabilities, the adversary should forward the packets from an associated client

for successful attacks. We assume that hotspot providers are trustworthy as they are

bounded by several laws [81] and do not collude with the adversary in any way.
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4.4 CETAD Overview

The focus of our mechanism is on detecting evil twin AP attacks in wireless hotspots

from a client end without any infrastructure support, i.e, the client should be able

to use our mechanism to detect an evil twin AP in a known environment as well as

in an environment without any prior knowledge. In this section, we identify design

requirements, specify the assumptions, give an overview of CETAD, and discuss our

observations from several hotspots.

Design Requirements

A client-side mechanism for detecting evil twin AP attacks must fulfil the following

requirements.

1. The mechanism must not require any administrative access to the hotspot

routers or APs. The client may have such administrative control in a con-

trolled environment, e.g., home network, but he is unlikely to have such control

in a hotspot.

2. It must be able to verify an AP in a hotspot and thus cannot assume any custom

infrastructure support, e.g., other wireless devices or wireless sensors. Designing

a solution with infrastructure support would require hotspot owners to modify

hotspots, which is unlikely to happen because hotspots are free services for

attracting customers.

3. It must not use any sensors or interfaces available in smartphones so that it can

be integrated in any type of Wi-Fi enabled devices. Using a resource that is

not universal to all Wi-Fi devices will limit it’s use.

4. It must be automated with minimal intervention from users to ensure usability.
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Assumptions

We assume the following while designing CETAD.

• The wireless hotspot supports a DHCP server which dynamically assigns net-

work parameters to the clients, e.g., IP address, DNS address, etc. The DHCP

server eliminates manual network configuration for Internet access.

• The wireless hotspot does not use WDS architecture.

• The built-in Wi-Fi application associates with the AP that has the strongest

RSSI signal.

• The adversary can associate with a legitimate AP similar to a client, but cannot

gain administrative access to the infrastructure of the hotspot.

• The hotspot uses one ISP for Internet connectivity.

• A wireless client does not have any prior knowledge about the hotspot.

CETAD Framework Overview

CETAD is designed based on the idea that the ISP information, public IP address of

the routers, RTT values of packets travelling through two legitimate APs are similar,

but these are different for a legitimate AP and an evil twin AP. This holds for the

following cases:

i. No Attack. All the legitimate APs will have same ISP and IP address because an

organization generally purchase Internet service from one local ISP. Additionally,

since the APs will share the same access network, they will have similar RTT

values.

ii. Mobi Attacks. Since an adversary uses her own access network for these attacks,

the global IP address, and ISP of the legitimate AP and the evil twin AP will be
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different. Additionally, since the access networks of the legitimate AP and the

evil twin AP are different, the RTT values are likely to be different as well.

iii. Multihop Attacks. In these attacks, an adversary utilizes the access network of the

wireless hotspot; thus the ISP information will not reveal the attack. However,

there will still be dissimilarity between a legitimate AP and an evil twin AP in

RTT values as the evil twin AP will use a legitimate AP as the next hop.

While the idea is simple, there are several challenges to be addressed: In what

degree the IP address and ISP information differ among APs? Can we measure RTT

without custom server? How effectively can RTT be used for detecting an attack?

Can an adversary manipulate packets to avoid detection? We address these challenges

in CETAD and answer the questions in Section 4.4.

As outlined in Algorithm 5, CETAD works in two phases: In (a) secure data

collection phase, data for all possible APs in the hotspot are collected, and in

(b) detection phase, detection techniques are applied on all the AP data for an evil

twin AP attack detection.

Algorithm 5 Evil Twin Attack AP Detection
Require: INPUT:

δ : rssi_threshold

PROCEDURES:
/* data collection phase */

1: ap.list = Scan()
2: for each a in ap.list do
3: if a.rssi ≥ δ then
4: data[a] = CollectData(a)
5: end if
6: end for

/* detection phase */
7: detect = DetectEvilTwinAP (data)
8: return detect
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Secure Data Collection Phase

In this phase, CETAD communicates with public servers leveraging widely used Hy-

pertext Transfer Protocol Secure (HTTPS) protocol (details in Section 4.5). First it

scans the wireless hotspot to detect available APs with the desired SSID. From the

AP list, it eliminates APs with low RSSI value by applying a threshold δ. Then, for

each of the available APs with RSSI value greater than δ, the mechanism collects

data in the following 3 steps.

• Step 0: It associates with an AP and collects DHCP information for the Wi-Fi

network. This is the first step because for collecting ISP and RTT data, the

client must connect to Internet by associating with an AP.

• Step 1: It collects ISP information of the AP by contacting a public server.

This information is used in ISP-based scheme to find correlation in ISP infor-

mation of the APs.

• Step 2: It collects multiple RTT values by creating an HTTPS connection to

a public server. The RTT values are used in the timing-based scheme.

Detection Phase

CETAD detects evil twin AP attacks by classifying multiple APs in a hotspot. After

the data collection phase completes, CETAD uses a multi-level approach to classify

the APs based on data of all APs. First, it applies ISP-based scheme which utilizes

ISP data to identify whether two APs are using the same ISP for Internet access and

this scheme is enough to detect Mobi attacks (Section 4.3). In the next level, CETAD

uses a timing-based scheme utilizing the RTT values to detect Si-Fi attacks and Du-Fi

attacks (Section 4.3). We discuss the details of ISP-based and timing-based detection

schemes in Section 4.5.
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Figure 4.5 Experimental setup for data connection.

Observations

To address the design challenges, we studied 30 hotspots which includes Mcdonalds,

Wendys, Starbucks, university, airport, etc. For each hotspot we collected the ISP

information, e.g., public IP address, zip code, ISP name, etc., and timing data by

setting up an HTTPS [111] connection to public servers (Section 4.5). Use of public

server allows our design to be independent of any custom server. Since it is hard

to measure packet level RTT using public server, we redefine RTT as the time to

setup an HTTPS connection to a public server and denote it as τ . We show the

experimental setup for data collection shown in Figure 4.5. To understand attack

scenarios, we set up Si-Fi attacks and Du-Fi attacks, as discussed in Section 4.3, for

data collection. We collected data from several locations in the USA and in China.

We ran the experiments on both weekdays and weekends, and collected approximately

2000 hours of data. In total we collected more than 5, 000, 000 instances of data for

the five types of access network. We summarize our observations in the following.

Network Analysis

Based on the data of all hotspots we observe the following.

• Most of the hotspots have two or more APs.

• Each hotspot is connected to one ISP and supports DHCP.

• None of the hotspots utilizes a WDS architecture or uses mobile Internet (3G/4G).
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Figure 4.6 Timing analysis: (a) shows average τ values for different types of
access network, and (b) shows average τ values for different hotspots where all
hotspots were using DSL as the access network.

• All the APs in a hotspot use similar configurations, e.g., shared SSID, global

IP address, DNS, etc., which is a standard practice to ensure efficient ser-

vice [58][68], i.e., to allow users to associate with another AP smoothly when

he changes his location.

• The ISP information of a legitimate AP, and an evil twin AP is different.

• The built-in Wi-Fi drivers of all our devices associate with the AP that has the

highest RSSI value.

These observations validate our assumptions and indicate that ISP information

can be useful for attack detection.

Timing Analysis

In this section, we discuss our findings from the timing values (τ) we collected from

several hotspots.

Comparison among different access networks and hotspots. Here, we

compare the τ values based on the type of access networks and location of hotspots

for the same type of access network. From the timing data, we observe that the

average value of τ varies for different access networks but cannot be used to identify or
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Figure 4.7 Timing data analysis of 2 legitimate APs in 2 different hotspots:
hotspot 1 uses Ethernet and hotspot 2 uses DSL as access network. Each hotspot
consists of 2 APs.

differentiate an access network. Figure 4.6(a) depicts the average values and standard

deviation of τ for five different access networks. According to our experiments, the

average τ is the lowest (68.3 ms) for a high speed Ethernet network, and highest (1.57

seconds) for 2G network. The average values of τ for DSL and Cable networks are

similar, approximately 300 ms. This rules out the option that one can use τ values

to identify the type of an access network.

Interestingly, we also observe that for the same type of access network, e.g., DSL,

the average values of τ are similar even though the network locations were different.

In Figure 4.6(b), we show average values of τ for three different hotspots all of which

were using DSL as the access network. As we can see, the average value of τ for

all the three hotspots are approximately 300 ms. However, this does not help us in

detecting evil twin AP attacks.
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Figure 4.8 Timing data analysis for Si-Fi and Du-Fi attack scenarios where the
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Figure 4.9 Histogram analysis of τ value for no attack and Si-Fi attack scenarios
where the hotspot uses Ethernet as access network.

Comparison among different APs in the same hotspot. We depict τ values

for two different hotspots in Figure 4.7(a)-(b), where one hotspot uses Ethernet and

the other uses DSL as the access network. As we can see, the average of τ for one-

minute period is approximately 70 ms for Ethernet and 300 ms for DSL network. In

no attack scenarios, τ values vary over time due to network load, number of users,

etc., but the variance is small within a short time interval. Additionally, τ values for

different APs in the same hotspot are similar and the mean values are close. As we

see in Figure 4.9(a), τ values for both the legitimate APs are centered around 70ms

mark. Even though there are some random spikes in τ values, majority of the values

can be grouped within a range using mean (m) and standard deviation (σ) of the

120



values. For instance, in all cases, more than 98% of the values are within a range of

m ± 2 ∗ σ. We depict the percentage of τ values within range for different ranges in

Figure 4.7(c)-(d).

On the other hand, in Si-Fi and Du-Fi attack scenarios, the τ values through an

evil twin AP varies widely compared to a legitimate AP, as depicted in Figure 4.8.

Additionally, the mean of τ is much larger for an evil twin AP than for a legitimate

AP for both attack scenarios. The histogram in Figure 4.9(b) shows that τ values

are distributed over a long range with high variance for an evil twin AP in Si-Fi

attack scenario. We observe similar distribution in Du-Fi attack scenario as well.

Several factors may cause such high variance of τ values in the attack scenarios.

In Si-Fi attacks, there are additional software processing delay. Additionally, since

two virtual interfaces use the only physical interface and single wireless channel for

communication, there could be additional delay due to added collisions in the Medium

Access Control (MAC) [58] layer. In Du-Fi attacks, the increase in delay could be

caused by packet forwarding delay from one interface to another.

Summary

Our network analysis shows that ISP data are similar for different legitimates APs

in the same hotspot. From our timing analysis, we find that timing values vary

for different types of access networks, different time of a day, different locations,

etc. However, for the same AP in a hotspot, the timing values does not vary much

within a short interval. Our analysis on τ values for different APs in the same

hotspot suggests that it is feasible to use τ values effectively for detecting evil twin

AP attacks. In Section 4.5, we discuss the design methodology of CETAD based on

these observations.
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Figure 4.10 Simplified HTTPS connection setup protocol between the client and
the server. τ is the HTTPS connection setup time between the client and the server.

4.5 CETAD Description

In this section, we discuss secure data collection phase, and detection phase of

CETAD and perform security analysis.

Secure Data Collection

After associating with an AP in a hotspot, CETAD leverages public HTTPS servers

to find ISP information of the AP and to measure τ . HTTPS allows us to ensure

the integrity of the packets sent and received by CETAD, since an evil twin AP can

try to change or manipulate the content of the packets to avoid detection when a

packet goes through it. In the following, we first give an overview of HTTPS and

then discuss data collection steps.

HTTPS

HTTPS is a secure communication protocol which is designed by adding the security

capabilities of SSL/TLS5 protocol [111] over HTTP. HTTPS is an application layer

protocol and uses public key infrastructure (PKI) to exchange short term session keys

5Secured Socket Layer (SSL)/Transport Layer Security (TLS)
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between the client and the server. Session keys are used to encrypt the data packets

that are transmitted over HTTP. A simplified HTTPS connection setup process is

depicted in Figure 4.10. First, the client sends a Hello message to the server and the

server replies with a Hello message. Then the client and the server exchange their

public keys upon validation, and agree on cipher suites to use for communication. In

these steps, the server creates a unique hash and encrypts it using both the client’s

public key and its private key, and sends this back to the client. This ensures that

only the client is able to read the hashed data. At this point, the connection setup is

complete, and the client and the server can securely exchange information.

Collecting Data

ISP information for an IP address is publicly available through several HTTPS servers

and CETAD uses HTTPS GET to collect the data for the AP. To calculate τ , CETAD

measures the difference between initiating an HTTPS connection and establishing the

connection. In particular, CETAD measure the difference between the moments when

the Client HELLO is sent and the one when HTTP RESPONSE is received. We choose

this difference as τ because it ensures that secure connection is established properly.

Additionally, this will also simplify implementation process as most HTTPS library

APIs hide the key negotiation from the user. CETAD records n values of τ for each

AP to improve detection accuracy (Section 4.5).

Algorithm 6 Function: DetectEvilTwinAP()
Require: INPUT: data : isp_data, timing_data

PROCEDURES:
1: n = 0
2: n = ISP_Detection(data)
3: if n == 1 then

4: n = Timing_Detection(data)
5: end if

6: if n > 1 then

7: return true
8: end if

9: return false

123



Detection Phase

As we show in Algorithm 6, our detection mechanism works in two phases; when ISP-

based detection scheme does not detect an attack, timing-based detection schemes

kicks in. We discuss these schemes in the following.

ISP-based Detection.

A wireless hotspot is generally a small local network of a few computers. In order to

provide Internet service, each network must have a gateway with a global IP address.

Each ISP gets a block of IP addresses and provides at least one unique global IP

address to the customers upon subscription. Internet Assigned Numbers Authority

(IANA) [132] is the authority to manage global IP addresses all over the world. The

information related to each global IP address is public, e.g., the name of the organiza-

tion it is assigned to, assignment date, location, etc. These information are publicly

available in various website, e.g., www.arin.net, www.ip2location.com. CETAD

sends an HTTP GET request to such a server and from the HTTP REPLY packet,

it gets several information including the source IP address of that AP’s network, ISP

information of the source IP address, location, etc. We show some public information

obtained by this method for two random IP addresses in Table 4.1.

In wireless hotspots, the legitimate APs are connected to the same router sharing

the same global IP address or at least the same ISP. CETAD uses these public IP

Table 4.1 Sample public information for two random global IP addresses.

Info 208.54.44.158 171.65.95.202
Location Doraville, GA Palo Alto, CA
ZIP Code 30340 94301
Net Speed DSL COMP
Usage Type MOB EDU
Domain t-mobile.com stanford.edu
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Figure 4.11 Example of clustering scheme where MSC algorithm returns two
clusters in a Si-Fi attack scenario.

information to differentiate between APs, i.e., to detect whether two APs use the

same IP address block from a ISP. Using this scheme, CETAD can easily detect an

evil twin AP attack when the adversary launches a Mobi attack. CETAD matches

one or more information from Table 4.1 to classify the APs and thus detects an evil

twin AP attack.

Timing-based Detection.

In this section, we discuss how we can use τ values for evil twin AP attack detection.

As we discussed in Section 4.4, in non attack scenarios, the values of τ for the same

hotspot are similar within a short interval. On the other hand, when an evil twin

attack is launched utilizing the victim’s Internet (Section 4.3), τ varies significantly.

We utilize the temporal values of τ to detect an evil twin attack in two ways: one is by

using unsupervised clustering to cluster data in more than one group, and the other

is by investigating the standard deviation of the data. We discuss these approaches

in the following.

Unsupervized Clustering. In this scheme, we try to cluster APs in a hotspot

based on the similarity in the τ values. Since the τ values can vary significantly

based on time, hotspot location, network load, etc., a naive threshold-based approach

would be ineffective. So, we employ unsupervised clustering algorithm for effective

detection of evil twin AP attacks. In particular, we use Mean Shift Clustering (MSC)

algorithm [28] for clustering the APs which does not require any prior training. We
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Figure 4.12 CDF of attack detection rate when clustering technique is used.

observed some random spikes in τ values (Figure 4.7) for different hotspot. Since

such noisy data can affect the clustering algorithm, in our scheme, we first remove

noisy τ values for each AP by applying a filter of m ± k ∗ σ, where m is the mean,

and σ is the standard deviation of τ and k is a tunable factor. After removing noisy

data, we supply AP list with corresponding τ values as input to MSC which returns

one or more clusters with similar APs grouped together in the same cluster. When

the clustering algorithm returned more than one clusters, we identify the scenario as

an evil twin AP attack. Thus, MSC returns one cluster in no attack scenarios and

two, or more clusters in attack scenarios. We show an example output of clustering

scheme for a Si-Fi attack scenario in Figure 4.11.

To analyze the algorithm, first we created a dataset by randomly selecting n = 10

values of τ from each of the legitimate APs, and evil twin APs for the same time

period. Then, we ran the MSC algorithm to generate clusters. When the clustering

algorithm returned more than one clusters, we identified the scenario as an evil twin

AP attack. We ran the experiment 1000 times, and calculated the accuracy of our

algorithm in detecting the attack. We depict the Cumulative Distribution Function

(CDF) of the detection accuracy in Figure 4.12. As we can see, in the case Si-Fi

attack, this technique can achieve 95% detection rate with the lowest detection rate

of 87%. On the other hand, for Du-Fi attack, the detection rate is 99.5% on average

with the lowest detection rate of 99%.
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Figure 4.13 A comparison of average accuracy of unsupervised clustering as the
number of instance for each cluster grows: (a) shows the attack scenario where the
accuracy reached 95% for Si-Fi attack when n = 10 and 100% for Du-Fi attack
when n = 7; (b) shows no attack scenarios where each dataset only contains
instances from one class and in this case accuracy reached 100% when n = 10.

To find the optimum value for n, we ran another set of experiment by varying the

values of n. As depicted in Figure 4.13(a), the clustering accuracy was 77.5% for the

Si-Fi attack when n = 1. The accuracy gradually increased as the value of n increased

and it achieved the maximum of 95% accuracy when n = 10. For Du-Fi attack, the

accuracy was 96% for n = 1 and the maximum accuracy of 100% was reached with

n = 7. The result indicates that 10 instances are necessary to achieve good result.

To simulate a regular scenario (no attack), we generated dataset with instances of

the legitimate APs only and ran the clustering algorithm. In this case, the algorithm

should return only one cluster as there is no attack and the dataset only contains

legitimate APs. We ran the experiment for different values of n in this scenario as

well. We depict the clustering accuracy for each access network type as the number

of instance in the dataset increases in Figure 4.13(b). Except for 2G network, we

find that we can achieve a 100% clustering accuracy when we have 10 instances in

the dataset. For Ethernet, Cable and 4G network, 100% can be achieved with using

4 instances. Even though the accuracy for 2G network is not good (approximately

65%), it is highly unlikely that a wireless hotspot will use 2G network as an access

network and we did not find any hotspot with 2G access network.
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Figure 4.14 Comparison of standard deviation in HTTPS connection setup time
between an evil twin AP and a legitimate AP where the evil twin AP utilizes a
legitimate AP as it’s next hop; (a) shows Si-Fi attack scenario and (b) shows Du-Fi
attack scenario.

Standard Deviation Analysis. In Section 4.4, we observed that τ values vary

significantly in attack scenarios. This indicates that the standard deviation of τ

would be larger for an evil twin AP compared to a legitimate AP. On the other

hand, the standard deviation would be similar for two legitimate APs in the same

hotspot. We depict the standard deviation of τ for every 10 sec interval in Figure 4.14,

where (a) shows the standard deviation for Si-Fi attack, and (b) for Du-Fi attack.

As we can see, the standard deviation of τ fluctuates a lot in the attack scenarios

compared to regular (no attack) scenarios. Based on this observation, we devised a

detection technique where we compare the standard deviation of τ for different APs.

In this scheme, we use a threshold γ to detect attack. We calculate the difference

of standard deviation between a pair of APs in a hotspot; if difference of standard

deviation exceeds the threshold γ, then we identify the case as an attack scenario.

Using the same dataset used in the clustering technique, we analyzed the effec-

tiveness of this technique. We depict the CDF of detection rate for this technique in

Figure 4.15. As we can see, this technique achieved the maximum of 95.5% detection

rate for Si-Fi attack scenario and average detection rate was 91.7%. However, for the

Du-Fi attack scenario, this technique did not perform well; it achieved approximately
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Figure 4.15 CDF of attack detection rate when standard deviation technique is
used as the detection technique.

70% detection rate on average. The performance is not good for the Du-Fi attack

scenario compared to Si-Fi attack scenario because the standard deviation of τ for

Du-Fi attack scenario does not vary much compared to the Si-Fi attack scenario.

Combined Detection Technique. Both the clustering technique and standard

deviation technique performed relatively well. However, since the techniques are

independent of each other, we wanted to see how they perform in combination. In

the combined technique, CETAD detects an attack when either the clustering or

standard deviation technique detects an attack. To analyze the performance, we

created dataset containing data for regular scenario, Si-Fi attack scenario, and Du-

Fi attack scenario. Then we applied the three techniques, i.e., clustering, standard

deviation, and combined, on the same dataset. We depict the accuracy, precision,

and recall of these techniques in Figure 4.16. As we can see, the accuracy, precision

and recall increased when both the clustering and standard deviation are combined.

Consequently, we use both these techniques in our timing-based detection algorithm.

The experimental results show that the timing-based scheme is very effective in

detecting an evil twin AP attack that utilizes a legitimate AP’s Internet. This is

because CETAD captures temporal network behavior in the dataset because it collects

data for all APs within a short period of time. Even though τ may vary at different

time of day or at different locations, CETAD automatically adapts to that.
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Figure 4.16 Performance of clustering and standard deviation techniques when
used independently and in combination. Here, the dataset contains τ values
collected in the lab environment.

Security Analysis

The security of CETAD depends on secure data collection and the combination of

the three techniques it uses in two phases, i.e., ISP data comparison, unsupervized

clustering technique, and standard deviation analysis. The use of HTTPS in the

data collection phase ensures that an adversary cannot change source IP address or

packet contents, generate a fake message, or shorten τ values to avoid detection. The

adversary can at most buffer a packet which will increase τ , but cannot reduce it any

way. Thus, adversary cannot evade CETAD by falsifying data. In the following, we

analyze security for detection phase for three scenarios.

No Attack

The ISP-based scheme correctly detects no attack scenarios because the ISP informa-

tion of multiple APs are similar. The timing-based techniques also detect this case

correctly due to the similarity in τ values of the legitimate APs. However, there could

be false detection in the case when the τ values vary abruptly for two legitimate APs.
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Mobi Attacks

The ISP-based technique ensures that the adversary will not be able to use his own

access network to setup an evil twin AP attack. This also eliminates the possibility

that the adversary can use an access network with faster τ compared to the hotspot

and thus control the τ values to evade the timing-based technique.

Multihop Attacks

In multihop attacks, the adversary sets up Si-Fi attacks or Du-Fi attacks. Since both

these attacks use a legitimate AP as the next hop, intuitively she cannot control the

value τ to be similar to that of a legitimate AP. On top of the delay from a legitimate

AP, the τ value will also depend on the processing delay of software or hardware,

Wi-Fi MAC layer collisions, access control, etc. Thus, the adversary cannot control

the value of τ at the client for evading timing-based techniques of CETAD.

4.6 Implementation and Results

In this section, we discuss implementation details of CETAD and present experimen-

tal results from several hotspots.

Implementation

We implemented CETAD as an app for Android based phones as a case study, however

it can be implemented for other Wi-Fi devices as well. The app first scans and shows

a list of available unique SSIDs. When the user chooses one of the SSIDs from

the list, the app creates an AP list with the selected SSID and removes the APs

with signal strength below threshold δ, where we used δ = −75dBm. Then for

each AP in the list, the app first collects ISP data by using HTTP GET connection

to www.ip2location.com, and then it collects n instances of τ values by opening an
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(a) Home Screen (b) Regular Scenario (c) Attack Scenario

Figure 4.17 Screenshots of CETAD app in regular and attack scenarios.

HTTPS connection to a public HTTPS server, e.g., www.google.com. We used n = 10

in our implementation based on our analysis (Section 4.5). Note that some hotspots

require users to submit a web form by agreeing to their terms and conditions. To

automate this step, we use automatic HTML form submission technique. However,

this technique might fail if the form has protection against automatic submission,

e.g., captcha.

After collecting ISP and timing data for all the APs in the list, the app first

uses ISP-based detection technique. If ISP-based detection technique cannot detect

an attack, then timing-based detection technique is used, which first filters the data

using a range of m ± k ∗ σ (Section 4.5). We use k = 2 in our implementation. Then,

it uses mean shift clustering algorithm to cluster the τ values for different APs. Apart

from the dataset, MSC algorithm requires only one input parameter, window size, h.

We used h = 30ms in our implementation. Our algorithm detects an attack when the

number of clusters in the input is more than one. Then the mechanism calculates the

standard deviation of τ values and applies a threshold value γ to detect an attack.

We used γ = 30ms in our implementation. When either of the above techniques
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detects an attack, the app identifies such a scenario as an evil twin AP attack and

notifies the user. We depict the screenshots of our app in Figure 4.17.

Experimental Results

To measure the effectiveness of our mechanism, we launched two types of evil twin

AP attack in several hotspots6:

i. Mobi attacks: We used a Google Nexus 4 Android phone with 3G data sub-

scription to launch smartphone-based attacks with our own access network, as

we discussed in Section 4.3. We used android-wifi-tether to setup the evil

twin AP for our attack.

ii. Multihop attacks: We used a laptop with Windows-7 operating system to

launch a Si-Fi attack. We used Virtual Router version 1.0 for this attack.

To launch a Du-Fi attack, we used an additional USB Wi-Fi interface and a

laptop with Windows-7 operating system. We used Medialink Wireless-N USB

adapter for our attack.

In each hotspot, we ran CETAD 10 times for each type of the attacks. The

hotspot providers include McDonalds, Starbucks, Wendys, University, etc. For the

performance analysis, we use the following standard metrics: (a) Accuracy indicates

how accurately CETAD detects evil twin AP attacks, (b) Precision is the fraction

of positively detected attacks to all positively detected attacks (correctly or incor-

rectly), and (c) Recall is the fraction of positively detected attacks to all attacks that

should be positively detected. We use True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN) to calculate these metrics. Here TP and TN

6Disclaimer: Several unknown Wi-Fi clients were associated with our evil twin AP during the
attack, but we did not record any kind of data from these clients during the attacks.
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Figure 4.18 Performance of CETAD for three different types of evil twin AP
attacks in several Wi-Fi hotspots in different locations. The hotspots include
McDonalds, Starbucks, Wendys, University, etc.

represent correct classification, and FP and FN represents incorrect classification.

The equations for calculating these metrics are as follows.

accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)

Performance

Our experimental results show that CETAD is highly effective in detecting evil twin

AP attacks in wireless hotspots as discussed below.

Mobi attacks. CETAD detected Mobi attacks in all cases, i.e., with 100%

accuracy, precision, and recall. For this type of attack, our ISP-based scheme was

enough to identify the attacks as the ISP information of a legitimate AP, and an

evil twin AP were different. For instance, in all cases they had different public IP

addresses, zip codes, and usage types. (Table 4.1).

Multihop attacks. For Si-Fi and Du-Fi attacks, our timing-based scheme was

useful because ISP-based scheme cannot detect such attacks as a legitimate AP is

used as a gateway by the evil twin AP in these attacks. We depict the performance
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Figure 4.19 Overhead of CETAD in different types of wireless hotspots. With one
AP, our mechanism returns after DHCP discover which indicates that DHCP
requires approximately 2 sec for each AP.

of CETAD in detecting Si-Fi attacks and Du-Fi attacks in Figure 4.18 which shows

that the accuracy, precision, and recall of our timing-based scheme for Si-Fi attack is

98.33%, 97.22%, and 100.0% respectively; and for Du-Fi attack, it achieved 91.67%,

90.15%, and 95.0% accuracy, precision, and recall respectively.

In summary, CETAD can effectively detect different types of evil twin AP attacks

in wireless hotspots.

Delay Overhead

Admittedly, our mechanism comes with some delay overhead, since the client appli-

cation needs to associate with the candidate APs and collect ISP data, and n values

of τ . Then after the attack detection phase, we allow the user to associate with a

legitimate AP. All these steps incur delay overhead. To analyze the delay overhead,

we measure the time difference between the time when the user starts verification and

the time when the application shows notification to the user. We depict the delay

overhead in Figure 4.19. When there is only one AP in the AP list, our mechanism

does not use the detection scheme because it requires at least 2 APs for detection. In

this case, the mechanism returns after DHCP operation is completed. As we can see,
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the DHCP configuration takes approximately 2 seconds for each AP. As the number of

APs increase, the delay overhead increases monotonically. This delay mainly consists

of the DHCP delay and delay for collecting n values τ , where n = 10. For the three

AP scenario, the detection mechanism was complete within 9.2 seconds for Ethernet

network and it took approximately 16.4 seconds for DSL network. Despite the small

delay overhead, our mechanism is able to detect evil twin AP attacks effectively.

4.7 Related Works

In this section, we discuss rogue AP detection schemes in general rather than limiting

to evil twin AP detection only. The current rogue AP detection schemes can be

classified into two categories; (i) Solution for infrastructure networks, e.g., corporate

networks, school , and (ii) Solution for client devices.

Solutions for Infrastructure Networks

The goal of these solutions is to help the network administrators to detect a rogue

AP and possibly locate it. These can be divided into two categories:

Hybrid Approach

Branch et al. [19] designed a Distributed Wireless Security Auditor (DWSA) to pro-

vide continuous wireless network assessments. The proposed system uses available,

trusted wireless clients as distributed anomaly sensors throughout a company’s net-

work infrastructure to collect periodic activity report on AP. A back-end server de-

tects rogue and misconfigured APs and subsequently locates them via 3D trilatera-

tion. The back-end server utilizes a list of authorized access points to determine rogue

AP. Athawale et al. [8] proposed a solution that uses mobile agents to quickly scan

all possible rogue APs, without generating additional network loads on the network,

hence reducing scan and reporting time. Bahl et al. [12] proposed Dense Array of
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Inexpensive Radios (DAIR), a framework for detecting rogue APs attached to cor-

porate networks. DAIR can be built using commodity USB-based wireless adapters

connected to PC. In this framework, wireless and wired data are collected and saved

in a database. The inference engine of the framework compares the data with known

AP list and thus detects rogue AP. Ma et al. [77] proposed a system where wire-

less data is collected in promiscuous mode and passed to rogue AP detection engine,

which uses AP probing, and OS fingerprint to detect rogue AP.

Wired Approach

This type of approaches monitor wired traffic at the gateway and determine whether

the client uses a wired or wireless connection. Wei et al. [123] detects rogue AP by

analyzing packet header at the routers. They proposed two algorithms that uses TCP

ACK-pair technique [122] to differentiate wired and wireless LAN TCP traffic, and

exploit the fundamental properties of the 802.11 CSMA/CA MAC protocol as well

as the half duplex nature of wireless channels. Beyah et al. [16] proposed the use of

temporal traffic characteristics to detect rogue APs at a central location (a switch).

The hypothesis used in the proposed solution is that a wireless link in a network path

of multiple links would cause a more random and temporally different spreading of

packets, as compared to a path that has only wired links. Watkins et al. [121] proposed

a similar approach where they used round trip time (RTT) to distinguish between

wired and wireless nodes. This information coupled with a standard wireless AP

authorization policy allows the differentiation between wired nodes, authorized APs,

and rogue APs. Shetty et al. [107] identifies unauthorized WLAN hosts connected to

rogue access points by analyzing traffic characteristics at the edge (router or gateway)

of a network. The scheme is based on the frequency of access of a particular port

and the increase in cross-port communication. It analyzes the traffic to compute the

frequency of straight-access (AP accesses the port it is physically connected to) and
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crossing-access (AP accesses the port it is not physically connected to) attempts. A

rogue AP is detected when the frequency values of these access attempts exceeds a

threshold.

Summary

Both the above approaches require administrative access to the network switch or

routers. Additionally, the hybrid approaches require to install additional devices.

Hotspot providers are unlikely to utilize these solutions as there is no incentive for

them. CETAD does not fall into the infrastructure category because we aim at

detecting attack from a client device. However, we can extend CETAD as infrastruc-

ture solution as well by deploying client devices with CETAD installed to notify the

administrators.

Solutions for Client Devices

Gonzales at el. [45] proposed a scheme that first trains a model in a hotspot by

creating an AP map based on the user location. Subsequently, the trained model

is used to detect evil twin AP by detecting change in the AP map. This scheme

cannot detect an evil twin attack if it is ongoing during the training. Moreover, it is

dependent on user’s location and cannot be used in a new hotspot without training.

In comparison, CETAD can be used in any hotspot immediately without any training.

Song et al. [108] proposed two algorithms to detect rogue AP at the client. The

solutions are based on server Inter-packet Arrival Time (IAT) which is the time in-

terval between two consecutive data packets sent from the server to the client. The

solutions requires to setup a server within the LAN with their software installed to

measure server IAT. Based on the server IAT, the paper proposes a Trained Mean

Matching Algorithm (TMM) and a Hop Differentiating Technique (HDT) for detect-

ing an evil twin AP. Our work solves a similar problem, but we do not have the
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rigid requirement of having a custom server in the LAN, rather we leverage public

web server in our mechanism. Additionally, the proposed work cannot detect an evil

twin when an adversary uses Mobi attack, whereas CETAD can detect evil twin AP

attacks in various threat models with high accuracy.

4.8 Summary

Wi-Fi clients using wireless hotspots are vulnerable to evil twin AP attacks and are

in the danger of loosing sensitive information to adversaries. To the best of our

knowledge, no mechanism is currently available that can detect evil twin AP attacks

without prior training or installing additional hardware. In this chapter, we proposed

CETAD, an end-to-end mechanism that can detect evil twin AP attacks in wireless

hotspots and does not require to install any hardware or software in the hotspot

infrastructure. We implemented CETAD as an app for Android-based phones as a

case study and showed that it can be used effectively in wireless hotspots to detect

evil twin AP attacks.
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Chapter 5

Concluding Remarks

In this dissertation, we applied end-to-end principle to solve three different problems

in wireless networks. First, we used it as a metric to maximize the availability of

paths in multipath selection. We show that end-to-end availability can perform bet-

ter in selecting fault-independent paths instead of node disjoint or link disjoint paths

and thus improve network reliability. Then, we applied end-to-end principle to detect

caller ID spoofing attacks in telephone networks by passively authenticating the caller.

Without end-to-end mechanism, the telephone networks may remain vulnerable to

caller ID spoofing attacks even with network/protocol redesign. Finally, we utilized

end-to-end principle to detect evil twin AP attacks in wireless hotspots. Crypto-

graphic solutions, while promising, will take away usability of the wireless hotspots,

and thus end-user solution is necessary to ensure secure communication.

Through the above solutions, in this dissertation, we showed that end-to-end

principle is an important method that can be effectively applied to solve various real-

world problems and we believe that it will continue to be important in the current

complex networked world. In an ideal world, it is better to design a complete secure

system at the very beginning, but is unlikely to be feasible in the real world because

of business decisions, budget limitations, backward compatibility, etc. Thus, end-

to-end-based solutions will remain useful to solve loopholes in currently deployed

systems as well as in future systems. In the future, we plan to investigate other

practical problems in different networks that can be solved by applying end-to-end

based solutions.
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