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Modern computer software systems are prone to various classes of runtime faults due to

their reliance on features such as concurrency and peripheral devices such as sensors. Test-

ing remains a common method for uncovering faults in these systems. However, commonly

used testing techniques that execute the program with test inputs and inspect program out-

puts to detect failures are often ineffective on these systems. In addition, existing testing

techniques focus primarily on single applications, neglecting elusive faults that occur at the

whole-system level due to complex system event interactions.

This research provides a framework, SIMEXPLORER, that allows engineers to effec-

tively test for subtle and intermittent faults in modern software systems by providing them

with greater observability and controllability. The testing framework first employs dynamic

analysis techniques to observe system execution, identify program locations of interest,

and report faults related to oracles. It next employs virtualization to achieve fine-grained

controllability that exercises event interleavings that are likely to expose faults. The frame-

work also supports testing of evolving software. The ultimate benefit of SIMEXPLORER is

its ability to test for broader classes of elusive faults that cannot be effectively detected by

existing approaches. These faults include: (1) concurrency faults between applications and

hardware interrupts; (2) concurrency faults caused by improper shared resource accesses

among multiple processes, and software signals; (3) violations of expected worst-case in-

terrupt latencies (WCILs); and (4) data races induced in evolving software.
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Chapter 1

Introduction

Modern computer software systems are highly concurrent, memory intensive, and sensor

intensive. For example, most computer software systems currently employ multi-core pro-

cessors, making concurrent programming a natural way for developers to achieve higher

performance. Furthermore, today’s embedded systems ranging from consumer electronics

to safety-critical devices are equipped with various sensors and peripherals to enable ad-

vanced features. These characteristics make these systems very complex and can result in

varieties of elusive faults 1 that can be difficult to identify, isolate, and correct. While veri-

fication techniques such as model checking have been effective for detecting such faults in

certain contexts, it can be still challenging to use these techniques in practice. Therefore,

testing is still commonly used to assess and find faults in these systems.

To efficiently and effectively test software, developers must be able to observe and con-

trol execution. Where observability is concerned, test oracles are needed to inspect system

behavior for correctness. Unfortunately, testing for faults in modern software systems is

difficult simply because the classes of faults (e.g., data races) that occur in these systems

are often “intermittent”, making the traditional testing approaches of using output-based
1Elusive faults are intricate enough that their activation conditions depend on complex combinations of

internal states and external requests, that occur rarely and can be very difficult to reproduce [1].
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oracles ineffective [2,3]. Furthermore, the ability to observe system runtime information is

required to guide controllability at certain program points.

Over the past decade, researchers have developed approaches for achieving observabil-

ity through runtime monitors (e.g., [4]). These approaches tend to focus only on application

execution and do not monitor events occurring in lower-level software components such as

device drivers and OS modules. As such, they can be ineffective for revealing subtle faults

that can appear in hardware, device drivers, and kernels. In addition, these approaches

can obscure lower-level information because they rely on instrumentation that can perturb

lower-level system states (e.g., cache, bus, and register usage).

Where controllability is concerned, testing techniques must be developed to increase

the chance of exposing faults. This means that sources of unpredictability in program

execution due to scheduling and interrupt events must be controllable during testing. As

an example, to reveal an interrupt related fault, engineers should be able to force interrupts

to occur at a particular location. Unfortunately, existing approaches for randomly forcing

interrupts (e.g., [5]) are not powerful enough to support such a precise requirement. In the

ideal case in which randomly invoking interrupts does expose faults, it may miss faults that

can occur due to other interleavings.

Several existing approaches have tried to abstract away scheduling non-determinism in

concurrent programs to achieve greater execution control (e.g., [6]). These approaches of-

ten control thread scheduling within a single application process. However, they have rarely

been adapted to detect concurrency faults that occur due to shared hardware resources or

across different applications in modern software systems.

In addition, embedded systems tend to be interrupt-driven, yet the presence of inter-

rupts can affect system dependability because there can be delays in servicing interrupts.

Such delays can occur when multiple interrupt service routines and interrupts of different

priorities compete for resources on a given CPU. For this reason, researchers have sought
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approaches by which to estimate worst-case interrupt latencies (WCILs) for systems. While

many advances have been made in the area of real-time system verification, particularly in

the area of static analysis (e.g., [7, 8, 9, 10, 11]), the correctness of interrupt-driven sys-

tems remains difficult to verify. Without running the system being assessed, it is difficult

for static analysis to identify locations where interrupts can occur because interrupts are

platform dependent, and can be disabled and enabled by other software components or un-

derlying systems at arbitrary execution points. Further, with the complexity of real-time

systems and the varieties of interrupt sources, estimating the number of nested interrupts

that can occur within an execution path can be difficult. Conservative static analysis tech-

niques can over-approximate WCILs, and this affects their precision and applicability.

While the challenges for testing modern software systems are extensive, additional

challenges arise as software evolves. Regression testing is used to perform re-validation of

evolving software. In practice, traditional regression testing can be expensive when exten-

sive existing regression test suites must be executed following program changes. Further-

more, applying high overhead testing techniques following modifications (e.g., dynamic

race detection) using large regression test suites can make regression testing processes be-

come more expensive. There has been research on reducing the cost of regression testing

including research on techniques for regression test selection and test case prioritization tar-

geting particular fault classes related to internal oracles [12,13]. However, these techniques

focus on sequential software and have not considered concurrent software systems.

Given the foregoing discussion, the overall goal of our research is to provide a testing

framework for modern software systems, SIMEXPLORER, with the aid of observability

and controllability support at lower system layers. We present a set of techniques applied

to both single software versions and evolving software.

It is important to investigate the SIMEXPLORER framework on different types of pro-

grams since program characteristics may impact how well various techniques work. There-
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Figure 1.1: SIMEXPLOXER Framework

fore, a major element of our work involves empirical investigation of the SIMEXPLORER

framework on real software systems. Our results offer useful suggestions for practical use.

1.1 A Summary of the SimExplorer Framework

SIMEXPLORER takes advantage of virtual machines (VMs) to achieve deep observability

and fine-grained controllability. Figure 1.1 shows an overview of SIMEXPLORER frame-

work. Given a set of test inputs, a target application binary is executed by the execution

engine, which is an internal component in the VM. The execution observer and execution

controller are two major components implemented as external modules in the VM. The exe-

cution observer observes system execution, including events occurring in both application

and lower-level software components such as hardware, device drivers and OS modules.

The execution controller controls occurrences of events across the entire system such as

thread scheduling, process scheduling, signals, and hardware interrupts. The test oracle
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specifies in which condition a fault occurs so that engineers can determine whether a test

has elicited a fault.

Based on this generic SIMEXPLORER framework, we propose a set of techniques that

instantiate SIMEXPLORER to effectively and efficiently test for classes of elusive faults in

modern computer software systems. These faults include: (1) concurrency faults caused by

interactions between applications and hardware interrupts; (2) concurrency faults caused by

improper shared resource access among multiple processes; (3) concurrency faults caused

by incorrect arrivals of software signals; and (4) violations of expected worst-case interrupt

latencies. In addition, we propose an automated regression testing technique for use in

detecting data races that are induced in concurrent programs by code modifications.

1.2 Contributions

This dissertation makes the following contributions:

1. We introduce an instantiation of SIMEXPLORER that allows test engineers to detect

concurrency faults that occur due to interactions between software and hardware. We

consider two types of concurrency faults: data races and deadlocks. Our technique is

implemented on the Simics Virtualization Platform [14]. The technique achieves ob-

servability by utilizing the VM’s abilities to monitor memory accesses and hardware

states as a program executes and report faults related to oracles; the observed infor-

mation is also used to guide controllability at certain program points. Controllability

is achieved by utilizing the VM’s abilities to interrupt execution without affecting

the states of the virtualized system. As such, engineers can manipulate memory and

buses directly to force interrupts so that they test only the locations that have poten-

tial races and deadlocks. We evaluate the effectiveness of our technique on a real
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Linux device driver, and compare it to that of two existing baseline approaches. We

present this work in Chapter 3.

2. We propose an instantiation of SIMEXPLORER that allows engineers to effectively

test for races at the process level (running in both user and kernel modes) that in-

volve files, shared memory, hardware components, signals, and processing cores.

The technique is implemented on Simics and operates in two phases. The first phase

employs observability to generate runtime information related to shared resource ac-

cesses (e.g., accessing system-level resources through system calls, accessing hard-

ware registers) and process-level synchronization operations (e.g., fork, wait) that

are used to analyze the system for potential sources of races. The runtime informa-

tion is also used to direct the scheduling effort in the second phase. The second

phase employs controllability to permute process interleavings by causing the kernel

scheduler to force races to occur at potential racing points obtained in the first phase.

The technique allows engineers to focus only on applications under test without wor-

rying about other events or applications in the system. Side effects from execution of

applications not under test is determined by querying current system states. By using

the VM, our technique is transparent; that is, it does not require any instrumentation

or kernel modification. In addition, our technique operates at the binary level so it is

capable of detecting races between applications written in different languages. We

evaluate the effectiveness of our technique on a set of real-world applications, and

compare it to that of robust stress testing. This work is presented in Chapter 4.

3. In addition, the SIMEXPLORER framework is integrated with existing test case gener-

ation approaches to enhance testing effectiveness for timing related faults including

those caused by excessive interrupt latency. We present a testing-based approach,

SIMLATTE, another instantiation of the SIMEXPLORER framework for estimating
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WCILs. First, we identify a set of factors that impact WCILs. Based on these fac-

tors, we next use a genetic algorithm (GA) to generate inputs and interrupt arrival

points that favor paths with longer WCILs. The exploration guided by the GA is ex-

pected to cover a wide range of combinations of inputs and locations. The technique

then employs an opportunistic interrupt invocation mechanism to invoke interrupts

at feasible locations that are likely to cause longer WCILs. Our technique is imple-

mented on AVRORA, a cycle-accurate simulator for Atmel microcontrollers [15] that

achieves the observability and controllability needed to effectively estimate WCILs.

We evaluate the effectiveness and efficiency of our technique on several non-trivial

embedded systems, and compare them to those of random testing and static analysis.

This work is presented in Chapter 5.

4. Finally, to cost-effectively test for data races that are induced in concurrent programs

by code modifications, we present SIMRT, an automated regression testing technique

for use in detecting races introduced by code modifications. First, SIMRT employs

a regression test selection technique, focused on sets of program elements related

to race detection, to reduce the number of test cases that must be run on a changed

program to detect races that occur due to code modifications. Specifically, it employs

escape analysis and code differencing to identify a set of impacted shared variable

pairs as coverage targets, and then select test cases to cover these targets. Second,

SIMRT employs a test case prioritization technique to improve the rate at which

such races are detected. Specifically, it employs a greedy prioritization algorithm to

schedule test cases in orders that detect races faster. We evaluate the effectiveness

and efficiency of our technique on several real-world concurrent programs, and com-

pare them to those of baseline regression test selection and test case prioritization

techniques. We present this work in Chapter 6.
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Chapter 2

Background and Related Work

In this chapter we first describe background related to testing modern software systems.

We then discuss related work.

2.1 Background

2.1.1 Modern Software Systems

Modern computer systems ranging from personal computers to consumer electronic de-

vices are becoming increasingly complex. These systems are utilizing high-performance

multicore processors to ensure adequate responsiveness and performance. They also utilize

a full array of peripheral devices and sensors to support required features. Competition for

market share means that new features are frequently added to these systems, making their

product life-cycles last only one to two years.

The classification of modern software systems is broad, and we summarize five charac-

teristics of the software running on top of these systems: 1) it can frequently interact with

hardware to control system behaviors and thus it is hardware dependent, 2) it can employ

different concurrency mechanisms to coordinate threads and processes, 3) it can be pro-
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grammed with interrupts to interact with the external environment, 4) it can have timing

constraints, and 5) it can produce internal faults that cannot be detected using traditional

output-based oracles.

Note that these characteristics may occur to different extents in different systems, and

they can also be present in other classes of systems, however they are centrally important to

the modern computer software systems we are considering in this work, and our solutions

must accommodate them.

2.1.2 Test Oracles

In the testing literature, a test oracle is the device by which engineers determine whether a

test has elicited a failure in a system.

The most typical approach to verifying test results involves using output-based oracles;

that is, oracles that check system outputs. However, faults may escape detection if a test

suite fails to propagate their effects to program outputs. In such cases, output-based test

oracles are inadequate.

In contrast, internal oracles monitor and enforce constraints on internal program states

seeking evidence that infections have occurred – that is, cases in which program states have

been altered in violation of the constraints enforced by the given oracles. These oracles then

signal the presence of those infections to alert testers to the possible presence of faults.

2.1.3 Regression Testing

Let P be a program, let P ′ be a modified version of P , and let T be a test suite for P .

Regression testing is concerned with validating P ′. To facilitate this, engineers often begin

by reusing T , but reusing all of T (the retest-all approach) can be inordinately expensive.

Thus, a wide variety of approaches have been developed for rendering reuse more cost-
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effective via regression test selection and test case prioritization ( [16] provides a recent

survey).

Regression test selection (RTS) techniques attempt to select, from test suite T , a subset

T ′ that contains test cases that are important to re-run, and omit test cases that are not

as important. Rothermel et al. [17] presented the RTS technique DEJAVU that performs

simultaneous depth-first traversals on control flow graphs (CFGs) for procedures in P and

P ′ to find dangerous edges that lead to code that has changed. Execution traces of test cases

(bit vectors indicating whether basic blocks were covered) on P are then used to select test

cases that traversed dangerous edges in P . The authors have shown [18] that when certain

conditions are met, DEJAVU is safe; i.e., it cannot omit test cases which, if executed on P ′,

would reveal faults in P ′ due to code modifications.

Test case prioritization (TCP) techniques attempt to reorder the test cases in T such that

testing objectives can be met more quickly, and one potential objective involves revealing

faults. A wide range of TCP techniques have been proposed and studied, and one particular

successful one is the “additional-block-coverage” technique [19]. Given the results of ex-

ecuting tests and gathering trace information, this technique prioritizes test cases in terms

of the numbers of new (not-yet-covered) basic blocks they cover, by iteratively selecting

the test case that covers the most not-yet-covered blocks until all blocks are covered, then

repeating this process until all blocks have been covered.

Because TCP techniques do not themselves discard test cases, they can avoid the draw-

backs that can occur when regression test selection cannot achieve safety. Alternatively,

in cases where discarding test cases is acceptable, test case prioritization can be used in

conjunction with regression test selection to prioritize the test cases in the selected test

suite. Further, test case prioritization can increase the likelihood that, if regression testing

activities are unexpectedly terminated, testing time will have been spent more beneficially

than if test cases were not prioritized.
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A key insight behind the use of regression testing techniques such as those that we

have just described is that certain testing-related tasks such as that of gathering coverage

information can be performed in the “preliminary period” of testing, before changes to

a new version are complete. The information derived from these tasks can then be used

during the “critical period” of testing after changes are complete and where time is more

limited.

2.1.4 Interrupts

Interrupts are widely used in modern software systems such as microcontroller firmware,

operating systems and device drivers. For highly resource constrained embedded software

with a thin OS layer, such as software in flight control systems and sensor network nodes,

it is common to implement interrupt handlers using applications that run on top of micro-

controllers.

There are several varieties of interrupt handling mechanisms available, depending on

the types of processors being used. The Atmel AVR processor, for example, is commonly

used for interrupt-driven applications, supports a wide range of peripheral devices, is en-

ergy efficient, and offers good cross-platform support. Each device in this processor is

associated with one unique interrupt, and each interrupt is associated with an interrupt

pending bit that is set when data is available for the device. Applications written for this

microcontroller can be programmed with interrupt service routines (ISRs) that handle data

relevant to each particular interrupt. The pending bit for an interrupt remains set until the

program jumps to the ISR for that interrupt. The microcontroller has a global interrupt

enable bit, and each interrupt has an associated local interrupt enable bit. An interrupt

can be invoked only when both its local interrupt enable bit and global interrupt enable
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Figure 2.1: Interrupt latency

bit are set. When multiple interrupts are about to execute, the processor selects the lowest

numbered interrupt and executes it.

Interrupt latency is the time that elapses from when an interrupt is generated (its inter-

rupt pending bit is set) to when the source of the interrupt is serviced (the associated ISR

starts executing). Figure 2.1 shows one scenario involving interrupt latency. In this case, an

interrupt X occurs while task1 is executing its critical section; at this point the execution

of ISRX is postponed until the critical section is exited. A system’s worst-case interrupt

latency (WCIL) is the longest possible latency across all possible executions of that system.

Interrupt latency can be calculated theoretically by summing up expected hardware

latency and software latency [20] times. Hardware latency time is related to the design of

microprocessors such as cache and pipelines. Software latency is related primarily to the

length of critical sections, the priority assignments made to different interrupts, and the

implementation of ISRs.

There are several principles that interrupts must follow. First, unlike threads, interrupts

cannot be preempted by normal program routines; instead, they can be preempted only

by other interrupts. Second, nested interrupts occur when one interrupt handler preempts

another, and this can occur only when the ISR is set to be preemptible. Third, reen-

trant interrupts are interrupts that can preempt themselves. Reentrant interrupts are used
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only in special situations [5] such as when it is necessary need to reduce interrupt latency.

Fourth, lower priority interrupts can never preempt higher priority interrupts. Fifth, there

is typically a minimum inter-arrival time, or its inverse, a maximum interrupt frequency

associated with interrupts. The inter-arrival time imposes a restriction on how frequently

an interrupt can be invoked.

2.1.5 Elusive Faults in Modern Software Systems

We now discuss several classes of common faults in modern software systems with respect

to their characteristics. These include various forms of concurrency faults that occur at the

thread-level, interrupt-level and process-level, and faults that violate real-time constraints.

Such faults can lead to well-known, but intermittent and hard-to-reproduce failures [21,22].

Thread-level concurrency faults. There are three general classes of concurrency faults:

data races, atomicity violations and deadlocks. A data race occurs when two threads can

simultaneously access a shared variable, with at least one access being a write [23]. Atom-

icity violations are introduced when programmers assume some code regions to be atomic,

but fail to guarantee the atomicity in their implementation [24]. Deadlock occurs when

threads circularly wait for each other to release acquired resources [25].

Interrupt-level concurrency faults. In modern systems, the frequent use of interrupts

for timing, sensing, and I/O processing can cause concurrency faults to occur due to in-

teractions between applications and hardware interrupt handlers. For example, a data race

occurs when a hardware interrupt is triggered during the execution of an application, and

the interrupt handler modifies a shared variable that is incorrectly read by the application

later on. It is common for interrupt handlers to use non-preemptive mechanisms such as

spin-locks instead of preemptive mechanisms such as semaphores to protect critical code

regions. This is because typically, ISR code is not allowed to sleep. As such, a deadlock
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occurs when the application is preempted by the interrupt handler while the application

is holding a spin-lock, and the interrupt handler tries to acquire the same spin-lock and

becomes stuck in the spin-lock loop.

Process-level concurrency faults. Numerous program analysis and testing techniques

have been proposed to detect concurrency faults between threads. Little work, however, has

addressed the problem of detecting and testing for concurrency faults, such as data races at

the process-level. Process-level races occur when multiple processes access a system-wide

shared resource (e.g., file, device, hardware register) without proper synchronization [26].

Process-level races often involve shared resources accessed through system calls. Thus,

testing for process-level races requires the effects of read/write and synchronization op-

erations involving system calls to be accounted for. However, system calls operating on

shared resources are typically treated as black boxes by engineers who use them to develop

applications. Furthermore, most race detection algorithms are designed to work only with

memory read/write and well-defined synchronization operations at the thread level [26].

Interrupt latency faults. One factor affecting the occurrence of timing constraints vi-

olations is interrupts. Modern embedded systems tend to be interrupt-driven, and these

systems can suffer from untimely interrupts due to poor system design or erroneous imple-

mentations. In this work, we consider faults related to timing constraint violations caused

by interrupt latency. An interrupt latency fault is exposed when the actual interrupt latency

exceeds the system’s worst-case interrupt latency (WCIL).

2.1.6 Genetic Algorithms

A genetic algorithm (GA) is a programming technique that mimics some of the processes

observed in biological evolution. GAs are a combination of search space and optimal so-

lutions and are good for navigating very large search spaces. As such, GAs are often used
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to search for optimal solutions that might not be found easily. Given the advantages of

GAs, they have been widely applied in many fields in the engineering world. For example,

in software testing, GAs have been successfully used to automate the process of test case

generation [27, 28, 29]. GAs have also been used to test for timing constraint violations in

real-time systems [30] and for faults unrelated to timing constraint violations (e.g., stack

overflow) in interrupt-driven software [5]. A GA begins with an initial (often randomly

generated) test data population and “evolves” the population toward goals (targets) such as

worst-case execution time (WCET) and worst-case stack usage. To apply a GA to a system,

that system’s test inputs must be represented in the form of a “chromosome”, and a “fit-

ness function” must be provided that defines how well a chromosome satisfies the intended

goal. The algorithm proceeds iteratively by evaluating all chromosomes in the population

and then selecting a subset of the fittest to “mate”. These are combined in a “crossover”

stage in which information from one half of the chromosomes is exchanged with informa-

tion from the other half to generate a new population. A small percentage of chromosomes

in the new population are then “mutated” to add diversity back into the population. This

concludes a single generation of the algorithm. The process is repeated until a stopping

criterion such as a time limit has been met.

2.1.7 Virtual Platforms

Virtual platforms (VMs) have been used to support tracing, replay, and debugging [31, 32,

33, 34, 35]; however, they have rarely been used to support testing. One notable example

is work by Goh et al. [36]. They introduce a VM-based online testing approach to sup-

plement off-line testing. With off-line testing, all possible test inputs may not be known

ahead of time since embedded software systems are often influenced by external environ-

ments. Their work, however, did not consider the use of observability and controllability
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to enhance testing effectiveness. On the other hand, there have been some efforts to ex-

tend virtual platforms to provide greater observability in the security domain [37, 38, 39].

However, these efforts did not utilize the additional observational power for testing.

Virtual platforms provide an attractive platform on which to carry out testing for three

reasons:

1. Non-intrusive instrumentation of executables. Instrumentation occurs at the binary level

and without disturbing execution or affecting the virtualized state of a system. There-

fore, full-system simulators can simulate and profile systems accurately in the presence

of instrumentation. Furthermore, these simulators can collect exact profile data instead

of relying on sampling or probability. As such, the profiled information is more com-

plete. For the problem we are addressing, this is an important consideration.

2. Support for more types of executables. Full-system simulators support executables with

or without operating systems. This is different than other approaches, which are operat-

ing system dependent (e.g., Pin works only on Linux or Mac OS X binaries). As such,

our approach can work in diverse applications and systems ranging from executables

running in stand-alone embedded devices with no operating systems, to executables

running in large computing clusters.

3. Popularity. HW/SW co-design is a widely adopted method for creating modern com-

puter systems. As such, full-system simulators such as Simics already play a prominent

role in the development process. Developers who already use VMs for co-design can

easily integrate the proposed extension into their testing and debugging toolkits. Fig-

ure 2.2 shows the co-design process a developer typically follows when working with

a VM. The process starts with the design of both software and hardware based on their

specifications. After that, both software and virtual hardware are created using the VM.

In a co-simulation step, the software is simulated together with the virtual hardware.
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Figure 2.2: HW/SW co-design when using a Virtual Platform.

Finally, testing or other verification techniques are applied to verify the correctness of

target software. In the traditional co-design process, software is integrated with hard-

ware after hardware is fabricated. This may delay the co-design process and cause late

discovery of software faults. By using VMs, software and hardware can be jointly simu-

lated and tested earlier in the design cycle. This allows parallel development of physical

hardware. As such, testing can be done while physical hardware is under development,

and the costs of testing are amortized into the co-design process.

2.2 Related Work on Verifying Modern Software Systems

In this dissertation, we classify modern software system verification into testing and non-

testing-based approaches. We discuss related work for both categories.

2.2.1 Testing-based Verification

Testing for thread-level concurrency faults. There has been a great deal of research

on basic techniques for testing multi-threaded programs for data races [40, 41], atomic-
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ity violations [24, 42], actual deadlock [43, 44], and potential deadlock [45, 46]. There

are common algorithms for detecting data races involving lock-sets [23, 47] and vector-

clocks [4, 40]. Lock-set based techniques are efficient but can report false warnings. Vec-

tor clock based techniques are precise but can be expensive. As such, hybrid approaches

[41,48] such as ThreadSanitizer have been created to yield better precision with lower over-

head. These techniques enhance observability by monitoring events such as memory access

and synchronization operations. Some techniques have been applied to large systems (e.g.,

Apache, Mozilla) [42,49,50]. These techniques use algorithms to analyze synchronization

operations (e.g., lock acquire/release) among multiple threads in the execution traces of

successful program executions.

For controllability, there have been some testing techniques that permute thread inter-

leavings to increase the possibility of exposing faults. For example, active testing tech-

niques (e.g., [6]) first identify potential concurrency faults, and then control the underlying

scheduler by inserting delays at context switch points. CHESS systematically explores

program state spaces to detect potentially erroneous interleavings [51]. These techniques,

however, focus on thread level concurrency while ignoring concurrency faults caused by

system-level events such as interrupts, signals and different processes

Testing for interrupt-level concurrency faults. As noted above, existing techniques on

testing for thread-level concurrency faults have rarely been adapted to work in scenarios

in which concurrency faults occur due to asynchronous interrupts. It is unclear whether

these approaches can work in such a scenario for two reasons. First, controlling interrupts

requires fine-grained execution control; that is, it must be possible to control execution at

the machine code level rather than the program statement level, which is the granularity

at which many existing techniques operate [6, 52]. Second, occurrences of interrupts are

highly dependent on hardware states; that is, interrupts can occur only when hardware
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components are in certain states. Existing techniques are often not cognizant of hardware

states [5, 53].

There are several techniques for testing embedded systems with a particular focus on

interrupt-level concurrency faults. Regehr et al. [5] use random testing to test Tiny OS

applications. They propose a technique called restricted interrupt discipline (RID) to im-

prove naive random testing (i.e., firing interrupts at random times) by eliminating aberrant

interrupts. In our approach, as will be discussed in Chapter 3, however, interrupts are fired

conditionally instead of randomly. Our evaluation shows that conditionally fired interrupts

increase the chances of revealing faults while reducing cost. Lai et al. [54] present a nota-

tion for modeling interrupt-driven nesC applications for testing purposes. They formulate

two test adequacy criteria based on the notation. Their approach does not provide observ-

ability or controllability. In their approach, test cases are randomly selected from a test

pool until coverage has been achieved. We believe that this process can be made more

effective by adding controllability. Higashi et al. [53] improve random testing via a mech-

anism that causes interrupts to occur at all instruction points to detect interrupt related data

races. However, this approach can be both ineffective and inefficient as it cannot determine

the location at which to issue an interrupt. More details will be presented in Chapter 3.

Testing for process-level concurrency faults. Unlike thread-level race detection, which

often relies on binary/bytecode instrumentation to insert yield points at the application

level (e.g., CHESS [55]), process-level race detection techniques must be able to control

the kernel’s scheduler. Furthermore, these techniques must have access to various system

states to ensure process and event schedulability. Achieving even partial system control

often requires custom kernel modifications, limiting the practicality of the techniques. For

example, RACEPRO can be used only in a custom Linux kernel that has been modified to

provide event recording and replay capabilities [26]. It also cannot precisely control process
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scheduling, making it ineffective as a platform for testing for various types of process-level

races.

There have been several approaches created for detecting races between processes [26,

56,57]. Detecting TOCTOU (time of check to time of use) races [57] has been a topic in the

security community. TOCTOU races typically happens when the permission check and use

of a file in one process is not atomic so that a malicious process can slip in and attacks the

file. However, these techniques are non-testing based approaches; the techniques depend

on the current execution at deployment time. In addition, TOCTOU races are just one

specific type of process race while our technique deals with general process races.

RACEPRO [26] leverages the vector-clock algorithm that has been widely used in dy-

namic techniques for thread-level race detection [4,58]. As such, this technique may detect

a race only if it happens during a test execution, and it cannot predict a potential race; this

is one of the limitations of vector-clock algorithms. Our technique, as will be discussed in

Chapter 4, on the other hand, considers all shared resource access pairs that are potentially

racy; over-estimation can be overcome by the race verification phase. In addition, our tech-

nique can detect races that occur due to unsynchronized hardware accesses by monitoring

hardware states, and races that occur specifically on multi-core systems while RACEPRO

deals with neither of them.

To deal with false alarms generated by imprecise race detectors, replay techniques have

been used to identify false positives [26, 48]. ThreadSanitizer [48], for example, inserts

sleeps after racing instructions; a real thread-level race is reported if the two sleeps happen

simultaneously. RACEPRO [26], on the other hand, replays the original execution and its

variations (reordering system calls) to validate whether a detected race is harmful by ob-

serving the output. RACEPRO is scalable and effective for detecting faults in large software

systems. A major drawback of this approach, however, is replay divergence failure (i.e., a
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mismatch between replayed system calls and actual system calls). Such a failure can occur

when the actual system states do not allow the system to replay or switch system calls.

There has been some work on testing for races caused by software signals [59,60]. For

example, Tahara et al. [60] issue signals when an application process attempts to access a

global variable, amplifying the chance of exposing faults. However, this technique does

not attempt to reorder the global variable access and the signal handler. Thus, it is possible

that the signal handler and the global variable will be synchronized, resulting in false posi-

tives. Again, these techniques can handle only signal races while our technique focuses on

general process races.

Testing for timing constraint violations. There has been some work on dealing with

interrupts using testing and dynamic analysis techniques [5, 53, 61, 62, 63]. None of the

techniques, however, attempt to address interrupt-related timing constraint violations such

as interrupt latencies.

There has been work on using black-box testing to test embedded systems for timing

contraint using search-based or evolutionary algorithms [30, 64, 65, 66, 67, 68, 69]. For ex-

ample, Iqbal et al. [30] model the environments of real-time embedded systems, and guide

searches to generate test cases reaching a system’s error states. Briand et al. [66] apply

model-based stress testing to real-time systems using genetic algorithms. Their approach

encodes chromosomes as task arrival times, and searches for schedules that can cause the

system to miss deadlines. These methods are based on software modeling and do not con-

sider a system’s real runtime states. In addition, it is unclear how much manual effort

is involved in creating system models. In contrast, as will be discussed in Chapter 5, our

technique does not require source code annotation or modeling, and our inputs and interrupt

schedules are generated under real system runtime environments.

Search-based algorithms have also been used in white-box testing to test for timing

constraint violations [64, 65, 68]. Hartmut et al. [65] use an evolutionary algorithm to find
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worst case execution times (WCET) and best case execution times (BCET) to test against

timing constraint specifications. Bhattacharya et al. [69] use a genetic algorithm to max-

imize the possibility of exposing concurrency faults such as data races. Their technique

generates locations of delays that can be injected in the execution of a thread. This tech-

nique does not apply in the context of interrupt-driven software.

Regression testing. As noted above, there has been a great deal of work on analyzing,

detecting, and testing for data races [6, 23, 58, 70, 71]; however, existing techniques do not

consider software evolution.

There has been some work on selecting and prioritizing schedules for testing multi-

threaded programs such that faults can be exposed faster [51, 72]. For example, CHESS

prioritizes the exploration of program state spaces to detect potentially erroneous interleav-

ings. However, these techniques do not consider code changes.

There have been several techniques presented for systematically exploring schedules in

multi-threaded programs across versions [73, 74]. Gligoric et al. [73] reuse results from

exploration of one program version to speed up exploration of the next program version.

Jagannath et al. [74] use information about program changes in software evolution to prior-

itize the exploration of schedules. These techniques, however, target exploration of sched-

ules within individual test cases and do not address the challenges of regression testing

involving large sets of test cases.

Recent work by Deng et. al [75] studies how existing concurrency fault detection tools

work for a set of test inputs. They propose a technique that first measures coverage of

a program, and then selects a subset of test inputs to test for data races and atomicity

violations on that program. This technique focuses, however, on single version programs

and does not consider code changes. In contrast, as will be discussed in Chapter 6, we reuse

coverage information on the old programs and select test inputs to test the new programs.
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There has been a great deal of research on improving regression testing through regres-

sion test selection and test case prioritization (e.g., [17, 19, 76, 77, 78, 79, 80, 81, 82, 83]) –

Yoo and Harman [16] provide a recent survey. In this work , we restrict our attention to

techniques that share similarities with ours.

Some RTS techniques target specific fault classes [12, 84, 85]. Our own previous

work [12] selects test cases associated with system changes, but only those that are rel-

evant to a set of internal oracles that are known to be important for the system under test.

Staats et. al [13] propose a TCP technique that favors test orderings in which many vari-

ables impact the test oracle’s result early in test execution. However, all the foregoing

techniques focus on sequential programs, and do not address concurrency faults.

2.2.2 Non-testing-based Verification

Our focus in this dissertation is on testing-based approaches. For completeness, however,

we note that there have been many non-testing-based verification approaches proposed for

use on modern software systems, and we summarize these here.

Model checking for verifying system correctness. Model checking is a verification tech-

nique that can can be used to prove the absence of software faults. Given a model of a

software system, a model checker exhaustively checks whether this model meets a given

specification. The key strength of model checking is that it can detect faults that would be

hard to detect using testing. This makes model checking particularly useful when verifying

safety-critical systems. Furthermore, if a specification does not hold, a model checker can

produce a counterexample, which can make fault localization become easier.

There has been research that uses model checking to verify concurrency properties

of modern software systems. Chen and MacDonald [52] verify multithreaded Java pro-

grams by overcoming scheduling non-determinism through value schedules. One major
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component of their approach involves identifying concurrent definition-use pairs, which

then serve as targets for model checking. There are also approaches that overcome the

difficulties of using model checking on multi-threaded programs with large search spaces

[51,86,87,88,89]. For example, Musuvathi [51] bounds the number of context switches to

alleviate the state explosion problem.

There has been a great deal of work on verifying real-time properties of modern soft-

ware systems using model checking [7, 8]. For example, Hessel et al. [8] use UPPAAL, a

model checker, to verify embedded systems that can be modeled as timed automata against

their real time specifications. En-Nouaary et al. [90] focus on timed input/output signals

for real-time embedded systems and present the timed Wp-method for generating timed

test cases from a nondeterministic timed finite state machine. However, these techniques

do not consider interrupts.

There has some research that uses model checking techniques for interrupt-driven soft-

ware [91, 92]. For example, Schlich et al. [92] use model checking of assembly code

software for microcontrollers. They propose a technique called interrupt handler reduction

to reduce the number of program locations at which an interrupt needs to be considered.

The goal of this technique is to reduce program states in model checking. This approach,

however, does not check real-time properties of the software. Brylow et al. [93] apply

a model checker to verify interrupt related properties such as interrupt latency, but their

approach cannot handle loops waiting for hardware changes. In later work, the same au-

thors [91] address this drawback by identifying the code segments that cannot be analyzed

using static analysis, leaving them for testing. The approach still requires annotations of

all operations on manipulated interrupt bits in assembly code, which is platform dependent

and requires substantial manual effort. Moreover, their timing analysis is applicable only

on certain code segments, not the entire program.
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Static analysis for verifying system correctness. Another common approach used to ver-

ify modern software systems is to apply static analysis techniques to discover paths and

regions in code that might be susceptible to certain faults. Techniques based on program

state modeling and transitions (e.g., [94]) have been used to verify device drivers and ker-

nels [70, 95]. There are also static analysis techniques used to verify embedded software

with interrupts. Tan et al. [96] design a type of annotation that can be used to detect OS

concurrency faults related to interrupts. Their approach is based on statically analyzing

comments and code. Jonathan et al. [97] first statically translate interrupt-driven programs

into sequential programs by bounding the number of interrupts, and then use testing to

measure execution time.

Sehlberg et al. [11] use static analysis to estimate WCETs (worst-case execution times)

of vehicle control systems. The steps for performing such an analysis involve creating

processor timing models and manual code annotations which require substantial manual

effort. In addition, the results of the work show that static analysis overapproximates actual

WCETs in most tasks under consideration. To overcome the drawbacks of static analysis,

Kirner et al. [10] present a hybrid WCET analysis framework using testing together with

static program analysis. All of the foregoing techniques, however, focus on sequential

software systems, and none of them provides support for interrupts.

Static analysis is powerful because it is fast and cheap while generally effective. It can

detect faults in the software that testing may not easily expose. However, there are several

drawbacks associated with static analysis. First, static analysis can report false positives

due to imprecise local information and infeasible paths. Second, as embedded systems are

highly dependent on hardware, it is difficult for static analysis to annotate all operations on

manipulated hardware bits; moreover, hardware events such as interrupts usually rely on

several operations among different hardware bits.
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Chapter 3

SimTester: Testing for Concurrency

Faults in Embedded Software 2

In this chapter, we describe SIMTESTER, an instantiation of the SIMEXPLORER framework

that provides observability and fine-grained controllability features sufficient to allow test

engineers to detect concurrency faults in embedded software. In software for embedded

systems, the frequent use of interrupts for timing, sensing, and I/O processing can cause

concurrency faults to occur due to interactions between applications and interrupt handlers.

As an example, occurrences of data races between interrupt handlers and applications have

been reported in a previous release of uCLinux, a Linux OS designed for real-time em-

bedded systems. In this particular case the serial communication line can be shared by

an application through a device driver and an interrupt handler. In common instances, the

execution of both the driver and the handler would be correct. However, in an exceptional

operating scenario, the driver could execute a rarely executed path. If an interrupt occurs at

that particular time, simultaneous transmission of data is possible.
2The contents of this chapter have appeared in [62].
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SIMTESTER takes advantage of features readily available in many virtual platforms to

tackle the challenges of testing for concurrency errors in embedded software. Particularly,

SIMTESTER achieves the levels of observability and controllability needed to test such

systems by utilizing the virtual platform’s abilities to interrupt execution without affecting

the states of the virtualized system, to monitor function calls, variable values and system

states, and to manipulate memory and buses directly to force events such as interrupts and

traps. As such, SIMTESTER is able to stop execution at a point of interest and force a

traditionally non-deterministic event to occur. The system then monitors the effects of the

event on the system and determines whether there are any anomalies.

Many existing approaches for detecting concurrency faults are not widely used be-

cause they require significant deployment effort. We designed SIMTESTER to overcome

deployment obstacles by implementing it on a commercial virtual platform called Sim-

ics [14, 98, 99]. We chose Simics for several reasons. First, similar to other full-system

simulators, Simics provides functional and behavioral characteristics similar to those of the

target hardware system, enabling software components to be developed, verified, and tested

as if they are executing on the actual systems. Second, through a rich set of Simics APIs,

software engineers have the ability to non-intrusively observe and control various system

behaviors without ever needing the source code. Third, due to its powerful device mod-

eling infrastructure, Simics already plays a critical role in hardware/software (HW/SW)

co-design; therefore, adding the proposed capabilities to it will enable adoption without re-

quiring much effort [100]. Thus, we envision that SIMTESTER will allow several aspects of

product integration testing to be moved up to the co-design phase of system development.

Fourth, licensing of Simics is free for academic institutions, making it a good platform for

research.

SIMTESTER is implemented for applications running on x86/Linux environments. There

are four major components that interact with Simics:
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• A configuration repository stores initialization scripts containing information that

includes execution break-points and variable locations that must be observed.

• An execution controller is an external module that can be attached to Simics. It

invokes callback functions when events of interest occur (e.g., interrupts, memory

read/write operations).

• An execution observer is another external module that can be attached to Simics. It

monitors information generated by the execution controller and then records it in a

file.

• An oracle repository stores test oracle files in the form of property requirements.

For example, the oracle can specify in which condition data races or deadlocks oc-

cur. Each log file is compared against an oracle file to detect a particular type of

anomalous execution behavior.

By using SIMTESTER, engineers can directly observe races and causes of deadlocks as

they occur. They can also precisely control the occurrences of interrupts so that they can

test every variable that can be accessed by both the application and interrupt handler for

vulnerabilities to concurrency faults. SIMTESTER yields precise detection of data races;

that is, it produces no false positives. It is also effective; that is, if races or deadlocks are

possible on a shared variable under test, they can be found more easily than with other

testing approaches. To evaluate the potential usefulness of SIMTESTER we apply it to

test for two classes of errors. These include data races (using an approach similar to that

introduced by Higashi et al. [53] but with additional optimization) and deadlocks between

device drivers and interrupt handlers. Our results show that SIMTESTER can be effective

and efficient.
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Figure 3.1: Overview of the SimTester architecture.

3.1 Introducing SIMTESTER

Figure 3.1 depicts the overall architecture of SIMTESTER. There are four major compo-

nents in SIMTESTER in addition to Simics itself. As stated earlier, Simics provides APIs

that can be accessed via Python scripts; thus, all components except the test oracles are

Python scripts.

The first component is the configuration script, the content of which includes infor-

mation such as locations at which to set execution breakpoints, addresses of variables that

need to be monitored, and machine instructions that need to be monitored.

The second component is the execution controller program. This program specifies

certain events to be invoked at particular points in executions. It can generate data that

can cause the system to take different execution paths. As an example, SIMTESTER can

artificially create I/O interrupts simply by writing data to the I/O bus or to the memory lo-

cations that have been mapped to hardware devices. It can also force the system to execute

a particular exception handling routine by artificially creating that exception. Finally, it can

force the system to execute a particular path by specifically setting a conditional value.
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The third component is the execution observer program, which monitors and generates

information that can either be recorded into a file for offline analyses (used to detect data

races) or fed directly into test oracles for online analyses (used to detect deadlocks). Any

anomalies are reported in the result file.

To use SIMTESTER, a test engineer first configures Simics to model the system to be

tested. The engineer then writes a configuration script to set up breakpoints and a vari-

able watch list, and specific instructions to be monitored (e.g., procedure calls and return

instructions). In addition, the engineer also writes a script to specify actions to be taken

when monitored events occur (Simics refers to these actions as handlers.) As an example, a

handler for reaching an execution breakpoint could fire a timer interrupt. Another possible

handler for writing to a monitored address could make the written data available for logging

or on-line analysis. Any generated information is processed by the execution observer.

In addition to the components illustrated in Figure 3.1, a test driver is also needed to

automate the testing process. Typically, engineers conduct testing by running test programs

on a system. A test driver is a program that automates the process of running test programs

in a suite and managing the generated log files.

After a test driver executes a test case an event log file is generated. Log files can then

be analyzed to detect anomalies, or saved for further off-line analysis. In this chapter, we

consider both output-based oracles and internal oracles.

3.2 Utilizing SIMTESTER

In this section, we describe and illustrate how SIMTESTER can be used to test for two

significant classes of concurrency faults: data races and deadlocks. These two classes of

faults have been identified as the most “nasty” faults to test for in embedded software [101].

When we conduct testing for data races, the components under test include the main ap-
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plication, the UART device driver, and the ISRs that are associated with specified serial

ports. The focus of our illustration is testing for races that occur when the application

coupled with the device driver interact with an ISR.

Note that in the illustration we present, interrupts are not nested, but our algorithms do

also support nested interrupts. Also note that our illustration considers only a single ISR

but our algorithm can be generically applied to handle multiple ISRs; however, in that case

it is more difficult to isolate events related to any one particular ISR. In addition, because

SIMTESTER forces interrupts to occur, we would like to distinguish between interrupts that

occur naturally as part of program execution and forced interrupts issued by the execution

control module of SIMTESTER. We refer to the former type of interrupts as self-generated,

and to the latter as controlled.

3.2.1 Data Race Detection

In early releases of the 2.6 Linux kernel, there is a particular data race that occurs between

the routine serial8250 start tx and the UART ISR serial8250 interrupt

in UART driver program [102]. This fault remained in the source code for three years

before being fixed. We provide code snippets that illustrate the fault in Figure 3.2.

Routine serial8250 startup is responsible for testing and initializing the UART

port, and assigning the ISR. This routine is called before the UART port is ready to trans-

mit or receive data. Routine serial8250 start tx is used to initialize data transmis-

sion, and is called when data is ready to transmit via a UART port. Routine serial8250

interrupt is the actual ISR, and is called by satisfying two conditions in terms of data

transmission: (1) the data is ready to transmit; and (2) the interrupt enable register (IER) is

enabled by the serial8250 start tx routine.
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s t a t i c i n t s e r i a l 8 2 5 0 s t a r t u p ( s t r u c t u a r t p o r t ∗ p o r t ){
1 . up = ( s t r u c t u a r t 8 2 5 0 p o r t ∗ ) p o r t ;
2 . . . .

/∗ Do a q u i c k t e s t t o s e e i f we r e c e i v e an
∗ i n t e r r u p t when we e n a b l e t h e TX i r q .
∗ /

3 . s e r i a l o u t p ( up , UART IER , UART IER THRI ) ;
4 . l s r = s e r i a l i n ( up , UART LSR ) ;
5 . i i r = s e r i a l i n ( up , UART IIR ) ;
6 . s e r i a l o u t p ( up , UART IER , 0 ) ;
7 . i f ( l s r & UART LSR TEMT && i i r & UART IIR NO INT ) {
8 . i f ( ! ( up−>bugs & UART BUG TXEN ) ) {
9 . up−>bugs |= UART BUG TXEN ;
1 0 . }
1 1 . }
1 2 . . . .

/∗ F i n a l l y , e n a b l e i n t e r r u p t s . ∗ /
13 up−> i e r = UART IER RLSI | UART IER RDI ;
1 4 . s e r i a l o u t p ( up , UART IER , up−> i e r ) ;
1 5 . . . .
1 6 .}

s t a t i c vo id s e r i a l 8 2 5 0 s t a r t t x ( . . . ) {
1 7 . s e r i a l o u t ( up , UART IER , up−> i e r ) ;

. . .
1 8 . i f ( up−>bugs & UART BUG TXEN) {
1 9 . . . .
2 0 . t r a n s m i t c h a r s ( up ) ;
2 1 . }
2 2 .}

s t a t i c i r q r e t u r n t s e r i a l 8 2 5 0 i n t e r r u p t ( . . . ) {
2 3 . . . .
2 4 . t r a n s m i t c h a r s ( up ) ;
2 5 . . . .
2 6 .}

s t a t i c vo id t r a n s m i t c h a r s ( . . . ) {
2 7 . s t r u c t c i r c b u f ∗ xmi t = &up−>p o r t . i n f o−>xmi t ;
2 8 . . . .
2 9 . xmit−> t a i l = ( xmit−> t a i l + 1 ) & ( UART XMIT SIZE − 1 ) ;
3 0 . . . .
3 1 .}

Figure 3.2: Faulty code that can cause data races in the UART driver in Linux.
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Under normal operating conditions, the ISR is always responsible for transmitting

data. To ensure that an ISR is assigned correctly, the driver issues an interrupt and monitors

the response from the ISR (lines 3-6 in Figure 3.2). Several sources have shown that

problems such as races with other processors on the system or intermittent port problems

can cause the response from the ISR to get lost or cause a failure to correctly install

the ISR, respectively. When that happens, the port is registered as buggy (line 9) and

workaround code based on polling instead of interrupts is used (lines 18-21). Unfortunately,

the enabled interrupts (lines 13-14) are not disabled in the workaround code region so by the

time the workaround code is executed, it is possible for both the ISR and the workaround

code to be transmitting or receiving data through the same serial port at the same time by

calling the routine transmit chars, and simultaneously read/write the shared variable

xmit→tail (line 29). As such, a race in this illustration occurs when:

1. the device driver program is preempted by the ISR after a shared memory access

before it can proceed to the next instruction;

2. the ISR manipulates the content of this shared memory.

Higashi et al. [53] introduce an approach to test for this fault by controlling invocations

of interrupts. In that work, they used an ARM-based processor simulator and modified

version of uCLinux with the same fault so that it could run on that simulator. Their modifi-

cations included porting the code over from PPC to ARM and removal of irrelevant code to

reduce the simulation time. Their methodology was to invoke an interrupt at every memory

read and write operation.

For this illustration, we replicated the fault in the example of Figure 3.2 in Fedora Core

2.6.15. We also recreated a similar testing system based on SIMTESTER with two addi-

tional optimization techniques. In the first optimization technique, we apply static program

analysis to detect the resources that can be affected by the UART driver and the ISR. With
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this optimization, we invoke interrupts only when these shared resources are accessed. Sec-

ond, we also check system states to ensure that it is possible to invoke interrupts when those

resources are accessed. These two optimizations should significantly reduce the time re-

quired to conduct testing. Next, we discuss the configuration of SIMTESTER that allows

engineers to test for this fault.

Configuration of the Test System

To test for data races we need to provide two components to the system under test: the

test input and conditions governing when to invoke interrupts from within the system. In

this case, a test case is used as the test input for the program under test (PuT) (which in

this case includes the application and any device driver running under non-interrupt service

routine context that is called by the application.) In the case we are considering, the PuT

includes an application that interacts with a serial port and the UART driver. We refer to

the interrupt service routine for the tested UART port as the ISR. Note that test cases for

the PuT can be generated based on various criteria. We discuss the criteria we use in the

next section.

Next, we need to describe each interrupt condition (IC). We express an IC as a tuple:

< loc, pin >. The first element, loc, specifies a code location at which to invoke an

interrupt. The second element, pin, specifies an Interrupt Request (IRQ) line number at

which to invoke the interrupt. This is needed because typically, an interrupt service routine

can be associated with multiple IRQ lines. ICs are used only when the controllability

module is enabled.

Observer Module. We configure the observer module so that it records runtime infor-

mation that can be used by test engineers to perform off-line analysis for races. In this

example, the generated information includes:
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• when functions of the PuT and ISR execute and when they return, and

• when shared variables are accessed by the PuT and written by the ISR.

As such, one of our configuration tasks is to set execution breakpoints in Simics to detect

when functions in the PuT and ISR execute and when shared variables are accessed. The

algorithms to accomplish this task are provided next.

procedure BasicConfig

1: begin
2: for each function f in the PuT and ISR

3: set execution breakpoint at entry point fentry of f

4: endfor
5: set execution breakpoint on function return instruction ret

6: set execution breakpoint on interrupt return instruction iretd

7: end

procedure RaceObserver

require: procedure BasicConfig

8: begin
9: for each SV in list lSV

10: set memory read/write breakpoint at SV

11: endfor
12: switch (breakpoint)

13: case fentry:

14: flist.push({fentry , ebp, esp})

15: if fentry == ISRentry

16: log “ISR entry”

17: isISR = true

18: endif
19: case ret:

20: if esp == flist.top(esp)

21: if flist.top(entry) == ISRentry

22: isISR = false

23: log “ISR exit”

24: endif
25: flist.pop()

26: endif
27: case iretd:

28: if ebp == ebpswitch
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29: log “IRETD”

31: log program counter in next instruction PCnext

32: endif
33: case SV :

34: if ebp == flist.top(ebp) /*check if SV is accessed by the PuT*/

35: if isISR == false

36: log “PuT, SV ,SVaccess, PC”

37: ebpswitch = ebp /*save Reg[ebp] content*/

38: else /*interrupt handler context*/

39: if SVaccess == write

40: log “ISR, SV , SVaccess”

41: endif
42: endif
43: endif
44: end

Execution memory breakpoints are set in BasicConfig, including function entry ad-

dresses fentry (line 3), function return instructions ret in the PuT and ISR (line 5), and

interrupt return instructions iretd (line 6). Races occur when both the PuT and ISR access

the same memory location, so a memory breakpoint for each shared variable (SV) address

is set in callback function RaceObserver, which is invoked whenever the execution reaches

a breakpoint.

One challenge in setting up a breakpoint for each shared variable is that we need to

be able to obtain the dynamic address of that shared variable. One option for doing this

is to parse the symbol table. However, the symbol table provides only global variable ad-

dresses so our system may miss other shared variables such as local pointers. To obtain the

address of each shared variable that has been identified by our static analysis, we first cre-

ate an instrumented version of the ISR so that it dynamically prints each shared variable

address. We then iteratively inject data into the device port or adjust the device’s regis-

ter so that we can obtain the addresses of all shared variables in the ISR stored in lSV .

Our function RaceObserver sets breakpoints at these shared variable addresses in line 3 of

RaceObserver.
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To isolate the PuT and ISR from other applications in the system or other ISR in-

vocations, we statically identify all function names in the PuT and their entry addresses.

We also identify the entry address to the ISR. These addresses can be obtained by parsing

the symbol tables. Furthermore, we monitor the function return instruction (ret in X86) to

determine whether a function or the ISR has returned, and the interrupt return instruction

(iretd in X86) to determine whether the PuT has been recovered from the interrupt context.

At runtime, we keep a calling stack named flist. When a function or an ISR from

PuT is invoked its <address, frame pointer, stack pointer> is added to calling stack (line

14). When a shared variable is accessed, we compare the current frame pointer ebp with

the frame pointer on top of calling stack (line 34). This mechanism allows us to ignore

those shared variables that might be accessed by a different ISR or a different program on

the same ISR. If a ret instruction is encountered, by comparing the current stack pointer

esp with the stack pointer on top of calling stack (line 20), we can determine whether the

current function or the ISR has returned.

A function is popped from calling stack if its ret instruction is reached. Program

counter PC is recorded twice to determine whether the PuT is actually preempted be-

tween a shared variable access and its following instruction. The first time is when a shared

variable is accessed (line 36) under a non-interrupt service routine context, and the second

time is after an interrupt returns (line 31). An interrupt return instruction iretd is recorded

to indicate termination of an interrupt context. Note that the mere presence of an iretd does

not imply that an interrupt will jump back to the PuT, because more than one device can

issue interrupts and call iretd instructions. To overcome this problem, an iretd is logged

only when its frame pointer is equal to the frame pointer when a shared variable is accessed

in the PuT (line 28).

In summary, events logged for testing race conditions include: (1) read/write accesses

to shared variables (SVaccess by the PuT); (2) entry to the ISR; (3) a write to an SV by the
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ISR; (4) return from the ISR; (5) context switches from the ISR to the PuT. Figure 3.3

illustrates a sample of trace information recording these events for this example.

...

PuT, $xmit->tail$, read, pc1

ISR entry

ISR, $xmit->tail$, write

ISR exit

IRETD

pc1+1

...

Figure 3.3: Sample trace information for race detection.

Note that there is a race in the trace given in Figure 3.3. By observing the program

counter when SV is accessed by the PuT and the interrupt recovery point, we can determine

that an interrupt occurs right after xmit→tail is read by the PuT.

Controller Module. When engineers enable the controller module RaceController, a con-

trolled interrupt is invoked right after a shared variable access by the PuT. Simics allows

us to issue an interrupt on a specific IRQ line from the simulator itself. The interrupt will

happen before the subsequent instruction. As such, when our test system reaches a memory

breakpoint, the observer module is called. If the controller module is enabled, the observer

module tries to invoke an interrupt right after the access to shared variable.

It is not always realistic, however, to invoke an interrupt whenever we want. For exam-

ple, the interrupt enable register and possibly other control registers have to be set to enable

interrupts. In the example of Figure 3.2, before invoking an interrupt, the interrupt enable

register IER of the UART must be set while the interrupt identification register IIR must be

cleared. Even if interrupts are enabled, they can be temporarily disabled. Figure 3.4 is the

routine in RaceController used to determine whether it is possible to issue an interrupt.
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procedure ISR enabled(int p)

/*p is the pin number for a certain interrupt*/

45: begin

46: if eflags[9] != 0 and ioapic.redirection[p] == 0 and ioapic.pin raised[p] == LOW :

47: return true

48: else

49: return false

50: endif

51: end

Figure 3.4: Algorithm to determine whether it is possible to issue an interrupt.

There are two general steps that our system takes prior to invoking a controlled inter-

rupt. First, the controller module checks the status of the local interrupt and global interrupt

bits to see if interrupts are enabled. In an X86 architecture the global interrupt bit is the

ninth bit of the eflags register (line 46 in Figure 3.4). When this bit is set to 1, the global

interrupt is disabled, otherwise it is enabled. For local interrupts, Simics uses the Advanced

Programmable Interrupt Controller (APIC) as its interrupt controller. As such, our system

checks whether the bit controlling the UART device is masked or not. Our system also

checks whether a self-generated interrupt is about to be issued by examining the current

pin status. If this is true, the controlled interrupt will not be invoked.

Second, our system invokes only one controlled interrupt per test run. This is done to

avoid fault masking effects, which may occur in cases where multiple interrupts fire and

cause a failure that would be evident in the presence of a single interrupt to be “masked”

by the presence of the second. Thus, our system needs to first check a flag to determine

whether a controlled interrupt has already been invoked in the current run. If it has, the

test system does not monitor any further events in this run. Once it has been determined

that there has not been any invocation of a controlled interrupt in this run, the system then

checks to see whether the last accessed shared variable has already been tested in prior
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runs. If it has not, the system enables the control register for the UART and then invokes

an interrupt.

Note that, given the foregoing approach, there can be multiple runs of each test case,

and the number of runs depends on the number of shared variables that must be tested. With

the controller module disabled, the PuT runs |tc| times during a testing process, where |tc|

is the number of test cases. With the controller module enabled, the number of runs is

|tc| ∗ (|int|+1), where |tc| is the number of test cases and |int| is the number of controlled

interrupts issued. We also need to run the PuT one additional time for each test case to

determine whether all shared variables have been accessed.

3.2.2 Deadlock Detection

It is common for interrupt handlers to use non-preemptive mechanisms such as spin-locks

instead of preemptive mechanisms such as semaphores to protect critical code regions.

This is because typically, ISR code is not allowed to sleep. As such, interrupt code is short

and deterministic so the amount of time that a task must wait to enter the critical region

should be predictably short [103]. That said, there are many real world examples including

the one used in this illustration (Figure 3.5) that show how incorrect usage of spinlocking

mechanisms can cause priority inversions and ultimately deadlocks between the PuT and

ISR. In the example of Figure 3.5, deadlocks occur because:

• the PuT is preempted by the ISR while the PuT is holding a spin lock,

• the ISR tries to acquire the same spinlock and becomes stuck in the spinlock loop.

Because the ISR has higher priority, it can become stuck in this loop. To test for

such deadlocks, we configure our test system in a manner similar to that used to test for

races. However, test cases for the system are generated to adequately cover spin lock
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void x h c i w a t c h d o g ( . . . )
1 .{
2 . x h c i = ep−>x h c i ;
3 . . . .
4 . s p i n l o c k (& xhci−>l o c k ) ;
5 . . . .
6 . s p i n u n l o c k (& xhci−>l o c k ) ;
7 .}

i r q r e t u r n t i n t e r r u p t ( i n t i r q , void ∗ d e v i d )
8 .{
9 . x h c i = g e t d e v ( d e v i d ) ;
1 0 . . . .
1 1 . s p i n l o c k (& xhci−>l o c k ) ;
1 2 . . . .
1 3 .}

Figure 3.5: Faulty code that can cause deadlocks.

and spin unlock pairs in the PuT instead of shared variables. In this illustration, we

assume that spin lock and spin unlock are properly paired. Next, we describe the

configurations of the execution observer and execution controller.

Configuration of the Test System

In a uniprocessor environment, an observer does not increase fault detection effective-

ness because deadlocks can be easily observed (e.g., systems hang or show no response).

However, SIMTESTER can still be useful in informing testers of the sources of deadlocks.

Furthermore, it can support deadlock detection in multiprocessor systems where deadlock

might cause one or more processors to stop making execution progress but other processors

continue to do useful work.

Observer Module. We configure the observer module so that it records runtime informa-

tion that can be used to both issue a runtime warning and log for offline analysis. In this

deadlock example, the generated information includes:

• when functions of the PuT and ISR execute and return;
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• when a spinlock is acquired by the PuT and by the ISR, and

• when a spinlock is released by the PuT.

As in the example of Figure 3.5, when the spinlock is acquired by the the PuT, the observer

sets the lock condition to true. If the ISR tries to obtain the same lock, the observer first

checks whether the lock condition is true, and then compares the requested lock with that

held by the PuT. If they are the same, a deadlock has occurred. In this case, the observer

issues a warning once the deadlock is detected. In both environments, it also records the

event so that engineers can perform analysis offline. Function DeadlockObserver describes

our algorithm to detect deadlocks.

procedure DeadlockObserver

require: procedure BasicConfig

52: begin
53: set execution breakpoint on entry point of spin lock and spin unlock

54: switch (breakpoint)

55: case fentry:

56: flist.push({fentry, ebp, esp, lockobj})

57: if fentry == ISRentry

58: isISR = true

59: endif
60: case spin lock:

61: if ebp == flist.top(ebp)

62: if isISR and isLock and eax == lockobj

63: print“deadlock occurs”

64: else
65: flist.push({fentry, ebp, esp, eax})

66: endif
67: endif
68: case spin unlock:

69: if ebp == flist.top(ebp)

70: flist.push({fentry, ebp, esp, eax})

71: endif
72: case ret:

73: if esp == flist.top(esp)

74: if flist.top(entry) == ISRentry
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75: isISR = false

76: endif
77: if flist.top(entry) == spin lock /*spinlock returns*/

78: if !isISR

79: isLock = true

80: lockobj = flist.top(eax)

81: endif
82: endif
83: if flist.top(entry) == spin unlock

84: if !isISR

85: isLock = false

86: lockobj = null

87: endif
88: endif
89: flist.pop()

90: endif
91: end

Functions spin lock and spin unlock are commonly used by various applica-

tions. As such, we need to isolate calls to these two functions that come from the PuT and

ISR. Again, we use the calling stack to dynamically store information on called functions

during virtualization (lines 56, 65, 70).

Initially, lockobj is set to null. The lock is acquired after spin lock returns (line

79), and released after spin unlock returns (line 85). Besides the frame pointer and

stack pointer, each function in calling stack carries a lock object, indicating whether the

current running function is holding a lock or which lock it is holding. As such, a locked

object can always be obtained by examining the top of the stack (line 80).

A deadlock occurs under three conditions (line 62): (1) the ISR is executing; (2) a lock

is held by the PuT; (3) the ISR is stuck in the same spinlock loop as the object of the held

lock.

Deadlock detection is different from race detection in that a deadlock warning is issued

instead of simply recording deadlock information. Once a deadlock is detected, the test



44

script terminates execution and reinitializes the test system for the next test run. Because

a lock object is passed as a parameter to spin lock or spin unlock, the object can

be obtained by reading the CPU eax register in the X86 architecture. Note that this is

architecture and compiler dependent. However, the approach should be generalizable to

other architectures and compilers as long as we know how the lock object is passed.

Controller Module. The controller module DeadlockController is implemented following

the same steps as the controllability module for race conditions, except that an interrupt is

issued after a spinlock is acquired by the PuT instead of invoking interrupts on each shared

variable access.

3.3 Empirical Study

To evaluate SIMTESTER, we consider two research questions.

RQ1: How does the effectiveness of SIMTESTER at detecting data races compare to that

of other techniques?

RQ2: How does the effectiveness of SIMTESTER at detecting deadlock compare to that of

other techniques?

The two research questions let us investigate whether the use of controllability and ob-

servability can affect the effectiveness of SIMTESTER at detecting data races and deadlock,

respectively.

We applied our approach to the UART device driver on a preemptive kernel version

of Fedora Core 2.6.15. The driver includes two files, serial core.c and 8250.c, containing

1896 and 1445 lines of non-comment code, respectively. The main application transmits

character strings to and receives character strings from the console via the UART port. Note

that in this work we apply our testing process only to the UART driver. However, the same

process is also applicable to other types of device drivers.
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Our approach requires the use of existing test cases, so we generated test cases for

the system based on a code-coverage-based test adequacy criterion. To generate test cases

relevant to race conditions, we first statically identified shared variables between the PuT

and ISR. We use the precise shared variable detection algorithm proposed in [104], but

we are interested only in shared variables that are read by the PuT and written by the ISR,

or written by both the PuT and the ISR. We labeled each shared variable as a “definition”

or “use” through our analysis. After shared variables were identified, we generated a set of

test cases that cover the feasible shared variables (shared variables for which there exists a

possible execution of the program which executes them) in the PuT. This process produced

12 test cases.

To generate test cases relevant to deadlocks, we sought to find test cases that ade-

quately cover spin lock and spin unlock pairs in the PuT instead of shared vari-

ables. (In the case of our target program, we know that all occurrences of spin lock and

spin unlock are properly paired; in practice a static analysis could initially determine

this and flag unpaired occurrences for attention by the test engineer.) In the case of our

target program, which contains only three spin-lock pairs, this process resulted in two test

cases (one of which covered two of the pairs).

To better assess the cost and effectiveness of our approach, we considered both the

approach and two alternative baseline approaches. In the discussion that follows, we refer

to our approach as the conditional controllability approach, because it involves issuing

controlled interrupts under certain conditions. The second approach that we considered,

no controllability, involves testing the program without any controlled interrupts; this is

the approach that test engineers would normally use. The third approach that we consider,

random controllability, involves issuing controlled interrupts at random program locations

after shared variable accesses and without checking interrupt conditions.
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We measured execution times for the foregoing approaches by embedding a timer in the

Simics module. As such, the reported times are the actual times spent by Simics to execute

the program.

3.3.1 Results and Analysis

3.3.1.1 RQ1: Testing for Race Conditions

We begin by considering the target program as given, and evaluate the effectiveness and

efficiency of our race condition testing approach on that program.

We first applied conditional controllability together with observability. Under this ap-

proach, across the 12 test cases utilized, 84 controlled interrupts were applied, and for each

test case, one extra run was needed to determine whether all shared variables had been

accessed. Thus, 96 test runs were required to finish testing the target program with an aver-

age execution time of 77.91s per test run. Including self-generated interrupts, the number

of interrupts generated for the target program was 352. In the course of applying the ap-

proach, we detected a race in function uart write room of serial core.c, which

we later determined had been corrected in subsequent versions of the system. By running

the system with observability turned off, we determined that this fault can be detected only

with observability enabled; in other words, it is a fault that did not propagate to output on

our particular test inputs.

We next tested our target program with no controllability. In this case, the only inter-

rupts that occur are self-generated interrupts. Because runs of each test case can conceiv-

ably differ, we ran each test case on the program 500 times. The total number of interrupts

observed was 16,500. Over the 6000 total test runs, average execution time was 74.08s per

test, only 3.83 seconds less than with controllability added. None of these test runs de-
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tected the race condition detected by our first approach, however, either with observability

enabled or disabled.

Finally, we tested our target program using the random controllability approach. For

each test case, we ran the target program three times more than the number of runs per-

formed under the conditional controllability approach, on each run generating an interrupt

at a randomly selected program location. The total number of test runs was 288 and the

number of interrupts generated was 1044. In this case the average execution time per test

case was 75.17s, only 2.74 seconds less than with controllability added. Again, the race

was not detected, either with observability enabled or disabled.

One important characteristic of our technique is that checking is performed before is-

suing a controlled interrupt. When a shared variable is accessed in the main program, the

controllability module first checks to see whether it is possible to issue an interrupt, and if

not, it proceeds to the next possible location. This approach can save test runs, but at the

cost of checking. To quantify the tradeoffs involved, we also applied our conditional con-

trollability approach without the checking step enabled. Recall that with checking enabled,

96 test runs were needed to issue controlled interrupts, with an average execution time of

77.91s per test. With checking disabled, on the other hand, 1428 test runs were needed to

issue controlled interrupts, with an average execution time of 75.66s per test run. Clearly,

the checking approach saves time overall.

A second characteristic of our technique is that interrupts are issued only after shared

memory accesses, and this can be much less expensive than issuing interrupts after each

memory access, which is the approach used by Higashi et al. [53]. For our target program,

there are 94,941 data accesses made in the course of running the 12 test cases. If an interrupt

were issued after each data access, we would need 82.6 days to finish testing the target

program.
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3.3.1.2 RQ2: Testing for Deadlock

We next considered the target program as given, to evaluate the effectiveness and efficiency

of our deadlock testing approach on that program. (In this case, because our experiment

is running on a uniprocessor and observability does not increase fault detection power, we

consider only the effects of controllability, not the effects of observability.)

We began by running our two deadlock test cases on the target program under condi-

tional controllability. Under this approach, only two controlled interrupts were generated,

and they detected one deadlock in function serial8250 handle port of 8250.c,

which had been reported [105] and corrected in later versions. The average execution time

was 69.88s per test run.

We next ran the target program with no controllability. For each test case, we ran the

program 500 times; the 1000 test runs had an average execution time of 75.24s, and 4000

self-generated interrupts were observed. However, no deadlocks were detected.

Finally, we ran the program using the random controllability approach. Here we ran

the program three times as many as the number of runs performed for conditional control-

lability, issuing an interrupt at a random program location. The total number of controlled

interrupts was six and the total number of interrupts generated was 15. The average run

time was 75.24s per test. Here also, no deadlocks were detected.

Notice that the average execution times of the latter two approaches are higher than that

of the conditional controllability approach. This result, at first, appears counter-intuitive.

However, in our experiment with conditional controllability, we terminated the execution

once a deadlock has been detected. On the other hand, the latter two approaches did not

detect deadlocks, so the program ran to completion.
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3.3.1.3 Effectiveness of Techniques at Detecting Seeded Faults

While the results of the foregoing studies are encouraging, the numbers of naturally oc-

curring faults found in the target program was low, rendering comparisons of the fault

detection effectiveness of the approaches less meaningful. To further investigate fault de-

tection effectiveness we followed a process often utilized in the software testing research

community [106]; namely, the use of seeded faults.

In this case, we injected 12 potential race condition faults and 11 potential deadlock

faults into 8250.c by making syntactic changes to the code. For race conditions, we re-

moved statements corresponding to critical section protection (e.g., spin lock, spin

lock irq). For deadlock, we changed statements corresponding to interrupt disable and

enable pairs (e.g., spin lock irq and spin unlock irq) into pure spin lock pairs

(e.g., spin lock, spin unlock). Of the 23 potential faults thus created, further exam-

ination revealed that seven of the potential race condition faults, and seven of the potential

deadlock faults, could not possibly be triggered on the system on its given hardware plat-

form, so we removed those. This left us with five potentially revealable race condition

faults and four potentially revealable deadlock faults.

Given the faults thus seeded, we ran our test cases on the faulty systems using con-

ditional and random controllability, and in the case of race detection, with observability

enabled and disabled. For the race condition detection approach, conditional controllabil-

ity detected two of the five faults. One of these faults was detected both with and without

observability. The same fault was also detected with random controllability, but only with

observability enabled because in this case the fault does not propagate to output. This

occurred because interrupts issued by conditional controllability visited more unprotected

shared variables that can cause incorrect output, and these shared variables are not visited

by random controllability.
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The second fault revealed in our race detection trial was revealed not through observ-

ability, but rather, through output, for both conditional controllability and random con-

trollability. The reason this occurred is because the fault was not actually caused by our

defined race condition, but rather, by another type of atomicity violation. In particular, a

read-write shared variable pair in the main program is supposed to be atomic, but the ISR

read this shared variable before it was updated in the main program. This outcome shows

that, while our approach does not specifically target other types of faults, it may catch them

as by-products.

We also inspected the three potential race condition faults that were not detected by

any techniques. We determined that the reason for their omission was that the interrupt

handler in each of the versions does not share variables or read variables with the main

program. This does not mean that the code regions involved do not need to be protected,

because other ISRs may share memory locations, or programmers may intentionally cause

the regions to execute without interruption.

Where deadlock faults were concerned, we discovered that conditional controllability

detected all four, while random controllability detected two.

3.4 Further Discussion

Our observer module considers one type of definition of a race condition. In practice,

testers can adopt different definitions because there is not a single general definition for

the class of race conditions that occur between an ISR and a PuT. As noted above, for

the four faulty versions on which the ISR and the PuT do not share read-write and write-

write variables, we still found one fault with controllability enabled. This fault is related to

an atomicity violation, because a code region in the main program is supposed to execute
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atomically, e.g., before a shared variable is updated in the main program, and an interrupt

occurs and the wrong data is read.

Our approach injects data into device ports and forces an interrupt handler to execute

one path. The data we inject is the same as the test input given to the program. For example,

if an application sends the string “hello” to the UART console passed by UART transmitter

buffer, a controllability module would inject “world” into the UART transmitter buffer to

force an interrupt to occur after a certain access. It is also possible to have multiple paths

by which shared variables can exist in interrupt handlers. Testers can extend our method

by forcing interrupt handlers to execute different paths, which may increase the probability

of revealing faults.

However, no faults are left undetected due to missing shared variables or spin locks in

the other paths of the ISR in our target program. It is also possible to force an interrupt

handler to execute only the paths that have definition-use relationships with the main pro-

gram. This may further reduce the number of controlled interrupts and test runs. To do this,

the value schedule approach proposed by Chen et al. [52] could be adapted.

To force an interrupt to occur, our controllability module issues a new interrupt. How-

ever, races and deadlocks can occur relative to the interrupt generated by the target pro-

gram itself. For example, suppose an interrupt is requested by device driver code, but is

not immediately processed for some reason (e.g., device port delay). The interrupt handler

associated with this interrupt may be executed later within a spin lock pair or after a shared

variable access, and thus a race condition or a deadlock may occur. Our controllability

module can be further extended to deal with such cases. For example, when an interrupt is

triggered, the module can delay this interrupt by masking its interrupt enable register, and

issue the interrupt after a certain event happens (e.g., shared variable access, spin lock is

acquired). If there is no such event, the interrupt is issued on exiting the PuT.
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In practice, when testing software components (e.g., device drivers and interrupt han-

dlers), the first task that a test engineer must accomplish is to gain confidence that the

software component is developed correctly. In our study, the analysis involves a test pro-

gram, the interrupt handler that interacts with the device driver, and the device driver code.

The key point here is that the tester focuses on a specific component and how it interacts

with the rest of the components. If the focus changes to a different component, the same

analysis can be applied to test the new component. As such, the proposed approach is not

designed to test the entire system at once. Instead, it is more suitable for component testing.

In our current work, the test generation process was done manually (which is currently

the norm in practice). Our study considers a test input to include input values and interrupt

scheduling. However, there is no reason the approach could not also utilize input values

created using existing test case generation approaches (such as dynamic symbolic execu-

tion [107,108].) A problem with such approaches by themselves is that they generate large

numbers of test cases with no methodology for judging system correctness beyond looking

for crashes. Our approach provides more powerful, automated oracles, and thus should

ultimately facilitate the use of larger numbers of automatically generated test cases.

As noted in Chapter 2.2, there are several techniques for testing embedded systems with

a particular focus on interrupt-level concurrency faults. For example, Higashi et al. [53] de-

tect race conditions caused by interrupt handlers via a mechanism that causes interrupts to

occur at all possible times. Their method and ours artificially amplify the frequency of

interrupts to evaluate whether these interrupts can cause faults. However, our work has

several advantages. First, by adding observability, we increase the power of fault detection

while Higashi’s method focuses on controllability. Second, instead of firing interrupts at

all memory access instructions of an application, we issue interrupts only at shared vari-

able accesses, which significantly reduces testing cost. Third, we adopt coverage criteria

to cover all feasible shared variables in the application instead of using arbitrary inputs;
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this can help the program execute code regions that are more race-prone. Fourth, Higashi’s

method issues all interrupts during one program run. This may cause problems with fault

masking and cascading errors. In contrast, we issue just one interrupt during a given pro-

gram run. Fifth, Higashi’s method does not consider situations in which interrupts cannot

occur; however, our technique can determine whether it is possible to issue interrupts at

runtime by observing hardware states, which further improves testing efficiency. Another

implementation difference is that we built SIMTESTER on a virtual platform while their

approach is built on an processor emulator.

3.5 Conclusion

The frequent use of interrupts for timing, sensing, and I/O processing in embedded soft-

ware can cause concurrency faults to occur due to interactions between applications, device

drivers, and interrupt handlers. This type of fault is considered by many practitioners to be

among the most difficult to detect, isolate, and correct, in part because it can be sensi-

tive to interleavings and often occurs without causing any observable incorrect output. In

this chapter, we introduced SIMTESTER, an instantiation of the SIMEXPLORER frame-

work, that provides test engineers with the ability to precisely control execution events and

observe runtime context at critical code locations. SIMTESTER is built on a commercial

virtual platform that is commonly used as part of the hardware/software co-design process.
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Chapter 4

SimRacer: Automatic Testing for

Process-Level Races 3

In this chapter, we propose SIMRACER, another instantiation of the SIMEXPLORER frame-

work, that allows engineers to effectively test for process-level races by providing determin-

istic execution in multiprogramming systems. Similar to SIMTESTER (Chapter 3), SIM-

RACER employs Simics to observe system execution, to deterministically control occur-

rences of events, and to allow testing to target specific types of races. SIMRACER allows

engineers to focus only on applications under test without worrying about other events or

applications in the system. Side effects from execution of applications not under test can

be easily determined by querying current system states. By using a VM, SIMRACER also

operates at the binary level so it is capable of detecting races between applications written

in different languages. It is also generalized, as it can be used on any system that can run

on Simics.

To achieve the foregoing benefits, SIMRACER works as follows:
3The contents of this chapter have appeared in [109].
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1. Employ dynamic analysis to identify potential races. SIMRACER executes tests on the

target processes and records synchronization and memory operations, hardware oper-

ations, and system calls that access shared resources. It derives happens-before rela-

tionships involving shared resource accesses between processes based on the recorded

information, and computes sets of pairs of program instructions that could potentially

race in a concurrent execution.

2. Employ virtualization to achieve controllability. Virtualization allows us to achieve

controllability without modifying the kernel. This is because SIMRACER can stop exe-

cution at each specified program location and observe system information to determine

whether events can occur. For example, it can query the status register to determine

whether it is possible for signals to occur (e.g., check signal masking bits). If so, a

signal can be raised to exercise different signal interleavings. Further, through a spe-

cial device driver, SIMRACER can selectively execute processes that can participate

in races. These capabilities provide the controllability needed to test for process-level

races.

3. Employ active testing to permute process interleavings. SIMRACER executes the target

processes following a random schedule. During execution, if the next instruction of a

process is contained in a potential race pair computed in the recording phase, then the

execution of this process is suspended until the other process executes an instruction in

the race pair. Next, SIMRACER reorders the two racing events recorded in the original

execution. If the current system states do not allow the reordering to occur, SIMRACER

adjusts the executions of the processes until the reordering succeeds, which results in a

real race.

4. Detect damaging results. SIMRACER allows engineers to observe test oracles for cor-

rectness. In the case of race detection, results that do not cause observable failures are
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further examined. If there are no test inputs that can cause the race to expose an ob-

servable failure, the race is considered benign. Because we implemented SIMRACER

on Simics, scripting mechanisms that can be used to validate the system outputs with

provided oracles and generate error notifications are readily available.

To evaluate our approach we conducted an empirical study using 16 Unix programs

that contain actual process-level races. Our goal was to answer two research questions:

(1) how effective is SIMRACER at detecting process-level races, and (2) how effective is

SIMRACER at detecting observable faults related to those races. The results of our study

show that our approach is effective at revealing races, and far more effective than stress

testing at revealing faults related to those races. Further, while our approach takes longer

than stress testing to execute test runs due to virtualization overhead, it can reveal more

races while using far fewer test runs.

We provide five real-world examples to illustrate how process-level races can occur.

Figure 4.1 provides an instance of a process-level race modeled after a pattern of commonly

occurring races in Linux systems [110, 111, 112]. In this example, a race occurs on a file,

causing the recorded information to be incorrect. The parent process P1 creates a file “foo”

and writes to it (lines 1-3). Next, P1 spawns a child process P2 using fork. While P2 is

sleeping (line 6), P1 renames “foo” to “bar” and waits for P2 to exit (lines 16-17). After

P2 wakes up, it writes a string into “bar” (lines 7-8). Next it checks for the existence of

“foo” and writes a message into “bar” (lines 9-10). The expected output is a “bar” file

containing the string “hello kitty” followed by the string “foo does not exist”. However,

races can occur if P1 is suspended while P2 is sleeping. In such a scenario, P2 creates a

new file “bar”, and writes “kitty” into it (lines 7-8). Next, P1 overwrites the contents of

“bar” by renaming “foo” to “bar” (line 16). As a result, the output information in “bar” is

just “hello”.
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1 f d f o o = fopen ( ” foo ” , ”w” ) ;
2 f w r i t e ( ” h e l l o ” , 1 , 256 , f d f o o ) ;
3 f c l o s e ( f d f o o ) ;
4 c h i l d p i d = f o r k ( ) ;
5 i f ( c h i l d p i d == 0) { /∗ c h i l d p r o c e s s ∗ /
6 s l e e p ( 1 ) ;
7 f d b a r = fopen ( ” b a r ” , ” a+” ) ;
8 f w r i t e ( ” k i t t y \n ” , 1 , 256 , f d b a r ) ;
9 i f ( s t a t ( ” foo ” ) != 0){

10 f w r i t e ( ” foo does n o t e x i s t \n ” , 1 , 2 5 6 , f d b a r ) ;
11 }
12 f c l o s e ( f d b a r ) ;
13 e x i t ( r e t v a l ) ;
14 }
15 e l s e { /∗ p a r e n t p r o c e s s ∗ /
16 rename ( ” foo ” , ” b a r ” ) ;
17 w a i t (& s t a t u s ) ;
18 e x i t ( 0 ) ;
19 }

Figure 4.1: Two processes race on a file

1 i n t f i l e s c r e a t e d = 0 ; /∗ g l o b a l v a r i a b l e ∗ /
2 c r e a t e o u t p u t f i l e ( ) {
3 o u t p u t s t r e a m = fopen ( o u t p u t f i l e n a m e , ”w” ) ;
4 /∗ s i g n a l e d ∗ /
5 f i l e s c r e a t e d ++;
6 }
7 s i g n a l ( ) {
8 f o r ( i = 0 ; i < f i l e s c r e a t e d ; i ++) {
9 name = m a k e f i l e n a m e ( i ) ;

10 i f ( u n l i n k ( name ) )
11 e r r o r ( 0 , e r r n o , ”%s ” , name ) ;
12 }
13 }

Figure 4.2: Process-level race due to a software signal

4.1 Motivation

Figure 4.2 provides an example of a race between a regular process and a software signal

handler. This race occurs in a program, CSPLIT, considered in our study. Under normal

execution, the process calls create output file to create a set of files (line 3), and

increments the counter (line 5). If a signal occurs, the process iterates over the files that
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have been created (lines 8-9) and deletes them (line 10). However, if a signal occurs just

before the counter is incremented (line 4), the files will not be deleted by the handler.

Figure 4.3 provides an example of a deadlock due to a data race in Apache 2.0.49 [113]

that is detectable by our technique. It involves the CGI process and the HTTPD process that

handles the CGI request. Apache redirects CGI’s stderr and stdout outputs into two pipes.

Under normal execution, the HTTPD process reads data after the CGI process writes stderr

and stdout into the two pipes. However, a deadlock occurs when line 2 happens before

line 8. The HTTPD process is blocked, waiting for the CGI process to write data to pipe2,

and the CGI process is blocked, waiting for the HTTPD process to read data from pipe1.

HTTPD{
1 . . . .
2 . r e a d ( p ipe2 , s t d o u t ) ;
3 . . . .
4 . r e a d ( p ipe1 , s t d e r r ) ;
5 . }

CGI{
6 . w r i t e ( p ipe1 , s t d e r r ) ;
7 . . . .
8 . w r i t e ( p ipe2 , s t d o u t ) ;
9 . . . .
1 0 . }

Figure 4.3: A deadlock in the Apache Web-server

Figure 4.4 provides an example of a data race in an Android application [114]. The

init process watches for a new device (line 1) and sets the permission on it (line 3). At

the same time, if the server process tries to open this device, this results in an error because

the server does not yet have access permission for this device.

i n i t {
1 . open ( dev ) ;
2 . . . .
3 . s e t p e r m i s s i o n ( dev ) ;
4 . }

s e r v e r {
5 . . . .
6 . open ( dev ) ;
7 . . . .
8 . }

Figure 4.4: A process-level race in an Android application
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b a c k u p t i m e r {
1 . w r i t e r e g ( IER ) ;
2 . . . .
3 . i f ( i s E n a b l e d ( IER )==TRUE ) ;
4 . /∗ t r a n s m i t by ISR ∗ /
5 . e l s e
6 . /∗ t r a n s m i t by p o l l i n g ∗ /
7 . }

s t a r t t x {
8 . . . .
9 . w r i t e r e g ( IER ) ;
1 0 . /∗ t r a n s m i t by ISR ∗ /
1 1 . . . .
1 2 . }

Figure 4.5: A process-level race in a UART device driver

Figure 4.5 provides an example of a process-level race in a UART device driver that

runs in kernel mode [115]. This race occurs on multi-core systems and was detectable

by our approach. When the UART port is buggy (the interrupt does not work initially), the

driver calls a backup timer periodically. The backup timer first disables interrupts by setting

the interrupt enable register (IER) (line 1) and later checks the IER to see if it has been

enabled. If it has, the timer uses an interrupt handler to transmit data (line 4); otherwise,

it uses polling to slowly transmit the data (line 6). If two CPU cores try to transmit data

simultaneously (i.e., calling start tx), races can occur on the IER (line 1 races with line 9),

causing both the backup timer and transmission routines to simultaneously transmit data

through the same serial port.

Generalizing from these examples, a process-level race occurs when: (1) two processes

access a shared resource, and (2) they could have accessed the shared resource in an order

different from the original order. This definition of a race is broader than the standard

definition, which is based only on synchronization operations [4, 6]. We also consider

order violations; that is, cases in which the desired order of shared resource accesses is

reversed and the accesses may or may not be protected by a common lock [22, 116]. An

order violation is a necessary but not sufficient condition for a typical race.
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4.2 Approach

SIMRACER, which is implemented on Simics, is designed to support testing for races be-

tween processes (running in both user and kernel modes) and between processes and signal

handlers. We consider three classes of processes which include: (1) regular user processes

(created through fork and execv), (2) software signals and handlers (software interrupts

used for event notifications), and (3) kernel threads that run in the kernel mode so they can

access kernel functions and data structures. The scheduling of processes is controlled by

the kernel process scheduler. When a software signal is sent to a process, a signal handler

may be entered. The servicing of the signal may or may not be immediate depending on

the system state and the current disposition of the signal.

SIMRACER operates in two phases. The first phase analyzes the system under test for

resources that can potentially race under normal execution. The result of this phase is

an event trace that is used in the second phase to test for races. The second phase (the

primary contribution of this work) permutes process interleavings to force races to occur

at potential racing points obtained in the first phase. SIMRACER outputs both races and

observable results.

SIMRACER has two major components: Execution Observer and Execution Controller

(Figure 4.6). The Observer monitors the system under test in the first phase, and generates

runtime information that is used to analyze the system for potential sources of races. The

Observer also monitors runtime events to direct the scheduling effort in the second phase.

We configured the Observer so that it sets memory breakpoints on shared resource opera-

tions enacted by each process under test (PUT). To distinguish events invoked by a PUT

from other events, we keep a call stack for each PUT at runtime. When a function in a PUT

is invoked, its frame pointer is added to the call stack. When a shared resource is accessed,

we compare the current frame pointer with the frame pointer on top of the call stack. This
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Figure 4.6: Overview of SimRacer

allows us to ignore shared resources that might be accessed by kernel threads or user-level

processes that are not under test.

The Controller specifies events (e.g., process scheduling, signal handler invocations) to

be invoked at particular points in execution. This is critical to supporting testing because

it allows non-deterministic events to occur predictably. We implemented the Controller by

installing a dummy device and its driver program. When an event such as a shared resource

access occurs, the Observer notifies the Controller, which writes to the programmable in-

terrupt controller to raise an interrupt for the dummy device. Next, the interrupt handler

in the dummy device driver executes and checks the state of the target process using the

task struct data structure to determine whether to suspend or resume a process or send out

a software signal. Our mechanism can precisely force events to occur at particular binary

instructions because hardware interrupts always have the highest priority of execution. In

addition, our approach is applicable to any operating system that can run on Simics.
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Because modern systems are multicore, we designed SIMRACER to be able to detect

races that occur due to concurrent executions on different cores. For example, a device

driver that is invoked simultaneously on two different cores can race if it manipulates the

same hardware resource. To detect such races, we use a dummy device for each core. Dur-

ing testing, we use the Linux sched setaffinity command to assign kernel threads to

two cores. Instead of suspending the kernel thread when necessary, SIMRACER makes the

thread spin on its core; this is necessary because the interrupt handler cannot call sleep

functions.

4.2.1 Recording Events

The Observer component of SIMRACER records operations that access the following shared

resources (SRs): shared memory, file descriptors (file handles of opened files), inodes

(metadata about files, such as time and access permission), file contents, process data (pro-

cess file table, data in /proc, e.g., PID), and hardware components (e.g., registers). Many

of these SRs are also used by Laadan et al. [26] to perform process-level race detection;

however, we also consider hardware components that are accessible by applications and

device drivers. This lets our approach detect more types of races. Note that SRs need

not be limited to the aforementioned items. In this work, however, we consider only those

items that are likely to produce harmful results. For example, we do not track accesses to

standard I/O, because races related to these are likely to be benign (when running multiple

processes, outputs are expected to be non-deterministic). In addition, we consider only

SRs that are directly accessible by application developers. For example, we do not track

kernel process data. However, SIMRACER provides a user interface that lets developers

specify other SRs.



63

After identifying SRs, the Observer tracks operations that access them in the system

under test. We denote these operations as OP. The system stores recorded information as a

log file for future use. When engineers wish to identify potential sources of races involving

a pair of processes, they can provide the traces of the processes as inputs to our Phase 1

shared resource analyzer.

We categorize OPs as reads or writes. For OPs related to memory and hardware ac-

cesses, SIMRACER automatically identifies reads and writes using features provided by

Simics. For OPs related to system calls on shared objects, SIMRACER models their ef-

fects on reads and writes. SIMRACER tracks 23 common system calls (e.g., open, read,

write, lstat, clone, wait, execve, and exit); these involve reads and writes on

the defined SRs. For example, the lstat system call on file f reads the metadata of f ,

and the write system call on f writes to both the data and metadata of f .

The clone system call creates a new process inode under the /proc directory (write).

The wait system call changes the state of the process id of its child process and removes

the inode of its child process inode under the /proc directory (write). The exit call

changes the state of the pid of the current process. A system call passed with different

options may have different effects on an object. For example, the open system call on file f

reads the data for f with the O RDONLY option, writes to the inode of f ’s parent directory

with O CREATE, and writes to the data for f with the O TRUNC option. SIMRACER

provides a user interface that lets developers define other system calls of interest.

4.2.2 Phase 1: Identify Potential Race Sources

The Phase 1 algorithm computes a set of potential sources of races, PRaceSet, between

processes Pi and Pj or between a process and signal handler Pi and Sj . Two events have

the potential to race if Pi and Pj (Sj) access the same SR, at least one of the accesses is
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a write, and one access can potentially happen both before and after the other. We next

introduce notation used to describe our algorithms.

1. The log files of Pi and Pj (Sj) obtained from a normal execution are denoted by Li

and Lj , respectively.

2. OP(SRn) denotes an SR access by Pn, and includes both the entry and exit of an

SR access operation.

3. σ = (OP(SRi), OP(SRj)) denotes a pair of access operations involving the same

SR in Pi and Pj (Sj).

4. ENT(OP(SRn)) denotes the entry of an SR access in process Pn. If OP(SRn) is

a system call, ENT(OP(SRn)) is the instruction that invokes that system call. If

OP(SRn) is a memory or hardware access, ENT(OP(SRn)) is the instruction that

executes the load/store instruction.

5. EXT(OP(SRn)) denotes the exit of an SR access in process Pn. If OP(SRn)

is a system call, EXT(OP(SRn)) is the return instruction of the system call. If

OP(SRn) is a memory or hardware access, EXT(OP(SRn)) is the instruction im-

mediately after ENT(OP(SRn)).

6. State(Pn) returns the current state of process Pn.

7. Execute(Pn) returns the state after executing the current instruction of process

Pn.

8. Output(Pi, Pj) returns the outputs of Pi and Pj .

Given an event ei and an event ej , we use ≺ to denote the happens-before relationship

for ei and ej; this is a relationship that can be satisfied by the following rules:

1. if ei and ej are from the same process or the same signal handler, and ei happens

before ej , then ei ≺ ej
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2. if ei and ej are from different processes or signal handlers, and there is a dependency

such that ej would not happen unless ei happens, then ei ≺ ej

3. if ei is from a process and ej is from a signal handler S, and ei ≺ ej , then ei ≺

Sall−the−events

4. if ei is from a process and ej is from a signal handler S, and ej ≺ ei, then Sall−the−events

≺ ei

5. ≺ is transitively closed.

On the second of the foregoing rules, we infer dependencies from the semantics of

the system calls. For example, if Process Pi forks a child process Pj , all events in Pi

prior to calling fork happen before all events in Pj . The following two semantics are

also identified as happens-before system calls: 1) a wait occurs in the parent process

and an exit occurs in the child process; 2) a pipe in one process blocks the data in

another process until the data is available. For the third and fourth of the foregoing rules,

dependencies are inferred from the properties of signal handlers. Because a signal handler

can never be preempted by a regular process, all events are synchronized in the signal

handler.

The Phase 1 algorithm takes traces Li and Lj as inputs and outputs a set of potential

races PRaceSet. For each shared resource SRi accessed in Li, the algorithm iterates over

Lj to see if the same shared resource is accessed. If two events do not have a happens-

before relationship between them and at least one access is a write, the pair of events is

added to PRaceSet.

To simplify the Phase 2 algorithm, event pairs are recorded based on execution order.

For example, an event pair recorded as (σ1, σ2) indicates that σ1 occurs before σ2 in the

original execution trace, and the Phase 2 algorithm will need to reverse the two events to

make σ2 happen before σ1. Note that only distinct event pairs are identified in terms of
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Figure 4.7: Happens-before example (solid arrow for happen-before, dashes for potential races)

instruction locations; we ignore redundant pairs that occur due to recursive calls or loops.

As an example, we refer to the program in Figure 4.1, which has the following execution

trace:

P1:open(“foo”) → P1:write(fd foo) → P1:close(fd foo) → P1:clone() →

P1:rename(“foo”, “bar”) → P1:wait() → P2:open(“bar”) → P2:fstat(fd bar) →

P2:write(fd bar) → P2:stat(“foo”) → P2:write(fd bar) → P2:close(fd bar) →

P2:exit()

Figure 4.7 shows the happens-before relationships and the potential-race relationships

between operations in this trace. Solid arrows indicate happens-before relationships be-

tween pairs of events. For example, all events in P2 happen after events in P1 prior to the

fork call. The return from wait in P1 happens after the exit of P2 because P1 has

to wait for P2 to finish. The system call rename in P1 modifies the inodes of “foo” and

“bar”, thus it races with the system calls accessing the inodes in P2. Events connected by

dashes are potential race pairs.

This Phase 1 algorithm may generate false positives because it does not identify all syn-

chronization operations. In Figure 4.1, the statement in line 10 cannot be executed unless

the statement in line 16 is executed. Thus, the potential race pairs (P1:rename

(“foo”, “bar”), P2:write(fd bar)) (the second write(fd bar) in P2) and (P1:rename

(“foo”, “bar”), P2:close(fd bar)) in Figure 4.1 can never result in real races. We de-

scribe how our proposed system deals with false positives as part of Phase 2.
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4.2.3 Phase 2: Test for Real Races

The main objective of the Phase 2 algorithm is to automatically control process schedul-

ing based on each pair in PRaceSet. Since signal handlers use different synchronization

mechanisms than regular processes, we also develop an algorithm to automatically con-

trol signal events. We present these two algorithms as Phase2-RegPro (Figure 4.8) and

Phase2-SoftSig (Figure 6.5).

We first describe the Phase2-RegPro algorithm. Let σ = (σi, σj) be a pair of instruc-

tions that have been identified as potential race sources. In this case, σi happens before σj

when Pi and Pj are originally executed. The algorithm takes σ, Pi and Pj , and test oracle O

as inputs; it outputs real races and observable faults. The goal of the algorithm is to switch

the order of σi and σj to let σi happen after σj . Specifically, whenever a process is about

to execute an instruction in σ, it is suspended (lines 7-9). After both processes have been

suspended, Pj is allowed to resume (lines 10-12) until it reaches the exit of its SR access

(lines 13-14).

Next, Pi is allowed to resume (line 15) until it reaches the exit instruction of its SR

access (line 17). At this point, we have switched the execution order of σi and σj . A real

race is added into RaceSet and the processes continue executing normally (lines 18-19). If

one process terminates, the algorithm checks the state of the other, and allows it to resume

if it is still suspended (lines 21-23); in this test execution the potential race is not a real

race because the terminated process does not reach the SR after the other process reaches

the SR and being suspended. When both processes terminate, the algorithm checks their

outputs against a test oracle to determine whether a fault has been identified (lines 24-26).

To see how this algorithm detects process-level races, consider the example shown in

Figure 4.1. Suppose we select the potential race pair σ = (P1:rename(“foo”, “bar”),

P2:write(fd bar)) (the first write(fd bar) in P2) identified in the first phase. The
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Algorithm SimRacer: Phase2-RegPro
1: Inputs: PRaceSet, Pi, Pj , O
2: Outputs: RaceSet, Faults
3: begin
4: RaceSet = ϕ
5: for each σ = (σi, σj) ∈ PRaceSet
6: execute Pi and Pj

7: if Execute(Pn) ∈ σ and n ∈ (i, j)
8: suspend Pn

9: endif
10: if State(Pi) is suspended and State(Pj) is suspended
11: continue Pj

12: endif
13: if Execute(Pj) == EXT(σj)
14: suspend Pj

15: continue Pi

16: endif
17: if Execute(Pi) == EXT(σi)
18: RaceSet = RaceSet ∪ σ /*race occurs*/
19: continue Pj

20: endif
21: if Pm terminates ∧ State(Pn) is suspended ∧ m ∈ (i, j) ∧ n ∈ (i, j) ∧m ̸= n
22: continue Pn

23: endif
24: if Output(Pi, Pj) ̸= O
25: print “Error: fault found”
26: endif
27: endfor
28: end

Figure 4.8: Phase 2 algorithm to test for races between processes

system call rename comes before the write system call in the original execution trace;

thus the goal of the second phase is to let the rename happen after the write. First,

the algorithm suspends the execution of P1 and P2 when they are about to execute the

instructions in the race pair. Next, P2 is allowed to resume until the write returns. P2

is then suspended again, and P1 is allowed to resume until it returns from rename. At

this point, we conclude that σ is a real race. In fact, if we let P1 and P2 continue, we will

discover that this race is harmful.

By default, SIMRACER switches the order of operations to allow one to happen im-

mediately after the other. However, in a pair (σi, σj), it may not always be possible to
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Algorithm SimRacer: Phase2-SoftSig
1: Inputs: PRaceSet, P , S
2: Outputs: RaceSet, Faults
3: begin
4: RaceSet = ϕ
5: for each σ = (σi, σj) in PRaceSet
6: execute P
7: if (Execute(P) == EXT(σj) ∧ σi ∈ S) ∨ (Execute(P) == ENT(σi) ∧ σj ∈ S)
8: if State(S) is not masked
9: raise signal S
10: else
11: find another possible location
12: endif
13: if S accesses SR
14: RaceSet = RaceSet ∪ σ /*race occurs*/
15: endif
16: endif
17: if Output(P, S) ̸= O
18: print “Error: fault found”
19: endif
20: endfor
21: end

Figure 4.9: Phase 2 algorithm to test for races between a process and a signal

let σi happen immediately after σj due to changes in system states (e.g., disabled process

scheduling, page fault). In such cases, SIMRACER continues the execution of Pj (line 14)

until it is possible to schedule Pi and execute σi (line 17). If the entry instruction of the

operation in another potential race pair is reached and it is still not possible to execute Pi,

then (σi, σj) is not considered to be a race.

We now describe Algorithm Phase2-SoftSig. The goal of this algorithm is to ma-

nipulate the order of potentially racing accesses to SR between a user process P and the

signal handler S. According to the third and fourth rules described in the happens-before

relationship, the goal of this algorithm can be restated as that of swapping the order of an

SR access in P and the arrival of S. The algorithm first executes process P (line 6). If

the signal occurs before SR is accessed by P in the original execution trace, the algorithm

forces the signal to occur immediately after SR is accessed by P (first condition in line 7).
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If the signal occurs after SR is accessed by P in the original execution trace, the algorithm

forces the signal to occur just before SR is accessed by P (second condition in line 7). If a

race occurs, it is added to RaceSet (line 14).

Because it may not be possible to raise a signal immediately (e.g., the signal is currently

masked), the algorithm checks the current state of P (line 8) before raising a signal. Similar

to Phase2-RegPro, it also checks outputs on termination of the processes (lines 17-19) to

determine whether a fault has been identified.

If the signal handler (S) cannot be raised immediately after the SR access in P (lines 10-

12), the algorithm postpones S until it can feasibly be raised, or until the entry instruction

of the operation in another potential race pair is reached. In the case in which the signal

handler cannot be raised immediately before the SR access in P , the algorithm finds an-

other possible location in P at which to raise S, before the SR access and after the entry

instruction of the operation for another potential race pair.

To illustrate the algorithm’s operation, using Figure 4.2 as an example, the variable

files created is a global variable and its memory read and write accesses are denoted by

load and store. The execution trace is as follows:

P :open(file1) → P :load(files created) → P:store (files created) → P :open(file2) →

P :load(files created) →P :store(files created) → S:load(files created) → S:unlink(file1) →

S:load(files created) → S:unlink(file2)

There are two potential race pairs:

σ1=(P :open(file1), S:unlink(file1)) and

σ2=(P :store(files created), S:load(files created)).

Although (P :open(file2), S:unlink(file2)) can potentially race, the elements of the

pair are redundant because they are part of loops. Considering σ2, S happens after

P :store(files created) occurs in the original execution; thus, the algorithm forces S to
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be raised before P :store(files created) in the second phase. In this scenario, files created

is incorrectly read by S. As such, the race is real and harmful.

4.2.4 Further Discussion

Several additional aspects of our approach and the foregoing algorithms bear further dis-

cussion. First, SIMRACER tests only one potential race pair in each test run. This is done to

avoid fault masking effects, which may occur in cases where the presence of a single con-

flicting pair is “masked” by the presence of the second. Thus, in a given run, our system

needs to first determine whether a pair has already been tested; if it has, the system does

not monitor events related to that pair in that run.

Second, in Phase 2, SIMRACER may encounter a potential race pair more than once

during a test run (e.g., due to a loop). Once a pair is identified, there is no need to keep

recording it after each encounter; thus, our algorithm records only the first instance. This

reduces the amount of redundant information in the race report.

Third, SIMRACER uses different testing approaches in its two phases. In the first phase

it runs all tests, and in the second phase it runs only tests that detected potential races in

the first phase. If a potential race pair is exercised by multiple tests in the first phase,

SIMRACER selects only one test in the second phase; if this test does not find the fault,

SIMRACER selects the next test, and so forth. This process may result in more test runs

than the original number of tests. In fact, the actual number of test runs is:

TR = |TC|+
|PRaceSet|∑

i=1

|tci|

Here, |TC| is the total number of original tests, |PRaceSet| is the number of potential

races, and |tci| is the number of tests required to test for the ith pair in PRaceSet.

Fourth, SIMRACER reports both harmful and benign races. There are two steps that

can be followed to distinguish these. First, races that cause failures that are observable
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through test oracles are clearly harmful. Second, although SIMRACER is fully automated,

additional manual effort can be used to determine whether the program may fail under other

test inputs or interleavings. We will study the identification of benign races in future work

by leveraging a recently proposed symbolic execution technique [117].

Fifth, SIMRACER can also be used to replay concurrent executions of multiple threads

or processes. This is achieved by using the Controller to stop the execution of threads or

processes at the same execution points as in prior runs. Note that in Linux, every thread is

a lightweight process with its own PID, so SIMRACER can track it just like a process.

Sixth, SIMRACER can cause processes to deadlock in ways in which they should not.

Deadlock occurs when one process is waiting for an event in another process that has been

suspended by SIMRACER. We observed such a deadlock in four of the object programs we

considered in our empirical study. To address this problem, SIMRACER periodically checks

the states of the processes, and allows the process that is being waited for to resume.

Seventh, SIMRACER decomposes a complex system into a collection of controllable

processes. This allows us to focus only on the two processes under test. Processes other

than these run as normal. SIMRACER monitors and controls the two processes without

interfering with others to guarantee that the system can execute.

Eighth, we have used SIMRACER only to test for races between a process and a signal

handler that interrupts the process, because a signal handler cannot run in parallel with

the process that it interrupts. However, it is possible for a signal handler to race with

another process running concurrently with the handler. In this scenario, we can apply

the Phase2-RegPro algorithm to detect races between the handler and the concurrently

running process.

Ninth, by viewing every shared resource as a potential race source, SIMRACER can

produce false positives in Phase 1. We use the happens-before relationship to reduce these

false positives. In some cases, false positives can be reduced in Phase 1 by strictly mod-
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eling communication primitives as happens-before relationships. However, when synchro-

nization occurs at the process-level there can be ambiguities at the implementation level

because the implementations may be unknown (many system calls are blackbox), and their

synchronization effects cannot easily be modeled. Instead, SimRacer takes an approach

that does not involve preconceptions about implementation details.

Finally, SIMRACER employs random schedules [6] in Phase 2. As such, it is precise

and cost effective, but can be incomplete. On the other hand, complete replay techniques

such as PENELOPE [118] may incur much higher overhead due to context switches. In

our future work, we will further evaluate cost-effectiveness by adopting complete replay

techniques.

4.3 Empirical Study

To evaluate SIMRACER we consider two research questions:

RQ1: How effective is SIMRACER at detecting process-level races across the phases of its

operation?

RQ2: How effective is SIMRACER at detecting observable faults related to those races?

RQ1 allows us to evaluate the effectiveness of our Phase 2 algorithm at reducing false

positives while RQ2 lets us consider the ultimate effectiveness of our approach.

4.3.1 Objects of Analysis

To obtain objects of analysis, we searched several bug repositories (e.g., GNU, bugzilla,

debian) using the key words “concurrency”, “race”, “deadlock”, “atomicity”, and “sig-

nal”. By examining bug descriptions (not code), we identified applications written in C or

C++ for which existing descriptions contained reports of concurrency faults related to re-
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source dependencies among multiple processes and between processes and software signal

handlers. We randomly selected 30 of these applications. We next eliminated from consid-

eration those applications that could not compile in our environment; this process left us

with 16 applications.

The selected programs are listed in Column 1 of Table 4.1 (some are listed multiple

times, for reasons explained below). BASH and TCSH are command interpreters that exe-

cute commands read from standard input or from a file. We use BASH versions 3.0, 3.2,

and 4.2 and TCSH version 6.17. STRACE is a debugging tool that intercepts and records

the system calls made by a process and the signals received by a process; we use version

4.5.18. UPDATEDB, LOCATE, and FIND are Linux utilities: UPDATEDB creates or updates

a database used by LOCATE to find files, FIND is used to locate files in the file system; we

use versions 4.1.2 of each of these. UART is a UART device driver from the Linux kernel;

we use version 2.6.31. All other programs are Linux core utilities, including MV (version

6.1.9), CSPLIT (version 5.2), LN (version 5.97), MKDIR (version 5.97), MKDIR (version

5.2), MKNOD (version 5.2) and MKFIFO (version 5.2). Column 3 of Table 4.1 lists the

numbers of lines of non-comment code in the applications.

To address our research questions we also needed to identify specific faults in the ob-

ject programs that could result in process-level races. By examining descriptions in the

bug repositories, for each object program, we located faults related to the two race types.

Column 5 of Table 4.1 lists the numbers of faults found.

To cause process-level races to occur, the basic programs shown in Column 1 of Ta-

ble 4.1 must each be paired with at least one other process or signal handler. To select

second programs to pair with the basic programs, we again consulted the bug repositories

for the basic programs, and where possible, selected as paired programs those programs

indicated as having led to the faults previously identified when run concurrently with the

basic programs.
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Table 4.1: Object Program Characteristics

Program NLOC Faults Tests
Basic Paired Basic Paired
BASH1 BASH1 39102 39102 1 30
BASH2 BASH2 40944 40944 1 30
BASH2 SIG 40944 493 1 30
BASH3 SIG 48263 553 2 30
TCSH TCSH 47167 47167 1 5
STRACE MYPROG 25192 491 1 49⋆

STRACE SIG 25192 1814 1 49
UPDATEDB UPDATEDB 1924 1924 1 11⋆

UPDATEDB LOCATE 1924 669 1 34⋆

FIND MYPROG 4004 491 1 25⋆

UART UART 1944 1944 1 16
MV MYPROG 346 491 1 45
CSPLIT SIG 1032 73 3 30⋆

PS GREP 4695 4695 1 57
LN 5.94 MYPROG 410 491 1 28
MKDIR1 MYPROG 143 491 1 23
MKDIR2 MYPROG 146 491 1 23
MKNOD MYPROG 184 491 1 16⋆

MKFIFO MYPROG 112 491 1 17⋆

In several cases, bug reports did not specify problematic paired programs. To handle

these cases, we asked a person who was not familiar with our testing approach and had no

access to the source code to create a program, MYPROG, that can be paired with multiple

basic programs. This program accepts shared resources as inputs, and uses various opera-

tions to manipulate the shared resources accessed by the basic programs. For example, on

one test for MV, “mv file1 file2”, that operates on two shared resources file1 and

file2, MYPROG uses system calls (e.g., open, stat, access) to access file1 or

file2 or both.

The paired programs and signal handlers we used are listed in Column 2 of Table 4.1,

and the numbers of lines of code contained in these programs are reported in Column 4. In

three cases (on programs BASH2, STRACE and UPDATEDB) two different paired programs

or signal handlers involved in process-level races were identified, yielding two pairs of

programs that could be studied – this accounts for the repetitions in Column 1.
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To address our research questions we also required tests. For basic programs that had

been released with tests, we selected, from those, tests that could potentially exercise shared

resources (e.g., tests of operations on BASH history files). Seven of our object programs,

however, were not equipped with tests. For these programs, we created black-box test

suites. Engineers often use such test suites designed based on system parameters and

knowledge of functionality [119]. We followed this approach, using the category-partition

method [120], which employs a Test Specification Language (TSL) to encode choices of

parameters and environmental conditions that affect system operations and combine them

into test inputs. We asked a person who was not familiar with our testing approach and

had no access to the source code to employ this approach. Column 6 of Table 4.1 lists the

numbers of tests ultimately utilized for each object program pair; numbers marked with a

“⋆” indicate instances in which tests were generated using TSL.

Testing also requires test oracles. For programs released with existing test suites and

with built-in oracles provided, we used those. Otherwise we checked program outputs,

including messages printed on the console and files generated and written by the programs.

The oracles were obtained by running the two processes under test sequentially, which did

not involve any interleavings.

4.3.2 Variables and Measures

Independent variable. Our independent variable is the testing technique used. We use two

randomized stress testing techniques as the baseline for comparison with our approach.

Although other baseline techniques could be considered (e.g., random scheduler fuzzing

technique) we chose stress testing for several reasons. First, stress testing is a practical ap-

proach that has been widely used in industrial settings [121, 122, 123]. Second the bug

reports for some of our object programs described stress testing as the approach used to
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Table 4.2: Object Program Statistics

Program TR-SR TT-SR S1 S2 S3
Basic Paired
BASH1 BASH1 42 87.3 42 170 170000
BASH2 BASH2 46 103.6 46 186 186000
BASH2 SIG 38 97.3 38 184 184000
BASH3 SIG 36 77.6 36 127 127000
TCSH TCSH 37 28.7 9 37 37000
STRACE MYPROG 59 88.7 59 253 253000
STRACE SIG 57 65.6 57 234 234000
UPDATEDB UPDATEDB 35 570.4 35 144 144000
UPDATEDB LOCATE 40 669.7 40 167 167000
FIND MYPROG 41 9.0 41 180 180000
UART UART 18 16.7 18 75 75000
MV MYPROG 72 157.4 72 290 290000
CSPLIT SIG 36 7.4 36 185 185000
PS GREP 64 58.4 64 365 365000
LN 5.94 MYPROG 49 9.6 49 320 320000
MKDIR1 MYPROG 45 7.8 45 195 195000
MKDIR2 MYPROG 45 7.8 45 197 197000
MKNOD MYPROG 30 5.4 30 136 136000
MKFIFO MYPROG 22 4.1 22 24 24000

reproduce those bugs. Third, stress testing has been well studied as a baseline approach for

detecting thread-level concurrency faults [55, 124].

In the case of program pairs that do not involve signal handlers, the stress testing tech-

nique that we used runs a target program pair multiple times and invokes 20 processes (the

largest number obtained from bug repositories) for each of the basic and paired programs.

In the case of program pairs that do involve signal handlers, the stress testing technique that

we used runs the basic program multiple times and randomly raises a software signal at an

arbitrary location in the basic program during each test run. The type of signal we chose

was SIGINT. As in SIMRACER, this signal was raised only when it was determined that it

was possible to do so by examining system states; otherwise, the signal was postponed to

another arbitrary location in the program.

For each stress testing technique we used three different numbers of runs (levels). At

the first level (S1) we used the same number of test runs as the number of test runs required
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by SIMRACER; this lets us examine the relative effectiveness of the two approaches on

equivalent numbers of test runs. At the second level (S2) we used the same amount of

testing time required by SIMRACER; this lets us examine the relative effectiveness of the

approaches when each is given the same amount of time. At the third level (S3) we used

the number of tests run at the second level multiplied by 100; this lets us examine how the

effectiveness of SIMRACER compares to that of a more robust stress testing process. In all

cases, tests are randomly selected from the sets of tests utilized by SIMRACER.

Dependent variables. We consider two dependent variables. Our first dependent variable

measures technique effectiveness in terms of the number of races detected. This variable

applies only to SIMRACER, not the stress testing approach, but it lets us evaluate the effec-

tiveness of our Phase 2 algorithm at reducing false alarms.

Our second dependent variable focuses on technique effectiveness measured in terms

of the ability of techniques to detect faults. For both SIMRACER and the stress testing

techniques that we consider, we measure the number of observable faults reported by test

oracles. These can include both the known faults discovered through inspection of bug

repositories, and newly discovered faults.

4.3.3 Study Operation

We conducted our study by configuring Simics to virtualize a single core X86 system run-

ning a Linux 2.6.15 kernel. As noted in Section 4.2, when concurrency faults occur on

single core systems they can also occur in multi-core systems, so results obtained on a sin-

gle core system would be obtainable on a multi-core system. To confirm that SIMRACER

can function in multi-core environments, we did gather data on the UART object on such a

system.
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To implement the testing process of SIMRACER, as noted above, we ran both basic and

paired programs simultaneously with each test case, and for pairs involving signal handlers

raised signals at arbitrary locations in the basic program. We collected the runtime trace for

each test case and applied the Phase 1 algorithm. We next applied the Phase 2 algorithm

to check for real races based on the potential races identified in the first phase. Finally, we

inspected all of the reported real races that did not result in detectable failures to determine

whether they were harmful or benign.

Column 3 of Table 4.2 lists the number of tests (TR-SR) run by SIMRACER. (The

approach by which the number of test runs is determined is discussed in Section 4.2.4.)

Column 4 reports the time required for these test runs (TT-SR) in seconds. To implement

the stress testing techniques, we wrote a script that performed the techniques at the three

levels of effort described in Section 4.3.2. Columns 5, 6 and 7 list the number of test runs

at the first, second, and third levels of stress testing, respectively.

4.3.4 Threats to Validity

The primary threat to external validity for this study involves the representativeness of our

programs and test suites. Other programs may exhibit different behaviors and cost-benefit

tradeoffs, as may other forms of test suites. However, the programs we investigate are

popular and the faults we consider are real. Furthermore, the test cases are either those

provided with the programs, or are created using a commonly used process (TSL in this

case) so they are representative of test cases that could be used in practice by engineers to

test these programs.

The primary threat to internal validity for this study is possible faults in the implemen-

tation of our approach and in the tools that we use to perform evaluation. We controlled

for this threat by extensively testing our tools and verifying their results against a smaller
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program for which we can manually determine the correct results. We also chose to use

popular and established tools (e.g., Simics) for implementing the various modules in our

approach. A second source of potential threats involves instrumentation used to detect fail-

ures. To test for races between a process and a signal handler, more than one signal handler

can be applied. For our study, we chose SIGINT because it is commonly used (Ctrl-C).

Applying other handlers could increase fault detection effectiveness but with additional

testing cost. Fault detection effectiveness can also depend on the test oracles used. We

report failures using output-based oracles. Using internal oracles may increase fault detec-

tion effectiveness [2,125], but at the cost of manual effort, testing time, and false positives.

Finally, it is possible that faults revealed by our test oracles are due to effects other than

the propagation of races. We controlled for this threat by comparing error results to those

described in the bug reports; we report only faults related to races.

Where construct validity is concerned, numbers of faults and races detected are just two

variables of interest. Other metrics such as the cost of trace analysis could be valuable.

4.4 Results and Analysis

RQ1: Race Detection Effectiveness of SIMRACER. Columns 3-5 of Table 4.3 report the

number of potential process-level races detected by the Phase 1 algorithm, the number of

these identified as real races by the Phase 2 algorithm, and the number of harmful races

identified by further examination, respectively. The Phase 2 algorithm reduced the number

of false negatives contained in the sets of potential races by 53.2% overall, with reductions

ranging from 20% to 100% across the 19 program pairs. The overall percentage of harmful

races relative to all real races detected in the second phase was 43.7%.

RQ2: Fault Detection Effectiveness of SIMRACER. Column 6 of Table 4.3 reports the

number of faults detected by SIMRACER. (Note that the mapping between harmful races
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Table 4.3: Results

Program SIMRACER Faults Detected
Basic Paired Ph.1 Ph.2 Hm. SR S1 S2 S3
BASH1 BASH1 13 8 2 1 1 1 1
BASH2 BASH2 9 4 0 0⋆ 0 0 0
BASH2 SIG 6 3 2 0⋆+ 0 0 0
BASH3 SIG 5 4 3 1⋆ 0 1 1
TCSH TCSH 7 4 2 1 0 1 1
STRACE MYPROG 3 0 0 0⋆ 0 0 0
STRACE SIG 5 1 1 1 0 0 0
UPDATEDB UPDATEDB 17 3 3 1 0 0 1
UPDATEDB LOCATE 12 4 1 1 0 0 0
FIND MYPROG 4 2 2 1 0 0 0
UART UART 11 7 2 1 0 0 0
MV MYPROG 16 6 3 1 0 0 0
CSPLIT SIG 9 3 3 2⋆ 1 1 1
PS GREP 19 13 3 1 0 0 0
LN 5.94 MYPROG 14 4 2 1 0 0 0
MKDIR1 MYPROG 10 5 2 1 0 0 0
MKDIR2 MYPROG 10 5 2 1 0 0 0
MKNOD MYPROG 8 6 3 1 0 0 0
MKFIFO MYPROG 8 5 2 1 0 0 0

and faults can be many-to-one or one-to-one; this is because a single fault such as a missing

lock pair may result in multiple races.) For all program pairs, SIMRACER detected 17 of the

22 previously known faults; a fault detection rate of 77.3%. The five cases in which known

faults were not detected are indicated by a “⋆”. SIMRACER also detected one fault that had

not been reported; this fault was related to a signal handler in BASH2 and is indicated by

a “+”.

There is one special case worth noting. One of the known faults missed by SIMRACER,

on BASH2 paired with a signal handler (indicated by bold font), failed to appear in the

results reported by output-based test oracles. SIMRACER did identify an actual race in this

case, but the effects of the race did not propagate to output.

Columns 7-9 in Table 4.3 report the numbers of faults detected by the three levels of

stress testing techniques. As the data shows, in total, stress testing detected only four of the

22 known faults; a fault detection rate of 18.2%. For program pairs (BASH1, BASH1) and
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(CSPLIT,SIG), all three levels detected the same known faults. For program pairs (BASH3,

SIG) and (TCSH,TCSH), levels S2 and S3 detected the same known fault while level S1

detected none. For program pairs (UPDATEDB, UPDATEDB), only S3 detected the known

fault. The data shows that given longer running times, stress testing may demonstrate

more fault detection effectiveness than with shorter times; however, at all three levels,

SIMRACER performed as well as or better than stress testing.

4.5 Discussion

Faults detected. We first describe the detected known faults. Program pairs (BASH1,

BASH1), (TCSH, TCSH), and (UPDATEDB, UPDATEDB) [110, 111, 112] suffer from classic

races in which two processes access the same resource at the same time. The races result in

corrupted history files for BASH1 and TCSH, and a corrupted database file for UPDATEDB.

For program pairs (STRACE, SIG) and (CSPLIT, SIG) [126, 127], races occurs due to

untimely signals. In the case of (CSPLIT, SIG), a signal arrives before the statement files

created in the file deletion routine [127] is executed, causing the signal handler to print

an error message. In the case of (STRACE, SIG), SIGINT arrives to kill a process before an

STRACE system call can complete a write to the /proc directory. As a result, the process is

not cleanly detached (i.e., it does not print correct messages).

Program pairs (UPDATEDB, LOCATE), (FIND, MYPROG), (MV, MYPROG), and (LN,

MYPROG) [112, 128, 129, 130] suffer from races that result in premature freeing of re-

sources. For example, for (MV, MYPROG), the MV process calls unlink before rename

and they are not atomic [129]. The MYPROG process attempts to open the file in between

the operations, causing the open to fail.

On program pair (PS, GREP), when the command “ps aux | grep string” is

run, the command may (incorrectly) print the command “grep string” itself [131].
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This race occurs between the system call execve of GREP and the system call read of

PS; they both access the inode of /proc/pid/cmd line, where pid corresponds to the

GREP process. If the read happens after the execve, the GREP command itself will be

printed.

For program pairs (MKDIR1, MYPROG), (MKDIR2, MYPROG), (MKNOD, MYPROG),

and (MKFIFO, MYPROG), faults are all caused by TOCTTOU (time of check to time of use)

races; that is, a change is made by one process between the time at which the condition is

checked and the time at which the results of that check are used by another process [132,

133]. For each of the four programs, myprog slips in and changes the file permission, in

between the file permission check and the use of the file in the basic program.

The previously unknown fault was detected when BASH2 was paired with its signal han-

dler. In this case, SIGINT occurs just before executing history lines this session++.

The signal handler reads the incorrect value of history lines this session. As a

result, the history file is not saved when BASH terminates. Section 4.1 described the fault

in UART.

Faults not detected. We also examined the undetected faults. On the (BASH2, BASH2)

program pair, the race is exposed when the two BASH processes run under different ses-

sions (a parent BASH and a child BASH) [134]. Initially, we did not consider this scenario in

our study. However, once we created such a scenario in order to reproduce the fault, SIM-

RACER did detect this race. The lesson to be learned here is that engineers may do well to

realistically explore potential execution scenarios (e.g., considered sessions, simultaneous

logins) because doing so may uncover additional faults.

On the (BASH2, SIG) program pair, as noted in Section 4.4, SIMRACER detected a race

that did not propagate to output. This occurred because BASH and the signal handler both

wrote the same value to a shared memory location [135]. A different test may cause the

signal handler to write a different value, potentially causing the program to fail. The lesson
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to be learned here is that our approach should consider redundant writes as a criterion to

eliminate tests as part of the selection process in Phase 2 (see Section 4.2.4).

On the (BASH3, SIG) program pair, the fault related to one race [136] was not detected

because our tests did not exercise the shared variable that can cause the race to occur.

Subsequently, we manually created a test to exercise this shared variable and SIMRACER

was then able to detect this race. The lesson to be learned here is that the effectiveness of

our approach can depend on the initial test suite and the oracles used. Selecting a proper

adequacy criteria (e.g., data-flow) could increase the effectiveness of our approach.

On the (STRACE, MYPROG) program pair, the race occurs only on an IA64 platform

whereas our experiments were conducted on an X86 platform [126]. This confirms an

argument made by Laadan et al. [26] that process level races are sensitive to system con-

figurations. The result also suggests that engineers may wish to test under different system

configurations.

On the (CSPLIT, SIG) program pair two signals are required to trigger the race while

SIMRACER issued only one signal each time. We configured SIMRACER to handle two

signals and it successfully detected this fault [127].

Benign races. When a race occurs but cannot cause any observable fault with any inputs, it

is benign [137]. In this study we found several benign races. For example, when two BASH

processes issued an open(‘‘dev/null’’, O TRUNC) system call with the O TRUNC

option set (file length is truncated to 0), the two system calls race because they both write to

the entire data range of the inode of dev/null without proper synchronization. However,

they are each immediately followed by a close system call. As such, dev/null is not

disturbed and faults will never occur.

In the case of BASH3, a race is reported because the signal handler modifies a global

variable of BASH. However, the old value of this variable is restored before it is read again

by the handler. As such, a fault will not occur. In the case of UART, one kernel thread
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always writes the same value to the IIR register. Even though races occur, the read value is

always the same.

Runtime cost. One shortcoming of using virtual platforms such as Simics is that virtual-

ization time can be much longer than execution time on a real system. Columns 3, 4 and 8

of Table 4.1 indicate that the average runtime per test of SIMRACER is significantly greater

than the runtime per test for the stress testing technique. In other words, given the same

testing time, stress testing invokes more test runs than SIMRACER. However, we have also

seen that additional runs through stress testing do not render testing more effective in most

cases. As such, when we consider both fault detection rate and testing time, SIMRACER is

more cost-effective. In addition, as noted in Chapter 1, the costs of testing can be amortized

into the development workflow when using VMs.

System-specific properties. Our experiment with SIMRACER was conducted on a system

running on Linux. As such, runtime properties including shared resources, system calls,

and schedulers that we considered are Linux specific. Detecting different types of elusive

faults, however, does require engineers to look deeper to examine system-specific proper-

ties. In practice, arguably, companies focus on specific systems, so they could implement

our approach on those systems. Thus, the general idea of our approach would translate to

other systems.

Testing efficiency. Modern software systems evolve (e.g., through software updates, avail-

ability of new configurations, and creation of new applications). SIMRACER is designed

with evolution in mind. When a new application is installed in a system, it is necessary

to test the interactions between that application and other applications. One approach is to

test the entire system again [121]. With SIMRACER, developers can analyze the resource

usage of this new application with previously tested applications. Only applications that

share resources with this new application need to be tested again.
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Environment dependency. Given the same test input, it is possible that a potential race

pair computed in Phase 1 is not reachable in Phase 2. Such a scenario can occur if the

system environment or the status of a device changes (e.g., in the case of a buggy device

port), causing a program to take a path that does not access the targeted shared resource.

We did not encounter such a case in our study. This is because by using a virtual platform,

we can maintain environment consistency across different runs.

In contrast, SIMRACER is more “active” in that it executes processes with a random

schedule and considers system states whenever it tries to reorder two potential racing

events. As described in Section 4.2, SIMRACER adjusts process scheduling to adaptively

reorder the two events. Unlike RACEPRO, which erroneously classifies a race as benign if

there are no detectable failures at the output, SIMRACER does not do this. As shown in our

study, some races that are classified as benign may not always be benign. Different inputs

may show that such races are harmful.

As noted in Section 2.1.1, existing thread-level race detectors do not directly apply

at the process-level. Nonetheless, the ideas behind existing thread-level approaches can

be useful in our context if system call effects are modeled as read/write operations. For

instance, we may leverage the approach used in CHESS to ensure exhaustive interleavings

of processes.

4.6 Conclusion

In this chapter, we presented another instantiation of our SIMEXPLORER framework, SIM-

RACER, for effectively testing for process-level races. We have conducted an empirical

study applying SIMRACER to fifteen user-level programs and one device driver program.

We have empirically compared SIMRACER to traditional stress testing techniques, and our
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results suggest that SIMRACER is more effective than these techniques at detecting faults

that are caused by the process-level races.
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Chapter 5

SimLatte: Using Testing to Estimate

Worst-Case Interrupt Latencies in

Embedded Software 4

We have created two instantiations of the SIMEXPLORER framework that can detect con-

currency faults. In this chapter, we introduce SIMLATTE, another instantiation of the SIM-

EXPLORER framework meant to uncover WCILs, that is informed by a set of factors that

cause WCILs to occur. SIMLATTE utilizes a genetic algorithm (GA) for test case genera-

tion to find inputs and interrupt arrival points. We use a GA because research has shown

that GAs are effective for automatic test case generation [139]. For interrupt-driven ap-

plications, GAs are a particularly appropriate choice, because such applications can have

large combinations of inputs and many interrupt locations that can affect latencies. The

guided exploration used by evolutionary algorithms allows a GA to cover a wide range

of combinations of inputs and locations. SIMLATTE then employs an opportunistic inter-
4The contents of this chapter have appeared in [138].
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rupt invocation approach to trigger interrupts, at feasible locations, that are likely to cause

significant interrupt latencies.

To evaluate SIMLATTE, we compare its results to those achieved with random test case

generation and without opportunistic interrupt invocation. We also compare it to a static

analysis approach. Our results show that SIMLATTE is effective for calculating WCILs and

can handle a larger number of nested interrupts than the random approach. SIMLATTE is

also efficient, identifying WCILs in significantly less testing time. By further investigat-

ing the effectiveness and efficiency of the two components of SIMLATTE, we show that

applying either of the two components yields better results than random testing, but em-

ploying both components yields the best results. Finally, we observe that as the number of

interrupts in a system increases, SIMLATTE produces more precise WCILs than the static

analysis approach that we consider.

The contributions of this work are:

1. the first testing based approach for finding WCILs in interrupt driven software that is

informed by the factors that impact interrupt latency;

2. an instantiation of the SIMEXPLORER framework, SIMLATTE, that uses a GA along

with opportunistic interrupt invocation to find WCILs;

3. an empirical study demonstrating the effectiveness of our approach.

5.1 Background: Factors that Affect Latency

In this section we provide background on, and discuss three factors that can affect, interrupt

latencies (F1-F3). We then show how SIMLATTE leverages these factors to determine

WCILs. We first explain the notation used in this work.

We denote an interrupt-driven program by P = Main ∥ISR1∥ISR2∥ . . . ∥ISRN , where

Main is the main program and ISR1, ISR2, . . ., ISRN are interrupt service routines, and
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Table 5.1: Interrupt Examples

1 main{
2 ...
3 irq_disable();
4 if( input > 10){
5 /*execute 100 cycles*/
6 }
7 else{
8 /*execute 500 cycles*/
9 }

10 irq_enable();
11 ...
12 }

1 ISR2{
2 ...
3 isr_disable();
4 if(push_button){
5 /*execute 290 cycles*/
6 }
7 else{
8 /*execute 60 cycles*/
9 }

10 isr_enable();
11 ...
12 }

1 ISR1{
2 if(data < 128){
3 /*execute 50 cycles*/
4 }
5 else{
6 /*execute 180 cycles*/
7 }
8 }

1 ISR3{
2 if(signal){
3 /*execute 300 cycles*/
4 }
5 else{
6 /*execute 960 cycles*/
7 }
8 }

where subscripts indicate interrupt numbers, with larger numbers denoting lower priorities.

Typically, P receives two types of incoming data: command inputs as entered by users and

sensor inputs such as data received through specific devices (e.g., a UART port). An inter-

rupt schedule specifies a sequence of interrupts occurring at specified program locations.

The input data and an interrupt schedule for P together form a test case for P . In this work,

we do not consider reentrant interrupts (interrupts that can preempt themselves); these are

uncommon and used only in special situations [5]. Next, we discuss three factors that can

affect interrupt latencies.

F1: Execution time of critical sections. A major contributor to increased interrupt la-

tency is the number and length of critical sections in which interrupts are disabled [140].

Consider two types of critical sections. The first type is programmed in the main program

Main. By disabling interrupts in Main, the processor delays the handling of interrupts

until the critical section exits. The top left quadrant of Table 5.1 illustrates this. In Main,

there are two paths in the critical section, and these have different execution cycles (100

and 500 cycles, respectively). Interrupts that occur within the else branch can have longer
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latencies because this branch requires more time to execute. As a good programming prac-

tice, developers are encouraged to keep critical sections short.

The second type of critical section exists in ISRs. If nested interrupts are not allowed

in a microcontroller, the processor disables global interrupts before transferring control to

an ISR and re-enables them when control returns to the main program. In this case the

entire ISR is considered to be a critical section. If nested interrupts are allowed, the ISR

is specified as interruptible by setting specific hardware bits. In this scenario, a critical

section is defined as a non-interruptible code region in the ISR. Long execution of critical

sections in ISRs can block the invocation of higher priority interrupts, thereby increasing

their interrupt latencies.

Table 5.1 illustrates a system with three interrupt service routines, ISR1, ISR2 and

ISR3, with priority levels ranging from high to low, respectively, and with ISR3 being

nonpreemptable. If ISR1 is invoked within the critical section of ISR2, it will be delayed

because interrupts are disabled. This delay may be longer if ISR2 takes the if branch and

ISR1 takes the else branch because these paths involve more cycles. Similarly, ISR1

will be blocked if it is invoked while ISR3 is executing because ISR3 is nonpreemptable,

and the latency of ISR1 may be longer if the else branch is taken in ISR3. It is thus

reasonable to suggest that critical sections involving ISRs be kept short and simple to

avoid leaving higher priority interrupts disabled for too long.

F2: Execution time of ISRs of higher priority interrupts. When multiple interrupts oc-

cur, another cause of increased interrupt latency is the length of ISRs with higher priority.

Suppose a low priority interrupt is issued during the execution of an ISR with higher pri-

ority. The longer the execution time of the high priority ISR, the longer the latency of

the low priority interrupt. This occurs because, typically, a low priority interrupt cannot

preempt a higher priority interrupt. For example, in Table 5.1, ISR1 is preemptable and

does not contain critical sections. However, if ISR2 is invoked while ISR1 is executing
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it will be delayed, because ISR1 cannot be preempted by a lower priority interrupt. If the

else branch of ISR1 is taken, the delay for ISR2 may be even longer.

Changes in hardware states including preemption delays due to cache can also affect

the execution time of interrupts. In this work, we do not consider these factors because

they can be implementation dependent. For example, the Atmega processor that we model

does not use cache memory. However, to apply SIMLATTE to test for WCILs in systems

that utilize cache memory, existing techniques such as Evicting Cache Block-Union [141]

can be integrated with SIMLATTE to estimate delays due to cache preemption.

F3: Locations where interrupts occur. The occurrence of interrupts at particular program

execution points can also impact interrupt latency. We summarize three cases. First, for a

given non-interruptible path p in the main program or an ISR, interrupts that occur at an

early execution point in p will be delayed longer. In Table 5.1, suppose the else branch

is taken in the main function. An interrupt has a longer latency if it is issued at the starting

point of the critical section (line 3) than if it is issued at later points.

Second, for a given path p in an ISR with high priority, if a low priority interrupt is

issued at an early execution point in p, it will be delayed longer. In the example of Table 5.1,

suppose the else branch is taken while executing ISR1. In this case, ISR2 can have a

longer latency if it is issued at the entry of ISR1 than when issued at later execution points.

Third, nested high priority interrupts can affect the latency of lower priority interrupts.

In the example of Table 5.1, suppose that all three interrupts are issued at the critical section

entry of the main function (line 3). ISR1 is serviced first, then ISR2 is serviced. Suppose

that as ISR2 executes, ISR1 again preempts ISR2, causing ISR3 to wait longer. The

worst case occurs when ISR2 is frequently preempted by ISR1 such that ISR3 is never

serviced. High interrupt frequency is a major cause of nested interrupts; thus, it is important

to employ a system design involving minimum interrupt inter-arrival times, or the inverse,

maximum interrupt frequency.
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Figure 5.1: SimLatte Architecture

5.2 SimLatte

We now present SIMLATTE, an automated approach for finding WCILs, that leverages the

three factors (F1, F2, and F3) just described, that is, the test cases generated by SIMLATTE

manipulate these three factors to potentially produce longer interrupt latencies.

5.2.1 SimLatte’s Architecture

SIMLATTE contains two main components: an execution controller and a test case gener-

ator – see Figure 6.2. SIMLATTE is implemented on AVRORA, a simulator platform that

supports programmable event monitoring and application profiling [15]. We use the pro-

gramming interfaces AVRORA provides to create two additional modules to support testing:

an interrupt controller module and an event monitoring module. The test case generator

and interrupt controller modules are configurable so that we can, for example, disable the

GA portion of the test case generator and use random test generation instead. We can also

disable opportunistic interrupts.

The input to SIMLATTE is an initial (possibly empty) test suite. The GA uses this as

a starting point. As test cases are generated, they are executed to determine fitness (de-

scribed later in this section). To do this the GA interacts with the execution controller. For
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example, when a critical section is detected by the event monitoring module, the execution

engine pauses the current program execution and requests the interrupt controller to invoke

a specific number of interrupts. Upon completing a test execution, the test case generator is

updated with new test cases. The profiler is then used to measure performance and latencies

based on execution clock cycles.

5.2.2 SimLatte’s Genetic Algorithm

SimLatte’s genetic algorithm accepts three parameters: a time limit titer, a maximum in-

terrupt latency lmax (optional), and constraints, C, that need to be enforced. The algorithm

returns a set of new test cases NTC.

Chromosome. In SIMLATTE, the chromosome is a combination of input data (main pro-

gram inputs and sensor device inputs) and an interrupt schedule (instruction locations) that

consists of all interrupts in the program. A gene in the chromosome is denoted as a triple

(num, instr[cycle], data), where num is the interrupt number, instr is the instruction

location where interrupt num is issued, and data is the sensor input data associated with

interrupt num. The array following instr indicates that interrupt num is issued again after

cycle cycles based on the previous invocation during a test execution.

Fitness Function. Our optimization problem is defined as finding test cases to exhibit

the worst case interrupt latency. Thus, the goal of our fitness function is to maximize

the interrupt latency of each IUT in P . The fitness function, f , is defined as f = Tisr -

Tinvok, where Tisr is the time at which the IUT is issued, and Tinvok is the time at which the

corresponding ISR for the IUT is invoked. Since the fitness of a test case depends on the

interrupt latency of the IUT, this is calculated during the execution of test cases. Interrupts

are dynamically issued for three conditions. First, when an interrupt location instr defined

in the chromosome is reached, its associated interrupt is issued. Second, when a critical
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section entry is encountered, the IUT and each interrupt with higher priority are issued.

Third, when an IUT is pending, the algorithm checks whether a higher priority interrupt is

available and if so, issues that interrupt. Note that the same interrupt can be issued multiple

times per test run. SIMLATTE selects only the longest latency per test case. The instruction

locations instr in the chromosome for interrupts issued at specific points are updated in

terms of the longest latency.

Constraints. There are two constraints that must be adhered to in order for the test cases

generated by SIMLATTE to be valid. First, the instruction location instr must be generated

within the instruction range of the program text section. Second, the sensor data accepted

by a device must conform to the range defined in the device specifications. For example,

the sensor data accepted by the UART port must exist in the ASCII table. We enforce these

constraints in the initial randomly generated population and subsequent generations that

require new genes.

Some constraints cannot be determined statically; SIMLATTE checks these dynami-

cally. First, SIMLATTE checks hardware states (e.g., interrupt bits) and issues only inter-

rupts that are allowable by the hardware. Second, SIMLATTE avoids invoking reentrant

ISRs by checking the current stack and suppressing an interrupt if its ISR has been invoked

but has not returned. Third, whenever an interrupt is about to be issued, SIMLATTE checks

its minimum inter-arrival time and determines whether it is allowable to issue this interrupt.

During the testing process all issued interrupts are serviced by the processor. As for

the encoding of chromosomes, there are two cases considered in our approach. First, the

interrupt does not require input data (e.g., periodic timer). In this case, both instr and

data are set to null during the entire evolution process. Second, the interrupt requires

input data (e.g., data arrives through UART). In this case, instr is set to null, but the input

data is passed into the device when an interrupt is invoked by the processor.
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Table 5.2: Initial Test Case Population

C.S. Main ISR1 ISR2 ISR3 ISR4 Fit.
tc1 128 (1,0x980c,‘a’) (2,0x29bd,‘d’) (3,0x792b,‘m’) (4,0x8441,‘b’) 1597
tc2 . . . . . . . . . . . . . . . 1428
tc3 64 (1,0x75fa,‘z’) (2,0x8412,‘a’) (3,0x410c,‘k’) (4,0x69bc,‘m’) 1433
tc4 . . . . . . . . . . . . . . . 1509
tc5 56 (1,0x22ad,‘c’) (2,0x4890,‘a’) (3,0x592d,‘l’) (4,0x81da,‘o’) 1288
tc6 . . . . . . . . . . . . . . . 1410
tc7 225 (1,0x81bc,‘f’) (2,0x7988,‘n’) (3,0x8012,‘x’) (4,0x8441,‘p’) 1402
tc8 . . . . . . . . . . . . . . . 1382

SimLatte GA Example. To illustrate SIMLATTE’s GA we present an example. Let P =

Main ∥ISR1∥ISR2∥ISR3∥ISR4. The IUT is the interrupt associated with ISR3. Ta-

ble 5.2 shows the initial population consisting of eight randomly generated test cases. Fit-

ness values are shown in the column labeled Fit.

After running these test cases, SIMLATTE selects the four best test cases in terms of

fitness values; in the example, this includes the first four (shown in Table 5.3). At this

point, the instruction locations of ISR1, ISR2 and ISR3 have been updated to the entry

instructions of the critical sections that cause the longest latency of interrupt 3 (shown in

bold font).

Taking tc1 as an example, ISR1 is invoked again after 1088 cycles of the execution

of the critical section entry point. The reason for this is as follows. After ISR1 returns,

ISR2 is invoked and returns. Since ISR3 is still pending, SIMLATTE invokes ISR1 again

to further delay ISR3. In this case, the inter-arrival time of ISR1 is specified to be greater

than or equal to 1088 cycles, otherwise it violates constraints.

Next, the algorithm performs a crossover between two pairs of chromosomes. In our

example, pairing is done by matching evens and odds (i.e., 1 with 3, 2 with 4, etc.), so we

cross tc1 and tc3. We use a 1-point crossover with a randomly selected division point in

this example (crossover choice is flexible).

Table 5.4 shows the results of the crossover operation on two parent chromosomes and

the generated offspring. The double line between the third and fourth columns indicates
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Table 5.3: Result of Test Case Selection

C.S. Main ISR1 ISR2 ISR3 ISR4 Fit.
tc1 128 (1,0x783c[1088],‘a’) (2,0x783c,‘d’) (3,0x783c,‘m’) (4,0x8441,‘b’) 1597
tc4 . . . . . . . . . . . . . . . 1509
tc3 64 (1,0x8010[3200],‘z’) (2,0x8010,‘a’) (3,0x8010,‘k’) (4,0x69bc,‘m’) 1433
tc2 . . . . . . . . . . . . . . . 1428

Table 5.4: Result of a CrossOver Operation

C.S. Main ISR1 ISR2 ISR3 ISR4 Fit.
tc1 128 (1,0x783c[1088],‘a’) (2,0x783c,‘d’) (3,0x783c,‘m’) (4,0x8441,‘b’) 1597
tc3 64 (1,0x8010[3200],‘z’) (2,0x8010,‘a’) (3,0x8010,‘k’) (4,0x69bc,‘m’) 1433
ch1 128 (1,0x783c[1088],‘a’) (2,0x8010,‘a’) (3,0x8010,‘k’) (4,0x69bc,‘m’) 1682
ch2 64 (1,0x8010[3200],‘z’) (2, 0x783c,‘d’) (3,0x783c,‘m’) (4,0x8441,‘b’) 1569

Table 5.5: Result of a Mutation Operation

C.S. Main ISR1 ISR2 ISR3 ISR4 Fit.
tc1 128 (1,0x783c[1088],‘a’) (2,0x783c,‘d’) (3,0x783c,‘m’) (4,0x8441,‘b’) 1597
tc3 64 (1,0x8010[3200],‘k’) (2,0x8010,‘a’) (3,0x8010,‘k’) (4,0x69bc,‘m’) 1532
ch1 128 (1,0x783c[1088],‘a’) (2,0x8010,‘a’) (3,0x8010,‘k’) (4,0x604d,‘m’) 1608
ch2 64 (1,0x8010[3200],‘z’) (2,0x783c,‘d’) (3,0x783c,‘m’) (4,0x8441,‘b’) 1569

the crossover point. The non-shaded areas represent genes in the first parent (tc1), and the

shaded areas represent genes in the second parent (tc3). The rightmost column shows the

fitness values of the chromosomes.

Next, mutation is performed by altering either data or instr in a gene. Table 5.5 shows

the results for four chromosomes after the mutation operator has been applied (mutated

elements in bold). Following mutation, the four test cases are executed. The rightmost

column shows the resulting fitness values.
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5.3 Empirical Study

To assess SIMLATTE we explore three research questions.

RQ1: How does the effectiveness of SIMLATTE compare to that of a random testing tech-

nique?

RQ2: To what extent do the choices of using a GA to generate inputs and employing

opportunistic interrupt invocation in SIMLATTE affect its effectiveness?

RQ3: How does the dependability of SIMLATTE in calculating WCILs compare to that of

the other techniques considered?

The first research question evaluates SIMLATTE by comparing it to a state-of-the-art

interrupt testing technique based on random inputs [5]. The second research question lets

us further investigate whether the use of the GA and of opportunistic interrupt invocation

can affect SIMLATTE’s effectiveness. The third research question explores the extent to

which we can depend on particular techniques to converge on or otherwise successfully

calculate an appropriate WCIL.

5.3.1 Objects of Analysis

As objects of analysis we chose three embedded system applications. These include LARGE-

DEMO, an open source program downloaded from GNU Savannah [142], HAND-MOTION

CHESS, a student project developed in a microcontroller class at Cornell University [143],

and SNUGGLZ, a student project in a graduate-level embedded systems course at the Uni-

versity of Nebraska - Lincoln. Table 5.6 lists these programs, the numbers of lines of

non-comment code they contain, and the interrupt sources utilized by the programs with

priorities ranging from highest to lowest. The interrupt complexity (the number of inter-

rupts, critical sections, and branches within critical sections) of these programs ranges from

lowest to highest across the three programs, respectively. The numbers in the columns cor-
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Table 5.6: Object Program Characteristics

Interrupt Source (frequency KHz)
In Decreasing Order of Priority

App. NLoC INT1 INT2 M1 TM3 TM0 UT0 UT1 ADC I2C
LARGEDEMO 341 - - - - 0.1 19.2 125 -

(p)
CHESS 1550 800 800 1 0.05 - - - - -
SNUGGLZ 2373 - - - - 0.06 19.2 19.2 125 400

(p) (p)

responding to interrupts denote interrupt frequencies (the inverse of interrupt inter-arrival

time). The notation “-” indicates that an interrupt is not utilized by the corresponding pro-

gram. The notation “(p)” indicates that the interrupt is preemptable for the corresponding

program; interrupts not so marked are not preemptable.

Our objects of analysis utilize various interrupt sources. INT1 and INT2 are exter-

nal interrupt interfaces that can be used to attach non-built-in devices. TM1 and TM3 are

“compare timers” that trigger two interrupts when each of the timers reaches two different

compare values. TM0 is an “overflow timer” that triggers an interrupt when it reaches its

top value. UT0 and UT1 are UART devices used to receive and send ASCII data through

UART ports; interrupts are triggered when data is available. ADC is an analog-to-digital

converter, and triggers an interrupt when a new value is converted. I2C is a two-wire inter-

face that sets communications between two devices; interrupts are generated based on their

events. The timer interrupts (TM1, TM3 and TM0) are periodic interrupts that are issued at

a periodic interval. The other interrupts are non-periodic interrupts that can occur any time

after being issued by their associated devices.

LARGEDEMO controls the brightness of an LED with a PWM (Pulse Width Modulation)

output. Its main function accepts an operation mode (e.g., ADC, button, serial) and PWM

values. HAND-MOTION CHESS simulates the physical (hand) motions involved in playing

chess without the need for a physical chess set. Its main function performs actions based

on the motion values sensed by two contact sensors that are used to sense the motion of
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players (e.g., to determine the position of hand clicks on the chess board). INT0 and INT1

generate interrupts for the contact sensors. TM1 ensures a constant sampling interval of

ADC conversion, and TM3 ensures that the cursor’s position on the chess board is updated.

SNUGGLZ implements code for motion detection by a hovercraft, and runs on microcon-

trollers with voltages 3.3V and 5V. Its main function (on the 5V processor) accepts three

inputs as commands to control directions, and sends them to the 3.3V processor through

the I2C bus for processing. UT0 and UT1 are a pair of ZigBee radios used to receive and

send data. I2C sends commands from the 5V processor to the 3V processor. TM0 controls

periodic task scheduling.

Our study focuses on interrupts under test (IUTs). We selected two interrupt sources for

each of the three object programs. These include UT0 and ADC in LARGEDEMO, INT1 and

TM1 in HAND-MOTION CHESS, and ADC and I2C in SNUGGLZ, and we denote them by

LUT0, LADC , HINT1, HTM1, SADC and SI2C , respectively. We chose these interrupt sources

because they encompass a wide range of interrupt complexities, including the number of

higher priority interrupts, the number of lower priority interrupts with respect to an IUT,

and the categories of interrupts (e.g., periodic or non-periodic) associated with an IUT. For

example, LUT0 involves one higher priority and one lower priority interrupt with respect

to UT0, HTM1 involves two higher priority interrupts and one lower priority interrupt with

respect to TM1, and SADC involves four higher priority interrupts with respect to I2C.

HTM1 also allows us to study periodic interrupts.

5.3.2 Setting GA Parameters

To investigate our research questions we required an implementation of SIMLATTE appro-

priate for our object programs. As GA parameters, we chose 32 as an initial population

size, and 16 as the population size. The number of new test cases that results is 16. For se-
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lection, we configured the algorithm to select the best half of the population from which to

generate the next generation; the selected chromosomes are retained in the new generation.

The chromosomes are ranked, and evens and odds are paired, to generate offspring. We

configured the algorithm to perform a one-point crossover by randomly selecting a division

point in the chromosome. Smith et al. [144] conclude that mutation rates considering both

the length of chromosomes and population size perform significantly better than those that

do not. Thus, we utilize a mutation rate of 1.75
λ
√
l

as suggested by Haupt et al. [145], where λ

is the population size and l is the the length of chromosome.

Our object programs do not specify fittest values (i.e., maximum WCILs) for each

device. Thus, iteration limits govern the stopping points for SIMLATTE. In this study, we

used time limits to control iteration limits. To compare the effectiveness of SIMLATTE to

other techniques, we set a maximum time limit of 24 hours for all techniques including

SIMLATTE; this lets us examine the relative effectiveness of the techniques when each is

given the same amount of time. Because iteration limits can affect both the effectiveness

and the cost of genetic algorithms, we further investigate the effects of iteration limits on

SIMLATTE in Section 6.4.

5.3.3 Variables and Measures

Independent Variable. Our independent variable involves the techniques used to calculate

WCILs. In addition to SIMLATTE, to address our first research question we consider a ran-

dom testing approach, RANDOM, based on the approach presented in [5]. RANDOM neither

applies a GA nor invokes opportunistic interrupts at the locations of interest; instead, it ran-

domly generates test cases following static constraints, and randomly issues interrupts with

the same interrupt density achieved by SIMLATTE. For example, if the average interrupt
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density for device number 5 when using SIMLATTE is 8%, RANDOM randomly selects

interrupt locations for device number 5 with interrupt density 8% during testing.

To address our second research question we consider two techniques. The first tech-

nique, SIMLATTEGA, is used to evaluate the effects of applying a GA in SIMLATTE.

SIMLATTEGA is implemented based on SIMLATTE (Figure 6.2), except that it does not in-

voke opportunistic interrupts at locations of interest using the interrupt controller. Instead,

it randomly invokes interrupts at the same density in which interrupts are issued by SIM-

LATTE. The second technique that we consider is SIMLATTELOC , and is used to evaluate

the effects of employing opportunistic interrupt invocation in SIMLATTE. SIMLATTELOC

utilizes SIMLATTE in that it issues interrupts at the locations of interest, but it does not

invoke the GA test case generator to evolve test cases or to generate an initial population.

Instead, it randomly generates test cases using static constraints.

To address our third research question we utilize all four of the foregoing techniques.

Dependent Variables. As dependent variables, we measure the effectiveness and depend-

ability of the foregoing techniques. To measure effectiveness, we report the WCILs calcu-

lated by the techniques for a given amount of testing time. To measure dependability, we

plot trend lines for each technique to show the WCILs estimated as testing time increases.

5.3.4 Study Operation

We implemented SIMLATTE and the other three techniques on AVRORA, by tailoring the

algorithm described in Section 5.3.3. For each test case, we pass the sensor inputs to the

devices. This is easy to control in the simulator because devices are all implemented as

software. By utilizing the monitor features, we can monitor each instruction access such

that whenever an interrupt location of interest is reached, this interrupt is issued. AVRORA

provides an API forceInterrupt(num) that lets users force a specific interrupt to
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occur. For constraint checking, AVRORA allows us to monitor hardware states (determine

whether it is possible to issue an interrupt) and the return of an ISR (this prevents re-

entrant interrupts). Calculating fitness values (interrupt latencies) for the GA can also be

done using monitoring features.

All four techniques we study involve randomization. To control for variance due to

randomization we ran each of the techniques five times. We did this separately on each

of the six IUTs under consideration in the object programs (Table 5.7). In total, then, we

conducted 120 runs (four techniques * six IUTs * five runs). We used a Linux cluster to

perform the executions, distributing each job on a distinct node.

5.3.5 Threats to Validity

The primary threat to external validity for this study involves the representativeness of our

object programs. Additional studies with other programs are needed.

The primary threat to internal validity for this study involves possible faults in the im-

plementation of the algorithms and tools we used to perform the evaluation. We controlled

for this threat by extensively testing our tools and verifying their results against a smaller

program for which we can manually determine the correct results. We also chose to use the

well-established Avrora simulator to implement our algorithm.

Where construct validity is concerned, there are other metrics that could be considered.

Given tight implementations and environment controls, time could be measured. Costs of

engineer time could also be considered.

5.3.6 Results and Analysis

Table 5.7 reports the effectiveness results observed (the WCILs estimated) in our study;

we use this table to address our first two research questions. Results are shown per IUT



104

Table 5.7: Technique Effectiveness

Config. Techn. WCIL (cycles)
R1 R2 R3 R4 R5

LUT0 SL 15414 15414 15414 15414 15414
RAND 14984 14967 14192 14800 14360
SLGA 15324 15194 15223 15353 15106
SLLOC 15414 15414 15414 15414 15414

LADC SL 18925 18925 18433 18433 18433
RAND 15012 15048 15070 15012 15012
SLGA 15892 15730 15828 15904 15794
SLLOC 16782 16782 16782 16782 16782

HINT1 SL 20223 20014 20223 20223 19938
RAND 15235 15256 15279 15235 15235
SLGA 15312 15375 15328 15235 15235
SLLOC 20204 20204 20166 20184 20146

HTM1 SL 5271 5742 5271 5742 5742
RAND 2472 2468 2467 2472 2467
SLGA 4796 4647 4922 4994 4758
SLLOC 4708 4767 4841 4894 4967

SADC SL 113446 104541 107044 109706 104257
RAND 41038 14161 19690 44147 15353
SLGA 50978 61038 59536 61537 60998
SLLOC 91011 91011 91011 88304 91011

SI2C SL 149820 141929 143697 149988 140323
RAND 35842 34161 28737 29752 25353
SLGA 84023 75313 86004 78144 78422
SLLOC 104602 108838 103800 104602 108838

(Column 1) and technique (Column 2). Columns 3-7 show the WCILs estimated by the

four techniques on each of the five sets of runs, for each IUT and technique. The numbers

rendered in bold font indicate the largest WCILs for each IUT, among all five sets runs, for

all techniques.

5.3.6.1 RQ1: Effectiveness of SIMLATTE vs. RANDOM

As Table 5.7 shows, for each IUT and set of runs, SIMLATTE (SL) is more effective than

RANDOM (RAND). On all six IUTs, when averaging the five sets of runs, SIMLATTE

improved WCILs over the best runs of RANDOM by amounts ranging from 2.9% to 305.0%.

The lowest level of improvement (2.9%) occurred on LUT0, while the highest levels of

(144.2% and 305.0%) occurred on SADC and SI2C , respectively. These results further imply
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that as the level of interrupt complexity increased, SIMLATTE was even more effective than

RANDOM. There are two reasons for this. First, higher complexity is accompanied by a

larger search space, which can amplify the relative effectiveness of the GA. Second, higher

complexity indicates the presence of more potential critical sections and nested interrupts,

which can amplify the effectiveness of using opportunistic interrupts.

5.3.6.2 RQ2: The Role of the GA and Opportunistic Interrupt Invocation in

SIMLATTE

To address RQ2, we first compare the effectiveness of SIMLATTEGA (SLGA) to that of

SIMLATTE and RANDOM. As shown in Table 5.7, for each IUT, for each set of runs,

SIMLATTE was more effective than SIMLATTEGA. The improvement for individual IUTs

with averaged sets ranged from 1.1% to 83.3%. The highest level of improvement occurred

on SADC and the lowest occurred on LUT0. These results show that the use of opportunistic

interrupts did impact the effectiveness of SIMLATTE in estimating WCILs. This impact

was more obvious as the complexity level increased.

Comparing SIMLATTEGA and RANDOM, SIMLATTEGA was more effective in most of

the sets of runs across all six IUTs. Only on sets of runs R4 and R5 on HINT1 did RANDOM

calculate the same WCILs as SIMLATTEGA. Using average WCILs, across the five sets of

individual IUTs, the effectiveness improvement achieved by SIMLATTEGA with respect

to RANDOM ranged from 0.3% to 226.5%. Again, SADC and SI2C exhibited the most

substantial improvements, of 141.8% and 226.5%, respectively. These results indicate that

the use of the GA amplifies the effectiveness of the WCIL calculation process when larger

search spaces are present.

We next compare the effectiveness of SIMLATTELOC (SLLOC) to that of SIMLATTE

and RANDOM. As Table 5.7 shows, on LUT0, SIMLATTELOC and SIMLATTE are equally

effective for each set of runs. On HINT1, on sets of runs R2 and R5, SIMLATTELOC is
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more effective than SIMLATTE. This suggests that SIMLATTELOC can be as effective as

SIMLATTE when smaller search spaces exist. On the other four IUTs, on each set of runs,

SIMLATTELOC is less effective than SIMLATTE. In fact, for the four IUTs, averaging the

five sets, SIMLATTE improves WCIL estimation over SIMLATTELOC by amounts ranging

from 11.0% to 35.5%.

Comparing SIMLATTELOC and RANDOM, for each set of runs and IUT, SIMLATTELOC

was more effective than RANDOM. The improvement for individual IUTs with averaged

sets ranged from 5.1% to 335.2%. Again, SADC and SI2C exhibited the greatest improve-

ments (271.9% and 335.2%, respectively) while LUT0 exhibited the least.

Overall, these results indicate that both the use of the GA, and the use of opportunistic

interrupt invocation, contributed to enhancing the effectiveness of techniques for calculat-

ing WCILs. For opportunistic interrupt invocation, however, this improvement was evident

only in cases where programs had higher complexity.

5.3.6.3 RQ3: Dependability of Techniques

To address our third research question we rely on Figure 5.2, which displays trend lines

observed for the four techniques during testing. We show results only for LUT0, HINT1, and

SADC , which we consider to be representative regarding levels of complexity. The x-axes

indicate testing time measured in minutes, and the y-axes indicate the WCILs calculated

in the testing process in terms of cycles. For SIMLATTE, WCILs are plotted by averaging

the five sets of runs. For the other three techniques, the data points used represent only

a subset of the total data points; this is because SIMLATTE takes longer to execute each

run so it generates fewer results within a given time. For these three techniques, we select

the largest WCIL present among the five sets; thus, the graphs present the most favorable

possible view of their operation. At the same time, using only a subset of data removes
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clutter and renders a visualization that still illustrates the fluctuations among data points

throughout the testing period.

LUT0

HINT1

SADC

SimLatte Random SimLatte_GA SimLatte_LOC 

Figure 5.2: WCILs calculated during testing of LUT0, HINT1 and SADC
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The top graph in Figure 5.2 shows an example in which both SIMLATTELOC and SIM-

LATTE achieved the same effectiveness (for LUT0). Note, however, that SIMLATTE be-

gan to converge on an answer in this case after just 14 minutes. WCILs estimated by

SIMLATTELOC , on the other hand, dramatically fluctuated across the testing time with the

first maximum appearing at around 33 minutes. More generally, for each IUT, SIMLATTE

increased its estimated WCILs until it reached a plateau. This indicates that by using SIM-

LATTE, we can potentially decide to stop testing early as results converge, making the

testing process more efficient. The other three techniques, on the other hand, did not con-

verge in any obvious manner, so identifying when to terminate the testing process when

using them could be difficult.

Figure 5.2 also indicates that the complexity of the program under test can affect the

time required for SIMLATTE to converge. For example, the convergence times for SIM-

LATTE on LUT0, HINT1 and SADC are 14 minutes, 19 minutes, and 138 minutes, respec-

tively. This implies that, as interrupt complexity increases, SIMLATTE takes longer to

converge. However, it is worth noting that for SADC , SIMLATTE reached 88% of the es-

timated maximum WCIL (one million cycles) within the first 13% of its execution (18

minutes), whereas other approaches did not estimate WCILs of more than 60,000 cycles.

This indicates that SIMLATTE yielded much smaller estimation errors in complex systems.

5.4 Discussion

We next examine the influence of several tunable parameters on the effectiveness of SIM-

LATTE. We then compare SIMLATTE to an approach for estimating WCILs based on static

analysis.

Time Limits. We further examined our data to assess the effects of time limits on SIM-

LATTE. For each IUT, for each set of runs, we increased the time limit imposed on SIM-
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LATTE by 10 hours. In the case of SADC and SI2C , WCILs do appear to increase by 0.5%

and 0.4% cycles as the time limit increases. All other cases fail to exhibit increasing trends;

this indicates that our algorithm is converging in these cases. An implication of this discov-

ery is that time limit matters more to programs with higher complexity; thus, longer testing

times should be allocated to such programs.

Mutation Rate. To investigate whether the convergence of our GA was due to local

optimums, we automatically tuned the mutation rate when the WCIL appeared to freeze

for an hour. We did see effects from increasing the mutation rate.

For example, in the case of HINT1, two out of five runs did not reach the best WCIL

estimate (i.e., 20,223) without tuning the mutation rate; this occurred even when the time

limit was increased. By increasing the mutation rate, however, we enabled all five runs to

reach the best WCIL estimate. This case also occurred with LADC and HTM1. In the case

of SADC , increasing only the mutation rate did not have any effect. We conjecture that the

algorithm requires more time to converge in cases where program complexity is higher.

Therefore, we conducted additional experiments with 10 hours of additional testing time.

In this case, we achieved new higher WCILs than without any change. When we increased

both mutation rate and testing time, we achieved the highest WCIL. A similar case also

occurred with SI2C .

Interrupt Density. Interrupt density is the frequency at which interrupts occur in a test run.

In our study, we use the same interrupt density for RANDOM and SIMLATTE. When using

RANDOM, however, increasing interrupt density may enhance WCIL estimation effective-

ness. This is especially true for systems employing one or more interrupts with higher

priorities than an IUT because a high level of interrupt density may increase the likelihood

that nested interrupts occur.
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Table 5.8: Interrupt Density of Random Testing

Density LUT0 LADC HINT1 HTM1 SADC SI2C

8% 14984 15070 15279 2472 44147 35842
30% 15012 19900 19224 2686 49554 37932
50% 14597 18494 19224 2762 48946 26847
70% 8332 9651 14383 1763 25633 12882

To further investigate the effectiveness of SIMLATTE, we compare its result to those

of RANDOM at densities of 30%, 50% and 70%. Table 5.8 shows the results of RANDOM

under four levels of interrupt density. The first level in each IUT is the value used in our

study to answer the three RQs in Section 5.3.6. The numbers indicate the largest WCILs for

each IUT, among all five sets of all levels of interrupt density. The effectiveness of RAN-

DOM does increase as the interrupt density increases to a certain level, and then it begins to

decline. This occurs because multiple pending interrupts under a heavy interrupt load can

cause the CPU to select only the highest priority interrupt, which may cause lower prior-

ity interrupts (including IUT) to starve and lose data. Even at peak effectiveness, the best

WCIL estimates obtained by RANDOM are far worse than those obtained by SIMLATTE.

These results further suggest that appropriately adjusting interrupt density may enhance

the effectiveness of random techniques for estimating WCILs. However, blindly increasing

interrupt density may also decrease technique effectiveness. Such an observation also con-

firms a point made by Regehr et al. [5]; namely, that in random testing, interrupts should

be neither too sparse nor too dense.

Static Analysis. To measure the accuracy of the WCILs estimated by SIMLATTE, we

compared its results to those estimated by BOUND-T, a commercial static analysis tool that

analyzes Atmel AVR machine code to compute worst case execution times [146]. We tai-

lored the tool to estimate WCILs for the five IUTs of our object program. We did this

by using BOUND-T to compute the WCETs of all ISRs and the WCETs of the critical

sections in both Main and the ISRs. Next, we computed the longest delay based on all



111

Table 5.9: WCILs via SIMLATTE and Static Analysis

Techniques LUT0 LADC HINT1 HTM1 SADC SI2C

SIMLATTE 15414 18925 20223 5742 113446 149988
STATIC ANAL. 15414 18925 20223 15414 147548 173954

possible combinations of the critical sections, interrupt sequences, and minimum interrupt

inter-arrival times. For example, WCILHINT1
is the largest WCET among all WCETs in

the critical sections in Main and WCETHINT0
. For WCILSADC

and WCILSI2C
, the mini-

mum interrupt inter-arrival time for UART0 is considered because UART0 can be nested in

UART1.

Table 5.9 shows the WCILs calculated by both SIMLATTE and the static analysis ap-

proach. In general, code-level static analysis is conservative, and therefore can yield in-

accurate WCIL estimates. For LUT0, LADC and HINT1, however, SIMLATTE estimated

the same results as those computed by the static analysis tool. These results indicate that

SIMLATTE can achieve the same effectiveness as static analysis for programs of lesser com-

plexity. This is because interrupt invocation patterns in such systems are straightforward

and can be accurately computed by the static analysis tool.

We measured the amount of time required to estimate WCILs on our object programs

using static analysis; in no case did the analysis require more than one minute, and thus,

the analysis was more efficient than the analysis conducted by SIMLATTE. On the three

object programs just discussed, static analysis is thus more cost-effective. However, on

the other three object programs, static analysis, while efficient, is much less effective than

SIMLATTE.

For HTM1, the result of static analysis is much higher than the estimates produced

by SIMLATTE. The static analysis estimate tool assumes that TIMER1 is invoked at the

beginning of the critical section. During testing, however, this particularly rare scenario

never occurs. When we shorten the period of TIMER1, however, the WCIL estimated by
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SIMLATTE becomes longer. This occurs because the interrupt density for TIMER1 is now

higher.

For SADC and SI2C , static analysis estimated a higher WCIL than that estimated by

SIMLATTE. On further examination of the program, we ascertained that the static analysis

approach overestimated WCIL for two reasons. First, when I2C is enabled, both Main and

UART0 have data dependencies with I2C. For example, when the WCET path is selected in

MAIN with a shared variable defined in I2C, the WCET path in UART0 cannot be executed

because it also has a dependency with this shared variable. Second, the static analysis

approach does not consider data dependencies between ISRs in UART0 and UART1. In

this case, the interrupt invocation pattern is quite complex; thus, the global interrupt bit is

frequently disabled and enabled to keep the entire system working properly. We believe

that these events can be observed only at runtime.

This result leads to two possible conclusions. First, a WCIL computed by static analysis

may be based on a path that is infeasible in a system IUT. As such, the result could be an

overapproximation. Second, test inputs are not sufficiently adequate to exercise the WCIL

computed by static analysis – a main limitation of testing. As such, the result could be an

underapproximation. As we lower the interrupt period, we can force the WCIL to go up.

However, the value we test may not be applicable to the actual system (e.g., the period is

too short). We leave further investigation as future work.

5.5 Conclusion

In this chapter, we have presented SIMLATTE, another instantiation of the SIMEXPLORER

framework, that helps detect interrupt latency faults by determining worst-case interrupt

latencies. Our empirical study shows that SIMLATTE can be more effective and depend-

able for calculating WCILs than state-of-the-art random testing. Further, by investigating
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the two components of SIMLATTE (opportunistic interrupt invocation and the genetic algo-

rithm), our results show that each component contributes to the effectiveness and depend-

ability of the approach. Finally, we show that SIMLATTE can produce more precise WCILs

than static analysis.



114

Chapter 6

SimRT: Automatic Regression Testing

for Data Races 5

As mentioned in Chapter 1, traditional regression testing techniques for dynamic race de-

tection may not be cost-effective. To address this problem, in this chapter, we propose

SIMRT, an automated regression testing technique for use in detecting races that are in-

duced in concurrent programs by code modifications. SIMRT identifies variables that can

be accessed by multiple threads in a modified program, and that are impacted by modifi-

cations. SIMRT then employs a regression test selection technique to select the test cases

from the program’s regression test suite that exercise these shared variables in a manner

that involves more than one thread. It is these test cases that are specifically relevant to

detecting races.

While regression test selection targeting shared variables helps SIMRT reduce the cost

of regression testing, the testing process is still unnecessarily burdened by the cost of dy-

namic race detection approaches, because different inputs tend to repeatedly execute the

same memory locations and interleavings. Deng et al. [75] observe that up to 88% of test
5The contents of this chapter have appeared in [147].
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inputs always execute the same shared memory locations and interleavings and thus do not

increase race detection rate as test cases execute. Thus, SIMRT next applies a greedy test

case prioritization algorithm to schedule the test cases selected in its prior phase in an order

that detects races faster.

To assess SIMRT, we conducted an empirical study in which we applied the approach

to modified versions of nine concurrent source code objects, all of which contain data races

that are the result of code modifications. We assessed both the regression test selection and

test case prioritization components of our approach by comparing SIMRT to traditional and

baseline regression test selection and test case prioritization techniques. Our results show

that SIMRT is more efficient than a common baseline regression test selection technique,

and substantially more efficient than the default technique of executing all test cases, while

retaining the effectiveness of those techniques. Our results also show that the prioritization

of test cases by SIMRT substantially increases the rate at which races are detected with

respect to a common baseline prioritization technique, and a random ordering of test cases.

6.1 Background

6.1.1 Race Detection and Verification

As noted in Chapter 2.2, many static and dynamic analysis techniques have been developed

to detect data races. In this work, we consider dynamic race detection techniques. Dy-

namic race detection techniques based on lock-set and vector-clock algorithms can report

false positives, because they cannot guarantee that a race can really occur under specific

thread interleavings. We refer to the races reported by these algorithms as potential races.

Techniques have also been proposed to determine whether potential races identified by a

detector can actually occur. We refer to races that have been verified in this way as real
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races. However, even race verifiers cannot distinguish between harmful races and benign

races; they report any pair of unsynchronized accesses (at least one of which is a write) as

a race.

RACEFUZZER [6] is a race detection tool that combines dynamic race detection and

race verification. RACEFUZZER computes pairs of program instructions that could poten-

tially race during concurrent execution. It then randomly schedules the program under test

based on the computed instruction pairs to allow real racing events to be placed temporally

next to each other.

Employing random schedules for race verification is precise and-cost effective, but can

be incomplete [6, 109]. Random scheduling does not guarantee that verification can dis-

tinguish all real races from potential races; rather, it guarantees that if it can cause a race

to occur, this potential race will become a real race. On the other hand, complete replay

techniques such as PENELOPE [118] may incur much higher overhead due to context

switches.

6.1.2 Testing for Races

Software testing requires test inputs. Given a set of test inputs, the race detection process

for a multi-threaded program involves two steps. First, for each test input, the program is

executed by a dynamic race detection tool that identifies potential races (race detection).

Second, for any input t that produces a set of potential races PRaceSet in the first step,

and for each pr ∈ PRaceSet, the program is executed n (1 ≤ n ≤ N ) times to verify pr

under t, where N is defined by users in terms of a testing budget (race verification). We

define N = 1 for SIMRT to simulate a resource-constrained testing environment.

Our SIMRT approach uses RACEFUZZER to test for races by following the foregoing

two steps. However, in the race verification phase, RACEFUZZER verifies every potential
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race reported in the race detection phase for the given input regardless of whether this

race has already been verified by previous inputs. This can be expensive when given large

test suites, particularly when each test case reports redundant potential races in the race

detection phase. To alleviate this problem, we adjusted RACEFUZZER so that, once a

potential racing pair is confirmed to be a real race, it is not verified again under another

input. Specifically, for each test input, SIMRT first invokes RACEFUZZER and reports

potential races. If there exist any potential races that have not been confirmed as real races,

SIMRT invokes RACEFUZZER to verify each of them, under the same test input, before

proceeding to the next test input. As such, the actual number of test runs for an entire test

suite T is:

TR = |T |+
|PRaceSet|∑

i=1

NTi

Here, |T | is the total number of original tests, |PRaceSet| is the number of potential races,

and NTi is the number of tests required to verify the ith pair in PRaceSet.

6.2 Approach

Figure 6.1 contains an example that we use to illustrate our approach. The figure provides

code snippets from two versions of the JDK’s HashMap utility (slightly modified, and

referred to here as HM). The variables table, tab[i], next and modCount are identi-

fied as shared variables by thread escape analysis (see Section 6.2.2). A test driver for this

code instantiates an hm object from class HM. The two parameters in the constructor of HM

specify the initial capacity and load factor. Each of the test cases for the code involves two

components, each executing in its own thread. We define four test case components:

case0: hm.clear()

case1: hm.containsValue(new HM(100, 10.0f));
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1 p u b l i c boolean c o n t a i n s V a l u e ( O b j e c t v a l u e )
{

2 E n t r y t a b [ ] = t a b l e ; / / b l o c k ID : 1
3 i f ( v a l u e == n u l l ) {
4 f o r ( i n t i = t a b . l e n g t h ; i− − >

0 ; ) / / b l o c k ID : 2
5 . . .
6 }
7 e l s e {
8 . . .
9 re turn true ; / / b l o c k ID

: 4
10 }
11 re turn f a l s e ;
12}
13
14
15
16
17
18
19
20
21 p u b l i c vo id c l e a r ( ) {
22 . . .
23 synchronized ( t h i s ) {
24 E n t r y t a b [ ] = t a b l e ; / / b l o c k ID : 3
25 f o r ( i n t i =0 ; i<t a b . l e n g t h ; i ++)
26 t a b [ i ] = n u l l ; / / b l o c k ID : 4
27 }
28 / / b l o c k ID : 5
29 . . .
30 }

1 p u b l i c boolean c o n t a i n s V a l u e ( O b j e c t v a l u e )
{

2 E n t r y t a b [ ] = t a b l e ;
3 i f ( v a l u e == n u l l ) {
4 f o r ( i n t i =0 ; i<t a b . l e n g t h ; i

++) / / change
5 . . .
6 }
7 e l s e {
8 . . .
9 re turn c o n t a i n s N u l l ( ) ; / / change

10 }
11 re turn f a l s e ;
12}
13
14 p r i v a t e boolean c o n t a i n s N u l l ( ) {
15 E n t r y t a b [ ] = t a b l e ;
16 f o r ( i n t i =0 ; i<t a b . l e n g t h ; i ++)
17 f o r ( E n t r y e= t a b [ i ] ; e != n u l l ; e

=e . n e x t )
18 . . .
19 }
20
21 p u b l i c vo id c l e a r ( ) {
22 . . .
23 synchronized ( t h i s ) {
24 E n t r y t a b [ ] = t a b l e ;
25 f o r ( i n t i =0 ; i<t a b . l e n g t h ; i ++)
26 t a b [ i ] = n u l l ;
27 }
28 modCount ++; / / change
29 . . .
30}

Figure 6.1: Original HM program P (left) and a modified version of the HM program P ′ (right)

case2: hm.containsValue(new HM(0, 100.0f));

case3: hm.containsValue(null)

A test case tci is denoted by (m, n) (0 ≤ m,n ≤ 3), where m and n denote two of the

foregoing cases (i.e., casem and casen).

Suppose there are six test cases generated for version P of HM: tc1 = (0, 1), tc2 = (0, 2),

tc3 = (0, 0), tc4 = (0, 3), tc5 = (1, 2), and tc6 = (3, 3). In version P ′ of HM, there are

two changes that cause three races to occur. The first change involves addition of a new

method containsNull() and a call to it from line 9. This change causes a read-write
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race involving tab[i] at line 17 and tab[i] at line 26 when executing tc1 or tc2 (i.e.,

concurrently executing containsNull() and clear()). The second change involves

addition of a new line of code (line 28) that reads and writes a class variable modCount.

Two data races occur in this case, involving modCount when tc3 is executed; one is a

write-write race, and the other is a read-write race.

6.2.1 Overview of SimRT

Figure 6.2 provides an overview of SIMRT. SIMRT contains five components: SVLocator,

ImpAnalyzer, Matcher, Selector, Ranker. Let P be a program, let P ′ be a modified version

of P , let C ′ be the set of changes made to P to produce P ′ (a set of program locations in

P ′), let B′
SV denote a block in a method in P ′ that contains a shared variable SV , and let

BSV be a block in a method in P that corresponds to B′
SV . SIMRT first computes a list of

shared variables L′
SV in P ′ using SVLocator. Next, ImpAnalyzer updates L′

SV by mapping

B′
SV to BSV , and identifying the shared variables in L′

SV that are potentially impacted by

one of the changes C ′ in P ′. Next, Matcher iterates over each SV in L′
SV , and selects the

SV s that can be matched into pairs. The output of Matcher is a list of impacted shared

P 
P’ 

ImpAnalyzer	  

I’SVP 

L’SV 
T 
HP 

 

selector	  

T’  T’p 

L’SV (updated)  
 

SVLocator	  

matcher	  

ranker	  

B’SV 

BSV 

 Tp 

Figure 6.2: Overview of SimRT
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variable pairs (I ′SV P ) that are coverage targets for RTS and TCP techniques. Next, Selector

selects T ′ ∈ T for use in regression testing P ′. Finally, Ranker prioritizes the test cases

in T ′ (or T ), producing T ′
P (or TP ). Both Selector and Ranker utilize coverage history

information provided as HP . We describe each of these components in the sections that

follow.

6.2.2 Shared Variable Identification

SVLocator produces a list of variables L′
SV that can be accessed by multiple threads in P ′.

In Java, shared variables can be identified by using thread escape analysis [104, 148]; we

adopted the conservative shared variable detection algorithm proposed in [149], that uses

the ThreadLocalObjectAnalysis API [150] provided by SOOT [151] to compute

variables that can potentially be read from and written to by multiple threads simultane-

ously. We also used the alias analysis [152] provided by SOOT to identify a set of escaping

variables that can potentially access the same location.

Each shared variable (SV ) is defined as a 7-tuple < C.M , N , D, L, A, B, I > where C

is a class name, M is a method signature, N is the name of the SV , D is a memory access

identifier (SV s that potentially access the same memory location share the same identifier),

L is a line number at which the SV occurs, A denotes the access operation (read or write)

performed on the SV , B is the block ID (a unique number in C.M ) in P where SV is

mapped to, and I is a boolean value indicating whether SV is impacted. Note that C.M

must exist in both P and P’. If a method M ′ in P ′ in which a SV occurs does not exist in P ,

we locate, in the call graphs for P ′, the method that most directly calls M ′ that also exists

in P , and, if no such method is found, C.M is defined as ⊥.
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In the HM program, shared variables in P ′ are displayed as the following initialized

tuples:

SV1:<HM.containsValue(Object), table, 1, 2, read, ⊥, ⊥>

SV2:<HM.containsValue(Object), table, 1, 15, read, ⊥, ⊥>

SV3:<HM.containsValue(Object), tab[i], 2, 17, read, ⊥, ⊥>

SV4:<HM.containsValue(Object), next, 3, 17, read, ⊥, ⊥>

SV5:<HM.clear(), table, 1, 24, read, ⊥, ⊥>

SV6:<HM.clear(), tab[i], 2, 26, write, ⊥, ⊥>

SV7:<HM.clear(), modCount, 4, 28, read, ⊥, ⊥>

SV8:<HM.clear(), modCount, 4, 28, write, ⊥, ⊥>

Here, <HM.containsValue(Object), table, 1, 15, read, ⊥, ⊥> indi-

cates that in line 15 in P ′, variable table is read, with access identifier 1. The method

HM.containsNull() in which table occurs does not exist in P ; thus, HM.contains-

Value(Object) is filled into C.M . Elements B and I are not specified until the com-

parison algorithm (Section 6.2.3) is invoked.

6.2.3 Shared Variable Impact Analysis

Figure 6.3 and Figure 6.4 displays the algorithm used by IMPANALYZER. The algorithm

takes program P , modified version P ′, and a list of shared variables L′
SV with initialized

tuples as inputs, and returns the updated L′
SV . First, the algorithm constructs control flow

graphs (CFGs) G and G′ for all methods in P and P ′ (line 4). Each node in a CFG is

represented using a unique block ID. Next, the algorithm compares each CFG G in P to

the corresponding G′ in P ′ by calling Compare (line 6). The comparison begins with entry

nodes E and E ′. Given two CFG nodes N and N ′, Compare determines whether N and



122

N ′ have successors (S and S ′) whose code differs along pairs of identically labeled edges

(lines 14-20, 23).

Up to this point, ImpAnalyzer behaves identically to the original DEJAVU algorithm [17].

However, ImpAnalyzer uses different mechanisms to handle node comparisons. ImpAna-

lyzer obtains a set of line numbers in block node S ′ (line 22). If the code associated with

S and S ′ is the same (line 23), the algorithm iterates over L′
SV , and picks the SV s that are

contained in S ′ (line 24-26). For each of these SV s, tuple element B is set to the block

ID of S (line 27), and tuple element I is set to false (line 28), indicating that this shared

variable is not impacted.

procedure UpdateSVInfo

1: Inputs: P , P ′, L′
SV

2: Outputs: L′
SV for P ′ /*updated*/

3: begin

4: construct CFGs for P and P ′

5: for each G ∈ CFG and G′ ∈ CFG′

6: Compare(E, E′) /*start from entry nodes*/

7: endfor

8: return L′
SV

9: end

Figure 6.3: ImpAnalyzer algorithm
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procedure Compare

10: Inputs: N , N ′ /*nodes in G and G′*/

11: Outputs: L′
SV for G′ /*updated*/

12: begin

13: isVisted(N) = true /*whether N is visited*/

14: for each successor S of N ∈ G

15: if (N , S) is labeled

16: L = the label on edge (N,S)

17: else

18: L = ϵ

19: endif

20: S′ = the node in G′ such that (N ′, S′) has label L

21: if isVisited(S) is false

22: LNSS′ = getBlockLineNumbers(S′)

23: if LEquivalent(S, S′) /*if code is equivalent*/

24: for each SV ∈ L′
SV

25: lnSV = getSVLineNumber(SV )

26: if lnSV ∈ LNSS′

27: setOldBlockID(SV , S)

28: setIsImpacted(SV , false)

29: break

30: endif

31: endfor

32: Compare (S, S′)

33: else

34: for each SV ∈ L′
SV

35: if isImpactedBy(SV ,S′)

36: setOldBlockID(SV , S)

37: setIsImpacted(SV , true)

38: break

39: endif

40: endfor

41: endif

42: endif

43: endfor

44: end

Figure 6.4: ImpAnalyzer algorithm (cont’d)
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If the code associated with S and S ′ differs along some pair of identically labeled edges,

ImpAnalyzer iterates over L′
SV and determines the impacted shared variables (line 34-35).

If a shared variable SV is impacted by the change, tuple element B is set to old block ID

S (line 36), and tuple element I is set to true (line 37), indicating the existence of impact.

A shared variable is considered impacted (line 35) in the following cases:

1. If a change to P ′ involves an SV in P ′ and this SV is either added to or modified in

P ′, an SV is considered impacted.

2. If a change to P ′ involves adding or modifying a method, all SV s in this method are

considered impacted.

3. If a change to P ′ involves a synchronization statement, all the SV s in the entire re-

gion of the synchronized block are considered impacted. For example, if line 23

in Program P is omitted, all shared variables inside the synchronization block (SV5

and SV6) are considered impacted. In addition to considering blocks using the syn-

chronized keyword, we also consider blocks using explicit locks, including lock(),

unlock(), and trylock(), and locks implementing a ReadWriteLock interface

(readLock(), writeLock()). We do not consider changes involving wait(),

notify(), or notifyAll(); these must be called inside a synchronized block [153],

and changing them does not affect SV s in synchronized blocks.

4. If a change to P ′ involves removing a volatile keyword in the declaration of an SV,

all subsequent uses of this SV are considered impacted.

5. If a change to P ′ does not involve an SV but its full impact set in P ′ (obtained by

traditional impact analysis such as static forward slicing) includes one or more SV s,

these SV s are considered impacted.

In the example shown in Figure 6.1, IMPANALYZER compares the method contains-

Value(Object) in P and P ′. The algorithm begins by visiting the node with block ID
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1 in P (lines 2-3) and compares it to its corresponding node in P ′. The two blocks are

equal, so the algorithm updates tuple elements B and I for all SV s in lines 2-3 of P ′.

Thus, <HM.containsValue(Object), table, 1, 2, read, ⊥, ⊥> is set

to <HM.containsValue(Object), table, 1, 2, read, 1, false>.

Here, B = 1 is the block ID in P that table is mapped to, and I = false indicates that

table is not impacted.

Next, IMPANALYZER compares the nodes at line 4 in both P and P ′. Although line 4

is changed in P ′, the change does not impact any shared variables. Thus, the comparison

proceeds to the next node in P . When IMPANALYZER visits the node corresponding to

block 4 in HM.containsValue(Object) in P , it discovers that line 9 in P ′ is changed

by addition of the call to method containsNull(). Thus, all SV s in this method are

considered impacted. For example, <HM.containsValue(Object), next, 3,

17, read, ⊥, ⊥> is set to <HM.containsValue(Object), next, 3, 17,

read, 4, true>.

After the algorithm returns, the two undefined elements in each SV are noted. In the

example shown in Figure 6.1, the list of shared variables is updated as follows:

SV1: <HM.containsValue(Object), table, 1, 2, read, 1, false>,

SV2: <HM.containsValue(Object), table, 1, 15, read, 4, true>,

SV3: <HM.containsValue(Object), tab[i], 2, 17, read, 4, true>,

SV4: <HM.containsValue(Object), next, 3, 17, read, 4, true>,

SV5: <HM.clear(), table, 1, 24, read, 3, false>,

SV6: <HM.clear(), tab[i], 2, 26, write, 4, false>,

SV7: <HM.clear(), modCount, 4, 28, read, 5, true>,

SV8: <HM.clear(), modCount, 4, 28, write, 5, true>.
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6.2.4 Matching Shared Variables

Because race detection involves pairs of shared variable accesses, the next step is to use

Matcher to identify a set of impacted shared variable pairs I ′SV P serving as coverage targets

for the Selector and Ranker modules. We define an impacted shared variable pair ISV P

as a pair of shared variables SVi and SVj , such that at least one of them is impacted, and at

least one of them is a write access.

To illustrate, Matcher takes the updated shared variable list L′
SV computed in Figure 6.4

as input, and outputs the potential impacted shared variable pairs I ′SV P . For each shared

variable SVi in L′
SV , if SVi is impacted (determined by querying element I in the SVi

tuple), the algorithm iterates over L′
SV to identify each SVj in L′

SV that is shared with SVi,

regardless of whether SVj is impacted. As a result, each qualified ISV P = (SVi, SVj) is

added to I ′SV P . In our example, five variables are impacted (SV2, SV3, SV4, SV7, and SV8),

but only SV3, SV7, and SV8 qualify for pairing, so I ′SV P = <(SV3, SV6), (SV7, SV8), (SV8,

SV8)>.

6.2.5 Regression Test Selection

The next step is to use Selector to select test cases that are relevant to race detection. A naive

approach is to select every test case that traverses any (SVi, SVj) ∈ I ′SV P . However, this

may include test cases that execute shared variables but involve only one thread. Instead,

SIMRT selects test cases by traversing the tuple elements B of SVi and SVj involved in

different threads. To facilitate this, when collecting coverage information for each block

in the original program P , which is done during the preliminary phase of testing, we also

record the thread IDs that cover each block. As such, the constructed test history indicates

(1) whether a block is covered, and (2) the IDs of the threads that cover this block.
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procedure TestSelection

45: Inputs: T , HP , I ′SV P

46: Outputs: T ′

47: begin

48: T ′ = ϕ

49: for each (SVi, SVj) ∈ I ′SV P

50: B1 = getOldBlockID(SVi)

51: B2 = getOldBlockID(SVj)

52: for each tc ∈ T

53: if HP (tc, B1) = true and HP (tc, B2) = true

—: and HP (tc, T idB1, T idB2) = true

54: T ′ = T ′ ∪ tc

55: endif

56: endfor

57: endfor

58: end

Figure 6.5: Regression test selection algorithm

Figure 6.5 shows the Selector algorithm. The algorithm takes three inputs: test suite

T , the impacted shared variable pairs I ′SV P , and the test coverage history that indicates

which test cases in T covered which statements in P with which thread. HP is denoted

by tci = <(C.M , B, TID)>, where tci is the test case with number i, C.M is the class

name combined with the method signature, B is the block ID that tci covers, and TID

is the ID of the thread that covers B. For each shared variable pair (SVi, SVj) in I ′SV P ,

the algorithm obtains the matching block IDs B1 and B2 for SVi and SVj (line 50-51) as

coverage targets. Based on the coverage history HP , the algorithm selects all test cases

from T that traversed B1 and B2 (the first two conditions in line 53) with different threads

(the third condition in line 53), and adds them to T ′ (line 54).
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In our example, suppose the coverage history HP holds the following coverage infor-

mation for each of the six test cases:

tc1 = <(HM.clear(), 3, 1), (HM.clear(), 4, 1), (HM.clear(), 5, 1), (HM.containsValue(Object), 1, 2),

(HM.containsValue(Object), 4, 2)>,

tc2 = <(HM.clear(), 3, 1), (HM.clear(), 4, 1), (HM.clear(), 5, 1), (HM.containsValue(Object), 1, 2),

(HM.containsValue(Object), 4, 2)>,

tc3 = <(HM.clear(), 3, 1), (HM.clear(), 4, 1), (HM.clear(), 5, 1), (HM.clear(), 3, 2),

(HM.clear(), 4, 2), (HM.clear(), 5, 2)>,

tc4 = <(HM.clear(), 3, 1), (HM.clear(), 5, 1), (HM.containsValue(Object), 1, 2),

(HM.containsValue(Object), 2, 2)>,

tc5 = <(HM.containsValue(Object), 1, 1), (HM.containsValue(Object), 4, 1),

(HM.containsValue(Object), 1, 2), (HM.containsValue(Object), 4, 2)>,

tc6 = <(HM.containsValue(Object), 1, 1), (HM.containsValue(Object), 2, 1),

(HM.containsValue(Object), 1, 2), (HM.containsValue(Object), 2, 2)>.

In this case, both tc1 and tc2 cover one target, (SV3, SV6), with different threads, and

tc3 covers two targets, (SV7, SV8) and (SV8, SV8), with different threads. Test cases tc5,

and tc6 do not cover any targets. Test case tc4 covers targets (SV7, SV8) and (SV8, SV8) but

with only one thread. Therefore, T ′ = < tc1, tc2, tc3 >. In contrast, most traditional RTS

techniques would select all six test cases for T ′ because they all cover changed blocks. By

running tests tc1, tc2 and tc3 we can detect all three races, while tc4, tc5 and tc6 do not help

expose races.

Note that we select both tc1 and tc2 even though they cover the same target. The reason

for this is because covering (executing) the two shared variables in the target pair under one

test input is not necessarily sufficient to determine whether they access the same memory

addresses [3]. Different inputs could cause different states to exist in the same code region,
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causing two instructions in the target pair to access different memory locations under one

input and the same memory location under a different input.

6.2.6 Test Case Prioritization

Ranker prioritizes test cases, beginning with those identified by Selector. Ranker iter-

ates over T ′, selects the test case tci that covers the most impacted shared variable pairs

(ISV P s) in I ′SV P , and places tci in T ′
P . Next, Ranker iteratively selects the test case tci

that covers the most ISV P s and appends tci to T ′
P . When multiple test cases cover the

same number of ISV P s, Ranker chooses one randomly. If each ISV P has been covered

by at least one test case, and the remaining unprioritized test cases cannot add additional

coverage, Ranker resets the coverage vectors for all unprioritized test cases to their initial

values, and reapplies the prioritization approach, ignoring previously prioritized test cases.

In our example program, tc1 and tc2 cover (SV3, SV6) with different threads, and tc3

covers (SV7, SV8) and (SV8, SV8) with different threads. Ranker first places tc3 in TP .

Because tc1 and tc2 achieve the same additional coverage, the algorithm randomly selects

one of these (say, tc1) and appends it to T ′
P . Next, the algorithm resets the coverage data.

As such, tc2 becomes the test case that covers the most ISV P s and is appended to T ′
P .

Therefore, the output of Ranker is T ′
P = < tc3, tc1, tc2 >. When running T ′

P , all three races

can be exposed by the first two test cases.

As noted in Section 2.1.3, the safety of RTS techniques depends on certain conditions,

and these include the condition that the program under test be executed deterministically.

This condition cannot generally be met for the class of programs that we consider, and

thus, SIMRT may omit test cases from T ′ that could reveal races in P ′. In this context, it

is important to note that even a retest-all approach can “omit” race-revealing test cases, be-

cause a given test case may or may not expose a fault in a given run when non-determinism
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affects thread behavior. The motivation for selecting a subset of test cases, however, is to

select test cases that are more likely to reveal races than others, allowing testers to focus

on more worthwhile pursuits. Nevertheless, if test engineers wish, they can use Ranker to

further prioritize the remaining test cases (T − T ′), and execute those test cases as well.

This process is performed using the approach just described, applied to T − T ′, in two

steps, where step 1 focuses on test cases that cover the most impacted shared variables, and

step 2 focuses on test cases that cover only non-impacted shared variables.

In our example, when prioritizing the remaining test cases (having already set TP to

< tc3, tc1, tc2 >), Ranker notes that (step 1) tc4 covers two impacted shared variables, SV7

and SV8, and tc5 covers three impacted shared variables, SV2, SV3, and SV4, and appends

these to TP , obtaining < tc3, tc1, tc2, tc5, tc4 >. In step 2, since tc6 covers SV1, a shared

variable that is not impacted, Ranker appends that to TP . Ultimately, TP = < tc3, tc1, tc2,

tc5, tc4, tc6 >.

6.3 Empirical Study

We wish to determine whether SIMRT is cost-effective, and ideally such an assessment

would involve comparisons with existing state-of-the-art approaches for detecting races in

modified software. There are, however, no existing approaches that have this specific goal.

In the absence of such approaches, we can instead compare SIMRT to processes that are

currently used in general regression testing applications, that might likewise be employed

in our setting.

A second important issue regarding SIMRT involves whether either or both of its com-

ponent techniques, selection and prioritization, play a role in its cost-effectiveness (or lack

thereof), and if so, to what extent. Understanding this issue is important to any efforts to

extend the approach further.



131

We thus designed a study focusing on three research questions:

RQ1: How do the efficiency and effectiveness of SIMRT, considering only its regression

test selection component, compare to those of the retest-all technique and a state-of-the-art

RTS technique.

RQ2: How does the effectiveness of the TCP technique employed by SIMRT compare to

that of random test case orders when just the prioritized selected test cases are considered?

RQ3: How does the effectiveness of the TCP technique employed by SIMRT compare

to that of traditional additional-block-coverage prioritization and random test case orders

when the entire prioritized test suite is considered?

RQ1 lets us consider the overall efficiency and effectiveness of SIMRT focusing on its

regression test selection component, compared to the baseline approach in which no selec-

tion is performed and to a state-of-the-art RTS technique. RQ2 lets us consider whether

prioritization of just those test cases selected by SIMRT helps detect races more quickly

than leaving them unprioritized. RQ3 lets us consider the overall effectiveness of prioriti-

zation if complete test suites are used.

6.3.1 Objects of Analysis

We chose nine open source Java objects, which are representative of real-world code and

have been widely used in academic research. These included one object downloaded from

the Software-artifact Infrastructure Repository (SIR) [154], five objects from JDK, and

three larger objects [155, 156, 157]. The objects include both closed code units (code units

equipped with test drivers) and open code units (libraries that require test drivers to close

them).

Among the closed objects, WEBLECH is a multi-threaded web site download and mirror

tool; it accepts both command line options and a configuration file that specifies settings
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such as URL, search options (e.g., BFS, DFS), and number of threads. JIGSAW is a leading-

edge Web server platform; it accepts configuration files on both client and server sites, and

multiple main entry points with command line options.

Among the open objects, LANG is part of the Apache Common Lang project. LOG4J is

a Java logging application. HASHMAP, TREEMAP, ARRAYLIST, HASHTABLE, and BITSET

are synchronized collection classes provided by Sun Microsystems’ JDK. To close these

objects, we wrote test drivers that utilize unit test cases generated by RANDOOP (described

later). Because RANDOOP does not support multi-threaded programs, the test drivers also

create sets of threads that concurrently execute the methods.

We utilized two versions of each of the nine objects. Table 6.1 lists our object versions

along with some of their characteristics, including the number of lines of non-comment

code (NLOC, column 2) and the number of shared variables identified in the modified ver-

sions (SVs, column 6) using the technique described in Section 6.2 (the numbers in paren-

theses indicate the number of impacted shared variables). Other columns are described

later.

To address our questions, we also required multi-threaded test cases. Our objects, how-

ever, were either not equipped with such test cases, or the test suites supplied with them

were too small (e.g., fewer than 50 test cases) to allow SIMRT to operate as intended. To

simulate a resource-constrained testing environment in which it makes sense to utilize ap-

proaches such as SIMRT, we chose to create test cases using a testing time budget, that

limits the maximum number of test cases that can be executed for a given object. The

testing time budgets we chose were selected to be relevant to the size and complexity of

the objects. For the six smaller and less complex objects, we chose a testing budget of 12

hours (i.e., testing that can be performed overnight). For the three larger and more complex

objects, we chose a testing budget of 60 hours (i.e., testing that can be completed over a

weekend.) Both of these are practically realistic choices that engineers could make given
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Table 6.1: Objects of Analysis and their Characteristics

Program NLOC |T| PRs RRs SVs (ISVs) ISVcovs
LANG (V) 993 29104 - - - -
LANG (V’) 990 8 8 19 (6) 6
HASHMAP (V1.2) 852 26405 - - - -
HASHMAP (V1.59) 1,014 - 59 10 230 (61) 51
TREEMAP (V1.2) 1,321 28203 - - - -
TREEMAP (V1.56) 1,384 - 16 0 458 (17) 12
ARRAYLIST(V1.2) 727 34202 - - - -
ARRAYLIST (V1.43) 747 - 22 3 352 (33) 24
HASHTABLE (V1.2) 3,041 28757 - - - -
HASHTABLE (V1.55) 4,111 - 3 2 412 (36) 28
BITSET (V1.2) 194 30500 - - - -
BITSET (V1.55) 486 - 4 2 240 (13) 10
LOG4J(V1.2.13) 15,331 32065 - - - -
LOG4J (V1.2.8) 15,366 - 6 2 171 (63) 44
WEBLECH(V0.02) 16,393 9601 - - - -
WEBLECH (V0.03) 16,633 - 29 1 23 (14) 12
JIGSAW(V2.2.0) 90,331 18805 - - - -
JIGSAW (V2.2.6) 101,207 - 69 3 3452 (488) 209

that the testing required by our approach can be conducted automatically without the need

for human intervention, yet must (like any validation effort) be conducted within some

fixed time period. Note that the testing time we measured is based on the time required

to run the instrumented original object with race detectors in place; thus, the numbers of

generated test cases depend on the instrumentation overhead for different object.

The test cases we used were created using test case generation techniques relevant to

the objects. Because our goal is to detect races, a test case must include two components:

test input data and specified thread interleavings [6]. For objects WEBLECH and JIGSAW,

which accept configuration files, we used incremental covering arrays [158] to generate test

inputs. They also accept inputs via command line options, and such inputs were randomly

generated. For the closed objects, which were not equipped with test drivers, we first used

RANDOOP [159] to generate unit test cases for each method, and then we created multiple

threads to concurrently execute these methods. Note that the number of threads is another

input argument. For all object, the number of threads (if mutable) associated with each test
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input was randomly generated in a range from 2 to 100. Column 3 of Table 6.1 (|T|) lists

the numbers of test cases ultimately utilized for each object.

To address our research questions we also needed to know what races (if any) existed in

our object programs. To determine this, we ran all test cases on the original version of each

object using the modified version of RACEFUZZER (described in Section 6.1). We discov-

ered that the original object versions contained many potential and real races. In this work

we are interested only in regression races (i.e., races introduced by code modifications);

not residual races (races that persist across versions of the modified objects). Hence, we

located the causes of such races in the original object versions, and corrected the code in

both versions to ensure that they would not occur in either. Next, we executed all of the

test cases associated with each original object on its modified version with the race detector

and verifier enabled. This yielded a set of regression races that had been introduced by the

code changes made to the modified versions.

Because non-determinism may cause race detectors to report different results on differ-

ent object executions, we repeated the foregoing process ten times for each object pair, and

accumulated any newly detected races. (The fluctuation in numbers of races reported on

different runs was actually quite small, and is discussed further in Section 6.4.) Columns 4

and 5 of Table 6.1 list the numbers of potential and real regression races (PRs and RRs)

discovered in the foregoing process. Column 7 lists the number of impacted variables

(ISVcovs) that are covered in the modified objects.

6.3.2 Variables and Measures

6.3.2.1 Independent Variable

Our independent variable involves the techniques used in our study. As noted earlier, we

consider SIMRT, the traditional retest-all technique (RTA), and the traditional DEJAVU
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RTS technique (hereafter referred to as RTSC). With all three of these, we enable the

race detector and verifier. We use SIMRTS to denote SIMRT with just the RTS technique

enabled.

We refer to SIMRT when it also employs a TCP technique as SIMRTSP . When con-

sidering RQ2 and just selected test cases, we compare SIMRTSP to a random test case

ordering applied to just the selected test cases (denoted here by RANDOMSP ).

When considering RQ3, in which all test cases are prioritized, we compare SIMRT

(denoting this version of the technique by SIMRTAP ) to two approaches: a random test

case ordering applied to all test cases (denoted here by RANDOMAP ) and an application of

the additional block coverage prioritization technique (denoted here by ABCAP ) described

in Section 6.1.

6.3.2.2 Dependent Variables

As dependent variables, we chose metrics allowing us to answer each of our three research

questions.

Regression test selection. To measure the efficiency of regression test selection we mea-

sured testing time by adding relevant measures, including the time required for escape and

impact analyses (if any), the time required for running regression test selection algorithms

(if any) and the time required to execute test cases.6 To obtain these times, we applied

RTSC and SIMRTS and measured relevant analysis and test selection times. Then, to

account for possible differences in testing times per execution of sets of test cases, we exe-

cuted each object ten times on the various sets of selected test cases (or in the case of RTA,

on all test cases), and calculated the average time required to execute the test cases.
6When measuring testing time, we do not include time spent on activities performed in the preliminary

phase of regression testing (prior to the time at which the modified object is available for testing, and when
testing time becomes a critical issue); these include collection of test history information and construction of
control flow graphs for the original object.
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To measure race detection effectiveness, we compare the numbers of potential and real

races detected by test cases selected by RTA, RTSC, and SIMRTS .

Test case prioritization. To measure the effectiveness of test case prioritization we consid-

ered the rate at which test cases detect both potential and real races. To measure such rates,

we use the well-known metric APFD (Average Percentage Fault Detected) [19]. Let T be

a test suite containing n test cases, let Tp be a prioritized version of T , and let R be a set of

m races revealed by T . Let TRi be the first test case in ordering Tp of T that reveals race i.

The APFD for test suite Tp is given by the equation:

APFD =

|m−1|∑
i=1

|TRi|

n∗m + 1
2n

APFD ranges from 0 to 100, with higher values indicating faster rates of race detection.

The APFD metric can be applied to orderings of the entire test suite T , or to orderings

of just the set of selected test cases T ′. In the former case, n = |T |, and in the latter case, n

= |T ′|.

6.3.3 Study Operation

We conducted our experiment runs on a Linux cluster with 1440 AMD cores housed in 42

nodes with 128GB per node. We used a modified version of RACEFUZZER for race detec-

tion and verification (see Section 6.1). Among our objects, the instrumentation overhead

incurred by our RACEFUZZER ranged from 1.5X to 20X. The remaining components in

SIMRT (i.e., ImpAnalyzer, Matcher, Selector and Ranker) were implemented using Java

by following the algorithms described in Section 6.2.

As noted in reference [75], executing a program once per input is sufficient to detect

most, if not all, of the concurrent faults detectable under that input, because progams tend to

follow the same interleaving patterns during different executions. As we discuss in Section
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6.4, executing a program on the same input additional times may occasionally uncover

additional races, but the benefit of doing this may be outweighed by the increased cost

of testing. Therefore, the data reported in this study for each technique was obtained by

executing each object once. However, we discuss the impact of race detection effectiveness

given multiple test runs in Section 6.4.

6.3.4 Threats to Validity

The primary threat to external validity for this study involves the representativeness of our

objects and test cases. Other objects and test cases may exhibit different behaviors and

cost-benefit tradeoffs. However, we do reduce this threat to some extent by using several

varieties of well studied open source code objects for our study, and test suites generated

by practical approaches.

The primary threat to internal validity for this study is possible faults in the implemen-

tation of our approach and in the tools that we use to perform evaluation. We controlled

for this threat by extensively testing our tools and verifying their results against a smaller

program for which we can manually determine the correct results.

Where construct validity is concerned, our measurements of efficiency of regression

test selection focus on the time required for analysis and test execution. However, other

costs such as test setup and maintenance costs can play a role in technique efficiency. Our

measurement of effectiveness for test case prioritization is APFD. Although APFD does

have certain limitations [76], it does provide a simple, intuitive measurement for rapid race

detection.
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6.3.5 Results and Analysis

6.3.5.1 RQ1: Regression Test Selection

Efficiency. Figures 6.6 and 6.7 show technique execution times in minutes for each of the

three techniques and nine objects. For the six small objects using overnight testing, RTSC

required less time than RTA, with savings ranging from 30.8% to 96.9%, and an average

savings of 32.3% across all six objects. SIMRT achieved even greater savings than RTA

on the smaller objects, with an average savings of 89.9%, and savings on individual objects

ranging from 46.2% to 99.9%. For the three objects using over-the-weekend testing, RTSC

required less time than RTA on only one object (LOG4J) with a savings of 44.8%. SIMRT

achieved greater savings than RTA on all three objects, with savings of 96.5% on LOG4J,

47.9% on WEBLECH, and 52.9% on JIGSAW.
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Figure 6.6: Efficiency: testing times for smaller objects
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Figure 6.7: Efficiency: testing times for larger objects

We also measured the time required by RTSC and SIMRT to perform analysis tasks.

Overall, while SIMRT required greater analysis times than RTSC, its analysis times never

exceeded 45 seconds, which accounted for less than 0.5% of technique runtime overall.

The time spent on escape analysis and impact analysis never exceeded 308 seconds. We

also measured the time spent by SIMRT on race verification, and the results ranged from

7% to 11.9% of total technique runtime. The remaining time was spent on analysis tasks

and race detection. Verification time varied with the number of detected potential races and

the number of test runs needed to verify each potential race.

Testing times did vary across objects. The number of test cases selected by techniques

depends on the program locations in which changes occur or in which shared variables are

impacted, and this, in turn, affects testing time. For example, in WEBLECH, many changes

occur inside the main function, causing all test cases to be selected by RTSC; thus, in this

case, no time is saved.
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Table 6.2: Race Detection Effectiveness

Prog. Potential races Real races
RTA RTSC SimRT RTA RTSC SimRT

LANG 8 8 8 8 8 8
HASHMAP 59 59 58 (-1) 10 10 10
TREEMAP 16 16 16 0 0 0
ARRAYLIST 22 22 22 3 3 3
HASHTABLE 3 3 3 2 2 2
BITSET 4 4 4 2 2 2
LOG4J 6 6 6 2 2 2
WEBLECH 29 29 29 1 1 1
JIGSAW 68(-1) 68(-1) 66(-3) 3 3 3

Effectiveness. We consider whether races (both potential and real) detected by RTA and

RTSC can also be detected by SIMRT. Table 6.2 shows the numbers of potential and real

races detected for each of the nine objects by RTA, RTSC and SIMRT. Because the data

reported for each technique is based on a single run, the numbers of races detected by RTA

do not necessarily equal the numbers in Table 6.1; negative numbers in parentheses indicate

the numbers of races missed compared to those known to be detectable.

For all nine objects, RTSC detected 100% of the potential and real races detected by

RTA. SIMRT, on the other hand, detected 100% of the potential races on seven of nine

objects and 100% of the real races on all nine. On LOG4J and JIGSAW SIMRT missed

one and two potential races, respectively. This sacrifice in effectiveness is relatively small,

with only 1.3% of the potential races detected by RTA and RTSC missed across the nine

objects. Meanwhile, the associated savings in terms of testing time was large.

6.3.5.2 RQ2 and RQ3: Test Case Prioritization

Table 6.3 summarizes the APFD values computed for the test suites and test case or-

ders utilized in our study across all nine objects, for both potential and real races, with

SimRT SP and RandomSP applied to selected test cases, and with SimRTAP , ABCAP

and RandomAP applied to the entire test suites.
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Table 6.3: APFD Values for Selected and All Test Cases

Prog. Potential Races/Real Races
SimRTSP RandomSP SimRTAP ABCAP RandomAP

LANG 96.9/96.9 50.3/50.3 100.0/100.0 71.5/71.5 52.2/ 52.2
HASHMAP 94.2/96.8 58.9/66.2 95.7/97.2 57.4/58.8 59.1/60.0
TREEMAP 98.1/- 39.8/- 100.0/- 48.5/- 40.8/-
ARRAYLIST 89.1/92.3 54.8/64.5 91.4/93.8 70.6/72.9 48.4/51.4
HASHTABLE 92.2/92.2 42.4/42.4 94.2/94.3 58.9/58.9 54.2/54.8
BITSET 97.5/97.8 64.6/70.4 96.8/96.8 88.4/88.6 69.2/71.5
LOG4J 85.7/89.2 47.5/56.5 90.0/90.6 47.8/48.4 48.5/48.8
WEBLECH 100.0/100.0 99.8/99.8 100.0/100.0 83.2/83.4 64.4/64.5
JIGSAW 88.4/93.6 52.8/58.6 91.2/94.8 72.9/78.0 56.6/61.4

To compare the effectiveness of different techniques, we display results in terms of

improvement in race detection rate, calculated as: APFDT1−APFDT2

APFDT2
*100%. This indicates

the percentage improvement in APFD achieved by technique T1 over technique T2. For

example, for potential race detection, on object LANG, the improvement in APFD achieved

by SimRT SP over RandomSP was 96.9−50.3
50.3

*100% = 92.6%.

RQ2: Prioritization Results on Selected Test Cases.

On the six small objects, SIMRTSP outperformed RANDOMSP in terms of APFD. The

improvement ranged from 50.9% to 146.5% for potential races, and from 38.9% to 117.5%

for real races, and the average improvement across the five objects was 88.3% for poten-

tial races and 67.7% for real races. On the three large objects, SIMRTSP outperformed

RANDOMSP in terms of rate of race detection, with improvements of 80.4%, 0.2% and

67.4% for potential races, and 57.9%, 0.2% and 59.7% for real races.

On WEBLECH, RANDOMSP performed almost as effectively as SIMRTSP because in

that case, ISV P s were concentrated in several methods, making it easier to achieve high

coverage per selected test case, and difficult to achieve additional coverage.

RQ3: Prioritization Results on Entire Test Suites.

On the six small objects, when compared to ABCAP , SIMRTAP , improved the po-

tential race detection rate by 9.5% to 106.2%, with an average improvement of 52.0%.

When compared to RANDOMAP , SIMRTAP improved the potential race detection rate by
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between 39.9% and 145.1%, with an average of 83.5%. Where detection of actual races is

concerned, when compared to ABCAP , SIMRTAP improved the detection rate by 9.3% to

65.3%, with an average of 40.7%. When compared to RANDOMAP , SIMRTAP improved

the detection rate by 35.4% to 91.6%, with an average of 68.7%.

On the three large objects, when compared to ABCAP , SIMRTAP improved the po-

tential race detection rate by 88.3%, 20.2% and 25.1%, respectively. When compared

to RANDOMAP , SIMRTAP improved the potential race detection rate by 85.6%, 55.2%

and 61.1%, respectively. Where detection of real races is concerned, when compared to

ABCAP , SIMRTAP improved the race detection rate by 87.2%, 19.9% and 21.5%, respec-

tively. When compared to RANDOMAP , SIMRTAP improved the race detection rate by

85.7%, 55.0% and 54.4%, respectively.

6.4 Summary and Discussion

Summary of Results.

SIMRT’s RTS component was substantially more efficient in terms of testing time than

the retest-all and traditional RTS techniques. Meanwhile, SIMRT detected the same sets

of real races as the baseline techniques. Although a few potential races were missed, the

number was small.

SIMRT’s TCP component, employed on selected test cases, was substantially more

effective in terms of APFD than the random test case ordering. When employed on entire

test suites, the TCP component was substantially more effective in terms of APFD than

both additional-block-coverage and random techniques. Meanwhile, in this case, SIMRT

was able to detect potential races that were not detectable when operating on a subset of

the test cases.
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If these results generalize to other real objects and RTS and TCP techniques, then if

engineers wish to target race detection, SIMRT is the best technique to utilize.

We now explore additional observations relevant to our study.

Multiple Runs. In our study, we executed each object once under the selected test cases

for each technique to assess race detection effectiveness; a practical approach in resource-

limited testing environments. Although empirical studies have shown that the fluctuation

in race detection among multiple runs does not exceed 0.7% [75], we wished to determine

whether multiple test runs could impact the effectiveness of the techniques studied.

To do this, for each RTS technique, we ran each modified object with the potential race

detector and verifier ten times. The results indicated no differences in real race detection

across the ten runs, and differences in potential race detection were revealed in only two

cases. Specifically, on HASHMAP, SIMRT detected one extra race in two of the ten test

suite runs, and missed one race in one test suite run. RTA and RTSC did not display any

differences. On JIGSAW, RTA detected one extra race in two of the ten runs and missed

one race in one run. RTSC detected one extra race in three of the ten runs, and SIMRT

detected two extra races in three of the ten runs, missing one race in one run. These results

imply that conducting one run for each test case is likely to be a reasonable level of effort

in resource-limited testing environments.

Effects of Recording Thread Coverage. SIMRT selects test cases that potentially cover

impacted shared variable pairs in the modified object with different threads. As such,

SIMRT records thread IDs for test history construction. To determine whether this is useful,

we further investigated whether savings could be attained by considering thread coverage.

We considered percentages of test cases selected without using thread coverage, labeling

this approach SIMRTN . SIMRTN selects test cases that potentially cover impacted shared
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variable pairs in the modified object, regardless of the number of threads involved in cov-

ering each pair.

For all nine objects, SIMRT yielded savings over SIMRTN ; these ranged from 16.5% to

83.7% with an average of 77.4% for the six smaller objects and from 34.4% to 56.6% with

an average of 44.9%, for the three larger objects. Therefore, the approach substantially

improved the efficiency of regression test selection.

Numbers of Selected Test Cases. The numbers of test cases selected by various tech-

niques is another metric for measuring the efficiency of regression test selection, providing

an implementation-independent view of efficiency. For the nine objects, RTSC selected

smaller test suites than RTA in many cases, with overall selection percentages ranging

from 45.8% to 100%. On four of the nine objects, however, RTSC selected more than 90%

of the test cases, and in two cases it selected 100% of the test cases. SIMRT, on the other

hand, pruned away larger portions of the test suites, with selection percentages ranging

from 0.1% to 51.8%. In fact, for seven objects, SIMRT selected fewer than 15% of the test

cases.

Exposing Other Faults. SIMRT specifically targets races, and therefore, may not be effec-

tive at detecting other classes of faults that RTA or RTSC can reveal. As such, it is worth

investigating the performance of RTSC when combined with SIMRT. We thus compared

the testing time required by RTSC (with instrumentation for race detection) to that required

by the use of both SIMRT and RTSC without instrumentation (denoted by RTSCN ). Both

RTSC and RTSCN detect races and other output-based regression faults. This comparison

showed that the savings of RTSCN over RTSC ranged from 43.5% and 67.6% (average

57.36%) across the six smaller objects. On the larger objects, the savings were 68.5%,

22.9% and 31.2%, respectively. This suggests that race detection and traditional fault de-

tection should be considered separately.
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Results such as these should be qualified. If SIMRT does not substantially reduce the

number of selected test cases over RTSC, RTSCN may not achieve savings. Further, if

engineers wish to detect both data races and other regression faults, and SIMRT substan-

tially reduces the number of test cases selected over traditional RTS techniques, the best

approach to use is: 1) run test cases selected by traditional RTS techniques on uninstru-

mented objects and 2) run test cases selected by SIMRT on instrumented objects. Race

detection overhead varies across different types of applications. For example, I/O-intensive

applications tend to have small race detection overhead, and hence would benefit less from

SIMRT.

Further Discussion. We have used SIMRT to target data races, but it can be adapted to

detect other types of concurrency faults such as atomicity violations [124, 160] and dead-

locks [43,44] by adjusting the contents of coverage targets. For example, to detect atomicity

violations, instead of identifying potential impacted shared variable pairs as coverage tar-

gets, SIMRT can identify potential unserializable interleavings [124] as coverage targets.

As Table 6.1 shows, for some objects, there were a few uncovered impacted shared

variables remaining in the modified versions after running the existing test cases. These

variables may also cause data races. Covering the impacted shared variables pairs associ-

ated with these variables requires additional test cases or possibly thread interleavings. To

address this, we intend to further explore extending SIMRT using test suite augmentation

techniques [161].

6.5 Conclusion

In this chapter, we have presented an automated regression testing approach, SIMRT, for

use in detecting races that are induced due to code changes. SIMRT employs both RTS and

TCP techniques. We have conducted an empirical study applying SIMRT to nine concur-
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rent code objects. We have empirically compared SIMRT to traditional baseline techniques,

and our results suggest that SIMRT’s test selection component is more effective and effi-

cient than other approaches in terms of race detection. Our results also show that the TCP

technique employed by SIMRT is more effective than a traditional TCP technique and a

random ordering in terms of rate of race detection.



147

Chapter 7

Conclusion and Future Work

In this dissertation, we have presented a testing-based verification framework, SIMEX-

PLORER, for modern software systems that allows engineers to effectively detect elusive

faults that occur at the whole-system level. We have introduced SIMTESTER, an instantia-

tion of the SIMEXPLORER framework that utilizes VMs to tackle the challenges of testing

for concurrency errors involving interactions between software and hardware. We have

presented SIMRACER, a second instantiation of the SIMEXPLORER framework that uti-

lizes the VM to test for races involving multiple processes and signals. We have developed

SIMLATTE, another instantiation of the SIMEXPLORER framework that uses a genetic al-

gorithm for test case generation that converges on a set of inputs and interrupt arrival points

that are likely to expose WCILs. Finally, we have presented SIMRT, a regression testing

technique for use in detecting races introduced by code modifications.

Our results suggest that the four techniques are more effective than their various base-

line techniques. First, we have evaluated SIMTESTER on a previous release of the Linux

kernel. Our results clearly show that SIMTESTER is effective in detecting both real faults

and seeded faults related to data races and deadlocks. These faults were not effectively

revealed by baseline techniques, that lack either observability or controllability. Second,
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we have conducted an empirical study applying SIMRACER to 16 Unix programs contain-

ing actual process-level races. Our results show that SIMRACER is effective at detecting

process-level races. By comparing SIMRACER to traditional stress testing techniques, we

also show that SIMRACER is more effective than these techniques at detecting faults that are

caused by the process-level races. Third, we have evaluated SIMLATTE on three real-world

embedded system applications. Our results show that SIMLATTE can calculate WCILs

more precisely and efficiently than random approach. The results also suggest that apply-

ing either of the two components (genetic algorithm and opportunistic interrupt invocation)

of SIMLATTE yields better results than random testing, but employing both components

yields the best results. Finally, we have conducted an empirical study applying SIMRT to

nine concurrent Java programs that contain naturally-occurring races caused by code modi-

fications. Our results show that SIMRT is more efficient than other regression test selection

techniques in terms of race detection. Our results also show that SIMRT’s test prioritization

component is substantially more effective than a traditional prioritization technique and a

random ordering technique in terms of rate of race detection.

This research has made the following contributions, with impacts on both researchers

and practitioners:

1. Developed techniques to test for concurrency faults that occur due to interactions

between applications and interrupt handlers.

2. Developed techniques to test for races between processes and between processes and

signal handlers.

3. Developed a testing-based approach to estimate worst-case interrupt latencies (WCIL).

4. Developed a regression testing technique to test for data races that are induced by

software evolution.
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For future work, we intend to improve our existing instantiations and create new instan-

tiations of the SIMEXPLORER framework.

For SIMTESTER, we intend to study more device drivers that utilize a variety of in-

terrupt sources. We also intend to consider nested interrupts to detect concurrency faults

that occur among interrupt handlers. Finally, we intend to apply SIMTESTER on other

architectures such as Atmel microcontrollers.

For SIMRACER, some faults were not detected due to characteristics of the test cases

and system environment used. We intend to investigate the possibility of automatically

creating test inputs and setting up system environments that allow us to effectively expose

process-level data races.

For SIMLATTE, we intend to improve our fitness functions to further enhance its effec-

tiveness. For example, we wish to consider the number of critical sections in the fitness

function to guide SIMLATTE in exploring more critical sections. We also intend to extend

SIMLATTE to combine both static and testing approaches to achieve higher effectiveness

and accuracy.

On regression testing, future work includes extending SIMRT to detect other types

of concurrency faults such as atomicity violations and deadlock and investigating the use

of other regression testing techniques such as test suite augmentation in conjunction with

SIMRT.

Finally, we plan to create new instantiations of SIMEXPLORER framework, that can

address other types of elusive faults including worst-case memory usage and priority inver-

sion.
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