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Programmers frequently search for source code to reuse using keyword searches. When

effective and efficient, a code search can boost programmer productivity, however,

the search effectiveness depends on the programmer’s ability to specify a query that

captures how the desired code may have been implemented. Further, the results often

include many irrelevant matches that must be filtered manually. More semantic search

approaches could address these limitations, yet existing approaches either do not scale,

are not flexible enough to find approximate matches, or require complex specifications.

We propose a novel approach to semantic search that addresses some of these

limitations and is designed for queries that can be described using an example. In

this approach, programmers write lightweight specifications as inputs and expected

output examples for the behavior of desired code. Using these specifications, an SMT

solver identifies source code from a repository that matches the specifications. The

repository is composed of program snippets encoded as constraints that approximate

the semantics of the code.

This research contributes the first work toward using SMT solvers to search for

existing source code. In this dissertation, we motivate the study of code search and the

utility of a more semantic approach to code search. We introduce and illustrate the

generality of our approach using subsets of three languages, Java, Yahoo! Pipes, and

SQL. Our approach is implemented in a tool, Satsy, for Yahoo! Pipes and Java. The

evaluation covers various aspects of the approach, and the results indicate that this



approach is effective at finding relevant code. Even with a small repository, our search

is competitive with state-of-the-practice syntactic searches when searching for Java

code. Further, this approach is flexible and can be used on its own, or in conjunction

with a syntactic search. Finally, we show that this approach is adaptable to finding

approximate matches when exact matches do not exist, and that programmers are

capable of composing input/output queries with reasonable speed and accuracy. These

results are promising and lead to several open research questions that we are only

beginning to explore.
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Chapter 1

Introduction

Consider a novice Java programmer who is trying to find a snippet of code that

extracts an alias from an e-mail address (also known as a username and appears before

the @ symbol). The programmer turns to Google, which our survey (Section 3.1)

and others [59] show is the most common approach, and issues a search query with

the following keywords: extract alias from e-mail address in Java. As expected, the

query returns millions of results (over 46 million, in fact). None of the top ten results

(P@10, a typical IR measure to assess the precision of search engine results [10]), even

provide a method for decomposing an e-mail address into parts, which is the first

step towards extracting the alias. Now, if the programmer is knowledgable enough

about the domain to refine the query with the term substring, then the top ten results

include two relevant solutions.

Despite the simplicity of the programming task, this illustrates a common situation

for programmers. Following a search for code reuse or use as an example, programmers

must sift through many irrelevant results, especially when the desired behavior cannot

be tied to source code syntax or documentation. As repositories of source code
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grow in size and diversity, and as programmers continue to turn to search during

development [57], finding relevant code becomes increasingly important.

We have designed an approach to code search that addresses many of the short-

comings of existing search techniques, most notably by allowing programmers to

describe what they want their code to do rather than how it is implemented, returning

only relevant results in the search, and finding close enough solutions when no exact

solutions exist. The general idea is that programmers provide concrete behavioral

specifications as inputs and outputs and an SMT solver identifies available source code,

encoded as constraints, that matches the specifications. This approach is designed

to be effective for a subset of code search tasks, that is, those that can be expressed

by an input and output example. The underlying assumption is that a non-trivial

number of code search queries have this property, and we provide some evidence of

this in Section 3.3.

With the previous example of searching for a program that extracts the alias from

an e-mail address, the input could be the string “susie@mail.com” and the output the

string “susie”. While this form of query changes the search model from the common

keyword query, it lets the programmer specify the desired behavior, without the need

to know how to achieve a certain outcome, just what that outcome is.

This example-based specification model is inspired by two lines of work, program-

ming by example (or, programming by demonstration), and program synthesis. Some

programming by example approaches aim to generate programs for tasks that are

demonstrated by example [12], such as providing a string before and after a trans-

formation. Yet, the programs that can be generated through those approaches are

limited and must follow well-defined templates or sequences. For example, in the

TELS text editing by example system [76], programs are generated by recording and

generalizing editing actions on strings in a text editor. For generalizations that involve
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string constants, they use a rigid hierarchy based on common subsequences. Other

properties of strings, such as length or case-insensitive equality, are not included in

the hierarchy and thus would not be part of a generated program. In our work, we

find existing code that performs a relevant transformation, which promotes reuse.

The other line of work, program synthesis, aims to generate programs that match

a provided input/output example, and program generation is guided by a constraint

solver. Similar to programming by demonstration, this approach also relies on pre-

defined functions and templates to guide the solver in finding a solution. The solver

will try every possible combination of functions and templates to achieve the desired

behavior, which can be quite time consuming, even for small programs (e.g., in toy

problems, insertion and deletion on graphs can take several minutes to resolve [60]).

Our approach is not restricted to predefined functions and templates, allowing us to

return code that may be too complex for a code synthesizer to generate efficiently,

and also promotes reuse (we discuss more related work in Section 10.2).

Just like most other search engines, our search approach involves three phases:

specifying a query, indexing entities (i.e., source code), and matching the query to

relevant entities. We discuss each phase in the context of our approach to code search.

Specifying a query is performed by the programmer, the one who wants to find

code for a particular task. In our approach, a programmer writes a concrete behavioral

specification in the form of input and output, such as “susie@mail.com” and “susie”

from the previous example.

Indexing source code is an automated process performed offline. This process

involves no input from the programmer. Our indexing is unique in that it requires a

transformation that involves symbolic analysis [7, 8, 36] to map a program’s semantics

onto constraints that summarize the program behavior. For example, the indexing

process would map the Java snippet:
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1 int upper = input.indexOf(’@’});

2 String output = input.substring(0, upper);

onto the following constraints (roughly):

c1. (assert (input.charAt(upper) = ’@’) ∨ (upper = -1)))

c2. (assert (for (0 ≤ i < upper) input.charAt(i) 6= ’@’))

c3. (assert (for (0 ≤ i < upper) output.charAt(i) = input.charAt(i)))

Constraints c1 and c2 represent line 1 of the source code. The first constraint, c1,

defines upper as the location of ‘@’ in input or -1, and c2 asserts upper is the first index

of ‘@’ in input, per the semantics of the indexOf method in java.lang.String.1

Constraint c3 represent the second line of source code. It asserts that the output

matches input within bounds of 0 and upper, per the semantics of the substring

method in java.lang.String. This is the basic process by which our approach

indexes programs: mapping program semantics to constraints by evaluating each

program statement. The constraints are generated automatically, a process described

in Section 5.2. The constraints are never shown to the programmer, but rather are

consumed by the solver during the search process to identify viable matches.

Matching is now possible, given the input/output query provided by a user and an

encoded repository of programs generated by symbolic analysis. The first step in this

phase consists of transforming the provided input/output into additional constraints.

For the previous example, that would be:

c4. (assert (input == "susie@mail.com"))

c5. (assert (output == "susie"))

The second step consists of pairing the input/output constraints with each of the

programs indexed in the repository, and using an SMT solver to identify which pairs are

1The value of upper must be -1 only in the event that ‘@’ is not a character of input. Some
additional constraints, not shown here for brevity, are required to prevent upper from defaulting to
-1, which would make this system of constraints trivially satisfiable.
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satisfiable and hence constitute a match. For our email alias example, an SMT solver

would return sat for the conjunction of the snippet encoded through constraints (c1

∧ c2 ∧ c3) and the input/output encoded through constraints (c4 ∧ c5), indicating

that the code indeed matches the specification. Contrastingly, if the specified output

was instead “mail.com” (the programmer meant to identify the e-mail domain instead

of the alias), the SMT solver would return unsat indicating that the code does not

match the specification.

This illustrates the essence and novelty of the approach, but it does not address

some critical issues such as the broader applicability of the approach to other domains,

handling richer specification models required by diverse domains, and refining the set

of potential matches. In this work, we address these issues.

We formally define our approach to semantic search. For two domains, the Java

String library and Yahoo! Pipes mashup programs, we instantiate and assess the

approach. An additional domain is included for motivation and approach illustration,

SQL select statements (Chapter 4). These domains were selected in part to illustrate

the generality of the approach by utilizing three diverse forms of input/output specifi-

cation and in part because of their relatively simple and common underlying semantics

and the availability of repositories that could be searched for evaluation (Chapter 7,

Chapter 8).

1.1 Contributions

The contributions of this work are:

• Characterization of how developers use search to find code based on a survey of

100 participants (Section 3.1)
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• Definition of a novel approach to semantic code search that uses an SMT solver

to identify matches given lightweight specifications and programs encoded as

constraints using symbolic analysis (Section 5)

• Illustration of the applicability of this approach and a range of potential specifica-

tion models covering three languages: Java, Yahoo! Pipes, and SQL (Section 4)

• Implementation of the approach in two domains: Java string library and Yahoo!

Pipes (Section 6)

• Empirical evaluation of how our search approach compares to, and can improve

on, the state-of-the-practice code searches in Java (Section 7)

• Assessment of the effectiveness and efficiency of the approach given various levels

of abstraction and measuring precision and recall in Yahoo! Pipes (Section 8.1)

• Assessment of the cost and accuracy of formulating output from an input in

Yahoo! Pipes and SQL through a controlled quasi-experiment (Section 8.2)

1.2 Outline of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides background

information on the domains used in the evaluation and the program analysis techniques

used in the transformation process from source code to constraints. To show the

importance of research in code search and motivate the use of examples as a query

model, we survey programmers and look for evidence of input/output examples in the

wild in Chapter 3. To illustrate various aspects of our approach, from the benefits of

using multiple specifications to the power of abstraction, Chapter 4 provides several

examples in three targeted domains, Java, Yahoo! Pipes, and SQL. Our approach to
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semantic search is formally defined in Chapter 5, and we describe the implementation

details for Java and Yahoo! Pipes in Chapter 6. The evaluation and results are split

into two chapters by domain, where we evaluate this approach in the Java domain

in Chapter 7 and in Yahoo! Pipes in Chapter 8. Threats to validity are presented in

Chapter 9, followed by related word in Chapter 10. A discussion of the implications

of this work, future work, and conclusion are in Chapter 11.
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Chapter 2

Background

Our approach to code search combines two areas of software engineering, program

analysis and code search. In this section, we introduce the concepts from program

analysis required to understand the approach and the domains used for illustration

and evaluation throughout the rest of this work.

Our approach to code search has been applied in three domains, Java (Section 2.1),

Yahoo! Pipes (Section 2.2), and SQL (Section 2.3). We provide brief backgrounds on

each of these domains, focusing on how programs are composed in the state-of-the-

practice, as code search is intended to be most useful during program composition.

The indexing phase of the proposed search approach relies on symbolic execution, a

program analysis technique that uses symbols, rather than concrete values, to execute

programs (Section 2.5). The solving phase relies on constraint solvers, which we

describe in Section 2.4.
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2.1 Java

Java [28] is an object-oriented programming language used for a variety of purposes

and primarily by experienced programmers. Millions of lines of Java code from open

source projects are publicly available to analyze [14], and Java is ranked as the second-

most-popular programming language today based on the number of skilled engineers

world-wide, courses offered, and third-party vendors [73].

In a survey we conducted of 109 programmers about their search behavior (Sec-

tion 3.1), Java was the most popular language among the participants with 63 (58%)

identifying Java as one of their most commonly used programming languages. Fig-

ure 2.1 provides a simple Java method that takes a string as input and returns that

same string minus the last character (i.e., trimmed).

Listing 2.1: Java Example Method

1 static String trimEnd(String input) {

2 String trimmed;

3 if (input.length() > 1) {

4 trimmed = input.substring(0, input.length() - 1);

5 } else {

6 trimmed = input;

7 }

8 return trimmed;

9 }

Java programmers use a variety of tools to support their development practices

(e.g., IDEs, Javadoc documentation, tutorials, automated analysis tools, advanced

APIs). Programs are composed by typing (or copy-and-pasting) into a text editor,

which makes it easy to leverage resources written by others.
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2.2 Yahoo! Pipes

Yahoo! Pipes is a visual mashup language that boasts over 90,000 users [32], and a

public repository of over 100,000 artifacts [49]. Motivated by the popularity of the

Yahoo! Pipes mashup environment and the vast number of artifacts available in a

public repository, we chose to target Yahoo! Pipes as part of this work.

A mashup is an application that manipulates and composes existing data sources

or functionality to create a new piece of data or service. One common type of mashup,

for example, consists of grabbing data from some data sources (e.g., house sales, vote

records, bike trails, map data), joining those data sets, filtering them according to a

criterion, and plotting them on a map published at a site [77]. This type of behavior

is naturally expressed in Yahoo! Pipes.

To write a program in Yahoo! Pipes, programmers use the Pipes Editor, a visual

development environment accessible through the browser. Pipes are composed by

dragging and dropping predefined modules and connecting them with wires to define

the data and control flow. Figure 2.1 shows a sample pipe mashup that joins and

filters the content of two RSS feeds based on the word “tennis”.

Figure 2.1: Yahoo! Pipes Example Method
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Field Value
Title Your Local Doppler Radar
Description This map shows the location and intensity of precipitation in

your area. The color of the precipitation corresponds to the rate
at which it is falling. This map is updated every 15 minutes.

Author Peter Sagal
Link http://www.weather.com/weather/map/93012

Date Fri Jan 13 11:15:22 CST 2012

Figure 2.2: Example Record/Item from an RSS Feed (author anonymized)

The structure of a pipe resembles a graph, where the nodes are referred to as

modules (boxes in the figure), and the edges are referred to as wires (connections

between the modules). Visually, mashup modules appear as the boxes in Figure 2.1

and wires appear as the lines between the modules. The behavior of the pipe can

be best understood from top to bottom, as the data flows in a directional manner

from the top of the pipe through the output at the bottom. In the example, there

are two URLs, one in each Fetch Feed module, which act as inputs to the pipe. The

output from those modules is concatenated by the Union module, and then a filter

operation is performed to retain items with the word “tennis” in the description (the

Filter module). Every pipe has exactly one output, shown at the bottom of the pipe

and labeled Pipe Output. The output of a module is a combined and modified list of

items from the RSS feeds provided as input.

The URLs access RSS feeds, and a pipe can have one or more URLs as input. An

RSS feed produces a list of items. Each item is a map data structure with key-value

pairs. For illustration an example item, also called a record, gathered from an RSS

feed is shown in Figure 2.2. The keys are Title, Description, Link, Author, and

Date. The first four keys map to values of type string, and the last key maps to an

integer (i.e., the date is converted to an integer).

http://www.weather.com/weather/map/93012
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Yahoo! Pipes programs are executed on Yahoo’s servers and the output is provided

in the browser. The output of a Pipes program can be integrated into a webpage or a

RSS feed aggregator.

2.3 SQL

SQL [65] statements are programs that support database management operations (e.g.,

insertion, deletion, retrieval). It is ranked 17th in popularity among programming

languages according to a recent study based on the number of skilled engineers

world-wide, courses offered, and third-party vendors [73].

SQL select statements have been used for decades to support data retrieval,

operating on their own or being embedded into other programming languages. For

example, consider the following database table containing contact information for club

members and their join date:

Name | Date | email

+------------------+------------+---------------------------+

Alice Bower | 2008-08-19 | abower@unl.edu

Carl Dent | 2008-10-10 | cdent@smsd.org

Eleanor Fae | 2008-08-19 | efae@cse.unl.edu

Greg Happ | 2008-08-19 | ghapp@unl.edu

The following SQL select statement will extract only those participants who have

e-mail domains @unl.edu:

SELECT * FROM members WHERE email LIKE ‘%@unl.edu’;

yielding the following result:

Name | Date | email

+-----------------+------------+---------------------------+

Alice Bower | 2008-08-19 | abower@unl.edu

Greg Happ | 2008-08-19 | ghapp@unl.edu
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2.4 Constraint Solvers

In our search approach, matching is performed by a Satisfiability Modulo Theory

(SMT) solver, which is a specific type of constraint solver. The purpose of an SMT

solver is to determine if a logical formula is satisfiable. That is, the solver looks for an

assignment of values to variables such that a formula is true.

To illustrate, consider the following example with four predicates including linear

arithmetic and inequalities. Let the variables be integers, a, b, c ∈ Z, subject to the

following constraints:

(a ≥ 0) ∧ (b = 2) ∧ (c = 3) ∧ (a+ b = c)

An SMT solver would determine that this formula is satisfiable when a 7→ 1 (this reads,

“a maps to 1”). The output of a solver has three potential values, sat, unsat, and

unknown. In this case, sat is returned since the formula is satisfiable. One comment

about this formula is that it is rather tightly constrained in that there is only one

value for a such that the formula is satisfiable. However, a more flexible formula can

be created and given to the solver, such as the following (the second predicate is

removed):

(a ≥ 0) ∧ (c = 3) ∧ (a+ b = c)

Here, the domain of a is constrained to be positive (a ∈ Z ∧ a ≥ 0), but the domain

of b is unconstrained within the integers (b ∈ Z). There are many possible solutions,

for example, a 7→ 1 ∧ b 7→ 2, and a 7→ 2 ∧ b 7→ 1. Thus, the solver would return sat.

However, the solver needs to find only one solution to return sat.

In the event that no solution exists, such as the following formula, the solver

returns unsat. This means there is a conflict among the constraints and there does

not exist an assignment of values to the variables such that the formula is satisfiable:

(a = 0) ∧ (b = 2) ∧ (c = 3) ∧ (a+ b = c)
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The change from the first formula is in the first predicate, where a = 0, and now there

is a conflict since 0 + 2 6= 3. Thus, unsat is returned.

A third output of a solver is unknown, which can occur when a constraint system

is too complex for the solver, or when finding a solution takes too long and the solver

is stopped preemptively.

SMT solvers are similar to SAT solvers, but instead of boolean variables, SMT

formulas can contain predicates from other theories, such as linear arithmetic just

shown, and additionally uninterpreted functions. Many off-the-shelf solvers are

available for use (e.g., Z3 [79], Yices [78], CVC3 [11]), and most accept a common

format for the constraint definition, SMTLIB2 format [61]. An example of this format

is shown in Listing 6.1.

In this work, we translate source code semantics and concrete input/output

examples into predicates that can be consumed and checked by an SMT solver. That

is, given an input/output example and an encoded program, the solver will return sat

if the program meets the specification.

2.5 Symbolic Execution

Symbolic execution is the process of executing a program with symbolic, rather than

concrete values. It traverses the paths of a program while accumulating path conditions

to describe the potential behavior of a program. This technique was first proposed in

the 1970’s [7, 8, 36], but has come to see greater popularity and application with recent

advances in computing technology [6]. In our approach, we use symbolic execution to

collect path constraints to assist with the encoding process (Section 5.2).

To give an idea of how symbolic execution works, consider the program in Listing 2.1.

There is exactly one predicate, leading to two path conditions. The predicate comes
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trimmed:null, input:I 
PC: true

trimmed:null, input:I
PC: I.length() > 1

3

trimmed:null, input:I
PC: I.length() <= 1

3

trimmed: I.substring(0, I.length() - 1), input:I
PC: I.length() > 1

4

trimmed:I, input:I
PC: I.length() <= 1

6

trimmed: I.substring(0, I.length() - 1), input:I
PC: I.length() > 1

8

trimmed:I, input:I
PC: I.length() <= 1

8

Figure 2.3: Symbolic Execution of Program in Listing 2.1

from the if − statement on line 3. There are two string variables in the program,

input and trimmed. One, input, has a symbolic value after line 2 since its value is

never defined concretely. We show the symbolic execution tree in Figure 2.3 where

the transitions are labeled with program control points.

At the start of the program (lines 1-2), variable input is symbolic in the domain

of Strings and trimmed is null. This is shown at the top of the tree where trimmed :

null, input : I appear, indicating these input holds a free, or symbolic, value. For

program arguments (i.e., input), the developer can choose which are symbolic or

concrete; in this analysis, it is left symbolic. The path condition (PC) is true since

all executions of the program will get to line 2. Line 3 holds a predicate, on which

the tree branches. On the left side is the true branch when I.length() > 1 (I, holding
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the symbolic value for input), and on the right is the false branch where I.length ≤ 1.

The path conditions are updated as a conjunction of true and the new branching

condition. This branching stage also checks for path infeasibility with a decision

procedure so that not all paths need to be explored and unreachable code can be

ignored. A constraint solver, like the ones introduced in Section 2.4, is often used for

this stage.

Lines 4 and 6 in the program restrict the value of trimmed. This is reflected after

the 4 and 6 transitions in the tree, where trimmed : I.substring(0, I.length() − 1)

after line 4 or trimmed : I after line 6. Both branches of the tree end at the return

statement on line 8; nothing changes in the path condition or the variable domains.

The path condition at the end holds only symbolic values as the value of input is free

throughout the analysis.

In the encoding phase of our approach to semantic search, these paths and domain

restrictions on the variable values are leveraged when translating program source code

into constraints for a solver. For example, given the execution tree, Listing 2.2 shows

the variables used, path condition, and executed statements corresponding to the left

branch of the tree in Figure 2.3, and Listing 2.3 corresponds to the right branch.

Listing 2.2: Path #1 for Listing 2.1

1 String input;

2 String trimmed;

3 pc1: input.length > 1

4 trimmed = input.substring(0, input.length() - 1);

5 return trimmed;

Listing 2.3: Path #2 for Listing 2.1

1 String input;

2 String trimmed;

3 pc2: input.length <= 1

4 trimmed = input;

5 return trimmed;
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Since input is never defined in Listing 2.2 and Listing 2.3, this preserves the fact that

it is symbolic from the perspective of the solver. Thus, input and I are synonymous

in the path encoding. Each of these paths would be encoded as conjunctions of

constraints, and the disjunction of the encoded paths represents the behavior of the

original program. In our approach, we are able to use path conditions computed

through symbolic execution to define the relationships among variables in a program

and the potential values variables can hold under different executions of the program.
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Chapter 3

Motivation

Searching for source code is a common task among programmers, but the tools,

approaches, and uses for found code vary widely and are often tightly coupled with

the programming language and developer context. In this section, we motivate the

need for further research in code search and provide evidence for the utility of an

input/output query model.

To motivate research in code search, we present the results of a survey that aimed

to gain a better understanding of how and why programmers search for source code

(Section 3.1). Next, we illustrate how code search manifests itself in the state-of-

the-practice for our targeted domains, Java, Yahoo! Pipes, and SQL (Section 3.2).

Last, we motivate the use of an input/output query model for code search. In our

proposed approach, programmers write queries as examples, specifying the input and

output of their desired code (Section 3.3). This addresses some of the shortcomings of

state-of-the-practice textual query model. To motivate this shift, we explore questions

asked in online help forums, observing the frequency of input/output examples within

the questions.
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3.1 User Survey

Previous work has studied the question of how and why programmers search for source

code [59], with a survey that focused on graduate student behavior. To confirm the

findings and understand more about the the tools used in code search, we conducted

a survey with similar goals. Additionally, we targeted different populations, under-

graduate students and people with programming knowledge on Amazon’s Mechanical

Turk marketplace [44].

To characterize how and why programmers search for source code, we designed

a survey with the goal of addressing the following research question RQ1, which we

broke down further into three sub-questions:

RQ1: How and why do programmers search for source code?

RQ1(a): How frequently do programmers search for code?

RQ1(b): Why do programmers search for source code?

RQ1(c): Which tools to programmers use to search for code?

The survey contained ten questions related to the search habits of the participant

(details are found in Table B.1 in Appendix B). The first five questions aim to profile

the survey participants. Survey question 6 addresses RQ1(a), questions 7, 8, and 9

pertain to RQ1(c), and question 10 addresses RQ1(b).

3.1.1 Participants

We targeted two populations with this survey, students in two undergraduate classes

at the University of Nebraska-Lincoln and workers on Mechanical Turk. It was

administered prior to a quasi-experiment discussed in Section 8.2.
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Mechanical Turk [44] is a service hosted by Amazon that allows people to reach

and compensate others to complete tasks that require human input, such as tagging

images or answering survey questions. It hosts the tasks, manages payment, and

makes the tasks accessible to a large and existing workforce. There are two roles in

Mechanical Turk, a requester and a worker. The requester is the creator of a human

intelligence task, or HIT, which is intended to be a small, goal-oriented task. The

worker is the one who completes the HIT. A HIT may or may not have prerequisites

for the user, which are referred to as qualifications. Completed tasks are returned to

the requester for evaluation. If a requester is dissatisfied with submitted work, they

hold the right not to pay the worker.

With the Mechanical Turk population, we used a qualification test to help control

the quality of responses in an unknown population (see Appendix B). This contained

programming questions that required correct responses in order for respondents to

participate in the study. These questions, shown in Appendix B.3, ensured that

participants had sufficient knowledge of the Yahoo! Pipes and SQL programming

languages.

In total, we received valid responses from 109 participants.1 Of those, 43 (40%)

came from junior/senior undergraduate classes at UNL while the remaining 60% came

from Mechanical Turk. The breakdown across participant group and gender is shown

in Table 3.1.

In a question about programming experience, eight (7%) participants self-reported

to have no programming experience,2 19 (17%) had less than two years of experience,

1Three participants were removed from the pool on account of inconsistent responses. These
participants claimed to program weekly but search for source code daily, and this seemed suspicious.

2The participants with no programming experience were retained since the subsequent quasi-
experiment performed by the participants dealt with end-user programming languages. Even so,
these participants passed the qualification test questions.
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Table 3.1: Summary of Participants (Question 2)

Male Female Total
Embedded Systems class at UNL 25 2 27
Software Engineering class at UNL 14 2 16
Mechanical Turk 44 22 66
Total 83 26 109

Table 3.2: Programming and Search Frequency (Question 4, 6)

Activity Daily Weekly Monthly Never
Programming 43 49 8 9
Code Search 25 53 22 9

53 (49%) had between two and five years of experience, and 29 (27%) had more than

five years of programming experience.

The most common languages used by participants were object-oriented languages

like Java and C/C++. Database or spreadsheet languages are also popular, with SQL

and Excel being the 4th and 5th most common languages listed (a complete list of

languages can be found in Appendix B.2).

3.1.2 Search Frequency

To address RQ1(a), we asked how frequently programmers write source code and how

frequently programmers search for code. Table 3.2 summarizes our findings. Among

all participants, 43 (39%) reported they program daily and 49 (45%) program on a

weekly basis. Among the participants who program daily, over half (25 of 43) also

search for code daily. As a summary, among those participants who program daily or

weekly, 85% search for code at least weekly. This finding is consistent with a recent

(and independent) survey that looked at the search habits of 36 graduate students [59].
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Table 3.3: Uses of Matched Code (Question 10)

Code Use Count Percent
Copy/paste as is 14 13%
Copy/paste and modify 52 48%
Get ideas for implementation 73 67%
Link to found code 8 7%
Other 6 6%

It was reported that 50% of the participants search for code “frequently” while 39%

did it “occasionally.”

3.1.3 Why do Programmers Search for Source Code?

To understand a little more about the motivation for code search and address RQ1(b),

we asked participants what they did with the source code they were looking for. Once

useful code is found, Table 3.3 summarizes what the participants did with it (using a

multi-select question). Half of the participants reported that they would copy/paste

and modify found code, which is akin to ad hoc reuse. Two-thirds would use it to get

ideas for implementation, and 13% would copy/paste as is. This is consistent with

the previous findings that reuse and implementation examples are the most common

purposes for a code search [59]. For the 6% who selected other, the participants

indicated that the use depends on the time and resources they have available.

3.1.4 Tools Used in Code Search Activities

To address RQ1(c), we asked participants about the tools they use for code search and

the types of information they use for their search queries. In a free response question

about where the participants search for code, nearly two-thirds (66%) mentioned using

the web, the internet, or specifically Google. Table 3.4 presents the full results. One-
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Table 3.4: Where do Programmers Search for Sample Code? (Question 7)

Location Count Percent
Google 47 43.1%
the web 24 22.0%
Stackoverflow 22 20.2%
Google Code Search 19 17.4%
Company code base 5 4.6%
MSDN 4 3.7%
API documentation 3 2.8%
www3schools 3 2.8%
14 other sources 1 0.9%

fifth (20%) mentioned searching stackoverflow.com specifically, a free question and

answer site for programming and technology-related questions. Only 17% mentioned

using a code-specific search engine like Google Code Search. Despite the availability of

code-specific search engines, information search engines are the most common tools

used for code search, echoing the findings in a previous survey [59].

The most popular methods used by participants for code search (in a multi-select

question) were keyword (72%), function name (45%), and libraries used (35%). The

25% who selected other generally indicated that they search using a description of

their goal (e.g., reading file input), and the language they wish to use (See Table B.3).

One participant wrote that they search for code “as a question worded how I think

other people would have asked it on stackoverflow or forums”. Another said they use,

“the specifics of a feature’s functionality I’m trying to mimic”, and another searches

based on the “end result”. These comments indicate that the programmers are trying

to use the textual query to describe the behavior of the code they need.

Finding relevant source code however, is not always easy with the current tools.

The participants reported that they must explore an average of 3.4 snippets of code

before something useful is found. A previous study found that approximately 3 out of

stackoverflow.com
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the first 10 matches were useful, which aligns with our finding [59]. It is important to

mention that neither survey accounted for the process of query reformulation, which is

the process of re-stating a query after viewing search results that are irrelevant, and

is quite common in searching [27] and adds to the overhead. Evaluating the cost of a

syntactic search for finding source code to reuse is an open question left for future

work (Section 11.1.1).

3.1.5 Summary

From this survey, we have observed that code search is common and the overhead,

which comes from examining and determining whether or not a match is useful, is

non-trivial. These results are inline with recent findings from a study investigating

the effectiveness of different code search approaches [59].

Still unclear is what it means for a participant to explore a search result, the cost of

that exploration, and whether the self-reported search behaviors reflect actual search

behavior. Gaining a more thorough understanding of the search and exploration

processes and durations is critical to understanding the real cost of a code search, and

this is left for future work. Regardless, the current overhead does suggest the need for

better search tools.

Also unclear is when programmers search for code in their development processes,

and what triggers the code search. Understanding this question is necessary to

integrating a code search tool intuitively into the development process. As this

research is still in the formative stages, this, too, is left for future work.
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3.2 State-of-the-Practice Code Search

Searching for source code in different languages presents different challenges. Some

languages have plentiful and well-documented online resources while others are pro-

prietary or have other features that make searching via textual queries difficult (e.g.,

visual language, no public repository). In this section, we focus on three languages that

expose different contexts, Java, Yahoo! Pipes, and SQL. We introduce each language

and explore the current search capabilities in the state-of-the-practice.

3.2.1 Java

Given the popularity of the Java programming language, it is not surprising that Java

resources abound on the web and can be found easily using textual search. The Java

programmers we surveyed also frequently search for source code online. Of the 63

Java programmers, 56 (89%) program at least weekly, and 49 (78%) search for code

at least weekly, which follows from the results of RQ1(a). On average, however, Java

programmers look at 3.5 snippets before finding something useful, which is slightly

higher than the average.

To illustrate the challenges programmers face with current search support, we draw

on the results of three studies. In the first (Section 7.1), we performed 17 searches

for source code on the web using titles from stackoverflow.com as textual queries.

Stackoverflow is a popular question and answer website where programmers can ask

programming and technology-related questions and members of the community can

suggest answers. The most relevant answer can be marked as ‘accepted’. Over 2.5

million questions have been asked on this forum.

Selection criteria is detailed in Section 7.1.1, but these questions were all tagged

with [java], [string], and [substring] and contained input/output examples as part

stackoverflow.com
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of the question text. By evaluating the behavior of the code snippets on the first 10

results (Section 7.1), we found that on average, 1.5 of the snippets were relevant in

that they behaved according to the input/output examples provided in the question

text. However, we must point out that this performance is nearly twice as bad as

the performance of syntactic search engines reported in our survey, where something

relevant was found after exploring 3.4 snippets, indicating that approximately 3

snippets among the top 10 ought to be relevant (Section 3.1). A follow-up study that

used humans to judge the relevance of snippets, rather than an analysis of the behavior,

revealed that approximately 6.75 of the top 10 results are relevant (Section 7.2). This

is twice as good as the self-reported surveys, but it may be artificially high due to

our experimental procedures (Section 7.2.2.4). Based on our findings, it is unclear

the exact cost of evaluating queries in Java, but if we take the surveys as an average,

programmers must sift through a fair amount of irrelevant code (3-4 snippets) before

finding what they want.

3.2.2 Yahoo! Pipes

Often, existing search capabilities of domain-specific languages are more limited

than those for more mainstream languages. This may be due to a lack of a central

repository, non-searchable code representations (e.g., for visual languages), or a lack of

existing resources to search over (e.g., domain-specific languages). For Yahoo! Pipes,

programmers can search only within the Pipes environment using URLs accessed,

tags, keywords, or program components as queries. Using common search engines

like Google is not viable as the pipes reside in a repository that is public, but has

a proprietary format. Even if the authors make the pipe available outside of the



27

Table 3.5: State-of-the-Practice Search by URL Query on Global Repository

Pipe URLs Matches P@10
1 rss.weather.com 71 2
2 feeds.feedburner.com 16,990 0

3
anunturi-gratis.ro

1,281 0anunturi-utile.ro

feedproxy.google.com

4 ocregister.com 38 0

5
feeds.gawker.com

4 1
lifehacker.com.au

repository, a syntactic query can match only pipe metadata, such as the title and

description created by the author.

To illustrate the challenges programmers face with current search support, we

performed searches for five mashups that are intended to be typical pipes in the

repository based on popularity and structural uniqueness (a full description of the

rationale for the choice of these mashups is justified in Section 8.1.1), querying for the

URLs used in each mashup. These searches were executed on the large, Yahoo! Pipes

public repository, and the results are shown in Table 3.5. The number of matches can

be in the thousands which is not surprising as many mashups include common URL

domains.

For each search, the number of matches and P@10 are reported.3 For two of the

searches, Pipe 2 and Pipe 3, thousands of matches were returned in the search. The

search with Pipe 5, on the other hand, returned only four results and one was relevant;

two pipes were relevant among the top 10 for Pipe 1. The average number of relevant

matches among the top ten results (P@10), determined by executing each pipe, is 0.06

(the metric, P@10, is a percentage of relevant items among the top 10). What this

3Search results reflect the state of the repository on February 22, 2012

rss.weather.com
feeds.feedburner.com
anunturi-gratis.ro
anunturi-utile.ro
feedproxy.google.com
ocregister.com
feeds.gawker.com
lifehacker.com.au
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illustrates is that for the more common URLs, programmers must sift through a lot of

irrelevant results, and a pipe that behaves as they want might not be easy to find.

Using other built-in search capabilities does not fare much better. Searching by

components retrieves even noisier results and requires the programmer to know how

the pipe could have been implemented. The effectiveness of searching with tags is

dependent on the community’s ability and decision to systematically categorize their

artifacts. Furthermore, given the redundancy among artifacts in the pipes repository,

it has been hypothesized that programmers simply cannot find what they are looking

for and are forced to re-invent the wheel [71].

3.2.3 SQL

In the survey presented in Section 3.1, 20 (18%) of the participants identified SQL as

one of their most commonly used programming languages. All of the programmers

perform programming tasks at least weekly and 70% search for code at least weekly.

In a multi-select question, it was revealed that the most common tool used for search

is Google (65%), and most programmers search using keywords (75%) and function

names (55%). After performing a search, an average of 3.75 snippets of code must be

explored before finding something useful.

Programmers can find many resources related to SQL using information search

engines. However, given the simplicity of the SQL syntax and its popularity, even well

conceived syntactic queries will return many irrelevant results. For example, searching

Google for the term, “select rows from table based on substring in SQL” produces over

500k responses, and among the top 10, only two results provide queries that contain

the like operator, which is a critical piece of the select statement. The process of

evaluating code snippets for relevance often requires trial and error, and is costly to
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the programmer. Given the frequency of keyword code searches that are performed

by SQL programmers, it seems reasonable to target this domain with an alternative

search approach.

3.3 Input/Output Examples in the Wild

In this section, we motivate the use of the input/output query model by investigating

the extent to which programmers already employ that query model in online help

forums. We observe that Java, Yahoo! Pipes, and SQL programmers, often turn

to peer communities when they are looking for help. One popular community is

stackoverflow.com, so this is the forum we use to identify input/output examples

in the wild. 4

3.3.1 Sampling

We collected questions related to Yahoo! Pipes using the tag [yahoo-pipes], questions

related to SQL using the tags [mysql] and [select], and questions related to Java

using the [java] and [string] tags. The second tag in SQL was used to restrict

the questions to those dealing with select statements, as that is the scope of our SQL

implementation [70]. The second tag in Java is meant to restrict the question to

those dealing with strings, as this has been the primary focus of our implementation

(Section 6.3). In Yahoo! Pipes, 248 questions were returned on March 27, 2013, in

SQL, over 1,500 questions were returned on February 19, 2012, and in Java 7,420

questions were returned on June 17, 2013. In each domain, we sorted the results

according to popularity (i.e., votes) and retained the top 100.

4In Section 8.2, we present the results of a quasi-experiment illustrating that programmers can
accurately specify desired code using this model.

stackoverflow.com
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Table 3.6: Question type categories in StackOverflow. The numbers in parentheses
represent the questions with textual or input/output examples.

Question Type SQL Y Pipes Java
How do I do X with {SQL, YP, Java}? 74 (53) 58 (40) 43 (29)
Can I do X with/without Y ? 8 (4) 18 (14) 9 (4)
What’s wrong with . . . , or Why does . . . work? 7 (2) 9 (8) 15(14)
How does Y work? 6 (1) 4 (1) 19 (8)
What is an alternative to {SQL, YP, Java} for X? 0 (0) 10 (0) 0 (0)
Best way to do X? 0 (0) 0 (0) 5 (4)
Y versus Z? 4 (1) 0 (0) 9 (4)
unrelated 1 (0) 1 (0) 0 (0)

3.3.2 Analysis

An initial analysis was performed in the SQL domain to observe common question

themes. This involved two passes over the questions. The first pass was for content

analysis to collect common question themes and the second pass categorized the

questions. This same process was repeated for the Yahoo! Pipes domain, and then on

Java. When a question fit two or more categories, we selected the category that most

closely fit based on the accepted or highest-voted answer from the community. Eight

categories emerged from this analysis.

The next step was to check if the questions also had examples to illustrate the

context of the question, and if those examples were in the form of an input and output.

Examples contain parts of the context for the question asker as a means to illustrate

their question.

3.3.3 Results

In each domain, there were a handful of dominant question types, shown in Table 3.6.

In a question containing X, it represents a specific task, such as remove a field from

an RSS item in Yahoo! Pipes, combine two tables in SQL, or capitalize the first letter
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in a string in Java. Y refers to a language construct, such as the Regex module in

Yahoo! Pipes, the Inner Join construct in SQL, or the hashCode() function in Java.

For each question, we provide the frequency of occurrence in each language, as well as

the number of those questions with which a descriptive or input/output example was

provided (in parentheses). As an example, How does Y work? questions describe six

questions from SQL, four questions from Yahoo! Pipes, and 19 questions from Java;

one question in each of Yahoo! Pipes and SQL provided an example to more clearly

illustrate the question being asked. In Java, examples were more common with eight

of those questions providing examples.

The dominant type of question for all languages is “How do I do X”. This

represents 74 questions in SQL, 58 questions in Yahoo! Pipes, and 43 questions in

Java. A sample of this type in Java is:

“I’ve been looking for a simple java algorithm to generate a pseudo-random alpha-

numeric string. . . . Ideally I would be able to specify a length depending on my

uniqueness needs. For example, a generated string of length 12 might look something

like ”AEYGF7K0DM1X”.”5

To provide another example, consider the following question from SQL: “I really

can’t find a simple or even any solution via sql to get unique data from DB (mySQL).

I will give a sample (simplified): TABLE t

fruit | color | weight

-----------------------

apple | red | 34

kiwi | red | 23

banana | yellow | 100

kiwi | black | 3567

apple | yellow | 23

5http://stackoverflow.com/questions/41107/how-to-generate-a-random-alpha-numeric-string
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banana | green | 2345

pear | green | 1900

“And now I want output - something like distinct(apple) and distinct(color) together

and order by weight desc:

kiwi | black | 3567

banana | green | 2345

apple | red | 34

“– pear | green // is not ok, becouse green is already used

– banana | yellow // is not ok, becouse banana is already used

So I need not only group by fruit, but also color (all unique). Any advice or solution?” 6

Note that syntactic search mechanisms are not well equipped to answer this type

of question as the developer does not know what SQL query or query components

may be used to solve the problem; the developer asking this type of question knows

only the behavior that is desired.

We also observed that these questions usually come with examples that help

developers better specify the required behavior. Of the 74 “How do I do X” questions

in SQL, 53 contained examples. Further, 36 examples were actual snippets of tables

that serve as inputs and records that they expect as outputs. Of the 58 questions

in Yahoo! Pipes of this type, 40 contained examples and 8 of those examples had

example inputs and outputs for the desired behavior. In Java, 29 of the 43 questions

contained examples, and 13 of those were inputs and outputs for their desired code.

In some questions, the outputs were difficult to specify. One Java question asks how

to convert a string to a Date() object. 7 While the input is easy to specify, the output

is not, and thus this was not counted. To work around that difficulty, some questions

6http://stackoverflow.com/questions/7639830
7http://stackoverflow.com/questions/4216745/java-string-to-date-conversion

http://stackoverflow.com/questions/7639830
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used test cases to illustrate input/output examples in a more standard format. 8 All

of this provides evidence that programmers already think in terms of examples when

trying to accomplish tasks using the SQL and Java, and to a lesser extent, the Yahoo!

Pipes language.

Another interesting observation is that “How does Y work” questions are not asked

often by programmers to their community, particularly for SQL and Yahoo! Pipes.

This may indicate that this type of question is well handled by existing resources like

existing tutorials or other syntactic search engine findings.

3.4 Summary

In this chapter, we have presented the results of a survey that asked 109 participants

about their programming experience and search habits. It was clear that programmers

frequently search for code, and that state-of-the-practice code search techniques have

some limitations that may be addressed with a more semantic approach. Then, we

introduced the three languages used for illustration and evaluation throughout the

rest of this work, showing some specific examples of when state-of-the-practice code

search falls short. Since the state-of-the-practice code search requires the use of a

textual query and our approach uses an input/output query model, we also explored

the frequency of input/output specifications in the wild, observing that examples are

commonly used in questions asked on stackoverflow.com.

The next chapter provide some illustrative examples of our search approach in the

three targeted language, Java, Yahoo! Pipes, and SQL.

8http://stackoverflow.com/questions/2559759/how-do-i-convert-camelcase-into-human-
readable-names-in-java

stackoverflow.com
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Chapter 4

Illustrative Examples

Based on the evidence presented in Chapter 3, we see an opportunity to support

programmers searching for source code by using an example-based query model that

might be more natural to how they currently conceptualize their needs during search.

An additional opportunity comes from some of the limitations of existing search

approaches, particularly for domain-specific languages, where source code examples

and documentation can be hard to find. Our approach to code search takes advantage

of both of these opportunities, first by using input/output examples as queries, and

second by generating a repository to search over from existing code.

4.1 Semantic Search Approach Overview

Figure 4.1 provides a big picture of our approach. The approach relies on an input/out-

put query model, which may be useful when a programmer can provide an example

of what they want code to do, but perhaps finds the task difficult to describe (I/O

Specification). A source code repository contains the potential results for the search,

and is built by analyzing source code, rather than documentation or other resources
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Figure 4.1: High-Level View of Semantic Search with Input/Output

that may be scarce for domain-specific languages. Behind the scenes, the source

code repository is transformed into constraints, a process called encoding. When a

programmer issues a query, the I/O specification is transformed into constraints and

sent to the SMT Solver, along with the encoded repository. The SMT Solver identifies

source code from the repository that meets the specification; this relevant source code

is returned to the programmer as results.

We started exploring this approach to semantic search in the context of the

end-user programming language, Yahoo! Pipes. Programs written in this language

perform operations on lists of items. To generalize the approach to a more common

language with similar semantics, we targeted SQL select statements. These programs,

or queries, perform filtering operations over tables of data, which added a dimension

of complexity to the first implementation. Supporting the Yahoo! Pipes language

fragment also requires operations on strings, specifically identifying equality and

substring relationships. To build on that support and explore our search approach

in a broader context, we have also targeted Java methods and snippets that contain

calls to the java.lang.String library.
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In this chapter, we describe how our proposed approach could be instantiated in

the domains targeted by our implementation for Java, Yahoo! Pipes and SQL, and

when it would be valuable to do so.

4.2 Java Source Code

We begin illustrating the approach with Java, as this is the most popular of the

supported languages and thus has the greatest opportunity for impact. Our approach

requires a query consisting of pairs of example inputs and expected output. In the

context of the Java String library, those inputs and outputs could be one of several

datatypes; integers, characters, strings, and booleans are supported by our current

implementation (Chapter 6). A repository of programs is also required, which has

been encoded as constraints and from which source code matches are found during

search. One of the main challenges of this approach, and one that involves a lot of

complexity, is mapping source code onto constraints. In this section, we give a flavor of

that complexity with the example in Section 4.2.3, but more details are provided in the

approach definition (Section 5.2) and with the implementation details (Section 6.3).

Next, we provide five examples in the Java domain to illustrate key aspects of our

search. First, we show how refinement on the specification can impact search results,

second, we show how to map input/output specifications onto snippets of code, third,

we show how to handle complex programs with multiple paths, fourth, we illustrate

how the solver can find values for symbolic variables, and fifth we show what happens

when no good matches can be found.
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4.2.1 Refining the Search with Multiple I/O Pairs

In Section 1, we presented a specification that could be used as a query to find code

that extracts an alias from an email address. The input, “susie@mail.com” and the

output, “susie”, form the specification. When using only one input/output pair, the

specifications may be too weak, so many results may be irrelevant. For the alias

extraction example, consider the following two results, r1 and r2, each consisting of a

single line: The first result, r1, is found by mapping the output to scheme and the

input to uri.

r1: String scheme = uri.substring(0, 5);

The second result is found by mapping the output to username and the input to to.

r2: username = to.substring(0, to.indexOf(’@’));

Deciding which results are actually relevant, rather than coincidental, is up to the

developer and may not be straightforward. To help with this process, the developer

can provide additional input/output pairs to prune coincidental matches. For example

Adding the input/output pair, input2 = “alex@univ.edu” and output2 = “alex”, will

remove r1 from the result set (i.e., it matches only the first input/output because the

string “susie” has five characters), leaving r2 as a more relevant result (see Section 5.1.1

for more details).

4.2.2 Mapping Input and Output

The previous example had an input and output that were both of the same type,

string. However, we support multiple data types and the input and output types can

be heterogeneous. For a programmer who wants to find the length of a file extension

(including the dot), the input is a string (i.e., the name of file) and the output is an
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integer (i.e., the extension length). Consider the example input string “foo.txt” and

the integer output, 4. The following snippet is a match that involves four API calls:

int begin = s.lastIndexOf(".");

int end = s.length();

String ext = s.substring(begin, end);

int len = ext.length();

Here, the input is mapped to the only undefined variable in the code snippet, s

(inferred to be of type string). The output is mapped to the LHS of the final

assignment statement, len, which is the only unused variable. These bindings are

calculated by computing and exploring the def-use pairs in the snippet [46], where

variables are marked as potential inputs while they are used but not defined.

There may be many potential mappings of an input/output specification to a code

snippet. These mappings are critical for a piece of source code to be identified as a

match. For specifications with multiple input values, swapping their order could be

the difference between a piece of code that is a match, and one that is not. Generally,

this process is left up the the solver (Section 5.2.2).

4.2.3 Partial Matches

When entire methods rather than blocks of source code are encoded, the input/output

mapping is more straightforward than it is with a code snippet. That is, the input

maps to the method parameters and the output to the return value.

However, if the method has multiple paths, an input/output pair may not require

all parts of the source code. We can have a situation when an input/output pair

matches only part of the source code, specifically, the path that would be executed.
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Consider the following method, which returns the input string with the first letter

capitalized. Encoding this method involves performing a symbolic execution to identify

the path conditions.

1 String capitalizeFirstLetter(String in) {

2 if (in.length() >= 1) {

3 String t = in.toUpperCase();

4 String t2 = t.substring(0, 1);

5 String t3 = in.substring(1, in.length());

6 return t2.concat(t3);

7 } else {

8 return "";

9 }

10 }

Two paths are identified in this method, and each is encoded separately. The full

encoding for this method, then, is a disjunction of the two paths. For the true branch

of the predicate on line 2 (i.e., in.length() ≥ 1), the following represents a rough

encoding of the path:

c1. (assert (in.length() >= 1))

c2. (assert (t.length() = in.length()))

c3. (assert (t = in.toUpperCase()))

c4. (assert (t2.charAt(0) = t.charAt(0)))

c5. (assert (t2.length() = 1))

c6. (assert

(for (1 <= i < in.length())

(t3.charAt(i - 1) = in.charAt(i))))

c7. (assert (t3.length() = (in.length() - 1)))

c8. (assert (return = t2 + t3))

c9. (assert (return.length() = (t2.length() + t3.length())))

The predicate is represented by c1. Constraints c2 and c3 describe the relationship

between variables t and in in terms of length and content (Section 6.2 describes how

strings are handled in the encoding). A complete definition of the toUpperCase()

function is provided in Table A.5. Line 4 is represented by constraints c4 and c5,

relating the length and content of strings t and t2. Representing line 5 is a little more

complicated and requires a quantifier in c6 to set the content of t3 to be all except the
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first character of in, and the length relationship is described by c7. Finally, the value

of the return variable is described in c8 and c9, where the ‘+’ operator is overloaded

to represent concatenation of strings in c8.

For the false branch of the predicate on line 2, the following represents the encoding

of that path:

c10. (assert (in.length() < 1))

c11. (assert (return = “′′))
c12. (assert (return.length() = 0))

Here, the predicate is represented as c10, with constraints c11 and c12 asserting the

length and content of the return value.

To identify this program as a match, a query could have an input of “abc” with

an expected output of “Abc”. This would satisfy the constraints for the first path;

however, for the second path, the query would violate constraint c10 since the length

of the input is not less than one. In this method, the input/output exercises only one

path represented by constraints c1− c9. As demonstrated in Section 4.2.1, the query

could provide an additional example, such as the empty string as the input and the

output, which would then exercise the second path.

Regardless, the presence of multiple paths in a program brings up some interesting

questions. In the presence of multiple input/output pairs, we could have source code

that matches some of the pairs, or input/output pairs that exercise only part of a piece

of source code. These situations all impact the matching criteria for the approach,

which is discussed in more detail in Section 5.3.
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4.2.4 Using the Solver for Symbolic Variables

In some snippets, there may be additional variables that are used, but are not defined

and not bound to the input. Consider the following snippet, which matches for the

input/output used in the example in Section 4.2.2:

int index = names.length() - names.indexOf( flag );

After mapping the input to names and the output to index, this code is not executable

because we know nothing about the value of flag, so state-of-the-art semantic search

engines that utilize test cases to identify matching code (e.g., [39, 50, 53]), would fail.

In our approach, the uninitialized variables in the snippet remain uninitialized in the

encoding, and we make no assumptions about the values they hold.1 This snippet

is identified as a match because the satisfiable model produced by the solver reveals

that the specification matches this snippet when flag is set to “.txt” (the solver could

have identified “.”, “.t”, or “.tx” as possible values, but it needs to find only one

solution to complete the satisfiable model). By encoding the behavior of the snippets

as constraints, we can identify incomplete code as a match and leverage the solver

to guide its instantiation. Applying that guidance yields the following, modified and

complete code:

int index = names.length() - names.indexOf(".txt" );

Clearly, this code would not be considered a match for other input/output examples

in which the file extension is not “.txt”. A working solution could be found by adding

additional input/output examples and forcing flag to equal “.”.

We refer to uninstantiated variables, like flag, as symbolic and variables that hold

values, like the string “.txt”, as concrete.

1In our approach, the snippet is taken out of context so we must use type inference to reveal
that flag is either a character or a string. We assume the more expressive case of string.
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4.2.5 Poor Matches

The previous example showed a situation when a program could be instantiated to

match the intention of the query. However, finding such a program is not always

possible. Say a programmer wants to trim off the last character of a string. As an

input, they provide the string, “admirer”, the integer 1 since we’re trimming one

character, and the output string, “admire.”2.

In the repository we built for the evaluation in Section 7.2, there are 64 potential

programs that take as an input an integer and a string, and return a string. However,

none of these are results for the example. For small repositories of programs, or for

very specific queries, this situation may not be uncommon.

Our approach to this issue is to use abstraction, and there are two types of

abstraction we consider. The first is relaxing the type signature of the specification,

and the second is abstracting the encoding of the source code. We leave the latter for

future work. To abstract on the type signature, we can try to find matches with type

signatures that subsume the specification yet have the required output type. Instead

of matching every input to method parameters, this approach leaves some variables

free. Performing such a relaxation returns 13 results, including the following:

String extractKey(String key, int start, String delegatePrefix, String

prefix) {

return delegatePrefix + key.substring(start + prefix.length(),

key.length() - 1);

}

Here, there are three string inputs and one integer input, with the output being

a string. This means that when we map the input to the source code, there will

be two free variables. This source code is a match for the input/output example

with key 7→ “admirer” and start 7→ 1. The solver will assign the following values

2This corresponds to question 11 used later in the evaluation (Table 7.8)
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to variables, delegatePrefix 7→ “a” and prefix 7→ “”. Now, this code does not

necessarily match the intention of the specification. Since the integer input was set to

1, the solver had to set the value of delegatePrefix to be the first character of the

input string, since that character was chopped off in the substring call. This may not

be the ideal solution, but through abstraction, our search was able to come up with

some sort of result that could help guide the programmer in the right direction.

4.3 Yahoo! Pipes Mashups

In a Pipes mashup program, RSS feeds are manipulated and aggregated. The external

data sources accessed by the Fetch Feed modules are the inputs to the pipe, so in our

approach, the programmer provides the URLs for RSS feed(s) as input. This mimics

how a programmer would build a pipe from scratch. Similar to the Pipes Editor

environment, our framework fetches the RSS feed; this produces the input list. Rather

than programming the rest of the pipe, with our approach, the programmer modifies

this list directly by reordering, removing, or modifying items to form the output list.

An example of this process is shown in Figure 4.2. The programmer provides the

URL, such as the Input in Figure 4.2, and our framework retrieves the RSS feed,

which has n items. For this URL, n = 35, which leads to a very long input list. The

programmer selects the third item as the desired output, forming an output list of

size one.

For a programmer working in the Pipes environment, they have the ability to reuse

an entire program by making a copy (i.e., cloning), or by importing an entire Pipe as a

subroutine (i.e., a subpipe). The reuse of modules or sequences of modules is difficult

since copying and pasting modules is not supported. Since the scope of reuse in the

existing framework is at the whole program level, we maintain that level of abstraction
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Figure 4.2: Yahoo! Pipes Input/Output Example

for the programmer. For our search in this domain, the programmer specifies the

behavior of an entire program, and so entire programs are encoded as constraints and

returned by the search (as opposed to snippets or methods, as in Java). Part of the

future work is to consider partial programs to promote smaller-scale reuse.

4.3.1 Assigning Inputs to Fetch Modules

Say a programmer wants to collect news about tennis from a website, and created

the specification shown in Figure 4.2 (the selected item for the output list contains

“tennis” in the description). Using our approach to perform a semantic search over

a repository of encoded Pipes programs (Section 8) reveals two possible matches,

shown in Figure 4.3(a) and Figure 4.3(b). The solution in Figure 4.3(b) performs

head and tail operations on the list to extract the third item, whereas the solution

in Figure 4.3(a) joins two RSS feeds and permits items that have “tennis” in the
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(a) (b)

Figure 4.3: Possible Solutions to Input/Output Example in Fig 4.2

description. While both match the specification, the solution in Figure 4.3(b) is likely

a coincidental match, and could be pruned by adding another input/output example,

as demonstrated by the example in Section 4.2.1.

Much like the example in Section 4.2.4 where the variable flag was symbolic, since

the specification had only one input URL, the pipe solution in Figure 4.3(a) has an

uninitialized input, URL2. In this domain, instead of leaving the RSS feed symbolic,

we assume unmapped fetch modules have empty input lists. That is, URL2 is set to

an empty list. This is necessary because the RSS feeds are external resources, and

if left symbolic, the solver may identify a program as a match, but require an RSS

feed that does not exist. Contrastingly in Java, the symbolic variables we currently

consider are not dependent on an external resource and can receive arbitrary values

assigned by the solver. As our language support increases to consider complex objects

and parameters, this will no longer be the case and we may draw on this concept from

the Yahoo! Pipes implementation.
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Module Encoding as Constraints

Fetch1
c1: (assert (in(Fetch1) = getRSS(URL1)))

c2: (assert (out(Fetch1) = in(Fetch1)))

Fetch2
c3: (assert (in(Fetch2) = getRSS(URL2)))

c4: (assert (out(Fetch2) = in(Fetch2)))

wire1 c5: (assert (in1(Union) = out(Fetch1)))

wire2 c6: (assert (in2(Union) = out(Fetch2)))

Union

c7a: (assert (for (0 ≤ i < size(in1(Union)))

recOf(out(Union), i) = recOf(in1(Union), i)))

c7b: (assert (for (size(in1(Union)) ≤ i < (size(in1(Union))

+ size(in2(Union))))

recOf(out(Union), i) = recOf(in2(Union), (i - size(in1(Union))))))

c8: (assert (for (0 ≤ i < size(out(Union)))

(hasRec(in1(Union), recOf(out(Union), i)) = true)

∨ (hasRec(in2(Union), recOf(out(Union), i)) = true)))

c9: (assert (((size(in1(Union)) + size(in2(Union))) = size(out(Union)))))

wire3 c10: (assert (in(Filter) = out(Union)))

Filter
c11: (assert (for (0 ≤ i < size(in(Filter)))

((recOf(in(Filter), i) = r) ∧ contains(field(r “descr”), “tennis”))
⇒ (hasRec(out(Filter), r) = true)))

c12: (assert (for (0 ≤ i < size(out(Filter)))

(hasRec(in(Filter), recOf(out(Filter), i)) = true)))

c13: (assert (for (0 ≤ i < size(out(Filter)))

(for (i < j < size(out(Filter)))

((recOf(out(Filter), i) = r1) ∧ (recOf(out(Filter), j) = r2))

⇒ (∃ k, l ((k < l)

∧ (0 ≤ k < size(in(Filter))) ∧ (0 ≤ l < size(in(Filter)))

∧ (recOf(in(Filter), k) = r1)

∧ (recOf(in(Filter), l) = r2))))))

c14: (assert (size(in(Filter)) >= size(out(Filter))))

wire4 c15: (assert (in(Output) = out(Filter)))

Output c16: (assert (out(Output) = in(Output)))

Definitions: Let l be a List, i be an Integer, and r be a record
recOf(l, i) = r ⇐⇒ l[i] = r
hasRec(l, r) = true ⇐⇒ ∃i | ((0 ≤ i < size(l)) ∧ (l[i] = r))

Figure 4.4: Mapping the Pipe in Figure 2.1 onto Constraints

4.3.2 Yahoo! Pipes Example: Encoding a Pipe

The encoding process is briefly illustrated in Figure 4.4 for the pipe in Figure 4.3(a).

As in the Java domain, we require a mapping of program constructs to constraints

representing their behavior. As modules have clear semantics and interfaces, in this

domain, we map each module onto constraints and use wires to define the relationships
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between modules. A full description of that process is provided in Section 6.4, but we

provide the intuition here.

Module constraints are expressed in terms of the input to and output from the

module (e.g., in(Filter) refers to the list of items that enters the Filter module,

and out(Filter) refers to the list of items that exits the Filter module). Constraints

c1 and c3 assign input variables (i.e., URL1 and URL2), to each of the Fetch Feed

(succinctly, Fetch) modules. The getRSS() function retrieves a list of RSS items.

Constraints c2 and c4 ensure that the output from the Fetch modules are the same as

the input. When a pipe is encoded, the URL information is abstracted away so the

pipe can be solved for any URL provided as input; this abstraction is imperative so

the programmer can find pipes that behave as desired given their defined input and

output. This is illustrated in the example with the URL1 and URL2 symbolic names

in constraints c2 and c4. This process is unique to Yahoo! Pipes since the inputs

to the program are specified concretely, unlike a Java program where the inputs are

passed as arguments to a method (for example).

Constraints c5 and c6 connect the output from the Fetch modules to the Union

module as inputs. The Union module concatenates its input lists, which is described

by constraints c7a, c7b, c8, and c9. The first constraint, c7a, ensures that all the items

at the front of the output list, out(Union) come from the first input list, in1(Union),

and the second constraint, c7b, ensures that the next items are from in2(Union). This

is called inclusion. The recOf(L, i) function is an accessor to get the record of a list

L at index i. The next constraint, c8, ensures that all items in the output list from

the module exist in one of the two input lists, and in this way no extra items are

appended to the end of the list. This constraint enforces exclusion. The last constraint

for this module, c9, ensures that the size of the out(Union) is equal to the sum of

the sizes of the input lists. This is a size constraint. The output from the Union
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module goes to the Filter module per c10. Representing the Filter module requires

four constraints that enforce inclusion, exclusion, order, and size properties. The first,

c11, ensures that all items in in(Filter) that contain “tennis” in the description

also exist in the out(Filter) list. The exclusion constraint, c12, ensures that all

records in the output are also from the input (i.e., none were added and out(Filter)

⊆ in(Filter)). The next constraint for this module, c13, ensures that if two records

exist in the output list, their ordering is the same as it was in the input list. In this

way, the module is order-preserving. The final constraint for the Filter module, c14,

ensures that the output list is at most as long as the input list. Constraint c15 ensures

that the output from the Filter module goes to the input of the Output module, and

c16 ensures that the output of the pipe, out(Output) is the same as in(Output).

4.3.3 Abstracting String Values

When a matching program cannot be found, we can apply abstractions to the en-

codings to find code that does not exist as such, but is an approximate match and

can be instantiated to meet the user specifications. For example, say a program-

mer wants to filter an RSS feed based on “volleyball” rather than “tennis”. The

inclusion constraint for the Filter module in Figure 2.1, c10, contains as part of the

implication, contains(field(r “descr”), “tennis”)). At a concrete abstraction

level, the string “tennis” is encoded as is, which would not satisfy a specification

that requires “volleyball”. However, with a weaker encoding consisting of constraint

contains(field(r “descr”), s)) for some string s, an SMT solver could determine

that for s = “volleyball”, this program is a match.

This form of abstraction allows the search to identify programs that are approximate

matches for the desired behavior, and can be modified systematically to satisfy the
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input/output specifications, similar to the example in Section 4.2.4 where flag was

instantiated. We implement and evaluate two abstraction levels within the pipes

domain (Section 8).

4.4 SQL Select Statements

When instantiating our approach for SQL, the input and output take the form of

database table(s). The indexed SQL select statements are encoded as constraints.

Given example tables as input and output, the SMT solver determines, for each

encoded SQL select statement, if it matches the specification.

4.4.1 Large Specifications

Consider the programmer who asked the question on stackoverflow, “I have table with

records ‘user’ and ‘balance’. How to show 10 usernames with highest balance? ... How

to show but only when they have more than 1.000.000$?”3 The programmer knew

the desired behavior and described it through a concrete input example table:

id | username | balance | status

-----+-----------+-------------+--------

145 | rekin76 | 469370.44 | 0

56 | avcio | 466921.90 | 0

705 | shantee | 149160.09 | 0

5725 | ter | 93004.45 | 0

3414 | rut1999 | 80944.80 | 0

... | ... | ... | ...

Based on the accepted answer from stackoverflow, we created an output table:

3http://stackoverflow.com/questions/11599636

http://stackoverflow.com/questions/11599636
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username

-----------

rekin76

avcio

shantee

With this input/output specification in the form of tables, our approach identifies as a

match the recommendation of three positively voted responses in stackoverflow.com:

SELECT username FROM table WHERE balance >= 1000000 ORDER BY balance DESC

LIMIT 10;

An interesting aspect of this domain is that the input/output specifications can

be large since they may come from live databases. It then becomes important to

understand the impact of large specifications on solver time. As we have explored

in previous work, but have not presented as part of this paper, it is not just the

specification size that matters but also the complexity of behavior exhibited in the

specification [70].

4.4.2 Implicit Join on Inputs

Consider a programmer who wants to extract salary information for employees from

a database. The programmer has two database tables, one called employee with

fields [id, name, address], and another called payroll with fields [id, account,

salary]. Their desired output table contains [name, salary] for each employee id,

which requires combining the two input tables, as is done in the following query:

SELECT name, salary FROM employee, payroll WHERE employee.id = payroll.id

ORDER BY salary;

This query requires an implicit join on the id field for the two input tables in order to

create the output table. Our approach supports the case when multiple inputs form a

stackoverflow.com
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single output, a concept we explore further in Section 5.1. Such a query is common

and useful in any of the supported domains (e.g., multiple strings in Java, multiple

URLs in Yahoo! Pipes, or multiple tables in SQL), and is common in database queries

that require merging multiple tables.

4.5 Summary

In this chapter, we have discussed several interesting aspects of our approach to

semantic code search in three domains, illustrating the generality of the approach.

Chapter 3 revealed some opportunities to better support code search for programmers,

and we specifically focus on the opportunities to allow programmers to specify search

queries as examples and to build repositories to search over using existing code. We

have also shown how our search is flexible in finding programs that are partial matches

and programs that are close to the desired behavior when intended solutions are not

available. We have also shown how a programmer can identify relevant code when

there are many coincidental matches by adding additional input/output examples and

how we can return source code that provides a partial match for a specification or for

a specification that only partially matches source code. In the next chapter, we define

this approach to semantic code search more formally.
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Chapter 5

Approach

In this section, we present the general definitions of each piece of our approach to

semantic search via SMT solvers. Illustrated in Figure 5.1, the gray boxes indi-

cate the key components and technical challenges: specifying behavior by defining

lightweight specifications as input/output pairs, encoding programs and specifications

as constraints, returning and ranking results, and refining program encodings and

specifications when too few or too many matches are found. The crawling and program

encoding processes happen offline, meaning those activities do not impact the search

time, whereas invoking the solver to identify relevant code happens online, meaning

this activity does impact the search time. We now describe each component in detail.

5.1 Specifying Behavior

Instead of textual queries to find syntactic matches, our approach takes lightweight

specifications that characterize the desired behavior of the code (Lightweight Specifi-

cations in Figure 5.1). These specifications, LS, are lightweight and incomplete in
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Figure 5.1: Detailed View of Approach

that they consist of concrete input/output pairs that exemplify part of the desired

system behavior, like “susie@mail.com” and “susie” from Chapter 1.

To more completely specify the desired behavior, multiple input/output pairs can

be defined: LS = {ls1, ls2, . . . , lsk}, for k pairs where lsj = (Ij, Oj). Each input, Ij , is

a set of elements and each output, Oj , is a set of elements related to Ij . Each element

of the input and the output also has a defined type, which is used in the solving phase

to identify potentially matching programs (Section 5.3).

For example, say a programmer is looking for a Java program that determines if a

string contains another string, case insensitive. This requires two inputs, both of type

string, and one output of type boolean. LS in Listing 5.1 illustrates two input/output

pairs.

Listing 5.1: Lightweight Specification Example

LS = { ({"Foo", "fO"}, {true}), ({"abc", "def"}, {false}) }
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Here, ls1 is a positive example returning true, and ls2 is an example returning false.

The inputs for both pairs, I1 and I2, each have two elements, both strings, and the

outputs, O1 and O2, both contain a single element of type boolean.

The elements that compose the input and output take different forms depending on

the domain. The examples used until this point, as well as our current implementation,

restrict the output to a single element. Including multiple outputs is part of future

work described in Section 11.2.4. For our current implementation of the approach in

Java (Chapter 6), the input is a non-empty set of booleans, characters, integers and

strings, and the output is either a boolean, character, integer, or string. In Yahoo!

Pipes, the input is a non-empty set of URLs (from which the RSS feeds are retrieved)

and the output is a list of items. For SQL select statements, the input is a non-empty

set of tables and the output is a table. Conceptually, the input and the output can

be any element that can be used to illustrate the behavior of desired code. Each

instantiation of the approach defines what forms these elements can take. The size of

k defines, in part, the strength of the specifications and hence the number of potential

matches.

If the specifications or the encoded program constraints are too weak, many

matches may be returned (too many in Figure 5.1); if they are too strong, the solver

may not yield any results (too few). Refinement and abstraction are processes that

help to address these situations, respectively.

5.1.1 Specification Refinement

As illustrated in Section 4.2.1, a programmer can provide specifications incrementally,

starting with a small number of pairs and adding more to further constrain the search.
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This incremental process would follow the arrow from Too Many results back to

Lightweight Specifications in Figure 5.1.

To provide an example, given the specification from Listing 5.1, Listing 5.2 is a

potential match. It matches both input/output pairs in LS, but simply checks the

lengths of the input strings and misses the objective of the query. On the other hand,

Listing 5.3 matches LS and the objective of the query in that it converts both input

strings to lowercase and then checks for containment. However, this result may be

buried below many irrelevant results.

Listing 5.2: Specification Refinement Example Result 1

String notSameLength(String a, String b) {

return a.length() != b.length();

}

Listing 5.3: Specification Refinement Example Result 2

boolean checkContains(String input1, String input2) {

String inA = input1.toLowerCase();

String inB = input2.toLowerCase();

return inA.contains(inB);

}

This is an instance when specification refinement would be helpful as adding

another input/output pair can differentiate between these two relevant results. This

process is defined as adding(LS, lsk+1) → LS ′, where lsk+1 is the newly added

input/output pair to LS, forming LS ′. For the previous example, we suggest two

directions to differentiate among Listing 5.2 and Listing 5.3 as results for LS in

Listing 5.1. The first, adding(LS, ({“abc”, “ABC”}, {true})) → LS ′, would rule

out Listing 5.3 because the strings have the same length, and yet the output is true.

Another option would be adding(LS, ({“abc”, “d”}, {false})) → LS ′, which also

rules out Listing 5.3 since the lengths are different and the output is false.
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Alternatively, the programmer can replace an input/output pair with one that

captures a more unique or distinguishing aspect of the desired behavior. This process

is defined as replace(LS, lsi, lsj) → LS ′, where the specification lsi is replaced by

lsj. As an example, the following replace call would differentiate between Listing 5.2

and Listing 5.3 by replacing the positive example with one in which the two input

strings have equal length, as follows:

replace(LS, ({”Foo”, ”fO”}, {true}), ({“abc”, “ABC”}, {true}))→ LS ′.

Providing guidance on this process is part of the future work described in Section 11.2.1.

5.1.2 Specification Abstraction

If there are no matches for a query, the programmer has the option to weaken the

specifications. This can occur when there truly is no match in the repository, or

when the search takes too long to provide a response. An example of this last case

occurs when the tables provided as input for SQL have hundreds of rows causing

the solving time to take minutes; in this case it may be useful to select the subset

of the table that still captures the key desired behavior. A similar phenomenon can

be observed with Yahoo! Pipes when there are many items in the input and output

lists, or in Java when performing multiple operations over very long strings. This

process is defined as, remove(LS, lsi)→ LS ′, which is the reverse of adding in that

an input/output pair, lsi, is removed. Alternatively, replace(LS, lsi, lsj)→ LS ′ can

be used to capture a different set of behavior by replacing lsi with lsj. Alternative

approaches consider negative examples or regular expressions, which we leave for

future work (Section 11.1.3)
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5.1.3 Specification Encoding

Prior to solving, the specifications LS must be encoded, transforming LS into CLS =

{Cls1 , Cls2 , . . . , Clsk}, where each Clsj represents the constraints for an input/output

pair lsj, and CLS is the set of encoded input/output pairs.

For example, consider the LS in Listing 5.1. Each ls ∈ LS is encoded separately.

Listing 5.4 shows Cls1 , the encoding for ls1; Cls2 , the encoding for ls2, is in Listing 5.5.

Listing 5.4: Cls1 : Encoded Lightweight Specification ls1 from Listing 5.1

1 // ls = ({"Foo", "fO"}, {true})

2 (declare-fun input1 () String)

3 (declare-fun input2 () String)

4 (declare-fun output () Boolean)

5

6 (assert (= input1 "Foo"))

7 (assert (= input2 "fO"))

8 (assert (= output true))

Listing 5.5: Cls2 : Encoded Lightweight Specification ls2 from Listing 5.1

1 // ls = ({"abc", "def"}, {false})

2 (declare-fun input1 () String)

3 (declare-fun input2 () String)

4 (declare-fun output () Boolean)

5

6 (assert (= input1 "abc"))

7 (assert (= input2 "def"))

8 (assert (= output false))

In Listing 5.4, the input and output variables are declared on lines 2-4. Lines 6-8 assert

the values of the specifications. The structure is identical for Listing 5.5. Since no

variable names are provided as part of the specification definition, arbitrary names are

always assigned, (e.g., input1). The binding of these variables to program variables,

which is necessary for solving, happens as part of the solving phase (Section 5.3).
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5.2 Encoding

In our approach, encoding and solving are analogous to crawling and indexing per-

formed by search engines [38]. Offline, a repository (Code Repository in Figure 5.1) is

crawled to collect programs. These programs are parsed, then encoded as constraints

using symbolic analysis [7, 8, 36], and the constraints are stored in a Constraint

Repository.

The process of encoding takes a collected set of programs RepP = {P1, P2, . . . Pn}

and transforms it into a collection of encoded programs, RepPenc = {CP1 , CP2 , . . . , CPn}.

Two general steps are involved, program transformation and program input/output

identification, as shown by the pseudocode in Listing 5.6. For all programs in a

repository, and all paths in those programs, the encoding process transforms each

path into a set of constraints. An encoded program is a set of its encoded paths, and

an encoded repository is a set of encoded programs.

Listing 5.6: Encoding Process Overview

1 encodeRepository(Repository RepP) {

2 RepPenc ← {} // RepPenc is a set of programs, each encoded

3

4 for(Program P : RepP) {

5 Penc ← {} // Penc is a set of paths in P, each encoded

6

7 for(Path q : P) {

8 Cq ← {} // An encoded path, Cq, is a set of constraints

9 Cq ← transformToConstraints(ssa(q))
10 Cq ← Cq ∪ addInputOutputConstraints(ssa(q))
11

12 Penc ← Penc ∨ {Cq} // add encoded path as disjunction to Penc

13 }

14

15 RepPenc ← RepPenc ∪ {Penc} // add encoded program to RepPenc

16 }

17 return RepPenc

18 }
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Each step of the process is described in the sections that follow, considering the

Java method in Listing 5.7 for illustration. Java was selected for illustration due it its

complexity and for ease of presentation. This method was formulated to illustrate the

challenges and opportunities that arise in the Java language. It takes a string, foo, as

input and returns a string. If foo contains the string “x”, then the substring from 0

to the index of “x” is returned. If not, an unmodified foo is returned.

Listing 5.7: Approach Encoding Example

1 static String bar(String foo) {

2 if(foo.contains("x")) {

3 int i = foo.indexOf("x");

4 foo = foo.substring(0, i);

5 }

6 return foo;

7 }

5.2.1 Program Transformation

The transformation process happens at the path level in a program. Since the current

specification model requires concrete input and output values, each will exercise a

single path, as illustrated with the example in Section 4.2.3.

To facilitate the path-level analysis, we take advantage of symbolic analysis. For

each program P ∈ RepP , a symbolic execution engine traverses the paths in P

so each can be encoded separately. For convenience, these paths are identified as

QP = {q1, q2, . . . , qm} for m paths in P . This process is implied as part of the for-loop

on line 7 in Listing 5.6.

To illustrate with program P in Listing 5.7, the symbolic execution tree is shown

in Figure 5.2. There is one predicate in the program, and so there are two path

conditions and two branches. These two branches form the set of paths for P , denoted



60

foo:S 
PC:true

foo:S
PC: S.contains("x") = true

2

foo:S
PC: S.contains("x") = false

2

foo:S,   i: S.indexOf("x")
PC: S.contains("x") = true

3

foo:S
PC: S.contains("x") = false

6

foo:S,   i: S.indexOf("x"),   foo1:S.substring(0, S.indexOf("x"))
PC: S.contains("x") = true

4

foo:S,   i: S.indexOf("x"),   foo1:S.substring(0, S.indexOf("x"))
PC: S.contains("x") = true

6

Figure 5.2: Symbolic Execution of Program in Listing 5.7

QP = {q1, q2}. From the symbolic execution tree, path encodings are built at each

leaf.

The path condition is set to true at the beginning of the method and it is refined

every time a predicate is reached. In the left leaf in Figure 5.2, three variables are

defined, foo, i, and foo1. The path condition is set on the transition of line 2, where

PC : S.contains(“x”) = true. In the original program, foo is redefined on line 4

in Listing 5.7, thus, a new variable is introduced, foo1, to represent the new value,
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foo1 : S.substring(0, S.indexOf(“x”)). In essence, this converts the program into

static single assignment form (SSA) form. As variables are introduced and manipulated

throughout the program, their domains are updated in the symbolic execution tree.

For example, line 3 introduces i, and so i is defined after the 3 transition in Figure 5.2.

Line 4 re-defines foo, so foo1 is introduced after the 4 transition in Figure 5.2.

At the end, the domains on the variables represent the restrictions that have been

imposed on their values throughout the symbolic execution of this program path,

dictated by the program statements that are executed along the path. The path

condition sets the conditions under which this path is executed, and the variables used

in the path conditions are symbolic. Let q1 in Listing 5.8 represent the path for the

left branch in Figure 5.2. Lines 1-3 define the variables, the path condition is on line

4, lines 5-6 manipulate the variable domains, and the return statement is on line 7.

Since foo is symbolic and unrestricted during the symbolic execution of the method,

in the paths, foo is declared in Listing 5.8, but not defined, leaving it symbolic.

Listing 5.8: Path q1 for Listing 5.7

1 String foo;

2 String foo1;

3 int i;

4 pc1: foo.contains("x") == true

5 i = foo.indexOf("x");

6 foo1 = foo.substring(0, i);

7 return foo1;

The right leaf of Figure 5.2 corresponds to the path condition where PC :

S.contains(“x”) = false. Here, no manipulations are made to the domain of foo,

and no additional variables are introduced. Let q2 in Listing 5.9 represent the path

for the right branch in Figure 5.2. Line 1 defines the variable foo, line 2 defines the

path condition, and line 3 is the return statement.
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Listing 5.9: Path q2 for Listing 5.7

1 String foo;

2 pc2: foo.contains("x") == false

3 return foo;

Listing 5.10: Cq1 : Encoding of path q1 from Listing 5.8

1 // declare variables

2 (declare-fun foo () String)

3 (declare-fun foo1 () String)

4 (declare-fun param1 () String)

5 (declare-fun param2 () String)

6 (declare-fun i () Int)

7 (declare-fun lower () Int)

8

9 // path condition

10 (assert (= foo.contains(param1) true))

11

12 //variable values

13 (assert (= foo.indexOf(param2) i))

14 (assert (= param1 "x"))

15 (assert (= param2 "x"))

16 (assert (= foo.substring(lower, i) foo1))

17 (assert (= lower 0))

Listing 5.11: Cq2 : Encoding of path q2 from Listing 5.9

1 // declare variables

2 (declare-fun foo () String)

3 (declare-fun param1 () String)

4

5 // path condition

6 (assert (= foo.contains(param1) false))

7

8 //variable values

9 (assert (= param1 "x"))

The output of the symbolic execution stage of the analysis are the path conditions and

variable domain restrictions based on the executed statements, shown in Listing 5.8

and Listing 5.9 for the method in Listing 5.7.
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An encoded program Penc is a set of its encoded paths. So, each path is transformed

into constraints representing the path logic. Since our approach is meant to support

many languages, a different encoding scheme is required for each language (see

Chapter 6). The transformation process for each path begins on line 8 of the algorithm

in Listing 5.6.

Each encoded path is represented in conjunctive normal form, Cq = {c1 ∧ c2 ∧

· · · ∧ co} for the o constraints. Continuing with the example, rough representations

of the encodings for the paths from Listing 5.7 are provided in prefix notation (see

Chapter 6 for specifics). Listing 5.10 roughly represents the constraints for q1 and

Listing 5.11 roughly represents the constraints for q2. Java-style comments are included

to differentiate between variable declarations and encoded program logic.

This process is repeated for every path q to create an encoded representation of

P as a disjunction of encoded paths; CP = {Cq1 ∨ Cq2 ∨ · · · ∨ Cqm} for the m paths

in P . With the example, CP = {Cq1 ∨ Cq2}. In the end, the encoding process maps

every program to a set of constraints such that RepPenc = {CP1 , CP2 , . . . , CPn}. The

aggregation of RepPenc is shown on line 15 of Listing 5.6.

Critical to the efficiency of the approach is the granularity of the encoding. The

finest granularity corresponds to encoding the whole program behavior in CP . At

the coarsest granularity the encoding would capture none of the program behavior

so CP = {true}. These extremes correspond to the least and the greatest number of

matches and the worst and the best search speeds respectively, but there is a spectrum

of choices in between. Two levels are explored in Chapter 6, specifically encoding at

the component level (Yahoo! Pipes) and the library level (Java).
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5.2.2 Mapping Input and Output

For each path in q ∈ Qp, the next step is to identify its input and output, creating an

input/output signature and mapping for when the path is paired with some LS during

solving. Line 10 in Listing 5.6 represents this process. The input/output is defined

and mapped for paths rather than for whole programs since the transformation to

SSA may require that the output be mapped to different variables in different paths

(i.e., the φ function in SSA serves this purpose).

In general, an input could be any memory location, web resource, file, or other

entity containing information for a program that is read, but not written. An output is

potentially any variable, file, or memory location that is written. For most programs,

the input and output are symbolic by default. For example, variables input1, input2

and the return statement in Listing 5.3 do not have concrete values unless the program

is executed. In the case of a program that has hard-coded inputs, as for a Yahoo!

Pipes program which has concrete URLs embedded in the Fetch Feed modules, the

input must be relaxed and encoded symbolically so the program can be matched

against any arbitrary LS with matching types.

In Java, the inputs are identified as variables that are used but not defined. The

output is the result of a return statement, or in the case of a code block, the left-

hand side of an assignment statement. For branching structures, the arity of the

input/output may vary with paths depending on the variables that are used. In Yahoo!

Pipes, the inputs are the lists of items flowing out of Fetch Feed modules and the

output is the list of items flowing out of the Pipe Output module. In SQL, the inputs

are the tables accessed in the FROM clause of the select statement, and the output is

the resulting table. By identifying the inputs and outputs from a program path q, an
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input/output signature is created and mapped onto the program variables to prepare

for binding with an arbitrary LS.

Continuing with the Java example, for paths q1 and q2, the input is identified as

foo, which is the only variable that is used but not defined. The output is mapped to

the return statements in the paths. In this example, the output is different for each

path. For q1, the output is foo1 where as for q2, the output is foo. In both cases, the

output is of type string.

Once the input/output variables have been identified, the next step is to bind the

variables to new input/output variables that will be instantiated when the path is

bound to an LS in the solving phase. The mapping constraints for q1 are shown in

Listing 5.12 and for q2 in Listing 5.13. The new variables are input and output, both

of type string like their counterparts in the program encoding.

Listing 5.12: Input/Output Mapping for path q1 from Listing 5.8

// declare input and output variables

(declare-fun input () String)

(declare-fun output () String)

// map input and output to program variables

(assert (= input foo))

(assert (= output foo1))

Listing 5.13: Input/Output Mapping for path q2 from Listing 5.9

// declare input and output variables

(declare-fun input () String)

(declare-fun output () String)

// map input and output to program variables

(assert (= input foo))

(assert (= output foo))

While not the case with this example, if there are multiple inputs in a path q with

the same type, the mapping is a disjunction of all possible bijections of the input in LS
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to the input variables in q. This allows the solver to identify bindings of specifications

to program variables such that the program can match the specification. For this

reason, the ordering of the elements in an input do not matter. An example of this

situation is shown in Section 5.2.3 with Listing 5.15.

The last step is to add the mapping constraints to the encoded path constraints,

as shown with the union operator on Line 10 in Listing 5.6. This completes the path

encoding Cq so it can be added to Penc, as shown in Line 12 of Listing 5.6. Note that

every encoded path is a set of constraints, and so Penc is a set of sets of constraints.

In the solving phase when a path q is matched to an LS, there needs to be type

matching on the inputs and outputs in q to the types in LS. For this reason, we

create a type signature for q, similar to an input/output pair in LS. The difference

is that the type signature contains variable names, rather than values, and type

annotations. The values for these variables are set when the path is combined with

a specification and sent to the solver. For example, with q1, the type signature

TSq1 = ({input:String}, {output:String}). The type signature for q2 is identical.

Type signatures are attached to paths rather than programs as the signatures

can change in the presence of abstraction, and can also be different across paths in a

program depending on the variables that are used. More discussion on this follows in

Section 5.2.3.1.

5.2.3 Abstraction Selection

Encoding occurs at an abstraction level (Abstraction Selector in Figure 5.1). The

initial encodings are as concrete as possible, as shown in Listing 5.10 and Listing 5.11,

but weaker encodings that replace concrete values with symbolic ones, as discussed

with the example in Section 4.3.3, are also computed and used. Weaker encodings can
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Figure 5.3: Type Lattice Example

approximate program behavior and be useful when searching over small repositories or

in the presence of strong specifications. We exploit the fact that most languages contain

constraints over multiple data types (e.g., strings, characters, integers, booleans) for

which the variable values can be relaxed and encoded as symbolic.

An abstraction lattice, shown in Figure 5.3, guides the abstraction selection. This

lattice shows the potential abstraction levels, based on data type, for the types

supported in our Java implementation. While this lattice is defined for types, it could

also consider abstraction in variable instances; defining such additional lattices is part

of future work.A subset of the lattice also applies for Yahoo! Pipes and SQL.1 The

lattice provides a convenient structure to show the relationships among abstraction

levels. At the bottom, the programs are encoded as concretely as possible. By moving

up the abstraction lattice, the encodings relax and programs have the potential to

satisfy a broader set of specifications.

1The Yahoo! Pipes and SQL languages take advantage of strings and integers, so the lattice
subset includes just those datatypes.
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A link between two levels in the lattice indicates that the lower level is weaker

than the upper level. That is, the upper level subsumes that lower level in that it

has the potential to match a broader set of specifications. Bottom levels represent

lower levels of abstraction (i.e., more concrete values, weaker specifications) and the

top levels represent higher levels of abstraction (i.e., more symbolic values, stronger

specifications).

Moving downward in the lattice is a weakening move; in our context, that means

that some programs that match a specification at the upper level will not match at

the lower level. Conversely, moving upward in the lattice is a strengthening move,

where there may not exist a program that matches a specification at a lower level, but

there may exist a program that will match at a higher level. Drawing on the lattice in

Figure 5.3, moving from BCIS at the top, down to BCIS, which is down and all the

way left, is a weakening move that toggles the booleans from symbolic to concrete.

5.2.3.1 Weakening Example in Java

With the encoded path q1 in Listing 5.10, foo is encoded symbolically, but param1

and param2 are encoded concretely. A weaker encoding simply defines some, or all,

concrete variables to be symbolic. In Listing 5.10, removing the constraints on lines 12

and 13 would turn param1 and param2 from concrete to symbolic encodings, obtaining

a more general version of that program. This would be equivalent to adding two

additional arguments to the program in Listing 5.7, forming the modified program in

Listing 5.14, where param1 and param2 are now symbolic as part of the input.

In the abstraction lattice in Figure 5.3, the initial encoding of q1 corresponds to the

bottom level of the lattice, BCIS. Once the strings are abstracted and the constraints

removed, the encoding moved up the abstraction lattice and to the left where strings

are made symbolic, BCIS. However, other data types could be abstracted in q1, such
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as the the integer variable lower. From BCIS, abstracting the integers would move

up the abstraction lattice and to the left, landing at BCIS. Since there are no concrete

character or boolean variables in q1, the BCIS level is the same as all those that

subsume it (i.e., those connected and above).

Listing 5.14: Approach Encoding Example

1 static String bar(String foo, String param1, String param2) {

2 if(foo.contains(param1)) {

3 int i = foo.indexOf(param2);

4 foo = foo.substring(0, i);

5 }

6 return foo;

7 }

For consistency, variables weakened in q1 must also be weakened in q2. Otherwise,

the two paths, which came from the same program, would not be representative of

that same program at the higher abstraction level. Since param1 is the only common,

weakened variable between q1 and q2, only line 7 in Listing 5.11 needs to be removed.

To show the benefits of a weakened encoding, consider the following two specifica-

tions, LS1 and LS2:

LS1 = { ({"cowxboy"}, {"cow"})}

LS2 = { ({"cow-boy"}, {"cow"})}

LS1 will match the concrete encoding of q1 in Listing 5.10 and the weakened encoding

in which param1 and param2 are made symbolic. In both encodings, I1 = “cowxboy”

is mapped to foo. Considering LS2, the more concrete encoding of q1 would not match.

However, with the weakened version of q1, there would be a match since param1 and

param2 would be treated as symbolic and could match any string.2 Abstraction can

be very powerful in this approach to code search, finding code that is close enough to

a match in that it can be changed slightly to match the specifications.

2In the solving phase, the satisfiable model would reveal that param1 = “-” and param2 = “-”.
See Section 5.3 for details.
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One consequence of weakening the string variables is that param1 and param2

become potential inputs, which changes the type signature of q1, forming TS ′q1 . That

is, TS ′q1 = ({input1:String, input2:String, input3:String}, {output:String}). Addition-

ally, the input/output mapping changes as a result of the new set of inputs. The new

mappings are shown in Listing 5.15.

Listing 5.15: More Abstract Input/Output Mapping for path q1

// declare input and output variables

(declare-fun input1 () String)

(declare-fun input2 () String)

(declare-fun input3 () String)

(declare-fun output () String)

// map input and output to program variables

(assert (or

(and (= input1 foo) (= input2 param1) (= input3 param2))

(and (= input1 foo) (= input3 param1) (= input2 param2))

(and (= input2 foo) (= input1 param1) (= input3 param2))

(and (= input2 foo) (= input3 param1) (= input1 param2))

(and (= input3 foo) (= input1 param1) (= input2 param2))

(and (= input3 foo) (= input2 param1) (= input1 param2))))

(assert (= output foo1))

With the addition of symbolic string variables, param1 and param2, assigning

inputs to program variables becomes more complex. Now that there are three inputs

of type String in q1, all possible assignments of input string variables to the symbolic

program variables in q1 must be considered, so all possible bijections of the inputs from

the type signature to the input variables in q1 are encoded. For this example, there

are 3! = 6 possible mappings. The bijections are computed within type to prevent

type mismatch. That is, if q1 also had two integer inputs, then the integer bijection

and mapping would be computed independently of the string mapping.

Similary, the type signature of q2 also changes to TS ′q2 = ({input1:String, input2:String},

output:String), and the revised mapping is shown in Listing 5.16.
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Listing 5.16: More Abstract Input/Output Mapping for path q2

// declare input and output variables

(declare-fun input1 () String)

(declare-fun input2 () String)

(declare-fun output () String)

// map input and output to program variables

(assert (or

(and (= input1 foo) (= input2 param1))

(and (= input2 foo) (= input1 param1))))

(assert (= output foo))

5.2.3.2 Weakening Example in Yahoo! Pipes

An example of how abstraction impacts the encoding of a filter module in Yahoo!

Pipes (Figure 5.4) is shown in Figure 5.5. The behavior of the module is to accept

items with tennis in the description. In the BCIS encoding, the string tennis is

concrete; in the BCIS encoding, the string has been replaced with a symbolic string

s, so the constraint is satisfied if the solver can identify a value for s. This allows for

a weaker encoding of the filter module.

One thing to point out with the lattice in Figure 5.3 is that it toggles all instances

of a data type from symbolic to concrete. There may be stages in-between two levels

where some, but not all, of the variables of a given type should be relaxed. Another

consideration is that types might not be the only property that should be considered in

an abstraction lattice. Other properties, such as bounds on integers or string lengths,

could be added to the lattice. Identifying useful abstractions and levels of abstraction

requires thorough empirical experimentation, and is part of the future work described

in Section 11.2.3.
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Figure 5.4: Example of Yahoo! Pipes Filter Module

BCIS:
(recordOf(in, r) ∧ contains(field(r, “description′′), “tennis′′))→ recordOf(out, r)
BCIS:
∃s | (recordOf(in, r) ∧ contains(field(r, “description′′), s))→ recordOf(out, r)

Figure 5.5: Lattice Encoding Example of Yahoo! Pipes Filter Module using Figure 5.3

5.3 Solving

The constraint repository, RepPenc, is used by the solver, in conjunction with

the encoded specifications, CLS, to determine matches (SMT Solver in Figure 5.1).

Given CLS, for each CP ∈ RepPenc, the approach invokes Solve(Cq ∧ CLS) =

(sat, unsat, unknown) for every Cq ∈ CP such that TSq ⊇ TSLS. The final con-

dition ensures that the type signature of q contains as many elements as the type

signature for LS. A more constrained search requires equality, whereas a more relaxed

search allows for the superset relationship (the result of a superset relationship is that

some input variables in q remain symbolic and the solver, then, assigns values).

Solve returns sat when a satisfiable model is found or unsat when no model is

possible. When the solver is stopped before it reaches a conclusion or it cannot handle

a set of constraints, unknown might be returned. The set of matches, or SatP, consists

of all programs P for which at least one path q ∈ QP returns sat.

In practice, to invoke the SMT solver for a given specification and encoded path,

some additional information is needed, which we call search parameters. The first
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parameter is the abstraction level of the encoded programs, which is set using the

Abstraction Selector, shown in Figure 5.1. The selector starts with the strictest (most

concrete) level, but this may be relaxed as the search process iterates in the presence

of tight or complex constraints, as described in Section 5.2.3. The second parameter

is the solver time, which defines how long the solver is allowed to run on a particular

constraint system. In some cases, as shown in Section 8.1.4, it can take several minutes

for the solver to return sat or unsat, so setting a maximum solver time can lead to an

efficient search, though it can miss some matches.

5.3.1 Matching with Multiple I/O Pairs

When a specification contains multiple input/output pairs (i.e., k > 1), each of the

pairs is checked independently.3 That is, SatP is computed for every ls ∈ LS. Strong

matches are those that appear in the intersection for all specifications, specifically,⋂
ls∈LS

SatPls. Similarly, those paths that match more ls are also strong matches.

Some programs will over-approximate the behavior of the specifications when the

following holds: ∃q ∈ QP | ∀ls ∈ LS ∧ Solve(Cq ∧ Cls) = unsat. That is, there exists

a path in P that LS does not cover. As an example, consider the following LS:

LS = {({"cowxboy"}, {"cow"}), ({"abcx"}, {"abc"})}

The program in Listing 5.7 over-approximates this behavior since the specification

exercises only one of the two paths. Thus, there is behavior, namely path q2 in

Listing 5.11, that returns unsat for both ls1 and ls2 above. Since q2 does not

contribute to the satisfiability of the specification, it is possibly irrelevant.

3Refining the approach to consider the input/output pairs simultaneously is left for future work
and discussed in more detail in Section 11.2.6
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At the same time, since both ls1 and ls2 return sat for q1, then the specification

may contain some redundancy. Only part of the specification is necessary to identify

P as a result.

Other programs will under-approximate the behavior of the specifications when

the following holds: ∃ls ∈ LS | ∀q ∈ Qp ∧ Solve(Cq ∧ ls) = unsat. That is, there

exists an ls ∈ LS that does not have a matching path in P . As an example, consider

the following LS:

LS = {({"cowxboy"}, {"cow"}), ({"abcx"}, {"abc"}), ({"foo"}, {"bar"})}

Considering again the program in Listing 5.7, both paths q1 and q2 return unsat for

ls3, so P under-approximates the desired behavior and only partially satisfies the

specification.

We hypothesize that the number of specifications or paths matched could be

considered in the ranking of the results (Section 5.3.2), and explore this notion in

Section 7.2.5.3. Beside ranking, the unmatched specifications could be used to guide

modifications to a program. One approach to this leverages counter-example guided

inductive synthesis [40] in which the concrete input/output pairs that are unmatched

could be used to guide modification to the program P . This discussion is left for

future work in Chapter 11.2.2. For unmatched paths, test-case generation techniques

could generate input/output pairs that would match those paths, and ask the user if

that behavior is consistent with the code they desire.

5.3.2 Ranking

For the search in Java, the results are returned to the programmer ordered according

to various criteria. We discuss three directions in this section, yet their detailed

analysis, implementation, and study are left for future work.
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5.3.2.1 Path Matching

For each LS and each program P , there are a variety of levels of matching by

considering subsets of LS and subsets of the paths in P . The strength of a match is

measured as a function of how well the program P matches a provided LS.

For a program P , QP is the set of paths in P. For QP and a specification LS, let

Qsat be the set of paths q such that ∃ls ∈ LS | Solve(Cls ∧Cq) = sat. That is, Qsat is

the set of paths in P such that at least one ls ∈ LS returns sat. Further, let LSsat be

the set of ls such that ∃q ∈ QP | Solve(Cls ∧ Cq) = sat. That is, LSsat is the set of

input/output pairs such that at least one path q ∈ QP returns sat.

When LS = LSsat, all ls ∈ LS have a match in P , and this program should be

highly ranked. When QP = Qsat, all paths in P have been covered by LS, and perhaps

these programs should be highly ranked. Table 5.1 presents a matrix with potential

rankings considering the relationships among these sets. For example, the highest

rank could be assigned to a program when both of the aforementioned conditions hold.

If either LSsat or Qsat is empty, this means either no paths in P match, or no ls ∈ LS

match, so P is not a result. Handling middle rank programs requires further study

(Section 7.2.5.3). When Qsat = QP and LSsat ⊂ LS, then all paths in P are matched,

but only part of LS contributed to the match. This could describe a situation when P

has one path, but |LS| ≥ 2, meaning that at most half of LS is satisfied by P , and in

that case P under-approximates the specification. When LSsat = LS and Qsat ⊂ QP ,

this means all of LS was matched by some path(s) in P , but not all of P was matched.

That is, P over-approximates the behavior described by LS, which may or may not be

reasonable. This would be an opportunity to then generate additional I/O pairs that

exercise the unmatched paths in P and ask the programmer if that behavior matches

their intention (see Section 5.3.1). Again, further study is needed.
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Table 5.1: Path Matching Ranking

|LSsat| = ∅ LSsat ⊂ LS LSsat = LS

|Qsat| = ∅ – – –
Qsat ⊂ QP – Lowest Rank Middle Rank
Qsat = QP – Middle Rank Highest Rank

Within each of the quadrants, there is another consideration that relates to how

saturated a program is by LS. If |LSsat| > |Qsat|, then at least one of the matched

paths is covered by two or more ls ∈ LSsat. On the other hand, if |LSsat| ≤ |Qsat|,

then every ls exercises a different behavior in P . Understanding how to consider this

information in a ranking algorithm is left for future study.

5.3.2.2 Concrete Variable Density

Another direction is to consider the density of concrete variables in the program

(calculated by the percentage of variables that are concrete), as these are more likely

to fit the programmer’s query as is and without modification (such as instantiating

symbolic variables with values from the satisfiable model).

As an example, consider the LS in Listing 5.17, which provides an input/output

pair with an integer input and a boolean output. Two potential solutions are shown

in Listing 5.18 and Listing 5.19.

Listing 5.17: LS for Concrete Variable Density Ranking

LS = {({3}, {true})}

Assigning LS to the first solution in Listing 5.18 means all variables are assigned since

a 7→ input. The density of concrete variables in this first solution is 1/1 = 1.00.
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Listing 5.18: Solution #1 for Listing 5.17

boolean op_ifle(int a) {

return a > 0;

}

On the other hand, there are three input variables in the second solution in Listing 5.19.

Assigning LS leaves two free so the solver assigns values depending on the desired

output from LS (e.g., for ls1, if low 7→ input, then a satisfying assignment of the

others could be x 7→ 4 and pup 7→ 5). The density of concrete variables in this solution

is 1/3 = 0.33. With this ranking algorithm, the solution in Listing 5.18 would rank

above the solution in Listing 5.19.

Listing 5.19: Solution #2 for Listing 5.17

boolean isBetween(int x, int low, int pup) {

return low <= x && x <= pup;

}

In the event of a tie, however, this ranking approach falls short. Consider the

solution in Listing 5.20, where the variables could be mapped as follows: col 7→ input,

PROFILE DATA COLUMN 7→ 3, and row 7→ 0.

Listing 5.20: Solution #3 for Listing 5.17

int PROFILE_DATA_COLUMN;

boolean isCellEditable(int row, int col) {

return col == PROFILE_DATA_COLUMN;

}

Here, the density of concrete variables is also 1/3 = 0.33, yet, unlike Listing 5.19, one

of the variables is never used (i.e., row). Another criterion must be used to break

the tie. One criterion could be the number of reads and writes on the variables. For

example, instantiating a symbolic variable that is used only once seems to require less

change to the program intention than to instantiate a symbolic variable that is read
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five times, so our initial response would be to rank the former program higher. Another

approach could use program paths (e.g., Listing 5.18 has one path but Listing 5.19

has two paths). Understanding the best ranking requires thorough investigation and

user input, and is left for future work.

5.3.2.3 User Context

A third ranking approach would exploit the user context, and is likely more appropri-

ately applied within a constrained environment like a company repository. Considering

user context could, for example, rank higher those snippets of code that have been

written by the programmer who specified LS, or that come from a file recently touched

by that same programmer. In search results, user context can be a powerful aid since

programmers are likely most familiar with code they have written or worked with in

the past in the past. As with the other ranking algorithms, further study is needed

here.

5.3.3 Ambiguity

Under the hood, the quantifier instantiation heuristics in most SMT solvers are sound

but may be incomplete [13]. Most SMT solvers, and specifically the Z3 [79] solver

used in our implementation, use the Model-Based Quantifier Instantiation (MBQI)

technique for building models for satisfying queries with quantifiers, which most of Java

encodings make use of (see Section 6.3). The MBQI creates a candidate interpretation

of the quantifier formula based on an interpretation that satisfies the quantifier free

assertions, but sometimes the candidate interpretation cannot be found. The result

is that unknown may be returned when the logic is actually satisfiable. Treating a

response of unknown as unsatisfiable means our search is also incomplete, but treating
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those responses as results means our search is potentially unsound. Understanding

what should be done with the unknown results requires further investigation and is

left for future work.

5.4 Summary

At this point, we have presented a general definition of the approach including all

phases of the search process, specifying a query, indexing source code, and finding

matches. Each phase has been illustrated using Java examples for clarity.

Still left to be studied is when to apply abstractions during the search process

and how to rank matches. Potential solutions to these questions will need to be

thoroughly evaluated empirically, and that is left for future work. In the next chapter,

we describe in greater detail how this approach has been instantiated in two of the

targeted languages, Java and Yahoo! Pipes.
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Chapter 6

Implementation

In this chapter, we introduce Satsy, an input/output search engine that has imple-

mented our approach to semantic search (Chapter 5). Satsy supports two languages,

Java and Yahoo! Pipes, for the purpose of finding programs given an encoded repository

and a specification.1 The encoding tools transform programs into constraints in the

SMT-LIB2 [61] format, are different for each language supported, and are described

separately from Satsy. Constraints in SMT-LIB2 format are stored as text and are

consumed by the Z3 SMT solver v.4.1 [79]. The implementation utilizes the UFNIA:

Non-linear integer arithmetic with uninterpreted sort and function symbols theory in

the encoding of all programs.

An overview of how Satsy works is presented next, followed by the data types

supported in our implementation and the implementation details for Java in Section 6.3

and for Yahoo! Pipes in Section 6.4.

1The SQL implementation is not within the scope of this thesis, but is included in this motivation
and illustration because it has been part of previous work [70].
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Figure 6.1: Satsy Solving Overview

6.1 Solving with Satsy

Satsy is the tool that takes as input a lightweight specification and a repository of

constraints, and returns a set of ranked results as output. Satsy implements the

online portion of the approach in Figure 5.1, and is shown in Figure 6.1. Given an LS

from a programmer, Satsy first encodes the specification (Section 5.1.3), forming CLS.

Next, a set of candidate paths is gathered from a repository of encoded programs,

RepPenc, subject to a specified abstraction level of encodings. The set of candidate

paths represents those paths for which the type signature of the path are subsumed

the type signature of the specification, TSq ⊇ TSLS. Next, for each path q, and for

each ls ∈ LS, the encoded specification is “glued” to Cq using additional constraints

that map TSls onto TSq (Section 5.2.2). Next, the solver is invoked for each ls ∈ LS,

and each candidate path q, solve(CLS ∧ Cq), with a specified maximum solver time.

For each program (where paths are organized back into their original program), four

pieces of information are returned for consideration in the ranking algorithm: encoded

paths QP , matched paths Qsat, specification LS, and matched specification LSsat (see

Section 7.2.5.3 for details).
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Building the repository of encoded programs, RepPenc, is a process that is highly

dependent on the language and available tools. The Java implementation is described

in Section 6.3, followed by the Yahoo! Pipes implementation in Section 6.4.

6.2 Data Types

Encoding the language subsets for Yahoo! Pipes and Java requires similar data types.

Three primitive types are supported (characters, integers, booleans) and one composite

type, list. These basic types are sufficient to represent all the constructs the encoding

supports across these domains. For example, a string is a shorthand for a list of

characters and a Yahoo! Pipes record is a map of strings to objects with names

modeled as strings.

Booleans and integers are built-in types for the UFNIA theory, but characters

(Char), lists (List), records (Record), and strings (String) are declared as uninter-

preted sorts. As strings are used by both targeted languages, the string implementation

is described here (lists and records are discussed in Section 6.4).

Each character supported in the encoding is declared as a distinct function with

type Char. A string is defined by its length and by explicitly defining every ith

character of the string for 0 ≤ i < length. An axiom determines equality between

strings when both have the same length and contain the same characters.

Listing 6.1 shows how strings are encoded in SMT LIB2 format (lines that start

with the ‘;’ character are comments). The declarations for the sorts are on lines 2 and

3. The character alphabet in this example is set to a, b, c on lines 6 - 9, though

in practice it contains the entire roman alphabet and symbols found on a standard

English keyboard, as shown in the grammar in Figure 6.3. The functions required for

string definition are on lines 12 and 13, and the axiom for string equality is on lines
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16 - 22. It reads, for all strings s1 and s2, if they have the same length and if for all

integers i where 0 ≤ i < length(s1) the strings have matching characters at index i,

then this implies their equality (line 22).

Listing 6.1: String Encoding Constraints

1 ; custom sorts for string and char definition

2 (declare-sort Char 0)

3 (declare-sort String 0)

4

5 ; functions for all Chars

6 (declare-fun _a_ () Char)

7 (declare-fun _b_ () Char)

8 (declare-fun _c_ () Char)

9 (assert (distinct _a_ _b_ _c_))

10

11 ; functions for string definition

12 (declare-fun length ( String ) Int )

13 (declare-fun charAt (String Int) Char)

14

15 ;axiom for equality

16 (assert (forall ((s1 String) (s2 String))

17 (=> (and

18 (= (length s1) (length s2))

19 (forall ((i Int))

20 (=> (and (<= 0 i) (< i (length s1)))

21 (= (charAt s1 i) (charAt s2 i)))))

22 (= s1 s2))))

An alternative choice to the implementation in Listing 6.1 would have been to use

the theory of arrays, which is supported by many SMT solvers (e.g., Z3 [79]). The

decision to use uninterpreted sorts and axioms instead was based on performance; at

the time of implementation, we were using Z3 as the solver in Satsy, and array theory

in Z3 was slower than the alternative.

To illustrate the string implementation, consider the assignment statement,

String s = “abc”; The implementation of string s is shown in Listing 6.2. The string

is defined on line 2, after which lines 3 - 5 set the value of s and line 6 asserts the

length.
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Listing 6.2: A String as Constraints

1 ; String s = "abc";

2 (declare-fun s () String)

3 (assert (= (charAt s 0) _a_))

4 (assert (= (charAt s 1) _b_))

5 (assert (= (charAt s 2) _c_))

6 (assert (= (length s) 3))

To efficiently support operations on strings, the lengths are bounded where the

bound is configurable (in line with recent work on solving string constraints [5][35]).

Moreover, this is reasonable given that humans will create input/output pairs that

will tend to be small. The same length restrictions are placed on list lengths. For four

of the supported datatypes, integers, characters, booleans, and strings, our encoding

supports concrete or symbolic values.

For integers and booleans, as these are built-in types, removing their values, as

was shown in Section 5.2.3.1, is sufficient for encoding symbolic variables with these

types. For characters, however, an additional axiom is required to restrict the solver

to select from only the characters defined in the implementation when instantiating

a symbolic character within the solver. Listing 6.3 shows an axiom for the alphabet

presented in Listing 6.1.

Listing 6.3: Symbolic Character Encoding

1 (assert (forall ((c char))

2 (or

3 (= c _a_)

4 (= c _b_)

5 (= c _c_))))

For strings, declaring a symbolic string simply requires a constraint that the length of

the string be greater than or equal to zero. For example, weakening the string s in

Listing 6.2 would look like the encoding in Listing 6.4, where the string is declared on

line 2 and the length constraint is added on line 3.
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Listing 6.4: A SymbolicString as Constraints

1 ; String s;

2 (declare-fun s () String)

3 (assert (>= (length s) 0))

With the current implementation, there is an opportunity for the solver to assign

characters at indices in a string that are outside of the bounds of the string length.

That is, a string of length 3 could have a value at index 5. Presently, equality between

strings is defined by the values of the strings within the bounds of zero and the string

length. Further, for any operation on a string the string bounds are checked so no

operation occurs outside of the bounds of the string. Thus, this should have a limited

impact, if any, on the results of the study. This threat to internal validity is discussed

further in Section 9.1.2.

6.3 Java Implementation Detail

This section describes how the encoding section of the approach (Section 5.2) has

been implemented in the Java language. This process is depicted in Figure 6.2. For

each program in a repository that matches our supported language, the first step (1)

is to check if there are multiple paths. If there are, the program is sent to JPF, where

the paths are traversed and logged. All paths, either from the original single-path

program or from JPF, are encoded as constraints (3), which are stored in a repository

(4). Each of these steps is now described in detail.

6.3.1 Language Support

All programs P ∈ RepP (Figure 6.2) contain only constructs that are supported by

our implementation. This includes a subset of the Java language covering predicates,
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Figure 6.2: Java Encoding Overview

assignment statements, and return statements, subject to the grammar shown in

Figure 6.3. We support arithmetic operations and most of the java.lang.String API,

including the following string manipulation functions: charAt, concat, contains,

endsWith, equals, equalsIgnoreCase, indexOf, isEmpty, lastIndexOf, length,

replace, startsWith, substring, toUpperCase, toLowerCase, and trim. This API

was selected based on its popularity, the rich set of behaviors that can be achieved

using combinations of the methods, and the potential to extend some of the principles

to other APIs, such as list and array processing (see future work in Section 11.2.4).

The grammar in Figure 6.3 was implemented in ANTLR. It is used to recognize

when we can support a whole method or part of a method, and in the transformation

process. The scope of supported Java snippets covers methods and blocks that fit

the supported grammar. Some snippets have a single path while others have multiple
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Figure 6.3: Java Supported Grammar (intra-procedural)

〈statements〉 ::= (〈statement〉)*
〈statement〉 ::= 〈variableDeclaration〉 | 〈assignment〉 | 〈ifStatement〉 | 〈return〉
〈variableDeclaration〉 ::= 〈type〉 〈ident〉 ‘;’

〈ifStatement〉 ::= ‘if’ ‘(’ 〈expr〉 ‘)’ ‘{’ 〈statements〉 ‘}’
(‘else’ ‘if’ ‘(’ 〈expr〉 ‘)’ ‘{’ 〈statements〉 ‘}’)*
(‘else’ ‘{’ 〈statements〉 ‘}’)?

〈assignment〉 ::= 〈type〉? 〈ident〉 ‘=’ 〈expr〉 ‘;’

〈return〉 ::= ‘return’ 〈expr〉 ‘;’

〈expr〉 ::= 〈logicalOrExpression〉
〈logicalOrExpression〉 ::= 〈logicalAndExpression〉 (‘||’ 〈logicalAndExpression〉)*
〈logicalAndExpression〉 ::= 〈equalityExpression〉 (‘&&’ 〈equalityExpression〉)?
〈equalityExpression〉 ::= 〈relationalExpression〉 ((‘!=’ | ‘==’) 〈relationalExpression〉)?
〈relationalExpression〉 ::= 〈addExpression〉 ((‘<’ | ‘<=’ | ‘>’ | ‘>=’ ) 〈addExpression〉)?
〈addExpression〉 ::= 〈multExpression〉 ((‘+’ | ‘-’) 〈multExpression〉)?
〈multExpression〉 ::= 〈primaryExpression〉 ((‘*’ | ‘/’ | ‘%’) 〈primaryExpression〉)?
〈primaryExpression〉 ::= 〈invokeExpression〉
| 〈stringLiteral〉
| 〈charLiteral〉
| 〈integer〉
| 〈booleanLiteral〉
| ‘(’ 〈expr〉 ‘)’
| 〈ident〉

〈invokeExpression〉 ::= (〈ident〉 | 〈stringLiteral〉) ( (‘.’ 〈noparam〉 ‘(’ ‘)’ )
| (〈oneparam〉 ‘(’ 〈expr〉 ‘)’ )
| (〈twoparam〉 ‘(’ 〈expr〉 (‘,’ 〈expr〉)? ‘)’ ))+

〈noparam〉 ::= ‘length’ | ‘toLowerCase’ | ‘toUpperCase’ | ‘trim’

〈oneparam〉 ::= ‘charAt’ | ‘concat’ | ‘contains’ | ‘endsWith’ | ‘equals’ | ‘equalsIgnoreCase’ |
‘indexOf’ | ‘lastIndexOf’ | ‘startsWith’ | ‘substring’

〈twoparam〉 ::= ‘indexOf’ | ‘lastIndexOf’ | ‘replace’

〈type〉 ::= ‘char’ | ‘String’ | ‘int’ | ‘boolean’

〈booleanLiteral〉 ::= ‘true’ | ‘false’

〈integer〉 ::= ( ‘0’ | (‘1’..‘9’) (‘0’..‘9’)* );

〈stringLiteral〉 ::= ‘"’ (LETTER | DIGIT | ‘:’ | ‘/’ | ‘_’ | ‘,’ | ‘.’ | ‘\’ | ‘\"’ | ‘’’ | ‘-’ | ‘ ’ | ‘(’ | ‘)’ |
‘;’ | ‘{’ | ‘?’ | ‘}’ | ‘=’ | ‘@’ | ‘[’ | ‘]’ | ‘&’ | ‘!’ | ‘#’ | ‘%’ | ‘+’ | ‘*’ | ‘^’ | ‘~’ | ‘‘’ | ‘<’ | ‘>’ | ‘|’ )* ‘"’

〈charLiteral〉 ::= ‘‘’ ( 〈escape〉 | ∼(‘’’|‘\’) ) ‘’’

〈escape〉 ::= ‘\’ (‘b’ | ‘t’ | ‘n’ | ‘f’ | ‘r’ | ‘"’ | ‘’’ | ‘\’)

〈ident〉 ::= ( LETTER | ‘ ’ | ‘$’ )( LETTER | ‘ ’ | DIGIT | ‘$’ )*
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paths. Snippets are removed from context and considered independently of their

original implementation. That is, if a class has only one method supported by the

grammar, we keep that method and throw away the rest. For this reason, the behavior

of the code may differ from the behavior in the original implementation (e.g., if a field

value is accessed, we declare it symbolically within the scope of the snippet). This

threat is discussed in Section 9.1.2.

6.3.2 Program Transformation

The transformation process covers steps (1) - (3) in Figure 6.2. Methods that contain

a predicate, conjunction, or disjunction need to be processed as multi-path programs

using symbolic execution, as described in Section 5.2.1 ((2) in Figure 6.2). This is

done using a listener attached to the symbolic execution extension [34, 33] to the

Java PathFinder model checker [75]. The basic process involves two steps. First,

a JPF driver is written to invoke the method under evaluation, and second, the

listener is attached. The listener traverses the paths in the method, recording path

conditions and the executed statements along those paths. Next, each path is encoded

as constraints ((3) in Figure 6.2). This is done using an ANTLR grammar and a set

of transformation rules that map program constructs onto constraints.

6.3.2.1 JPF Driver Creation

For JPF to be invoked on a method, that method needs to be called from a main

method so JPF can execute it symbolically by replacing the concrete inputs with

symbolic ones. This process is necessary because the listener (which collects path

condition information) needs to be attached to executable Java code in order to

traverse the paths.
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Since the methods we encode are taken out of context, a driver needs to be created

that will invoke each method from a main method. The driver wraps the method in a

class with a main method, and call the method from the main method using arbitrary,

concrete values as arguments. In this way, a path is formed to the method that JPF

can trace. The implementation can create a driver and invoke JPF automatically

when given a method, without human intervention.

An example driver for the method in Listing 5.7 is shown in Listing 6.5. The

method under evaluation, bar, appears at lines 9-15. The main method, on lines 5-7,

calls bar on line 6 with an arbitrary input string, “abc”. When the listener is invoked

on bar, “abc” is replaced by a symbolic string.

Listing 6.5: JPF Driver for Listing 5.7

1 package jpfDrivers;

2

3 public class DynamicDriver1 {

4

5 public static void main(String[] args){

6 bar("abc");

7 }

8

9 static String bar(String foo) {

10 if(foo.contains("x")) {

11 int i = foo.indexOf("x");

12 foo = foo.substring(0, i);

13 }

14 return foo;

15 }

16 }

6.3.2.2 JPF Listener

We have implemented a listener in JPF that records path conditions and executed

statements for Java methods with bodies that are recognized by the grammar in

Figure 6.3.
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Within JPF, the symbolic execution of a method is a depth-first traversal of

the search space [33]. As a method is symbolically executed, the listener logs the

statements that have been executed by processing the bytecodes. When a branching

bytecode is reached, JPF makes a decision on whether to take the true or false branch.

The listener records this decision and continues aggregating executed statements.

When the end of the method is reached (i.e., a return statement), the listener logs

this path. Then, the search backtracks to a branching condition, negates it, and the

process continues. The end result is a set of paths containing branching conditions

and executed statements. These form the set of paths QP for a program P .

As an example, the listener was used to break down the multi-path method in

Listing 5.7 in Section 5.2.1 into the paths in Listing 5.9 and Listing 5.8 using the

driver in Listing 6.5. Embedded within the listener is the logic to transform each path

into SSA form. For single-path programs, each program is pre-processed into SSA

form outside JPF using an ANTLR grammar (part of (3) in Figure 6.2).

One by-product of using JPF as the symbolic execution engine to collect paths

is that it removes from consideration any infeasible paths (i.e., those paths are no

longer traversed once a conflict is identified, and so the paths are never recorded by

the listener). This is advantageous for the solving phase because paths that will never

return true for any input not returned by the listener, and thus are never encoded

and stored in our constraint repository.

6.3.2.3 Program Encoding

Encoding happens on the path level. Once the paths have been identified, the

transformation step can begin ((3) in Figure 6.2).

Using the grammar in Figure 6.3, each piece of each program path is transformed

into constraints using our transformation tool. The non-terminals in the Java grammar
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are represented as program objects in the transformation code, and each object has

different properties. For example, <invokeExpression> contains the receiving object

(<ident>), the method name, and between zero and two expressions (<expr>). Within

the transformation code is a transformation table, which acts like a template for each

object. Given the object, the properties fill in the holes of the template and the

constraints are generated systematically. The collection of all constraints generated

for all non-terminals in the Java grammar form the encoded program path.

A tricky part of the encoding is translating method invocations on string objects.

The encoding logic for each of the support string library methods is shown in Table A.1,

Table A.2, Table A.3, Table A.4, Table A.5, and Table A.6. We provide a sample

here in Table 6.1. For each method call, the constraint purpose and definition are

presented. When types for the variables are not stated, we used the following scheme:

i and j are integers, s and sub are strings, c is a character.

Table 6.1: Sample Java Implementation Details

s.contains(sub) = true

ensure size con-
straints of strings

(length(s) ≥ length(sub))

ensures sub is a sub-
set of s

(∃j
((j ≥ 0)
∧(j < (length(s)− length(sub)))
∧(∀i

(((i < length(sub)) ∧ (i ≥ 0))
→ (charAt(s, (i+ j)) = charAt(sub, i))))))

s. indexOf(c) = i

ensures s[i] = c (s. charAt(i) = c)
∨(i = −1)

ensures i is the first
occurrence of c

(∀j
(((j ≥ 0) ∧ (j < i))
→ (¬(charAt(s, j) = c)))

sets bounds on i ((i ≥ 0) ∧ (i < length(s)))
∨(i = −1)
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For example, consider the encoding for s.contains(sub) = true in Table 6.1. To

encode this as constraints, we consider the length and content of strings s and sub.

For length, it is required that the length of the receiving object s be at least the

length of the argument sub. This is the first constraint defined in Table 6.1 for the

contains method invocation. For content, we need to identify an offset in s such that

between the bounds of the offset and the offset plus the length of sub, the two strings

match. This is the criteria for containment, and is expressed in the second constraint

in Table 6.1 where j is the offset.

One oddity in the implementation comes with the encodings for indexOf and

lastIndexOf in Table A.2 and Table A.3, with an example in Table 6.1. The index i

is set to either be the location of the character or string in the reference string (i.e.,

s), or −1 in the event that the character or string cannot be found. In the SMTLIB2

conversion, the first and third constraints on the indexOf are joined to ensure no

interference (e.g., it would be invalid if (s. indexOf(i) = c) in the first constraint and

(i = −1) in the third both evaluate to true, so these are combined to protect against

that situation). More details on this follow in Appendix A.1.

The encodings over-constrain the program behavior, and in this way, err on the

side of returning unsat to avoid false positives. The consequence is that some potential

matches may be missed. For example, the alphabet considered for string values is

pre-determined. If, for example, a programer provides a specification that requires the

solver to use an accented character, such as ó, then unsat would be returned since

that character is not recognized by our implementation. An unintended benefit is that

this actually improves the search time since the solver is able to more quickly return

unsat by providing a conflict than to return sat and provide a satisfiable assignment.
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6.3.2.4 Abstraction

One process not described for Java is that of applying abstractions. In the encoding

process for source code and with the current implementation, weakening concrete

values with symbolic values is not supported. Adding support for weakening in Java

would involve a small engineering effort, and is part of our planned future work. For

the specifications provided by the programmer, the current implementation supports

the adding, removing, and replace functions (Section 5.1.2).

6.3.2.5 Limitations and Nuances

Some restrictions and extensions are made to the grammar in Figure 6.3 with respect

to the encodings, and are worth pointing out. These are:

• As shown in Table A.4, calls to s.replace(c, d) = t restrict the types of the argu-

ments to replace to characters. The grammar does not impose such a restriction,

which means the encoding must reject snippets that contain CharSequence

objects as arguments to replace.

• In the Java VM, characters are represented as integers, allowing for relational

comparisons using the ‘<’, ‘<=’, ‘>’, and ‘>=’ operators. However, in our

encoding, each character is defined as a function returning an uninterpreted sort

(Section 6.2), meaning that relational operators cannot be encoded. Thus, the

encoding restricts relational operators to integers; addressing this limitation is

part of the future work.

• The null value for all data types is not currently supported. One challenge of

this is defining equality among the null value across datatypes, and this is left

for future work.



94

• The ‘+’ operator can be overloaded for string concatenation

• As described in Section 5.2.2, the mapping involves all possible bisections of

the inputs in LS to the input variables in q. However, we do not keep track

of the bindings for each ls ∈ LS to ensure consistency in binding among all

input/output pairs in a specification. This is left for future work.

6.3.3 Constraint Storage

Step (4) in Figure 6.2 involves storing the constraints for each program. As each path

in a program is processed separately, the paths for each program are stored separately.

In this step, we use a MySQL database with the following structure:

mysql> describe snip;

+---------+---------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------+---------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| file | varchar(1024) | NO | | NULL | |

| method | varchar(128) | NO | | NULL | |

| source | text | NO | | NULL | |

| path | text | NO | | NULL | |

| srcHash | varchar(16) | YES | MUL | NULL | |

+---------+---------------+------+-----+---------+----------------+

The id field is a unique identifier for the record. The file and method fields

provide provenance information for where the path and its parent method came from.

The original implementation of the method is stored in source, and the path field

is the SSA representation of the path, right before it goes through the encoding

step. The srcHash field is a foreign key linking each record to related records in
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the other database tables. One table contains type signature information used to

quickly identify potential matches and the other contains the actual constraints as

text. When different levels of abstraction in the program encodings are supported

by the Java implementation table, the table containing the constraints will need to

have an additional field indicating the abstraction level of that particular encoding.

Using this information is part of the Yahoo! Pipes implementation, which considers

four levels of abstraction in the encoding (Section 6.4.3).

We chose a MySQL database for storage out of convenience, though in practice, the

efficiency of retrieving the constraint representation of potential matches to provide

to Satsy (Figure 6.1) is very important, so this may not be the best option long-term.

6.4 Yahoo! Pipes Implementation Detail

This section describes how the encoding section of the approach (Section 5.2) has been

implemented in the Yahoo! Pipes language. This process is depicted in Figure 6.4.

For all programs in a repository that match our supported language, the first step is

to (1) refactor the program into a more simplified version to ease some of the burden

on the solver. Next, the refactored program is encoded into constraints, which (3) are

stored in a repository. Each of these steps is described here in detail.

6.4.1 Language Support

All programs P ∈ RepP (Figure 6.4) contain only constructs that are supported by our

implementation. This includes a subset of the Yahoo! Pipes mashup language covering

the following modules: fetch, filter, output, sort, split, tail, truncate, and

union, covering six of the top 10 most commonly used constructs.
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Figure 6.4: Yahoo! Pipes Encoding Overview

We formally describe the supported language fragment in the grammar in Fig-

ure 6.5. To map a pipe onto the grammar, we transform each program into a

parallel-serial graph, as defined in our previous work [71]. To illustrate, the program

in Figure 4.3(b) would be represented as: output tail truncate fetch, and the

program in Figure 4.3(a) would be represented as: output filter union (fetch)

(fetch).

This language fragment covers common list manipulation operators, but our

implementation does not cover constructs like rename, through which items within

a list are modified. Future work includes extending this language support to cover

constructs that manipulate the list items themselves.
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Figure 6.5: Yahoo! Pipes Supported Grammar

〈pipe〉 ::= ‘output’ 〈composition〉
〈composition〉 ::= 〈operator〉? 〈grouping〉
| 〈init〉
〈grouping〉 ::= ‘union’ 〈segment〉+
〈segment〉 ::= ‘(’ 〈init〉 ‘)’
| ‘(’ 〈operator〉? 〈grouping〉 ‘)’
| ‘(’ ( ‘(’ 〈operator〉 ‘)’ )* ‘)’ ‘split’ 〈composition〉
〈init〉 ::= 〈interior〉? ‘fetch’

〈operator〉 ::= (‘filter’ | ‘sort’ | ‘truncate’ | ‘tail’)+

6.4.2 Program Transformation

The transformation process covers steps (1) and (2) in Figure 6.4. Since there are no

predicates in the Yahoo! Pipes language, every program has only one program path.

For this reason, symbolic execution is not necessary.

6.4.2.1 List Implementation

Lists in Yahoo! Pipes are implemented similarly to strings (Listing 6.1), with a list

being analogous to a string and a record being analogous to a character. Lists are

defined by their size (i.e., length) and by defining the records at each index i in the

list. Listing 6.6 describes the List implementation for Yahoo! Pipes. Comparing this

to the string implementation, the main differences come in the custom sort definitions

on lines 2 and 3 and in the list definition function names, which are on lines 12 and

13. The function recordOf for lists behaves like charAt for strings, and size for lists

behaves like length for strings.
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Listing 6.6: A Yahoo! Pipes list as Constraints

1 ; custom sorts for list and record definition

2 (declare-sort Record 0)

3 (declare-sort List 0)

4

5 ; functions for all Records

6 (declare-fun r1 () Record)

7 (declare-fun r2 () Record)

8 (declare-fun r3 () Record)

9 (assert (distinct r1 r2 r3))

10

11 ; functions for list definition

12 (declare-fun size ( List ) Int )

13 (declare-fun recordOf (List Int) Record)

14

15 ;axiom for equality

16 (assert (forall ((l1 List) (l2 List))

17 (=> (and

18 (= (size l1) (size l2))

19 (forall ((j Int))

20 (=> (and (<= 0 j) (< j (size l1)))

21 (= (recordOf l1 j) (recordOf l2 j)))))

22 (= l1 l2))))

23

24 ; List in = [r1, r2, r3];

25 (declare-fun in () List)

26 (assert (= (recordOf in 0) r1))

27 (assert (= (recordOf in 1) r2))

28 (assert (= (recordOf in 2) r3))

29 (assert (= (size in) 3))

Listing 6.7: Yahoo! Pipes Record Implementation

1 ; uninterpreted functions for list and record definition

2 (declare-sort Record 0)

3 (declare-sort String 0)

4

5 ; getter functions for the records

6 (declare-fun getTitle (Record) String)

7 (declare-fun getDescr (Record) String)

8 (declare-fun getAuthor (Record) String)

9 (declare-fun getLink (Record) String)

10 (declare-fun getPubdate (Record) Int)
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A list is composed of records, and as shown in Figure 2.2, a record is a map of

key-value pairs. In the constraint representation, each of the keys requires a getter

function used to set the values for each key. The record data structure, as implemented

in SMT-LIB2 format, is shown in Listing 6.7. The getter functions are on lines 6-10

for each key in the map.

6.4.2.2 Program Encoding

In the transformation process, we take advantage of a previous infrastructure [68]

to refactor the Pipes programs to a more simple format ((1) in Figure 6.4). These

refactorings focus on decreasing the size of the pipes and standardizing them according

to the community standards [68]. This is not a necessary step for the encoding process,

though it may lead to modest performance gains. The biggest advantage, though

we have not evaluated it fully, is that it relieves some burden Satsy when solving for

Pipes programs (Figure 6.1) since the sizes of the programs (and thus the number of

constraints) are smaller.

In a Pipes program, the encoder ((2) in Figure 6.4), maps each module and wire

onto constraints using inclusion, exclusion, order, and size properties. Inclusion

constraints ensure completeness; all relevant records from the input exist in the output.

Exclusion constraints ensure precision; all records in the output are relevant. Order

constraints ensure that the records are ordered properly in the list. Size constraints

ensure that the lengths of the input and output lists for each module make sense (e.g.,

the lengths are equal for a sort module, but size(out) ≤ size(in) for a filter module).

The equality constraints ensure that the output of the source module is equivalent to

the input of the destination module.

The specifics of the module encodings are shown in Table A.7, Table A.8, and

Table A.9 for the supported constructs, and a sample is provided in this section in
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Table 6.2. For each module, the constraint type (inclusion, exclusion, order, size) is

shown followed by the constraint definition. When types for the variables are not

stated, we used the following scheme: i and j are integers, s is a string, r, r1, and r2

are records, in and out are lists.

Table 6.2: Sample Yahoo! Pipes Encoding

filter(in, title, equals, s) = out
inclusion (∀i(

((i ≥ 0) ∧ (i < size(in)))
((getT itle(recordOf(in, i)) = s)
→ hasRec(out, r))
∧((¬(getT itle(recordOf(in, i)) = s))
→ ¬(hasRec(out, r)))))

exclusion (∀r
(hasRec(out, r)→ hasRec(in, r)))

order (∀r1, r2

(hasRec(out, r1) ∧ hasRec(out, r2)
∧(∃i, j

((i < j)
∧(recordOf(out, i) = r1) ∧ (recordOf(out, j) = r2))))
→ (∃k, l

((k < l)
∧(recordOf(in, k) = r1) ∧ (recordOf(in, l) = r2))))

size (size(in) ≥ size(out))

To illustrate using the filter module, the inclusion constraint ensures that all

records in the input with some property are in the output. In Table 6.2, that property

is that the title of every record is equal to some string s. The exclusion constraint

ensures that all records in the output come from the input (i.e., no new records were

introduced). The order constraint makes sure the ordering of the items is preserved

from input to output, and the length constraint ensures that the output list is the

same size or shorter than the input list.
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There is an additional restriction to the grammar in Figure 6.5. Due to the

implementation of strings in the encoding, the sort module can be encoded only when

the sort operation is performed on the publication date of the items. This is similar

to the restriction in the Java encoding where relational operators are valid only on

integers.

6.4.2.3 Abstraction

In the Yahoo! Pipes language, we support abstraction on datatypes as described in

Section 5.2.3, which is used by Satsy (Figure 6.1). Specifically, we support four levels

based on the supported datatypes, integers and strings. These levels are shown in the

lattice in Figure 6.6, which is a subset of the lattice presented in Figure 5.3.

During encoding weakening (Section 5.2.3.2), abstraction can be applied for strings

and integers within the filter module, and on integers within the truncate module.

That is, in the filter module encoding shown in Table A.7, a symbolic representation

would relax the value of s, allowing the solver to identify a value for s to match the

input/output specification. For the truncate module encoding shown in Table A.8, a

symbolic encoding would relax the value of n, asserting that n ≥ 0.












Figure 6.6: Type Lattice for Yahoo! Pipes
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6.4.3 Constraint Storage

Step (3) in Figure 6.4 involves storing the constraints for each program. In this

implementation, we support four levels of abstraction. Thus, for each program, we

have four different sets of constraints representing the abstraction levels (corresponding

to the levels of the lattice in Figure 6.6).

Unlike the Java implementation, all inputs and outputs in the Yahoo! Pipes

language have the same types, so type matching is not a necessary step in the process.

However, the input can contain multiple URLs and thus multiple lists, so matching

input lists from LS to the number of URLs in a program is one of the criteria for a

program to be a candidate match in Satsy (Figure 6.1). Thus, as part of the constraint

storage, the number of potential inputs, corresponding to the number of Fetch Feed

modules, is recorded.

While the Java implementation uses a database storage structure, for Yahoo! Pipes,

the storage is in flat files on a server. Abstraction levels are identified by the file

extension, and the number of potential inputs is indicates as a comment at the top of

the each file.

6.5 Summary

In this section, we have presented the implementation details for Satsy, the semantic

search engine, and two languages, Java, and Yahoo! Pipes. By now, it has probably

become clear that the adaptation effort of this approach to a new domain is quite high

and requires experts who are intimately familiar with a targeted domains’ semantics

and SMT theories. This overhead could be mitigated, in part, by reusing some of

the transformations that are common among libraries and languages (e.g., string

manipulation between Yahoo! Pipes and Java), or by approaches that automatically
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extract invariants from program code. In Chapter 10, we review the state-of-the-art

research in this area.
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Chapter 7

Java Evaluation

In the evaluation of this approach, we have designed a series of studies to assess and

highlight some key aspects of the approach through the two implemented domains:

Java and Yahoo! Pipes. This chapter focuses on the Java implementation in Satsy,

and we aim to address one general research question, which is broken into three

sub-questions:

RQ2: How effective is Satsy at returning relevant source code?

RQ2(a) How do search results from Satsy compare to those found using Google

when searching over the same repository of programs?

RQ2(b) How much can existing syntactic search approaches be improved by

augmenting results with Satsy?

RQ2(c) How do search results from Satsy compare to those found using Google

and those found with the code-specific search engine, Merobase, from the

perspective of a programmer?
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Toward RQ2 1 in Java, we conduct two separate studies. The first study, presented

in Section 7.1, addresses RQ2(a) and RQ2(b). Effectiveness is measured using the

semantics of the first 10 source code snippets returned by a search, computing P@10

based on behavior. That is, we analyze each source code snippet and verify that it

behaves as specified by an input/output example. In the second Java study, which

addresses RQ2(c) and is presented in Section 7.2, we measure effectiveness by asking

human participants if source code returned by a search is relevant to a programming

task, computing P@10 based on their feedback.

Comparing our search to state-of-the-art and state-of-the-practice searches, as is

the goal of RQ2(a) and RQ2(c), is tricky since the query models are heterogeneous

across approaches (e.g., keyword, formal specification, input/output example, etc.)

and the content of the repositories may vary significantly. To evaluate the effectiveness

of the search in Java, we performed a staged assessment with these studies. For each

study, we require four parts to assess search effectiveness: a repository, queries to

issue, search engines, and oracles to judge correctness of the search results. Table 7.1

presents a broad overview of these parts for each of the Java assessments, and their

associated research questions.

Table 7.1: Java Evaluations for RQ2

RQ Repository Queries Searches Oracle
RQ2(a) Koders Stackoverflow Constrained Google, Satsy Stackoverflow
RQ2(b) Web Stackoverflow Google, Satsy Analysis
RQ2(c) GitHub Humans Google, Merobase, Satsy Humans

In the first assessment toward RQ2(a) (Section 7.1.1), the repository was gathered

by scraping koders.com. The queries issued against the repository were gathered

from questions asked on stackoverflow.com, and two search engines were compared:

the Google search engine pointed at our scraped repository, and Satsy pointed at our
1RQ1 was introduced and discussed in Section 3.1

koders.com
stackoverflow.com


106

scraped repository. Correctness of the search results was judged based on analyzing

the search results and determining 1) if each result matches the input/output example

from the stackoverflow.com questions, and 2) if a result matches the accepted answer

from stackoverflow.com (i.e., the oracle).

In the second assessment toward RQ2(b) (Section 7.1.2), we reuse the queries

from RQ2(a). The goal of this study is to evaluate the benefits of using Satsy after

a Google search. Thus, the repository is the Web as indexed by Google. Matches

were identified as those that were returned by Google and not rejected by Satsy, and

therefore were based on the source code behavior.

To address some of the limitations of the assessment regarding RQ2(a) (e.g., larger

repository, human assessors of relevance), we performed another assessment toward

RQ3(c) (Section 7.2). Here, the repository was built by scraping projects from GitHub,

and we used humans to generate queries for three search engines: Google, a code-

specific search engine called Merobase, and our search pointed at the newly-scraped

repository. Since ultimately this approach is directed to help programmers, correctness

of the search results was judged by humans.

7.1 Java Study 1

Comparing two search approaches requires the same query and the same space of

potential matches (i.e., repository), so that the results can be compared. In this

first Java study, we compare Satsy to a state-of-the-practice syntactic search, Google.

Since our encodings are limited, we could not simply index all programs on the web as

Google does, but we are able to control the space of potential matches using a local

code repository. We then search for code using Satsy and Google, where both search

approaches pull matches from the same local repository (RQ2(a)). To complement

stackoverflow.com
stackoverflow.com
GitHub
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Figure 7.1: RQ2(a) Workflow

this study, and address in part the threat that constraining Google is not realistic in

practice, we then evaluate how using Satsy after a syntactic search performed using

unconstrained Google can reduce the code snippets that must be evaluated by the

programmer (RQ2(b)) [70].

7.1.1 RQ2(a): Comparison to State-of-the-Practice

The goal of this experiment is to analyze the search results from Google and from

Satsy for the purpose of evaluation with respect to the behavior of the code in the

search results. Code behavior is analyzed from the point of view of the researcher

in the context of questions asked on stackoverflow.com that can be answered with

results from a local repository, where the queries for the searches were collected directly

from the question text. This experiment aims to address RQ2(a): How do search

results from Satsy compare to those found using Google when searching over the same

repository of programs?

We use a local repository that we created and control to compare the relevance of

results obtained by Satsy on the local repository against the relevance of the results

obtained by a Google search engine pointed to our local repository. This process is

stackoverflow.com
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depicted in Figure 7.1. The first step is to collect artifacts for a local repository; all

search results returned by Satsy and Google will come from this repository (see (1) in

Figure 7.1). Next, we collect artifacts from stackoverflow.com with queries in two

formats, keywords for Google and input/output for Satsy (2). The third step is to

search Google given the keyword, and obtain the results (4). Next (5), we search Satsy

with the input/output example and obtain results (6). The last step (not pictured) is

to compute metrics and compare the results.

7.1.1.1 Artifacts

There are several artifacts required for this study, as indicated in the design. We

discuss the two phases of artifact collection. First, we need to build a repository of

programs to search over. Second, we need queries for the searches, which come from

questions asked on stackoverflow.com.

Repository. We built a local repository on July 29, 2012 by issuing syntactic

searches on Koders.com [37], a code search engine that indexes open source code

repositories containing more than 15 million lines of code. The searches contained each

of the java.lang.String functions supported by our encoding2. We then scraped

all lines of Java source code that contained a call to at least one of the supported

functions, totaling 5192 lines. We pruned out duplicates, lines that contained functions

we do not support, and those that are not assignment or return statements. This left

713 unique snippets of code that form the Java code repository used in this evaluation.

These lines of source code were not simply assignment statements, rather, they could

2When these artifacts were scraped, the following Java methods were not supported:
equalsIgnoreCase, isEmpty, replace, toUpperCase, toLowerCase, and trim. Addi-
tionally, if-statements were not supported.

stackoverflow.com
stackoverflow.com
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have multiple, nested method invocations. Table 7.2 summarizes the output types for

each snippet in the repository.

Table 7.2: Output Types for Java Repository

Output Type Snippets
String 255
Int 340
Boolean 42
Char 76
Total 713

Among the 713 snippets, there were a total of 793 calls to Java string methods,

with an average of 1.11 method invocations per snippet. Table 7.3 shows the API

calls and their frequency of appearance, in order of popularity. For example, indexOf

was used most frequently with 206 instances, and endsWith was among the least

frequently used with 18 instances. This illustrates the level of complexity and diversity

in the snippets.

Table 7.3: Instances of API Calls in Java Repository for Study 1

indexOf substring lastIndexOf concat charAt
206 176 170 88 76

length endsWith contains startsWith equals
35 18 10 10 4

Queries. Satsy and Google use different query models, keyword for Google and

input/output for Satsy, so we found a source that would allow us to extract both

input/output examples and keywords to perform the searches. Using questions

posted on stackoverflow.com, we use the posting title as the keyword query and the

input/output example(s) as the query for Satsy.

stackoverflow.com
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Table 7.4: Java Artifacts Specifications for RQ2(a)

Q Title LS from Q

1
Just copy a substring in {({“Animal.dog”}, {“Animal”}),
java ({“World.game”}, {“World”})}

2 extract string including
whitespaces within string
(java)

{(“23 14 this is random”}, {“this is random”})}

3 How to get a 1.2 formatted
string from String?

{({“1.500000154”}, {“1.5”})}

4 How to pull out sub-string
from string (Android)?

{({“<TD>TextText</TD>” }, {“TextText”})}

5 Trim last 4 characters of
Object

{({“Breakfast($10)”},{“Breakfast”})}

6
Removing a substring be-
tween two characters (java)

{({“I <str>really</str> want ...”}, {“I really
want ...”})}

7 Splitting up a string in Java {({“i i i block of text”}, {“block of text”})}
8 How to find substring of a

string with whitespaces in
Java?

{({“c not in(5,6)”}, {“true”})}

9 Limiting the number of {({“124891”}, {“1248”}),
characters in a string, ({“difference”}, {“diff”}),
and chopping off the rest ({“22.348”}, {“22.3”}),

({“montreal”}, {“mont”})}

10
Trim String in Java while
preserve full word

{({“The quick brown fox jumps”}, {“The quick
brown...”})}

11 How to return everything
after x characters in a
string

{({“This is a looong string”}, {“is a looong
string”})}

12 Slice a string in groovy {({“nnYYYYYYnnnnnnn”}, {“YYYYYY”})}
13 How to replace case-

insensitive
{({“FooBar”}, {“Bar”}),

literal substrings in Java ({“fooBar”}, {“Bar”})}
14 Removing first character of

a string
{({“Jamaica”}, {“amaica”})}

15 How to find nth occurrence
of character in a string?

{({“/folder1/folder2/folder3/”}, {“folder3”})}

16 Java finding substring {({“**tok=zHVVMHy...”}, {“zHVVMHy”})}
17 Finding a string within a

string
{({“...MN=5,DTM=DIS...”},
{“DTM=DISABLED”})}
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Of the 67 questions tagged in stackoverflow.com with [java], [string], and

[substring], 40 (60%) contain some form of explicit example. For 17 of those

questions, our Java implementation supported encoding the input/output example(s).

The remaining 23 involved constructs we do not support, such as regular expressions

or arrays. The titles and input/output for the 17 questions are shown in Table 7.4.

The Q column identifies the question number, and Title is the title as it appears

in stackoverflow.com. Each of these questions has an input and output example,

where the input and the output are each of type string. These are shown in the LS

from Q column. For some questions, specifically, Q 1, 9, and 13, multiple examples

were provided, and we consider all of those in the search.

7.1.1.2 Metrics

For RQ2(a), to compare the results across the search techniques on the local repository,

we use the number of results and P@10 (the number of relevant results among the top

10), a common IR metric [10]. A relevant result is one that will behave as specified

given an input/output example. In the case of uninitialized variables, the solver was

free to find values that would make the snippet work, and in this way our measure

of relevance was generous, though not biased toward any particular search approach.

We simply allowed incomplete Java code as results.

To illustrate, consider for Q 1, ls1 = ({“Animal.dog”}, “Animal”). The follow-

ing Java source code matches where filename 7→ “Animal.dog” and classname 7→

“Animal”, and thus would be considered a result.3

string classname = filename.substring(0, filename.indexof(’.’));

3Binding of all variable names is required, as illustrated in Section 2.4, which is why the LHS of
the assignment statement is mapped to the output from ls1.

stackoverflow.com
stackoverflow.com
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This solution has no free variables, and the solver returns sat given the mapping, so it

is clear that this is a result. However, consider the following Java source code:

repository = location.substring(0, colon_index);

The mapping of location 7→ “Animal.dog” and repository 7→ “Animal” would result

in a match. In this case, however, there is an additional free variable, colon index.

Since the solver can assign this variable to the string, “.”, this is also considered a

result. Yet, with mappings only of the components in ls1, this code would not be

executable. This is meant by generous matching; incomplete code can be identified

as a result because the solver is free to assign values as needed. Contrastingly, the

following Java source code would not be a result for ls1:

s = s.concat(d);

No matter what variable bindings are used, the source code behavior does not match

the example.

7.1.1.3 Implementation

This evaluation was an artifact-only evaluation and required no human input, outside

of artifact collection. We ran this experiment on a generic laptop computer. Timing

data in Section 7.1.1.4 for encoding was collected while running the encoder in Eclipse;

timing data for solving was collected using the -st flag on the command line with Z3.

7.1.1.4 Results

The results for RQ2(a) are shown in Table 7.5. The Q column matches the specifi-

cations shown in Table 7.4. The next sets of columns, Satsy and Google Local, show

the number of results and P@10 metrics for the two search approaches. Each row

represents one of the 17 questions used for the queries.
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Table 7.5: Java Results for RQ2(a)

Satsy Google Local
Q # P@10 # P@10

1 4 0.4 99 0.1
2 24 1.0 34 0.3
3 48 1.0 37 0.2
4 13 *1.0 100 *0.2
5 48 1.0 5 0.0
6 0 0.0 99 0.0
7 21 1.0 42 0.3
8 20 1.0 99 0.0
9 49 *1.0 41 *0.3
10 0 0.0 40 0.0
11 23 *1.0 70 0.3
12 13 *1.0 38 0.2
13 24 1.0 2 0.0
14 22 *1.0 38 0.3
15 13 1.0 42 0.2
16 14 1.0 2 0.0
17 13 1.0 34 0.2

Average 20.5 0.85 48.4 0.15

Key:
#: The number of results from the search
P@10: Relevant results from the search

(* results match Stackoverflow)

Using Satsy, an average of 20.5 matches were found for each query, ranging from

zero (in two cases, questions 6 and 10) to 49 results.4 As an example, for Q 2 in

Table 7.4, given the input “23 14 this is random” and output “this is random”, Satsy

finds 24 matches, with P@10 = 1.0. To provide an example, the following source code

matched the specification:

String message = name.substring(6);

4For those questions that have multiple input/output pairs, we ensure that the models returned
can satisfy all pairs.
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By the design of our semantics search approach implemented in Satsy, all the results

are relevant in that they match the input/output specifications, so the P@10 metric

will always be 1.0, unless there are fewer than 10 results, in which case it is still

computed as the number of relevant results divided by 10. However, as we pointed

out in Section 4.2, some matches may be coincidental. Without programmer input,

differentiating the coincidental matches from the more relevant matches is not feasible.

When using a Google search engine on the local repository, on average, 48.5

matches were found for each query, ranging from two to 100. These results are under

the Google Local column in Table 7.5. In Q 2, for example, we see that Google returns

34 results. Checking the top ten results against the input/output specifications reveals

that only three of the top ten results were relevant. For example, the following snippet

is irrelevant because it grabs the first part of a string, rather than the last part as

required in the input/output example:

String string = string.substring(0, end);

On average, P@10 = 0.15, so 1.5 of the results are relevant, with a range from zero to

three.

Comparing the retrieved results to the solutions proposed and positively voted on

by the stackoverflow.com community shows that Satsy returns results that match

the community solutions for five of the 17 searches (Q 4, 9, 11, 12, and 14, each marked

with the *), and the Google results matched stackoverflow.com for two searches

(Q 4 and 9). A match was determined if all API calls were the same between two

snippets.5

5The stackoverflow.com community often proposed solutions that used regular expressions,
string tokenizers, and arrays, which are not currently supported by our encoding and thus do not
appear in any of our result sets.

stackoverflow.com
stackoverflow.com
stackoverflow.com


115

To illustrate, Satsy returns a total of 49 snippets for Q 9, including snippets s1

and s2:

s1. repository = location.substring(0, colon_index);

s2. String fieldname = line.substring(0, idx);

Google returned 41 results, including snippets s3 and s4:

s3. String = string.substring(0, end);

s4. String axispart = mdxquery.substring(mdxquery.indexOf(select),

mdxquery.indexOf(from));

Stackoverflow suggests snippet s5 as a result:

s5. String.substring(0, maxLength);

While s4 can be instantiated to fit the specification in Q 9, snippets s1, s2, and s3

match the API calls used in s5.

In terms of performance, encoding all 713 snippets takes 2.991 seconds (averaged

over ten runs), which is approximately 4ms per snippet. Among all the input/output

examples in Table 7.4 and all searches, the average solver time to determine sat is

0.0483 seconds and to determine unsat is 0.0051 seconds. However, given that the

snippets and the specifications are small, this may represent a best-case scenario. In

the presence of larger and more complex programs, and larger and more complex

specifications, these performance measures will drop, as we observe with the Yahoo!

Pipes assessment (Section 8.1).

What we observed is that using the same repository, Google returns over twice as

many results as Satsy, but among the top ten, Satsy is over five times more effective

at returning relevant results. For four of the 17 searches (5, 8, 13, 16), Satsy provides

matches when Google does not find any as the syntactic query was not rich enough
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to identify results. Yet, this evaluation comes with many limitations, which we aim

to address with a follow-up study forRQ2(c) (Section 7.2). Threats to validity are

discussed in Section 9.

7.1.2 RQ2(b): Augmenting the State-of-the-Practice

The goal of this experiment is to analyze the search results from Google combined

with Satsy. We aim to evaluate the the reduced space of source code that must be

analyzed from the point of view of the developer in the context of running Satsy

over the results from a Google query. The queries were drawn from those asked on

stackoverflow.com that can be answered with results from a local repository (same

queries as RQ2(a)). The goal of this experiment is to address RQ2(b): How much can

existing syntactic search approaches be improved by augmenting results with Satsy?.

Under the hypothesis that semantic and syntactic approaches to code search are

complementary, toward this goal and for RQ2(b), we perform a Google search on

the web (i.e., a syntactic approach) and explore how the results could be filtered

and improved by also using Satsy. The results from Google form a repository of

preliminary matches; with an input/output query, Satsy identifies which results are

relevant, which are not, and which might be relevant (i.e., those that Satsy cannot

encode).

The workflow for this study is presented in Figure 7.2, where the numbers corre-

spond to steps in the workflow. First, we take a question from stackoverflow.com

(Artifact) and extract the keyword and input/output queries, precisely as was done for

RQ2(a). Second, Google is searched using the keyword query; the output is a set of

results (3). Source code snippets are extracted from the top 10 search results, and this

forms a small repository of preliminary matches (4). Using the input/output query

stackoverflow.com
stackoverflow.com
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Figure 7.2: RQ2(b) Workflow

and the repository of preliminary matches built from the results in (3), Satsy searches

for programs that match in (5). The final set of result in (6) represents either the

source code that fits the input/output query, or that Satsy could not encode because,

for example, it contained constructs not supported in our encoding, like arrays. The

snippets Satsy does support and that return unsat for the input/output example are

pruned from the search results. The result set in (6) represents the reduced set of

results for the programmer to evaluate.

7.1.2.1 Artifacts

In this study, the repository of programs is built on-the-fly from the results of a Google

query on the Web. The questions used for queries are the same as for RQ2(a), shown

in Table 7.4.

7.1.2.2 Metrics

For RQ2(b), we define new metrics, S@10 and S’@10. The metric S@10 represents the

number of code snippets returned in the top ten results from a syntactic Google search.

We measure the number of snippets since the search results on the web may return pages
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with multiple snippets of code. To capture S@10, we issue Google queries, then scrape

and count the Java code snippets from the top 10 page results. This corresponds to

the results in step (3) of Figure 7.2. In all searches, the stackoverflow.com question

from which the keyword query was generated was always the top result; this was

ignored as including it biased the results toward the question.6 So, results 2-11 from

Google were used to generate S@10.

The metric S’@10 represents the number of snippets the programmer must evaluate

after applying Satsy on top of the Google results. To capture S’@10, we first must

encode all the snippets in S@10. Next, we run Satsy using the encoded S@10 snippets

as a repository and the example input/output as a specification, and discard snippets

that are irrelevant, forming the result set in step 6 of Figure 7.2. This set of Discarded

snippets represents those that the programmer does not need to evaluate by hand.

S’@10 is calculated as the difference (S@10 − Discarded), representing the reduced

space of snippets for the user to evaluate.

7.1.2.3 Implementation

As in RQ2(a), this evaluation was artifact-only and required no human input, outside

of artifact collection. We ran this experiment on a generic laptop computer.

7.1.2.4 Results

The results for RQ2(b) are shown in Table 7.6. The Q column matches the specifica-

tions shown in Table 7.4. The columns under the Google + Satsy label show results

for RQ2(b), including metrics S@10, S’@10, and Discarded. The % Reduction column

quantifies the difference between S@10 and S ′@10 as a percentage decrease.

6This restricted is lifted for the study toward RQ2(c) in Section 7.2.

stackoverflow.com
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Table 7.6: Java Results for RQ2(b)

Google + Satsy
Q S@10 Discard S’@10 % Reduction

1 25 18 7 72%
2 17 0 17 0%
3 0 0 0 –
4 36 12 *24 33%
5 3 0 3 0%
6 37 6 31 16%
7 16 4 12 25%
8 38 7 31 18%
9 0 0 0 –
10 9 2 7 22%
11 6 3 3 50%
12 7 2 *5 29%
13 29 11 17 38%
14 0 0 0 –
15 0 0 0 –
16 26 14 12 54%
17 8 7 1 88%

Avg. 15 5 10 34%

Key:
S@10: One-line Java snippets from top 10 Google pages
Discarded: From S@10, Satsy returns unsat
S’@10: The reduced pool of snippets to evaluate

(* a sat snippet was found)
Reduction: The reduction in snippets to be evaluated

On average, S@10 = 15 snippets were gathered from the top 10 search results per

Google search, with a range from zero to 38 (zero occurred when none of the retrieved

pages were in the Java language). The number of Discarded snippets captures the

space of results that the programmer would not have to examine if using Satsy to

refine the Google results. The programmer must then look only at S’@10 snippets.

Overall, the number of snippets returned could be reduced by 34% just by using our
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semantic search on top of the Google results. In two cases, for questions 4 and 12

(marked with *), at least one snippet returned sat, indicating that the snippet matches

the specification and would be a solution. Since Satsy does not support the entire

Java language, matches were not as common; for those snippets that we do support,

most could be quickly discarded.

While Satsy can assist syntactic searches by removing irrelevant results, it should

be noted that if a syntactic query misses a possible solution (i.e., a snippet of code that

would provide a solution is not in the Google result set), then Satsy would not have

the opportunity to evaluate that solution. Here again, the effectiveness of the search

is dependent on the programmer’s ability to write a query tied to documentation or

syntax, a limitation that is addressed when Satsy is used in isolation.

7.2 Java Study 2

Similar to the study presented in Section 7.1.1 (differences italicized), the goal of

this experiment is to analyze the search results from Google, a code-specific search

engine Merobase, and Satsy for the purpose of evaluation with respect to how relevant

source code is to a programming task from the point of view of developers in the

context of questions asked on stackoverflow.com, where the queries for the searches

were created by developers. The goal of this experiment is to address RQ2c: How do

search results from Satsy compare to those found using Google and those found with

the code-specific search engine, Merobase, from the perspective of a programmer?

This second Java study was designed to address four threats to validity of the

first Java study in Section 7.1.1. First, the queries used for the first study were

gathered from the titles of questions on stackoverflow.com. While an acceptable

first step, these may not be representative of what programmers would actually search

stackoverflow.com
stackoverflow.com
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Figure 7.3: RQ2(c) Workflow

for online. In this study, we use human generators to write queries that are used

for searching. This also allows us to get multiple queries for the same problem to

increase the reliability of P@10 measures. Second, in the first study, by constraining

Google to a local repository, it could not take advantage of the sophisticated ranking

algorithms that have made it so effective. In this study, we lifted this restriction

and perform searches on unconstrained Google. Third, as Google is not specifically

designed to search for source code, we added an additional search, Merobase,7 which

has indexed over eight million open source Java components. Fourth, the ultimate

judge of the relevance of a piece of source code is a human. While the accepted

answers on stackoverflow.com give an indication of what a human finds to be the

best answer, there may be a broader idea of relevance that we are not capturing. In

this study, we use human participants to assess source code found in search results as

relevant.

7Merobase.com is a source code search engine that has indexed over eight million components.
It allows programmers to search using type signatures of their desired code, which is the feature we
explored in this evaluation.

stackoverflow.com
Merobase.com
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We describe the workflow for this evaluation in Figure 7.3. We begin by obtaining

questions from stackoverflow.com. These questions are given to human genera-

tors (1), who create queries for the programming problem in three formats: keyword

for Google, method signature for Merobase, and input/output for Satsy. Next, given

the keyword query, a Google search is performed (2) and source code snippets are

extracted from the results (3). This process is repeated for Merobase given the method

signature (4), yielding a set of results (5). The same process is performed with Satsy

given the input/output query (6), and results are obtained (7). Once results are

obtained for all search approaches given each of several artifacts for each of several

query generators, the code snippets are posted to Mechanical Turk where human

participants evaluate the relevance of the code snippets to the programming task from

the stackoverflow.com artifact.

7.2.1 Design

Search queries are generated with respect to an information need (we call this a

problem) with a format dictated by the search approach that will be used. These form

the two treatments that we manipulate in this experiment, and consider a full factorial

design. To generate queries used on the searches, we use human query generators. For

the purpose of analysis, the query generators are treated as the subjects, as they are

assigned to combinations of the treatments. Each query is issued against a search

engine to get a set of results. Each of the top 10 results is judged for relevance by a

human; the average relevance among the top 10 is the response variable (P@10).

stackoverflow.com
stackoverflow.com
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7.2.1.1 Treatment Structure

The treatment structure is full factorial because every level of every factor is combined

with every level of every other factor. The factors and their levels are:

A Search approach (Google, Merobase, Satsy)

B Problem / Programming Task (22 problems)

Ultimately we want to compare the effectiveness of the search approaches (factor A)

considering a syntactic search engine (i.e., Google), a code-specific search engine (i.e.,

Merobase), and a semantic search engine (i.e., Satsy). We carefully selected a variety

of problems (factor B) because we want to compare the approaches’ effectiveness under

different contexts, under the hypothesis that certain search approaches are better

suited for certain types of problems. Section 7.2.2.2 provides full details on the levels

of factor B.

7.2.1.2 Experimental Design

We set up the study as a 3x22 factorial design with 12 subjects per group, where

factor A is the search approach with three levels and factor B is the programming

problem with 22 levels. To control costs we chose to reduce the size and treat this as

a smaller pilot study; a full study is intended as future work. We therefore reduced

the size of the deployed study to 3x8 with three subjects per group, which was the

final size used for the analysis.

In this design, the subjects are the query generators, and we had 12 total subjects.

In the reduced study, query generators were randomly assigned to each group until

coverage of three subjects per group was reached (72 queries are needed to cover a

3x8 study with three subjects per group, so we used approximately six queries from
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each of the query generators8). Relevance of the search results was determined by 30

human participants on Mechanical Turk (different from the query generators). For

each query, 10 snippets of source code were gathered. Each snippet was evaluated

by a different participant on Mechanical Turk, and each participant evaluated the

relevance of 24 total snippets (eight from each level of Factor A, crossed with three

from each level of factor B).

7.2.2 Artifacts

There are several artifacts required for this study, as indicated in the design and

Figure 7.3. In this section, we discuss four phases of artifact collection. First, we need

to build a repository of programs to search over (Search for Satsy, (6) in Figure 7.3).

Second, we need problems for which solutions will be searched (Artifact in Figure 7.3).

Third, we collect queries for the problems from the query generators ((1) in Figure 7.3).

Fourth, we collect code snippets from the results of searches (Results, (3), (5), and (7)

in Figure 7.3).

7.2.2.1 Repository

Two of the search approaches, Google and Merobase, already have repositories to

search over. For Google, this is all the webpages it has indexed. For Merobase, this is

eight million Java components from open source projects. For Satsy, we need to build

the repository.

We collected a repository of programs by first scraping 2,952 projects tagged as

[java] from GitHub.com, a project hosting website. These projects were scraped on

February 3, 2013, and at that time, represented about 10% of the total Java projects

accessible through the website. We explored all the *.java files, accounting for 197,473

8Table 7.10 provides details on this.

GitHub.com
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files with over 700,000 methods. Of the files, 5,506 contained at least one method

supported by the Java grammar in Figure 6.3. While we had the opportunity to reuse

the repository from the the Java study toward RQ2(a), we wanted to capture a more

diverse set of behaviors. Unlike the study in Section 7.1.1, here, we considered entire

methods rather than single-line programs.

We encoded 8,430 methods in total with 9,909 paths among the methods. The

average paths per method was only 1.17, indicating that most of the supported

methods had only one path. Of the methods 534 had multiple paths, with an average

of 3.8 paths per multi-path method.

These numbers do seem low, and we identify two reasons for this. The first is

that our encoding is missing some commonly-used constructs, like loops and the

value, null. We will be able to support more methods as the language coverage grows

(Section 11.2.4). The second reason follows from some limitations of the symbolic

execution extension to JPF. The string processing within JPF is incomplete, meaning

errors are thrown on some multi-path methods that our Java grammar (Figure 6.3)

supports, and thus those methods are not encoded and stored. A small repository

size does hurt the effectiveness of Satsy, but scraping more code seemed unlikely to

increase the size and diversity of the existing repository without first addressing some

of the language and implementation limitations (as we explore in Section 7.2.5.4).

7.2.2.2 Programming Tasks

Comparing the three search approaches requires queries in three different formats. To

facilitate comparison across the search approaches, we gathered programming tasks

from which query generators would write queries in three formats. One requirement is

that each question needed to have input/output examples supported by our imple-



126

Table 7.7: Dimension 1: Input/output data types

Output Type
Char Boolean Integer String

Input Type

Char 20, 28
Boolean 1 12 30
Integer 7, 22 23 18, 24, 25, 27, 29
String 13 5, 21, 26 2, 6, 8, 11, 31

mentation. We had an additional goal of type diversity to illustrate the applicability

of this approach beyond string processing.

To obtain these programming problems, we first explored 3,500 questions on

stackoverflow.com tagged with [java], ordered by popularity, on April 16, 2013.

The frequency of questions with input/output examples and solutions that could be

supported by our implementation was scarce, and we obtained only 18 questions.

Second, to increase the diversity of questions with respect to data types, we also

looked at the first three pages with tags [java][char], [java][math], [java][boolean],

and [java][integer][string] on April 20, 2013. This yielded 13 more questions, for a

total of 31. We then re-examined the questions to remove duplicates or very similar

questions. The final count was 22 questions (i.e., nine questions were duplicates or

very similar, such as “remove the first character of a string” and “remove the last

character of a string”, and we do not gain much diversity by having both). Mapping

the input and output types of the examples puts the 22 questions into the categories

described by the matrix in Table 7.7, which relates the input type of an example to its

output type.

For example, question 5, “check if one string contains another, case insensitive”

takes as input two strings and returns a boolean (output). It is worth mentioning

that many of the categories in Table 7.7 are blank. This is mainly a function of

implementation limitations. For example we are unable to perform relative character

stackoverflow.com
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Table 7.8: Programming Tasks for Query Generators

Q Description Sample LS
1 Check if two out of three booleans are true. ({true, true, false}, {true}),

({false, true, false}, {false})
2 Left-pad integers in Java with zeros, so each

resulting string has length 4
({“23”}, {“0023”}),
({“123”}, {“0123′′})

5 Check if one string contains another, case
insensitive

({“aBCd”, “cd”}, {true})

6 Capitalize the first letter of a string ({‘‘foo”}, {“Foo”})
7 Determine if a number is positive ({2}, {true}), ({−4}, {false})
8 Trim the file extension from a file name ({“foo.txt”}, {“foo”})
11 Trim the last character from a string ({“admirer”}, {“admire”})
12 Convert a boolean to an integer ({true}, {1}), ({false}, {0})
13 Turn a string into a char ({“c”}, {‘c’})
18 Replace a character at a specific location

in a string
({“fffoo”, 1, “b”}, {“fbfoo”})

20 Determine if a character is numeric ({‘5’}, {true}), ({‘F’}, {false})
21 Check if one string is a rotation of another

(a rotation is when the first part of a string
is spliced off and tacked onto the end)

({“stack′′, “cksta′′}, {true}),
({“stack′′, “stakc′′}, {false})

22 Check if two integers sum to a third ({2, 5, 3}, {true}),
({2, 5, 8}, {false})

23 Get the next number in a range given a step
size (e.g., range [1,10], step = 3, current
number = 4. Next = 7)

({4, 1, 10, 3}, {7}),
({4, 1, 10,−3}, {1})

24 How do you format the day of the month
with the proper suffix, for example “th” for
“11th” or “nd” for “2nd”?

({11}, {“th”}), ({2}, {“nd”}),
({1}, {“st”})

25 How to append “0” i times at the end of a
string? For example,

({3, “fab”}, {“fab000”})

26 I want to determine if a string is not all
whitespace.

({“ 5 ”}, {true}),
({“ ”}, {false})

27 How to truncate a string that is beyond a
certain length with ellipses?

({“How about a new car”, 15},
{“How about a ...”})

28 How to tell if a character variable is within
a string?

({“abc”, ‘c’}, {true}),
({“abd”, ‘c’}, {false})

29 Create a String method to return a value
based on an int. Example: return ”young”
when age is 18, ”old” when age is 30.

({18}, {“young”}),
({30}, {“old”})

30 Get the string value for a boolean ({true}, {“true”})
31 I want to convert a String 35634646 to have

the thousand ”,” so it should be 35,634,646
({“2345678”}, {“2,345,678”}),
({“12345”}, {“12,345”})
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manipulations, such as incrementing a character, we do not support converting a

character to a string (though the reverse is supported), and comparing characters

lexicographically is not supported. This rules out many of the categories involving

characters. Additionally, getting the integer value of a string was a frequent question,

and such a solution is unsupported by our implementation (unless the conversion uses

a series of if-statements on the string values, which would be a unlikely to find in

existing code).

The final set of questions, and sample LS, are shown in Table 7.8. To understand

common themes among the questions, we looked at the relationships between the

inputs and the outputs, categorizing the questions as shown in Table 7.9. The idea is

that search algorithms have different strengths in different classes of problems, and

this is a potential classification we wanted to explore. The first category, checking

a property of an input, covers questions like, Q 1 : “check if two booleans are true,”

or Q 22 : “check if two integers sum to a third.” The second category, manipulating

the input, covers questions like Q 6 : “capitalize the first letter of a string.” The final

input, computing something new based on input, covers type conversion like Q 30 :

“get the string representation of a boolean.”

Table 7.9: Dimension 2: Input/output Relationships

Category Questions Total

Checking a property of the input 1, 5, 7, 20, 21, 22, 26, 28 8
Manipulating the input 2, 6, 8, 11, 18, 25, 27, 31 8
Computing something new based on input 12, 13, 23, 24, 29, 30 6

As mentioned in Section 7.2.1, due to the cost of the large study, we reduced the

levels of factor B (the problems) from 22 to eight, which seemed like a large enough

number that our results would not be tied to the particular problems selected (as we

explore in Section 7.2.5). The final set of questions were 5, 6, 7, 8, 11, 13, 20, and 21.
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We selected the first eight questions for which Satsy returned at least 10 snippets (the

number 10 was selected based on our selection of the P@10 metric)9. This criteria of

requiring matches from Satsy was used out of necessity. It is hard to compare other

search algorithms to ours when we do not produce any results. However, this may

have biased the results toward our analysis. A discussion on the steps we took to

combat this threat follows in threats to validity (Section 9.2.1).

7.2.2.3 Query Generation

The query generators were responsible for generating queries in three formats for each

of the questions in Table 7.8. The generators were given paper packets with 22 pages;

the questions in each packet were randomly ordered using the Fisher-Yates algorithm

to control for learning effects. A sample page is shown in Figure 7.5 for Q 1. The

question is stated at the top, followed by a box for a descriptive (keyword) query, a

type signature for the desired code (for Merobase), and input/output pairs for Satsy.

The full instructions given to the query generators are provided in Figure 7.4.

Twelve query generators were used in this phase. These generators were graduate

students and staff in Computer Science and Engineering at UNL. Each participant

was compensated for their time with a $10 gift card to Amazon.com. Since these query

generators were not subjects being evaluated, IRB approval was not required for this

stage of the research.

The end result was that we obtained 12 queries for each of the 22 problems, for

each of the three search approaches. While we collected queries for all 22 questions, as

discussed, only 8 problems were used in the implementation of the study. Additionally,

only three query generators were assigned to each combination of search approach and

problem. These query generators were randomly assigned to groups, with the added

9As a point of interest, we investigate the total number of matches by our search in Section 7.2.5.3.

Amazon.com
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1. Read each problem description

2. Pretend that you are a Java developer who needs to perform the task

3. Instead of starting from scratch, you have chosen to search for an existing
solution. Generate search queries in the following formats (examples follow):

a) Descriptive: using keyword, as you would use when searching Google
for a solution.

b) Signature: using the method name (optional), input types, and output
type, as you would use when searching a code-specific search engine
like www.merobase.com

c) Semantic: using example input(s) and output of a method that behaves
like the problem description. These are like test cases, and you can use
as many input/output pairs as you see fit.

4. In all of the above, limit the data types to String, boolean, char, and int.
You have one hour to complete these tasks.

Figure 7.4: Query Generator Instructions

requirement that all the queries within the groups be distinct to encourage variety

in the results. This last requirement was added after some of the type signature

and input/output queries from the generators, for some problems, turned out to be

identical.

Table 7.10 shows the allocation of generators to groups. For example, with Google

and problem 5, generators 1, 4, and 6 were assigned. For problem 5 and Merobase,

generators 3, 5, and 7 were assigned. For Satsy on problem 5, generators 8, 9, and 10

were assigned.10

7.2.2.4 Snippet Retrieval

With the queries created by the generators, the next step was to execute the searches

and gather the top 10 code snippets for each search. For each problem and search

10Merobase queries were never gathered from generator 12 because, as that person remarked on
their packet, they would never search in this way and therefore did not provide those queries.
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!
!
1.!Check!if!two!out!of!three!booleans!are!true.!
!
!
Descriptive:!

!
!
Signature:!

!
!
Semantic:!

! !

Return!Type Method!Name Parameters

 

Input(s):!

Output:!

 

Input(s):!

Output:!

 

Input(s):!

Output:!

 

Input(s):!

Output:!

Figure 7.5: Query Generator Packet Page for Q1
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Table 7.10: Allocation of query generators to search approach and problem

Search Approach
Problem Google Merobase Satsy

5 1, 4, 6 3, 5, 7 8, 9, 10
6 3, 5, 7 7, 8, 9 1, 10, 12
7 8, 9, 10 5, 7, 11 1, 4, 6
8 2, 11, 12 1, 4, 6 3, 5, 7
11 6, 7, 10 1, 3, 10 1, 2, 8
13 1, 2, 3 4, 8, 11 5, 6, 9
20 4, 8, 12 5, 9, 11 2, 7, 10
21 5, 9, 11 6, 7, 10 1, 2, 3

combination, we performed three searches, where the queries were gathered according

to the allocation of query generators to groups. That is, if generator 1 is assigned to

the Google, Problem 5 group, then we take the keyword query generated by generator

1 for Problem 5, and perform a search.

The following describes how the searches were performed and the snippets gathered

for the three search approaches, Google, Merobase, and Satsy. Per the study design,

our goal to was to obtain 10 snippets of source code for each search. In some cases,

like with Google, this required visiting more than the top 10 results. A discussion of

this threat to validity is in Section 9.

Google: The Google queries were conducted using the Google Chrome browser in

incognito mode with cleared cookies and browser history.

For each of the top 10 results from a search, we clicked through to the webpage

and grabbed the first code snippet and type signature, if available. Often, results

would not be provided in Java, but in another language like PHP or C#. If that was

the case, the snippet was still collected and provided as a potential result since it

may provide an idea for a solution that could be relevant in Java. This addresses,
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in part, a threat to validity of the study in Section 7.1.2 where we ignored non-Java

results from a Google query. Here, we include these as they may be informative to

the programmer. When a webpage had no code snippet, we simply moved to the

next one until 10 pages with code snippets had been visited. For some problems and

some query generators, we had to visit more than 13 webpages to get enough snippets.

With problem 20 and generator 4, there were three pages that returned no code. For

problem 21 and query generator 11, there were also three pages that returned no code.

However, this may have increased the performance of Google artificially since we are

considering snippets outside of the boundaries for the P@10 metric. For 13 of the 24

queries issues to Google, we had to visit at least one additional page to find source

code. Among those 13 queries, a total of 22 of the top 10 results (approximately 10%

of all webpages in the top 10 visited) had no code snippets. We discuss this threat to

validity in Section 9.4.2.

When a result would come up that was from the original question asked on

stackoverflow.com, from which the problem was taken, the first snippet (often the

community-accepted response) was collected as a result. This is a change from the

studies in Section 7.1 where such results were ignored. We did this so as not to bias

the results against Google. The end result was 30 code snippets for each problem

(10 from each assigned query generator). If there were duplicate snippets, these were

retained in the set of 30. This happens when the same webpage appears in the top 10

results from different queries.

Merobase: For each problem and for each of the signature queries, we conducted

a query on Merobase on May 19, 2013. As the type signatures created by the query

generators assumed Java, we restricted the results to Java only using a flag in the

advance search options. For each of the top 10 results, we clicked on the files and

stackoverflow.com
Merobase
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copied the method with the matched signature. In the results, if a file contained

multiple matches for a signature, it appeared in the results once for each matched

signature. The end result was 30 Java methods for each problem. Duplicates were

retained.

Satsy: For each problem and each input/output query, we searched Satsy for source

code using the repository described previously in this section. We used a ranking

algorithm similar to that in Section 5.3.2.1, and fully described in Section 7.2.5.3. Our

initial search was constrained such that the type signature of the query/specification

had to be equal to the type signature of the snippets being evaluated (i.e., TSq = TSLS

was a precondition for a path q to be considered as a potential match and sent to the

solver, Section 5.3). If not enough matches were returned at this level, we relaxed the

matching so TSq ⊃ TSLS, in order to obtain at least 10 matches. The end result was

30 Java methods for each problem. Duplicates were retained.

7.2.3 Metrics

For RQ2(c), to compare the results across the searches, we use P@10. In this study,

relevance means the source code can be easily adapted to solve the problem. A human

participant decides whether or not a code snippet is relevant to a problem description.

We introduce an additional metric, Q@10, which represents the number of results

among the top 10 that solve the problem. In this study, solving means the code seems

to work as is, without modification. A human participant decides whether or not a

code snippet solves a problem based on its description.
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7.2.4 Implementation

After collecting all the code snippets, calculating the metrics involves human par-

ticipants. We created experimental tasks that presented people with snippets and

programming tasks; their responses allowed us to calculate the P@10 and Q@10

metrics. The study was deployed on Amazon’s Mechanical Turk (this platform is

described in Section 3.1.1).

7.2.4.1 Tasks

Creating experimental tasks for this study involves the composition of basic tasks. A

basic task presents a participant with a code snippet and asks if that snippet is relevant

to a problem description, and if the snippet solves the problem. The definitions for

relevance and solving are included in the basic task, and short-answer responses are

required to explain their choices. Figure 7.6 shows a basic task with code snippet and

the relevance/solves questions, taken from Q 21.

We call a problem description and its three associated basic tasks a problem group.

Each problem description presented to a participant is accompanied by three basic

tasks, where one basic task is created from each search approach. That is, given a

problem description, the participant views three snippets, one from Google, one from

Merobase, and one from Satsy, and determines if each is relevant to the problem, and

if each solves the problem. The participant is not made aware of the origins of the

snippets. Additionally, the participants were instructed to generate an input and

output for the problem description; this is used by the researchers to assess participant

understanding of the problem description, and is part of the problem group. An

example of a problem description and the input/output is shown in Figure 7.7 for

Q 11.
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Figure 7.6: Basic Task: Code Snippet and Related Questions

Figure 7.7: Problem Group: Problem Description and I/O Example

An experimental task is composed of eight problem groups, with one from each

problem description used in this phase of the experiment. To create an experimental

task, we perform four randomizations. To describe this process, we start with the

largest unit, the experimental task, and work our way down to basic tasks. All

randomizations are performed to control for learning effects.

Within an experimental task, the ordering of problem groups is randomized. Within

each problem group, the ordering of basic task search approaches is randomized. That

is, some problem groups show a snippet from Google first, followed by Satsy and then
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Merobase. Others show a snippet from Merobase first, followed by a snippet from

Google and then from us, and so forth. Within a basic task, the selection of query

generator from which the snippet was gathered is random. Within the search results

from the query generator, the selection of snippet is random (i.e., it could come from

any rank in the results).

7.2.4.2 Deployment

Each experimental task is implemented as a human intelligence task, or HIT, on

Mechanical Turk. We created 30 HITs, so each search result from each query generator

assigned to a search approach / problem group appeared exactly once.11. Each HIT

paid $3.2512 and each participant could complete one HIT. The study was available

from May 28, 2013 until June 04, 2013.

7.2.4.3 Participants

A prerequisite for participating in the study was to pass a qualification test. This

included four Java questions to ensure participants are reasonably competent with

Java before participating in the study. Appendix C.1 provides the questions. This

is also how the IRB informed consent was delivered; this information is provided in

Appendix C.2. Scoring at least 50% on the Java questions, being 19 years of age, and

accepting the IRB informed consent allowed participants access to the HITs.

1130 HITs * 8 problems * 3 snippets per problem = 720 snippets. In the study, we had 3 search
approaches * 8 problems * 3 generators * 10 search results = 720 snippets

12The informed consent in Appendix C.2 was originally written with 22 tasks each paying $0.20,
for a total compensation of $4.40. The study was re-designed with one task containing eight problems
and paying $3.25. The informed consent remained the same and the change in design was accepted
by the IRB.
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Recruitment was managed by Mechanical Turk and using a post on the HITsWorth-

TurkingFor page of reddit.com advertising the study. There were 30 Mechanical

Turk workers who participated in the experiment.

7.2.5 Results

Toward RQ2(c), we computed P@10 and Q@10 for every generator in every group of

search approach and problem. These are the response variables. However, as the P@10

and Q@10 metrics are strongly correlated (Spearman’s r = 0.718138), we concentrate

primarily on P@10 for this analysis.

We begin by reporting descriptive statistics for P@10 in Table 7.11. In this factorial

design, the linear model is as follows, with annotations following:

yijk = µ+ Aj +Bk + ABjk + εijk.

j = {Google, Merobase, Satsy} The search approaches

k = {5, 6, 7, 8, 11, 13, 20, 21} The problems

In Table 7.11, Factor A is represented in the columns, and factor B is represented

by the rows. Within each cell, the P@10 statistic is reported for each query generator

assigned to the group, along with the cell (or group) mean. For example, X1,g,5 = 0.700

reports the P@10 value for one query generator assigned to the Google/Problem 5

group. Row means for Factor B are included, as are column means for Factor A. For

example, x̄·5 = 0.556 represents the mean P@10 value across all search approaches for

problem 5. For columns x̄g· = 0.675 represents the mean across all problems for the

Google search approach. The grand mean is, x̄·· = 0.528, and variance σ2 = 0.068.

From the descriptive statistics, Google has the highest P@10, followed by Satsy

and then Merobase. Though not reported, for the Q@10 metric, the ranking of search

reddit.com
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Table 7.11: P@10 Response Matrix

Problem Search Approach (Factor A)
(Factor B) Google Merobase Satsy

5

x1,g,5 = 0.700 x1,m,5 = 0.500 x1,s,5 = 0.200
x2,g,5 = 0.800 x2,m,5 = 0.800 x2,s,5 = 0.600
x3,g,5 = 0.400 x3,m,5 = 0.200 x3,s,5 = 0.800
x̄g,5 = 0.633 x̄m,5 = 0.500 x̄s,5 = 0.533 x̄·5 = 0.556

6

x1,g,6 = 0.500 x1,m,6 = 0.200 x1,s,6 = 0.400
x2,g,6 = 0.700 x2,m,6 = 0.100 x2,s,6 = 0.500
x3,g,6 = 1.000 x3,m,6 = 0.200 x3,s,6 = 1.000
x̄g,6 = 0.733 x̄m,6 = 0.167 x̄s,6 = 0.633 x̄·6 = 0.511

7

x1,g,7 = 0.600 x1,m,7 = 0.200 x1,s,7 = 0.300
x2,g,7 = 0.500 x2,m,7 = 0.200 x2,s,7 = 0.500
x3,g,7 = 0.600 x3,m,7 = 0.700 x3,s,7 = 0.400
x̄g,7 = 0.567 x̄m,7 = 0.367 x̄s,7 = 0.400 x̄·7 = 0.444

8

x1,g,8 = 0.700 x1,m,8 = 0.200 x1,s,8 = 0.800
x2,g,8 = 0.900 x2,m,8 = 0.600 x2,s,8 = 0.600
x3,g,8 = 0.400 x3,m,8 = 0.200 x3,s,8 = 0.600
x̄g,8 = 0.667 x̄m,8 = 0.333 x̄s,8 = 0.667 x̄·8 = 0.556

11

x1,g,11 = 0.900 x1,m,11 = 0.300 x1,s,11 = 0.400
x2,g,11 = 0.900 x2,m,11 = 0.800 x2,s,11 = 0.100
x3,g,11 = 0.400 x3,m,11 = 0.800 x3,s,11 = 0.900
x̄g,11 = 0.733 x̄m,11 = 0.633 x̄s,11 = 0.467 x̄·11 = 0.611

13

x1,g,13 = 0.700 x1,m,13 = 0.600 x1,s,13 = 0.900
x2,g,13 = 0.400 x2,m,13 = 0.700 x2,s,13 = 0.800
x3,g,13 = 0.700 x3,m,13 = 0.500 x3,s,13 = 0.800
x̄g,13 = 0.600 x̄m,13 = 0.600 x̄s,13 = 0.833 x̄·13 = 0.678

20

x1,g,20 = 0.400 x1,m,20 = 0.200 x1,s,20 = 0.400
x2,g,20 = 0.800 x2,m,20 = 0.400 x2,s,20 = 0.400
x3,g,20 = 0.800 x3,m,20 = 0.200 x3,s,20 = 0.600
x̄g,20 = 0.667 x̄m,20 = 0.267 x̄s,20 = 0.467 x̄·20 = 0.467

21

x1,g,21 = 0.700 x1,m,21 = 0.100 x1,s,21 = 0.100
x2,g,21 = 0.900 x2,m,21 = 0.200 x2,s,21 = 0.300
x3,g,21 = 0.800 x3,m,21 = 0.100 x3,s,21 = 0.400
x̄g,21 = 0.800 x̄m,21 = 0.133 x̄s,21 = 0.267 x̄·21 = 0.400

x̄g· = 0.675 x̄m· = 0.375 x̄s· = 0.533 x̄·· = 0.528
σ2
g = 0.036 σ2

m = 0.062 σ2
s = 0.065 σ2 = 0.068
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algorithms is the same; Google scored the highest with Q@10 = 0.338, followed by

Satsy at Q@10 = 0.233 and Merobase with Q@10 = 0.075.

For problem 21 and Google, x̄g,21 = 0.800. The search results for all three generators

had the question on stackoverflow.com from which the task was generated, as the

first search response. This may have contributed to the high P@10 value. On the

other hand, the lowest relevance scores for Merobase and Satsy correspond to problem

21. For problem 11 and Merobase, x̄m,11 = 0.633. This problem was also Google’s

second-highest, and for Satsy it ranked in the middle. While relevance was high, Q@10

for Merobase was still low at 0.100. Satsy performed the best on problem 13, and this

was the best overall performance across all search approaches and all programming

problems with x̄s,13 = 0.833. The highest Q@10 metrics over all questions and search

approaches come from Satsy on problems 6 and 8, where Q@10 = 0.500 for both.

To understand why differences in the means were observed for the three search

approaches, we use a 2-factor ANOVA.13 Table 7.12 presents the ANOVA with P@10

as the dependent variable, considering factor A (Search), factor B(Problem), and the

interaction (Search:Problem).14 The null hypothesis is H0 : µg = µm = µs, where µg

is the mean for Google, µm is the mean for Merobase, and µs is the mean for Satsy.

The F-ratio is significant only for the Search factor at α = 0.001, indicating that

the observed differences in means among the search approaches are not likely due to

chance.

13The design of the experimental set-up is a 3x22 factorial, though several levels of randomization
were required to deploy this experiment on Mechanical Turk. This could have been considered
a split-plot design where the 3x8 matrix is the whole-plot, split among the 30 Mechanical Turk
participants. However, due to lack of replication in that experimental design, we chose the simpler
and more conservative analysis of a 3x22 factorial design, perhaps at the cost of power that could
have resulted from blocking on the Mechanical Turk participant.

14We analyze the study as a full factorial in the R statistical package. The details of the R analysis
are found in Appendix C.3.

stackoverflow.com
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Table 7.12: Dependent Variable: P@10, test of between subjects effects

Source df Sum Sq Mean Sq F-Ratio Pr(>F) Sig
Search 2 1.08111 0.54056 11.6527 7.496*10−05 ***
Problem 7 0.52444 0.07492 1.6151 0.1540
Search:Problem 14 0.99222 0.07087 1.5278 0.1373
Residuals 48 2.22667 0.04639

Signif. codes: ***α = 0.001, **α = 0.01, *α = 0.05

We are specifically interested in the performance of Satsy compared to the other

search approaches, with the one-sided null hypothesis that H0 : µg ≥ µs, and alter-

native, Ha : µg < µs, for Google. Replacing µg with µm forms the hypotheses for

Merobase. Assuming non-normality of the data, the results of this analysis are shown

in Table 7.13. We reject the null hypothesis at α = 0.05 for Merobase, but we do

not reject the null hypothesis for Google. So, we can say that Satsy out-performs

Merobase, but not Google.

Table 7.13: Test of Means among Search Algorithms

Response Test p-value Test
P@10 H0 : µg ≥ µs p = 0.9774 Mann-Whitney
P@10 H0 : µm ≥ µs p = 0.0163* Mann-Whitney

Signif. codes: ***α = 0.001, **α = 0.01, *α = 0.05

It seems rather clear that Google outperforms the other search approaches in terms

of relevance, but it is unclear why this is the case. We have several conjectures that we

plan to explore in future work, and some that we touch on in the sections that follow.

The query generators were graduate students in computer science and were ac-

customed to writing Google queries, so it is unclear if Google’s good performance

was a function of excellent queries. Along this same vein, the problem descriptions

were taken from stackoverflow, so the queries from the generators may have been
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tightly bound to those descriptions. This would artificially increase the performance

of Google. As discussed as part of the snippet retrieval for Google, we bypassed 22

webpages among the top 10 results for the 24 queries (approximately 10% of the results

Section 7.2.2.4). This may have had an impact on the relevance for Google, since we

assisted its performance by finding source code beyond the top 10 results. Additionally,

for all three of the queries for question 21, the top result was the stackoverflow.com

webpage.

Other factors that could have brought down the performance of Satsy include

the richness of the repository, our chosen ranking algorithm, or the expressiveness of

the input/output format. These are just some of the future directions to explore in

seeking to improve this work.

7.2.5.1 On Types of Problem

While factor B (problem) does not account for the differences in means according to

Table 7.12, the search approach performance may be dependent on the problem type.

Only one of the problems used in the study, problem 13, fell under the computing

something new category in Table 7.9, but this was the highest performing problem for

Satsy. The next highest performances came from questions 6 and 8, both of which

involve manipulating the input. Our search may be particularly well suited for those

types of problem. Further study is needed here, with more coverage on the computing

something new category to compare performance across problem type.

7.2.5.2 MTurk participants

One concern we had about the reliability of the results related to fatigue on the part of

the Mechanical Turk participants. The average completion time for the experimental

tasks was 54 minutes and 40 seconds, so fatigue was a concern, providing an internal

stackoverflow.com
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threat to validity (see Section 9.1). As a cursory check, we looked at the correlation

between when a snippet appeared in the experimental tasks (i.e., its order) and

the participants likelihood of answering ‘yes’ for the relevance question. There was

very low correlation between the order and frequency of ‘yes’ responses (Spearman’s

r = 0.0544). This is an indication that the participants likely did not simply get lazy

and start marking ‘no’ toward the end. Using short-answer questions in each of the

basic tasks (Figure 7.6) was intended to combat this as well.

7.2.5.3 On the Impact of Ranking on Results

While commercial search tools like Google and Merobase have the opportunity to

observe user behavior and refine their ranking algorithms, the ranking used by Satsy

was less refined and based entirely on conjecture. In the ranking, we grouped the

matched snippets according to the strength of the match, using a modified ranking to

that presented in Section 5.3.2.1. Here, we discuss the relevance of search results at

each rank based on search approach. Then, we discuss in further detail the ranking

used in Satsy and how that ranking could be improved in the future based on the

responses of the Mechanical Turk participants with regards to relevance.

Looking at the relevance among items at various ranks allows us to compare the

Satsy ranking algorithm to the others. Table 7.14 shows, for each search approach,

the average relevance of snippets that appeared at rank 1, rank 2, and so forth down

to rank 10. For all ranks, except 7 and 10, the relevance of the Google results were the

best. However, at rank 7, Satsy’s relevance was higher and at rank 10, they were tied.

We would expect the relevance at the ranks to follow a decreasing function. Fitting

a linear model to the Google relevance yields a slope coefficient of -0.0202. For

Merobase and Satsy, on the other hand, the slopes are much flatter at -0.0085 and
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-0.0009, respectively. This leads us to conjecture that the ranking algorithms may

have an impact on the overall relevance of the results.

For the ranking algorithm used in Satsy, Table 7.15 presents the bucket approach

that was used to assign results to ranks. Each bucket number is in parentheses in

a cell in the table. The columns represent the amount of LS that is satisfied by a

particular problem P . The rows represent the amount of a program P that satisfies

LS. The first column says that exactly one ls ∈ LS is matched, the second column

indicates that some LSsat ⊂ LS and |LSsat| > 1. The final column indicates that

all ls ∈ LS are satisfied. The first row indicates that a subset of the paths in P are

matched, whereas the second row indicates that all the paths in P are matched by

LSsat.

Within the cells for the last two columns, there is a saturation criterion that further

divides each bucket. Consider, for example, when Qsat = QP and LSsat = LS both

hold. We could have the case of bucket (1) when every ls ∈ LS exercises a distinct

path in P , or if there is a path in P that is covered by multiple ls ∈ LS, then it would

fit in bucket (2). That is, the paths for a program in bucket (2) are more saturated

than a program in bucket (1). For the ranking algorithm used by Satsy in this study,

we selected a snippet from each bucket in round-robin fashion, using the following

total order on the buckets: 2, 1, 4, 3, 6, 5, 8, 7, 9, 10. The idea is that a program

that is more saturated better ‘fits’ a specification, so for example, bucket (2) appears

before bucket (1), though we note the bottom row of Table 7.15 favors single-path

Table 7.14: Average Relevance per Rank for Search Approaches

Rank
1 2 3 4 5 6 7 8 9 10

Google 0.792 0.792 0.708 0.667 0.583 0.792 0.583 0.542 0.708 0.583
Merobase 0.333 0.458 0.417 0.417 0.333 0.333 0.542 0.250 0.375 0.292
Satsy 0.708 0.458 0.583 0.375 0.375 0.625 0.625 0.458 0.542 0.583
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Table 7.15: Path Matching Ranking Buckets

|LSsat| = 1 1 < |LSsat| < |LS| LSsat = LS

Qsat ⊂ QP (10)
(7) |LSsat| ≤ |Qsat| (3) |LS| ≤ |Qsat|
(8) |LSsat| > |Qsat| (4) |LS| > |Qsat|

Qsat = QP (9)
(5) |LSsat| ≤ |QP | (1) |LS| ≤ |QP |
(6) |LSsat| > |QP | (2) |LS| > |QP |

programs. This round-robin approach was intended to facilitate a post-analysis on

the relevance among the buckets.

In the study, we used 3 query generators to write queries for each of 8 problems.

For each query, Table 7.16 shows the total results from the repository, classified

by the buckets in Table 7.15, considering a tight matching on the type signatures

(TSq = TSLS for all matches, as described in Section 5.3).

On average across all queries, 431 snippets were returned. For seven of the 24

queries, not enough results were returned to fill up the 10 spots required for the

analysis. Thus, another search was conducted with a relaxed type signature matching,

with TSq ⊇ TSLS. Those results are shown in Table 7.17. After attempting to fill the

top 10 slots with the round-robin approach on the results from the more constrained

search, the same approach was taken with the relaxed search. The lowest number of

matches came from the first human generator assigned to problem 21. The constrained

search returned zero matches in the constrained search and only 12 matches were

returned in the relaxed search. On the other hand, the third query used for problem 8

return 1,772 results in the constrained, and 2,067 results in the relaxed searches.

For each of the 24 queries, we selected 10 results among the buckets. This yields

240 total snippets from Satsy that were evaluated by Mechanical Turk participants.

Table 7.18 shows how these selected snippets fell among the buckets, along with the

average relevance among the snippets in each bucket. If a relaxed search was required



146

Table 7.16: Results From Repository by Bucket

P QG 1 2 3 4 5 6 7 8 9 10 Sum

5

x1,s,5 1 0 1 0 0 0 0 0 0 0 2
x2,s,5 0 154 0 0 2 18 0 1 82 5 262
x3,s,5 0 152 0 0 0 7 0 1 93 6 259
x̄s,5 0.50 77.00 1.00 1.00 1.75 7.75 1.75 2.50 46.00 5.30 144.50

6

x1,s,6 0 0 0 0 0 13 0 0 1672 53 1738
x2,s,6 0 13 0 0 0 0 0 0 1687 66 1766
x3,s,6 0 0 0 0 0 0 0 0 14 0 14
x̄s,6 0.00 4.33 0.00 0.00 0.00 4.33 0.00 0.00 1124.33 39.67 1172.67

7

x1,s,7 2 145 7 0 0 0 0 0 291 75 520
x2,s,7 0 103 0 0 0 217 4 61 138 14 537
x3,s,7 0 5 0 0 4 445 39 29 19 9 550
x̄s,7 0.67 84.33 2.33 0.00 1.33 220.67 14.33 30.00 149.33 32.67 535.67

8

x1,s,8 0 1 0 6 0 0 0 0 1 0 8
x2,s,8 0 5 0 0 0 1 0 1 1689 61 1757
x3,s,8 0 0 0 0 5 0 1 0 1696 70 1772
x̄s,8 0.00 2.00 0.00 2.00 1.67 0.33 0.33 0.33 1128.67 43.67 1179.00

11

x1,s,11 0 3 0 2 0 0 0 0 0 0 5
x2,s,11 1 0 0 0 0 0 0 0 15 13 29
x3,s,11 0 1 0 0 0 3 0 1 15 12 32
x̄s,11 0.33 1.33 0 0.67 0.00 1.00 0.00 0.33 10.00 8.33 22.00

13

x1,s,13 0 7 0 1 0 0 0 0 0 0 8
x2,s,13 0 7 0 1 0 0 0 0 0 0 8
x3,s,13 7 0 1 0 0 0 0 0 0 0 8
x̄s,13 2.33 4.67 0.33 0.67 0.00 0.00 0.00 0.00 0.00 0.00 8.00

20

x1,s,20 0 0 0 0 0 1 1 0 13 27 42
x2,s,20 0 0 0 1 0 11 0 27 3 0 42
x3,s,20 0 0 0 1 0 11 0 25 3 2 42
x̄s,20 0.00 0.00 0.00 0.67 0.00 7.67 0.33 17.33 6.33 9.67 42.00

21

x1,s,21 0 0 0 0 0 0 0 0 0 0 0
x2,s,21 0 1 0 0 2 264 0 4 0 0 271
x3,s,21 0 1 1 0 0 0 0 0 253 7 262
x̄s,21 0.00 0.67 0.33 0 0.67 88.00 0.00 1.33 84.33 2.33 177.67

x̄s· 0.46 25.00 0.50 0.67 0.75 41.54 2.17 6.58 320.54 17.92 431.83

(Section 7.2.2.4), we indicate this with an ‘r’ in the bucket name, and compute the

relevance separately. A total of 40 snippets were collected from relaxed searches, and

these are split among relaxed buckets (1r), (2r), (3r), and (4r). Consider, for example,

bucket (9). Of the 240 snippets presented to Mechanical Turk participants, 57 would

be classified under bucket (9) level matching. The average relevance among these

individual snippets was 0.456.

Referring back to Table 7.11, the overall P@10 for Satsy was 0.533. As shown in

Table 7.18, there are six buckets that have a higher average relevance than the P@10,

and these are, in order from highest to lowest relevance, (4), (2), (4r), (6), (5), and
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Table 7.17: Results From Repository by Bucket, Relaxed

P QG 1r 2r 3r 4r 5r 6r 7r 8r 9r 10r Sum

5

x1,s,5 15 0 2 0 0 0 0 0 0 0 17
x2,s,5 0 168 0 0 2 23 0 1 84 5 283
x3,s,5 0 168 0 0 0 12 0 1 95 7 283
x̄s,5 5.00 112.00 0.67 0.00 0.67 11.67 0.00 0.67 59.67 4.00 194.33

6

x1,s,6 2 185 0 2 0 16 0 0 1768 59 2032
x2,s,6 3 198 0 1 0 2 0 0 1782 73 2059
x3,s,6 1 182 0 3 0 3 0 0 39 1 229
x̄s,6 2.00 188.33 0.00 2.00 0.00 7.00 0.00 0.00 1196.33 44.33 1440.00

7

x1,s,7 52 294 11 0 0 0 0 0 337 71 765
x2,s,7 4 298 0 4 8 255 5 62 138 8 782
x3,s,7 4 200 0 5 10 481 41 33 19 9 802
x̄s,7 20.00 264.00 3.67 3.00 6.00 245.33 15.33 31.67 164.67 29.33 783.00

8

x1,s,8 8 198 0 12 0 0 0 0 3 0 221
x2,s,8 3 208 0 3 0 3 0 1 1767 66 2051
x3,s,8 3 175 1 1 7 36 3 0 1768 73 2067
x̄s,8 4.67 193.67 0.33 5.33 2.33 13.00 1.00 0.33 1179.33 46.33 1446.33

11

x1,s,11 8 201 0 8 0 0 0 0 1 0 218
x2,s,11 10 168 1 2 0 0 0 0 56 17 254
x3,s,11 1 177 0 3 0 34 0 3 27 14 259
x̄s,11 6.33 182.00 0.33 4.33 0.00 11.33 0.00 1.00 28.00 10.33 243.67

13

x1,s,13 0 42 0 2 0 0 0 0 0 0 44
x2,s,13 0 42 0 2 0 0 0 0 0 0 44
x3,s,13 42 0 2 0 0 0 0 0 0 0 44
x̄s,13 14.00 28.00 0.67 1.33 0.00 0.00 0.00 0.00 0.00 0.00 44.00

20

x1,s,20 0 13 0 1 0 1 1 0 13 27 56
x2,s,20 0 13 0 2 0 11 0 27 3 0 56
x3,s,20 0 13 0 2 0 11 1 24 3 2 56
x̄s,20 0.00 13.00 0 1.67 .000 7.67 0.67 17.00 6.33 9.67 56.00

21

x1,s,21 0 12 0 0 0 0 0 0 0 0 12
x2,s,21 0 15 0 0 2 271 0 4 0 0 292
x3,s,21 0 15 1 0 0 0 0 0 260 7 283
x̄s,21 0.00 14.00 0.33 0.00 0.67 90.33 0.00 1.33 86.67 2.33 195.67

x̄s· 6.13 129.78 0.69 2.30 1.26 50.39 2.22 6.78 354.91 19.09 573.57

(1) (in fact, the first three are higher than the overall relevance for Google at 0.675).

When it comes to matching the entire specification (last column), it would seem that

saturation is preferred where some ls ∈ LS actually cover the same path in P ; this

observation follows from the fact that the relevance for bucket (2) is greater than for

(1), though this might be a function of sample size.

We conjecture that if Satsy had access to the information presented in Table 7.18,

we could have increased the P@10 by using more programs from some of the more

relevant buckets. To test this hypothesis, we re-computed the top 10 results from the

Satsy queries using a ranking algorithm based on Table 7.18. Instead of round-robin,
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Table 7.18: Path Matching Bucket Counts and Relevance

|LSsat| = 1 1 < |LSsat| < |LS| LSsat = LS

Qsat (10) - 34 - 0.500
(7) - 4 - 0.500 (3) - 0 - 0.000, (3r) - 3 - 0.333

⊂ QP (8) - 18 - 0.444 (4) - 5 - 1.000 , (4r) - 3 - 0.667

Qsat (9) - 57 - 0.456
(5) - 9 - 0.556 (1) - 9 - 0.556, (1r) - 9 - 0.444

= QP (6) - 28 - 0.571 (2) - 36 - 0.889, (2r) - 25 - 0.200

however, we used a greedy approach and grabbed as many results as possible from

each bucket, starting from the most relevant. That is, for each query, we grabbed all

results from bucket (4), followed by bucket (2), then (4r), and so forth until 10 results

were obtained. Next, we computed the hypothetical relevance of each result based on

its bucket. For example, if a result came from bucket (2), we assigned it a relevance of

0.889. A result from bucket (2r) was assigned a relevance of 0.200. Taking the average

of these relevances forms a hypothetical P@10.

We show the hypothetical changes in relevance in Table 7.19, alongside the response

variables for Satsy from Table 7.11. The new column, Hypothetical Satsy, shows the

hypothetical P@10 values for each of the queries. In most cases, the hypothetical P@10

was higher than the P@10 for the study, yet for seven of the 24 queries, the original

search results had a higher P@10. This was particularly noticeable for Problem 13,

which is the only problem for which the relevance for the problem decreased with the

new ranking, from x̄s,13 = 0.833 to x̄′s,13 = 0.660. This was an interesting case, since

many of the results came from Bucket (1), but this was the only problem for which

Mechanical Turk participants rated snippets from Bucket (1) as relevant; for every

other query with responses from Bucket (1), those were marked as irrelevant. Thus,

the average relevance for Bucket (1) was relatively low at 0.556, which brought down

the average relevance for this problem.
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Table 7.19: Hypothetical P@10 Response Matrix for Satsy Under New Ranking

Search Approach
Problem Satsy Hypothetical Satsy

5

x1,s,5 = 0.200 x′1,s,5 = 0.456
x2,s,5 = 0.600 x′2,s,5 = 0.889
x3,s,5 = 0.800 x′3,s,5 = 0.889
x̄s,5 = 0.533 x̄′s,5 = 0.744

6

x1,s,6 = 0.400 x′1,s,6 = 0.590
x2,s,6 = 0.500 x′2,s,6 = 0.889
x3,s,6 = 1.000 x′3,s,6 = 0.550
x̄s,6 = 0.633 x̄′s,6 = 0.676

7

x1,s,7 = 0.300 x′1,s,7 = 0.889
x2,s,7 = 0.500 x′2,s,7 = 0.889
x3,s,7 = 0.400 x′3,s,7 = 0.778
x̄s,7 = 0.400 x̄′s,7 = 0.852

8

x1,s,8 = 0.800 x′1,s,8 = 0.889
x2,s,8 = 0.600 x′2,s,8 = 0.713
x3,s,8 = 0.600 x′3,s,8 = 0.544
x̄s,8 = 0.667 x̄′s,8 = 0.715

11

x1,s,11 = 0.400 x′1,s,11 = 0.767
x2,s,11 = 0.100 x′2,s,11 = 0.498
x3,s,11 = 0.900 x′3,s,11 = 0.571
x̄s,11 = 0.467 x̄′s,11 = 0.612

13

x1,s,13 = 0.900 x′1,s,13 = 0.729
x2,s,13 = 0.800 x′2,s,13 = 0.729
x3,s,13 = 0.800 x′3,s,13 = 0.522
x̄s,13 = 0.833 x̄′s,13 = 0.660

20

x1,s,20 = 0.400 x′1,s,20 = 0.524
x2,s,20 = 0.400 x′2,s,20 = 0.581
x3,s,20 = 0.600 x′3,s,20 = 0.581
x̄s,20 = 0.467 x̄′s,20 = 0.562

21

x1,s,21 = 0.100 x′1,s,21 = 0.200
x2,s,21 = 0.300 x′2,s,21 = 0.571
x3,s,21 = 0.400 x′3,s,21 = 0.530
x̄s,21 = 0.267 x̄′s,21 = 0.434

x̄s· = 0.533 x̄′s· = 0.657
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Overall, had the ranking approach changed based on Table 7.18, and the participant

responses remained the same (according to bucket), the overall P@10 for Satsy would

increase from 0.533 to 0.656, which is nearly as high as the P@10 for Google. Thus,

with smarter ranking, our search approach would likely be very competitive with Google.

7.2.5.4 On the Influence of Repository Size on Results

One reason Satsy may not have outperformed Google is the limited size of our

repository. To evaluate this conjecture, we manipulated the size of our repository

artificially and observed the impact on the number of matches that are found for

search queries.

We conducted 24 searches, corresponding to the 24 queries used on Satsy. The

independent variable was the size of the repository being used in the search, as a

percentage of the full Java repository. The dependent variable is the percentage

of matches Satsy finds in the reduced repository over the total matches in the full

repository, for each query.

We conducted this experiment with a step size of 0.01, hence exploring 100 different

repository sizes. For each query and repository size, we computed a new repository

five times, and took the average of the matches found in each repository. The results

are shown in Figure 7.8.

Each query is represented as a line, averaged over the five replications. Using the

averages across all the queries, we obtain a linear model, y = ax + b, with a slope

coefficient of a = 1.0043 and an intercept of b = −0.0027.

It is not surprising to find that the number of matches grows proportionally to

the repository size, given the small size of the repository. There are two reasons this

might be true. The first is that our repository has not begun to saturate the problem
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Figure 7.8: Impact of Changes in Repository Size on Matches, Step size = 0.01,
Reps=5

domain, but the other is that the problems are so basic, or our matching criteria so

loose, that there will always be source code that can be identified as a result.

What this analysis does not capture is the diversity of the matches. That is, we

could have two results with the exact same bytecodes, but different naming conventions,

and these are marked as two separate matches. If we first cluster the programs based

on bytecodes and only report one match per cluster, our conjecture is that the graph

would flatten out quickly since “duplicates” would be ignored. Further study is needed

here.
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7.3 Summary

We have presented the design and results of two studies comparing the relevance of

results from our new search tool, Satsy, to those found with Google, Google with a

constrained repository, and with Merobase.

In RQ2(a), the query generator was simply a question posted on stackoverflow.

com, and presumably a question for which the question asker could not find a response

online. However, the title of the question may not be representative of the query that

would be issued to find this information; this threat to external validity is discussed

further in Section 9.2.2.

The study toward RQ2(c) was designed to address some of the threats to validity

of the study for RQ2(a) by, for example, including human generators, using a richer

repository, and using regular Google. However, the threat that the query generator is

separated from the query evaluator remains.

Toward RQ2(c), while Google outperformed the others in terms of the collected

metrics, we have reason to believe that refinement of the ranking algorithm used in

Satsy and increasing the language coverage for Java would make Satsy more competitive

with Google. Of course, we cannot ignore the fact that the query model necessary

for Satsy is drastically different from that for Google. This needs to be studied and

explored further to evaluate the impact Satsy could have on state-of-the-practice code

searches.

stackoverflow.com
stackoverflow.com
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Chapter 8

Yahoo! Pipes Evaluation

In the evaluation of this approach, we have designed a series of studies to assess and

highlight some key aspects of the approach through the two implemented domains:

Java and Yahoo! Pipes. This chapter focuses on the Yahoo! Pipes implementation in

Satsy, and aims to address two general research objectives. RQ2 was also the focus of

Chapter 7. RQ3 is new for this domain:

RQ2: How effective is Satsy at returning relevant source code?

RQ2(d) What is the impact of varying the abstraction level for the encoded

programs in the repository?

RQ2(e) What is the impact of solver time on the effectiveness of the search?

RQ3: What is the cost of defining a query in terms of input/output for the program-

mer?

RQ3(a) How accurately can programmers compose input/output specifications?

RQ3(b) How efficiently can programmers compose input/output specifications?
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Every search conducted in Satsy toward RQ2 1 uses an input/output query. We

measure the effectiveness of a search in terms of code semantics, analyzing the returned

source code and determining if it would behave as specified by the input/output

example, and reporting the number of results, precision, and recall, where the baseline

is our search at the most abstract encoding level. This is different from the Java

studies (Section 7) because we are not comparing against another search again, but

rather are comparing against Satsy with the most flexible program encoding.

The Yahoo! Pipes domain is better suited than Java to evaluate RQ2(d) and

RQ2(e) for two reasons. First, in our current Java evaluation, the specifications and

snippets are small, so the solver times are fast. In Yahoo! Pipes, the specifications

can get quite large, and solving can take minutes. Second, the Java code snippets we

encode are taken out of context, so many variables are already symbolic. The Yahoo!

Pipes programs, on the other hand, are encoded in their entirety, which leaves much

more opportunity for abstraction.

In RQ3, we measure and assess the correctness and efficiency of programmers

writing Yahoo! Pipes and SQL specifications as part of an empirical user study. We

included SQL as part of this study as it is a domain we plan to target more extensively

with the future version of Satsy. It also provides an additional domain against which

the results from Yahoo! Pipes can be compared.

For each research question, we describe how the repositories were built, the metrics

we use, and the results. All of the study artifacts are available online.2 Next, we

describe the experimental contexts for these studies.

1RQ1 was introduced and discussed in Section 3.1
2http://cse.unl.edu/~kstolee/semsearch/

http://cse.unl.edu/~kstolee/semsearch/
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8.1 Yahoo! Pipes Study 1

In Yahoo! Pipes, the specifications can be quite large and complex, and tweaking

the search parameters can have a profound impact on the results. The goal of this

study is to analyze the impact of tweaking search parameters, specifically abstraction

and solver time, for the purpose of evaluation with respect to effectiveness in terms

of precision and recall from the point of view of the researcher in the context of

searching a controlled, local repository of Yahoo! Pipes programs using input/output

queries [67, 69, 70]. In this study, we compare and contract different configurations of

Satsy considering levels of abstraction and solver time. Toward this goal and to refine

RQ2, we aim to address RQ2(d) and RQ2(e).

8.1.1 Artifacts

To evaluate RQ2, we require a repository of Yahoo! Pipes programs and specifications

to search the repository. In a previous study with Yahoo! Pipes [71] we scraped 32,887

pipes programs from the public repository by issuing approximately 50 queries against

the repository and removing all duplicates. Among these pipes, 2,859 are supported

by our encoding (Section 6.4), which forms the local repository.

To perform the searches for the study, we gathered specifications from five rep-

resentative pipes in the repository. These are intended to be “typical” pipes in the

repository based on their structural uniqueness and their popularity (measured by the

number of clones - or explicit copies - of the pipes), and were selected as follows. The

pipes were first grouped by similar structures (i.e., the modules and wires but not

necessarily the field values are the same for every pipe in each cluster), yielding 154

clusters. The pipes within the clusters were then refactored3. Clusters with pipes that

3Refactorings focused on decreasing the size of the pipes and standardizing them according to
the community standards [68].
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have identical structures post-refactoring were merged. Then, clusters that had fewer

than five pipes were removed, as were the most and the least popular clusters. This

was done to identify pipes that are “typical” yet diverse. From each of the remaining

five clusters, we randomly selected one pipe, forming the five example pipes used for

evaluation. Each specification was obtained by retrieving the RSS feeds from the

URLs in the fetch feed modules to form the input list(s) and executing the pipe to

capture the output list. Next, we describe the derived specifications for each.

Pipe 1 has two URLs and gathers weather information that has “10-Day” or

“Current” in the title. The URLs for this pipe, and for the other pipes, are shown in

Table 3.5. For Pipe 1, only one URL is listed, yet in the specification there are two

URLs. Since both URLs have the same subdomain and domain names, for the purposes

of the search results in Table 3.5, only one needed to be listed. The specification,

then, has two URLs in the input, and the output is obtained by executing the pipe.

Table 8.1 shows, for each of the pipes, its specification where each xi represents an

RSS item like the one in Figure 2.2. For Pipe 1, there are two input lists, each with

five items. The output list has two items with one from each of the input lists.

Pipe 2 has two URLs and looks for hotel information, retaining RSS items that

contain “hotel” in the description field, sorting the list by publication date. As with

pipe 1, the URLs are similar so only one is listed in Table 3.5. The output has three

items, as shown in Table 8.1. Pipe 3 has three URLs and retains up to the first three

items from each feed. Thus, the output has nine items. Pipe 4 has one URL that

grabs the third item in the list, so the output has one item. Finally, pipe 5 looks for

items from one URL that have “au” in the description; the output has seven items.

Note that each input list is limited in size to five items to control the sizes of the

specification and thus the solver time.
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Table 8.1: Specifications for Example Pipes

LS1 = ({[x0, x1, x2, x3, x4], [x5, x6, x7, x8, x9, x10]}, {[x0, x5]})
LS2 = ({[x0, x1, x2, x3, x4], [x5, x6, x7, x8, x9, x10]}, {[x9, x1, x2]})
LS3 = ({[x0, x1, x2, x3, x4], [x5, x6, x7, x8, x9, x10], [x11, x12, x13, x14, x15]},

{[x0, x1, x2, x5, x6, x7, x10, x11, x12]})
LS4 = ({[x0, x1, x2, x3, x4]}, {[x2]})
LS5 = ({[x0, x1, x2, x3, x4], [x5, x6, x7, x8, x9, x10]}, {[x1, x5, x6, x2, x7, x8, x9]})

8.1.2 Metrics

To address RQ2(d) and RQ2(e), we manipulate two search parameters, the abstraction

of the program encodings (RQ2(d)) and the maximum solver time (RQ2(e)). These

are shown as parameters to Satsy in Figure 6.1. We report the number of pipes in

the local repository that return sat, unsat, and unknown (?) at each of four solver

times, 1, 10, 100, and 1,000 seconds (sec.), considering two levels of abstraction on

the program encoding as described in Section 5.2.3.2. These levels are all concrete

and all symbolic, corresponding to BCIS and BCIS (symbolic integers and strings),

respectively. As described in Section 6.4.2.3, our implementation in Yahoo! Pipes

supports symbolic values on integers and strings only. These search parameters can

be manipulated only using Satsy, so we cannot directly compare Satsy’s results to a

syntactic search on the local repository.

We also calculate precision and recall, where precision =
relevant ∩ sat

sat
and

recall =
relevant ∩ sat
relevant

, using the results of our own search as a baseline. That is, the

relevant results are defined as those that will eventually (given infinite time) return

sat with a symbolic encoding, which represents the pipes for which some instantiation

of the module field values can achieve the desired behavior. The precision of Satsy

will always be 1.00 as we protect against spurious results by design and base the set of

relevant results on the symbolic encodings, which is a superset of the results returned

for a concrete encoding. The recall value does vary based on the parameter settings.
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We chose precision and recall as metrics since we were able to characterize repository

in this domain in terms of what is relevant. In the Java studies, our goal was to

compare against existing searches so P@10 was appropriate since we cannot calculate

precision and recall for search engines we do not control, such as Google. Here we are

interested in the impact of various Satsy configurations.

8.1.3 Implementation

This evaluation was an artifact-only evaluation and required no human input, outside of

artifact collection. The process was as follows. First, we encoded each pipe specification.

Second, for a given abstraction level and maximum solver time, we searched the local

repository for matches and collected the metrics. Third, we calculated precision and

recall. The oracle of relevant programs was created by executing each specification

with a maximum solver time of 1,000 seconds on a repository encoded at the BCIS

level of abstraction. For those (very few) programs that did not return, they were

checked by hand for relevance given the specification. Our data were collected under

Linux on 2.4GHz Opteron 250s with 16GB of RAM.

8.1.4 Results

RQ2(d) and RQ2(e) aim to explore the impact of solver time and the abstraction level

of program encodings on the precision and recall of the search. Satsy searches the

repository using the five pipe specifications, given the solver times and abstraction

levels described, and calculates precision and recall.

For each combination of solver time and abstraction, we report the results for each

specification in Table 8.2. The first set of columns reports the results for the Concrete

abstraction level, and the second set for the Symbolic abstraction level. Each row
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Table 8.2: Pipe Specification Search Results

Specification 1

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 17 2842 0 0.165 100 2756 3 0.971
100 16 2842 1 0.155 24 2756 79 0.233
10 0 2836 23 0.000 0 2723 136 0.000
1 0 2794 65 0.000 0 2572 287 0.000

Specification 2

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 1 2858 0 0.333 2 2856 1 0.667
100 0 2858 1 0.000 0 2853 6 0.000
10 0 2836 23 0.000 0 2785 74 0.000
1 0 2783 76 0.000 0 2567 292 0.000

Specification 3

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 3 2856 0 0.143 18 2838 3 0.857
100 0 2856 3 0.000 0 2833 26 0.000
10 0 2835 24 0.000 0 2651 208 0.000
1 0 2798 61 0.000 0 2554 305 0.000

Specification 4

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 1 2858 0 0.011 89 2770 0 1.000
100 1 2858 0 0.011 86 2770 3 0.966
10 1 2858 0 0.011 3 2770 86 0.034
1 0 2795 64 0.000 0 2758 101 0.000

Specification 5

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 1 2858 0 1.000 1 2858 0 1.000
100 1 2858 0 1.000 0 2857 2 0.000
10 0 2851 8 0.000 0 2773 86 0.000
1 0 2799 60 0.000 0 2607 252 0.000
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represents the results given a specific maximum solver time. The number of matches

is shown in the Sat column, and the number of discarded programs is shown in the

Unsat column. If the solver was stopped before it could make a decision, then the

solver returned unknown, which is shown in the ? column, followed by the recall

metric.

Matches from the repository can come from pipes with various topologies. For

example, with Specification 1 and the concrete encoding at 1000 seconds, there are 17

matches. Of those, 13 matches permit records that contain the substring http:// in

the description, which happens to be the case for all records in o. Three others simply

grab the first element from each input list, and the last result is P1 itself.

Overall, we observe that for all searches and abstraction levels, at least one match

is found with the maximum solver time of 1000 seconds, which is fitting as each

specification was derived from a pipe in our local repository. Additionally, using

symbolic encodings usually yields more results than concrete. Next, we look into the

impact of abstraction level and solver time on recall.

8.1.4.1 RQ2(d): Impact of Varying Abstraction Levels

We now discuss the results in the context of RQ2(d): What is the impact of varying

the abstraction level for the encoded programs in the repository?. At any given level

of maximum solver time, using symbolic encodings usually yields more results than

concrete. For instance, with Specification 4 in Table 8.2 at 1000 seconds, all the

programs have been determined to be sat or unsat for the concrete and symbolic

encodings (? = 0 for both). Yet, the symbolic encoding yields 89 possible matches

while the concrete encoding only finds one, since there is only one pipe in the repository

that will return sat with the concrete encoding. With the symbolic encoding, the

title string in the filter modules are symbolic so pipes that return all records with a
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particular title return sat by the solver. Thus, the symbolic encodings may produce

more results and more quickly, but possibly at the cost of additional adaptation.

8.1.4.2 RQ2(e): Impact of Solver Time on Search Effectiveness

We now discuss the results in the context of RQ2(e): What is the impact of solver

time on the effectiveness of the search?. For all searches and abstraction levels, at

least one match is found with the maximum solver time of 1000 seconds, though it

does take some time for results to be found. For Specification 2 and Specification 3,

the first result is returned when the solver time is set to 1000, but not before. Yet, for

the other three specifications, a result is returned in the concrete encoding within 100

seconds, and in the case of Specification 4, within 10 seconds. More results can be

found with the symbolic encoding, but it takes about the same amount of time for

matches to be returned.

There is a time advantage of using a concrete encoding, as it can discard programs

that do not match faster than the symbolic encodings, in part because the constraint

system is tighter and there are fewer decisions the solver has to make. For all examples,

and all ranges of solver times, the number of unsat programs for the concrete encoding

is always greater than or equal to the number of unsat programs for its symbolic

counterpart. This makes sense for the longer solver times since the symbolic encoding

has the potential to recognize more matches, yet, the trend is also true for the smaller

solver times.

8.2 Yahoo! Pipes Study 2

The goal of this study is the analyze the use of input/output queries for search in

Yahoo! Pipes and SQL for the purpose of evaluation with respect to accuracy and time
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from the point of view of the researcher in the context of programmers determining

the expected output when given a problem description and input. Toward this goal

and RQ3, we aim to address RQ3(a) and RQ3(b).

We designed a user study around ten tasks that, given a behavioral description of

a desired functionality and an input, ask the participants to select the output. The

experimental tasks were split among the two targeted domains, Yahoo! Pipes and

SQL, with five tasks in each.

Note that the participants specify only the output, yet we aim to evaluate the

input/output specification model as a whole. The rationale for this choice is twofold.

First, for the domains being evaluated, the inputs can easily be obtained by the

programmer naturally from their context (from a target URL in the case of a pipe,

or from a database table in the case of SQL). So, having the participants start with

an existing input but with the challenge of computing an output mimics how a

semantic search with an input/output model would be implemented in practice for

these domains. Second, given a problem description, by fixing the input we can

automate the accuracy assessment since we know the expected output. This reduces

the cost of executing the experiment and the chances of accuracy measurement errors.

We discuss the experimental aspects related to this point, including the threat to

construct validity, in Section 9.3.

8.2.1 Design

We designed an experiment according to the experimental design in Table 8.3. Each

of the ten experimental tasks uses one of the targeted domains, L1 for Yahoo! Pipes,

and L2 for SQL. The assignment of participants to tasks was done using self-selection

(SS). In each task, we presented the participant with an input (table or list, denoted
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Table 8.3: User Study Design

Pretest Post test
Task Domain Assign Measures Objects Measures

1 L1 SS O1 . . . O10 I1 D1 O11, O12

2 L1 SS O1 . . . O10 I2 D2 O11, O12

3 L1 SS O1 . . . O10 I3 D3 O11, O12

4 L1 SS O1 . . . O10 I4 D4 O11, O12

5 L1 SS O1 . . . O10 I5 D5 O11, O12

6 L2 SS O1 . . . O10 I6 D6 O11, O12

7 L2 SS O1 . . . O10 I6 D7 O11, O12

8 L2 SS O1 . . . O10 I6 D8 O11, O12

9 L2 SS O1 . . . O10 I6 D9 O11, O12

10 L2 SS O1 . . . O10 I6 D10 O11, O12

I), and a problem description (D), which serve as the objects. The participant was

asked to select the output from the input list considering the problem. Since this

study aims to characterize the performance and accuracy of the input/output query

model, there are no treatments. The pretest measures are the results of a survey that

asks about programming experience and search behavior (O1 . . . O10), and were used

in the analysis reported in Section 3.1. The post test measures were accuracy (O11)

and time (O12), and are used to address RQ2(d) and RQ2(e).

8.2.1.1 Yahoo! Pipes

A task in Yahoo! Pipes, covering Tasks 1-5, presents the participant with a problem

description (D) an input list of RSS items (I). Considering the problem description,

the participant is instructed to select what output should be using check-boxes next to

each RSS item in the input I. An example task is shown in Figure 8.1, which represents

Task 4 in the user study. The problem description is, “Select the third-most-recent

item from the list,” and the input list consists of five RSS items. The expected output

is the third item with a publication date of Thu Jan 12 18:02:00 CST 2012; this

forms an output list of size one.
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Guidelines and Assumptions: 

Answer the question below, selecting all relevant items using the checkboxes.
Accuracy must be greater than 50% to get paid.

Select the the third most-recent item from the list

Title: As space junk falls, Russia hints at sabotage

Description:
A space probe stuck in orbit could fall back to Earth as soon as Sunday or Monday, though
most experts say the chance that debris will harm anyone on the surface is slim. And even as
the Russian space agency released new forecasts of the probe's...

Link: link
Date: Fri Jan 13 11:49:00 CST 2012

Title: Warm today; red-flag warning for mountains

Description:
Warm, dry winds will raise wildfire risk in the Santa Ana Mountains Friday, prompting a
red-flag warning from the National Weather Service. Gusts from the northeast as high as 45
to 50 mph could rake the windiest spots in canyons, passes and slopes...

Link: link
Date: Fri Jan 13 08:49:00 CST 2012

Title: Red-flag warning for Santa Ana Mountains

Description:
The National Weather Service has issued a red-flag wildfire warning for the Santa Ana
Mountains from midnight Thursday to 2 p.m. Friday,Â¬â€  prompted by expectations of
gusty winds and low humidity. High-pressure air over the Great Basin is ratcheting...

Link: link
Date: Thu Jan 12 18:02:00 CST 2012

Title: Ocean Institute to celebrate Marine Protected Areas

Description:
The Ocean Institute at Dana Point Harbor will join the celebration of the fourth Underwater
Parks Day from 10 a.m. to 3 p.m. Jan. 21. The day is a coordinated event by marine-science
centers throughout Southern California to educate the public...

Link: link
Date: Thu Jan 12 15:00:00 CST 2012

Title: Whale watching preps art students for Dana Point festival

Description:
The common dolphin is abundant in the wild but rarely appears in captivity â€šÃ„Ã¬
which means you can see it only by sailing the ocean and meeting it face to face.Some
things can only be experienced in person. That's why organizers of the Dana Point...

Link: link
Date: Thu Jan 12 12:24:00 CST 2012

Figure 8.1: Task 4 in Yahoo! Pipes Study

8.2.1.2 SQL

In SQL the input and output take the form of database table(s). The output table

would be the selected column(s) and row(s) from the input table(s), such as the
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Input Table: Output Table:

id | username | balance | status username

-----+-----------+-------------+-------- -----------

145 | rekin76 | 469370.44 | 0 rekin76

56 | avcio | 466921.90 | 0 avcio

705 | shantee | 149160.09 | 0 shantee

5725 | ter | 93004.45 | 0

3414 | rut1999 | 80944.80 | 0

... | ... | ... | ...

Figure 8.2: SQL Input/Output Specification

example shown in Figure 8.2. The input table has four fields, id, username, balance,

and status. The output table has one field, username, which contains a subset of

the records from the input table. An example SQL query that produces the output

from the input is:

SELECT username FROM table WHERE balance >= 1000000 ORDER BY balance DESC
LIMIT 10;

For Tasks 6-10, the participant was presented with a problem description (D) and

an example input table (I). For all tasks in SQL, the same table was used as the

object (I6), but the problem descriptions differed. This choice was made to ease the

burden on the participants, though it may have led to learning effects. This threat to

validity is discussed in Section 9.1.4.

Considering the problem description and the input, participants selected the output

using check-boxes next to the relevant rows or columns. An example task is shown

in Figure 8.3, which corresponds to Task 6 in the user study. Here, the problem

statement is, “Select the rows with a price per unit greater than $1.00 from the table.”

Selecting rows 3, 5, 6, and 8 is the expected response.
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1/19/12 MySQL1.html

1/1file:///Users/kstolee/Dropbox/Research Notes/FSE2012IRB/MySQL1.html

Guidelines and Assumptions: 

Answer the question below, selecting all relevant items using the checkboxes.
Accuracy must be greater than 50% to get paid.

Select the rows with a price per unit greater than $1.00 from the table below, using the checkboxes next
to each row.

Id Fruit Variety Vendor Price Unit
1 Apple Fuji John's Produce $0.67 lb
2 Apple Jonathan John's Produce $0.84 lb
3 Apple Fuji Fran's Fruit $1.23 kg
4 Pear Green Anjou John's Produce $0.98 lb
5 Pear Bartlett Pearly Pears $2.01 kg
6 Grapes Champagne Eduardo's Uvas $5.21 kg
7 Bananas Plantain Pato's Plantains $0.50 lb
8 Melon Honeydew Oregon Melon, Inc. $1.10 lb

Figure 8.3: Task 6 in SQL Study

8.2.2 Task Creation

Each experimental task in Table 8.3 requires three pieces of information: the problem

description, the input, and the expected output. When a task is presented to the

participant, the problem description and input are shown (these are the objects).

The participant then selects the output based on the information presented. This is

the response variable. We use the expected output as an oracle against which the

participant’s response is compared using the metrics (Section 8.2.5).

In order to create realistic experimental tasks, we begin with programs (artifacts)

from which inputs, expected outputs, and problem descriptions are created. In this

section, we describe how this process works and how we selected the programs used to

create the experimental tasks.
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8.2.2.1 Object and Output Creation

Object creation involves taking a program, either extracting or constructing an input

and an output that matches the behavior, and generating a problem description. Each

experimental task is built from a different program. Here, we describe this process for

Yahoo! Pipes and for SQL.

Yahoo! Pipes. An input is a list of RSS items. Given a Yahoo! Pipes program, the

input is derived by extracting the URLs in the pipes and accessing the RSS feeds.

Executing the pipe program generates the output list, which is used as the oracle. The

problem description was generated by the researchers to concisely reflect the semantics

of the program.

Table 8.4 shows the problem descriptions used in Tasks 1-5. To capture the behavior

of the pipes while keeping the input list a reasonable size, since the participants would

be evaluating each RSS item, we limited the number of records from each URL to

seven, though some RSS feeds returned fewer than seven items. An additional bound

of 100 characters was imposed on the string lengths. In some cases, there were items

in the output that did not originate from the input list, due to the imposed item

restriction. Those items were removed so the output reflected the input.

The input and output lists’ sizes, in terms of items, are shown in Table 8.5. The

range of input sizes is from five to 21 items, and the range of output sizes is from one

to nine items.

SQL. An input in a SQL task is a table. An output is either a subset of that table

or a new table that was built from the input. Given a SQL select statement (i.e., the

SQL program), the input (I6) and output are generated so that the tables are distinct
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Table 8.4: Cost of Providing Specifications, Pipes and SQL

Task Textual Description

1 Select all records that show the Current Weather Conditions or the 10-Day
Forecast for Malibu, Exeter, or Camarillo

2 Select the four most-recent records from the list that contain information
about a hotel

3 Select the first three records from each source, where the sources are indicated
using different background colors

4 Select the the third most-recent record from the list
5 Select all records with the pink background, and those items from the grey

background with “au” in the description

6 Select the rows that match some criteria.
7 Select the rows and a subset of columns that match some criteria.
8 Counts the number of rows that match some criteria.
9 Computes an average for different groups of rows.
10 Identifies distinct values from the table subject to some criteria.

Table 8.5: Input/Output Sizes for Experimental Tasks

Task
1 2 3 4 5 6 7 8 9 10

Input Size 21 21 14 5 11 8 14 5 5 5
Expected Output Size 6 4 9 1 4 4 7 1 1 1

and the output is returned when the SQL program is executed on the input. The

output forms the oracle against which the participant responses are compared.

In the study design shown in Table 8.3, the input table is the same for all SQL

experimental tasks. The problem descriptions, D6 − D10, were generated by the

researchers to reflect the semantics of a given SQL select statement, and were designed

to be as concise as possible. These are shown in the Problem Description column of

Table 8.4 for Tasks 6 - 10.

The sizes of the inputs and expected outputs are shown in Table 8.5. The input

table is the same for all tasks, but the input sizes differ. Task 6 asks the participant

to only select rows, so there are only 8 checkboxes. Task 7, on the other hand, asks

about columns and rows, so 14 checkboxes are available. In Tasks 8 - 10, five possible
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outputs are presented to the participant, who selects one or more of the options as

the output.

8.2.2.2 Artifact Selection

Each experimental task is derived from on an artifact. Here, we describe the selection

process.

Yahoo! Pipes. To create the objects for each task related to L1, we had to collect

five pipes and extract the input/output. These pipes are intended to be “typical” pipes

in the repository based on structural uniqueness and their popularity, and so we reuse

the five Yahoo! Pipes artifacts from the previous Yahoo! Pipes study (Section 8.1.1).

SQL. In SQL, the artifacts were created since there is no existing reference SQL

repository. The creation of these SQL artifacts was based on language coverage,

using many of the common constructs in SQL select statements. The first artifact,

corresponding to Task 6, is a SQL select statement that chooses all columns with a

basic inequality condition:

SELECT ∗ FROM table WHERE price > 1.00;

The second artifact, corresponding to Task 7, selects a subset of the possible columns

and includes a conjunction on the conditions in the WHERE clause:

SELECT Id, Fruit, Variety FROM table WHERE price >= 0.75 AND price <= 1.25;

Some select statements return a table of data, while others, such as those including the

count construct, return a single value, such as the following artifact that corresponds

to Task 8:

SELECT count(∗) FROM table WHERE Unit = ’lb’;
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The fourth artifact corresponds to Task 9 and combines multiple rows using the avg

and group by components:

SELECT avg(Price) FROM table GROUP BY Fruit;

The last artifact, corresponding to Task 10, weeds out certain rows based on the

distinct values in a particular column:

SELECT distinct(Vendor) FROM table WHERE Fruit = ’apple’;

8.2.3 Participants

The participants in this study were solicited from two populations, undergraduate

computer science classes at UNL and workers on Amazon’s Mechanical Turk [44].

Recruitment of student participants was done by asking the permission of the faculty

instructors of the classes, one in embedded systems and the other in software engi-

neering. Recruitment of Mechanical Turk workers was performed by making the tasks

available on their server. From there, participation comes from self-selection.

The first part of the study involved a 10-question survey about the participants’

programming habits (pretest measures O1 . . . O10). The Mechanical Turk workers were

paid for their tasks, whereas the student participants were not. Participation was

restricted to those who accepted the informed consent. 4

The counts of participants and gender are shown in Table 3.1. Of the 109 partici-

pants, 43 came from junior/senior undergraduate classes at UNL and the rest came

from Mechanical Turk. Less than a quarter of participants reported to have less than

a year of programming experience, half reported to have between 2 and 5 years, and

the rest had more than 5 years.

4The tasks, informed consent, and UNL Institutional Review Board approved process can be
found in Appendix B.
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8.2.4 Implementation

Study participants were presented with a problem description, D, and an input, I,

and asked to determine what the output should be. This study delivery was based

on the participant group. The students performed the study in the classroom. The

Mechanical Turk workers performed the study online.

8.2.4.1 Classroom

Implementing this study in the classroom required the creation of paper packets that

delivered the IRB informed consent, pretest survey, and the experimental tasks. Each

packet was numbered at random and distributed to a classroom of students. The

students had 15 minutes in total to complete as much of the packet as possible. The

first pages of the packets contained the informed consent and pretest survey. The

experimental tasks followed and the order was the same for all packets, starting with

the SQL Tasks 6 - 10, and then the Yahoo! Pipes Tasks 1 - 5.

8.2.4.2 Mechanical Turk

In the Mechanical Turk implementation, the pretest survey was implemented as a

qualification exam. In addition to the survey questions, there were two competency

questions, one about Yahoo! Pipes and another about SQL, which had to be answered

with 50% accuracy. The IRB form was signed electronically. When a qualification

test was completed, the results were sent to the researchers for evaluation. A passing

score and IRB acceptance allowed the worker access to the experimental tasks.

Each experimental task in the study was implemented as a human intelligence

task, or HIT. Participants had a maximum of 10 minutes to complete each HIT, and

were paid $0.26 if their work was accepted. To prevent participants from ‘gaming’ the
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tasks, 50% accuracy was required for payment (Section 8.2.5 describes the scoring).

The study was available for three weeks.

8.2.5 Metrics

Two metrics, time and accuracy, were collected as post test measures. Time was

collected by the Mechanical Turk server on a per-task basis. In the classroom

implementation, the students worked at their own pace through the packets until the

15 minute mark, so we were unable to collect timing information.

Participants selected the output from each experimental task using checkboxes

next to each RSS item (Yahoo! Pipes) or columns and rows (SQL) in the input.

Accuracy was measured by scoring the participants’ responses against the oracles

(Section 8.2.2.1). In scoring, if a participant selected a record that was supposed

to be unselected, or vice versa, a point was not awarded. The score awarded was a

percentage out of the total points possible in the task. For example, consider the

following score sheet for a list of 5 items, which represents the five RSS items shown

in Figure 8.1:

Item Oracle Response Points Awarded

1 0 0 1

2 0 1 0

3 1 1 1

4 0 0 1

5 0 0 1

Score: 4/5 = 80%

The Item column represents a list of items, the Oracle column indicates the expected

output generated during object creation (Section 8.2.2.1), the Response column

indicates the participant’s response, and the Points Awarded column indicates how

many points were awarded per item. In the oracle, only item 3 is selected. The
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participant selected items 2 and 3. Points were awarded for answering correctly on

items 1, 3, 4, and 5, leading to an overall score of 80% (item 2 was mis-selected). In

the Mechanical Turk implementation, the participant would have gotten paid for this

work since the score is at least 50%.

8.2.6 Results

Here, we present the results of the study with respect to RQ3: What is the cost of

defining a query in terms of input/output for the programmer?, in the two targeted

languages, Yahoo! Pipes and SQL. Specifially, we target two sub-questions of RQ3,

RQ3(a) and RQ3(b).

RQ3(a) How accurately can programmers compose input/output specifications?

RQ3(b) How efficiently can programmers compose input/output specifications?

The target population of this study is novice programmers as the languages

being evaluated are domain-specific, end-user programming languages. However, the

participants had more programming experience than the typical end-user programmer

(see Section 3.1.1). Further study with actual novice programmers is needed.

8.2.6.1 Yahoo! Pipes

The accuracy and timing information for Yahoo! Pipes Tasks 1 - 5 are summarized in

Table 8.6. The total number of participants per task is indicated by the n column,

followed by the mean and median accuracy for those tasks aggregated across all

participants (RQ1 ). An average of 67 participants performed each Pipes task, with a

range from 63 to 72.



174

RQ3(a): Accuracy. Aggregated across all Yahoo! Pipes tasks, the average accuracy

was 92%. Participants performed the best on Task 4, with 96% average accuracy and

a median accuracy of 100%. Among the Pipes tasks, Task 4 had the smallest input list

and the smallest expected output (Table 8.5). There is a negative correlation between

task accuracy and the input size (Spearman’s r = −0.2946), but not between the task

accuracy and the output size (Spearman’s r = −0.0136).

Table 8.6: Cost of Providing Specifications, Pipes and SQL

Task
Accuracy Timing (m:ss)

n Mean Median n2 Mean Median

Pipes 1 63 90% 94% 30 2:30 1:48

Pipes 2 60 90% 90% 24 3:48 2:55

Pipes 3 65 93% 100% 29 1:20 0:46

Pipes 4 72 96% 100% 30 1:14 0:47

Pipes 5 70 95% 100% 30 2:26 2:05

SQL 6 72 99% 100% 30 0:41 0:34

SQL 7 71 88% 93% 30 1:37 1:29

SQL 8 63 86% 100% 21 1:08 0:52

SQL 9 68 94% 100% 26 1:44 1:21

SQL 10 72 92% 100% 30 1:22 1:03

RQ3(b): Efficiency. As mentioned in Section 8.2.4, the timing data is only available

for the Mechanical Turk participants, so n2 in Table 8.6 indicates the number of

participants from whom we gathered timing data (RQ2 ). For the Yahoo! Pipes tasks,

n2 ranged from 24 to 30. The average time per task was 2:12, but the range was from

1:14 to 3:48. The timing appears to be dependent, in part, on the size of the input

presented to the participant (Table 8.5). The Spearman correlation between the time

and the size of the input reveals a strong relationship r = 0.3565 (that is not the case

for the time and output whose r = −0.0397).

To give more context to the timing data of formulating an input/output query,

consider that understanding irrelevant pipe matches of similar complexity may take
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on the order of 16 minutes [66]. Although full understanding of a pipe is not needed

to discard irrelevant matches, the cost of this pruning activity is such that investing

in a query formulation that takes a couple of minutes but only returns semantically

relevant results seems promising. As we discuss later, a comprehensive study on this

input/output query format against other query models will be one of the targets of

our future work.

Summary Overall, the most accurate task has the shortest completion time and

the least accurate task had the longest completion time. This fits with the observation

that there is a negative correlation between the length of time and the accuracy of

the tasks. There is also a positive correlation between completion time and the input

size. We conjecture that it was easier for the participants to get distracted when the

input size is large, which led to longer completion times and lower accuracy. On the

other hand, with a small input size, the task could be answered quickly and accurately.

This may imply that the input/output query model is more appropriate for tasks that

can be characterized through small examples, or perhaps a series of small examples

rather than a single large one.

8.2.6.2 SQL

The accuracy and timing information for Tasks 6 - 10 are summarized in Table 8.6.

An average of 69 participants completed each of the SQL tasks.

RQ3(a): Accuracy Across all SQL tasks, as with Yahoo! Pipes, the average

accuracy was 92% (RQ1 ). SQL participants performed best on Task 6, with an

average score of 99% and a median of 100%. The lowest accuracy came from Task 8,

with an average of 86% and a median of 100%. Since the input table was the same
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for all the SQL tasks, we could not draw conclusions about the relationship between

accuracy and input size.

RQ3(b): Efficiency The timing data reveals an average completion time of 1:18.

Participants provided the fastest responses on Task 6, with an average of 41 seconds

and a median of 34 seconds. Task 9 took the longest, with an average of 1:44. In

general, longer times were associated with lower accuracy (Spearman’s r = −0.1970),

just as we observed with Yahoo! Pipes. It likely took the participants longer to guess

the answer than if they knew the answer outright.

8.2.6.3 Comparing Results

While the focus or RQ3 is on the feasibility of the specification model, some interest-

ing results emerged from the study pertaining to the use of two diverse populations,

students and Mechanical Turk workers. Since this study involves two different imple-

mentations, we wanted to know if there are differences among the accuracy results

based on the population.

Analysis We segmented the results based on population and computed the mean

for each task, for each domain, and overall. The mean accuracy for the Mechanical

Turk population is µmt and the mean for the student population is µs. For each task,

each domain, and overall, we performed a Mann-Whitney-Wilcoxon 5 test with the

null hypothesis, H0 : µmt = µs. The alternative is, Ha : µmt 6= µs.

Results Table 8.7 presents the results of this comparative analysis. Overall, no

difference between the groups in terms of accuracy was observed (Overall, p = 0.2122).

5We tested the normality of the data using the Shapiro-Wilk test with a null hypothesis that
the population is normal. The null hypothesis was rejected at α = 0.05, and so we used the
non-parametric Mann-Whitney-Wilcoxon test.
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Table 8.7: Differences in Results Based on Implementation. H0 : µmt = µs

Task Mechanical Turk µmt Students µs p-value

1 30 0.893 35 0.896 0.7144
2 24 0.924 39 0.841 0.0021***
3 29 0.985 36 0.893 0.0304**
4 30 0.947 42 0.962 0.6220
5 30 0.964 40 0.939 0.7773

YP 143 0.943 192 0.908 0.0095***

6 30 1.000 42 0.991 0.2366
7 30 0.883 41 0.886 0.8778
8 21 0.809 42 0.881 0.1876
9 26 0.908 42 0.967 0.0637*
10 30 0.947 42 0.947 0.5660

SQL 137 0.916 209 0.926 0.4160

Overall 280 0.929 401 0.917 0.2122
α = 0.1* α = 0.05** α = 0.01***

This clearly provides support for the use of large-scale and cost-effective crowdsourcing

environments like Mechanical Turk to support the execution of empirical studies that

serve at least to complement other studies.

Care needs to be taken, however, as the population gets smaller or the requirements

more specific. As we show next, splitting the analysis by domain reveals that the

accuracy of the tasks was significantly different for the Yahoo! Pipes domain, but not

for the SQL domain.

Yahoo! Pipes: In this domain (YP), we reject the null hypothesis that there is no

difference between the populations at α = 0.01. We observe that the performance

of the students is lower than the performance of the Mechanical Turk participants.

Breaking this down further by task, we observe significant differences for Tasks 2 and

3 with α = 0.01 and α = 0.05, respectively. The other tasks did not reveal significant

differences between the groups.

We conjecture that these differences manifest as a result of the delivery mechanisms

used in the study. Recall that for the students we used hard-copies of the tasks, while
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for the Mechanical Turk participants we had online versions of the tasks. For Task 2,

the participants were asked to select the most-recent items. In the student version,

the list of items spanned multiple pages and it may have been hard to keep track of

the dates. On the web version, the participants had an easier time scrolling through

the data and searching for keywords with the browser find function. For Task 3, lists

of data in the web format had different background colors, but the students’ gray-scale

copies did not differentiate the lists so clearly and again they spanned multiple pages.

We conjecture that this may have contributed to a lower student performance.

SQL: In this domain (SQL), we did not reject the null hypothesis and found that

there was no difference between the student results and the Mechanical Turk results.

However, the average Mechanical Turk score was lower than the average student score,

even though µmt may be artificially high.

We say it may be artificially high because, to control for participant quality of

an unknown population in Mechanical Turk, we rejected HITs and did not consider

the results when the accuracy was less than 50%. Among the SQL tasks, 25 HITs

were rejected (see Section 9). These were not included in µmt, and thus it may be

artificially high. Among the students, only three student results were below 50% (one

from Task 8 and two from Task 10), and these were considered as part of µs. Thus,

there may be an unobserved significant difference in which the students outperformed

the Mechanical Turk workers.

8.3 Summary

We have presented two studies on Yahoo! Pipes targeting different aspects of the search

approach. In the first, we manipulated search parameters sent to Satsy and measured
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the impact on precision and recall. In the second, we evaluated the feasibility of using

input/output specifications in Yahoo! Pipes and SQL.

From evaluating RQ2(d), we found that symbolic encodings may produce more

results and more quickly, but possibly at the cost of additional adaptation. From

RQ2(e), we learned there is a time advantage of using a concrete encoding, as it can

discard programs that don’t match faster than the symbolic encodings, in part because

the constraint system is tighter and there are fewer decisions the solver has to make.

Overall, solver time has a clear impact on recall. Since cutting the solver time before

it has reached a conclusion returns unknown, the recall is reduced as only the sat

pipes are returned to the programmer. Treating the unknown pipes as results will

increase recall to 1.00, but at the cost of precision. Studying this tradeoff is left as

future work.

Toward RQ3, our study shows that programmers can generate outputs when given

input and a program description in the Yahoo! Pipes and SQL domains. Further, this

can be done with high accuracy and in a reasonable amount of time.
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Chapter 9

Threats to Validity

Our evaluation explores different aspects of our approach in each of the supported

languages, and each comes with its own limitations and threats to validity. Throughout

the presentation of the studies and results in this thesis, we have identified several

threats to validity. In this section, we enumerate and elaborate on those more

completely. As each threat references its related research question, we re-state those

here for convenience.

RQ1: How and why do programmers search for source code? (Section 3.1)

RQ1(a): How frequently do programmers search for code? (Section 3.1.2)

RQ1(b): Why do programmers search for source code? (Section 3.1.3)

RQ1(c): Which tools to programmers use to search for code? (Section 3.1.4)

RQ2: How effective is Satsy at returning relevant source code? (Chapter 7, Chapter 8)

RQ2(a) How do search results from Satsy compare to those found using Google

when searching over the same repository of programs? (Section 7.1.1)
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RQ2(b) How much can existing syntactic search approaches be improved by

augmenting results with Satsy? (Section 7.1.2)

RQ2(c) How do search results from Satsy compare to those found using Google

and those found with the code-specific search engine, Merobase, from the

perspective of a programmer? (Section 7.2)

RQ2(d) What is the impact of varying the abstraction level for the encoded

programs in the repository? (Section 8.1)

RQ2(e) What is the impact of solver time on the effectiveness of the search?

(Section 8.1)

RQ3: What is cost of defining a query in terms of input/output for the programmer?

(Section 8.2)

RQ3(a) How accurately can programmers compose input/output specifications?

(Section 8.2)

RQ3(b) How efficiently can programmers compose input/output specifications?

(Section 8.2)

9.1 Internal

These threats impact the ability to confirm that independent variables influence the

dependent variables.

9.1.1 Selection Bias

For all studies involving Mechanical Turk (RQ1, RQ2(c), RQ3 ), the results are subject

to self-selection bias by the participants. This is also true for the student populations
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in RQ3. In the study toward RQ3 (which impacts RQ1 ), for both the student and

Mechanical Turk populations, the participants chose which tasks to complate and

in which order. It is also possible that there was some overlap among Mechanical

Turk participants and the classroom participants. Toward RQ2(c), the participants

performed large experimental tasks and there was only one available per Mechanical

Turk worker, but they still self-selected as participants.

Additionally for RQ2(c), the query generators were computer science graduate

students, and potentially more expert than the average programmer who would be

searching for source code. Thus, the results associated with more familiar query

formats (i.e., keyword for Google) may be biased by better-than-average queries

leading to better-than-average search results.

The results toward RQ1 are based on self-reported answers on a survey and may

not be representative of actual behavior. Observing programmer search habits in

practice would allow us to validate the results.

9.1.2 Instrumentation

Toward RQ2(c), we may have biased results in favor of Google by collecting snippets

of source code for pages beyond the top 10 results, in the event that some webpages

did not contain any source code (Section 7.2.2.4).

Toward RQ3, the instrumentation may have played a role in the results, since the

study was performed on paper by one group and online for another group. On the

one hand, it may lead to increased accuracy on the overall results since we are not

over-constraining the study context. On the other hand, some tasks may be better

suited for one context versus another, and this may have impacted the results.
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When building the repository of encoded programs for Java, we remove each

code snippet from its context. Thus, the encoded programs may not be entirely

representative of the behavior of the source code in its original implementation. For

example, if a method accesses a field and it has a static value defined within a class,

we ignore that value and represent the field value symbolically. Addressing this threat

and considering a broader scope of code snippets is part of future work.

Implementation errors are a risk for all studies involving Satsy (RQ2 ). To combat

this error, we have developed extensive test suites and validated all Satsy search results

(a reasonable endeavor considering the space of matches was relatively small). While

this process is manual, it helped identify, and correct, for false positives. However,

missed results are harder to diagnose, and for that we relied exclusively on test suites

to execute and diagnose that behavior.

One implementation limitation discussed in Section 6.2 deals with string bounds.

In the implementation used for all the studies in Section 7 and Section 8, it was

possible for the solver to assign character values to a string outside of the bounds

of the string length. While this was not observed to be the case for any of the test

cases or study results examined by the researchers, this could have led to some false

positives when the solver assigned string values, as was the case when strings are made

symbolic via abstraction. However, since the checks on string values all occur within

the bounds of a string (as shown by the inclusion of bounds on all string method

encodings in Appendix A.1), the impact should be limited.

9.1.3 Resentful Demoralization

For the experimental tasks in RQ2(c), the average completion time for the experimental

tasks was 54 minutes and 40 seconds, which is longer than anticipated. With a payoff
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of $3.25 per task, participants may have decided not to perform as well toward the

end. To combat this threat, we randomized the ordering of the programming tasks

that appeared in each experimental task.

9.1.4 History

In the evaluation of RQ3 in the SQL domain, the input tables were the same for all

tasks. While this was intended to ease the burden on the participant, it may have

led to learning effects in the results, especially since the ordering of the tasks was not

random for the classroom participants. It was, however, random for the Mechanical

Turk participants.

9.2 External

External threats to validity deal with the generalizability of results. That is, do our

results extend to other contexts?

9.2.1 Interaction of Selection and Treatment

For all studies, we may have used populations that are not representative of the

populations we want to study.

For RQ2(c), we did not collect demographic information for the human participants

on Mechanical Turk. However, we did require them to pass a pretest including Java

competency questions, which indicates that the participants are reasonably competent

with Java.

For RQ3 and RQ1, the participants in the study were Mechanical Turk workers and

computer science undergraduate students. While only 8% of the participants had no



185

programming experience, these populations may not be representative of programmers

who search for code. We should note, however, that 72% of the participants search for

source code at least weekly.

For RQ2(c), we selected eight of the original 22 questions for use in our study,

based on the fact that our search returned some results (Section 7.2.2.2). This may

have biased the questions toward those that are well-suited for our study. To combat

this, we took a two-staged approach. First, when looking for 10 snippets with Satsy, we

started with the constrained search where the type signatures matched. If not enough

matches were returned (which was the case for seven of the 24 queries per Table 7.16),

we relaxed the search to consider programs where TSp ⊃ TSLS (Section 5.3) to fill

out the 10 slots. Second, when Google did not return source code in some of the

top 10 results, we continued looking at search results until 10 results were obtained

(Section 7.2.2.4). Regardless, the bias remains.

9.2.2 Interaction of Setting and Treatment

For the studies toward RQ2(a) and RQ2(c), we chose to compare Satsy to Google

and Merobase, under the assumption that tools such as these are used for code search

in practice. According to previous work and our own survey, Google is reported to be

the most common tool used for code search, though code search engines like Merobase

are also used. There could still be discrepancies between the self-reported tools and

those actually used.

For all studies related to RQ2 and RQ3, the selection of experimental tasks and

questions may not be representative of tasks for which programmers would search for

answers. For RQ2(a-c), all tasks came from stackoverflow.com, so the assumption

is that these are questions programmers actually ask. For RQ2(d-e), the Yahoo!

stackoverflow.com
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Pipes queries were built from artifacts gathered from the community; since someone

went through the effort of creating those artifacts, the assumption is that these are

representative of real tasks. For RQ3 and SQL, the questions were created by the

researchers with the goal of language coverage; these may not be representative of

actual SQL queries. Replication of this study with other tasks is needed to generalize

further.

For RQ2, we have evaluated various aspects of the approach in just two domains,

Java and Yahoo! Pipes. While these domains are diverse, it remains to be shown if

the effectiveness of this approach generalizes to other domains. For RQ3, we have

evaluated the input/output query model in two domain-specific end-user programming

languages, Yahoo! Pipes and SQL. The extent to which this query model extends to

other programming languages is yet to be explored.

For RQ2(a) and RQ2(b), the syntactic queries were taken from the titles of

questions on stackoverflow.com, and may differ from queries issued by programmers.

We aimed to address this threat with RQ2(c) by using humans to generate the

queries. Here, there is an additional threat to validity in that the questions posted on

stackoverflow.com represent problems for which, presumably, the question askers

could not find answers. Thus, it may bias the results against Google to look for results

that are hard to find, and these may not be representative of questions asked to Google

in general. To combat this, in RQ2(c), we would skip over webpages that did not have

source code until 10 snippets of source code were obtained. This way, the 10 snippets

from Google could be compared to 10 snippets from Merobase and Satsy.

stackoverflow.com
stackoverflow.com
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9.3 Construct

These threats to validity impact the ability to generalize the constructs of the experi-

ment to the theory behind the experiment. That is, are we measuring what we intend

to measure?

9.3.1 Mono-method Bias

For RQ2(a) in repository building, we retrieved only one-line solutions. Yet, some

queries may require more than a one line solution, so those potential solutions were

ignored. We addressed this threat in part with RQ2(c) by encoding entire methods,

but this brings another threat to validity. Some methods may contain code that is

90% supported by our approach and that solves a query, but since we do not support

the entire method, it is ignored. Thus, the repositories may be biased toward certain

types of questions or problems.

For RQ2(c), the questions we gathered from stackoverflow.com were classified

according to their type in an effort to get a broad set of questions. This classification

was subjective and may have biased the final set of questions used for the experiment.

For RQ3, the accuracy results for Tasks 8, 9, and 10 may be inflated by design.

As described in Section 8.2.6.3, we did not collect results for those tasks performed in

Mechanical Turk if the accuracy was lower than 50%. This was done to control for

quality, but it also means that the accuracy of the tasks is biased. For these three

tasks, we rejected the work of 12, 8, and 5 workers, respectively, based on accuracy.

We use P@10 extensively as a metric to indicate relevance of search results. Yet,

this might not capture other aspects of search, such as the cost of looking at irrelevant

results. Further, the P@10 metric may have been inflated by some of our decisions

related to Google snippet collection toward RQ2(c) (Section 7.2.2.4).

stackoverflow.com
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9.3.2 Mono-operation Bias

For RQ3, the participants specified only the output in the tasks, whereas the goal

was to evaluate the input/output query model. However, for the domains being

evaluated, the input can easily be obtained (from a URL or database table), so having

the participants specify only the output mimics how our approach could be used in

practice. In other domains, the input may need to be user-generated, which could be

more expensive.

Toward RQ2 with Yahoo! Pipes, the specifications collected from the Pipes artifacts

represent the state of the RSS feeds on a particular day. Gathering the RSS feeds on

a different day or at a different time can yield a different input/output, which can

lead to a different set of relevant results.

9.3.3 Hypothesis Guessing

In the study toward RQ2(c), the query generators were taken from the pool of

graduate students and staff associated with the ESQuaReD software engineering

research lab. Some of them may have been familiar with the goals of this research, so

the input/output queries provided may have been of superior quality in an effort to

support this research, or of inferior quality intended to sabotage it.

9.4 Conclusion

Threats to conclusion validity concern our ability to draw conclusions about the

outcome of an experiment based on the treatment.
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9.4.1 Random Irrelevancies in Experimental Setting

For those studies involving Mechanical Turk (RQ1, RQ2(c), and RQ3 ), we could not

control the context in which the participants interacted with our study tasks. Thus,

there could have been elements outside of the tasks, such as noise or distractions, that

influenced the results.

9.4.2 Reliability of Measures

For the survey toward RQ1, the questions asked may have been poorly worded or may

have been misunderstood by participants. Thus, we may not have captured actual

information about participant search habits.

Toward RQ3, the accuracy and timing data were highly dependent on the quality

and clarity of the problem description. While the researchers tried to make the

descriptions succinct, these measures may be unreliable. A similar threat exists for

RQ2(c), where the problem descriptions may have been misunderstood by the query

generators. This is why we used multiple query generators for each combination of

search approach and problem factors in the experimental design (Section 7.2.1.2).

Toward RQ2(c), the Mechanical Turk participants who judged the snippets were

asked if each snippet was relevant to the problem, and if it solved the problem.

Definitions were given for each of these words (Section 7.2.4.1), yet, the participants

were judging the source code in a static view and did not need to work with the code

in any context outside of a textual description of the programming task. Therefore,

their judgement of relevance and solving may not be reliable.
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9.4.3 Reliability of Treatment Implementation

Toward RQ3, we used two pools of participants, Mechanical Turk and students, which

required two different implementations of the study. In the classroom implementation,

two different researchers presented the study to the different classes on two different

occasions. By IRB protocol, there was a script to be used when introducing the study

to ensure consistency. As an aside, there are no significant differences in accuracy

between the students and the Mechanical Turk participants at α = 0.10 on all tasks

except for Pipes Task 3 in which the student results are significantly lower (p = 0.0212).

We suspect this is a result of differences in instrumentation (i.e., paper vs. online) for

the two groups.

For RQ1, the search habits are self-reported and based on the participants’ best

recollection. These may not be representative of their behavior in practice. Actu-

ally observing participants searching for code is part of the future work to gain an

understanding of what programmers use, have, and need when searching for source

code.
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Chapter 10

Related Work

This work involves the combination of two diverse software engineering processes,

searching for source code and program analysis. In this section, we discuss related

work within each of these categories.

10.1 Code Search and Repository Analysis

Searching for source code as a human process involves specifying queries, retrieving

information from repositories, and delivering the search to the programmer. In this

section, we discuss related work for each of these research areas.

10.1.1 Code Search

We have described an approach to code search that is semantic and uses input/output

examples to define the queries, a repository of programs to define the set of potential

matches, and an SMT solver to identify the matches. There are two areas of related

work here, syntactic code search and semantic code search.
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10.1.1.1 Syntactic Code Search

Recent studies have revealed that programmers typically use general search engines to

find code for reuse [59]. More specialized code search engines (e.g., Koders, Krugle,

ohloh) incorporate various filtering capabilities (e.g., languages, libraries) and program

syntax into the query to better guide the matching process [59]. Other approaches

add natural language processing to increase the potential matches [19, 43]. For

example, Exemplar is a search tool that takes a natural-language query containing

high-level concepts (e.g., MIME, data sets) as input, then uses information retrieval and

program analysis techniques to retrieve applications that implement these concepts [19].

Our work is different in that we perform a more semantic search, but as we show

(Section 7.1.2), both approaches are complementary and can be easily combined.

Other code search approaches are targeted at a specific code search sub-problem [45,

55]. XSnippet allows programmers to search over a repository for sample code related

to object instantiation [55]. The query model exploits the type and hierarchy of the

provided object, and matches are based on mining code for instantiations of that

object. By limiting the scope of the search to object instantiation, this search can

generalize the query to return code for instantiations of an object with a similar type

and interface. Another approach focuses on searching for source code with specific

API usage [45]. By mining temporal specifications from code snippets, a query uses

a partial program and an automata-based approach finds source code that uses the

constructs in the partial program.

Instead of a program explicitly providing a query, another specification model

involves extracting code structures from a developer’s work environment. Recent work

has used such structural characteristics to locate example code in a repository [25, 26].

Method signatures, return types, and fields are used to find potential code to reuse. To
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increase the chance that the recommended code behaves according to the programmer’s

needs, heuristics are used to match the code already written by the programmer against

a repository of source code to better identify structurally matching code that might

be relevant [26]. We may be able to use similar principles in a ranking algorithm for

results that would consider the programmer context (Section 5.3.2.3).

Instead of recommending source code, other research has sought to recommend

code-related web pages [57]. Our search approach operates under a similar assumption,

that programmers frequently search the web for source code. This related work has

shown that when programmers search for code, nearly 14% of the webpages visited

are actually re-visits; their goal is to help programmers find those revisited webpages

faster. Rather, our work aims to help programmers find source code to reuse.

10.1.1.2 Semantic Code Search

Early work in semantic search required developers to write complex specifications of

the desired behavior using first-order logic or specialized languages (e.g., [17, 48, 81]),

which can be expensive to develop and error-prone. The most similar work to ours

is that on specification matching by Zaremski and Wing [81, 80]. They propose an

approach for specification matching for component retrieval, where the specifications

could be defined by signature [80] or by pre/postconditions [81], and our work is

most similar to the latter. In their approach the pre/postconditions for the desired

component are written by hand, and their approach matches the specifications with

the components using a theorem prover to show equivalence. In a relaxation process,

they weaken or strengthen the matching on the pre/postconditions. In our approach,

we weaken the encodings of the programs (analogous to components) in addition to

the specifications. Similar to their approach, the components searched are first filtered

by type signature, which is a technique we apply when searching our Java repository in
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which inputs and outputs can have different datatypes (Section 6.4). Their definition

of code reuse, adapt[ing] a component to fit its environments constraints, is similar to

the definition of relevant code we use for calculating precision and recall (Section 8.1.4),

corresponding to the copy/paste and modify behavior that nearly half the programmers

we surveyed reported to do with useful code once found (Table 3.3). Building on this

search model, Penix, et al. [48] showed that for component reuse, automated reasoning

can be used to determine what changes are necessary to reuse a component and guide

component adaptation, using an extended version of the lattice from the previous

work to identify closely, but not necessarily exactly, matching components [81]. In the

evaluation, the authors use a data-flow language abstraction with many similarities to

the Yahoo! Pipes components supported in our approach. If no components match the

specs of the query, the first step they take is to weaken the requirement for feature-

equivalence, in essence finding the same operations performed on different data types.

The second step is to reduce the number of query features the component contains,

in essence finding partial component solutions for the problem, using automated

reasoning to guide the relaxation.

Other approaches to semantic search use queries in the form of algebraic specifica-

tions. The component behavior is modeled using finite-state machines and a constraint

solver is used to check the satisfiability of queries [17]. In this approach, the queries

must be written directly in the specification language and the scope of applicability

is small, finite programs. Additionally, the algebraic models are unable to identify

components that might be close matches to a specification.

The previous approaches to semantic search require a complex query model, which

comes at a high cost. The cost of writing specifications can be reduced by using

incomplete behavioral specifications, such as those provided by test cases (a form of

input/output) [39, 50, 53], but these approaches require that the code be executed to
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find matches. Further, executing test cases against the code will return only exact

matches, missing many relevant matches that may simply have a slightly different

signature (e.g., extra parameter). Reordering the search parameters is an approach

that can find relevant code with a slightly different signature from that specified

originally by the programmer [53].

10.1.2 Studies on Repositories

Our research is dependent on the existence of large and diverse code repositories

from which source code can be matched and returned during search. Repositories

provide a mechanism for programmers to share code and learn from the experiences

of others, and tend to attract many participants to the communities. For example,

Yahoo! Pipes, one of our targeted domains, has over 90,000 users [32] and over 100,000

artifacts [49]. The number of lines of code from open source projects that are available

and can be searched by code search engines, including code in Java and SQL, is over

ten billion [47].

Recent work has aimed to capture the diversity that exists in large repositories

of code. Clone detection (e.g., [30]) is a means of identifying locations with similar

code, but are highly dependent on the structure and does not characterize repository

diversity. Yet, it can be observed through clone detection studies that there are more

clones when the size of the clone is small [30]. Studies of syntactic diversity confirm

that there is low diversity among smaller code fragments. A study with over 420

million lines of source code in Java, C, and C++ revealed that at least 90% of code

is syntactically redundant when considering code with 20 tokens or less (where six

tokens is approximately one line) [14]. Our approach could leverage work such as this

to do a smart search over code in a repository, starting with syntactically diverse code
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early in the search. Not surprisingly, such syntactic redundancy is not limited to these

languages; in our study of 32,000 Yahoo! Pipes programs, we found that nearly 60%

of the programs were identical to another in the repository when the field values were

abstracted away [71].

Mining software repositories is an active area of research with the goal of extracting

and measuring properties of large data sets. The main objective of research in this

area is to explore trends across different resources and aggregate information. An

example of this is to extract temporal properties regarding interface usage from

open source Linux projects for the purpose of anomaly detection [20]. Another

example uses language modeling to uncover programming practices by mining projects

hosted on GitHub [1]. Related to queries, other work has defined a query language

for source control repositories that allows programmers to ask questions about the

repositories, such as looking for an author who modified a file after another author [24].

Contrastingly, we are interested in the problem of extracting existing information from

large repositories for the purpose of reuse, rather than data aggregation.

10.1.3 IDE Programming Support

As we are suggesting relevant source code for a programmer to use and possibly

integrate into their development context, our approach has some similarity to code

completion. Some approaches to this consider the program code that has previously

been written to recommend likely APIs to use in the present [54]. Similar also to

syntactic search, other approaches extract keywords from the code and also consider

those when making code suggestions [42].

Our approach also has the potential to be useful for, and automate parts of,

test-driven development [16]. Since the programmer is required to specify the behavior
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of the code in terms of input and outputs, using these as tests could identify code that

behaves as the developer needs to automate part of the development process.

10.2 Program Analysis

In our work, we leverage several program analysis techniques, including symbolic

execution and constraint solving. Additionally, our work has implications for code

reuse and program synthesis. In this section, we discuss related work in these areas.

10.2.1 Verification and Validation

In this work, we have talked about how symbolic analysis is used to generate constraints

that represent the program behavior, and that this representation is used in the search

process. Symbolic execution [7, 8, 36] is a technique that executes code with symbolic,

rather than concrete, values, and can generate such symbolic summaries of source

code. We leverage these existing tools, when available, as described in Chapter 6.

For Yahoo! Pipes, symbolic execution tools are not readily available, so we were

responsible for all steps in the translation process [69]. For Java, however, tools like

the symbolic execution extension [33, 34] to the Java PathFinder model checker [75]

can generate symbolic summaries that we can use, but are limited in the data types

and libraries that are supported. String processing support in particular is still limited,

since the problem of path feasibility for strings is undecideable in the general case,

but decidable for bounded strings [5]. String constant solvers built on top of SAT

solvers have been used to automatically fix HTML generation errors [56]. In this

work, only three string operations were considered for the repair task: insertion,

deletion, and repair. These activities involve only pure string constraints. In JPF,

inclusion of support for methods that have mixed integer and string constraints, such
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as the indexOf method that returns an integer based on a property of a string, has

recently been investigated [52]. For path identification in multi-path programs, we are

dependent on such support when such methods are involved in the path conditions.

In validation, constraint and SMT solvers have been used extensively for test

case generation. Toward the goal of database generation for testing, reverse query

processing takes a query and a result table as inputs and using a constraint solver,

produces a database instance that could have produced the result [4]. Other work in

test case generation for SQL queries has used SMT solvers to generate tables based on

queries [74]. In our work, we do not generate database tables, but rather determine if

a given query could have produced a specified result set (output) from specified input

table(s).

Under the assumption that building symbolic execution engines is tedious for new

languages, recent work has sought to automatically synthesize symbolic execution

engines from input/output examples [18]. This work has shown promise for x86

instructions, which are small and side-effect-free, and deal only with primitive data

types, so limitations abound. Such an approach would be extremely useful for the

generalizability of our approach, where new domains could be added and encoded by

simply generating a symbolic execution engine from examples.

10.2.2 Program Generation and Program Synthesis

Previous work in the area of automated program generation relates to our work in

that the high level specifications are used as the basis to derive programs [2]. Some

approaches represent the program code as algebraic equations [3], which is similar

to our approach for representing program code as constraints. Generalizing these

specifications can allow for the automatic generation of Java code, in this instance,
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from the equational models [3]. The goals of this previous work and our approach

are similar, to end up with code that matches specifications, but the approaches are

different. Instead of generating a program, as is done in the previous approaches, we

search for existing code that matches or approximately matches the desired behavior.

Closer to our work is program synthesis that uses solvers to derive a function that

maps an input to an output (e.g., [21, 22, 23, 29, 60]). The domains of applicability

include string processing [21], spreadsheet table transformations [23], a domain-

specific language for geometric constructions [22], data structure manipulations [60],

and loop-free bit manipulation programs [29]. Some of these approaches also utilize

supplementary information like the code structure to help guide the solver [60]. The

key difference between program synthesis and our approach is that we use the solver

to find a match against real programs that have been encoded, while these synthesis

efforts have to define a domain specific grammar that can be traversed exhaustively

to generate a program that matches the programmers’ constraints.

Tinker is a programming by demonstration tool built for the Lisp language [41]

that also uses examples, but not solvers. The Tinker tool allows beginners to specify

concrete data inputs in Lisp and specify how each example is handled using expressions.

The tool records the manipulations and produces a program to automate the process.

Another means for program synthesis, as opposed to specifying input and outputs,

utilizes partial programs called sketches (e.g., [51, 62, 63, 64]). These approaches

typically operate over small, low-level and finite programs like bit vector manipu-

lation [64] and hardware circuits [51], but more recently have targeted higher-level

applications such as concurrent data structures [63] and optimizing code [62]. Part of

our future work involves partial programs as a supplementary specification for our

search approach, which makes this area most similar to our future work.
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10.2.3 Code Reuse

In the code reuse process, there are two primary activities: finding and integrating.

Our approach focuses on finding, which is what we have evaluated, but it has potential

to be useful with integration.

For effective reuse, scope and dependencies must be understood for developers to

effectively integrate code [15]. Some recent work assists programmers with integrating

new code by matching it to structural properties in their development environment

(e.g., method signature, return types) [9, 26]. These approaches guarantee structural

matching, but the behavior of the integrated code may not be well understood. In our

search, the user provides the input and output of their specified code, which contains

some structural information in terms of types. After code is found to be a match,

replacing the variables in a code snippet with variables from the developer’s context

is straightforward, since that mapping is a necessary part of the search process. This

would be a step toward integration.
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Chapter 11

Discussion

In this section, we describe the implications of this work and of the studies we have

conducted, and how each relates to our future work.

This work involves the interlocking of two very different software engineering

processes. One of them, the process of searching for source code, is a deeply human

task, rooted in the context of a programmer looking for something, with success

criteria judged by the programmer themselves. The other process, computing and

using symbolic summaries of source code, is deep in the heart of state-of-the-art of

program analysis techniques, leveraging symbolic execution and constraint solvers.

While an unlikely combination, we have shown in this dissertation that these processes

can be combined in such a way to benefit the programmer, and at the same time,

push the state-of-the-art in code search.

From the human perspective, our approach leverages examples to describe desired

source code. In programming, examples can be very powerful. Programmers use

examples in a formal sense by writing functional test cases, in describing a situation

to a colleague, or in posting a question online (Section 3.3). In this work, we have

proposed the use of examples for another purpose, searching for source code to reuse.
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From the program analysis perspective, our approach leverages symbolic execution

and constraint solvers. Yet, it is also limited by the current tools. Specifically, in

the process of collecting constraints for multi-path programs, the limitations of state-

of-the-art symbolic execution engines with respect to string processing restrict the

expressiveness of the programs we can encode (Section 7.2.2.1). Further, the constraint

solver runtime in the presence of large specifications as was the case with Yahoo!

Pipes, may make this search approach impractical in practice (Section 8.1.4.2). As

program analysis techniques and solving approaches, theories, and tools improve in

speed and expressiveness, so does our approach to code search.

In the introduction of this work (Chapter 1), we presented the code search problem

as having three stages, querying, indexing, and matching. We have explored various

aspects of each of these stages, to various degrees, with various languages, as a means

of validating the research ideas outlined in the general approach (Chapter 5) given

the instantiations in two languages, for Yahoo! Pipes and for Java (Chapter 6). In the

next sections, we discuss the impact of the work presented in this dissertation and

point to open questions and future directions related to our exploration.

11.1 Empirical Studies

The studies presented in this work form a first step toward evaluating the effectiveness

and utility of the search. More studies are needed, particularly related to RQ2(c)

where we used only eight of the 22 problems in the final implementation. Additionally,

each snippet from each search was evaluated by only one participant on Mechanical

Turk, so it would be useful to have replication to get an average relevance per snippet.

Evaluating the impact of abstraction and solver time on Satsy was evaluated only in

the Yahoo! Pipes domain. Extending the implementation of Java to include abstraction
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is part of future work, and will require an evaluation similar to the one in Yahoo!

Pipes toward RQ2.

Additionally, we identify more opportunities for empirical studies related to code

search, including characterizing code search behavior, evaluating further the feasibility

of input/output as a query model, exploring other query models, and delivering the

search to the programmer.

11.1.1 Characterizing Code Search Behavior

Searching for source code is a human process that is performed frequently during

programming tasks [59], as we have shown in Section 3.1. We have proposed the use of

input/output examples as a query model for code search. Two of the studies presented

in this work, toward RQ2(c) and RQ3, in addition to the user survey toward RQ1,

aim to characterize search behavior and evaluate the feasibility of using examples for

search queries.

Our user survey showed that programmers frequently search for source code while

programming (Section 3.1), corroborating the findings of previous work [59]. Of the

109 programmers surveyed, most reported that they search to find code that can be

used for implementation ideas (67%) and/or to obtain code that can be reused with

modification (48%, Table 3.3). With this high frequency of code search, it’s important

for researchers and tool builders to focus on getting the programmer what they need

with minimal time and effort.

Understanding the real cost of a code search in the state-of-the-practice is important

for researchers in code search. This would give a baseline to compare against when

introducing a new technique. Observing programmers in practice while they search for

source code could provide an indication of the cost and frequency of query reformulation,
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the number of snippets explored, and the cost of exploring a snippet. This could give

an overall measure of how much time and effort it takes to find relevant code.

In our second Java study (Section 7.2), we used human participants to judge

the relevance of source code to a programming task. Another future direction is

to interview programmers immediately after a code search task about why they

stopped the search, what they learned, and what source code they may intend to

reuse. Alternative studies could include think-aloud methods during code search tasks

or instrument the search tools. From such studies we could also learn if programmers

are open to using and learning from search results in different languages that could

provide a similar solution (i.e., a C# solution to a Java question)? This would give us

an idea of how much, and how many, languages need to be supported to make our

approach to code search, and Satsy, useful in practice.

11.1.2 Feasibility of Input/Output Examples as Queries

In the study for RQ2(c), we show, indirectly, that graduate students in computer

science (i.e., the query generators) are rather adept at generating input/output queries

to describe simple programming tasks, specifically those in Table 7.8. We know this by

looking at the fact that the P@10 value for the Satsy search approach was 0.533 overall

(Table 7.11), indicating that two things went right, 1) the queries were descriptive of

the problem, and 2) Satsy had some relevant solutions in the repository. The former

speaks to the ability of programmers to generate input/output queries in Java.

Yet, Java is only one of the languages targeted by our approach (Chapter 4)

and implementation (Chapter 6). In a controlled quasi-experiment toward RQ3, we

explored the feasibility of using input/output examples in Yahoo! Pipes and SQL.

Presumably, the participants in this experiment were less familiar with these domain-
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specific languages than the graduate students were with Java, yet, the participants

were able to select output given an input and problem description with over 90%

accuracy in just a couple minutes (Section 8.2.6). Performing a similar study in Java

is left to future work.

11.1.3 Alternative Query Models

Although we have shown that programmers can compose queries as examples, and that

they do this when asking questions online (Section 3.3), we would like to explore some

alternative and some assistive specification models to find the one (or combination)

that best meets programmer needs when searching for source code. Presently, we have

several ideas for how to make the query model more natural and/or expressive. For

example:

1. Negation in Examples. There may be a need for programmers to specify examples

that throw exceptions, return some error condition, or specify output values that

should not be allowed given an input. Being able to recognize error conditions

from source code, and then model them as error conditions, would then allow

programmers to include generic error conditions in their specifications, instead of

guessing how another programmer may have implemented their error conditions.

Allowing negation of the output given an input would address the latter need.

2. Partial Programs. Developers may know part of a solution, but not the whole

solution, and may benefit from a search that allows them to provide what

they have and receive a completed piece of source code as a result. This is

similar to program synthesis by sketching [51, 62, 63, 64], except that in our

approach, the programmer would not need to specify the “holes”. Instead, we

could find existing code that has the same pieces as the original and behaves
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as specified with input/output examples. A natural extension of this approach

would be, then, to let programmers specify variables or expressions, perhaps

sharing variables, rather than concrete values, as part of the input/output pairs.

3. Inferring Additional Examples. This approach would be assistive in that it

would help programmers create more general specifications. The idea is to

infer structured data from a programmer’s specification, possibly using a data

abstraction like Topes [58], and then automatically generate other specifications

with different formats but the same intention. For example, say a programmer

gave the following input/output pair:

LS: {({”402−432−2345”}, {”402”})}

Recognizing the input as a phone number and the output as the area code, we

could infer the following, additional specification:

LS′: {({”(913) 212−4545”}, {”913”}),({”+1 515 020 3113”}, {”515”})}

Thus, a new, stronger specification can be created on behalf of the programmer,

yielding a more general solution from the search.

4. Inferring Patterns. Similar to the previous example, another assistive approach

could infer patterns on the input. For example, given the following specification,

LS: {({”rizzo@ridell .org”}, {”rizzo”}),({”sandy@univ.edu”}, {”sandy”})}

We could infer a pattern of the following, where X and Y are symbolic values:

LS: {({X”@ridell.org”}, {X}),({Y”@univ.edu”}, {Y})}

5. Other Program Properties. Any property that can be encoded for a program can

also be used as a specification, such as programming constructs used, number

of parameters to a function, or even performance. In some cases, as with
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the programming constructs used, this specification may act as a syntactic

filter on the semantic results. For example, if a user gives the example input

susie@mail.com and output susie, specifying also the use of the function indexOf,

would prevent some coincidental matches, such as:

String scheme = uri.substring(0, 5);

which is coincidental unless all e-mail aliases have exactly five characters.

6. Conditional Specifications. Adding predicates to the lightweight specifications

would allow the programmer to segment the input space and provide input/output

pairs that should hold under various conditions. This means the programmer

could provide symbolic inputs and outputs instead of specific test values. For

example, consider a search for a program that returns the square-root of a

number, or zero if the number is negative. The programmer could specify:

Predicate input output

x ≥ 0 x sqrt(x)

x < 0 x 0

7. Generating Additional Examples. For multi-path programs, there may be an

opportunity to create additional input/output examples based on paths that

are not matched by a specification. That is, additional input/output pairs could

be generated for each path q ∈ QP \Qsat.

11.1.4 Delivering the Search to the Programmer

Delivery of search to the user is another dimension of this approach not yet explored.

This has implications for HCI, end-user computing, and software engineering research,

as we seek to answer the following questions: how to deliver the search to the
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programmer, and when in the development process is search most appropriately made

available?

We have built this approach on the principle that the user should not be exposed

to the underlying representation used in the search (i.e., the constraints). This raises

many questions and challenges, such as how to present abstractions to the programmer,

how to explain why some snippets might be better than others, or how to guide the

programmer to refine their query to find a suitable piece of code. These will all need

to be addressed as this work progresses.

11.2 Extending the Approach

Our approach has been defined to be general enough to cover a broad set of languages,

from Yahoo! Pipes to SQL to Java. Still, there are many directions that can be explored

to extend the approach. Specifically, we describe how to use the solver to guide

modifications to the specifications and how to stitch programs together in program

composition. Other future directions include identifying additional abstractions for

encoding, supporting additional languages, and improving matching, ranking, and

performance.

11.2.1 Solver-Guided Specifications

When specifications are too strong, we may be able to provide some guidance to

the programmer on how to appropriately tune their specifications. We propose to

provide this guidance by extracting and using the unsat core. When an SMT solver

returns unsat, this happens because a satisfying model cannot be found, and thus

some constraints could not be satisfied. Extracting the unsat core from the solver

identifies these constraints. The programmer is the owner of the specification, so



209

guidance could be provided on how to tune the specifications by suggesting to negate

the constraints pertaining to the specifications in the unsat core.

When a specification is too weak, there may be many matches. The solver could

also be used to generate sample input/output that would differentiate between matches

to help programmers see how two pieces of source code differ.

11.2.2 Program Composition

Our current implementation returns single programs to the developer, yet there are

some instances when no program matches enough of the specification. This could mean

that the specification goes entirely unmatched, or that it goes partially unmatched.

Even after abstraction, it could be that no single program matches the user

specifications. However, composition of programs, where the inputs and outputs of

multiple programs are chained together, could create the desired behavior. This could

be particularly useful for repositories that serve small communities, such as a biology

lab that uses Perl. This would promote reuse first, but also help scientists to grow the

repository by creating new source code. In this way the repository would better fit

the current needs of the community.

Another approach could be useful when a program matches some, but not all, of

a specification. Counter-example guided inductive synthesis [40] is designed to use

concrete input/output pairs that are unmatched to guide modification to the program

P , where P has some “holes” that have been identified. We may be able to use similar

principles in augmenting source code that partially matches a specification.



210

11.2.3 Abstraction

Our current implementation supports abstraction on data types only (Section 5.2.3).

However, other abstractions or models may be helpful to allow the search to index

richer code.

Section 5.2.3 describes possible abstraction strategies for the encoding, specifically

using the data types. Finding appropriate abstraction levels (i.e., instance abstraction

vs. abstracting all values) will require thorough experimentation and specialized

heuristics. We also plan to explore other lattices that consider program properties,

such as object and heap shape. These might be useful for finding relevant programs

that are similar to a current implementation, and are part of our future work.

11.2.4 Language Support

Our current instantiation covers most of the Java String library, arithmetic operations,

and list processing in Yahoo! Pipes (Chapter 6). We are able to provide solutions for

many different programming tasks, as shown throughout the evaluation chapters. As

shown in Chapter 7 and Chapter 8, we can use a combination of existing symbolic

execution engines (e.g., JPF for Java) and our own implementations (i.e., for Yahoo!

Pipes) to generate symbolic summaries of source code. Even with the current limi-

tations of existing tools, we could create a repository with over 8,000 Java methods

from open source projects (Section 7.2.2.1).

Extending the language support would allow us to encode richer programs, provide

solutions for more complex query, and increase our potential to have an impact on

the state-of-the-practice. We have several directions planned for this.

The next constructs in Java we plan to support are the null value, lists, loops,

arrays, and file manipulation. Some of the query generators in the second Java study
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(Section 7.2) used null and arrays as parts of their input/output queries, and since

those are not supported by our approach, the specifications could not be used. We

also plan to extend this approach to concurrent programs, where we would model

the concurrency using, for example, the number of processes and shared variables.

Loop processing remains a challenge in symbolic execution [72], and our current

implementation does not support looping constructs. However, loops are frequently

used, and our absence of support has limited the types of questions we can answer and

the size of our constraint repository. Modeling object creation and heap manipulation

are two additional challenges of the indexing phase not yet addressed. Tackling these

challenge will be important for the practicality of this approach.

The current implementation in Java is limited to a single output. However, we can

think of many situations when multiple outputs would be helpful. A simple example

is decomposing a URL into domain and path. Extending the implementation to allow

for multiple outputs is part of our future work.

As we have pointed out, the investment for encoding a new language is quite high,

but happens only once (Section 6.5). We are interested in exploring techniques that

would ease the burden of extending our approach to new languages. One possible

direction is to automatically synthesize symbolic execution engines from input/output

examples [18]. We are interested in identifying and extending support for our approach

to new, promising domains. Specifically, we are interested in extending the approach

to C, as it is the most common programming language today [73].

11.2.5 Performance

For our studies in Yahoo! Pipes, finding a relevant program from a specification could

take on the order of minutes (Section 8.1.4). With the Java examples, which had
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much smaller specifications, the solver returned in under a second (Section 7.1.1.4).

As the complexity of programs and queries supported by our encodings increase, so

does the solver time.

Encoding a language fragment requires the definition of many uninterpreted

functions, axioms, and data sorts that are required for encoding an arbitrary piece of

code in that language. However, not every piece of code requires all that information

as part of the constraint system. Retaining only the functions and axioms required

for encoding a piece of code could increase the performance of the solver.

For example, to support string encoding, there is a lot of set-up code that is required.

Several axioms and interpreted functions are declared, forming a preamble for every

encoded program (Section 6.2). However, not all of this information is required for

every implementation. Specifically, we have a character set that is required for CP ,

and for LSenc. Each of these is a subset of the actual character set that is included in

the header tacked on for solving. There may be a benefit to using a “minimum set” of

character encodings by combining the required ones for CP and LSenc and pruning

the duplicates. One drawback is that it would limit the solver when instantiating

symbolic variables, and this could lead Satsy to over-reject. If the performance gains

are big enough, it might be worth the risk. Evaluating this is left to future work.

11.2.6 Multiple I/O Satisfiability

Our current implementation supports the inclusion of multiple input/output pairs.

This is useful so programmers can more clearly illustrate the behavior of their desired

code.

When | LS |> 1, we currently consider the I/O pairs independently when solving.

Future work is to consider them simultaneously and identify matching variables.



213

This requires bootstrapping the solver to identify the variable bindings that led to

satisfiability, and then using that information in the linking phase for subsequent

input/output pairs. For example, consider the code in Listing 11.1 and the following

input/output pairs:

LS1 ← ({2 : int, 3 : int}, false : boolean), and

LS2 ← ({3 : int, 2 : int}, false : boolean).

Listing 11.1: Simultaneous Satisfiability Example

boolean between(int begin, int pos) {
return (begin <= pos);

}

Considered independently, Solve(Cls1 ∧ P11.1)→ SAT and Solve(Cls2 ∧ P11.1)→

SAT . Using the satisfiable model and referring to I1 as a list rather than a set,

begin 7→ I1[2] and pos 7→ I1[1]. For ls2, this mapping is reversed, where begin 7→ I2[1]

and pos 7→ I2[2]. In order for these input/output pairs to be considered simultaneously,

the binding of the satisfiable model from Solve(Cls1 ∧ P11.1) needs to be retained and

used as input when considering ls2, for example, Solve(Cls2 ∧ P11.1 ∧model1). This

will treat each index in the input specification as the same variables in the program

encoding, and then simultaneous satisfiability may be possible.

It must also be considered that the initial binding for the first input/output pair

may not work for the second input/output pair, but an alternative binding would

work for both. Consider an alternative ls1 ← ({2 : int, 2 : int}, true : boolean).

The binding begin 7→ I[2] and pos 7→ I[1] may result from Solve(ls1 ∧ P11.1), but

Solve(ls2∧P11.1∧model1)→ unsat. However, swapping the bindings so begin 7→ I[1]

and pos 7→ I[2] works for both input/output pairs. In the event that the first model

does not work, negations of the initial bindings can be added as additional constraints
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on the first solver invocation to force the second binding model, which then identifies

Listing 11.1 as satisfying, simultaneously, LS.

11.2.7 Ranking

One of the most important factors in the effectiveness of a search approach, beyond

having a rich pool of artifacts to search over and being able to identify results, is to

return the most relevant results first. This process is called ranking, and it really

matters. From the results of RQ2(c), and specifically the exploration in Section 7.2.5.3,

we found that the overall performance of Satsy may have been handicapped by an

inadequate ranking algorithm. By creating a ranking algorithm based on participant

responses to the Satsy snippets, and regenerating the top 10 search results based on

the new ranking, we were able to predict that our hypothetical ranking for Satsy could

increase the overall P@10 metric from x̄s· = 0.533 to x̄′s· = 0.657, putting it nearly on

par with Google’s performance with x̄g· = 0.675.

Based on the findings in RQ2(c), we are very interested in finding a good ranking

algorithm that will make us competitive with the state-of-the-practice. Many factors

likely play a role in the ideal ranking approach, such as the amount of program

or specification that is matched, the complexity of the source code, who owns the

code, and so forth. Identifying the important factors in ranking requires much more

exploration.

11.3 Other Applications

We have shown how to use our approach to code search for the sake of code search.

However, the approach we have defined and implemented may have applicability in
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other areas of software engineering, such as tracking repository evolution, refactoring,

automated matching, and test-driven development.

11.3.1 Repository Evolution

Our repository of encoded programs is built by scraping existing code, but ignores the

fact that source code repositories grow as new code is committed and updated. One

question we will explore in future work is how to handle changes in the source code

used to build our repository. It may be useful to keep the old versions of the code,

unless that code is buggy. This information may also be useful for ranking purposes,

where code from more recent versions of projects would be reported first. It could

additionally be used to summarize semantic changes to a repository over time.

11.3.2 Refactoring

In the Yahoo! Pipes implementation, part of the encoding step involves refactoring

the programs for simplicity and size reduction. This support, however, has not been

integrated into the encoder for Java. One future direction of work is to pre-process

programs prior to encoding and remove smells like unreachable code, unused variables,

and unnecessary abstraction.

11.3.3 Automated Patching

Another application of this approach could be to automate the generation of code

patches. Say a program has a fault that has been isolated to a particular line (using,

for example, fault-finding tools such as Tarantula [31]). Traces of passing test cases

provide situations under which the code behaves correctly passes. The failing test case

provides an input and an undesirable output. This information could be leveraged in
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searching for a patch to the program that would behave as specified by all test cases.

Exploring this research direction is left for future work.

11.3.4 Test-driven Development

Another application is for test-driven development, where the tests would define the

behavior of a unit to be searched. It could therefore be possible, with a suitably

rich repository, to compose a program from its test suite. While this could expedite

the development process, if the specifications are not carefully crafted, code that

over-approximates the behavior of a specification could have unintended consequences.

A programmer would likely need to be involved at every step of the process to act as

a “code reviewer.”

11.4 Conclusion

We have presented an approach to source code search that uses input/output examples

as queries and searches a repository for source code that matches the defined behavior.

The novelty of the approach lies in the use of an SMT solver for matching input/output

examples to source code that meets the specification. This necessitates a transformation

process on the source code and the specifications into first-order-logic so the solver

can identify matches.

In this work, we have motivated the need for better code search tools and techniques,

formalized the definition of this approach, described its implementation in a tool,

Satsy, and evaluated the approach across several dimensions.

To motivate the need for better code search, we surveyed over 100 programmers

about their search habits, finding that code search is a common task and that current

search tools are often inadequate. To justify the choice of an input/output model for
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queries, we explored questions asked by the community on stackoverflow.com and

found that questions are frequently accompanied by input/output examples, indicating

that programmers already think in this way when looking for help online. Additionally,

we conducted a quasi-experiment that showed programmers can quickly and accurately

compose specifications in this model.

Given that the input/output query model is reasonable, we also evaluated the

effectiveness of our search using Satsy applied to two languages, Java and Yahoo! Pipes.

In Java, we conducted a series of studies comparing Satsy to state-of-the-practice

search engines, Google and Merobase, a code-specific search engine. Our results show

that Satsy outperforms Merobase and is competitive with Google in terms of returning

relevant results, where relevance was judged by 30 programmers. Further, we show

that Satsy can operate on top of a syntactic search engine by filtering the results

based on desired behavior. Doing so can reduce the amount of source code that must

be evaluated by a programmer by 34%. In Yahoo! Pipes, we showed the impact of

abstraction and the power of the approach to identify approximate matches when

exact matches do not exist in a repository.

While this example-driven approach to semantic code search seems promising

in the domains we studied, generality remains a goal that needs to be addressed in

the context of richer programs and possibly with alternative specification models.

Exploring these directions, and others, are outlined as part of the future work.

We have presented the first work in applying SMT solvers to the problem of code

search. This is just one step toward our ultimate goal of leveraging existing resources,

such as source code repositories, to positively impact programmer productivity.

stackoverflow.com
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Appendix A

Encoding Details

The following provides the encoding details for the Java and Yahoo! Pipes implemen-

tations (see Chapter 6)

A.1 Java

The encoding logic for each of the support string library methods is shown in Table A.1,

Table A.2, Table A.3, Table A.4, Table A.5, are Table A.6. It is organized by method

name, alphabetically. For each method call, the constraint purpose and definition are

presented. When types for the variables are not stated, we used the following scheme:

i, j, k and from are integers, s, sub, t, and u are strings, c and d are characters,

and b is a boolean. Each row in the tables is implemented as an assert statement in

SMTLIB2 format, with one exception to handle disjunction.

For the indexOf and lastIndexOf operators, the constraint for ensure s[i] = c

needs a little more processing to protect against interference in the values. That is,

for s. indexOf(c) = i in Table A.2, we want to force i to be the index of c in s when c

is at index i in s, and otherwise let it i = −1. This would protect against the case



219

where (s. charAt(c) = i) ∧ (i = −1) could evaluate to true from the first and third

constraints. So, the constraint (s. charAt(i) = c)∨ (i = −1) is implemented as follows:

(assert
( ite

( exists
(( j Int)) (and (>= j 0) (< j (length s)) (= (charAt s j) c)))

(>= i 0)
(= i (− 1)) ))

This means that if character c exists at some index j within the bounds of [0, length(s)),

then i must be at least zero, otherwise it is set to -1. This presents a forcing condition

that ensures i = −1 is not the default behavior.

The processing is a little more complicated when dealing with strings as the

arguments, as in s. indexOf(sub) = i in Table A.2. The following ensures that i is the

index of sub is s if sub appears in s:

(assert
( ite

( exists (( start Int))
(and

(>= start 0)
(< start (length s))
( forall ((check Int))

(=>
(and (< check (+ start (length sub))) (>= check start))
(= (charOf s check) (charOf sub (− check start)))))))

(>= i 0)
(= i (− 1))))

In this case, we are looking for a start index such that the substring sub exists in the

receiving object s. If such index exists, then i ≥ 0, else i = −1.
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Table A.1: Java Implementation Details (part 1)

s. charAt(s, i) = c

definition (charAt(s, i) = c)

s.concat(t) = u

ensures the lengths
match

(length(u) = (length(s) + length(t)))

ensures that the con-
tent of u = s+ t

(∀i
(((i ≥ 0) ∧ (i < length(s)))
→ (charAt(u, i) = charAt(s, i)))
∧((i ≥ length(s)) ∧ (i < (length(s) + length(t))))
→ (charAt(u, i) = charAt(t, (i− length(s)))))

s. contains(sub) = true

ensure size con-
straints of strings

(length(s) ≥ length(sub))

ensures sub is a sub-
set of s

(∃j
((j ≥ 0)
∧(j < (length(s)− length(sub)))
∧(∀i

(((i < length(sub)) ∧ (i ≥ 0))
→ (charAt(s, (i+ j)) = charAt(sub, i))))))

s. endsWith(sub) = true

ensure length con-
straints of strings

(length(s) ≥ length(sub))

ensures s ends with
sub

(∃j
((j ≥ (length(s)− length(sub)))
∧(j < length(s))
∧(∀i

(((i < length(s)) ∧ (i ≥ j))
→ (charAt(s, i) = charAt(sub, (i− j)))))))

s. equals(t) = b

ensures s and t
are the same object
within the solver

((s = t) ⇐⇒ b)

axiom for equality ((∀i
((i ≥ 0)
∧(i < length(s)))
→ (charAt(s, i) = (charAt(t, i))))

∧(length(s) = length(t)))
⇐⇒ b)
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Table A.2: Java Implementation Details (part 2)

s. equalsIgnoreCase(t) = true

ensure length con-
straints of strings

(length(s) = length(t))

converts to lowercase
and checks content

(∀i
((i ≥ 0) ∧ (i < length(s)))
→ (toLower(charAt(s, i)) = toLower(charAt(t, i))))

s. indexOf(c) = i

ensures s[i] = c (s. charAt(i) = c)
∨(i = −1)

ensures i is the first oc-
currence of c

(∀j
(((j ≥ 0) ∧ (j < i))
→ (¬(charAt(s, j) = c)))

sets bounds on i ((i ≥ 0) ∧ (i < length(s)))
∨(i = −1)

s. indexOf(c, from) = i

ensures s[i] = c (s. charAt(i) = c)
∨(i = −1)

ensures i is the first
occurrence of c after
from

(∀j
(((j ≥ from) ∧ (j < i))
→ (¬(charAt(s, j) = c)))

sets bounds on i ((i ≥ 0) ∧ (i < length(s)))
∨(i = −1)

sets bounds on from ((from ≥ 0) ∧ (from < length(s)))
relationship between
bounds

(i ≥ from)
∨(i = −1)

s. indexOf(sub) = i

ensure length con-
straints

(length(s) ≥ (length(sub) + i))
∨(i = −1)

ensure sub matches s
starting at i

(∀j
(((j ≥ i) ∧ (j < (i+ length(sub))))
→ (charAt(s, j) = charAt(sub, (j − i)))))

∨(i = −1)
ensure i is first occur-
rence of sub

(∀j
(((j ≥ 0) ∧ (j < i))
→ (∃k

((k ≥ j)
∧(k < (j + length(sub)))
∧(¬(charAt(s, k) = charAt(sub, (k − j))))))))

sets bounds on i ((i ≥ 0) ∧ (i < (length(s)− length(sub))))
∨(i = −1)
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Table A.3: Java Implementation Details (part 3)

s. indexOf(sub, from) = i

ensure length con-
straints

(length(s) ≥ (length(sub) + i))
∨(i = −1)

ensures sub matches s
starting at i

(∀j
(((j ≥ i) ∧ (j < (i+ length(sub))))
→ (charAt(s, j) = charAt(sub, (j − i)))))

∨(i = −1)
ensures i is first occur-
rence of sub from from

(∀j
(((j ≥ from) ∧ (j < i))
→ (∃k

((k ≥ j)
∧(k < (j + length(sub)))
∧(¬(charAt(s, k) = charAt(sub, (k − j)))))))

sets bounds on i ((i ≥ 0) ∧ (i ≤ (length(s)− length(sub)))))
∨(i = −1)

sets bounds on from (from ≥ 0) ∧ (from < (length(s)− length(sub))))
relationship between
bounds

(from ≤ i)
∨(i = −1)

s. isEmpty() = b

length of s is zero ((length(s) = 0) ⇐⇒ b)

s. lastIndexOf(c) = i

ensures s[i] = c (s. charAt(i) = c)
∨(i = −1)

ensures i is the last oc-
currence of c

(∀j
(((j > i) ∧ (j < length(s)))
→ (¬(charAt(s, j) = c))))

sets bounds on i ((i ≥ 0) ∧ (i < length(s)))
∨(i = −1)

s. lastIndexOf(c, from) = i

ensures s[i] = c (s. charAt(i) = c)
∨(i = −1)

ensures i is the last
occurrence of c before
from

(∀j
(((j > i) ∧ (j < length(s)))
→ (¬(charAt(s, j) = c))))

sets bounds on i ((i ≥ 0) ∧ (i < length(s)))
∨(i = −1)

sets bounds on from (from ≥ 0) ∧ (from < length(s))
relationship between
bounds

(from ≥ i)
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Table A.4: Java Implementation Details (part 4)

s. lastIndexOf(sub) = i

ensure i is the last in-
dex of sub in s

(∀j
(((j ≥ i) ∧ (j < (i+ length(sub))))
→ (charAt(s, j) = charAt(sub, (j − i)))))

∨(i = −1)
ensure substring is last
instance

(∀j
(((j > i) ∧ (j < length(s)− 1))
→ (∃k

((k ≥ j) ∧ (k < (j + length(sub)))
∧(¬(charAt(s, k) = charAt(sub, (k − j)))))))

sets bounds on i ((i ≥ 0) ∧ (i < (length(s)− length(sub))))
∨(i = −1)

s. lastIndexOf(sub, from) = i

ensures i is the last in-
dex of sub in s ending
before at from

(∀j
(((j ≥ i) ∧ (j < (i+ length(sub))))
→ (charAt(s, j) = charAt(sub, (j − i)))))

∨(i = −1)
ensures substring is last
instance from from

(∀j
(((j > i) ∧ (j ≤ from))
→ (∃k

((k ≥ j) ∧ (k < (j + length(sub)))
∧(¬(charAt(s, k) = charAt(sub, (k − j))))))))

sets bounds on i ((i ≥ 0) ∧ (i < (length(s)− length(sub))))
∨(i = −1)

sets bounds on from (from ≥ 0) ∧ (from < length(s))
relationship between
bounds

(from ≥ i)

s. length() = i

assert length (length(s) = i)
every index from 0 to i
has a character

(∀j
(((j ≥ 0) ∧ (j < i))
→ (∃c(charAt(s, j) = c))))

s. replace(c, d) = t

ensure length con-
straints

(length(s) = length(t))

ensure all instances of
c in s are replaced by d
in t

(∀i
((i ≥ 0) ∧ (i < length(s)))
→ ((charAt(s, i) = c) ∧ (charAt(t, i) = d))
∨(¬(charAt(s, i) = c)
∧((charAt(s, i) = (charAt(t, i))))
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Table A.5: Java Implementation Details (part 5)

s. startsWith(sub) = true

ensure size constraints
of strings

(length(s) ≥ length(sub))

ensures s starts with
sub

(∀i
(((i ≥ 0) ∧ (i < length(sub)))
→ (charAt(s, i) = charAt(sub, i))))

s. substring(i) = sub

ensures s ends with sub
starting at i

(∀k
(((k ≥ i) ∧ (k < (i+ length(sub))))
→ (charAt(s, k) = charAt(sub, (k − i)))))

sets bounds on i (i ≥ 0) ∧ (i < length(sub))
sets constraints on
string sizes

(length(s) ≥ length(sub))

s. substring(i, j) = sub

ensures s between i and
j equals sub

(∀k
(((k ≥ i) ∧ (k < j))
→ (charAt(s, k) = charAt(sub, (k − i))))

sets bounds on i (i ≥ 0) ∧ (i < j) ∧ (j < length(s))
sets constraints on
string sizes

(length(s) ≥ length(sub)) ∧ ((j − i) = length(sub))

s. toUpperCase() = t

ensures the lengths
match

(length(s) = length(t))

Make sure that all
lower case letters in s
are upper case in t

(∀i
((i ≥ 0) ∧ (i < length(s)))
→ ((((charAt(s, i) = ‘a’) ∧ (charAt(t, i) = ‘A’))
∨((charAt(s, i) = ‘b’) ∧ (charAt(t, i) = ‘B’))
∨((charAt(s, i) = ‘c’) ∧ (charAt(t, i) = ‘C’))
∨ . . .
∨((charAt(s, i) = ‘z’) ∧ (charAt(t, i) = ‘Z’)))
∨((¬(charAt(s, i) = ‘a’))
∧(¬(charAt(s, i) = ‘b’))
∧(¬(charAt(s, i) = ‘c’))
∧ . . .
∧(¬(charAt(s, i) = ‘z’))
∧(charAt(s, i) = charAt(t, i)))))
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Table A.6: Java Implementation Details (part 6)

s. toLowerCase() = t

ensures the lengths
match

(length(s) = length(t))

Make sure that all
lower case letters in s
are lower case in t

(∀i
((i ≥ 0) ∧ (i < length(s)))
→ ((((charAt(s, i) = ‘A’) ∧ (charAt(t, i) = ‘a’))
∨((charAt(s, i) = ‘B’) ∧ (charAt(t, i) = ‘a’))
∨((charAt(s, i) = ‘C’) ∧ (charAt(t, i) = ‘c’))
∨ . . .
∨((charAt(s, i) = ‘Z’) ∧ (charAt(t, i) = ‘z’)))
∨((¬(charAt(s, i) = ‘A’))
∧(¬(charAt(s, i) = ‘B’))
∧(¬(charAt(s, i) = ‘C’))
∧ . . .
∧(¬(charAt(s, i) = ‘Z’))
∧(charAt(s, i) = charAt(t, i)))))

s. trim() = t

ensure length require-
ment

(length(t) ≤ length(s))

s and t are identical be-
tween the whitespaces.
j is an offset, where t is
identical to s between
j and j + length(t).

(∃j
(j ≥ 0)
∧(j < (length(s)− length(t)))
∧(∀i

((i ≥ 0) ∧ (i < length(t)))
→ ((charAt(s, (i+ j)) = charAt(t, i))))

∧(∀k
(((k ≥ 0) ∧ (k < j))
→ (charAt(s, k) = ‘ ’))
∧(((k ≥ (j + length(t))) ∧ (k < length(s)))
→ (charAt(s, k) = ‘ ’))))

t has no leading or trail-
ing whitespaces

((length(t) > 0)
→ (¬(charAt(t, 0) = ‘ ’)
∧¬(charAt(t, (length(t)− 1)) = ‘ ’)))
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A.2 Yahoo! Pipes

The specifics of the module encodings are shown in Table A.7, Table A.8, and

Table A.9 for the supported constructs, listed alphabetically. The hasRec(L, r) and

recordOf(L, i) = r) functions are defined at the end of Table A.8. For each module, the

constraint type (inclusion, exclusion, order, size) are shown followed by the constraint

definition. When types for the variables are not stated, we used the following scheme:

i, j, k, and l are integers, s is a string, r, r1, and r2 are records, L, in, in1, in2, in3,

in4, in5, out, out1, and out2 are lists. Each row in the tables is implemented as an

assert statement in SMTLIB2 format.



227

Table A.7: Yahoo! Pipes Implementation Details (part 1)

fetch(in) = out
inclusion (∀r

(hasRec(in, r)→ hasRec(out, r)))
exclusion (∀r

(hasRec(out, r)→ hasRec(in, r)))
order (∀i

(((i ≥ 0) ∧ (i < size(out)))
→ (recordOf(in, i) = recordOf(out, i))))

size (size(in) = size(out))

filter(in, title, equals, s) = out
inclusion (∀i(

((i ≥ 0) ∧ (i < size(in)))
((getT itle(recordOf(in, i)) = s)
→ hasRec(out, r))
∧((¬(getT itle(recordOf(in, i)) = s))
→ ¬(hasRec(out, r)))))

exclusion (∀r
(hasRec(out, r)→ hasRec(in, r)))

order (∀r1, r2

(hasRec(out, r1) ∧ hasRec(out, r2)
∧(∃i, j

((i < j)
∧(recordOf(out, i) = r1) ∧ (recordOf(out, j) = r2))))
→ (∃k, l

((k < l)
∧(recordOf(in, k) = r1) ∧ (recordOf(in, l) = r2))))

size (size(in) ≥ size(out))

sort(in) = out
inclusion (∀r

(hasRec(in, r)→ hasRec(out, r)))
exclusion (∀r

(hasRec(out, r)→ hasRec(in, r)))
order (∀i, j

((i < j)
∧(i ≥ 0)
∧(j < size(out)))
→ getPubdate(recordOf(out, i))
≤ getPubdate(recordOf(out, j)))

size (size(in) = size(out))
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Table A.8: Yahoo! Pipes Implementation Details (part 2)

tail(in, n) = out
inclusion (∀i

(((i ≥ max(0, size(in)− n)) ∧ (i < size(in)))
→ recordOf(in, i) = recordOf(out, i)))

exclusion (∀r
(hasRec(out, r)→ hasRec(in, r)))

order (∀i
(((i ≥ 0) ∧ (i < size(out)))
→ recordOf(in, i+max(0, size(in)− n)) = recordOf(out, i)))

size (size(in) ≥ size(out))

truncate(in, n) = out
inclusion (∀i

((i ≥ 0) ∧ (i < min(n, size(in))))
→ recordOf(in, i) = recordOf(out, i)))

exclusion (∀r
(hasRec(out, r)→ hasRec(in, r)))

order (∀i
((i ≥ 0) ∧ (i < size(out)))
→ recordOf(in, i) = recordOf(out, i)))

size (size(in) ≥ size(out))

union(in1, in2, in3, in4, in5) = out
inclusion (∀r

(hasRec(in1, r) ∨ hasRec(in2, r)
∨ hasRec(in3, r) ∨ hasRec(in4, r) ∨ hasRec(in5, r)))
→ hasRec(out, r))

exclusion (∀r
(hasRec(out, r)
→ hasRec(in1, r) ∨ hasRec(in2, r)
∨ hasRec(in3, r) ∨ hasRec(in4, r) ∨ hasRec(in5, r)))

order (∀i
((i ≥ 0) ∧ (i < size(in1)))
→ (recordOf(in1, i) = recordOf(out, i))
∧((i ≥ size(in1)) ∧ (i < size(in1) + size(in2))
→ (recordOf(in2, i− size(in1)) = recordOf(out, i))
∧ . . .

size ((size(in1) + size(in2) + size(in3) + size(in4) + size(in5))
= size(out))
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Table A.9: Yahoo! Pipes Implementation Details (part 3)

split(in) = {out1, out2}
inclusion (∀r

(hasRec(in, r)
→ hasRec(out1, r) ∧ hasRec(out2, r)))

exclusion (∀r
((hasRec(out1, r) ∨ hasRec(out2, r))
→ hasRec(in, r)))

order (∀i
((i ≥ 0) ∧ (i < size(out1)))
→ (recordOf(in, i) = recordOf(out1, i))
∧(recordOf(in, i) = recordOf(out2, i)))

size ((size(in) = size(out1)) ∧ (size(in) = size(out2)))

output(in) = out
inclusion (∀r

(hasRec(in, r)→ hasRec(out, r)))
exclusion (∀r

(hasRec(out, r)→ hasRec(in, r)))
order (∀i

((i ≥ 0) ∧ (i < size(out)))
→ (recordOf(in, i) = recordOf(out, i)))

size (size(in) = size(out))

wire
equality (source = destination)
size (size(destination(in))) = size(source(out)))

hasRec(L, r)
definition (hasRec(L, r) = true)

⇐⇒ (∃i
((i ≥ 0) ∧ (i < size(L)) ∧ (recordOf(L, i) = r)))

recordOf(L, i) = r
definition (recordOf(L, i) = r)
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Appendix B

User Quasi-Experiment and Study

on Search Habits

This section provides the user survey, quasi-experiment related to input/output

specification, and IRB informed consent for a user study.

B.1 User Survey

Table B.1 reports the survey questions and answers used in the user survey described in

Section 3.1. The Question column states the question as it appeared to the participants.

The Format column describes the question format, indicating if it used radio buttons

(R, single-selection), check-boxes (C, multiiple-selection), or was open-ended (O). For

example, Question 3 asks about the programming experience of participants, providing

four options in a radio-button format.
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Table B.1: Survey Questions

Question Format Answer
1. Are you at least 19 years

old?
R (Yes, No)

2. What is your gender? R (Male, Female, Prefer not to
answer)

3. How long have you been
programming?

R (0 years, less than 2 years, 2-5
years, 5+ years)

4. How often do you pro-
gram?

R (never, daily, weekly,
monthly)

5. What are your primary
programming languages?

O

6. How often do you look for
example source code by
searching (e.g., using the
web, and IDE search fea-
ture, grep, etc.)

R (never, monthly, weekly,
daily)

7. Where do you usually
search for sample code?

O

8. How do you search for
code?

C, O (function name, keyword, vari-
able name, libraries used,
other please specify)

9. How many snippets of
code do you typically ex-
amine before finding some-
thing useful?

R (1, 2, 3, 4, 5, 6+)

10. What do you do with use-
ful code once found?

C,O (Copy/paste as is, Copy/paste
and modify, Just get ideas for
implementation, Link to found
code, Other please specify)

Format Key: R = radio button, C = checkbox, O = open-ended

B.2 Additional Survey Results

The results for some survey questions in Table B.1 were not reported in Section 3.1.

Results for Question 5 are shown in Table B.2. Table 3.4 shows results for Question 7

and Tables B.3 and B.4 shows results for Question 8.
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Table B.2: Programming Languages Used by Participants (Question 5)

Language Count Percent
Java 63 57.8%
C 52 47.7%
C++ 43 39.4%
SQL 20 18.3%
Excel 18 16.5%
Javascript 17 15.6%
C# 16 14.7%
29 others ≤ 9 < 10 %

Table B.3: Search Methods Used by Participants (Question 8)

Search Method Count Percent
Function Name 49 45%
Keyword 79 72%
Variable Name 18 17%
Libraries Used 38 35%
Other 25 23%

Table B.4: Search Methods Used by Participants - Other (Question 8)

Search Method Count Percent
Functionality or problem description 14
Language 3
Algorithm 3
Error 2
5 others 1
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B.3 Qualification Test

To control for quality among the Mechanical Turk participants, we included a qualifi-

cation test that contained competency questions related to Yahoo! Pipes and SQL.

Participants were required to answer the competency questions with 50% or greater

accuracy, meet the age requirement, and agree to the informed consent (Section B.4)

in order to participate in the study.

The following two questions were used to determine participant competency (scoring

was performed as described in Section 8.2.5, and the answer is indicated with an x

next to the relevant rows):

1. Select the rows with a price per unit equal to $0.50 from the table below,

using the checkboxes next to each row.

Id Fruit Vendor Price

x 1 Apple John’s Produce $0.50

2 Apple John’s Produce $0.84

3 Apple Fran’s Fruit $1.50

4 Pear John’s Produce $0.98

5 Pear Pearly Pears $2.50

x 6 Grapes Eduardo’s Uvas $0.50

x 7 Bananas Pato’s Plantains $0.50

2. Select all items with “mountains” or “Mountains” in the title.
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Title: Cool, dry after light rain; wet weekend?

Description: After a light weekend rain, Orange County should dry out for the work week,

though we could be looking at more rain for the . . .

Link: http://sciencedude.ocregister.com/2012/01/16/

cool-dry-after-light-rain-more-ahead/166663/

Date: Mon Jan 16 08:51:00 CST 2012

Title: As space junk falls, Russia hints at sabotage

Description: A space probe stuck in orbit could fall back to Earth as soon as Sunday or

Monday, though most experts say the chance that . . .

Link: http://sciencedude.ocregister.com/2012/01/13/

as-space-junk-falls-russia-hints-at-sabotage/166579/

Date: Fri Jan 13 11:49:00 CST 2012

x

Title: Warm today; red-flag warning for mountains

Description: Warm, dry winds will raise wildfire risk in the Santa Ana Mountains Friday,

prompting a red-flag warning from the National Weather . . .

Link: http://sciencedude.blog.ocregister.com/2012/01/13/

warm-today-red-flag-warning-for-mountains/166607/

Date: Fri Jan 13 08:49:00 CST 2012

x

Title: Red-flag warning for Santa Ana Mountains

Description: The National Weather Service has issued a red-flag wildfire warning for the

Santa Ana Mountains from midnight Thursday to 2 p.m. Friday . . .

Link: http://sciencedude.blog.ocregister.com/2012/01/12/

red-flag-fire-warning-for-santa-ana-mountains/166585/

Date: Thu Jan 12 18:02:00 CST 2012

Title: Ocean Institute to celebrate Marine Protected Areas

Description: The Ocean Institute at Dana Point Harbor will join the celebration of the

fourth Underwater Parks Day from 10 a.m. to 3 p.m. Jan. 21 . . .

Link: http://www.ocregister.com/news/marine-335239-aquarium-institute.

html

Date: Thu Jan 12 15:00:00 CST 2012

.

http://sciencedude.ocregister.com/2012/01/16/cool-dry-after-light-rain-more-ahead/166663/
http://sciencedude.ocregister.com/2012/01/16/cool-dry-after-light-rain-more-ahead/166663/
http://sciencedude.ocregister.com/2012/01/13/as-space-junk-falls-russia-hints-at-sabotage/166579/
http://sciencedude.ocregister.com/2012/01/13/as-space-junk-falls-russia-hints-at-sabotage/166579/
http://sciencedude.blog.ocregister.com/2012/01/13/warm-today-red-flag-warning-for-mountains/166607/
http://sciencedude.blog.ocregister.com/2012/01/13/warm-today-red-flag-warning-for-mountains/166607/
http://sciencedude.blog.ocregister.com/2012/01/12/red-flag-fire-warning-for-santa-ana-mountains/166585/
http://sciencedude.blog.ocregister.com/2012/01/12/red-flag-fire-warning-for-santa-ana-mountains/166585/
http://www.ocregister.com/news/marine-335239-aquarium-institute.html
http://www.ocregister.com/news/marine-335239-aquarium-institute.html
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B.4 Informed Consent IRB# 20120212388 EX

The user survey was conducted with two groups of participants, students and Mechan-

ical Turk participants. As such, two separate informed consent forms were required,

but the deviations were small. The IRB protocol for this study includes the following

terms and conditions, with differences marked:

Purpose of the Research

The goal of this research is to assess the feasibility of using input/output specifications

for demonstrate desired program behavior.

Procedures

(Mechanical Turk) You must be at least 19 years of age to participate in this study.

Participation in this study will involve the completion of one or more HITs that will

ask you to answer a question regarding a list of items or a table. You will be asked

multiple-choice questions about the pipes. This study will be conducted from your

personal computer via the Mechanical Turk website.

Each HIT should take no more than 1-5 minutes to complete, though the allotted

time by Mechanical Turk allows 10 minutes per HIT. To complete all 10 of the HITs

available to you should take no longer than one hour in total.

(Students) You have been asked to participate based on your enrollment in this course,

and you must be at least 19 years of age to participate. The assessment will be

administered here, today. Participation in this study is voluntary and will involve the

completion of a survey regarding your programming practices and the completion of
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up to 10 tasks in which you will determine the results of a query on a table or list of

data. This assessment will take no more than 15 minutes to complete.

Benefits and Risks

This assessment will provide you with practice in analyzing queries on tables and/or

lists. There are no known risks or discomforts.

Compensation

(Mechanical Turk only) For each HIT completed (up to 10), you will receive com-

pensation of $0.26, for a potential total compensation of $2.60. If you choose not to

complete any HITs, you will not receive any monetary compensation.

Confidentiality

(Mechanical Turk) Your answers will be strictly confidential and will not be connected

to your name, email, IP address, or any other identifying information.

(Students) Your answers will be strictly confidential and will not be connected to your

name or made available to your instructor.

Use of Data

The data collected will be aggregated and used for research in the area of software

engineering, so if you decide to participate we would appreciate your effort in completing

the assigned task to the best of your abilities. The data will be summarized across

all participants (i.e., we will not be able to identify you from your data). Results

will be reported in conference proceedings, journals, and presentations at software

engineering conferences and workshops.
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Opportunity to Ask Question

You may ask any questions concerning this research and have those questions answered

before agreeing to participate in or during the study. The investigators for this

research are Dr. Elbaum and Ms. Stolee; their respective email addresses are ’elbaum

at cse.unl.edu’ and ’kstolee at cse.unl.edu’. If you have questions concerning your rights

as a research subject that have not been answered by the investigator or to report

any concerns about the study, you many contact the University of Nebraska-Lincoln

Institutional Review Board, telephone (402) 472-6965 or e-mail ’irb at unl.edu’.

Freedom to Withdraw

(Mechanical Turk) You are free to decide not to participate in this study or to withdraw

at any time without adversely affecting your relationship with the investigators or the

University of Nebraska. Your decision will not result in any loss or benefits to which

you are otherwise entitled, but compensation is only provided once HITs have been

completed.

(Students) You are free to opt-out at any time without adversely affecting your

relationship with the investigators, your instructor, or UNL.

Consent, Right to Receive a Copy

Your acceptance certifies that you have decided to participate having read and under-

stood the information presented. You may save this page for your records.

Affiliations

We are researchers in the ESQuaReD lab at the University of Nebraska-Lincoln.
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Appendix C

Search Results Study

C.1 Qualification Test

The comprehensive section of the qualification test used two code snippets and asked

multiple-choice questions about the behavior of the source code. The questions were

as follows:

Answer the next two questions considering the following Java method:

public static boolean foo(String s , char c) {
if (s .indexOf(c) != −1) {

return true;
} else {

return false ;
}

}

1. Identify the output (return value) for the following method invocation:

foo("hello", ’x’);

a) True

b) False
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c) Null

2. Identify the method invocation that yields the following output (return value):

true

a) foo("I drive", ‘a’);

b) foo("I drive a car", ‘a’);

c) foo("running is better", ‘a’);

Answer the next two questions considering the following Java method:

public static String bar(String s , int i ){
if (s .length() > i) {

return s .substring(0, i ) ;
}else {

int diff = i − s.length() ;
for( int j = 0; j < diff ; j++) {

s = s + ’∗’ ;
}

}
return s ;

}

1. Identify the output (return value) for the following method invocation:

bar("hello", 7);

a) hello

b) hello**

c) he

d) Null

2. Identify the method invocation that yields the following output (return value):

he

a) bar("hello", 7);
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b) bar("help", 7);

c) bar("hello", 3);

d) bar("help", 2);

C.2 Informed Consent IRB# 20130513551 EX

The IRB protocol for this study includes the following terms and conditions:

Purpose of the Research

The goal of this research is to measure the relevance of search results from three search

techniques for program source code: descriptive, signature, and semantic.

Procedures

You must be at least 19 years of age to participate in this study. Participation in this

study will involve the completion of one or more HITs that will ask you to answer

a question about the relevance of source code to a programming task. You will be

asked to answer multiple-choice questions about the source code and also to justify

your answers. This study will be conducted from your personal computer via the

Mechanical Turk website.

Each HIT should take no more than 3-5 minutes to complete, though the allotted

time by Mechanical Turk is 20 minutes per HIT. To complete all 22 of the HITs

available to you should take no longer than two hours in total.

Risks and/or Discomforts

There are no known risks or discomforts
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Benefits

This assessment will provide you with practice in assessing the relevance of source

code for a particular goal.

Compensation

For each HIT satisfactorily completed (up to 22), you will receive compensation of

$0.20, for a potential total compensation of $4.40. If you choose not to complete any

HITs, you will not receive any monetary compensation.

Confidentiality

Your answers will be strictly confidential and will not be connected to your name,

email, IP address, or any other identifying information. The data will be summarized

across all participants and results will be reported in conference proceedings, journals,

dissertations, and presentations at software engineering conferences and workshops.

Opportunity to Ask Questions

You may ask any questions concerning this research and have those questions answered

before agreeing to participate in or during the study. The investigators for this

research are Dr. Elbaum and Ms. Stolee; their respective email addresses are ’elbaum

at cse.unl.edu’ and ’kstolee at cse.unl.edu’. If you have questions concerning your rights

as a research subject that have not been answered by the investigator or to report

any concerns about the study, you many contact the University of Nebraska-Lincoln

Institutional Review Board, telephone (402) 472-6965 or e-mail ’irb at unl.edu’.
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Freedom to Withdraw

You are free to decide not to participate in this study or to withdraw at any time

without adversely affecting your relationship with the investigators or the University

of Nebraska. Your decision will not result in any loss or benefits to which you are

otherwise entitled, but compensation is only provided once HITs have been completed.

Consent, Right to Receive a Copy

Your acceptance certifies that you have decided to participate having read and under-

stood the information presented. You may save this page for your records.

Affiliations

We are researchers in the ESQuaReD lab at the University of Nebraska-Lincoln.
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C.3 R Analysis Details

In the R analysis, we read in a file that contains summary information, with a column

for each of the factors, Problem and Search (both categorical), a column for the

Generators (also categorical, these are the ’subjects’ in the design), and the P@10

and Q@10 metrics in the P and Q columns, respectively.

dataagg <−
read.csv(file=”phdthesis/dissertation/mturkResultsForRagg.csv”,head=TRUE,sep=”,”)

summary(dataagg)
Problem Generator Search Snippet P Q

eight : 9 g : 8 goog:24 Min. :1 Min. :0.1000 Min. :0.0000
eleven : 9 e : 7 mero:24 1st Qu.:1 1st Qu.:0.3000 1st Qu.:0.0000
five : 9 j : 7 mine:24 Median :1 Median :0.5000 Median :0.2000
seven : 9 a : 6 Mean :1 Mean :0.5278 Mean :0.2153
six : 9 b : 6 3rd Qu.:1 3rd Qu.:0.8000 3rd Qu.:0.3000
thirteen : 9 c : 6 Max. :1 Max. :1.0000 Max. :0.8000
(Other) :18 (Other):32
> summary(Generator)
a b c d e f g h i j k l
6 6 6 6 7 6 8 6 6 7 5 3
> summary(Problem)

eight eleven five seven six thirteen twenty twentyone
9 9 9 9 9 9 9 9

We observe a strong correlation between P@10 and Q@10, so in the ANOVA we

consider P@10 as the response variable. Search and Problem are the factors in this

2x2 factorial design.

> cor(P, Q, method=”spearman”)
[1] 0.718138
> summary(aov(P˜Search∗Problem, data=dataagg))

Df Sum Sq Mean Sq F value Pr(>F)
Search 2 1.08111 0.54056 11.6527 7.496e−05 ∗∗∗
Problem 7 0.52444 0.07492 1.6151 0.1540
Search:Problem 14 0.99222 0.07087 1.5278 0.1373
Residuals 48 2.22667 0.04639
−−−
Signif . codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1

The hypothesis tests were conducted using the Mann-Whitney non-parametric test

of means:

> wilcox.test(P[Search==”goog”], P[Search==”mine”])
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Wilcoxon rank sum test with continuity correction

data: P[Search == ”goog”] and P[Search == ”mine”]
W = 383.5, p−value = 0.04751
alternative hypothesis: true location shift is not equal to 0

> wilcox.test(P[Search==”goog”], P[Search==”mero”])

Wilcoxon rank sum test with continuity correction

data: P[Search == ”goog”] and P[Search == ”mero”]
W = 470.5, p−value = 0.0001498
alternative hypothesis: true location shift is not equal to 0

> wilcox.test(P[Search==”mine”], P[Search==”mero”])

Wilcoxon rank sum test with continuity correction

data: P[Search == ”mine”] and P[Search == ”mero”]
W = 391, p−value = 0.0326
alternative hypothesis: true location shift is not equal to 0

Took the average number of ’yeses’ that were answered over time for each of the

basic tasks. Turns out the slope coefficient is very low, 0.01739, indicating no linear

relationship between a participants’ likeness to answer ’yes’ and the order of the basic

tasks.

> order=1:24
> rel = c (13,15,15,19,15,18,18,12,12,17,13,19,21,16,15,15,18,16,17,16,12,17,17,14)
> plot(order, rel )
> r = lm(formula=rel˜order)
> r

Call :
lm(formula = rel ˜ order)

Coefficients :
(Intercept) order

15.61594 0.01739



245

Bibliography

[1] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at

massive scale using language modeling. In Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, pages 207–216, Piscataway,

NJ, USA, 2013. IEEE Press.

[2] Robert Balzer. A 15 year perspective on automatic programming. IEEE Trans-

actions on Software Engineering, 11(11):1257–1268, November 1985.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise

refinement. In Proceedings of the 25th International Conference on Software

Engineering, ICSE ’03, pages 187–197, Washington, DC, USA, 2003. IEEE

Computer Society.

[4] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In IEEE 23rd

International Conference on Data Engineering, 2007., pages 506–515. Ieee, 2007.

[5] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis

for string-manipulating programs. In Proceedings of the 15th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems:

Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2009,, TACAS ’09, pages 307–321, Berlin, Heidelberg, 2009.

Springer-Verlag.



246

[6] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu,
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