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Judicious management of on-chip last-level caches (LLC) is critical to alleviating the

memory wall of chip multiprocessors (CMP). Although there already exist many LLC

management proposals, belonging to either the spatial or temporal dimension, they fail

to capture and utilize the inherent interplays between the two dimensions in capacity

management. Therefore, this dissertation is targeted at exploring and exploiting the

spatiotemporal interactions in LLC capacity management to improve CMPs’ performance.

Based on this general idea, we address four specific research problems in the dissertation.

For the private LLC organization, prior-art proposals can improve the efficacy of

inter-core cooperative caching at the coarse-grained application level. However, they

are still suboptimal because they are unable to take advantage of the diverse capacity

demands at the fine-grained set level. We introduce the SNUG LLC design that exploits

the set-level non-uniformity of capacity demands and thus further improves performance.

Still for the private LLC management, we notice that neither spatial nor temporal

LLC management schemes, working separately as in prior work, can deliver robust

performance under various circumstances due to set-level non-uniform capacity demands.

We propose a novel adaptive scheme, called STEM, to solve the problem by interactively

managing both spatial and temporal dimensions of capacity demands at the set level.

For the shared LLC organization, existing proposals try to improve either locality

or utility for heterogeneous workloads. But we find that none of them can deliver

consistently the best performance under a variety of workloads due to applications’



diverse locality and utility features. To address the problem, we present the CLU LLC

design that co-optimizes the locality & utility of co-scheduled threads and thus adapts to

more diverse workloads than the prior-arts.

To make a cache management strategy practical for industry, we will need to cut the

overhead of the re-reference prediction value (RRPV). We observe that delicately-tuned

replacement policies rooted in single-bit RRPVs can closely approximate the performance

of their correspondents with log associativity-bit RRPVs. Therefore, we propose a novel

practical shared LLC design, called COOP, which entails a 1-bit RRPV per cacheline and a

lightweight monitor per core for locality & utility co-optimization. At a considerably low

storage cost, COOP achieves higher performance than the two recent practical replacement

policies that rely on 2-bit RRPVs but are oriented towards locality optimization only.
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Chapter 1

Introduction

Chip multiprocessors (CMPs) have become the de facto design paradigm for high-

performance processors. Driven by a new corollary of Moore’s Law [1] predicting

that the CMP core count will double every 18 months, major chip manufacturers have

been making steady progress in promoting the CMP technology to a many-core scale,

which is evidenced by Tilera’s recent announcement of the world’s first 100-core processor

TILE-Gx100
TM [2].

This trend of aggressive core count growth, however, is now threatened by obstacles

imposed by certain performance-critical components that are less scalable. One such

obstacle is the memory wall [3] that limits CMPs’ performance with both long latency

and limited bandwidth. Historically, the operating frequency of a processor was scaled

much faster than that of main memory (e.g., DRAM) because of their distinct structural

and electronic features [4]. Although CMPs’ frequency scaling has already slowed down

due to power and thermal constraints, the previous unbalanced frequency scaling has

already resulted in a huge speed disparity between processors and DRAM, rendering

off-chip memory accesses one or two orders of magnitude slower than on-chip cache

references. At the same time, the aggressive core count growth is hitting the upper bound



2

of available memory bandwidth [5]. This is because the increase of on-chip cache capacity

still lags behind the growth of on-chip core counts [6], leading to shrunk cache capacity

per core and in turn more off-chip memory requests. If the available off-chip memory

bandwidth cannot sustain the rate at which memory requests are generated, cores will

be forced to degrade their performance until the rate of memory requests matches

the available memory bandwidth, which defeats the purpose of yielding additional

throughput performance by incorporating more cores.

Since the memory wall is a fundamental problem in computer architecture, there has

been a large body of research literature on alleviating the impact of the memory wall

from different angles, which can generally be classified into the following four categories:

• making efficient use of on-chip caches, especially the last level caches (LLC) that have

the largest capacity among all cache levels, to minimize off-chip memory requests

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17];

• hiding memory latency by prefetching [18, 19, 20, 21, 22, 23, 24];

• overlapping memory latency by exploiting memory level parallelism (MLP) [25, 26];

• architecting 3D stacked memory or optical I/Os to reduce the wire delay and

increase the bandwidth between processors and main memory [27, 28, 29, 30];

However, the four categories of techniques have very different optimization objectives

and are thus largely orthogonal to one another. In this dissertation, I mainly focus on

optimizing the management of CMPs’ LLCs that plays an irreplaceable role in minimizing

accesses to main memory, as this topic offers a rich space for solutions that have not

yet been fully explored. The emphasis on minimizing off-chip memory requests was

also highlighted during a recent panel discussion about the challenges facing exascale

computing [31] in which applications work on huge datasets.
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1.1 LLC Capacity Management Problems

The capacity management of CMP LLCs depends on the specific LLC organization.

As will be detailed in Chapter 2, there are two basic types of LLC organizations in

CMPs, private and shared. In the private LLC organization, the entire LLC capacity

is partitioned into slices, and each processing core has only but exclusive access to its

local LLC slice. The private LLC organization can benefit cache references with localized

and minimal access latency. But it suffers from the weakness of fixed and limited space

that is accessible to a core. Conversely, in the shared LLC organization, the entire LLC

space can be accessed by every core. Despite its large aggregate capacity, the shared LLC

organization usually places data in the slices distant from a requesting core due to the

distributed nature of large cache space, leading to long access delays for the remote data.

However, it is worth mentioning that, because of the complementary advantages and

disadvantages of the two basic LLC organizations, there is little consensus about which

one is superior in the research community. This dissertation will not get involved with the

“private versus shared” debate, but rather make contributions to the better performance

of both LLC organizations.

There are two major concerns about the capacity management of private LLCs. First,

when different applications/threads 1 are co-scheduled on a CMP, they typically have

distinct capacity demands from each other. The private LLC organization, however,

statically allocates the same amount of exclusive space to each thread. As a result, some

threads may need more capacity than what their private LLCs can provide, while others

have underutilized LLC space. To overcome the barrier that prevents capacity sharing

in the private LLC organization, Chang et al. [32] propose the framework of inter-core

cooperative caching (CC) by allowing “private” LLCs to use each other as victim caches.
1In this dissertation, the terms “application” and “thread” are interchangeable unless they are specifi-

cally set apart.
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But the original CC framework can unnecessarily favor the streaming-like applications in

cooperative caching just because they have a large number of victim blocks, contributing

little to overall performance. A recent proposal named the dynamic spill-receive (DSR)

paradigm [33] partially addresses the problem by prioritizing the applications that have

higher performance benefits from extra LLC space in obtaining cooperative capacity. But

as we demonstrate in Chapter 3, DSR is still suboptimal.

Second, two fundamental issues arise with respect to the capacity management of

intra-core private LLCs. On the one hand, the commonly-adopted least recently used (LRU)

replacement policy can lead to LLC thrashing if a running application’s temporal locality

is inferior. In this regard, existing statistics about memory-intensive applications [7]

indicate that over 60% blocks contribute no cache hits between their insertion into and

eviction off the LLC which is managed by LRU. Thus, alternative replacement policies

like the dynamic insertion policy (DIP) [7] and the pseudo-LIFO policy (PeLIFO) [8] are

proposed to adapt LLC replacement algorithms to workloads’ specific locality features,

as opposed to LRU’s consistent preference for excellent temporal locality. On the other

hand, capacity demands are non-uniformly distributed across different LLC sets, while

the conventional LLC design statically provisions all LLC sets with the same amount of

space. Therefore, new LLC designs such as the variable-way cache (V-Way) [9] and the

set balancing cache (SBC) [10] attempt to redistribute cache space among distinct LLC

sets to meet individual sets’ capacity needs. We will illustrate in Chapter 4 that, despite

being tackled separately in prior studies, the two issues are actually interleaved with each

other inherently. The interplay between the two aspects has a significant impact on the

LLC performance, rendering prior separate solutions unable to perform robustly under a

variety of workloads.

In terms of the shared LLC organization, although it allows processing cores to

freely share its large aggregate capacity, it is still necessary to regulate the sharing
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so as to minimize the inter-core interference and maximize overall performance. The

management has been explored in two directions in the research community: (i) a locality-

oriented approach, such as the thread-aware dynamic insertion policy (TADIP) [14] and

the next-use cache (NUcache) [15], differentiates the locality features of co-scheduled

threads (or different memory instructions) and coordinates replacement algorithms for

them; (ii) a utility-oriented approach, including the utility-based cache partitioning (UCP)

[12] and the promotion/insertion pseudo partitioning (PIPP) [13], explicitly partitions the

shared space among concurrent threads based on an estimate of how efficiently each

thread can generate cache hits with an amount of LLC capacity. The two types of

approaches, however, have different working principles and thus distinct performance

comfort zones. Neither of them, working separately as suggested in their proposals, is

able to consistently deliver the best performance under all circumstances. Chapter 5

will show that, by interactively co-optimizing the locality and utility of co-scheduled

threads, an adaptive solution can well bridge the gap between the existing two types of

approaches.

In the cache structure, a re-reference prediction value (RRPV) field is included in every

cache line. Its function can be explained as follows. If no invalid lines are present upon

a cache replacement, the block with the largest RRPV in the set will be selected as the

victim block, since it is predicted to be re-referenced furthest in the future. To strictly

sort all lines in a set, there have to be log Associativity bits in a RRPV field. But this

overhead is considered prohibitive and impractical for shared LLCs because of their large

associativity. For instance, if the LLC associativity is 32, each line needs to have 5 bits in

its RRPV field. To reduce the overhead, the industry typically devotes fewer bits to the

RRPV to partially sort the cache lines in a set. Recently, two proposals, the thread-aware

dynamic re-reference interval prediction (TA-DRRIP) [16] and the signature-based hit predictor

(SHiP) [17], have significantly cut down the cost by relying on 2-bit RRPVs in spite of



6

CMP

LLC

Shared LLCPrivate LLC

CC

 (ISCA¶06)

Replacement
Inter-Core

Optimization

Scalabiity

Partitioning

DSR 

(HPCA¶09)

Effectiveness

UCP

(MICRO¶06)

PIPP

(,6&$¶09)

TADIP 

(3$&7¶08)

NUCACHE 

(+3&$¶11)

DCC 

(3$&7¶08)

NM

 (3$&7¶08)

ECC 

(,6&$¶10)

CloudCC

 (+3&$¶12)

SNUG

(Chapter 3)

VWAY

 (ISCA¶05)

TADRRIP 

(,6&$¶10)

SHiP 

(0,&52¶11)

Practical

CLU

(Chapter 5)

COOP

(Chapter 6)

SBC

(0,&52¶09)

Intra-Core

Optimization

DIP

 (ISCA¶07)

PeLIFO

(0,&52¶09)

Set-Level Replacement

STEM

(Chapter 4)
 

Figure 1.1: Dissertation Overview

the LLC associativity. But the two proposals are oriented towards locality optimization

only, missing the performance improvement opportunities that are uniquely provided by

utility optimization. Therefore, locality and utility co-optimization is still indispensable

to achieving higher performance, as will be revealed in Chapter 6. We will also prove

that a 1-bit RRPV field is sufficient to implement locality and utility co-optimization with

the support of extra lightweight monitors, thus further reducing the hardware overhead.

1.2 Contributions of the Dissertation

As illustrated in Figure 1.1, by addressing the aforementioned four specific problems, we

strive to make the following contributions in this dissertation.

• In Chapter 3, we derive a set of mathematical models to define the set-level capacity

demand, characterize its non-uniform distribution in real-world applications and

design a scheme called the Set-level Non-Uniformity identifier and Grouper (SNUG)

[34] that utilizes the non-uniformity to enhance inter-core cooperative caching.
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SNUG detects the capacity demand of a set with a per-set shadow tag array and

saturating counter and groups cross-core peer sets for spilling and receiving in

an flexible way by using an index-bit flipping scheme. Our SNUG cache design

improves the CMP throughput by up to 22.3% and with an average of 13.9% over the

baseline configuration, outperforming the prior-art DSR scheme that only achieves

an improvement by up to 14.5% and 8.4% on average.

• In Chapter 4, we provide a unique taxonomy that categorizes prior studies on

intra-core LLC management into either the spatial dimension or the temporal

dimension. Further, our workload characterization indicates that none of prior-art

spatial or temporal schemes can adapt to the diverse capacity needs that applications

have in the two dimensions. Therefore, we propose the SpatioTEMporal capacity

management (STEM) [35] solution to concurrently manage programs’ spatial and

temporal capacity demands. STEM works by interactively pairing off peer sets

for intra-core cooperative caching and determining replacement algorithms for

individual sets. STEM improves the performance metrics of MPKI (misses per 1k

instruction), AMAT (average memory access time) and CPI (cycles per instruction)

over LRU by 21.4%, 13.5% and 6.3% respectively, better than the improvements

obtained by prior-art spatial and temporal approaches, at a manageable HW storage

cost of only 3.1%.

• In Chapter 5, for the management of shared LLCs, we sort out prior work by

differentiating locality-oriented versus utility-oriented mechanisms. By comparing

the two types of approaches qualitatively and quantitatively, we observe that locality-

oriented and utility-oriented approaches have distinct performance comfort zones

and neither is consistently the best. To address this issue, we develop a novel

management framework that is able to Co-optimize Locality and Utility (CLU) [36]



8

for shared LLCs. The key idea of CLU is to derive a composite hit curve from

monitored LRU and BIP hit curves for each thread and leverage it to interactively

determine capacity partitioning and replacement algorithms for all co-scheduled

threads. CLU improves the throughput by 24.3%, 45.3% and 43.3% for our simulated

dual-core, quad-core and eight-core systems (with 0.26%, 0.27% and 0.53% storage

overhead) respectively, outperforming the existing locality-oriented and utility-

oriented schemes.

• In Chapter 6, we show how to utilize minimal-overhead hardware to achieve high

performance in practical shared LLC management. We argue that most of prior

studies on shared LLC management discourage the industry to adopt them due to

the prohibitive log Associativity-bit RRPV cost per cache line. While the two most-

recent 2-bit RRPV proposals reduce the overhead for smart replacement policies that

are oriented towards locality optimization, we demonstrate that they cannot always

supersede cache partitioning in that they are unable to achieve certain performance

benefits provided by locality optimization. We also observe that carefully-tuned

replacement policies rooted in single-bit RRPVs can closely approximate the per-

formance of their correspondents which are based on log Associativity-bit RRPVs.

Therefore, we propose to leverage single-bit RRPVs to perform locality & utility

co-optimization (COOP) [37] with the support of additional lightweight locality &

utility monitors. COOP offers significant throughput improvement over LRU by

on-average 7.67%, at a cost of 17.74KB RRPV overhead that is only 55.4% of LRU’s.

1.3 Organization of the Thesis

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the back-

ground of on-chip cache hierarchies, structures and organizations, and survey relevant
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research concerns as well as the prior-art work. As briefly summarized in Section 1.2,

from Chapter 3 to Chapter 6, we present our solutions to the four identified research

problems. Chapter 7 outlines the wider implications and potential directions for future

research from both architecture’s and systems’ perspectives. Finally, Chapter 8 concludes

the entire dissertation.
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Chapter 2

Background & Literature Review

In this chapter, we briefly introduce the essential background of processor caches at the

architecture level. We also summarize existing cache studies in a coherent framework,

delineate their pros and cons and highlight potential areas for research. Our intention is

to present the landscape of research on CMP LLC management so that readers can have a

big picture before reading subsequent chapters. Hence, we do not go into intricate details

that can be found in the references to the original papers or reports.

2.1 On-Chip Cache Hierarchy

The design principle of on-chip caches is to exploit both temporal and spatial localities of

running programs. Specifically, temporal locality is referred to as accesses to the same

memory location that occur close together in time, while spatial locality means accesses

to nearby memory locations in successive memory references [38]. Similar to the memory

hierarchy in a computer system [39], on-chip caches are also built in hierarchy to balance

the conflicting goals of speed and capacity among the multiple levels. The higher-level

caches provide faster accesses, while the lower-level ones have larger capacity for data
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Figure 2.1: Cache Structure

retention. L1 data and instruction caches are at the highest level in the hierarchy. They

are connected with the instruction fetch unit and the load/store queue of a processing

core respectively, and both of them are exclusively used by the attached core. L1 caches

typically have small sizes and low associativity (see the concept in Section 2.2) so that their

access delays are as low as only 1 or 2 cycles. A miss in an L1 data or instruction cache

will initiate a request to the L2 cache. If there are only two levels of caches on-chip, the

L2 cache is the last level cache (LLC) that provides as much capacity as several megabytes

(e.g., 4MB in AMD’s A6-Series processors [40]) with 10-20 cycles of access latency. The

last level cache can adopt either a private or a shared organization, as will be detailed

in Section 2.3. In this thesis, for simplicity and without loss of generality, the L2 cache

is always assumed to be the last level cache unless more cache levels are specifically

mentioned.

2.2 Cache Structures

As illustrated in Figure 2.1, an on-chip cache is typically structured in three tiers inter-

nally. The 1st tier is the cache entity itself to which the upper-level memory hierarchy

components send requests. E.g., an L2 cache receives references from L1 caches. In
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the 2nd tier, a cache is organized in sets. The cache accesses are mapped to individual

cache sets based on the requested addresses. In practice, for the simplicity of address

decoding, the integer MOD function is widely adopted with the modulo base equal to

the number of cache sets (typically an integral power of 2). Then, the references whose

target addresses have the same congruence relation will be mapped to the same cache

set and thus form a working set. The 3rd tier is the cache line, which is the basic unit of

resource management in cache. All cache lines assigned to the same set will be used to

host the member blocks of the corresponding working set, and the number of lines in a

set is defined as the set’s associativity. Also for simplicity, all cache sets have the same

static associativity in a typical cache design, and we usually call the cache A-way set

associative, where A is the static associativity. In particular, if A is equal to 1, the cache

is called a direct-mapped cache; if the number of sets is equal to 1, the cache is called a

fully-associative cache.

Also depicted in Figure 2.1, a cache line typically consists of two parts, data and

metadata. To exploit the spatial locality, the data part typically contains tens of bytes of

information, and the length is termed the line size. A commonly-adopted line size in

AMD’s and Intel’s processors is 64 bytes. To look for certain content in the cache, the

cache controller needs to decompose the corresponding address to find out which set it is

located in and what it is tagged as in the set, as illustrated in Figure 2.2 and formalized

in Equation 2.1. The metadata part includes such fields as a tag, a valid bit, a dirty bit,

coherence bits and a re-reference prediction value (RRPV) [16]. The tag field differentiates the

blocks located in the same cache set. The valid bit indicates whether or not this cache

line contains valid information. The dirty bit tells if the cache line’s content is modified

and thus different from the copy in the next-level memory component, and the bit can

be absent in an instruction cache or a data cache with the write-through policy [39]. The

coherence bits are utilized to maintain cache coherence (see Section 2.8) when necessary.
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The RRPV field is used to predict how soon the cache line will be accessed again.

(block index) = b (target address)
(line size)

c

(set index) = (block index) MOD (the number of sets in cache)

tag = b (block index)
(the number of sets in cache)

c

(2.1)

Upon a cache access, the requested address is decoded to get the target set and the

tag value, as shown in Figure 2.2. The cache controller selects the target set, activates

all lines of the set, and compares the tag fields of the valid blocks with the tag value

being searched. If the block is found, it is called a cache hit; otherwise, it is a cache miss.

Upon a cache miss, the cache controller needs to select a victim block and replace it with

the requested block to be fetched from the lower-level memory component. The cache

controller will search the target set to find an invalid block (if there are any) or a block

with a certain RRPV for eviction. The selection process is carried out by a replacement

policy that decides on which block in the set needs to be evicted to make room for an

incoming block. For instance, the least-recently-used replacement policy always searches

and selects an invalid block or the one that was referenced longest ago (the line with the

maximum RRPV in the target set) as the victim block. For a valid victim line in a cache

with the write-back policy [39], if it is dirty, its content will need to be written back to the
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next-level memory component.

2.3 Private vs. Shared LLCs

As the core count keeps increasing, efficient management of CMPs’ LLCs has two

implications. On the one hand, the capacity of the LLC should be fully utilized to retain

as much data on-chip as possible for accesses in the short term. On the other hand, design

and manufacturing considerations dictate that the large on-chip LLC is fragmented into

slices and distributed on a chip, giving rise to non-uniform cache access (NUCA) time in

the LLC (see Section 2.7). In essence, the NUCA time implies that the latency of a cache

access depends on the communication distance between the requesting core and the slice

where the cache block is located.

There are two basic LLC organizations, shared and private LLCs (demonstrated in

Figure 2.4 (a) and (b) respectively), targeting at supporting capacity sharing and latency

reduction respectively. As shown in Figure 2.3 and Figure 2.4(a), shared LLCs employ

address-interleaved banking (namely, using the lower bits of a block’s set index to

determine its home LLC slice) to evenly distribute blocks to different LLC slices, which
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provides a natural way of capacity sharing for cores. But the shared LLC organization can

incur excessive remote accesses that are penalized by non-local cache access overhead and

impose much pressure on the on-chip interconnects (NoC). To reduce LLC hit latency in

the shared organization, replication-based approaches and alternative data layout strategies

(e.g., by means of page coloring, see Section 2.9) are introduced to promote the data

proximity for requesting core(s). In terms of capacity utilization, although the shared

organization can provide a large aggregate capacity to all cores, provisioning the capacity

according to individual cores’/threads’ needs so as to yield the best throughput or

fairness performance is beyond its scope. Therefore, different spatial capacity partitioning

schemes and various advanced replacement policies have been proposed to improve

the capacity utilization in the shared LLC organization. As shown in Figure 2.4(b), in

the private LLC organization, a core places requested blocks in an adjacent LLC slice

exclusively used by the core, incurring local access delays only. The intra-core private

LLC capacity management is targeted at enabling each core to make the best use of its

own LLC space. But the limited capacity accessible to a core can result in more off-chip

requests if a running thread’s capacity demand exceeds what its private LLC can provide.

To tackle this problem, the inter-core private LLC management allows different cores to

utilize each other’s “private” LLCs as victim caches, overcoming the barrier of capacity

sharing among different cores’ own LLCs.

2.4 CMP LLC Capacity Management

LLC management has been studied extensively since the uniprocessor era. In this section,

we briefly review the past research on private and shared cache management that is most

relevant to this dissertation (a necessary taxonomy of the existing cache management

mechanisms is shown in Figure 2.5).
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Figure 2.5: A Taxonomy of CMP LLC Management Mechanisms

2.4.1 Basic Replacement Algorithms

Before summarizing existing studies on LLC management, we supplement the back-

ground of an oracle replacement algorithm, the Belady’s optimal algorithm. We also discuss

two baseline replacement algorithms, the least recently used (LRU) and the not recently used

(NRU) replacement policies, as most existing work attempts to gain the advantages and

overcome the disadvantages of these two algorithms.

The Belady’s optimal algorithm [41] assumes the availability of future information

and utilizes it to make replacement decisions. It evicts the block that will be referenced

furthest in the future. The algorithm is provably optimal, meaning that it can always lead

to the lowest cache miss rates. However, due to the unrealistic assumption of knowing

future information, the algorithm is not implementable in real computer systems but

typically used for offline analysis.

The least recently used (LRU) replacement policy assumes that recency is a good

predicator of future behavior. In other words, if a block is not accessed for the longest

time, it would presumably be referenced furthest in the future. Thus, LRU seeks to

approximate the performance of the Belady’s optimal algorithm by victimizing the block

that was last referenced the longest time ago. It mimics a so-called LRU stack [42] in

which blocks are ordered by recency in a set. To maintain the recency order, LRU entails

log A-bit RRPVs in an A-way set associative cache. The block with a 0-valued RRPV,
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which is called the most-recently-used (MRU) block, is considered to be at the very top

of the LRU stack; in contrast, the one with a (A− 1)-valued RRPV, which is named the

least-recently-used (LRU) block, is regarded to be at the bottom of the LRU stack. As

a result of the strict recency ordering, the LRU replacement policy features a unique

mathematical trait, the LRU stack property [42], stipulating that the blocks which would

be in an A-way associative cache should be subsumed by those that would be in an

(A + 1)-way associative cache. The LRU replacement policy is provably able to favor

applications with good temporal locality, but it works poorly otherwise [7]. In addition,

since log A-bit RRPVs are indispensable in the LRU replacement policy, the overhead is

much higher compared to its approximations like the NRU replacement policy.

The not recently used (NRU) replacement policy entails just 1-bit RRPVs in an A-way set

associative cache. It maintains a partial recency order for the blocks of a set by classifying

them into recently-used (with 0-valued RRPVs) and not-recently-used (with 1-valued

RRPVs) groups. Upon a cache hit, NRU updates the block’s RRPV bit to 0. In order to

select a victim block for eviction followed by a cache miss, there are two possible cases: (i)

if there are any blocks with 1-valued RRPVs in the target set, the first such block found

by scanning the set will be selected as the replacement candidate; (ii) otherwise, NRU

flips all blocks’ RRPVs to 1 and then repeats process (i) to find the replacement candidate.

Upon a cache fill, the RRPV of the newly-inserted block is set to 0. According to a variety

of studies [43, 16], the NRU replacement policy can closely (99.52%) approximate the

performance of the LRU replacement policy with just 1
log A of LRU’s RRPV overhead.

However, NRU lacks the stack property that LRU features.
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2.4.2 Intra-Core Private LLC Management

Research on intra-core private LLC management dates back to the uniprocessor era.

Generally speaking, the work in this aspect can be classified into two categories.

Temporal LLC Management: Temporal LLC management is referred to as replacement

policies that determine how the capacity of an LLC set is temporally shared among the

competing blocks of a working set mapped to the LLC set, when the LLC set cannot retain

all of them. In [7], Qureshi et al. have shown that the commonly-used LRU replacement

policy performs well if a running application has excellent temporal locality but thrashes

the LLC space otherwise. In their dynamic insertion policy (DIP) proposal, two small groups

of sample LLC sets are dedicated to LRU and the bimodal insertion policy (BIP) respectively

for performance dueling, and the winning policy is adopted for other non-sample sets

to either exploit temporal locality or prevent thrashing. Another recent work, the pseudo

LIFO (PeLIFO) [8], takes advantage of a fill-stack to rank the blocks of a set according to

the last in first out (LIFO) order. Upon replacement, PeLIFO typically does not victimize

the block with the lowest LIFO rank, but instead learns the most preferred eviction

position close to the top of the fill-stack that can lead to the best performance. In the cache

bursts study, Liu et al. [44] propose to trigger the prediction of whether a block is dead

as long as the block is moved off the most recently used (MRU) position. Once identified,

dead blocks can be replaced much earlier to make room for incoming ones.

Set-Level Spatial LLC Management: Set-level spatial LLC management is defined as space

allocation schemes that dynamically determine how the overall capacity of an LLC is

spatially partitioned among LLC sets that are hosting different working sets. It has been

noticed that there exists a non-uniform distribution of accesses to different LLC sets in

many applications. The skewed associativity cache [45] and the prime-based set indexing
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scheme [46] are the early work that diffuses accesses to LLC sets in a more balanced way.

The recent proposal ZCache [11] leverages cuckoo hashing [47] that has provably better

randomization traits than skewed associativity to scatter blocks among LLC sets. In [9],

the variable way (V-Way) cache is an LLC design that has twice as many tag entries as

data lines. The association between a tag entry and a data line needs to be dynamically

established by using a pair of front and backward pointers, via which different LLC sets

can have various numbers of ways. In another study, the set balancing cache (SBC) [10],

it is observed that the difference between the miss and the hit counts of a set, which is

defined as the saturation level, varies from set to set in the LLC. The SBC scheme pairs

off two sets exhibiting complementary saturation levels and enables the saturated set to

place victim blocks in the other’s space.

2.4.3 Inter-Core Private LLC Management

For CMPs, the private LLC organization offers fast hit latency at the cost of limited local

capacity. Thus, the main disadvantage of private LLCs lies in the rigid constraint that a

core can only access its private LLC and cannot share cache capacity with other cores. To

overcome this barrier, Chang et al. [32] propose the concept of CMP cooperative caching

(CC) to enable capacity sharing among “private” LLCs by allowing them to utilize the

capacity of each other as victim caches. That is, if a core needs to replace a native block

from its original LLC slice, instead of evicting it off chip, the block is spilled to another

core’s LLC slice. Upon the next access, the core can directly get the block from the peer

and thus avoid off-chip access penalties. But in their proposal, cooperative caching is

evoked whenever a block is evicted from its own private LLC slice, which implicitly

favors the applications/threads with higher LLC miss counts. However, a higher miss

count does not necessarily reflect the applications/threads’ real capacity demands. For



20

instance, a streaming application can have excessive cache misses, but it will occupy much

extra capacity without any performance contributions in CC.

To overcome this shortcoming, Qureshi [33] has recently proposed the dynamic spill-

receive (DSR) paradigm to regulate block spilling and receiving in response to different

applications’ cache resource needs. In the DSR paradigm, applications are classified

into two categories: taker applications that can have their performance improved with

additional cache capacity and giver applications that can contribute part of their cache

capacity to others with little performance degradation. DSR enables taker applications’

caches to spill victim blocks to those of giver applications but not vice versa, and thus

produces a better performance than the original CC scheme. Besides the aforementioned

efficacy problem, the original CC proposal also suffers from poor scalability due to its

centralized coherence engine design [32]. Herrero et al. [48] propose the distributed

cooperative caching (DCC) by utilizing the existing distributed coherence directory to

eliminate the bottleneck imposed by the centralized coherence engine. Eisley et al. [49]

leverage the NoC infrastructure to provide heuristics for cooperative caching so that

victim blocks can be deterministically migrated towards an appropriate destination.

Herrero et al. [50] have recently proposed the elastic cooperative caching (ECC) mechanism

to combine the strengths of both DCC and DSR in a unified framework for large-scale

CMPs. In [51], Lee et al. propose a new hardware design called CloudCache to minimize

off-chip traffic, reduce remote cache accesses and hide the latency of remote directory

references for many-core CMPs.

2.4.4 Shared LLC Management

For CMPs with the shared LLC organization, the capacity management is oriented

towards either locality or utility optimization in the literature.
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Locality-Oriented Capacity Management: As LRU is ineffective in handling workloads

with inferior locality, alternative replacement policies have been proposed to adapt man-

agement decisions to workloads’ specific locality characteristics, by means of sophisticated

block insertion, aging, promotion and victimization. The thread-aware dynamic insertion

policy (TADIP) [14] is a subtle CMP extension of the high-performance dynamic insertion

policy (DIP) originally designed for uniprocessors (see Section 2.4.2). TADIP identifies the

locality of individual threads through set-sampling and dueling, and then coordinates

locality optimization for all of the co-scheduled threads under feedback control. Recently,

Manikantan et al. [15] have found that the distribution of next-use distances of the

blocks, which are brought into the LLC by the same load instruction, can reflect the

temporal locality of the instruction’s memory references. In [15], the next-use distance

of a block is defined as the number of intervening misses to an LLC set between the

block’s eviction from the set and its next reference. The larger number of blocks that

feature short next-use distances, the better temporal locality the corresponding instruction

has. This motivates their design of a new temporal capacity management scheme called

NUcache that enables selected load instructions with top-k temporal locality to have

their cache blocks stay longer in the SLLC. Based on LRU-managed set samples and

dead-block prediction tables, the sampling dead block prediction (SDBP) scheme [52] learns

which memory instructions (identified by their PC signatures) tend to access cache blocks

that immediately become “dead”, victimizes the blocks touched by those PCs prior to

default replacement candidates and bypasses predicted dead-on-fill blocks.

However, TADIP, SDBP and NUcache are deemed to be not suitable for practical

CMP designs. This is because they are all based on the assumption of log A-bit RRPVs,

where A is the set associativity. But the logA-bit RRPV overhead is considered to be

prohibitive according to industry standards [43]. For example, in a 16-way 4MB cache,

the 4-bit RRPVs account for a 32KB storage overhead, equal to a typical size of the L1
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cache. Recently, Jaleel et al. [16] have proposed a high-performance practical replacement

policy called RRIP (an acronym for re-reference interval prediction). With 2 bits per line for

re-reference interval prediction, a block can have any of the three different categories of

re-reference intervals: near, long and distant. RRIP always predicts a long re-reference

interval for incoming blocks in effort to prevent the cache pollution due to a subset of

incoming blocks being dead-on-fill. Additionally, the bimodal variant of RRIP (called

BRRIP) can prevent thrashing by predicting a distant (or a long) re-reference interval

for an incoming block with a high (or a complementarily low) probability. TA-DRRIP

is a thread-aware extension of RRIP to CMPs with SLLCs by coordinating either RRIP

or BRRIP for individual threads under set-dueling and feedback control. Still rooted in

the 2-bit RRPV substrate, SHiP [17] assigns either a distant or a long re-reference interval

to an incoming block depending on whether or not it is predicted to be dead-on-fill.

Specifically, SHiP leverages a history table and sample sets to dynamically learn which

memory instructions (identified by their PC signatures) tend to insert dead-on-fill blocks,

and predicts a distant re-reference interval for new blocks if they are inserted by those

PCs or predicts a long interval otherwise.

Utility-Oriented Capacity Management: The commonly used LRU policy implicitly

divides the SLLC capacity among competing threads on a miss-driven basis, which is also

ineffective in that a thread may occupy much capacity by bringing into the cache a number

of missed blocks but without re-referencing them. SLLC capacity partitioning is targeted

at allocating LLC resources to threads on a utility, fairness or quality-of-service (QoS) basis.

Here, utility is defined as a thread’s ability to reduce cache misses with a certain amount

of cache capacity. Utility-based cache partitioning (UCP) employs a light-weight utility

monitor (UMON) based on set sampling and the LRU stack property (see Section 2.4.1)

to dynamically estimate the efficiency/utility of allocating a certain number of SLLC
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ways to each thread. Based on the estimation, UCP always favors the threads with

the highest space utility in capacity partitioning. Another proposal promotion/insertion

pseudo-partitioning (PIPP) [13] also adopts the UMON idea for utility estimation, but

implicitly partitions the capacity by relying on a combination of insertion and promotion

policies.

There are also some studies focusing on QoS metrics other than cache performance.

[53] proposes fairness-based cache partitioning so that all threads can receive equal

slowdowns compared to the cases in which each of them monopolizes the SLLC. Nesbits

et al. [54] introduce the notion of virtual private caches by means of SLLC partitioning such

that the NoC bandwidth and cache capacity are fairly provisioned to satisfy some QoS

requirement. Zhou et al. [55] argue that the SLLC miss count, a commonly used fairness

metric in the literature, is inadequate for QoS consideration and propose to take into

account the measures of both miss count and miss penalty of each thread when deciding

SLLC partitioning.

2.5 Inclusiveness vs. Exclusiveness

Independent of cache organizations, another key design consideration for a CMP is

whether inclusion or exclusion should be enforced across its cache levels. Then, a cache

hierarchy can be categorized into three classes: (1) inclusive: if the content of upper-level

caches is strictly a subset of the lower-level cache; (2) exclusive: if the upper- and the

lower-level caches have no content in common at any time; (3) non-inclusive: if it is

neither inclusive nor exclusive.

Although inclusion can greatly simplify cache coherence protocols [56], inclusion is

prone to the weakness of bringing a large number of duplicated blocks across different

cache levels, reducing effective cache capacity. The inclusion property also requires that,
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if a block is evicted from the lower-level cache (e.g., LLC), all copies in the upper-level

caches have to be invalidated, even though those copies are “hot” at the upper level.

Recently, Jaleel et al. [57] have proposed to convey the temporal locality information from

L1 caches to the shared L2 cache and utilize it to guide L2 replacement, so that the copy

of “hot” L1 blocks can be retained longer in L2.

For the exclusive cache hierarchy, effective cache capacity is maximized as a result of

the uniqueness of data stored across cache levels. In an exclusive LLC, a cache line is

allocated and deallocated upon an inner-level eviction and an LLC hit respectively [58].

Therefore, exclusive LLCs may exhaust on-chip bandwidth to support frequent insertions

of cache lines that are evicted from the inner level [59]. Worse still, the deallocation

upon an hit will make the exclusive LLC lose track of the locality information of the

corresponding block for replacement policies. To tackle this issue, Gaur et al. [58] propose

to leverage the number of trips made by a block between inner- and last-level caches and

the hit count contributed by the block during its residency in the inner-level cache to

guide bypass and insertion algorithms for exclusive LLCs.

The non-inclusive cache hierarchy tries to take the middle way between the inclusive

and the exclusive ones, but it cannot achieve the best sides of the two. For example,

the data redundancy in non-inclusive caches is still high, thereby reducing performance

when a workload does not have access to enough effective capacity [59]. Based on the

observation that both non-inclusion and exclusion rely on similar hardware support, Sim

et al. [59] propose a dynamic mechanism called FLEXclusion that is able to adapt a cache

hierarchy to either exclusion to maximize effective capacity or non-inclusion to minimize

NoC traffic, depending on the workload characteristics.
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2.6 Prefetching

Cache prefetching is a memory latency hiding technique that speculatively brings data to

higher cache levels (e.g., from main memory to on-chip LLC) in anticipation of future

requests for it. Prefetching can be realized in software or hardware. Software-based

prefetching takes advantage of compile-time information to instrument the original

program with extra prefetch instructions. Hardware-based prefetching detects memory

access patterns on the fly and preload data accordingly.

Generally speaking, there are four types of memory reference patterns in real-world

applications, sequential, stride, linked and irregular [18]. The sequential reference pattern

means that consecutive blocks following the block being accessed will also be referenced

shortly. For instance, streaming applications typically exhibit this kind of pattern. The

stride reference pattern implies that a memory access sequence spans multiple blocks

with a fixed distance/step in addresses. This pattern is common in programs that

access a certain field in an array of objects successively. In many high-level languages

(e.g., C) with the notion of pointers, the data pointed by one address can be used to

compute a subsequent address, which essentially forms a linked reference pattern. If a

memory access sequence does not fall into any of the three aforementioned categories, it

is considered to be an irregular reference pattern.

The research community has mainly focused on two topics about prefetching, of

which one is how to improve its accuracy and the other is how to determine and control

the ratio, priority and timeliness of prefetch requests for optimal performance. Lin et

al. [19] devise an approach of adjusting the issue rate of prefetch requests to maximize

the DRAM row-buffer hit ratio, as well as always inserting prefetched blocks into the

LRU positions of LLCs to minimize prefetch-induced cache pollution. Zhuang et al.

[22] propose to use a history table that is based on either PC or memory addresses to



26

Tile_0

R

Tile_1

R

Tile_2

R

Tile_3

R

Tile_4

R

Tile_5 Tile_6 Tile_7

R

Tile_8

R

Tile_9 Tile_10 Tile_11

R

Tile_12

R

Tile_13

R

Tile_14

R

Tile_15

R

R R

R R

Core

L2 Data

Router

L2

Tag

L
1

I
L

1
D

L2 Controller

 

Figure 2.6: Tiled CMP Architecture

filter out useless prefetch requests. Srinath et al. [21] design a sophisticated framework

based on feedback control, in which prefetch accuracy, timeliness and cache pollution are

quantified and leveraged to minimize the negative effects due to prefetching. Ebrahimi

et al. [23] propose a hierarchical coordination mechanism to maximize the benefits of

prefetching on individual cores while minimizing inter-core cache interference that is

originated from prefetching. Wu et al. [24] have recently proposed a prefetching-aware

LLC replacement policy that is able to adapt cache insertion and promotion strategies by

differentiating prefetch and demand requests.

2.7 Non-Uniform Cache Architecture

As the VLSI feature size keeps shrinking, more and more LLC capacity will be incor-

porated into CMPs. The large LLC has to get decomposed into a number of slices and

be physically distributed across the die, rendering uniform access latency difficult and

impractical. This gives rise to the non-uniform cache architecture [60], in which the access

latency for an LLC slice is a function of its size and the communication distance between
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the slice and the requesting core. As a result, cores can get faster access to adjacent slices

and slower access to distant ones. Many researchers and chip designers believe that a

tiled architecture is able to well support the increase in and the physical distribution of

LLC capacity on the die [61]. In the tiled architecture, as depicted in Figure 2.6, a core is

coupled with an LLC slice in each tile, and tiles communicate with each other via the

NoC. The tiled architecture is attractive from both design and manufacturing perspectives,

because its modularity and easy scalability to high core counts are suitable for many-core

CMPs.

In the context of non-uniform cache architecture (NUCA) [60], the shared LLC organi-

zation can incur higher hit delays, because most blocks being accessed by a core reside

in non-local SLLC slices. Victim replication (VM) [62] reduces SLLC hit latency by retain-

ing/replicating each core’s L1 victim blocks in its local SLLC slice if a victim’s home slice

is non-local. Noticing that blind replication would diminish the effective SLLC capacity

and thereby hurt performance, the adaptive selective replication (ASR) [63] mechanism

selectively replicates shared read-only data and adaptively modulates the replication level

to minimize hit latency without an obvious increase in cache misses.

2.8 Cache Coherence

In CMPs, the same datum may have several copies in different cores’ private caches

because of data sharing. Cache coherence is a correctness-critical mechanism that maintains

the logical consistency of these copies upon a update to any of them. To maintain cache

coherence, a coherence protocol defines how private caches behave in the event of read, and

more importantly, write requests. There are such protocols as MESI, MOESI, etc., with

different complexity and performance features [64].

Generally speaking, existing coherence protocols can be classified into two categories
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according to how they are realized in hardware, snoop-based and directory-based. Snoop-

based protocols typically utilize a centralized “snoopy” bus to carry out coherence actions.

Whenever a core needs to write to a piece of shared data, the write attempt will be

broadcast to other cores via the NoC (typically a snoopy bus). Then, other cores having

the same data will invalidate (or update) their local copies. A snoop coherence protocol,

however, is not scalable to a large number of cores. This is because the centralized bus

can be saturated and become a severe bottleneck if excessive coherence messages from

a number of cores all go through it. Another obstacle preventing broadcast from being

effective and scalable is its extremely low power efficiency. Since a snoop-based protocol

does not provide the exact sharer information for common data, all cores sniffing on the

bus have to look up the tag arrays of their private caches upon the arrival of a coherence

message, even though many of them may not have a copy of the data at all. Therefore,

the more cores are snooping on the bus, the more power is likely to be unnecessarily

consumed.

In contrast, a directory-based protocol is more scalable to a large number of cores,

since a directory maintains exact sharer information that can guide precise coherence

actions. The coherence directory is typically organized as a set-associative structure that

has two fields in every entry, namely, the coherence state field and the sharer information

field. In large-scale CMPs, the coherence directory is also banked and distributed. The

definition of a coherence state depends on the implemented protocol. For instance, an

MOESI protocol can have five possible states: modified, owned, exclusive, shared and invalid.

With respect to how the sharer information is maintained, the simplest design is the

full-bit sharer vector, which has exactly N bits to track all of the N cores on a CMP. If a core

needs to write to a shared data copy, the write request will first be sent to the directory.

Since the directory knows the exact sharer information by looking up the vector, the

coherence messages (either invalidation or update) can be directly sent to those relevant
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sharers only.

In the literature, there are a plenty of studies on coherence issues dating back to 1980s,

1990s and early 2000s, which established the foundations of coherence problems and

solutions for multiprocessor systems. [65] presents a comprehensive survey of the related

work prior to 2000. Recently, directory coherence issues for future many-core CMPs have

received noticeable attention. Proximity coherence [66] improves performance by enabling

neighboring cores’ private L1 caches to directly obtain shared data from each other and

autonomously maintain coherence among themselves without frequently accessing the

coherence directory. [67] devises a content-aware coherence directory that essentially

identifies and consolidates identical sharer vectors so as to reduce the redundancy and

overhead of maintaining sharer information. G. Kurian et al. [68] design a new coherence

directory for future 1024-core CMPs overlaid with an on-chip optical NoC by exploiting

the high-bandwidth and low-latency features of the optical NoC. Kelm et al. [69] propose

to use off-chip memory to store evicted sharer lists and later directly bring the lists into

directories when they are needed again. Cuesta et al. [70] propose to avoid tracking

private blocks that do not need coherence and decrease the contention on directory caches

with the help of operating systems. Sanchez et al. [71] propose to take advantage of cuckoo

hashing to assign a variable number of tags to maintain sharer information for different

blocks according to their sharing degrees.

2.9 OS-Guided Cache Management

Page coloring [72] is an OS-guided approach that flexibly maps a virtual page to a region

of consecutive sets in a physically-indexed cache. The memory management unit of an

OS dedicates the upper bits of a physical address to the physical page number. When the

address is applied to data lookups in a physically-indexed cache, the set-index field in the



30

Offset

offsettag

page index

set index

page color

(a) The Page Color Field in a Physical
Address

Main Mem

LLC

virtual addr physical addr

Heap

P
ag

e 
T

ab
le

 

(b) The Virtual-to-Physical Address Translation &
Memory-to-Cache Mapping

Figure 2.7: Page Coloring

middle of the physical address is used to determine which cache set the data is located in.

As depicted in Figure 2.7(a), there exist several overlapped bits between the physical page

number and the cache set index, which is termed as a page color. Physical pages with an

identical color will be mapped to a cache region which consists of sets with the same

color value, implying that the mapping between physical pages and physically-indexed

cache sets is fixed. But since the OS can manipulate a page table to determine which

physical frame (e.g., 4KB in Linux) a virtual page is located in, the OS is thus able to

flexibly map a virtual page to any cache region, as illustrated in Figure 2.7(b).

First proposed in [73], by using the lower bits of a block’s physical page index rather

than the block index to determine its home LLC slice, OS-guided SLLC management

is shown to have a direct and flexible impact on CMP’s SLLC hit latency and sharing

degrees. Lin et al. [74] propose to partition the SLLC capacity to optimize throughput,

fairness or QoS for CMPs by allocating page colors to different cores. Soares et al. [75]

propose the run-time operating system cache-filtering service (ROCS) that designates a small

LLC cache region which a physical page can fit in as a pollute buffer. Pages exhibiting

high miss rates are recolored and remapped to the pollute buffer, preventing them from

polluting others that exhibit high hit rates. Awasthi et al. [76] propose to utilize shadow

address bits in migrating shared pages to optimal locations. Chaudhuri [77] devises a
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HW mechanism to support the decision-making on when and where to migrate an entire

page so as to amortize performance overhead. A recent LLC design called the reactive

NUCA (R-NUCA) [78] classifies LLC accesses into distinct categories and adapts data

placement, replication and migration to individual access categories via page coloring.

Ding et al. [79] make the observation that the file system dataset has inferior temporal

locality compared to the virtual memory dataset. Therefore, they propose the selected

region mapping buffer (SRM-Buffer) design, which segregates the file system dataset and

designates a small LLC region to accommodate this part of data by page coloring, so

that the virtual memory dataset can be allocated with most LLC capacity and free from

interference.
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Chapter 3

Exploiting Set-Level Non-Uniformity of

Capacity Demands to Enhance CMP

Cooperative Caching

3.1 Problem Definition

As chip multiprocessors (CMP) are becoming predominant in processor manufacturing,

computer architects are challenged to design CMPs in a way that fully exploits the

performance potentials of multiple cores. One of the key research issues is to reduce

the high cost of off-chip memory accesses, which are generally determined by the three

factors: access latency, bandwidth and the number of off-chip accesses. While there are

techniques such as 3D memory stacking [80], prefetching [81] and optical I/Os [82] that

can help reduce (or hide) the long latency and increase the bandwidth of DRAM accesses,

on-chip last level caches (LLC) play an irreplaceable role in reducing the number of

DRAM accesses by keeping as much data as possible on-chip for future references, which

necessitates a very effective management of CMP LLCs.
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Recently, some researchers [48, 49] have advocated the private LLC (L2P) cache

organization in future cache designs, since in comparison with the shared LLC (L2S)

cache organization, L2P is experimentally found to have lower access latency, lower

requirements for on-chip interconnects, better performance isolation and easier support

for resource management. However, due to the limited cache capacity accessible to each

core, the miss rate of L2P can be higher than L2S when a core’s cache resource demand

exceeds its local private L2 capacity.

To tackle the problem, Chang and Sohi [32] propose the mechanism of cooperative

caching (CC) to allow capacity sharing among different “private” L2 caches by enabling

each cache to utilize the capacity of others as victim caches. But in their proposal,

cooperative caching is performed regardless of the performance implication: whenever a

block is evicted from its own private cache, cooperative caching attempts to retain the

block in one of the peer L2 caches, whether or not spilling the block to a peer cache will

help the overall performance. For instance, a streaming application can actually always

prevail in cooperative caching since it continuously replaces cache blocks; but having

its victim blocks cooperatively cached will not be beneficial at all. Instead, retaining its

victim blocks can adversely hurt other L2 caches’ performance, since cooperative caching

comes at the cost of occupying other caches’ capacity.

To overcome the shortcoming of cooperative caching, Qureshi [33] has recently pro-

posed the dynamic spill receive (DSR) paradigm to regulate block spilling and receiving in

response to different applications’ cache resource requirements. In the DSR paradigm,

applications are classified into two categories: taker and giver applications. Taker ap-

plications can have their performance improved with additional cache capacity, while

giver applications can contribute part of their cache capacity to others with little per-

formance degradation. When taker and giver applications are co-scheduled on a CMP,

taker applications’ L2 caches can spill victim blocks to those of giver applications, but
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not vice versa. While this approach is shown to improve the overall performance when

the non-uniformity of cache resource demands explicitly exists at the application level,

it becomes less effective for workloads of which such non-uniformity is manifested at a

finer granularity as demonstrated in this chapter.

The objectives of this chapter are to prove the existence of non-uniform capacity

demands at the cache-set level and thereby to exploit this non-uniformity to further

enhance the effectiveness of cooperative caching. The key insight of this chapter is that

differentiating the cache resource demands only at the application level is insufficient

for enhancing cooperative caching when the performance-sensitive non-uniformity of

capacity demands does not surface to the application level but instead exists at the

cache-set level. This chapter then presents a novel L2 cache design, called the Set-level

Non-Uniformity identifier and Grouper (or SNUG), which identifies and flexibly groups

cache sets with complementary capacity demands for cooperative caching. Evaluation

results show that the SNUG cache design can significantly boost the effectiveness of

cooperative caching with manageable hardware overhead.

3.2 Research Motivations

Previous studies [33, 14] have revealed that applications have diverse requirements for

cache resources. They try to utilize the application-level difference in resource demands

to optimize the utilization of CMP L2 caches for multi-programmed workloads. Distinct

from previous work, however, we take further steps to evidence the existence of non-

uniform capacity demands at the cache-set level. To accomplish this goal, we need to first

develop a group of mathematical models that accurately quantify a cache set’s capacity

requirement. With these models, we can characterize the set-level non-uniformity of

capacity demands. Finally, we argue that this fine-grained non-uniformity can be utilized
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Table 3.1: Glossary of Notation and Terms Used

Symbol Annotation

N the total number of sets in an L2 cache
A #blocks owned by a set, namely the associativity, where 0 ≤ A < ∞
S the index of a set, 0 ≤ S ≤ N − 1
I a fine-grained sampling interval for workload characterization
miss count(S, I, A) the number of misses on set S with A blocks during sampling interval I
hit count(S, I, A) the number of hits on set S with A blocks during sampling interval I
blocks required(S, I) the number of blocks required by set S during sampling interval I
Athreshold a value of associativity that is large enough to approximate ∞
Abaseline the associativity (integral power of 2) of the baseline private L2 cache
M the number of buckets/sub-ranges within [1, Athreshold]

bucketj the jth bucket, which is the subrange [ (j−1)·Athreshold
M + 1, j·Athreshold

M ], where
1 ≤ j ≤ M

MF(S, I, bucketj) a membership function used to indicate if the number of blocks
required by set S is categorized into the jth bucket during interval I

size bucketj(I) the size of the jth bucket during interval I

to further optimize inter-core cooperative caching, achieving better performance than the

application-level approaches.

3.2.1 Quantification of Set-Level Capacity Demands

We start with defining the notation and the terms in Table 3.1.

3.2.1.1 Modeling Set-level Capacity Demands

Since a cache set can be treated as an array of blocks, under a fixed block size, we can

use the number of blocks in a set to measure the number of cache resources possessed by

the set. Intuitively, if a set has enough blocks during a specific time interval, there will

be no capacity or conflict misses on the set, because these two kinds of misses happen

only when the set’s resources are limited. Therefore, if we denote the capacity demand

of a particular set during a certain time interval as blocks required(S, I), where S is the

index of the set and I is the time interval that we are interested in, we can define it as the
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minimum number of blocks required to resolve all capacity and conflict misses for the set

during the interval.

We introduce another function, miss count(S, I, A), which means the number of misses

on set S during interval I when S has A blocks. Under the LRU replacement policy that

has the stack property [42], the following relationship is always true: miss count(S, I, 0) ≥

miss count(S, I, 1) ≥ · · · ≥ miss count(S, I, ∞). From this property, we can also infer

that miss count(S, I, A) is monotonically non-increasing for given S and I when only A

increases. Ideally, if set S could get an infinite number of blocks (A = ∞) during interval

I, there would be no capacity or conflict misses on the set. At the other extreme, if

set S had no blocks at all (A = 0), all accesses to the set during interval I would miss.

Consequently, miss count(S, I, ∞) is equal to the number of compulsory misses on set S

during interval I, while miss count(S, I, 0) is equivalent to the number of accesses to set

S during interval I.

If set S’s capacity demand is satisfied during interval I, which means that set S gets as

many blocks as blocks required(S, I), only compulsory misses can happen to set S. Thus,

we give a quantitative definition of blocks required(S, I) in Equation 3.1.

blocks required(S, I) = min A

s.t. miss count(S, I, A)−miss count(S, I, ∞) = 0
(3.1)

Since it is impractical to measure miss count(S, I, ∞) when the set associativity A

is ∞, and also because the function miss count(S, I, A) is monotonically non-increasing

for given S and I when only A increases, we can use a finite number Athreshold that is

large enough to approximate ∞. Then, we can use Equation 3.2 to quantify the capacity
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demand of a set.

blocks required(S, I) = min A

s.t. miss count(S, I, A)−miss count(S, I, Athreshold) = 0
(3.2)

Alternatively, since miss count(S, I, 0) is equivalent to the number of accesses to set

S during interval I, the total number of hits on set S during interval I when the set

has A blocks (denoted as hit count(S, I, A)) can be expressed as hit count(S, I, A) =

miss count(S, I, 0)−miss count(S, I, A). Therefore, Equation 3.2 can be reformulated as

Equation 3.3:

blocks required(S, I) = min A

s.t. hit count(S, I, A)− hit count(S, I, Athreshold) = 0
(3.3)

Practically, Equation 3.3 is more convenient than Equation 3.2, because it is much easier

to locate a position in the LRU stack when an access to a set is a hit [12]. Equivalently,

hit count(S, I, A) is actually the total number of hits on the LRU positions that are smaller

than or equal to A on set S during interval I.

3.2.1.2 Characterizing Set-Level Non-Uniformity of Capacity Demands

From the aforementioned analysis, we can infer that blocks required(S, I) is in the integer

range [1, Athreshold]. Without loss of accuracy, we divide the integer range [1, Athreshold]

into M sub-ranges (a.k.a., buckets) of equal length bucket1, bucket2, · · · , bucketM, where

bucketj = [ (j−1)·Athreshold)
M + 1, j·Athreshold

M ] for 1 ≤ j ≤ M. Then, for a given interval I, set S

is said to be categorized into bucketj if and only if the value of blocks required(S, I) is in

the integer range [ (j−1)·Athreshold
M + 1, j·Athreshold

M ]. Further, because any two adjacent buckets

have no intersection, the value blocks required(S, I) will be in one and only one bucket’s



38

range. Therefore, we can differentiate two cache sets in terms of their individual capacity

demands if their blocks required(S, I) values belong to different buckets. Here, we restrict

both Athreshold and M to be an integral power of 2.

To identify if set S is categorized into the jth bucket during interval I, we can define a

membership function MF(S, I, bucketj) to indicate if set S has a capacity demand that is

in the range of bucketj during interval I, which is formulated in Equation 3.4:

MF(S, I, bucketj) =


1, if blocks required(S, I) ∈ bucketj

0, otherwise

(3.4)

For all of the N sets in an L2 cache, we are interested in how many sets are categorized

into each one of the M buckets during sampling interval I, because any two sets that are

categorized into distinct buckets will show different set-level capacity demands. Here,

we normalize the number of sets that are categorized into the jth bucket during interval

I by the total number of sets N, define it as the size of the bucket for that interval, and

denote the value as size bucketj(I). The formal definition of size bucketj(I) is shown in

Equation 3.5.

size bucketj(I) =

N−1
∑

S=0
MF(S, I, bucketj)

N
, where 1 ≤ j ≤ M (3.5)

In summary, we can characterize the set-level non-uniformity of capacity demands for

all of the N sets in an L2 cache by using Equation 3.5.
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3.2.1.3 Methodology of Characterization

We experiment on all of the 26 SPEC CPU 2000 benchmarks [83] using the sim-cache tool

of Simplescalar [84], and analyze the set-level capacity demands distributions of their L2

caches. The configurations of L1 and L2 caches are listed in Table 3.2. Specifically, there

are 1024 sets in the L2 cache (N = 1024). All of the benchmarks are executed with the

reference data inputs. For each benchmark, we fast forward the execution by 6 billion

cycles and then simulate the caches until 1000 sampling intervals of which each contains

100K L2 accesses are encountered. Therefore, the variable I is in the range [1,1000].

Within sampling interval I, for an L2 set S, we track the number of hits on set S at each

LRU position A that is smaller than or equal to Athreshold, and then find the minimum A

(a.k.a. blocks required(S, I)) such that hit count(S, I, A) = hit count(S, I, Athreshold), where

Athreshold is assumed to be the double of Abaseline (Abaseline = 16) in this chapter.

We further divide the entire range [0, Athreshold] into 8 buckets {[0, 4], [5, 8], · · · , [29, 32]}.

Then, for all of the 1024 sets and 1000 sampling intervals, we can obtain the normalized

size of each bucket, size bucketj(I) for 1 ≤ j ≤ 8, which is actually the distribution of

set-level capacity demands for all of the L2 sets during the entire sampling period.

3.2.1.4 Characterization Summary

To summarize, we find that among the 26 SPEC CPU 2000 benchmarks, there are 7

applications (ammp, apsi, galgel, gcc, parser, twolf, vortex) that show strong set-level non-

uniformity of resource demands. Figure 3.1 1 illustrates the distributions of set-level

capacity demands for two applications, between which vortex shows strong set-level

non-uniformity of capacity demands but applu does not. In Figure 3.1, the x-axis shows

1000 sampling intervals each of which contains 100K L2 accesses, while the y-axis
1Another set of similar figures is Figure 4.2.
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Figure 3.1: Distribution of Set-level Capacity Demands

represents the distribution breakdowns for the 8 buckets corresponding to the 8 legends

{[0, 4], [5, 8], · · · , [29, 32]}.

For instance, although vortex has been shown to benefit from additional cache resources

at the application level in previous research [85], Figure 3.1(a) clearly indicates that there

exists significant set-level non-uniformity of capacity demands for vortex. Specifically,

from sampling interval 405 to about 792, about 15% sets require only 0-4 blocks, about 9%

sets require 5-8 blocks, and over 7% sets require 9-12 blocks. In contrast, for the streaming

application applu shown in Figure 3.1(b), almost all sets require only 0-4 blocks during

the entire sampling period.

3.3 The SNUG Architecture

SNUG is designed to exploit the fine-grained set-level non-uniformity of capacity de-

mands to enhance the performance of cooperative caching. It aims to accomplish two

specific goals: (i) identifying the capacity demand of each L2 set, and (ii) grouping peer

sets (from different cores) that have complementary set-level capacity demands for flexible

cooperative caching.
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Figure 3.2 illustrates a high-level view of a quad-core CMP with SNUG. Each core has

a split private L1 instruction/data cache and a SNUG L2 slice that is a “private” cache

capable of cooperative caching, a shadow L2 cache that is used to monitor the set-level

capacity demands in the “private” L2 cache, and an L2 write-back buffer that frees the

private L2 cache from write-back stalls and supports direct data read from the write

buffer [86]. Within a SNUG L2 slice, the shadow L2 cache has the same number of sets as

the L2 cache, and a one-to-one correspondence is maintained between two sets that have

the same index in the L2 cache and its shadow cache. As Figure 3.2 shows, the block of a

shadow set has all of the usual fields as an ordinary L2 block except for the data field.

In addition, there is a per-set saturating counter associated with each shadow set. The

design and working principles of a shadow L2 set will be elaborated in Section 3.3.1, and

a detailed overhead analysis of this organization appears in Section 3.4.4.
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During the program execution, the SNUG operation alternates between two stages,

as shown in Figure 3.3. The first stage is used to identify the status of each L2 set as

either a giver (G) or a taker (T) set using the per-set capacity demand monitor. Then, at

the beginning of the second stage, the dynamic information about L2 sets is utilized to

regroup them for spilling and receiving. Each two-stage cycle defines a sampling period:

Stage I determines the G/T status of each L2 set after a sampling epoch of 5 million cycles;

then Stage II follows for 100 million cycles until the start of the next sampling period,

with a novel index-bit flipping scheme utilizing the G/T information in grouping sets for

cooperative caching during Stage II. Typically, Stage I is much shorter than Stage II, and

the total time of the two is shorter than a program phase during which the program

exhibits relatively stable set-level capacity demands.

3.3.1 Identifying Giver and Taker Sets

In this part, we first explain the structures of the SNUG L2 sets and the shadow sets

(shown in Figure 3.2) and how they are updated. Then we describe a HW scheme for

measuring the set-level capacity demands and identifying the giver/taker status of each

set based on the measurement.

3.3.1.1 The Structures of “Private” & “Shadow” L2 Sets

In an L2 cache, shown in Figure 3.2, besides the typical fields such as tag, valid, dirty, LRU

and data, each cache line is augmented with a CC bit that indicates whether this cache

line is owned by the local processor core (when CC = 0) or it is cooperatively cached

(when CC = 1). Another bit f is used in the index-bit flipping scheme and takes effect only

when the CC bit is set. If the f bit is one, it means that the line is cooperatively cached

with the last bit of its original set index flipped. There is also a G/T bit incorporated in
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each L2 set, which is used to indicate whether the set is a giver (when G/T = 0) or taker

(when G/T = 1) set. The G/T bits for all L2 sets form a G/T vector, each entry of which

is addressable independent of addressing the L2 sets.

Each entry in a shadow set has a tag field, a valid bit and LRU bits. The shadow

set retains the “shadows”, namely the tag fields, of locally evicted lines from the corre-

sponding L2 set: when an L2 set needs to replace a line, and the victim line is owned

by the local processor core, the shadow set will retain the tag field of the victim line in

one of its entries and set the entry valid. Additionally, the shadow L2 set maintains its

own independent LRU ranking for all of its valid entries and applies the information

to replacement. It is required that the shadow set entries be strictly exclusive with

the local lines in the corresponding L2 set in terms of their tag fields. Therefore, if a

formerly-evicted block with its tag present in the shadow set is revisited by the local

core, two actions will be taken: (1) the shadow entry that has the target tag needs to be

invalidated after the corresponding block enters the real set; (2) a hit on the shadow set is

signaled to manipulate its saturating counter.



44

3.3.1.2 Monitoring Set-Level Capacity Demands

If an L2 set and its corresponding shadow set have the same associativity, the private

and shadow sets implicitly form two buckets as defined in Section 3.2. Then, we can use

the per-set saturating counter to monitor the set-level capacity demand, based on which

set-level takers and givers are identified and grouped for cooperative caching.

Since an L2 set and its shadow set form two buckets, according to Equation 3.3, we

can use the ratio σ (defined in Equation 3.6) to measure the potential hit rate increase if

the capacity of the L2 set is doubled with respect to the number of cache blocks. If σ is

greater than a predefined threshold 1
p , where p is an integer, it is expected that doubling

the capacity of the L2 set can lead to an increase in the hit rate by 1
p . This is because

σ > 1
p is equivalent to the relationship in Equation 3.7.

σ =
#hits(on the shadow set)

#hits(on the L2 set) + #hits(on the shadow set)
(3.6)

#hits(on the shadow set)− 1
p
× (#hits(on the L2 set) + #hits(on the shadow set)) > 0

(3.7)

To implement this idea, we define the operations on a saturating counter as follows

(also shown in Figure 3.4): (1) every hit on the shadow set increments the saturating

counter by 1; (2) after every p hits on the private or the shadow sets, the saturating

counter is decremented by 1. Then, the outcome of the two operations can be reflected

by the MSB (most significant bit) of the saturating counter. This is shown in an example

in Figure 3.5: a one-valued MSB of the counter indicates that the L2 set has a higher

capacity demand than that provided by its local L2 cache, and that doubling its capacity

can potentially lead to an increase in the hit rate by at least 1
p .
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3.3.1.3 G/T Sets Identification

As described above, we can differentiate taker and giver sets by just checking the MSB

of the saturating counter of each set. A one-valued MSB indicates that extending the

capacity of the set is beneficial; hence the set should be regarded as a taker and enabled

to spill blocks in cooperative caching; otherwise, the set is defined as a giver and receives

spilled blocks from its peer taker set. Thus, the MSB of the saturating counter can be

directly used to update the corresponding entry of the G/T vector.

3.3.2 Grouping Sets for Spilling & Receiving

After the G/T sets identifying stage, the SNUG caches enter the sets grouping stage to group

different cores’ sets with complementary capacity demands to perform block spilling

and receiving. The simplest grouping strategy is to couple different cores’ sets with

an identical index, as is done in CC or DSR. But this naı̈ve approach only allows the

sets with the same index to form a receiving & spilling group, which is too restrictive.

Ideally, we would like to group taker and giver sets based on their capacity demands

and supplies, totally independent of their index values (related designs will be discussed

in the next chapter). Here, for the work presented in this chapter, we propose a simple

index-bit flipping scheme that is able to flexibly group sets with complementary capacity
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demands for spilling and receiving, at the low hardware complexity of just one extra f

bit per cache line.

The index-bit flipping scheme works as follows: in an L2 cache, when a taker set needs

to spill a local cache line, the L2 cache will put a CC spilling request together with the

address of the spilled line on the interconnection bus. By snooping on the bus, other peer

caches can detect the CC request as well as the address of the spilled block. Each peer

cache will look up its own G/T vector to find the G/T information of the two adjacent

entries that have the same index as the CC-spilling block but with the last index bit being

don’t-care. There can be three cases as shown in Figure 3.6. In Case 1, if the set with

an identical index is a giver set in the peer L2 cache, the peer L2 cache will attempt to

retain the spilled block in its set with exactly the same index. In Case 2, if the set with

the same index in the peer L2 cache is a taker set while the other set with the last index

bit different is a giver set, this giver set will attempt to retain the spilled block. In Case

3, if the corresponding two adjacent sets are both taker sets, this peer L2 cache will not

respond to the CC request. Any peer cache that first responds to the CC request on the

interconnection bus will get the spilled block. Based on whether the block is cooperatively

cached in the set with an identical index or with the last index bit flipped, the f bit of the

cooperatively-cached block will be set to zero (if the last index bit is not flipped) or set to

one (otherwise).

Now suppose a block is missed in its local L2 cache, the cache will signal a retrieving

request for the block with its address on the snoop bus. After a peer cache detects the

request, it will first lookup its G/T vector to get the information of the two adjacent G/T

bits that have the same index as the block address but with the ending bit being don’t-care.

If the G/T bit with exactly the same index, or otherwise with only the last index bit

different, indicates a giver set, the L2 cache will try to find the block in the corresponding

giver set; if both of the adjacent peer sets are indicated as taker sets, it means that the block
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being retrieved can’t be located in this L2 cache. This leads to at most one unambiguous

search for the block in a peer L2 cache. Because the cooperatively-cached block can

only be located in a giver set of at most one peer L2 cache, the peer cache that has the

cooperatively-cached block will directly forward the block to the requesting L2 cache. At

the same time, the peer cache will invalidate its cooperatively-cached copy of the block

to free space for other blocks. If no peer caches respond to the retrieving request, the

requested block is not on chip and will need to be fetched from the DRAM.

3.3.2.1 Maintaining Cache Coherence

In the SNUG cache design, we use two restrictions to maintain coherence between

different L2 caches. First, only when a locally-evicted block is clean can it be cooperatively

cached in a peer L2 cache. If the block is dirty, it will be directly put in the local L2

write buffer. Second, if a peer cache forwards a cooperatively-cached block to the original

owner cache of the block, the copy of the block in the peer cache needs to be invalidated.

3.4 Experiments & Evaluation

In this section, we describe the configurations of our simulated system and workload

combinations, and compare our SNUG design against other LLC management schemes

available in the literature.

3.4.1 Simulation Configurations

In our experiment, we use the cycle-accurate PolyScalar [87], a multi-core simulator

with detailed memory hierarchy models and SimpleScalar out-of-order cores [84]. We

implement and evaluate five L2 cache organizations, L2P, L2S, CC (Best), DSR, and

SNUG. According to [32], one of the spill-probabilities 0%, 25%, 50%, 75% and 100% that
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Table 3.2: Configurations of the PolyScalar Simulator

Out-of-Order Cores

Cores 4

Address Bits 32

Fetch/Issue/Commit 8/8/8

LSQ/RUU Entries 64/128

ALU/FPU/Mult/Div 4/4/1/1

Branch Predictor 2-Level, 1024 Entry, History Length 10

BTB Size 512 Sets, 4 Way
Branch Penalty 3 Cycles
RAS Entries 8

Memory Hierarchy

L1I/D 1 Cycle, 4 Way, 32KB, 64B Lines
Each L2 Slice 10 Cycles, 16 Way, 1MB, 64B Lines, Write Back
L2 Write Buffer FIFO, Mergeable, 16 Entries × 64B/Entry, Support Direct Read
DRAM Latency 300 Cycles
Snoopy Bus 16B-Wide Split Transactional Bus, 4:1 Speed Ratio, 1 Cycle for

Arbitration

Table 3.3: Performance Metrics

Metric Definition (n is the core count)

Throughput TP(Scheme) =
n
∑

i=1
IPCi(Scheme)

Average Weighted Speedup AWS(Scheme) = 1
n ×

n
∑

i=1

IPCi(Scheme)
IPCi(Baseline)

Fair Speedup FS(Scheme) = n/
n
∑

i=1

IPCi(Baseline)
IPCi(Scheme)

produces the best performance is selected as CC (Best) for a given workload. Table 3.2

lists the configurations shared by the five L2 schemes above. The difference between the

L2 schemes is the remote L2 access latency: for L2P, CC and DSR, we assume that the

remote L2 access latency is 30 cycles, while the remote latency for SNUG is assumed to

be 40 cycles covering the additional delays of looking up the G/T vector of each L2 cache.

For the purpose of thorough comparisons, three standard metrics (listed in Table 3.3)

are used to quantify performance. Specifically, throughput that is the sum of IPCs
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Table 3.4: Application Classification

Type Workload Class Application-Level
Capacity Demand

Applications

set-level non-uniformity of
capacity demands

A >1MB ammp, parser, vortex
B <1MB apsi, gcc

set-level uniformity of
capacity demands

C >1MB vpr, art, mcf, bzip2
D <1MB gzip, swim, mesa

Table 3.5: Workload Combinations & Characteristics

Class Characteristics

C1 4 identical applications from class A without data sharing (stress test)
C2 4 identical applications from class C without data sharing (stress test)
C3 (2 different applications from class A) + (2 different applications from class C)
C4 (2 different applications from class A) + (1 application from class B) + (1 application

from class C)
C5 (2 different applications from class A) + (2 different applications from class D)
C6 (2 different applications from class A) + (1 application from class B) + (1 application

from class D)

Table 3.6: Workload Selection

C1

4 ammp
C3

(ammp+parser)+(bzip2+mcf )
C5

(ammp+parser)+(swim+mesa)
4 parser (parser+vortex)+(mcf +art) (parser+vortex)+(mesa+gzip)
4 vortex (vortex+ammp)+(art+vpr) (vortex+ammp)+(swim+gzip)

C2

4 vpr

C4

(ammp+parser)+(apsi)+(bzip2)

C6

(vortex+ammp)+(apsi)+(gzip)
4 bzip2 (parser+vortex)+(gcc)+(mcf ) (parser+vortex)+(gcc)+(mesa)
4 mcf (vortex+ammp)+(apsi)+(art) (ammp+parser)+(apsi)+(swim)
4 art (ammp+parser)+(gcc)+(vpr) (vortex+ammp)+(gcc)+(mesa)

(instructions per cycle) evaluates the utilization of a system; average weighted speedup

indicates reduction in execution time; fair speedup balances both performance and fairness.

3.4.2 Workload Combinations

Table 3.4 classifies the 12 SPEC CPU2000 benchmarks used in our studies. Our evaluation

takes into account 6 different classes of workload combinations described in Table 3.5.

Specifically, workload combination class C1 and C2 are both stress tests, which means

that the four co-scheduled applications from C1 or C2 are all identical, but with the
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assumption that there can be only capacity sharing among the co-scheduled applications,

excluding any data sharing. The purpose of the stress tests is to see how different L2

cache designs can respond to applications’ set-level capacity demands, since the identical

co-scheduled applications have the same capacity demand at both application and set

levels. Within a class in C3 - C6, all of the co-scheduled applications are different, and at

least two applications showing set-level non-uniformity of capacity demands are chosen

in each workload combination. Table 3.6 lists the 21 workload combinations that are

categorized into the 6 different classes respectively.

3.4.3 Result Analysis

For each instance of simulation, we fast-forward the execution by 6 billion cycles to bypass

the initialization section of the programs, and then execute each workload combination

with the detailed out-of-order core model and different cache schemes for additional

3 billion cycles. In the results analysis, geometric means are calculated for all of the

workload combinations within each given class.

Figure 3.7 shows the throughput of the L2S, CC(Best), DSR and SNUG schemes
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normalized to L2P (1.0). In class C1 that is the stress test, because all of the applications

have an application-level capacity demand of over 1MB and also exhibit the set-level

non-uniformity of capacity demands, the SNUG cache organization can utilize the

complementary capacity demands of interleaved taker and giver sets by the index-bit

flipping scheme and then capture more opportunities for cooperative caching. Therefore,

SNUG achieves a throughput improvement over the baseline L2P cache by 22.3% in

class C1, better than the performance gain of CC(Best) by 3.5% and that of DSR by

6.9%. In C2, DSR achieves a throughput improvement over the baseline by 2.3%, and

performs slightly better than CC(Best) (-0.5% performance degradation) and SNUG (-0.2%

performance degradation), because DSR can assign some of the identical applications

as taker applications while assigning others as giver applications to achieve biased

performance improvement. In C3, C4, C5 and C6, SNUG outperforms any other cache

scheme. Overall, on average, SNUG can improve the Quad-core CMP throughput by

13.9% for all of the 6 classes of workload combinations, in contrast to 8.4% of DSR.

Because the throughput metric is not fair to the application with a lower absolute IPC,

we also use the metric of average weighted speedup to consider the change of relative
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IPCs (the absolute IPC of a scheme over that of the baseline) of the applications. From

Figure 3.8, it can be concluded that SNUG can also improve the average weighted speedup

by 13.0%, while DSR, CC(Best) and L2S improve it by 9.9%, 7.0%, and 2.5%, respectively.

Figure 3.9 demonstrates the performance on the fair speedup metric (the harmonic

mean of programs’ relative IPCs) that balances both performance and fairness for different

classes of workload combinations as well as different L2 cache schemes. On average, the

SNUG scheme improves the performance by 10.4%, better than L2S (-1.5% degradation),

CC(Best) (4.2%) and DSR (6.3%).

3.4.4 Space & Time Overhead Analysis

Since the SNUG caches require the per-set capacity demand monitor, the shadow sets

and saturating counters account for the major hardware overhead in our design. Then,

the storage overhead of the SNUG cache can be calculated by using Equation 3.8.

overhead =
storage with SNUG− storage without SNUG

storage without SNUG
(3.8)
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Table 3.7: Length of Each Field in the SNUG L2 Design

Field Length

address length 32 bits
#(cache sets) 1024

set associativity 16

cache line size 64 byte
tag field length 16 bits
CC, f , v, d 1 bit each
RRPV field length 4 bits
log p (the length of the module p counter) 3 bits (p = 8)
k (the length of a saturating counter) 4 bits

Table 3.8: Overhead of Different Memory Address and Block Size Combinations

32-bit address 64-bit address
64B/cache line 4.0% 5.6% (assuming that only 41 bits are used)
128B/cache line 2.1% 3.2%

Table 3.7 lists the length of each storage field in the SNUG design if we use the cache

configurations in Table 3.8. Under such a cache configuration, the storage overhead of

the SNUG cache design is only 4.0% by Equation 3.8, which is reasonably low when we

consider the abundant silicon resources available as a result of technology scaling.

However, many processors, such as SUN’s UltraSPARC-III [88], use 64-bit wide

memory addresses. A longer memory address leads to a longer tag field in the shadow

set that introduces more hardware overhead, although typically some leading bits of

the memory address are unused (e.g., the leading 20 and 23 bits of the virtual address

and physical addresses are unused in UltraSPARC-III respectively). We can offset the

hardware overhead by adopting a larger cache block size while keeping the cache capacity

fixed. Table 3.8 shows the hardware overhead of different memory address and cache

line size combinations for a 1MB private L2 cache.

The tag field in the shadow set accounts for the largest portion of the storage overhead.

However, because the tag field in the shadow set does not affect the semantics of running
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threads at all, we plan to design a hash function for shadow caches to shorten their tag

fields. For instance, for an UltraSPARC-like CPU with 64-byte L2 cache lines, if we can

design and get a 16-bit hash value of a block’s original 41-bit tag filed and use it as a

new shadow tag, we can significantly reduce the storage overhead from 5.6% to 1.1%. We

leave this part in the next chapter.

With respect to the time overhead, in our SNUG cache implementation, we experi-

mentally observed that a combination of 5 million cycles for the G/T sets identifying stage

and another 100 million cycles for the sets grouping stage produces a good performance

outcome. Therefore, the parameters are adopted in our experiments. During the 5 million

cycles of the G/T sets identifying stage, the cache can still accept retrieving requests but no

spilling requests from others. At the end of this stage, each L2 cache maintains a new

G/T vector, and continues to use the set-level G/T information to group sets for block

spilling or spilling.

3.5 Summary

Although the cooperative caching allows CMP private L2 caches to share their capacity,

its effectiveness is quite limited by its working principle of eviction-driven spilling and

receiving. The dynamic spill and receive (DSR) technique improves cooperative caching by

taking into account the differences in capacity demands that appear at the application

level. However, DSR is less effective when such differences manifest themselves at the

cache-set level but not at the application level. Our investigations reveal that this situation

is common, motivating our proposal of the Set-level Non-Uniformity identifier & Grouper

(SNUG) scheme that can exploit the fine-grained non-uniformity via cooperative caching

to improve system performance. Experiments show that, for six classes of workload

combinations, our SNUG cache can improve the Quad-Core CMP throughput by 22.3% at
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best and by 13.9% on average over the baseline configuration, outperforming the prior-art

DSR scheme that achieves an improvement by up to 14.5% and 8.4% on average.
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Chapter 4

Spatiotemporal Capacity Management

for Intra-Core Last Level Caches

4.1 Problem Definition

As a result of LLCs’ vital importance to the overall system performance, since the unipro-

cessor era, LLC management schemes have been studied extensively [7, 8, 9, 10, 44, 46, 75].

In particular, previous work has shown that the traditional LRU replacement policy can-

not be optimal when workloads exhibit poor temporal locality. Several alternative policies,

such as DIP [7] and PeLIFO [8], have been proposed to improve LLCs’ performance by

employing sophisticated block insertion, aging, promotion, and victimization strategies.

Moreover, researchers have observed that, independent of the replacement policy, LLCs

can exhibit very distinct resource demands at the set level because of the non-uniform

characteristics of working sets that are mapped to individual LLC sets. As a result, several

recent proposals, such as V-Way [9] and SBC [10], by aiming to provide better coopera-

tion between LLC sets in retaining working sets, could outperform the aforementioned

replacement policies under certain circumstances.
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It is our contention that the two kinds of cache management approaches, mentioned

above, are inherently different in that one is rooted in the temporal management and

the other in the spatial management of LLC capacity resources. Specifically, we define

temporal resource management as replacement policies (such as DIP and PeLIFO) that

determine how the capacity of an LLC set is temporally shared among the competing

blocks of a working set mapped to the LLC set, when the LLC set cannot retain all of

them. Furthermore, we define spatial resource management as schemes (such as V-Way and

SBC) that dynamically decides how the overall capacity of an LLC is spatially partitioned

among LLC sets that are hosting different working sets. Our analysis indicates that

neither the temporal nor the spatial LLC management schemes, working independently,

can consistently and robustly deliver the best performance in all situations. To better

understand the differences between the two dimensions of management, we characterize

the non-uniform distribution of working sets’ spatial and temporal capacity demands and

its performance impact, and conclude that the effectiveness of a specific LLC management

strategy is determined by how an LLC’s set-level capacity provision and utilization meet

its non-uniform set-level capacity needs.

Motivated by the observations on the different working principles between existing

spatial and temporal LLC management schemes as well as the significant performance

impact, we propose the adaptive SpatioTEmporal Management (STEM) scheme to regulate

the two dimensions of capacity demands concurrently and dynamically. In the proposed

scheme, a set-level monitor based on shadow-tag hash signatures and saturating counters

is utilized to capture and measure both temporal and spatial capacity needs of individ-

ual working sets. Based on these measurements, the cache controller then judiciously

identifies and pairs off sets with complementary capacity demands. Then, the controller

enables the underutilized set in each pair to cooperatively cache the other’s victim blocks,

while interactively deciding the best temporal sharing patterns for both of them in the
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event of intra-core cooperative caching. In addition, if a set does not have another set

with a complementary capacity demand to pair with, the controller can still decide the

best set-level replacement policy for it.

Our execution-driven simulation using 15 benchmarks shows that the proposed

scheme performs robustly and consistently well under various workloads and HW

configurations studied. Specifically, our STEM LLC design can improve the metrics

of misses per 1k instruction (MPKI), average memory access time (AMAT) and cycles per

instruction (CPI) by 21.4%, 13.5% and 6.3% over LRU respectively, which is better than the

prior-art DIP, PeLIFO, V-Way and SBC schemes, at a manageable HW storage cost of only

3.1%.

4.2 Research Motivations

In this section, we first provide an in-depth analysis of conventional intra-core LLC

management proposals, which qualitatively shows the two different classes of working

principles for these schemes. Then, we apply real-world workloads to quantitatively

compare the schemes, revealing their distinct performance comfort zones as a result of

their different working principles.

4.2.1 The Problems of Conventional LLC Management

First, as observed in a few recent studies [9, 10, 34], an interesting LLC property known

as the set-level non-uniformity of capacity demands can result in the underutilization of those

LLC sets whose working sets require less than the associativity, while leaving other sets

over-utilized because their capacity (i.e., associativity) is insufficient for their working sets.

Therefore, prior-art LLC spatial management schemes such as V-way and SBC attempt

to perform dynamic capacity allocation to different LLC sets according to their spatial
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metrics. The metric adopted by the V-way cache is implicitly the per-set “access count”,

while SBC’s metric is the “saturation level” defined as the difference between miss and

hit counts at the set level.

Second, when a working set cannot be entirely retained in a cache set, its member

blocks will compete for the set’s cache lines, giving rise to policies that decide which

block needs be evicted from a set in the event of replacement. Existing HW-replacement

policies all use certain criteria to adjust the lifetime values of cached and incoming blocks

so as to approximate the ideal “Belady’s optimal algorithm” [41]. Such criteria can make

a significant difference in the LLC performance. For instance, the simple and commonly

used LRU replacement policy favors access (both hit and miss) recency when adjusting

blocks’ lifetime in cache. Therefore, it performs quite well when a working set exhibits

excellent temporal locality but can thrash an LLC set when the locality is poor. The more

advanced DIP replacement policy always advocates hit recency but duels between either

favoring or penalizing miss recency (namely, assigning the recently-missed/incoming

block with either the longest or shortest lifetime). As a result, DIP is more flexible and

adaptive than LRU in making replacement decisions.

4.2.2 Unconventional Thinking of the Problems

From the analysis above, we argue that the two different types of approaches actually

have fundamentally distinct working principles, of which one is to spatially manage LLC

capacity resources among different LLC sets (such as V-Way and SBC) and the other is

to temporally optimize the sharing pattern of an LLC set’s capacity among the member

blocks of its working set. More specifically, on the one hand, if an over-utilized LLC set

can get sufficient cooperative capacity from another underutilized set, no replacement

needs to take place because both of their working sets are already retained. In this
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Ex. # 
Synthetic 

Workloads 
LRU DIP SBC 

1 
AàaàBàbàC 

àaàDàbà… 

The entire working set 0 is 

thrashing, while working set 1 

is well retained in LLC set 1. 

A B C

a b - -

E FD

Constrained

Thrashing

 

A B C D

a b E F
 

Miss Rate = 1/2 Miss Rate = 1/4 Miss Rate = 0 

2 

AàaàBàbàC 

àcàDàaàEà 

bàFàcàAà… 

Working set 0 is thrashing, 

while working set 1 is well 

retained in LLC set 1. 

A B C

a b c -

E FD

Constrained

Thrashing

 

It is a dynamic process, and we 

write a simple trace simulator by 

following the procedure in the SBC 

proposal to get the miss rate. 

Miss Rate = 1/2 Miss Rate = 1/4 Miss Rate = 1/3 

3 

AàaàBàbàC 

àcàDàdàEàe 

àFàaàAàbà… 

Working set 0 is thrashing, and 

so is working set 1. 

A B C

a b c -

E FD

Constrained

Thrashing

fe

 

It behaves exactly the same as LRU, 

due to the absence of underutilized 

LLC sets. 

Miss Rate = 1 Miss Rate = 1/4+1/5 Miss Rate = 1 

An Extensional Example 

for Ex. #2 

A B C D

a b c

E F

Constrained

Thrashing

 

Still for Ex. #2, if SBC was able to combine its spatial management capability 

with a more advanced temporal scheme, e.g., retaining “D” in set 0’s local 

capacity and let E and F compete for the cooperative capacity in set 1, the 

overall miss rate would be reduced from 1/3 to no greater than 1/6. 
Miss Rate ≤ 1/6 

 

Figure 4.1: Conceptual Illustration with Synthetic Workloads

situation, the spatial management schemes will apparently be more effective than the

temporal approaches that manage the two sets separately. On the other hand, if an LLC

set does not have enough local space for its working set or cannot find external capacity

for cooperation, adopting an advanced replacement policy such as DIP will be more

sensible. But one of the challenges here is that existing adaptive temporal approaches

such as DIP and PeLIFO all depend on application/LLC-level sampling, monitoring and

decision-making, rendering them unable to work on an individual set basis. Yet, working

at the set level, we believe, is essential in addressing the issue of set-level uniformity

of capacity demands. More challenging is the fact that, if a set can only find some but

insufficient cooperative capacity for the additional requests of its working set, both spatial

and temporal management should simultaneously and interactively take effect on the
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set and its cooperative set to make the best spatial and temporal use of their aggregate

capacity.

For an intuitive illustration, we assume a simple 4-way associative LLC with just two

sets. The LLC receives a sequence of repetitive requests from the upper level memory

hierarchy components. After mapping the reference sequence to individual LLC sets, we

can obtain two cyclic working sets, as shown in Figure 4.1. For the resulting performance,

we measure the LLC’s miss rate after its initialization. We consider SBC and DIP as

representatives, respectively, as examples of spatial and temporal LLC management

schemes. Furthermore, we assume that DIP has the knowledge of working sets’ patterns

without the need for dedicated sampling and dueling monitors [7].

In Example #1 of Figure 4.1, the cyclic working Set 0 is “A→B→· · ·→F→A→B→· · · ”,

while working Set 1 is “a→b→a→b→· · · ”. We find that SBC performs better than DIP

because SBC enables the over-utilized LLC Set 0 to place its blocks in Set 1, and this

perfect match does not even trigger replacement in the long run. In Example #2, the

only difference from Example #1 is that working Set 1 has an additional element “c”.

Although in SBC Set 0 is able to utilize the cooperative (albeit, insufficient) space of Set

1, their underlying LRU replacement policies cannot help the two sets produce the best

performance. In Example #3, working Set 1 has two more elements “d” and “e” than

that in Example #2. Therefore, both LLC sets are over-utilized, leaving SBC no choice

for inter-set cooperation but to thrash both LLC sets. DIP can keep part of the working

sets in both LLC sets, though Set 0 and Set 1 still contribute 1/4 and 1/5 overall misses

respectively.

The intuitive illustration above enables us to better understand the different properties

and comfort zones between temporal and spatial LLC management schemes. It also

reveals that if a spatial management strategy like SBC could incorporate a more advanced

temporal management mechanism, a better performance over both spatial and temporal
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Figure 4.2: Distribution of the Set-Level Capacity Demands for omnetpp and ammp During
1000 Sampling Periods

schemes would be achievable.

4.2.3 Quantitative Experiments

In this section, we use real-world applications to back our analysis in Section 4.2.2.

4.2.3.1 Non-Uniform Set-Level Capacity Demands

Although the non-uniformity of set-level accesses and saturation levels (defined as the

difference between set-level hit and miss counts) has been noted, respectively, in V-Way

[9] and SBC [10], we argue that neither the “access count” [9, 46] nor the “saturation level”

[10] is an accurate or direct metric of set-level capacity demands. For example, if a set

is experiencing a number of accesses, and further if these accesses only touch a small

working set, it is highly likely that all accesses eventually turn out to be hits and the

working set can be retained in the set without the need for extra capacity. Thus, a high

access count is not always indicative of extra capacity demands. Moreover, an LLC set

with misses dominating may not benefit from receiving extra capacity at all if its working
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set is of streaming features, while an underutilized set with 80% accesses, e.g., as hits,

may be able to further resolve its remaining 20% missed accesses by receiving a small

amount of extra capacity.

In the previous chapter, we develop a more accurate and direct model that defines

the set-level capacity demand as the minimum number of blocks required to resolve all

conflict misses of the set during a time interval. With this definition, we experiment on

two representative benchmarks omnetpp and ammp to characterize the features of their

set-level capacity demands, as illustrated in Figure 4.2(a) and Figure 4.2(b) respectively.

In Figure 4.2, each color represents 2 cache ways in the associativity range, according to

the legend shown on the right. E.g., for omnetpp, the “light green” band (corresponding

to legend “15-16”) indicates that about 20% of the sets require 15-16 cache lines per set

to meet their capacity needs; for ammp, the “blue” band (corresponding to legend “0”)

reveals that the corresponding sets are streaming-like and thus require little LLC capacity.

The detailed description of the experimental setup appears in Section 4.4. Here, we

only list the most important four parameters: 2048 LLC (L2) sets; 64-byte cache lines;

50000 accesses per time interval; and a total of 1000 time intervals during the workload

characterization. With the settings, we first identify that the entire application/LLC-

level capacity demands are no greater than 32 ways in both cases, which means that an

associativity of 32 can help the LLC resolve all conflict misses for the workloads. Then,

for an LLC set, we obtain the minimum number of ways/blocks required by it to resolve

as many conflict misses as with an associaitivity of 32, and then define the value as the

set’s current capacity demand. As illustrated in Figure 4.2, the non-uniformity of set-level

capacity demands is very evident for both benchmarks: for omnetpp, almost 50% sets

require no more than 16 cache lines per set, while for ammp, about 50% sets require no

more than 4 cache line per set.

Next, we show the impact of the non-uniformly distributed set-level capacity demands
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Figure 4.3: MPKIs of omnetpp and ammp for Different Associativity Configurations

on LLC management schemes with real-world applications.

4.2.3.2 Demonstration with Real-World Workloads

We still use ammp and omnetpp as the representative workloads to evaluate LRU, DIP,

PeLIFO, V-WAY and SBC in terms of their misses per 1k instructions (MPKI) under

various associativity configurations, as shown in Figure 4.3.

In Figure 4.3(a), from associativity 2 to 16, both temporal schemes DIP and PeLIFO

outperform the two spatial schemes V-Way and SBC, as well as the baseline LRU, for

omnetpp. From associativity 12 on, the best spatial scheme SBC begins to outperform LRU.

From associativity 18 to 24, both spatial schemes perform the best among all schemes.

Beyond associativity 24, there is little difference among the five schemes. SBC’s identical

performance to LRU when the associativity is smaller than 12 is consistent with the

conclusion drawn from Example #3 in Figure 4.1 because few sets that are less saturated

[10] can be found for an associativity lower than 12. From associativity 12 to 16, SBC’s

performance is better than LRU but still worse than DIP/PeLIFO. This is because there

are some but insufficient less-saturated sets for spatial cooperation in this range, SBC

is not able to best utilize the limited cooperative capacity, which is consistent with the
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conclusion drawn from Example #2 in Figure 4.1. When the associativity is greater

than 18, SBC and V-Way perform the best, because there are an appropriate number of

less-saturated sets for cooperation, which is consistent with the conclusion drawn from

Example #1 in Figure 4.1. Beyond associativity 24, the performance curves of all schemes

begin to converge as expected.

In Figure 4.3(b), from associativity 2 to 10, the best spatial scheme SBC outperforms

any temporal schemes for ammp. It is because about 50% LLC sets require no more than

4 cache lines per set, as demonstrated in Figure 4.2(b). Therefore, in the integer range [4,

10], the spatial scheme is the most effective, which is consistent with the conclusion drawn

from Example #1 in Figure 4.1. When the capacity is beyond 10, the effectiveness of both

temporal and spatial LLC management diminishes, because the local/native capacity

of each LLC set is sufficient for them to retain their working sets. This is why no other

schemes significantly improve over LRU for ammp in the associativity range [12, 32].

4.3 The STEM Architecture

It has been clearly illustrated in the motivational experiments that LLCs can exhibit

non-uniform capacity demands in both spatial and temporal dimensions. The spatial

capacity demand refers to if a working set can fit most of its blocks into the current

space of its LLC set, while the temporal capacity demand implies whether the working

set is making the best use of the cache space it possesses. The two types of capacity

demands have different impacts on the effectiveness of LLC management schemes. This

is the principal reason why none of the existing cache management schemes working in

either dimension alone can perform robustly and constantly well under all circumstances.

Therefore, an adaptive LLC management is necessary to harness both dimensions of

capacity demands concurrently and dynamically to optimize LLCs’ performance.
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4.3.1 The STEM LLC Architecture

To accomplish this objective, we propose a novel LLC design named the SpatioTEmporally

Managed Last Level Caches (STEM LLCs). STEM aims to achieve three specific design

goals: (1) it identifies the spatial capacity demands of individual sets and couples two

sets with complementary needs to perform inter-set cooperative caching; (2) in the event

of inter-set space cooperation, it determines the best temporal capacity sharing patterns

for both of the coupled sets so as to optimally utilize both local and cooperative capacity;

and (3) for those uncoupled sets, it is still able to decide the best set-level replacement

policies for them individually.

Figure 4.4 provides an architectural view of the STEM LLC. The STEM cache controller

accepts access requests from upper-level caches. Then, the controller looks up the

referenced block in the tag store, which is decoupled from the data store, to see if it is

present in the LLC. There can be two scenarios if the requested block is on-chip: the block

is either in its local set with the same index as indicated in the physical address of the
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Figure 4.5: Set-Level Capacity Demand Monitor (SCDM)

block, or in a different set where the block is cooperatively cached. Therefore, each tag

store entry needs an additional bit called the CC bit to indicate whether the block is local

(CC = 0) or cooperatively cached (CC = 1), as shown in Figure 4.4. Then, the requested

block is forwarded to the upper-level cache if it is found on-chip or otherwise fetched from

DRAM. Meanwhile, the set-level capacity demand monitor (SCDM) is operated to capture

and measure the dynamic information of individual sets’ spatial and temporal capacity

demands and feed it back to the cache controller. Based on the feedback information,

the controller couples two sets with complementary spatial capacity needs and decides

their best temporal capacity sharing behaviors for inter-set cooperative caching. For an

uncoupled set, STEM will also adapt the set’s replacement policy to either LRU or BIP

(bimodal insertion policy) [7]. The design details and working principles of each critical

component in STEM will be elaborated in the following subsections.

4.3.2 Set-Level Capacity Demand Monitors

The set-level capacity demand monitor (SCDM) is devised to capture and monitor both

spatial and temporal capacity demands of individual sets. Associated with each LLC set,

as illustrated in Figure 4.5, there is a shadow set [89] and two k-bit saturating counters

“SC S” and “SC T” in the SCDM. Each shadow set has the same associativity as the
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corresponding LLC set and stores an m-bit hash value taken from the tag field of a victim

block that is evicted off the LLC set, where m is much shorter than the length of a tag

field. Here, we still call this hashed tag value as a shadow tag. Thus, an LLC set appears

to have “double” capacity with the additional “virtual” space provided by its shadow

set. Then, the two saturating counters measure the spatial and the temporal capacity

demands of each LLC set by using the information embodied in the shadow tags.

4.3.3 Operations on Shadow Sets

There are three essential operations on a shadow set: (1) if a local block is evicted from

its original LLC set, the hash value of its tag field will be calculated by STEM’s hashing

module and inserted into the corresponding shadow set; (2) the shadow set maintains

its own independent ranking for all of its valid entries and uses it for replacement; (3)

if an access on a local block is missed in an LLC set, the corresponding shadow set will

be looked up to check if the tag of the requested block is present in a valid shadow set

entry. Additionally, it is required that the shadow set entries be strictly exclusive with the

local blocks in the corresponding LLC set in terms of the complete/hash values of the tag

fields. Therefore, if a previously-evicted block with its tag present in the shadow set is

revisited by the owner set, two operations must be performed: (1) the shadow entry that

has the hashed tag needs to be invalidated after the corresponding block is inserted into

the LLC set; (2) a hit on the shadow set is signaled to operate its saturating counters.

The information of an LLC set’s spatial capacity demands can be naturally captured

by the shadow set because it contains the information of the set’s victim blocks, as

shown in Figure 4.5. If there are a considerable number of hits on the shadow set, it

implies that the blocks previously evicted from the LLC set will soon be revisited and

extending the LLC set’s space will be beneficial. In the STEM LLC design, the shadow
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set adopts a replacement policy opposite to that of the corresponding LLC set to capture

the information of the LLC set’s temporal capacity demands. Specifically, as illustrated

in Figure 4.5, if the LLC set is currently adopting the LRU replacement policy to favor

temporal locality, the shadow set will use the BIP policy [7] to keep the shadow tags

of LLC victim blocks. The rationale behind the specific design choice is that if a large

working set cannot be well retained in the LLC set due to its poor temporal locality, e.g.,

by way of thrashing, the same information of poor temporal locality will also be reflected

by its eviction stream, which in turn can be captured by adopting BIP in the shadow

set that contains the information of the set’s victim blocks. In contrast, if an LLC set is

adopting BIP for insertion but actually its large working set shows good temporal locality

(e.g., if the average reuse distance is shorter than the set associativity), the temporal

locality information can be captured in the eviction stream as long as the shadow set

takes the LRU replacement policy.

4.3.4 Operations on Saturating Counters

The two k-bit saturating counters “SC S” and “SC T” are used to measure a set’s temporal

and spatial capacity demands respectively, by comparing the hit count of a shadow set

against that of the LLC set. Whenever there is a hit on the shadow set, both saturat-

ing counters will be incremented by one. The temporal saturating counter is always

decremented by one upon a hit on the LLC set, while the spatial saturating counter is

decremented by one for every 2n hits on the LLC set, as demonstrated in Figure 4.5.

We implement counting 2n hits on the LLC set in a probabilistic way that the spatial

saturating counter is decremented by one only when an n-bit value produced by a random

number generator is zero. The random number generator can be simply incorporated in

the LLC controller.
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We look at the values of the two k-bit saturating counters of an LLC set to measure

its spatial and temporal capacity demands. Specifically, on the one hand, if a spatial

saturating counter reaches a saturated value, it implies that providing the LLC set with

double capacity can result in at least 1
2n increase in the hit rate. The LLC set should be

identified as a taker set that can benefit from inter-set capacity cooperation; otherwise,

if the MSB (most significant bit) of the spatial saturating counter is 0, it suggests that the

LLC set has a very high hit frequency with its local capacity and it could be regarded as a

giver set that can potentially contribute part of its capacity in inter-set space sharing. The

spatial saturating counter is reset only upon system initialization. On the other hand, , if

a temporal saturating counter is saturated, indicating that the shadow set’s replacement

policy is estimated to outperform the LLC set’s current policy, it will send a request to

the cache controller to swap the replacement policies for the LLC and the shadow sets as

well as resetting the temporal saturating counter.

4.3.5 Coupling Sets with Complementary Capacity Demands

As described above, a saturated spatial saturating counter indicates that extending the

capacity of the corresponding set is beneficial; hence the set is regarded as a taker set that

can significantly reduce its conflict misses if its capacity is extended. On the other hand, a

0-valued MSB denotes a giver set that may need fewer blocks than it currently possesses.

Thus, the STEM LLC should couple a taker set and a giver set so that the taker set can

utilize part of the giver set’s capacity to reduce conflict misses.

The coupling process needs the assistance of a hardware heap (similar to the destination

set selector in [10]) that keeps track of a small number of uncoupled giver sets which are

less saturated than others, as well as an association table [10] that maintains the association

information of paired sets. If a set is not paired with any other set, the value of its
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association table entry is the set’s own index. Both the HW heap and association table

are embedded in the STEM LLC controller. When a set is identified as a giver set by its

monitor, it tries to post its index and saturating level information to the heap. The heap

checks if there are any available/invalid entries to keep the set’s information. If there are

no such invalid entries and the set is less saturated than one of the sets already in the

heap, replacement will take place in the heap to make room for this less-saturated one.

In addition, when an uncoupled taker set needs to evict a block, it first sends a

coupling request to the HW heap. The heap returns the index information of the least

saturated giver set for coupling, and the association table records the two sets’ indices in

each other’s association table entry. If there are no available giver sets in the heap, the

taker just evicts the victim block off chip.

4.3.6 Spilling and Receiving Control

Unlike SBC that allows a taker set to continuously evict blocks to its coupled set, our

STEM LLC design imposes some restrictions on spilling and receiving for any pair of

coupled sets. This is because a giver set can be overwhelmed if spilling from the taker set

is excessive. However, whether or not a giver set is overwhelmed can be easily detected

by checking the MSB of the spatial saturating counter of its corresponding shadow set.

If a previously 0-valued MSB of a spatial saturating counter turns 1, it suggests that

either the set might have been overwhelmed by another set’s excessive spilling or it has

changed its role from a giver set to a taker set. The set-level capacity monitor returns

such information to the cache controller to form a feedback loop as depicted in Figure 4.4.

With the feedback loop, only when a set has a 0-valued MSB in the corresponding spatial

saturating counter can it receive victim blocks from its coupled taker set.

While the spilling process is straightforward and similar to the SBC scheme, the
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receiving process is significantly different. In the SBC proposal [10], it is clearly stated that

receiving (using MRU insertion, namely the LRU replacement policy) is not dependent

on the giver set’s saturating level as long as the two sets are coupled. Such a receiving

mechanism in SBC can severely pollute the giver set’s space, because the taker set can

excessively spill victim blocks to the giver set without looking at the actual utility of

doing so. In the STEM LLC design, we set such a receiving constraint that the giver set

cannot receive a foreign block unless its saturating value indicates that the set is still

unsaturated even with receiving. In other words, whether or not a cooperative set is still

able to contribute its capacity to the taker set can be detected by its spatial saturating

counter. Furthermore, how a foreign block is inserted into the cooperative set is decided

by what the cooperative set’s temporal saturating counter indicates.

4.3.7 Decoupling Two Sets

The disassociation between two coupled sets is triggered by the event that the (former)

giver set has evicted all cooperatively-cached blocks, followed by the action of resetting

the two sets’ association table entries to their own original indices respectively [10]. In

contrast to the SBC scheme that does not put any constraints on the spilling and receiving

processes, the decoupling process of STEM will be much faster because the taker (or

giver) set will not spill (or receive) blocks after a role change is detected for either of

them, which can greatly accelerate the decoupling process.

4.4 Experiments & Evaluation

To evaluate our STEM LLC design, in this section, we present the experimental setup, the

results analysis, the sensitivity study and the cost analysis.
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Table 4.1: Major Configuration Parameters

Core Alpha ISA, 5-Stage Pipeline
8-Wide Dispatch/Retirement
256/256 Int/Fp Registers
64/64-Entry Inst/Data TLBs
6-Int ALU, 2-Int Mul/Div, 4-Fp ALU, 2-Fp Mul/Div
64-Entry IFQ, 64-Entry LSQ, 192-Entry ROB

L1I/D 2-Way, 32KB, 64B/Line, 1/2-Cycle I/D Lat
8/16 I/D MSHRs, 8-Entry Write Buffer
physically tagged and indexed (M5’s built-in setting)

L2 16-Way, 2MB, 64B/Line, 6/8-Cycle Tag/Data Store Lat
64 MSHRs, 32-Entry Write Buffer

physically tagged and indexed (M5’s built-in setting)

Bus 16B/Cycle, 2:1 Speed Ratio, 1-Cycle Arbitration

Mem 300-Cycle Lat

4.4.1 Experimental Setups

We use the cycle-accurate M5 simulator [90] as our architectural simulator with the

configuration listed in Table 4.1. The simulated processor is an Alpha21264-like [91]

out-of-order core with a 5-stage pipeline. For the memory hierarchy, we model two

levels of on-chip caches. The L1 instruction and data caches adopt the conventional

set-associative configuration and LRU replacement policy, and we assume a coupled

tag-data store organization. For the L2 cache, we model decoupled tag and data stores,

and adopt the same latency parameters as those presented in [10]. Specifically, if an access

to an uncoupled or coupled giver set turns out to be a miss, the latency of a tag-store

access is assumed to be 6 cycles; if an access to a set is a hit, the total latency of one

tag-store access and one data-store access is assumed to be 14 cycles. For SBC and STEM,

if an access to a coupled taker set is a miss and the requested block is not found in its

cooperative set either, the total latency of two consecutive tag-store accesses is 12 cycles;

otherwise a second hit will cost 20 cycles in all because it involves two tag-store accesses
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Table 4.2: Workload
Classes

Table 4.3: MPKI Characteristics of Benchmarks

Class I MPKI Class II MPKI Class III MPKI
ammp 2.535 art 16.769 gobmk 2.236

apsi 5.453 cactusADM 3.459 gromacs 1.099

astar 2.622 galgel 1.426 soplex 24.298

omnetpp 11.553 mcf 59.993 twolf 3.793

xalancbmk 14.789 sphinx3 10.969 vpr 3.306

as well as an additional data-store reference. We evaluate and compare LRU, DIP, PeLIFO,

V-Way, SBC and our proposed STEM, among which both SBC and STEM may involve a

second access to the cooperative set.

We select 15 benchmarks from the SPEC CPU 2000 & 2006 suites. In general, we

assume that all applications can be categorized into three classes according to the features

of their spatial and temporal capacity demands (at the LLC set level), as shown in Table 4.2.

Class I includes the applications that exhibit set-level non-uniformity of capacity demands,

whose performance is improvable by spatial schemes such as V-Way and SBC when the

LLC capacity is in a certain range (e.g., ammp’s LLC performance can be improved over

LRU by SBC in the associativity range [4,10], as shown in Figure 4.3(b)). Class II covers

the programs that show poor temporal locality, so their performance can be promoted by

an advanced temporal scheme like DIP or PeLIFO within a certain LLC capacity range

(e.g., art’s LLC performance can be boosted by DIP when the LLC capacity is no greater

than 1MB, as demonstrated in [7]). Class III consists of such applications that show

uniform set-level capacity demands as well as good temporal locality, which can be well

taken care of by the simple LRU scheme. Table 4.3 presents these 15 benchmarks in terms

of their classification as well as their MPKI characteristics (under LRU).

The selected benchmarks are fast-forwarded and cache-warmed with 10 and 2 bil-

lion instructions respectively, followed by an execution of 3 billion instructions with

the detailed architectural features listed in Table 4.1. In the evaluation, we use three
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performance metrics, namely, MPKI (misses per 1K instructions), AMAT (average memory

access time) and CPI (cycles per instruction), to compare our STEM design against other

prior-art schemes in various aspects. All results are normalized to those of LRU.

4.4.2 Performance Analysis

Figure 4.6 shows the performance comparison between STEM and the prior-art spatial

and temporal LLC management schemes with respect to their MPKI results. For the

benchmarks in Class I, as a result of the capability of spatial resource management, STEM

is noticeably better than the existing temporal schemes DIP and PeLIFO. Specifically,
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STEM outperforms the two temporal schemes by at least 12.9%, 8.1%, 53.4% and 9.7% for

ammp, apsi, astar and omnetpp respectively. Interestingly, we find that temporal schemes

can degrade the MPKI performance of astar significantly. That is because astar shows

obvious set-level non-uniform capacity demands and, more importantly, good temporal

locality for most LLC working sets. Since temporal schemes DIP and PeLIFO both

dedicate several groups of sample sets to the policy comparison, e.g., BIP versus LRU in

the DIP scheme, and the policy that incurs less (in DIP) or the least (in PeLIFO) misses

will be imposed upon other non-sample sets. However, due to the set-level non-uniform

features, astar’s LLC working sets are quite different from each other, and the winning

policy of the sample sets is not necessarily suitable for the non-sample LLC sets most of

which have good temporal locality. This is why DIP and PeLIFO make inappropriate

application/LLC-level replacement decisions for astar (e.g., in DIP, BIP is selected as the

winning policy and adopted for the non-sample LLC sets). Unlike DIP and PeLIFO,

STEM is able to decide on better replacement policies for individual LLC sets based on

their set-level temporal capacity demands for certain benchmarks like astar.

For the five schemes in Class II, we obtain the expected better performance of temporal

LLC management schemes than that of the spatial ones, because the existing spatial
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schemes are unable to handle the cases of poor temporal locality. Since STEM also

has a temporal management module, it is capable of dueling between LRU and DIP

under this circumstance, but at the LLC set-level rather than at the application/LLC

level as in DIP and PeLIFO. STEM performs as well as DIP for the benchmarks of Class

II. The reason why none of the schemes improves over LRU for art is because art is

improvable by advanced temporal schemes only when its capacity is no greater than 1MB,

as evaluated in [7], but the standard LLC capacity configured here is 2MB. With regard to

the benchmarks in Class III, for which LRU is sufficient, we find that STEM performs as

well as LRU and SBC both of which are among the best.

In Figure 4.6, we can also infer that the HW metric used by STEM to measure set-level

capacity demands is better than those used by SBC and DIP. Among the 15 benchmarks,

we see that V-Way underperforms LRU in 7 out of them, while STEM either outperforms

or performs no worse than LRU. In addition, for the benchmarks in Class I, where

spatial schemes have opportunities to significantly improve over LRU, STEM outperforms

SBC just with the exception of astar for which it slightly underperforms by 0.3%. This

comparison reveals that the HW metric in STEM, which utilizes the virtual capacity of

shadow tags to directly measure the benefit of extending an LLC set’s capacity, is more

accurate than the (implicit) metric of “access count” of V-Way as well as the “saturation

level” of SBC in estimating the capacity demands of individual LLC sets.

Because both SBC and STEM can involve a second access to a cooperative LLC set,

MPKI is not a direct metric for comparing the throughput of different LLC management

schemes, but it sheds light on the implication of MPKI reduction on throughput. Fig-

ure 4.7 and Figure 4.8 show the AMAT and CPI results of the schemes with the timing

parameters of Section 4.4.1 and Table 4.1 incorporated into the simulation. We find that

the comparison results of AMAT and CPI are consistent with that of MPKI in Figure 4.6.

Specifically, the STEM LLC design can improve the AMAT performance of LRU by 13.5%
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Figure 4.9: Sensitivity Study

and the CPI performance by 6.3%, while DIP, PeLIFO, V-Way and SBC improve the

two throughput metrics by (10.3%, 4.7%), (5.8%, 3.4%), (-9.2%, -4.6%) and (4.1%, 2.2%)

respectively.

All in all, benchmarks in Class I and Class II together highlight the adaptive capabili-

ties of STEM. More specifically, STEM has generally noticeable performance advantages

over the existing temporal schemes for benchmark Class I, and significantly outperforms

the prior-art spatial schemes for benchmark Class II. If a benchmark belongs to both Class

I and Class II, STEM can outperform both temporal and spatial schemes simultaneously,

which is consistent with the Extensional Example shown in Figure 4.1. In addition, STEM

is capable of deciding different replacement polices for individual LLC sets and overcom-

ing the pathological cases that expose the weaknesses of advanced application/LLC-level

temporal schemes; and STEM’s set-level spatial capacity demand monitors that take

advantage of the virtual capacity of shadow tags are shown to be more accurate than

those of V-Way and SBC.
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4.4.3 Sensitivity Study

We use benchmarks omnetpp and ammp that are illustrated in Section 4.2 as examples for

our sensitivity study. From Figure 4.9(a), we find that in the small associativity range of

[1, 6] STEM performs as well as DIP that is the best out of all existing schemes under this

condition, with noticeable performance improvement over the spatial schemes such as

V-Way and SBC. In the moderate associativity range of [6, 16], STEM is able to outperform

all existing LLC management schemes by leveraging the strengths of spatiotemporal

capacity management. In the high associativity range of [18, 24], STEM is still be better

than others except that it is slightly worse than V-WAY.

As illustrated in Figure 4.9, for ammp and throughout the entire experimented associa-

tivity range of [1, 32], STEM outperforms or performs no worse than the existing LLC

management schemes, but with significant advantages over DIP, PeLIFO and V-Way in

the associativity range of [2, 10].

From the two cases, we find that STEM is able to dynamically adapt its management

strategy to both spatial and temporal capacity demands of workloads, which indicates

that STEM may bridge the performance gap between existing spatial and temporal LLC

management schemes.

4.4.4 Overhead Analysis

The set-level capacity demand monitor (SCDM) and the association table account for the vast

majority of STEMs hardware overhead. Table 4.4 lists the length of each storage field in

the STEM L2 cache. The overall storage overhead of both monitor store and association

table of the LLC controller is 3.1% compared to LRU by estimation.
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Table 4.4: Hardware Overhead Analysis with the Configurations in Table 4.1

address length 44-bit effective physical address in a
Alpha21264 processor simulated by M5

# (LLC sets) 2048

association table 2048 entries with 11 bits each
set associativity 16

cache line size 64 bytes
tag field length 27 bits
m (the length of a shadow tag entry) 10 bits with the hash function defined in

[92]
CC, V, D bits 1 bit each
replacement rank field 4 bits
k (the length of a saturating counter) 4 bits
n (2n is the ratio that multiplies the number of
hits on an LLC set in spatial measurement)

3 bits

4.5 Summary

This chapter proposes a novel LLC design, which is called the STEM (SpatioTEmporally

Managed) LLC, to dynamically identify both spatial and temporal dimensions of capacity

demands at the set level, couple two sets with complementary spatial resource needs for

inter-set capacity sharing and decide on the best replacement policies for coupled and

uncoupled LLC sets. Our executing-driven simulation shows that the STEM LLC design

can improve the performance metrics of MPKI (misses per 1k instruction), AMAT (average

memory access time) and CPI (cycles per instruction) over LRU by 21.4%, 13.5% and 6.3%

respectively, better than the performance benefits obtained by the prior-art DIP, PeLIFO,

V-Way and SBC LLC management schemes, at a manageable HW storage cost of only

3.1%.
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Chapter 5

Co-optimizing Locality and Utility in

Thread-Aware Capacity Management for

Shared Last Level Caches

5.1 Problem Definition

The shared last level cache (SLLC) organization is commonly adopted in chip multipro-

cessor (CMP) products to simplify both cache capacity sharing and coherence support for

processing cores. Most commodity CMPs nowadays, whether multi-core (e.g., AMD’s

PhenomTM II X6 and Intel’s Core i7) or many-core (e.g., Tilera’s 100-core processors

[2]), have large SLLCs to help retain a substantial amount of data on-chip. But a large

aggregate capacity alone does not guarantee optimal performance without an effective

SLLC management strategy. This is especially true when the cores are running a hetero-

geneous mix of applications/threads, as is increasingly common with the widespread

deployment of CMPs in complex application environments such as virtual machines and

cloud computing [93, 94].
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Because of its vital importance to the system performance, SLLC capacity manage-

ment has been extensively studied. We categorize these studies into two groups: those

proposing alternatives to the LRU replacement policy [14, 52, 15, 16] and those proposing

cache partitioning schemes [12, 13]. Since the commonly-used LRU replacement policy

aims to favor cache access recency (or temporal locality 1) only, it can result in thrashing

when the working set size of a workload is larger than the cache capacity and the cache

access pattern is locality-unfriendly (e.g., a large cyclic working set) [7]. Alternative

replacement policies, such as TADIP [14] and NUCACHE [15], are proposed to overcome

the thrashing problem by judiciously assigning and adjusting lifetimes for cached blocks.

The utility of a thread represents its ability to reduce misses with a given amount of SLLC

capacity [12]). Although threads may vary greatly in their utility, an LRU-managed SLLC

is oblivious of such differences when threads are co-scheduled and their cache accesses

are mixed. In response to this shortcoming, several recent studies, such as UCP [12]

and PIPP [13], propose to partition the SLLC space among competing threads based on

the utility information captured by per-thread LRU-stack profilers, notably improving

the performance over the baseline LRU replacement policy. More details about these

proposals can be found in Chapter 2.

In our view, the prior-art alternative replacement policies and cache partitioning

schemes have fundamentally different working principles. Specifically, the alternative

replacement policies (of TADIP and NUCACHE) determine how the competing cores

should temporally share the SLLC capacity to accommodate workloads’ locality, while the

cache partitioning schemes (of UCP and PIPP) decide on how the SLLC resources should

be spatially divided among the cores on a utility basis. Our analysis and evaluation

show that alternative replacement policies and cache partitioning schemes represent

essentially two independent dimensions of solving the overall shared cache management
1In this and next chapters, locality is specifically referred to as temporal locality.
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problem, and that optimizing in just one dimension misses the benefits available from

co-optimization in both. Specifically, the alternative replacement policies, lacking a utility

monitor, cannot coordinate the best capacity provisioning for all of the co-scheduled

threads, while the cache partitioning schemes, fail to realize opportunities for higher utility

achievable by individual threads with an replacement policy other than LRU. In order

to gain a deeper understanding of this issue, we characterize the locality and the utility

features for a spectrum of workloads and construct different workload combinations to

evaluate the existing solutions. Our observations confirm distinct performance comfort

zones for the two categories of existing approaches, neither performing consistently and

robustly well under all workloads.

Motivated by these observations, we propose a novel design, called CLU, to interac-

tively co-optimize the locality and utility of workloads in thread-aware SLLC capacity

management. The key design challenge is how to estimate the utility information with

a replacement policy other than LRU. Based on the observation that the hit curve of

the thrashing-prevention policy BIP (bimodal insertion policy [7]) is concave and can be

approximated by using logarithmic samples, CLU employs two lightweight runtime

monitors for each thread in a CMP workload: a classic LRU stack profiler and a novel

logarithmic-distance-curve-fitting BIP utility profiler to capture the interleaved locality and

utility of the thread. Leveraging the information about all co-scheduled threads, CLU

spatially partitions the SLLC cache ways among the threads and temporally makes use of

the allocated capacity for individual threads in an interactive way, so that the highest util-

ity provided by the best replacement policies can be exploited. Our evaluation shows that

CLU improves the throughput by 24.3%, 45.3% and 43.3% for our simulated dual-core,

quad-core and eight-core systems (with 0.26%, 0.27% and 0.53% storage overhead) respec-

tively, outperforming the existing alternative replacement policies and cache partitioning

schemes under a wide-range of CMP workloads.
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5.2 Research Motivations

Although the entire SLLC capacity can be accessed by all cores, allowing free accesses

with the LRU replacement policy does not necessarily lead to an effective utilization

of the SLLC resources. This is because regulating the contention for capacity among

co-scheduled threads is beyond the capability of LRU. Therefore, various alternative

replacement policies and cache partitioning schemes have been proposed for better

utilization of the SLLC capacity. Here, we briefly describe their working principles and

discuss their strengths and weaknesses revealed by our experiments, which motivates us

to view the SLLC capacity management from a unique perspective.

5.2.1 Shared LLC Capacity Management

On the one hand, it has been noted that the LRU replacement policy performs quite

well when a thread’s block-reuse distance is no longer than its cache set associativity

[7], or in other words, when the thread has excellent locality. However, LRU can cause

a thread with poor locality to thrash its cache space [7] or severely interfere with other

co-scheduled threads in capacity use [14]. In general, the thrashing problem can be

solved by adaptively assigning the lifetime of a block according to the locality of the

thread that brings it into the cache, and the solutions are termed as locality-oriented

alternative replacement policies. The existing proposals like TADIP and NUACHE fall into

this category.

On the other hand, the miss-driven nature of the LRU-based SLLC capacity manage-

ment implicitly partitions the SLLC capacity among co-scheduled threads in a way that

a thread incurring more misses will be allocated a greater amount of SLLC capacity by

default. But the miss-driven capacity allocation is oblivious of a thread’s efficiency of

utilizing the SLLC resources for performance delivery, exemplified by the pathological
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Figure 5.1: HPKIs (Hits Per 1K Instructions) of LRU and BIP as a Function of the LLC
Capacity for the SPEC Benchmarks

case where a streaming thread occupies a large amount of capacity with little performance

contribution. Thus, UCP [12] and PIPP [13] are proposed to partition the SLLC space

among co-scheduled threads according to their utility, which is defined as the ratio of the

number of SLLC hits to the SLLC capacity that is required to maintain the hit count for a

thread under LRU. We name these schemes as utility-oriented capacity partitioning schemes.

5.2.2 Our Perspective and Supporting Experimental Data

In our view, the aforementioned alternative replacement policies and cache partitioning

schemes have fundamentally different working principles: the replacement alternatives
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aim to temporally optimize the sharing of SLLC capacity for co-scheduled threads mainly

by adapting to their locality features, while the cache partitioning schemes are targeted

at spatially provisioning SLLC resources among competing threads according to their

LRU-based utility characteristics. Unfortunately, the replacement policies are unable to

coordinate the best capacity provisioning for all co-scheduled threads due to the lack of

utility monitors, while the existing cache partitioning schemes cannot estimate or exploit

the utility information for a replacement policy alternative to LRU. As a result, focusing

on optimizing locality or utility alone in SLLC capacity management, the two categories

of approaches miss delivering robust performance under a variety of workloads. In the

following, we elaborate on why it is beneficial to treat locality and utility concurrently and

interactively. Our argument is based on workload characterization as well as an evaluation

of the two categories of approaches on the workloads that expose their performance

comfort and discomfort zones.

Figure 5.1 illustrates the LLC performance for 9 of the benchmarks in our study as a

function of assigned cache capacity, managed by LRU and BIP respectively (see Section 5.3

and Section 5.4 for more details). The x-axis shows the LLC capacity measured in the

number of ways (with fixed 2048 sets and 64B lines assumed), while the y-axis represents

hits per 1K instructions. The dotted roofline in each figure indicates the total number of
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LLC accesses per 1k instructions (independent of the LLC capacity). The 9 benchmarks

are divided into four classes according to their locality and utility characteristics. The

9 benchmarks can be divided into four classes depending on their locality and utility

features. The first two classes represent the cases where the performance can be improved

with allocation of extra capacity, but they differ in their LRU vs. BIP utility. The last

two classes saturate in performance after a minimal allocation of capacity, but with very

different hit rates. In the first class, as indicated in Figure 5.1 (a)-(c), benchmarks xalancbmk,

sphinx3 and mcf all have inferior locality because their LRU curves are significantly below

the BIP curves within a certain capacity range (e.g., from associativity 2 to 20 for mcf ). If

any of them runs in a mix of co-scheduled threads on a CMP, an alternative replacement

policy such as TADIP can potentially apply an alternative replacement decision better

than LRU to improve the SLLC hit performance. In contrast, existing cache partitioning

schemes like UCP are oblivious of locality due to their LRU-based utility monitors. For

instance, if a cache partitioning scheme decides to allocate 8 cache ways to mcf, without

the locality information, the scheme will never realize that mcf ’s hit performance can still

be improved by 4.5x (≈ 72.6−13.1
13.1 ) with the same capacity allocation by simply altering the

replacement policy from LRU to BIP.

In contrast, the workloads in the second class, represented by applications vpr, twolf

and swim (illustrated in Figure 5.1 (d)-(f)), show good locality since their LRU curves are

never below the BIP curves. However, they can still be set apart from each other with

respect to their utility. For instance, when assigned 16 ways, twolf has a higher utility

than swim in that it can yield 28.5 hits per 1K instructions (HPKI) (corresponding to a hit

rate of 95.2%) while swim can deliver only 19.8 HPKI (with a hit ratio of 55.2%). Further, if

twolf and swim are running concurrently and compete for the SLLC resources such as the

16-way SLLC, an alternative replacement policy like TADIP will detect LRU’s better hit

performance than BIP (especially for swim) and thus adopt the LRU module for both of



88

them. But since swim inherently has many more misses than twolf (e.g., the ratio between

the MPKIs of swim and twolf are 5.0 and 11.5 at associativity 8 and 16 respectively), swim

will occupy much greater capacity than twolf due to the underlying miss-driven capacity

allocation by LRU. A cache partitioning scheme such as UCP or PIPP, being utility-aware,

can do a better job of space partitioning in this case by favoring twolf.

Figure 5.1 (g)-(i) illustrate the third and the fourth classes whose applications require

very few SLLC resources. In particular, milc and lbm are both streaming applications due

to their high miss rates, while crafty is CPU-bound and can yield very high hit rates given

a small amount of SLLC capacity.

To better understand the performance impact of the different working principles

between alternative replacement policies and cache partitioning schemes, we construct

10 simple dual-core CMP workloads by pairing some of the benchmarks illustrated in

Figure 5.1 to expose their performance gaps. We then use the workloads to evaluate the

alternative replacement policies TADIP and NUCACHE, as well as the cache partitioning

schemes PIPP and UCP, on a dual-core CMP with a 16-way 2MB SLLC (see the exper-

imental setup details in Section 5.4). Figure 5.2 shows that, based on their throughput

performance over the baseline LRU, the ten workloads can be divided into two cate-

gories, namely locality-favorable and utility-favorable. For a locality-favorable workload that

consists of at least one of the benchmarks with inferior locality, e.g., xalancbmk+mcf, an

alternative replacement policy like TADIP can greatly optimize the temporal capacity-

sharing behavior for co-scheduled threads, which a cache partitioning scheme often

fails to do. On the other hand, a utility-favorable workload consists of benchmarks

with significantly diverse utility (e.g., swim+twolf ) such that a cache partitioning scheme

can make a better decision on space partition, yielding a better performance than an

alternative replacement policy. We also note that an alternative replacement policy like

TADIP performs much worse in certain utility-favorable workloads like sphinx3+twolf,
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even though sphinx3 presents opportunities for locality improvement. This is because

twolf begins to interfere with sphinx3 when they are managed by LRU and BIP respec-

tively, due to the lack of a dedicated space partition for performance isolation in TADIP.

In summary, we can infer from this motivational experiment that neither alternative

replacement policies nor cache partitioning schemes can consistently perform well under

a variety of workloads due to their different working principles.

5.3 The CLU Architecture

CLU is designed to achieve three specific goals: (i) to be thread-aware, which means that

it should be able to differentiate between the diverse features of individual threads; (ii) to

dynamically profile both utility and locality of co-scheduled threads and fully exploit the

interactions between the two dimensions for co-optimization; and (iii) to decide on the

optimal management policy by taking into account the locality and utility characteristics

of all the threads.

5.3.1 The Overall Architecture

Figure 5.3 depicts an architectural view of CLU. On an N-core CMP, a locality & utility

monitor is associated with each core and dynamically captures both the utility and locality

information about the SLLC access sequence from its host core. In particular, the locality

& utility monitor consists of an LRU profiler and a BIP profiler, both of which are based

on the set sampling technique [7]. Therefore, only a small group of sampler sets out

of all SLLC sets are monitored and the samplers’ information is used to deduce the

characteristics of the entire SLLC. On every time interval boundary, the profilers feed the

information back to the decision unit that uses it to determine the space partitioning and

replacement policy for all of the co-scheduled threads during the next time period.
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5.3.2 The Locality & Utility Monitor

The locality & utility monitor counts the SLLC hits that a thread would contribute if it

were running alone, while the amount of space it is assigned and the replacement policy

(LRU vs. BIP) adopted to manage the allocated space are both varied. By so doing, the

monitor attempts to capture the runtime interplay between the locality and the utility

optimizations in SLLC management. Assuming that an SLLC has an associativity of 64,

for example, the monitor counts the number of hits a thread would contribute if it were

allocated 1-, 2-, . . . , or 64-way SLLC space, being managed by LRU and BIP respectively.

Consequently, the monitor is able to deduce both the LRU and the BIP hit curves that
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are a function of cache ways respectively, as illustrated in Figure 5.1 and generalized in

Figure 5.4. The two curves can jointly convey two critical pieces of information:

• Which replacement policy should be adopted under a given capacity quota for the

thread. As depicted in Figure 5.4, if the thread can get 4 cache ways, it should apply

the LRU replacement policy to manage the given amount of space, since the LRU

hit curve (solid) is above the BIP curve (dotted) when the way count equals 4; but if

the assigned way-count is 12, the thread should alter the policy to BIP that can help

it obtain far more hits. Therefore, with the two curves, CLU can implicitly derive a

composite hit curve (bold) which consists of the higher segments of the LRU or BIP

curves.

• What the preferred utility is under the best replacement policy. For instance, if

the hit counts of the derived composite hit curve at the way counts of 10 and 12

are assumed to be 100 and 110 respectively, we know that the utility of 10 ways is

better than that of 12 ways because 100
10 > 110

12 . In this way, CLU fully exploits the

interactions between the locality and the utility dimensions.

To be detailed next, we apply two different profiling mechanisms to respectively

deduce the LRU and the BIP hit curves of a thread, since LRU satisfies the stack property

[42] while BIP does not. Specifically, the stack property stipulates that the blocks that

would be in an A-way associative cache should be subsumed by those that would be in

an (A + 1)-way associative cache.

5.3.2.1 Profiling the LRU Hit Curve

To obtain the LRU hit curve, we leverage the well-established profiling technique [12] that

leverages the set sampling strategy and the Mattson’s LRU stack algorithm [42]. Specifically,

an auxiliary tag directory (ATD) with an associativity of A and a size-A array of stack-hit
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LH(i) = ∑
1≤k≤i

h(k), where h(k) is the hit counter at LRU-stack position k and 1 ≤ k ≤ i ≤ A

(5.1)

BH(i) =

{
BH(2k), where i = 2k and BH(2k) can be monitored by ATD(2k)

BH(i + 1)− ∆, where ∆ = BH(2k+1)−BH(2k)
2k and 1 ≤ 2k < i < 2k+1 ≤ 2m = A

(5.2)

counters are adopted to implement the Mattson’s LRU stack algorithm, where A is also the

SLLC’s set associativity, as shown in Figure 5.5. Here, an ATD structure, with each of its

entries containing only the tag field, mimics the LRU stack of a small group of sampler

SLLC sets, as if the monitored thread were exclusively occupying the whole space of

these sampler sets. Upon every hit on the ATD, it reports the LRU-stack position where

the hit takes place so that the corresponding stack-hit counter h(i) can be incremented

by one. As a result of the stack property of LRU, the value of the LRU hit curve at way

count i, denoted LH(i), can be expressed by Equation 5.1.

5.3.2.2 Profiling the BIP Hit Curve

The profiling of the BIP hit curve, on the other hand, is more challenging because BIP

violates the stack property by placing incoming blocks at the LRU position of any cache set

with a high probability or at the MRU position with the complementary (low) probability.

Thus, the simple stack algorithm cannot be applied to deducing the BIP hit curve. To

resolve this issue, we first propose an exact but complex approach and follow it with an

approximate but practical solution.

The exact approach is also based on set sampling, and uses a number A of ATD

structures representing the A different associativities from 1 to A. Therefore, in the

exact approach, we use a group of A ATD structures, {ATD(1), ATD(2), . . . , ATD(A− 1)

and ATD(A)}, to mimic BIP’s operations on the sampler SLLC sets with an associativity

ranging from 1 to A respectively, where ATD(k) stands for an ATD structure with an
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Figure 5.6: Practically but Approximately Profiling a BIP Hit Curve
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Figure 5.7: An Example of Applying the Logarithmic-Distance Monitoring & Curve-Fitting
Approach to Profiling the BIP Hit Curve of Benchmark xalancbmk (by Approximating the
Exact Reference Curve)

associativity of k. By monitoring any ATD(k) structure, the corresponding BH(k), namely

the value of the BIP hit curve at way count k, can be determined as the total hit count of

ATD(k) under BIP. Although this approach provides an exact measure of the BIP curve,

it requires a significant number A of ATD structures, which makes the implementation

prohibitively expensive if A is large, even when a single ATD structure is lightweight

[12, 13].

The practical solution is based on four key observations derived from an analysis of

the BIP hit curves for the benchmarks in our study (exemplified in Figure 5.1): (i) the BIP
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hit curve is monotonically non-decreasing with respect to the assigned way count; (ii)

the BIP hit curve is a concave function, which means that the curve’s gradient is always

non-increasing as the way count increases. The intuition behind concave BIP curves

is that, at non-LRU stack positions, the blocks hardly get evicted by incoming blocks

(namely, stationary) and are also ranked from MRU to descending positions based on

recency; (iii) the BIP hit curve has a long flat tail as the way count approaches a high

value; and (iv) it is provable that the LRU and the BIP hit curves have the same value

at way count 1 (BH(1) = LH(1)), since the LIP (LRU insertion policy) module in BIP

does not let an incoming line bypass the cache [7]. Therefore, it is sufficient to monitor

the BIP hit values at a small number of discrete logarithmic way-count points by using

a dedicated ATD for each of these points, and then apply the curve fitting technique to

deduce the entire BIP hit curve. Specifically, we employ m ATD structures {ATD(21),

ATD(22), . . . , ATD(2m)} to capture the BIP hit counts {BH(21), BH(22), . . . , BH(2m)} in a

small number of way-count cases {21, 22, . . . , 2m}, where m = log2 A. We carry out curve

fitting based on the m discrete BIP hit values by linearly interpolating between the two

monitored BIP curve counts (2k, BH(2k)) and (2k+1, BH(2k+1)). Then, the BH(i) value

can be calculated iteratively by Equation 5.2. Figure 5.7 shows an example of applying

our logarithmically discrete monitoring and curve-fitting approach with up to 64 ways

for the benchmark xalancbmk. The specific design choice of monitoring at logarithmic

way-count points stems from our empirical observations mentioned above, suggesting a

denser number of monitoring points to more accurately profile the high-gradient portion

of the BIP hit curve when A is small, which is also a property of a logarithmic/geometric

series.

As described above, the practical solution needs only m = log2A, instead of A, BIP-

managed ATD structures at the associativities of 2, 4, . . . , A
2 and A respectively, as well as

m BIP-hit counters. It is worth remarking that the storage overhead (measured in the total
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number of ATD ways) required by the practical BIP profiling is 2+ 4+ 8+ · · ·+ A
2 + A =

2×(A−1)
2−1 = 2× (A − 1) < 2× A, which is less than twice the storage overhead required by

a single A-way ATD structure for the LRU profiling and makes our solution very practical in

hardware implementation. It needs to be noted that, upon an access to one sampler SLLC

set, the LRU-managed ATD and the m BIP-managed ATDs are operated concurrently for

both the LRU- and BIP-curve profiling.

5.3.3 The Decision Unit

With the locality and utility characteristics of co-scheduled threads profiled during each

time interval, the decision unit will periodically determine the optimal space partition

and replacement policy for individual threads by leveraging on all their locality and

utility information fed by the monitors. Since the space partitioning logic of CLU is also

utility-based, aimed at maximizing the overall performance, we adopt the framework

of the lookahead utility-based cache partitioning algorithm [12]. The original algorithm

evaluates every potential partitioning decision and provisions cache ways to a thread that

currently has the highest utility of these ways. We modify the algorithm to determine the

best utility-based partitioning of the cache ways according to the composite hit curves,

each of which is composed of the higher segments of the LRU and the BIP hit curves.

Other studies only examine the utility of an LRU hit curve, which has been shown to be

ineffective in the case of poor locality in Section 5.2.

On each time interval boundary, the SLLC’s space-partitioning result for Corei is

kept in an m-bit partition quota counter, denoted as Qi, where 0 ≤ i ≤ N − 1 and

m = log2A. Assuming that A is greater than N, CLU also guarantees that at least one

way is provisioned to every core. With each core Corei the decision unit in CLU also

associates a (locality management) bit, LMi, to indicate either LRU (LM=0) or BIP (LM=1) to
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Figure 5.8: An Example of Enforcing the Management Decisions

be adopted for the core in its allocated SLLC space. LMi can be determined by examining

the difference between the LRU and the BIP curves at the value k of the partition quota

counter Qi: the bit is set 0 if LH(k) ≥ BH(k) or 1 otherwise.

CLU enforces its space partitioning and replacement policy with specific promotion,

insertion and victimization strategies. The single-step promotion policy [13] is adopted as

CLU’s cache-block promotion mechanism. As illustrated in Figure 5.8, we assume that

the SLLC’s LRU stack is numbered 0, 1, · · · , A− 1 from the LRU position to the MRU

position. When a new block is brought in by Corei, if its LMi is 0, the LRU block of the

target set is replaced and the incoming block is inserted at position k− 1, where k is the

value of Qi. This part is similar to the promotion, insertion and victimization module

of PIPP [13]. On the other hand, if Corei’s LM bit is 1, the block at position A− k will

be victimized, and the block brought in by the core will be inserted at position A− k

with a high probability and at the MRU position with the complementary low probability.

Therefore, if a core’s incoming block stream shows a poor locality (i.e. its LM bit is 1),

part of its working set can be preserved well in its allocated space with the BIP-like

victimization and insertion. Figure 5.8 demonstrates a dual-core example with an 8-way

SLLC managed by CLU: for Core1, its incoming blocks are always placed at position 1



97

with the LRU blocks victimized, because it has good locality and gets a space quota of 2

SLLC ways; but for Core0, since it exhibits inferior locality and is allocated with 6 ways,

the blocks at position 2 (= 8− 6) will be replaced upon insertion, and its incoming blocks

will be inserted at the MRU position with a low probability (1/32 in our study and other

BIP-related work [7, 14]) and at position 2 otherwise.

With respect to the time complexity, similar to existing cache partitioning approaches

UCP and PIPP, the runtime performance overhead of CLU is negligible for the following

reasons: (i) monitoring is in parallel and not intrusive with normal cache operations; (ii)

every 5 million cycles, decision making is conducted in the background and not in the

critical path of cache accesses; (iii) for A cache ways, curve fitting only involves addition,

subtraction and shift operations (see Equation 5.2), while deriving a composite curve just

needs to compare LRU and BIP hit counts at each of the A way-points, and both of them

can be accomplished in linear time; (iv) only several partition quota counters and locality

management bits will be modified to embody the new management decisions, of which

the time complexity is trivial; (v) decision enforcement only changes the RRPVs of cache

blocks in one set upon a cache hit, miss or fill, without moving or flushing a number of

blocks.

5.4 Experiments & Evaluation

In this section, we first briefly describe our simulation-based experimental methodology

and then present and analyze the evaluation results.

5.4.1 Evaluation Methodology

Simulation Setup: We use the cycle-accurate M5 full system simulator [90] with the

configuration parameters listed in Table 5.1. For the memory hierarchy, we model two
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Table 5.1: Major Configuration Parameters

Core
(2/4/8)

Alpha ISA, in-order, IPC=1 except for memory accesses, 128/128 I/D TLBs

L1 2-way, 32KB, 64B/line, 1-cycle delay, 16 MSHRs, write back & 4 write buffer
entries for L1D

L2 64B/line, 6/8-cycle tag/data store delay, totally 1024 MSHRs, write back &
totally 256 write buffer entries, physically tagged and indexed (M5’s built-in
setting), 2MB & 16 ways/4MB & 16 ways/8MB & 32 ways for 2/4/8-core
configurations

NoC mesh topology (1× 2, 2× 2, 2× 4) with 1 cycle delay per hop
Mem 300-cycle delay
Oth-
ers

#(sample sets/core) = 32, BIP’s low probability = 1/32, hit counter length =
16 bits, single-step promotion probability = 3/4, stream promotion
probability = 1/128, NUCACHE L2 setups are the same as in [15]

Table 5.2: Selected Benchmarks & Classification

Class Descriptor Benchmarks
I Poor Locality galgel, mcf, libquantum, omnetpp, sphinx3, xalancbmk

II Good Utility ammp, swim, twolf, vpr, bzip2 calculix, gcc, GemsFDTD

III Streaming lucas, lbm, milc

IV CPU-Bound crafy, fma3d

levels of on-chip caches. The L1 instruction and data caches adopt the conventional

set-associative configuration, the LRU replacement policy, and a coupled tag-data store

organization. For the shared L2 cache, we model decoupled tag and data stores for each

L2 slice, and take into account the NoC latency when calculating the L2 access time.

Using representative and specially-constructed workloads, we evaluate and compare the

performance of LRU (baseline), TADIP, NUCACHE, UCP, PIPP and the proposed CLU for

the dual/quad/eight-core configurations. TADIP reevaluates its management decisions

whenever any saturating counter of its monitor has its MSB altered, while NUCACHE,

PIPP, UCP and CLU make management decisions every 5M cycles. The 16-bit profiler hit
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counters in PIPP, UCP and CLU are reset upon each periodic decision boundary, and we

have not found any overflow problems with the counters in our experiments. Particularly,

the aforementioned schemes are all rooted in the true-LRU environment that the RRPV

of each cache block has dlog2 Associativitye bits. In essence, for the true-LRU based

schemes, the representative and specially-constructed workloads are generated to expose

the performance gap between the locality-oriented and the utility-oriented approaches

and demonstrate CLU’s ability of bridging the gap. Then, we also use random workloads

to evaluate the general overall performance for all of the true-LRU based schemes, as well

as the pseudo-LRU based approach TA-DRRIP [16] that is also an alternative replacement

policy but uses only 2 bits per cache block for the RRPV.

Performance Metrics: We adopt two standard metrics of throughput and fair speedup

to quantify the CMP performance. Specifically, throughput measures the utilization of

a system, while fair speedup balances both performance and fairness. Let IPCi be the

instructions per cycle performance of the ith thread when it is co-scheduled with other

threads and SingleIPCi be the IPC of the same thread when it executes in isolation. Then,

for a system where N threads execute concurrently, the formulas for the two metrics are

shown in Equation 5.3 and Equation 5.4.

throughput = ∑
i=1,2,··· ,N

IPCi (5.3)

fair speedup =
N

∑
i=1,2,··· ,N

SingleIPCi
/

IPCi
(5.4)

Workload Construction: As listed in Table 5.2, we select 19 benchmarks from the SPEC

CPU 2000 and 2006 benchmark suites and categorize them into four classes according to

their locality and utility. Class I is a collection of benchmarks that exhibit poor locality

and can be improved by judicious replacement policies. The benchmarks in Class II
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Table 5.3: Workload Construction

MIX2 Apps MIX4 Apps MIX8 Apps
1 mil+omn 1 two+omn+lbm+mcf 1 2 sph + 2 omn + 2 mcf + 2 two
2 omn+xal 2 lbm+amm+mcf+omn 2 2 two + 2 vpr + 2 omn + 2 sph
3 xal+mcf 3 mcf+two+omn+sph 3 2 swi + 2 bzi + 2 luc + 2 omn
4 omn+fma 4 omn+two+mcf+gal 4 lib+sph+mcf+amm+swi+two+fma+mil
5 lbm+omn 5 amm+omn+two+mcf 5 2 swi + 2 mcf + 2 sph + 2 omn
6 mcf+two 6 xal+two+omn+mcf 6 2 mil + 2 vpr + 2 omn + 2 mcf
7 sph+mcf 7 two+swi+mcf+omn 7 2 bzi + 2 luc + 2 sph + 2 omn
8 fma+xal 8 fma+omn+lbm+swi 8 2 mcf + 2 swi + 2 bzi + 2 luc
9 xal+vpr 9 cra+swi+lbm+omn 9 2 omn + 2 mcf + 2 swi + 2 bzi
10 mcf+lbm 10 omn+lbm+gal+mcf 10 2 sph + 2 omn + 2 luc + 2 swi
11 swi+two 11 amm+omn+vpr+lib 11 gcc+sph+mcf+amm+vpr+omn+two+mil
12 lbm+xal 12 gal+amm+omn+vpr 12 two+gal+omn+mcf+gcc+lib+xal+vpr
13 vpr+lbm 13 mcf+omn+vpr+sph 13 omn+sph+mil+gcc+lib+two+swi+lbm
14 Gem+two 14 lbm+xal+fma+omn 14 vpr+swi+two+lib+fma+mcf+omn+xal
15 two+mil 15 mcf+lib+omn+amm 15 lib+sph+omn+gcc+two+xal+gal+lbm
16 lib+xal 16 omn+lib+xal+cra 16 2 omn + 2 swi + 2 two + 2 bzi
17 two+sph 17 two+xal+lib+omn 17 2 xal + 2 omn + 2 luc + 2 swi
18 xal+swi 18 mil+cra+omn+xal 18 2 sph + 2 xal + 2 omn + 2 mcf

have excellent utility and need dedicated SLLC space partitions. Class III is a group of

streaming applications that require little SLLC capacity and need to be prevented from

polluting the SLLC. Finally, Class IV benchmarks are CPU-bound with small working sets

in the SLLC. From the four classes of benchmarks, we can construct dual/quad/eight-

core workloads in Table 5.3, which can be further divided into locality-favorable and

utility-favorable categories shown in the top and the bottom halves respectively. Every

locality-favorable workload consists of at least one Class I benchmark and should enable

either TADIP or NUCACHE to outperform both capacity-partitioning schemes. In

contrast, for every utility-favorable workload constructed using benchmarks with diverse

utility, PIPP and UCP are supposed to achieve a better performance than the alternative

replacement policies.

Simulation Control: In the experiments, all threads in a workload are started from a

checkpoint that has already had the first 20 billion instructions bypassed. They are

cache-warmed with 1 billion instructions and then simulated in detail until all threads
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finish another 1 billion instructions. Performance statistics are reported for a thread when

it completes the latter 1 billion instructions. If one thread finishes the 1 billion instructions

before others, it continues to run so as to still compete for the SLLC capacity, but its extra

instructions are not taken into account in the final performance report.

5.4.2 Performance Comparison Using Representative and

Specially-Constructed Workloads
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Figure 5.9: Throughput of Handpicked Dual-Core Workloads

Figure 5.9 shows the throughput performance of TADIP, NUCACHE, PIPP, UCP

and CLU normalized to the baseline (LRU) on the simulated dual-core configuration.

For 18 dual-core workloads, CLU provides a throughput improvement of 24.3% on

average (and up to 95.5%), which is much higher than the improvements by the locality-

oriented (TADIP: 14.9%, NUCACHE: 9.6%) and the utility-oriented (PIPP: 15.0%, UCP:

7.2%) approaches. If we look closer at the specific categories of workloads, we can
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find that the higher improvements of CLU come from its capability of bridging the

performance gap between alternative replacement policies and capacity partitioning

schemes. Specifically, for the locality-favorable workloads MIX2 1-MIX2 9, the better

alternative replacement policy TADIP, can improve their throughputs by 24.6% on average,

while the better capacity partitioning scheme (PIPP here) can only yield 11.7% higher

performance over the baseline, in contrast to CLU’s 30.1%. In terms of the utility-favorable

workloads MIX2 10-MIX2 18, however, PIPP and UCP can improve their performance by

18.3% and 12.7% respectively, while TADIP and NUCACHE only improve by 5.9% and

7.5%, compared to CLU’s 18.8%. Therefore, while CLU outperforms all of the existing

approaches throughout both locality-favorable and utility-favorable workloads, none of

the locality-oriented or utility-oriented approaches can perform consistently well.

We can further explain the performance implications of existing approaches and CLU

by means of case studies. On the one hand, for the locality-favorable workload MIX2 1

which is the combination omnetpp+milc, TADIP can provide a much better performance

than both of the capacity partitioning schemes. Specifically, milc is a streaming application,

and omnetpp, belonging to benchmark Class I, can be improved by smart replacement

policies. In this scenario, TADIP will adopt its BIP module to manage both threads so as

to prevent thrashing for milc and significantly promote the performance of omnetpp by

preserving a large part of its working set in the SLLC. PIPP and UCP cannot do as well as

TADIP through SLLC partitioning alone (e.g., giving at least 15 ways to omnetpp in a 16-

way 2MB SLLC), because they cannot detect omnetpp’s being in Class I. So, PIPP and UCP

will insert the incoming blocks of omnetpp at the high position of the SLLC stack (position

14 for PIPP and position 15/MRU for UCP), still thrashing its working set. With its locality

& utility monitor and BIP-like insertion, however, CLU can match TADIP’s performance.

On the other hand, for the utility-favorable workload MIX2 11 swim+twolf that exhibits

diverse utility, no opportunities are present for locality-oriented improvement. Thus,
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Figure 5.10: Throughput of Handpicked Quad-core Workloads

PIPP and UCP can improve the performance by 9.7% and 10.0% respectively, better than

TADIP (-0.2%) and NUCACHE (2.6%). Since CLU also has a utility-management module,

it can improve the performance of this benchmark combination by 9.8%.

Figure 5.10 and Figure 5.11 present the performance comparison among the schemes

for the quad-core and eight-core configurations. For both configurations, the gap between

alternative replacement policies and cache partitioning schemes is similarly manifested

by a significant impact on the performance. Again, CLU exploits the opportunities

for performance improvement in both locality and utility dimensions interactively and

provides 45.3% and 43.3% higher throughputs over the baseline for quad-core and eight-

core systems respectively, significantly outperforming other approaches. It must be noted

that CLU slightly underperforms some of the locality-oriented and the utility-oriented

approaches under a few workload combinations, such as the cases MIX4 1 and MIX8 17.

This is because CLU is designed to strike a good balance/compromise between the locality
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Figure 5.11: Throughput of Handpicked Eight-Core Workloads

and the utility optimizations. Therefore, it may not work as aggressively as a single-

dimension management approach when the opportunities for performance optimization

dominate in exactly one dimension for a workload. However, CLU can still win out

robustly in a much broader range as a result of its adaptive management capabilities. More

interestingly, when the opportunities of interactively exploiting both locality and utility

are significant for a workload, CLU is able to co-optimize the management decisions,

leading to its superior performance to the existing approaches (e.g., MIX2 10, MIX4 16

and MIX8 1).

Figure 5.12 illustrates the performance impact of different SLLC management schemes

for the fair speedup metric. For the dual-, quad- and eight-core configurations, CLU outper-

forms the baseline by 23.1%, 43.0% and 36.5% on average (geometric mean) respectively,

which are much better than any of the locality-oriented or the utility-oriented approaches

(TADIP: 16.1% / 25.0% / 22.4%, NUCACHE: 11.4% / 30.5% /32.6%, PIPP: 16.1% / 34.7%
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Figure 5.12: Fair Speedup Improvement
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Figure 5.13: Throughput of 50 Random
2/4/8-Core Workloads

/ 32.1%, UCP: 8.3% / 13.0% / 26.2%). This set of results reveal that not only can CLU

provide higher absolute throughput but also it is able to improve on the fairness over the

existing schemes.

5.4.3 Performance Comparison Using Randomly-Selected Workloads

So far, we have demonstrated CLU’s capabilities of locality and utility co-optimization

with representative and specially-constructed workloads. Next, we show that CLU also

performs well in randomly-selected workload combinations. In particular, the pseudo-

LRU based scheme TA-DRRIP that uses 2 bits (2 < dlog2 Associativitye) per block for the

RRPV (see Chapter 2) is also included in the comparison. Specifically, for the dual-core,

quad-core and eight-core configurations, we generate 50 random workload combinations

from the pool of 19 SPEC CPU benchmarks in Table 5.2. Figure 5.13 illustrates the five

schemes’ average throughputs on the 50 randomly-selected dual-core, quad-core and

eight-core workloads respectively, where CLU is shown to outperform all other schemes

with a throughput improvement of dual cores by 6.3%, quad cores by 14.1% and eight

cores by 8.9% over the baseline (true-)LRU scheme.
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We find that the normalized performance of TADIP under random workloads in our

study (6.1% / 2.1% for quad/eight-core systems respectively) is different from those re-

ported in [14] (18% and 15% respectively). We speculate that several factors may have con-

tributed to this discrepancy. For instance, [14] uses a CMP simulator based on the X86 ISA

that has much more sophisticated memory addressing modes than a RISC ISA (e.g., the

Alpha ISA in the M5 simulator), such as the register/immediate/direct/indirect/indexed

addressing modes, which may make memory accesses more intensive in X86. In addition,

our benchmark pool differs from the one adopted in [14], which can also contribute to

the discrepancy. We notice, however, that the mutual/relative performance trend among

TADIP, NUCACHE, PIPP and UCP remains consistent with the conclusions in their

respective studies [14, 15, 13, 12].

Another interesting observation is that the performance gap between CLU and

PIPP shrinks under the random workloads, compared to the gap under the specially-

constructed ones. The underlying reason might be that, as analyzed in Section 5.2.1, the

capacity partitioning scheme PIPP has an ad hoc ability for locality-oriented improvement

via such mechanisms as the stream handler or the single-step promotion [13]. We specu-

late this ability helps PIPP perform better in the locality dimension under the random

workloads than under the specially-constructed workloads. However, CLU’s ability to

co-optimize locality and utility is systematic and enables it to consistently outperform

PIPP in both kinds of workloads.

Furthermore, TA-DRRIP underperforms TADIP by 1.4% and 1.1% for the dual-core and

the quad-core random workloads respectively. This is mainly because the pseudo-LRU

based TA-DRRIP uses only 2 bits for each block, while the true-LRU based TADIP uses

dlog2 Associativitye bits (>2). Besides, it was experimentally shown in [16] that RRIP’s

design choice of using 2 bits per block achieves almost the same performance as using

a higher number of bits (e.g., dlog2 Associativitye). This is why the 2-bit TA-DRRIP is
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Table 5.4: Hardware Overhead Details

address length 44-bit physical address
cache line size 64 bytes
associativity 16 ways for 2MB dual-core and 4MB quad-core, 32 ways for 8MB

eight-core
#(sample
sets)/core

32

tag bits 27 bits for 2-core, 26 bits for 4/8-core
monitor tag (hash) 10 bits for 2/4/8-core configurations
valid bit 1 bit
RRPV 4 bits per line for 2/4-core, 5 bits per line for 8-core
hit counter 16 bits each

chosen for evaluation and comparison in our experiments. We also notice that TA-DRRIP

outperforms TADIP by 3.2% under the eight-core workloads. Our speculation is that,

in this case, TA-DRRIP’s capability of being both thrashing-resistant and scan-resistant

[16] enables it to outperform TADIP that is only thrashing-resistant. Nevertheless, TA-

DRRIP underperforms CLU under all of the dual-core, quad-core and eight-core random

workloads, although CLU is not equipped with a scan-resistant module. We speculate that

it is CLU’s capability of locality and utility co-optimization that enables it to consistently

outperform TA-DRRIP’s locality-oriented management of being thrashing-resistant and

scan-resistant.

5.4.4 Overhead Estimation

Since CLU requires an LRU profiler and a BIP profiler for per-core locality & utility

monitoring, the shadow sets and hit counters will dominate the hardware overhead in

its design. Specifically, each shadow set entry consists of a tag field, a valid bit and a

RRPV field, as listed in Table 5.4. We also found in experiments that 16 bits are sufficient

for a hit counter. Therefore, we can estimate that the storage overhead of CLU (with

the practical BIP profiler) in dual-core, quad-core and eight-core systems are 5.79KB,
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5.61KB and 11.46KB for the locality & utility monitor of each core, amounting to 0.56%,

0.55% and 1.12% of the overall SLLC capacity respectively. Moreover, we found that if we

apply the 10-bit hash function in the study [92] to the tag field in the locality & utility

monitoring logic, we can further reduce the overhead to 0.26%, 0.27% and 0.53% for

dual-core, quad-core and eight-core configurations with negligible performance change

compared to using full tag bits.

5.5 Summary

In this chapter, we demonstrate that the existing alternative replacement policies or cache

partitioning schemes cannot adapt to a wide spectrum of workloads with diverse locality

and utility since they are oriented towards either of the two optimization goals only.

Therefore, we propose CLU, a novel SLLC capacity management scheme that is capable

of interactive locality and utility co-optimization. By employing lightweight monitors that

profile both LRU and BIP hit curves, CLU can exploit the co-optimized locality and utility

of concurrent threads and effectively manage the SLLC capacity for CMP workloads. Our

execution-driven simulation shows that CLU can improve the throughput by 24.3%, 45.3%

and 43.3% for our simulated dual-core, quad-core and eight-core systems (with 0.26%,

0.27% and 0.53% storage overhead) respectively, outperforming the existing alternative

replacement policies and cache partitioning schemes.
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Chapter 6

Locality & Utility Co-optimization for

Practical Capacity Management of

Shared Last Level Caches

6.1 Problem Definition

For shared last level caches, it has been noticed that the least-recently-used (LRU) replace-

ment policy becomes less effective due to the diminished access locality at the last cache

level [14, 52, 57, 15] and the uncoordinated capacity allocation among heterogeneous

threads [12, 13]. As detailed in Chapter 2, in response to LRU’s limitations, two ap-

proaches have emerged in the literature. First, alternative replacement policies, such as

TADIP [14], SDBP [52] and NUcache [15], have been proposed to manage locality by

temporally assigning and adjusting lifetime for blocks. Second, working with a different

principle, cache partitioning schemes, including UCP [12] and PIPP [13], try to optimize

utility by spatially partitioning the SLLC capacity among concurrent threads to maximize

performance.
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Although the aforementioned proposals have demonstrated desirable performance

improvement over LRU in simulations, they are not practically useful due to the high

storage overhead entailed by them. Specifically, they are all based on the assumption

that each cache line has log A bits for its re-reference interval prediction value (RRPV) [16]

that is used to estimate how soon an accessed block will be reused, where A is the set

associativity. But the log A-bit overhead per line is considered to be prohibitive for SLLCs

according to industry standards [57]. As a result, since the uniprocessor era, commodity

processors have relied on lightweight LRU approximations for cache management, such as

the not-recently used (NRU) replacement policy that requires just one-bit overhead in each

cache line. It has been experimentally shown that the lightweight NRU is able to perform

almost (99.52% [16]) as well as LRU but still cannot provide optimized performance for

CMPs either.

Recent efforts have attempted to bridge the gap between the theoretical cache research

and practical SLLC designs. Jaleel et al. [16] propose to use 2 bits in each line’s RRPV

field for a thread-aware dynamic SLLC replacement policy called TA-DRRIP. TA-DRRIP

outperforms the baseline LRU and NRU policies by coordinating locality optimization for

all of the co-scheduled threads. Rooted in the same two-bit RRPV substrate, the recent

work SHiP [17] further improves over TA-DRRIP by considering the differences in locality

at the finer-grained memory instruction level for re-reference interval prediction, but

incurs more overhead than the thread-level TA-DRRIP approach.

Through our analysis of and experimental study on practical SLLC capacity man-

agement solutions, we obtain two important insights that counter the previous research:

(i) since the minimal-overhead NRU achieves almost the same practical performance as

LRU but lacks such theoretical traits as the LRU stack property, it is possible to adopt

the minimal-overhead 1-bit RRPV substrate in the entire SLLC and utilize monitors with

good theoretical properties yet at a slightly more storage cost for just sample sets, so
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that the goals of overhead reduction and performance improvement can be achieved

at the same time; (ii) both locality and utility optimization opportunities are present in

heterogeneous CMP workloads, but the practical schemes such as TA-DRRIP and SHiP

are oriented only towards locality management, missing performance potentials provided

by utility optimization.

Hence, we propose a novel practical SLLC management design, called COOP (an

acronym for locality and utility CO-OPtimization), which achieves higher performance than

both TA-DRRIP and SHiP but at comparable or lower overhead. COOP uses a single

bit in each line’s RRPV field, and employs a classic LRU-stack hit profiler and a novel

logarithmic-distance BNRU (a.k.a., bimodal NRU, for thrashing prevention) hit profiler to

monitor the interleaved locality and utility of each thread. Leveraging the information

about all co-scheduled threads, COOP spatially allocates SLLC cache ways among the

threads and temporally makes the best use of their partitions in an interactive way, so

that the highest utility provided by either NRU or BNRU, whichever is better, can be

exploited by locality and utility co-optimization for all of the threads. Our evaluation

shows that COOP improves the throughput performance for 200 random workloads by

7.67% on a quad-core CMP with a 4MB SLLC, all at the cost of only 17.74KB storage

overhead which is comparable to TA-DRRIP (16KB) but lower than SHiP (25.75KB),

while outperforming both of them (compared to TA-DRRIP’s 4.53% and SHiP’s 6.00%

throughput improvements).

6.2 Research Motivations

Although the entire SLLC capacity can be accessed by all cores, allowing free use,

without constraints, does not lead to efficient utilization of SLLC resources. Therefore,

various strategies have been proposed to make the best use of the SLLC capacity. But
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Figure 6.1: HPKIs (Hits Per 1K Instructions) of LRU, BIP, NRU and BNRU as a Function
of the SLLC Capacity for the SPEC Benchmarks

since practical SLLC management is our main focus in the chapter, we will analyze the

strengths and weaknesses of the prior-art practical schemes and provide quantitative

evidence in support of our conclusions.

6.2.1 Theoretical Shared LLC Management Proposals

We note that most previous SLLC management proposals [12, 14, 13, 52, 15] are based

on the assumption of log A-bit RRPVs. For instance, given the set associativity A, the

TADIP replacement policy adopts log A bits for each line’s RRPV field to indicate its



113

current position in the LRU stack; and the RRPVs of the most-recently-used and the least-

recently-used blocks are 0 and A− 1 respectively. But since this overhead is prohibitive for

the SLLCs that have large set associativity from the industry’s point of view [57], those

proposals may arguably only be used for theoretical research. In general, the theoretical

proposals can be categorized into either alternative replacement policies for locality

management (e.g., TADIP [14], SDBP [52] and NUcache [15]) or capacity partitioning

schemes for utility optimization (e.g., UCP [12] and PIPP [13]). The detailed background

about these schemes is introduced in Chapter 2.

6.2.2 Practical Shared LLC Management Schemes

The LRU approximations, such as the not-recently-used (NRU) replacement policy, are

practically adopted in commodity processors because its RRPV filed requires just a single

bit. Chapter 2 provides detailed information of how NRU works. According to extensive

experimental statistics [16], NRU achieves a desirable 99.52% performance approximation

to LRU. But since LRU is not performance-effective for CMPs, the NRU replacement

policy that closely approximates LRU is not performance-effective for the CMP SLLC

management either.

Recently, Jaleel et al. [16] have proposed a high-performance practical replacement

policy called RRIP (an acronym for Re-Reference Interval Prediction). With 2 bits in the

RRPV field, a block can have any of the three different categories of re-reference intervals:

near (RRPV=0 or 1), long (RRPV=2) and distant (RRPV=3). RRIP always predicts a long

re-reference interval for incoming blocks in an effort to prevent cache pollution due to

a subset of incoming blocks being dead-on-fill. Additionally, the bimodal variant of

RRIP (called BRRIP) can prevent thrashing by predicting a distant (or a long) re-reference

interval for an incoming block with a high (or a complementarily low) probability. TA-
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DRRIP is a thread-aware extension of RRIP to CMPs with SLLCs by coordinating either

RRIP or BRRIP for individual threads under set-dueling and feedback control. Rooted

in the same 2-bit RRPV substrate, SHiP, proposed in the most recent work [17], assigns

either a distant or a long re-reference interval to an incoming block, depending on

whether or not it is predicted to be dead-on-fill. Specifically, SHiP leverages a history

table and sample sets to dynamically learn which memory instructions (identified by

their PC signatures) tend to insert dead-on-fill blocks, and predicts a distant (or a long)

re-reference interval for new blocks if they are inserted by those PCs (or otherwise).

6.2.3 Our New Perspective and Its Supporting Experimental Evidence

If we apply the same categorization in Section 6.2.1 to TA-DRRIP and SHiP, they are

both classified as alternative replacement policies but for practical use in that they aim to

optimize locality for SLLCs. While the alternative replacement policies excel in locality

management, they are likely unable to coordinate the best capacity provisioning among

all co-scheduled threads for utility optimization. This is due to their lack of the utility

monitor [12], a critical component in judicious capacity partitioning, which estimate how

many SLLC hits each thread would deliver with various capacity allocated. Therefore,

one of our research motivation lies in the question of whether or not locality optimization

alone can provide high enough performance for practical SLLC capacity management.

The answer to this question, to be shortly backed with workload characterization and

performance comparison, is no, suggesting that locality and utility co-optimization is

indispensable to the best utilization of SLLC resources. Further, if locality and utility

co-optimization is out of necessity, another key question is whether or not the minimal-

overhead 1-bit RRPV substrate is sufficient for such a purpose. The experiments detailed

in the following provide an affirmative answer to this question.
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6.2.3.1 Workload Characterization

In Chapter 2, we introduce that LRU and BIP are the two basic optional replacement

policies used in the thread-aware dynamic insertion policy (TADIP) [14] which functions

for locality optimization. Given that NRU is shown to closely approximate LRU, we are

motivated to propose a new practical replacement policy, called the bimodal NRU (BNRU),

which approximates BIP by filling 1 (or 0) into the RRPV of an incoming block with a

high (or complementarily low) probability.

Figure 6.1 illustrates the SLLC performance in terms of hits per thousand instructions

(HPKIs), for 8 of the benchmarks in our study, as a function of assigned cache capacity,

managed by LRU, BIP, NRU and BNRU respectively (see Section 6.3 and Section 6.4 for

more details of experimental setups). The x-axis shows the SLLC capacity measured in

the number of ways (given that the number of sets and line size are fixed), while the

y-axis represents HPKIs. The dotted roofline in each figure indicates the total number of

SLLC accesses per 1k instructions (independent of the SLLC capacity). The 8 benchmarks

are divided into four classes according to their locality and utility characteristics. Here,

with fixed 2048 sets and 64B lines assumed, we can measure the capacity in terms of

the associativity. Looking at the performance aspects of the 4 policies in Figure 6.1, we

can make the following observations: (1) the NRU and the LRU hit curves overlap each

other nearly completely for all of the 8 figures, indicating that NRU approximates LRU

almost perfectly regardless of the SLLC capacity and associativity configurations; (2) the

BNRU and the BIP hit curves also match each other very well, except for the benchmark

facerec, in a variety of SLLC configurations; (3) BNRU is as capable as BIP for thrashing

prevention, as evidenced in Figure 6.1 (a)-(c) where the BNRU and the BIP hit curves

are higher than the NRU and LRU hit curves for the three benchmarks omnetpp, sphinx3

and mcf within certain ranges of SLLC capacity configurations. In addition, the three
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observations also hold for other benchmarks in our study (see Table 6.2).

From the perspective of benchmark characteristics, the 8 benchmarks can be divided

into four classes depending on their locality and utility features. The first two classes

represent the cases where the performance can be improved with extra capacity allocated,

but they differ in their NRU vs. BNRU utility. The last two classes saturate in performance

after a minimal allocation of capacity, but with very different hit rates. In the first class,

as indicated in Figure 6.1 (a)-(c), benchmarks omnetpp, sphinx3 and mcf all have inferior

locality because their NRU curves are significantly below the BNRU curves within certain

capacity ranges (e.g., from associativity 2 to 20 for mcf ). If any of them runs on a CMP

with a mix of co-scheduled threads, an alternative replacement policy such as BNRU

can potentially improve the SLLC hit performance over NRU. These are the cases where

locality optimization can come into more prominent play for SLLC management. For

example, with the replacement policy simply altered from NRU to BNRU for the same

allocated capacity of 8 cache ways, the SLLC hit performance of mcf can be improved by

2.5x (≈ 42.4−12.2
12.2 ).

In contrast, the workloads in the second class, represented by applications astar, facerec

and swim (illustrated in Figure 6.1 (d)-(f)), show good locality since their NRU curves are

never below the BNRU curves. However, they can still be set apart from each other with

respect to their utility. For instance, when assigned 16 ways, astar has a higher utility

than facerec in that astar can yield 22.53 HPKI (corresponding to a hit rate of 87.3%) while

facerec can deliver only 6.2 HPKI (with a hit ratio of 40.0%). If a CMP workload consists of

applications all from this category, much less room is available for locality improvement

that alternative replacement policies are good at, while utility optimization is still likely

to make a difference in performance by favoring threads with higher utility in SLLC

capacity partitioning (e.g., preferring astar to facerec).

Figure 6.1 (g) and (h) illustrate the third and the fourth classes whose applications
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Figure 6.2: Difference in Normalized Throughput between TA-DRRIP and PUCP for
Individual Quad-core Workloads

require very few SLLC resources. In particular, milc is a streaming application due to

its high miss rate regardless of the amount of allocated SLLC capacity, while crafty is

CPU-bound and can yield a very high hit rate given a small amount of allocated SLLC

capacity.

6.2.3.2 Performance Comparison

The workload characterization experiments above indicate that (i) NRU and its bimodal

variant BNRU are competent for favoring good locality and preventing thrashing respec-

tively, and (ii) locality optimization alone cannot work consistently well for heterogeneous

CMP workloads consisting of threads with various locality and utility features. To quanti-

tatively demonstrate the limitation of practical alternative replacement policies that are

oriented towards locality optimization only, we compose a simple practical utility-based

cache partitioning (PUCP) scheme and compare it against the locality-oriented TA-DRRIP

on 200 random quad-core workloads (see Section 6.4 for experimental details). In essence,

PUCP makes cache-way partitioning decisions for co-scheduled threads by relying on

the per-core LRU utility monitors (the same as in [12]) and then leverages the NRU
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replacement policy (instead of LRU in [12]) to manage each thread’s allocated ways.

More related details will be presented in Section 6.3. The final performance comparison

result is that TA-DRRIP and PUCP improve the throughput performance over LRU by

4.53% and 3.56% on average respectively, which indicates TA-DRRIP is better than PUCP

overall. However, if we take a closer look at Figure 6.2, which illustrates the difference

in throughput normalized to that of LRU between TA-DRRIP and PUCP for individual

workloads (sorted in ascending order), we can clearly see that there are 112 out of the 200

workloads for which TA-DRRIP underperforms PUCP. Since PUCP does nothing beyond

utility optimization with its LRU-based utility monitors and the 1-bit NRU substrate,

the detailed view of performance difference in Figure 6.2 verifies our speculation on

the limitation of practical alternative replacement policies with locality management

alone. But utility optimization alone as is provided by PUCP is not sufficient either, since

TA-DRRIP outperforms PUCP for the remaining 88 workloads, which also contributes to

TA-DRRIP’s better overall performance in spite of its performance disadvantage for the

112 workloads. In summary, we can infer from this motivational experiment that neither

locality nor utility optimizations alone can consistently perform well under a variety

of workloads for practical SLLC capacity management due to their different working

principles and optimization objectives.

6.3 The COOP Architecture

Our practical scheme, called COOP (an acronym for locality & utility CO-OPtimization) is

designed to achieve three specific goals: (i) to base the SLLC capacity management on the

1-bit RRPV substrate; (ii) to be aware of locality and utility features of individual threads

by profiling their NRU and BNRU hit curves; and (iii) to decide on the SLLC optimal

management policy by conducting interactive locality and utility co-optimization for all



119

Shared L2

Decision Unit

Locality & 

Utility Monitor

Core_0

I$ D$

7

Core_k

I$ D$

Locality & 

Utility Monitor

7

8

Core_

{N-1}

I$ D$

Locality & 

Utility Monitor

7

8

�� ��

8 profile info from the core

7 VDPSOHU�VHWV¶�DFFHVVHV�LQIR

8

Explanation:
999

9 the datapath

Figure 6.3: COOP Architecture

co-scheduled threads.

6.3.1 The Overall Architecture

Figure 6.3 depicts an architectural view of COOP, in which the grey boxes are the major

extra hardware logic required by COOP on top of the SLLC with 1-bit RRPVs. In the

SLLC, every cache line has a single bit in its RRPV field. Associated with each core, there

is a locality & utility monitor that dynamically profiles both NRU and BNRU hit curves

from the core’s SLLC reference sequence. In particular, the NRU and the BNRU hit curves

are captured by an LRU profiler and a BNRU profiler respectively, both of which are

based on auxiliary tag directories (ATD) and the set sampling technique [7]. On every time

interval boundary, the profilers feed the locality and utility information about sampler

sets to the decision unit. Based on the information, the decision unit makes and enforces

the capacity management decisions of cache-way partitions and replacement policies for

all co-scheduled threads during the next time period.
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6.3.2 The Locality & Utility Monitor

The locality & utility monitor counts the SLLC hits that a thread would contribute if it

were running alone, while the amount of space assigned to it and the replacement policy

(NRU vs. BNRU) adopted to manage its allocated space are both varied. By doing

so, the monitor attempts to capture the runtime interplay between locality and utility

optimizations in the SLLC management. Assuming that an SLLC has an associativity

of 64, for example, the monitor counts the number of hits a thread would contribute if

it were allocated 1-, 2-, . . . , or 64-way SLLC space, being managed by NRU and BNRU

respectively. Consequently, the monitor is able to deduce both NRU and BNRU hit curves

as functions of cache ways, as illustrated in Figure 6.1 and generalized in Figure 6.4. The

two curves can jointly convey two critical pieces of information:

• Which replacement policy should be adopted under a given capacity quota for the

thread. As depicted in Figure 6.4, if the thread can get 4 cache ways, it should apply

the NRU replacement policy to manage the given amount of space, since the NRU

hit curve (solid) is above the BNRU curve (dotted) when the way count equals 4; but

if the assigned way-count is 12, the thread should alter the policy to BRNU that can
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help it obtain far more hits. Therefore, with the two curves, COOP can implicitly

derive a composite hit curve (bold) which consists of the higher segments of the NRU

or BNRU curves, as illustrated in Figure 6.4.

• What the preferred utility is under the best replacement policy. For instance, if

the hit counts of the derived composite hit curve at the way counts of 10 and 12

are assumed to be 100 and 110 respectively, we know that the utility of 10 ways is

better than that of 12 ways because 100
10 > 110

12 . In this way, COOP fully exploits the

interactions between locality and utility dimensions.

As described below, we apply two different profiling mechanisms to deduce the NRU

and the BNRU hit curves of a thread respectively because of their distinct features.

Profiling an NRU Hit Curve: Since NRU and LRU hit curves have been experimen-

tally shown to be almost identical, as exemplified in Figure 6.1, we approximate an NRU

hit curve with its corresponding LRU hit curve, which can be easily obtained by the

well-established LRU utility monitor (LRU UMON) [12]. In an LRU UMON, an auxiliary

tag directory (ATD) with an associativity of A and a size-A array of stack-hit counters are

adopted to implement the Mattson’s LRU stack algorithm [42], where A is also the SLLC’s

set associativity. Here, an ATD structure, with each of its entries containing only a hashed

tag, a valid bit and a log A-bit RRPV field mimics the LRU stack of a small group of

sampler SLLC sets, as if the monitored thread were exclusively occupying the whole space

of these sampler sets. Upon every hit on the ATD, it reports the LRU-stack position where

the hit takes place so that the corresponding stack-hit counter h(i) can be incremented by

one. As a result of the LRU stack property, the values of the NRU and the LRU hit curves

at way count i, denoted NH(i) and LH(i) respectively, can be expressed by Equation 6.1,

where h(k) is the hit counter at LRU-stack position k and 1 ≤ k ≤ i ≤ A.
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NH(i) ≈ LH(i) = ∑
1≤k≤i

h(k) (6.1)

Profiling a BNRU Hit Curve: The profiling of a BNRU hit curve, on the other hand,

is more challenging because BNRU violates the stack property with its non-deterministic

0-valued or 1-valued RRPV assignment for incoming blocks. Thus, the simple stack

algorithm cannot be applied to deducing a BNRU hit curve. To resolve this issue, we first

propose an exact but complex approach and follow it with an approximate but practical

solution.

The exact approach is also based on set sampling, and uses a number A of ATD

structures representing the A different associativities from 1 to A. Therefore, in the

exact approach, we use a group of A ATD structures, {ATD(1), ATD(2), ATD(3) . . . ,

ATD(A− 1) and ATD(A)}, to mimic BNRU’s operations on the sampler SLLC sets with

an associativity ranging from 1 to A respectively. Although this approach provides an

exact measure of the BNRU curve, it requires a significant number A of ATD structures,

rendering the implementation prohibitively expensive when A is large.

The practical solution is based on four key observations derived from an analysis of

the BNRU hit curves for the benchmarks in our study (exemplified in Figure 6.1): (i) the

BNRU hit curve is monotonically non-decreasing with respect to the assigned way count;

(ii) the BNRU hit curve is a concave function, which means that the curve’s gradient is

always non-increasing as the way count increases. The intuition behind concave BNRU curves

is that, with the high-probability 1-valued RRPV assignment for an incoming block, the block will

most likely be victimized due to its 1-valued RRPV upon a subsequent cache miss in the same

set, thus preventing other blocks from getting evicted (namely, stationary); (iii) the BNRU hit

curve has a long flat tail as the way count approaches a high value; and (iv) it is provable

that BNRU and NRU hit curves have the same value at way count 1 (BH(1) = NH(1)),
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since neither of them lets an incoming line bypass the cache. Therefore, it is sufficient

to monitor the BNRU hit values at a small number of discrete logarithmic way-count

points by using a dedicated ATD for each of these points, and then apply the curve fitting

technique to deducing the entire BNRU hit curve. Specifically, as illustrated in Figure 6.5,

we employ m = log A ATD structures {ATD(21), ATD(22), . . . , ATD(2m)} to capture the

BNRU hit counts {BH(21), BH(22), . . . , BH(2m)} in a small number of way-count cases

{21, 22, . . . , 2m}. We carry out curve fitting based on the m discrete BNRU hit values by

linearly interpolating between the two monitored BNRU curve counts (2k, BH(2k)) and

(2k+1, BH(2k+1)) for 1 ≤ k ≤ m− 1. Then, the BH(i) value can be calculated iteratively by

Equation 6.2. Figure 6.6 shows an example of applying our logarithmic-distance monitoring

& curve fitting approach with up to 64 ways for benchmark mcf.

BH(i) =

 BH(2k), where i = 2k and BH(2k) is monitored by ATD(2k)

BH(i + 1)− ∆, where ∆ = BH(2k+1)−BH(2k)
2k and 1 ≤ 2k < i < 2k+1 ≤ 2m = A

(6.2)

The specific design choice of monitoring at logarithmic way-count points stems from

our empirical observations mentioned above, suggesting a denser number of monitoring

points to more accurately profile the high-gradient portion of the BNRU hit curve when

A is small, which is also a property of a logarithmic/geometric series. As a result, the

practical solution needs only m = log A, instead of A, BNRU-managed ATD structures

at the associativities of 2, 4, . . . , A
2 and A respectively, as well as m BNRU-hit counters.

It is worth remarking that the storage overhead (measured in the total number of ATD

ways) required by the practical BNRU profiling is 2 + 4 + 8 + · · ·+ A
2 + A = 2×(A−1)

2−1 =

2× (A− 1) < 2× A, which is less than twice the storage overhead required by a single A-way

ATD structure for the NRU/LRU hit curve profiling and makes our solution very practical in

hardware implementation. It must be noted that, (i) the RRPV field of each BNRU-managed
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ATD entry has only a single bit, and (ii) upon an access to one sampler SLLC set, the

LRU-managed ATD and the m BNRU-managed ATDs are operated concurrently to profile

both NRU and BNRU hit curves.

6.3.3 The Decision Unit

With the locality and utility characteristics of co-scheduled threads profiled during each

time interval, the decision unit will periodically determine the optimal space partitions

and replacement policies for individual threads. Since the space partitioning logic of

COOP is also utility-based and targeted at maximizing the overall performance, we

adopt but with modification the framework of the lookahead utility-based cache partitioning

algorithm [12] in the decision unit. The original algorithm evaluates every potential

partitioning decision and provisions cache ways to a thread that currently has the highest

utility of these ways based on its LRU hit curve. We modify the algorithm to determine

the best utility-based partitioning of the cache ways according to the composite hit curve,

which is composed of the higher segments of the NRU and the BNRU hit curves.

In the decision unit, there is an m-bit partition quota counter, an A-bit global replacement

mask [95, 43] and a single locality management bit associated with each core, where

m = log A and A is the associativity. On each time interval boundary, the SLLC’s space

partitioning result for Corei is kept in the partition quota counter, denoted as Qi, where

0 ≤ i ≤ N − 1. Assuming that A is greater than N, COOP also guarantees that at least

one way is provisioned to every core. The global replacement mask is used to specify which

cache ways are currently allocated to the corresponding core. For example, if a core is

allocated with two cache ways, say, way 0 and way 1, only the first and the second bits on

its global replacement mask are set to one. A core can access any lines in an SLLC set but is

only allowed to replace a line in its own allocated ways. The locality management bit, LMi,
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Table 6.1: Major Configuration Parameters

Core four cores, Alpha ISA, in-order, IPC=1 except for memory accesses, 128/128 I/D
TLBs, 44-bit physical addresses

L1 2-way, 32KB, 1-cycle delay, 16 MSHRs, write back & 4 write buffer entries for L1D,
LRU-managed

L2 16-way, 4MB, 6/8-cycle tag/data store delay, totally 1024 MSHRs, write back &
totally 256 write buffer entries, mesh NoC topology (2× 2) with 1 cycle delay per
hop

Mem 300-cycle off-chip memory access delay
Schemes #sample sets = 1

32 × #SLLC sets for all sampling-based schemes; BNRU’s low
probability = 1

32 ; PUCP/COOP’s LRU-managed ATD: 16-bit hit counters, 10-bit
hashed tags, 4-bit RRPVs, 1 valid bit; TA-DRRIP: 10-bit saturating counters; SHiP:
16K 3-bit saturating counters in the history table, 14-bit PC signatures + 1 reuse bit
in each sampled cache line; COOP’s BNRU-managed ATDs: 16-bit hit counters,
10-bit hashed tags, 1-bit RRPVs, 1-bit valid bits.

is utilized to indicate whether the NRU (LMi=0) or BNRU (LMi=1) policy is adopted for

the core to manage its allocated SLLC cache ways. LMi can be determined by examining

the difference between the NRU and BNRU curves at the way count k that is also the

value of Qi: the bit is set 0 if NH(k) ≥ BH(k) or 1 otherwise.

6.4 Experiments & Evaluation

In this section, we first briefly describe our simulation-based experimental methodology

and then present and analyze the evaluation results.

6.4.1 Evaluation Methodology

Simulation Setup: We simulate all schemes using the cycle-accurate M5 full system

simulator [90] with the key configuration parameters listed in Table 6.1. We model a quad-

core CMP with two levels of on-chip caches. The L1 instruction and data caches adopt a

coupled tag & data store organization. For the shared L2 cache, we model decoupled tag
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Table 6.2: Selected Benchmarks & Classification

Class Descriptor Benchmarks
I Poor Locality galgel, libquantum, mcf, omnetpp, sphinx3, xalancbmk

II Good Utility astar, ammp, bzip2, calculix, facerec, GemsFDTD, swim, twolf, vpr

III Streaming lucas, milc

IV CPU-Bound crafty, eon, fma3d

and data stores for each L2 slice and also account for the NoC latency when calculating

the L2 access time. The SLLC capacity management schemes in comparison include LRU

(baseline), NRU, PUCP, TA-DRRIP, SHiP and our proposed COOP scheme. PUCP and

COOP make management decisions periodically every 5M cycles 1, and their profiler

hit counters are reset upon each periodic decision boundary. We have not found any

overflow problems with these 16-bit hit counters in our experiments.

Performance Metrics: We adopt two standard metrics, throughput and fair speedup, to

quantify the CMP performance. Specifically, throughput measures the utilization of a

system, while fair speedup balances both performance and fairness. Let IPCi be the

instructions per cycle performance of the ith thread when it is co-scheduled with other

threads and SingleIPCi be the IPC of the same thread when it executes in isolation. Then,

for a system where N threads execute concurrently, the formulas for the two metrics are

shown in Equation 6.3 and Equation 6.4 respectively.

throughput = ∑
i=1,2,··· ,N

IPCi (6.3)

fair speedup =
N

∑
i=1,2,··· ,N

SingleIPCi
/

IPCi
(6.4)

Workload Construction: As listed in Table 6.2, we select 20 benchmarks from the SPEC

CPU 2000 and 2006 benchmark suites and categorize them into four classes by investi-
1The period is experimentally tuned.
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gating their locality and utility features via experiments similar to Section 6.2.3.1. Class

I is a collection of benchmarks that exhibit poor locality and can benefit from judicious

replacement policies. The benchmarks in Class II have excellent utility and need dedi-

cated SLLC space partitions. Class III is a group of streaming applications that require

little SLLC capacity and need to be prevented from polluting the SLLC. Finally, Class IV

benchmarks are CPU-bound with small working sets in the SLLC. From the four classes

of benchmarks, 200 random quad-core workloads are generated by randomly selecting

200 4-benchmark combinations out of the 20 individual benchmarks.

Simulation Control: In the experiments, all threads under a given workload are executed

starting from a checkpoint that has already had the first 10 billion instructions bypassed.

They are cache-warmed with 1 billion instructions and then simulated in detail until all

threads finish another 1 billion instructions. Performance statistics are reported for a

thread when it reaches the completion of the latter 1 billion instructions. If one thread

finishes the 1 billion instructions before others, it continues to run so as to still compete

for the SLLC capacity, but its extra instructions are not taken into account in the final

performance report. This is in conformation with the standard practice in CMP cache

research [14, 12, 13, 52, 15, 16, 17].
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Figure 6.7: Throughput and Fair Speedup Improvement for the 4-Core Configuration

6.4.2 Performance Comparison

Figure 6.7 shows the geometric mean of throughput performance for NRU, PUCP, TA-

DRRIP, SHiP and COOP, normalized to the baseline (LRU) on the simulated quad-core

configuration. Averaged over all of the 200 random workloads, COOP provides a

throughput improvement of 7.67%, which is noticeably higher than the improvements

achieved by the practical replacement policies (TA-DRRIP: 4.53%, SHiP: 6.00%) and the

simple utility-oriented scheme (PUCP: 3.56%). The NRU replacement policy degrades the

throughput performance by 0.24%, which indicates that both NRU and LRU are clearly

inadequate for CMPs with SLLCs. If we look closer at the details of the throughput

performance in Figure 6.8(a), we can find that the worst case performance of COOP is

-9.57% and its best improvement is up to 69.67%, while the (worst, best) performance

margins for TA-DRRIP and SHiP are (-15.47%, 74.49%) and (-15.90%, 53.21%) respectively.

Figure 6.8(a) also shows that the throughput performance curve of COOP is almost always

above that of TA-DRRIP except for a very small fraction of the 200 workloads (i.e., a very

small x-axis range at the end). COOP’s curve is also above that of SHiP except for a small
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Figure 6.8: Detailed Views of the Quad-Core Throughput and Fair Speedup Improvement
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Figure 6.9: Difference in Normalized Throughput between COOP and TA-DRRIP/SHiP
for Individual Quad-Core Workloads

fraction of the 200 workloads (i.e., a small x-axis range at the beginning), which means

that COOP offers consistent and robust throughput performance that is generally better

than the two existing practical replacement policies.

Figure 6.9(a) and Figure 6.9(b) show the head-to-head comparison between COOP

and the two prior-art schemes for individual workloads. COOP outperforms the two

practical replacement policies for the majority of the workloads, and in many cases

significantly. However, it does not do so in all cases. We speculate that it is because

COOP must strike a balance between both locality and utility optimizations. COOP

may not optimize locality fully when a workload heavily or exclusively favors locality

optimization but does show stronger performance improvement over both of the prior-arts
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(indicated by the portions of bars above the 0/equal line in Figure 6.9(a) and Figure 6.9(b)).

If we specifically compare Figure 6.9(a) against Figure 6.2 in Section 6.2.3.2, we can

make the following two observations: on the one hand, COOP significantly boosts the

performance beyond capacity partitioning provided by PUCP by additionally adapting to

the better replacement policy between NRU and BNRU; on the other hand, it relies on its

partitioning module besides the alternative replacement mechanism, which is based on

1-bit RRPVs, to surpass a TA-DRRIP-like replacement policy which only conducts locality

optimization even with 2-bit RRPVs. Therefore, COOP is arguably capable of bridging

the performance gap between the locality and the utility optimization schemes via its

co-optmization strategies.

In terms of the fair speed improvement, COOP improves over LRU by 9.17%, which

matches the 9.16% performance improvement of SHiP. Other schemes, NRU, PUCP

and TA-DRRIP, improve the fair speedup metric by 0.02%, 5.41%, 7.19% respectively.

Figure 6.8(b) depicts the detailed result of fair speedups for individual workloads. While

the curves of COOP and SHiP are both above that of TA-DRRIP in most cases, the

difference between the curves of the two bests seems to be minor.

However, we notice in both Figure 6.8(a) and Figure 6.8(b) that SHiP’s curves are barely

below the zero horizontal line, while COOP’s curves have a small portion below. This may

suggest that SHiP is slightly more robust in the sense that it seldom underperforms LRU.

But this robustness may come at the cost of its weakened ability to exploit the highest

performance when available, which is evident in Figure 6.8(a) because the curves of both

COOP and TA-DRRIP are above that of SHiP at the end of the x-axis range. TA-DRRIP

seems to be able to exploit the highest performance, but it underperforms LRU in quite

a few cases. In this sense, COOP also shows its ability to strike a reasonable balance

between the exploitation of the highest possible performance and keeping performance

robust in the worst cases.
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Table 6.3: Overhead & Throughput

LRU NRU TA-DRRIP SHiP COOP
RRPVs 32KB 8KB 16KB 16KB 8KB
Monitors 0 0 5B 9.75KB 9.74KB
Total Overhead 32KB 8KB 16KB 25.75KB 17.74KB
Throughput 1 0.9976 1.0453 1.0600 1.0767

6.4.3 Overhead Analysis

Table 6.3 gives a detailed comparison of hardware overhead for the various schemes in

this chapter (see their specific configurations in Table 6.1). For all of the schemes, the total

number of their RRPV bits as well as the extra monitoring logic is counted into their total

hardware costs. In particular, for COOP, since it requires an LRU profiler and an BNRU

profiler for per-core locality & utility monitoring, the ATD structures will dominate the

hardware overhead in its design. But the hashing function that has shown a provably low

collision rate in [92] and the logarithmic-distance monitoring technique in the BNRU profiler

contribute to much less cost in the per-core locality & utility monitor. Most importantly,

COOP is based on the minimal-overhead 1-bit RRPV substrate, which can greatly help

reduce the overhead compared to the costs of 2-bit RRPVs in both TA-DRRIP and SHiP in

spite of COOP’s extra monitoring logic. As a result, COOP’s 3.88KB LRU profiler, 5.86KB

BNRU profiler and 8KB RRPVs contribute to its 17.74KB total overhead. In contrast, the

recently-proposed practical scheme SHiP, requires more hardware resources due to the

large prediction history table (6KB) and also additional PC signature stores (3.75KB),

in addition to the 16KB 2-bit RRPVs. Overall, COOP can provide a better performance

improvement than both TA-DRRIP and SHiP but at a comparable cost of storage overhead

to TA-DRRIP and a lower cost than SHiP.
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6.5 Summary

The research community has introduced a substantial volume of theoretical proposals to

optimize either locality or utility in the SLLC capacity management. But their high storage

overhead for re-reference interval prediction discourages the industry from adopting

them in practical CMP designs. Although there are already two practical replacement

policies TA-DRRIP and SHiP that significantly reduce overhead by relying on a 2-bit

RRPV substrate, their performance is suboptimal due to their single-pronged approach of

locality optimization. Different from the existing studies, our proposed COOP design

(i) combines the strengths of both the minimal-overhead 1-bit RRPV substrate and the

profilers with good theoretical traits and, importantly, (ii) carries out locality & utility

co-optimization in capacity management. By employing lightweight monitors that profile

both NRU (approximated by LRU) and BNRU hit curves (curve-fitted with logarithmic-

distance monitoring), our proposed design can exploit the co-optimized locality and utility

of concurrent threads and thus effectively manage the SLLC capacity for CMP workloads

with heterogeneous resource requirements. Our execution-driven simulation shows that

the proposed scheme improves the throughput performance over the baseline LRU for

200 random workloads by 7.67% on a quad-core CMP with a 4MB SLLC, outperforming

both TA-DRRIP (4.53%) and SHiP (6.00%), all at the cost of only 17.74KB storage overhead

that is slightly higher than TA-DRRIP (16KB) but lower than SHiP (25.75KB).
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Chapter 7

Directions for Future Research

So far, our solutions to exploiting the spatiotemporal interplay in cache management have

been discussed based on the following assumptions: (i) in cache partitioning, there are

always more cache ways than processing cores; (ii) the CMP workloads consist of a mix of

single-threaded applications; (iii) there is only one application/thread running on a core;

(iv) each thread is always pinned to its assigned core. These assumptions do simplify our

effort to address the LLC management problems and develop corresponding solutions at

the architecture level. But they are subject to limitations in light of the CMP core-count

scaling, the increasing popularity of thread-level parallelism as well as the interactions

among architecture, runtime systems and operating systems. In what follows, we will

discuss how the scope of our dissertation research can be further broadened from both

architecture’s and systems’ perspectives.

7.1 From Architecture’s Perspectives

At the architecture level, since the CMP core count is expected to double every 18

months [1], it is an important issue how to make our proposed spatiotemporal solutions
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scalable with the number of cores. In addition, the aggressive core count growth is now

propelling the exploration of massive thread-level parallelism through new programming

frameworks [96] or automatic parallelization techniques [97]. Therefore, the implications

of data sharing in parallel applications [98] will also need to be taken into account in

cache management.

7.1.1 Scaling with the Core Count

We note that our implicit assumption of more SLLC ways than CMP cores in way

partitioning might soon be rendered invalid. This is because, while the core count keeps

growing exponentially, the number of SLLC ways may just increase moderately because

of the high energy consumption and latency associated with a large number of cache

ways in the SLLC [99]. As a result, there will eventually be more cores than SLLC ways

on a CMP, inevitably invalidating the aforementioned assumption. In the following, we

describe two potential solutions to the problem.

First, we can decouple the logical cache associativity from physical cache ways,

which allows for much higher logical associativity than the number of physical ways

(e.g., a 1024-associative cache with just 64 physical ways) based on cuckoo hashing, as

proposed in the recent research on ZCache [11]. Thus, it may be possible to partition the

high logical associativity rather than a limited number of physical ways among many

cores in our future exploration of more design space. We also note that a partitioning

scheme for ZCache has been demonstrated recently in [100]. Therefore, it will be quite

straightforward to leverage the new logical-associavitity partitioning technique to make

our spatiotemporal solutions scalable with the ever-increasing core count.

Second, as advocated by some researchers, future many-core CMPs may adopt a

hybrid LLC organization, combining the benefits of large aggregate capacity of the
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shared LLC and low latency of the private LLC. For instance, as proposed in [101], a

small number (e.g., 16) of physically adjacent cores can be clustered (either statically or

dynamically) with the capacity of their LLC slices exclusively shared among each other,

while globally the CMP can be partitioned into a group of such private clusters (e.g., a

1024-core may be configured into 64 16-core clusters). In this context, the spatiotemporal

solutions can directly be applied to the shared LLC within each cluster because the

assumption behind the way-partitioning approach is still valid. We plan to evaluate our

spatiotemporal solutions with this type of hybrid LLC organization in our future work.

7.1.2 Implications of Multithreaded Workloads
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Figure 7.1: Distributions of Accesses to the SLLCs

Our current proposed solutions are evaluated using multiprogrammed workloads,

for which the heterogeneous capacity requirements of co-scheduled applications are the

most important concern. However, with the rising importance of thread-level parallelism,

strategies of cache management may need to be adjusted accordingly. In the following,

we illustrate the potential influence of data sharing in parallel applications on cache
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Figure 7.2: Distributions of Blocks in the SLLCs
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Figure 7.3: Hit Ratio Breakdowns in the SLLCs

management and also provide our suggestions on how to adapt cache management to

multithreaded workloads.

To study the implications of parallel applications on cache management, we investigate

the performance differences between shared and private data under read and write

operations on SLLCs. Specifically, we characterize 19 representative parallel applications

(from SPEC OMP 2001, NPB 3.3 and Parsec 2.1 benchmark suites) with respect to their

distributions of accesses and blocks as well as the breakdowns of hit ratios in SLLCs. We
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simulate a 16-core CMP with 16-way 16MB and 32-way 32MB SLLCs managed by LRU in

two different experiment settings respectively. The L1D/I caches are set to 2-way 32KB.

16 threads are spawned in each application without being pinned to cores. After the

bypass period, 200M instructions are executed for each benchmark to collect the SLLC

cache performance statistics.

From Figure 7.1, we find that the distributions of accesses to the 16MB and the

32MB SLLCs are almost identical for each benchmark. But the applications can still be

categorized into two groups, of which one has dominant accesses to shard data (e.g.,

ammp, fma3d and cg) while the other features much more references to private data (e.g.,

applu, apsi and equake). However, if we look at the distributions of shared and private

cache blocks in the SLLCs, as indicated in Figure 7.2, we find that all of the applications

have far higher volumes of private blocks except ammp. We speculate from both Figure 7.1

and Figure 7.2 that, for certain benchmarks, their shared data can contribute more to

their SLLC hit rates than private data because a large number of accesses are targeted

at a small volume of (shared) blocks. Figure 7.3 does confirm the correctness of this

speculation, as evidenced by the high hit rates of shared data in such benchmarks as

ammp, fma3d and cg.

Since shared data can provide much higher hit ratios, it may need special care so as

to stay longer in the SLLC. However, awareness of shared data is absent in our current

spatiotemporal solutions. Especially for the applications belonging to the data parallel

programming model, their internal threads tend to be homogeneous. So, it may be

difficult to utilize the capacity management solutions oriented towards heterogeneous

threads to boost their performance. In our future exploration of more design space of

our spatiotemporal solutions, we may need to enhance the current designs to recognize

private and shared data and assign higher priority to the shared one in temporal and

spatial capacity management. Moreover, as private data has a much larger volume, we
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can essentially promote its proximity to the requesting core in the SLLC by such means

as page coloring [78].

7.2 From Systems’ Perspectives

At the system level, there are at least two implications accompanied with the new

trend of aggressive thread-level parallelism. On the one hand, emerging many-core

applications typically have very large working sets [102], pressing the slowly-scaled

hardware resources such as the on-chip LLC capacity. On the other hand, a number of

concurrent threads need to be well synchronized and scheduled to make good use of the

computation power of processing cores. As a result, more challenging issues will pop up

in a broader context that covers not only LLC capacity management but also scheduling

and synchronization.

7.2.1 Interactions Between LLC Capacity Management and

Scheduling

The scheduler is an indispensable OS component that supports multiprogramming

in computer systems. Conventionally, an OS scheduler is designed to enable all pro-

cesses/threads to have fair access to processor resources, enforce priority ordering for the

co-scheduled processes/threads, guarantee load balance and minimize the idleness of pro-

cessing cores. For CMPs, there are two major types of thread scheduling, space-scheduling

and time-scheduling [103]. Specifically, space scheduling is about determining which core

a running thread is mapped to, while time scheduling is referred to as time-multiplexing

multiple threads on a core. By enabling a scheduler to be aware of applications’ LLC

capacity requirements, the scheduler can play an active role in promoting the efficacy of
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(a) A Space-Scheduling Plan
with the Threads from the
Same Group Clustered To-
gether

�

(b) A Space-Scheduling Plan
with the Threads from Dif-
ferent Groups Interleaved
with Each Other

Figure 7.4: A Comparison between Different Space-Scheduling Plans

LLC capacity management by spatially or temporally scheduling concurrent threads close

together (sharing many LLC resources) or far apart (sharing minimal LLC resources).

7.2.1.1 The Impact of Space Scheduling on LLC Management

Here, we are formulating a space-scheduling problem that is related to enhancing

our proposed spatiotemporal LLC capacity management at the system level. For an

N × N mesh-based CMP architecture that has been integrated with our spatiotemporal

capacity management framework, assume that there are N2 threads that need to be

space-scheduled on the CMP. Hence, there can be N2! possible thread-to-core mapping

permutations in all. We claim that different space-scheduling plans can have distinct

impacts on facilitating inter-core cooperative caching, thus leading to very different

overall performance. In this regard, we illustrate an intuitive example as follows.

If N = 4, as is demonstrated in Figure 7.4, suppose that two groups of 8 threads

are co-scheduled on the 4× 4 CMP tile and need to be mapped to the 16 cores. Group

1 consists of streaming-like threads (represented in white in Figure 7.4) with sufficient

underutilized LLC capacity, while Group 2 is formed by the threads that can benefit
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from more LLC capacity (shown in gray). A simple case is that the two groups can be

two parallel applications respectively, each with 8 threads spawned. Figure 7.4 shows

two distinct space-scheduling plans. Plan (a) clusters the threads from the same group

with similar capacity requirements, while plan (b) fully interleaves the threads from

the two groups. It is obvious that plan (b) will produce better performance of inter-

core cooperative caching than plan (a), because a thread in plan (b) can always find its

complementary peer in one of its immediate neighbors for inter-core cooperative caching,

whereas at least half of the threads in plan (a) cannot.

The significance of the problem lies in that an intelligent space-scheduling plan

can enable our proposed spatiotemporal capacity management framework to perform

inter-core cooperative caching more effectively, which will in turn lead to better overall

performance of many-core CMPs. But because there are up to N2! potential space-

scheduling plans, one research challenge is how to come up with a heuristic method

to efficiently choose a space-scheduling plan with satisfactory performance out of the

N2! possibilities. Then, based on the heuristic method (if it were ready for use), we plan

to develop a dynamic space-scheduling algorithm to promote the effectiveness of our

proposed spatiotemporal LLC management solutions by leveraging the hints about all

cores’ LLC capacity requirements and utilization. Furthermore, to make the scheduling

algorithm more efficient, we will need to take into account data-sharing patterns of

multithreaded workloads as well.

7.2.1.2 The Impact of Time Scheduling on LLC Management

When there are more concurrent threads than cores, the time-scheduling functionality

of an OS scheduler will come into play. Since the uniprocessor era, time scheduling has

been playing a vital role in promoting the utilization of processing cores. For example,

if a running thread gets blocked upon a long-latency I/O event, the OS scheduler will
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replace the thread with another one from the processing core’s ready queue by means

of context switching, so that the core does not sit idle waiting for the previous thread’s

I/O response. Here, we are demonstrating that time scheduling may also be helpful to

improving the efficacy of our proposed spatiotemporal LLC management framework,

which seems like a promising research problem for further investigation.

Let us consider such an scenario: given a 16-core CMP, suppose that there are two

streaming parallel applications as well as another two multithreaded applications with

good utility of LLC capacity. We further assume that each of the four applications spawns

8 threads with quite few internal synchronization contentions. When all of the applications

are simultaneously executed on the CMP, the OS scheduler needs to time schedule them

so that while 16 threads are running the other 16 are waiting in the processing cores’

ready queues. But among all possible time schedules, some may not help make good

use of the LLC capacity at all: e.g., (i) if the two streaming applications are co-scheduled

together, they will have a large portion of the LLC capacity underutilized; (ii) if the two

applications with good LLC utility become active at the same time, they may severely

contend with each other for the LLC capacity. A much better time-scheduling strategy

is to mingle two applications with complementary capacity needs at a time, so that the

streaming one can always contribute its LLC capacity to its peer application by taking

advantage of our spatiotemporal solutions. From the comparison above, it is obvious that

time scheduling can have a significant impact on the LLC capacity management.

Although the examples above illustrate the promise of applying time scheduling to

LLC management, it is still a question whether or how this potential functionality can be

made compatible with other existing purposes of time scheduling such as to guarantee

fairness among co-scheduled threads. We plan to leave the issue for future research. Even

more challengingly, time scheduling and space scheduling should be made to intelligently

interact with each other so as to maximize their supports for our spatiotemporal LLC
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capacity management framework.

7.2.2 Taking into Account the Interplay Among LLC Capacity

Management, Thread Synchronization and OS Scheduling

There are two fundamental synchronization mechanisms in operating systems, spinning

and blocking [104]. In the spinning-based synchronization, only the thread that is holding

a lock can make forward progress in its critical section, while any other contender thread

needs to wait by spinning until it acquires the lock. The spinning-based synchronization

allows waiting threads to respond to lock hand-offs very quickly, but it typically wastes a

significant amount of processor time in making a number of threads spin idly. In contrast,

in the blocking-based synchronization, waiting threads are evacuated from cores via

context switching. The blocking-based synchronization frees processing cores from sitting

idle for long, but it can bring high overhead to the critical path of computation due to

frequent context switching.

Both spinning and blocking have close interactions with OS scheduling because a

contemporary OS scheduler typically needs to enforce time slicing, priority ordering and

load balancing for co-scheduled threads. For instance, in the spinning-based synchro-

nization, priority inversion, which indicates that a high-priority task is forced to wait an

indefinite period for the completion of a low-priority task, usually occurs when the thread

count is large. This is because an ordinary OS scheduler cannot distinguish between the

thread with a lock and those that are spin-waiting when adjusting threads’ priorities.

Then, the lock-holder thread can be given low priority and thus preempted from running,

forcing other high-priority but spinning threads to wait even longer. Even if all threads

are assigned with the same priority, a lock convoy may also occur when the lock-holder

thread gets preempted due to timeout. In this case, a large number of contender threads
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have to relinquish their time quanta due to failures of acquiring the lock, leading to

repeated preemption overhead, poor utilization of scheduling quanta and thus dramatic

deterioration in overall performance.

To alleviate the aforementioned problems with spinning and blocking, several hybrid

schemes have been introduced in an OS, such as OpenSolaris’ adaptive mutex and Linux’s

futex. Both of the schemes use the spin-then-block contention management policy. In

the spin-then-block policy, based on the assumption that the time spent in spinning is

less than that of being taken to block, threads spin-wait if the lock-holder thread is now

running on another processing core or get blocked if none of the current running threads

has the lock. But the spin-then-block policy is also quite limited for the systems with high

loads [104, 105]. This is because the OS adjusts threads’ priorities fast in this condition,

and context switching can still unconsciously preempt a lock-holder thread and force

other contender threads to wait for a large amount of time.

There are two root causes of the priority inversion and the lock convoy problems. On

the one hand, a lock-holder thread is not visible to the operating system, and thus by

no means can the OS scheduler avoid preempting it prematurely. On the other hand,

before the lock-holder thread finishes its critical section and releases the lock, there is no

reason to assign time quanta to other threads that contend for the same lock. Feng et al.

[106] devise a subtle mechanism, called the contention-aware scheduler (CAScheduler), to

address the two underlying causes by taking advantage of the runtime information about

lock usages in Java Virtual Machines. Two data structures, the contention vector and the

lock count, play a key role in exposing each thread’s lock usage information to the OS

scheduler. The contention vector is essentially a sliding window that keeps track of how

many times different locks have recently been acquired by a thread. The lock count tells

how many locks are currently held by a thread. The CAScheduler clusters the threads

with similar lock usages according to their contention vectors, time schedules those from
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the same cluster (with many lock contentions) and space-schedules the threads from

different clusters (with few contentions). CAScheduler also favors the threads that have

larger lock counts by assigning them with longer time quanta or higher priority to work

around the regular priority adjustment and the time slicing routines.

Although CAScheduler has been demonstrated to outperform the regular Linux

scheduling routines, we speculate that higher performance improvements could have

been obtained if smart LLC capacity management had been incorporated. For instance,

since the critical thread that holds a number of locks is made visible in CAScheduler,

we can also favor its LLC capacity requests besides giving it longer time quanta. This is

because, for certain memory-intensive threads, it is the long memory latency instead of the

processor quanta that acts as a performance bottleneck. So, better LLC capacity allocation

strategies are likely to help this kind of parallel applications. In addition, CAScheduler

excludes the consideration of LLC capacity contentions in making scheduling decisions.

But LLC capacity management, thread synchronization and thread scheduling in fact

closely interact with each other on the fly, as analyzed above and also in Section 7.2.1.

Therefore, it is necessary for us to take into account their interplay to optimize the

performance holistically for future many-core CMPs.
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Chapter 8

Conclusion

Efficient utilization of the last-level cache capacity is vital to mitigating the memory

wall problem facing chip multiprocessors. During our study of CMPs’ LLC capacity

management, we realize the need for a holistic perspective on the different natures of

contemporary LLC management mechanisms. This thesis makes the key point that re-

placement policies and balancing/partitioning schemes fundamentally fall into temporal

and spatial dimensions respectively. It also highlights our experimental observation that

the interactions between the two dimensions present unique but unexplored performance

improvement opportunities for CMPs with private or shared LLCs. Based on this funda-

mental idea, the dissertation research identifies four specific LLC capacity management

problems related to the spatiotemporal interplay and proposes cost-effective solutions

accordingly, which is recapitulated as follows.

• In Chapter 3, we derive an accurate metric by mathematical modeling to measure

the capacity demands of individual LLC sets. By applying the measurement to

workload characterization, we observe that much underutilized capacity of private

LLCs cannot be exploited unless the inter-core cooperative caching works at the

fine-grained cache set level. Therefore, we propose the “SNUG” LLC design that
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leverages the non-uniformity of set-level capacity demands and thus improves over

the prior-art approaches which are functional at the coarse-grained application level.

• In Chapter 4, we reveal that set-balancing schemes and replacement policies repre-

sent two different goal orientations, spatial versus temporal, towards optimizing the

utilization of intra-core private LLC capacity. However, neither of them can excel

in a wide spectrum of workloads exhibiting diverse spatial or temporal capacity

requirements. We devise the “STEM” LLC management scheme that interactively

redistributes space among LLC sets and adjusts the lifetime of a set’s blocks. The

spatiotemporal management strategy enables “STEM” to deliver more robust per-

formance than other approaches.

• In Chapter 5, we observe that prior research on the shared LLC management has

focused on exploiting either locality or utility of co-scheduled applications and

thus provides distinct performance advantages. To cohesively get the combined

benefits, we propose the “CLU” solution to co-optimize locality and utility for

shared LLCs. The key idea behind CLU is to derive and join the hit curves of

both LRU and BIP replacement policies for all possible number of ways allocated

to each application. Based on the combined hit curves, CLU interactively decides

both partition quotas and replacement algorithms for all of the applications. With

the co-optimization capability, CLU outperforms the prior-art proposals that are

oriented towards improving either locality or utility alone.

• In Chapter 6, we study reducing the hardware cost involved in the locality & utility

co-optimization for shared LLCs. We demonstrate that the two recent replacement

policies rooted in 2-bit RRPVs are oriented towards improving locality only and thus

miss the performance opportunities uniquely available to utility optimization. To

practically co-optimize both locality and utility, we find that NRU and bimodal NRU,
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which entail single-bit RRPVs to re-reference prediction, can provide performance

closely approximating those of LRU and BIP respectively regardless of the number

of cache ways. Therefore, we devise the “COOP” SLLC management scheme that

bases the co-optimization on single-bit RRPVs with additional lightweight locality &

utility monitors. COOP outperforms the two practical replacement polices at almost

the smallest storage cost.

Besides presenting the aforementioned problems and solutions, the dissertation also

opens up opportunities for more in-depth research in the future. At the architecture level,

we realize that our implicit assumption of more ways than cores in cache partitioning

may soon be invalidated by the rapid core-count growth. Thus, the spatial modules in

our proposed schemes will need an overhaul in response to the new trend. Furthermore,

the ever-increasing core count will propel more and more applications to become multi-

threaded to exploit thread-level parallelism. In parallel applications, data sharing among

the threads within the same address space can have a significant impact on the LLC

capacity management, which presents both opportunities and challenges to improving

our spatiotemporal solutions that are currently targeted at independent threads. At the

system level, both time and space scheduling are shown to be capable of taking a more

active role in boosting the efficacy of CMP LLC capacity management. Especially for

multihreaded applications, we will need to make scheduling, synchronization and LLC

capacity management cooperate more efficiently and intelligently with each other in effort

to optimize overall performance. These topics are recommended for further research

investigation.
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[45] André Seznec. A Case for Two-Way Skewed-Associative Caches. In Proceedings of

the 20th International Symposium on Computer Architecture, pages 169–178, 1993. 2.4.2

[46] Mazen Kharbutli, Keith Irwin, Yan Solihin, and Jaejin Lee. Using Prime Numbers for

Cache Indexing to Eliminate Conflict Misses. In Proceedings of the 10th International

Symposium on High Performance Computer Architecture, pages 288–299, 2004. 2.4.2,

4.1, 4.2.3.1

[47] Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and Babak Falsafi. Cuckoo

Directory: A Scalable Directory for Many-Core Systems. In Proceedings of the 17th

International Symposium on High Performance Computer Architecture, pages 169–180,

2011. 2.4.2
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