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Evolutionary studies usually assume that the genetic mutations are independent of

each other. However, that does not imply that the observed mutations are indepen-

dent of each other because it is possible that when a nucleotide is mutated, then it

may be biologically beneficial if an adjacent nucleotide mutates too.

With a number of decoded genes currently available in various genome libraries

and online databases, it is now possible to have a large-scale computer-based study

to test whether the independence assumption holds for pairs of adjacent amino acids.

Hence the independence question also arises for pairs of adjacent amino acids within

proteins. The independence question can be tested by considering the evolution of

proteins within a closely related sets of proteins, which are called protein families.

In this thesis, we test the independence hypothesis for three protein families from

the PFAM library, which is a publicly available online database that records a grow-

ing number of protein families. For each protein family, we construct a hypothetical

common ancestor, or consensus sequence. We compare the hypothetical common an-

cestor of a protein family with each of the descendant protein sequences in the family

to test where the mutations occurred during evolution. The comparison yields actual

probabilities for each pair of amino acids changing into another pair of amino acids.

By comparing the actual probabilities with the theoretical probabilities under the

independence assumption, we identify anomalies that indicate that the independence



assumption does not hold for many pairs of amino acids.
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Chapter 1

Introduction

1.1 Overview

Biological evolution depends on random mutations accompanied by natural selection

for the more fit genes. That simple statement does not imply that the observed

mutations are independent from each other. It is possible that if a nucleotide changes,

then it is biologically beneficial to have some of the adjacent or nearby nucleotides

change as well. For example, if in some protein-coding region within some triplet that

encodes a hydrophilic amino acid, a nucleotide changes such that the triplet would

encode a hydrophobic amino acid, then a mutation of another nucleotide in the same

triplet may be advantageous if with that mutation the triplet would again encode a

hydrophilic amino acid (or preserve another key property of amino acids). In other

words, some mutations within a triplet slightly increase the probability that some

accompanying mutation with a readjusting effect would survive in the offspring.
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1.2 Problem Statement

With the greatly increasing number of decoded genes currently available in a num-

ber of genome libraries and online databases, it is now possible to have a large-scale

computer-based study to test whether the independence assumption holds. One diffi-

culty, however, is to find the coding regions and coding triplets. Hence it seems more

convenient to investigate proteins derived from the coding regions. The mutations

in the coding regions of the DNA are usually reflected in the mutations of amino

acids. Therefore, instead of the evolution of genes, one may talk about the evolution

of proteins within a closely related set of proteins, which is called a protein family.

1.3 Objective

The PFAM library [2] records a growing number of protein families. Each protein

in a protein family can be assumed to be genetically related to the other proteins

in that family and to have evolved from a single ancestor protein. For any set of

DNA strings and any set of proteins, there are several algorithms that can be used to

find a hypothetical evolutionary tree [3] and [17]. Revesz [16] has proposed recently

a new phylogenetic tree-building algorithm called the Common Mutation Similarity

Matrixes (CMSM) algorithm. The first step of the CMSM algorithm is to find a

hypothetical common ancestor, which is denoted by µ. In this research, we will use the

idea of a hypothetical common ancestor. We can compare the hypothetical common

ancestor of a family of proteins with each of the proteins in the family to test where

the mutations occur. We also can test for each adjacent pair of amino acids how many

times that pair changed into another pair of amino acids. The resulting experimental

statistics can be compared with the theoretical probability under the independence
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assumption. If the deviation from the theoretical probability is significant, then the

independence assumption fails to provide a satisfying explanation for the experimental

results.

1.4 Contribution

As a part of the research, we have developed an efficient technique that could be

used to test the independence hypothesis for pairwise mutations in a set of protein

sequences that belong to a family. For each Protein family that we have considered

for the experiments for this thesis, we have devised the following:

• Hypothetical Common Ancestor for the protein families. Constructing the

hypothetical common ancestor for protein families are explained in detail in Chapter

2. The hypothetical common ancestor is also called the consensus sequence which is

mostly the first sequence of the protein family in thesis. Also note that the terms

‘hypothetical common ancestor’ and ‘consensus sequence’ are used interchangeable

throughout the thesis.

• The Mutation Probability Matrices for individual protein families showing the

actual mutations for every single amino acid in each of the protein families were

calculated. This matrix is of size 20 x 20 showing all the actual probabilities of

one amino acid in the consensus sequence mutating into another amino acid in its

descendent sequences. This mutation probability matrix could also be considered

similar to the PAM 250 scoring matrix, which is explained in Chapter 2 in detail.

• Based on the mutation probability matrices that stores the mutations of a

single amino acid in an individual protein sequence mutating into another amino acid

in its descendant sequence, we calculated the theoretical probabilities that shows all

possible pairwise mutations of amino acids in the protein sequences. The size of the

http://www.bioinformatics.org/wiki/Scoring_matrix
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matrix that shows the theoretical mutation probabilities is 400 x 400 since the pairs

are the possible combinations of all the 20 amino acids that exists in nature. The

total number of elements in this matrix is about 160,000. The detailed explanation

on calculating theoretical probabilities are described in Chapter 4.

• For every set of sequences of the protein family, we calculated the actual prob-

ability of mutations of every adjacent amino acid pairs in the consensus sequence

mutating into another pair in the following descendant sequences. The frequencies

and the indices of the occurrence of all the adjacent pairs in the consensus sequences

are found, and then we check those pairs in the consensus sequence, we check for the

mutations in the descendant sequences in the corresponding window of the column.

The mechanism of calculating the actual pairwise mutation probabilities for adjacent

amino acids of the consensus sequences are explained in detail in Chapter 4.

• The percentage probability differences between the theoretical pairwise proba-

bilities and actual pairwise probabilities for the corresponding top 30 pairs in each of

the individual protein families are considered for analysis and test the independence

hypothesis. Used these results to analyze and infer the independence hypothesis that

is currently the subject of this thesis.

• A part of this research of testing the independence hypothesis for pairwise

adjacent amino acids of a protein sequence has been presented in INASE Conference,

during the academic year October ’15 and successively published in the proceedings

[14].
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1.5 Outline of Thesis

The thesis is outlined in the following manner:

Chapter 1 briefly introduces the idea of the thesis such as the problem statement,

objectives, the strategies that will be used in the future chapters and contributions of

this research. Chapter 2 reveals the related work and some popular background con-

cepts that this research topic was developed on. Chapter 3 explains in detail about

the large datasets which in this case are three protein families that were downloaded

from the PFAM Library. The sections introduce the aligned sequences of the protein

family and a brief summary of description of the protein families. Chapter 4 demon-

strates the independence testing method, which is the prime intent of this research.

In Chapter 5 presents the experimental results that were attained as the outcome of

our methodology in the previous chapter. Some of the inferences are showcased based

on the final results with bar charts for improving readability. Chapter 6 analyzes the

inference and summarizes the conclusion and possible future enhancements.
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Chapter 2

Background Concepts and Related

Work

2.1 Fundamentals of Biology

In biology, amino acids are organic compounds composed of the functional groups

amine and carboxylic acid, with a specific side chain. The key elements of an amino

acid are carbon, hydrogen and nitrogen. So far, about five hundred amino acids

has been identified. These amino acids are classified according to the structural

functions and properties like – polar, charged, aliphatic, aromatic, hydrophilic and

hydrophobic. The amino acids are classified based on its properties. Basically, there

are twenty basic essential amino acids into existence. Table 2.1 shows the twenty

different amino acids under respective classification.

Deoxyribonucleic acid or the DNA is considered the blueprint of all living or-

ganisms [15]. The DNA encodes the genetic material composed of the four main

nucleotides that are:
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Adenine (A)
Thymine (T)
Cytosine (C)
Guanine (G)

These nucleotides form long strands using peptide bonds. The structure of a

DNA is double stranded and helical where the chain of nucleotides run through these

strands [11].

Table 2.1: Classification of Twenty Amino Acids

Charged Polar Hydrophobic
Arginine (R) Glutamine (Q) Alanine (A)
Lysine (K) Asparagine (N) Isoleucine (I)

Aspartic Acid (D) Histidine (H) Leucine (L)
Glutamic Acid (E) Serine (S) Phenylalanine (F)

Threonine (T) Valine (V)
Tyrosine (Y) Proline (P)
Cysteine (C) Glycine (G)

Tryptophan (W)

The DNA contains coding regions that stores information about the proteins. Pro-

teins are composed of a sequence of amino acids (Revesz, Introduction to Databases:

From Biological to Spacio-Temporal, 2010). The sequences of nucleotides are trans-

lated into a sequence of amino acids using a genetic code. The translation of nu-

cleotides into amino acids are carried out using triplets of nucleotides called codons.

These sequences are then aligned using some tools online so that the protein sequences

could be used for various testing. In the protein sequences, mutations occur during

the process of DNA replication when errors occur in the polymerization of the DNA

strand. These errors could possible affect the phenotype of the organism, if they

occur within the protein code sequence of a gene. It is implied that mutations are

rare events as error rates are usually very low.
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2.2 Phylogenic Trees

Phylogenic trees or evolutionary trees are used to show the relationship among the

genes and organisms [17]. There are several types of diagrams that are into existence

to depict these kinds of relationships. Phylogenic trees could be of two types – rooted

or unrooted. Since these resemble the structure of a tree, the terms referring to

various parts of these diagrams are also similar to that of a tree. Biologists are often

interested in the time of common origin of a group or a taxon [12]. Some of the

phylogenetic tree analyses lets us to calculate the most recent common ancestor for

all the genes.

Phylogenic trees can also be called as gene trees since the show the evolutionary

history of a gene or a set of DNA sequence. The relationships between ancestor

and descendants could be represented using phylogram, where the branch length

represents the evolutionary distances between a group of genes [22].
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Figure 2.1: A Phylogenic Tree

2.3 Constructing the Hypothetical Common

Ancestor

As can be seen from the sections above, which explains about the phylogenic trees, it

is understood that a phylogenic tree has a common ancestor. There are several ways

to calculate this common ancestor. The reconstruction of the original sequence in a

protein family is made harder by the fact that different branches of the evolutionary

tree evolve by different rates of mutations. Shortridge et al.[18] study the different
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rates of mutations in various bacterial phyla. For this thesis, we use the idea of

hypothetical common ancestor (µ) which is mentioned by Revesz [16] in a paper

that talks about constructing an evolutionary tree based on the number of common

mutations happening in a set of sequences (CMSM).

Suppose there are seven DNA sequences that are related, we can find the hy-

pothetical common ancestor (µ) as the mode of each column. If there is no most

frequent nucleotide in a column, then we arbitrarily choose one of the most frequent

nucleotides in the sequence. We can think that in each sequence Si, the nucleotides

that do not match the corresponding nucleotide in µ indicates to have undergone mu-

tation at some point during evolution. The more common mutations two sequences

share, the closer they are like to appear in the evolutionary tree. The hypothetical

common ancestor µ is also referred as the consensus sequence at some places in this

thesis. Further demonstration of calculating the common ancestor µ are shown in

Chapter 4 when we talk about the independence testing method.

2.4 Sequence Similarity Matrix

Sequences are aligned using one of the techniques like BLAST [8] or FASTA [13, 6]

before they could be used for any experiment. The sequences are assigned with

similarity scores after alignment. The score of an alignment is the sum of the scores

for each position in the alignment [19]. This is an example of dynamic programming

paradigm, as we need to find the highest scoring alignment.

2.4.1 PAM 250 Matrix

The most commonly used scoring matrix is the PAM matrix which records the scores

for the mutations that occur in a sequence.

http://www.bioinformatics.org/wiki/Scoring_matrix
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PAM – Point Accepted Mutation.

The term “accepted” denotes that a particular sequence has accepted that muta-

tion has been embraced by one of the amino acids. PAM 250 means that about 250

mutations has occurred per 100 amino acids [23]. PAM matrices comprise of both

positive and negative values. If the alignment score is greater than zero, then the

sequences are considered to be related. If the scores are negative, then it means that

the sequences are not related. Hence these scores represent the relationship between

the sequences of a protein family. The PAM 250 scoring matrix obtained from the

website mentioned earlier, is shown in Figure 2.4.1.1 below.

Figure 2.2: PAM 250 Scoring Matrix
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Chapter 3

Data Source

3.1 Protein Families

For methods for testing the independence hypothesis which we will see in the future

chapters, were also conducted on real world datasets that contains about more than

a hundred of sequences for each family. The sequences for each protein family were

obtained from the PFAM library [2]. The sequences were aligned using FASTA se-

quencing algorithm. Note that the independence hypothesis of pairwise mutations

were tested on seed sequences rather than full sequences as the number of proteins

in the seed sequences remain the same at all times wherease the number of full se-

quences tend to vary as there could be additions of protein sequences according to

the mutations that may take place with time. The list of the three protein families

used in this research for testing the independence hypothesis are the following:

• DAGK_cat (PF00781)
• IL17 (PF06083)
• KA1 (PF02149)
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The experimental results showing the theoretical probabilities and actual proba-

bilities are mentioned in later chapters under Experimental Results and Discussion.

3.2 Description of Protein Families

3.2.1 DAGK_cat (PF00781)

The protein family used here to test the method on large data set is the

Diacylglycerol kinase catalytic domain (DAGK_cat) whose sequences can be

referred from the PFAM Library. This domain consists of 31217 sequences, out of

which 110 seed sequences were used for

the experiment in this paper. The common mutation ancestor µ was calculated to be:

KALVIVNPKSGTARGGKGKKLLERKVRPLLEEAGVSDDELDLRLTENPGPGDVLRRGYGNLEKLKSNAL

ELLAGAAREAAEANEQSDGDTLLPWSENLAYGYCPDLIVAAGGDGTVNEVLNGLAGNARRDDLELATRN

HPRAVLVPSSPPLGIIPLGRTGNDFARALNAHGGFEEGIPLGYDPEEAARAALELIKKIKGQTRPVDVGKV

In chemistry, Diacylglycerol kinase (DGK or DAGK) is a family of enzymes that

catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing

ATP as a source of the phosphate [10].

Protein Sequences

As can be seen in Figure 3, some parts of the sequences of the protein family

DAGK_cat (PF 00781) are shown in intervals of 10 sequences per row with types

of nucleotides those are diverse among the members themselves. These sequences

are generated in Hypertext format using the tool provided by the NCBI and it is

accessible publicly online at the official NCBI website [5].

https://www.ncbi.nlm.nih.gov/Structure/index.shtml
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Figure 3.1: Highlighting a part of the aligned sequences of the protein family
DAGK_cat

3.2.2 IL 17 (PF06083)

The second protein family used here to test the method on large data set is Inter-

leukin (IL 17) whose sequences can be referred from the PFAM Library. This family

consists of 531 sequences in total, where around 102 sequences were used for the exper-

iment discussed in this paper. The common mutation ancestor µ was calculated to be:

RSLSPWDYREIDPHDPNRYPRVIAEARCLLCSGGSRCIGDLNPATGQGEDDIAELQGLRRSLNSVPIYQE

ILVAFLDGGGKLRRLCDKPCSRPKTHEPCAGCRYSYRLEPVKETVTVGCTV

Protein Sequences

As can be seen in Figure 4, some parts of the sequences of the protein family In-

terleukin 17 (PF 06083) are shown in intervals of 10 sequences per row with types

of nucleotides those are diverse among the members themselves. These sequences
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are generated in Hypertext format using the tool provided by the NCBI and it is

accessible publicly online at the official NCBI website [10].

Figure 3.2: Highlighting a part of the aligned sequences of the protein family IL 17

3.2.3 KA 1 (PF02149)

The third protein family used here to test the method on large data set is the Kinase

Domain (KA 1) whose sequences can be referred from the PFAM Library. This

family consists of 1349 sequences in total, where around 105 sequences were used

for the experiment discussed in this paper. The common mutation ancestor µ was

calculated to be:

LVVKFEIEVCKVPLLSGNSNSQEHLYGVQFKRINSGDTWQYKNLASKILSELKL

In molecular biology, the functions of the KA1 domain is not yet known clearly,

but there are classes of mammalian proteins that contain the domain KA1. Members

https://www.ncbi.nlm.nih.gov/Structure/index.shtml
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if the Kinase family are present in various biological processes that involve cells and

their control, ans also in protein stability [21].

Protein Sequences

As can be seen in Figure 3.3, some parts of the sequences of the protein family KA 1

(PF 02149) are shown in intervals of 10 sequences per row with types of nucleotides

those are diverse among the members themselves. These sequences are generated in

Hypertext format using the tool provided by the NCBI and it is accessible publicly

online at the official NCBI website [10].

Figure 3.3: Highlighting a part of the aligned sequences of the protein family KA 1

https://www.ncbi.nlm.nih.gov/Structure/index.shtml
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Chapter 4

The Independence Testing Method

4.1 An Example Artificial Dataset

In this section, we describe the step-by-step procedure that we used to test whether

among the surviving descendants of the hypothetical common ancestor µ the adjacent

pairs of amino acids are mutated independently of each other.

As an artificial and simplified example, suppose that there exists an ancestor

protein µ that is made up of only the amino acids A, D, N and R as shown in Table

2. Further assume during evolution each of these four amino acids either remains

unchanged or is mutated into only one of the other three amino acids within this

group of four amino acids. Suppose that the seven descendants are S1. . . S7 as

shown also in Table 2.
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Table 4.1: A set of seven artificial sequences for sample

S1 RNARDANDRADNRDANRARA
S2 NRARDANRADADNANARNAD
S3 RADNRANDANDRANDRDRAN
S4 DNARDNARDRNARDANRANR
S5 RNDRANRDRDANDNANDRAN
S6 RNARDANDRADNRDANRARA
S7 RNARDADDRADNRDANDADA

4.2 Algorithm for Testing the Independence

Hypothesis

Our testing method consists of the following five steps.

Step 1:

Construct the hypothetical common ancestor for the proteins in the given set of

protein family using the method that is also used by the Common Mutation Similarity

Matrix. In the case of amino acid sequences, the hypothetical common ancestor, µ, is

constructed by taking an alignment of the amino acid sequences, and in each column

of the alignment finding the amino acid (out of the twenty possible amino acids that

are used in almost every protein in all organisms) that is overall closest to the all the

amino acids in that column. The overall closest amino acid is by definition the amino

acid that occurs most number of times. That is, we take the mode of the amino acids

with the highest mode. If there are two or more values that are minimal, then we

make a random selection. For the example in Table 4.1, consisting of seven artificial

sequences from S1, S2, ... S7, each with a length of twenty nucleotides, the consensus

sequence is:
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Table 4.2: The consensus sequence for the artificial protein family in Figure 4.1

µ RNARDANDRADNRDANRNAA

Step 2:

Next, we calculate a mutation probability matrix. The mutation probability ma-

trix contains the probabilities of any amino acid changing into another amino acid.

For the running example with the data shown in Table 4.1, the mutation probability

matrix is shown in Table 4.3.

Table 4.3: The mutation probability matrix for the data in Figure 4.1

A R N D Total
A 24 4 8 6 42
R 3 23 3 6 35
N 6 6 21 2 35
D 4 3 3 18 28

The mutation Probability Matrix in Table 4.2.1 shows the frequencies of the each

of the four amino acid changes into one of the other three amino acids or remains

the same. The column ‘Total’ shows the total number of the possibility of one amino

acid can mutate into another amino acid, or remain the same throughout the entire

sequence (S1 to S7).

Step 3:

Based on the mutation probability matrix values, we estimate the probability of

the changes of any adjacent pair of amino acids into another pair of amino acids

assuming that the mutations are independent of each other. For example, the prob-

ability of AN changing into DR can be computed as follows:
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Prob(AN, DR) = Prob(A, D) ∗ Prob(N, R) = 6
42 ∗ 6

35 = 6
245 ≈ 0.0245

Hence the theoretical probability corresponding to the amino acid pair AN chang-

ing to DR is approximately 0.0245. The theoretical probabilities for all possible

combinations of amino acid pairs of the artificial sequence in Table 4.1 mutating into

another possible pair of the same set are shown in Table 4.3. Note that the table

values are in decimal format for the purpose of calculation.

Step 4:

Now, we calculate the actual probabilities of changes for each pair of amino acids

in the consensus sequence. Starting from the first pair to the end of the consensus

string, we first calculate the number of times and the index, each pair in the consensus

string occurs. We then calculate the frequencies of that specific pair in the consensus

string mutating into another pair among the rest of the descendent sequences in that

column. If the current adjacent amino acid pair of the consensus string happens to

appear in another index of the same consensus string, then we repeat the step to

check for frequencies of that pair mutating into other possible pairs in that column,

for the rest of the descendant sequences. We then slide the window of the current

pair in the consensus string to the adjacent consecutive pair of the same consensus

string, to calculate their respective frequencies of mutations among the descendent

pairs of that column. The steps mentioned in the above paragraph are repeated until

we encounter the last possible pair of the consensus sequence. The results for the

example in Table 4.1 of the seven artificial sequences, are shown in Table 4.6. Note

that in Table 4.6, the column ‘Total’ refers to the total number of ways in which a

pair of the consensus sequence can mutate into another possible pair in its descendant

sequence, whose value is the product of the number of times a single pair appears

in the consensus string and the total number of sequences in the protein family. For
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example, in consensus string µ for the artificial sequence in Table 4.1, NR appears in

two indices as highlighted in the Figure 4.1 below. In this case, the total number of

possibilities of NR changing into another pair is 2 ∗ 7 = 14, where 7 denotes the total

number of sequences of the protein family.

µ RNARDANDRADNRDANRNAA

Figure 4.1: Recurring amino acid pairs of the consensus string are highlighted

The algorithm devised for calculating the actual probabilities for adjacent amino

acid pairs are mentioned in the following paragraphs, in which we pass the protein

sequences as a parameter to the algorithm.
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Algorithm 1 ACTUAL-PROBABILITY-PAIRWISE(sequence)
INPUT: Read the sequences of a protein family that is in FASTA format and aligned
appropriately. The sequences are numbered as S1, S2, . . . , Sn where n denotes the total
number of sequences.
//TOT gives the overall total number of possible ways a particular pair can mutate
to another pair
1 protein := Consensus_Sequence //read the consensus sequence
2 m := Consensus_Sequence.size
3 n := sequence.length
4 for i → 1 to m-1 do
5 Calculate the count and index of all the adjacent pairs in the consensus

sequence

6 TOT := count * n
7 end for
8 for i → 1 to m-1 do

9 for j → 2 to n do

10 calculate the occurrences of possible pairs in the descendent sequences
corresponding to the column sequence[i][i+1] which is the consensus se-
quence

11 end for

12 end for

Theorem. The running time of the algorithm is O(n2m) where m ≤ n, and m is

the size of the consensus sequence and n is the length of the sequences of the protein

family.

Proof. The algorithm ACTUAL-PROBABILITY-PAIRWISE mentioned above, falls

under the paradigm of dynamic programming in computer algorithm. We iterate

through the consensus sequence m number of times for each adjacent pair in the

consensus sequence and for each of those iterations we count the frequencies of the pair

in that window which may or may not mutate into another pair in their descendant

sequences of the corresponding window, which takes about n number of comparisons.
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This operation can be seen under the nested loops of line 8 and line 9 in the algorithm

above. Line 10 calculates the occurrences of the pair in the consensus mutating into

one of the possible 400 pairs in the descendent sequences. This takes about n times

of comparisons depending on the number of sequences that the protein is made up

of.

Step 5:

We compare the theoretical and the actual probabilities and note the most im-

portant discrepancies. The percentage probability difference in the theoretical and

actual probabilities of the mutations of amino acid pairs is the absolute value of the

difference between the two types of probabilities divided by the maximum of the two

probabilities. Let T (p1, p2) andE(p1, p2) be the theoretical and the experimental

probabilities, respectively, that the amino acid pair p1 changes into the amino acid

pairp2. Let also PD(p1, p2) be the percent probability difference defined as follows:

PD(p1, p2) = |T (p1,p2)−E(p1,p2)|
Max(T (p1,p2),E(p1,p2))

The percentage Probability Difference (PD) or the anomalous probabilities for the

top eight pairs of the consensus sequence mutating into other pairs in the descendant

sequences of the artificial protein family is shown in Table 4.4 below.
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Table 4.4: Probability Differences for the artificial protein sequence in Figure 4.1
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4.3 Applying the Algorithm to the Artificial

Dataset

The following tables show the experimental results that were obtained as a result

of running the proposed independence testing method on a set of artificial set of

sequences that we had showcased in the previous sections.

Table 4.5: The theoretical probabilities of changes for each pairof amino acids for the
artificial sample protein family
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Table 4.6: The actual probabilities of changes for each pair of amino acids for the
artificial sample protein family
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Chapter 5

Experimental Results and

Discussions

5.1 Definition

This chapter initially focuses on defining the terms that are an integral part of the

algorithm in the previous chapter. For better understanding, we first highlight the

key points about each eminent term that we may come across later in this chapter.

5.1.1 Mutation Probabilty Matrix

The following tables in this section show the Mutation Probability Matrices that were

generated for every single amino acid for each of the protein families. According to

the methodology that was elucidated in Chapter 4, the mutation probability matrices

for every single amino acid or nucleotides in each of the protein families separately,

that are shown in the tables (Table 5.1 – Table 5.3) are used in the further steps

where we generate the theoretical mutation probability matrix for every possible pair

of amino acids. The resulting theoretical probability matrix in this case is a matrix of
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size 400 x 400 as there are 20 possible amino acid and hence not presented as tables

here due to space constraints.

We then calculate the actual mutation probability for every pair of amino acids for

each of the three families separately, which is also a huge set of results that contain all

the possible probabilities of one pair in the consensus sequence of the protein family

mutating into another pair. The number of resulting probabilities might be any

number up to 400 x 400 as there are twenty amino acids in existence and there might

be any pair of nucleotide mutating into another pair in their descendent sequences.

5.1.2 Mutations with Anomalous Probabilty

After the generation the mutation probability matrix corresponding to the theoretical

and actual probabilities, we can check for pairwise mutations in the protein family

that tends to have anomalous probability. Note that pairs that do not undergo

mutations are also considered to be analyzed for anomalous probability. For all the

pairwise mutations, we check the deviations of the actual probability of pairwise

mutations with that of the theoretical probability. If the difference between them

are significantly small, then it means that the independence hypothesis fails. In this

thesis we consider the amino acid pairs that goes as low as 10%.

5.2 Results

This section lists the outcome of running the independence testing algorithm on the

large data sets of protein sequences that was mentioned in Chapter 3. The Mutation

Probability Matrix for single amino acid in a protein sequences are shown in sub-

section 5.2.1. The Theoretical Probability calculated using the mutation probability

matrix are shown in the subsection 5.2.2 where we show the first fifteen pairs in rows
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and columns only, as the size of the original matrix is about the size of 400 x 400 in

dimension.

5.2.1 Mutation Probabilty Matrix for Single Amino Acids

Table 5.1: The actual probabilities of changes for each amino acid for the protein
family DAGK_cat
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Table 5.2: The actual probabilities of changes for each amino acid for the protein
family IL17
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Table 5.3: The actual probabilities of changes for amino acids for the protein family
KA1
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5.2.2 Mutation Probabilty Matrix for Amino Acid Pairs

Table 5.4: Theoretical Probabilities for amino acid pairs for the protein family
DAGK_cat
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Table 5.5: Theoretical Probabilities for amino acid pairs for the protein family IL17

Table 5.6: Theoretical Probabilities for amino acid pairs for the protein family KA1
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5.3 Discussions

In this section, we discuss the findings that were generated as a result of the indepen-

dence testing algorithm proposed in the previous chapter. Some of the key areas that

we are interested to talk about, are about the anomalous probabilities of pairwise

mutations and also about the chances of finding a single common pairwise mutations

among all the three protein families.

5.3.1 Probability of Finding a Single Common Pairwise

Mutation

The common or similar pairwise mutations can be deduced from the percentage prob-

abilities that are shown in Table 5.8 to Table 5.10. The following Table 5.7 shows five

pairwise mutations that are common in at least two of the three protein families that

we studied. The first three mutations occur exactly the same in the corresponding

protein families. In the fourth and the fifth mutations, the pairs are interchanged.

For example, when we take the IP→VP mutation, which occurs in the DAGK_cat

protein, and interchange the pairs on both the left and the right hand sides, then we

get the symmetric mutation PI→PV, which occurs in the IL17 protein. These two

mutations are very similar to each other because proteins are amino acid chains, and

the two mutations simple “read” these amino acid chains from different directions.

There are a total of 400 x 400 = 160,000 possible pairwise mutations. The prob-

ability of finding a common pairwise mutation out of the top 31 of IL17 mutations

and the top 18 KA1 mutations, can be calculated as:
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Prob (out of the 18 new pairs picked from 160,000 at least one will match with one

of the 31 pairs picked before)

Prob (out of the 18 new pairs picked from 160,000 at least one will match with one
of the 31 pairs picked before)

= 1 – Prob (none of 18 new picked matches 31 picked before)

Considering this probabiltiy in terms of permutations, this problem could be

solved as follows:

1 − nPr

mPr

= 1 −
n!

(n−r)!
m!

(m−r)!
where, m = 160000, n = 160000 − 31, r = 18

On substitution respectively, we get,

1 − (160000−31)P18

160000P18
≈0.0035

Let us set this to be our P-value.

The common or similar mutations for the three protein families are shown under

Table 5.7.

Table 5.7: Common or similar mutations in the three protein families

Mutation DAGK_cat IL17 KA1
1 EV→EV EV→EV
2 LS→LS LS→LS
3 VP→LP VP→LP
4 IP→VP PI→PV
5 VL→VV LV→VV
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As can be seen, in this case there are three pairs that are common in at least two

protein families, and there are two pairs that are complement of each other, which

could be treated to be similar. Statistically, the probability of finding five common

mutations in at least two of the protein families was calculated to be about ≤ 0.0001

which is significantly lesser than the P-value. The following figures show the statistical

results generated using SAS for our example.

Figure 5.1: SAS results showing the probability of finding at least one common pair-
wise muation out of the top 31 of IL17 mutations and the top 18 KA1 mutations
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Figure 5.2: Finding 5 common pairwise mutations out of the top 31 IL17 mutations,
the top 18 KA1 mutations and the top 31 DAGK_cat mutations
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5.3.2 Anomalously Frequent Mutations

The following tables show the probability differences in percentage (%) or the anoma-

lous probabilities for one pair mutating into another pairs. The Anomalous probabil-

ity is calculated based on the theoretical probability and actual probability of the top

fifteen amino acid pairs and it can be deduced that the higher percentage probabilities

mean that the actual probabilities are less deviated from the theoretical probabilities

and hence imply that the mutations of those pairs satisfy the independence hypoth-

esis. In this section we represent the mutation pairs with anomalous probabilities in

Table 5.8 through Table 5.10.
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Table 5.8: Experimental results using the amino acid sequences in the DAGK_cat
protein family
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Table 5.9: Experimental results using the amino acid sequences in the IL17 protein
family
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Table 5.9 (Continued..)
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Table 5.10: Experimental results using the amino acid sequences in the KA1 protein
family
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5.4 A Partial Explanation of Anomalies in

Pairwise Mutations

In order to better understand why the pairwise mutations that we found are anoma-

lously more frequent than expected, we investigated the frequency distribution of the

various amino acids in the proteins. The following figures (Figure 5.1 to Figure 5.3)

are probability bar charts showing the total number of possible outcomes of each

amino acid in the sample protein family sequences. The amino acids are along the

x-axis and the total possible outcomes (in numbers) are along the y-axis.

Figure 5.3: A Bar chart showing the number of times in µ each amino acid appears
for the protein family DAGK_cat
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Figure 5.4: A Bar chart showing the number of times in µ each amino acid appears
for the protein family IL17

Figure 5.5: A Bar chart showing the number of times in µ each amino acid appears
for the protein family KA1



45

Figure 5.6: A Bar chart showing the Common or Similar Mutations in Three Protein
Families

The figure above is a pictorial representation of the findings shown in Table 5.7.

This table shows all the pairwise mutations that had seemed to be preserved in at

least one of the other protein family in our data source, with range of anomalous

probability in each of the protein families, shown with different color components.

An interesting question is to know why these pairs occur in two protein families

which probably might be due to the chemical properties of the nucleotides or the

evolutionary distances among them.
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Chapter 6

Conclusions and Future Work

The experimental results in Chapter 5 suggest that adjacent pairs of amino acids

in the surviving descendants are sometimes mutated in a dependent way instead of

an independent way. Since the probability of overlap mentioned under Section 5.2.3

seems to be small about ≤ 0.0001 and evidently lesser than out P-value which about

≤ 0.0035 implies that we have a concrete proof that our findings cannot be explained

as a random event. This shows that the anomalies we found are not accidental but

are some consequence of the chemical nature of these particular amino acid pairs

and evolutionary forces acting on those pairs. Moreover, the above low probability is

just for finding at least one common pairwise mutation whereas we have found three

of them plus two other pairs that are complements of each other. From the overall

set of experiments, we can infer that the pairwise mutations of a protein sequence

in a protein family does not have to be independent all the time. However, the

experimental data is based only on three protein families.

In the future we plan to use our independence testing method on other protein

families that has more than a thousand see sequences. We plan to experiment with

the sequences aligned with formats other than FASTA and also considering other
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evolutionary distances among the sequences apart from PAM 250. We also plan to

look at longer sequences, that is, consider adjacent N-mers of amino acids for N >

2. The results can be analyzed in depth by considering the biological factors of the

amino acids such as its properties - hydrophilic/hydrophobic, aliphatic/aromatic and

see how such properties impact the independence assumption that is the key idea in

this research.
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