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The purpose of this study is to understand how electrical stimulation (as opposed to 

acoustical stimulation) of the auditory nerve is used in cochlear implants. Speech is a complex 

signal that changes rapidly in time and frequency domains. Since phonemes (the smallest unit of 

speech that distinguishes words) depend on nuanced differences in frequency patterns, it would be 

expected that a signal with drastically reduced frequency information would be of limited value 

for conveying speech. Such a frequency-poor signal is the object to be investigated in the present 

work. It is also the basis of the way speech is represented in cochlear implants. How could sound 

in which most frequency information has been discarded by successfully used by so many 

thousands of individuals? There must be more information in the signal such as timing and 

amplitude that are important for the speech signal.  In addition, semantic context and visual 

information play a significant role in speech intelligibility.  It is the goal of this thesis is to examine 

how this information aggregates into the perception of speech signals limited by poor frequency 

resolution, such as cochlear implants.   

To accomplish this goal, sentence lists were created with systematically varying levels of 

frequency resolution. Normally, hearing listeners were asked to identify the last word of each 

sentence presented to them at the different levels of frequency resolution. To examine the effect 

of context, half of the sentences ended with predictable words and half ended with unpredictable 



 

words. The intelligibility of predictable and unpredictable words was compared at six different 

frequency resolutions. For this study, we used the standard R-SPIN sentences because each list 

was constructed to be equally intelligible with each of the other lists.   The overall pattern of results   

showed that there were large effects of predictability and frequency resolution.  There was an 

interaction between these two main effects that will be discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Acknowledgements 

 I would like to express my special gratitude to my advisers, Dr. Thomas Carrell and Dr. 

Ashok Samal, for their guidance, wisdom and support throughout my graduate school. I also wish 

to thank Bahar Shahsavarani for her help throughout this research.  

 I would like to thank specially Dr. Massimiliano Pierobon for his time on Masters’ 

committee and for his comments and critique to improve this research work.  

 Lastly, I would like to thank my parents and my sister for being totally supportive of me 

throughout this journey.  



 

  

Contents  

 

List of Figures...…………………………………………………………………………...……...iii 

 

List of Tables...…………………………………………………………………………………...iv 

 

Chapter 1: Introduction……………………………………………………………………..……..1 

1.1 Background…………………………………………………………...………………1 

1.2 Motivation……………………………………………………………………….…....7 

1.3 Related Work…………………………………………………………………….…...7 

1.3.1 Signal Processing………………….……………………………………….…...8 

1.3.2 Role of Context…………………………………………………………………9 

1.3.3 Number of Channels………..…………………………………………………10 

1.4 Thesis Outline………………….………………………………………….......……..10 

Chapter 2: Methodology……………………………………………………………………..11 

2.1 Participants……………………………………………………………...……………11 

2.2 Stimuli……………...…………………………………………………...……………11 

2.3 Envelope Shape Noise……………..…………………………………...……………14 

2.4 Procedure…………………………..…………………………………...……………17 

 

 

 

 

 

 

 



ii 

Chapter 3: Results………………….…………………...………………………………………19 

3.1 Analysis………………….…………………...………....……………………..………19 

3.1.1 Words Correct………………….….……………………………………………19 

3.1.2 ANOVA Results…………………......…………………………………………20 

3.1.3 Phonemes Correct………………….………….………………………..………21 

3.1.4 Rau Transformation…………….........…….…...………………………………22 

3.1.5 One-Way ANOVA Results………………….…….…....………………………23 

Chapter 4: Summary and Future Work 

4.1 Summary………………………….…...………………………………………………25 

4.2 Future Work………….…………………...………………...…………………………25 

Appendix A…..……………………..………………………..………………………..…………26 

A.1 Demographic Questionnaire Form.…...………………………………………………27 

A.2 Instruction………………………..…...………………………………………………28 

Bibliography….……………..…….…………………...………………...………………………29 

 

 

 

 

 

 

 

 

 



iii 

List of Figures  
 

 

Figure 1: An audiogram is a graphical representation of an individual’s hearing threshold.  Note 

that smaller numbers represent better hearing.................................................................2 

Figure 2: Structure of the inner ear. (Blausen, 2014).....................................................................5 

Figure 3: A Cochlear Implant on a User........................................................................................6 

Figure 4: House 3M Cochlear Implant .............................,............................................................8 

Figure 5: Analog to Digital Signal.................................................................................................9 

Figure 6: Stimulus Generation Procedure....................................................................................13 

Figure 7: Spectrogram of original and 4-band reduced-channel sentence. Top Spectrogram is the 

original sentence while the bottom spectrogram represents the filtered and ESNed 

speech......................................................................................................................15 

Figure 8: Example of ESN Diagram.............................................................................................16 

Figure 9: Word Accuracy..............................................................................................................20 

Figure 10: Phonetic Accuracy.......................................................................................................22 

Figure 11: The Mean Difference of High and Low Predictability............................................... 24 

 

 

 

 

  



iv 

List of Tables 
 

 

Table 1: Frequency in Hertz (Hz) Table showing the sensitivity range for different 

listeners............................................................................................................................................3 

Table 2: Frequency Table..............................................................................................................12 

Table 3: Stimulus order for each subject group.............................................................................17 

Table 4: Mean Proportion Correct (N=28) .....................................................................................20 

Table 5: Two Way ANOVA...........................................................................................................21 

Table 6: Proportions Correct for Phonetics....................................................................................22 

Table 7: One-Way ANOVA...........................................................................................................23 

  



1 

Chapter 1 

 

Introduction 

 
 

1.1 Background 
 

Graeme Clark developed a design for a cochlear implant in 1968. The first prototype was 

developed during 1970s. Clark’s father was deaf and he was very inspired to come up with a device 

that could help his father to better understand words spoken to him. Clark is currently in Australia 

working for Cochlear, one of the major cochlear implant manufacturers in the world.  The FDA 

approved Cochlear implant in 1980s [2].  

According to some estimates, there are about 368 million people around the world who are 

deaf and hard of hearing which makes up about 5% of the world’s population (World Health 

Organization). In the United States, it was reported that there are 34.25 million people with hearing 

loss. Out of that total, there are about 1,165,000 people in the US have severe-to-profound hearing 

loss [3]. Currently, there are about 324,200 individuals worldwide who are fitted with cochlear 

implants. The reason why the percentage is so low is that its cost is prohibitive. However, as of 

2012, there are only about 96,000 people have cochlear implants in US [8].   

Cochlear implants provide electrical stimulation (as opposed to acoustic) of the auditory 

nerve. Unlike a hearing aid, a cochlear implant circumvents damage to the cochlea and does not 

amplify the sound. Simple amplification is not effective for many individuals with hearing loss 
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due to the different types of hearing loss. The three major categories of hearing loss are: conductive 

hearing loss, sensorineural and mixed hearing loss. Conductive hearing loss is caused by problems 

with the ear canal or the ear bones (malleus, incus and stapes). Sensorineural hearing loss is caused 

by nerve damage in the inner ear. Mixed hearing loss is caused by damage in the middle and the 

inner ear (cochlea) or the auditory nerve.  

 

Figure 1: An audiogram is a graphical representation of an individual’s hearing threshold.  Note that smaller numbers represent 
better hearing. 

Figure 1 shows a blank audiogram that is used to evaluate a patient’s hearing threshold. The 

vertical axis represents the volume or loudness and is measured in decibels. Zero dB at 1000 hertz 

was set to be approximately the quietest sound which a healthy listener can hear. The thresholds 

at the remaining frequencies were derived from extensive human perceptual experimentation and 

have been codified in the ANSI-1969 standard.  Note that the level required to reach the hearing 
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threshold becomes louder from top to bottom as shown in Figure 1. The horizontal axis represents 

the frequency and is measured in hertz. The lowest pitch tested is at 125Hz while the highest is at 

8000Hz. The average normal hearing ranges from -10 to 20 dB as shown in Table 1. A person with 

mild hearing loss (21 dB to 40 dB) would often have trouble understanding speech in noisy 

situations. If a person who has moderate hearing loss (41 dB to 70 dB), the person would be eligible 

to have amplification (or hearing aids). The person with this hearing loss would rely on speech-

reading and facial gesture. A person who has a severe hearing loss (71 dB to 90 dB) will have very 

poor speech quality and often have a hard time hearing general forms of noise such as concerts or 

traffic. Hearing aids are suitable for a person with a moderate hearing loss. Finally, a person who 

has a profound hearing loss (> 91 dB) will be unable to hear almost any sound. Amplification may 

be useful to a limited degree but the person must rely on good communication tactics like lip-

reading, signing and using subtitles/closed captioning. 

 

Table 1: Frequency in Hertz (Hz) Table showing the sensitivity range for different listeners 

 
Frequency in Hertz (Hz) 

125 Hz – 8000 Hz 

-10 dB - 20 dB Normal 

21 dB - 40 dB Mild 

41 dB – 70 dB Moderate 

71 dB– 90 dB Severe 

91+ dB Profound 

 

To be eligible to receive a cochlear implant, the person must have a severe (71-90 dB) or profound 

hearing loss (+91 dB). The cause of deafness is often unknown; hearing parents can have a deaf 
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child as in my own case or deaf parents can either have a normal hearing child or a deaf child. In 

addition, hearing loss can be due to ear infections during infancy.  

The three major cochlear implant companies are Cochlear, Med-El, and Advanced Bionics. 

Each of the cochlear implant companies has different configurations for electrodes. During the 

surgical procedure, the medical team makes a small incision behind the patient’s ear. Once the 

incision is complete, the surgeon creates an air pocket through the skull that will expose the inner 

structure of the ear to allow an electrode array to be inserted. The electrode array can be in the 

range from 1mm to 1.5mm in length depending on the size or the type of electrode. It is composed 

of conductive metal alloy electrodes separated by flexible insulation.  It is important that the 

electrode array fits inside the cochlea, a snail shaped structure (See Figure 2). Electrodes are placed 

to “tune” electrode firing to appropriate frequency representation on the basilar membrane, a 

structure in the inner cochlea. The inner cochlea contains between 17,000 to 24,000 hair cells that 

are responsible for hearing. Cochlear implant requires a very delicate surgery where the ear canal 

and the ear drum cannot be disturbed during the procedure.  

The receiver/stimulator is implanted underneath the skin. Normally the length of stimulator 

ranges from 20 – 30 mm. The receiver/stimulator is the part of the implant that sits on the side of 

the skull. This is called the bedding preparation. It takes from two to four weeks for the cochlear 

implant user to recover from the surgery. Then the user typically undergoes a hearing rehabilitation 

process with an audiologist, often called mapping. Once the stimulator and the transmitter are 

activated, the stimulator receives signals from the processor and converts them into electrical 
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impulses. Electrode firing locations are based on sounds picked up by an external microphone. 

Figure 2 shows the detailed layout of the cochlear implant sitting inside the patient’s ear.    

 

 

Figure 2: Structure of the inner ear. (Blausen, 2014) 



6 

The design of cochlear implants is still evolving. Their use is also on the rise and making 

significant impact in the deaf and hard of hearing world.  

 

Figure 3: A Cochlear Implant on a User 

 

Cochlear implants divide the sounds into channels and eventually drive electrodes.  Each 

cochlear implant device has a different number of channels. Figure 3 shows a close-up of Nucleus 

5 cochlear implant (manufactured by Cochlear). This cochlear implant has 22 channels. While 

Cochlear has 22 electrodes, the implant from MED-EL and Advanced Bionics, the other two 

leading manufacturers, have 12 and 16 channels, respectively. In comparison, the early cochlear 

implants had only one or two channels.  
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1.2 MOTIVATION 

 The primary goal of this research is to study the relationship between the precision of 

frequency information in cochlear implants combined with the usefulness of contextual 

predictability and mimic the sound aspect of cochlear implants by using low and high predictability 

sentences for the participants.  

The goal of this research was to answer the following questions:  

1. What is the contribution of the number of frequency channels for sentence 

intelligibility?  

2. How does context interact with the number of channels? (Earlier research has shown 

that some CI listeners are not able to use context). 

3. Is there a point of diminishing returns as the number of electrodes (frequency bands) 

is increased? Does context influence this number?  

1.3 Related Work 

In early 1970s, cochlear implants typically had a single channel with a frequency band of 

340 and 2700 Hz. Scientists and medical staff were dubious of the benefits of a single channel 

device and many believed that it was only generating noise. Over time, it became evident that a 

single channel was not sufficient to improve the intelligibility of listeners. Amplitude envelope 

was more important than the original designers had suspected.     

 In the 1980s, scientists identified the key theoretical questions on reduced channel speech 

with multiple channels. “How many electrodes should be used? If one channel of stimulation is 
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not sufficient for speech perception, then how many channels are needed to obtain high levels of 

speech understanding?” [7].  

While Clark was working on his first cochlear implant in Australia, House 3M cochlear 

implant, designed by William House, was the first cochlear implant approved in the US by the 

FDA in 1980s (See Figure 4 below). Many cochlear implant companies use band pass filters to 

divide the incoming signals into various frequency-specific components and deliver these to 

specific regions of the cochlea. Cochlear implant users have a maximum of 7 or 8 independent 

spectral channels while any hearing person can maintain between 20 to 30 functional spectral 

channels [12]. 

 

 
Figure 4: House 3M Cochlear Implant  

 

1.3.1 Signal Processing  

Signal processing plays a crucial role in the design and functioning of cochlear implants. 

Signal processing methods are used to extract critical information from incoming acoustic signals. 
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Figure 5 shows typical processing steps in converting acoustic signals generated by a speaker to 

sound production.  

 

 
Figure 5: Analog to Digital Signal 

 

When a person speaks through the microphone, the sound waves are converted to electrical 

waves and subsequently converted to a digital representation. Then the computer can act on the 

numerical representation for acoustic processing and making decisions. The signal processing 

algorithms are applied to the digital form of the speech. The digital signal is then converted back 

to analog format and fed to the speaker for sound production. In a cochlear implant, the analog to 

digital stages are employed. After processing the numerical representation is converted to the 

electrical pulses which are sent to an electrode array that has been placed in the cochlea. 

 

1.3.2 Role of Context 

  Context refers to the surrounding words, phrases and paragraphs that convey the meaning 

of a word. In later chapters, we will talk about the low and high predictability sentences and how 

context can be an asset to comprehend the meaning of the word. Cochlear implants users struggle 
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when it comes with spectral information than normal-hearing listeners [6]. Vowel recognition 

plays a huge role in speech perception in low and medium frequency noises. Sentence is perceived 

as a string of related words [12]. Studies have shown that younger and older adults use sentence 

context to compensate for decreased levels of hearing even though participants with hearing 

impairment showed better performance when the words were presented in a meaningful context 

[5].  

 

1.3.3 Number of Channels 

Several studies have shown that as the number of channels increases, the intelligibility also 

improves. “For consonant recognition, the improvement was the largest between one and six or 

eight channels with smaller improvements for greater number of channels” [6]. Cullington and 

Zeng controlled the spectral information by varying the number of channels between 1 and 16 

while temporal information was controlled by varying the low pass cutoff frequencies of the 

envelope extractors from 1 to 514 Hz [12].  

 

1.4 Thesis Outline 

In Chapter 2, we describe the methodology that is used in this research. We discuss about 

the significance behind the filtering and the set-up procedure. Chapter 3 presents the results from 

our experiments. We also explain the statistical significance of the results. Finally, in Chapter 4, 

we conclude with a summary and directions for future research.  
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Chapter 2 

 

Methodology 
 

 

2.1 Participants 

 

Twenty-eight listeners participated in this study (27 female and 1 male).  Their ages ranged 

from 19 to 26. The average age was 21.3. Participants were all students at the University of 

Nebraska. Each participant met the following requirements: they had no hearing disability, they 

were currently taking no medications that could affect their hearing, and they were speakers of 

General American English. The participants were divided into four groups.  Each group’s 

participants were presented with the same set of sentences, but in different orders to reduce 

systematic learning effects.   

 

2.2 Stimuli 

Seven sentence lists formed the basis of the stimuli used in this experiment.  These were 

taken from the Revised Speech Perception in Noise (SPIN) test [4]. Each list is 50 sentences long 

and has been normed to be equally intelligible with the other lists.  Of the 50 sentences 25 have a 

high-predictability (HP) final word and 25 have a low-predictability (LP) final word.  For example, 

one HP sentences was, “Kill the bugs with this spray” and one LP sentence was “Betty knew about 

the nap.”   

Each of the sentence lists was processed through a set of bandpass filters.  For example, 

SPIN-list 1 was passed through a 2-channel filter, and SPIN-list 2 was passed through a 3-channel 
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filter.  Table 2 shows how many frequency bands, or channels, each list was divided into.  It also 

shows the corner frequencies demarking the channel boundaries.  Six of the lists were used, those 

with 2,3,4,5,6, and 8 channels.  A seventh list, with 12 bands was also created to familiarize 

listeners with the sounds and the task before the experiment itself began.   

Table 2: Frequency Table 

SPIN Sentence 

List Number 

Number of 

Channels 

Corner Frequencies  

1 2 150; 1171; 5500 

2 3 150; 660; 1997; 5500 

3 4 150; 484; 1171; 2586; 5500 

4 5 150; 397; 835; 1619; 3014; 5500 

5 6 150; 345; 660; 1171; 1997; 3335; 5500 

7 8 150; 287; 484; 766; 1171; 1751; 2586; 3783; 

5500 

6 12 150; 236; 345; 484; 660; 885; 1171; 1535; 1997; 

2586; 3335; 4288; 5500 

 

The corner frequencies were selected to correspond to equally spaced intervals along the basilar 

membrane using the Greenwood function.   

 

F = 165.4(10.06𝑥 − 1)      (Equation 1). 

Where F is the character’s frequency of the sound measured in Hertz and x is the distance 

(measured in mm) from the apex, assuming a basilar-membrane length of 35 mm. Note that no 

frequencies below 150Hz or above 5500 Hz are represented in this model.  A pseudo-code example 

of the stimuli generation method used to filter sentences is shown in Figure 6.  All signals had a 

sampling rate of 11,025 Hz and had the acoustic range of 150 Hz to 5500 Hz.  

The function “generateStimuli” generates a reduced channel signal from a given sentence. 

Given the number of channels, it first determines the specification of the band pass (lower and 

upper cutoff frequency) filters for each channel. This is computed by using the Greenwood 
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Function. Then the method computes the enveloped shaped noise to match the dimension of the 

sentence. The signal is then passed through each filter, multiplied by the noise and filtered again. 

Finally, the filtered bands are added together to generate the reduce channel signal. 

 

 

 

samprate=11025; 

%Read and input the sentences from the original folder 

for i = 2:2 folder number = 1 to 8  

    for j = 1:50 %50 sentences per folder  

         if j < 10 

             filename = sprintf('SPIN_L%d_S0%d.wav', i,j); 

             %  = sprintf('SPIN_L%dS0%d.wav',i,j); 

          else 

             filename = sprintf('SPIN_L%d_S%d.wav',i ,j);     

         end 

  

        [x, samprate] = audioread(filename); 

        %x = [sig, samprate]; 

        % x is the original sentence variable 

         

        randarray = rand(mrows, ncols); 

  

        for jj = 1:mrows 

            if randarray(jj) > 0.5 

                randarray(jj) = 1; 

            else 

                randarray(jj) = -1; 

            end 

        end 

  

        %to normalize the cutoff frequencies 

        d1 = fdesign.bandpass('N,F3dB1,F3dB2,Ast', 6, 150/(fs/2), 1171/(fs/2), 60); 

        d2 = fdesign.bandpass('N,F3dB1,F3dB2,Ast', 6, 1171/(fs/2), 5500/(fs/2), 60); 

        hd1 = design(d1,'ellip'); 

        hd2 = design(d2,'ellip'); 

         y1 = filter(hd1, x);   % x is the original signal and y is the filtered signal 

        y2 = filter(hd2, x); 

        ysum = y1 + y2; 

  

        %Create ESN (Envelope Shape Noise) 

        esn_sentence1 = y1 .* randarray; 

        esn_sentence2 = y2 .* randarray; 

        esn_sigf1 = filter(hd1, esn_sentence1); 

        esn_sigf2 = filter(hd2, esn_sentence2); 

        %sum 

        2-channel-sentence = esn_sigf1 + esn_sigf2; 

 end 

 

 

Figure 6:: Stimulus Generation Procedure 
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2.3 Envelope Shaped Noise 

 

 After frequency-band filtering, each channel was processed by multiplying the time-

changing RMS level of that channel by white noise.  The resulting signal is called “Envelope-

Shaped Noise” (ESN).  When a signal has gone through this process, no frequency information 

remains, only the RMS level, as it changes over time, remains.  If the high- and low-band of a 

signal are “ESNed” separately and then recombined, the resulting signal is spectrally very poor 

but the amplitude and timing information remain.   

Figure 7 is an example of a sentence that has been bandpass filtered, each filter was ESNed,  

and the resulting ESNed files were then re-filtered.  The original sentence (top panel) shows 

thousands of frequencies; the resulting sentence shows the original timing and amplitude 

information but only four frequency ranges are represented.   1). 0 – 800 Hz, 2). 800-1600 Hz, 3). 

1600-2800Hz, and 4). 2800-6000 Hz. Thousands of frequencies are represented in natural 

sentences. At a 4 channel, only 4 frequencies bands are being represented. Envelope shape noise 

multiplies the amplitude by white noise. How does it work? It creates a set of random numbers. 

Every single sample is get multiplied by 1 or -1.  
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Figure 7: Spectrogram of original and 4-band reduced-channel sentence. Top Spectrogram is the original sentence while the 
bottom spectrogram represents the filtered and ESNed speech. 

 

The top spectrogram in Figure 7 shows the original sentence while the bottom spectrogram 

shows the filtered or RC sentence. Spectrogram is a photographic or visual way of representing 

loudness of a signal over a period. Figure 8 is a graphical summary of the entire process of 

generating a vocoded sentence from a natural sentence.  
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Figure 8: Example of ESN Diagram 
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2.4 Procedure 

 

The listeners were tested in groups of one to four individuals in a test suite at the Speech Perception 

Laboratory at University of Nebraska-Lincoln. All the stimuli were equilibrated internally to have 

the same RMS level as one another with a sampling rate of 11,025 Hz. The sentences were 

presented binaurally via headphones with a maximum loudness of approximately 68 dB.  Custom 

software created at the University of Nebraska controlled the timing and sequencing of the 

sentences. 

Table 3: Stimulus order for each subject group 

List Number: F 1 2 3 4 5 6 

 Number of Frequency Bands 

Group 1 12 2 5 3 6 4 8 

Group 2 12 8 4 6 3 5 2 

Group 3 12 2 3 4 5 6 8 

Group 4 12 8 6 5 4 3 2 

 

 Four groups of listeners were presented with the word lists in four different orders. The 

groups were counterbalanced in a modified Latin Square design to avoid a list-by-frequency 

confound.  Participants were familiarized with the task with the first list (labeled “F” above).  Then 

they were presented with the sentence lists in the order shown in Table 3.  There were 50 

familiarization sentences and 300 experimental sentences.  The listeners wrote the final word (or 

their best guess) during an inter-trial interval of 3 seconds. The entire experiment, from greeting 

to departure took participants under 40 minutes. The participants were seated at individual 

listening stations in a sound treated testing room.  The ambient room noise level was 28 dB SPL.  
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The stimuli were presented via Sennheiser HD 280 PRO closed-ear circumaural headphones.  The 

experiment was controlled and its progress monitored in a second room.
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Chapter 3 

Results 

3.1 Analysis  
Analyses were conducted to determine how predictability and frequency resolution 

influenced word intelligibility.  Descriptive statistics and 2 x 6 repeated-measures ANOVAs were 

used to evaluate the relationships.    

 

3.1.1 Words Correct 

The initial analysis showed that increasing the frequency content in the signal improved 

the intelligibility of the final (key) word in the sentences.  Specifically, as the number of channels 

increased, the proportion correct word responses increased. In addition, predictable words were 

identified more accurately than unpredictable words.  These results are shown graphically in 

Figure 8 and in numerically in Table 4.   Visual inspection indicates that any interaction between 

number of channels and predictability was likely due to the two-channel condition in which both 

predictable and unpredictable words were correctly identified less than one percent of the time.     
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Figure 9: Word Accuracy 

In Figure 8, Proportion of sentence-final words perceived correctly based on number of 

frequency channels and word predictability.  The error bars indicate 95% confidence intervals.    

 
Table 4: Mean Proportion Correct (N=28) 

 Number of Frequency Channels 

Predictability 2 3 4 5 6 8 

Low 0.09 0.20 0.36 0.55 0.69 0.78 

High 0.08 0.46 0.62 0.79 0.89 0.98 
 

3.1.2 ANOVA Results 

A 2 x 6 (predictability-by-frequency) repeated-measures ANOVA was performed on the 

accuracy data to determine whether the effects that were visible in the graph would also be 

statistically meaningful.  The results shown in Table 5 show that both main effects and the 

interaction are highly significant and greatly exceeded the p < 0.01 alpha level set for this 

experiment.  Main effect 1:  Words with higher predictability are more intelligible than those with 

lower.  Main effect 2:  Words with more channels of frequency information (i.e., greater frequency 
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resolution) are more intelligible than those with fewer channels.  Interaction:  The predictability-

based intelligibility improvement is not present at every number of frequency channels.  Inspection 

of Figure 9 indicates that the interaction is due to the intelligibility of the lowest-quality signals, 

the two-channel stimuli. 

Table 5: Two Way ANOVA 

ANOVA             

Source of 
Variation 

SS df MS F P-value F crit 

Predictability 37316.42 1 37316.42 270.72 1.22E-44 3.87 

NBands 300298.69 5 60059.74 435.72 1.88E-141 2.24 

PredX NBands 8956.80 5 1791.36 13.00 1.55E-11 2.24 

Error 44659.99 324 137.84     

         

Total 391231.91 335         

 
The purpose of the ANOVA is to assess whether observed differences among sample 

means are statistically significant.  Based on the p-values, they clearly were in the present 

investigation.  The smaller the p-value, the stronger the evidence against the null hypothesis and 

in favor of the alternative hypothesis. ANOVA uses F statistics to calculate p-value to evaluate the 

null hypothesis.  

 

3.1.3 Phonemes Correct  

The phonetic analysis was more fine-grained that the word analysis. For example in the 

sentence, “The scarf was made of shiny silk.”.  When a listener wrote “shuck” instead of “silk” 

they would receive a score of 0 out of 1 (0%) based on words correct but 1 out of 4 (25%) based 

on phonemes correct.  Table 6 shows the proportion of correct phonemes for the listeners. Note 

that the same general pattern of results was found for word and phoneme intelligibility.   
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Figure 10: Phonetic Accuracy 

Table 6: Proportions Correct for Phonetics 

 Number of Frequency Channels 

Predictability 2 3 4 5 6 8 

Low 0.22 0.44 0.65 0.71 0.83 0.88 

High 0.20 0.62 0.72 0.88 0.93 0.99 
 

3.1.4 Rau Transformation 

It is possible that the interaction effect is due to a “floor effect” from the poorest quality 

stimuli. This is a common problem with proportion correct data and the “rau” arcsine 

transformation is often used to “rationalize” the nonlinearities of proportion correct data near 0 

and 100 percent. There are three types of effects in transformation 1). Normalizing the distribution 
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of the data, 2). Producing a scale in which the real effects are linear and additive and 3). Providing 

a mean value that is a true estimate of the mean level of the measurements [10]. 

T = arcsin√𝑋/(𝑁 + 1) + arcsin √(𝑋 + 1)/(𝑁 + 1)   (Equation 2) 

R = 1.46 (31.83098861T – 50) + 50     (Equation 3) 

R is the score in raus, where T is the transform of arcsine from the above Equation 3.  

All of the scores for the second ANOVA have been transformed according to Equation 3.  

 

3.1.5 One-Way ANOVA Results 

 

The observations for one way ANOVA have been computed by taking the difference of 

the transformed High Predictability and Low Predictability data (Table 7). 

 

Table 7: One-Way ANOVA 

SUMMARY         

Groups Count Sum Average Variance 

2 Ch. 28 -45.52 -1.63 194.32 

3 Ch. 28 720.61 25.74 111.51 

4 Ch. 28 701.84 25.07 345.94 

5 Ch. 28 671.43 23.98 260.23 

6 Ch. 28 666.79 23.81 130.09 

8 Ch. 28 825.8 29.49 116.7 
 

 

Source of Variation SS df MS F P-value F crit 

NBands 17913.6 5 3582.72 18.55074525 1.51E-14 2.27 

Error 31287.18 162 193.13     

          

Total 49200.78 167         

 
The results of the ANOVA indicated that even when the data had been rau-transformed the 

effect of context varied across different number of frequency channels in the stimuli.   
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In other results, this difference of HP and LP Graph shows that the correctness data that 

there is context of High Predictability and Low Predictability sentences among the listeners (Figure 

10).  

 

 
Figure 11: The Mean Difference of High and Low Predictability. 
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Chapter 4 

 

Summary and Future Work 

 
4.1 Summary 

 

In this thesis, we examined effect of frequency resolution on speech intelligibility.  A set 

of standard R-SPIN sentences were used to generate the stimuli presented to a set of listeners.  

Using a set of band pass filters distorted versions of acoustic signals were produced. After initial 

experimentation, we presented the listeners sentences with 6 different channels ranging from 2-8. 

To examine the effect of context, the subjects were presented with high and low predictability 

words at the end of each sentence. The results of the study show that sentence intelligibility is 

significant different for different number of channels.   The intelligibility increases as the number 

of channels increases.  Furthermore, context plays a significant role in most levels of distortion.   

The results of the study can be used to inform the design of cochlear implant devices. 

 

4.2 Future Work 

 

Our work can be extended in a number of different ways. Instead of using last word of each 

sentence, the participants can record whole sentence. This will be more challenging and more work 

to the participants, but it can provide additional insight into intelligibility. The experiment has 

generated a large volume of data about the phonemes. We could mine the data to obtain interesting 

patterns that may prove useful in understanding the effect of reduced channel speech. Clustering 

and association analysis will be particularly useful in this regard.  
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Appendix A 

  



27 

A.1 Demographic Questionnaire 
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A.2 Instructions  
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