
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

12-2015

Transforming C OpenMP Programs for
Verification in CIVL
Michael Rogers
University of Nebraska-Lincoln, mrogers08@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Programming Languages and Compilers
Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Rogers, Michael, "Transforming C OpenMP Programs for Verification in CIVL" (2015). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 92.
http://digitalcommons.unl.edu/computerscidiss/92

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/92?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages

TRANSFORMING C OPENMP PROGRAMS FOR VERIFICATION IN CIVL

by

Michael S. Rogers

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Matthew B. Dwyer

Lincoln, Nebraska

December, 2015

TRANSFORMING C OPENMP PROGRAMS FOR VERIFICATION IN CIVL

Michael S. Rogers, M. S.

University of Nebraska, 2015

Advisers: Matthew B. Dwyer

There are numerous way to express parallelism which can make it challenging

for developers to verify these programs. Many tools only target a single dialect but

the Concurrency Intermediate Verification Language (CIVL) targets MPI, Pthreads,

and CUDA. CIVL provides a general concurrency model that can represent pro-

grams in a variety of concurrency dialects. CIVL includes a front-end that support

all of the dialects mentioned above. The back-end is a verifier that uses model

checking and symbolic execution to check standard properties.

In this thesis, we have designed and implemented a transformer that will take

C OpenMP programs and transform them to CIVL so that they can be verified.

A large subset of the OpenMP specification is supported by the transformer.

The transformer operates on a Abstract Syntax Tree (AST) representation of the

program. The transformer will modify the AST to replace OpenMP constructs with

equivalent CIVL constructs so that the program can be verified in CIVL. Results

show that the transformer supports the most common used OpenMP constructs.

iii

Contents

Contents iii

List of Figures viii

1 Introduction 1

1.1 The Need for Parallel Programming 1

1.2 Writing Parallel Programs . 2

1.2.1 Parallel Memory Architectures 2

1.2.2 Parallel Programming Models 3

1.3 OpenMP . 5

1.4 Parallel Programming Challenges . 6

1.5 Formal Verification . 8

1.6 CIVL . 9

1.7 OpenMP Transformer . 10

1.8 Contribution . 11

1.9 Outline . 12

2 CIVL: Concurrency Intermediate Verification Language 13

2.1 Introduction of CIVL . 13

2.2 Framework . 14

iv

2.3 Language . 15

2.3.1 CIVL-C . 15

2.3.2 Semantics . 17

2.4 Verification . 19

2.4.1 Commands . 19

2.4.1.1 Verify . 19

2.4.1.2 Show . 19

2.4.1.3 Compare . 20

2.4.1.4 Replay . 20

2.4.1.5 Run . 21

2.4.1.6 Help . 21

2.4.2 Symbolic Execution . 21

2.4.3 Partial Order Reduction . 22

2.5 Transformation . 23

2.5.1 Shared State Access . 25

2.5.2 Replacing Constructs . 27

2.6 Evaluation . 27

2.7 Conclusion . 29

3 OpenMP Transformer 30

3.1 Approach . 30

3.2 Transforming OpenMP Constructs . 31

3.2.1 Parallel Pragma . 32

3.2.2 For Pragma . 34

3.2.3 Sections . 35

3.2.4 Critical . 36

v

3.2.5 Master . 37

3.2.6 Shared Read and Write . 38

3.2.7 Functions and Terminal Transformations 39

3.3 Orphan Constructs . 39

3.4 Memory Model . 40

4 Evaluation 44

4.1 Setup . 44

4.2 Results . 45

4.3 Failed Results . 46

4.3.1 Faults Caught . 47

4.3.2 Unimplemented Features . 48

5 Conclusion 49

5.1 Limitations . 49

5.2 Future Work . 50

Bibliography 52

A Openmp CIVL Library 56

A.1 Support Types . 56

A.1.1 $omp_gteam . 56

A.1.2 $omp_team . 57

A.1.3 $omp_gshared . 57

A.1.4 $omp_shared . 57

A.1.5 $omp_work_record . 58

A.1.6 $omp_var_status . 58

A.2 Support Functions . 58

vi

A.2.1 Team Creation and Destruction 58

A.2.1.1 $omp_gteam $omp_gteam_create($scope scope, int

nthreads) . 58

A.2.1.2 void $omp_gteam_destroy($omp_gteam gteam) . . . 58

A.2.1.3 $omp_team $omp_team_create($scope scope, $omp_gteam

gteam, int tid) . 59

A.2.1.4 void $omp_team_destroy($omp_team team) 59

A.2.2 Shared Variables . 59

A.2.2.1 $omp_gshared $omp_gshared_create($omp_gteam,

void *original) . 59

A.2.2.2 void $omp_gshared_destroy($omp_gshared gshared) 59

A.2.2.3 $omp_shared $omp_shared_create($omp_team team,

$omp_gshared gshared, void *local, void *status) . . 59

A.2.2.4 void $omp_shared_destroy($omp_shared shared) . . 60

A.2.2.5 void $omp_read($omp_shared shared, void *result,

void *ref) . 60

A.2.2.6 void $omp_write($omp_shared shared, void *ref,

void *value) . 60

A.2.2.7 void $omp_apply_assoc($omp_shared shared, $op-

eration op, void *local) 60

A.2.2.8 void $omp_flush($omp_shared shared, void *ref) . . 60

A.2.2.9 void $omp_flush_all($omp_team) 60

A.2.3 Worksharing and Barriers . 61

A.2.3.1 void $omp_barrier($omp_team team) 61

A.2.3.2 void $omp_barrier_and_flush($omp_team team) . . 61

vii

A.2.3.3 $domain $omp_arrive_loop($omp_team team, int

location, $domain loop_dom, $DecompositionStrat-

egy strategy) . 61

A.2.3.4 $domain(1) $omp_arrive_sections($omp_team team,

int location, int numSections) 61

A.2.3.5 int $omp_arrive_single($omp_team team, int location) 61

viii

List of Figures

1.1 Pthreads HelloWorld . 5

1.2 OpenMP HelloWorld . 5

1.3 OpenMP Bug . 7

2.1 The CIVL framework . 15

2.2 Some commonly-used CIVL-C primitives 16

2.3 A CIVL-C program with static scopes numbered; its static scope tree;

and a state. 18

2.4 MPI transformation . 24

2.5 CUDA transformation . 25

2.6 MPI-Pthreads transformation . 26

2.7 Results of running CIVL verify command for C programs 29

3.1 OpenMP Functions and Terminal Transformations 32

3.2 Parallel pragma transformation . 34

3.3 For pragma transformation . 35

3.4 Sections pragma transformation . 36

3.5 Critical pragma transformation . 37

3.6 Master pragma transformation . 37

3.7 Shared read transformation . 38

ix

3.8 Shared write transformation . 38

3.9 Orphan transformation . 41

4.1 OpenMP Construct Count . 45

4.2 Results of running CIVL verify command for C OpenMP programs . . 46

4.3 Parallel code of mxm.c . 47

1

Chapter 1

Introduction

1.1 The Need for Parallel Programming

Parallel programming is becoming more popular as problem sizes increase. Prob-

lems can be broken up into many smaller tasks and processed simultaneously.

The scale and complexity of parallel programs is increasing which makes it more

difficult to ensure programs will execute as expected.

For speed increases, programmers used to rely on clock frequency increases but

this rate has slowed down[1]. Programmers can no longer rely on clock frequency

increases and need to find other ways to speed up program execution. Program-

mers have turned to other methods which include using parallel programming to

fully use a processor's computing power.

Solving large problems sequentially can take an extremely long time. Solving

some problems sequentially in a reasonable amount of time is not possible. When

it isn't practical to wait for a sequential execution of program to finish, parallel

programming can be applied to large problems to help speed up the execution.

Parallel programming helps process difficult problems and large amounts of data

2

in a shorter amount of time.

In addition to saving time, a single CPU may not be able to fit a whole program

in memory. Parallel programming can allow for larger problems to fit in memory.

When the data stays in memory, a CPU can access it faster. Accessing the data

faster means that the execution finishes sooner. By running a program in parallel,

programmers can take advantage of worldwide resources because problems can

be split up over multiple resources.

1.2 Writing Parallel Programs

There are multiple ways to express parallelism in a program. This leads to being

able to break up a problem in different ways. Some problems are better suited for

a specific type of parallel programming. Having multiple ways to create a parallel

program allows for flexibility for the programmer.

1.2.1 Parallel Memory Architectures

There are a few main architectures for parallel programming: shared, distributed,

and hybrid distributed-shared memory architectures[2].

A shared memory architecture has all of the processors access the same memory

resources. All the memory is seen as global address space to the processors. This

global address space is easy for programmers to understand, and sharing data

is fast due to processors being able to access memory quickly. However, this

solution may not always scale well due to increased memory access and the need

to synchronize memory accesses.

A distributed memory architecture lets processors have their own local memory

but requires a communication network to allow processors to exchange mem-

3

ory or data. Processors operate independently and don’t have the concept of a

global memory space like shared memory. This architecture allows for better

scaling for processors but it can be difficult for the programmers to manage data

communication across the processors and communication takes time.

A hybrid distributed-shared memory architecture combines the previous two

architectures. A group of processors have access to some shared memory like in

the shared memory architecture. These group of processors use a communication

network to work with other groups of processors that have their own shared

memory. This is a very scalable approach but it does introduce more complexity

into the design.

1.2.2 Parallel Programming Models

There are multiple parallel programming models that are used. Some of the

most common models are shared memory without threads, shared memory with

threads, message passing, and hybrids[2].

A shared memory model has processors share an address space. The processors

perform asynchronous reads and writes on the data. Mechanisms like locks can

be used to control the access to the shared memory. Data is local to all of the

processors so the programmer does not need to worry about communicating data

between the processors.

Shared memory can also be accomplished with multiple threads. A processor

can create multiple threads and split up the task among the threads. Threads share

a global address space. If one thread changes some data, all other threads will also

see this change. These threads need synchronization to ensure that they are not

accessing the same data at the same time. A couple of popular implementations of

4

threading are POSIX Threads (Pthreads) and OpenMP. Pthreads is a part of the

Unix operating system and is a library used in C programs.

The code in Fig. 1.1[3] shows a hello world program for Pthreads. Each of the

Pthreads are created in the main method on line 15 and they go do their work

in PrintHello on line 3. Pthreads requires a lot of effort from the programmer.

The programmer must explicitly express the parallelism. We can see that the

programmer must also exit each thread in Pthreads on line 7.

OpenMP simplifies the threading process. It is available in C, C++, and Fortran.

It is based on pragmas to introduce parallelism. The code in Fig. 1.2[4] shows an

OpenMP hello world program. A single parallel pragma is inserted into the code.

This creates all of the threads. The body after the parallel pragma is what executes

in parallel. OpenMP allows a programmer to start with sequential code and slowly

increase the parallelism by adding in parallel constructs one at a time.

Threads can also be done on a GPU. A common thread model for GPUs is

CUDA. CUDA takes the same shared memory for threads approach and applies it

to a GPU. The processor on the GPU creates many threads and has memory that

is shared among the threads.

The message passing model has processors use their own local memory instead

of a global address space. Processors can exist on the same machine or across

multiple machines. The processors share data by sending and receiving messages.

The passing of these messages is usually implemented through library calls.

The programmer has to make these library calls and is responsible for how the

parallelism is implemented. The Message Passing Interface (MPI) is the standard

for message passing.

Hybrid models that combine more than one model also exist. The hybrid model

is a flexible model as it lets the programmer use multiple types of parallelism to

5

1 # include <pthread.h>
2 # define NUM_THHREADS 5
3 void *PrintHello(void *threadid){
4 long tid;
5 tid = (long)threadid;
6 printf(\Hello World. I am, thread # %ld. \n", tid);
7 pthread_exit(NULL);
8 }
9 int main(int argc, char *argv[]){

10 pthread_t threads[NUM_THREADS];
11 int rc;
12 long t;
13 for(t=0;t<NUM_THREADS;t++){
14 printf(\In main: creating thread %ld \n", t);
15 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
16 if (rc){
17 printf(\ERROR; return code from pthread_create() is %d \n", rc);
18 exit(-1);
19 }
20 }
21 pthread_exit(NULL);
22 }

Figure 1.1: Pthreads HelloWorld

1 # include <omp.h>
2 int main(int argc, char *argv[]){
3 int nthreads, tid;
4 #pragma omp parallel private(nthreads, tid){
5 tid = omp_get_thread_num();
6 printf(\Hello World from thread = %d \n", tid);
7 if (tid == 0){
8 nthreads = omp_get_num_threads();
9 printf(\Number of threads = %d \n", nthreads);

10 }
11 }
12 }

Figure 1.2: OpenMP HelloWorld

break up a problem. Common hybrid models are MPI and OpenMP, MPI and

Pthreads, and MPI and CUDA.

1.3 OpenMP

OpenMP is an API for shared-memory parallel programming in C, C++, and

Fortran[5]. OpenMP is a pragma based language. There are pragmas for thread

creation, worksharing, and synchronization. OpenMP provides constructs for

6

worksharing, tasking, synchronization, device, and single program multiple data.

In OpenMP, the programmer explicitly specifies what parts of the program should

be executed in parallel. Data in an OpenMP program can be shared or private. All

of the threads can shared data but if there aren't checks in place, situations like

data races may happen and unintended consequences will occur during execution.

The code in Fig. 1.3[6] shows a bug in an OpenMP program. This program

will compile and run, however, the tid variable is by default a shared variable.

This will cause a problem as each thread tries to use this variable. There will be a

race condition involving the tid variable. Each thread will change the value of the

variable and it will change the value for every other thread.The tid variable should

be a private variable in the parallel section. The OpenMP specification states that

OpenMP specifications “are not required to check for data dependencies, data

conflicts, race conditions, or deadlocks, any of which may occur in conforming

programs[5].”A program may contain some sort of fault but as long as it conforms

to the OpenMP specification, OpenMP wont raise any flags which is why tools to

verify programs are necessary.

1.4 Parallel Programming Challenges

Writing correct parallel code can be difficult if the problem isn't embarrassingly

parallelizable. A program is embarrassingly parallelizable when there is little or

no effort required to separate the problem into separate parallel tasks. A study

was done showing that there is a gap of performance between basic C/C++ code

and code that is parallelized and optimized by experts[7]. This gap is shown to

be on average 24 times faster for parallelized and optimized code compared to

basic code. This gap will only grow as computers become faster. Increasing the

7

1 # include <omp.h>
2 int main(int argc, char *argv[]){
3 int nthreads, i, tid;
4 float total;
5 #pragma omp parallel {
6 tid = omp_get_thread_num();
7 if (tid == 0) {
8 nthreads = omp_get_num_threads();
9 printf(\Number of threads = %d \n", nthreads);

10 }
11 printf(\Thread %d is starting... \n", tid);
12 #pragma omp barrier
13 total = 0.0;
14 #pragma omp for schedule(dynamic,10)
15 for (i=0; i<1000000; i++)
16 total = total + i*1.0;
17 printf (\Thread %d is done! Total= %e\n",tid,total);
18 }
19 }
20 }

Figure 1.3: OpenMP Bug

amount of parallel code in a program will help speed up the computation but it

takes skilled programmers to write robust parallel code.

Writing sequential code is much easier than writing parallel code. For sequential

code, a programmer is used to having an IDE check syntax, provide some static

analysis, and offer debugging support. While debugging a program can be difficult,

it is easier to debug a sequential program compared to a parallel program. With a

sequential program, a programmer can use a debugger and get the same behavior

every time because sequential programs are deterministic. Each execution will

result in the same behavior. This allows a programmer to isolate problem areas in

the code and diagnose the fault. In a parallel program, there are many interleavings

that can happen. Many of these possibilities may result in the desired result but

it only takes one possibility to produce an undesirable result for the program to

fail. Each execution is not guaranteed to run in the same order as before so the

same behavior is not exhibited each execution. This unpredictable behavior makes

it difficult for a programmer to diagnose the fault. To debug a parallel program,

8

a programmer needs to think about all possibilities that can happen which is

difficult to apply standard debugging methods once the magnitude of parallelism

increases.

Another challenge with parallel programming is that there are many ways

to express parallelism. There are libraries, language extensions, and APIs that

exist. Different ways of expressing parallelism are being introduced and being

modified constantly which is difficult for programmers to keep up with. It is

already hard enough to be an expert in one concurrency dialect. There are hybrid

parallel programs that contain more than one kind of parallelism. Programs like

these introduce the possibility for concurrency errors invoking subtle interactions

between concurrency dialects and models.

1.5 Formal Verification

To help close the gap between sequential and parallel code, tools are being used to

provide analysis and verification of the program. When bugs or defects do happen

in programs, it can be difficult to isolate and fix the bug because the bug may

only occur during some runs. Some of these tools that try to find bugs use formal

verification techniques.

Formal verification involves proving the correctness of a design with respect to a

set of properties or requirements. It is a systematic process that uses mathematical

reasoning to prove the implementation of the design is correct. Formal verification

will exhaustively explore all possible input values. Approaches such as model

checking and symbolic execution can be applied to help find bugs or show their

absence in programs.

Model checking takes a model of a system and will exhaustively check if the

9

model meets the design[8]. This exhaustive check will explore all reachable states

on all possible process or thread intereavings. By exploring all the possible states,

it can be said if a certain property holds. After the model checking system explores

all of the states, it will state that property is satisfied or that it is violated and

provide a counterexample, i.e., a run of a program the program that exhibits the

error.

Symbolic execution is another way to formally verify a program. Instead of

concrete values, symbolic values are used as inputs[9]. These symbolic values

are used to represent sets of values in the program as symbolic expressions. This

means the output of the program can be expressed by the symbolic values as the

input. The program can be traversed with an execution path. An execution path

is series of true and false values for a series of symbolic expressions representing

branch conditions. These execution paths can be combined to create a tree.

1.6 CIVL

The Concurrency Intermediate Verification Language (CIVL) framework applies

model checking and symbolic execution to the problem of verifying parallel

programs. CIVL provides verification of multiple concurrency dialects. The CIVL

framework contains an intermediate language, CIVL-C, which can express each

of the different concurrency dialects. When a concurrency dialect changes or a

new one is introduced, only the front-end of CIVL will need to be changed. This

front-end will parse and translate the parallel program into CIVL-C so CIVL can

verify the program. CIVL allows for new analysis techniques to be implemented

and be applied to a variety of the concurrency dialects.

CIVL parses the original source code using ABC, a Java-based C front-end that

10

preprocesses and parses C programs, to produce an abstract syntax tree (AST).

An AST is an abstract syntactic representation of the source code using a tree

structure. ASTs do not contain all of the information from the source program

like spacing, brackets, or parentheses. Each node in the tree represents some part

of the program. This node may have multiple children. For example, a program

may contain a while node. This while node may contain two children: a condition

and a body. The condition node would have its children form some conditional

expression. The body node may contain many statement nodes which can be

further broken up. ABC only recognizes programs that are written in C11.

The AST that is produced by the front-end is then modified by a series of

transformers. These transformers manipulate the AST to create a pure CIVL-C

representation of the program. After the AST is passed though all the transformers,

it is given to a model builder to produce a model of the CIVL-C program. The

verifier then takes the model and performs the verification step. CIVL checks a

number of standard properties. There are also some dialect specific properties

that are checked. CIVL produces a report of whether the program was correct

or incorrect. If the program was incorrect then information about the error is

provided by CIVL. The next chapter will provide a more detailed discussion about

CIVL.

1.7 OpenMP Transformer

CIVL contains various transformers to handle different concurrent dialects. To add

support for OpenMP in CIVL, we design and implement an OpenMP transformer

for CIVL. Since OpenMP is mainly based on pragmas, ABC will take the source

program and convert it to a CIVL-C representation. This AST representation will

11

contain nodes that describe the pragmas but aren't in a pure CIVL-C representation

yet.

Nodes for these pragmas will be created and inserted into the AST. These

pragma nodes are just an AST representation of the original pragma. The OpenMP

transformer will take these pragma nodes in the AST along with any other OpenMP

code and transform them into pure CIVL-C which will be used to build the model.

The transformer will work primarily with the AST. Starting from the root node,

the AST is searched for OpenMP nodes or code. Based on a set of translations, the

transformer takes the AST nodes and will insert, delete, and modify nodes to fit the

translation. When some pragma node or OpenMP code is found, the transformer

will follow the set of translations to ensure that the original semantics from the

OpenMP code are still the same but expressed as CIVL-C. CIVL-C contains a

number of concurrency primitives in the language to allow for this to happen. The

transformer covers the majority of OpenMP pragmas and code found in the test

suite in Chapter 4. Chapter 3 will provide a detailed explanation of the design and

implementation of the transformer.

1.8 Contribution

In this thesis we make the following contributions:

1. We design and implement a transformer to take OpenMP C programs and

transform them into a pure CIVL-C representation.

2. We perform an evaluation on various OpenMP C programs to determine how

well the transformer can take programs in OpenMP C and produce CIVL-C.

12

1.9 Outline

The rest of this thesis is structured as follows. Chapter 2 provides the structure of

the CIVL framework and how CIVL can be used to verify concurrent programs. In

Chapter 3, we provide a detailed description of the OpenMP transformer design

and the implementation of the transformer. Chapter 4 contains the evaluation of

the transformer on a test suite of OpenMP C programs which contains a mix of

verifying correct and faulty programs. In Chapter 5, we provide the conclusion

along with future work.

13

Chapter 2

CIVL: Concurrency Intermediate

Verification Language

2.1 Introduction of CIVL

There are many ways to express parallelism in computer programs. Although C is

just one of many languages, there are a number of ways to expresses parallelism

in C. A few very popular ways include the message passing library MPI, multi-

threading library POSIX Threads, and the GPU language extension CUDA. CIVL,

Concurrency Intermediate Verification Language, is a framework that creates a

general model of concurrency. CIVL contains a front-end to handle different

concurrency dialects. There is also a back-end verifier that takes the model

produced and uses model checking and symbolic execution to check if certain

properties hold. The majority of information in this chapter comes from the CIVL

website[10] and accepted paper to SC15[11].

Concurrent programs are difficult to verify due to their complex and dynamic

nature. Many verification tools only target one concurrency dialect. There isn’t

14

much exchange of ideas, techniques, or codes across dialects. Many tools must

reimplement the same or similar ideas for each dialect. CIVL attempts to help

solve this problem. CIVL works on multiple concurrency dialects because the

general concurrency model is capable of expressing multiple forms of parallelism.

CIVL supports MPI, POSIX Threads, and CUDA in the C language.

2.2 Framework

The CIVL framework contains a programming language, CIVL-C, that is based

on the C11. Instead of using the concurrency parts of C11, this language adds a

number of concurrency primitives to the C language. Functions can be defined in

any scope in CIVL-C. These concurrency primitives allows for a general concur-

rency model to be created that can express many different forms of parallelism. In

addition to the concurrency primitives, there are additional primitives added for

the verification process.

The layout of the framework can be seen in Fig. 2.1. ABC is the front-end that

accepts C programs that use any of the concurrency dialects that CIVL supports

or CIVL-C source code. There are transformers for each of the dialects that take

the dialect specific code and create a semantically equivalent CIVL-C source code.

The model builder takes the CIVL-C source and produces a CIVL model of the

program. Verification techniques and static analysis can be implemented at the

AST level and applied to the program that contains any of the concurrency dialects.

The framework has a verifier that will produce a result of ”Yes” or ”No” with a

trace.

15

CIVL
Model

Verification
Result
Yes/No
+trace

source
C or CIVL-C

with
MPI,

CUDA,
OpenMP,
Pthreads

ABC
Abstract Syntax Tree

ABC
parser

ABC
pretty-
printer

CIVL
model-
builder

MPI→CIVL-C

CUDA→CIVL-C

OpenMP→CIVL-C

Pthreads→CIVL-C

SARL

CVC3 CVC4 Z3

CIVL
verifier

Figure 2.1: The CIVL framework

2.3 Language

2.3.1 CIVL-C

CIVL-C is based on the C11 standard of C. CIVL-C doesn’t use the concurrency

parts of C11 because CIVL-C has its own concurrency model. Nearly every C11

program can be expressed as a CIVL-C program. All of the CIVL-C keywords

begin with a ‘$’. Many of the most common primitives can be seen in Fig. 2.2.

CIVL-C does require that dynamically created objects are typed. This means

that each malloc call must be cast to a non-void* pointer type. CIVL-C allows

for function definitions to be defined in arbitrary scopes. Functions can also be

spawned to create new processes. A sequential memory consistency model is used

in CIVL. Every read and write to a variable happens atomically. The execution is

a simple interleaving of these atomic events from the processes. To model more

complex consistency models, new primitive for accesses shared variables need to

be defined.

There is an implicit guard on every CIVL-C statement. This guard is a condi-

tional statement that determines if the statement should execute. This guard is true

for most statements. For $wait, the guard is enabled only when the process that

the wait is for terminates. A guard can be added to any statement by using $when

16

$input : type qualifier declaring global variable to be read-only and initialized
with unconstrained value of its type
$output : type qualifier declaring global variable to be an output, a write-only
variable
$assume(expr) : statement informing the verifier to ignore the current execution
unless expr holds
$assert(expr) : checks that expr holds and reports error if it does not
$forall {T i | cond } expr : universal quantification, i.e., ∀i ∈ T.(cond ⇒
expr). $exists is similar
$range : type representing an ordered set of integers; e.g., $range r1 = a .. b

$domain(n) : type representing an ordered set of n-tuples of integers; includes
Cartesian domains
$scope : type for reference to a dyscope; includes constants $here (the scope in
which the expression occurs) and $root
$proc : type representing reference to an executing process; includes constant
$self
$malloc(scope,size) : allocates object in heap of specified dyscope; freed with
$free
$for (int i,j,...: d) stmt : iterates over the tuples 〈i, j, . . .〉 in a domain d

$choose_int(n) : expression returning an integer in [0, n− 1], chosen nondeter-
ministically
$choose { stmt1 stmt2 ... default: stmt } : nondeterministic selection of
one enabled statement
$spawn f (arg0, ...) : creates and returns reference p to new process executing
function f

$wait(p) : waits until process p terminates then removes it from the state
$waitall(procs, n) : like above for n processes; procs has type $proc*
$parfor (int i,j,...: d) stmt : spawns processes for each element in the
domain d and waits until all terminate
$when(guard) stmt : guarded command; enabled only when boolean expression
guard evaluates to true
$atomic stmt : executes stmt without interleaving of other processes

Figure 2.2: Some commonly-used CIVL-C primitives

to create the guard. Basic concurrency constructs like locks and semaphores can

be created using $when.

To express nondeterministic choices one can use $choose and $choose_int.

CIVL can be used to determine if two programs are functionally equivalent which

17

is explained later in Sec. 2.4.1.3. To help with functional equivalence, $input

and $output are used as program inputs and outputs. For assume and assert

statements, $assume and $assert are used.

Iteration spaces can easily represented by using the $domain type and related

functions. For splitting up a for loop among a set of threads, they can be partitioned

using these types and functions. A CIVL-C library function takes a function and

will split it into subdomains. These threads can be run using $parfor on the

domain to start all of them in their partitioned format.

CIVL-C contains types that are related to scopes and processes. These types are

like scalar types in that they can be assigned to variables, passed as parameters,

and returned by functions. The $spawn expression returns a new process which

is of type $proc. To wait for a process, $wait is used and $proc is used as an

argument for $wait. Each scope has its own heap and $malloc takes the $scope as

an argument to specify which heap that the memory should be allocated in.

There are various other functions and datatypes in the CIVL-C library. This

library is used to model concurrency constructs that would be inefficient or difficult

to model in standard C. The library includes a barrier object $barrier for creating,

joining, invoking, and destroying barriers; a communicator type $comm to insert,

remove, and query messages; and a $bundle type to pack or unpack a contiguous

space of memory.

2.3.2 Semantics

A CIVL-C AST is transformed into a CIVL model. This model is a lower-level

representation of the program but has precise and mathematical semantics. There

is a set Σ of static scopes in each model. This set of scopes makes up a rooted tree.

18

0:Root
f1,f2,main

1:f1
n

3:f3
i

2:f2
n,s,p2,p3

f3

4 5

function scope name

function decls

variable decls

0:0

1:1
n:6

4:4 6:5

7:6
p1:p1

p2

p0

p3

int f1(int n) { ... }

void f2(int n) {

 int s=0;

 void f3(int i) {

 if (i%2==0) { s+=f1(i); }

 else { s+=3*i+1; }

 }

 $proc p2 = $spawn f3(n);

 $proc p3 = $spawn f3(n+1);

 $wait(p2); $wait(p3);

}

void main() {

 $proc p1 = $spawn f2(5);

 $wait(p1);

}

0
1
2

3
4

5

6

6:main
p1

parent edge
2:2

n:5,s:0
p2:p2
p3:p3

3:3
i:6

5:3
i:5

p1

call stack

dyscope corresponding
static scope

parent edge

dyscope ID

static scope IDstatic scope

main

f2

f3

f3

f1

Figure 2.3: A CIVL-C program with static scopes numbered; its static scope tree;
and a state.

Each element in Σ is a lexical scope in the program. Fig. 2.3 shows the original

program (left), the static scopes (middle), and the tree of static scopes (right).

For each σ ∈ Σ there is a vars(σ). There is a heap variable in each vars(σ). The

heap variable can only be modified by $malloc and $free. There is a set of function

symbols in each model. These function bodies are represented by a digraph. The

nodes are locations and edges are atomic execution steps. There is a guard for

each transition.

There are states in the model. Each of these states contain a set ∆ of dynamic

scopes which can be represented as a rooted tree. The state also has a set of

processes and each process has a call stack. The call stack is a finite sequence of

frames. There is a location in a program graph and dynamic scope in each frame.

A dynamic scope is reachable in some state if there is some process that reaches δ

in the state.

The execution starts in the initial state of the model where the state has one

process with a single frame that has unknown values. At the top of the stack, the

guards of the transitions are evaluated. A true one is picked and its statement is

executed and the state is updated.

19

2.4 Verification

2.4.1 Commands

2.4.1.1 Verify

The command civl verify invokes the verification process on a program. Various

options can be added to the command and filenames of the files to verify are

also included in the command. The full command would be civl verify [options]

filenames. This command will start with preprocessing and parsing every file.

Next, all of the translation units will be merged into a single AST. Then, the

transformers will translate the program to produce a pure CIVL-C representation

of the program in an AST form. A CIVL model is built from the AST. Finally, the

CIVL verifier is used on the model to check certain standard properties. During

the verification, the verifier by default will stop at the first violation but this can be

changed with the -errorBound option to search for more violations if they exist.

For each violation, a description and representation of the trace are added to a log

file. If two violations are of the same type and are at the same location then they

are considered to be equivalent and only the one with the shorter trace is included

in the log. At the end of the verification, a brief summary will be printed to the

console but the log can be read to view a detailed summary.

2.4.1.2 Show

The command civl show is used to display the CIVL-C code. This command can

show the code after preprocessing and parsing, after each transformation, and the

final model. The AST can be printed as CIVL-C code or as hierarchical plain-text.

The verifier does not run during the show command. This command is usually

20

used for creating CIVL-C programs and to see what the transformed program

looks like.

2.4.1.3 Compare

The command civl compare takes two programs as arguments. The goal is to

compare the two programs and determine if the two programs are functionally

equivalent. The first program is the specification and the second program is the

implementation. Each program must have corresponding $input variables. The

two programs are combined to a single program and verified. Inside the combined

program, each original program is in a separate function. Each program is executed

and CIVL tries to assert that the outputs from each program agree. The programs

are functionally equivalent if they do not violate any of the assertions. This is

useful to compare sequential programs and parallel programs. They each should

give the same output given the same input. This allows programmers to check that

a parallel version of a program is functionally equivalent to the sequential version.

2.4.1.4 Replay

The command civl replay takes a trace from a log file and will play it back. On the

replay, more or less options can be included to include more or less information

during the verification. All of the transitions or states can be shown during

the verification. CIVL provides references to the source code for violations that

are in the trace. The original source, filename, line and column numbers, and

surrounding text will be included in the violation to let the programmer know

exactly where the violation is occurring.

21

2.4.1.5 Run

The command civl run will execute the program once. Each nondeterministic

choice will be made randomly. The random seed can be specified so that this run

can be reproduced. This is only a random simulation of the program.

2.4.1.6 Help

The command civl help will print out all command and options. Detailed informa-

tion about all commands and options can be found on the CIVL website.

2.4.2 Symbolic Execution

The verification in CIVL uses symbolic execution. All states of the CIVL model can

be explored using symbolic execution. Instead of using concrete values, symbolic

expressions are used. Each state has a path condition variable which is initially set

to true. A guard is checked and the new value of the path condition is updated to

the conjunction of the previous path condition and the guard. If a path condition is

not satisfiable then the current path can not be executed and the search backtracks

to the next satisfiable path condition.

The Symbolic Algebra and Reasoning Library (SARL) is used to perform

symbolic execution. SARL can create, modify, and simplify symbolic expressions.

SARL can also determine if a symbolic expression is valid or not. This library is a

combination of symbolic algebra and SMT theorem provers. If SARL can’t solve

some symbolic expression, it will use CVC3, CVC4, or Z3 depending on how CIVL

is configured.

The symbolic execution performed is conservative so that if it is returned that

all properties hold then these properties will hold for every execution. If a violation

22

is given, it is possible that it is a false positive. If SARL cannot determine the result

and gives a result of unknown then a spurious report is given. This unknown

result means there may be a violation. A programmer can manually check the

trace to see if the unknown result is truly a violation. CIVL gives different levels of

violations. CONCRETE is the highest level of certainty which means that concrete

values that have been found for all inputs that satisfy some path condition cause

some assertion to be violated. If a PROVABLE result is given then SARL has found

a satisfiable path condition and the assertion is false. The MAYBE result means

SARL has returned inconclusive results. UNKNOWN means CIVL can’t handle

this statement and a theorem prover was not able to produce a result.

2.4.3 Partial Order Reduction

Partial order reduction is an optimization technique that can be applied to model

checking. The goal is to find a smaller number of processes where only the

transitions from these processes need to be explored from some state and that if

a violation exists it is still guaranteed to be found. In CIVL, there is a hierarchy

of scopes. These scopes can be shared by multiple processes. Also, each dynamic

scope contains a heap. This structure complicates the partial order reduction

technique. The transitions used in the set of processes is known as an ample set.

The dynamic scopes that the processes can reach need to be considered before

determining which processes can be used to form an ample set. For the non-heap

variable in each dynamic scope, follow the pointer edges to determine which

objects can be reached. Now there is a set of reachable objects. If no process

outside of some processes P can can reach any of the objects in the set of reachable

objects then P can be used to create an ample set.

23

2.5 Transformation

If a program uses one of the supported concurrency dialects, it can be trans-

formed in a CIVL-C program by using three techniques: high-level restructuring,

replacing certain constructs with CIVL-C code, and implementing concurrency

library functions in CIVL-C. Multiple transformers can be used on a program

which allows for hybrid programs to be verified. Each transformer works on

the AST and will replace or rewrite parts of the AST during the traversal of the

tree. Each modification of the AST does not interfere with other transformers so

many transformers can be applied. Each transformer is 1000 to 2000 lines of code.

To support each transformer, the ABC grammar needs to be extended, a custom

transformer is implemented, and custom support libraries written in CIVL-C are

created. Transformations for MPI, CUDA, and a hybrid of MPI and Pthreads can

be seen in Fig. 2.4, 2.5, and 2.6

The MPI translation creates a new main function (lines 16-19). This main

function contains a $parfor that creates processes that will execute the program

(lines 17-18). The _mpi_process function creates a communicator (lines 8-10) for

the process. The original main function is inserted (line 12) and is then called to

execute the program (line 13).

The CUDA translation creates a new main that contains a CUDA initializing

function (line 29), a call to the original main function (line 30), and a CUDA

finalizing function (line 31). The _gen_main function (lines 24-27) is the original

main function. Each CUDA kernel (lines 6-23) has various functions and calls that

are added. The block that each thread operates on is computed (lines 11-15). The

block is processed in parallel by calling $cuda_run_procs() (line 16) and the grid is

processed in parallel by calling the same function (line 19).

24

1 〈external-definitions〉
2 int main(void) { ... }

Original MPI Code

transformed to CIVL-C
1 $input int _mpi_nprocs;
2 $input int _mpi_nprocs_lo,_mpi_nprocs_hi;
3 $assume(_mpi_nprocs_lo <= _mpi_nprocs &&
4 _mpi_nprocs <= _mpi_nprocs_hi);
5 $mpi_gcomm _mpi_gcomm =
6 $mpi_gcomm_create($here, _mpi_nprocs);
7 void _mpi_process(int _mpi_rank) {
8 MPI_Comm MPI_COMM_WORLD =
9 $mpi_comm_create($here, _mpi_gcomm,

10 _mpi_rank);
11 〈external-definitions〉
12 int _gen_main(void) { ... }
13 _gen_main();
14 $mpi_comm_destroy(MPI_COMM_WORLD);
15 }
16 void main() {
17 $parfor (int i : 0 .. _mpi_nprocs-1)
18 _mpi_process(i);
19 $mpi_gcomm_destroy(_mpi_gcomm);
20 }

Figure 2.4: MPI transformation

In the MPI and Pthreads hybrid translation, _mpi_process is created and called

the same way as the regular MPI translation. The _gen_main function (lines 24-27)

creates and runs each thread. The Pthreads transformation provides a global (lines

6-7) and thread local variable (lines 19-20) for accessing the thread pool.

There is a support library for each concurrency dialect. This library is written

in CIVL-C and defines types, constants, and functions that are to be used by

the transformed code. All primitives and functions for each dialect have special

prefixes in each library to help separate different transformations. In addition

to creating new primitives, many of the primitives described earlier in Sec. 2.3

can be used in these support libraries. These support libraries are meant to be a

replacement of the dialect specific libraries like mpi.h. Transformers can introduce

new variables or functions to help with the transformation. Each of the new

variables or functions introduced have their own dialect specific prefix.

25

1 __ global__void add(int *a, int *b, int *c) {
2 int tid = blockIdx.x;
3 if (tid < N) c[tid] = a[tid]+b[tid];
4 }
5 int main(void) {
6 ...
7 add<<<gridDim,blockDim,0,stream>>>(a, b, c);
8 ...
9 }

Original CUDA Code

transformed to CIVL-C
1 void $cuda_run_procs(dim3 dim, void process(uint3)) {
2 $domain(3) dom = ($domain){0 .. dim.x-1,
3 0 .. dim.y-1, 0 .. dim.z-1};
4 $parfor(int x,y,z : dom) process((uint3){x, y, z});
5 }
6 void _cuda_add(dim3 gridDim,dim3 blockDim,
7 size_t _cuda_mem_size, cudaStream_t _cuda_stream,
8 int *a,int *b,int *c) {
9 void _cuda_kernel($cuda_kernel_instance_t

10 *_cuda_this, cudaEvent_t _cuda_event) {
11 void _cuda_block(uint3 blockIdx) {
12 void _cuda_thread(uint3 threadIdx) {
13 int tid = blockIdx.x;
14 if (tid<N) c[tid]=a[tid]+b[tid];
15 }
16 $cuda_run_procs(blockDim, _cuda_thread);
17 }
18 $cuda_wait_in_queue(_cuda_this, _cuda_event);
19 $cuda_run_procs(gridDim, _cuda_block);
20 $cuda_kernel_finish(_cuda_this);
21 }
22 $cuda_enqueue_kernel(_cuda_stream, _cuda_kernel);
23 }
24 int _gen_main(void) {
25 ... _cuda_add(blocksPerGrid, threadsPerBlock, 0,
26 stream, a, b, c); ...
27 }
28 int main(void) {
29 $cuda_init();
30 _gen_main();
31 $cuda_finalize();
32 }

Figure 2.5: CUDA transformation

2.5.1 Shared State Access

All concurrency dialects have some shared state. Examples are that MPI contains

buffered messages and Pthreads contains shared variables. In message passing

there is sending and receiving of messages. Threading has reads and writes to

shared variables. The access to this shared state needs to be controlled to ensure

26

1 〈external-definitions〉
2 void* run(void *arg) { ... }
3 int main(void) {... pthread_create(...,run,...); ...}

Original MPI-PThreads Code

transformed to CIVL-C
1 ...
2 void _mpi_process(int _mpi_rank) {
3 MPI_Comm MPI_COMM_WORLD =
4 $mpi_comm_create($here, _mpi_gcomm, _mpi_rank);
5 // Pthread library definitions ...
6 $pthread_gpool_t $pthread_gpool =
7 $pthread_gpool_create($here);
8 int pthread_create(pthread_t *thread, ...,
9 void *(*start)(void*),void *arg) {

10 $atomic{
11 thread->thr = $spawn start(arg); ...
12 $pthread_gpool_add($pthread_gpool, thread);
13 }
14 return 0;
15 }
16 // ... more Pthread library definitions ...
17 〈external-definitions〉
18 void* run(void *arg) {
19 $pthread_pool_t _pthread_pool =
20 $pthread_pool_create($here, $pthread_gpool);
21 ...
22 $pthread_exit((void*)0, _pthread_pool);
23 }
24 int _gen_main(void) {
25 ... pthread_create(..., run, ...); ...
26 $pthread_exit_main((void*)0);
27 }
28 ... _gen_main(); ...
29 }

Figure 2.6: MPI-Pthreads transformation

that the program behaves as expected. This shared state creates a combinatorial

explosions during model checking. CIVL allows developers to include knowledge

about independence of library operations. This allows developers to improve on

already existing techniques. CIVL developers can encode library dialect specific

information in a Java interface called an Enabler.

For example, there is a global communicator in MPI. This is on the heap of

the shared scope. The global communicator brings together the message queues

and metadata about the state of processes within the communicator. This global

communicator is visible to all processes. There is a local communicator for

27

each local scope. Using the local communicator, the library gets send or receive

operations but these operations can’t be accessed by another process since it doesn’t

have access to that local communicator.

A similar pattern and ideas are used in other transformers. The Pthreads

transformer has a global and local handle for accessing threads in the thread pool.

The local handle can only access threads that are able to be accessed from that

scope. CUDA has a threading hierarchy that is expressed in nested functions in

CIVL that are executed in parallel.

2.5.2 Replacing Constructs

For each concurrency dialect, there are specific constructs. Some of these constructs

can be handled by restructuring or using CIVL-C libraries but sometimes the

constructs need to be replaced with CIVL-C code that is created by the transformer.

These constructs first need to be identified. For a multi-threaded concurrency

dialect, the original constructs need to be rewritten in CIVL-C to allow for shared

variables across threads and private variables for each thread. Using the CIVL-C

construct $parfor, threads can be created. The transformer will take the existing

code and replace it with the appropriate CIVL-C code to keep the program

semantics the same. The only change will be that it is a CIVL-C representation.

2.6 Evaluation

CIVL developers gathered a number of programs for the concurrency dialects

supported by CIVL. These programs cover a large subset of the constructs in each

concurrency dialect. Examples were mainly chosen from user communities or

previous analysis efforts. Currently, there are efforts to support large case studies in

28

CIVL. Some programs were slightly modified to accept inputs to modify the scale

of the program, number of threads, or number of processors. These modifications

were made to speed up execution times since many of these examples were run on

personal machines or small servers. Also, some assertions were added to programs

to ensure the results were correct.

CIVL developers gathered C programs that use a variety of concurrency dialect

from a variety of sources. By gathering a wide range or programs, the goal is to

cover a large subset of the constructs that appear in each dialect. Examples were

picked from the user communities, e.g. LLNL tutorial exercises, or from previous

analysis efforts, e.g. the SV-COMP Pthreads benchmark. The 24 examples reported

in this section comprise of 2954 source lines of code.

The programs were kept in their original state but with a few exceptions, small

modifications were made to to support command line parameters to specify the

problem scale. The scale includes matrix size, number of time steps in simulation,

number of processes, and number of threads. Also, some assertions were added

to programs. Intermediate and/or final results may be checked during numerical

computations to make sure they agree with the results of sequential versions.

Fig. 2.7 has 24 examples in it that were used during the evaluation. The ”Type”

column indicates the concurrent dialect: C=CUDA, M=MPI, P=Pthreads. Two letter

codes are hybrid programs. Each program has a ”+”/”-” for a positive or negative

verification result under the ”R” column. The lines of code are shown under the

”LoC” column. The total number of states and transitions for the verification are

given in the ”States” and ”Transitions” columns. The ”Time” column is the time is

rounded to the nearest second. The total amount of memory in megabytes is given

in the ”Memory” column. The number of valid calls, ”ValidCalls” column, and

the number of calls, ”Prove” column, there required an external prover are shown.

29

Type Example R LoC States Transitions Time Mem ValidCalls Prove Scale
M diffusion1d.c [12] + 164 118272 117440 30 1120 463080 146 1≤NX,NSTEPS≤5,1≤NP≤3
M diffusion2d.c [12] + 274 489379 485418 247 1859 2473368 49 1≤NX,NY,NSTEPS≤5,NPX=NPY=2
M mpi_prime.c [13] + 105 28281 28276 14 1385 79342 382 {PRIMES}⊆[10, 15],1≤NP≤4
M mpi_pi_send.c [13] + 120 112922 112357 101 732 305872 4241 1≤DARTS,ROUNDS,NP≤2
M sum_array.c [12] + 72 81852 81366 13 1393 439555 89 1≤NX≤20,1≤NP≤5
M wave1d.c [12] + 194 98091 97216 54 897 420943 240 1≤NX,NSTEPS≤5,1≤NP ≤3
M wave1dBad.c [12] - 192 496 495 4 650 2118 46 1≤NX,NSTEPS≤5,1≤NP≤3
M gausselim.c [12] + 293 408185 406073 115 628 1769614 1911 1≤NROW≤4,1≤NCOL≤2,1≤NP≤3
M matmat_mw.c [12] + 104 85982 85294 18 1315 646793 36 1≤M,N,L≤3,1≤NP≤4
C cuda-omp.cu [14] + 99 9401 10331 8 1409 142221 92 1≤NBLK≤4,1≤NTperBLK≤2
C dot.cu [15] + 99 13713 13921 6 650 110745 73 1≤N≤6, 1≤NTperBLK≤4
C mm.cu [16] - 146 877 878 3 515 3632 15 NBLK=4,NTperBLK=1

C sum.cu [17] + 72 1297 1314 3 515 15679 6 NBLK=4,NTperBLK=2

C vectorAdd.cu [18] + 148 4796 5179 5 650 69055 15 1≤N≤6, 1≤NTperBLK≤4
P bug4.c [19] - 85 12162 12597 4 650 37915 3 NT=3, ITR=5, THD=7, NSTEPS=10

P queue_ok_longest_...c [20] + 126 68364 71574 16 843 121365 2 SIZE=800

P read_write_lock_...c [20] - 38 1758 1878 2 515 1762 0 NT=4

P sync01_true...c [20] + 42 320 329 1 515 602 0 NT=2

P 03_incdec_true...c [20] + 56 448 453 1 515 116 3 NT=3

MP mpithreads_both.c [19] + 87 32908 35778 10 1384 92395 5 NP=2, NT=2, VLEN=5

MP MP-infinity-norm.c [21] + 146 2861 2896 6 650 6228 39 NP=NT=2, 1≤NROWS, NCOLS≤3
MP MP-matrix-vector.c [21] - 170 7151 7905 7 921 25693 30 NP=3, 1≤NT=NROWS=NCOLS≤4
MP MP-pie-collective.c [21] + 79 23006 24723 12 1381 61623 44 NP=3, 1≤NITR≤5, NT=NITR/NP

MP anl_hybrid.c [22] - 43 27118 26932 10 1385 121099 4 NP=NT=2

Figure 2.7: Results of running CIVL verify command for C programs

Lastly, the scale is given that was used during program execution in the ”Scale”

column. These executions were on an Appie iMac running OSX 10.9.2 (64 bit) with

a 3.5 Ghz Intel i7 processor.

CIVL found 8 unintended errors in programs that were thought to be correct.

Upon further inspection, CIVL developers found that each error reported was a

real defect.

2.7 Conclusion

CIVL supports a number of concurrency dialects and can support more dialects

with additional transformers. Programs were scaled down so they they could

be verified in a few minutes but CIVL can handle larger scale sizes with more

time. CIVL is novel in its support for multiple concurrency dialects. In the next

chapter, an implementation of a OpenMP transformer in CIVL is presented. This

transformer will allow for C OpenMP programs to be verified in CIVL.

30

Chapter 3

OpenMP Transformer

3.1 Approach

To support OpenMP, three components are needed: an extension of the ABC

grammar, a custom transformer, and custom support libraries. This section focuses

mainly on the implementation of the custom transformer. Code was added to ABC

to parse each of the OpenMP pragmas and functions. These nodes contain all of

the same information as the source code but represented in an AST.

The primary goal of the transformer is to take AST nodes that represent the

pragmas in OpenMP and transform them into an AST that is a pure CIVL-C

representation. The transformer modifies, adds, and deletes nodes in the AST. Any

change to the AST can be modeled by a set of rules.

The OpenMP transformer starts at the root node of the program and performs

a depth first search of the tree trying to match nodes that need to be modified. If

a node is found that needs to be changed, the changes are made to the AST and

then the traversal of the tree continues. If the node that is being inspected does

not match any OpenMP construct, the traversal continues with the children of

31

the node. If a node does not have any children then the traversal backtracks as

expected in a depth first search.

When the nodes are being inspected to see if they match some OpenMP

construct, the node’s type is being checked. The OpenMP constructs that are re-

placed with CIVL-C code are: parallel pragmas, for pragmas, sections pragmas,

critical pragmas, master pragmas, atomic pragmas, barrier pragmas, single

pragmas, OpenMP functions, and shared reads and writes. All of these constructs

contain some code or pragma that is not compliant with CIVL-C and must be

transformed into pure CIVL-C code.

3.2 Transforming OpenMP Constructs

This section shows the construct that is matched during the transformation. The

new CIVL-C representation is given to replace the original code. Fig. 3.1 shows

all of the terminal rules and functions that are used in subsequent transformation

rules. Rules that are all capital letters are terminal rules. Some of these functions

or rules define variables which can be used later in translations. Lines that are

underlined are to be transformed recursively. The transform() method is used

to show that the body needs to be transformed recursively and any OpenMP

constructs will be replaced during the traversal of this AST nodes.

All definitions of functions and variables that begin with omp_ can be found in

Appendix A. These functions and variables make up the custom support library for

OpenMP in CIVL. The library is created to allow CIVL to create certain functions

and variables that can be used many times and would be difficult to implement in

the transformer.

32

Original Transformed
OpenMP Functions

omp_get_num_threads() _omp_nthreads
omp_get_num_procs() 1

omp_get_max_threads() _omp_thread_max
omp_set_num_threads(n) _omp_nthreads = n

Terminal Statements

THREADS(N)
$elaborate(N);
int threads = $choose_int(N);
int _omp_nthreads = 1 + threads;

RANGE(X, Y) $range _omp_thread_range = X .. Y - 1;
DOMAIN(X) $domain(1) _omp_dom = ($domain){_omp_thread_range};

ARRIVE_LOOP_DOMAIN(X) $domain _omp_my_iters = $omp_arrive_loop(_omp_team, 0,
($domain)X, 2);

ARRIVE_SECS_DOMAIN(X) $domain(1) _omp_my_secs = $omp_arrive_sections(_omp_team, 0, X);

CREATE_GTEAM $omp_gteam _omp_gteam = $omp_gteam_create($here,
_omp_nthreads);

CREATE_GSHARED(S) $omp_gshared _omp_S_gshared = $omp_gshared_create(_omp_gteam,
&(S));

CREATE_TEAM $omp_team _omp_team = $omp_team_create($here, _omp_gteam,
_omp_tid);

DEFINE_LOCAL_STATUS(S) TYPE(S) _omp_S_local;
TYPE(int) _omp_S_status;

DEFINE_PRIVATE(P) TYPE(P) _omp_P_private;

CREATE_SHARED(S) $omp_shared _omp_S_shared = $omp_shared_create(_omp_team,
_omp_S_gshared, &(_omp_S_local), &(_omp_S_status));

BARRIER_FLUSH $omp_barrier_and_flush(_omp_team);
DESTROY_SHARED(S) $omp_shared_destroy(_omp_S_shared);
DESTROY_TEAM $omp_team_destroy(_omp_team);
DESTROY_GSHARED(S) $omp_gshared_destroy(_omp_S_gshared);
DESTROY_GTEAM $omp_gteam_destroy(_omp_gteam);

Figure 3.1: OpenMP Functions and Terminal Transformations

3.2.1 Parallel Pragma

The parallel pragma is a fundamental construct that starts the parallel execution.

When a thread reaches a parallel construct, a team of threads is created. These

threads will execute the parallel region together. The thread to encounter the

parallel construct is the master thread in the parallel region. All of the threads

that are created, including the master, execute the parallel region. The team of

threads will execute for the whole duration of the parallel region.

In CIVL, $parfor has the same syntax as $for. In $parfor, one process is

spawned for each element of the domain. Each process has local variables corre-

sponding to the iteration variables. Each process executes the body of the $parfor.

33

Each of the processes wait at the end for the other processes. There is a barrier

at the end of the loop and the spawned processes are destroyed at the end of the

loop.

The transformed CIVL-C code will declare the number of threads as seen in

Fig. 3.2 (line 2). This produces a variable called _omp_nthreads which will be used

to create the range. The range and domain are determined (lines 3-4). The range is

an expression that represents the range from the lower bound to the higher bound.

The definition of range is given in Fig. 3.1 along with all other all capitalized

rules. The domain takes expressions of type $range like the range variable just

created. A $domain variable created represents the domain of dimension which

is the Cartesian product of the ranges. The domain variable created is called

_omp_dom and is used later in the $parfor.

Then the global team and gshared variables are created (lines 5-6). The ‘*’means

that there may be 0 or more of that statement added. The global team contains all

of the information for threads and shared variables inside the parallel region. The

global shared objects are global objects that every thread can see.

The $parfor is the parallel loop statement (line 7). An iteration variable,

_omp_tid is created for each partition. Then for each partition of the domain in the

$parfor, there is a team (line 8), local and status variables for each shared variable

(line 9), private variables (line 10), and shared objects for each shared variable (line

11). The body is transformed recursively to change any other OpenMP code to

pure CIVL-C. A barrier and flush (line 15) occurs after the $parfor and all shared

objects and the team are destroyed (lines 16-17). Finally, the global shared objects

and the global team are destroyed (lines 19-20).

34

1 # pragma omp parallel private(P) shared(S) num_threads(N)
2 body
3 }

Parallel Pragma

transformed to CIVL-C
1 {
2 THREADS(N)
3 RANGE(0, _omp_nthreads)
4 DOMAIN(_omp_thread_range)
5 CREATE_GTEAM
6 CREATE_GSHARED(S)*
7 $parfor(int _omp_tid: _omp_dom){
8 CREATE_TEAM
9 DEFINE_LOCAL_STATUS(S)*

10 DEFINE_PRIVATE(P)*
11 CREATE_SHARED(S)*
12 {
13 transform(body)

14 }
15 BARRIER_FLUSH
16 DESTROY_SHARED(S)*
17 DESTROY_TEAM
18 }
19 DESTROY_GSHARED(S)*
20 DESTROY_GTEAM
21 }

Figure 3.2: Parallel pragma transformation

3.2.2 For Pragma

The for pragma is a loop construct that has iterations of one or more loops

associated with it. This construct is always inside a parallel construct so these

loops are executed in parallel by the threads in the team. The iterations are

distributed among all of the threads.

The for pragma can operate on one or multiple for loops. The range and

domain for the loop are determined (lines 2-3) in Fig. 3.3. The range comes from

the for loop(s) associated with the for pragma. In the case of the transformation

here, the for loop is from 0 to N so that is used in the range variable. The domain

takes expressions of type $range like the range variable just created. A collapse

clause can be added to the for loop. If the collapse clause is used then multiple

for loops can be associated with the for pragma. All of the available threads can

35

1 # pragma omp for
2 for(i=0; i<N; i++)
3 body
4 }

For Pragma

transformed to CIVL-C
1 {
2 RANGE(0, N)
3 DOMAIN(_omp_range)
4 ARRIVE_LOOP_DOMAIN(_omp_loop_domain)
5 $for(int i: _omp_my_iters){
6 transform(body)

7 }
8 BARRIER_FLUSH
9 }

Figure 3.3: For pragma transformation

be partitioned across all of the loops that are associated by the collapse clause.

Then multiple ranges would be created and used as the arguments for the domain

variable. The nowait clause can be used to eliminate the barrier at the end of the

transformation. The elimination of this barrier lets each thread exit the for loop

and continue execution without waiting for all threads to finish the loop.

Another domain variable is created by the arrive loop function (line 4). The

domain from the arrive loop function returns a subset of the original domain. This

domain will determine which iterations each thread will execute. The $for iterates

over the loop and the body is transformed (lines 6-8). After the loop, a barrier is

applied (line 9).

3.2.3 Sections

The sections pragma is a non-iterative worksharing construct. The sections

construct contains structured blocks that have the label section. Each section is

executed by a single thread in the team. The sections construct must be inside

of a parallel construct. Only the threads in the parallel region can work in the

sections region.

36

1 # pragma omp sections
2 # pragma omp section
3 body0
4 # pragma omp section
5 body1
6 ...

Sections Pragma

transformed to CIVL-C
1 {
2 ARRIVE_SECS
3 $for(int i : _omp_my_secs){
4 switch(i){
5 case 0:{
6 transform(body0)

7 break
8 }
9 case 1:{

10 transform(body1)

11 break
12 }
13 ...
14 }
15 }
16 BARRIER_FLUSH
17 }

Figure 3.4: Sections pragma transformation

The sections construct consists of one sections pragma and at least one section

pragma. The translation begins with getting a domain from the arrive sections

function (line 2) in Fig. 3.4. A subset of the domain is returned by the arrive

sections function. This domain will determine which thread will execute each

section. The _omp_my_secs specifies which of the sections each thread will execute.

A $for is use to loop through the threads to execute each section. There is a switch

statement that contains a case for each section (lines 5-12). Each case contains the

transformed body from each section pragma. There is a barrier at the end of the

translation (line 16).

3.2.4 Critical

The critical construct takes a block and restricts the access to a single thread at

a time. The critical pragma can have the name of the lock associated with the

37

1 # pragma omp critical(a)
2 BODY

Critical Pragma

transformed to CIVL-C
Earlier in the program add a global declaration for the boolean variable for the critical section.

_Bool _critical_a=$false

1 {
2 $when(!_critical_a) _critical_a=$true
3 transform(body)

4 _critical_a=$false
5 }

Figure 3.5: Critical pragma transformation

1 # pragma omp master
2 body

Master Pragma

transformed to CIVL-C
1 {
2 if(_tid==0){
3 transform(body)

4 }

Figure 3.6: Master pragma transformation

pragma. If there is a name, then a global using that name is created for that critical

lock. If there is no name, then a generic lock name is used for the critical lock. The

transformation in Fig. 3.5 checks when the lock is not acquired and will set the lock

to true when it acquires it (line 2). The body of the critical section is transformed

(line 3) and the lock is then released (line 4).

3.2.5 Master

The master pragma is for a block that only the master thread will execute. In

Fig. 3.6 if the thread id is zero (line 2) then it is the master thread and only it can

execute the block (line 3).

38

1 EXPR //With shared variable VAR
Shared Read

transformed to CIVL-C
1 {
2 TYPE tmp;
3 $omp_read(_omp_VAR_shared, &(tmp), &(_omp_VAR_local));
4 replaceVar(EXPR); //Replace shared variable name with temporary variable name
5 }

Figure 3.7: Shared read transformation

1 TYPE VAR = EXPR //VAR is shared variable
Shared Write

transformed to CIVL-C
1 {
2 TYPE tmp;
3 tmp = EXPR;
4 $omp_write(_omp_VAR_shared, &(_omp_VAR_local), &(tmp));
5 }

Figure 3.8: Shared write transformation

3.2.6 Shared Read and Write

OpenMP has shared variables across threads. The reads and writes to these

variables need to be controlled. The shared read is an expression that contains a

variable that has a shared variable that is read from in some expression. In Fig. 3.7,

a temporary variable is created (line 2) and it has the same type as the shared

variable. A CIVL function in the custom OpenMP support library is used to read

the variable from the shared variable and store it in the temporary variable (line 3).

The shared variable name is then replaced with the temporary variable name in

the expression (line 4).

Writes to shared variables must also be controlled. In Fig. 3.8, a temporary

variable is created and it has the same type as the shared variable (line 2). The

temporary variable is assigned the value of the right had side of the statement (line

3). A CIVL function in the custom OpenMP support library assigns the shared

variable to the temporary variable (line 4).

39

3.2.7 Functions and Terminal Transformations

The functions that are part of Fig. 3.1 show OpenMP functions and their direct

translation. OpenMP contains functions to get and set the number of threads

and processes. These appear more often than any other OpenMP function. The

terminal transformations are labels that were given in rules above.

3.3 Orphan Constructs

In OpenMP, orphan constructs are possible. An orphan construct is when there is

a region whose binding thread set is the current team, but it is not nested within

another construct that started the binding region. For example, a parallel region

may be created and then some function is called in the parallel region. The

function that is called may contain a for construct that executes the threads in

parallel over the loop.

In the translation of some of the constructs, there are certain variables like

the local and status variables and thread id. These variables were defined in the

parallel construct which are in a different scope and are thus not available in

the orphan construct. An example of an orphan program can be see in Fig. 3.9.

This example has the main that contains the parallel pragma which contains a

call to dotprod(). The dotprod() contains a for pragma which is not in the same

scope as the parallel pragma. The for pragma is inserted into the scope of the

parallel pragma before the call to the function at lines 22-27 of the transformed

code. The original function has all OpenMP constructs taken out of it as seen on

lines 7-10 of the transformed code.

This transformation is done so that the transformed code from the for pragma

has access to variables created by the parallel pragma. CIVL allows nested

40

functions so this transformation is valid. Functions are inserted inline in the scope

of the parallel pragma which causes code bloat. As orphan are deeper down

calls, more functions need to be inserted.

3.4 Memory Model

OpenMP has a weak consistency memory model. This model requires there to

be explicit management of the global and local memory views. There are flush

operations to ensure that the memory views stay consistent. Each thread can have

a temporary view of the memory. Each thread has access to the global shared

memory but also has its own thread private memory.

There are two kinds of variables in a parallel section: shared and private. For

each shared variable, the variable becomes a reference to the original variable. For

each private variable, a new copy of the original variable is created. If multiple

threads try to write to the same memory without being synchronized, a data race

can occur. If some thread reads from a memory location that some other thread

has written to without synchronization, a data race can also occur. Reads and

writes to shared variables must be controlled. New functions and variables are

introduced in CIVL-C and used in the OpenMP transformer to ensure that access

to shared variables is properly controlled.

Flush operations are used to provide a guarantee of consistency between a

thread’s temporary view and memory. A flush allows that a value written by one

thread to be read by another thread. First, thread one writes a value to the variable.

Then the variable is flushed by thread one which is followed by the variable being

flushed by thread two. Finally, the value of the variable is read by thread two.

The transformed CIVL-C code manages sets of threads that are grouped into

41

1 #define VECLEN 100
2 float a[VECLEN], b[VECLEN], sum;
3 float dotprod (){
4 int i,tid;
5 tid = omp_get_thread_num();
6 #pragma omp for reduction(+:sum)
7 for (i=0; i < VECLEN; i++){
8 sum = sum + (a[i]*b[i]);
9 printf(\tid= %d i=%d\n",tid,i);

10 }
11 }
12 int main (int argc, char *argv[]) {
13 int i;
14 for (i=0; i < VECLEN; i++)
15 a[i] = b[i] = 1.0 * i;
16 sum = 0.0;
17 #pragma omp parallel
18 dotprod();
19 printf(\Sum = %f\n",sum);
20 }
Orphan construct

transformed to nested
1 #define VECLEN 100
2 float a[VECLEN], b[VECLEN], sum;
3 float dotprod(){
4 int i;
5 int tid;
6 tid = 0;
7 for(i = 0; i < 100; i++){
8 sum = sum + ((a[i]) * (b[i]));
9 printf(\tid= %d i=%d\n",tid,i);

10 }
11 }
12 int _gen_main(int argc, char* argv[]){
13 int i;
14 for(i = 0; i < 100; i++)
15 a[i] = b[i] = 1.0 * i;
16 sum = 0.0;
17 #pragma omp parallel default(shared){
18 float dotprod(){
19 int i;
20 int tid;
21 tid = omp_get_thread_num();
22 #pragma omp for reduction(+: sum)
23 for(i = 0; i < 100; i++){
24 sum = sum + ((a[i]) * (b[i]));
25 printf(\tid= %d i=%d\n",tid,i);
26 }
27 }
28 dotprod();
29 }
30 printf(\Sum = %f\n",sum);
31 }
32 int main(){
33 char* _gen_argv_tmp[10];
34 for(int i = 0; i < 10; i++)
35 _gen_argv_tmp[i] = &(_gen_argv[i][0]);
36 _gen_main(_gen_argc, &(_gen_argv_tmp[0]));
37 }

Figure 3.9: Orphan transformation

42

teams. The $parfor construct is used to fork and join a set of threads. For each

shared variable, there are sets of variables created to provide the data views neces-

sary to model the OpenMP memory model. For some variable X, _omp_X_local

is created to provide a thread local view of the shared variable. Each thread also

creates _omp_X_status that will record which threads have accessed the variable

since the last flush of the variable.

The status variable can have three different values:

• 0=EMPTY: Local is empty

• 1=FULL: Local is occupied and no writes have been made to it

• 2=MODIFIED: Local is occupied and writes have been made to it

For each shared variable, the local variable has the shared variable's value and

the status is FULL.

Each thread's view of the thread is coordinated by _omp_X_shared which is

coordinated by _omp_X_gshared. By keeping a record of this data about shared

variables, CIVL can determine when shared variable accesses exhibit unsafe and

undefined behavior.

In CIVL, a function void $omp_read($omp_shared shared, void *result, void

*ref) is used to read a shared object. In the function, ref is a pointer to the copy of

the shared variable and the result is the temporary variable that the read value is

stored in. In CIVL, the read of a shared variable starts with checking if the status

value is EMPTY. The shared data is copied into the local copy. Then the data held

by the local copy is read and returned.

The function void $omp_write($omp_shared shared, void *ref, void *value) is

called by a thread to write to a shared object. In the function, ref is a pointer to the

43

local copy of the shared variable and value is what is being written to the local

copy of the shared variable. In CIVL, the write of a shared variable takes the local

copy of the shared variable and writes a value to it. Then the status value is set to

MODIFIED.

The barrier and flush operation is implemented by the function void

$omp_barrier_and_flush($omp_team team). This performs a barrier and all flush

on all shared objects that are associated with the team. During the flush, the

operation depends on the value of the status variable.

• EMPTY: no op

• FULL: The status is changed to EMPTY and the local copy is set to the default

value

• MODIFIED: The local copy is copied to the shared copy and the status is set

to EMPTY. The local copy is set to the default value.

Scheduling the threads for parallel loops is a difficult challenge for efficient

verification. If a loop has n iterations and there are k threads, there can be kn

different schedules. The iteration domain abstractions make it possible for all loop

schedules to be explored.

44

Chapter 4

Evaluation

4.1 Setup

CIVL can support C programs written in various concurrency dialects. CIVL is

able to support C programs that use MPI, Pthreads, and CUDA. With the addition

of this transformer, CIVL is able to provide support for C OpenMP programs.

A set of C programs were gathered from a variety of sources. The goal was to

cover a large subset of all of the OpenMP constructs. Examples were taken from

user communities, previous analysis efforts, and code available on repositories

such as GitHub and Bitbucket. There are 48 programs in the CIVL OpenMP

examples directory with 5411 source lines of code. The count of each of the

constructs transformed can be seen in Fig. 4.1.

As with the previous tests performed within CIVL, very few modifications

were performed to the programs. Modifications were made to support command

line parameters to determine the problem scale, number of steps in simulations, or

number of threads. Also modifications added assertions to some examples that

did not already contain them. These assertions are used in places like when a

45

Construct Count

parallel 116

parallel for 123

parallel sections 4

for 99

sections 10

master 22

critical 40

omp_get_num_threads() 84

omp_get_num_procs() 10

omp_get_max_threads() 6

omp_set_num_threads(n) 12

Figure 4.1: OpenMP Construct Count

program performs a numerical computation to ensure that the result is correct.

4.2 Results

Fig. 4.2 presents data on 21 examples from our evaluation. The tests target the

full space schedules. Each ”Example” has a name and a citation for the source

of the example. A positive (”+”) or negative (”-”) is shown in the ”R” column.

The number of source lines of code, ”LoC”, and the number of ”States” and

”Transitions” explored by the verifier are reported. The ”Time” column is the time

is rounded to the nearest second. The total amount of memory in megabytes is

given in the ”Memory” column. The number of valid calls, ”ValidCalls” column,

and the number of calls, ”Prove” column, that required an external prover are

shown. Lastly, the scale is given that was used during program execution in the

”Scale” column.

All of the tests were executed on release 1.5 of CIVL on an Apple MacBook Pro

46

Example R LoC States Transitions Time Mem ValidCalls Prove Scale
canonicalForLoops.c + 40 20543 22067 14.21 332 48952 7 1≤NT≤2
dijkstra_openmp.c[23] - 227 N/A N/A N/A N/A N/A N/A NV=6,1≤NT≤2
dotProduct1.c[6] + 18 7177 7315 15.71 229 28832 7 N=8,1≤NT≤2
dotProduct_critical.c[6] + 33 38135 38886 16.35 381 65398 7 N=10,1≤NT≤2
dotProduct_orphan.c[6] + 25 70026 70161 38.45 400 267632 7 N=100,1≤NT≤2
heated_plate_openmp.c[23] + 156 399797 405708 89.71 422 882242 13 M,N=5,EPSILON=0.1,1≤NT≤2
matProduct1.c[6] + 61 647938 647938 125.9 459 1018179 7 NRA,NRB,NRC=5,1≤NT≤2
matProduct2.c[6] - 105 8859 8853 17.16 139 9148 7 NRA,NRB,NRC=10,1≤NT≤2
md_openmp.c[23] - 281 11679 11676 97.46 416 25991 606 ND=1NP=10,NSTEPS=10,1≤NT≤2
mxm.c - 103 127533 127528 38.74 414 278073 8 l,m,n=10,1≤NT≤2
pi.c + 69 40816 40964 27.66 391 166446 10 N=100,1≤NT≤2
poisson_openmp.c[23] - 269 1655 1653 14.11 239 2950 9 NX,NY=10,1≤NT≤2
quad_openmp.c[23] + 86 60109 60326 28.09 424 225237 9 N=100,1≤NT≤2
omp_bug5.c[6] - 54 29208 29275 14.92 274 35313 7 N=10,1≤NT≤2
omp_bug5fix.c[6] - 54 26345 26367 13.19 325 35390 7 N=10,1≤NT≤2
omp_bug5fixfix.c + 54 108343 108941 21.38 414 147044 10 N=10,1≤NT≤2
prime_openmp.c[23] + 77 761027 762875 116.87 453 2656643 15 n_hi=500,1≤NT≤2
random_openmp.c[23] + 82 395121 400941 62.3 412 490290 4 N=100,1≤NT≤2
raceCond1.c + 11 86476 87450 18.64 390 115646 4 A=50,1≤NT≤2
satisfy_openmp.c[23] + 131 40972 41295 23.02 352 172964 7 N=5,1≤NT≤2
sgefa_openmp.c[23] - 668 46750 47369 37.08 409 129802 62 N=10,100,1000,1≤NT≤2

Figure 4.2: Results of running CIVL verify command for C OpenMP programs

running OSX 10.9.5 (64 bit) with a 2.4 Ghz Intel Core 2 Duo processor with 4 GB

of 1067MHz DDR3 of memory. CIVL was configured to use Z3 4.3.2, CVC3 2.4.1,

and CVC4 1.4.

The data indicates the breadth of OpenMP programs that the transformer can

support. Most of the programs were scaled down so that they could be verified in

a few minutes but CIVL is sufficiently scalable that parameters can be set to higher

values. The examples that were verified show that CIVL is capable of verifying

OpenMP programs that contain the most common constructs.

4.3 Failed Results

Each test result has a positive or negative results. A positive result means that

all of the standard properties hold. A negative result means that there is some

violation in the program and a trace is provided to help identify the fault. Some of

the faults are true problems in the program. Other violations that are found are

due to unimplemented features in CIVL or the OpenMP transformer.

47

1 # pragma omp parallel shared (a, b, c, l, m, n) private (i, j, k)
2 # pragma omp for
3 for (j = 0; j < n; j++){
4 for (i = 0; i < l; i++){
5 a[i+j*l] = 0.0;
6 for (k = 0; k < m; k++){
7 a[i+j*l] = a[i+j*l] + b[i+k*l] * c[k+j*m];
8 }
9 }

10 }

Figure 4.3: Parallel code of mxm.c

4.3.1 Faults Caught

In Fig. 4.2, a violation was found in the mxm.c example. The parallel part of the

program can be seen in Fig. 4.3.The shared variable a is accessed by a[i + j ∗ l] in

3 nested for loops (line 7). The variable l is defined to be 10 at the start of the

program. The loops that use i and j range from 0 to nd which allows the i and

j variables to have the values 10 and 0, respectively. Also, i and j can have the

values 0 and 1, respectively. This would let two threads access a[10] at the same.

This results in a race condition and a violation is given. The sgefa_openmp is like

the mxm.c example. There are two for loops, one inside another, that iterate over i

and j. There is a write to y[i + j ∗ n] which for when n = 10, the pairs i = 10, j = 0

and i = 0, j = 1 will result in the same index which is a race condition.

The omp_bug5.c example is provided by LLNL in an OpenMP tutorial. This

example was engineered to have a deadlock in the example which CIVL finds. The

provided fixed example, omp_bug5fix.c resolves the deadlock condition but the

loop iteration variable i is not declared to be a private variable so it is implicitly

determined to be shared. Having this variable as shared lets a race condition

happen with respect to i. By adding i to the private clause, omp_bugfixfix.c is able

to be verified as a correct program.

The poisson_openmp.c example contains a sqrt() on line 307 and CIVL finds

48

that the argument for the function may be less than zero. For the sort function, the

argument must be positive. The md_openmp.c example fails due to a divide by

zero error. The potential and kinetic variables are added up and then used in a

denominator of a fraction. This value is found to be zero in some case which is a

violation that CIVL finds.

4.3.2 Unimplemented Features

The dijkstra_openmp example contains incompatible types. The types in the trans-

lation match up and the bug is in the OpenMP support library. The matProdcut2.c

example attempts to dereference a null pointer. The transformed code appears to

be correct and the bug is in some CIVL support library.

49

Chapter 5

Conclusion

5.1 Limitations

Many of the common OpenMP constructs and functions are covered but not all of

them are. SIMD, tasking, device, and cancellation constructs are not covered by

the transformer. While these are not widely used constructs in OpenMP, support

for these constructs will broaden support for OpenMP C programs. Only some of

the OpenMP functions are covered. Some of the execution environment and lock

routines are not currently supported. OpenMP timing routines are not supported

by the transformer. For some of the current supported constructs some of the

clauses are not fully supported.

During verification of some of the programs, the state space expands very

quickly slowing down the execution in CIVL. As better and more effective tech-

niques are applied during the verification, the transformer may not properly

transform a program for the verifier to analyze the program in the best possible

way. The transformer will need to evolve as the CIVL framework changes.

Orphan constructs are handled as described in Section 3.3 have some conse-

50

quences. The program size can increase rapidly as more functions are inserted

into certain scopes. The functions that are added into the parallel scope can make

it difficult to read and understand the program which may make it hard for a

developer to maintain the code.

CIVL supports programs written in C11 and it is a strict adherence to the

language. Some elements in the source code that are not compliant with the C11

standard may fail in CIVL. CIVL supports the majority of C11 but some aspects of

the language are left out. Not all standard libraries are supported, some types are

not recognized, and some functions are not properly handled in CIVL.

5.2 Future Work

Adding support for unsupported constructs will increase the number of programs

that the transformer can be applied to. The goal is to support all of the current

OpenMP specification. By being able to support all of the OpenMP specifica-

tion, all OpenMP C programs should be able to be transformed by the OpenMP

transformer.

Many of the examples that are transformed by the OpenMP transformer are

smaller examples. There are efforts going on to be able to verify the large examples

that are on the order of 1000-10000s lines of code instead of around 100 lines of

code. Being able to verify larger examples will show that the transformer can

be applied to any OpenMP program and will be useful in verifying real world

programs.

The tests that have been performed on the OpenMP transformer show that

the transformer is able to handle the majority of the OpenMP specification. The

transformer can easily be modified to add support for any unsupported or new

51

functionality. The OpenMP transformer serves as a useful addition to the CIVL

framework to help support verification of OpenMP C programs.

52

Bibliography

[1] T. Mudge, “Power : A First-Class Architectural Design Constraint,” Computer,

vol. 34, no. 4, pp. 52–58, 2001.

[2] Introduction to parallel computing. [Online]. Available: https://computing.

llnl.gov/tutorials/parallel comp/#Overview

[3] Pthreads helloworld. [Online]. Available: https://computing.llnl.gov/

tutorials/pthreads/samples/hello.c

[4] Openmphelloworld. [Online]. Available: https://computing.llnl.gov/

tutorials/openMP/samples/C/omp hello.c

[5] OpenMP Architecture Review Board, “OpenMP application program

interface version 4.0,” 2013. [Online]. Available: http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf

[6] “Lawrence Livermore National Laboratory OpenMP tutorial,” https://

computing.llnl.gov/tutorials/openMP/exercise.html, accessed Feb. 8, 2015.

[7] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,

M. Girkar, and P. Dubey, “Can traditional programming bridge the ninja

performance gap for parallel computing applications?” SIGARCH Comput.

https://computing.llnl.gov/tutorials/parallel_comp/#Overview
https://computing.llnl.gov/tutorials/parallel_comp/#Overview
https://computing.llnl.gov/tutorials/pthreads/samples/hello.c
https://computing.llnl.gov/tutorials/pthreads/samples/hello.c
https://computing.llnl.gov/tutorials/openMP/samples/C/omp_hello.c
https://computing.llnl.gov/tutorials/openMP/samples/C/omp_hello.c
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://computing.llnl.gov/tutorials/openMP/exercise.html
https://computing.llnl.gov/tutorials/openMP/exercise.html

53

Archit. News, vol. 40, no. 3, pp. 440–451, Jun. 2012. [Online]. Available:

http://doi.acm.org/10.1145/2366231.2337210

[8] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press, 2008.

[9] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades

later. [Online]. Available: http://www.eecs.berkeley.edu/∼ksen/papers/

cacm13.pdf

[10] “CIVL: Concurrency Intermediate Verification Language,” https://vsl.cis.

udel.edu/civl, Accessed Apr. 17, 2015.

[11] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G. Edenhofner,

M. B. Dwyer, and M. S. Rogers, “Civl: The concurrency intermediate

verification language,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, ser. SC ’15.

New York, NY, USA: ACM, 2015, pp. 61:1–61:12. [Online]. Available:

http://doi.acm.org/10.1145/2807591.2807635

[12] S. F. Siegel and T. K. Zirkel, “A Functional Equivalence Verification Suite,”

http://vsl.cis.udel.edu/fevs, accessed Feb. 6, 2015.

[13] “Lawrence Livermore National Laboratory Message-Passing Interface (MPI)

exercise,” https://computing.llnl.gov/tutorials/mpi/exercise.html, accessed

Feb. 8, 2015.

[14] VirginiaTech: Advanced Research Computing, “CUDA,” http://www.arc.

vt.edu/resources/software/cuda, accessed Feb. 6, 2015. [Online]. Available:

http://www.arc.vt.edu/resources/software/cuda

http://doi.acm.org/10.1145/2366231.2337210
http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
https://vsl.cis.udel.edu/civl
https://vsl.cis.udel.edu/civl
http://doi.acm.org/10.1145/2807591.2807635
http://vsl.cis.udel.edu/fevs
https://computing.llnl.gov/tutorials/mpi/exercise.html
http://www.arc.vt.edu/resources/software/cuda
http://www.arc.vt.edu/resources/software/cuda
http://www.arc.vt.edu/resources/software/cuda

54

[15] J. Sanders and E. Kandrot, CUDA by Example: An In-

troduction to General-Purpose GPU Programming. Addison-Wesley,

2010. [Online]. Available: https://developer.nvidia.com/content/

cuda-example-introduction-general-purpose-gpu-programming-0

[16] Purdue University, Information Technology: Research Computing,

“Carter – User Guide,” https://www.rcac.purdue.edu/compute/carter/

guide/#compile gpu, 2008, accessed Feb. 6, 2015. [Online]. Available:

https://www.rcac.purdue.edu/compute/carter/guide/#compile gpu

[17] C. Hathhorn, M. Becchi, W. L. Harrison, and A. M. Procter, “Formal semantics

of heterogeneous CUDA-C: A modular approach with applications,” in

Proceedings of the 7th Conference on Systems Software Verification, SSV 2012,

Sydney, Australia, 28-30 November 2012, 2012, pp. 115–124. [Online]. Available:

http://dx.doi.org/10.4204/EPTCS.102.11

[18] “CUDA Samples,” http://docs.nvidia.com/cuda/cuda-samples/, accessed

Apr. 15, 2015.

[19] “Lawrence Livermore National Laboratory Pthreads tutorial,” https://

computing.llnl.gov/tutorials/pthreads/exercise.html, accessed Feb. 8, 2015.

[20] “SV-COMP 2015: Competition on software verification,” http://

sv-comp.sosy-lab.org/2015, Accessed Feb. 7, 2015. [Online]. Available:

http://sv-comp.sosy-lab.org/2015

[21] Center for Development of Advanced Computing, “Programming on Multi-

Core Processors Using MPI - Pthreads,” http://cdac.in/index.aspx?id=ev

hpc hypack mpi pthreads overview, accessed Apr. 17, 2015.

https://developer.nvidia.com/content/cuda-example-introduction-general-purpose-gpu-programming-0
https://developer.nvidia.com/content/cuda-example-introduction-general-purpose-gpu-programming-0
https://www.rcac.purdue.edu/compute/carter/guide/#compile_gpu
https://www.rcac.purdue.edu/compute/carter/guide/#compile_gpu
https://www.rcac.purdue.edu/compute/carter/guide/#compile_gpu
http://dx.doi.org/10.4204/EPTCS.102.11
http://docs.nvidia.com/cuda/cuda-samples/
https://computing.llnl.gov/tutorials/pthreads/exercise.html
https://computing.llnl.gov/tutorials/pthreads/exercise.html
http://sv-comp.sosy-lab.org/2015
http://sv-comp.sosy-lab.org/2015
http://sv-comp.sosy-lab.org/2015
http://cdac.in/index.aspx?id=ev_hpc_hypack_mpi_pthreads_overview
http://cdac.in/index.aspx?id=ev_hpc_hypack_mpi_pthreads_overview

55

[22] P. Balaji, J. Dinan, T. Hoefler, and R. Thakur, “Advanced MPI

programming,” Tutorial at SC13: International Conference on High

Performance Computing, Networking, Storage, and Analysis, Denver,

Colorado, November 2013, accessed Feb. 6, 2015. [Online]. Available:

http://www.mcs.anl.gov/∼thakur/sc13-mpi-tutorial/

[23] M. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill,

2004.

http://www.mcs.anl.gov/~thakur/sc13-mpi-tutorial/

56

Appendix A

Openmp CIVL Library

A.1 Support Types

This appendix contains the support library information that can be found on the

CIVL webpage[10].

A.1.1 $omp_gteam

This is the global team object. It represents a team of threads that execute in a

parallel region. This is where all the information that is needed to correctly execute

a parallel region will be stored. The global barrier and worksharing queue for

every this is located here.
1 typedef struct OMP_gteam {

2 $scope scope;

3 int nthreads;

4 _Bool init[];

5 $omp_work_record work[][];

6 $omp_gshared shared[];

7 $gbarrier gbarrier;

8 }* $omp_gteam;

57

A.1.2 $omp_team

This is a local object that belongs to a single thread. It references the global team

object. It includes the local views of all shared data and a local barrier.

1 typedef struct OMP_team {

2 $omp_gteam gteam;

3 $scope scope;

4 int tid;

5 $omp_shared shared[];

6 $barrier barrier;

7 }* $omp_team;

A.1.3 $omp_gshared

This is a global shared object which has a reference to a shared variable.
1 typedef struct OMP_gshared {

2 _Bool init[];

3 void * original;

4 }* $omp_gshared;

A.1.4 $omp_shared

This is a local view of a shared object that belongs to a single thread. There is a

reference to the global object, and a local copy and a status of the shared object.

The type of the status variable is obtained from the type of the original variable by

replacing all leaf nodes in the type tree with ‘int’.
1 typedef struct OMP_shared {

2 $omp_gshared gshared;

3 int tid;

4 void * local;

5 void * status;

6 }* $omp_shared;

58

A.1.5 $omp_work_record

This is the worksharing information that a thread needs for executing a work-

sharing region. It contains the kind of the worksharing region, the location of the

region, the status of the region and the subdomain.
1 typedef struct OMP_work_record {

2 int kind;

3 int location;

4 _Bool arrived;

5 $domain loop_dom;

6 $domain subdomain;

7 }$omp_work_record;

A.1.6 $omp_var_status

This is an enumeration type for the status of a shared component. Available

enumerators are: EMPTY, FULL, MODIFIED.

A.2 Support Functions

A.2.1 Team Creation and Destruction

A.2.1.1 $omp_gteam $omp_gteam_create($scope scope, int nthreads)

This creates new global team object, allocating object in heap in the specified scope.

Number of threads that will be in the team is nthreads.

A.2.1.2 void $omp_gteam_destroy($omp_gteam gteam)

This destroys the global team object. All shared objects associated to the team

must have been destroyed before calling this function.

59

A.2.1.3 $omp_team $omp_team_create($scope scope, $omp_gteam gteam, int

tid)

This creates new local team object for a specific thread.

A.2.1.4 void $omp_team_destroy($omp_team team)

This destroys the local team object

A.2.2 Shared Variables

None of those variables that comprise a shared object should ever be accessed

directly. All access must happen through $omp_read/write, including the local

views, status, and shared view.

A.2.2.1 $omp_gshared $omp_gshared_create($omp_gteam, void *original)

Creates new global shared object, associated to the given global team. A pointer to

the shared variable that this object corresponds to is given.

A.2.2.2 void $omp_gshared_destroy($omp_gshared gshared)

Destroys the global shared object, copying the context to the original variable

A.2.2.3 $omp_shared $omp_shared_create($omp_team team, $omp_gshared

gshared, void *local, void *status)

Creates a local shared object, returning handle to it. The local copy of the shared

object is initialised by copying the values from the original variable referenced

to by the gshared object. The status variable is initialized to FULL. The created

shared object is appended to the shared queue of the $omp_team object.

60

A.2.2.4 void $omp_shared_destroy($omp_shared shared)

Destroys the local shared object

A.2.2.5 void $omp_read($omp_shared shared, void *result, void *ref)

Called by a thread to read a shared object. ref is a pointer into the local copy of

the shared variable. The result of the read is stored in the memory unit pointed to

by result. assumes ref is a pointer to a scalar.

A.2.2.6 void $omp_write($omp_shared shared, void *ref, void *value)

Called by a thread to write to the shared object. ref is a pointer into the local copy

of the shared variable. The value to be written is taken from the memory unit

pointed to by value.

A.2.2.7 void $omp_apply_assoc($omp_shared shared, $operation op, void

*local)

Applies the associative operator specified by op to the local copy and the corre-

sponding shared copy, and writes the result back to the shared copy. This happens

in one atomic step.

A.2.2.8 void $omp_flush($omp_shared shared, void *ref)

Performs an OpenMP flush operation on the shared object

A.2.2.9 void $omp_flush_all($omp_team)

Performs an OpenMP flush operation on all shared objects. This is the default in

OpenMP if no argument is specified for a flush construct.

61

A.2.3 Worksharing and Barriers

A.2.3.1 void $omp_barrier($omp_team team)

Performs a barrier only.

A.2.3.2 void $omp_barrier_and_flush($omp_team team)

Combines a barrier and a flush on all shared objects owned by the team.

A.2.3.3 $domain $omp_arrive_loop($omp_team team, int location, $domain

loop_dom, $DecompositionStrategy strategy)

Called by a thread when it reaches an omp for loop, this function returns the

subset of the loop domain specifying the iterations that this thread will execute.

The dimension of the domain returned equals the dimension of the given domain

omp_loop_dom.

A.2.3.4 $domain(1) $omp_arrive_sections($omp_team team, int location, int

numSections)

Called by a thread when it reaches an omp sections construct, this function returns

the subset of the integers 0..numSections-1 specifying the indexes of the sections

that this thread will execute. The sections are numbered from 0 in increasing order.

A.2.3.5 int $omp_arrive_single($omp_team team, int location)

Called by a thread when it reaches on omp single construct, returns the thread ID

of the thread that will execute the single construct.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-2015

	Transforming C OpenMP Programs for Verification in CIVL
	Michael Rogers

	Contents
	List of Figures
	Introduction
	The Need for Parallel Programming
	Writing Parallel Programs
	Parallel Memory Architectures
	Parallel Programming Models

	OpenMP
	Parallel Programming Challenges
	Formal Verification
	CIVL
	OpenMP Transformer
	Contribution
	Outline

	CIVL: Concurrency Intermediate Verification Language
	Introduction of CIVL
	Framework
	Language
	CIVL-C
	Semantics

	Verification
	Commands
	Verify
	Show
	Compare
	Replay
	Run
	Help

	Symbolic Execution
	Partial Order Reduction

	Transformation
	Shared State Access
	Replacing Constructs

	Evaluation
	Conclusion

	OpenMP Transformer
	Approach
	Transforming OpenMP Constructs
	Parallel Pragma
	For Pragma
	Sections
	Critical
	Master
	Shared Read and Write
	Functions and Terminal Transformations

	Orphan Constructs
	Memory Model

	Evaluation
	Setup
	Results
	Failed Results
	Faults Caught
	Unimplemented Features

	Conclusion
	Limitations
	Future Work

	Bibliography
	Openmp CIVL Library
	Support Types
	$omp`_gteam
	$omp`_team
	$omp`_gshared
	$omp`_shared
	$omp`_work`_record
	$omp`_var`_status

	Support Functions
	Team Creation and Destruction
	$omp`_gteam $omp`_gteam`_create($scope scope, int nthreads)
	void $omp`_gteam`_destroy($omp`_gteam gteam)
	$omp`_team $omp`_team`_create($scope scope, $omp`_gteam gteam, int tid)
	void $omp`_team`_destroy($omp`_team team)

	Shared Variables
	$omp`_gshared $omp`_gshared`_create($omp`_gteam, void *original)
	void $omp`_gshared`_destroy($omp`_gshared gshared)
	$omp`_shared $omp`_shared`_create($omp`_team team, $omp`_gshared gshared, void *local, void *status)
	void $omp`_shared`_destroy($omp`_shared shared)
	void $omp`_read($omp`_shared shared, void *result, void *ref)
	void $omp`_write($omp`_shared shared, void *ref, void *value)
	void $omp`_apply`_assoc($omp`_shared shared, $operation op, void *local)
	void $omp`_flush($omp`_shared shared, void *ref)
	void $omp`_flush`_all($omp`_team)

	Worksharing and Barriers
	void $omp`_barrier($omp`_team team)
	void $omp`_barrier`_and`_flush($omp`_team team)
	$domain $omp`_arrive`_loop($omp`_team team, int location, $domain loop`_dom, $DecompositionStrategy strategy)
	$domain(1) $omp`_arrive`_sections($omp`_team team, int location, int numSections)
	int $omp`_arrive`_single($omp`_team team, int location)

