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Within cognitive science, computational modeling based on cognitive architectures has 

been an important approach to addressing questions of human cognition and learning. 

Modeling issues such as limited expressivity in representing knowledge and lack of 

appropriate selection of model structure represent a challenge for existing architectures. 

Furthermore, latest research shows that the concepts of long-term memory, motivation 

and working memory are critical cognitive aspects but a unifying cognitive paradigm 

integrating those concepts hasn’t been previously achieved. Derived from a synthesis of 

neuroscience, cognitive science, psychology, and education, the Unified Learning Model 

(ULM) provides this integration by merging a statistical learning mechanism with a 

general learning architecture. Based on the ULM cognitive principles, this thesis presents 

a novel computational architecture called C-ULM that addresses the modeling issues 

outlined above and introduces a novel computational integration of long-term memory, 

motivation and working memory. C-ULM is implemented as a multi-agent simulation 

where the agent communication is grounded on the actions of teaching and learning. Both 

communication actions consist of two main phases: allocating working memory for 

teaching or learning and using the working memory content in order to update the agent's 

long-term memory. From a cognitive perspective, C-ULM provides a test of the viability 

of the learning mechanisms proposed in the ULM. In addition, as showcased by C-ULM 



 
 

 
 

experiments, it offers insights that lead to a better understanding of the human learning 

mechanisms especially in the cases of long-term learning and problem solving where data 

from human subjects is generally not available. From a multi-agent perspective, it 

advances the literature by providing the first multi-agent based simulation that 

incorporates long-term memory, working memory, motivation and the relationships 

among them into an effective modeling framework. Furthermore, it offers the foundation 

for novel agent reasoning models and insights into modeling agent-to-agent knowledge 

transfer based on the principles of human learning and teaching processes. 
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Chapter 1. INTRODUCTION 

1.1. Problem 

One of the most important methods to address questions of human cognition and 

learning is the use of computational modeling based on cognitive architectures. Although 

there are several architectures mentioned in both cognitive science and computational 

modeling literatures, issues such as limited expressivity in representing knowledge and 

lack of appropriate selection of model structure represent a challenge for existing 

approaches. Furthermore, an integrative computational paradigm that puts together in a 

single model the concepts of long-term memory, motivation and working memory is 

needed. Latest research in cognitive related fields such as neuroscience and psychology 

suggests that these concepts are key components of human cognition (Shell et al. 2010). 

A unified computational model of long-term memory, motivation and working memory 

can thus greatly extend the type of cognitive research questions that can be addressed 

using computational simulations. 

1.2. Related work 

One of the most widely known computational models used for understanding human 

cognition is SOAR (Lehman et al. 2006). SOAR is a production based system that is 

geared towards problem-solving by the use of states and operators that make transitions 

among those states. Long-term memory, one of the fundamental components of SOAR, 

can store procedural, semantic and episodic knowledge. Working memory is responsible 

for triggering retrievals from long-term memory and consists of a hierarchy of states and 

their associated operators. One of the issues with SOAR is the fact that by representing 

knowledge as sets of rules, the system loses expressivity power in describing knowledge 
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that cannot be represented as rules. This issue drives the need for a new, connectionist 

based model of knowledge that is more expressive and thus can describe more types of 

information. 

Computational modeling inspired from cognitive science is an active topic in the field 

of artificial intelligence or AI. A reference model within the AI field of multiagent 

systems (or MAS) is the cognitively inspired Belief-Desire-Intention architecture (Rao 

and Georgeff 1995). This architecture is based on beliefs that represent information such 

as the likely state of the environment, desires that specify the possible agent objectives 

and intentions that represent actions or a sequence of actions taken in order to accomplish 

a certain objective. One of the problems that can arise in BDI agents happens when the 

number of beliefs, intentions and desires is very large and the issue of selecting the most 

important subset for the subsequent steps arises. This problem creates the need for a 

meta-reasoning model that has the power to filter a large set of beliefs, desires and 

intentions. Such a feat can be realized with an integrative model that uses working 

memory and motivation as a guided filtering mechanism. 

A recent multiagent model incorporates the idea of motivation and motivation profiles 

in agents (Merrick 2011; Shafi et al. 2012; Hardhienata et al. 2012). In those works, the 

authors develop three motivation profiles inspired from the Atkinson’s Risk Taking 

Model (RTM). Those profiles indicate how much an agent is inclined to pursue high-risk 

tasks carrying high reward upon completion. The main issue with these types of models 

is that they only take into account the risk involved in attempting a task and do not relate 

to what an agent knows about the environment and existing tasks. Thus, there is a need 

for a more comprehensive motivation model that comprises of both intrinsic motivation 
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given by the agent long-term knowledge and extrinsic motivation given by the risks 

involved in attempting tasks. Such a comprehensive model of motivation can be achieved 

through the use of an integrative paradigm that models together motivation and 

knowledge stored in long-term memory by laying out the interactions taking place 

between them. One of the intersections between cognitive science and MAS fields is 

given by multiagent-based classroom simulations (Sklar and Davies 2005; Spoelstra and 

Sklar 2008). These works present a model of teaching and learning and as compared to 

SOAR and CYC they use graphs for knowledge representation. Those models outline a 

sequence of teaching and learning stages that have to be completed in order for student 

agents to perform the act of learning. However, in those works, the concept of motivation 

is a model parameter and it is not strongly grounded in cognitive science principles. This 

issue leads to the need for a comprehensive model that integrates motivation with long-

term knowledge and working memory so that the resulting computational model is deeply 

rooted in cognitive science. 

1.3. Proposed solution 

Our work attempts to resolve the issues mentioned above by creating a connectionist 

model (called C-ULM) based on the principles of the Unified Learning Model or ULM 

(Shell et al. 2010). The ULM is a comprehensive learning theory that was developed 

from a synthesis of research in cognitive science, psychology and education. ULM has 

begun to influence thinking and practice in fields such as scholarship of teaching and 

learning (Wilson-Doenges and Gurung 2013), situated cognition (Durning and Artino 

2011), pedagogy (Nebesniak 2013), cognitive function (Wasserman 2012), and computer 

simulation (Khandaker and Soh 2011).  
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Learning in ULM results from the interaction of three cognitive components: long-

term memory, working memory, and motivation. Specifically, as derived from the 

principles of neuron synaptic connection strengthening and weakening, learning results 

from attention, repetition, and connection. Attention to information in working memory is 

necessary as a precondition to learning. Unique to the ULM is the premise that attention 

in working memory is a process dependent on motivation. That is, we attend to 

information when we are motivated to attend. While automatic parallel processing is 

always occurring, ULM argues that learning requires motivated attention. In ULM, 

knowledge is built when distinct pieces of information that are held simultaneously in 

working memory are connected and stored as chunks in long-term memory. The 

connections in these chunks continue to strengthen or decay depending on repetition due 

to knowledge retrieval via pattern matching and spreading activation throughout the 

chunk. As with findings in neural studies (Turk-Browne et al. 2008), this repetition 

causes knowledge chunks to ultimately reflect statistical regularities present in the 

information. 

We have developed a MAS simulation in which each single agent is based on the C-

ULM model. Specifically, the architecture of C-ULM can be summarized as follows: 

 Each single agent has a cognitive architecture that consists of the three main ULM 

components: long-term memory, motivation and working memory 

 Long-term memory (or LTM) is represented as an undirected, weighted graph 

where nodes indicate knowledge concepts and weighted edges—with a certainty 

measure on each weight—indicate a quantified connection between two concepts.  
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 Motivation is computed for each concept and is a function of the certainty that an 

agent has towards the weights for connections involving the analyzed concept. 

 Working memory (or WM) is the buffer that is filled with units of information. 

We look into two types of units: singleton concepts and concept chunks (i.e., groups of 

connected concepts) 

 Agent communication is grounded on the actions of teaching and learning and has 

at its core algorithms that perform the processes of (1) allocating working memory for 

teaching and learning and (2) using the working memory content to update the long-

term knowledge of a learner or a teacher. 

 A feature of the learning process is represented by the spread activation factor, 

which guides how the certainty for the weights of all connections reachable from a 

starting connection is to be updated. The amount of change in certainty for a connection 

is inversely proportional to the distance between this connection and the starting 

connection.  

 In our simulation, knowledge decay (or, simply put, forgetting) is triggered when 

connections do not enter working memory for a given number of simulation time steps. 

The decay consists in increasing the uncertainty for the involved LTM connection 

weights. 

 A task is represented similarly as long-term memory but without a certainty 

measure on the weights of the connections between its concepts. In each simulation 

time step, every agent attempts to solve one of the available tasks. 
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1.4. Contributions 

Our contributions can be considered from two perspectives. Theoretically, the C-ULM 

provides a test of the viability of the learning mechanisms proposed in the ULM. While 

an operative computational simulation cannot prove that the underlying theory is correct, 

the ability to derive an operative computational simulation provides evidence for the 

plausibility of the theory. From the cognitive modeling perspective, C-ULM advances the 

literature by providing the first multi-agent based simulation that incorporates long-term 

memory, working memory, motivation and the relationships among them into an 

operative modeling framework. Additionally, from the agent perspective, C-ULM could 

benefit agent research at two levels. First, the modeling of individual agent reasoning can 

potentially be improved by the functions and relationships between long-term memory, 

motivation and working memory represented in C-ULM. Second, C-ULM can potentially 

improve the modeling of agent-to-agent knowledge transfer based on the principles of 

human teaching and learning processes. 

From a technical point of view, our contributions can be summarized into the 

following aspects. First, we designed C-ULM based on the architecture and principles of 

the ULM model. Second, we implemented C-ULM in a multiagent simulation by using 

the Repast framework (North et al. 2006). Another design and implementation 

contribution has been made by the addition of the chunking mechanism to the already 

existing framework. Lastly, an important contribution has been made by designing, 

running and analyzing several experiments. We specifically analyzed the impact that 

various system parameters and the chunking mechanism have on the learning behavior of 

the multiagent system and also their effect on the system performance at solving tasks. 
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We would like to acknowledge the important contributions made by Derrick Lam and 

Ziyang Lin to the model design, implementation and initial experiments. Specifically, we 

would like to thank Derrick Lam for his contribution to model design, for starting the 

Java class design, for implementation contributions to the classes for motivation, concept 

and task representation and also for his contributions to implementing the main 

simulation class. Furthermore, we would like to thank Ziyang Lin for his contribution to 

model design and for his implementation contributions to the class for long-term memory 

representation. 

1.5. Overview 

In chapter 2 we present the Unified Learning Model and related works from cognitive 

science and multiagent fields. In chapter 3, we describe the architecture of a C-ULM 

based agent and the agent communication protocol. Furthermore, we present the most 

important algorithms pertaining to agent learning, agent teaching, task representation and 

agent task attempt. In chapter 4 we present the UML class diagram describing the class 

architecture of the implemented simulation. Furthermore, we present the general 

functionality and the most important methods of each class. The results obtained through 

a variety of experiments are presented in Chapter 5. Finally, we conclude our work in 

Chapter 6 and offer directions for future research. 

 

Chapter 2. BACKGROUND AND RELATED WORK 

In this chapter, we start by describing the main features of the ULM model (section 

2.1) and in the subsequent sections we present the models and architectures mentioned in 

the first chapter and draw some comparisons with the C-ULM model. 
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2.1. ULM Background 

In the first part of this section we describe the 3 main components of the ULM model 

– working memory, long-term memory, and motivation (section 2.1.1). In the second part 

we present the three ULM learning principles and how they provide the interactions 

among the 3 ULM components (section 2.1.2). We conclude this section by presenting 

the main reasons for choosing ULM as the basic modeling architecture (section 2.1.3). 

Further, we describe the motivation for creating and designing the C-ULM model 

(section 2.1.4). 

2.1.1. ULM Components 

Central to the Unified Learning Model (ULM) is the idea that all learning takes place 

in three primary components: (1) working memory (WM) which receives and processes 

sensory information, (2) long-term memory which stores long-term knowledge and (3) 

motivation which guides the agent’s attention. These components encompass the basic 

cognitive architecture of ULM and they are also the main components in C-ULM.  

2.1.1.1. Working Memory 

The first ULM component is working memory. It is the component that realizes 

learning and thus expands our existing knowledge. It contains a storage area for 

temporarily holding sensory input elements and knowledge retrieved from long-term 

memory. Furthermore, it contains a processing system that uses attention and other 

cognitive actions in order to operate on and change the content of temporarily stored 

elements. Working memory has a limited storage capacity (around 4 units or slots) and 

because of this is considered the bottleneck of the learning process. 
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2.1.1.2. Long-term memory 

The second component, long-term memory (or LTM), refers to the type of memory 

that stores long-term knowledge. LTM results from groups of interconnected neurons that 

repeatedly fire among each other over the synapses that connect them. Neural synapses 

strengthen proportionally to the amount of firings of the involved neurons. The 

strengthening and weakening of neural synapses shapes the evolution of our knowledge.  

There are two main types of long-term knowledge. The first type is episodic 

knowledge and it contains the information we have about our personal experiences. This 

type of knowledge is usually highly detailed with sensory information and it can also be 

strongly related to emotional content. Whenever it is associated to strong emotions, its 

content can remain almost unaltered for years or even decades. The second main type of 

knowledge is called semantic knowledge. This is the knowledge that doesn’t relate to us 

and is taught at all educational levels. It can be classified into categories or domains such 

as mathematics, computer science, sociology and so on. It is also highly hierarchical 

since those broad domains can be further split into subdomains that can in turn be split 

into other subdomains (for example, artificial intelligence is a subdomain of computer 

science and machine learning is a subdomain of artificial intelligence). An important 

difference between semantic and episodic knowledge is that learning episodic knowledge 

doesn’t require learning effort as compared to semantic knowledge that requires sustained 

effort. Semantic knowledge has two main types: procedural and declarative knowledge. 

Declarative knowledge can be further split into objective knowledge such as knowledge 

of objects and actions and symbolic knowledge such as the meaning of words, 

mathematical knowledge, explanation of natural phenomena and physics laws. 
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Procedural knowledge is knowledge that we use in order to take a sequence of actions 

that lead to a desired goal. It is usually represented as a sequence (or procedural chain) of 

conditional statements such as “If X happens, then I will do Y.”. 

2.1.1.3. Motivation 

The third component, motivation, is the psychological construct that determines 

humans to put effort into achieving desired outcomes. While those outcomes can be 

anything that relates to an individual that tries to attain them, the ULM model focuses on 

learning semantic knowledge as an outcome. Thus, the model focuses on what drives 

people to put effort to attend new information and use their working memory capacity 

and processing system in order to expand and refine their existing semantic knowledge.  

There are various types of motivators that lead people to behave in a certain way but 

only the cognitive and emotional motivators drive them to achieve learning goals. One of 

the basic cognitive motivators is goals. Goals are what drives working memory 

processing. Without a purpose seen as having a value for the individual, putting forth 

mental effort doesn’t make sense. The value of a goal is based on knowledge. For 

example, we learned that being sociable and friendly helps us in relating to other people. 

Thus, we might have a high value on the goal of becoming more sociable and friendly. 

Emotions are also an important motivator for learning and they can direct working 

memory to thoughts that trigger new emotions. According to the emotional state of the 

individual, those thoughts can trigger positive, negative or a mix of new emotional 

outcome. 
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2.1.2. ULM learning principles 

The interactions taking place between working memory, long-term memory and 

motivation lead to the three ULM principles of learning.  

2.1.2.1. Learning principle 1: Working Memory Allocation 

The first principle states that learning is a product of working memory allocation. 

There are two required conditions that need to be met so that working memory is 

allocated to a given task. The first condition is to have enough available working memory 

in order to temporarily store elements such as sensory inputs or retrieved memories. The 

second condition is to direct processing toward the temporarily stored elements. In ULM, 

there are three learning rules that explain how working memory allocation leads to 

learning.  

The first rule states that new learning requires attention. Studies showed that when 

working memory attends and processes temporarily stored elements the chance of 

triggering the process of long-term potentiation (or LTP) increases. This is a process that 

realizes the transfer of the processed information into long-term memory (or LTM).  

The second rule states that learning requires repetition. Without repetition of certain 

information, a single act of attending to it is unlikely to lead to a change in long-term 

memory and consequently no learning occurs. However, repetitively focusing attention 

on the same information increases the chances of effective learning. Furthermore, if this 

repetition is done over an extended time period, information retrieval from long-term 

memory will become faster and more consistent.  

The third rule states that learning is about connections. During working memory 

processing new connections between various pieces of information can be created and 
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existing connections between knowledge elements can be broken down. The ability of 

working memory processing to connect in a flexible manner various pieces of knowledge 

leads to integrated knowledge structures such as concepts, propositional networks or 

production systems. One important aspect of this connecting ability is that it expands 

working memory capacity by creating memory chunks. A memory chunk is an 

interconnected knowledge unit that occupies only one slot of working memory capacity.  

2.1.2.2. Learning principle 2: The Prior Knowledge Effect 

The second principle states that working memory’s capacity for allocation is 

affected by prior knowledge. This influence of existing long-term knowledge on 

working memory allocation is due to the interaction between LTM and working memory 

during the learning process.  

When no memory chunks containing knowledge related to the new input exist in 

LTM, the input has to be attended and processed in working memory for multiple times. 

Furthermore, repeated retrieval from LTM will eventually result into transforming the 

attended input into usable knowledge. Without such repeated retrieval, knowledge in 

LTM will weaken and decay. This entire process requires a considerable amount of 

effort. 

However, if at the time of attending the new input, there is already a long-term 

knowledge chunk stored into LTM, pattern match retrieval of the chunk will be triggered. 

If the entire input is already in the chunk, then the corresponding neural synapses are 

further strengthened. If only a part of the input is contained in the chunk, the new part 

will be appended to the chunk. In this case, working memory allocation requires much 
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less effort and is more efficient because storage doesn’t depend on immediate working 

memory processing or long-term potentiation. 

2.1.2.3. Learning principle 3: Working Memory and Motivation 

Finally, the third principle is: Working memory allocation is directed by 

motivation. A large array of sensory inputs, knowledge chunks and procedural chains 

can be potential working memory elements at any given time. Due to the working 

memory capacity limits, there is a need to reduce this large collection of information 

items to a manageable number. Furthermore, this selection process is optimized with 

respect to our goals. Thus, goals restrict allocation only to those knowledge chunks and 

sensory inputs that are relevant for the goal. Furthermore, goal values differentiate 

between competing goals so that the higher valued goals are more frequently selected 

than the lower valued goals. Finally, positive emotions and interest in learning sustain the 

prolonged and repeated allocation of working memory towards the knowledge units 

perceived to lead to the selected goals.  

2.1.3. Motivation for using ULM as the basic model 

We decided to use ULM as the basic model for our simulation since it is a recent 

model that provides a synthesis of the latest findings in cognitive science and psychology 

related fields. Furthermore, ULM is appealing from a computational standpoint since it 

argues that all the complex learning phenomena happen due to the relatively simple 

interactions taking place between the 3 key components, that is working memory, long-

term memory and motivation. In addition, to the best of our knowledge, this is the first 

comprehensive model that specifies how motivation directly influences the underlying 

cognitive processes of working memory and learning (Shell et al. 2010). 
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2.1.4. Motivation for creating C-ULM 

From a cognitive science perspective, we created the C-ULM model in order to 

address the type of cognitive science related questions that need a computational 

simulation. For example, we have investigated the issue of working memory capacity and 

learning efficiency in the case of learning by chunking and learning without chunking. 

Another reason for creating C-ULM was to provide to the cognitive research community 

the first model that integrates LTM, motivation and working memory into a single 

operative framework. 

From a multi-agent point of view, we created C-ULM in order to provide to the AI 

community a novel way of agent knowledge sharing through the ULM-inspired processes 

of learning and teaching. As guided by the ULM theoretical framework, those processes 

emerge as complex mental phenomena that result from the interactions taking place 

between the 3 main components. Furthermore, we believe that individual agent reasoning 

can also be improved by modeling together long-term memory, motivation and working 

memory and using them as an agent reasoning framework. Finally, we were driven to 

create a comprehensive model for agent motivation that combines internal motivation 

based on agent knowledge and external motivation based on expected rewards for solving 

tasks. 

2.2. Relation to Cognitive Informatics 

 One of the most relevant related fields to C-ULM is the field of cognitive informatics. 

Below we present some works done in this field and how they relate to the C-ULM 

model. Of note, the paragraphs below have been included in a C-ULM research paper 
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that was submitted for publication to the International Journal of Cognitive Informatics 

and Natural Intelligence (IJCINI).  

2.2.1. Formal Knowledge Representation System (FKRS) 

 One particularly relevant work in cognitive informatics is that by Tian, Wang, 

Gavrilova, and Ruhe (2011).  They describe and propose a formal knowledge 

representation system (FKRS) based on the object-attribute-relation (OAR) model and its 

concept algebra (Wang, Tian & Hu, 2011). It uses as a linguistic base the well-known 

WordNet and is comprised of three main components: concept formation, conceptual 

knowledge representation and knowledge visualization. FKRS and OAR are examples of 

semantic level symbolic models (McClelland, 2009).  They model knowledge in 

linguistic and language terms. The C-ULM operates at a level more similar to a 

connectionist model. The learning processes of the ULM that are modeled in C-ULM are 

not language or symbol based. They reflect statistical Hebbian neural learning process. 

These are more elemental than symbolic language. As discussed by McClelland (2009), 

these approaches differ but are complementary rather than antagonistic. 

 The FKRS can prove helpful in obtaining a more structured representation of the 

knowledge that is being learned. The ULM argues that knowledge in the brain comes to 

reflect statistical regularities in the information being learned. FKRS provides a rigorous 

description of the properties of concepts. This could provide guidance as to what 

statistical regularities exist in the knowledge by describing specific attributes and objects 

pertaining to a given concept.  An important connection can be established between the 

OAR model and the C-ULM knowledge representation. In the OAR model, there are 

networks of objects, attributes and relation that connect objects and attributes forming 
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networks of objects and attributes. Of note, those objects and attributes are seen as 

partially connected (and not fully connected) in a similar fashion as knowledge is 

represented in C-ULM. Thus, the C-ULM concepts could correspond to OAR's objects 

and the relations between them represented by C-ULM's connections. Furthermore, C-

ULM allows for a large variety of relations given the relative connection strength 

indicated by the connection weight value. As future work, attributes can be incorporated 

within C-ULM concepts or as an alternative, concepts can represent attributes that form 

specific chunks that in turn represent corresponding OAR objects. 

2.2.2. Layered Reference Model of the Brain (LRMB) 

Another important cognitive informatics connection can be made between the C-

ULM architecture and the layered reference model of the brain (LRMB) (Wang & Chiew, 

2010; Wang, Wang, Patel, & Patel, 2006). The LRMB is a formal, layered model of 

cognitive processes in the brain. In this model, the brain has 7 seven abstraction layers of 

processes with primitive processes operating at the sub-conscious level and higher 

cognitive functions such as learning, problem solving and decision making operating at 

the conscious level and relying on the mechanisms of previous levels. The distinctions 

between sub-conscious and conscious levels mirror other recent formulations such as 

Kahneman’s (2011) System 1 and System 2. The LRMB is a process oriented model. The 

ULM (Shell et al., 2010) is a knowledge oriented model.  In the ULM, all process 

distinctions are seen as distinctions in knowledge with knowledge including all forms of 

data contained in the brain from sensory information to higher-order skills.  Although the 

ULM recognizes that different brain areas, such as sensory memory modules or the motor 

cortex, have different outputs similar to the abstraction layers of the LRMB, the ULM 
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holds that within the range of what that particular area is capable of outputting, its outputs 

are the results of neural plasticity learned via the ULM principles. From the perspective 

of the ULM, the distinctions represented in the LRMB reflect differences in the types of 

knowledge that different parts of the brain/cognitive system are encoding.  Sensory 

memory modules are encoding statistical regularities in low level data associated with the 

sense.  Language modules are encoding statistical regularities in the language. The 

functional model of the LRMB reflects a general information processing approach to 

cognition. The ULM shares this approach. However, the ULM merges the LRMB 

functions of short-term memory and natural intelligence (NI-OS and NI-APP) into a 

single working memory consistent with much recent thinking (Saults & Cowan, 2007). 

The ULM also merges all sensory, motor, and general cognitive functions into a single 

long-term memory. This makes the C-ULM a much simpler computational model than 

LRMB. It may be that the observable outputs of the natural intelligence of the brain are 

better modeled by something like the LRMB and the acquisition of the knowledge that 

produces that intelligence is better modeled by something like C-ULM.  Whether this is a 

fruitful approach needs to be established in future research. 

Because the C-ULM architecture reflects these ULM consolidations of knowledge 

and working memory, many LRMB levels and processes are represented within the C-

ULM.  For example, Layer 1, Sensation, is represented by concepts received by a 

learning agent in C-ULM. Those stimuli enter the second layer through the short-term 

memory (STM), which is akin to the working memory in C-ULM.  Layer 4, Perception, 

has two important modules: attention and emotions. The first module, attention is 

modeled within C-ULM by the use of the awareness threshold that filters what enters into 



18 
 

 
 

short term-memory. The second module, emotions, is modeled to a certain degree in C-

ULM by the motivation concept and motivation scores for concepts. Furthermore, as 

meta-cognition processes, we model the search module of Layer 5 (Meta-Cognition) 

when we do breadth-first search to find the appropriate concepts that will be retrieved for 

teaching or updated for learning. The memorize module of Layer 5 is further 

characteristically represented by the acquisition of new connections and also by the 

update of connection weights in C-ULM. Furthermore, the C-ULM's chunking process—

an important process in ULM—leads to an ever increasing efficientization of the way 

STM is being used in the learning process. A chunk represents a network of concepts that 

are more related to each other than to other concepts. From a knowledge representation 

point of view, the chunk is a higher, more abstract level of knowledge that is a synthesis 

of individual concepts. Thus the C-ULM's concept of chunking can be related to the 

LRMB's modules of Abstraction and Synthesis found at Layer 5 (Meta-cognition) and 

Layer 6 (Meta-inference). C-ULM also models the interaction happening at the top 

LRMB layer, between the learning and the problem solving processes. Thus, more 

learning steps enhance problem solving and in turn, solved problems lead to new learning 

experiences (coming from the knowledge obtained by solving the task).  

There are additional parallels between C-ULM and the LRMB based problem solving 

model proposed by Wang and Chiew (2010). Within C-ULM, problem solving happens 

through the process of attempting and solving a task. Just as in Wang and Chiew (2010), 

solving a problem requires a set of representation and search operations. Within C-ULM, 

the representation operations are those operations that alter the long-term memory (LTM) 

structure of an agent (acquiring new connections and in the latest version, also pruning 
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extremely unused connections). On the other hand, the search operations are those 

operations that, taking into account agent knowledge but also task feedback update both 

the LTM structure and connection weight values. These series of structure and weight 

updates are essentially searching through the problem space in order to find the suitable 

configuration of connections and weights that leads to solving the task.  

2.2.3. Wang’s memorization model 

In relation to the cognitive informatics model of memorization proposed by Wang 

(2009b), the C-ULM shares a focus on repetition and connection or relation as the 

primary learning processes. As noted previously, the OAR model that Wang uses 

operates at a symbolic level and the C-ULM is a statistical based model. Also, the C-

ULM in merging short-term memory into a more general working memory and merging 

various Sensory Buffer Memory (SBM), Conscious-Status Memory (CSM), Long-Term 

Memory (LTM), and Action-Buffer Memory (ABM) from Wang into a single Long-

Term Memory. Wang’s memorization model is intended to apply to one specific type of 

cognitive process from the LRMB model. The C-ULM is meant to apply to all learning of 

all of the knowledge included in the LRMB model, making C-ULM a more general 

statement of how knowledge is acquired across all brain and cognitive components. 

2.2.4. Emotional regulation model 

Recent work in cognitive informatics has focused on motivational regulators that 

perform roles similar to C-ULM motivators. Rosales, Jaime, and Ramos (2013) 

introduced an emotional regulation model having two main components, i.e., emotional 

response and emotional regulation. When the virtual agents respond to a risk situation, 

their emotions could influence the decision-making process adversely. The emotional 
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regulation process helps them to ignore, regulate or use their emotions. The regulation 

component consists of two modules—namely, a reappraisal module and a suppression 

module. When a virtual agent’s average of perceived behavior and required behavior is 

the same as the expressed behavior indicating “emotional response”, the suppression 

algorithm basically switches a virtual agent’s attention and ignores the highly affective 

objects—where each object has an emotional memory, elicited in the agent that stored the 

object in the first place, for example—in the scene.  

2.2.5. Moral decision making model (MDM) 

 Cervantes et al. (2013) introduced a moral decision making (MDM) model for agents 

based on ethical, moral, and religious principles as well as on individuals’ beliefs of right 

and wrong, feelings, and emotions.  The computational process of this model consists of 

3 phases: (1) assessment of options including filtering using a set of moral and ethical 

rules based on experiences, prejudices, emotions, cost-benefit analysis and moral 

evaluation, (2) execution of the selected option by which it is sent to the working memory 

and new execution plans are generated in a planning process, and (3) outcome evaluation 

where the executed actions are further evaluated. This MDM model provides a potential 

set of additional motivational considerations that could be incorporated into C-ULM.  

Clearly, human teaching and learning have moral and ethical dimensions.  Learning and 

teaching of C-ULM could consider moral and ethical rules in decisions about what to 

teach and what not to teach, or what to learn and what not to learn.  The above 3-step 

computational process could potentially inform C-ULM in deciding what learning and 

teaching tasks to perform, evaluating the outcomes, and reinforcing the decision.  C-
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ULM only considers the knowledge being shared in a teaching interaction and the 

knowledge required for task completion.   

2.2.6. C-ULM motivators 

 In the ULM, Shell et al. (2010) propose that all motivators impact learning via 

motivation and attention direction in working memory. Other processes like morals, 

ethics, and emotions clearly impact human behavior including learning. Currently, C-

ULM only models two of these motivators: self-efficacy and expectancy/task reward. 

These were chosen because they have consistently been found to be among the strongest 

motivators in prior studies (Schunk & Zimmerman, 2008; Shell et al., 2010). Also, as 

discussed in Shell et al. (2010), self-efficacy and expectancy/task reward have the most 

clear neurological foundations of the available motivational constructs.  But, future work 

needs to expand the scope of motivational influences to include the types of moral and 

emotional factors noted by Cervantes et al. (2013) and Rosales et al. (2013). 

2.3. SOAR architecture 

2.3.1. Overview 

SOAR is a cognitive architecture that embeds a set of mechanisms and structures that 

process domain-based information in order to produce appropriate behavior (Lehman et 

al. 2006).  

The main components of SOAR are: 

 States and Operators are the basic structures supported by the architecture. The 

states contain all the information about the present situation. They describe what are the 

current goals and problem spaces of the cognitive system. Operators are used by the 
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system in order to traverse problem spaces. By applying an operator to a current state, 

the system moves to another state determined by the operator. 

 Working Memory (WM) contains the hierarchy of states and their associated 

operators. Working memory contents trigger retrieval from long-term memory (LTM). 

 Long-term Memory (LTM) is the repository for domain content that is 

processed by the architecture to produce behavior. SOAR supports three LTM 

representations: procedural knowledge encoded as rules, semantic knowledge encoded 

as declarative structures, and episodic knowledge encoded as episodes. Procedural 

memory is accessed automatically during the decision cycle, while the semantic and 

episodic memories are accessed deliberately through the creation of specific cues in 

working memory. SOAR does not access and modify the LTM content directly. 

Instead, the LTM is changed indirectly through the use of working memory retrievals. 

 The Perception/Motor Interface is the mechanism used by SOAR to create a 

bidirectional mapping between the external world and the internal working memory 

representation. 

 The Decision Cycle is the basic cognitive process of the SOAR architecture. The 

decision cycle comprises three phases. The first one, called the elaboration phase, 

involves parallel access to LTM to elaborate the state, suggests new operators, and 

evaluates the operators. The second phase, called the decision phase, contains the 

procedure that interprets the language of operator preferences. The result of this 

procedure is either a change to the selected operator or an impasse if the preferences are 

incomplete or in conflict. In the third phase, called the application phase, existing rules 

fire in order to modify the current state. 
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 Impasses occur when there is a lack of necessary knowledge and represent an 

opportunity for learning. When an impasse arises, the architecture creates a new 

substate whose goal is to resolve the impasse. In this manner, impasses impose a 

goal/substate hierarchy on the working memory contexts.  

 Learning Mechanisms: SOAR has four architectural learning mechanisms. The 

main and most developed mechanism is chunking. Through this mechanism, the 

cognitive system creates new rules in LTM whenever results are generated from an 

impasse. This mode of learning speeds up performance and moves knowledge retrieved 

in a substate up to a state where it can be reused in the future, thus preventing impasses 

in similar future situations. The second type of learning mechanism, called 

reinforcement learning, adjusts the values of preferences for operators. The last two 

learning mechanisms are episodic and semantic learning. The former stores a history of 

experiences, while the latter captures more abstract declarative statements. 

2.3.2. Comparison with C-ULM 

One of the main differences between SOAR and C-ULM is how the chunking process 

works in the two models. Chunking in SOAR consists of the accretion of new condition-

based rules. This accretion is made on the basis of existing knowledge. In contrast, in C-

ULM chunking results in more concept nodes being connected. The resulting connection 

pattern, taken together with the information stored in the concept nodes leads to a much 

more general representation of information than the one based on rules. Thus, C-ULM is 

more general in the chunking mechanism than SOAR since C-ULM is not restricted to 

creating condition-based rules but any type of complex concept (chunk) using any type of 

connection pattern among its subconcepts. 
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Another difference related to the chunking mechanism is related to when chunking is 

triggered. In the SOAR architecture, chunking occurs only when impasses are formed in 

a given state/substate level. In C-ULM, the equivalent of an impasse is the failure of an 

agent to solve a task. In contrast to SOAR, C-ULM performs chunking independently of 

the outcome (success or failure) of attempting to solve a task. Instead, C-ULM chunking 

is dependent upon the content of the working memory. We believe that in this manner, 

learning by chunking is internally driven by its intricate connection to working memory 

processing as compared to being externally driven by the impasses that can arise due to 

attempting certain tasks. 

One similarity between SOAR and C-ULM is the interaction between the long-term 

memory and working memory. Similar to SOAR, in C-ULM, the content of working 

memory decides upon what connections are retrieved from long-term memory and then 

updated as a result of the learning process. 

Probably the main difference between the two systems is given by the fact that C-

ULM is a connectionist model while SOAR is a production rule system. In this sense, C-

ULM uses concepts, connection patterns and connection weights in order to represent 

information. Meanwhile, SOAR uses a hierarchy of states to represent information about 

the current situation. Among other types of information, those states describe rule-based 

information such as condition-based rules. 

Regarding goals, SOAR is a goal-driven system that strives to attain concrete domain-

related goals by learning and improving its behavior in order to reach those goals. In 

contrast, C-ULM is more focused on how to achieve the necessary knowledge that can be 

further used to model behavior and reach domain-related goals. In order to model the 
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achievement of necessary knowledge, the C-ULM model uses ‘training tasks’ that 

contain partial information regarding the problem domain. By attempting those training 

tasks, a C-ULM agent is reaching a learning-based goal and not a concrete, domain-

related goal. As an example, a task in C-ULM could be learning how to throw the ball in 

a baseball game and a more complex task could be learning how to play baseball. In 

contrast, the goals of a SOAR based system would be the goal of actually displaying the 

appropriate baseball related behavior, e.g., throwing the ball appropriately given the 

external factors or other strategies that have to be used to win the game. From this point 

of view, the SOAR system integrates both learning and the resulting behavior while C-

ULM focuses on modeling the learning mechanics. 

Another difference is related to how the concept of reinforcement learning is used in 

the two cognitive architectures. SOAR uses reinforcement learning in order to adjust the 

values of preferences for operators. Those operators are used in order to ‘move’ from a 

system state to another or to a sub-state. By adjusting the values of preferences for 

operators, the SOAR system is only indirectly using reinforcement learning as a mode of 

learning. This is because once those operator preference values are set, learning by 

chunking is the learning mode that uses operators with the new values in order to create 

new rules. In contrast, in C-ULM, reinforcement learning is directly affecting learning by 

shortening the confusion intervals when a task has been solved and lengthening those 

intervals when an agent failed to solve a task. Taken together with the overall picture of a 

connectionist model, we believe that this is a slightly better inclusion of the idea of 

feedback based learning (or reinforcement learning) in a cognitive architecture. 
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Finally, episodic and semantic learning are related to two different types of knowledge 

that can be stored within a SOAR-based system. As compared to SOAR, C-ULM 

leverages the power of the connectionist model in order to create a cognitive architecture 

that doesn’t discriminate between different types of knowledge. Simply put, different 

types of knowledge, such as the episodic and semantic ones, can be represented using a 

different set of concept nodes and connection patterns among those nodes. In this regard, 

due to its enhanced generality, we believe that the C-ULM approach makes one more 

step towards the ultimate goal of obtaining a unified theory of cognition (UTC). 

2.4. Belief-Desire-Intention (BDI) architecture 

2.4.1. Overview 

The BDI architecture is one of the reference architectures for building multi-agent 

systems. Within this architecture, there is a clear distinction between the notion of belief 

as it is used in BDI agents and the notion of knowledge. Thus, beliefs represent only 

information held by the agents regarding the likely state of the environment. In contrast, 

knowledge is a much more general concept that can embed different types of information 

that were learned by an agent. In this regard, C-ULM uses the term knowledge in order to 

embed any type of information that can be learned by an agent. 

The objectives of the BDI agents are represented by the desire component, which is 

seen as the motivational state of the system. In contrast, C-ULM makes a clear distinction 

between motivation, which is one of the 3 main components of the model, and objectives. 

In C-ULM an agent objectives are solving various tasks. 

Within the BDI architecture, there is a balancing need between continually changing 

course of action in an ever-changing environment and continuing to execute a previously 
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selected action until its completion (Rao and Georgeff 1995). This balancing it’s 

achieved through the use of the intention component. By representing the currently 

chosen course of action as the system’s intentions, the action that is performed may 

change before the previous action has completed but the frequency of changes is reduced. 

This balancing problem between switching actions and continuing the same action 

doesn’t appear in the C-ULM design. This is because in each time step, each agent 

performs two actions: a learning or a teaching action followed by a task attempt action. In 

contrast to the BDI intention component, the C-ULM motivation component is not 

involved in changing the action performed but rather in the process related to each of the 

3 possible actions. 

In BDI systems, only beliefs and intentions have explicit representation. Desires are 

transiently represented as a type of event. Goals are somewhat similar to desires but 

represent a certain level of agent commitment for achieving them. They essentially 

represent a partial state of the world which the agent has decided to attempt to achieve. 

The standard BDI architecture lacks specifications for goal representation and policies for 

maintaining goal consistency. However, the BDI-G architecture (Thangarajah et al. 2002) 

offers a framework in which goals are represented and logical rules pertaining to goals 

can be specified. Those rules of inference can assure that goals are consistent with each 

other. 

2.4.2. Comparison with C-ULM 

The main difference between the BDI and BDI-G architectures on one hand and the C-

ULM architecture on the other hand is made by the existence of the working memory 

component in the C-ULM model. Supported by working memory and the chunking 
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process, a C-ULM based system decides how much spatial (or even time) windowing is 

necessary when updating and retrieving agent knowledge. For example, a simple task 

might require a few small chunks to be retrieved in working memory while a much more 

complex task might require retrieval of large knowledge chunks. 

Thus, while the BDI and BDI-G models provide the foundation for agent reasoning, 

C-ULM provides a guided process allowing designers of agent systems to give an agent a 

meta-reasoning approach for focusing on a subset of beliefs, desires, intentions and goals 

that the agent is going to use in the next steps. In the case of long-term exposure of 

BDI/BDI-G agents to a given environment, their entire set of beliefs, desires, intentions 

and goals (BDIG) can grow very large and a filtering process becomes necessary in order 

for efficient operations to take place. In this sense, the working memory processing and 

the chunking mechanism of C-ULM provide a way of selecting the most important BDIG 

subset that would benefit the agent in the subsequent steps. We believe that those aspects 

position C-ULM as a meta-reasoning framework that balances the trade-off between 

exploration and exploitation, making it a key component of a complex multi-agent 

system. 

2.5. Multiagent-based classroom simulations 

2.5.1. SimEd simulation 

2.5.1.1. Overview 

The SimEd simulation is a multiagent-based classroom simulation. It simulates a 

learning environment that models behaviors and interactions of ‘teacher’ and ‘student’ 

agents (Sklar and Davies 2005).  
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The simulation comprises of several key components. The first component is the 

knowledge domain. This is represented using a directed weighted graph and each concept 

(node in the graph) has an index number associated. The notation for this graph is {C}. 

Another key component is the teacher behavior model and it is presented in 3 types: 

the lecture model where the teacher continues to teach new concepts regardless of the 

student progress; the lecture-feedback model where the teacher repeats concepts based on 

feedback from the students and the tutorial model where the teacher reacts in a 

personalized manner for each student. 

The student knowledge model is modeled as a weighted directed graph that is a subset 

of {C}. 

The student behavior model comprises of 3 components. The first is aptitude – a value 

between 0 and 1 that is related to the concepts difficulty (for example, if s.aptitude < 

c.difficulty, then concept ‘c’ is considered hard by student s). The second is motivation – 

the motivational level is determined by the teacher’s choice of question (if question is 

hard – student feels challenged and motivated). The third student behavior component is 

emotion – the emotional level increases if student answers correctly a question and 

decreases if answers incorrectly. 

The simulation also includes an assessment component with three attributes: attribute 

‘progress’ indicates what concept number a student is learning at a certain time; attribute 

‘question’ indicates what concept number a teacher is teaching at a certain time; attribute 

‘done’ indicates whether a student has learned all the concepts or not (is 1 or 0). 

A typical learning scene comprises of 6 steps. First, the teacher perceives. This 

involves the teacher setting the challenge based on its own motivational level. Second, 
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the teacher acts. This involves setting the value of question and presenting the concept 

associated to that question (concept C_q). Third, the student perceives the question and 

asks itself if the concept is hard or easy. If it is hard, it is more motivated to try to answer.  

In the fourth step, the student acts. If both motivational and emotional levels are high 

then the student attempts to answer the question; if both are low, it doesn’t attempt to 

answer. In the fifth step, the student reacts – his emotional level increases if question was 

answered correctly; otherwise, it decreases. Lastly, in the sixth step the teacher reacts and 

his emotional level increases or decreases according to the number of students that 

answered correctly their current questions. 

2.5.1.2. Comparison with C-ULM 

The first similarity between the two systems is given by the simulation environment, 

ie. both simulations model a classroom-based environment with two types of agents: 

students and teachers. Another similarity is given by the representation of the knowledge 

domain, ie. both simulations use weighted graphs for representing long-term knowledge 

(simEd) and long-term memory (C-ULM). 

However, in the case of simEd, the knowledge is represented using directed weighted 

graphs. In the case of computational ULM, the knowledge is represented using undirected 

weighted graphs.  

Another difference regarding long-term knowledge/memory representation is related 

to the use in C-ULM of a certainty measure associated with each existing connection 

between any two concepts. This certainty measure is the confusion interval associated to 

that connection. The confusion interval allows for a more finely tuned modeling of how 

much an agent knows about the relationship between two concepts. Thus, if an agent 
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knows little about a particular connection, then the corresponding confusion interval 

length will be rather large (closer to a value of 1) and if the agent knows more about the 

connection, then the confusion interval length will be smaller (closer to a value of 0). 

Motivation is interpreted and used in different manner in the two models. In the simEd 

simulation, motivation depends on the difficulty of the question posed by the teacher. 

Thus, motivation depends only on factors external to the agent. In contrast, computational 

ULM has two factors that influence motivation: one is internal and depends on how much 

the agent knows about the connections incident to a given concept. The other is external 

and depends on what rewards the agent could obtain if it successfully solves tasks that 

contain the given concept. We believe this is a more accurate representation of the 

motivation component because we use the internal component that relies on agent 

knowledge (Shell et al. 2010). In turn, this is made possible by the type of modeling we 

use for representing knowledge – ie. the use of the confusion interval to fine tune how 

much the agent knows about a given connection. 

In the simEd simulation working memory is not part of the proposed cognitive model, 

while in computational ULM, working memory is intricately linked to motivation since 

motivation is the one that drives working memory allocation (Shell et al. 2010). In turn, 

what is allocated in working memory dictates how the long-term memory (knowledge) is 

affected after each learning experience. 

Furthermore, in the simEd simulation, the teacher teaches only one concept at a time 

for each individual student agent. According to the teacher behavior model used (lecture, 

lecture-feedback or tutorial model) the teacher goes on to teach the next concept. 

Concepts are thus taught in a serial manner. In contrast, in computational ULM, a teacher 
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agent can teach multiple concepts in each single time step. How many concepts or chunks 

a teacher can teach is governed by the working memory capacity of the teacher. The 

ability to teach multiple concepts in the same time step allows for many more learning 

scenarios and outcomes as compared to the simEd simulation. 

2.5.2. Group learning simulation 

2.5.2.1. Overview 

Another multi-agent based classroom simulation is geared towards understanding 

group learning and the interactions between various parameters that describe the human 

learning process (Spoelstra and Sklar 2008). In this regard, knowledge domain is 

represented with directed weighted graphs just as in the SimEd simulation. 

 The process of learning is viewed as having 3 main stages: the ‘early’ stage when 

most of the new concept acquisition is done; the ‘intermediate’ stage when further 

associations are made between concepts learned in the first stage and errors in 

understanding from the first stage are overcome. The last stage is called the ‘autonomous’ 

stage where no new learning takes place but a deeper understanding of the already 

acquired concepts is developed. 

Reviewing pedagogical literature, the authors mention the ‘trilogy of the mind’, the 3 

components that are mostly remarked as influencing human learning. These are 

cognition, motivation and emotion. The cognitive component is defined by what 

Vygotsky called the ‘zone of proximal development’. The other two components are 

dependent upon the characteristics of the learning environment and the interactions a 

learner has with others. 
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Motivation is modeled as a value that indicates how much a learner tries to acquire 

new knowledge. Emotion is also modeled as a value. However, this value is affected by 

the outcome of a learning experience. Thus if a student was successful in acquiring a 

skill, his emotion value increases; otherwise, it decreases. 

The paper presents ‘goal structures’ as being a key characteristic of the learning 

environment. The focus of those goal structures can be individual, competitive or 

cooperative depending upon how the teacher engages the students in the act of learning. 

A teaching methodology that implements all the goal structures is called the STAD 

learning method. This essentially is comprised of 5 steps: teacher presentations, student 

teamwork or individual work, quizzes, individual improvement and team recognition. 

The group learning simulation uses the STAD learning method as the basis for the 

learning process. 

The simulation environment consists of some environmental and individual 

parameters. The environmental parameters are group composition (heteregenous teams 

with different proportions of high and low ability learners); group size, team rewards, 

concept difficulty and the amount of time available to master each concept (measured 

in ‘ticks’). The individual parameters are the paper’s focus and consist of: 

 Learner ability – 2, 3 and 4 different levels of learning abilities are mentioned in 

pedagogical studies but in this paper the authors use two levels – ability of 1 and 

ability of 2 

 Improvement – increase in knowledge throughout the learning of a new concept; 

improvement is not only contingent upon one’s ability but is also dependent on 

motivation, emotion, zone of proximal development and concept difficulty. 



34 
 

 
 

 Motivation – it is initialized randomly in the interval [0.1, 1] and has a normal 

distribution with a mean set at 0.5; it depends on whether the difficulty of the concept 

that has to be learned is within the learner’s zone of proximal development; it also 

depends on whether the learner passed the quiz at the end of a presented concept 

 Emotion - it is initialized randomly in the interval [0, 1] and has a normal 

distribution with a mean set at 0.5. It depends on the following: (1) emotion of the 

teammates: if the emotion of a teammate is higher than the emotion of the learner, the 

emotion of the teammate is decreased by 0.01; otherwise the emotion of the teammate 

is increased by 0.01; and (2) the rank of the team of the student after the quiz; if the 

team scores relatively well, the team members become happy (resulting in an increase 

of emotion); otherwise, they become sad 

 Other mentioned parameters include: ‘zone’ (the center of the zone of proximal 

development), the likeliness to help other learners, and competitiveness 

2.5.2.2. Comparison with C-ULM 

An interesting similarity between the two simulations is related to the perspective on 

the learning process. Thus, in the group learning simulation, learning is seen (and 

implemented) as having 3 stages – first is the ‘early’ stage when most of the concept 

acquisition is done; the second step is the ‘intermediate’ stage where new associations are 

being made between concepts mostly learned in the first phase; lastly, in the 

‘autonomous’ stage the agent deepens its understanding of the already acquired concepts. 

In C-ULM most of the concepts are learned in the very beginning of the simulation. 

Thus, this short period can be considered as the ‘early’ stage. In the ‘intermediate’ stage 

more connections between the already acquired concepts are acquired. The longest phase 
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is deepening the understanding on the existing concepts and connections by shortening 

the confusion interval lengths of acquired connections and getting agent weights closer to 

the task required weights. However, in C-ULM, learning was not implemented to take 

place in those 3 stages. Instead, those stages were identified as an emergent behavior 

resulting from the simulation. Furthermore, in C-ULM, just as in real life, the stages are 

not completely separated one from another and there is considerable overlap. For 

example, in the ‘early’ stage we also acquire connections between already acquired 

concepts and the process of shortening confusion interval lengths takes place in all three 

stages. 

The group learning simulation relies its agent structure on Vygotsky’s trilogy of mind, 

where the 3 key components of learning are cognition, motivation and emotion. In 

comparison, the Unified Learning Model and C-ULM consider that the 3 key components 

of learning are long-term memory, motivation and working memory. C-ULM doesn’t 

explicitly model emotion. This is because ULM views emotion as a motivator along with 

cognitive motivators such as goals and it is integrated in the more general ULM concept 

of motivation. The cognition component of Vygotsky’s trilogy of mind is considered as a 

more general term in ULM that accounts for all learning. In turn, ULM breaks down the 

cognition term (as it relates to learning) into the three ULM components of long-term 

memory, motivation and working memory.  

In the group learning simulation motivation influences how much a learner tries to 

learn new knowledge and the outcome of the learning experience influences emotion. In 

comparison, in computational ULM, the knowledge strength for given concepts 

influences motivation which in turn affects working memory allocation; after learning is 
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performed some knowledge is further strengthened and thus the motivation for the 

involved concepts increases. The linkage between the cognitive and the motivational 

aspects is stronger in C-ULM. This is because knowledge strength (confusion interval 

length) affects motivation, which in turn affects what is being learned. Further, what is 

being learned affects the knowledge strength and consequently the motivation for further 

learning. 

We can compare the ‘ability’ characteristic in the paper’s model with the working 

memory capacity in C-ULM. One difference is that the paper presents cases of 

heterogenous groups where the agents have different ability values (1 or 2). Meanwhile, 

C-ULM allows too for agents with different working memory capacities but the 

experiments done so far use the same working memory capacity for each agent. 

This group learning simulation uses the term of concept difficulty. In contrast, in C-

ULM, all concepts are seen as equal in difficulty however the tasks that they form can be 

harder or easier to solve depending on the number of connections that form those tasks. 

Thus, the concept of difficulty can be found at the task level in C-ULM. 

2.6. Agent motivation profiles 

2.6.1. Overview 

Three agent motivation profiles based on the Atkinson’s Risk Taking Model (RTM) 

are achievement motivation, affiliation motivation and power motivation profiles 

(Merrick 2011; Shafi et al. 2012; Hardhienata et al. 2012). Those models influence risk-

taking behavior depending on the obtained incentives. Agents endowed with achievement 

motivation manifest a preference for tasks of intermediate difficulty. The affiliation 

motivation model is characterized by a preference of avoiding conflicts through risk 
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minimization. Finally, power motivated agents choose to take extreme risks in order to 

obtain higher incentive goals. Six variables are needed to construct achievement, 

affiliation, and power-motivated agents (Shafi et al. 2012). These are: turning points of 

approach (𝑀+), turning points of avoidance (𝑀−) of a goal, gradients of approach (ρ+) 

and gradients of avoidance (ρ−) of a goal, relative motivation strength (𝑆), and an 

incentive value for success (𝐼𝑆). 

2.6.2. Comparison with C-ULM 

In C-ULM, agents are more motivated for more difficult tasks because these are seen 

as carrying a higher learning reward. By making the analogy between agent incentives in 

the above mentioned papers and C-ULM’s learning rewards (the amount of knowledge 

obtained due to solving a task) we can observe that from a goal/task-oriented point of 

view, the current C-ULM agents are all power motivated agents. Those type of agents 

were shown to exhibit better leadership roles, making them suitable for coordinating a 

team of agents having the other two motive profiles, ie. achievement and affiliation 

motivated agents (Hardhienata et al. 2012). However, as mentioned above, the three 

motive profiles presented by Merrick make use of no less than 6 parameters.  

In contrast, a power motivated agent in ULM is simply created by taking into account 

the learning reward of a task when computing motivational scores. This can be easily 

changed for part or all of the agents so that the new motivational scores are computed 

using the inverse of the task reward. In this manner, we achieve agents that seek easier, 

more solvable tasks that also carry lower learning rewards. Such agents can be seen as 

similar to affiliation motivated agents. The idea is that the generality of the C-ULM 

approach allows for an easier design or redesign of goal-oriented motivation types. 
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The motivation score formula for creating the current ULM motivation profile (similar 

to the power motivated agent) is given below in Eq. (1): 

  
    
 ∑ (

 

   
    )     

 ∑         
            (2.1) 

where X is a concept in agent A’s knowledge;   
    

 is the agent A’s motivational 

score for concept X at time step t;     is the set of concepts connected to concept X; XY 

is the edge connecting concepts X and Y;    
    

 is the length of agent A’s confusion 

interval for edge XY at time step t;    is the subset of tasks that require concept X; and 

   is the reward for task  . 

Simply by taking the inverse of the second sum we can obtain a motivation profile that 

is similar to the affiliation motivated agents. Thus, we would have the following 

motivation score equation: 
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Furthermore, as compared to the goal-oriented motivation types presented by Merrick, 

the motivation of C-ULM agents also incorporates the long-term knowledge that agents 

have in relation to existing tasks. Thus, motivation is connected to the LTM component 

and enables the expression of a wider range of motivation profiles without the explicit 

use of additional modeling parameters. 

For example, we can have two power motivated agents but one has stronger 

knowledge than the other (is more certain about the relationships among concepts), thus 

having a motivation profile based on completely different motivation scores: 
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Agents A and B are both power motivated agents and have connections among the same 

concepts (Eq. (2.3) and (2.4)) but the confusion intervals for agent A are overall smaller 

than those for agent B (Eq. (2.5)) making its motivation for learning about concept X 

higher than the one of agent B. 

 

Chapter 3. METHODOLOGY 

3.1. Overview 

In this chapter we start by presenting the architecture of the C-ULM model and the C-

ULM components of long-term memory, motivation and working memory (Section 3.2). 

In Section 3.3 we present the communication protocol taking place between teacher and 

learner agents. In the remaining sections we present the knowledge decay process 

(Section 3.4), the structure of C-ULM tasks and the task attempt and feedback processes 

(Section 3.5) and utility methods that set up the task required knowledge and the initial 

agent knowledge (Section 3.6). Finally, we emphasize how the C-ULM model 

implements the ULM learning principles (Section 3.7). 

3.2. Single-Agent Model 

In this section we present in detail the C-ULM model for long-term memory, 

motivation and working memory, from the single agent perspective. We introduce new 
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concepts (such as the confusion interval and motivational scores), we present the 

equations that describe the functionality of each of the 3 components and present some 

examples to further clarify the functionality induced by the model. 

3.2.1. Long-term memory 

Long-term memory (or LTM) is being modeled as an undirected, weighted graph 

where nodes represent knowledge concepts and weighted edges represent a quantified 

connection between two concepts. Initially, agents do not have the necessary knowledge 

to solve a task but in some cases they might have a ‘vague idea’ of how to solve the 

problem. Key to our modeling of the LTM component is measuring the vagueness for 

each particular edge weight. We realize this by assigning a certainty measure called 

confusion interval to each edge weight. This interval is bounded and its length indicates 

how certain is the agent regarding the associated weight. For example, if the length is 

very small, the agent is quite certain about the weight of the edge and it has a solid 

knowledge about it. When an agent has to solve a task or teach another agent about a 

given connection weight, the agent will use a weight randomly generated from the 

associated confusion interval. The center of this confusion interval is also the edge 

weight. 

Figure 3.1 presents an example of an agent’s long-term memory. Next to each LTM 

connection is the confusion interval corresponding to that connection. The second value 

(bolded in Figure 1) in the confusion interval represents the interval center (or midpoint) 

and the edge weight. The other two values represent the minimum and the maximum 

values of the confusion interval. The lower bound on the minimum value is 0 and the 

upper bound on the maximum value is 1. As discussed later in this section, both the edge 
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weight and the length of this interval are updated during the learning process (Eqs. (3.3), 

(3.5) and (3.10)). Specifically, the edge weight can move in both directions, towards 0 or 

1. The length of the confusion interval is shortened by the learning process (Eq. (3.5)) 

and it is increased by the process of knowledge decay (Eq. (3.10)). The confusion interval 

instantiates the statistical learning inherent in the ULM learning process of repetition. 

Similar to neuronal synapses that get strengthened through repetitive stimulus exposure, 

knowledge connections in C-ULM strengthen with repetition and weaken (decay) with 

disuse. 

 

Fig. 3.1 LTM with concepts A, B, C, D.              

On each edge is outlined the associated confusion interval. 

3.2.2. Motivation 

We use the notion of motivational scores to model the motivational component of the 

architecture. Each concept found in agent knowledge has a motivational score associated 

with it. A higher score reflects a higher motivation for teaching or learning about the 

associated concept while a lower score indicates a lower motivation related to that 

concept. This score is a function of: (1) the underlying confusion intervals for the 

connections that contain the concept, and (2) the expected rewards for the tasks that use 

the concept, as shown in Eq. (3.1): 
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where X is a concept in agent’s A knowledge;   
    

 is the agent’s A motivational score 

for concept X at time step t;     is the set of concepts connected to concept X; XY is the 

edge connecting concepts X and Y;    
    

 is the length of agent’s A confusion interval for 

edge XY at time step t;    is the subset of tasks that require concept X; and    is the 

reward for task  . The rationale behind this formula is to allow two types of motivators 

that exist at the architectural level of ULM (Shell et al. 2010): the intrinsic one that 

captures the notion of self-efficacy, i.e., length of confusion intervals, and the extrinsic 

one that assesses the expectancy of possible rewards when using the concept for solving 

tasks.  

Below we present an example of computing the motivational score for a given concept 

in an agent’s LTM. 

 

Fig. 3.2 LTM representation with concepts A, B, C, D, and E 
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Fig. 3.3 Three tasks with their required concepts. 

The reward for each task is equal to the number of connections a task has. Thus, we 

have that reward for task    is    
  , reward for task    is    

   and reward for task 

   is    
  .  

In this example, the motivational score for concept A becomes: 
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)      
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)                  

 (3.2) 

where    ,     and     represent the confusion interval lengths for connections AB, AC 

and AE. 

3.2.3. Working Memory 

Just as the LTM component, working memory (or WM) is also represented using 

weighted graphs. The key differences are that (1) the graphs do not have a confusion 

interval associated and (2) the working memory capacity indicates the maximum number 

of concepts or knowledge chunks allowed in the WM graph. C-ULM follows the ULM 

architecture in modeling the WM functionality. Thus, there are two main steps. In the 

first step, WM is allocated; in the second step, WM is processed and agent long-term 

knowledge is updated. 
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3.2.3.1. Working Memory Allocation 

In order to realize WM allocation, we introduce the concept of awareness threshold 

(AT). This threshold indicates how aware the agent is of external and internal stimuli. If a 

stimulus has an intensity that is higher than this threshold, the agent becomes aware of 

that stimulus and consequently it allocates a WM slot for that stimulus. In our modeling, 

the concepts are the stimuli, and the motivational scores represent the stimulus intensity 

for the associated concept. Thus, the awareness threshold dictates what is attended, 

within the general architectural principle that motivation directs WM allocation.  

Another important concept that relates to WM allocation is the process of WM 

chunking. As mentioned in Section 2.1.2.1, the ULM model refers to the chunking 

mechanism that helps humans make use of more existing knowledge during the learning 

process. According to the ULM model, a memory chunk is an interconnected knowledge 

unit that occupies only one slot of working memory capacity. In the C-ULM model we 

have created two versions of working memory allocation. In the first version, we do not 

use WM chunking such that each concept in WM occupies one WM slot. In the second 

version, we have implemented WM chunking so that multiple concepts organized or 

linked up as a memory chunk can occupy one WM slot. In the next two subsections we 

present those two versions. 

3.2.3.1.1. Allocation without chunking 

When chunking is not used, the concepts with motivation scores higher than the 

awareness threshold AT are allowed to enter the working memory. If the number of 

concepts with motivation scores higher than AT exceeds the number of working memory 

slots, then the concepts with the highest motivation scores will enter working memory. 
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AT varies uniformly across agents, but it is constant for each agent during the whole 

simulation. 

The generic expression for whether concept X can enter working memory allocation is 

as follows: 

  WM                  (3.3) 

  WM                  (3.4) 

Where: 

 X is the concept being evaluated for working memory candidacy 

 WM is the agent’s working memory 

         is the agent’s motivation score for concept X as defined by Equation 3.1 

 AT is the learner’s awareness threshold 

Example 

Below, we present an example covering working memory allocation without chunking 

for both a teaching agent and a learning agent. This happens at an arbitrary time step  , 

and the LTM representations of the teaching and learning agents at the start of the time 

step are illustrated in Figure 3.4. 

In the first part of the time step, motivation scores for the teacher agent are computed. 

Because there are no isolated concepts in the teacher’s LTM, the motivation scores for all 

concepts are computed (concepts A, B, C, D, E, F, G and Q). If there were any isolated 

concepts present they would have no chance of entering working memory because their 

motivation scores are not calculated. 

Below is presented working memory allocation for the teacher agent: 

  -                    concept A enters teacher’s working memory 
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  -                    concept B enters teacher’s working memory 

  -                    concept C enters teacher’s working memory 

  -                     concept D enters teacher’s working memory 

  -                     concept E enters teacher’s working memory 

  -                    concept F doesn’t enter teacher’s working memory 

  -                    concept G doesn’t enter teacher’s working memory 

  -                    concept Q doesn’t enter teacher’s working memory 

Only concepts A, B, C, D and E have a motivation score higher than the teacher’s 

awareness threshold. Therefore, the sub-graph taught by the teacher is formed with 

concepts A, B, C, D and E. 

 

Fig. 3.4 Knowledge transfer at time step t 

After the teacher decides upon the concepts to teach, the sub-graph (i.e. knowledge) to 

be presented to the learner agent is formed from the concepts present in the teacher’s 

working memory and the edges that connect them. These edges have an instantiated 

weight that is randomly selected from a uniform distribution. Edges unrelated to those 

concepts are not present in the sub-graph created. Similarly, concepts with motivation 

scores below the teacher’s awareness threshold are not a part of the shared knowledge. 
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Below, we present the working memory allocation for a learner with       , given 

some arbitrary motivation scores. Of note, the learner’s motivation scores for those 

concepts are different from the teacher’s motivation scores for the same concepts.  

  -                    concept A enters learner working memory 

  -                    concept B enters learner working memory 

  -                    concept C doesn’t enter learner working memory 

  -                    concept D doesn’t enter learner working memory 

  -                    concept E enters learner working memory 

Therefore, at time step t, the learner allocates its working memory with concepts A, B 

and E. These are marked in red squares in the taught knowledge graph. The red 

connection on the learner side (connection DE) is a new connection added to the learner’s 

LTM during the WM processing stage. This happens since concept E entered the 

learner’s working memory and it is connected to concept D in the taught knowledge 

graph sent by the teacher. 

3.2.3.1.2. Allocation with chunking 

When chunking is used for a learner agent, we first identify the LTM chunks that 

contain the connections taught by the teacher. If the number of those LTM chunks is 

greater than the number of WM slots, then allocation occurs by discarding the LTM 

chunks containing the concepts with the lowest motivation scores. Furthermore, within 

the remaining LTM chunks, we select only those concepts with a motivation score higher 

than the awareness threshold AT. Similar to the allocation process without chunking, AT 

varies uniformly across agents, but it is constant for each agent during the whole 

simulation. 
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When chunking is used for a teacher agent, we first identify the concepts within the 

teacher agent’s LTM that have a motivation score above the awareness threshold AT. We 

identify the LTM chunks that contain these selected concepts. If the number of LTM 

chunks is greater than the number of WM slots, then we discard those chunks containing 

the concepts with the lowest motivation scores. The remaining concepts are included in 

the LTM chunks that enter the teacher’s working memory. 

Example 

Below, we present an example covering working memory allocation with chunking for 

both a teacher agent and a learner agent. This happens at an arbitrary time step  , and the 

LTM representations of the teacher and learner agents at the start of the time step are 

illustrated in Figure 3.5. 

Below is presented working memory allocation for a teacher with AT = 0.5, WM 

capacity = 3 and arbitrary motivation scores: 

  -                    concept A is selected and its LTM chunk is 

identified 

  -                    concept B is selected and its LTM chunk is 

identified 

  -                    concept C is selected and its LTM chunk is 

identified 

  -                    concept D is not selected 

  -                     concept E is selected and its LTM chunk is 

identified 
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  -                     concept F is selected and its LTM chunk is 

identified 

  -                   concept G is not selected 

  -                   concept H is not selected 

  -                    concept I is not selected 

  -                    concept J is not selected 

  -                     concept K is selected and its LTM chunk is 

identified 

  -                    concept L is not selected 

  -                     concept M is selected and its LTM chunk is 

identified 

  -                    concept N is selected and its LTM chunk is 

identified 

  -                    concept O is selected and its LTM chunk is 

identified 

  -                    concept P is selected and its LTM chunk is 

identified 

Since we selected 4 LTM chunks for the teacher agent, only 3 will enter working 

memory because the WM capacity is 3. Thus, the LTM chunk containing concept K (the 

concept with the lowest motivation score that is still above AT) doesn’t enter the 

teacher’s working memory and the sub-graph taught by the teacher is formed from 3 

LTM chunks: the chunk of concept B, the chunk of concept E and F and the chunk of 
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concept M. The selected concepts that enter teacher’s WM and lead to the taught sub-

graph are: A, B, C, E, F, M, N, O and P. 

 

Fig. 3.5 Knowledge transfer at time step t 

After the teacher decides upon the concepts to teach, the sub-graph (i.e., knowledge) to 

be presented to the learner agent is formed from the concepts present in the teacher’s 

working memory and the edges that connect them. These edges have an instantiated 

weight that is randomly selected from a uniform distribution. Edges unrelated to those 

concepts are not present in the sub-graph created. Similarly, concepts with motivation 

scores below the teacher’s awareness threshold are not a part of the shared knowledge. In 

short, the knowledge is only transferred if the teacher has the motivation to teach it, or the 

motivation to teach knowledge concepts that are related to it. 

Below, we present the working memory allocation for a learner with AT = 0.6, WM 

capacity = 2 and arbitrary motivation scores: 

  -                    concept A is not selected 

  -                     concept B is selected and its LTM chunk is 

identified 
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  -                     concept C is selected and its LTM chunk is 

identified 

  -                     concept E is selected and its LTM chunk is 

identified 

  -                     concept F is selected and its LTM chunk is 

identified 

  -                   concept M is selected and its LTM chunk is 

identified 

  -                   concept N is not selected 

  -                   concept O is selected and its LTM chunk is 

identified 

  -                    concept P is selected and its LTM chunk is 

identified 

Since we selected 3 LTM chunks for the learner agent, only 2 will enter working 

memory because the WM capacity is 2. Thus, the LTM chunk containing concepts E and 

F (the concepts with the lowest motivation score that are still above AT) doesn’t enter the 

learner’s working memory. Thus, the following chunks enter the learner’s WM: the 

chunk of concept B (containing only the connection BC), and the chunk of concepts M, O 

and P. The selected concepts that enter learner’s WM are marked in red squares in Figure 

3.5. These are the concepts B, C, M, O and P. On the learner agent side, the red edges and 

nodes represent the new connections and the new concepts added to the learner’s LTM 

during the WM processing stage. 
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3.2.3.2. Working Memory Processing 

After working memory is allocated, its content is processed and agent’s LTM is 

updated based on the statistical learning principles embodied in the ULM learning 

process of repetition. Specifically, working memory processing in C-ULM is performed 

by updating the confusion interval centers and lengths of LTM connections 

corresponding to working memory connections. In the case of a learner agent, the 

processing step updates both the confusion interval centers and lengths. In the case of a 

teacher agent, only the confusion interval length is updated since a teacher agent only 

reinforces its existing long-term knowledge without receiving new information about the 

task weights. 

 

3.2.3.2.1. Updating the confusion interval center 

The mechanism for updating a learning agent’s confusion interval center is given 

by Eq. (3.5): 
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Where: 

    
    

 and    
      

 are the learner agent confusion interval centers for edge    

during simulation time steps t and t-1, respectively  

   
    

 and   
    

 are the learner agent’s motivational scores for concepts   and   

at time step t 

    
    

 is the instantiated weight value for edge    communicated by the teacher 

via a weighted sub-graph at time step t 
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 cic is a learning coefficient that influences how much the confusion interval’s 

center moves towards the weight communicated by the teacher (   
    

); it is a 

simulation constant with a uniformly distributed value in the interval (0.8; 1.2); values 

between 0.8 and 1 indicate a learner agent that moves slower towards the weights 

taught by teacher agents (as compared to the reference value of 1); values between 1 

and 1.2 indicate a learner agent that moves faster towards the weights taught by teacher 

agents (as compared to the reference value of 1). 

   is a function that returns 0 or 1 based on whether the given concept is currently 

present in the given WM. 

Function f is described by Eq. (3.6) below: 

     𝑀  {
     𝑀
     𝑀

                  (3.6) 

Of note, Eq. 3.5 is a weighted average between the taught weight    
    

 and learner 

agent’s previous weight    
      

. Due to this weighted average structure, the agent’s L 

weight could converge to agent’s T weight but only after repeated updates. Motivation, 

represented by the weight of term    
    

, controls how many updates are necessary for 

this convergence to occur. The rationale behind Equation (3.5) is to allow the learner 

agent to adjust towards the taught weights by repeated weight updates, thus incorporating 

the ULM learning process of repetition (Shell et al. 2010). 

3.2.3.2.2. Updating the confusion interval length 

The mechanism for updating a learning or teaching agent’s confusion interval 

length for a given connection c’ is given by Eqs. (3.7), (3.8) and (3.9): 

   
    

    
      

                   (3.7) 
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                       (3.8) 

        𝑀               𝑀               (3.9) 

Where: 

    
    

 and    
      

 are the confusion interval lengths for agent’s A connection c’ 

(connected by a graph path to connection c) at time steps t and t-1 respectively 

    is the spread factor (defined by Eq. (3.8)) 

    is the motivation factor (defined by Eq. (3.9)) 

     is a learning coefficient that dictates the magnitude of the change in the 

confusion interval length during a simulation time step; it is a simulation constant that 

has a positive random value below 0.01; the reason for cil having such a small value is 

given by the rather large range of the other two update factors (sf and mf) as compared 

to the maximum length of the confusion interval; without having cil so small, the 

confusion interval would get very small in very few time steps. As a consequence, we 

wouldn’t have enough learning repetitions, the ULM model wouldn’t be correctly 

followed and the overall system performance would be rather low. Furthermore, the cil 

coefficient makes sense only operationally; from a conceptual point of view, the 

coefficient’s small value could also be incorporated in other factors. In other words, we 

can say that cil is a modeling coefficient so that the entire behavioral output of the 

equation makes sense conceptually.  

         is the graph distance from connection c existent in WM and agent 

knowledge to a connection c’ existent only in the agent knowledge 
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   is a normalization factor considered to be the upper-bound on the distance 

between a pair of connections in the knowledge graph — that is, any distance greater 

than this value is set to D 

    and    are the motivational scores for concepts   and  , respectively 

   is the WM presence function defined by Eq. (3.6) 

    is the awareness threshold for the learner 

These equations implement a statistical learning algorithm where both the connection 

center and confusion interval are repeatedly updated. As noted in the ULM, by virtue of 

the law of large numbers, this repetitive update process should lead to convergence on the 

actual weights of task connections. 

Additionally, we instantiate spread activation which is an architectural component that 

results from the associative nature of human knowledge (Anderson 1983). Spread 

activation says that if a concept is activated, then this activation spreads to any connected 

concept. Furthermore, the activation of all connected concepts is smaller and it decreases 

with the distance from the initial concept. In C-ULM (Eq. (3.7) and (3.8)), the update 

made to the confusion interval length of connection c’ reachable from connection c 

decreases as the updated connection c’ is farther from connection c. 

3.2.4. Knowledge Decay 

The ULM learning process of repetition says that repeated connections are 

strengthened but that non-repeated connections weaken. To accomplish this, we use a 

statistical learning algorithm that weakens knowledge through decay. If a concept does 

not enter WM for a specified number of time steps, the concept is considered unused and 

the associated confusion intervals of all connections involving that concept are increased. 
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The knowledge decay mechanism for updating an agent’s confusion interval length 

for a connection involving an unused concept is given by Eq. (3.10): 

   
    

 {
   
      

            
   

         

   
      

   
   

         
   

      

            (3.10) 

where X is the unused concept, Y is a concept (used or unused) connected to concept X, 

   
    

 and    
      

 are the confusion interval lengths for agent’s A connection X  at time 

steps   and    , respectively; e is the natural number;      is the knowledge decay rate 

(i.e. the rate at which the confusion interval grows) and is an experimental parameter set 

to a constant value (between 0 and 1);    indicates how many time steps concept X can 

remain unused without triggering knowledge decay for connections involving X;   
   

 is 

the number of time steps that concept X  has been unused for at time t;       is an 

upper-bound on the number of time steps for which knowledge decay is applied to 

connections involving concept X; and DF is a decay multiplication factor. The idea that 

unused knowledge eventually decays over time is inspired by the Knowledge Decay 

Theory (Harris 1952). While an exponential function for the forgetting process is a 

common assumption among memory models, latest research shows that a power law 

better fits the observed data (Kahana and Adler 2002). We plan on using power law 

functions for memory decay in our future work. 

3.3. Multiagent Framework 

 In this section we present the agent communication and interaction protocol consisting 

of the actions of teaching and learning as illustrated in Fig. 3.5. In this protocol, first, the 

teacher agent selects the concepts to be taught and allocates its WM for them. The 

concept selection process is done by the algorithm TeachAllocate. Then, the teacher 
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agent produces the knowledge TK to be taught using TeachProcess. This has two effects. 

First, the teacher agent itself learns from the teaching as well. Thus, this leads to a 

shortening of confusion intervals for the connections in teacher’s knowledge that 

correspond to the connections found in TK. Second, correspondingly, the learner agent 

performs the algorithm LearnAllocate in order to filter taught knowledge TK. The 

“filtered” TK (or FTK) resides in the WM of the learner agent. The learner agent then 

proceeds to perform LearnProcess, which duly updates the confusion interval lengths 

and centers according to the knowledge update process described earlier (Section 3.2.3.2, 

Working Memory Processing).   

 

Fig. 3.6 Communication protocol between a teacher and a learner agent. 

In Table 3.1 presented below, we summarize the main purpose of the learning and 

teaching algorithms described above. 

Table 3.1 Main purpose of the learning and teaching algorithms 

Algorithm Main Purpose 

learnAllocate_basic Allocates learner agent’s WM and uses one WM unit per 

knowledge concept 
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learnAllocate_chunking Allocates learner agent’s WM and uses one WM unit per 

knowledge chunk  

learnProcess Updates learner agent’s knowledge given the WM content 

updateWeight Updates the weights of agent knowledge connections 

updateConfusionInterval Updates the confusion interval lengths of agent knowledge 

connections  

teachAllocate_basic Allocates teacher agent’s WM and uses one WM unit per 

knowledge concept 

teachAllocate_chunking Allocates teacher agent’s WM and uses one WM unit per 

knowledge chunk 

teachProcess Updates teacher agent’s knowledge given the WM content 

 

3.3.1. Learning 

Learning is comprised of two stages: allocating working memory and processing the 

content of working memory. Allocating working memory for the learner has two 

versions.  

The first one is learnAllocate_basic, where we count how many of the taught concepts 

have a motivation score higher than the awareness threshold. This number is then 

compared to the working memory capacity in order to ensure that the capacity is not 

exceeded by allocating too many concepts.  

The second version is learnAllocate_chunking, where we compute the number of LTM 

knowledge chunks that taken together contain all the connections taught by the teacher. 

In the case of this version, this number is then compared to the working memory capacity 
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in order to ensure that the capacity is not exceeded by allocating too many concept 

chunks.  

Working memory processing for the learner agent is done by the algorithm 

learnProcess and it consists in updating the learner agent’s confusion interval lengths and 

centers. 

3.3.1.1. Working memory allocation for learning without chunking 

The algorithm that performs allocation without chunking is called learnAllocate_basic 

(allocating working memory for the learner agent). This algorithm ensures that taught 

concepts with a motivation score higher than the awareness threshold enter the working 

memory of the learning agent. In line 1, we sort all connections in the sub-graph taught 

by the teacher. We perform the sort in a descending order by the maximum motivation 

score between the two concepts that form each connection. In lines 5-25, we loop through 

all connections in the sorted order and increase the number of concepts in working 

memory (wm_concepts) if the motivation score of the concept is higher than the 

awareness threshold AT. We denote the two concepts that make up a connection by using 

the attributes          and         . The motivation score is denoted by the attribute 

       for each concept. In line 20, we check if the number of concepts added to working 

memory is greater than the number of working memory slots (   𝑀   𝑆    ). If it is, 

we break out of the loop and the method terminates. Otherwise, we check that at least one 

concept of the current connection has a motivation score greater than AT. If this 

condition is met (line 22), we add the current connection to the constructed graph    𝑀 

in line 23 (the working memory graph of the learning agent), and continue with the loop 

until all connections are examined. 
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Algorithm learnAllocate_basic 

Input:   – the learning agent 

              – taught knowledge 

Returns void 

1. Sort all connections    in TK by                                               

2. //(in descending order) 

3. Set             to 0 

4. Set    𝑀 to nil 

5. Loop through all connections     in    

6.      Set isAboveAT to false 

7.      If                           then 

8.                                       

9.           Set isAboveAT to true 

10.      End If 

11.      If                           then 

12.                                       

13.           Set isAboveAT to true 

14.      End If 

15.  

16.      //We break if the number of concepts is greater than the working memory capacity 

17.      //or if the motivation score for both concepts was below AT; consequent 

connections  
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18.      //will have a lower motivation score since connections are sorted in descending 

order 

19.      //by their motivation scores 

20.      If (               𝑀   𝑆    ) then 

21.           break  // abort as there are too many concepts 

22.      Else If (isAboveAT status is true) then 

23.           add     to    𝑀 // insert the edge into the working memory 

24.      End If 

25. End Loop 

End Algorithm 

3.3.1.2. Working memory allocation for learning with chunking 

The algorithm that performs allocation with chunking is called 

learnAllocate_chunking (allocating working memory for the learner agent by using LTM 

knowledge chunks). This algorithm is very similar to learnAllocate_basic with the 

exception that we do not allocate one concept in each working memory slot but instead 

allocate an entire chunk. We find and count the chunks in the learner LTM knowledge 

that taken together contain all of the taught connections (lines 10-18). Each chunk is 

identified in line 16 by calling the method bfsVisit_Structure. In line 23, we check if the 

number of LTM knowledge chunks (instead of number of concepts as in 

learnAllocate_basic) is greater than the number of working memory slots 

(   𝑀   𝑆    ). If it is, just as in learnAllocate_basic, we break out of the loop and 

the method terminates. Otherwise, we check that at least one concept of the current 

connection has a motivation score greater than AT. If this condition is met (line 25), we 
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add in line 26 the current connection to the constructed graph    𝑀 (the working 

memory graph of the learning agent), and then continue with the loop until all 

connections are examined. 

The rationale for designing learnAllocate_chunking method is to leverage the 

chunking mechanism in order to obtain a higher agent efficiency at low, human-like 

working memory capacities. 

Algorithm learnAllocate_chunking 

Input:   – the learner agent 

              – taught knowledge 

            𝐼  – threshold for the confusion interval for a connection (used when the  

                     connection is visited by method bfsVisit_Structure) 

Returns void 

1. Sort all connections    in TK by                                              

2. //(in descending order) 

3. Set    𝑀 to nil 

4. Initialize the Visited status of all connections    in      to false 

5. Loop through all connections    in    

6.      Set isAboveAT to false 

7.      If (                        or                        ) then 

8.           Set isAboveAT to true 

9.      End If 

10.      Locate in      the corresponding    for    

11.      If (   is not found or     𝐼 > CIT)  then // that means the agent A does not know  
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12.       // much about    

13.           Increment connectedComponents by 1 

14.      Else If (  ’s Visited status is false) then  

15.           Increment connectedComponents by 1 

16.           Call bfsVisit_Structure (    ,     𝐼 ) // change the Visited status of all edges  

17.                                                                           // in      that are “reachable” from    

to true. 

18.      End If 

19.      // We break if the number of knowledge chunks is greater than the working 

20.      // memory capacity or if the motivation score for both concepts was below AT; 

21.      // consequent connections will have a lower motivation score since connections are 

22.      // sorted in descending order by their motivation scores 

23.      If (                       𝑀   𝑆    ) then  

24.           break  // abort as there are too many chunks 

25.      Else If (isAboveAT status is true) then 

26.           add     to    𝑀 // insert the edge into the working memory 

27.      End If 

28. End Loop     

End Algorithm 

3.3.1.3. Working memory processing for learning 

The algorithm that performs working memory processing is called learnProcess. This 

algorithm uses the concepts found in working memory (added by the learnAllocate 

method) in order to update the long-term knowledge of the learner agent. It calls the 
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updateConfusionInterval method (line 8) to ensure that all LTM connections reachable 

from a connection found in working memory will get updated based on the distance-

based spread factor described in Equation 1. It also fully connects the concepts in 

learner’s LTM that correspond to the concepts found in its working memory. In order to 

do this, we loop through all pairs of concepts in working memory that are not connected 

and connect them in the learner’s LTM graph (in case they were not already connected in 

that graph). The loop is performed in lines 10-17 and creating the edge in the LTM graph 

is done in line 14. In contrast to connections that entered working memory because they 

were taught by a teacher, the confusion interval of connections created in line 14 is set to 

the maximum value of 1 (line 13). Thus, we emphasize that those connections start to 

exist by being “weaker” than all the other connections that were taught by a teacher 

agent. 

Algorithm learnProcess 

Input:   – the learner agent 

           TK – taught knowledge 

Returns void 

1. Loop through all connections    in    𝑀 // working memory of L 

2.      M-score_X =                    

3.      M-score_Y =                    

4.      //     = knowledge graph for agent L 

5.      //      = awareness threshold for agent L 

6.      //      = confusion interval for agent L 

7.      //              = weight of connection    in taught knowledge 
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8.      Call updateWeight (L,             ) 

9.      Call updateConfusionInterval (        𝑀           𝑀                     

10. End Loop 

11. Loop through all concepts    in    𝑀 

12.      Loop through all concepts    in    𝑀 

13.           If (    and                𝑀 and                ) then 

14.                Set              𝐼 to 1 

15.                Add             to     

16.           End If 

17.      End Loop  

18. End Loop 

End Algorithm 

3.3.1.3.1. Method updateWeight 

The method that updates the connection weights (the centers of confusion intervals) is 

called updateWeight and is used in line 8 of the algorithm learnProcess. According to 

Equation (3.5) (section 3.2.3.2.1), this method updates the weight of a given connection 

(   ) by taking into account two main factors: the existing weight in the learner agent’s 

LTM and the weight taught by the teacher. A short form of Equation (3.5) is given by 

Equation (3.11) presented below: 

      
                   

            
     (3.11) 

Where: 

       connection between concepts X and   in learner agent’s knowledge 

      = weight of connection     
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    = the weight taught by the teacher 

            = weight for TW (in the sense of a weighted average between 

            ) 

The weighted average is computed in line 5 of the method updateWeight. The weight 

for learner’s weight (KW) is 1 and the weight for TW (Adjustment) is computed in line 1 

by taking into account the motivation scores of the two concepts X and Y and the learner 

agent’s knowledge factor L.KF. In lines 7-8 we bound KW between 0 and 1.  

Algorithm updateWeight 

Input: L – learner agent 

           TW – weight taught by the teacher 

Returns void 

1.                                                 

2. //                = the motivation score for concept X 

3. //                = the motivation score for concept Y 

4. // L.KF   the learner agent’s knowledge factor 

5. L.KW = (L.KW + Adjustment * TW) / (1+Adjustment) 

6. // L.KW = learner agent’s knowledge weight 

7.              // lower-bound the learner’s knowledge weight 

8.               // upper-bound the learner’s knowledge weight 

End Algorithm 

3.3.1.3.2. Method updateConfusionInterval 

The method that updates the confusion interval is called updateConfusionInterval and 

is used in line 10 of the algorithm learnProcess. The confusion interval is updated during 
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the learning process according to Equation (3.7) (Section 3.2.3.2.2). The update amount 

is comprised of three factors: spread factor (defined by Equation (3.8), Section 3.2.3.2.2), 

motivation factor (defined by Equation (3.9), Section 3.2.3.2.2), and a learning 

coefficient defined as cil in Equation (3.7). Of note, this method is also called in the 

algorithm for teacher agent working memory processing (algorithm teachProcess, Section 

3.3.2.3). Thus, as it can be seen in the algorithm description below, it treats both types of 

agents: a learner and a teacher agent. 

First, we compute the motivation factor. This factor depends on the differences 

between the motivation scores for the concepts involved in the analyzed connection and 

the awareness threshold. Note that we update the confusion interval differently for an 

agent given its role: a learner or a teacher. If the agent is a learner, then we first check 

whether the input edge exists in the learner’s knowledge. If it is, then we call 

bfsConfusionUpdate (line 10) which involves not only updating the interval of the input 

edge but also propagating the impact of the update to other edges (using the spread 

function defined in Eq. (3.8)).  

Note that we call bfsConfusionUpdate with four input parameters: the original 

knowledge graph (  ), the edge or connection (e), upper-bound distance in the 

knowledge graph (factor D used in Equation (3.8)) and an update factor, which is the 

product of the motivation factor and the learning coefficient cil (Equation (3.7)). Now, if 

the edge is not in the learner’s knowledge, then the edge is added to the learner’s 

knowledge (line 14) and its confusion interval is computed by calling the method 

newEdgeConfusionInterval (line 15). On the other hand, if the agent is a teacher, then we 

know for sure that the edge must be already in the agent’s knowledge. Thus, we 
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immediately call updateEdgeConfusionInterval (line 18). This method is actually part of 

the bfsConfusionUpdate subroutine and thus it is consistent with how a learner agent is 

updated.        

Algorithm updateConfusionInterval 

Input:     – the knowledge graph (containing concepts) specific to a particular agent   

  – edge that exists in working memory (connects concepts X and Y) 

 M-Score_X – motivational score for concept X 

 M-Score_Y – motivational score for concept Y 

            D – upper-bound distance between a pair of connections in    graph 

 AT – attention threshold 

 CF – confusion factor 

Returns void 

1. Set MF to 0  //MF – motivation factor 

2. If M-Score_X >= AT then   

3.      Increment MF by M-Score_X – AT 

4. End If 

5. If M-Score_Y >= AT then   

6.      Increment MF by M-Score_Y – AT 

7. End If 

8. If                then   

9.      If       then  // edge e is in the agent’s knowledge 

10.           Call bfsConfusionUpdate (  , e, D, MF*CF) 

11.      Else 
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12.           //If edge e doesn’t exist in agent’s knowledge, it is created there and 

13.           //its initial confusion interval is computed by calling the method 

14.           //newEdgeConfusionInterval 

15.           add   to    

16.              𝐼   newEdgeConfusionInterval (    ) 

17.      End If 

18. Else  // A is teacher 

19.         𝐼                      𝐼            𝐼 𝑀      

20. End If 

21. End Algorithm 

3.3.1.3.3. Method bfsConfusionUpdate 

The bfsConfusionUpdate method realizes a Breadth-First Search (bfs) traversal of the 

knowledge graph and updates the length of the confusion interval for all edges reachable 

from the starting edge according to Equation (3.7). In bfsConfusionUpdate, a connection 

c is considered reachable if there is a path between the starting edge and c. The 

underlying graph traversal algorithm used is Breadth-First Search. In this type of search 

we visit all the neighbors of a given edge and then visit the neighbors of those 

neighboring edges. The process repeats until all edges reachable from the initial edge 

were visited. The algorithm is perfectly suited for computing the distance from the initial 

edge. For example, the initial edge (the edge where the traversal starts) has a distance of 

0, its direct neighbors have a distance of 1 and the neighbors of those neighbors 

(excluding the initial edge) have a distance of 2. The process of computing the distance is 

done in line 13. Based on the computed distance, in line 7 we compute the spread factor 
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according to Equation (3.8). Line 8 adjusts the confusion interval length of the analyzed 

edge according to Equation (3.7). This is done by calling the 

updateEdgeConfusionInterval method.  

Algorithm bfsConfusionUpdate 

Input:    – the knowledge graph (containing concepts) specific to a particular agent A 

   – edge that exists in working memory and in agent knowledge 

                 (connects concepts X and Y) 

 D – upper-bound distance between a pair of connections in graph    

 UF – confusion interval update factor  

Returns void 

1. Set e’s Visited status to true. 

2. Set        to 0.  

3. // e is the edge in working memory and the bfs traversal starts from it.  

4. // dist = distance of current edge from the edge where the bfs traversal started 

5. Initialize a FIFO queue Q 

6. Q.enqueue(e) 

7. While Q is not empty // start the visits 

8.      s   Q.dequeue()   // retrieve the front edge/connection from the queue 

9.      SF   1 – s.dist / D 

10.         𝐼                      𝐼            𝐼 𝑆       //Eq. (3.7) 

11.      Loop through all neighboring edges       of s  

12.           // we check the edge was not visited by a bfs traversal that started with 

13.           // another edge in the working memory than e 
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14.           If (       Visited status is false) then 

15.                                            // add 1 to the distance until it is D 

16.               Set        Visited status to true 

17.               Q.enqueue (    ) 

18.           End If 

19.      End Loop 

20. End While 

End Algorithm 

 

3.3.1.3.4. Method updateEdgeConfusionInterval 

The algorithm updateEdgeConfusionInterval returns the updated confusion interval 

length for a given connection (using Equation 3.7). Note also that the confusion interval 

length is bound between 0.05 and 1, as imposed in the updateEdgeConfusionInterval 

method. 

Algorithm updateEdgeConfusionInterval 

Input:  𝐼 – the confusion interval of a knowledge edge 

  – confusion interval change amount 

Returns double (the adjusted CI value) 

1.  𝐼      𝐼     // upper-bound the CI 

2.  𝐼   𝐼 –     // update the CI 

3. CI       𝐼       // lower-bound the CI 

4. Return  𝐼 

End Algorithm 
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3.3.1.3.5. Method newEdgeConfusionInterval 

The algorithm newEdgeConfusionInterval returns the initial confusion interval length 

for a newly created connection in a learner agent’s knowledge. The value of the length 

depends on the confusion interval length values of connections neighboring the new 

connection. Each neighboring connection shares one (and only one) concept with the new 

connection. The equation used for computing the confusion interval length of the new 

connection is presented below:  

     𝐼  
∑               ∑            

|   | |   |
     (3.12) 

Where: 

     = connection between concepts X and Y 

 𝑆   = set of concepts connected to concept X (except concept Y) 

 𝑆   = set of concepts connected to concept Y (except concept X) 

 |𝑆  | and |𝑆  | are the cardinalities of the sets of concepts related to concepts   

and  , respectively 

Equation (3.12) has been designed with the intuition that the initial confusion interval 

length for a newly created connection should resemble the interval length of its 

neighborhood in the learner agent’s knowledge. This is supported by cognitive and 

psychological research showing that self-efficacy (which is modeled by the confusion 

interval) generalizes across related knowledge such as reading and writing (Shell et al. 

1989, 1995). 

Below we present the pseudo-code of the algorithm newEdgeConfusionInterval. In 

lines 7-20 we loop through all concepts in the learner agent’s knowledge and look for 

connections involving either concept X (lines 10-13) or concept Y (lines 16-19). We 
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count those connections and add up their confusion interval lengths. Afterwards, in line 

22 we compute the average confusion interval length of connections involving either 

concept X or concept Y and return this value. Otherwise, since it has no neighbor 

connections, it should start out by being the weakest connection possible. Thus, we 

simply assign the largest confusion interval length to the connection (line 24). 

Algorithm newEdgeConfusionInterval 

Input:    – the knowledge graph (containing concepts) specific to a particular learner 

agent A 

   – a newly created edge in learner agent’s knowledge 

                 (connects concepts X and Y) 

Returns double (the CI value for the newly created connection) 

1.              

2.              

3. Set 𝑆   to 0 

4. Set 𝑆   to 0 

5. Set sum_CI_X to 0 

6. Set sum_CI_Y to 0 

7. Loop through concepts    in    

8.      // loop through all concepts in    that are connected to X (except Y) 

9.      // and add their confusion intervals and count them 

10.      If                          then 

11.           𝑆   𝑆     // compute the cardinality of the set 

12.                𝐼        𝐼                𝐼 
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13.      End If 

14.      // loop through all concepts in    that are connected to Y (except X) 

15.      // and add their confusion intervals and count them 

16.      If                          then 

17.           𝑆         // compute the cardinality of the set 

18.                𝐼        𝐼                𝐼 

19.      End If 

20. End Loop 

21. If (𝑆   𝑆      then 

22.      Return       𝐼        𝐼     𝑆   𝑆    

23. Else 

24.      Return 1  // we assign to it the largest confusion interval length   

25. End If 

End Algorithm 

3.3.2. Teaching 

Similar to the learning process, teaching is comprised of two stages: allocating 

working memory and processing the content of working memory for the teacher agent. 

Just as in the case of a learner agent, the process of allocating working memory for the 

teacher has two versions.  

The first one is teachAllocate_basic, where one working memory slot is occupied with 

one concept. We compute how many concepts with a high motivation are not isolated and 

then compare this number with the working memory capacity in order to ensure that the 

capacity is not exceeded by allocating too many concepts. 
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The second version is teachAllocate_chunking, where we compute the number of 

LTM chunks that taken together contain all the connections with high motivation that are 

not isolated. In the case of this version, this number is then compared to the working 

memory capacity in order to ensure that the capacity is not exceeded by allocating too 

many chunks. 

Working memory processing for the teacher agent is done by the algorithm 

teachProcess and it consists in updating the teacher agent’s confusion interval lengths. 

3.3.2.1. Working memory allocation for teaching without chunking 

The method teachAllocate_basic ensures that the concepts with the highest motivation 

scores for the teacher will be the ones that are being taught. We exclude from this list the 

concepts that are isolated in teacher’s LTM. The rationale for this exclusion is the fact 

that C-ULM knowledge, similar to general human knowledge, is contained in the 

connections existent between various concepts (Shell et al. 2010). Thus, according to the 

ULM model, the C-ULM isolated concepts do not have a human counterpart and are just 

the by-product of the computer simulation.  

In line 2 we sort all the concepts in teacher agent’s LTM by their motivation scores (in 

descending order). In lines 3-10 we loop through the sorted concepts and add all 

connected concepts to a concept list. The process of adding concepts to this list stops 

when the size of the list reaches teacher agent’s working memory capacity (line 6). The 

concept list will be provided as input to the teachProcess method. 

Algorithm teachAllocate_basic 

Input:   – the teacher agent 

Returns void 
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1. // T.K = the knowledge graph of the teacher agent 

2. Set                to nil 

3. Sort all concepts    in T.K by           (in descending order) 

4. Loop through sorted concepts    in     

5.      If    is not isolated then 

6.           Add    to                

7.           If                        𝑀   𝑆      then 

8.                break // abort as there are too many concepts 

9.           End If 

10.      End If 

11. End Loop 

End Algorithm 

3.3.2.2. Working memory allocation for teaching with chunking 

The method teachAllocate_chunking of a teaching agent corresponds to the 

learnAllocate_chunking method of a learner agent. Similar to the teachAllocate_Basic 

method, we first create the concept list T.concept_list. We add to this list only those 

concepts that have a motivation score higher than the awareness threshold T.AT (lines 7 

– 15). We compute how many long-term knowledge chunks can be entered into the 

working memory in lines 16-23. This is done by calling bfsVisit_Structure to find all 

other concepts connected to the concept at hand. This network, or a connected 

component, is seen as a chunk. The concept list is then used in the teachProcess method 

in order to determine the knowledge graph that is being taught. 

Algorithm teachAllocate_chunking 
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Input:   – the teacher agent 

 𝐼  – threshold for the confusion interval of a connection (used when the 

connection is visited by method bfsVisit_Structure) 

Returns void 

1. Sort all connections    in      by                                              

2. //(in descending order) 

3. Initialize the Visited status of all connections    in      to false 

4. Set                to nil 

5. Set connectedComponents to 0 

6. Loop through all connections    in      

7.      Set isAboveAT to false 

8.      If (                       ) then  

9.           Add             to                

10.           Set isAboveAT to true 

11.      End If 

12.      If  (                       ) then 

13.           Add             to                

14.           Set isAboveAT to true 

15.      End If 

16.      If (  ’s Visited status is false) then 

17.           Increment connectedComponents by 1 

18.           Call bfsVisit_Structure (    ,     𝐼 ) // change the Visited status of all edges  

19.            // in      that are “reachable” from    to true. 
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20.      End If 

21.      // We break if the number of knowledge chunks is greater than the working  

22.      // memory capacity 

23.      If (                       𝑀   𝑆    ) then 

24.           break  // abort as there are too many chunks 

25.      End If 

26. End Loop 

End Algorithm 

3.3.2.3. Working memory processing for teaching 

The method teachProcess updates the confusion intervals of connections that are being 

taught and creates the knowledge sub-graph that is the product of teaching. This sub-

graph is ‘sent’ to the learner and it will fill the learner’s working memory. We use a 

double loop (lines 2-19) in order to exhaustively check every pair of concepts in the 

concept list filled by the method teachAllocate. If the two concepts are connected in 

teacher agent’s LTM, we create the corresponding edge in the taught sub-graph TK (line 

15). Furthermore, we update the confusion interval in the teacher agent’s LTM (line 16). 

This update is done by the method updateConfusionInterval presented in section 

3.3.1.3.2. In order to compute the weight of edges that make up the taught sub-graph TK, 

we pick up a random value—generated uniformly—in an interval centered around the 

weight of the corresponding edge in teacher agent’s LTM (line 12).  

Algorithm teachProcess 

Input:   – the teacher agent 
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Returns TK – the knowledge graph that is being taught (the learner’s WM will be filled 

with TK) 

1. Set TK to nil //initialization 

2. Loop through concepts    in                

3.      Loop through concepts    in                

4.           //      – the knowledge graph of the teacher agent 

5.           If (     (     )      ) then 

6.                // We compute the motivation scores for concepts    and    

7.                M_X =           

8.                M_Y =           

9.                center =      (     )      

10.                  =      (     )  𝐼 

11.                // We pick up a random value in the interval [                       

12.                taught_weight =                                

13.                         = taught_weight 

14.               // We add a connection with the taught weight to taught knowledge graph TK 

15.                add     to TK 

16.                Call updateConfusionInterval (          (     ) 𝑀    𝑀              

17.           End If 

18.      End Loop 

19. End Loop     

20. Return TK  

End Algorithm 
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3.4. Knowledge Decay 

The process of knowledge decay (or simply put, forgetting) is triggered whenever a 

connection hasn’t been used for a specified number of time steps. In its basic form, if a 

given connection hasn’t entered working memory for a certain number of time steps, 

knowledge decay will be triggered for that connection and as a consequence its confusion 

interval is enlarged. In the chunking version, if a connection hasn’t entered working 

memory for a number of steps that would normally trigger decay in the basic version and 

this connection is connected to a connection that entered working memory, then decay 

will not start and the confusion interval will instead be shortened. If however, a 

connection is not used for a number of time steps and it is not connected to a connection 

that enters working memory, then knowledge decay is triggered. Thus, LTM connections 

experience less decay in the chunking version of the decay process.  

Below we present the algorithm for realizing knowledge decay in the context of the 

chunking mechanism. As mentioned earlier, if a connection is reachable from a 

connection found in the working memory, then that connection will not decay (the 

confusion interval will instead be shortened). We count the number of steps that passed 

since a connection entered working memory for the last time. This is done by 

incrementing the disuse attribute in line 11. In lines 2-6, we visit all connections that are 

reachable from the connections currently found in working memory and reset their disuse 

attribute to 0. In lines 7-16, we apply decay (increase the confusion interval length) for all 

connections that were not visited in lines 2-6 and haven’t entered working memory for at 

least START_DECAY steps and at most END_DECAY steps. START_DECAY 

represents the maximum number of consecutive steps without triggering decay for a 
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connection that didn’t enter working memory and hasn’t been connected to a connection 

inside working memory. END_DECAY indicates how many steps the decay process is 

allowed to continue. Thus, after END_DECAY steps, the decay process is stopped even 

if the connection or any connection reachable from it hasn’t yet entered working memory. 

In this manner, decay won’t be triggered indefinitely for a connection that never enters 

working memory or does so in a very infrequent manner. 

Algorithm decayKnowledgeGraph 

Input:     – the knowledge graph (containing concepts) specific to a particular agent A 

 𝑀  – the list of connections (edges) found in the working memory of agent A 

DR – decay rate 

START_DECAY – number of consecutive steps without triggering decay for a 

connection that didn’t enter working memory and hasn’t been connected to a 

connection inside working memory 

END_DECAY – number of consecutive steps until decay is stopped (the 

connection still hasn’t entered working memory) 

Returns void 

1. Initialize the Visited status of all edges    in    to false 

2. If (agent is not idle) //agent learned or taught during the time step 

3.      Loop through all edges    in  𝑀  

4.           Call bfsDecayVisit(  ,   )  // visit all graph edges that are reachable from    

5.      End Loop 

6. End If 

7. Loop through all edges    in    
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8.      If   ’s Visited status is false 

9.           //    is not reachable from any connection found in  𝑀 ; therefore it is not 

10.          // ‘used’ in the current step and the disuse attribute increases 

11.                                   

12.           If              𝑆                      then 

13.                    𝐼                                𝐼     

14.           End If 

15.      End If 

16. End Loop 

End Algorithm 

The actual decay algorithm for a single connection is named 

decayKnowledgeConnection and is called in line 13 of the decayKnowledgeGraph 

algorithm. The decayKnowledgeConnection algorithm simply implements the 

exponential growth model embedded in Equation (3.10). 

Algorithm decayKnowledgeConnection 

Input:   𝐼 – the confusion interval of a knowledge connection 

DR – decay rate 

Returns double (the adjusted CI value) 

1.  𝐼  𝐼       // CI is lengthened by multiplying it with a value greater than 1 

2.  𝐼      𝐼     // upperbound the CI 

3. Return  𝐼 

End Algorithm 
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The algorithm bfsDecayVisit (called in line 4 of the decayKnowledgeGraph 

algorithm) performs a Breadth-First-Search of all connections that are reachable from a 

given connection and sets their disuse attribute to 0 (lines 7-11 in bfsDecayVisit).  

Algorithm bfsDecayVisit 

Input:    – a graph of concepts 

e – an edge (a connection) 

Returns void  

1. Set e’s Visited status to true. 

2. Set e.disuse to 0. 

3. Initialize a FIFO queue Q 

4. Q.enqueue(e) 

5. While Q is not empty 

6.      s   Q.dequeue()   // retrieve the front node/concept from the queue 

7.      Loop through all neighbors      of s 

8.           Set     ’s Visited to true 

9.           Set             to 0. 

10.           Q.enqueue(    ) 

11.      End Loop 

12.   End While 

End Algorithm 

3.5. Agent Tasks 

 Similar to an agent’s LTM, a task is represented by a weighted graph consisting of 

nodes that represent knowledge concepts and edges that represent the connections 
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between those concepts. In contrast to LTM, however, these connections do not have an 

associated “confusion interval”. Each connection weight of a given task has to be 

matched within a certain margin of error by an agent’s weight for that connection in its 

LTM in order for the agent to successfully solve the task. The process of attempting a 

task (Section 3.4.1) uses its own chunking mechanism in order to retrieve the necessary 

LTM chunks. The agent uses the retrieved chunks in order to match the task connection 

weights and eventually solve the task. After a task is attempted, an agent obtains 

feedback from the task. This process is called the task feedback process and is described 

in Section 3.4.2. 

3.5.1. Task Attempt 

In order to realize a chunking mechanism while an agent attempts a task, we have to 

start with the concepts required by the attempted task. These concepts are connected in a 

certain pattern that creates the task graph. Chunking can be easily realized by counting 

how many separate task sub-graphs are in a given task graph and then assume that each 

sub-graph is contained by one working memory slot.  

For example, a task with 10 connections but only 3 separate sub-graphs containing 

those connections could be solved by an agent with a working memory of 3 or more slots. 

If the working memory capacity is below the number of separate sub-graphs then the task 

is abandoned. This is because there are not enough memory slots to fit every chunk found 

in the task graph.  

Below we present three variants of this algorithm: taskAttempt_Basic, 

taskAttempt_Structure and taskAttempt_Structure_Weight. In the basic version, a chunk 

is at least one isolated concept.  In the structure version, a chunk is at least one edge with 
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a confusion interval length below a specified threshold. If the number of chunks found in 

the agent’s LTM is greater than the number of working memory slots, the task is 

abandoned as it means that the amount of LTM “units” that the agent has to retrieve and 

store—in order to solve the task—in its working memory is more than what its working 

memory can hold. Otherwise, the task is completed. In the following, taskAttempt_Basic 

invokes another function bfsVisit, while taskAttempt_Structure invokes 

bfsVisit_Structure, correspondingly. Conceptually, bfsVisit and bfsVisit_Structure are 

very similar. Both are used to visit neighboring, reachable concepts (nodes in bfsVisit) or 

connections (edges in bfsVisit_Structure) in a graph. In bfsVisit, a node n is considered 

reachable if there is a connection between the current node and n and that connection has 

a confusion interval smaller than the threshold CIT. Likewise, in bfsVisit_Structure, an 

edge c is reachable from a current edge e if that edge c has a confusion interval smaller 

than the threshold CIT.  

CIT is a simulation constant and its range is between 0 and 1 (the maximum confusion 

interval length). The rationale for using CIT is to allow the simulation user to specify 

how strong the connections within a chunk should be (strong connections have small 

confusion intervals). If they are very strong, CIT can be set to a value close to 0 such as 

0.1 and chunks will be formed only by connections having confusion interval lengths less 

than 0.1. During our experiments, we opted for the most explorative (less selective) 

process and thus considered chunks formed with connections of any strength. Therefore, 

we set CIT to the maximum value of 1. 

Algorithm taskAttempt_Basic 

Input:     – task graph, containing the concepts needed to complete a task,  
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W – the number of working memory slots 

   – the knowledge graph (containing concepts) specific to a particular agent 

CIT – threshold for the confusion interval for a connection for it to be visited 

Returns a Boolean (true if task is accomplished, false otherwise) 

1. Initialize the Visited status of all concepts    in    to false 

2. Set connectedComponents to 0 

3.   Loop through all concepts    in    

4.      Locate in    the corresponding     for    

5.  If (  ’s Visited status is false) then 

6.   Increment connectedComponents by 1 

7.   Call bfsVisit(  ,     𝐼 ) // change the Visited status of all concept nodes 

8.                     // in    that are “reachable” from    to true. 

9.  End If  

10. End Loop 

11. If (connectedComponents > W) then // task too difficult for memory 

12.  Return false 

13. Else 

14.  Return true 

15. End If 

End Algorithm 

Algorithm bfsVisit 

Input:    – a graph of concepts  

c – a node (a concept) 
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CIT – required threshold for the confusion interval of a connection in order to 

visit it 

Returns void  

1. Set c’s Visited status to true. 

2. Initialize a FIFO queue Q 

3. Q.enqueue(c) 

4. While Q is not empty 

5.      s   Q.dequeue()   // retrieve the front node/concept from the queue 

6.      Loop through all neighbors      of s (directly connected) 

7.           If (CI(    , s) < CIT)  then // CI(a,b) is the confusion interval of the  

8.           // connection a-b 

9.               Set     ’s Visited to true 

10.               Q.enqueue(    ) 

11.           End If 

12.      End Loop 

13.   End While 

End Algorithm 

The second variant (taskAttempt_Structure) checks that the agent has the structure (set 

of connections) of the task in its knowledge (lines 3 – 11). In lines 12 – 16, it checks if 

the task is too complex for the agent’s working memory. If it is too complex, then there 

are too many LTM chunks that have to enter working memory. In this case, there are not 

enough working memory slots to accommodate the task and the agent fails to solve the 

task (lines 12-13). If the task is not so complex, then the number of retrieved LTM 
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chunks is less than the working memory capacity and the agent consequently readily 

solves the task (lines 14-15). 

Algorithm taskAttempt_Structure 

Input:     – task graph, containing the concepts needed to complete a task,  

W – the number of working memory slots 

   – the knowledge graph (containing concepts) specific to a particular agent 

CIT – threshold for the confusion interval for a connection for it to be visited 

Returns a Boolean (true if task is accomplished, false otherwise) 

1.    Initialize the Visited status of all connections    in    to false 

2.    Set connectedComponents to 0 

3.    Loop through all connections     in    

4.        Locate in    the corresponding    for    

5.        If (   is not found or      𝐼 > CIT)  then 

6.            Return false 

7.        Else If (  ’s Visited status is false) then 

8.            Increment connectedComponents by 1 

9.            Call bfsVisit_Structure(  ,     𝐼 ) // change the Visited status of all edges  

      // in    that are “reachable” from    to true. 

10.      End If 

11.    End Loop 

12.    If (connectedComponents > W) then // task too difficult for memory 

13.        Return false 

14.    Else 
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15.        Return true 

16.    End If 

End Algorithm 

Algorithm bfsVisit_Structure 

Input:    – a graph of concepts  

e – an edge (a connection of two concepts with a confusion interval) 

CIT – threshold for the confusion interval for a connection for it to be visited 

Returns void  

1. Set e’s Visited status to true. 

2. Initialize a FIFO queue Q 

3. Q.enqueue(e) 

4. While Q is not empty 

5.      s   Q.dequeue()   // retrieve the front edge/connection from the queue 

6.      Loop through all neighboring edges       of s (directly connected) 

7.           If (      𝐼   𝐼 ) then // (a.CI is the confusion interval of the edge a) 

8.               Set     ’s Visited status to true 

9.               Q.enqueue(    ) 

10.           End If 

11.      End Loop 

12. End While 

End Algorithm 

The third variant, taskAttempt_Structure_Weight is similar to taskAttempt_Structure. 

It checks to see that the structure of the task completely exists in the agent’s knowledge 
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(lines 4-14). In lines 9-13 we count the connected components. We do this in order to see 

if the working memory capacity is large enough for attempting the task (lines 15-16). If it 

is, we proceed to the last step, namely checking to see if the weights used by the agent to 

attempt the task match the task weights. This is done in lines 17-23 by calling 

checkDistances method. We emphasize that this check for weight match is done only if 

the entire task structure has been found in the agent’s knowledge (line 17). This makes 

sense since otherwise, we would check for weights without having the necessary 

connection in agent’s knowledge or the confusion interval of such a connection would be 

too large (maximum value of 1). Thus, the only difference between 

taskAttempt_Structure_Weight and taskAttempt_Structure is that in the former one we 

make a more complex task attempt. This task attempt is mainly composed of two parts: 

the first one, identical to taskAttempt_Structure is to check whether the task structure is 

found in the agent’s knowledge. The second part makes the difference between the two: 

we check whether the agent’s weights used for attempting a task are close enough to the 

task weights. That is, this third variant is a more stringent version to make sure that an 

agent’s knowledge has to match both structurally as well as in terms of weight in order to 

be able to attempt to solve a task. 

Algorithm taskAttempt_Structure_Weight 

Input:     – task graph, containing the concepts needed to complete a task,  

W – the number of working memory slots 

   – the knowledge graph (containing concepts) specific to a particular agent 

CIT – threshold for the confusion interval for a connection for it to be visited 

Returns a Boolean (true if task is accomplished, false otherwise) 
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1. Initialize the Visited status of all connections    in    to false 

2. Set connectedComponents to 0 

3. Set matchTaskStructure to true 

4. Loop through all connections     in    

5.      Locate in    the corresponding    for    

6.      If (   is not found or      𝐼 > CIT)  then // that means the agent A does  

7.      // not know much about     

8.      matchTaskStructure = false 

9.      Else If (  ’s Visited status is false) then  

10.           Increment connectedComponents by 1 

11.           Call bfsVisit_Structure (  ,     𝐼 ) // change the Visited status of  

12.           // all edges in    that are “reachable” from    to true. 

13.      End If 

14. End Loop 

15. If (connectedComponents > W) then // task too difficult for memory 

16.      Return false 

17. Else If           𝑆                  then 

18.      Set matchTaskWeights to true 

19.      matchTaskWeights   checkDistances (  ,   ) 

20.      Return matchTaskWeights 

21. Else 

22.      Return false 

23. End If 
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End Algorithm 

Called in line 19 of the taskAttempt_Structure_Weight algorithm, the checkDistances 

method checks whether all the agent’s weights used to attempt the task are close enough 

to the corresponding task weights. In order to do this, we loop through all connections in 

the task graph, locate the corresponding connection in agent’s knowledge and pick up a 

uniformly distributed random value from the interval centered around the agent’s 

knowledge connection weight (lines 3-5). If at least one random value is not close enough 

to the task weight (an error margin of 0.05), then the algorithm returns false (lines 6-10). 

Otherwise, it returns true in line 12. The rationale for the “close enough” design is to 

allow for “approximate matching” so that tasks can be attempted without having to 

exactly match the task connection weight values. 

Algorithm checkDistances 

Input:     – the knowledge graph (containing concepts) specific to a particular agent 

   – task graph, containing the concepts needed to complete a task 

Returns a Boolean (true if task is accomplished, false otherwise) 

1. Set matchTaskWeights to true 

2. Initialize the Matched status of all connections    in    to true 

3. Loop through all connections     in    

4.      Locate in    the corresponding    for    

5.      agent_attempt_weight =                      𝐼                𝐼    

6.      If                                                    then 

7.           Set matchTaskWeights to false 

8.           Set      Matched status to false 
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9.           Return matchTaskWeights 

10.      End If 

11. End Loop 

12. Return matchTaskWeights 

End Algorithm 

3.5.2. Task Feedback 

The task feedback process is a reinforcement learning type of feature that occurs 

immediately after the task attempt process. If an agent solved a task, the weight centers 

for the agent’s LTM connections corresponding to the task connections are set to the 

weight values randomly picked from the associated confusion intervals and such that all 

interval lengths are set to smaller values. This signifies that the agent has reached a 

higher level of confidence in its long-term knowledge about the connections involved in 

the solved task. In a similar fashion, humans also learn from accomplishing specific 

tasks, not only from what they are being taught by others (Shell et al. 2010). 

Correspondingly, if an agent failed to solve a task, the confusion interval lengths of the 

involved connections are increased. Similarly, after failing to accomplish a specific task, 

a person might explore other options of solving it (Shell et al. 2010). In C-ULM, this 

exploration for solutions is increased by the increase of confusion interval lengths. Thus, 

in a way, the “rewards” for solving or failing tasks are integrated into an agent’s 

reasoning process as “self-efficacy”—confidence in what the agent knows, as in the 

shortening or lengthening of confusion intervals. 

Below we present the algorithm taskFeedback that accomplishes the task feedback 

process. In case the agent failed to solve a task, we enlarge the confusion intervals for all 
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connections that were not matched during the task attempt process (lines 2 – 7). The 

rationale behind this design is to increase the capability to explore other values for those 

connections that were not matched. By increasing the confusion interval lengths for the 

unmatched connections, the range of potential values at the next time step is increased. 

We make the general assumption that when a task connection weight is not matched, the 

current agent’s confusion interval doesn’t contain the task weight. Following this 

assumption, we increase the agent’s confusion intervals for the unmatched connections so 

that the chance for its new intervals to contain the task connection weights to increase. 

This also corresponds to decay: if an agent’s connection is not matched at this time, its 

knowledge of the connection starts to decay, leading to the agent’s confusion interval 

being increased. This confusion interval increase is given by the value of the input 

constant FF. FF is a simulation constant and its value (0.15) was chosen through various 

experiments testing for system performance.  

If the agent successfully solved a task, we set its connection weights to the task 

weights and its confusion interval is set to a very small value given by the input constant 

SF (lines 8 – 11). SF is another simulation constant and the reason for it being very small 

(0.005) is to minimize confusion for the given agent connection involved in a solved task. 

By minimizing confusion, the motivation of the two concepts connected by this 

connection is sharply increased. Thus, as a teacher in subsequent time steps, the agent 

will feel strongly motivated to teach about the weight of this connection. As a learner, it 

will also feel strongly motivated to learn even more about this connection and there are 

chances he will learn about incorrect weights for this connection. As a potential direction 

for future work, the cic coefficient (Section 3.2.3.2.1) for connections involved in solved 
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tasks could be sharply decreased so that a successful agent becomes less prone to learning 

of incorrect weights after solving the task. Given this aspect and the fact that the teaching 

process changes only confusion intervals and not connection weights, a smaller cic value 

would enable the agent to teach the correct weights for a longer period of time. Another 

important reason for such a small SF value is to slow down—as a counterweight, sort of 

speak—potential confusion interval increases resulting from the knowledge decay 

process. Thus, the knowledge about the correct weights obtained by solving the task is 

kept for a longer period of time as compared to a scenario with a larger SF value. 

Algorithm taskFeedback 

Input:     – the knowledge graph (containing concepts) specific to a particular agent 

   – task graph, containing the concepts needed to complete a task 

FF – confusion interval update amount for failed task attempt feedback 

SF - confusion interval for successful task attempt feedback 

Returns a Boolean (true if task is accomplished, false otherwise) 

1. Set matchTaskWeights to true 

2. Loop through all connections    in    

3.     Locate in    the corresponding    for    

4.     If (  ’s Matched status is false) then 

5.             𝐼                        𝐼      

6.     End If 

7. End Loop 

8. If                            then 

9.                       
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10.         𝐼   𝑆  

11. End If 

End Algorithm 

3.6. Agent and task knowledge initialization 

In this section we present the algorithms used for creating the initial agent and task 

knowledge graphs. During a simulation, the task knowledge graphs remain unchanged 

and the agent knowledge graphs evolve through the processes of learning, teaching, 

knowledge decay, and task attempts and completions. 

To create agent and task knowledge, we follow a 2-step process: first, we create an 

initial knowledge graph for each agent and task. This step is performed by the method 

initKnowledgeTopology. 

In contrast to the first step, the second step differs for the agent and task knowledge 

creation. 

For agent knowledge creation, we make sure that all the connections present in any 

task knowledge graph are also present in at least one arbitrary agent knowledge graph. 

The rationale for this design is to have an agent connection space that completely 

includes the task connection space when the simulation is started. In this manner, any 

connection present in the tasks can be taught by at least one agent that contains that 

connection from the beginning of the simulation. The method that ensures this 

characteristic of the agent knowledge for our simulation is called 

agentKnowledgeCreation. 

The method agentKnowledgeCreation follows the 2-step process described above in 

order to create the agent knowledge. The first step is performed by calling the method 
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initKnowledgeTopology. The second step is performed by using two help methods: 

findUnmatchedTaskConnection finds task connections that do not exist in any agent 

knowledge created by the method initKnowledgeTopology and getUCL_Agent_List finds 

a random list of agents for which we add connections found by the method 

findUnmatchedTaskConnection. 

The first step in agent and task knowledge creation is represented by the 

initKnowledgeTopology method. This method creates the initial knowledge graph for an 

agent or task knowledge.  This method was already used in the previous designs and is 

further used in the new algorithms agentKnowledgeCreation and 

taskKnowledgeCreation.  

We use a double loop in lines 1-13 in order to access all pairs of available concepts. 

Since we use undirected graphs, we access each pair of concepts only once. We obtain a 

random value (dubbed connectionValue) in line 3 and compare it to a connectivity 

threshold in line 4 (connectionThreshold). If connectionValue is lower than  

connectionThreshold , then we create a new connection with a confusion interval and a 

weight center (lines 6-9) and add it to the initial knowledge graph (line 10). The 

underlying strategy of this initialization is to generate random values for the confusion 

interval and weight center of the connection between a pair of concepts    and   . The 

idea behind comparing the values of connectionValue and connectionThreshold is to 

ensure that not all possible connections are created in the agent knowledge. All values of 

connectionValue that are below connectionThreshold will lead to a new connection and 

all values of connectionValue that are above connectionThreshold will not lead to a new 

connection (lines 3 and 4). In this manner, the probability to generate a connection 
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between any two concepts is given by the value of connectionThreshold. Furthermore, 

this probability indicates the level of graph connectivity. Thus, if connectionThreshold 

has a low value then the graph connectivity is low (sparse graph); however, if 

connectionThreshold has a high value (close to 1) then the graph connectivity is high 

(dense graph). If connectionThreshold is 1 then we obtain a mesh topology for the initial 

agent knowledge. 

Algorithm initKnowledgeTopology 

Input:  CL – list of available concepts 

connectionThreshold – threshold that indicates the connectivity of the knowledge   

                                      graph 

Returns    – the initial knowledge graph  

1. Loop through all concepts    in CL 

2.     Loop through all concepts    in CL 

3.         connectionValue = getDouble() // obtain a random value between 0 and 1 

4.         If (connectionValue < connectionThreshold) 

5.             //numConcepts = number of available concepts 

6.             maxConfusion  = getDouble() 

7.             minConfusion = getDouble() 

8.              (     )  I = maxConfusion – minConfusion 

9.              (     )              = (maxConfusion + minConfusion) / 2 

10.             add  (     ) to    

11.         End If 

12.     End Loop 
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13. End Loop 

14. Return    

End Algorithm 

One of the help methods used in the second step in agent knowledge creation is the 

getAgentSubList method. This method creates an arbitrarily sized and arbitrarily ordered 

set of agents. In order to create this set, we perform three steps: (1) we generate a random 

integer (in line 1) in order to determine the size of the agent set, (2) we randomize the 

order of the agents (in line 3) by using the shuffle method, and (3) we extract the first 

maxAgentIndex agents from the input list AL. We perform the third step in line 4 by 

using the minimum index of 1 and maximum index of maxAgentIndex. As its name 

implies, the rationale for creating this help method is to create a subset of the list of 

agents given as an input. 

Algorithm getAgentSubList 

Input:  AL – agent list 

Returns agentSubList – a subset of the list of agents given as input 

1. maxAgentIndex = getInteger (1, AL.size)  

2. // obtain a random value between 1 and AL.size 

3. AL = Shuffle (AL) // we change the order of agents in the list in a randomized 

manner 

4. agentSubList = AL [1, maxAgentIndex]   

5. // we store in agentSubList a subset of the agent list AL; this subset starts with the 

6. // first agent in AL and ends with the agent having the index maxAgentIndex 

7. Return agentSubList 
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End Algorithm 

Another help method used in the second step of agent knowledge creation is the 

insertTaskInformation method. This method updates an existent edge between two 

concepts in the agent knowledge or adds a new edge if there exists a task that connects 

the two concepts. In line 2 we ensure that each agent in the input list AL has a confusion 

interval between 0.1 and 1 for the edge that is being updated. In line 3 the weight of agent 

connection e is changed to a random value chosen in an interval centered on the task 

connection weight. In lines 4-6 we add connection e to the agent knowledge if this 

connection doesn’t already exist in this knowledge graph. The rationale for this method is 

to insert the information related to a given task connection t_e (the connection itself and 

its required weight) in a set of agents given as input (AL). Of note is that we do not 

provide the agents with the exact information (the value for the assigned weight is not 

exactly the task weight value) and the confusion interval is at a minimum of 0.1 (line 2). 

In this manner, we show that the system is robust enough to solve complex tasks even if 

it is not given the exact information related to the existent task connections.  

Algorithm insertTaskInformation 

Input:  AL – agent list 

              e – edge to be added to agent graph knowledge or only changed in terms of  

                   confusion interval and weight 

              t_e – task edge that relates the same two concepts as edge e  

Returns void 

1. Loop through all agents    in AL 

2.                         
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3.                                                       

4.     If           then 

5.         add   to       

6.     End If 

7. End Loop 

End Algorithm 

Now, having described the help methods initKnowledgeTopology, getAgentSubList 

and insertTaskInformation, we are now ready to present our agentKnowledgeCreation 

and taskKnowledgeCreation methods as follows. 

In the agentKnowledgeCreation method, the entire two-step process of creating the 

agent knowledge is executed. As mentioned before, the first step is done by calling the 

help method initKnowledgeTopology for each agent in the input list AL (lines 1-3). In 

the second step (lines 4-27), we make sure that each connection existent in a task can be 

found in at least one agent’s initial knowledge (the knowledge that an agent has at the 

beginning of the simulation). By ensuring this characteristic of the set of initial agent 

knowledge graphs, every task connection exists in at least one agent knowledge graph at 

the start of the simulation (the simulation starts after agentKnowledgeCreation and 

taskKnowledgeCreation finish execution). In this manner, any task connection can be 

taught by at least one agent. We loop exhaustively through all pairs of concepts (lines 4-

5) and consider the first task that contains a connection between the two concepts (lines 

6-7). In lines 11-15 we create a set of agents that also contain the connection between the 

same two concepts    and   . If there is no agent that contains this connection, we obtain a 

subset of the entire list of agents AL by calling the method getAgentSubList and insert 
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the connection in each agent of this subset by calling the method insertTaskInformation 

(lines 16-18). If there are agents that contain the connection between concepts    and   , 

then we call method insertTaskInformation only for those agents (lines 19-20). In this 

manner, we add the connection to a set of agents (line 5 in insertTaskInformation) only if 

there are no agents that already have this connection after the execution of first step in 

agent knowledge creation (method initKnowledgeTopology). In line 23, we break from 

the task loop since the other tasks that present the same connection have also the same 

weight. This feature is ensured by the method taskKnowledgeCreation which is called 

before agentKnowledgeCreation.  

According to the design of teachAllocate and teachProcess methods, a teacher can 

teach only connections that exist in its own knowledge. By executing the second step of 

agent knowledge creation (lines 4-27) we ensure that the task connection and weight 

spaces are completely included in the agent connection and weight spaces,  respectively. 

Thus, all task connections and weights are ‘teachable’ right from the start of the 

simulation.  

Algorithm agentKnowledgeCreation 

Input:   AL – agent list 

            TL – task list 

CL – list of available concepts 

connectionThreshold – threshold that indicates the connectivity of the knowledge   

                                      graph 

Returns void 

1. Loop through all agents    in AL 
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2.           = initKnowledgeTopology (CL, connectionThreshold) 

3. End Loop 

4. Loop through all concepts    in CL 

5.     Loop through all concepts    in CL 

6.         Loop through all tasks    in TL  

7.             If        (     )         then 

8.                Set MCL_Agent_List to empty 

9.                Set UCL_Agent_List to empty 

10.                 Loop through all agents    in AL 

11.                     If   (     )         // agent    contains the connection between  

12.                     //    and    

13.                         add    to MCL_Agent_List 

14.                   End If 

15.               End Loop 

16.                 If (MCL_Agent_List is empty) then // no agent contains connection 

17.                 //  (     ) 

18.                    UCL_Agent_List = getAgentSubList (AL) 

19.                     insertTaskInformation (UCL_Agent_List,  (     )) 

20.                Else 

21.                     insertTaskInformation (MCL_Agent_List,  (     )) 

22.                End If 

23.                Break  

24.                // we break from the task loop since other tasks containing connection  
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25.                //       (     ) have the same weight for this connection 

26.             End If 

27.         End Loop 

28.     End Loop 

29. End Loop  

End Algorithm 

Algorithm taskKnowledgeCreation is the one that creates the knowledge graphs for 

tasks. As mentioned in the beginning of this section, the first step is the same as for agent 

knowledge creation. That is, the initKnowledgeTopology method is called for each task 

in order to create the initial knowledge graphs (lines 1-3). In the second step (lines 4-17) 

we make sure that the weight of a task connection has the same value in any task that 

contains the specified connection. For example, we have task 1 with connections AB and 

CD and task 2 with connections CD and WQ. When the loop in lines 5-17 ends 

execution, connection CD has the same required weight in both task 1 and task 2 (for 

example a required weight of 0.4). We use a double loop in order to check each possible 

pair of concepts (lines 5-6) and check all tasks to see if they have a connection between 

the two concepts (lines 7-8). When we find the first task that contains the current 

connection, we store its weight in a cell of matrix weightMatrix (lines 9-10). Subsequent 

tasks that also contain the current connection have their weight changed to the value 

stored in the weightMatrix cell (lines 11-12). In line 9, we rely on the fact that the weight 

of a connection cannot be 0 when it is created by lines 6-9 of method 

initKnowledgeTopology. With this assumption, if weightMatrix has a cell with a value of 

0, the current task    is the first task that contains the current connection  (     ). 
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The rationale behind the execution of the second step of task knowledge creation is 

related to the ability of agents to learn, teach and attempt tasks using the most stringent 

task attempt method (taskAttempt_Structure_Weight). By executing this step, if an agent 

(AG1) solves a task that contains the above mentioned connection CD, it can teach this 

connection with a weight that is close to the task required weight (0.4 in the above 

example). Thus, another agent (AG2) that attempts another task that contains the same 

connection will benefit by learning from agent AG1. This is because the two tasks have 

the weight for a connection that involves the same pair of concepts. Without executing 

the second step of task knowledge creation, agents that solved tasks would mislead other 

agents attempting other tasks with the same connections. 

Algorithm taskKnowledgeCreation 

Input:  TL – task list 

CL – list of available concepts 

connectionThreshold – threshold that indicates the connectivity of the knowledge 

graph 

Returns void  

1. Loop through all tasks    in TL 

2.           = initKnowledgeTopology (CL, connectionThreshold) 

3. End Loop 

4. Initialize weightMatrix to 0 //all matrix cells are set to 0 

5. Loop through all concepts    in CL 

6.     Loop through all concepts    in CL 

7.         Loop through all tasks    in TL 



106 
 

 
 

8.             If   (     )         then 

9.                 If              [         then //   is the first task containing 

10.                 //  (     ) 

11.                                 [       (     )              

12.                 Else  //   is not the first task containing  (     ) 

13.                      (     )                          [     

14.                 End If 

15.             End If 

16.         End Loop 

17.     End Loop 

18. End Loop  

End Algorithm 

3.7. Relationship to ULM Learning Principles 

According to the first ULM principle, learning is a product of working memory 

allocation. The C-ULM learning design for both learning and teaching agents follows this 

principle since what is being allocated into working memory using the methods 

learnAllocate_basic (Section 3.3.1.1) or teachAllocate_basic (Section 3.3.2.1) is further 

processed into the working memory using learnProcess (Section 3.3.1.3) and 

teachProcess (Section 3.3.2.3) methods. Then, the processed WM content changes the 

state of long – term memory and thus learning occurs. Thus, learning is the end result of 

working memory just as stated by the first ULM principle.  

One of the rules related to the first ULM principle is that learning requires attention. 

By allowing into working memory only those concepts that have a motivation score 
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above the awareness threshold AT we have implemented this rule (Section 3.2.3.1). Thus, 

if there is enough motivation to attend a concept, then the concept will enter working 

memory and can be learned. 

The second rule is that learning requires repeated attendance to what is being taught. 

This rule is incorporated in the repeated update of connection weights (Section 3.2.3.2.1) 

and confusion intervals (3.2.3.2.2). Thus, certain knowledge that is repetitively taught by 

a teacher can be learned by a learner by repetitive adjustments of the learner’s weights 

towards the taught weights and repetitive updates of the associated confusion intervals. 

The third rule states that learning is about connections. We have implemented this rule 

in C-ULM by using the weighted graph as the basic data structure of storing knowledge 

(Section 3.2.1). Thus, knowledge connections are represented by the graph edges and 

knowledge concepts are represented by the graph nodes. Furthermore, we have used 

variations of the Breadth-First-Search algorithm in order to identify the connected 

components of those weighted graphs and thus identify the knowledge chunks. In this 

manner, we were able to implement the chunking mechanism. 

The second principle states that working memory’s capacity for allocation is affected 

by prior knowledge. This principle is incorporated in the C-ULM chunking mechanism 

(algorithms learnAllocate_chunking in Section 3.3.1.2 and teachAllocate_chunking in 

Section 3.3.2.2). Thus, if existing chunks in the agent’s LTM are rather small, then the 

number of concepts and connections entering working memory is also small. In contrast, 

if the LTM chunks are larger, then the number of concepts and connections entering 

working memory is also larger. 
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Finally, according to the third principle, motivation directs working memory 

allocation. In C-ULM, we relate motivation directly to WM allocation by comparing the 

motivation scores of knowledge concepts with the awareness threshold AT (Section 

3.2.3.1). If the motivation to attend a certain concept is high enough to be above this 

threshold, then we allocate one working memory slot for that concept (in the basic 

allocation version) or for the LTM chunk containing that concept (in the allocation with 

chunking version). 

 

Chapter 4. IMPLEMENTATION 

4.1. Simulation details 

 Our C-ULM simulation is written in the Java language and is using the Repast library 

as the agent modeling framework (North et al. 2006). Repast is an open source toolkit 

and is one of several agent modeling frameworks that currently exist. One of the main 

goals of the Repast system is to provide support for flexible modeling of social agents. 

Furthermore, it allows for dynamic change of agent properties, agent behaviors and 

model properties. 

An agent-based simulation typically proceeds in two stages. The first stage is the setup 

stage and it prepares the simulation for running. The second stage is the actual running of 

the simulation. In Repast simulations, the running of the simulation is divided into time 

steps or "ticks." During each time step, some action occurs and it uses the results of 

actions done in previous steps as its input. 

4.1.1. Simulation input 

 Each simulation run is defined by a set of parameters that consists of the  
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 number of agents, tasks and concepts existent in the environment,  

 the agent WM capacity,  

 the normalization factor D,  

 the number of simulation time steps, and  

 the Repast random seed value.  

 The possible values taken by those parameters are defined in a text file having a 

Repast-based syntax for defining input parameters. Specifically, since we designed the 

parameter file with the intention to run the simulations resulting from all possible 

parameter configurations, we have used an embedded mode of defining each parameter. 

Thus, we defined the first parameter, ‘number of agents’ and set its possible values (such 

as 10, 20 or 30 agents). Then, inside the scope of this parameter, we have defined the 

second one – the ‘number of concepts’. Thus, each parameter except the first and the last 

one defined, is within the scope of the previously defined parameter and includes in its 

scope the next parameter. 

 Below we present an example of a parameter file containing 3 parameters – ‘number 

of agents’, ‘number of concepts’ and ‘number of tasks’. Of note, ‘number of concepts’ is 

within the scope of the ‘number of agents’ and ‘number of tasks’ is within the scope of 

the ‘number of concepts’. This parameter file defines two simulation configurations: the 

first one has 10 agents, 20 concepts and 10 tasks; the second one has 10 agents, 20 

concepts and 20 tasks (the number of tasks is the only one that differs between the two 

configurations). 
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runs: 1 

NumberOfAgents 

{ 

    set_list: 10 

    { 

      runs: 1 

         NumberOfConcepts 

         { 

                 set_list: 20 

                  { 

                 runs: 1 

                 NumberOfTasks 

                 {  set_list: 10, 20  } 

                  } 

              } 

    }      

}             

     

For parallel execution of simulations, we use a cluster-based supercomputer called 

Tusker. Tusker is a 40 TF cluster consisting of 106 Dell R815 nodes using AMD 6272 

2.1GHz processors, connected via Mellanox Quad Data Rate Infiniband and backed by 

approximately 350 TB of Terascala Lustre-based parallel filesystem. In order to run 

multiple simulations in parallel, we divided the parameter file into multiple files each of 
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which containing a subset of the initial set of parameter configurations. Then we ran the 

simulation with a different parameter file for each Tusker node being used. 

4.1.2. Simulation output 

The output of the C-ULM simulation is written in 4 csv files: Avg_evolution_data, 

Knowledge_evolution_data, Task_solving_data and End_sim_data. The first 3 files 

contain information regarding each time step of the executed simulations.  

Thus, the Knowledge_evolution_data file contains data such as the index of the 

simulation (from an executed batch of simulations), time step values, number of agents, 

concepts and tasks used and agent working memory capacity. It also contains the average 

confusion interval and the average number of agent concepts and connections computed 

for each time step.  

Similar to the Knowledge_evolution_data file, the Task_solving_data file contains 

data such as the agent working memory capacity, number of agents, concepts and tasks. 

Furthermore, it contains the number of solved and unsolved tasks and other performance 

metrics described in detail in Chapter 5, Results. The End_sim_data file contains the 

number of agents, concepts and tasks and it also contains the number of successful and 

unsuccessful task attempts. While the Knowledge_evolution_data and Task_solving_data 

files present the data for each time step, the End_sim_data file presents the data at the end 

of the simulation (the last time step). 

The Avg_evolution_data file contains similar data to the Knowledge_evolution_data 

and Task_solving_data files but it displays the average over multiple simulation runs, 

each having a different random seed and all the other parameter values kept constant. 

Thus, we obtained a good average over several random seeds.  
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4.2. Class architecture 

In this section we present and discuss the class architecture for the C-ULM simulation.  

4.2.1. Overview 

The main model class is ULMSimulationModel. This class extends the Repast 

SimpleModel class which offers the time-stepped simulation execution and provides the 

basic agent framework. The most important method of this class is the step method. In 

this method, we call the step method for each agent that in turn calls the learning and 

teaching methods. After learning and teaching is performed, we call for each agent the 

methods taskAttemptStep and decayKnowledge. The remaining part of the step method 

deals with creating and displaying the lines of the Avg_evolution_data file. 

There is an abstract class for each of the following: agents (ULMAgent class), 

concepts (Concept class), knowledge (Knowledge class), motivation (Motivation class), 

working memory (WorkingMemory class) and tasks (Task class). For each of those 

abstract classes, there is a derived class that implements the required features. Each 

derived class is named by adding ‘Impl’ to the abstract class name. There is also an 

EdgeWeight class that stores the attributes corresponding to one knowledge connection. 
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4.2.2. UML class diagram 

Below we present a brief UML class diagram and then we describe the main features of 

the aforementioned classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. Class description 

4.2.3.1. ULMSimulationModel class 

This is the ULM model class that inherits the simulation logic provided by the 

SimpleModel class. It overrides methods from the SimpleModel class such as the 

SimpleModel 

ULMSimulationModel 

Task 

Motivation WorkingMemory 

ULMAgentImpl 

ULMAgent Concept 

Knowledge 

KnowledgeImpl MotivationImpl WorkingMemoryImpl 

TaskImpl 
ConceptImpl 

 

EdgeWeight 

1 

* 

1 
* * * 

Figure 4.1 UML Class Diagram 
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buildModel and step methods. It also provides additional utility functions used by those 

two overridden methods and a number of getter and setter functions for various class 

attributes such as the number of agents, concepts and tasks, working memory capacity 

and the number of simulation time steps. As presented in the C-ULM class diagram 

(Figure 4.1), there is a one-to-many composition relationship between the 

ULMSimulationModel and the abstract classes for agents (the ULMAgent class), 

concepts (the Concept class) and tasks (the Task class).  

4.2.3.1.1. buildModel method 

One of the overridden methods of the SimpleModel class is the buildModel method. 

This method creates the     C-ULM agent model and it can be summarized into 4 steps. In 

the first step, we set the random seed value and create a uniform distribution that will use 

this seed value throughout the current simulation run.  

In the second step, we create the lists of concepts, tasks and agents. In the third step, 

we call the methods taskKnowledgeCreation and agentKnowledgeCreation methods. The 

first method implements the algorithm taskKnowledgeCreation and the second one 

implements the algorithm agentKnowledgeCreation. Both algorithms are presented in 

section 3.6.  

Finally, the last step consists of creating 3 data recorder objects that deal with writing 

the performance metric data into the Knowledge_evolution_data, Task_solving_data and 

End_sim_data csv files. Those files are described in section 4.1.2. 

4.2.3.1.2. step method 

Another overridden method of the SimpleModel class is the step method. This method 

implements the entire behavior of the multi-agent system during each simulation time 
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step. The functionality of this method can be summarized into 4 stages. In the first stage, 

we shuffle the agent order in the list of agents so that at each subsequent simulation step, 

each agent can occupy a different position in the list. The agent position in the agent list 

is used as a priority value when performing the pairing of teacher to learner agents. Thus, 

shuffling the agent order ensures that each agent has approximately the same average 

priority over consecutive time steps.  

In the second stage, we iterate through the agent list and call the step method 

associated to each individual agent. In the agent step method, we perform the actual 

teaching and learning algorithms.  

In the third stage, we iterate again through the agent list and call the taskAttemptStep 

and the decayKnowledge methods for each agent. The first method performs the agent 

task attempt and the second method performs knowledge decay for the current time step. 

Finally, in the fourth stage, we compute the performance metric averages and write 

them in the Avg_evolution_data file described in section 4.1.2.  

4.2.3.2. ULMAgentImpl class 

This class inherits the class attributes of the abstract ULMAgent class and it 

implements the agent logic. The most important methods are: step, taskAttemptStep, 

learn, teach, decayKnowledge and decideAction. 

4.2.3.2.1. step method 

 This method implements the individual agent’s behavior during one simulation time 

step. The functionality of this method can be summarized into 3 main steps. In the first 

step, the motivation scores for all concepts in the agent knowledge are updated by calling 

the method updateMotivationScores found in the MotivationImpl class. 
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In the second step, the agent decides whether it will teach or learn in the current time 

step. This action is performed by calling the method decideAction.  

In the third step, an agent that decided to learn is matched with the first available 

teacher agent from the agent teacher queue. If there are no available teacher agents, then 

the learner agent is placed in the learner queue. Thus, it will be retrieved from this queue 

when a teacher agent needs to be matched with a learner agent. The same process is 

performed if an agent decided to teach. It will either be matched with the first available 

learner agent from the learner queue or be placed in the teacher queue.  

4.2.3.2.2. taskAttemptStep method 

This method calls the doTask method in order to perform the agent task attempt. If the 

agent fails to solve the task, then it randomly chooses a task from the list of unsolved 

tasks. Choosing a task is done by calling the method chooseTask. Of note, since this 

choice is random, the chosen task can be the current task that remained unsolved. If the 

agent solves the task, then the solved task is added to the list of solved tasks and removed 

from the list of unsolved tasks. Finally, the agent chooses another task to solve by calling 

the chooseTask method.  

4.2.3.2.3. learn and teach methods 

The learn method performs the agent learning algorithm by calling the learnAllocate 

and learnProcess methods found in the WorkingMemoryImpl class. The teach method 

performs the agent teaching algorithm by calling the teachAllocate and teachProcess 

methods found in the WorkingMemoryImpl class. learnAllocate and learnProcess 

methods implement the learning algorithms described in section 3.3.1. Similarly, 
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teachAllocate and teachProcess methods implement the teaching algorithms described in 

section 3.3.2. 

4.2.3.2.4. decayKnowledge method 

In order to perform the agent knowledge decay, this method calls the decayKnowledge 

method of the KnowledgeImpl class. 

4.2.3.2.5. decideAction method 

The decideAction method determines if the agent will teach or learn in the current 

time step and it consists of 3 steps. In the first step, a random number between 0 and 1 is 

generated. In the second step, this number is compared with the current probability to 

learn. If the number is less than the probability value, then the agent will learn during the 

current time step. Otherwise, it will teach. In the final step, the current probability to 

learn is decreased if the agent will learn during the current time step and is increased if it 

will teach. The rationale for the third step is to allow for a balance between the number of 

learners and the number of teachers across multiple time steps. 

4.2.3.3. KnowledgeImpl class 

 The most important methods of this class are initTopology, knowledgeDecay and 

bfsDecayVisit. The method initTopology implements the algorithm 

initKnowledgeTopology described in section 3.6. Methods knowledgeDecay and 

bfsDecayVisit implement the algorithms decayKnowledgeGraph and bfsDecayVisit 

respectively (section 3.4). Other utility methods of this class include 

findConnectedConcepts, isIsolated and other setter and getter functions. The method 

findConnectedConcepts retrieves the list of all concepts connected to a given concept. 
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The method isIsolated checks whether a given concept is isolated or it is connected to 

other concepts within the agent knowledge. 

4.2.3.4. MotivationImpl class 

The most important method of this class is the updateMotivationScores. This method 

computes the motivation scores for all concepts in the agent knowledge. In order to 

compute the motivation score for a concept, it calls the utility method 

calculateMotivation which comprises of 3 steps.  

In the first step, the knowledge related part of the motivation score (the self-efficacy 

component presented in Eq. 3.1) is computed by summing the inverse of confusion 

interval lengths for all agent knowledge connections. In the second step, the task related 

part of the motivation score (the expectancy of possible task rewards presented in Eq. 

3.1) is computed by summing the rewards associated with each task that involves the 

given concept. The final motivation score is computed in the third step by multiplying the 

scores computed in the first two steps. 

4.2.3.5. WorkingMemoryImpl class 

WorkingMemoryImpl class implements the actual learning and teaching algorithms 

described in detail in sections 3.3.1 and 3.3.2.  

4.2.3.6. ConceptImpl class 

This class implements functionality required for a knowledge concept. It has attributes 

for describing and identifying a concept within a given agent knowledge. Since the C-

ULM model allows for different abstraction layers, concepts can represent various 

objects according to a specific problem context. Thus, this class can be extended with 
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new classes that add specific domain functionality (such as neuron firing if a concept 

represents a neuron). 

4.2.3.7. TaskImpl class 

This class includes the methods that perform the actual task attempt described in 

algorithms taskAttempt_Basic, taskAttempt_Structure and 

task_Attempt_Structure_Weight (section 3.5.1). It also includes utility functions such as 

bfsVisit_Basic, bfsVisit_Structure and the checkDistances method (section 3.5.1). 

Furthermore, the task feedback algorithm presented in section 3.5.2 is also implemented 

in this class. 

 

4.2.3.8. EdgeWeight class 

This class includes the required attributes for each knowledge connection. Some of 

those attributes include the connection weight, the confusion interval length and a flag for 

marking the existence of a connection in an agent knowledge. 

 

Chapter 5. RESULTS 

5.1. Overview 

The C-ULM simulation makes use of several simulation parameters that were 

discussed in Chapter 3. Below we present a table with a brief mention of their description 

location in Chapters 3 and 5 and their range of values as they are used in the simulation. 

Table 5.1 Simulation parameters 

Simulation parameters Description  Range of 

values 

Working memory capacity Sections 3.2.3 & 

5.3.1 

3 – 9 

Motivation factor (mf) Section 3.2.3.2.2 Strictly 
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positive 

Spread normalization factor (D) Sections 3.2.3.2.2 & 

5.3.2 

1, 2, 3, 4, 5 

Learning coefficient for the confusion 

interval length (cil) 

Section 3.2.3.2.2 0 – 0.01 

Learning coefficient for the confusion 

interval center (cic) 

Section 3.2.3.2.1 0.8 – 1.2 

Awareness threshold (AT) Section 3.2.3.1 0 – 1 

Number of concepts Section 5.3.3 10, 30, 50, 

100 

Number of agents Section 5.3.4 10, 20 

Number of tasks Section 5.3.5 3, 10, 30, 50 

Confusion interval update amount for failed 

task attempt feedback (FF) 

Section 3.5.2 0.15 

(constant) 

Confusion interval for successful task 

attempt feedback (SF) 

Section 3.5.2 0.005 

(constant) 

 

In order to investigate how the system behaves, we employ a set of performance 

metrics that describe the evolution of agent knowledge on one hand and the agent ability 

to solve tasks on the other hand.  

The progress of agent knowledge over simulation duration is analyzed using the 

following 2 metrics (displayed in the Knowledge_evolution_data and 

Avg_evolution_data files mentioned in Section 4.1.2)  

 Number of agent connections 

This metric shows how many connections an agent has at each simulation time 

step. It offers a step-by-step information on the agent knowledge connectivity. 

This metric is an average over all agents. This average is then averaged over 30 

simulation runs each having a different random seed value. 

 Average confusion interval length 

This metric shows the average length of the confusion interval for agent 

connections. It offers a step-by-step information on the agent certainty towards 
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existing knowledge. This metric is an average over all LTM agent connections. 

Similar to the number of agent connections metric, it is then averaged over 30 

simulation runs.  

Taken together, the above two metrics give a detailed image of both agent knowledge 

connectivity and certainty, key to evaluate the “quality” of an agent’s knowledge.  

The ability of agents to solve tasks is analyzed using the following 3 metrics 

(displayed in the Task_solving_data and Avg_evolution_data files mentioned in Section 

4.1.2) 

 

 Average number of not acquired connections 

This metric shows how many task connections are still missing from the agent 

knowledge. It offers information regarding how close is the agent knowledge 

structure to fully include the task structure. This metric is an average over all 

agents and 30 simulation runs. The average is computed in a similar manner to the 

number of agent connections metric. 

 Average weight differences 

This metric shows the average weight difference between an agent knowledge 

weight and the corresponding task weight. It offers information regarding how 

close are the agent knowledge weights to the task required weights. This metric is 

an average over the weight differences between all LTM agent connections and 

their corresponding task connections. The average is computed in a similar 

manner to the average confusion interval length metric. 

 Total number of solved tasks 
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This metric offers information on how many tasks have been solved by the entire 

multi-agent system at each simulation time step. It is averaged over 30 simulation 

runs so that it is not sensible to changes in the random seed.  

Taken together, the 3 metrics offer a detailed image (knowledge structure and weights) 

of the agent progress towards solving tasks.  

In order to analyze the system behavior using the aforementioned measures, we 

perform several experiments that can be grouped into two main categories:  

 studying the impact of using the chunking mechanism on agent knowledge and 

task performance 

 studying the impact of several key factors on the C-ULM with chunking system  

5.2. Impact of chunking on agent knowledge and task performance 

In this section we compare the results obtained in the C-ULM system without 

chunking and the one that uses the chunking mechanism. 

5.2.1. Impact on agent knowledge 

In this section we investigate the impact of using the chunking mechanism on the 

evolution of agent connections and confusion intervals. The significance of this 

investigation is to validate the use of chunking in relation to existing human studies. In 

order to analyze the impact of chunking on agent knowledge we present our findings 

through Figures 5.2.1.1 – 5.2.1.12. 

Observation 1.  

Chunking makes a positive impact over the non-chunking version in the average 

number of agent connections (Figures 5.2.1.1 and 5.2.1.2). In the chunking version 

(Figure 5.2.1.1) the agents reach a higher number of connections than in the non-
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chunking version (Figure 5.2.1.2). Similar to what has been observed in human studies, 

chunking leads to a higher agent connectivity than the one obtained without using this 

mechanism. 

 

Fig. 5.2.1.1 Average number of agent connections: WM = 5; D = 1-5 (chunking);  

average task complexity: 8 (30 available concepts) 

 

 

 
Fig. 5.2.1.2 Average number of agent connections: WM = 5; D = 1-5 (no chunking); 

average task complexity: 8 (30 available concepts) 
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Observation 2. 

The evolution of confusion interval length is totally different in the chunking version 

as compared to the non-chunking version (Figures 5.2.1.3 and 5.2.1.4). In the chunking 

version, the confusion interval length drops extremely fast at values around 0.02 and then 

increases to values between 0.08 and 0.1 (Figure 5.2.1.3). In the non-chunking version, 

the interval length decreases very fast in the beginning and then continues to decrease 

asymptotically towards values between 0.01 and 0.02 (Figure 5.2.1.4). 

 

Fig. 5.2.1.3 Average confusion interval length: WM = 3-9; D = 5 (chunking); 

average task complexity: 8 (30 available concepts) 
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Fig. 5.2.1.4 Average confusion interval length: WM = 3-9; D = 5 (no chunking); 

average task complexity: 8 (30 available concepts) 

 

The reason for the different behaviors observed in Figures 5.2.1.3 and 5.2.1.4 is given 

by the compounded effect of (1) having enough memory for learning and teaching and 

(2) the usage of the method enlargeConfusion whenever a task connection has not been 

matched by the corresponding agent weight. Specifically, only with enough memory 

capacity and the usage of enlargeConfusion calls is the system able to obtain the 

confusion interval behavior observed in Figure 5.2.1.3 as compared to Figure 5.2.1.4. As 

observed in Figures 5.2.1.4 and 5.2.1.7, omitting any of those two features leads to a 

confusion interval dynamic that doesn’t present the curve shown in Figure 5.2.1.3.  

Incidentally, what we observed in Figure 5.2.1.3 is similar to what we also observed in 

another scenario where the WM is set to 30, and where no chunking is used for learning 

and teaching, as shown in Figure 5.2.1.5.  This further confirms that memory capacity is 

indeed crucial in order to obtain a curve in the confusion interval dynamic as observed in 

Figure 5.2.1.3.  
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Fig. 5.2.1.5 Average confusion interval length: WM = 30; D = 5 (no chunking); 

average task complexity: 8 (30 available concepts) 

 

Of note, chunking when attempting the task (retrieving the necessary information from 

agent knowledge in order to solve the task) is performed in both scenarios displayed by 

Figures 5.2.1.3 and 5.2.1.4. The difference is made by the fact that for Figure 5.2.1.3 

chunking is also used when allocating WM for learning and teaching while for Figure 

5.2.1.4 chunking is not used for those purposes and is only used when attempting to solve 

the tasks. 

In order to further understand the behavior observed in Figures 5.2.1.3 and 5.2.1.4, we 

have drawn Figures 5.2.1.6 - 5.2.1.9. Those Figures help explain the impact of 

enlargeConfusion method calls on the confusion interval dynamics. 
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Fig. 5.2.1.6 Average number of code arrivals to 

an executed enlargeConfusion method: 

WM = 5; D = 5 (chunking); 

 
Fig. 5.2.1.7 Average number of code arrivals to 

a potential but NOT executed enlargeConfusion 

method: WM = 5; D = 5 (chunking); 
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Fig. 5.2.1.8 Average number of code arrivals to 

an executed enlargeConfusion method: 

WM = 5; D = 5 (no chunking); 

 

 
Fig. 5.2.1.9 Average number of code arrivals to a 

potential but NOT executed enlargeConfusion 

method: WM = 5; D = 5 (no chunking); 

 

Figures 5.2.1.6 and 5.2.1.7 sustain the claim that the call to the enlargeConfusion 

method is absolutely necessary in order to obtain the behavior seen in Figure 5.2.1.3. In 

Figure 5.2.1.6, after an initial spike in the number of calls, we have a decrease and then 

an increase in the number of enlargeConfusion method calls. The obtained curve 
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resembles the one observed in Figure 5.2.1.3. In Figure 5.2.1.7 there is a similar initial 

spike but then the number of enlargeConfusion calls follows a slightly ascending trend. 

The reason for the enlargeConfusion method making the observed impact is related to 

its purpose and to the manner this method is called. The purpose of the method is to 

increase the confusion interval length for an agent connection that didn’t match in weight 

the corresponding task connection. In the subsequent steps, the agent weight is randomly 

picked from a larger interval thus increasing the chance that the new confusion interval 

includes the required task weight. Furthermore, this call to enlargeConfusion method is 

not done for agent connections where the weight did match. This discrimination – of 

calling this method only for connections where the weight did not match has an important 

role in the impact observed in Figures 5.2.1.3 and 5.2.1.6 as compared to Figures 5.2.1.4 

and 5.2.1.7. This is clearly outlined by Figure 5.2.1.10 where the call to enlargeConfusion 

method is done for each agent weight in case of a failed task attempt (i.e. for both 

matched and unmatched connections). In this Figure, the confusion interval length is 

more similar to the one observed in Figure 5.2.1.4. 

 

 
Fig. 5.2.1.10 Average confusion interval length: WM = 5; D = 5 (chunking); 
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Therefore, the agents receive, in the failed task feedback, a connection-by-connection 

information that leads to the observed confusion interval behavior and the associated gain 

in number of solved tasks. We mention a connection-by-connection information since the 

agents enlarge confusion interval only for unmatched connections. If the method is never 

called (Figures 5.2.1.7 and 5.2.1.9) or if it is called for each agent weight in case of a 

failed task attempt (Figure 5.2.1.10), there is nothing that discriminates between matched 

connections and unmatched connections in the case of a failed task attempt (in terms of 

feedback received by the agent). However, if the method is called only for unmatched 

connections during a failed task attempt, we obtain the behavior observed in Figures 

5.2.1.3 and 5.2.1.6. 

We have to point out though, that in the step following a failed task attempt, the same 

agent attempting the same task could come up with weights that do not match previously 

matched connections and vice-versa. Therefore, the enlargeConfusion method could be 

called in this step for a connection that hasn’t ‘experienced’ this call in the previous step. 

Given this last mentioned fact, the added information given to agents on a connection-by-

connection basis cannot fully account for the success obtained only in the scenarios with 

enough WM (either by chunking or high WM capacity) and the usage of 

enlargeConfusion method calls. 

The comparison between Figures 5.2.1.6 and 5.2.1.8 shows that in the chunking 

version the number of enlargeConfusion method calls is much higher than in the non-

chunking version. This is the main reason behind the confusion interval length increase 

observed in Figure 5.2.1.3 (chunking) as compared to Figure 5.2.1.4 (non-chunking). 
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The behavior observed in Figures 5.2.1.3 and 5.2.1.4 is also influenced by the number 

of knowledge decay calls made for each agent in each time step. In order to understand 

this impact we have drawn Figures 5.2.1.11 and 5.2.1.12. 

 

 
Fig. 5.2.1.11 Average number of knowledge decay calls: 

WM = 5; D = 5 (chunking) 

(with enlargeConfusion call); 
 

 
Fig. 5.2.1.12 Average number of knowledge decay calls: 

WM = 5; D = 5 (no chunking) 

(with enlargeConfusion call); 
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As we can see from Figures 5.2.1.11 and 5.2.1.12, chunking leads to more knowledge 

decay calls. This means that more connections experience knowledge decay. Therefore, 

more connections have their confusion interval enlarged in the chunking-version as 

compared to the non-chunking version due to knowledge decay. Just as the difference 

between Figures 5.2.1.6 and 5.2.1.8, the difference in knowledge decay calls can also 

help explain why the confusion interval length starts to increase in Figure 5.2.1.3 

(chunking) as compared to Figure 5.2.1.4 (non-chunking).  

On the other hand, in the chunking version, more connections are learned and taught in 

each time step which leads to more method calls that shorten the confusion interval 

length. 

The most plausible conclusion is that the interplays among (1) enough working 

memory capacity, (2) enlargeConfusion method calls that are done only for unmatched 

connections in each time step, (3) more connections experiencing knowledge decay and 

(4) more connections having their confusion intervals shortened due to chunking while 

learning and teaching led to the behavior observed in Figure 5.2.1.3 as compared to 

Figure 5.2.1.4. The mix of those factors led to a balance between exploration and 

exploitation that eventually led to a totally different behavior in Figure 5.2.1.3 as 

compared to Figure 5.2.1.4. Specifically, Figure 5.2.1.3 displays a V-shape behavior of 

confusion interval length that doesn’t appear in Figure 5.2.1.4. 

From a neural point of view, there are four neural learning mechanisms that are 

modeled within C-ULM. The first two mechanisms are based on a long-term repetition 

process and thus they implement the law of exercise. The first one is neuronal synapse 

strengthening and is modeled by shortening confusion intervals during repeated learning 
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events. The second one refers to pruning out unused neural synapses. Similar to synapse 

strengthening, this process is also a long-term one and is modeled within C-ULM by 

lengthening the confusion intervals during the knowledge decay process. 

The third and the fourth mechanisms are short-term reinforcement based processes and 

thus they implement the law of effect. The first reinforcement-based process is active 

inhibition and it refers to short-term inhibition of specific synapses and also to slowing 

down neural firing rates between neurons. This process is modeled within C-ULM by the 

calls to the enlargeConfusion method for unmatched connections whenever an agent 

failed to solve a task. By calling the enlargeConfusion method for unmatched 

connections, the motivation to learn about those connections in the future decreases. 

Because of this fact, the motivation scores for those connections will less likely be above 

the awareness threshold and as a result the chance of unmatched connections to enter 

working memory in future time steps decreases. Thus, active inhibition is modeled by the 

enlargeConfusion method calls that lead to a lower likelihood of unmatched connections 

to enter working memory.  

The second reinforcement-based process is active excitation and it refers to short-term 

excitation of specific synapses and to increased firing rates between neurons. C-ULM 

incorporates this mechanism by shortening confusion intervals for agent connections 

involved in a successful task attempt. This leads to increased motivation to perform 

learning and teaching related to those connections and thus an increased likelihood that 

they will enter agent working memory in subsequent time steps.  

Within the context of those four neural mechanisms, we can observe that by using 

chunking, learning activity performed with all four mechanisms increases. Thus, long-
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term repetition based excitation increases as observed in Figure 5.2.1.1 as compared to 

Figure 5.2.1.2. Long-term repetition based inhibition (knowledge decay) increases as 

observed in Figure 5.2.1.11 as compared to Figure 5.2.1.12. Finally, short-term 

reinforcement based processes are also higher in the chunking mechanism as seen in 

Figure 5.2.1.6 and 5.2.2.1 as compared to Figures 5.2.1.8 and 5.2.2.2 respectively. Of 

note, Figures 5.2.2.1 and 5.2.2.2 refer to the number of solved tasks presented in section 

5.2.2 and are also a direct representation of the number of short-term active excitations 

performed due to solved tasks. 

Therefore, we can state that chunking increases all excitatory and inhibitory processes 

and in doing so the learning behavior is dramatically changed (Figure 5.2.1.3 as 

compared to Figure 5.2.1.4). 

5.2.2. Impact on agent effectiveness and efficiency 

The aim of this section is to study how chunking affects the ability of agents to solve 

tasks (agent effectiveness) and how fast are tasks solved (agent efficiency). This is 

important since it shows whether chunking is useful for boosting agent effectiveness and 

efficiency. Those two agent characteristics are described by the three performance 

metrics mentioned in Section 1: average number of not acquired connections, average 

weight differences and total number of solved tasks. 

Observation 1. 

In the chunking version (Figure 5.2.2.1), the total number of solved tasks is much 

higher than in the non-chunking version (Figure 5.2.2.2). This can be seen by looking at 

the asymptotic value reached in the two Figures. This asymptotic value represents how 

many tasks are solved at the end of the simulation and it describes the agent 
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effectiveness. Therefore, agent effectiveness is greatly enhanced by the use of chunking. 

Due to the tremendous difference in agent effectiveness, agent efficiency doesn’t play a 

role when comparing Figures 5.2.2.1 and 5.2.2.2. 

 

 

Fig. 5.2.2.1 Total number of solved tasks: WM = 3-9; D = 5 (chunking); 

average task complexity: 8 (30 available concepts) 

 

Fig. 5.2.2.2 Total number of solved tasks: WM = 3-9; D = 5 (no chunking); 

average task complexity: 8 (30 available concepts) 
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Observation 2. 

In the chunking version (Figure 5.2.2.3), the average weight differences reach a lower 

asymptotic value than in the non-chunking version (Figure 5.2.2.4). A lower asymptotic 

value in the chunking version signifies that the agent knowledge weights get closer to the 

task required weights than in the non-chunking version. Because of this, the agents in the 

chunking version present increased chances of solving a task, therefore having higher 

effectiveness and efficiency than in the non-chunking version. 

 

Fig. 5.2.2.3 Average weight differences: WM = 3-9; D = 5 (chunking);         

average task complexity: 8 (30 available concepts) 

 

 

  Fig. 5.2.2.4 Average weight differences: WM = 3-9; D = 5 (no chunking); 

average task complexity: 8 (30 available concepts) 
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Observation 3. 

In the chunking version (Figure 5.2.2.5), the average number of not acquired 

connections reaches a much lower asymptotic value (0) than in the non-chunking version 

(Figure 5.2.2.6). The results described by the two Figures are in accordance with the 

previous two observations in the sense that the chunking version performs much better 

than the non-chunking one. 

 

Fig. 5.2.2.5 Average number of not acquired connections:  

WM = 5; D = 1-5 (chunking);  

average task complexity: 8 (30 available concepts)      

 

Fig. 5.2.2.6 Average number of not acquired connections:  

WM = 5; D = 1-5 (no chunking); 

average task complexity: 8 (30 available concepts) 
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Similarly to the reasoning on agent knowledge presented in section 5.2.1, agent 

effectiveness and efficiency also benefit from the chunking mechanism. This is because 

allocating one chunk on each working memory slot leads to more concepts being 

allocated in the agent WM during the learning process. This in turn leads to more 

connections having their weights updated and to more knowledge being transmitted by 

teachers and received by learners in each time step. As also mentioned in section 5.2.1, 

with the help of enlargeConfusion calls whenever a task connection hasn’t been matched, 

agents manage to reach the agent effectiveness and efficiency presented by Figures 

5.2.2.1, 5.2.2.3 and 5.2.2.5 in contrast to the non-chunking version presented in Figures 

5.2.2.2, 5.2.2.4 and 5.2.2.6. 

Therefore, similarly to agent knowledge and learning behavior, agent performance on 

solving tasks is also significantly enhanced by the chunking design. 

5.2.3. Summary 

In this section we showed that a C-ULM simulation using the chunking mechanism 

together with a task feedback leads to a faster acquisition of knowledge (number of agent 

knowledge connections and confusion interval lengths) and also to a better performance 

on solving tasks (number of not acquired agent connections, average weight differences 

and number of solved tasks). 

5.3. Impact of various factors on the C-ULM with chunking system 

The aim of this section is to study the impact of critical system parameters on the 

chunking design. We mainly focus on separately analyzing the impact that working 

memory capacity (WM), the spread normalization factor (D), the number of concepts, the 

number of agents and the number of tasks have on agent knowledge and agent 
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effectiveness and efficiency. Furthermore, in section 5.3.6 we investigate whether there is 

a correlation between the impact of varying the number of tasks and the impact of 

varying the number of concepts. Finally, in section 5.3.7 we study the impact of varying 

the amount of task information that agents have at the start of the simulation. 

Below we present a table that lists the system parameters studied in this section 

together with the goal of each impact study. 

Table 5.2 System parameters and their impact study goal 

System 

parameter 

Impact study goal 

Working memory 

capacity (WM) 

Better understanding of how WM capacity 

influences human learning 

Spread 

normalization 

factor (D) 

Better understanding how the spread 

activation phenomenon affects human learning 

Number of 

concepts 

Better understanding how the task complexity 

affects agent performance on solving tasks 

Number of agents Better understanding how the size of a group 

of agents can impact the performance on 

solving tasks 

Number of tasks Better understanding how the complexity of 

the agent environment (represented by agent 

tasks) influences task solving performance 

Ratio ‘number of Investigating whether there is specific 
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tasks / number of 

concepts’ 

relationship between the task complexity 

(number of concepts) and environment 

complexity (number of tasks). 

Initial task 

information 

Better understanding C-ULM’s robustness 

when dealing with a small amount of initial 

task information 

 

There are two main goals for the impact study of the factors presented in Table 5.1 

shown above. The first goal is to better understand the cognitive aspects revealed by 

those factors. This is especially the case with the working memory capacity and the 

spread activation factor. These two are important aspects of human learning and by 

varying them in the simulation we could get more cognitive insight into the human 

learning processes. Furthermore, we can obtain simulation-related insights that can help 

in the development of new computational approaches to cognitive research. 

The second goal is better understand the C-ULM’s potential as a simulation for agent 

research. By better understanding what can be achieved with the simulation, we can also 

offer suggestions regarding its potential future use in multi-agent research or domain-

specific problems that require a multi-agent solution. 

5.3.1. Working memory capacity 

In this section we study the impact that changing WM capacity has on agent 

knowledge and task solving performance. 

As can be observed in Figure 5.2.2.1, increasing working memory capacity leads to the 

same asymptotic value for the number of solved tasks – around 9 tasks solved. This 
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means that the agent effectiveness remains unchanged as the working memory increases 

in the 3-9 WM range. However, the initial growth rate of solved tasks is lower as the 

working memory increases. This signifies that agent efficiency decreases as the working 

memory increases in the 3-9 WM range.  

The reason for a lower initial growth rate as the working memory capacity increases is 

obtained by analyzing together Figures 5.2.2.3 and 5.3.1.1. 

 

Fig. 5.3.1.1 Average number of not acquired connections:  

WM = 3-9; D = 5 (chunking); 

average task complexity: 8 (30 available concepts) 

Figure 5.3.1.1 presents the average number of not acquired connections for the same 

system as the one presented in Figure 5.2.1.3. As can be seen in Figure 5.3.1.1, in the first 

120 time steps all task connections are acquired by all agents (the average becomes 0 

after at most 120 time steps). However, due to their limited capacities, the systems with 

WM =3 and WM = 4 have a slower decrease rate in the average number of not acquired 

connections (especially the system with WM = 3). Furthermore, as can be seen from 

Figure 5.3.1.1, the decrease rates are increasingly similar as the working memory 
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capacity increases. This indicates a level of redundancy as we increase the WM capacity 

in a system using chunking. However, due to their limited capacity, the systems with 

WM = 3 and WM = 4 are more selective systems with respect of what connections they 

receive in each time step. Thus, the WM = 3 and the WM = 4 systems focus on repetitive 

learning updates of fewer task connections in the first 150 – 200 time steps. This fact 

leads those systems to arrive to correct weights for the fewer connections they already 

received before learning of new connections. In contrast, the systems with high WM 

capacity (such as 8 or 9) have a fast decrease rate in the number of not acquired 

connections. This in turn leads those systems to perform repetitive learning updates on 

several connections but without arriving at approximately correct weights for some of 

them in the first place. This is why we observe more efficient behavior of the WM = 3 

and WM = 4 systems in Figures 5.2.2.1 and 5.2.2.3. 

The implication resulting from the initial system behavior (first 150 – 200 time steps) 

is that agents with a working memory capable of retaining only 3 or 4 chunks (of 

arbitrary size) are more focused on learning fewer task connection weights. This in turn 

leads to more efficient systems than systems with a higher WM capacity (Figure 5.2.2.1). 

5.3.2. Spread factor D 

In this section we study the impact that changing the spread factor D has on agent 

knowledge and task solving performance.  

Figures 5.3.2.1-5.3.2.3 show that higher values for the D parameter (4 and 5) lead to a 

higher performance than values of 1-3. In Figure 5.3.2.1, the confusion interval length 

grows to a lower final value when D is 4 or 5. The same pattern can be observed for 

average weight differences (Figure 5.3.2.2) and also for the total number of solved tasks 
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(Figure 5.3.2.3). Those results are according to the expectation that a higher D value will 

lead to an increase in overall system performance. 

 

Fig. 5.3.2.1 Average confusion interval length: WM = 5; D = 1-5 (chunking); 

average task complexity: 8 (30 available concepts) 

 

 

Fig. 5.3.2.2 Average weight differences: WM = 5; D = 1-5 (chunking); 

average task complexity: 8 (30 available concepts) 
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Fig. 5.3.2.3 Total number of solved tasks: WM = 3-9; D = 1-5 (chunking) 

average task complexity: 8 (30 available concepts) 

The reason for having a D of 4 and 5 lead to a higher performance is given by the role 

of this parameter in updating the length of the confusion interval. Specifically, as the size 

of LTM chunks in the agent knowledge increases, the average distance from a given 

connection   to a connection    (connected by a path with connection c) also increases. 

According to Equation 3.8, this leads to larger chunks having more pairs of connections 

with a distance of 3 or 4 between. The confusion intervals of those connections are still 

updated in case D is high enough (such as 4 or 5). In contrast, if D is low, the distance 

between connections that are not close (distance at least 3) is capped to a lower D value 

which leads to a spread factor of 0 and no confusion update.  

In other words, the connectivity of larger chunks is better exploited at higher D values 

and this leads to a faster learning process and a higher task performance. 
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5.3.3. Number of concepts 

In this section we study the impact that changing the number of concepts has on agent 

knowledge and task solving performance. We present the results obtained with two 

systems, one with 30 and one with 100 available concepts. Of note, the average task 

complexity (and consequently the number of task connection weights that have to be 

matched) is 8 for the system with 30 concepts and is 26.1 for the system with 100 

concepts. 

Observation 1. 

The two systems display the same pattern of growth in the number of agent 

connections (Figure 5.3.3.1). However, as expected, when the number of concepts is 

higher (100), both the initial and the final number of agent connections are higher (an 

increase from 150 to 450 connections for the system with 100 concepts as compared to an 

increase from 40 to 120 connections for the system with 30 concepts). 

Observation 2. 

The behavior of the average confusion interval length is rather similar in the two 

systems (Figure 5.3.3.2). In both systems, we have a relative brief period of little 

variability in the dynamic of the confusion interval length. After this period, this metric 

has an increasing trend in both systems. The difference between the two systems is given 

by the rate of increase in confusion interval length. Thus, in the 30-concept system, the 

confusion interval length increases faster than in the 100-concept system.  
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Fig. 5.3.3.1 Average number of agent connections: WM = 5; D = 5 (chunking) 

 

 

Fig. 5.3.3.2 Average confusion interval length: WM = 5; D = 5 (chunking) 

Agents in a system with 100 concepts have more initial connections than the agents in 

a system with only 30 concepts. This is the reason why the average number of agent 

connections is much higher when the system has 100 concepts. 
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Observation 3. 

The two systems display the same behavior of the average weight differences (Figure 

5.3.3.3).  As expected, when the number of concepts is higher (100) the average weight 

difference is higher than the one for a system with fewer concepts (30). 

Observation 4. 

As expected, the total number of solved tasks (Figure 5.3.3.4) is higher when the 

system has tasks with a lower complexity (the system with 30 concepts). 

 

 

Fig. 5.3.3.3 Average weight differences: WM = 5; D = 5 (chunking) 
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Fig. 5.3.3.4 Total number of solved tasks: WM = 5; D = 5 (chunking) 

A system with 100 concepts presents more complex tasks—having more concepts and 

connections—than a system with 30 concepts. More task connections lead to more 

opportunities for agents to learn new connections. This in turn leads to more connections 

being acquired by the agents in the 100-concept system as compared to those in the 30-

concept system. Furthermore, in the 100-concept system there are more connections that 

are being learned in the same time and thus more confusion intervals get shortened during 

the learning process. This leads to a slower increase in confusion interval length in the 

100-concept system as compared to the 30-concept system (Figure 5.3.3.2). On the other 

hand, the number of task weights that have to be matched is higher for a system with 100 

concepts as compared to one with only 30 concepts (Figure 5.3.3.3). This is also the 

reason for having a lower number of solved tasks in the system with 100 concepts (Figure 

5.3.3.4). This is also in line with human observations since humans learn more when 

confronted with more complex tasks but the success rate of solving those tasks decreases. 
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The conclusion is that a system with more available concepts leads to more learning 

(confusion interval length is lower) and a higher knowledge acquisition in terms of task 

structure (agents acquiring more task connections) but a lower effectiveness at solving 

tasks. 

5.3.4. Number of agents 

In this section we study the impact that changing the number of agents has on agent 

knowledge and task solving performance. Below we present the results obtained with two 

systems, one with 10 and one with 20 agents. There are 100 available concepts in each 

system (the upper-bound task complexity is thus 100). 

Of note, the average task complexity (and consequently the number of task connection 

weights that have to be matched) is 26.1. This is roughly 3.6 times higher than the 

average task complexity of 8 used in Sections 5.3.1, 5.3.2 and 5.3.3. An average task 

complexity of 8 is equivalent with a system having at most 30 concepts. 

Observation 1. 

The two systems display the same pattern of growth in the average number of agent 

connections (Figure 5.3.4.1). However, as expected, when the number of agents is higher 

(20), the final average number of agent connections is higher (around 440 for a system 

with 20 agents as compared to only 350 for a system with 10 agents). 

Observation 2. 

Figure 5.3.4.2 displays the same behavior for the confusion interval length when the 

number of agents varies. However, as expected, the growth of confusion interval length is 

lower when the number of agents is higher. Thus, the final confusion interval length 
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value for a system with 20 agents is around 0.05 as compared to 0.08 for a system with 

10 agents. 

 

Fig. 5.3.4.1 Average number of agent connections: WM = 5; D = 5 (chunking); 

average task complexity: 26.1 

 

Fig. 5.3.4.2 Average confusion interval length: WM = 5; D = 5 (chunking); 

average task complexity: 26.1 

The reason for acquiring more connections in the system with 20 agents as compared 

to the one with only 10 agents (Figure 5.3.4.1) is given by the fact that more agents have 
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connections in their initial agent knowledge. This leads to an increased probability that 

any connection will get shared among agents sometime during the simulation period. In 

turn, this increased probability of sharing any connection leads to a higher average of the 

number of agent connections in the 20-agents system as compared to the 10-agents 

system.  

Observation 3. 

Similar to the behavior observed for the confusion interval length, the average weight 

differences (Figure 5.3.4.3) end up lower for a system with 20 agents (2) as compared to 

one with just 10 agents (2.25). 

Observation 4. 

As expected, the total number of solved tasks (Figure 5.3.4.4) is higher when the 

number of agents is 20. Thus, the final number of solved tasks is 8.6 (out of 10 tasks) 

when the system has 20 agents and 8 when the system has only 10 agents. 

 

Fig. 5.3.4.3 Average weight differences: WM = 5; D = 5 (chunking); 

average task complexity: 26.1 
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Fig. 5.3.4.4 Total number of solved tasks: WM = 5; D = 5 (chunking); 

average task complexity: 26.1 

A system with more agents creates more opportunities for teaching and learning for 

each individual agent. As this communication protocol is enhanced by the number of 

options an agent has, confusion interval length and average weight differences increase 

slower toward the end of the simulation. This is also the reason why the number of solved 

tasks is higher when the number of agents is increased.  

The conclusion is that a system with more agents is more robust in terms of knowledge 

acquisition and task effectiveness. 

5.3.5. Number of tasks 

In this section we study the impact that changing the number of tasks has on agent 

knowledge and task solving performance. Below we present the results obtained with 

three systems, one with 3, one with 30 and one with 300 tasks. Of note, the average task 

complexity (and consequently the number of task connection weights that have to be 

matched) is 8 and there are 30 available concepts for each of the three systems. 
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Observation 1. 

As expected, agents acquire more connections when the system is exposed to more 

tasks (Figure 5.3.5.1). Thus, the simulation ends up with an average of 50 connections for 

the 3-task system, 200 connections for the 30-task system and 440 connections for the 

300-task system. 

Observation 2. 

In the 30 and 300-task systems, the average confusion interval length (Figure 5.3.5.2) 

and average weight differences (Figure 5.3.5.3) decrease sharply at the start of the 

simulation. In contrast, in the 3-task system, those metrics present a constant trend around 

the value of 0.4 and 2.4 respectively. Furthermore, Figure 5.3.5.4 shows that in the 

scenario with 30 tasks, the total number of solved tasks is very high, leading to a 

performance close to 100% (29.6 out of 30 tasks solved out of 30 available tasks). In 

contrast, the scenario with only 3 tasks displays only a 20% performance (0.6 tasks 

solved out of 3 available tasks). The scenario with 300 tasks is not conclusive since the 

system is still solving tasks after 8000 time steps. 

 

Fig. 5.3.5.1 Average number of agent connections: WM = 5; D = 5 (chunking); 

average task complexity: 8 (30 available concepts) 
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Fig. 5.3.5.2 Average confusion interval length: WM = 5; D = 5 (chunking); 

average task complexity: 8 (30 available concepts) 

 

Fig. 5.3.5.3 Average weight differences: WM = 5; D = 5 (chunking) 

average task complexity: 8 
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Fig. 5.3.5.4 Total number of solved tasks: WM = 5; D = 5 (chunking) 

average task complexity: 8 

The most plausible explanation for the sharp performance contrast between the first 

scenario (3 tasks) and the other two scenarios (30 tasks and 300 tasks) is related to how 

much tasks overlap with each other. Task overlapping refers to two or more tasks that 

require some of the same connections and also the weights for those connections. Due to 

the initial task setup, if two or more tasks require a same connection, then they also 

require the same weight for that connection. In a system with 3 tasks, we have too few 

tasks in an environment with 30 concepts and the chance of those tasks overlapping is 

very small. In contrast, when we have 30 tasks in the same 30-concept environment, the 

chance for task overlapping is higher. When this happens, an agent that solved one task is 

in a good situation to solve in the near future a task that highly overlaps the solved task. 

Furthermore, by teaching the knowledge regarding the solved task to other agents, it 

helps other agents solve tasks that overlap with the solved task but were not yet solved by 

any agent. 



156 
 

 
 

This explanation might also be in line with the results obtained in section 5.3.3 when 

the environment contained 100 concepts. In that case, we had more tasks (10 as compared 

to 3) and their complexity was higher (26 as compared to 8). Due to this difference, we 

believe that the 100-concepts system presented in section 5.3.3 led to a much higher task 

overlap than the 3-task system presented in this section. Consequently, the 100-concept 

system presented in 5.3.3 achieved a much better performance than the 3-task system 

presented in this section. 

The conclusion is that the degree of task overlapping plays a crucial role in the system 

performance. As the degree of task overlapping gets higher, the agents obtain more 

accurate task knowledge and they can reuse solved task information in order to solve new 

tasks that overlap the already solved ones. Thus, the agents are more knowledgeable 

about the tasks and consequently they are also more effective and efficient at solving 

them when the degree of task overlapping is high. 

5.3.6. Ratio ‘number of tasks / number of concepts’ 

In previous sections we investigated the impact of the number of concepts (in Section 

5.3.3) and separately we investigated the impact of the number of tasks (in Section 5.3.5). 

The rationale for this experiment is investigating whether there is a specific correlation 

between those two impacts. Thus, we vary both the number of concepts and the number 

of tasks but we keep the same ‘number of tasks / number of concepts’ ratio. 

For the purpose of this section, we note C = number of concepts and T = number of 

tasks. We present the results obtained when the ratio 
 

 
 is equal to 1 for two different 

systems: one with 30 available concepts and 30 tasks and one with 50 available concepts 

and 50 tasks. 
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Observation 1. 

As shown in the previous sections and reconfirmed in Figure 5.3.6.1, agents acquire 

more connections when the system is exposed to more concepts (Section 5.3.3) and to 

more tasks (Section 5.3.5). 

Observation 2. 

Figure 5.3.6.2 displays an S-shaped behavior for the confusion interval length in both 

systems. This behavior has been seen before in Figure 5.3.5.2 where we have the same 

30/30 system (30 available concepts and 30 available tasks). However, the confusion 

interval length starts to increase at a later time (after 4000 time steps) in the system with 

the ratio 50/50 as compared to the one with a ratio of 30/30 (after 1000 – 1500 time 

steps). 

 

Fig. 5.3.6.1 Average number of agent connections: WM = 5; D = 5 (chunking) 
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Fig. 5.3.6.2 Average confusion interval length: WM = 5; D = 5 (chunking) 

The 30/30 system presents 4 stages in the behavior of confusion interval length. In the 

first stage (stage a) there is a sufficient number of tasks that are being solved so that the 

effect of learning from solved tasks balances the effect of knowledge decay. This balance 

leads to a constant confusion interval trend that is shown in stage a. In stage b, agents 

solve fewer tasks and the knowledge decay effect dominates the effect of learning 

through solving tasks. In stage c, there are no more tasks to be solved so that the effect of 

knowledge decay becomes even stronger leading to a sharper increase in confusion 
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interval. Finally, knowledge decay is duration-limited in the current C-ULM design and 

thus the knowledge decay effect eventually stops. This fact can be observed in the 

constant confusion interval trend of stage d. 

On first glance, it seems that we don’t have the a, b, c and d segments of confusion 

interval in the 50/50 system. However, we argue that the a’ segment in the 50/50 system 

is indeed corresponding to the a segment in the 30/30 system. The 50/50 system has more 

tasks available to solve and it takes more time steps for the knowledge decay process to 

dominate over the learning through solving tasks process. In addition, b’ corresponds to b 

but it is delayed with approximately 3000 time steps (starting at around 4000 time steps 

instead of 1000 time steps as it happens for b). Another important difference is that c’ 

displays a much slower increase in confusion interval than stage c. This happens because 

in stage c’ there are still a few very complex tasks to be solved (as compared to stage c). 

Once they are solved they lead to a very slow increase in confusion interval length. One 

consequence of this extremely slow increase is that in Figure 5.3.6.2 we can see only the 

beginning of stage c’. If we had allowed the experiment to continue, we would have 

observed that c’ resembles c but at a much slower pace thus spreading on many more 

time steps than c. Since knowledge decay is duration-limited in both systems, stage d’ 

corresponding to stage d naturally follows c’ after many more steps than shown in Figure 

5.3.6.2. 

Observation 3. 

The two systems display the same behavior for the average weight differences (Figure 

5.3.6.3). As expected and also indicated in section 5.3.3, when the number of concepts is 
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higher (50), the average weight difference is higher than the one for a system with fewer 

concepts (30). 

Observation 4. 

The number of solved tasks is higher in the system with 50 tasks as compared to the 

system having only 30 tasks (Figure 5.3.6.4). This is expected and reconfirms section 

5.3.5. However, the performance is lower in the 50/50 system as compared to the 30/30 

system. This is expected and reconfirms what we observed in Figure 5.3.3.4 (section 

5.3.3), i.e. a higher number of concepts leads to a lower task effectiveness. 

 

Fig. 5.3.6.3 Average weight differences: WM = 5; D = 5 (chunking) 
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Fig. 5.3.6.4 Total number of solved tasks: WM = 5; D = 5 (chunking) 

In conclusion, two systems with the same T/C ratio, one with 30/30 and one with 

50/50 reconfirm the general patterns observed when varying only the number of concepts 

(section 5.3.3) and when varying only the number of tasks (section 5.3.5). That is, the 

ratio value does not directly play a role in the system performance. The performance 

hinges upon the number of tasks and the number of concepts and there is no clear 

correlation between the impacts of varying both parameters. 

5.3.7. Initial task information 

In all designs presented in previous sections, we ensure that at least one agent ‘has 

some clue’ about each task connection weight. This means that for each task connection 

weight, there is at least one agent that has an initial weight for the corresponding 

connection set to a random value picked from the interval                  where 

  is the actual task connection weight (Section 3.6). This set up can be compared to the 

idea of human collaboration for a complex task – at least one individual in a team has 

some information about a given task but they have to cooperate in order to solve it. 



162 
 

 
 

The impact of this initial task information is clearly critical for system performance. 

However, the purpose of this section is to see if, overall, a certain system would be robust 

enough to solve tasks mentioned in the previous section (tasks with an upper bound 

complexity of 30 concepts) but without given task weight information to the agents at the 

start of the simulation. In this design, we still make sure that all task connections still 

exist in at least one agent (task connections scattered among agents) but the initial agent 

weight for each of those connections is set to a random value in the interval           . 

Therefore, in this design the agents have NO initial information about any task weights. 

In order to achieve the described design we change line 3 in method 

insertTaskInformation (Section 3.6). Thus, instead of initializing the agent weight with a 

weight that is rather close to the task-required weight (within a margin of 0.05) we pick 

up a random weight value from the interval (0.5, 0.95). Thus, method 

insertTaskInformation becomes:  

Algorithm insertTaskInformation 

Input:  AL – agent list 

              e – edge to be added to agent graph knowledge or only changed in terms of  

                    confusion interval and weight; it connects two task connected concepts 

Returns void 

1. Loop through all agents    in AL 

2.                         

3.                                 // the only changed line for the purpose 

4.     // of this section 

5.     If           then 
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6.         add   to       

7.     End If 

8. End Loop 

End Algorithm 

Below we present the results obtained with a system having 60 agents, WM = 5, D = 

5, upper-bound task complexity of 30 concepts and a simulation duration of 16000 time 

steps. 

 

Fig. 5.3.7.1 Average confusion interval length: WM = 5; D = 5 (chunking) 

 

Fig. 5.3.7.2 Average weight differences: WM = 5; D = 5 (chunking) 
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Fig. 5.3.7.3 Total number of solved tasks: WM = 5; D = 5 (chunking) 

From Figures 5.3.7.1-5.3.7.3 we observe the following: 

 The confusion interval behavior resembles the one observed in Figure 5.2.1.3 

although the difference between the maximum final value and the minimum value 

observed at around 6000 time steps is much smaller than in Figure 5.2.1.3 (a 

difference of less than 0.02). Furthermore, the rate of decrease towards the 

minimum value and the subsequent rate of increase are much lower in Figure 

5.3.7.1 as compared to Figure 5.2.1.3. 

 The average weight difference starts to slowly but steadily decrease after the 

initial drop and does so for the entire simulation duration (Figure 5.3.7.2). 

 After approximately 13000 time steps, the number of solved tasks reaches 9.5 out 

of 10 available tasks (Figure 5.3.7.3).  

In this design, the agents have to explore various values for the task weights for a 

longer time since they start with no initial task weight information. The fact that the 
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system eventually reaches 95% performance on solving tasks indicates that the interplay 

between the usage of chunking in learning and teaching and the critical role of calling the 

enlargeConfusion method as a task feedback following unsuccessful task attempts is 

powerful enough to move agent weights towards the correct task weights. As mentioned 

in Section 5.2.1, part of this success is due to calling the enlargeConfusion method only 

for unmatched connections whenever a task attempt is unsuccessful. Since the confusion 

interval (Figure 5.3.7.1) and average weight differences (Figure 5.3.7.2) resemble those 

from Sections 5.2.1 (Figure 5.2.1.3) and 5.2.2 respectively (Figure 5.2.2.3), the main 

simulation difference required in order to solve tasks without any initial task weight 

information is the simulation duration (16000 time steps instead of just 8000 time steps in 

section 5.2.1). Thus, many more learning repetitions and weight center updates are 

necessary in this system in order for the agents to arrive to the correct task weights. 

Therefore, system efficiency is much lower as compared for example with section 5.2.1. 

Nevertheless, due to chunking and proper enlargeConfusion method calls, the system 

achieves a comparable effectiveness at solving tasks. 

The results in this section seem to indicate that although initial task information plays 

a critical role in system performance, by increasing the simulation duration we can obtain 

a system robust enough to solve tasks without ANY initial weight information and at a 

comparable effectiveness with previous designs. 

The implication here is significant: we have a system that is rather very usable. 

Without weight information, one would still be able to use the simulation to learn the 

weights and obtain a good performance on solving tasks. In order to confirm this, we 

understand that additional experiments with no initial weight information need to be 
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performed. This would include experiments where we vary the task complexity, the 

number of agents, the number of tasks and working memory capacity in order to better 

understand how those factors impact a system that does not have any initial weight 

information. 

5.3.8. Summary 

In this section we investigated the impact of several factors in the C-ULM simulation 

using the chunking mechanism. We have found out that a lower working memory can 

lead to a more efficient processing but the same overall effectiveness and that a higher 

spread factor leads to a faster learning and higher performance on solving tasks. We also 

concluded that a larger group of agents increases system effectiveness and that the system 

is robust enough to deal with a small amount of initial task information given to the 

agents. Furthermore, as shown in sections 5.3.3 and 5.3.5, an increased task complexity 

and a low degree of task overlapping lead to a slower learning rate and a lower agent 

performance on solving tasks. 

5.4. Implications 

An important implication resulting from Section 5.2 is the fact that a system that uses 

chunking is learning faster and it is also solving tasks more efficiently than a system 

without chunking. Furthermore, in Section 5.3, we found out that a higher spread factor 

also leads to faster learning and higher performance at solving tasks. According to the 

ULM model, those implications were expected and they show that the C-ULM model is 

accurate in the cognitive modeling of learning mechanisms such as chunking and spread 

activation factor.  
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The implication that the number of agents, task complexity, and the degree of task 

overlapping influence agent task solving performance was also expected. This shows that 

we can use the simulation to better understand how the multi-agent system behaves when 

parameter values are varied. Understanding how the system is changed by varying system 

parameters makes C-ULM an useful tool for performing “what-if” analysis.  

Meanwhile, an interesting implication that was not expected is the fact that a lower 

working memory leads to a more efficient task solving process. This implication shows 

that the simulation can lead to a better understanding of the human learning mechanisms 

especially in the cases of long-term learning and problem solving where data from human 

subjects is generally not available. 

Another unexpected yet significant implication is the fact that the system can learn 

task weights and solve tasks even if it does not have initial task weight information. This 

makes the C-ULM simulation usable to a large array of problems that can be represented 

as weighted graphs and where there is no weight information available to bootstrap the 

system to get it started. 

5.5. Contributions to MAS research 

Our contributions to the AAMAS community are at two levels. One level is the 

modeling of individual agent reasoning inspired by the functions and relationships 

between the three ULM components of knowledge, motivation and WM; and another 

level is the modeling of multi-agent interactions and knowledge transfer based on the 

principles of human teaching and learning processes.  

At the agent reasoning level, most AAMAS efforts regarding modeling of human 

learning have been aimed to improve the performance of multiagent systems—i.e., 
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whether agents utilizing a particular human-based learning model improves, for example, 

their utilities. The attractiveness of using a human-based learning model hinges upon the 

intuitive abstraction of human-to-human knowledge transfer behaviors in complex 

situations. Our multiagent simulation makes a step forward in the use of a human-based 

learning model by capturing the underlying learning mechanisms that tie knowledge, 

motivation, and WM together. This adaptation has several key benefits. First, because of 

ULM being a general cognitive model, incorporating the processes of knowledge, 

motivation, and WM into agent reasoning would allow AAMAS researchers to 

investigate multiagent systems that involve human learning, either with human agents 

interacting with each other or artificial agents working in tandem with their human 

counterparts in a hybrid environment.   

Second, C-ULM can serve as a more general learning framework for agent reasoning, 

especially in situations where domain knowledge is not available or not sufficient to 

optimize or customize the learning processes. For example, in the RL approach, obtaining 

the utility of each state-action pair depends on the rewards and the gradients (both 

direction and amount of update in the utility), which requires domain knowledge to 

ensure learning convergence and efficiency. In a way, a system designer would have to 

estimate at the distance (or a function of the distance) between a state and the desired 

goal states, and guide the exploration and exploitation in the RL process to reach the 

goals. However, C-ULM also treats learning in a more intrinsic manner. An agent strives 

to get better by making its knowledge better, and the quality of its knowledge is the 

collective group of edge weights and the confusion intervals on the edge weights. This 

means, a MAS designer could get away without knowing much about the distance 
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between a state and the goal states, thereby, enabling one to bootstrap agent reasoning 

more efficiently and effectively.   

Third, the C-ULM provides a practical, explicit framework for acquiring and retaining 

knowledge. Motivation guides how concepts or knowledge chunks are moved into the 

WM and it is integral to attention. Attention, important in acquiring and retaining 

knowledge, is a measure that could help MAS designers better model real-time agent 

focus and learning in dynamic environments. Further, grounding learning as a process to 

reduce confusion intervals of edge weights is akin to learning motivated by one’s self-

efficacy, i.e., one’s confidence in one’s knowledge and expertise. This allows agents to 

have intrinsic motivation for acquiring knowledge. Meanwhile, C-ULM agents are also 

extrinsically motivated by the rewards that can be obtained by solving tasks. Thus, our 

model integrates both intrinsic and extrinsic motivation, making it a more flexible 

solution framework for solving MAS-related problems. 

At the multiagent learning and teaching level, C-ULM offers a solution on WM-level 

knowledge transfer between a teacher and a learner, allowing MAS designers to better 

design how agents decide on which knowledge to transfer, how to transfer, and the 

effectiveness of transfer. These decisions are neither arbitrary nor domain-driven, as 

indeed guided by the Unified Learning Model. Though our current work is not complete 

and do not yet comprehensively capture the ULM, we believe that it has the potential of 

offering at least an alternative to model and deliver knowledge transfer between agents. 

Finally, the implications summarized in Section 5.4 can serve as a guideline on how to 

use the C-ULM simulation to address multi-agent research questions. Examples of such 

questions emerge directly from our experiments: What is the optimal number of agents 
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given a certain number of problems of a given complexity? What happens to the agent 

learning behavior if the value of the working memory capacity is increased from 3 to 7? 

How is the growth rate of long-term memory chunks affected by the value of the spread 

activation factor?  

 

Chapter 6. CONCLUSIONS AND FUTURE WORK 

6.1. Summary 

In this work we have introduced C-ULM, a novel multiagent based cognitive 

architecture in order to address research problems in human cognition and in multi-agent 

systems. C-ULM follows the general learning principles outlined by the Unified Learning 

Model (ULM) and it integrates ULM's core components of long-term memory, 

motivation and working memory. 

6.1.1. Related work summary 

Within the field of cognitive architectures, the reference system is SOAR (Lehman et 

al. 2006) which is a production based system where knowledge is mainly described as 

sets of rules. By implementing C-ULM as a connectionist based model, we target the 

issue of limited expressivity found in rule based systems. 

From the multiagent point of view, the reference model is the Belief-Desire-Intention 

architecture or BDI (Rao and Georgeff 1995) which uses beliefs as the agent knowledge 

representation, desires as the agent objectives and intentions as the agent possible actions. 

By the use of working memory and motivation, C-ULM embeds a cognitively-oriented 

filter that can be used to appropriately select a subset of beliefs, desires and actions of 

computationally reasonable size.  
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As compared to recent works in multiagent systems that incorporate cognitive 

components or principles (Sklar and Davies 2005; Spoelstra and Sklar 2008; Merrick 

2011), C-ULM stands out by offering a more complex motivation model having both an 

intrinsic component given by the agent long-term knowledge and an extrinsic component 

given by the risks involved in attempting complex tasks. 

From a cognitive informatics perspective, C-ULM implements in a practical model 

many of the abstraction layers outlined in a theoretic cognitive model called the Layered 

Reference Model of the Brain or LRMB (Wang & Chiew, 2010). In this model, the brain 

has seven abstraction layers of processes with primitive processes operating at the sub-

conscious level and higher cognitive functions such as learning, problem solving and 

decision making operating at the conscious level and relying on the mechanisms of 

previous levels. 

6.1.2. Framework summary 

6.1.2.1. Single-agent model 

C-ULM's single agent model incorporates the three main ULM components of long-

term memory, motivation and working memory.  

Long-term memory is represented as a weighted graph where each agent connection is 

represented by two elements: the connection weight and a confusion interval centered 

around the connection weight value. 

Motivation is modeled by assigning motivation scores for each available concept in 

agent knowledge. Each score has two main parts. The first part is the intrinsic one and it 

influences the final motivation score proportionally to the strength of knowledge the 

agent has about the given concept. The second part is the extrinsic one and it influences 



172 
 

 
 

the final motivation score proportionally to the complexity of tasks that require the given 

concept.  

Working memory is modeled as a subset of concepts found in agent knowledge. The 

size of this subset is given by the working memory capacity and the selection of 

knowledge concepts that get selected to enter working memory is given by comparing 

concept motivation scores to the awareness threshold (or AT). 

The cognitive process of knowledge decay is also modeled within C-ULM. This 

process is modeled by lengthening the confusion intervals of the least used concepts in 

agent's knowledge. 

6.1.2.2. Multi-agent framework 

The multiagent communication and knowledge sharing protocol is performed by the 

actions of learning and teaching. Each of those agent actions is modeled in two major 

phases: the working memory allocation and the working memory processing 

(learnProcess and teachProcess algorithms). Each of the algorithms for allocation have 

two versions: one that allocates one concept in each working memory slot 

(learnAllocate_basic) and one that uses the chunking mechanism and fills each working 

memory slot with a group of interconnected concepts called a chunk 

(learnAllocate_chunking) instead of filling it with only one concept.  

The communication flow starts with the working memory allocation algorithm for the 

teacher agent. This algorithm outputs the set of concepts that will be taught. This set of 

concepts is the input for the teacher agent's working memory processing algorithm. In 

turn, this algorithm produces the knowledge to be taught and also updates the confusion 

intervals for the teacher agent.  
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In the third stage, the WM allocation for the learner agent takes as input the learner 

agent's knowledge and the knowledge to be taught transmitted by the teacher. It then 

outputs a subset of this knowledge based on the learner's working memory. This 

knowledge subset is then processed by the WM processing module for a learner agent. 

This module further adjusts the weight centers and confusion intervals in the learner 

agent's knowledge. 

6.1.2.3. Tasks 

Similar to agent knowledge, tasks are also represented as weighted graphs but the task 

connections do not have an associated confusion interval. In order to solve a task, an 

agent has to have in its knowledge all the task connections and match all the task weights 

within a certain error margin. Task feedback is incorporated by shortening confusion 

intervals when an agent solves a task (positive feedback that leads to stronger knowledge) 

and by lengthening those intervals when an agent fails to solve a task (negative feedback 

that leads to weaker knowledge). 

6.1.3. Implementation summary 

The C-ULM simulation is written in the Java language and it uses Repast (North et al, 

2006) as the framework for agent modeling. Similar to other Repast simulations, C-ULM 

divides each simulation run into time steps or "ticks". Each simulation run is defined by a 

set of parameters that are specified in a syntax specific parameter file. Those parameters 

include the number of agents, tasks and concepts, the agent WM capacity and the number 

of simulation time steps. 
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The simulation outputs are written in csv files that contain the values for specific C-

ULM performance metrics such as the number of agent connections, the confusion 

interval length and the number of solved tasks. 

The main simulation class is called ULMSimulationModel and it extends the Repast 

SimpleModel class. Agents, concepts, knowledge, motivation, working memory, 

concepts and tasks have associated abstract classes with the main features and method 

signatures and non-abstract classes extend the abstract ones for the actual 

implementation. 

6.1.4. Results summary 

The results obtained from various simulation runs indicate that a C-ULM system that 

uses the chunking mechanism leads to faster knowledge acquisition and also to a much 

improved agent effectiveness and efficiency on solving tasks. 

Results further indicate that the agent knowledge acquisition rate and the multiagent 

system performance are significantly influenced by varying the values for various system 

parameters. Thus, we have found out that a lower working memory can lead to a more 

efficient processing but the same overall effectiveness in solving tasks. In addition, a 

higher level of spread activation also leads to a faster learning and higher performance on 

solving tasks. Furthermore, as shown in sections 5.3.3 and 5.3.5, an increased task 

complexity and a low degree of task overlapping lead to a slower learning rate and a 

lower agent performance on solving tasks. Finally, section 5.3.7 indicates that the system 

is quite usable and is robust enough to deal with problems where there is no weight 

information available to bootstrap the initial system configuration. 
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6.2. Future work 

6.2.1. Cognitive research 

As future work in the direction of cognitive and human learning research, we are 

interested in expanding and refining the C-ULM by experimenting with a larger 

parameter space. Of particular importance is investigating learning behavior and task 

solving performance when the task complexity is significantly increased (for example 

systems with 100, 200 or more available concepts).  

Since the system is modeling a group of cognitive agents and not just one cognitive 

agent, by allowing for different working memory capacities for each agent, the system 

could potentially become more accurate in modeling learning and teaching between 

human agents. 

Other cognitive research groups have shown that using a power law for the knowledge 

decay process leads to a more accurate decay modeling than the use of an exponential 

law (Kahana & Adler, 2002). Thus, changing the C-ULM decay exponential decay 

function to power function could provide future insight into knowledge decay and its 

impact on C-ULM learning and agent performance.  

Another potentially fruitful line of research is to test the C-ULM generated data 

against human behavioral and neurological data. This could provide interesting insights 

on how to further improve the model accuracy.  

Section 5.3 showcases that the C-ULM simulation can be used to better understand 

how the system changes when various system parameters are changed. This type of 

experiments could make C-ULM an useful tool for performing “what-if” analyses. One 

of the most interesting and unexpected results of this type is that a lower working 
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memory in a system using chunking leads to a more efficient task solving process than a 

system with a higher working memory capacity. Furthermore, such insights could lead to 

a better understanding of the human learning mechanisms especially in the cases of long-

term learning and problem solving where data from human subjects is generally not 

available. 

6.2.2. Multiagent system research 

 From the intelligent agent perspective, the C-ULM simulation could prove useful in 

the research of multi-agent systems that involve human learning. For example, such a 

system could be comprised of both artificial and human agents collaborating together in 

solving domain specific tasks that require learning. By endowing the artificial agents with 

C-ULM driven insights into the human learning behavior, their reactions to fellow human 

counterparts could improve and thus better serve the system as a whole.  

 In addition, motivated by our findings described in section 5.3.7, we believe that C-

ULM could become useful in solving MAS problems where there is little amount of 

available information. For example, various transportation problems could amount to a 

weighted graph representation where connected locations are represented by two 

connected graph nodes. The weight connection can represent specific features such as the 

maximum allowed flow of transportation units between locations. It is rather probable 

that a complex problem of this type provides a general location map without including 

information about allowed transportation flows between locations. The robustness of C-

ULM shown in section 5.3.7 could help to improve the prospects on such research 

problems.  
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 Furthermore, C-ULM offers a general framework for knowledge transfer between 

agents. This is achieved by the design of the learning and teaching algorithms. Such 

knowledge transfer, driven by the working memory filtering and capacity constraint 

could be embedded in future multiagent systems. In such systems, large and distinct 

chunks of knowledge could be available to each agent but real world restrictions to agent-

to-agent communication bandwidth and limited agent processing power would demand a 

performance-oriented selection of the most relevant pieces of knowledge to be 

transmitted among agents.  

 Lastly, another potentially useful research direction is experimenting with other types 

of agent interactions. For example, it could prove useful to explore one-to many teaching 

and learning interactions in order to improve the knowledge transfer protocol. In those 

interactions, a teacher agent could teach more learner agents and also a learner agent 

could learn from multiple teachers within the same time step. This could provide further 

insights into group learning and teaching and it would also more closely resemble a 

typical school-based educational process. 
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