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 Next-generation sequencing has allowed many new protein sequences to be 

identified.  However, this expansion of sequence data limits the ability to determine the 

structure and function of most of these newly-identified proteins.  Inferring the function 

and relationships between proteins is possible with traditional alignment-based 

phylogeny.  However, this requires at least one shared subsequence.  Without such a 

subsequence, no meaningful alignments between the protein sequences are possible.  The 

entire protein set (or proteome) of an organism contains many unrelated proteins.  At this 

level, the necessary similarity does not occur.  Therefore, an alternative method of 

understanding relationships within diverse sets of proteins is needed. 

 Related proteins generally share key subsequences.  These conserved 

subsequences are called domains.  Proteins that share several common domains can be 

inferred to have similar function.  We refer to the set of all domains that a protein has as 

the protein’s domain architecture. 

 We present a technique which clusters proteins sharing identical domain 

architecture.  Matching a domain to a protein is determined with a confidence estimate 

(e.g., the E-value).  The confidence with which a domain is matched to the sequence 

varies widely.  By using a threshold for what is considered an acceptable match, domains 

with weak similarities can be ignored.  By changing this E-value threshold, the clustering 

patterns and relationships between proteins can be analyzed.  Clusters may merge or split 



 
 

as their domain architecture shifts based on this threshold.  By studying the relationships 

between clusters from one iteration to the next as the threshold is made more stringent, 

phylogeny-like networks can be constructed.  This technique clusters together proteins 

with identical domain architecture, and also illustrates relationships among clusters with 

similar architecture. 

 This technique was tested on the multi-domain Regulator of G-protein Signaling 

family.  The output is consistent with the known functional subdivisions of this protein 

family.  This technique is also considerably faster than typical alignment-based 

phylogenetic reconstruction on this family.  Use of the technique at the proteome level 

was also tested using bacterial proteome data from Bacillus subtilis.
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CHAPTER 1 

INTRODUCTION 
 

1.1 Overview 

 

 With the rapid expansion of data made available from next-generation 

sequencing, many new protein sequences have been identified, and even whole 

proteomes of various organisms are available to study.  Unfortunately, knowledge of the 

three-dimensional structure and function of most of these newly-identified proteins 

generally tends to be limited.  There are some options for studying such proteins, with the 

goal of finding other sequences whose functions are already known and that the proteins 

under study are similar to.  One common approach would be to use the Basic Local 

Alignment Search Tool (BLAST) [1], which is made available through the National 

Center for Biotechnology Information (NCBI) website [2].  BLAST uses local alignment 

searches against a database of proteins or nucleotide sequences to find highly similar hits.  

The assumption is that sequences with high similarity are likely to be closely related and 

to share similar functions as well. 

 Another approach is to use alignment-based phylogenetic methods.  Often used 

multiple sequence alignment methods include ClustalW [3], MUSCLE [4], and MAFFT 

[5].  Phylogenetic reconstruction can be performed using methods such as neighbor-

joining [6], maximum parsimony [7, 8], and maximum likelihood [9, 10, 11].  A 

traditional approach to understanding the relationships within a set of proteins would be 

to perform an alignment and then use the alignment as the basis for generating a 

phylogenetic tree.  However, this approach requires that the sequences under study align 

with one another.  There would need to be at least one significant region within each of 

the sequences that is highly conserved.  Without such regions of similarity, no useful 
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alignment is possible.  As a result, this approach is only applicable to closely-related 

sequences, and would fail if it was attempted on a diverse set of proteins, such as what is 

encountered in an organism’s proteome.  It is therefore necessary to employ an 

alternative method for this purpose. 

 Many proteins are composed of smaller subsequences called domains.  A domain 

is an amino acid sequence that may be present in a protein and which tends to be highly 

conserved between different related proteins, even though the rest of the protein 

sequences are overall more divergent.  The amino acid sequence of a protein can 

determine how it is folded into its three-dimensional structure, due to the chemical 

interactions between each amino acid molecule.  The presence of conserved domains in a 

set of proteins can be used to infer that they may share some similarities in three-

dimensional structure.  The structure of a protein determines its function.  As a result, it is 

possible to infer structural similarity and related function between various proteins from 

the presence of shared domain sequences. 

 Alignment-based phylogenetic methods of clustering proteins are well known, 

and have been in common use for years.  However, they typically rely on analyzing the 

whole protein sequences, or extracted subsequences.  Tribe-MCL is another clustering 

method that does not rely on global alignment of protein sequences [12].  It has been used 

for proteome-level protein clustering.  However, this method does not consider overall 

domain architecture, instead only focusing on the strongest domain match present in a 

given protein.  While such a domain match may be diagnostic for including a protein 

within a particular family of related proteins, this does not consider the modifying effects 

that the presence or absence of any other domains may have on its overall function.  As 
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discussed above, it may be possible for some proteins with similar domain architecture to 

be functionally similar, even though their overall sequences may be more divergent.  By 

using a domain-based method of protein clustering that focuses on the full domain 

architecture, it may be possible to identify similarities in function that might not be 

obvious from alignment-based methods, due to this divergence. 

 Protein domain clustering has previously been investigated by Enright, et al. [12] 

and Shah [13].  Shah’s work focused on using a biclustering algorithm called Bimax [14] 

to group proteins into clusters based on the similarity of their domain architecture.  

Bimax uses a simple binary matrix to construct its clusters.  However, the strength of the 

domain’s matching also factors into the relationships between proteins.  Therefore, it is 

not sufficient to say that a domain is simply present in a protein.  By somehow 

incorporating domain similarity information, in addition to domain architectures, into the 

clustering method, it would be possible to see not only whether or not a domain is simply 

present in a protein of interest, but also how the strength of its matching can affect how it 

is clustered with other proteins. 

 

1.2 Objectives 

 

 The primary objectives of this thesis are to develop a domain-based tool for 

clustering that can be used as an alternative to more typical alignment-based methods of 

phylogenetic reconstruction or Tribe-MCL.  In particular, such a tool is not only useful 

for analyzing the relationships between members of an organism’s proteome, without the 

need of a universally shared subsequence, but it also conducts analysis on the functional 

relationships between smaller datasets more rapidly than a maximum likelihood 

phylogenetic analysis can be conducted on the same dataset. 
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 The overall contributions that have been made by this thesis are: 

 The creation of a Matlab implementation of Bimax. 

 The creation of a Matlab implementation of a bit vector clustering method.  

This implementation iterates by decreasing the accepted domain similarity (E-

value) threshold.  The output shows the cluster membership of proteins and 

domains present in the cluster architecture. 

 Visualizations of bipartite matchings for each iteration are generated.  A final 

“tier”-based graph showing the “inheritance” of proteins between clusters in 

adjacent iterations is also generated, as well as Newick trees stored in plain 

text files displaying phylogeny-like relationships between the clusters as 

derived from this “tier” chart. 

The program was tested using the mouse regulator of G-protein signaling (RGS) 

protein dataset and Bacillus subtilis proteome.  The output of the program was evaluated 

based on how successfully the resulting trees grouped together proteins with related 

function. 

 

1.3 Organization of the Thesis 

 

The rest of the thesis is organized as follows: 

Chapter 2: Background and Related Work 

 Section 2.1: Background 

 This section focuses on the background and primary motivation behind this thesis, 

as well as some of the early steps undertaken. 

 Section 2.2: Related Work 
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 This section provides a summary of some other algorithms that have been 

developed for biclustering methods, as well as one for use in protein domain analysis. 

Chapter 3: Methods and Pipeline Overview 

 This chapter goes over the fine details of what methods the bit vector approach 

uses, as well as a step by step overview of how it goes about clustering the input proteins 

and building the resulting phylogeny-like trees. 

Chapter 4: Results and Discussion 

 4.1: Datasets Used 

 This section covers a brief overview of the RGS and B. subtilis datasets used in 

the study. 

 4.2: Evaluation Methods 

 This section introduces how the quality of the resulting trees was assessed. 

 4.3: RGS Data 

 This section covers the output of the bit vector approach on the RGS data, as well 

as the output of several runs using maximum likelihood and neighbor-joining on the same 

data. 

 4.4: Discussion of RGS Data 

 This section discusses the key findings of the RGS data output, as well as 

discussing comparisons to the performance of alternative algorithms. 

 4.5: B. subtilis Data 

 This section describes a small selection of the trees provided in the output of the 

bit vector program on the B. subtilis data. 

 4.6: Discussion of B. subtilis Data 
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 This section describes some of the key findings of the B. subtilis data output. 

Chapter 5: Conclusion and Future Work 

 This chapter discusses the main conclusions of this thesis, and how the proposed 

bit vector program compared to other methods. 

 5.1: Future Work 

 This section provides a discussion of some proposed improvements that could be 

made to the bit vector approach. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 
 

2.1 Background 

 

 The main goal of this thesis is to further the work of Shah [13].  Shah’s protein-

domain clustering method focused on biclustering techniques using a C implementation 

of the algorithm Bimax [15].  Her technique was tested using a sampling of the multi-

domain Regulator of G-protein Signaling (RGS) family of proteins from Mus musculus, 

as well as multiple proteomes from both prokaryotes and eukaryotes. 

 Originally, it was intended to find and test an alternative algorithm which can 

allow the strength of the domain match to be considered, as opposed to a simple binary 

presence-absence test (as Bimax does).  In Oghabian, et al. [16], several biclustering 

algorithms were compared.  Although most of the algorithms discussed were designed for 

gene expression biclustering, it was hoped a way might be found to run a selected 

algorithm using protein domain data as input instead.  The above review assessed various 

qualities of the sampling of algorithms under investigation, including how successful they 

were in differentiating different sample types, how well the groups of genes in the 

algorithms’ results are annotated with similar gene ontology categories, how well the 

algorithms were able to differentiate genes known to be specific to particular sample 

types the authors used in the study, and also running time of the algorithms.  The review 

determined that techniques such as Plaid and SAMBA were the most useful and reliable 

methods assessed in the study. 

 Based on the results of the aforementioned study, SAMBA was originally 

considered for the alternative algorithm.  It is not a standalone algorithm, and comes 

bundled in a larger package of gene expression and microarray analysis methods known 
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as EXPANDER.  This package was designed by Shamir, et al. [17], who also wrote an 

overview of the SAMBA algorithm itself [18].  EXPANDER is freely available online 

[19].  Ultimately, after several tests on the input data based on the RGS proteins, it was 

found that the clusters generated by SAMBA did not match the clusters that Shah 

obtained using Bimax closely enough to be of use for this project.  For example, several 

distinct clusters in Bimax’s results were often combined together using SAMBA.  As a 

result, the use of SAMBA was abandoned. 

 

2.2 Related Work 

 

 Biclustering methods as well as protein domain analysis tools have been 

previously investigated by a number of authors. 

 Király, et al. [20] developed a biclustering using bit-tables.  This method is very 

similar to the technique used by Bimax and the bit vector approach described in this 

thesis.  The bit-table method proposed by Király is given as a Matlab implementation, 

and uses matrix and vector multiplication in order to discover the biclusters efficiently.  

The tests presented indicate the algorithm outperforms Bimax in all cases. 

 BicOverlapper [21] is a gene expression analysis tool that visualizes key aspects 

of the analysis process, such as the expression data, profiling, and annotation.  It 

integrates several techniques into one convenient package.  Its main contribution is to 

provide useful visualizations based on results of biclustering algorithms on gene 

expression data. 

 Another biclustering method is Bi-Force [22].  This technique uses a weighted 

bicluster editing model, and was compared against other biclustering algorithms (FABIA, 

QUBIC, Cheng and Church, Bimax, Spectral, xMOTIFs, and ISA) on synthetic and real-



9 
 

world gene expression datasets.  It generally performed favorably against the other 

algorithms, although Spectral was shown to be consistently faster.  Generally, however, 

the quality of results that Bi-Force reported was considered to be better that that of the 

other algorithms. 

 BicSPAM [23] is a biclustering technique that was proposed with the intention of 

being a more robust order-preserving biclustering algorithm than other methods 

previously available.  It was evaluated based on its ability to capture bicluster 

symmetries, handle noise, and scalability.  The authors report that BicSPAM surpasses 

the issues found in other order-preserving methods, and was shown to be both flexible 

and robust in terms of noise and expression profiles. 

 A tool called Furby [24] is presented as a visualization technique for biclustering 

results.  The technique offers an overview of the results of gene expression biclustering, 

showing what data forms the clusters together, and also provides the ability to set 

thresholds to form “fuzzy” clusters into “hard” clusters that can be studied with other 

methods, such as bar charts. 

 Finally, DoMosaics [25] is a protein domain analysis program that is intended for 

comparison and visualization of domain architectures.  Its primary contribution is that it 

combines domain annotation, homology search, analysis of domain architecture 

evolution, and visualization into a single convenient tool. 
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CHAPTER 3 

METHODS AND PIPELINE OVERVIEW 
 

 It was initially decided to use Bimax, but to test varying the maximum threshold 

of the permissible E-values in the input data.  The E-value, or expect value, is a 

confidence estimate widely used in bioinformatics tools.  Examples include BLAST [1] 

and HMMER [26, 27].  The E-value is used to describe the likelihood of seeing positive 

hits of equal or better score due to random chance in a database of a given size.  The 

closer the E-value is to 0, the more significant the match is.  As a result, smaller E-values 

are more desirable than larger ones.  By varying the accepted E-value threshold of a 

protein-domain matching, it would be possible to see how the clusters change as low-

scoring domains are systematically deleted and Bimax is re-run on the modified data.  To 

this end, a new implementation of Bimax was written, which was ultimately embedded 

inside a larger script allowing the method to be systematically called on increasingly 

more stringent input data.  All code has been written in Matlab.  This programming 

language was selected primarily due to the streamlined way it handles matrices, as well 

as ease of importing / exporting data to and from files. 

 Upon completion of this implementation of the core method, several test input 

matrices were created.  This data was then passed to both the Matlab implementation of 

Bimax, as well as the original C implementation [15].  The results for each test were 

compared to ensure the Matlab implementation was indeed operating correctly.  For both 

implementations, the clusters reported were identical for each test case.  With the core 

method functioning as expected, further scripting was done to produce a pipeline.  Data 

taken from HMMER results of a selection of proteins is fed into a script, which then 

imports this data into a cell array.  Certain columns are accessed, including the protein 
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name, domain it is matched to, and the E-value of the match.  This data is used to 

construct a simple m × n binary matrix, where m corresponds to the number of unique 

proteins under investigation, and n corresponds to the number of unique domains present 

in the entire set of m proteins.  Thus each row of the matrix corresponds to one protein, 

while each column corresponds to one domain. 

 If the value of a cell i, j is set to 0, it indicates that domain j is not present in 

protein i, according to the results from HMMER at the current E-value threshold.  It 

should be noted that an E-value of 1.0 was selected as the maximum permissible value, 

values higher than this threshold were not considered.  Otherwise, if the cell’s value is 1, 

it indicates HMMER has reported domain j is present in protein i.  This matrix is then 

exported to a plain text file, which is then used as the input for the implementation of 

Bimax.  After each iteration of a matrix through Bimax, the sorted list of E-values is used 

to delete all entries with an E-value of the same order of magnitude as the poorest-score 

left in the list.  It accomplishes this by iterating over the input matrix and changing any 

entries at the deletion threshold from 1 to 0.  For example, if the current highest (and 

therefore poorest score) E-value is 2.3 × 10−8, then all entries with E-values at the order 

of magnitude of 10-8 are similarly removed.  The updated matrix is then passed back to 

Bimax and the new set of clusters is found.  This process repeats until either all 

remaining E-values are at the same order of magnitude (and so all such entries would be 

deleted if the algorithm were to iterate one more time), or the current order of magnitude 

reaches a user-defined threshold, used as a termination condition. 

 The results reported by Bimax are inclusion maximal, that is, in the event a 

protein has a set of domains A, B, C, for example, it will be clustered not only with all 
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proteins possessing all three domains as their total domain architecture, but will also be 

clustered with the set of proteins containing domain A, the set of proteins containing 

domain B, the set of proteins containing domain C, the set containing domains A and B, 

and so on.  This means an individual protein could potentially participate in more than 

one cluster. 

 The current version of the clustering implementation has been used to compare 

the results by this method with those by Shah’s [13].  In the process of this comparison, it 

was determined that because Shah focused on the complete domain architecture of each 

protein, rather than only subsets of a protein’s domains (as seen in results from inclusion 

maximal clusters), it was determined that post-processing of the Bimax results would be 

required to eliminate clusters that did not involve all possible domains for some of the 

member proteins, with the intent to focus only on clusters representing the entire domain 

architecture of the member proteins.  Rather than do this, it was instead decided to create 

an alternate implementation that used bit vectors instead, and cluster proteins together 

only if they shared all of their domains, and not just subsets of them.  The main reason for 

this decision was it was believed it would be a more efficient approach to simply cluster 

the proteins in non-inclusion-maximal groupings that only focus on the total domain 

architecture for each group as the criterion for inclusion, rather than the presence or 

absence of individual domains without regard to the overall architecture, as Bimax does. 

 The core approach is as follows.  Each protein is assigned a bit vector derived 

from the binary matrix discussed above.  The number of bits is determined by the total 

number of unique domains present in the entire set of proteins being clustered.  Suppose 

the entire protein selection has 50 domains.  Then the binary string or bit vector will 
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consist of 50 bits.  The index of each bit in the string will correspond to a particular 

domain in the selection.  As discussed previously, a value of 0 indicates that particular 

protein does not have that domain present, according to the HMMER data provided as 

input and the current E-value threshold.  A value of 1 indicates the domain is present for 

that particular protein.  A simple comparison of the strings of each protein will then allow 

proteins sharing identical strings to be clustered together. 

 The comparison process is as follows: protein 1 is compared with protein 2, 3, 4, 

and so on until the mth protein.  Then protein 2 is compared to protein 3, then 4, and so 

on to the mth protein.  Then protein 3 is compared to protein 4, 5, and so on.  Each pair of 

proteins is compared exactly once, so the number of comparisons is reduced with each 

new target protein under comparison.  In the event that a string being compared to the 

target string is found to be identical, the proteins are placed in the same cluster, and the 

bit vector is deleted from the list, guaranteeing they are not unnecessarily compared 

again, as their proteins cannot participate in any additional clusters.  As a result, the time 

complexity of this core method is 𝛩(𝑚2). 

 In addition to what is described above, the process is repeated with increasingly 

stringent E-value thresholds.  The E-value threshold is here defined as the maximum 

permissible E-value for inclusion in the computational process.  Any E-values higher 

than that threshold are not considered.  For example, on the first iteration, only E-values 

strictly less than 1.0 are of interest.  This has been arbitrarily chosen as a threshold for 

which E-values are appropriate for inclusion.  Values of 1.0 or higher are deemed too 

weak to warrant attention.  It should be noted that the HMMER input data has two 

possible E-values, the conditional E-value and the independent E-value.  The independent 
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E-value (or i-Evalue) is defined as the significance of the sequence in a search of the 

entire database, if the domain the E-value is associated with were the only domain 

identified [28].  The conditional E-value (or c-Evalue), on the other hand, measures the 

statistical significance of each domain given that the target sequence has already been 

decided to be a true homolog.  Thus it is the expected number of additional domains that 

could be found with the same domain score due to random chance.  The i-Evalue, which 

is more regularly used in HMMER, was used in this work.  For each subsequent iteration, 

the order of magnitude of the highest remaining E-value is located.  For instance, if this 

E-value were to be 2.1 × 10−8, then the order of magnitude is 10-8.  All E-values 

remaining that are at that same order of magnitude are removed from the matrix during 

each iteration.  For example, if Protein X were to possess domains A, B, and C, suppose 

Domain C was matched with an E-value of 2.1 × 10−8, and domains A and B were 

matched with much stronger E-values several orders of magnitude smaller than this 

value.  After the iteration in which all E-values with the order of magnitude 10-8 are 

removed, Protein X would no longer have the domain architecture A, B, C, but would 

instead now have the architecture A, B, as Domain C has now been removed by the 

threshold cutoff.  In this way, the threshold of what E-values are deemed acceptable is 

constantly decreased (made more stringent) as the algorithm progresses.  This has the 

effect of changing which bits are determined to be 1, as the permissible threshold of 

inclusion changes, and therefore also has the effect of deleting weakly-scoring edges 

(representing the protein-domain matchings) in the resulting bipartite graph with each 

iteration. 
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 As stated before, the method has a core time complexity of 𝛩(𝑚2) for its bit 

vector comparison, given m bit vectors (one for each protein).  However, this process is 

repeated for each E-value iteration, and so the time complexity would be 𝛩(𝑒𝑚2), where 

e represents the number of E-value iterations, determined by the values present in the 

HMMER data.  However, technically the way the code is implemented, for each of the n 

domains, each of the m bit vectors requires iterating over each individual bit to generate 

the binary strings on which the comparisons are based.  As a result, the true time 

complexity is actually 𝛩(𝑒𝑚2𝑛) to cluster the proteins over all of the E-value iterations.  

Furthermore, the construction of the final trees requires iterating over each of the m 

proteins and performing pairwise comparisons to determine which proteins have the same 

Newick strings as they are being constructed.  This must be repeated for each of the e 

iterations until the final Newick string is constructed for each protein.  This procedure 

therefore also has a time complexity of 𝛩(𝑒𝑚2).   

 The principal output of the algorithm is a set of graph files that can be viewed 

using Gephi [29, 30],  an open-source program intended for network visualization, which 

also provides capabilities such as exploratory data analysis, link analysis, and biological 

network analysis.  The basic layout of the graph is to have the protein nodes lined up in 

the left-hand column, and the domain nodes lined up in the right-hand column, with the 

edges connecting the two columns.  Each edge represents that a given protein has the 

connected domain according to the HMMER data and the E-value threshold of that 

iteration.  In other words, if the binary matrix for that iteration has a 1, an edge is present 

between that protein and that domain.  In addition, the edge weight wij of the ith protein 

connecting with the jth domain is found according to the formula: 
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𝑤𝑖𝑗 = 10 ∙ [
− log10(𝐸𝑖𝑗)

100
] 

where Eij is the E-value of the ith protein matching with the jth domain (taken from the 

HMMER input).  The value of 100 is generated from – log10(1.0 × 10−100), where 1.0 ×

10−100 is arbitrarily chosen as the “best” E-value possible.  In the event E happens to be 

smaller than 1.0 × 10−100, it is mapped back to this value, and so the resulting weight 

will be 10 (from 10 ∙ (
100

100
), or 10 × 1 = 10).  The value is multiplied by a factor of 10 to 

allow for easy viewing in the Gephi visualizations.  If the value is left as a decimal 

between 0 and 1, the edge weight thickness will not be easily distinguished in the 

resulting visualization. 

 The files to be used in Gephi are generated in GEXF format.  GEXF stands for 

Graph Exchange XML Format.  As its name suggests, the content of the file is XML code 

which specifies the properties of the nodes and edges.  By using this format, the 

algorithm’s output could be changed to precisely specify the properties of each node – 

particularly position and color [31].  This allows the generation of the Gephi graphs to be 

automated, thereby increasing the efficiency of the process.  The current version presents 

each cluster of protein nodes by grouping all nodes of a given cluster next to each other 

with extra white space above and below that cluster to visually separate it from the 

others. 

 Plain text files are also generated displaying the final trees found by the 

algorithm.  Tree outputs are expressed using the Newick format, which is regularly used 

for phylogenetic trees.  The string “((A,B),C)” is a simple example of Newick format.  It 

indicates that A and B are sister taxa, and that together they form a branch which itself is 
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sister to the branch containing C.  Figure 3.1 provides a visualization of this tree.  These 

files can conveniently be imported into a tree visualization program to be displayed.  

There is both an un-labelled version, without branch lengths, node labels, or domain 

architecture presented, and also a labelled version that does show these features.  

TreeView [32] was used to generate the final tree visualizations. 

 
Figure 3.1: A visualization of the Newick tree ((A,B),C). 

 

 The basic procedure of the algorithm described above is summarized in Figure 

3.2. 
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Figure 3.2: Basic pseudocode of the clustering procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Read input data. 

2. Reformat data to a tab-delimited file for importing into Matlab. 

3. Read reformatted file. 

4. Extract relevant fields (domain name, protein name, i-Evalue). 

5. Build a list of proteins and domains present in the data. 

6. Output protein and domain lists to file. 

7. Construct a binary matrix indicating which domains of the set are present in which  

    proteins. 

8. Create a list of nodes for import into Gephi. 

9. Iterate until no entries remain, decreasing the E-value threshold: 

 a. Delete poor E-values in the binary matrix (if applicable). 

 b. Run the bit vector procedure. 

 c. Output edge data (for Gephi) and clusters to file. 

10. Generate data for tier chart showing inheritance of proteins of each cluster  

      between adjacent iterations. 

 a. If cluster remains unchanged between iterations, a single edge is drawn  

                between nodes. 

 b. Else if cluster is the result of the merging of two or more previous clusters,  

                draw edges converging on the new merged cluster. 

 c. Else if cluster splits into two or more clusters between iterations, draw  

                edges to the descendant clusters. 

11. Build Newick trees from the tier chart data. 

12. Output Newick trees to file. 

13. Output tier chart. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Datasets Used 

 

 The bit vector program was tested on both the RGS and B. subtilis data from 

HMMER.  The RGS dataset from Mus musculus was composed of 66 proteins with a 

total of 54 domains, as identified by HMMER.  The B. subtilis proteome data consisted of 

3,973 proteins.  HMMER identified a total of 4,737 individual domains. 

 

4.2 Evaluation Methods 
 

 Clustering patterns were evaluated based on how the clusters correlated with 

protein function.  Here we define a protein’s function as its role in the organism.  This is 

usually given as the protein’s description or name associated with its accession number 

on databases such as NCBI.  For example, NP_061357.3 is a type of kinase (specifically, 

a G-protein coupled receptor kinase).  This distinguishes it from other protein functions, 

such as hemoglobin, which binds to and transports oxygen in the bloodstream, or 

cytochrome, which participates in the electron transport chain to produce ATP.  The 

results were evaluated for how well the individual trees encompass the proteins of the 

associated functionality.  For example, Tree 5, presented in Figure 4.3.4, encompasses all 

of the proteins (in red) possessing the regulator of G-protein signaling (RGS) function (as 

opposed to the RGS domain or the RGS protein family itself).  Furthermore, there are no 

proteins of this functional type found in any of the other RGS family trees. 

 It would be expected that in a given dataset, all proteins with a given functional 

class, such as kinases or axin proteins, would be grouped within a particular tree, rather 

than some members being clustered in separate trees.  It would also be expected that all 
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proteins within a tree would possess a similar functional class, rather than the tree 

consisting of proteins with a variety of unrelated functions.  Furthermore, it would be 

expected that members of one branch of a tree would exhibit more similarity in function 

to each other than they would to members of other branches, although the members of 

separate branches would still share a related function in some way.  An example might be 

a two-way split in a tree with kinases of one type in one branch, and another kind of 

kinase in its sister branch.  Each of the different kinds of kinases in this example would 

be expected to cluster together within their own branches, rather than being scattered in 

separate branches. 

 The homogeneity of each of the trees can be calculated.  Trees that consist 

entirely of proteins with the same function have 100% homogeneity.  If a tree were to 

consist of ten total proteins, and two of them had functions that differed from that of the 

other eight, then the tree’s homogeneity would be 80%, as eight out of the ten proteins 

share the same function.  The homogeneity (h) calculations follow the formula ℎ =

𝑥𝑖𝑛/𝑥𝑡𝑜𝑡.  𝑥𝑖𝑛 represents the number of in-group members of any given tree, defined here 

as the largest subset of included proteins sharing the same function (the dominant 

function of that tree), and 𝑥𝑡𝑜𝑡 represents the total number of proteins in the tree.  Thus, 

larger percentage homogeneity means a given tree contains fewer outliers not belonging 

to the tree’s dominant protein function. 

 Similarly, it is important to assess how disjointed or discontinuous a protein 

function is.  If a tree were to have all proteins in the set with a given functionality 

contained within it, then that functional type would not be disjointed at all.  However, if a 

tree were to consist of eight proteins of a given function, but another tree contained two 
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more proteins with the same function, then that functional type would be said to be 20% 

disjointed, as two of the ten proteins do not occur within the tree where the majority of 

the member proteins are placed.  The discontinuity (d) calculations follow the formula 

𝑑 = 𝑦𝑜𝑢𝑡/𝑦𝑡𝑜𝑡.  𝑦𝑜𝑢𝑡 represents the total number of member proteins of any given 

function that are found outside the tree where the majority of members of that same 

function are found, and 𝑦𝑡𝑜𝑡 represents the total number of proteins of that function.  

Thus, smaller percentage discontinuity means a given function has more of its members 

contained within the same tree. 

 The average Jaccard index, described in [14], is an assessment of the similarity 

between the results of two clustering methods.  In this case, we compare the trees 

(including those consisting of only one cluster) generated from the RGS data from the bit 

vector approach to the clusters found in the maximum likelihood trees.  A maximum 

likelihood cluster is defined as a branch having a node with at least a 70% bootstrap.  In 

such a case, all proteins within that branch are considered to be clustered together.  We 

refer to set B as the set of bit vector trees, and set M refers to the set of maximum 

likelihood clusters.  The Jaccard index was compared between the bit vector approach 

and the maximum likelihood approaches using both the MUSCLE and MAFFT 

alignments.  The formula used is as follows: 

  
 

4.3 RGS Data 

 

 In addition to the Newick tree visualizations shown in Figures 4.3.8-4.3.15, the 

program also outputs a “tier”-based chart, as shown in Figures 4.3.1a-4.3.1d.  The 
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construction of this chart also serves as the basis for constructing the Newick trees.  It 

should be noted that this chart does not necessarily result in the creation of one large tree, 

but can instead (as it did with the RGS data) result in several smaller trees with no 

overlap between their contents.  Many of the cluster groups connected by edges in the 

chart may never merge with each other, and so they remain separate in the final trees. 
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Figure 4.3.1a: First portion of the tier chart for the RGS data, from iteration 0 to iteration -12. 
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Figure 4.3.1b: Second portion of the tier 

chart for the RGS data, from iteration -12 to 

iteration -26. 
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Figure 4.3.1c: Third portion of the tier chart for 

the RGS data, from iteration -26 to iteration -38. 
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Figure 4.3.1d: Final portion of the tier chart for the RGS data, from 

iteration -38 to iteration -69. 
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 Each “tier” or row of nodes in the chart represents the individual clusters found in 

a particular iteration.  The cluster nodes are labelled in the format “Cluster X Y”, where X 

is the cluster number for that iteration, and Y represents the order of magnitude of E-value 

that was deleted at the start of the iteration, or 0 for the initial iteration.  For example, if 

the current order of magnitude is 10-5, then Cluster 3 would have its node labelled as 

“Cluster 3 -5”.  Edges are drawn between nodes in adjacent iterations only if a cluster in 

one iteration “inherits” at least one protein from a cluster in the previous iteration.  In 

addition, edges will be thicker if more proteins are inherited between the connected 

nodes.  We refer to a lineage as the set of edges connecting all participating cluster nodes, 

and continuing to a final node at some point (a dead end).  Dead ends of a lineage 

indicate that no proteins in its final cluster remain with any acceptable domains according 

to the threshold for the next iteration.  Similarly, some proteins participating in a lineage 

will also periodically be removed along the way, even though other proteins remain 

accepted by the threshold and still continue to subsequent iterations. 

 Parts of a lineage may split, merge, or remain unchanged from one iteration to 

another.  For example, a cluster may lose one or more domains that have thus far 

prevented its member proteins from being included in another cluster.  Once these 

domains are lost due to the threshold, the architectures of the two clusters will be 

identical, and they will merge together.  Similarly, a single cluster may split apart.  This 

happens because one or more of its proteins may lose a domain before any other proteins 

in the same cluster lose the same domain.  As a result, the architectures are no longer 

identical, and so a new cluster must be formed to contain the diverging proteins.  In cases 

where no splitting or merging occurs, an edge will connect a cluster node with the 
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updated version of the same cluster for the next iteration.  This does not necessarily mean 

the domain architecture or protein membership is identical between the two nodes, it just 

means that nothing happened to result in the cluster merging with another cluster or 

splitting into two or more new clusters.  Some proteins could have been removed due to 

E-value threshold, and even one or more domains could have been deleted.  If this occurs, 

as long as all of the surviving member proteins have the same domain deleted at the same 

threshold, no discrepancy in architecture will occur among the member proteins, and so 

no splitting will occur, and as long as the updated architecture does not match that of any 

other cluster, no merging will occur either. 

 There are several examples of the above behavior in the RGS tier chart.  Figure 

4.3.2 provides an example of merging, Figure 4.3.3 gives an example of splitting, Figure 

4.3.4 shows an example where neither splitting nor merging occurs, and Figure 4.3.5 

shows a dead end in a lineage. 

Figure 4.3.2 (left): Cluster 12 -3 

is formed when Cluster 12 -2 

and Cluster 18 -2 merge 

together. 

 

 

 

 

 

 
Figure 4.3.3 (right): Cluster 8 

-4 splits, with some proteins  

                                                           forming Cluster 8 -5 and others  

                                                           forming Cluster 13 -5. 
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Figure 4.3.4: Examples of no change between iterations on three separate lin- 

eages.  Differences in edge weight can also be seen. 

 
Figure 4.3.5: Cluster 1 -7 is the final node of this lineage, even 

though other lineages continue to subsequent iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The behavior of each lineage in the tier chart is important, because this is the basis 

for how the Newick trees are formed.  The leaves of each tree are formed from the 

participating clusters in the initial tier of the chart, and dead ends indicate the presence of 

the tree’s root.  Lineages that never split or merge form singleton trees, for example.  

Merges are probably the most important, because these form the basis for nodes in the 
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Newick tree.  For example, the merging of two clusters forms a two-way split in the 

resulting tree.  Figure 4.3.6 shows another view of this behavior between Cluster 5 0 and 

Cluster 12 0.  The Newick tree formed from this places Cluster 5 and Cluster 12 on the 

same branch as sister groups (see Figure 4.3.14).  It is also possible for more than two 

clusters to merge at once, which results in a polytomy, such as between clusters 6, 19, 

and 23 in Figure 4.3.14.  Figure 4.3.7 shows the point in the tier chart where this 

merging occurs. 

 

 
Figure 4.3.6: Illustration of Cluster 5 0 and Cluster 12 0 merging to form Cluster 5 -1.  This results in a 

two-way split in Tree 5. 

 

 
Figure 4.3.7: Clusters 6, 19, and 23 all merge together at Cluster 6 -2 (circled) in the tier chart.  This 

results in a three-part polytomy in Tree 5. 
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 The protein lists in Tables 4.3.1, 4.3.3, 4.3.5, and 4.3.7 associated with each of 

the figures below show the proteins contained within each cluster of the initial, least 

stringent iteration.  The individual proteins have been color-coded to display their 

function (as indicated by their name), and each cluster also has its domain architecture 

listed as it appears in the initial iteration.  Protein indices correspond to that used 

internally by the bit vector algorithm, and are based on their order of occurrence in the 

HMMER data file.  A key is provided to give the specific functions.  The clusters have 

been arranged according to their placement in the various trees (Figures 4.3.8-4.3.15), 

and are listed by branch order from top to bottom.  The cluster labels within each of the 

figures have also been outlined with the color of the dominant function of the proteins 

contained within. 

 In addition to the versions of the trees without node labels or branch lengths, there 

are also versions of each of those trees that do use branch lengths and node labels 

(Figures 4.3.9, 4.3.11, 4.3.13, and 4.3.15).  The labels use the internal indices for each of 

the domains.  The associated tables (Tables 4.3.2, 4.3.4, 4.3.6, and 4.3.8) provide keys to 

those domains.  The branch lengths are calculated based on the number of iterations a 

branch survives before being merged with another branch.  Each iteration adds 0.1 to the 

branch length.  For example, Figure 4.3.9 exhibits a difference in the length between the 

branch containing clusters 14 and 16 versus the branch containing cluster 3 and 20.  

Clusters 3 and 20 merge in the second iteration, while clusters 14 and 16 merge in the 

eighth iteration.  As a result, clusters 14 and 16 both have longer branches before joining 

to form a node. 
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 The protein functions generally match with the clusters grouped in each tree, with 

most or all of the proteins within a given tree sharing the same or related functions.  For 

example, Figure 4.3.8 and Table 4.3.1 indicate that Tree 1 is composed exclusively of 

guanine nucleotide exchange factors.  Figure 4.3.10 and Table 4.3.3 shows that Tree 2 is 

composed entirely of kinases.  Figure 4.3.12 and Table 4.3.5 presents Tree 3 as being 

composed only of sorting nexins.  Figure 4.3.14 and Table 4.3.7 illustrates that Tree 5 is 

composed of all the RGS proteins, plus a few outliers, either kinases or related proteins.  

Table 4.3.9 shows similar consistency with the membership of the singleton clusters.  

Clusters 9 and 11 are composed of nucleotide exchange factors and axins, respectively.  

Cluster 7 appears to be composed of a group of poorly-understood proteins, including 

some that are either predicted, or have not been characterized. 

 The results of the homogeneity and discontinuity calculations are provided in 

Tables 4.3.10 and 4.3.11. 

 It should be noted that the RGS family is characterized by proteins possessing 

either the RGS or RGS-like domain.  Cluster 9 is the only exception, but it should be 

noted that the original HMMER data file actually does include the RGS domain for each 

of its member proteins, but as the i-Evalue was given as greater than 1.0, this was 

ignored.  This also seems to be one of the reasons Cluster 9 was not included within Tree 

1 with the other guanine nucleotide exchange factor proteins.  Overall, the domain 

architecture between the Tree 1 clusters and Cluster 9 seems to be too divergent for them 

to have been placed together by this method.  It should also be pointed out that the 

Cluster 9 members are all labelled as DBS proteins, while none of the Tree 1 members 

are.  This may be another reason for this distinction in the clustering. 
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 Cluster 8 is composed entirely of kinase proteins.  NP_036011.3, a rhodopsin 

kinase precursor at first glance appears to be an outlier among the G protein-coupled 

receptor kinases.  However, it should be noted that NCBI lists EDL22144.1 as an 

identical protein to NP_036011.3.  EDL22144.1 is described as G protein-coupled 

receptor kinase 1 from Mus musculus, and so NP_036011.3 appears to not actually be an 

outlier in this case.  The sister branch to Cluster 8 in Tree 2 is composed of clusters 4 and 

21.  Each contains a single beta-adrenergic receptor kinase.  As such, Tree 2 is broadly 

composed of two classes of kinases, and each class is contained within its own branch of 

the tree. 

 Tree 5 is composed of an almost uniform selection of RGS proteins.  However, 

Cluster 6 contains three outliers: a G-protein-coupled receptor kinase, a precursor to an 

A-kinase anchor protein, and a beta-adrenergic receptor kinase.  Cluster 6’s domain 

architecture consists solely of the RGS domain itself.  Indeed, the entries of these three 

proteins in the HMMER data file only list the RGS domain as being matched to them.  

This is unexpected, as compared to the architectures seen in clusters 4, 8, 17, and 21.  

This may be an indication that the domain architecture does not necessarily dictate a 

protein’s function in all cases, or, more likely, possibly that the data provided by 

HMMER did not accurately reflect the total architecture of these three proteins.  There 

could have been prediction errors possibly brought about by removed exons.  This could 

have removed some of the domains as well.  Because both of the kinases are isoforms, or 

alternate versions of the same protein produced by the same gene, this is a strong 

possibility.  Also, NP_064305.2 (the A-kinase anchor protein) is reported by NCBI to 

have a total of three domains, including a binding domain of A-kinase anchor proteins.  
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NP_001030608.1 (the beta-andrenergic receptor kinase) is listed by NCBI as an obsolete 

version of NM_001035531.1, which has been removed due to insufficient support.  

NP_001074212.1 (the G-protein-coupled receptor kinase) is indeed listed by NCBI as 

possessing only the RGS superfamily domain, in contrast to NP_062370.2 (one of the 

proteins from Cluster 8), which has other domains as well. 

Key: 

regulator of G-protein signaling sorting nexin 

RNA-binding protein axin 

G-protein-coupled receptor kinase beta-adrenergic receptor kinase 

guanine nucleotide exchange factor PM1-like 

A-kinase anchor protein Slx-like 

rhodopsin kinase precursor predicted genes / proteins 

 
 

 
Figure 4.3.8: The version of Tree 1 from the RGS data without node labels or branch lengths. 

 
Table 4.3.1: The clusters present in Tree 1.  Domain architecture is given on 

the right of each cluster header. 

Cluster 14 RGS-like, RGS, RhoGEF, PDZ, PDZ_2, DUF3135 

22:  NP_001003912.1 - rho guanine nucleotide exchange factor 11 

Cluster 16 RGS-like, RhoGEF, PDZ, PDZ_2, OmpH, AAA_23 

31:  NP_081420.2 - rho guanine nucleotide exchange factor 12 

Cluster 3 RGS-like, RhoGEF, PH_5 

3:  NP_001123624.1 - rho guanine nucleotide exchange factor 1 isoform c 

24:  NP_001123625.1 - rho guanine nucleotide exchange factor 1 isoform c 

46:  NP_032514.1 - rho guanine nucleotide exchange factor 1 isoform d 

Cluster 20 RGS-like, RhoGEF 

42:  NP_001123623.1 - rho guanine nucleotide exchange factor 1 isoform b 

45:  NP_001123622.1 - rho guanine nucleotide exchange factor 1 isoform a 
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Figure 4.3.9: Tree 1 with branch lengths, node labels, and domain architecture displayed. 

 
Table 4.3.2: Key to the domain indices 

present in Figure 4.3.9. 

Index Number Domain 

7 RGS-like 

10 RGS 

13 RhoGEF 

14 PH_5 

30 PDZ 

32 PDZ_2 

40 DUF3135 

42 OmpH 

43 AAA_23 

 

 

 
Figure 4.3.10: The version of Tree 2 from the RGS data without node labels or branch lengths. 
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Table 4.3.3: The clusters present in Tree 2.  Domain architecture is given on 

the right of each cluster header. 

Cluster 8 RGS, Pkinase, Pkinase_Tyr, Kinase-like 

13:  NP_062370.2 - G protein-coupled receptor kinase 4 isoform 1 

20:  NP_036011.3 - rhodopsin kinase precursor 

26:  NP_001033107.1 - G protein-coupled receptor kinase 6 isoform a 

38:  NP_001106182.1 - G protein-coupled receptor kinase 6 isoform c 

62:  NP_061357.3 - G protein-coupled receptor kinase 5 

66:  NP_036068.2 - G protein-coupled receptor kinase 6 isoform b 

Cluster 4 RGS, Pkinase, Pkinase_Tyr, PH, PH_11 

4:  NP_796052.2 - beta-adrenergic receptor kinase 2 isoform 1 

Cluster 21 RGS, Pkinase, Pkinase_Tyr, PH, PH_11, Kinase-like, Kdo 

49:  NP_570933.1 - beta-adrenergic receptor kinase 1 isoform 2 

 

 

 
Figure 4.3.11: Tree 2 with branch lengths, node labels, and domain architecture displayed. 

 
Table 4.3.4: Key to the domain indices 

present in Figure 4.3.11. 

Index Number Domain 

10 RGS 

15 Pkinase 

16 Pkinase_Tyr 

17 PH 

18 PH_11 

23 Kinase-like 

50 Kdo 
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Figure 4.3.12: The version of Tree 3 from the RGS data without node labels or branch lengths. 

 
Table 4.3.5: The clusters present in Tree 3.  Domain arch- 

itecture is given on the right of each cluster header. 

Cluster 22 RGS, PXA, Nexin_C, PX, End3, Isy1 

51:  NP_997096.2 - sorting nexin-25 

Cluster 13 RGS, PXA, Nexin_C, PX, COX5A 

19:  NP_001014973.2 - sorting nexin-13 

Cluster 24 RGS, PXA, Nexin_C, PX 

59:  NP_766514.2 - sorting nexin-14 

 

 

 
Figure 4.3.13: Tree 3 with branch lengths, node labels, and domain architecture displayed. 
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Table 4.3.6: Key to the domain indices 

present in Figure 4.3.13. 

Index Number Domain 

10 RGS 

36 PXA 

37 Nexin_C 

38 PX 

39 COX5A 

51 End3 

52 Isy1 

 

 
 

 
Figure 4.3.14: The version of Tree 5 from the RGS data without node labels or branch lengths. 
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Table 4.3.7: The clusters present in Tree 5.  Domain architecture is given on 

the right of each cluster header. 

Cluster 10 RBD, RGS, GoLoco, PDZ, PID, PDZ_2, TUG-UBL1 

15:  NP_775578.2 - regulator of G-protein signaling 12 isoform A 

Cluster 2 RBD, RGS, GoLoco, PSD4 

2:  NP_058038.2 - regulator of G-protein signaling 14 

Cluster 18 RBD, RGS, GoLoco, TUG-UBL1 

36:  NP_001156984.1 - regulator of G-protein signaling 12 isoform B 

Cluster 5 RGS, DEP, G-gamma, DUF1203 

5:  NP_056627.1 - regulator of G-protein signaling 6 

Cluster 12 RGS, DEP, G-gamma 

18:  NP_001074538.1 - regulator of G-protein signaling 11 

30:  NP_001185932.1 - regulator of G-protein signaling 7 isoform 2 

41:  NP_001159406.1 - regulator of G-protein signaling 9 isoform 2 

58:  NP_035398.2 - regulator of G-protein signaling 9 isoform 1 

64:  NP_036010.2 - regulator of G-protein signaling 7 isoform 1 

Cluster 25 RGS, PDZ, PDZ_2, TFIIA 

60:  NP_599018.3 - regulator of G-protein signaling 3 isoform 2 

Cluster 15 RGS-like, RGS, FliL 

25:  NP_080694.1 - regulator of G-protein signaling 10 

Cluster 6 RGS 

6:  XP_921002.3 - PREDICTED: regulator of G-protein signaling 21 

9:  NP_080722.1 - regulator of G-protein signaling 19 

10:  NP_694811.1 - regulator of G-protein signaling 13 

11:  NP_056626.2 - regulator of G-protein signaling 1 

12:  NP_001182677.1 - regulator of G-protein signaling 22 

17:  NP_033089.2 - regulator of G-protein signaling 5 

23:  NP_001171266.1 - regulator of G-protein signaling 20 isoform 1 

28:  NP_001074212.1 - G protein-coupled receptor kinase 4 isoform 2 

33:  NP_033088.2 - regulator of G-protein signaling 4 

39:  NP_075019.1 - regulator of G-protein signaling 18 

40:  NP_067349.2 - regulator of G-protein signaling 20 isoform 2 

43:  XP_894544.3 - PREDICTED: regulator of G-protein signaling 21 

47:  NP_064305.2 - A-kinase anchor protein 10, mitochondrial precursor 

50:  NP_035397.2 - regulator of G-protein signaling 16 

55:  NP_033087.2 - regulator of G-protein signaling 2 

57:  NP_001030608.1 - beta-adrenergic receptor kinase 2 isoform 2 

61:  NP_080656.2 - regulator of G-protein signaling 8 

Cluster 19 RGS, Spexin 

37:  NP_001230152.1 - regulator of G-protein signaling protein-like 

Cluster 23 RGS, DUF4226 

53:  NP_001155294.1 - regulator of G-protein signaling 17 isoform 1 

63:  NP_064342.1 - regulator of G-protein signaling 17 isoform 2 
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Figure 4.3.15: Tree 5 with branch lengths, node labels, and domain architecture displayed. 

 
Table 4.3.8: Key to the domain indices 

present in Figure 4.3.15. 

Index Number Domain 

6 zf-CCCH 

7 RGS-like 

9 RBD 

10 RGS 

11 GoLoco 

12 PSD4 

19 DEP 

20 G-gamma 

21 DUF1203 

30 PDZ 

31 PID 

32 PDZ_2 

33 TUG-UBL1 

41 FliL 

49 Spexin 

53 DUF4226 

54 TFIIA 
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Table 4.3.9: A listing of the singleton tree clusters from the RGS data.  Domain architecture is 

given on the right of each cluster header. 

Cluster 17 RGS-like, AKAP7_NLS, AKAP7_RIRII_bdg, Corona_NS2A, 

2_5_RNA_ligase2, tRNA_lig_CPD 

34:  NP_061217.3 - A-kinase anchor protein 7 

Cluster 9 RhoGEF, PH, CRAL_TRIO_2, Spectrin, SH3_1, SH3_9, MCPsignal, SH3_2 

14:  NP_835177.2 - guanine nucleotide exchange factor DBS isoform 1 

29:  NP_001152957.1 - guanine nucleotide exchange factor DBS isoform 3 

52:  NP_001152958.1 - guanine nucleotide exchange factor DBS isoform 2 

Cluster 11 RGS, DIX, Axin_b-cat_bind 

16:  NP_056547.3 - axin-2 

27:  NP_001153070.1 - axin-1 isoform 1 

54:  NP_033863.2 - axin-1 isoform 2 

Cluster 1 RRM_5, RRM_6, RRM_1, Nup35_RRM_2, PWI, zf-CCCH, RGS-like, 

DUF2785 

1:  NP_598838.3 - RNA-binding protein 26 

Cluster 7 RGS, Cor1 

7:  NP_001160118.1 - uncharacterized protein LOC100040867 

8:  XP_986693.2 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like 

21:  XP_003945709.1 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like 

32:  NP_001160073.1 - predicted gene 16430 

35:  XP_003945710.1 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like 

44:  XP_987134.2 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like 

48:  NP_001207426.1 - Slx-like 

56:  NP_001207427.1 - Slx-like 

65:  XP_001474919.1 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like 

 
Table 4.3.10: Percentage homogeneity of 

each of the trees from Figures 4.3.8-4.3.15, 

as well as Table 4.3.9. 

Tree Number Homogeneity 

Tree 1 100% 

Tree 2 100% 

Tree 3 100% 

Cluster 17 100% 

Tree 5 90.32% 

Cluster 9 100% 

Cluster 11 100% 

Cluster 1 100% 

Cluster 7 55.56% 
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Table 4.3.11: Percentage discontinuity of each of the functional types 

in the RGS data. 

Function Discontinuity 

rho guanine nucleotide exchange factor 0% 

guanine nucleotide exchange factor DBS 0% 

G-protein-coupled receptor kinase 

rhodopsin kinase precursor 

beta-adrenergic receptor kinase 

20% 

sorting nexin 0% 

regulator of G-protein signaling 0% 

A-kinase anchor protein 50% 

axin 0% 

RNA-binding protein 0% 

predicted genes / proteins 0% 

PM1-like 0% 

Slx-like 0% 

 

 

 The dataset of 66 RGS proteins was also tested using the maximum likelihood 

phylogenetic method.  The full protein sequences were not used for this, however.  The 

RGS or RGS-like domains for each protein were extracted based on whatever reported 

subsequence had the strongest i-Evalue for its protein.  Two runs were conducted.  

MEGA was used to perform all alignment and tree building steps for the first run.  

Alignment was made using MUSCLE, and the maximum likelihood was conducted using 

the Jones-Taylor-Thornton (JTT) model.  The settings are provided in Tables 4.3.12 and 

4.3.13.  The second run conducted the alignment step using MAFFT instead of 

MUSCLE.  MEGA was still used to conduct the maximum likelihood analysis, and used 

the same settings as the first run.  MAFFT was run using the L-INS-i option with default 

settings. 
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Table 4.3.12: Settings used for MUSCLE alignment of the RGS 

proteins. 

Gap Open Penalty -5 

Gap Extend Penalty -0.01 

Hydrophobicity Multiplier 1.2 

Maximum Memory 4095 MB 

Maximum Iterations 8 

Clustering Method (all iterations) UPGMA 

Lambda 25 

 
Table 4.3.13: Settings used for maximum likelihood testing of the RGS proteins. 

Bootstrap Replications 1000  

Gamma Categories 5 

Treatment of Gaps Partial Deletion 

Site Coverage Cutoff 50% 

ML Heuristic Method Subtree-Pruning-Regrafting level 5 

Initial Tree NJ/BioNJ 

Branch Swap Filter Very Strong 

Number of Threads 6 

 

 The MUSCLE alignment’s running time was insignificant, finishing within 

seconds.  However, the maximum likelihood run took over 24 hours to finish, which is 

considerably slower than the bit vector clustering method on the same dataset.  Table 

4.3.14 provides the details of this efficiency comparison.  Also, bear in mind that the bit 

vector program assumes the presence of a pre-generated HMMER dataset file as input.  

The program’s tasks not only include the clustering and tree building, but also reading 

and reformatting of the HMMER input files, iterating over the E-value thresholds (this 

will vary based on the total number of unique orders of magnitude less than 1.0 in the 

HMMER file’s E-values), generating the tier chart, retrieving the unique Newick trees 

from the data, and outputting all data to files. 
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Table 4.3.15: Comparison between the running times of the bit 

vector method and the maximum likelihood run with MUSCLE 

alignment. 

Dataset Information 

No. Proteins 66 

No. Domains 54 

No. E-value Iterations 52 

Running Time 

Bit Vector Maximum Likelihood 

~23 secs. 27 hrs. 17 mins. 

 

 Figures 4.3.16a and 4.3.16b display the tree generated by the maximum 

likelihood analysis using the MUSCLE alignment.  Branches have been color-coded to 

match the coding used in Figures 4.3.8, 4.3.10, 4.3.12, and 4.3.14, and Tables 4.3.1, 

4.3.3, 4.3.5, 4.3.7, 4.3.9 and 4.3.11, and some branches have been labelled, where the 

relationships correspond well with the output of the bit vector approach.  Aside from the 

outliers mentioned in Tree 5, both methods agree with the placement of the Tree 2 

proteins together.  Similarly, the maximum likelihood tree also places the Tree 1 and 

Cluster 9 proteins in separate branches.  The bit vector approach also recognized this 

division.  Clusters 7 and 11 are also preserved in the maximum likelihood tree, although 

Tree 3 and some of the single-cluster trees were not maintained, instead splitting their 

members across different branches.  Aside from a pair of outliers, the maximum 

likelihood tree places the red proteins from Tree 5 all in the same branch.  Some of its 

subdivisions more or less correspond with some of the clusters found by the bit vector 

approach, as well as the relationships between them.  For example, clusters 2, 10, and 18 

are placed together within a sub-branch, as are clusters 5 and 12.  Cluster 6 is largely 

preserved, but is interspersed with some proteins from other clusters. 
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Figure 4.3.16a: First portion of 

the maximum likelihood tree for 

the RGS data using a MUSCLE 

alignment.  Branch colors 

correspond to function, as seen in 

the previous tree visualizations. 
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Figure 4.3.16b: Second portion 

of the maximum likelihood tree 

for the RGS data, overlapping 

partly with Figure 4.3.16a.  

Branch colors correspond to 

function, as seen in the previous 

tree visualizations. 
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 Figures 4.3.17a and 4.3.17b present the maximum likelihood results for the 

second run, using the MAFFT alignment.  The tree has branches color coded in the same 

way as the first run, and notable features are also labelled as before.  Some notable 

similarities with the tree in Figures 4.3.16a and 4.3.16b are the placement of 

NP_001182677.1 and NP_001230152.1 within a branch separate from the rest of the Tree 

5 proteins, agreement on the placement of some of the Tree 5 proteins together in 

branches matching their cluster groupings from the bit vector results (specifically, 

clusters 2, 10, and 18, clusters 5 and 12, and Cluster 23), and the preservation of trees 1 

and 2 and clusters 9 and 11.  Some notable differences between the trees include the 

placement of the Cluster 1 protein within the branch containing the Tree 1 proteins, and 

the embedding of Cluster 11 within the branch containing the Tree 5 proteins. 

 
Table 4.3.16: Comparison between the running times of the bit 

vector method and the maximum likelihood run with MAFFT 

alignment. 

Dataset Information 

No. Proteins 66 

No. Domains 54 

No. E-value Iterations 52 

Running Time 

Bit Vector Maximum Likelihood 

~23 secs. 24 hrs. 41 mins. 
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Figure 4.3.17a: First 

portion of the maximum 

likelihood tree for the 

RGS data using a 

MAFFT alignment.  

Branch colors 

correspond to function, 

as seen in the previous 

tree visualizations. 
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Figure 4.3.17b: Second portion of the maximum likelihood tree for the RGS data, 

overlapping partly with Figure 4.3.17a.  Branch colors correspond to function, as 

seen in the previous tree visualizations. 

 

 The Jaccard indices are provided in Table 4.3.17.  The indices for each of the bit 

vector trees is given, along with the average for the comparison (either bit vector to 

MUSCLE-aligned ML or bit vector to MAFFT-aligned ML).  The ML clusters are also 

given in Tables 4.3.18 and 4.3.19. 

 

 

 

 

 

 

 

 

 

 

 



50 
 

Table 4.3.17: Jaccard indices 

of the bit vector trees as com- 

pared to the ML clusters. 

Comparison to 

MUSCLE-aligned ML 

Tree 1 1 

Tree 2 0.56 

Tree 3 0.33 

Tree 5 0.35 

Cluster 1 1 

Cluster 7 1 

Cluster 9 1 

Cluster 11 1 

Cluster 17 1 

Average 0.8 

Comparison to 

MAFFT-aligned ML 

Tree 1 0.875 

Tree 2 0.56 

Tree 3 0.33 

Tree 5 0.35 

Cluster 1 0.125 

Cluster 7 1 

Cluster 9 1 

Cluster 11 1 

Cluster 17 1 

Average 0.69 

 
Table 4.3.18: Cluster membership for the MUSCLE-aligned ML tree.  Proteins 

not mentioned in this list form singleton clusters. 

Cluster Members 

Cluster 1 NP_056626.2, NP_075019.1, XP_894544.3, XP_921002.3, 

NP_033087.2, NP_694811.1, NP_033088.2, NP_599018.3, 

NP_035397.2, NP_080656.2, NP_033089.2 

Cluster 2 NP_001155294.1, NP_064342.1, NP_080722.1, 

NP_001171266.1, NP_067349.2 

Cluster 3 NP_001156984.1, NP_775578.2, NP_058038.2, 

NP_080694.1 

Cluster 4 NP_001159406.1, NP_035398.2, NP_001074538.1, 

NP_056627.1, NP_001185932.1, NP_036010.2 

Cluster 5 NP_056547.3, NP_001153070.1, NP_033863.2 

Cluster 6 NP_001030608.1, NP_796052.2, NP_570933.1 

Cluster 7 NP_001074212.1, NP_062370.2, NP_061357.3, 

NP_001033107.1, NP_001106182.1, NP_036068.2 

Cluster 8 NP_001152957.1, NP_001152958.1, NP_835177.2 

Cluster 9 NP_001207426.1, XP_001474919.1, NP_001207427.1, 

XP_987134.2, XP_003945710.1, XP_003945709.1, 

NP_001160118.1, NP_001160073.1, XP_986693.2 

Cluster 10 NP_001003912.1, NP_081420.2, NP_032514.1, 

NP_001123623.1, NP_001123625.1, NP_001123622.1, 

NP_001123624.1 
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Table 4.3.19: Cluster membership for the MAFFT-aligned ML tree.  Proteins 

not mentioned in this list form singleton clusters. 

Cluster Members 

Cluster 1 NP_033088.2, NP_599018.3, NP_033089.2, NP_035397.2, 

NP_080656.2, NP_075019.1, NP_033087.2, NP_694811.1, 

NP_056626.2, XP_894544.3, XP_921002.3 

Cluster 2 NP_056547.3, NP_001153070.1, NP_033863.2 

Cluster 3 NP_001155294.1, NP_064342.1, NP_080722.1, 

NP_001171266.1, NP_067349.2 

Cluster 4 NP_001156984.1, NP_775578.2, NP_058038.2, 

NP_080694.1 

Cluster 5 NP_001159406.1, NP_035398.2, NP_001074538.1, 

NP_056627.1, NP_001185932.1, NP_036010.2 

Cluster 6 XP_986693.2, XP_987134.2, XP_003945710.1, 

XP_003945709.1, NP_001160073.1, NP_001207426.1, 

NP_001207427.1, XP_001474919.1, NP_001160118.1 

Cluster 7 NP_001152958.1, NP_835177.2, NP_001152957.1 

Cluster 8 NP_001030608.1, NP_796052.2, NP_570933.1 

Cluster 9 NP_061357.3, NP_001074212.1, NP_062370.2, 

NP_001106182.1, NP_001033107.1, NP_036068.2 

Cluster 10 NP_001003912.1, NP_598838.3, NP_081420.2, 

NP_001123622.1, NP_001123623.1, NP_001123624.1, 

NP_001123625.1, NP_032514.1 

 

 

 

4.4 Discussion of RGS Data 

 

 The bit vector program was shown overall to accurately cluster the RGS proteins 

into groups based on functionality.  Although there are some outliers, such as the divide 

between the Tree 1 proteins and Cluster 9, or the kinases in Cluster 6 of Tree 5, these still 

have come about solely as a result of the domain data made available to the program. 

 The Tree 1-Cluster 9 division is due to a very weak matching of the RGS domain 

to the Cluster 9 proteins.  It is present in the HMMER data, but for each protein it was 

over the 1.0 E-value threshold, and so was ignored.  Overall, the domain architectures in 

these clusters are too dissimilar to be included within a single tree.  The RhoGEF 

(guanine nucleotide exchange factor) domain is the only domain in common, with the 

Cluster 9 proteins also possessing several other domains that do not appear in the Tree 1 
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proteins.  Ultimately, what prevents these trees from merging is the complete absence of 

the RGS-like domain in Cluster 9, while this domain in Tree 1 is easily the strongest 

match out of the entire sampled RGS dataset, surviving to an order of magnitude of 10-69 

before finally being deleted.  As the RGS-like domain was the strongest match within 

Tree 1, and one of the most important defining features of the proteins of that group, its 

absence from Cluster 9 meant that there could be no merging of the two groups.  As such, 

they remained separate throughout the entire set of iterations.  Also bear in mind the 

presence of the DBS label in the Cluster 9 proteins, and its absence in any of the Tree 1 

clusters, as stated in Section 4.3.  This indicates that the two groups actually do not have 

identical function, even though they are functionally associated with each other. 

 The presence of outliers in Cluster 6 is, again, a product of how the bit vector 

program operates.  As each of the Cluster 6 proteins only possess the RGS domain 

according to the HMMER data that was used, they are clustered together regardless of 

what their stated function may be.  That said, it may be the case that the quality of 

information available on these proteins at the time the HMMER data was generated may 

not have reflected their full domain architecture.  As stated in Section 4.3, at least two of 

the outlier proteins are assigned a different set of domains according to information 

available from NCBI.  It may be that the HMMER results were not fully accurate for 

them.  Alternatively, it could indicate that domain architecture alone does not fully 

specify a protein’s function, but is also defined by other factors affecting its three-

dimensional structure.  As it is, this approach only uses the domain architecture to infer 

similar structure, and therefore function, between related proteins.  This may indicate that 

this assumption is not universally accurate. 
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 All performance comparisons were conducted using the same system (a desktop 

running the 64-bit version of Windows 7, with 10 GB of RAM and a 6-core 3.5 GHz 

processor).  The running time of the bit vector method is a substantial improvement (<1 

minute vs. over 24 hours) over the running time of using maximum likelihood, which is 

the standard approach for quality phylogenetic reconstruction.  Although the trees 

generated by these two methods differ in some ways according to how the RGS proteins 

are grouped in the branches, they also share several key similarities.  Many of the 

clusters, and even whole trees generated from the clustering method are reproduced 

mostly intact in the maximum likelihood results as well.  However, also bear in mind that 

these approaches each attempt to analyze different things.  The maximum likelihood test 

used only the extracted RGS or RGS-like subsequences for each protein, and the resulting 

tree is based purely on the alignment of the sequences.  This means that leaf placement is 

based on how similar the sequences are to one another.  Highly similar sequences can be 

expected to be found within the same branch, and very divergent sequences will likely be 

on entirely separate branches.  In contrast, the bit vector approach compares overall 

domain architecture, without regard to sequence similarity in and of itself.  The E-value 

threshold has the effect of indirectly dealing with similarity, because a strong match for a 

domain in one protein versus a weaker match for the same domain in another protein can 

be assumed to mean the actual domain sequences are less similar than if their E-values 

were closer in value.  Such a mismatch in E-values will be reflected in how the proteins 

cluster, and how clusters split or merge over several iterations.  Ultimately, however, 

proteins are clustered, and similar clusters are grouped in branches, based on the 

similarity of their domain architecture.  Because architecture can be used to infer 
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function, the bit vector approach reflects divergence in proteins’ function, while 

maximum likelihood reflects divergence in the proteins’ sequences themselves. 

 It should also be discussed that both maximum likelihood tests not only used the 

implementation found in MEGA, which is not as efficient as other implementations 

available, but also used 1000 bootstrap replications.  While the use of bootstrapping is 

needed for quality phylogenetic trees, for the purposes of comparing basic running times 

of the two methods, it is not a fair assessment to include the bootstrapping in the running 

times, as there is no equivalent of this feature present in the bit vector program.  When 

bootstrapping is removed, the MEGA implementation of maximum likelihood finished in 

approximately 9 minutes using the MAFFT alignment as input. 

 RAxML [33], a more efficient implementation of maximum likelihood, is 

available through Trex-online [34].  When the MAFFT alignment was provided as input, 

using no bootstrapping, the PROTCAT substitution model, the JTT matrix, and otherwise 

default settings, the program finished in approximately 6 minutes (based on the start and 

finish times provided in the resulting email from the server).  However, this is also the 

running time on the Trex server, rather than the local system that previous comparisons 

were conducted on.  Even so, this is still less efficient than the bit vector program’s 23 

seconds on the RGS data. 

 Furthermore, a comparison with maximum likelihood may itself not be fair, due 

to fundamental differences in how the two approaches operate.  Neighbor-joining [6] is 

more similar to the pairwise comparisons of the bit vector approach, and so should be a 

fairer comparison.  Using the Jones-Taylor-Thornton model, an assumption of uniform 

rates among sites, and 50% partial deletion, with 1000 bootstraps, MEGA’s 
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implementation of neighbor-joining finished in 36 minutes using the MAFFT alignment.  

However, when bootstrapping was eliminated, the procedure finished in approximately 4 

seconds, showing an improvement on the bit vector approach’s performance of 23 

seconds on the same data.  Some possible reasons for this relative inefficiency may be the 

bit vector program’s use of some pre- and post-processing steps on the input and output 

data, and also some computational techniques that could be optimized in the future. 

 Neighbor-joining uses the basic approach of calculating pairwise distances for 

each of the taxa in the unresolved tree.  The pair of taxa with the lowest distance measure 

are then placed together as sister groups within the same branch.  Distance measurements 

are then taken of the taxa in this branch with each of the remaining taxa, and so on until 

the tree is resolved.  This procedure is simplified from the minimum evolution method.  

The primary reason for the speed increase from minimum evolution is that with neighbor-

joining, the distance measurements of only certain topologies of the tree are calculated, 

rather than performing the calculation for every possible topology of the tree [35]. 

 The basic approach for maximum likelihood, on the other hand, is to construct an 

initial tree, and then optimize it by creating variations on the tree topology.  Many 

different topologies are constructed, and the likelihood of each topology is calculated 

until a topology with the best fit to the data is found.  Searching so many topologies is 

very time consuming, which accounts for the greater running time observed with this 

method. 

 As was stated in Chapter 3, for m proteins, n domains, and e iterations on the E-

value threshold, the bit vector approach has a time complexity of 𝛩(𝑒𝑚2𝑛) to cluster the 

proteins over each E-value iteration, and an additional 𝛩(𝑒𝑚2) to generate the final 
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Newick strings upon which the tree is based.  This accounts for the longer running time 

as compared to the more straightforward pairwise distance measurements used in 

neighbor-joining. 

 The Jaccard indices show that the bit vector trees generated were most similar to 

the clusters found within the MUSCLE-aligned maximum likelihood tree, with an 

average of 0.8.  The comparison to the MAFFT-aligned maximum likelihood tree gave an 

average of 0.69.  This difference seems to be partly due to the placement of NP_598838.3 

within the branch containing the Tree 1 proteins, rather than placing it in its own branch, 

as the MUSCLE-aligned tree did. 

 

4.5 B. subtilis Data 

 

 The run using the B. subtilis HMMER data was intended mostly to assess the 

performance of the bit vector program on large datasets.  It generated a total of 2,009 

individual trees, of which 517 contain more than one cluster, and the remaining 1,492 are 

all singleton trees.  Table 4.5.1 provides the details of the dataset information and 

running time (based on the time stamp of the last file created).  The tier chart for this 

dataset is unreadable due to the high number of edges and edge crossings.  Due to the size 

of the dataset, no comparison using maximum likelihood or any other alignment-based 

method were possible.  However, based on the comparison of the running time on the 

RGS data (see Table 4.3.14), a maximum likelihood run using a dataset of equal size to 

the B. subtilis data would be considerably greater than the running time of the bit vector 

approach, to the point that doing so would be totally impractical. 
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Table 4.5.1: Data set information and running time of the bit 

vector method. 

Dataset Information 

No. Proteins 3,973 

No. Domains 4,737 

No. E-value Iterations 208 

Running Time 

73 hrs. 55 mins. 

 

 During the testing phase, small subsets of the B. subtilis data were extracted from 

the HMMER file in order to run the program in much faster time using smaller data 

input.  The trees associated with this data are displayed in Figures 4.5.1-4.5.4.  Tree 656 

(Figures 4.5.3 and 4.5.4) is actually substantially larger than what is shown, to the point 

that TreeView cannot display the cluster labels legibly.  The original test set for this tree 

was also only a subset of the clusters participating in this tree, and so only the pertinent 

branch has been displayed. 

 Tables 4.5.2 and 4.5.4 present the first iteration membership of the clusters seen 

in Tree 187 and the Tree 656 subset.  The individual proteins have been color-coded to 

display their function (as indicated by their name given in the NCBI entry for each 

protein), and each cluster also has its domain architecture listed as it appears in the initial 

iteration.  Protein indices correspond to that used internally by the bit vector algorithm, 

and are based on their order of occurrence in the HMMER data file.  A key is provided to 

give the specific functions.  The clusters have been arranged according to their placement 

in the various tree figures, and are listed by branch order from top to bottom.  The cluster 

labels within each of the figures have also been outlined with the color of the dominant 

function of the proteins contained within. 

 In addition to the versions of the trees without node labels or branch lengths, there 

are also versions of each of those trees that do use branch lengths and node labels 
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(Figures 4.5.2 and 4.5.4).  The labels use the internal indices for each of the domains.  

The associated tables (Tables 4.5.2 and 4.5.4) provide keys to those domains.  The 

branch lengths are calculated based on the number of iterations a branch survives before 

being merged with another branch.  Each iteration adds 0.1 to the branch length. 

Key: 

Synthases 

Ligases / synthetases 

ATP-binding proteins / permeases 

 

 
Figure 4.5.1: The version of Tree 187 from the B. subtilis data without node labels or branch lengths. 
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Table 4.5.2: The clusters present in Tree 187.  Domain architecture is given on the right of each cluster 

header. 

Cluster 1213 PP-binding, AMP-binding, AMP-binding_C, adh_short, KR, Polysacc_synt_2, 

Condensation, HxxPF_rpt, ketoacyl-synt, Ketoacyl-synt_C, Thiolase_N, AMP-

binding_C_2, PS-DH, AATase 

1303: P40806 - Polyketide synthase PksJ 

Cluster 1216 PP-binding, AMP-binding, AMP-binding_C, adh_short, KR, Epimerase, Condensation, 

HxxPF_rpt, ketoacyl-synt, Ketoacyl-synt_C, Thiolase_N, PS-DH, Poty_PP, DUF1307 

1306: O31782 - Polyketide synthase PksN 

Cluster 435 PP-binding, AMP-binding, AMP-binding_C, Abhydrolase_6, Abhydrolase_5, 

Condensation, Thioesterase, HxxPF_rpt, HicB 

454: P45745 - Dimodular nonribosomal peptide synthase 

Cluster 1241 PP-binding, AMP-binding, AMP-binding_C, Abhydrolase_6, Abhydrolase_3, 

Condensation, Thioesterase, DUF2974, AATase 

1333: O31827 - Plipastatin synthase subunit E 

Cluster 1639 Transketolase_C, PP-binding, AMP-binding, AMP-binding_C, Abhydrolase_6, 

Abhydrolase_5, Condensation, Thioesterase, HxxPF_rpt 

1773: Q08787 - Surfactin synthase subunit 3 

Cluster 1238 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt, Transferase, 

BacteriocIIc_cy 

1330: P39846 - Plipastatin synthase subunit B 

Cluster 1237 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt, SPOB_ab 

1329: P39845 - Plipastatin synthase subunit A 

Cluster 1239 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt 

1331: P39847 - Plipastatin synthase subunit C 

1772: Q04747 - Surfactin synthase subunit 2 

Cluster 1240 PP-binding, AMP-binding, AMP-binding_C, UPF0122, Condensation, HxxPF_rpt 

1332: P94459 - Plipastatin synthase subunit D 

Cluster 1638 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt, AATase 

1771: P27206 - Surfactin synthase subunit 1 

Cluster 1988 AMP-binding, AMP-binding_C, AMP-binding_C_2, Trigger_C, Lipoprotein_3 

2164: P96575 - Putative acyl--CoA ligase YdaB 

Cluster 857 AMP-binding, AMP-binding_C, AMP-binding_C_2 

915: O07610 - Long-chain-fatty-acid--CoA ligase 

2539: O07619 - Uncharacterized acyl--CoA ligase YhfT 

Cluster 31 AMP-binding, AMP-binding_C 

31: P39062 - Acetyl-coenzyme A synthetase 

475: P39581 - D-alanine--poly(phosphoribitol) ligase subunit 1 

914: P94547 - Long-chain-fatty-acid--CoA ligase 

1014: P23971 - 2-succinylbenzoate--CoA ligase 

2866: O31826 - Putative acyl-CoA synthetase YngI 

Cluster 434 AMP-binding, AMP-binding_C, SAP 

453: P40871 - 2,3-dihydroxybenzoate-AMP ligase 

Cluster 3046 AMP-binding, AMP-binding_C, DUF4414 

3390: C0SPB0 - Uncharacterized acyl--CoA ligase YtcI 



60 
 

 

 
Figure 4.5.2: Tree 187 with branch lengths, node labels, and domain architecture displayed. 
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Table 4.5.3: Key to the domain indices present in 

Figure 4.5.2. 

Index Number Domain 

75 Transketolase_C 

109 PP-binding 

114 AMP-binding 

115 AMP-binding_C 

378 UPF0122 

437 adh_short 

439 KR 

440 Epimerase 

441 Polysacc_synt_2 

497 Abhydrolase_6 

498 Abhydrolase_5 

596 Abhydrolase_3 

1091 SAP 

1092 Condensation 

1093 Thioesterase 

1094 HxxPF_rpt 

1095 HicB 

1334 ketoacyl-synt 

1335 Ketoacyl-synt_C 

1336 Thiolase_N 

1878 AMP-binding_C_2 

2334 DUF2974 

2336 PS-DH 

2337 AATase 

2338 Poty_PP 

2340 DUF1307 

2372 SPOB_ab 

2373 Transferase 

2374 BacteriocIIc_cy 

2432 Trigger_C 

3369 Lipoprotein_3 

4408 DUF4414 
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Figure 4.5.3: The version of a subset of Tree 656 from the B. subtilis data without node labels or branch 

lengths. 
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Table 4.5.4: The clusters present in the subset of Tree 656.  Domain architecture is given on the right of 

each cluster header. 

Cluster 2242 AAA_16, ABC_tran, SMC_N, AAA_29, DUF258, ABC_ATPase, NB-ARC, 

ABC_membrane, ABC_membrane_3, Chordopox_L2 

2453: P71082 - Putative multidrug export ATP-binding/permease protein YgaD 

Cluster 2304 AAA_16, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, DUF258, AAA_23, 

MMR_HSR1, AAA_10, FtsK_SpoIIIE, AAA_22, AAA_17, AAA_30, Dynamin_N, 

ABC_membrane 

2523: O07549 - Probable multidrug resistance ABC transporter ATP-binding/permease protein YheH 

Cluster 3323 AAA, AAA_16, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, DUF258, 

DEAD, AAA_10, AAA_25, AAA_22, AAA_18, AAA_17, AAA_33, MobB, 

AAA_30, ABC_membrane, ABC_membrane_3 

3719: P45861 - Uncharacterized ABC transporter ATP-binding protein YwjA 

Cluster 194 AAA_16, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, DUF258, AAA_23, 

AAA_25, AAA_22, AAA_18, AAA_17, ABC_ATPase, AAA_28, ABC_membrane, 

ABC_membrane_2, ABC_membrane_3 

202: O06967 - Multidrug resistance ABC transporter ATP-binding/permease protein BmrA 

Cluster 375 ABC_tran, AAA_21, SMC_N, AAA_29, DUF258, FtsK_SpoIIIE, ABC_ATPase, 

ABC_membrane, IncA 

390: P94367 - ATP-binding/permease protein CydD 

Cluster 374 ABC_tran, AAA_21, SMC_N, AAA_15, AAA_29, ArgK, DUF258, AAA_23, 

MMR_HSR1, AAA_17, ABC_membrane, MscS_TM 

389: P94366 - ATP-binding/permease protein CydC 

Cluster 2169 AAA_16, T2SE, ABC_tran, AAA_21, SMC_N, AAA_29, AAA_23, FtsK_SpoIIIE, G-

alpha, AAA_18, AAA_14, ABC_ATPase, DUF87, ABC_membrane 

2371: P54718 - Uncharacterized ABC transporter ATP-binding protein YfiB 

Cluster 2305 Miro, AAA_16, T2SE, ABC_tran, SMC_N, AAA_29, DUF258, AAA_23, 

MMR_HSR1, cobW, AAA_25, ATP-synt_ab, FtsK_SpoIIIE, AAA_22, G-alpha, 

AAA_18, AAA_17, AAA_14, MobB, UPF0079, DUF87, NB-ARC, Zeta_toxin, 

ABC_membrane, TrwB_AAD_bind, Viral_helicase1 

2524: O07550 - Probable multidrug resistance ABC transporter ATP-binding/permease protein YheI 

Cluster 2440 AAA_16, AAA_PrkA, ABC_tran, SMC_N, AAA_29, AAA_18, AAA_17, 

ABC_ATPase, ABC_membrane, Sterol-sensing 

2680: O31707 - Uncharacterized ABC transporter ATP-binding protein YknU 

Cluster 2170 Mg_chelatase, AAA, AAA_16, T2SE, ABC_tran, AAA_21, SMC_N, AAA_29, 

DUF258, AAA_23, AAA_19, SRP54, AAA_10, AAA_25, AAA_22, AAA_18, 

AAA_17, AAA_33, MobB, AAA_30, AAA_28, Zeta_toxin, ABC_membrane, 

ABC_membrane_2, ABC_membrane_3, IstB_IS21, APS_kinase 

2372: P54719 - Uncharacterized ABC transporter ATP-binding protein YfiC 

Cluster 2441 AAA_5, AAA, AAA_16, T2SE, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, 

DUF258, AAA_23, AAA_19, AAA_10, AAA_25, AAA_22, AAA_18, AAA_17, 

AAA_30, Zeta_toxin, ABC_membrane, IstB_IS21, GPDPase_memb, FAST_2 

2681: O31708 - Uncharacterized ABC transporter ATP-binding protein YknV 
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Figure 4.5.4: The Tree 656 subset with branch lengths, node labels, and domain architecture displayed. 

 
Table 4.5.5: Key to the domain indices present 

in Figure 4.5.4. 

Index Number Domain 

13 Miro 

93 AAA_5 

94 Mg_chelatase 

95 AAA 

100 AAA_16 

104 T2SE 

108 AAA_PrkA 

141 ABC_tran 

142 AAA_21 

143 SMC_N 

145 SbcCD_C 

146 AAA_15 

147 AAA_29 

148 ArgK 

149 DUF258 

153 AAA_23 

158 AAA_19 

159 DEAD 

208 MMR_HSR1 

209 cobW 

213 SRP54 

263 AAA_10 

264 AAA_25 

265 ATP-synt_ab 

267 FtsK_SpoIIIE 

268 AAA_22 

269 G-alpha 
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344 AAA_18 

345 AAA_17 

346 AAA_14 

351 AAA_33 

361 ABC_ATPase 

362 MobB 

365 UPF0079 

366 AAA_30 

367 DUF87 

370 Dynamin_N 

407 NB-ARC 

453 AAA_28 

455 Zeta_toxin 

552 ABC_membrane 

553 ABC_membrane_2 

554 ABC_membrane_3 

706 IstB_IS21 

715 TrwB_AAD_bind 

745 APS_kinase 

925 IncA 

942 MscS_TM 

1599 Viral_helicase1 

1925 Sterol-sensing 

3627 Chordopox_L2 

3710 GPDPase_memb 

3818 FAST_2 

 

4.6 Discussion of B. subtilis Data 

 

 The B. subtilis dataset generated a large number of trees compared to the RGS 

dataset.  Although the tier chart is unreadable due to the high number of edge crossings, 

the final tree visualizations still can be viewed clearly in most cases.  The main purpose 

of testing the program on this data was to understand its performance on proteome-scale 

data, as this kind of analysis is not possible using alignment-based methods. 

 An important detail to point out is in the Tree 656 visualizations (Figures 4.5.3 

and 4.5.4).  Some of the clusters (2304 and 3323) are duplicated in separate branches.  

This is due to how the program adds clusters to the Newick string, and was allowed to 

remain as a feature, rather than being seen as an error.  Figure 4.6.1 shows a tier chart 

generated by extracting only the lines of data from the HMMER file that pertain to the 
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branch of Tree 656 seen in Figures 4.5.3 and 4.5.4.  The cluster numbers are therefore 

different.  Table 4.6.1 provides a key to show equivalent cluster indices between the two 

sets of figures. 

 
Table 4.6.1: Key to the cluster indices of Figure 4.6.1 

and the original Tree 656 visualizations. 

Original Indices Figure 4.6.1 Indices 

194 1 

374 2 

375 3 

2169 4 

2170 5 

2242 6 

2304 7 

2305 8 

2440 9 

2441 10 

3323 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6.1 (next page): Illustration of the tier chart for the branch of Tree 656 seen in Figures 4.5.3 and 

4.5.4. 
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 Figure 4.6.1 illustrates the reason for the cluster duplication seen in Tree 656.  In 

this figure, the duplicated clusters are clusters 7 and 11.  During the -3 iteration, 7 and 11 

both merge together, but then immediately split apart in the subsequent iteration.  One set 

of proteins merges with Cluster 6 in the -4 iteration, and the other set eventually merges 

with the branch containing clusters 1, 2, 3, 4, 5, 8, 9, and 10 in the -6 iteration.  The 

branch containing Cluster 6 also subsequently merges with this same branch in the -7 

iteration.  Because the half that split off alone carries different information than the half 

that merged with Cluster 6, two copies of clusters 7 and 11 are made, one that is nested in 

the large polytomy that was just mentioned, and the other (with Cluster 6), that forms a 

sister group to this entire branch.  This was seen as an asset, because this shows two 

different sets of relationships between the protein clusters, which would be advantageous 

to know about if and when it ever occurs. 

 Trees 187 and 656 both exhibit strong uniformity of the functional groups of the 

proteins contained within.  The branch of Tree 656 that was investigated is composed 

entirely of ATP-binding proteins, while Tree 187 is composed of two groups of proteins: 

ligases and synthases, which are very closely related in their function.  In this tree, the 

branch containing ligases forms a sister group with a branch containing synthases, which 

is an expected relationship, as opposed to the protein functions being scattered on 

different branches of the tree. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

 As the available protein sequences and proteome data continues to accumulate in 

the coming years, the demand for work to be able to characterize unknown proteins and 

understand the relationships between protein groups will increase as well.  Although 

methods like BLAST and maximum likelihood analysis are helpful in many cases, they 

cannot be used to analyze the relationships of all the members of a proteome.  Instead, 

other methods must be used. 

 The bit vector program that has been described in this thesis has been shown to 

accurately cluster proteins together and to form phylogeny-like trees illustrating the 

relationships between proteins with similar but not identical domain architecture.  This 

domain-based approach offers an alternative to more typical alignment-based techniques.  

Furthermore, it can be used on proteome data without concern for the need of a universal 

conserved subsequence to base the alignment on.  Even if such a subsequence were 

present in proteome data, the amount of time it would take to perform a maximum 

likelihood phylogenetic reconstruction would be prohibitive.  Tests have demonstrated 

that maximum likelihood can take several hours to complete on merely a few dozen 

proteins.  For instance, the RGS dataset, consisting of sequences extracted from 66 

proteins, took over 27 hours to complete a maximum likelihood analysis, compared to the 

bit vector approach taking only about 23 seconds to finish using the same data.  Bacterial 

proteomes typically consist of thousands of diverse proteins.  Not only is no alignment 

possible on such data, but even if it were, the size of the input data makes phylogenetic 

analysis unfeasible for maximum likelihood. 
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 Although the neighbor-joining test conducted on the RGS data did finish in less 

time than the bit vector method (4 seconds versus 23 seconds), this also was only after 

taking shortcuts.  Neighbor-joining is a faster algorithm than maximum likelihood, but its 

results are generally not deemed to be as high-quality as results from maximum 

likelihood.  Furthermore, bootstrapping is a common requirement for generating quality 

trees using any phylogenetic algorithm, and so, although neighbor-joining can run faster 

than the bit vector approach by eliminating bootstrap replicates, the quality of the 

resulting tree will not be as reliable as what can be obtained from a bootstrapped 

maximum likelihood tree. 

 This thesis has made the contribution of the bit vector program, which extends the 

work from Shah’s thesis to iterate over multiple E-value thresholds with increasing 

stringency.  Not only does this show how the protein clusters change as weaker domains 

are removed from consideration, but this iterative process, coupled with how later 

clusters “inherit” their proteins from earlier ones, can be used to generate Newick trees 

conveniently displaying these relationships. 

 The bit vector program also offers an alternative analysis method for any type of 

protein dataset based on domain architecture rather than sequence similarity.  Because 

three-dimensional structure of proteins is partly dictated by what domains are present, 

this domain-based alternative offers a different perspective to understand protein 

function, which sometimes may not be obvious using alignment-based methods.  For 

example, tests have shown that some functionally-related protein groups may not 

necessarily be grouped together in a maximum likelihood tree.  This is based purely on 

the sequence similarity and alignments of these proteins, rather than inference of three-
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dimensional structure.  This means that the bit vector program provides a higher-level 

overview of protein relationships. 

 Finally, as mentioned above, the bit vector program also offers a tool that makes 

analysis of large datasets of mostly unrelated proteins, as occurs frequently in proteome 

data, possible without the need for first dividing the dataset into smaller subsets of 

proteins that share conserved subsequences capable of being aligned.  Furthermore, the 

initial use of this method would break such a dataset down into subsets that could be used 

in more focused maximum likelihood analysis, as the resulting trees would not only 

group the related proteins together, but would also highlight the primary conserved 

subsequence that could be used for alignment. 

 

5.1 Future Work 

 

Code Optimization 

 The current version of the bit vector algorithm operates very quickly on relatively 

small datasets, particularly those with fewer than 100 proteins and total unique domains.  

A clear example of when the program operates inefficiently is in the case of the B. 

subtilis data, with 3,973 proteins and 4,737 unique domains, in which case the bit vector 

algorithm took over 70 hours to complete.  However, this is still considerably more 

efficient than a maximum likelihood approach, which (with bootstrapping) required over 

a day to complete just on the RGS data.  Scaling the dataset size up by two orders of 

magnitude for the proteome-sized test would be expected to make the running time of a 

maximum likelihood approach completely impractical.  Even without bootstrapping in 

the maximum likelihood approach, the best observed running time was 6 minutes on the 

Trex server using the RGS data as input. 
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 No major attempts have been made to decrease the running time of the bit vector 

program, and so doing this would be a significant goal for future work.  One possible 

improvement might be to replace the core clustering technique with an efficient 

alternative from the related work summarized in Section 2.2.  Attempts at using program 

profiling methods would also be expected to aid in discovering any inefficient blocks of 

code that could be improved. 

 

Domain Order 

 Currently, this technique ignores the order of the domains in a protein’s 

architecture, instead focusing merely on a given domain’s presence.  For example, a 

protein may possess domains A, B, and C, but the order of the occurrence of these three 

domains along the sequence could potentially differ in other proteins otherwise with the 

same architecture.  It may be beneficial to investigate if this affects the relationships 

between related proteins, or their possible function. 

 

Improved Visualizations 

 The GEXF visualizations of the bipartite graphs showing the protein-domain 

matches for each iteration, as well as the tier chart are useful for smaller datasets (such as 

the RGS data), and work well with fewer than 100 proteins and unique domains.  

However, scaling this up to the proteome level, such as the B. subtilis data, generates 

largely unreadable visualizations, as the number of edge crossings becomes extreme.  As 

the goal of this thesis was not to focus on visualization techniques, but was instead 

focused on outputting the trees generated from the data, improvement of the 

visualizations was not looked into to any great extent, but this would be an important 
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improvement for future incarnations of this method.  Future improvements might attempt 

to use better visualization techniques to allow even large datasets to be viewed clearly. 

 

First-Iteration Singleton Trees 

 Due to the way the tier-based charts are generated, it is possible for the final 

listing of Newick trees to leave out the reporting of singleton trees if they are removed 

before the start of the second iteration due to E-value threshold.  This has only been 

observed on artificial datasets specifically designed to test the algorithm’s performance, 

and would generally be expected to be quite rare occurrences in any real-world data.  As 

the primary interest in the use of the method is the generation of non-singleton trees to 

understand the relationships between protein clusters with similar domain architecture, 

this was deemed a very minor issue.  However, the possibility still exists of this 

occurring, and so may be worthwhile to fix the approach in the future. 

 

Leaf Duplication in Some Cases 

 Generally speaking, it has frequently been observed in the tier-based charts that 

clusters do not split or merge uniformly from one iteration to the next.  Instead, it is 

possible for individual proteins to have different E-values for the matchings of given 

domains.  As a result, some proteins may leave their original cluster and join another 

during different iterations, rather than during one uniform step.  This has the effect of 

having two or more cluster lineages merging several times over the course of more than 

one iteration.  Currently, the way the algorithm is designed, this will not lead to 

duplication of clusters in the final Newick trees, because such duplication is something 

that the algorithm specifically checks for before it merges two portions of a Newick 

string.  As a result, only the first occurrence of two or more lineages merging will be 
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considered in constructing the tree, as any merging that occurs in subsequent iterations is 

simply repetition of the same relationship.  However, this is only the case when two or 

more branches are merging together, forming a two-way split or polytomy on the 

resulting phylogenetic tree. 

 It has been observed in some cases that a given cluster may actually split, and 

different proteins may merge into separate branches of the phylogenetic tree.  This was 

seen in Tree 656 of the B. subtilis data, as discussed in Section 4.6.  This has the effect of 

duplicating the affected leaves onto two or more branches of the tree.  Rather than being 

seen as a problem needing to be repaired, this was seen as a feature of the algorithm, as it 

accurately displays that the duplicated leaves are actually related to proteins in more than 

one branch.  Due to the way the domain deletion with increased E-value threshold 

stringency works, it is not always true that the same domains may be deleted at the same 

time for all members of a cluster.  In fact, it is possible for some proteins to lose a domain 

at an early iteration, while the other proteins may retain the same domain until the final 

iteration of that lineage.  This can potentially change the domain architecture of the 

affected proteins, and so would lead to a justified split in the cluster’s lineage. 

 As an illustration of this point, a hypothetical cluster may have the domain 

architecture A, B, C.  However, one subset of proteins may have a very weak match for 

domain A, and very strong matches for B and C.  Meanwhile, another subset may have 

very strong matches to A, but very weak matches to B and C.  As a result, the cluster 

would see two groups split off: one with architecture B, C, and the other with architecture 

A.  Furthermore, it may be possible for a third subset of proteins to have strong matches 

to all three domains, but such that they lose domain A at a much later iteration, while still 
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retaining domains B, and C.  In this case, they would re-merge with the other B, C 

proteins that had already split off into a different branch.  This could potentially lead to 

the leaf duplication in separate branches that has been described. 

 A problem arises, however, in cases where, for example, two clusters merge into 

one during one iteration, but then subsequently split along the original cluster groupings.  

That is, if Cluster 1 and Cluster 2 were to merge, but the new cluster later splits such that 

one cluster retains only Cluster 1 proteins, and the other cluster retains only Cluster 2 

proteins, this will lead to a problem when the split lineages merge with any outlying 

clusters.  The reason for this is, even though only certain proteins are merging with a new 

cluster, they still retain the ancestry of both Cluster 1 and Cluster 2, and so both clusters 

would be reported in the leaf duplication, even though only one cluster’s proteins were 

participating in a given merging.  This is a problem that should be investigated and fixed 

in future work. 

 

Consideration of Individual Proteins in a Lineage 

 Related to the above issue, the current version of the technique simply looks at the 

ancestry (in terms of previously merged clusters) of each cluster in a given iteration.  It 

pays no attention to what actual proteins still remain within that cluster (the others 

potentially having been deleted due to the E-value threshold).  In the tier charts, in order 

for an edge to exist between nodes in adjacent iterations, only a single protein needs to 

merge from the first cluster into the second cluster, although this edge will have a greater 

thickness if more proteins make the same journey.  This means that two or more clusters 

that merge together in one iteration may have lost proteins in a subsequent iteration, such 

that they no longer are participating in the lineage.  The implications of this approach 
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have not been fully investigated, but in future work it may be important to give greater 

consideration to where in each lineage individual proteins actually remain, and where 

they have already been deleted by the threshold.  From a visualization perspective, one 

example might be to visualize the chart such that if an edge is clicked on or hovered over, 

the information on what proteins are actually traversing that edge could be displayed. 

 

Singleton Cluster Labels 

 In the case of clusters containing only one protein, rather than labelling the cluster 

as “Cluster X” on the tree (with X being the index number of that particular cluster), it 

may be better to simply replace the cluster label with the name of the sole protein 

contained within. 

 

Use of Fewer E-value Thresholds 

 Currently, the bit vector program compiles a list of all E-values seen in the 

HMMER data file and uses this list as a basis for iterating over the threshold.  A sorted 

descending-order list is created of the E-values, and after a given iteration, whatever the 

next order of magnitude is in the list will be deleted for the following iteration.  One 

possible increase in efficiency could come from skipping some of these E-value entries.  

For instance, rather than iterating from 10-5 to 10-10 one order of magnitude at a time 

(provided that each order of magnitude is represented in the data, which may not always 

be so, depending on the input), one possible approach might be to simply skip the in-

between values and simply iterate over 10-5 one iteration, and go directly to 10-10 in the 

next iteration.  This will reduce the total number of iterations during which the binary 

matrix is updated and iterated over to construct the clusters. 
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 The effects that this iterative technique would have on the resulting data should be 

investigated further to see if there are negative impacts on the quality of the final trees.  

As this would reduce the number of levels in the tier chart, one effect that could be 

expected from this approach is the reduction of various nested two-way splits into a 

single polytomy.  For example, if after iterating over each distinct E-value, a tree has the 

structure ((((A,B),C),D),E), if the number of iterations is reduced, this structure could 

become the polytomy (A,B,C,D,E), depending on the exact relationships of the E-values 

present. 

 

Combining Final Trees 

 As it is, the bit vector approach potentially generates separate trees, with no 

overlap, depending on how diverse the input data is.  For example, if the roots of two 

trees do not share the same domain architecture, no merging is possible, otherwise they 

would have been generated as branches within the same tree.  This would most likely 

require a different metric to measure similarity between the trees.  One possible approach 

might be to assess the similarity of the domain architecture present between each tree, 

and place the trees with the closest similarity together as sister groups.  This process 

could be repeated until each tree has been absorbed into a single, final tree containing all 

of the trees and clusters found by the method. 
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APPENDIX A 

SUPPLEMENTARY MATERIALS 
 

A.1 Program Documentation 

 

 The current version of the bit vector clustering program does a number of things.  

It outputs a plain text file for each order of magnitude of E-value in the dataset, 

containing a listing of all the clusters, what domains the clusters contain, and what 

proteins are included in each cluster.  In addition, it also outputs GEXF-format files, 

again, one for each order of magnitude of E-value, which allows the proteins and 

domains for each iteration to be visualized as a bipartite graph in Gephi.  The bipartite 

graphs are currently designed so that proteins that have been eliminated due to E-value 

threshold requirements no longer have any nodes, but any “abandoned” domain nodes are 

still present (but without edges).  The proteins are arranged by cluster.  All of the proteins 

from cluster X will be present in an adjacent arrangement.  Following this, there will be a 

gap before the next cluster is displayed. 

 In addition, one final, tier-based GEXF file is produced.  This file visualizes each 

cluster as a single node.  All of the clusters from a particular iteration of the program (one 

iteration for each order of magnitude of E-value) is arranged in a tier.  If a given cluster 

contains at least one protein that is “passed on” to a cluster in the next tier, an edge will 

be present between those clusters, indicating that the subsequent cluster has “inherited” at 

least one protein from the “ancestral” cluster. 
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Program Overview: 

prime_funct() 

| hmmer_script (script) 

| matrix_extract (script) 

| |_____ mergeSort() 

| file_out() 

| domains() 

| node_data() 

| save_mat() 

| get_weights() 

| |_____ log_calc() 

| gexf_out() 

| get_node_IDs() 

| get_clust_anc() 

| | ind_extract() 

| | de_newick() 

| | list_substr() 

| |_____ inc_str() 

| newick_out() 

| newick_out_lbl() 

| |_____ un_label() 

| re_number() 

| | un_label() 

| |_____ de_newick() 

| print_newick() 

| get_edges() 

| mergeSort2() 

|_____ tier_gexf() 

 

prime_funct() 

This function ties all of the other scripts and functions together.  Its input argument list is 

as follows: 

fileName – mandatory input argument; the file name of the HMMER data; example:  

‘RGS_hmmer.out’ [note that quotation marks must be included otherwise 

interprets the input argument as a variable name or function]. 

varargin – optional input arguments; intended to allow the user to specify an order of  

magnitude to terminate at; example: -10 [in which case, the algorithm will 

only decrease the E-value threshold to a magnitude of 10-10, at which point it 

will stop]; additionally, an order of magnitude to start at can also be specified, 

if both start and stop parameters are given. 

 

Full Details on Input: 

Example Format (in the Matlab console): 

prime_funct(‘RGS_hmmer.out’,-50,-10); 
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This invocation of the program accesses file “RGS_hmmer.out” for the HMMER data, 

begins at E-values of 10-10 (any higher values are deleted and ignored), and stops once it 

clusters everything based on values of 10-50, but no smaller.  In such a case, the “mat 0” 

files will consist of clusters based on the 10-10 threshold.  Also note that the third 

parameter can be, at most, -1. 

The second and third parameters are optional, but using the third parameter requires the 

second parameter to also be specified.  An acceptable invocation would also be: 

prime_funct(‘RGS_hmmer.out’); 

In this case, the same file is accessed for the HMMER data, but there will no longer be 

any restrictions on the start or stop E-value thresholds.  It will begin at whatever the 

initial E-value happens to be (although internally, this has an ultimate cutoff at E-values 

of 1.0 – anything greater will not even be considered), and continue until all E-value 

orders of magnitude are exhausted.  Note that setting the second parameter to “-Inf” is 

identical to the default behavior just described. 

 

It is important to bear in mind that the numerical component in the “mat X” titles 

corresponds to the order of magnitude of E-value that was just deleted – for example, 

“mat -10” contains E-values at 10-11 at the highest, not 10-10, because all 10-10 values were 

deleted at the start of the iteration. 

 

prime_funct() calls the scripts hmmer_script and matrix_extract, which read the 

HMMER input file, reformat it so as to be easier to import into Matlab, and then extract 

the data into a cell array.  The function then iterates over the data, outputting the data 

files (for example, “mat 0.txt” and “mat 0.gexf”) for each iteration, as the E-value 

threshold is lowered (made more stringent).  This data is generated and interpreted by 

calls to the functions file_out(), domains(), save_mat(), get_weights(), and gexf_out(). 

 

hmmer_script 

This script opens the file specified by the fileName input argument from prime_funct().  

Its main purpose is to scan through the HMMER file line by line and convert any white 

space separating data fields with a single tab (the HMMER files can have fields separated 

by a varying number of spaces, which makes importing of the data into Matlab 

problematic).  The updated lines of information are then written to a new output file.  

This will be a tab-delimited version of the HMMER input file when the script finishes.  It 

should also be noted that the original HMMER file has had any headers and footers 

manually deleted.  Its only contents will therefore be the raw data itself, with no extra 

lines above or below it. 

 

matrix_extract 

This script uses the new tab-delimited file generated by hmmer_script and imports it 

into Matlab using Matlab’s textscan() function.  The data is stored in a cell array.  This 

array is then used to generate several other data structures.  The primary one is a simple 

binary m × n matrix, where m is the number of unique proteins in the HMMER data, and 

n is the number of unique domains present in the entire dataset.  A cell in this matrix will 

be 0 if HMMER determined a given protein did not possess a given domain (or if its E-
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value was given above the acceptable threshold).  Alternatively, it will be 1 if HMMER 

did report finding the domain in the given protein.  Another data structure is a matrix of 

identical dimensions to the binary matrix, but with the actual E-values replacing the cells 

equal to 1.  The other cells will be 0 if the binary matrix also has a 0 at the corresponding 

cell.  In the event an E-value is given as 0 by the HMMER data, this can be distinguished 

because the corresponding cell in the binary matrix will equal 1, and not 0.  Finally, the 

E-values are also organized into a one-dimensional array, which is then sorted (using 

Merge Sort) in descending order (the weakest E-values at the start).  This array will then 

be used in the iterative process (in prime_funct()) of removing weak E-values. 

 

mergeSort() 
This function is a modified implementation of Merge Sort taken from Rosetta Code [36].  

It is modified to accept three input arrays instead of just one.  The purpose is that two of 

the arrays will contain row and column indices for the data contained in the 

corresponding cell of the array being sorted, so the value contained there may be looked 

up directly afterwards in its original matrix.  The function sorts the main array as normal, 

but also moves the associated row and column values so they remain synchronized with 

the values in the sorted array. 

list – the array to be sorted; values are taken from a two-dimensional matrix. 

row_ar – an array containing the row coordinates for the data contained in ‘list’, taken  

from the original matrix. 

col_ar – an array containing the column coordinates for the data contained in ‘list’, taken  

              from the original matrix. 

 

The output of this function is the same three arrays, now sorted in ascending order based 

on the values in ‘list’. 

 

file_out() 

This function outputs two files, “rows.txt” and “cols.txt”.  The former is a base-1 indexed 

list of the proteins found in the HMMER data, while the latter is a similar list of the 

domains.  The input argument list is as so: 

prot – a cell array generated by matrix_extract containing the accession numbers of the  

proteins in the HMMER data. 

dom – a cell array generated by matrix_extract containing the names of the domains in  

           the HMMER data. 

x – the number of proteins in the list. 

y – the number of domains in the list. 

 

domains() 
This function generates a list of clusters based on comparisons of the proteins’ domain 

architecture.  The input arguments are: 

bitvec_mat – the binary matrix containing information on the domain architecture of each  

                      protein. 

prot – a list of protein accession numbers. 

dom – a list of domain names. 

x – the number of proteins in the matrix. 
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y – the number of domains in the matrix. 

name – a string based on the theme “mat X.txt”, where X is the order of magnitude of the  

             current iteration. 

members – a cell array that is initialized in prime_funct(); it has new data added onto it  

for each subsequent iteration, and displays which cluster a given protein 

participates in during a given iteration. 

 

‘list’ is the principle output argument, and contains a three-column cell array where the 

first column contains the binary strings representing a given domain architecture, the 

second column contains the lists of protein indices in a given cluster, and the third 

column contains the lists of domain indices in a given cluster.  The second and third 

columns are in the format “a_b_c…”, where a, b, and c each represent either a protein or 

domain index number. 

‘label_list’ is very similar to ‘list’, but instead presents the proteins and domains using 

their actual labels, not indices.  This will be useful in outputting cluster lists containing 

the actual names of the protein and domain nodes being clustered (as opposed to just 

index values, which are difficult for humans to understand without using a look-up table 

of indices). 

‘count’ is a simple numerical value representing the number of clusters found. 

‘members’, as described above, shows the cluster a protein participates in for each 

iteration.  domains() adds new data to this variable during each subsequent iteration. 

 

The function iterates over the matrix and generates a binary string for each protein.  It 

then makes systematic comparisons between each protein’s string.  Protein 1 gets 

compared to all other proteins, but higher-numbered proteins never get compared back to 

proteins that have already been iterated over previously (so the sequence of comparisons 

would be 1 to 2, 1 to 3, …, 1 to nth protein, then 2 to 3, 2 to 4, …, 2 to nth protein, etc.).  

Once a protein has been matched into a cluster, it is removed from the list, so it is not 

compared again. 

 

node_data() 
This function generates a cell array of the node data, which will be printed to a GEXF file 

later.  The input arguments are: 

nodes_ar – a cell array containing the labels of the protein and domain nodes. 

list – the list of clusters generated in domains(). 

num_prot – the number of proteins. 

list_row – the number of rows in ‘list’. 

 

The output arguments are: 

nodes_out – the cell array of node labels. 

count – the count of proteins. 

 

The function generates a string in XML format, which is then inserted into the 

‘nodes_out’ array.  When finished, each node will have its own entry in the output array. 
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save_mat() 
This function saves the set of clusters for a given iteration to a text file.  The input 

arguments are: 

list – the list of clusters generated in domains(). 

label_list – the same list of clusters, but with actual node labels, not indices. 

name – the file name for the current iteration; example: “mat 0.txt”. 

row – the number of rows in the variable ‘list’. 

 

The function scans through ‘list’ and ‘label_list’ and writes each cluster to a text file.  

The output format for each cluster is as follows (where X represents the index number of 

the current cluster): 
Cluster X 

Proteins: 

Protein_1, Protein_2, Protein_3, … 

 

Domains: 

Domain_1, Domain_2, Domain_3, … 

 

get_weights() 
A function that constructs an array of edges, indicating which nodes are connected.  The 

input arguments are: 

e_val – the matrix of E-values, synchronized with ‘bitvec_mat’. 

bitvec_mat – the binary matrix indicating which domains are present in a given protein. 

e_val_row – array containing the row coordinates of each E-value in ‘e_val’. 

e_val_col – array containing the column coordinates of each E-value in ‘e_val’. 

let – an array of index values corresponding to the domain nodes. 

 

‘edges_ar’ is the only output argument, and consists of a list of sources and targets for 

each edge, as well as the edge type (undirected, in this case), and the weight of the edge. 

 

The function gets the number of edges in the graph by summing all the 1’s in 

‘bitvec_mat’.  It then generates the array of edges, consisting of their sources and targets, 

as well as edge weights.  The edge weights are calculated by a call to the function 

log_calc(), which is then multiplied by 10 (Gephi will not display easily-distinguished 

edge thicknesses otherwise). 

 

log_calc() 
This function calculates the weight of each edge.  The sole input argument is: 

num_in – the E-value of the current protein-domain match. 

 

The function has two output arguments: 

num_out – the calculated edge weight, based on the E-value input 

bool – a Boolean that indicates whether or not an E-value is above an acceptable  

           threshold; should not be possible for this to be an issue. 

 

The function finds the negative base-10 logarithm of the E-value and divides it by 100.  

100 has been arbitrarily chosen as the best logarithm value, and has the effect of working 
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like a percentage.  In the event an E-value’s logarithm is greater than 100, it gets mapped 

back to 100. 

gexf_out() 
This function outputs the node and edge data in GEXF format.  These files are then 

readily opened in Gephi to display the graph.  The input arguments are: 

edges_ar – the array of edges, giving their sources and targets, as well as weights. 

edge_name – the file name for the current iteration; example: “mat 0.gexf”. 

nodes_out – the cell array containing the node information, in XML format. 

num_dom – the number of domains. 

 

The function accesses the data in ‘edges_ar’ and ‘nodes_out’ and writes the information 

to the output file in XML format.  It is also responsible for spacing the nodes and cluster 

groups in the graph. 

 

get_node_IDs() 

A function to create a matrix that is synchronized to ‘members’, containing the node ID’s 

to be used in the GEXF files.  ‘members’ is the only input argument, and is a cell array 

consisting of one row for each protein in the HMMER data.  Each column represents one 

of the E-value threshold iterations (one for each order of magnitude).  The contents of 

each cell indicates which cluster that a given protein participates in during a given 

iteration.  The output arguments are: 

node_IDs – a matrix synchronized with ‘members’, and consisting of the node ID’s for  

each cluster that will be used in the GEXF files. 

node_labels – another cell array, synchronized with ‘members’, this time consisting of  

                       the node labels to be displayed; this will be used in the GEXF files. 

node_ancestors – another cell array, synchronized with ‘members’, this time consisting of  

the labels of the nodes in the initial iteration that a given cluster in a 

subsequent iteration is derived from, due to the protein in that row 

being present in the initial cluster on the first iteration. 

tier_clusters – a cell array with one column for each iteration; the contents of each  

                        column consist of a listing of each cluster node label. 

 

The function works by iterating over the data shown in ‘members’, and accessing the 

information present in order to build the output variables that have been described above.  

This is for constructing the tier-based graph, which displays which clusters inherit 

proteins from which other clusters in the previous iteration. 

 

get_clust_anc() 

A function that creates a cell array showing which initial ancestral cluster a given cluster 

in the tier-based visualization ultimately is derived from.  The input arguments are: 

node_labels – a cell array created by get_node_IDs(); consists of the node labels to be  

displayed. 

node_ancestors – a cell array created by get_node_IDs(); consists of the labels of the  
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nodes in the initial iteration from which a given cluster in a subsequent 

iteration inherited its proteins. 

big_list – a cell array into which the variable ‘list’ from domains() is copied for each  

                iteration in prime_funct(). 

 

The output arguments are: 

tier_clust_anc – this is a cell array in which each cell contains a list of all clusters in the  

initial iteration from which a given cluster inherited its proteins. 

newick_tree – a two-dimensional cell array with n rows and m columns, where n is the  

number of proteins in the dataset, and m is the number of iterations of 

changes to the E-value threshold; each cell contains a Newick string 

describing the phylogeny-like relationships between related clusters. 

newick_tree_lbl – a two-dimensional cell array identical to ‘newick_tree’, except that the  

                              Newick strings include node labels and branch lengths as well. 

 

The function iterates over the contents of ‘node_labels’ and ‘node_ancestors’ to extract a 

list of the clusters in the initial iteration from which a given cluster is ultimately derived.  

It builds a list of the ancestors of each node, and places this information in the 

‘tier_clust_anc’ output variable.  Furthermore, the function also progressively builds 

Newick-format strings describing the relationships between related clusters, based on the 

merges that can be seen in the “tier” chart data from one iteration to the next. 

 

ind_extract() 

A function that accepts a string in the format “Cluster X Y”, where X is the cluster index 

number, and Y is either 0 or a negative integer, extracts X, and converts it to a numerical 

value for output. 

‘clust_str’ is the only input argument, representing the string from which the index 

number is to be extracted. 

 

‘clust_ind’ is the only output variable, and is the cluster’s index value, converted to 

numeric format. 

 

de_newick() 

This function removes the spaces and brackets from a Newick-format input string, places 

the cluster labels each in a separate cell of a cell array, and sorts the cell array before 

output. 

‘newick_str’ is the Newick-format input string, and is the only input argument. 

 

‘out_newick’ is the only output variable, and is a cell array consisting of the cluster labels 

in natural sort order / ASCII dictionary order (that is, “Cluster 10” would follow “Cluster 

1” and precede “Cluster 2”). 
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list_substr() 

A function that accepts a pair of cell arrays, compares them element by element, and then 

removes entries that have been matched.  It outputs both arrays, minus the deleted entries.  

If both arrays contain substrings of the other, they will be empty.  The input and output 

arguments are the same (cell arrays ‘A’ and ‘B’). 

 

inc_str() 

A function that accepts a string in the format “XXXX:Y”, where XXXX can be any string, 

followed by a final colon, followed by a numerical value Y.  The function extracts Y, 

converts it to a numerical value, increments this value, converts it back into a string, 

replaces Y with the updated value, and presents the modified string as the output. 

‘input_str’ is the only input argument, and is as described above. 

 

‘output_str’ is the only output variable, and is the updated string, as described above. 

 

newick_out() 

This function accepts the un-labelled version of the set of Newick strings from 

get_clust_anc() and processes the set to extract the unique Newick strings.  The function 

then places these strings in a cell array for output. 

‘newick_tree’ is the only input, and is a two-dimensional cell array of n rows and m 

columns, where n is the number of proteins in the HMMER data, and m is the number of 

iterations of changing the E-value threshold. 

 

‘newick_list’ is the only output, and is a one-dimensional cell array consisting of each 

unique Newick string taken from ‘newick_tree’. 

 

newick_out_lbl() 

This function is an alternative version of newick_out(), meant specifically to handle 

Newick strings containing node labels and branch lengths.  As such, it is necessary to call 

the un_label() function in order to get accurate results.  Otherwise, input and output 

variables are identical to that of newick_out(). 

 

un_label() 

A function that accepts a Newick string with node labels and branch lengths (for 

example, “[A:x, B:y]C:z”, where A and B are both leaf labels, C is a node label, and x, y, 

and z are branch lengths), and removes the node labels and branch lengths, leaving only 

the un-labelled Newick string (for example, “[A, B]”). 

‘newick_str’ is the only input, and once modified, is also the only output variable. 

 

re_number() 

This function looks at the list of clusters in a Newick string, finds if there are any 

duplicates, and then renumbers the duplicates so the first occurrence is called “Cluster 

X.1”, the second is “Cluster X.2”, and so on.  The function also replaces some elements in 

the string to conform to true Newick format.  There are two input arguments: 
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newick_list – a cell array of Newick strings to be processed. 

bool – a Boolean variable that indicates of the input strings carry branch lengths and node  

           labels or not; if true, un_label() needs to be called before de_newick(). 

 

The modified ‘newick_list’ array is the only output variable. 

 

print_newick() 

A function that prints the non-singleton Newick strings in the labelled and un-labelled 

versions of the tree lists to plain text files.  Each tree is printed to its own file, following 

the naming convention of “treeX.txt” for the un-labelled tree, and “treeX_lbl.txt” for the 

labelled version.  X is the index number within the list that the string came from.  The 

input variables are: 

newick_list – a cell array containing the un-labelled versions of the Newick output trees. 

newick_list_lbl – a cell array containing the same Newick output trees, but with added  

node labels and branch lengths. 

 

The function prints the (non-singleton) contents of each cell to its own file.  It is 

formatted so that the entire Newick string is printed on a single line. 

 

get_edges() 

A function to create a list of the edges to be used in the tier-based graph.  The input 

arguments are: 

node_IDs – a matrix consisting of the node ID’s for each cluster that will be used in the  

GEXF files. 

members – a cell array that displays which cluster a given protein participates in during a  

                   given iteration. 

 

‘tier_edges’ is the only output variable, and is a two-row array indicating the edges of the 

tier-based graph.  The top row is the source node ID, and bottom row is the target node 

ID. 

 

The function iterates over ‘node_IDs’.  Each time there is a protein participating in 

clusters in two adjacent columns of the matrix, it indicates there should be an edge 

between those clusters in the tier-based graph.  Each edge is added only once. 

 

mergeSort2() 

This function is another modified implementation of Merge Sort taken from Rosetta Code 

[36].  This implementation has been modified to accept the array to be sorted (‘list’), 

which is expected to be two-dimensional and consists of two rows.  The top row of ‘list’ 

is meant to be sorted, but the associated second row values are to remain synchronized 

with the sorted top row values.  This is a similar approach to the first version of Merge 

Sort this program uses, but has a different expected input format. 

 

The output of this function is the same two-row array, now sorted in ascending order 

based on the values in the top row. 
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tier_gexf() 

This function outputs the node and edge data for the tier-based graph in GEXF format.  

These files are then readily opened in Gephi to display the graph.  The input arguments 

are: 

node_IDs – a matrix consisting of the node ID’s for each cluster that will be used in the  

GEXF files. 

tier_edges – a two-row array indicating the edges of the tier-based graph; top row is the  

                     source node ID, and bottom row is the target node ID. 

tier_clusters – a listing of each cluster node label for each iteration. 

 

The function accesses the data in ‘node_IDs’, ‘tier_edges’, and ‘tier_clusters’ and writes 

the information to the output file in XML format.  It is also responsible for spacing the 

nodes and tiers in the graph. 

 

A.2 A Note on File Format 
 

A.2.1 Input Files 

 

HMMER Data 

The file extension may vary (.out or .txt files are normally used), as this will be specified 

in the program input parameters.  The file contents must be provided in typical HMMER 

output format.  However, in this case, the files have been edited slightly to remove the 

field headers and program and setting details from the top and bottom of the file.  The 

only contents that remain are the lines that contain the actual HMMER data that is to be 

processed.  The fields need to be in the following order: <target name>, <accession>, 

<tlen>, <query name>, <qlen>, <E-value>, <score>, <bias>, <number>, <of>, <c-

Evalue>, <i-Evalue>, <score>, <bias>, <from>, <to>, <from>, <to>, <from>, <to>, 

<acc>, and <description of target>.  It should be mentioned that in the HMMER files, 

there is also an <accession> field in between <query name> and <qlen>, however, in 

each of the files made available from Shah’s original data, this field is left blank 

(indicated by a “-” character).  For the purposes of field indexing and reformatting of the 

HMMER file, this field was ignored and deleted.  Taking this indexing into 

consideration, the fields of interest are therefore the 1st, 4th, and 12th (<target name>, 

<query name>, and <i-Evalue>, respectively).  These fields carry the information of 1) 

the domain names, 4) the protein names / accession numbers, and 12) the E-values of the 

match between the domain and protein sequences. 

 

A.2.2 Output Files 
 

Reformatted HMMER Data 

The typical HMMER data file will contain white space between fields.  However, this 

white space is not uniform, and may consist of multiple individual spaces or tabs, with 

the intent of lining each field up into a given column on the page.  However, this is 

problematic for importing the data into memory, and so it is reformatted to replace all 

white space between fields with a single tab.  The blank <accession> field mentioned 

above is also removed during this stage. 
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Row and Column Data 

There are two plain text files (“rows.txt” and “cols.txt”) which match the row and column 

indices to the protein accession numbers and domain names they represent, respectively.  

The following is an example of this content: 

 

rows.txt:   cols.txt: 
1:  NP_598838.3  1:  RRM_5 

2:  NP_058038.2  2:  RRM_6 

3:  NP_001123624.1 3:  RRM_1 

4:  NP_796052.2  4:  Nup35_RRM_2 

5:  NP_056627.1  5:  PWI 

    ...       ... 

 

Cluster Membership Lists 

These files are in plain text format, and are named based on the theme “mat X”, where X 

represents the order of magnitude of E-value that was just deleted before that file was 

generated.  The file of the initial iteration (before the E-value threshold is used) is always 

“mat 0.txt”, including cases where the start E-value parameter is specified to be lower 

than the highest E-value in the HMMER data.  These files provide the protein 

membership of each cluster, as well as a listing of the domains present in that cluster.  An 

example of the file contents follows: 

 
Cluster 1 

Proteins: 

NP_598838.3 

 

Domains: 

RRM_5, RRM_6, RRM_1, Nup35_RRM_2, PWI, zf-CCCH, RGS-like, DUF2785 

 

 

Cluster 2 

Proteins: 

NP_058038.2 

 

Domains: 

RBD, RGS, GoLoco, PSD4 

... 

 

GEXF Files 

These files are meant to be used in Gephi, and encode the node and edge data for the 

bipartite graphs in a way very similar to XML encoding.  They are also named according 

to the same theme as that used for the cluster membership lists (“mat 0.gexf”, etc.). 

 

Tier-Based Visualization 

This GEXF file (“tiers.gexf”) visualizes the clusters by reducing each cluster to an 

individual node, and displaying them in tiers, with each tier corresponding to an order of 

magnitude of E-value, just as the cluster membership and associated GEXF bipartite 

visualizations do.  If an edge exists between clusters in adjacent tiers, it indicates that the 
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subsequent clusters “inherit” at least one of their protein members from the previous 

clusters. 

 

Newick Trees 
These are a series of plain text files that each carry one of the Newick trees found in the 

procedure.  There are labelled and un-labelled versions of the trees.  These files can be 

easily imported into a Newick tree visualization program (TreeView was used for these 

tests) for viewing. 
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