
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 7-29-2016

USE OF CLUSTERING TECHNIQUES FOR
PROTEIN DOMAIN ANALYSIS
Eric Rodene
University of Nebraska - Lincoln, erodene@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Biochemistry, Biophysics, and Structural Biology Commons, Bioinformatics
Commons, Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Rodene, Eric, "USE OF CLUSTERING TECHNIQUES FOR PROTEIN DOMAIN ANALYSIS" (2016). Computer Science and
Engineering: Theses, Dissertations, and Student Research. 109.
http://digitalcommons.unl.edu/computerscidiss/109

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/109?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages

USE OF CLUSTERING TECHNIQUES FOR PROTEIN DOMAIN ANALYSIS

by

Eric T. Rodene

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professors Stephen D. Scott and Etsuko N. Moriyama

Lincoln, Nebraska

July 2016

USE OF CLUSTERING TECHNIQUES FOR PROTEIN DOMAIN ANALYSIS

Eric Rodene, M.S.

University of Nebraska, 2016

Advisors: Stephen Scott, Etsuko Moriyama

 Next-generation sequencing has allowed many new protein sequences to be

identified. However, this expansion of sequence data limits the ability to determine the

structure and function of most of these newly-identified proteins. Inferring the function

and relationships between proteins is possible with traditional alignment-based

phylogeny. However, this requires at least one shared subsequence. Without such a

subsequence, no meaningful alignments between the protein sequences are possible. The

entire protein set (or proteome) of an organism contains many unrelated proteins. At this

level, the necessary similarity does not occur. Therefore, an alternative method of

understanding relationships within diverse sets of proteins is needed.

 Related proteins generally share key subsequences. These conserved

subsequences are called domains. Proteins that share several common domains can be

inferred to have similar function. We refer to the set of all domains that a protein has as

the protein’s domain architecture.

 We present a technique which clusters proteins sharing identical domain

architecture. Matching a domain to a protein is determined with a confidence estimate

(e.g., the E-value). The confidence with which a domain is matched to the sequence

varies widely. By using a threshold for what is considered an acceptable match, domains

with weak similarities can be ignored. By changing this E-value threshold, the clustering

patterns and relationships between proteins can be analyzed. Clusters may merge or split

as their domain architecture shifts based on this threshold. By studying the relationships

between clusters from one iteration to the next as the threshold is made more stringent,

phylogeny-like networks can be constructed. This technique clusters together proteins

with identical domain architecture, and also illustrates relationships among clusters with

similar architecture.

 This technique was tested on the multi-domain Regulator of G-protein Signaling

family. The output is consistent with the known functional subdivisions of this protein

family. This technique is also considerably faster than typical alignment-based

phylogenetic reconstruction on this family. Use of the technique at the proteome level

was also tested using bacterial proteome data from Bacillus subtilis.

iv

Table of Contents

Table of Contents ... iv

List of Figures ...v

List of Tables ... vii

1. Introduction ..1

1.1 Overview ..1

1.2 Objectives ...3

1.3 Organization of the Thesis ...4

2. Background and Related Work ..7

2.1 Background ..7

2.2 Related Work ..8

3. Methods and Pipeline Overview ...10

4. Results and Discussion ...19

4.1 Datasets Used ...19

4.2 Evaluation Methods ..19

4.3 RGS Data ..21

4.4 Discussion of RGS Data ...51

4.5 B. subtilis Data ...56

4.6 Discussion of B. subtilis Data ..65

5. Conclusion and Future Work ...69

5.1 Future Work ...71

References ...78

A. Supplementary Materials ...81

A.1 Program Documentation ..81

A.2 A Note on File Format ...91

A.2.1 Input Files ...91

A.2.2 Output Files ..91

v

List of Figures
Figure 3.1: A visualization of the Newick tree ((A,B),C). ..17

Figure 3.2: Basic pseudocode of the clustering procedure... ..18

Figure 4.3.1a: First portion of the tier chart for the RGS data, from iteration 0 to iteration

-12. ...23

Figure 4.3.1b: Second portion of the tier chart for the RGS data, from iteration -12 to

iteration -26. ...24

Figure 4.3.1c: Third portion of the tier chart for the RGS data, from iteration -26 to

iteration -38. ...25

Figure 4.3.1d: Final portion of the tier chart for the RGS data, from iteration -38 to

iteration -69. ...26

Figure 4.3.2: Cluster 12 -3 is formed when Cluster 12 -2 and Cluster 18 -2 merge

together. ...28

Figure 4.3.3: Cluster 8 -4 splits, with some proteins forming Cluster 8 -5 and others

forming Cluster 13 -5. ..28

Figure 4.3.4: Examples of no change between iterations on three separate lineages.

Differences in edge weight can also be seen. ..29

Figure 4.3.5: Cluster 1 -7 is the final node of this lineage, even though other lineages

continue to subsequent iterations. ..29

Figure 4.3.6: Illustration of Cluster 5 0 and Cluster 12 0 merging to form Cluster 5 -1.

This results in a two-way split in Tree 5. ...30

Figure 4.3.7: Clusters 6, 19, and 23 all merge together at Cluster 6 -2 (circled) in the tier

chart. This results in a three-part polytomy in Tree 5. ..30

Figure 4.3.8: The version of Tree 1 from the RGS data without node labels or branch

lengths. ...34

Figure 4.3.9: Tree 1 with branch lengths, node labels, and domain architecture displayed.

..35

Figure 4.3.10: The version of Tree 2 from the RGS data without node labels or branch

lengths. ...35

Figure 4.3.11: Tree 2 with branch lengths, node labels, and domain architecture

displayed. ...36

Figure 4.3.12: The version of Tree 3 from the RGS data without node labels or branch

lengths. ...37

Figure 4.3.13: Tree 3 with branch lengths, node labels, and domain architecture

displayed. ...37

Figure 4.3.14: The version of Tree 5 from the RGS data without node labels or branch

lengths. ...38

Figure 4.3.15: Tree 5 with branch lengths, node labels, and domain architecture

displayed. ...40

Figure 4.3.16a: First portion of the maximum likelihood tree for the RGS data using a

MUSCLE alignment. Branch colors correspond to function, as seen in the previous tree

visualizations..45

vi

Figure 4.3.16b: Second portion of the maximum likelihood tree for the RGS data,

overlapping partly with Figure 4.3.16a. Branch colors correspond to function, as seen in

the previous tree visualizations. ...46

Figure 4.3.17a: First portion of the maximum likelihood tree for the RGS data using a

MAFFT alignment. Branch colors correspond to function, as seen in the previous tree

visualizations..48

Figure 4.3.17b: Second portion of the maximum likelihood tree for the RGS data,

overlapping partly with Figure 4.3.17a. Branch colors correspond to function, as seen in

the previous tree visualizations. ...49

Figure 4.5.1: The version of Tree 187 from the B. subtilis data without node labels or

branch lengths. ...58

Figure 4.5.2: Tree 187 with branch lengths, node labels, and domain architecture

displayed. ...60

Figure 4.5.3: The version of a subset of Tree 656 from the B. subtilis data without node

labels or branch lengths. ..62

Figure 4.5.4: The Tree 656 subset with branch lengths, node labels, and domain

architecture displayed. ...64

Figure 4.6.1: Illustration of the tier chart for the branch of Tree 656 seen in Figures 4.5.3

and 4.5.4. ..67

vii

List of Tables
Table 4.3.1: The clusters present in Tree 1. Domain architecture is given on the right of

each cluster header. ..34

Table 4.3.2: Key to the domain indices present in Figure 4.3.9.35

Table 4.3.3: The clusters present in Tree 2. Domain architecture is given on the right of

each cluster header. ...36

Table 4.3.4: Key to the domain indices present in Figure 4.3.11.36

Table 4.3.5: The clusters present in Tree 3. Domain architecture is given on the right of

each cluster header. ..37

Table 4.3.6: Key to the domain indices present in Figure 4.3.13.38

Table 4.3.7: The clusters present in Tree 5. Domain architecture is given on the right of

each cluster header. ..39

Table 4.3.8: Key to the domain indices present in Figure 4.3.15.40

Table 4.3.9: A listing of the singleton tree clusters from the RGS data. Domain

architecture is given on the right of each cluster header. ...41

Table 4.3.10: Percentage homogeneity of each of the trees from Figures 4.3.8-4.3.15, as

well as Table 4.3.9...41

Table 4.3.11: Percentage discontinuity of each of the functional types in the RGS data. 42

Table 4.3.12: Settings used for MUSCLE alignment of the RGS proteins.43

Table 4.3.13: Settings used for maximum likelihood testing of the RGS proteins...........43

Table 4.3.15: Comparison between the running times of the bit vector method and the

maximum likelihood run with MUSCLE alignment. ..44

Table 4.3.16: Comparison between the running times of the bit vector method and the

maximum likelihood run with MAFFT alignment. ...47

Table 4.3.17: Jaccard indices of the bit vector trees as compared to the ML clusters.50

Table 4.3.18: Cluster membership for the MUSCLE-aligned ML tree. Proteins not

mentioned in this list form singleton clusters. ...50

Table 4.3.19: Cluster membership for the MAFFT-aligned ML tree. Proteins not

mentioned in this list form singleton clusters. ...51

Table 4.5.1: Data set information and running time of the bit vector method.57

Table 4.5.2: The clusters present in Tree 187. Domain architecture is given on the right

of each cluster header...59

Table 4.5.3: Key to the domain indices present in Figure 4.5.2.61

Table 4.5.4: The clusters present in the subset of Tree 656. Domain architecture is given

on the right of each cluster header. ..63

Table 4.5.5: Key to the domain indices present in Figure 4.5.4.64

Table 4.6.1: Key to the cluster indices of Figure 4.6.1 and the original Tree 656

visualizations..66

1

CHAPTER 1

INTRODUCTION

1.1 Overview

 With the rapid expansion of data made available from next-generation

sequencing, many new protein sequences have been identified, and even whole

proteomes of various organisms are available to study. Unfortunately, knowledge of the

three-dimensional structure and function of most of these newly-identified proteins

generally tends to be limited. There are some options for studying such proteins, with the

goal of finding other sequences whose functions are already known and that the proteins

under study are similar to. One common approach would be to use the Basic Local

Alignment Search Tool (BLAST) [1], which is made available through the National

Center for Biotechnology Information (NCBI) website [2]. BLAST uses local alignment

searches against a database of proteins or nucleotide sequences to find highly similar hits.

The assumption is that sequences with high similarity are likely to be closely related and

to share similar functions as well.

 Another approach is to use alignment-based phylogenetic methods. Often used

multiple sequence alignment methods include ClustalW [3], MUSCLE [4], and MAFFT

[5]. Phylogenetic reconstruction can be performed using methods such as neighbor-

joining [6], maximum parsimony [7, 8], and maximum likelihood [9, 10, 11]. A

traditional approach to understanding the relationships within a set of proteins would be

to perform an alignment and then use the alignment as the basis for generating a

phylogenetic tree. However, this approach requires that the sequences under study align

with one another. There would need to be at least one significant region within each of

the sequences that is highly conserved. Without such regions of similarity, no useful

2

alignment is possible. As a result, this approach is only applicable to closely-related

sequences, and would fail if it was attempted on a diverse set of proteins, such as what is

encountered in an organism’s proteome. It is therefore necessary to employ an

alternative method for this purpose.

 Many proteins are composed of smaller subsequences called domains. A domain

is an amino acid sequence that may be present in a protein and which tends to be highly

conserved between different related proteins, even though the rest of the protein

sequences are overall more divergent. The amino acid sequence of a protein can

determine how it is folded into its three-dimensional structure, due to the chemical

interactions between each amino acid molecule. The presence of conserved domains in a

set of proteins can be used to infer that they may share some similarities in three-

dimensional structure. The structure of a protein determines its function. As a result, it is

possible to infer structural similarity and related function between various proteins from

the presence of shared domain sequences.

 Alignment-based phylogenetic methods of clustering proteins are well known,

and have been in common use for years. However, they typically rely on analyzing the

whole protein sequences, or extracted subsequences. Tribe-MCL is another clustering

method that does not rely on global alignment of protein sequences [12]. It has been used

for proteome-level protein clustering. However, this method does not consider overall

domain architecture, instead only focusing on the strongest domain match present in a

given protein. While such a domain match may be diagnostic for including a protein

within a particular family of related proteins, this does not consider the modifying effects

that the presence or absence of any other domains may have on its overall function. As

3

discussed above, it may be possible for some proteins with similar domain architecture to

be functionally similar, even though their overall sequences may be more divergent. By

using a domain-based method of protein clustering that focuses on the full domain

architecture, it may be possible to identify similarities in function that might not be

obvious from alignment-based methods, due to this divergence.

 Protein domain clustering has previously been investigated by Enright, et al. [12]

and Shah [13]. Shah’s work focused on using a biclustering algorithm called Bimax [14]

to group proteins into clusters based on the similarity of their domain architecture.

Bimax uses a simple binary matrix to construct its clusters. However, the strength of the

domain’s matching also factors into the relationships between proteins. Therefore, it is

not sufficient to say that a domain is simply present in a protein. By somehow

incorporating domain similarity information, in addition to domain architectures, into the

clustering method, it would be possible to see not only whether or not a domain is simply

present in a protein of interest, but also how the strength of its matching can affect how it

is clustered with other proteins.

1.2 Objectives

 The primary objectives of this thesis are to develop a domain-based tool for

clustering that can be used as an alternative to more typical alignment-based methods of

phylogenetic reconstruction or Tribe-MCL. In particular, such a tool is not only useful

for analyzing the relationships between members of an organism’s proteome, without the

need of a universally shared subsequence, but it also conducts analysis on the functional

relationships between smaller datasets more rapidly than a maximum likelihood

phylogenetic analysis can be conducted on the same dataset.

4

 The overall contributions that have been made by this thesis are:

 The creation of a Matlab implementation of Bimax.

 The creation of a Matlab implementation of a bit vector clustering method.

This implementation iterates by decreasing the accepted domain similarity (E-

value) threshold. The output shows the cluster membership of proteins and

domains present in the cluster architecture.

 Visualizations of bipartite matchings for each iteration are generated. A final

“tier”-based graph showing the “inheritance” of proteins between clusters in

adjacent iterations is also generated, as well as Newick trees stored in plain

text files displaying phylogeny-like relationships between the clusters as

derived from this “tier” chart.

The program was tested using the mouse regulator of G-protein signaling (RGS)

protein dataset and Bacillus subtilis proteome. The output of the program was evaluated

based on how successfully the resulting trees grouped together proteins with related

function.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2: Background and Related Work

 Section 2.1: Background

 This section focuses on the background and primary motivation behind this thesis,

as well as some of the early steps undertaken.

 Section 2.2: Related Work

5

 This section provides a summary of some other algorithms that have been

developed for biclustering methods, as well as one for use in protein domain analysis.

Chapter 3: Methods and Pipeline Overview

 This chapter goes over the fine details of what methods the bit vector approach

uses, as well as a step by step overview of how it goes about clustering the input proteins

and building the resulting phylogeny-like trees.

Chapter 4: Results and Discussion

 4.1: Datasets Used

 This section covers a brief overview of the RGS and B. subtilis datasets used in

the study.

 4.2: Evaluation Methods

 This section introduces how the quality of the resulting trees was assessed.

 4.3: RGS Data

 This section covers the output of the bit vector approach on the RGS data, as well

as the output of several runs using maximum likelihood and neighbor-joining on the same

data.

 4.4: Discussion of RGS Data

 This section discusses the key findings of the RGS data output, as well as

discussing comparisons to the performance of alternative algorithms.

 4.5: B. subtilis Data

 This section describes a small selection of the trees provided in the output of the

bit vector program on the B. subtilis data.

 4.6: Discussion of B. subtilis Data

6

 This section describes some of the key findings of the B. subtilis data output.

Chapter 5: Conclusion and Future Work

 This chapter discusses the main conclusions of this thesis, and how the proposed

bit vector program compared to other methods.

 5.1: Future Work

 This section provides a discussion of some proposed improvements that could be

made to the bit vector approach.

7

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

 The main goal of this thesis is to further the work of Shah [13]. Shah’s protein-

domain clustering method focused on biclustering techniques using a C implementation

of the algorithm Bimax [15]. Her technique was tested using a sampling of the multi-

domain Regulator of G-protein Signaling (RGS) family of proteins from Mus musculus,

as well as multiple proteomes from both prokaryotes and eukaryotes.

 Originally, it was intended to find and test an alternative algorithm which can

allow the strength of the domain match to be considered, as opposed to a simple binary

presence-absence test (as Bimax does). In Oghabian, et al. [16], several biclustering

algorithms were compared. Although most of the algorithms discussed were designed for

gene expression biclustering, it was hoped a way might be found to run a selected

algorithm using protein domain data as input instead. The above review assessed various

qualities of the sampling of algorithms under investigation, including how successful they

were in differentiating different sample types, how well the groups of genes in the

algorithms’ results are annotated with similar gene ontology categories, how well the

algorithms were able to differentiate genes known to be specific to particular sample

types the authors used in the study, and also running time of the algorithms. The review

determined that techniques such as Plaid and SAMBA were the most useful and reliable

methods assessed in the study.

 Based on the results of the aforementioned study, SAMBA was originally

considered for the alternative algorithm. It is not a standalone algorithm, and comes

bundled in a larger package of gene expression and microarray analysis methods known

8

as EXPANDER. This package was designed by Shamir, et al. [17], who also wrote an

overview of the SAMBA algorithm itself [18]. EXPANDER is freely available online

[19]. Ultimately, after several tests on the input data based on the RGS proteins, it was

found that the clusters generated by SAMBA did not match the clusters that Shah

obtained using Bimax closely enough to be of use for this project. For example, several

distinct clusters in Bimax’s results were often combined together using SAMBA. As a

result, the use of SAMBA was abandoned.

2.2 Related Work

 Biclustering methods as well as protein domain analysis tools have been

previously investigated by a number of authors.

 Király, et al. [20] developed a biclustering using bit-tables. This method is very

similar to the technique used by Bimax and the bit vector approach described in this

thesis. The bit-table method proposed by Király is given as a Matlab implementation,

and uses matrix and vector multiplication in order to discover the biclusters efficiently.

The tests presented indicate the algorithm outperforms Bimax in all cases.

 BicOverlapper [21] is a gene expression analysis tool that visualizes key aspects

of the analysis process, such as the expression data, profiling, and annotation. It

integrates several techniques into one convenient package. Its main contribution is to

provide useful visualizations based on results of biclustering algorithms on gene

expression data.

 Another biclustering method is Bi-Force [22]. This technique uses a weighted

bicluster editing model, and was compared against other biclustering algorithms (FABIA,

QUBIC, Cheng and Church, Bimax, Spectral, xMOTIFs, and ISA) on synthetic and real-

9

world gene expression datasets. It generally performed favorably against the other

algorithms, although Spectral was shown to be consistently faster. Generally, however,

the quality of results that Bi-Force reported was considered to be better that that of the

other algorithms.

 BicSPAM [23] is a biclustering technique that was proposed with the intention of

being a more robust order-preserving biclustering algorithm than other methods

previously available. It was evaluated based on its ability to capture bicluster

symmetries, handle noise, and scalability. The authors report that BicSPAM surpasses

the issues found in other order-preserving methods, and was shown to be both flexible

and robust in terms of noise and expression profiles.

 A tool called Furby [24] is presented as a visualization technique for biclustering

results. The technique offers an overview of the results of gene expression biclustering,

showing what data forms the clusters together, and also provides the ability to set

thresholds to form “fuzzy” clusters into “hard” clusters that can be studied with other

methods, such as bar charts.

 Finally, DoMosaics [25] is a protein domain analysis program that is intended for

comparison and visualization of domain architectures. Its primary contribution is that it

combines domain annotation, homology search, analysis of domain architecture

evolution, and visualization into a single convenient tool.

10

CHAPTER 3

METHODS AND PIPELINE OVERVIEW

 It was initially decided to use Bimax, but to test varying the maximum threshold

of the permissible E-values in the input data. The E-value, or expect value, is a

confidence estimate widely used in bioinformatics tools. Examples include BLAST [1]

and HMMER [26, 27]. The E-value is used to describe the likelihood of seeing positive

hits of equal or better score due to random chance in a database of a given size. The

closer the E-value is to 0, the more significant the match is. As a result, smaller E-values

are more desirable than larger ones. By varying the accepted E-value threshold of a

protein-domain matching, it would be possible to see how the clusters change as low-

scoring domains are systematically deleted and Bimax is re-run on the modified data. To

this end, a new implementation of Bimax was written, which was ultimately embedded

inside a larger script allowing the method to be systematically called on increasingly

more stringent input data. All code has been written in Matlab. This programming

language was selected primarily due to the streamlined way it handles matrices, as well

as ease of importing / exporting data to and from files.

 Upon completion of this implementation of the core method, several test input

matrices were created. This data was then passed to both the Matlab implementation of

Bimax, as well as the original C implementation [15]. The results for each test were

compared to ensure the Matlab implementation was indeed operating correctly. For both

implementations, the clusters reported were identical for each test case. With the core

method functioning as expected, further scripting was done to produce a pipeline. Data

taken from HMMER results of a selection of proteins is fed into a script, which then

imports this data into a cell array. Certain columns are accessed, including the protein

11

name, domain it is matched to, and the E-value of the match. This data is used to

construct a simple m × n binary matrix, where m corresponds to the number of unique

proteins under investigation, and n corresponds to the number of unique domains present

in the entire set of m proteins. Thus each row of the matrix corresponds to one protein,

while each column corresponds to one domain.

 If the value of a cell i, j is set to 0, it indicates that domain j is not present in

protein i, according to the results from HMMER at the current E-value threshold. It

should be noted that an E-value of 1.0 was selected as the maximum permissible value,

values higher than this threshold were not considered. Otherwise, if the cell’s value is 1,

it indicates HMMER has reported domain j is present in protein i. This matrix is then

exported to a plain text file, which is then used as the input for the implementation of

Bimax. After each iteration of a matrix through Bimax, the sorted list of E-values is used

to delete all entries with an E-value of the same order of magnitude as the poorest-score

left in the list. It accomplishes this by iterating over the input matrix and changing any

entries at the deletion threshold from 1 to 0. For example, if the current highest (and

therefore poorest score) E-value is 2.3 × 10−8, then all entries with E-values at the order

of magnitude of 10-8 are similarly removed. The updated matrix is then passed back to

Bimax and the new set of clusters is found. This process repeats until either all

remaining E-values are at the same order of magnitude (and so all such entries would be

deleted if the algorithm were to iterate one more time), or the current order of magnitude

reaches a user-defined threshold, used as a termination condition.

 The results reported by Bimax are inclusion maximal, that is, in the event a

protein has a set of domains A, B, C, for example, it will be clustered not only with all

12

proteins possessing all three domains as their total domain architecture, but will also be

clustered with the set of proteins containing domain A, the set of proteins containing

domain B, the set of proteins containing domain C, the set containing domains A and B,

and so on. This means an individual protein could potentially participate in more than

one cluster.

 The current version of the clustering implementation has been used to compare

the results by this method with those by Shah’s [13]. In the process of this comparison, it

was determined that because Shah focused on the complete domain architecture of each

protein, rather than only subsets of a protein’s domains (as seen in results from inclusion

maximal clusters), it was determined that post-processing of the Bimax results would be

required to eliminate clusters that did not involve all possible domains for some of the

member proteins, with the intent to focus only on clusters representing the entire domain

architecture of the member proteins. Rather than do this, it was instead decided to create

an alternate implementation that used bit vectors instead, and cluster proteins together

only if they shared all of their domains, and not just subsets of them. The main reason for

this decision was it was believed it would be a more efficient approach to simply cluster

the proteins in non-inclusion-maximal groupings that only focus on the total domain

architecture for each group as the criterion for inclusion, rather than the presence or

absence of individual domains without regard to the overall architecture, as Bimax does.

 The core approach is as follows. Each protein is assigned a bit vector derived

from the binary matrix discussed above. The number of bits is determined by the total

number of unique domains present in the entire set of proteins being clustered. Suppose

the entire protein selection has 50 domains. Then the binary string or bit vector will

13

consist of 50 bits. The index of each bit in the string will correspond to a particular

domain in the selection. As discussed previously, a value of 0 indicates that particular

protein does not have that domain present, according to the HMMER data provided as

input and the current E-value threshold. A value of 1 indicates the domain is present for

that particular protein. A simple comparison of the strings of each protein will then allow

proteins sharing identical strings to be clustered together.

 The comparison process is as follows: protein 1 is compared with protein 2, 3, 4,

and so on until the mth protein. Then protein 2 is compared to protein 3, then 4, and so

on to the mth protein. Then protein 3 is compared to protein 4, 5, and so on. Each pair of

proteins is compared exactly once, so the number of comparisons is reduced with each

new target protein under comparison. In the event that a string being compared to the

target string is found to be identical, the proteins are placed in the same cluster, and the

bit vector is deleted from the list, guaranteeing they are not unnecessarily compared

again, as their proteins cannot participate in any additional clusters. As a result, the time

complexity of this core method is 𝛩(𝑚2).

 In addition to what is described above, the process is repeated with increasingly

stringent E-value thresholds. The E-value threshold is here defined as the maximum

permissible E-value for inclusion in the computational process. Any E-values higher

than that threshold are not considered. For example, on the first iteration, only E-values

strictly less than 1.0 are of interest. This has been arbitrarily chosen as a threshold for

which E-values are appropriate for inclusion. Values of 1.0 or higher are deemed too

weak to warrant attention. It should be noted that the HMMER input data has two

possible E-values, the conditional E-value and the independent E-value. The independent

14

E-value (or i-Evalue) is defined as the significance of the sequence in a search of the

entire database, if the domain the E-value is associated with were the only domain

identified [28]. The conditional E-value (or c-Evalue), on the other hand, measures the

statistical significance of each domain given that the target sequence has already been

decided to be a true homolog. Thus it is the expected number of additional domains that

could be found with the same domain score due to random chance. The i-Evalue, which

is more regularly used in HMMER, was used in this work. For each subsequent iteration,

the order of magnitude of the highest remaining E-value is located. For instance, if this

E-value were to be 2.1 × 10−8, then the order of magnitude is 10-8. All E-values

remaining that are at that same order of magnitude are removed from the matrix during

each iteration. For example, if Protein X were to possess domains A, B, and C, suppose

Domain C was matched with an E-value of 2.1 × 10−8, and domains A and B were

matched with much stronger E-values several orders of magnitude smaller than this

value. After the iteration in which all E-values with the order of magnitude 10-8 are

removed, Protein X would no longer have the domain architecture A, B, C, but would

instead now have the architecture A, B, as Domain C has now been removed by the

threshold cutoff. In this way, the threshold of what E-values are deemed acceptable is

constantly decreased (made more stringent) as the algorithm progresses. This has the

effect of changing which bits are determined to be 1, as the permissible threshold of

inclusion changes, and therefore also has the effect of deleting weakly-scoring edges

(representing the protein-domain matchings) in the resulting bipartite graph with each

iteration.

15

 As stated before, the method has a core time complexity of 𝛩(𝑚2) for its bit

vector comparison, given m bit vectors (one for each protein). However, this process is

repeated for each E-value iteration, and so the time complexity would be 𝛩(𝑒𝑚2), where

e represents the number of E-value iterations, determined by the values present in the

HMMER data. However, technically the way the code is implemented, for each of the n

domains, each of the m bit vectors requires iterating over each individual bit to generate

the binary strings on which the comparisons are based. As a result, the true time

complexity is actually 𝛩(𝑒𝑚2𝑛) to cluster the proteins over all of the E-value iterations.

Furthermore, the construction of the final trees requires iterating over each of the m

proteins and performing pairwise comparisons to determine which proteins have the same

Newick strings as they are being constructed. This must be repeated for each of the e

iterations until the final Newick string is constructed for each protein. This procedure

therefore also has a time complexity of 𝛩(𝑒𝑚2).

 The principal output of the algorithm is a set of graph files that can be viewed

using Gephi [29, 30], an open-source program intended for network visualization, which

also provides capabilities such as exploratory data analysis, link analysis, and biological

network analysis. The basic layout of the graph is to have the protein nodes lined up in

the left-hand column, and the domain nodes lined up in the right-hand column, with the

edges connecting the two columns. Each edge represents that a given protein has the

connected domain according to the HMMER data and the E-value threshold of that

iteration. In other words, if the binary matrix for that iteration has a 1, an edge is present

between that protein and that domain. In addition, the edge weight wij of the ith protein

connecting with the jth domain is found according to the formula:

16

𝑤𝑖𝑗 = 10 ∙ [
− log10(𝐸𝑖𝑗)

100
]

where Eij is the E-value of the ith protein matching with the jth domain (taken from the

HMMER input). The value of 100 is generated from – log10(1.0 × 10−100), where 1.0 ×

10−100 is arbitrarily chosen as the “best” E-value possible. In the event E happens to be

smaller than 1.0 × 10−100, it is mapped back to this value, and so the resulting weight

will be 10 (from 10 ∙ (
100

100
), or 10 × 1 = 10). The value is multiplied by a factor of 10 to

allow for easy viewing in the Gephi visualizations. If the value is left as a decimal

between 0 and 1, the edge weight thickness will not be easily distinguished in the

resulting visualization.

 The files to be used in Gephi are generated in GEXF format. GEXF stands for

Graph Exchange XML Format. As its name suggests, the content of the file is XML code

which specifies the properties of the nodes and edges. By using this format, the

algorithm’s output could be changed to precisely specify the properties of each node –

particularly position and color [31]. This allows the generation of the Gephi graphs to be

automated, thereby increasing the efficiency of the process. The current version presents

each cluster of protein nodes by grouping all nodes of a given cluster next to each other

with extra white space above and below that cluster to visually separate it from the

others.

 Plain text files are also generated displaying the final trees found by the

algorithm. Tree outputs are expressed using the Newick format, which is regularly used

for phylogenetic trees. The string “((A,B),C)” is a simple example of Newick format. It

indicates that A and B are sister taxa, and that together they form a branch which itself is

17

sister to the branch containing C. Figure 3.1 provides a visualization of this tree. These

files can conveniently be imported into a tree visualization program to be displayed.

There is both an un-labelled version, without branch lengths, node labels, or domain

architecture presented, and also a labelled version that does show these features.

TreeView [32] was used to generate the final tree visualizations.

Figure 3.1: A visualization of the Newick tree ((A,B),C).

 The basic procedure of the algorithm described above is summarized in Figure

3.2.

18

Figure 3.2: Basic pseudocode of the clustering procedure.

1. Read input data.

2. Reformat data to a tab-delimited file for importing into Matlab.

3. Read reformatted file.

4. Extract relevant fields (domain name, protein name, i-Evalue).

5. Build a list of proteins and domains present in the data.

6. Output protein and domain lists to file.

7. Construct a binary matrix indicating which domains of the set are present in which

 proteins.

8. Create a list of nodes for import into Gephi.

9. Iterate until no entries remain, decreasing the E-value threshold:

 a. Delete poor E-values in the binary matrix (if applicable).

 b. Run the bit vector procedure.

 c. Output edge data (for Gephi) and clusters to file.

10. Generate data for tier chart showing inheritance of proteins of each cluster

 between adjacent iterations.

 a. If cluster remains unchanged between iterations, a single edge is drawn

 between nodes.

 b. Else if cluster is the result of the merging of two or more previous clusters,

 draw edges converging on the new merged cluster.

 c. Else if cluster splits into two or more clusters between iterations, draw

 edges to the descendant clusters.

11. Build Newick trees from the tier chart data.

12. Output Newick trees to file.

13. Output tier chart.

19

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Datasets Used

 The bit vector program was tested on both the RGS and B. subtilis data from

HMMER. The RGS dataset from Mus musculus was composed of 66 proteins with a

total of 54 domains, as identified by HMMER. The B. subtilis proteome data consisted of

3,973 proteins. HMMER identified a total of 4,737 individual domains.

4.2 Evaluation Methods

 Clustering patterns were evaluated based on how the clusters correlated with

protein function. Here we define a protein’s function as its role in the organism. This is

usually given as the protein’s description or name associated with its accession number

on databases such as NCBI. For example, NP_061357.3 is a type of kinase (specifically,

a G-protein coupled receptor kinase). This distinguishes it from other protein functions,

such as hemoglobin, which binds to and transports oxygen in the bloodstream, or

cytochrome, which participates in the electron transport chain to produce ATP. The

results were evaluated for how well the individual trees encompass the proteins of the

associated functionality. For example, Tree 5, presented in Figure 4.3.4, encompasses all

of the proteins (in red) possessing the regulator of G-protein signaling (RGS) function (as

opposed to the RGS domain or the RGS protein family itself). Furthermore, there are no

proteins of this functional type found in any of the other RGS family trees.

 It would be expected that in a given dataset, all proteins with a given functional

class, such as kinases or axin proteins, would be grouped within a particular tree, rather

than some members being clustered in separate trees. It would also be expected that all

20

proteins within a tree would possess a similar functional class, rather than the tree

consisting of proteins with a variety of unrelated functions. Furthermore, it would be

expected that members of one branch of a tree would exhibit more similarity in function

to each other than they would to members of other branches, although the members of

separate branches would still share a related function in some way. An example might be

a two-way split in a tree with kinases of one type in one branch, and another kind of

kinase in its sister branch. Each of the different kinds of kinases in this example would

be expected to cluster together within their own branches, rather than being scattered in

separate branches.

 The homogeneity of each of the trees can be calculated. Trees that consist

entirely of proteins with the same function have 100% homogeneity. If a tree were to

consist of ten total proteins, and two of them had functions that differed from that of the

other eight, then the tree’s homogeneity would be 80%, as eight out of the ten proteins

share the same function. The homogeneity (h) calculations follow the formula ℎ =

𝑥𝑖𝑛/𝑥𝑡𝑜𝑡. 𝑥𝑖𝑛 represents the number of in-group members of any given tree, defined here

as the largest subset of included proteins sharing the same function (the dominant

function of that tree), and 𝑥𝑡𝑜𝑡 represents the total number of proteins in the tree. Thus,

larger percentage homogeneity means a given tree contains fewer outliers not belonging

to the tree’s dominant protein function.

 Similarly, it is important to assess how disjointed or discontinuous a protein

function is. If a tree were to have all proteins in the set with a given functionality

contained within it, then that functional type would not be disjointed at all. However, if a

tree were to consist of eight proteins of a given function, but another tree contained two

21

more proteins with the same function, then that functional type would be said to be 20%

disjointed, as two of the ten proteins do not occur within the tree where the majority of

the member proteins are placed. The discontinuity (d) calculations follow the formula

𝑑 = 𝑦𝑜𝑢𝑡/𝑦𝑡𝑜𝑡. 𝑦𝑜𝑢𝑡 represents the total number of member proteins of any given

function that are found outside the tree where the majority of members of that same

function are found, and 𝑦𝑡𝑜𝑡 represents the total number of proteins of that function.

Thus, smaller percentage discontinuity means a given function has more of its members

contained within the same tree.

 The average Jaccard index, described in [14], is an assessment of the similarity

between the results of two clustering methods. In this case, we compare the trees

(including those consisting of only one cluster) generated from the RGS data from the bit

vector approach to the clusters found in the maximum likelihood trees. A maximum

likelihood cluster is defined as a branch having a node with at least a 70% bootstrap. In

such a case, all proteins within that branch are considered to be clustered together. We

refer to set B as the set of bit vector trees, and set M refers to the set of maximum

likelihood clusters. The Jaccard index was compared between the bit vector approach

and the maximum likelihood approaches using both the MUSCLE and MAFFT

alignments. The formula used is as follows:

4.3 RGS Data

 In addition to the Newick tree visualizations shown in Figures 4.3.8-4.3.15, the

program also outputs a “tier”-based chart, as shown in Figures 4.3.1a-4.3.1d. The

22

construction of this chart also serves as the basis for constructing the Newick trees. It

should be noted that this chart does not necessarily result in the creation of one large tree,

but can instead (as it did with the RGS data) result in several smaller trees with no

overlap between their contents. Many of the cluster groups connected by edges in the

chart may never merge with each other, and so they remain separate in the final trees.

23

Figure 4.3.1a: First portion of the tier chart for the RGS data, from iteration 0 to iteration -12.

24

Figure 4.3.1b: Second portion of the tier

chart for the RGS data, from iteration -12 to

iteration -26.

25

Figure 4.3.1c: Third portion of the tier chart for

the RGS data, from iteration -26 to iteration -38.

26

Figure 4.3.1d: Final portion of the tier chart for the RGS data, from

iteration -38 to iteration -69.

27

 Each “tier” or row of nodes in the chart represents the individual clusters found in

a particular iteration. The cluster nodes are labelled in the format “Cluster X Y”, where X

is the cluster number for that iteration, and Y represents the order of magnitude of E-value

that was deleted at the start of the iteration, or 0 for the initial iteration. For example, if

the current order of magnitude is 10-5, then Cluster 3 would have its node labelled as

“Cluster 3 -5”. Edges are drawn between nodes in adjacent iterations only if a cluster in

one iteration “inherits” at least one protein from a cluster in the previous iteration. In

addition, edges will be thicker if more proteins are inherited between the connected

nodes. We refer to a lineage as the set of edges connecting all participating cluster nodes,

and continuing to a final node at some point (a dead end). Dead ends of a lineage

indicate that no proteins in its final cluster remain with any acceptable domains according

to the threshold for the next iteration. Similarly, some proteins participating in a lineage

will also periodically be removed along the way, even though other proteins remain

accepted by the threshold and still continue to subsequent iterations.

 Parts of a lineage may split, merge, or remain unchanged from one iteration to

another. For example, a cluster may lose one or more domains that have thus far

prevented its member proteins from being included in another cluster. Once these

domains are lost due to the threshold, the architectures of the two clusters will be

identical, and they will merge together. Similarly, a single cluster may split apart. This

happens because one or more of its proteins may lose a domain before any other proteins

in the same cluster lose the same domain. As a result, the architectures are no longer

identical, and so a new cluster must be formed to contain the diverging proteins. In cases

where no splitting or merging occurs, an edge will connect a cluster node with the

28

updated version of the same cluster for the next iteration. This does not necessarily mean

the domain architecture or protein membership is identical between the two nodes, it just

means that nothing happened to result in the cluster merging with another cluster or

splitting into two or more new clusters. Some proteins could have been removed due to

E-value threshold, and even one or more domains could have been deleted. If this occurs,

as long as all of the surviving member proteins have the same domain deleted at the same

threshold, no discrepancy in architecture will occur among the member proteins, and so

no splitting will occur, and as long as the updated architecture does not match that of any

other cluster, no merging will occur either.

 There are several examples of the above behavior in the RGS tier chart. Figure

4.3.2 provides an example of merging, Figure 4.3.3 gives an example of splitting, Figure

4.3.4 shows an example where neither splitting nor merging occurs, and Figure 4.3.5

shows a dead end in a lineage.

Figure 4.3.2 (left): Cluster 12 -3

is formed when Cluster 12 -2

and Cluster 18 -2 merge

together.

Figure 4.3.3 (right): Cluster 8

-4 splits, with some proteins

 forming Cluster 8 -5 and others

 forming Cluster 13 -5.

29

Figure 4.3.4: Examples of no change between iterations on three separate lin-

eages. Differences in edge weight can also be seen.

Figure 4.3.5: Cluster 1 -7 is the final node of this lineage, even

though other lineages continue to subsequent iterations.

 The behavior of each lineage in the tier chart is important, because this is the basis

for how the Newick trees are formed. The leaves of each tree are formed from the

participating clusters in the initial tier of the chart, and dead ends indicate the presence of

the tree’s root. Lineages that never split or merge form singleton trees, for example.

Merges are probably the most important, because these form the basis for nodes in the

30

Newick tree. For example, the merging of two clusters forms a two-way split in the

resulting tree. Figure 4.3.6 shows another view of this behavior between Cluster 5 0 and

Cluster 12 0. The Newick tree formed from this places Cluster 5 and Cluster 12 on the

same branch as sister groups (see Figure 4.3.14). It is also possible for more than two

clusters to merge at once, which results in a polytomy, such as between clusters 6, 19,

and 23 in Figure 4.3.14. Figure 4.3.7 shows the point in the tier chart where this

merging occurs.

Figure 4.3.6: Illustration of Cluster 5 0 and Cluster 12 0 merging to form Cluster 5 -1. This results in a

two-way split in Tree 5.

Figure 4.3.7: Clusters 6, 19, and 23 all merge together at Cluster 6 -2 (circled) in the tier chart. This

results in a three-part polytomy in Tree 5.

31

 The protein lists in Tables 4.3.1, 4.3.3, 4.3.5, and 4.3.7 associated with each of

the figures below show the proteins contained within each cluster of the initial, least

stringent iteration. The individual proteins have been color-coded to display their

function (as indicated by their name), and each cluster also has its domain architecture

listed as it appears in the initial iteration. Protein indices correspond to that used

internally by the bit vector algorithm, and are based on their order of occurrence in the

HMMER data file. A key is provided to give the specific functions. The clusters have

been arranged according to their placement in the various trees (Figures 4.3.8-4.3.15),

and are listed by branch order from top to bottom. The cluster labels within each of the

figures have also been outlined with the color of the dominant function of the proteins

contained within.

 In addition to the versions of the trees without node labels or branch lengths, there

are also versions of each of those trees that do use branch lengths and node labels

(Figures 4.3.9, 4.3.11, 4.3.13, and 4.3.15). The labels use the internal indices for each of

the domains. The associated tables (Tables 4.3.2, 4.3.4, 4.3.6, and 4.3.8) provide keys to

those domains. The branch lengths are calculated based on the number of iterations a

branch survives before being merged with another branch. Each iteration adds 0.1 to the

branch length. For example, Figure 4.3.9 exhibits a difference in the length between the

branch containing clusters 14 and 16 versus the branch containing cluster 3 and 20.

Clusters 3 and 20 merge in the second iteration, while clusters 14 and 16 merge in the

eighth iteration. As a result, clusters 14 and 16 both have longer branches before joining

to form a node.

32

 The protein functions generally match with the clusters grouped in each tree, with

most or all of the proteins within a given tree sharing the same or related functions. For

example, Figure 4.3.8 and Table 4.3.1 indicate that Tree 1 is composed exclusively of

guanine nucleotide exchange factors. Figure 4.3.10 and Table 4.3.3 shows that Tree 2 is

composed entirely of kinases. Figure 4.3.12 and Table 4.3.5 presents Tree 3 as being

composed only of sorting nexins. Figure 4.3.14 and Table 4.3.7 illustrates that Tree 5 is

composed of all the RGS proteins, plus a few outliers, either kinases or related proteins.

Table 4.3.9 shows similar consistency with the membership of the singleton clusters.

Clusters 9 and 11 are composed of nucleotide exchange factors and axins, respectively.

Cluster 7 appears to be composed of a group of poorly-understood proteins, including

some that are either predicted, or have not been characterized.

 The results of the homogeneity and discontinuity calculations are provided in

Tables 4.3.10 and 4.3.11.

 It should be noted that the RGS family is characterized by proteins possessing

either the RGS or RGS-like domain. Cluster 9 is the only exception, but it should be

noted that the original HMMER data file actually does include the RGS domain for each

of its member proteins, but as the i-Evalue was given as greater than 1.0, this was

ignored. This also seems to be one of the reasons Cluster 9 was not included within Tree

1 with the other guanine nucleotide exchange factor proteins. Overall, the domain

architecture between the Tree 1 clusters and Cluster 9 seems to be too divergent for them

to have been placed together by this method. It should also be pointed out that the

Cluster 9 members are all labelled as DBS proteins, while none of the Tree 1 members

are. This may be another reason for this distinction in the clustering.

33

 Cluster 8 is composed entirely of kinase proteins. NP_036011.3, a rhodopsin

kinase precursor at first glance appears to be an outlier among the G protein-coupled

receptor kinases. However, it should be noted that NCBI lists EDL22144.1 as an

identical protein to NP_036011.3. EDL22144.1 is described as G protein-coupled

receptor kinase 1 from Mus musculus, and so NP_036011.3 appears to not actually be an

outlier in this case. The sister branch to Cluster 8 in Tree 2 is composed of clusters 4 and

21. Each contains a single beta-adrenergic receptor kinase. As such, Tree 2 is broadly

composed of two classes of kinases, and each class is contained within its own branch of

the tree.

 Tree 5 is composed of an almost uniform selection of RGS proteins. However,

Cluster 6 contains three outliers: a G-protein-coupled receptor kinase, a precursor to an

A-kinase anchor protein, and a beta-adrenergic receptor kinase. Cluster 6’s domain

architecture consists solely of the RGS domain itself. Indeed, the entries of these three

proteins in the HMMER data file only list the RGS domain as being matched to them.

This is unexpected, as compared to the architectures seen in clusters 4, 8, 17, and 21.

This may be an indication that the domain architecture does not necessarily dictate a

protein’s function in all cases, or, more likely, possibly that the data provided by

HMMER did not accurately reflect the total architecture of these three proteins. There

could have been prediction errors possibly brought about by removed exons. This could

have removed some of the domains as well. Because both of the kinases are isoforms, or

alternate versions of the same protein produced by the same gene, this is a strong

possibility. Also, NP_064305.2 (the A-kinase anchor protein) is reported by NCBI to

have a total of three domains, including a binding domain of A-kinase anchor proteins.

34

NP_001030608.1 (the beta-andrenergic receptor kinase) is listed by NCBI as an obsolete

version of NM_001035531.1, which has been removed due to insufficient support.

NP_001074212.1 (the G-protein-coupled receptor kinase) is indeed listed by NCBI as

possessing only the RGS superfamily domain, in contrast to NP_062370.2 (one of the

proteins from Cluster 8), which has other domains as well.

Key:

regulator of G-protein signaling sorting nexin

RNA-binding protein axin

G-protein-coupled receptor kinase beta-adrenergic receptor kinase

guanine nucleotide exchange factor PM1-like

A-kinase anchor protein Slx-like

rhodopsin kinase precursor predicted genes / proteins

Figure 4.3.8: The version of Tree 1 from the RGS data without node labels or branch lengths.

Table 4.3.1: The clusters present in Tree 1. Domain architecture is given on

the right of each cluster header.

Cluster 14 RGS-like, RGS, RhoGEF, PDZ, PDZ_2, DUF3135

22: NP_001003912.1 - rho guanine nucleotide exchange factor 11

Cluster 16 RGS-like, RhoGEF, PDZ, PDZ_2, OmpH, AAA_23

31: NP_081420.2 - rho guanine nucleotide exchange factor 12

Cluster 3 RGS-like, RhoGEF, PH_5

3: NP_001123624.1 - rho guanine nucleotide exchange factor 1 isoform c

24: NP_001123625.1 - rho guanine nucleotide exchange factor 1 isoform c

46: NP_032514.1 - rho guanine nucleotide exchange factor 1 isoform d

Cluster 20 RGS-like, RhoGEF

42: NP_001123623.1 - rho guanine nucleotide exchange factor 1 isoform b

45: NP_001123622.1 - rho guanine nucleotide exchange factor 1 isoform a

35

Figure 4.3.9: Tree 1 with branch lengths, node labels, and domain architecture displayed.

Table 4.3.2: Key to the domain indices

present in Figure 4.3.9.

Index Number Domain

7 RGS-like

10 RGS

13 RhoGEF

14 PH_5

30 PDZ

32 PDZ_2

40 DUF3135

42 OmpH

43 AAA_23

Figure 4.3.10: The version of Tree 2 from the RGS data without node labels or branch lengths.

36

Table 4.3.3: The clusters present in Tree 2. Domain architecture is given on

the right of each cluster header.

Cluster 8 RGS, Pkinase, Pkinase_Tyr, Kinase-like

13: NP_062370.2 - G protein-coupled receptor kinase 4 isoform 1

20: NP_036011.3 - rhodopsin kinase precursor

26: NP_001033107.1 - G protein-coupled receptor kinase 6 isoform a

38: NP_001106182.1 - G protein-coupled receptor kinase 6 isoform c

62: NP_061357.3 - G protein-coupled receptor kinase 5

66: NP_036068.2 - G protein-coupled receptor kinase 6 isoform b

Cluster 4 RGS, Pkinase, Pkinase_Tyr, PH, PH_11

4: NP_796052.2 - beta-adrenergic receptor kinase 2 isoform 1

Cluster 21 RGS, Pkinase, Pkinase_Tyr, PH, PH_11, Kinase-like, Kdo

49: NP_570933.1 - beta-adrenergic receptor kinase 1 isoform 2

Figure 4.3.11: Tree 2 with branch lengths, node labels, and domain architecture displayed.

Table 4.3.4: Key to the domain indices

present in Figure 4.3.11.

Index Number Domain

10 RGS

15 Pkinase

16 Pkinase_Tyr

17 PH

18 PH_11

23 Kinase-like

50 Kdo

37

Figure 4.3.12: The version of Tree 3 from the RGS data without node labels or branch lengths.

Table 4.3.5: The clusters present in Tree 3. Domain arch-

itecture is given on the right of each cluster header.

Cluster 22 RGS, PXA, Nexin_C, PX, End3, Isy1

51: NP_997096.2 - sorting nexin-25

Cluster 13 RGS, PXA, Nexin_C, PX, COX5A

19: NP_001014973.2 - sorting nexin-13

Cluster 24 RGS, PXA, Nexin_C, PX

59: NP_766514.2 - sorting nexin-14

Figure 4.3.13: Tree 3 with branch lengths, node labels, and domain architecture displayed.

38

Table 4.3.6: Key to the domain indices

present in Figure 4.3.13.

Index Number Domain

10 RGS

36 PXA

37 Nexin_C

38 PX

39 COX5A

51 End3

52 Isy1

Figure 4.3.14: The version of Tree 5 from the RGS data without node labels or branch lengths.

39

Table 4.3.7: The clusters present in Tree 5. Domain architecture is given on

the right of each cluster header.

Cluster 10 RBD, RGS, GoLoco, PDZ, PID, PDZ_2, TUG-UBL1

15: NP_775578.2 - regulator of G-protein signaling 12 isoform A

Cluster 2 RBD, RGS, GoLoco, PSD4

2: NP_058038.2 - regulator of G-protein signaling 14

Cluster 18 RBD, RGS, GoLoco, TUG-UBL1

36: NP_001156984.1 - regulator of G-protein signaling 12 isoform B

Cluster 5 RGS, DEP, G-gamma, DUF1203

5: NP_056627.1 - regulator of G-protein signaling 6

Cluster 12 RGS, DEP, G-gamma

18: NP_001074538.1 - regulator of G-protein signaling 11

30: NP_001185932.1 - regulator of G-protein signaling 7 isoform 2

41: NP_001159406.1 - regulator of G-protein signaling 9 isoform 2

58: NP_035398.2 - regulator of G-protein signaling 9 isoform 1

64: NP_036010.2 - regulator of G-protein signaling 7 isoform 1

Cluster 25 RGS, PDZ, PDZ_2, TFIIA

60: NP_599018.3 - regulator of G-protein signaling 3 isoform 2

Cluster 15 RGS-like, RGS, FliL

25: NP_080694.1 - regulator of G-protein signaling 10

Cluster 6 RGS

6: XP_921002.3 - PREDICTED: regulator of G-protein signaling 21

9: NP_080722.1 - regulator of G-protein signaling 19

10: NP_694811.1 - regulator of G-protein signaling 13

11: NP_056626.2 - regulator of G-protein signaling 1

12: NP_001182677.1 - regulator of G-protein signaling 22

17: NP_033089.2 - regulator of G-protein signaling 5

23: NP_001171266.1 - regulator of G-protein signaling 20 isoform 1

28: NP_001074212.1 - G protein-coupled receptor kinase 4 isoform 2

33: NP_033088.2 - regulator of G-protein signaling 4

39: NP_075019.1 - regulator of G-protein signaling 18

40: NP_067349.2 - regulator of G-protein signaling 20 isoform 2

43: XP_894544.3 - PREDICTED: regulator of G-protein signaling 21

47: NP_064305.2 - A-kinase anchor protein 10, mitochondrial precursor

50: NP_035397.2 - regulator of G-protein signaling 16

55: NP_033087.2 - regulator of G-protein signaling 2

57: NP_001030608.1 - beta-adrenergic receptor kinase 2 isoform 2

61: NP_080656.2 - regulator of G-protein signaling 8

Cluster 19 RGS, Spexin

37: NP_001230152.1 - regulator of G-protein signaling protein-like

Cluster 23 RGS, DUF4226

53: NP_001155294.1 - regulator of G-protein signaling 17 isoform 1

63: NP_064342.1 - regulator of G-protein signaling 17 isoform 2

40

Figure 4.3.15: Tree 5 with branch lengths, node labels, and domain architecture displayed.

Table 4.3.8: Key to the domain indices

present in Figure 4.3.15.

Index Number Domain

6 zf-CCCH

7 RGS-like

9 RBD

10 RGS

11 GoLoco

12 PSD4

19 DEP

20 G-gamma

21 DUF1203

30 PDZ

31 PID

32 PDZ_2

33 TUG-UBL1

41 FliL

49 Spexin

53 DUF4226

54 TFIIA

41

Table 4.3.9: A listing of the singleton tree clusters from the RGS data. Domain architecture is

given on the right of each cluster header.

Cluster 17 RGS-like, AKAP7_NLS, AKAP7_RIRII_bdg, Corona_NS2A,

2_5_RNA_ligase2, tRNA_lig_CPD

34: NP_061217.3 - A-kinase anchor protein 7

Cluster 9 RhoGEF, PH, CRAL_TRIO_2, Spectrin, SH3_1, SH3_9, MCPsignal, SH3_2

14: NP_835177.2 - guanine nucleotide exchange factor DBS isoform 1

29: NP_001152957.1 - guanine nucleotide exchange factor DBS isoform 3

52: NP_001152958.1 - guanine nucleotide exchange factor DBS isoform 2

Cluster 11 RGS, DIX, Axin_b-cat_bind

16: NP_056547.3 - axin-2

27: NP_001153070.1 - axin-1 isoform 1

54: NP_033863.2 - axin-1 isoform 2

Cluster 1 RRM_5, RRM_6, RRM_1, Nup35_RRM_2, PWI, zf-CCCH, RGS-like,

DUF2785

1: NP_598838.3 - RNA-binding protein 26

Cluster 7 RGS, Cor1

7: NP_001160118.1 - uncharacterized protein LOC100040867

8: XP_986693.2 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like

21: XP_003945709.1 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like

32: NP_001160073.1 - predicted gene 16430

35: XP_003945710.1 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like

44: XP_987134.2 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like

48: NP_001207426.1 - Slx-like

56: NP_001207427.1 - Slx-like

65: XP_001474919.1 - PREDICTED: X-linked lymphocyte-regulated protein PM1-like

Table 4.3.10: Percentage homogeneity of

each of the trees from Figures 4.3.8-4.3.15,

as well as Table 4.3.9.

Tree Number Homogeneity

Tree 1 100%

Tree 2 100%

Tree 3 100%

Cluster 17 100%

Tree 5 90.32%

Cluster 9 100%

Cluster 11 100%

Cluster 1 100%

Cluster 7 55.56%

42

Table 4.3.11: Percentage discontinuity of each of the functional types

in the RGS data.

Function Discontinuity

rho guanine nucleotide exchange factor 0%

guanine nucleotide exchange factor DBS 0%

G-protein-coupled receptor kinase

rhodopsin kinase precursor

beta-adrenergic receptor kinase

20%

sorting nexin 0%

regulator of G-protein signaling 0%

A-kinase anchor protein 50%

axin 0%

RNA-binding protein 0%

predicted genes / proteins 0%

PM1-like 0%

Slx-like 0%

 The dataset of 66 RGS proteins was also tested using the maximum likelihood

phylogenetic method. The full protein sequences were not used for this, however. The

RGS or RGS-like domains for each protein were extracted based on whatever reported

subsequence had the strongest i-Evalue for its protein. Two runs were conducted.

MEGA was used to perform all alignment and tree building steps for the first run.

Alignment was made using MUSCLE, and the maximum likelihood was conducted using

the Jones-Taylor-Thornton (JTT) model. The settings are provided in Tables 4.3.12 and

4.3.13. The second run conducted the alignment step using MAFFT instead of

MUSCLE. MEGA was still used to conduct the maximum likelihood analysis, and used

the same settings as the first run. MAFFT was run using the L-INS-i option with default

settings.

43

Table 4.3.12: Settings used for MUSCLE alignment of the RGS

proteins.

Gap Open Penalty -5

Gap Extend Penalty -0.01

Hydrophobicity Multiplier 1.2

Maximum Memory 4095 MB

Maximum Iterations 8

Clustering Method (all iterations) UPGMA

Lambda 25

Table 4.3.13: Settings used for maximum likelihood testing of the RGS proteins.

Bootstrap Replications 1000

Gamma Categories 5

Treatment of Gaps Partial Deletion

Site Coverage Cutoff 50%

ML Heuristic Method Subtree-Pruning-Regrafting level 5

Initial Tree NJ/BioNJ

Branch Swap Filter Very Strong

Number of Threads 6

 The MUSCLE alignment’s running time was insignificant, finishing within

seconds. However, the maximum likelihood run took over 24 hours to finish, which is

considerably slower than the bit vector clustering method on the same dataset. Table

4.3.14 provides the details of this efficiency comparison. Also, bear in mind that the bit

vector program assumes the presence of a pre-generated HMMER dataset file as input.

The program’s tasks not only include the clustering and tree building, but also reading

and reformatting of the HMMER input files, iterating over the E-value thresholds (this

will vary based on the total number of unique orders of magnitude less than 1.0 in the

HMMER file’s E-values), generating the tier chart, retrieving the unique Newick trees

from the data, and outputting all data to files.

44

Table 4.3.15: Comparison between the running times of the bit

vector method and the maximum likelihood run with MUSCLE

alignment.

Dataset Information

No. Proteins 66

No. Domains 54

No. E-value Iterations 52

Running Time

Bit Vector Maximum Likelihood

~23 secs. 27 hrs. 17 mins.

 Figures 4.3.16a and 4.3.16b display the tree generated by the maximum

likelihood analysis using the MUSCLE alignment. Branches have been color-coded to

match the coding used in Figures 4.3.8, 4.3.10, 4.3.12, and 4.3.14, and Tables 4.3.1,

4.3.3, 4.3.5, 4.3.7, 4.3.9 and 4.3.11, and some branches have been labelled, where the

relationships correspond well with the output of the bit vector approach. Aside from the

outliers mentioned in Tree 5, both methods agree with the placement of the Tree 2

proteins together. Similarly, the maximum likelihood tree also places the Tree 1 and

Cluster 9 proteins in separate branches. The bit vector approach also recognized this

division. Clusters 7 and 11 are also preserved in the maximum likelihood tree, although

Tree 3 and some of the single-cluster trees were not maintained, instead splitting their

members across different branches. Aside from a pair of outliers, the maximum

likelihood tree places the red proteins from Tree 5 all in the same branch. Some of its

subdivisions more or less correspond with some of the clusters found by the bit vector

approach, as well as the relationships between them. For example, clusters 2, 10, and 18

are placed together within a sub-branch, as are clusters 5 and 12. Cluster 6 is largely

preserved, but is interspersed with some proteins from other clusters.

45

Figure 4.3.16a: First portion of

the maximum likelihood tree for

the RGS data using a MUSCLE

alignment. Branch colors

correspond to function, as seen in

the previous tree visualizations.

46

Figure 4.3.16b: Second portion

of the maximum likelihood tree

for the RGS data, overlapping

partly with Figure 4.3.16a.

Branch colors correspond to

function, as seen in the previous

tree visualizations.

47

 Figures 4.3.17a and 4.3.17b present the maximum likelihood results for the

second run, using the MAFFT alignment. The tree has branches color coded in the same

way as the first run, and notable features are also labelled as before. Some notable

similarities with the tree in Figures 4.3.16a and 4.3.16b are the placement of

NP_001182677.1 and NP_001230152.1 within a branch separate from the rest of the Tree

5 proteins, agreement on the placement of some of the Tree 5 proteins together in

branches matching their cluster groupings from the bit vector results (specifically,

clusters 2, 10, and 18, clusters 5 and 12, and Cluster 23), and the preservation of trees 1

and 2 and clusters 9 and 11. Some notable differences between the trees include the

placement of the Cluster 1 protein within the branch containing the Tree 1 proteins, and

the embedding of Cluster 11 within the branch containing the Tree 5 proteins.

Table 4.3.16: Comparison between the running times of the bit

vector method and the maximum likelihood run with MAFFT

alignment.

Dataset Information

No. Proteins 66

No. Domains 54

No. E-value Iterations 52

Running Time

Bit Vector Maximum Likelihood

~23 secs. 24 hrs. 41 mins.

48

Figure 4.3.17a: First

portion of the maximum

likelihood tree for the

RGS data using a

MAFFT alignment.

Branch colors

correspond to function,

as seen in the previous

tree visualizations.

49

Figure 4.3.17b: Second portion of the maximum likelihood tree for the RGS data,

overlapping partly with Figure 4.3.17a. Branch colors correspond to function, as

seen in the previous tree visualizations.

 The Jaccard indices are provided in Table 4.3.17. The indices for each of the bit

vector trees is given, along with the average for the comparison (either bit vector to

MUSCLE-aligned ML or bit vector to MAFFT-aligned ML). The ML clusters are also

given in Tables 4.3.18 and 4.3.19.

50

Table 4.3.17: Jaccard indices

of the bit vector trees as com-

pared to the ML clusters.

Comparison to

MUSCLE-aligned ML

Tree 1 1

Tree 2 0.56

Tree 3 0.33

Tree 5 0.35

Cluster 1 1

Cluster 7 1

Cluster 9 1

Cluster 11 1

Cluster 17 1

Average 0.8

Comparison to

MAFFT-aligned ML

Tree 1 0.875

Tree 2 0.56

Tree 3 0.33

Tree 5 0.35

Cluster 1 0.125

Cluster 7 1

Cluster 9 1

Cluster 11 1

Cluster 17 1

Average 0.69

Table 4.3.18: Cluster membership for the MUSCLE-aligned ML tree. Proteins

not mentioned in this list form singleton clusters.

Cluster Members

Cluster 1 NP_056626.2, NP_075019.1, XP_894544.3, XP_921002.3,

NP_033087.2, NP_694811.1, NP_033088.2, NP_599018.3,

NP_035397.2, NP_080656.2, NP_033089.2

Cluster 2 NP_001155294.1, NP_064342.1, NP_080722.1,

NP_001171266.1, NP_067349.2

Cluster 3 NP_001156984.1, NP_775578.2, NP_058038.2,

NP_080694.1

Cluster 4 NP_001159406.1, NP_035398.2, NP_001074538.1,

NP_056627.1, NP_001185932.1, NP_036010.2

Cluster 5 NP_056547.3, NP_001153070.1, NP_033863.2

Cluster 6 NP_001030608.1, NP_796052.2, NP_570933.1

Cluster 7 NP_001074212.1, NP_062370.2, NP_061357.3,

NP_001033107.1, NP_001106182.1, NP_036068.2

Cluster 8 NP_001152957.1, NP_001152958.1, NP_835177.2

Cluster 9 NP_001207426.1, XP_001474919.1, NP_001207427.1,

XP_987134.2, XP_003945710.1, XP_003945709.1,

NP_001160118.1, NP_001160073.1, XP_986693.2

Cluster 10 NP_001003912.1, NP_081420.2, NP_032514.1,

NP_001123623.1, NP_001123625.1, NP_001123622.1,

NP_001123624.1

51

Table 4.3.19: Cluster membership for the MAFFT-aligned ML tree. Proteins

not mentioned in this list form singleton clusters.

Cluster Members

Cluster 1 NP_033088.2, NP_599018.3, NP_033089.2, NP_035397.2,

NP_080656.2, NP_075019.1, NP_033087.2, NP_694811.1,

NP_056626.2, XP_894544.3, XP_921002.3

Cluster 2 NP_056547.3, NP_001153070.1, NP_033863.2

Cluster 3 NP_001155294.1, NP_064342.1, NP_080722.1,

NP_001171266.1, NP_067349.2

Cluster 4 NP_001156984.1, NP_775578.2, NP_058038.2,

NP_080694.1

Cluster 5 NP_001159406.1, NP_035398.2, NP_001074538.1,

NP_056627.1, NP_001185932.1, NP_036010.2

Cluster 6 XP_986693.2, XP_987134.2, XP_003945710.1,

XP_003945709.1, NP_001160073.1, NP_001207426.1,

NP_001207427.1, XP_001474919.1, NP_001160118.1

Cluster 7 NP_001152958.1, NP_835177.2, NP_001152957.1

Cluster 8 NP_001030608.1, NP_796052.2, NP_570933.1

Cluster 9 NP_061357.3, NP_001074212.1, NP_062370.2,

NP_001106182.1, NP_001033107.1, NP_036068.2

Cluster 10 NP_001003912.1, NP_598838.3, NP_081420.2,

NP_001123622.1, NP_001123623.1, NP_001123624.1,

NP_001123625.1, NP_032514.1

4.4 Discussion of RGS Data

 The bit vector program was shown overall to accurately cluster the RGS proteins

into groups based on functionality. Although there are some outliers, such as the divide

between the Tree 1 proteins and Cluster 9, or the kinases in Cluster 6 of Tree 5, these still

have come about solely as a result of the domain data made available to the program.

 The Tree 1-Cluster 9 division is due to a very weak matching of the RGS domain

to the Cluster 9 proteins. It is present in the HMMER data, but for each protein it was

over the 1.0 E-value threshold, and so was ignored. Overall, the domain architectures in

these clusters are too dissimilar to be included within a single tree. The RhoGEF

(guanine nucleotide exchange factor) domain is the only domain in common, with the

Cluster 9 proteins also possessing several other domains that do not appear in the Tree 1

52

proteins. Ultimately, what prevents these trees from merging is the complete absence of

the RGS-like domain in Cluster 9, while this domain in Tree 1 is easily the strongest

match out of the entire sampled RGS dataset, surviving to an order of magnitude of 10-69

before finally being deleted. As the RGS-like domain was the strongest match within

Tree 1, and one of the most important defining features of the proteins of that group, its

absence from Cluster 9 meant that there could be no merging of the two groups. As such,

they remained separate throughout the entire set of iterations. Also bear in mind the

presence of the DBS label in the Cluster 9 proteins, and its absence in any of the Tree 1

clusters, as stated in Section 4.3. This indicates that the two groups actually do not have

identical function, even though they are functionally associated with each other.

 The presence of outliers in Cluster 6 is, again, a product of how the bit vector

program operates. As each of the Cluster 6 proteins only possess the RGS domain

according to the HMMER data that was used, they are clustered together regardless of

what their stated function may be. That said, it may be the case that the quality of

information available on these proteins at the time the HMMER data was generated may

not have reflected their full domain architecture. As stated in Section 4.3, at least two of

the outlier proteins are assigned a different set of domains according to information

available from NCBI. It may be that the HMMER results were not fully accurate for

them. Alternatively, it could indicate that domain architecture alone does not fully

specify a protein’s function, but is also defined by other factors affecting its three-

dimensional structure. As it is, this approach only uses the domain architecture to infer

similar structure, and therefore function, between related proteins. This may indicate that

this assumption is not universally accurate.

53

 All performance comparisons were conducted using the same system (a desktop

running the 64-bit version of Windows 7, with 10 GB of RAM and a 6-core 3.5 GHz

processor). The running time of the bit vector method is a substantial improvement (<1

minute vs. over 24 hours) over the running time of using maximum likelihood, which is

the standard approach for quality phylogenetic reconstruction. Although the trees

generated by these two methods differ in some ways according to how the RGS proteins

are grouped in the branches, they also share several key similarities. Many of the

clusters, and even whole trees generated from the clustering method are reproduced

mostly intact in the maximum likelihood results as well. However, also bear in mind that

these approaches each attempt to analyze different things. The maximum likelihood test

used only the extracted RGS or RGS-like subsequences for each protein, and the resulting

tree is based purely on the alignment of the sequences. This means that leaf placement is

based on how similar the sequences are to one another. Highly similar sequences can be

expected to be found within the same branch, and very divergent sequences will likely be

on entirely separate branches. In contrast, the bit vector approach compares overall

domain architecture, without regard to sequence similarity in and of itself. The E-value

threshold has the effect of indirectly dealing with similarity, because a strong match for a

domain in one protein versus a weaker match for the same domain in another protein can

be assumed to mean the actual domain sequences are less similar than if their E-values

were closer in value. Such a mismatch in E-values will be reflected in how the proteins

cluster, and how clusters split or merge over several iterations. Ultimately, however,

proteins are clustered, and similar clusters are grouped in branches, based on the

similarity of their domain architecture. Because architecture can be used to infer

54

function, the bit vector approach reflects divergence in proteins’ function, while

maximum likelihood reflects divergence in the proteins’ sequences themselves.

 It should also be discussed that both maximum likelihood tests not only used the

implementation found in MEGA, which is not as efficient as other implementations

available, but also used 1000 bootstrap replications. While the use of bootstrapping is

needed for quality phylogenetic trees, for the purposes of comparing basic running times

of the two methods, it is not a fair assessment to include the bootstrapping in the running

times, as there is no equivalent of this feature present in the bit vector program. When

bootstrapping is removed, the MEGA implementation of maximum likelihood finished in

approximately 9 minutes using the MAFFT alignment as input.

 RAxML [33], a more efficient implementation of maximum likelihood, is

available through Trex-online [34]. When the MAFFT alignment was provided as input,

using no bootstrapping, the PROTCAT substitution model, the JTT matrix, and otherwise

default settings, the program finished in approximately 6 minutes (based on the start and

finish times provided in the resulting email from the server). However, this is also the

running time on the Trex server, rather than the local system that previous comparisons

were conducted on. Even so, this is still less efficient than the bit vector program’s 23

seconds on the RGS data.

 Furthermore, a comparison with maximum likelihood may itself not be fair, due

to fundamental differences in how the two approaches operate. Neighbor-joining [6] is

more similar to the pairwise comparisons of the bit vector approach, and so should be a

fairer comparison. Using the Jones-Taylor-Thornton model, an assumption of uniform

rates among sites, and 50% partial deletion, with 1000 bootstraps, MEGA’s

55

implementation of neighbor-joining finished in 36 minutes using the MAFFT alignment.

However, when bootstrapping was eliminated, the procedure finished in approximately 4

seconds, showing an improvement on the bit vector approach’s performance of 23

seconds on the same data. Some possible reasons for this relative inefficiency may be the

bit vector program’s use of some pre- and post-processing steps on the input and output

data, and also some computational techniques that could be optimized in the future.

 Neighbor-joining uses the basic approach of calculating pairwise distances for

each of the taxa in the unresolved tree. The pair of taxa with the lowest distance measure

are then placed together as sister groups within the same branch. Distance measurements

are then taken of the taxa in this branch with each of the remaining taxa, and so on until

the tree is resolved. This procedure is simplified from the minimum evolution method.

The primary reason for the speed increase from minimum evolution is that with neighbor-

joining, the distance measurements of only certain topologies of the tree are calculated,

rather than performing the calculation for every possible topology of the tree [35].

 The basic approach for maximum likelihood, on the other hand, is to construct an

initial tree, and then optimize it by creating variations on the tree topology. Many

different topologies are constructed, and the likelihood of each topology is calculated

until a topology with the best fit to the data is found. Searching so many topologies is

very time consuming, which accounts for the greater running time observed with this

method.

 As was stated in Chapter 3, for m proteins, n domains, and e iterations on the E-

value threshold, the bit vector approach has a time complexity of 𝛩(𝑒𝑚2𝑛) to cluster the

proteins over each E-value iteration, and an additional 𝛩(𝑒𝑚2) to generate the final

56

Newick strings upon which the tree is based. This accounts for the longer running time

as compared to the more straightforward pairwise distance measurements used in

neighbor-joining.

 The Jaccard indices show that the bit vector trees generated were most similar to

the clusters found within the MUSCLE-aligned maximum likelihood tree, with an

average of 0.8. The comparison to the MAFFT-aligned maximum likelihood tree gave an

average of 0.69. This difference seems to be partly due to the placement of NP_598838.3

within the branch containing the Tree 1 proteins, rather than placing it in its own branch,

as the MUSCLE-aligned tree did.

4.5 B. subtilis Data

 The run using the B. subtilis HMMER data was intended mostly to assess the

performance of the bit vector program on large datasets. It generated a total of 2,009

individual trees, of which 517 contain more than one cluster, and the remaining 1,492 are

all singleton trees. Table 4.5.1 provides the details of the dataset information and

running time (based on the time stamp of the last file created). The tier chart for this

dataset is unreadable due to the high number of edges and edge crossings. Due to the size

of the dataset, no comparison using maximum likelihood or any other alignment-based

method were possible. However, based on the comparison of the running time on the

RGS data (see Table 4.3.14), a maximum likelihood run using a dataset of equal size to

the B. subtilis data would be considerably greater than the running time of the bit vector

approach, to the point that doing so would be totally impractical.

57

Table 4.5.1: Data set information and running time of the bit

vector method.

Dataset Information

No. Proteins 3,973

No. Domains 4,737

No. E-value Iterations 208

Running Time

73 hrs. 55 mins.

 During the testing phase, small subsets of the B. subtilis data were extracted from

the HMMER file in order to run the program in much faster time using smaller data

input. The trees associated with this data are displayed in Figures 4.5.1-4.5.4. Tree 656

(Figures 4.5.3 and 4.5.4) is actually substantially larger than what is shown, to the point

that TreeView cannot display the cluster labels legibly. The original test set for this tree

was also only a subset of the clusters participating in this tree, and so only the pertinent

branch has been displayed.

 Tables 4.5.2 and 4.5.4 present the first iteration membership of the clusters seen

in Tree 187 and the Tree 656 subset. The individual proteins have been color-coded to

display their function (as indicated by their name given in the NCBI entry for each

protein), and each cluster also has its domain architecture listed as it appears in the initial

iteration. Protein indices correspond to that used internally by the bit vector algorithm,

and are based on their order of occurrence in the HMMER data file. A key is provided to

give the specific functions. The clusters have been arranged according to their placement

in the various tree figures, and are listed by branch order from top to bottom. The cluster

labels within each of the figures have also been outlined with the color of the dominant

function of the proteins contained within.

 In addition to the versions of the trees without node labels or branch lengths, there

are also versions of each of those trees that do use branch lengths and node labels

58

(Figures 4.5.2 and 4.5.4). The labels use the internal indices for each of the domains.

The associated tables (Tables 4.5.2 and 4.5.4) provide keys to those domains. The

branch lengths are calculated based on the number of iterations a branch survives before

being merged with another branch. Each iteration adds 0.1 to the branch length.

Key:

Synthases

Ligases / synthetases

ATP-binding proteins / permeases

Figure 4.5.1: The version of Tree 187 from the B. subtilis data without node labels or branch lengths.

59

Table 4.5.2: The clusters present in Tree 187. Domain architecture is given on the right of each cluster

header.

Cluster 1213 PP-binding, AMP-binding, AMP-binding_C, adh_short, KR, Polysacc_synt_2,

Condensation, HxxPF_rpt, ketoacyl-synt, Ketoacyl-synt_C, Thiolase_N, AMP-

binding_C_2, PS-DH, AATase

1303: P40806 - Polyketide synthase PksJ

Cluster 1216 PP-binding, AMP-binding, AMP-binding_C, adh_short, KR, Epimerase, Condensation,

HxxPF_rpt, ketoacyl-synt, Ketoacyl-synt_C, Thiolase_N, PS-DH, Poty_PP, DUF1307

1306: O31782 - Polyketide synthase PksN

Cluster 435 PP-binding, AMP-binding, AMP-binding_C, Abhydrolase_6, Abhydrolase_5,

Condensation, Thioesterase, HxxPF_rpt, HicB

454: P45745 - Dimodular nonribosomal peptide synthase

Cluster 1241 PP-binding, AMP-binding, AMP-binding_C, Abhydrolase_6, Abhydrolase_3,

Condensation, Thioesterase, DUF2974, AATase

1333: O31827 - Plipastatin synthase subunit E

Cluster 1639 Transketolase_C, PP-binding, AMP-binding, AMP-binding_C, Abhydrolase_6,

Abhydrolase_5, Condensation, Thioesterase, HxxPF_rpt

1773: Q08787 - Surfactin synthase subunit 3

Cluster 1238 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt, Transferase,

BacteriocIIc_cy

1330: P39846 - Plipastatin synthase subunit B

Cluster 1237 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt, SPOB_ab

1329: P39845 - Plipastatin synthase subunit A

Cluster 1239 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt

1331: P39847 - Plipastatin synthase subunit C

1772: Q04747 - Surfactin synthase subunit 2

Cluster 1240 PP-binding, AMP-binding, AMP-binding_C, UPF0122, Condensation, HxxPF_rpt

1332: P94459 - Plipastatin synthase subunit D

Cluster 1638 PP-binding, AMP-binding, AMP-binding_C, Condensation, HxxPF_rpt, AATase

1771: P27206 - Surfactin synthase subunit 1

Cluster 1988 AMP-binding, AMP-binding_C, AMP-binding_C_2, Trigger_C, Lipoprotein_3

2164: P96575 - Putative acyl--CoA ligase YdaB

Cluster 857 AMP-binding, AMP-binding_C, AMP-binding_C_2

915: O07610 - Long-chain-fatty-acid--CoA ligase

2539: O07619 - Uncharacterized acyl--CoA ligase YhfT

Cluster 31 AMP-binding, AMP-binding_C

31: P39062 - Acetyl-coenzyme A synthetase

475: P39581 - D-alanine--poly(phosphoribitol) ligase subunit 1

914: P94547 - Long-chain-fatty-acid--CoA ligase

1014: P23971 - 2-succinylbenzoate--CoA ligase

2866: O31826 - Putative acyl-CoA synthetase YngI

Cluster 434 AMP-binding, AMP-binding_C, SAP

453: P40871 - 2,3-dihydroxybenzoate-AMP ligase

Cluster 3046 AMP-binding, AMP-binding_C, DUF4414

3390: C0SPB0 - Uncharacterized acyl--CoA ligase YtcI

60

Figure 4.5.2: Tree 187 with branch lengths, node labels, and domain architecture displayed.

61

Table 4.5.3: Key to the domain indices present in

Figure 4.5.2.

Index Number Domain

75 Transketolase_C

109 PP-binding

114 AMP-binding

115 AMP-binding_C

378 UPF0122

437 adh_short

439 KR

440 Epimerase

441 Polysacc_synt_2

497 Abhydrolase_6

498 Abhydrolase_5

596 Abhydrolase_3

1091 SAP

1092 Condensation

1093 Thioesterase

1094 HxxPF_rpt

1095 HicB

1334 ketoacyl-synt

1335 Ketoacyl-synt_C

1336 Thiolase_N

1878 AMP-binding_C_2

2334 DUF2974

2336 PS-DH

2337 AATase

2338 Poty_PP

2340 DUF1307

2372 SPOB_ab

2373 Transferase

2374 BacteriocIIc_cy

2432 Trigger_C

3369 Lipoprotein_3

4408 DUF4414

62

Figure 4.5.3: The version of a subset of Tree 656 from the B. subtilis data without node labels or branch

lengths.

63

Table 4.5.4: The clusters present in the subset of Tree 656. Domain architecture is given on the right of

each cluster header.

Cluster 2242 AAA_16, ABC_tran, SMC_N, AAA_29, DUF258, ABC_ATPase, NB-ARC,

ABC_membrane, ABC_membrane_3, Chordopox_L2

2453: P71082 - Putative multidrug export ATP-binding/permease protein YgaD

Cluster 2304 AAA_16, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, DUF258, AAA_23,

MMR_HSR1, AAA_10, FtsK_SpoIIIE, AAA_22, AAA_17, AAA_30, Dynamin_N,

ABC_membrane

2523: O07549 - Probable multidrug resistance ABC transporter ATP-binding/permease protein YheH

Cluster 3323 AAA, AAA_16, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, DUF258,

DEAD, AAA_10, AAA_25, AAA_22, AAA_18, AAA_17, AAA_33, MobB,

AAA_30, ABC_membrane, ABC_membrane_3

3719: P45861 - Uncharacterized ABC transporter ATP-binding protein YwjA

Cluster 194 AAA_16, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29, DUF258, AAA_23,

AAA_25, AAA_22, AAA_18, AAA_17, ABC_ATPase, AAA_28, ABC_membrane,

ABC_membrane_2, ABC_membrane_3

202: O06967 - Multidrug resistance ABC transporter ATP-binding/permease protein BmrA

Cluster 375 ABC_tran, AAA_21, SMC_N, AAA_29, DUF258, FtsK_SpoIIIE, ABC_ATPase,

ABC_membrane, IncA

390: P94367 - ATP-binding/permease protein CydD

Cluster 374 ABC_tran, AAA_21, SMC_N, AAA_15, AAA_29, ArgK, DUF258, AAA_23,

MMR_HSR1, AAA_17, ABC_membrane, MscS_TM

389: P94366 - ATP-binding/permease protein CydC

Cluster 2169 AAA_16, T2SE, ABC_tran, AAA_21, SMC_N, AAA_29, AAA_23, FtsK_SpoIIIE, G-

alpha, AAA_18, AAA_14, ABC_ATPase, DUF87, ABC_membrane

2371: P54718 - Uncharacterized ABC transporter ATP-binding protein YfiB

Cluster 2305 Miro, AAA_16, T2SE, ABC_tran, SMC_N, AAA_29, DUF258, AAA_23,

MMR_HSR1, cobW, AAA_25, ATP-synt_ab, FtsK_SpoIIIE, AAA_22, G-alpha,

AAA_18, AAA_17, AAA_14, MobB, UPF0079, DUF87, NB-ARC, Zeta_toxin,

ABC_membrane, TrwB_AAD_bind, Viral_helicase1

2524: O07550 - Probable multidrug resistance ABC transporter ATP-binding/permease protein YheI

Cluster 2440 AAA_16, AAA_PrkA, ABC_tran, SMC_N, AAA_29, AAA_18, AAA_17,

ABC_ATPase, ABC_membrane, Sterol-sensing

2680: O31707 - Uncharacterized ABC transporter ATP-binding protein YknU

Cluster 2170 Mg_chelatase, AAA, AAA_16, T2SE, ABC_tran, AAA_21, SMC_N, AAA_29,

DUF258, AAA_23, AAA_19, SRP54, AAA_10, AAA_25, AAA_22, AAA_18,

AAA_17, AAA_33, MobB, AAA_30, AAA_28, Zeta_toxin, ABC_membrane,

ABC_membrane_2, ABC_membrane_3, IstB_IS21, APS_kinase

2372: P54719 - Uncharacterized ABC transporter ATP-binding protein YfiC

Cluster 2441 AAA_5, AAA, AAA_16, T2SE, ABC_tran, AAA_21, SMC_N, SbcCD_C, AAA_29,

DUF258, AAA_23, AAA_19, AAA_10, AAA_25, AAA_22, AAA_18, AAA_17,

AAA_30, Zeta_toxin, ABC_membrane, IstB_IS21, GPDPase_memb, FAST_2

2681: O31708 - Uncharacterized ABC transporter ATP-binding protein YknV

64

Figure 4.5.4: The Tree 656 subset with branch lengths, node labels, and domain architecture displayed.

Table 4.5.5: Key to the domain indices present

in Figure 4.5.4.

Index Number Domain

13 Miro

93 AAA_5

94 Mg_chelatase

95 AAA

100 AAA_16

104 T2SE

108 AAA_PrkA

141 ABC_tran

142 AAA_21

143 SMC_N

145 SbcCD_C

146 AAA_15

147 AAA_29

148 ArgK

149 DUF258

153 AAA_23

158 AAA_19

159 DEAD

208 MMR_HSR1

209 cobW

213 SRP54

263 AAA_10

264 AAA_25

265 ATP-synt_ab

267 FtsK_SpoIIIE

268 AAA_22

269 G-alpha

65

344 AAA_18

345 AAA_17

346 AAA_14

351 AAA_33

361 ABC_ATPase

362 MobB

365 UPF0079

366 AAA_30

367 DUF87

370 Dynamin_N

407 NB-ARC

453 AAA_28

455 Zeta_toxin

552 ABC_membrane

553 ABC_membrane_2

554 ABC_membrane_3

706 IstB_IS21

715 TrwB_AAD_bind

745 APS_kinase

925 IncA

942 MscS_TM

1599 Viral_helicase1

1925 Sterol-sensing

3627 Chordopox_L2

3710 GPDPase_memb

3818 FAST_2

4.6 Discussion of B. subtilis Data

 The B. subtilis dataset generated a large number of trees compared to the RGS

dataset. Although the tier chart is unreadable due to the high number of edge crossings,

the final tree visualizations still can be viewed clearly in most cases. The main purpose

of testing the program on this data was to understand its performance on proteome-scale

data, as this kind of analysis is not possible using alignment-based methods.

 An important detail to point out is in the Tree 656 visualizations (Figures 4.5.3

and 4.5.4). Some of the clusters (2304 and 3323) are duplicated in separate branches.

This is due to how the program adds clusters to the Newick string, and was allowed to

remain as a feature, rather than being seen as an error. Figure 4.6.1 shows a tier chart

generated by extracting only the lines of data from the HMMER file that pertain to the

66

branch of Tree 656 seen in Figures 4.5.3 and 4.5.4. The cluster numbers are therefore

different. Table 4.6.1 provides a key to show equivalent cluster indices between the two

sets of figures.

Table 4.6.1: Key to the cluster indices of Figure 4.6.1

and the original Tree 656 visualizations.

Original Indices Figure 4.6.1 Indices

194 1

374 2

375 3

2169 4

2170 5

2242 6

2304 7

2305 8

2440 9

2441 10

3323 11

Figure 4.6.1 (next page): Illustration of the tier chart for the branch of Tree 656 seen in Figures 4.5.3 and

4.5.4.

67

68

 Figure 4.6.1 illustrates the reason for the cluster duplication seen in Tree 656. In

this figure, the duplicated clusters are clusters 7 and 11. During the -3 iteration, 7 and 11

both merge together, but then immediately split apart in the subsequent iteration. One set

of proteins merges with Cluster 6 in the -4 iteration, and the other set eventually merges

with the branch containing clusters 1, 2, 3, 4, 5, 8, 9, and 10 in the -6 iteration. The

branch containing Cluster 6 also subsequently merges with this same branch in the -7

iteration. Because the half that split off alone carries different information than the half

that merged with Cluster 6, two copies of clusters 7 and 11 are made, one that is nested in

the large polytomy that was just mentioned, and the other (with Cluster 6), that forms a

sister group to this entire branch. This was seen as an asset, because this shows two

different sets of relationships between the protein clusters, which would be advantageous

to know about if and when it ever occurs.

 Trees 187 and 656 both exhibit strong uniformity of the functional groups of the

proteins contained within. The branch of Tree 656 that was investigated is composed

entirely of ATP-binding proteins, while Tree 187 is composed of two groups of proteins:

ligases and synthases, which are very closely related in their function. In this tree, the

branch containing ligases forms a sister group with a branch containing synthases, which

is an expected relationship, as opposed to the protein functions being scattered on

different branches of the tree.

69

CHAPTER 5

CONCLUSION AND FUTURE WORK

 As the available protein sequences and proteome data continues to accumulate in

the coming years, the demand for work to be able to characterize unknown proteins and

understand the relationships between protein groups will increase as well. Although

methods like BLAST and maximum likelihood analysis are helpful in many cases, they

cannot be used to analyze the relationships of all the members of a proteome. Instead,

other methods must be used.

 The bit vector program that has been described in this thesis has been shown to

accurately cluster proteins together and to form phylogeny-like trees illustrating the

relationships between proteins with similar but not identical domain architecture. This

domain-based approach offers an alternative to more typical alignment-based techniques.

Furthermore, it can be used on proteome data without concern for the need of a universal

conserved subsequence to base the alignment on. Even if such a subsequence were

present in proteome data, the amount of time it would take to perform a maximum

likelihood phylogenetic reconstruction would be prohibitive. Tests have demonstrated

that maximum likelihood can take several hours to complete on merely a few dozen

proteins. For instance, the RGS dataset, consisting of sequences extracted from 66

proteins, took over 27 hours to complete a maximum likelihood analysis, compared to the

bit vector approach taking only about 23 seconds to finish using the same data. Bacterial

proteomes typically consist of thousands of diverse proteins. Not only is no alignment

possible on such data, but even if it were, the size of the input data makes phylogenetic

analysis unfeasible for maximum likelihood.

70

 Although the neighbor-joining test conducted on the RGS data did finish in less

time than the bit vector method (4 seconds versus 23 seconds), this also was only after

taking shortcuts. Neighbor-joining is a faster algorithm than maximum likelihood, but its

results are generally not deemed to be as high-quality as results from maximum

likelihood. Furthermore, bootstrapping is a common requirement for generating quality

trees using any phylogenetic algorithm, and so, although neighbor-joining can run faster

than the bit vector approach by eliminating bootstrap replicates, the quality of the

resulting tree will not be as reliable as what can be obtained from a bootstrapped

maximum likelihood tree.

 This thesis has made the contribution of the bit vector program, which extends the

work from Shah’s thesis to iterate over multiple E-value thresholds with increasing

stringency. Not only does this show how the protein clusters change as weaker domains

are removed from consideration, but this iterative process, coupled with how later

clusters “inherit” their proteins from earlier ones, can be used to generate Newick trees

conveniently displaying these relationships.

 The bit vector program also offers an alternative analysis method for any type of

protein dataset based on domain architecture rather than sequence similarity. Because

three-dimensional structure of proteins is partly dictated by what domains are present,

this domain-based alternative offers a different perspective to understand protein

function, which sometimes may not be obvious using alignment-based methods. For

example, tests have shown that some functionally-related protein groups may not

necessarily be grouped together in a maximum likelihood tree. This is based purely on

the sequence similarity and alignments of these proteins, rather than inference of three-

71

dimensional structure. This means that the bit vector program provides a higher-level

overview of protein relationships.

 Finally, as mentioned above, the bit vector program also offers a tool that makes

analysis of large datasets of mostly unrelated proteins, as occurs frequently in proteome

data, possible without the need for first dividing the dataset into smaller subsets of

proteins that share conserved subsequences capable of being aligned. Furthermore, the

initial use of this method would break such a dataset down into subsets that could be used

in more focused maximum likelihood analysis, as the resulting trees would not only

group the related proteins together, but would also highlight the primary conserved

subsequence that could be used for alignment.

5.1 Future Work

Code Optimization

 The current version of the bit vector algorithm operates very quickly on relatively

small datasets, particularly those with fewer than 100 proteins and total unique domains.

A clear example of when the program operates inefficiently is in the case of the B.

subtilis data, with 3,973 proteins and 4,737 unique domains, in which case the bit vector

algorithm took over 70 hours to complete. However, this is still considerably more

efficient than a maximum likelihood approach, which (with bootstrapping) required over

a day to complete just on the RGS data. Scaling the dataset size up by two orders of

magnitude for the proteome-sized test would be expected to make the running time of a

maximum likelihood approach completely impractical. Even without bootstrapping in

the maximum likelihood approach, the best observed running time was 6 minutes on the

Trex server using the RGS data as input.

72

 No major attempts have been made to decrease the running time of the bit vector

program, and so doing this would be a significant goal for future work. One possible

improvement might be to replace the core clustering technique with an efficient

alternative from the related work summarized in Section 2.2. Attempts at using program

profiling methods would also be expected to aid in discovering any inefficient blocks of

code that could be improved.

Domain Order

 Currently, this technique ignores the order of the domains in a protein’s

architecture, instead focusing merely on a given domain’s presence. For example, a

protein may possess domains A, B, and C, but the order of the occurrence of these three

domains along the sequence could potentially differ in other proteins otherwise with the

same architecture. It may be beneficial to investigate if this affects the relationships

between related proteins, or their possible function.

Improved Visualizations

 The GEXF visualizations of the bipartite graphs showing the protein-domain

matches for each iteration, as well as the tier chart are useful for smaller datasets (such as

the RGS data), and work well with fewer than 100 proteins and unique domains.

However, scaling this up to the proteome level, such as the B. subtilis data, generates

largely unreadable visualizations, as the number of edge crossings becomes extreme. As

the goal of this thesis was not to focus on visualization techniques, but was instead

focused on outputting the trees generated from the data, improvement of the

visualizations was not looked into to any great extent, but this would be an important

73

improvement for future incarnations of this method. Future improvements might attempt

to use better visualization techniques to allow even large datasets to be viewed clearly.

First-Iteration Singleton Trees

 Due to the way the tier-based charts are generated, it is possible for the final

listing of Newick trees to leave out the reporting of singleton trees if they are removed

before the start of the second iteration due to E-value threshold. This has only been

observed on artificial datasets specifically designed to test the algorithm’s performance,

and would generally be expected to be quite rare occurrences in any real-world data. As

the primary interest in the use of the method is the generation of non-singleton trees to

understand the relationships between protein clusters with similar domain architecture,

this was deemed a very minor issue. However, the possibility still exists of this

occurring, and so may be worthwhile to fix the approach in the future.

Leaf Duplication in Some Cases

 Generally speaking, it has frequently been observed in the tier-based charts that

clusters do not split or merge uniformly from one iteration to the next. Instead, it is

possible for individual proteins to have different E-values for the matchings of given

domains. As a result, some proteins may leave their original cluster and join another

during different iterations, rather than during one uniform step. This has the effect of

having two or more cluster lineages merging several times over the course of more than

one iteration. Currently, the way the algorithm is designed, this will not lead to

duplication of clusters in the final Newick trees, because such duplication is something

that the algorithm specifically checks for before it merges two portions of a Newick

string. As a result, only the first occurrence of two or more lineages merging will be

74

considered in constructing the tree, as any merging that occurs in subsequent iterations is

simply repetition of the same relationship. However, this is only the case when two or

more branches are merging together, forming a two-way split or polytomy on the

resulting phylogenetic tree.

 It has been observed in some cases that a given cluster may actually split, and

different proteins may merge into separate branches of the phylogenetic tree. This was

seen in Tree 656 of the B. subtilis data, as discussed in Section 4.6. This has the effect of

duplicating the affected leaves onto two or more branches of the tree. Rather than being

seen as a problem needing to be repaired, this was seen as a feature of the algorithm, as it

accurately displays that the duplicated leaves are actually related to proteins in more than

one branch. Due to the way the domain deletion with increased E-value threshold

stringency works, it is not always true that the same domains may be deleted at the same

time for all members of a cluster. In fact, it is possible for some proteins to lose a domain

at an early iteration, while the other proteins may retain the same domain until the final

iteration of that lineage. This can potentially change the domain architecture of the

affected proteins, and so would lead to a justified split in the cluster’s lineage.

 As an illustration of this point, a hypothetical cluster may have the domain

architecture A, B, C. However, one subset of proteins may have a very weak match for

domain A, and very strong matches for B and C. Meanwhile, another subset may have

very strong matches to A, but very weak matches to B and C. As a result, the cluster

would see two groups split off: one with architecture B, C, and the other with architecture

A. Furthermore, it may be possible for a third subset of proteins to have strong matches

to all three domains, but such that they lose domain A at a much later iteration, while still

75

retaining domains B, and C. In this case, they would re-merge with the other B, C

proteins that had already split off into a different branch. This could potentially lead to

the leaf duplication in separate branches that has been described.

 A problem arises, however, in cases where, for example, two clusters merge into

one during one iteration, but then subsequently split along the original cluster groupings.

That is, if Cluster 1 and Cluster 2 were to merge, but the new cluster later splits such that

one cluster retains only Cluster 1 proteins, and the other cluster retains only Cluster 2

proteins, this will lead to a problem when the split lineages merge with any outlying

clusters. The reason for this is, even though only certain proteins are merging with a new

cluster, they still retain the ancestry of both Cluster 1 and Cluster 2, and so both clusters

would be reported in the leaf duplication, even though only one cluster’s proteins were

participating in a given merging. This is a problem that should be investigated and fixed

in future work.

Consideration of Individual Proteins in a Lineage

 Related to the above issue, the current version of the technique simply looks at the

ancestry (in terms of previously merged clusters) of each cluster in a given iteration. It

pays no attention to what actual proteins still remain within that cluster (the others

potentially having been deleted due to the E-value threshold). In the tier charts, in order

for an edge to exist between nodes in adjacent iterations, only a single protein needs to

merge from the first cluster into the second cluster, although this edge will have a greater

thickness if more proteins make the same journey. This means that two or more clusters

that merge together in one iteration may have lost proteins in a subsequent iteration, such

that they no longer are participating in the lineage. The implications of this approach

76

have not been fully investigated, but in future work it may be important to give greater

consideration to where in each lineage individual proteins actually remain, and where

they have already been deleted by the threshold. From a visualization perspective, one

example might be to visualize the chart such that if an edge is clicked on or hovered over,

the information on what proteins are actually traversing that edge could be displayed.

Singleton Cluster Labels

 In the case of clusters containing only one protein, rather than labelling the cluster

as “Cluster X” on the tree (with X being the index number of that particular cluster), it

may be better to simply replace the cluster label with the name of the sole protein

contained within.

Use of Fewer E-value Thresholds

 Currently, the bit vector program compiles a list of all E-values seen in the

HMMER data file and uses this list as a basis for iterating over the threshold. A sorted

descending-order list is created of the E-values, and after a given iteration, whatever the

next order of magnitude is in the list will be deleted for the following iteration. One

possible increase in efficiency could come from skipping some of these E-value entries.

For instance, rather than iterating from 10-5 to 10-10 one order of magnitude at a time

(provided that each order of magnitude is represented in the data, which may not always

be so, depending on the input), one possible approach might be to simply skip the in-

between values and simply iterate over 10-5 one iteration, and go directly to 10-10 in the

next iteration. This will reduce the total number of iterations during which the binary

matrix is updated and iterated over to construct the clusters.

77

 The effects that this iterative technique would have on the resulting data should be

investigated further to see if there are negative impacts on the quality of the final trees.

As this would reduce the number of levels in the tier chart, one effect that could be

expected from this approach is the reduction of various nested two-way splits into a

single polytomy. For example, if after iterating over each distinct E-value, a tree has the

structure ((((A,B),C),D),E), if the number of iterations is reduced, this structure could

become the polytomy (A,B,C,D,E), depending on the exact relationships of the E-values

present.

Combining Final Trees

 As it is, the bit vector approach potentially generates separate trees, with no

overlap, depending on how diverse the input data is. For example, if the roots of two

trees do not share the same domain architecture, no merging is possible, otherwise they

would have been generated as branches within the same tree. This would most likely

require a different metric to measure similarity between the trees. One possible approach

might be to assess the similarity of the domain architecture present between each tree,

and place the trees with the closest similarity together as sister groups. This process

could be repeated until each tree has been absorbed into a single, final tree containing all

of the trees and clusters found by the method.

78

References

1 – Altschul, SF; Gish, W.; Miller, W.; Myers, EW; Lipman, DJ. (1990) “Basic local

alignment search tool”, J. Mol. Biol. 1990 Oct 5; 215 (3): 403-10.

2 – National Center for Biotechnology Information, BLAST: Basic Local Alignment

Search Tool, <http://blast.ncbi.nlm.nih.gov/Blast.cgi>. Accessed July 2016.

3 – Thompson, JD; Higgins, DG; Gibson, TJ (1994) “CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice”, Nucleic Acids Res. 1994

Nov 11; 22(22): 4673-80.

4 – Edgar, RC (2004) “MUSCLE: multiple sequence alignment with high accuracy and

high throughput”, Nucleic Acids Res. 2004; 32(5): 1792–1797.

5 – Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. (2002) “MAFFT: a novel method for

rapid multiple sequence alignment based on fast Fourier transform” Nucleic Acids

Res. 2002 Jul 15; 30 (14): 3059-66.

6 – Saitou, N.; Nei, M. (1987) “The neighbor-joining method: a new method for

reconstructing phylogenetic trees” Molecular Biology and Evolution, vol. 4, issue 4,

pp. 406-425, July 1987.

7 – Farris, JS (1970) “Methods for computing Wagner trees” Systematic Zoology 19,

83-92.

8 – Fitch, WM (1971) “Toward defining the course of evolution: minimum change for a

specified tree topology” Systematic Zoology 20 (4), 406-416.

9 – Yang, Z.; Kumar, S.; Nei, M. (1995) “A new method of inference of ancestral

nucleotide and amino acid sequences” Genetics 1995 Dec; 141 (4): 1641-50.

10 – Koshi, JM; Goldstein, RA. (1996) “Probabilistic reconstruction of ancestral

protein sequences” J. Mol. Evol. 1996 Feb; 42 (2): 313-20.

11 – Pagel, M. (1999) “The Maximum Likelihood Approach to Reconstructing

Ancestral Character States of Discrete Characters on Phylogenies” Systematic

Biology 48 (3): 612–622.

12 – Enright, AJ; Van Dongen, S.; Ouzounis, CA (2002) “An efficient algorithm for

large-scale detection of protein families” Nucleic Acids Res. 2002 Apr 1; 30 (7):

1575-84.

http://blast.ncbi.nlm.nih.gov/Blast.cgi

79

13 – Shah, Neethu (2013) “Clustering and Classification of Multi-domain Proteins”,

Computer Science and Engineering: Theses, Dissertations, and Student Research,

Department of Computer Science and Engineering, University of Nebraska-Lincoln.

14 – Prelić, A.; Bleuler, S.; Zimmermann, P.; Wille, A.; Bühlmann, P.; Gruissem, W.;

Hennig, L.; Thiele, L.; Zitzler, E. (2006) “A systematic comparison and evaluation

of biclustering methods for gene expression data”, Bioinformatics, (2006) 22 (9):

1122-1129.

15 – Bimax: Supplementary Materials Web Page for Bioinformatics,

<http://people.ee.ethz.ch/~sop/bimax/>. Accessed June 2014.

16 – Oghabian, A.; Kilpinen, S.; Hautaniemi, S.; Czeizler, E. (2014) “Biclustering

Methods: Biological Relevance and Application in Gene Expression Analysis”,

PLoS ONE 9(3): e90801.

17 – Shamir, R.; Maron-Katz, A.; Tanay, A.; Linhart, C.; Steinfeld, I.; Sharan, R.; Shiloh,

Y.; Elkon, R. (2005) “EXPANDER – an interactive program suite for microarray

data analysis”, BMC Bioinformatics, 2005, 6: 232.

18 – Tanay, A.; Sharan, R.; Shamir, R. (2002) “Discovering statistically significant

biclusters in gene expression data”, Bioinformatics, vol. 18 suppl. 1 2002, pgs. S136-

S144.

19 – EXPANDER: A Gene Expression Analysis and Visualization Software,

<http://acgt.cs.tau.ac.il/expander/overview.html>. Accessed June 2014.

20 – Király, A.; Gyenesei, A.; Abonyi, J. (2014) “Bit-table based biclustering and

frequent closed itemset mining in high-dimensional binary data”, Scientific World

Journal, 2014 Jan 30; 2014: 870406.

21 – Santamaría, R.; Therón, R.; Quintales, L. (2014) “BicOverlapper 2.0: visual analysis

for gene expression”, Bioinformatics, 2014 Jun 15; 30(12): 1785-6.

22 – Sun, P.; Speicher, NK; Röttger, R.; Guo, J.; Baumbach, J. (2014) “Bi-Force: large-

scale bicluster editing and its application to gene expression data biclustering”,

Nucleic Acids Res. 2014 May; 42(9): e78.

23 – Henriques, R.; Madeira, SC (2014) “BicSPAM: flexible biclustering using

sequential patterns,” BMC Bioinformatics, 2014 May 6; 15: 130.

24 – Streit, M.; Gratzl, S.; Gillhofer, M.; Mayr, A.; Mitterecker, A.; Hochreiter, S. (2014)

http://people.ee.ethz.ch/~sop/bimax/
http://acgt.cs.tau.ac.il/expander/overview.html

80

“Furby: fuzzy force-directed bicluster visualization”, BMC Bioinformatics, 2014; 15

Suppl 6: S4.

25 – Moore, AD; Held, A.; Terrapon, N.; Weiner 3rd, J.; Bornberg-Bauer, E. (2014)

“DoMosaics: software for domain arrangement visualization and domain-centric

analysis of proteins”, Bioinformatics, (2014) 30 (2): 282-283.

26 – Eddy, SR. (2007) HMMER - biosequence analysis using profile hidden Markov

models. Available: <http://hmmer.janelia.org>.

27 – Eddy, SR (2008) “A Probabilistic Model of Local Sequence Alignment That

Simplifies Statistical Significance Estimation” PLoS Comput. Biol. 2008 May; 4 (5):

e1000069.

28 – Eddy, SR; Wheeler, TJ (2015) HMMER User’s Guide, Howard Hughes

Medical Institute, <http://eddylab.org/software/hmmer3/3.1b2/Userguide.pdf>.

Accessed July 2016.

29 – Bastian, M.; Heymann, S.; Jacomy, M. (2009) Gephi: An Open Source Software for

Exploring and Manipulating Networks, International AAAI Conference on Weblogs

and Social Media.

30 – Gephi – The Open Graph Viz Platform, <http://gephi.org>. Accessed July 2016.

31 – GEXF File Format, Gephi Website, <http://gephi.org/gexf/format>. Accessed July

2016.

32 – Page, RDM (1996) “Tree View: An application to display phylogenetic trees on

personal computers”. Computer Applications in the Biosciences, 12 (4): 357–358.

33 – Stamatakis, A. (2006) “RAxML-VI-HPC: maximum likelihood-based

phylogenetic analyses with thousands of taxa and mixed models” Bioinformatics 22

(21): 2688–2690.

34 – Boc, A.; Diallo, AB; Makarenkov, V. (2012), “T-REX: a web server for inferring,

validating and visualizing phylogenetic trees and networks” Nucleic Acids Res. 40

(W1), W573-W579.

35 – Nei, M.; Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford

University Press, New York.

36 – Rosetta Code, Sorting Algorithms: Merge Sort,

<http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#MATLAB>. Accessed

Oct. 2015.

http://hmmer.janelia.org/
http://eddylab.org/software/hmmer3/3.1b2/Userguide.pdf
http://gephi.org/
http://gephi.org/gexf/format
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#MATLAB

81

APPENDIX A

SUPPLEMENTARY MATERIALS

A.1 Program Documentation

 The current version of the bit vector clustering program does a number of things.

It outputs a plain text file for each order of magnitude of E-value in the dataset,

containing a listing of all the clusters, what domains the clusters contain, and what

proteins are included in each cluster. In addition, it also outputs GEXF-format files,

again, one for each order of magnitude of E-value, which allows the proteins and

domains for each iteration to be visualized as a bipartite graph in Gephi. The bipartite

graphs are currently designed so that proteins that have been eliminated due to E-value

threshold requirements no longer have any nodes, but any “abandoned” domain nodes are

still present (but without edges). The proteins are arranged by cluster. All of the proteins

from cluster X will be present in an adjacent arrangement. Following this, there will be a

gap before the next cluster is displayed.

 In addition, one final, tier-based GEXF file is produced. This file visualizes each

cluster as a single node. All of the clusters from a particular iteration of the program (one

iteration for each order of magnitude of E-value) is arranged in a tier. If a given cluster

contains at least one protein that is “passed on” to a cluster in the next tier, an edge will

be present between those clusters, indicating that the subsequent cluster has “inherited” at

least one protein from the “ancestral” cluster.

82

Program Overview:

prime_funct()

| hmmer_script (script)

| matrix_extract (script)

| |_____ mergeSort()

| file_out()

| domains()

| node_data()

| save_mat()

| get_weights()

| |_____ log_calc()

| gexf_out()

| get_node_IDs()

| get_clust_anc()

| | ind_extract()

| | de_newick()

| | list_substr()

| |_____ inc_str()

| newick_out()

| newick_out_lbl()

| |_____ un_label()

| re_number()

| | un_label()

| |_____ de_newick()

| print_newick()

| get_edges()

| mergeSort2()

|_____ tier_gexf()

prime_funct()

This function ties all of the other scripts and functions together. Its input argument list is

as follows:

fileName – mandatory input argument; the file name of the HMMER data; example:

‘RGS_hmmer.out’ [note that quotation marks must be included otherwise

interprets the input argument as a variable name or function].

varargin – optional input arguments; intended to allow the user to specify an order of

magnitude to terminate at; example: -10 [in which case, the algorithm will

only decrease the E-value threshold to a magnitude of 10-10, at which point it

will stop]; additionally, an order of magnitude to start at can also be specified,

if both start and stop parameters are given.

Full Details on Input:

Example Format (in the Matlab console):

prime_funct(‘RGS_hmmer.out’,-50,-10);

83

This invocation of the program accesses file “RGS_hmmer.out” for the HMMER data,

begins at E-values of 10-10 (any higher values are deleted and ignored), and stops once it

clusters everything based on values of 10-50, but no smaller. In such a case, the “mat 0”

files will consist of clusters based on the 10-10 threshold. Also note that the third

parameter can be, at most, -1.

The second and third parameters are optional, but using the third parameter requires the

second parameter to also be specified. An acceptable invocation would also be:

prime_funct(‘RGS_hmmer.out’);

In this case, the same file is accessed for the HMMER data, but there will no longer be

any restrictions on the start or stop E-value thresholds. It will begin at whatever the

initial E-value happens to be (although internally, this has an ultimate cutoff at E-values

of 1.0 – anything greater will not even be considered), and continue until all E-value

orders of magnitude are exhausted. Note that setting the second parameter to “-Inf” is

identical to the default behavior just described.

It is important to bear in mind that the numerical component in the “mat X” titles

corresponds to the order of magnitude of E-value that was just deleted – for example,

“mat -10” contains E-values at 10-11 at the highest, not 10-10, because all 10-10 values were

deleted at the start of the iteration.

prime_funct() calls the scripts hmmer_script and matrix_extract, which read the

HMMER input file, reformat it so as to be easier to import into Matlab, and then extract

the data into a cell array. The function then iterates over the data, outputting the data

files (for example, “mat 0.txt” and “mat 0.gexf”) for each iteration, as the E-value

threshold is lowered (made more stringent). This data is generated and interpreted by

calls to the functions file_out(), domains(), save_mat(), get_weights(), and gexf_out().

hmmer_script

This script opens the file specified by the fileName input argument from prime_funct().

Its main purpose is to scan through the HMMER file line by line and convert any white

space separating data fields with a single tab (the HMMER files can have fields separated

by a varying number of spaces, which makes importing of the data into Matlab

problematic). The updated lines of information are then written to a new output file.

This will be a tab-delimited version of the HMMER input file when the script finishes. It

should also be noted that the original HMMER file has had any headers and footers

manually deleted. Its only contents will therefore be the raw data itself, with no extra

lines above or below it.

matrix_extract

This script uses the new tab-delimited file generated by hmmer_script and imports it

into Matlab using Matlab’s textscan() function. The data is stored in a cell array. This

array is then used to generate several other data structures. The primary one is a simple

binary m × n matrix, where m is the number of unique proteins in the HMMER data, and

n is the number of unique domains present in the entire dataset. A cell in this matrix will

be 0 if HMMER determined a given protein did not possess a given domain (or if its E-

84

value was given above the acceptable threshold). Alternatively, it will be 1 if HMMER

did report finding the domain in the given protein. Another data structure is a matrix of

identical dimensions to the binary matrix, but with the actual E-values replacing the cells

equal to 1. The other cells will be 0 if the binary matrix also has a 0 at the corresponding

cell. In the event an E-value is given as 0 by the HMMER data, this can be distinguished

because the corresponding cell in the binary matrix will equal 1, and not 0. Finally, the

E-values are also organized into a one-dimensional array, which is then sorted (using

Merge Sort) in descending order (the weakest E-values at the start). This array will then

be used in the iterative process (in prime_funct()) of removing weak E-values.

mergeSort()
This function is a modified implementation of Merge Sort taken from Rosetta Code [36].

It is modified to accept three input arrays instead of just one. The purpose is that two of

the arrays will contain row and column indices for the data contained in the

corresponding cell of the array being sorted, so the value contained there may be looked

up directly afterwards in its original matrix. The function sorts the main array as normal,

but also moves the associated row and column values so they remain synchronized with

the values in the sorted array.

list – the array to be sorted; values are taken from a two-dimensional matrix.

row_ar – an array containing the row coordinates for the data contained in ‘list’, taken

from the original matrix.

col_ar – an array containing the column coordinates for the data contained in ‘list’, taken

 from the original matrix.

The output of this function is the same three arrays, now sorted in ascending order based

on the values in ‘list’.

file_out()

This function outputs two files, “rows.txt” and “cols.txt”. The former is a base-1 indexed

list of the proteins found in the HMMER data, while the latter is a similar list of the

domains. The input argument list is as so:

prot – a cell array generated by matrix_extract containing the accession numbers of the

proteins in the HMMER data.

dom – a cell array generated by matrix_extract containing the names of the domains in

 the HMMER data.

x – the number of proteins in the list.

y – the number of domains in the list.

domains()
This function generates a list of clusters based on comparisons of the proteins’ domain

architecture. The input arguments are:

bitvec_mat – the binary matrix containing information on the domain architecture of each

 protein.

prot – a list of protein accession numbers.

dom – a list of domain names.

x – the number of proteins in the matrix.

85

y – the number of domains in the matrix.

name – a string based on the theme “mat X.txt”, where X is the order of magnitude of the

 current iteration.

members – a cell array that is initialized in prime_funct(); it has new data added onto it

for each subsequent iteration, and displays which cluster a given protein

participates in during a given iteration.

‘list’ is the principle output argument, and contains a three-column cell array where the

first column contains the binary strings representing a given domain architecture, the

second column contains the lists of protein indices in a given cluster, and the third

column contains the lists of domain indices in a given cluster. The second and third

columns are in the format “a_b_c…”, where a, b, and c each represent either a protein or

domain index number.

‘label_list’ is very similar to ‘list’, but instead presents the proteins and domains using

their actual labels, not indices. This will be useful in outputting cluster lists containing

the actual names of the protein and domain nodes being clustered (as opposed to just

index values, which are difficult for humans to understand without using a look-up table

of indices).

‘count’ is a simple numerical value representing the number of clusters found.

‘members’, as described above, shows the cluster a protein participates in for each

iteration. domains() adds new data to this variable during each subsequent iteration.

The function iterates over the matrix and generates a binary string for each protein. It

then makes systematic comparisons between each protein’s string. Protein 1 gets

compared to all other proteins, but higher-numbered proteins never get compared back to

proteins that have already been iterated over previously (so the sequence of comparisons

would be 1 to 2, 1 to 3, …, 1 to nth protein, then 2 to 3, 2 to 4, …, 2 to nth protein, etc.).

Once a protein has been matched into a cluster, it is removed from the list, so it is not

compared again.

node_data()
This function generates a cell array of the node data, which will be printed to a GEXF file

later. The input arguments are:

nodes_ar – a cell array containing the labels of the protein and domain nodes.

list – the list of clusters generated in domains().

num_prot – the number of proteins.

list_row – the number of rows in ‘list’.

The output arguments are:

nodes_out – the cell array of node labels.

count – the count of proteins.

The function generates a string in XML format, which is then inserted into the

‘nodes_out’ array. When finished, each node will have its own entry in the output array.

86

save_mat()
This function saves the set of clusters for a given iteration to a text file. The input

arguments are:

list – the list of clusters generated in domains().

label_list – the same list of clusters, but with actual node labels, not indices.

name – the file name for the current iteration; example: “mat 0.txt”.

row – the number of rows in the variable ‘list’.

The function scans through ‘list’ and ‘label_list’ and writes each cluster to a text file.

The output format for each cluster is as follows (where X represents the index number of

the current cluster):
Cluster X

Proteins:

Protein_1, Protein_2, Protein_3, …

Domains:

Domain_1, Domain_2, Domain_3, …

get_weights()
A function that constructs an array of edges, indicating which nodes are connected. The

input arguments are:

e_val – the matrix of E-values, synchronized with ‘bitvec_mat’.

bitvec_mat – the binary matrix indicating which domains are present in a given protein.

e_val_row – array containing the row coordinates of each E-value in ‘e_val’.

e_val_col – array containing the column coordinates of each E-value in ‘e_val’.

let – an array of index values corresponding to the domain nodes.

‘edges_ar’ is the only output argument, and consists of a list of sources and targets for

each edge, as well as the edge type (undirected, in this case), and the weight of the edge.

The function gets the number of edges in the graph by summing all the 1’s in

‘bitvec_mat’. It then generates the array of edges, consisting of their sources and targets,

as well as edge weights. The edge weights are calculated by a call to the function

log_calc(), which is then multiplied by 10 (Gephi will not display easily-distinguished

edge thicknesses otherwise).

log_calc()
This function calculates the weight of each edge. The sole input argument is:

num_in – the E-value of the current protein-domain match.

The function has two output arguments:

num_out – the calculated edge weight, based on the E-value input

bool – a Boolean that indicates whether or not an E-value is above an acceptable

 threshold; should not be possible for this to be an issue.

The function finds the negative base-10 logarithm of the E-value and divides it by 100.

100 has been arbitrarily chosen as the best logarithm value, and has the effect of working

87

like a percentage. In the event an E-value’s logarithm is greater than 100, it gets mapped

back to 100.

gexf_out()
This function outputs the node and edge data in GEXF format. These files are then

readily opened in Gephi to display the graph. The input arguments are:

edges_ar – the array of edges, giving their sources and targets, as well as weights.

edge_name – the file name for the current iteration; example: “mat 0.gexf”.

nodes_out – the cell array containing the node information, in XML format.

num_dom – the number of domains.

The function accesses the data in ‘edges_ar’ and ‘nodes_out’ and writes the information

to the output file in XML format. It is also responsible for spacing the nodes and cluster

groups in the graph.

get_node_IDs()

A function to create a matrix that is synchronized to ‘members’, containing the node ID’s

to be used in the GEXF files. ‘members’ is the only input argument, and is a cell array

consisting of one row for each protein in the HMMER data. Each column represents one

of the E-value threshold iterations (one for each order of magnitude). The contents of

each cell indicates which cluster that a given protein participates in during a given

iteration. The output arguments are:

node_IDs – a matrix synchronized with ‘members’, and consisting of the node ID’s for

each cluster that will be used in the GEXF files.

node_labels – another cell array, synchronized with ‘members’, this time consisting of

 the node labels to be displayed; this will be used in the GEXF files.

node_ancestors – another cell array, synchronized with ‘members’, this time consisting of

the labels of the nodes in the initial iteration that a given cluster in a

subsequent iteration is derived from, due to the protein in that row

being present in the initial cluster on the first iteration.

tier_clusters – a cell array with one column for each iteration; the contents of each

 column consist of a listing of each cluster node label.

The function works by iterating over the data shown in ‘members’, and accessing the

information present in order to build the output variables that have been described above.

This is for constructing the tier-based graph, which displays which clusters inherit

proteins from which other clusters in the previous iteration.

get_clust_anc()

A function that creates a cell array showing which initial ancestral cluster a given cluster

in the tier-based visualization ultimately is derived from. The input arguments are:

node_labels – a cell array created by get_node_IDs(); consists of the node labels to be

displayed.

node_ancestors – a cell array created by get_node_IDs(); consists of the labels of the

88

nodes in the initial iteration from which a given cluster in a subsequent

iteration inherited its proteins.

big_list – a cell array into which the variable ‘list’ from domains() is copied for each

 iteration in prime_funct().

The output arguments are:

tier_clust_anc – this is a cell array in which each cell contains a list of all clusters in the

initial iteration from which a given cluster inherited its proteins.

newick_tree – a two-dimensional cell array with n rows and m columns, where n is the

number of proteins in the dataset, and m is the number of iterations of

changes to the E-value threshold; each cell contains a Newick string

describing the phylogeny-like relationships between related clusters.

newick_tree_lbl – a two-dimensional cell array identical to ‘newick_tree’, except that the

 Newick strings include node labels and branch lengths as well.

The function iterates over the contents of ‘node_labels’ and ‘node_ancestors’ to extract a

list of the clusters in the initial iteration from which a given cluster is ultimately derived.

It builds a list of the ancestors of each node, and places this information in the

‘tier_clust_anc’ output variable. Furthermore, the function also progressively builds

Newick-format strings describing the relationships between related clusters, based on the

merges that can be seen in the “tier” chart data from one iteration to the next.

ind_extract()

A function that accepts a string in the format “Cluster X Y”, where X is the cluster index

number, and Y is either 0 or a negative integer, extracts X, and converts it to a numerical

value for output.

‘clust_str’ is the only input argument, representing the string from which the index

number is to be extracted.

‘clust_ind’ is the only output variable, and is the cluster’s index value, converted to

numeric format.

de_newick()

This function removes the spaces and brackets from a Newick-format input string, places

the cluster labels each in a separate cell of a cell array, and sorts the cell array before

output.

‘newick_str’ is the Newick-format input string, and is the only input argument.

‘out_newick’ is the only output variable, and is a cell array consisting of the cluster labels

in natural sort order / ASCII dictionary order (that is, “Cluster 10” would follow “Cluster

1” and precede “Cluster 2”).

89

list_substr()

A function that accepts a pair of cell arrays, compares them element by element, and then

removes entries that have been matched. It outputs both arrays, minus the deleted entries.

If both arrays contain substrings of the other, they will be empty. The input and output

arguments are the same (cell arrays ‘A’ and ‘B’).

inc_str()

A function that accepts a string in the format “XXXX:Y”, where XXXX can be any string,

followed by a final colon, followed by a numerical value Y. The function extracts Y,

converts it to a numerical value, increments this value, converts it back into a string,

replaces Y with the updated value, and presents the modified string as the output.

‘input_str’ is the only input argument, and is as described above.

‘output_str’ is the only output variable, and is the updated string, as described above.

newick_out()

This function accepts the un-labelled version of the set of Newick strings from

get_clust_anc() and processes the set to extract the unique Newick strings. The function

then places these strings in a cell array for output.

‘newick_tree’ is the only input, and is a two-dimensional cell array of n rows and m

columns, where n is the number of proteins in the HMMER data, and m is the number of

iterations of changing the E-value threshold.

‘newick_list’ is the only output, and is a one-dimensional cell array consisting of each

unique Newick string taken from ‘newick_tree’.

newick_out_lbl()

This function is an alternative version of newick_out(), meant specifically to handle

Newick strings containing node labels and branch lengths. As such, it is necessary to call

the un_label() function in order to get accurate results. Otherwise, input and output

variables are identical to that of newick_out().

un_label()

A function that accepts a Newick string with node labels and branch lengths (for

example, “[A:x, B:y]C:z”, where A and B are both leaf labels, C is a node label, and x, y,

and z are branch lengths), and removes the node labels and branch lengths, leaving only

the un-labelled Newick string (for example, “[A, B]”).

‘newick_str’ is the only input, and once modified, is also the only output variable.

re_number()

This function looks at the list of clusters in a Newick string, finds if there are any

duplicates, and then renumbers the duplicates so the first occurrence is called “Cluster

X.1”, the second is “Cluster X.2”, and so on. The function also replaces some elements in

the string to conform to true Newick format. There are two input arguments:

90

newick_list – a cell array of Newick strings to be processed.

bool – a Boolean variable that indicates of the input strings carry branch lengths and node

 labels or not; if true, un_label() needs to be called before de_newick().

The modified ‘newick_list’ array is the only output variable.

print_newick()

A function that prints the non-singleton Newick strings in the labelled and un-labelled

versions of the tree lists to plain text files. Each tree is printed to its own file, following

the naming convention of “treeX.txt” for the un-labelled tree, and “treeX_lbl.txt” for the

labelled version. X is the index number within the list that the string came from. The

input variables are:

newick_list – a cell array containing the un-labelled versions of the Newick output trees.

newick_list_lbl – a cell array containing the same Newick output trees, but with added

node labels and branch lengths.

The function prints the (non-singleton) contents of each cell to its own file. It is

formatted so that the entire Newick string is printed on a single line.

get_edges()

A function to create a list of the edges to be used in the tier-based graph. The input

arguments are:

node_IDs – a matrix consisting of the node ID’s for each cluster that will be used in the

GEXF files.

members – a cell array that displays which cluster a given protein participates in during a

 given iteration.

‘tier_edges’ is the only output variable, and is a two-row array indicating the edges of the

tier-based graph. The top row is the source node ID, and bottom row is the target node

ID.

The function iterates over ‘node_IDs’. Each time there is a protein participating in

clusters in two adjacent columns of the matrix, it indicates there should be an edge

between those clusters in the tier-based graph. Each edge is added only once.

mergeSort2()

This function is another modified implementation of Merge Sort taken from Rosetta Code

[36]. This implementation has been modified to accept the array to be sorted (‘list’),

which is expected to be two-dimensional and consists of two rows. The top row of ‘list’

is meant to be sorted, but the associated second row values are to remain synchronized

with the sorted top row values. This is a similar approach to the first version of Merge

Sort this program uses, but has a different expected input format.

The output of this function is the same two-row array, now sorted in ascending order

based on the values in the top row.

91

tier_gexf()

This function outputs the node and edge data for the tier-based graph in GEXF format.

These files are then readily opened in Gephi to display the graph. The input arguments

are:

node_IDs – a matrix consisting of the node ID’s for each cluster that will be used in the

GEXF files.

tier_edges – a two-row array indicating the edges of the tier-based graph; top row is the

 source node ID, and bottom row is the target node ID.

tier_clusters – a listing of each cluster node label for each iteration.

The function accesses the data in ‘node_IDs’, ‘tier_edges’, and ‘tier_clusters’ and writes

the information to the output file in XML format. It is also responsible for spacing the

nodes and tiers in the graph.

A.2 A Note on File Format

A.2.1 Input Files

HMMER Data

The file extension may vary (.out or .txt files are normally used), as this will be specified

in the program input parameters. The file contents must be provided in typical HMMER

output format. However, in this case, the files have been edited slightly to remove the

field headers and program and setting details from the top and bottom of the file. The

only contents that remain are the lines that contain the actual HMMER data that is to be

processed. The fields need to be in the following order: <target name>, <accession>,

<tlen>, <query name>, <qlen>, <E-value>, <score>, <bias>, <number>, <of>, <c-

Evalue>, <i-Evalue>, <score>, <bias>, <from>, <to>, <from>, <to>, <from>, <to>,

<acc>, and <description of target>. It should be mentioned that in the HMMER files,

there is also an <accession> field in between <query name> and <qlen>, however, in

each of the files made available from Shah’s original data, this field is left blank

(indicated by a “-” character). For the purposes of field indexing and reformatting of the

HMMER file, this field was ignored and deleted. Taking this indexing into

consideration, the fields of interest are therefore the 1st, 4th, and 12th (<target name>,

<query name>, and <i-Evalue>, respectively). These fields carry the information of 1)

the domain names, 4) the protein names / accession numbers, and 12) the E-values of the

match between the domain and protein sequences.

A.2.2 Output Files

Reformatted HMMER Data

The typical HMMER data file will contain white space between fields. However, this

white space is not uniform, and may consist of multiple individual spaces or tabs, with

the intent of lining each field up into a given column on the page. However, this is

problematic for importing the data into memory, and so it is reformatted to replace all

white space between fields with a single tab. The blank <accession> field mentioned

above is also removed during this stage.

92

Row and Column Data

There are two plain text files (“rows.txt” and “cols.txt”) which match the row and column

indices to the protein accession numbers and domain names they represent, respectively.

The following is an example of this content:

rows.txt: cols.txt:
1: NP_598838.3 1: RRM_5

2: NP_058038.2 2: RRM_6

3: NP_001123624.1 3: RRM_1

4: NP_796052.2 4: Nup35_RRM_2

5: NP_056627.1 5: PWI

Cluster Membership Lists

These files are in plain text format, and are named based on the theme “mat X”, where X

represents the order of magnitude of E-value that was just deleted before that file was

generated. The file of the initial iteration (before the E-value threshold is used) is always

“mat 0.txt”, including cases where the start E-value parameter is specified to be lower

than the highest E-value in the HMMER data. These files provide the protein

membership of each cluster, as well as a listing of the domains present in that cluster. An

example of the file contents follows:

Cluster 1

Proteins:

NP_598838.3

Domains:

RRM_5, RRM_6, RRM_1, Nup35_RRM_2, PWI, zf-CCCH, RGS-like, DUF2785

Cluster 2

Proteins:

NP_058038.2

Domains:

RBD, RGS, GoLoco, PSD4

...

GEXF Files

These files are meant to be used in Gephi, and encode the node and edge data for the

bipartite graphs in a way very similar to XML encoding. They are also named according

to the same theme as that used for the cluster membership lists (“mat 0.gexf”, etc.).

Tier-Based Visualization

This GEXF file (“tiers.gexf”) visualizes the clusters by reducing each cluster to an

individual node, and displaying them in tiers, with each tier corresponding to an order of

magnitude of E-value, just as the cluster membership and associated GEXF bipartite

visualizations do. If an edge exists between clusters in adjacent tiers, it indicates that the

93

subsequent clusters “inherit” at least one of their protein members from the previous

clusters.

Newick Trees
These are a series of plain text files that each carry one of the Newick trees found in the

procedure. There are labelled and un-labelled versions of the trees. These files can be

easily imported into a Newick tree visualization program (TreeView was used for these

tests) for viewing.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-29-2016

	USE OF CLUSTERING TECHNIQUES FOR PROTEIN DOMAIN ANALYSIS
	Eric Rodene

	tmp.1469820721.pdf.xGiwh

