
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Exploring historical location data for anonymity
preservation in location-based services
Ge Toby Xu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Xu, Ge Toby, "Exploring historical location data for anonymity preservation in location-based services" (2007). Retrospective Theses
and Dissertations. 14878.
https://lib.dr.iastate.edu/rtd/14878

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14878?utm_source=lib.dr.iastate.edu%2Frtd%2F14878&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Exploring historical location data for anonymity preservation in location-based

services

by

Ge (Toby) Xu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Ying Cai, Major Professor

Wensheng Zhang
Ahmed Kamal

Iowa State University

Ames, Iowa

2007

Copyright c© Ge (Toby) Xu, 2007. All rights reserved.



UMI Number: 1447584

1447584
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

 by ProQuest Information and Learning Company. 



ii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. Background and Related Work . . . . . . . . . . . . . . . . . . 5

2.1 Location-based Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Location Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 4. Single Location Cloaking . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 5. Trajectory Cloaking . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Cloaking One Additive Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Cloaking K − 1 Additive Trajectories . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Selecting Additive Trajectory Candidates . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 6. Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Single location cloaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Trajectory cloaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.1 Effect of anonymity level required . . . . . . . . . . . . . . . . . . . . . 25

6.2.2 Effect of base trajectory length . . . . . . . . . . . . . . . . . . . . . . . 26

6.2.3 Effect of the number of historical trajectories . . . . . . . . . . . . . . . 28

CHAPTER 7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 30



iii

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



iv

LIST OF TABLES

Table 6.1 Traffic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 6.2 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



v

LIST OF FIGURES

Figure 3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.2 Footprint Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 4.1 Cmin must be inside Cb (K = 4) . . . . . . . . . . . . . . . . . . . . . 12

Figure 5.1 An example of K-anonymity trajectory . . . . . . . . . . . . . . . . . 16

Figure 5.2 Example of cloaking T0 with Ta . . . . . . . . . . . . . . . . . . . . . . 18

Figure 6.1 The map of Oldenburg loaded in generator . . . . . . . . . . . . . . . 23

Figure 6.2 Effect of anonymity requirement for single location cloaking . . . . . . 24

Figure 6.3 Effect of anonymity requirement . . . . . . . . . . . . . . . . . . . . . . 26

Figure 6.4 Effect of trajectory length . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 6.5 Effect of trajectory database size . . . . . . . . . . . . . . . . . . . . . 28



vi

ABSTRACT

We present a new approach for K-anonymity protection in Location-Based Services (LBSs).

Specifically, we depersonalize location information by ensuring that each location reported for

LBSs is a cloaking area that contains K different footprints—historical locations of different

mobile nodes. Therefore, the exact identity and location of the service requestor remain anony-

mous from LBS service providers. Existing techniques, on the other hand, compute the cloaking

area using current locations of K neighboring hosts of the service requestor. Because of this

difference, our approach significantly reduces the cloaking area, which in turn decreases query

processing and communication overhead for returning query results to the requesting host. In

addition, existing techniques also require frequent location updates from all nodes, regardless

of whether or not these nodes are requesting LBSs. Most importantly, our approach is the first

practical solution that provides K-anonymity trajectory protection needed to ensure anonymity

when the mobile host requests LBSs continuously as it moves. Our solution depersonalizes a

user’s trajectory (a time-series of the user’s locations) based on the historical trajectories of

other users.
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CHAPTER 1. Introduction

A major concern of the large-scale deployment of location-based services (LBSs) is the

safeguards of the client location data collected by service providers. To use an LBS, a user needs

to submit her location information. A person’s whereabouts, however, may imply sensitive

private information. For example, physical destinations such as medical clinics may indicate

a person’s health problems. Likewise, regular stops at certain types of places may be linked

directly to one’s lifestyles or political associations. Although the service users may be informed

of the policies regarding to the collection and distribution of their location data, the execution

of these policies is typically beyond the users’ control and relies solely on the service providers.

To prevent potential abuses of location data, a viable solution is to allow users to preserve

their anonymity in requesting LBSs. For this purpose, however, simply using a pseudonym is

not sufficient because a user’s location itself may reveal her real-world identity. For example,

if a reported location belongs to a private property, it is likely that the user is the owner of

the property. Once a subject is identified, all her visits to other locations may be disclosed.

This problem has motivated a series of research efforts on location depersonalization (e.g., by

Gruteser and Grunwald (11), Gedik and Liu (10), and Mokbel et al (21)). Existing techniques

employ a central anonymity server as a trusted proxy between mobile nodes and the providers

of LBSs. The anonymity server tracks the movement of mobile nodes. When a node requests an

LBS, the server computes a cloaking box that contains the client node and K − 1 other nodes,

and then uses this box as the client’s location to request the LBS. Converting an accurate

position into a cloaking box prevents a reported location from being linked to a subject with

a certain degree of anonymity protection – a cloaking box with K nodes inside provides K-

anonymity protection to the service user.
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Reducing location resolution has been shown effective in depersonalizing location infor-

mation. However, existing techniques compute a node’s cloaking box based on the position

of its current neighbors. Therefore, these techniques share several limitations. First of all,

all mobile nodes, regardless of whether or not they request LBSs, must report their location

frequently to the anonymity server in order for it to track their latest position. In reality,

nodes not needing LBSs may not be willing to spend their resources to help others maintain

their anonymity. Excessive location updates from a large number of mobile nodes also present

overwhelming communication and processing bottlenecks on the server side. In addition to the

practicality and scalability issues, another problem is that the sizes of cloaking boxes produced

by the existing approaches are highly dependent on the network density. When a node is in an

unpopulated area, its cloaking box can be very large since it needs to contain the node itself

and at least K − 1 other nodes to provide K-anonymity protection. A fine cloaking resolution

is critical for the quality of an LBS. An LBS server can retrieve and send back all query results

pertaining to a cloaking box, but this would incur additional computation and communication

costs.

The above limitations are not the most serious problem that arises from using neighbors’

position for cloaking. The most serious problem, in our opinion, is that this strategy is feasi-

ble only for depersonalizing an individual location instance, but not a time-series sequence of

them. Indeed, existing techniques are practically impossible to support anonymity for contin-

uous LBSs such as GM’s OnStar services (4), or general processing continuous nearest queries

(40) (41) and continuous range queries (42) (43) (44). Continuous LBSs require frequent lo-

cation updates from their clients. Simply ensuring each reported location is a cloaking box

containing at least K nodes does not give a user K-anonymity protection. This is due to the

fact that a time-series sequence of cloaking boxes forms a trajectory that may reveal the real

identity of the user if, for instance, it links to the user’s home and office. It may first appear

that one can confuse a trajectory by associating each cloaking box with a different pseudonym.

Unfortunately, using different pseudonyms, or simply not using identifiers at all, may not be

effective. Since successive location samples are highly correlative, they could be re-linked based



3

on a common trajectory using trajectory tracking methods (e.g., Multi-Target Tracking (22))

without the need to know any identifiers.

To preserve a node’s anonymity from its trajectory, one solution is to choose K nodes in

the first cloaking box, and then ensure these K nodes are included in all future cloaking boxes

generated for the user. Since the trajectory covers the moving paths of K different nodes, this

approach supports trajectory K-anonymity. It, however, does not work in many cases. Since

the K nodes may move in different directions, future cloaking boxes will become increasingly

large, and eventually unacceptable for any meaningful LBSs. Ultimately, it is untenable to

preserve a node’s future anonymity based on its current neighbors.

In this thesis, we investigate location depersonalization from a new perspective, aiming

at addressing the above limitations. Public areas like parks and highways are naturally de-

personalized spatial regions – they are not private property like house and office which can

reveal a subject’s identity; and such areas are characterized by a large number of visits by

different people at different times. In light of this observation, we propose using users’ foot-

prints, instead of their current positions, for cloaking. A footprint is defined to be a user’s

location sample collected at some time point. The more footprints a spatial region has from

different people, the less likely it can be correlated to identify a subject successfully. Thus, we

can cloak a node’s position based on its nearby footprints left by other people. Cloaking with

footprints makes it possible to prevent users not engaged in LBSs from having to report their

location. This strategy can also significantly improve the cloaking resolution, since a spatial

region can be exported as long as it has been visited by a certain number of different people.

In particular, it provides a practical means to support trajectory K-anonymity: Given a user’s

expected route, the anonymity server can cloak it with K − 1 historical trajectories collected

from other mobile nodes.

The main contributions of this work are as follows. We propose to depersonalize location

information using footprints, instead of the current positions of mobile nodes. We consider

both single location cloaking and trajectory cloaking. For the former, which depersonalizes

a user’s current position, we propose a polynomial-time algorithm that can find the minimal



4

bounding circle that bounds the user and at least K − 1 others. Up to date, there is only

one technique that considers minimizing cloaking area, and its complexity is exponential.

Trajectory cloaking deals with depersonalizing a user’s time-series of location samples. To our

knowledge, no practical solution can be found for this purpose in literature. We give a formal

definition of K-anonymity trajectory (KAT) and develop efficient algorithms for computing

such trajectories with cloaking resolution that is as fine as possible. The effectiveness of our

techniques is studied under various conditions using location data synthetically generated based

on real road maps.

The rest of the thesis is organized as follows. In Section 2, we give an overview of our

system model. We present techniques for single location cloaking and trajectory cloaking in

Section 3 and 4, respectively. The proposed techniques are evaluated in Section 5. We discuss

more related work in Section 6 and conclude the thesis in Section 7.
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CHAPTER 2. Background and Related Work

2.1 Location-based Service

The continuous advances in wireless technologies and positioning systems have created a

large number of online mobile appliances that are location-aware (2). The huge customer

base has attracted a strong commercial interest in location-based services (LBSs), which tail

information services according to their clients’ current location. According to the report in

IT Roadmap to a Geospatial Future (1), LBSs are expected to seamlessly and ubiquitously

integrate into our life. Some examples of LBSs are as follows:

• Traffic management: A user’s position information is tied to a map in order to offer

navigation and directions to specific addresses, gas stations, restaurants, and hospitals.

• E-alert: A user may receive a notification of sales from nearby shopping center, or a

warning of traffic jam ahead of his route.

• Safety guard: The administrator can monitor tourists traveling in dangerous terrain for

fast emergencies reaction.

• Gaming and entertaining: It is possible to provide some location-based ICQ services.

For example, a number of virtue treasures, each associated with a physical location, can

be created for a treasure-hunting game.

FCC’s Phase II E911 requires wireless carriers to provide precise location information within

50-100 meters for emergency handling. Today, many wireless carriers have leveraged such

information and provided their clients some kinds of LBSs such as transportation assistance.

In addition to the carriers, a large number of third parties have also started to offer LBSs
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such as GM’s OnStar (4) and NextBus (3). While there is no doubt about their values, LBSs

presents unique and heightened threats to individuals.

2.2 Location Privacy

Location privacy has been a significant concern since early 1990s (34) (35) (36) (37) (38).

Existing research addresses this issue from several fronts. On the legislation front, the legal

standards governing the collection and distribution of personal location data have been or are

in the process of being enacted in some countries. The European Union, for instance, has

introduced Directive 2002/58/EC (28), which requires explicit consent from users in order to

have their information collected. On the technical front, the Internet Engineering Task Forces’s

Geopriv (29) working group has developed a set of protocols and APIs for secure storage and

transferring of location information. On a personal level, location management was investigated

in (30) (31) (32) (33). The proposed frameworks allow users to control when and to whom

their location information can be released. Nevertheless, these approaches generally do not

work when location data are subject to risks such as potential misuse by insiders, unintentional

or mistaken disclosure, and access by unauthorized individuals.

The problem of location anonymity was first studied by Gruteser and Grunwald (11). As

an extension of the traditional K-anonymity model (27) (26) (20) (18) (19), they proposed to

reduce the accuracy of a user’s location information along spatial and/or temporal dimensions

for a certain level of anonymity protection. Specifically, spatial cloaking is used to ensure

that every location reported to a service provider is a cloaking area that contains at least K

nodes. If the resolution of a location is too coarse for quality services, temporal cloaking is

applied, i.e., delaying a user’s service request. When more mobile nodes come near to the

user, a smaller cloaking area can then be computed. This basic concept has inspired a series

of research publications. In (10), Gedik and Liu considered allowing users to specify their own

value of K and minimizing the size of the cloaking areas, a factor critical for the quality of

LBSs. The proposed CliqueCloak algorithm, however, incurs high computation overhead and is

appropriate only when the value of K is small. The techniques proposed in (21), (16) and (39),
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by Mokbel et al, Kalnis et al and Cheng et al, respectively, also support customization of K,+

but do not minimize the size of cloaking areas. An important contribution of these two works is

their consideration of query processing, i.e., how a location-dependent query can be processed

with a location of reduced resolution. While these techniques rely on a central anonymity server

which functions as a middleware in between service users and service providers, the work in (9)

by Chow et al assumes a decentralized mobile peer-to-peer environment. To request a service,

a user broadcasts a message to find K − 1 peers in its vicinity, and then uses the region that

contains all these K nodes as its cloaking area. Despite their differences, all these techniques

cloak a node’s position based on its neighbors’ location and guarantee K-anonymity protection

under the assumption that each location report is an independent event.

In their pioneering work (6), Beresford and Stajano investigated the challenges of hiding a

user’s moving trace and proposed an innovative concept called mix zone. A mix zone is defined

to be a spatial region in which a mobile node does not report its location. When there are

multiple nodes inside a same mix zone, they exchange their pseudonyms. After exiting the

mix zone, these nodes start to use new pseudonyms in location updates, making it hard for an

adversary to link incoming and outgoing paths of these nodes. While this approach relies on

a set of pre-defined spatial regions for pseudonym exchanging, the path confusion algorithm

proposed by Hoh and Gruteser in (14) allows mobile nodes to switch their pseudonyms when

their paths are close to each other, say, within some threshold. These approaches are not

designed to support anonymous uses of LBSs, since they report users’ true position to service

providers. Another technique designed for trace hiding was using false dummies investigated

in (17). In this scheme, each location submitted to a service provide is accompanied by

K − 1 false dummies, which are generated to simulate the movement of mobile nodes. By

making K − 1 faked traces, the trace of a service user is under K-anonymity protection. This

approach, however, cannot support anonymous uses of LBSs either. The adversary can identify

the dummy trace as a fake if a sample false dummy is located inside a non-residential region

(e.g. a lake), or the trace passes through multiple spatial regions that exclusively belongs to

different users. Under these circumstances, the user’s anonymity is compromised. The problem
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of trajectory anonymity is also investigated in (8) and (15). Their basic idea is to ensure all

cloaking boxes generated for a user include a common set of K − 1 other users covered by the

first cloaking box. As mentioned early, this strategy will make future cloaking boxes larger

and larger and eventually meaningless for LBSs.

In (12), Gruteser and Liu considered the problem of hiding sensitive areas (e.g., a night

club) visited by users from adversary. This work classifies areas as either sensitive or insensitive.

When a node is in a sensitive area, its location update is suppressed. Otherwise, it reports

its location, but reduces the location accuracy when moving close to some sensitive area.

Specifically, when the node is in a region around sensitive areas, it reports an area that contains

at least K sensitive areas as its current location. In this way, an adversary cannot find which

sensitive area the user actually enters. This work protects a user’s location privacy – an

adversary may be allowed to know a subject’s identity, but not the sensitive areas it visits.

This is different from the aforementioned location anonymity which protects user identity by

ensuring each cloaking area contains at least K users, rather than K sensitive areas.
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CHAPTER 3. System Overview

Figure 3.1 illustrates the overall system architecture, where an anonymity server is used

as a proxy agent for mobile nodes to receive LBSs. For LBSs that require user authentication

(e.g., for service charges), we assume anonymous authentication such as those proposed in

(13)(25)(23) is used. These schemes apply the concept of blind signature and allow a service

provider to verify a user’s legitimacy without having to request her true identity. Like other

existing techniques, we assume that the anonymity server is part of trusted infrastructures

managed by some cellular service provider, through which mobile users have access to wireless

communications.

The cellular service provider offers anonymization services as a value-added feature to their

clients, and supplies the anonymity server with the initial footprint database for cloaking. The

location samples in the database may be collected from clients’ regular phone calls. If such

an initial database does not exist, we assume a location sampling phase, during which mobile

nodes report their location periodically to the anonymity server. Unlike existing techniques,

such periodic location update is no longer needed after the sampling phase, which may last only

a short time period (e.g., a few days). More location data can be obtained from mobile nodes

in their requests of LBSs and will be subsequently added to the database to improve cloaking

resolution. Hereafter, we will use terms location sample and footprint interchangeably. Recall

that a trajectory is a time-series sequence of footprints collected from a same user. Thus, the

database can be considered as a trajectory repository.

Today’s localization technologies allow cellular service providers to determine the position

of a caller within a radius of 50 to 300 meters. In contrast, a GPS-enabled mobile device

can detect its own position more precisely, up to 10 meter accurate. Due to this imperfect



10

positioning, we use a spatial region, a circular region in particular, to represent each location

sample. A rectangle can also be used to represent a location sample. However, rectangles of

different shapes can have the same area, making it less desirable for cloaking.

Figure 3.1 System architecture

For efficient retrieval of location data, we index the footprint database using a simple grid-

based approach, as illustrated in Figure 3.2. We partition the network domain recursively into

cells in a quad-tree style. Unless a cell is already at its minimal size (our implementation sets

each cell to be at least 500× 500 meter2), it is split if the number of users who have footprints

inside it exceeds some threshold. For each cell, we maintain a cell table, which stores a list of

pointers that link to the trajectories which have at least one footprint that overlaps with the

cell. Specifically, each tuple of a cell table is a record of (uid, tlink), where uid is the ID of a

mobile node which traverses this cell, and tlink is a pointer that links to the node’s trajectory

information. Thus, given a cell, we can efficiently retrieve the trajectories that pass through

the cell.

Supporting an instant LBS: To request an instant LBS, a mobile node reports its

current location c and a desired anonymity level K to the anonymity server. In response, the

server computes a circular region that contains c and K − 1 footprints, each from a different

user, and exports this region to the provider of the LBS. Based on this location information,

the provider delivers the requested services (e.g., query results) to the anonymity server, which

then forwards to the service user.

Supporting a continuous LBS: To receive a continuous LBS, a user reports the anonymity
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Figure 3.2 Footprint Database

server a base trajectory T0 = {c1, c2, ..., cn}, where ci is a location sample on the trajectory

along which the user will move. For better quality of services, the user may choose to have

more location samples on the base trajectory. The user may also let the anonymity server gen-

erate the trajectory by giving a starting position and a final destination. Given an anonymity

level K and a base trajectory T0, the server selects from the footprint database K − 1 other

users’ trajectories, each having at least n footprints, and uses them to cloak T0. The cloaking

procedure will generate a K-anonymity trajectory (KAT) T = {C1, C2, ..., Cn}. By covering T0

and footprints from at least other K−1 nodes, T can provide the user K-anonymity protection.

A formal definition of KAT will be given later. After computing T , the server contacts the

provider of the requested LBS to start a service session. As the node moves along the base

trajectory T0, it reports to the server whenever it arrives at ci. In response, the server exports

the corresponding Ci to request the service on behalf of the user. When the service session

terminates, the location data reported by the service user is added to the footprint database

for future cloaking.
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CHAPTER 4. Single Location Cloaking

Existing techniques depersonalize a mobile node N ’s location by converting it into a spatial

region that contains N and at least K − 1 other nodes. To our knowledge, (10) is the only

one that considers minimizing cloaking area, a factor that is critical for quality LBSs. The

proposed algorithm, CliqueCloaking, needs to compute the clique graph and therefore is NP-

hard. Because of high computation cost, this algorithm is feasible only when K is small. In

this thesis, we present a novel polynomial-time algorithm that can find the minimal bounding

circle (MBC) that bounds N and at least K − 1 other nodes. To facilitate our discussion, we

use Cmin to denote this MBC, Ca a bounding circle that contains N and at least K − 1 other

nodes, and Cb the circle centered at N with a radius that is two times of that of Ca. Also,

given a circle C, we denote its radius as C.R. These notations are illustrated in Figure 4.1.

Our algorithm of searching Cmin is based on the following observation:

Figure 4.1 Cmin must be inside Cb (K = 4)

Theorem 1 Cmin must be bounded by Cb.

Proof 1 By its definition, Ca contains K nodes including N . Since Ca is a candidate of Cmin,
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Cmin must be no larger than Ca, i.e., Cmin.R ≤ Ca.R. Since both Cmin and Ca contain N , the

distance between any point in Cmin and N ’s position must not be larger than 2 · Ca.R. As a

result, Cmin must be inside Cb.

The problem is how to find a Ca with a small radius. This can be done in different ways,

depending on how the positions of mobile nodes are indexed. For instance, if R-tree is used, we

can find N ’s K − 1 nearest neighbors and use the MBC that bounds N and these K − 1 nodes

as Ca. Existing techniques (e.g., (24)) can find KNN at a cost of O(K log K). If a quad-tree is

used (e.g., see Figure 3.2), the following simple approach can be used to find a Ca. First, we

find the cell where N locates and mark this cell as the searching box. If the number of nodes

inside the searching box is less than K, we expand the searching box by including its adjacent

cells. This process is repeated until the searching box contains at least K nodes. Among these

nodes, we find K−1 nodes that are nearest to N and set Ca to be the MBC that bounds these

K − 1 nodes and N . This approach costs O(K)

After locating a Ca, we then determine Cb and retrieve all nodes inside Cb. Let S be the

set of these nodes and |S| the number of them. As the area of Cb is 4 times of that of Ca, the

number of nodes inside Cb is O(K). Given Cb and the set of nodes inside it, we now construct

the candidates for Cmin and then select the one that has the smallest radius as Cmin. Since

Cmin is the minimum circle that contains N and at least K − 1 other nodes, there must have

at least two nodes on the circle line of Cmin. Thus, we can classify Cmin’s candidates into two

categories.

A candidate in the first category has exactly two nodes on its circle line. In this case, the

two nodes must form a diameter of the candidate. Such candidates can be enumerated by

considering all possible pairs of the nodes inside Cb. Given a pair of nodes, we construct the

circle with the two nodes as its diameter. The circle is a valid candidate if it contains N and

at least K − 1 other nodes. Among all valid candidates, we find the one that has the smallest

diameter. Let this candidate be C. Given a set of nodes S, there are totally
(|S|

2

)
different

pairs of nodes. Thus, the computational cost in this step is O(K2).
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A candidate in the second category has at least three nodes on its circle line. Note that any

three of nodes can form a triangle and in a two-dimension domain (as long as they are not on

the same line), and a triangle can form only one circumscribed circle. Thus, we can enumerate

all possible triple nodes in S. For each triple, we construct the circumscribed circle formed by

the three nodes. If the circle contains N and at least K−1 other nodes, it is a valid candidate.

Again, among all valid candidates, we find the one that is smallest. Let this candidate be C ′.

Since the number of possible triples is
(|S|

3

)
, the computation cost in this step is O(K3).

Finally, we compare C with C ′, and the smaller one is Cmin. Since the total cost of the

entire process is O(K) + O(K2) + O(K3) = O(K3), the above algorithm finds Cmin in a

polynomial time. Its pseudo code is given in Algorithm 1.

Algorithm 1 FindMBC(N, K)

1: Sa ← N ’s K − 1 nearest neighbors
2: Ca ← MBC of all nodes of Sa

3: Cb.centre = N.pos

4: Cb.R = 2 · Ca.R

5: Sb ← all nodes inside Cb

6: Cmin = Ca

7: for any two nodes X and Y in Sb do
8: C ← the circle of which XY is diameter
9: if C contains N and at least K − 1 other nodes in Sb, and C.R < Cmin.R then

10: Cmin ← C

11: end if
12: end for
13: for any three nodes in Sb as X, Y , Z do
14: C ← the circumcircle of triangle XY Z

15: if C contains N and at least other K − 1 nodes in Sb, and C.R < Cmin.R then
16: Cmin ← C

17: end if
18: end for
19: return Cmin
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CHAPTER 5. Trajectory Cloaking

For continuous LBSs, a user needs to report a base trajectory T0 = {c1, c2, ..., cn}. In

response, the anonymity server will compute a new trajectory T = {C1, C2, ..., Cn} that can

provide the user K-anonymity protection. For this purpose, T must cover T0. In addition,

it must also cover footprints from at least K − 1 trajectories (from different users), which we

will refer to as additive trajectories. Let these trajectories be T1, T2, ..., TK−1, and Tj =

{a[j,1], a[j,2], · · · , a[j,mj ]}, where 1 ≤ j ≤ K − 1 and mj denotes the number of footprints in Tj .

We give a formal definition of K-anonymity trajectory (KAT) as follows.

Definition 1 T is a KAT of T0, iff for each circle Ci in T , the following conditions are

satisfied:

1. Ci covers ci in T0, i.e., ci ⊆ Ci;

2. Ci covers at least one footprint in each additive trajectory;

3. For any Ci and Ci+1, there exist two footprints a[j,x] and a[j,y] in each additive trajectory

Tj such that a[j,x] ⊆ Ci, a[j,y] ⊆ Ci+1, and x < y.

The first two conditions ensure that each circle in T covers at least K location samples,

each in a different trajectory. Given an additive trajectory Tj , it is not necessary to have all

of its footprints covered by T in order to provide K-anonymity protection to T0. Instead, we

just need to make sure that T covers at least n footprints that are in the same order as they

appear in Tj . The third condition in the above KAT definition is to guarantee this requirement.

Figure 5.1 illustrates an example of KAT, where K = 3.

Given a trajectory T = {C1, ..., Cn}, we define its resolution to be |T | =
Pn

i=1 Area(Ci)
n , where

Area(Ci) denotes the area of spatial region Ci. For quality of services, a KAT’s resolution
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Figure 5.1 An example of K-anonymity trajectory

needs to be as fine as possible. Given a database of N trajectories, there are
(

N
K−1

)
different

trajectory sets with cardinality K − 1. For each of these sets, its K − 1 trajectories can be

used as the addictive trajectories to cloak base trajectory T0. Given a set of K − 1 additive

trajectories, different orders of cloaking will also result in different KATs. Enumerating all

possible combinations allows us to find the KAT with the best cloaking resolution, but this

would require intensive computation. In the following subsections, we first discuss how to cloak

T0 with one trajectories, and then apply the proposed algorithm to cloak T0 with a set of K−1

trajectories. Finally, we discuss how to select a small set of trajectories for cloaking from a

potentially large number of trajectory candidates.

5.1 Cloaking One Additive Trajectory

Consider cloaking T0 with an additive trajectory Ta. Let T0 = {c1, c2, · · · , cn}, Ta =

{a1, a2, · · · , am}, where n ≤ m, and T = {C1, C2, · · · , Cn} be the cloaking result. For each

circle Ci in T , it needs to contain ci and at least one footprint in Ta. Thus, to minimize

cloaking area, we can set Ci to be the minimum bounding circle (MBC) that contains bi and

some footprint in Ta. When a footprint in Ta is selected to create the MBC for Ci, we call

this footprint Ci’s pivot. Because of the ordering constraint of KAT, not every footprint in Ta

can serve as Ci’s pivot. To circumvent this problem, we can create a set of pivots by selecting

n footprints from Ta and using them as pivots based on their index number as follows. Let

this set of n footprints be {ap1 , ap2 , ..., apn}, where p1 < p2 < ... < pn; then for all 1 ≤ i ≤ n,

api is used as Ci’s pivot. The cloaking trajectory generated by this approach must be a KAT.
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The first two conditions are satisfied because Ci is the MBC that bounds ci and its pivot, a

footprint selected from Ta. The third condition is also satisfied because the pivots included in

T are in the same order as they appear in Ta.

The challenge is how to select a set of pivots that can result in the best cloaking resolu-

tion. Given a set of pivots {ap1 , ap2 , ..., apn}, we have T = {MBC(c1, ap1), MBC(c2, ap2), ...,

MBC(cn, apn)}, where MBC(ci, api) denotes the minimum bounding circle that bounds ci and

api . To find T with the best resolution, we can find all different sets of pivots, and for each

set, compute the corresponding T ’s resolution. Since there are totally
(
m−1
n−1

)
different sets of

pivots, such exhaustive search may not be feasible in practice. To address this problem, we

develop a simple yet effective approach to generate pivots for each Ci, starting from i = 1.

For C1, we select its pivot from the following m − n + 1 candidates: a1, a2, ..., and am−n+1.

For each candidate, we compute the MBC that bounds this candidate and c1. The candidate

that results in the smallest MBC is then selected as C1’s pivot ap1 . Let ap1 be the footprint

selected as C1’s pivot, where 1 ≤ p1 ≤ m−n+1. Then, we select C2’s pivot from the following

m − n + 2 − p1 candidates: ap1+1, ..., and am−n+2. Again, for each of these candidates, we

compute the MBC that bounds this candidate and c2, and then select the one with the smallest

MBC as C2’s pivot. Suppose ap2 is selected as C2’s pivot, where p1 + 1 ≤ p2 ≤ m− n + 2. We

then select C3’s pivot from the following m − n + 3 − p2 candidates: ap2+1, ..., and am−n+3,

based on their corresponding MBCs (with c3). The same procedure is used to select the pivot

for each of the rest of the circles in T . The complexity of this heuristic algorithm is O(m).

When determining a pivot, it is possible that multiple candidates result in the same smallest

MBC. In this case, the one with the smallest index is chosen as the pivot. This would give

more candidates choices when selecting the next pivot. It is worth mentioning that the above

procedure selects each pivot from a certain range of footprints in Ta. For C1, its pivot is

selected from Ta’s first m − n + 1 footprints. For all i > 1, Ci’s pivot is selected the range

from api−1+1 to am−n+i. The pseudo code of the cloaking procedure Cloak(T0, Ta) is given

Algorithm 2. To illustrate this process, we use an example shown in Figure 5.2. T0 and Ta

have 4 and 9 location samples, respectively. For C1, its pivot can be selected from a1 to a6.
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Since MBC(c1, a2) is the smallest, a2 becomes C1’s pivot. For C2, we can then select its pivot

from a3 to a7. After selecting a4 as C2’s pivot, we proceed to select C3’s pivot, which has four

candidates ranged from a5 to a8. Note that a6 is chosen as the pivot although MBC(c3, a6)

and MBC(c3, a7) have the same size. As a result, C4 can have two candidates, a7 and a8, to

select its pivot.

Figure 5.2 Example of cloaking T0 with Ta

Algorithm 2 Cloak(T0, Ta)
1: p ← 0
2: for 1 ≤ j ≤ n do
3: M ←∞
4: for p < i ≤ m− n + j do
5: if M > Area(MBC(cj , ai)) then
6: M ← Area(MBC(cj , ai))
7: p′ ← i

8: end if
9: end for

10: Cj ← MBC(cj , ap′)
11: p ← p′

12: end for
13: T ← {C1, C2, · · · , Cn}

5.2 Cloaking K − 1 Additive Trajectories

With Cloak(T0, Ta) in place, we now consider how to generate a KAT for T0, given a

set of additive trajectories S. Let S = {T1, T2, ..., Ts}, where s ≥ K − 1, and let Ti =

{a[i,1], a[i,2], · · · , a[i,mi]}, where 1 ≤ i ≤ s and mi denotes the number of footprints in Ti. To
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generate a KAT for T0, we need to cloak T0 with K−1 additive trajectories. Clearly, choosing

different additive trajectories can have vastly different cloaking results. Even with a fixed set

of K − 1 additive trajectories, the order of cloaking can also affect the cloaking resolution of

the cloaking results.

To avoid exhaustive search, we propose two heuristic approaches, Linear and Quadratic.

The former incurs less computation costs, but the latter can lead to better cloaking results.

Linear works as follows. For each trajectory Ti in S, it calls Cloak(T0, Ti) to generate a cloaking

trajectory, which we will denote as T ′i . If T ′i has a better resolution than T ′j , we say Ti is closer

to T0 than Tj . The trajectories in S are then sorted based on their distance to T0 in ascending

order, and the first K − 1 trajectories (which are closest to T0) are selected as T0’s additive

trajectories. Let these sorted trajectories be T ′′1 , ..., T ′′K−1, where T ′′i is closer to T0 than T ′′j

for all 1 ≤ i < j ≤ K − 1. The K − 1 trajectories are then used to cloak T0 one by one

recursively. Specifically, T0 is first cloaked with T ′′1 . The cloaking result is considered as a new

base trajectory and cloaked with T ′′2 . The new cloaking result is then cloaked with T ′′3 and

so on so forth until all K − 1 trajectories are added. We call this algorithm Linear as it calls

Cloak(T0, Ti) s + K − 1 times. Its pseudo code is given in Algorithm 3.

Algorithm 3 Linear(T0, S)

1: {S = {T1, T2, ..., Ts}}
2: for 1 ≤ i ≤ s do
3: T ′i ← Cloak(T0, Ti)
4: calculate |T ′i |
5: end for
6: S′ ← Sort S in ascending order based on distance to T0

7: T ← T0

8: {Suppose S′ = {T ′′1 , T ′′2 , · · · , T ′′s }}
9: for 1 ≤ i ≤ K − 1 do

10: T ← Cloak(T, T ′′i )
11: end for
12: return T

In Linear, additive trajectories are selected based on their distance to T0. The distance

also determines the order of cloaking. This simple strategy falls short in some cases because

it does not consider the spatial relationships among the additive trajectories. This problem is



20

addressed by Quadratic at a higher computation cost. This scheme also has K − 1 iterations,

and in each iteration, it selects a new additive trajectory to cloak the trajectory, say T , which

is generated in the previous iteration. However, the selection of the new additive trajectory

is based on its distance to T , instead of T0. Initially, T is set to be T0. In each iteration, it

calls Cloak(T, Tj) for each Tj in S. Among all generated trajectories, the one with the best

resolution is set to be T , and the corresponding Tj is removed from S. After repeating this

cloaking and selecting process K − 1 times, T is output as T0’s KAT. In the above approach,

procedure Cloak(T0, Ta) is called (K − 1) · (s− K−2
2 ) times. The pseudo code for Quadratic is

given in Algorithm 4.

Algorithm 4 Quadratic(T0, S)

1: {S = {T1, T2, ..., Ts}}
2: T ← T0

3: for 1 ≤ i ≤ K − 1 do
4: for all Tj ∈ S do
5: T ′j ← Cloak(T, Tj)
6: calculate |T ′j |
7: end for
8: compare |T ′j | for all Tj ∈ S
9: T ′′ ← the trajectory that is closest to T

10: T ← Cloak(T, T ′′)
11: S ← S− T ′′

12: end for
13: return T

5.3 Selecting Additive Trajectory Candidates

In both Linear and Quadratic, the entire set of trajectories S is scanned in the process

of selecting K − 1 additive trajectories. Since the number of trajectories recorded in the

footprint database can be very large, it is necessary to create a small set of additive trajectory

candidates before starting a cloaking process. Obviously, only those trajectories close to the

base trajectory should be considered as the candidates. In our implementation, we use the

following approach to build a set of additive trajectory candidates given a base trajectory T0.

We first find out all cells that overlap with T0’s location samples. These cells are marked as
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searching boxes. According to their cell tables, we then retrieve the trajectories that traverse

through all of these cells. If the total number of these trajectories is less than K − 1, we

expand the search scope by merging each searching box and its adjacent cells together as a

new searching box. For the new searching boxes, we retrieve the set of trajectories that pass

through them. This process is repeated until the cardinality of the trajectory set is at least

K − 1, which are then chosen as the additive trajectories to generate KAT.
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CHAPTER 6. Performance Study

For performance study, we have implemented a prototype of the proposed system. For

single location cloaking, we compare the performance of the proposed technique using footprints

and the traditional scheme using real-time locations; For trajectory cloaking, we evaluate the

proposed two trajectory cloaking approaches, namely Linear and Quadratic. For comparison

purpose, we have also implemented a native approach, referred to as Baseline hereafter, which

uses the current position of mobile nodes for cloaking. This scheme sets a node N ’s first

cloaking circle to be the MBC that contains the node and at least K − 1 others. Among the

nodes in the circle, Baseline selects K−1 nodes that are nearest to N as N ’s companies. From

then on, each time N makes a location update, Baseline finds the MBC that contains N and

these K − 1 companies and reports this MBC as N ’s cloaking circle.

We modify the Network-based Generator of Moving Objects (7) to generate mobile nodes

and simulate their movement on the real road map of Oldenburg, Germany, a city about

15 × 15km2 (Figure 6.1). We extract four types of roads from the road map, primary road

(interstate expressway), secondary road (state road), connecting road and neighborhood road

as defined in census TIGER/Line (5). In our simulation, mobile nodes change their speeds

at each intersection based on a normal distribution determined by the road type. The mean

speeds and the standard deviations of moving speeds for each road type are listed in Table 6.1.

We generate a footprint database that contains a certain number of trajectories with randomly

assigned user IDs. These trajectories are indexed using the grid-based approach discussed in

the system overview section.

We are mainly interested in the potential impact of a cloaking technique on the quality of

LBSs. For this purpose, we select cloaking range, defined to be the average radius of cloaking
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Figure 6.1 The map of Oldenburg loaded in generator

circles in a KAT, as our performance metric.

Table 6.1 Traffic parameters

Road type Mean speed Standard deviation

Primary 100km/h 20km/h

Secondary 60km/h 15km/h

Connecting 45km/h 10km/h

Neighborhood 30km/h 5km/h

6.1 Single location cloaking

For single location cloaking, we compare the performance of two schemes. The proposed

scheme that cloaks a service user’s position using footprints, which we refer to footprint-based

cloaking (FC), and the traditional approach based on the actual positions of mobile nodes in

the service user’s neighboring area, which we refer to neighborhood-based cloaking (NC). In

each simulation, we generated 5000 mobile users and randomly distributed them in the map.
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We randomly selected 200 mobile users, each submits a service request. We varied the value

of K from 5 to 100, and investigate the impact of anonymity requirement (i.e., the value of K,

as requested by users) on the performance of the two techniques. The performance results are

plotted in Figure 6.2. It shows that the neighborhood-based cloaking performs much worse

than the footprint-based approach. Furthermore, when K increases, the average cloaking range

under the traditional approach increases dramatically, while the average cloaking range under

the proposed scheme is much less sensitive to the change of K. For the former, larger K means

more mobile users should be included in the cloaking circle. Since the users are randomly

distributed in the network, the size of the circle must be larger. For the latter, the number

of footprints in an area is much more than the number of people inside. The server always

be able to find enough different footprints in a user’s neighboring area. As we can see, even

when the K increase to 100, the cloaking resolution of the footprint-based cloaking is still finer

than the resolution of the neighborhood-based cloaking that K = 5. Thus, the footprint based

scheme can effectively support the secure use of LBS with high anonymity requirement.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5  20  40  60  80  100

C
lo

ak
in

g 
ra

ng
e 

(m
)

Anonymity degree required

Neighborhood-based
Footprint-based

Figure 6.2 Effect of anonymity requirement for single location cloaking
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6.2 Trajectory cloaking

For trajectory cloaking, we evaluate the performance of the two proposed techniques and

the Baseline. In each simulation, we generate a set of LBS requests. Each request contains a

user’s ID, the start and destination of a travel plan, and a required anonymity degree. The

start and destination are randomly selected from the map, and the fastest path between them

is picked as the user’s expected route. We select a location sample every 100 meters along the

route and these samples form the user’s base trajectory. Other parameters used in our study

are given in Table 6.2. In the following subsections, we report how the performance of the

three techniques is affected by various factors.

Table 6.2 Experiment settings

parameter range default unit
Number of users 5000 5000 unit

Anonymity level 10 - 20 15 unit

Trajectory database size 100K − 300K 200K unit

Base trajectory length 3K − 8K 5K meter

Service request number 200 200 unit

Minimum cell size 50× 50 50× 50 meter2

6.2.1 Effect of anonymity level required

In this study, we investigated the impact of anonymity requirement on the performance

of the three techniques. The footprint database used in this study contains 200,000 trajecto-

ries. We generated 200 service requests, each having a route of 5000 meters with 500 meters

deviation. The value of K is varied from 10 to 20. The performance results are plotted in Fig-

ure 6.3. When K increases, the average cloaking range under all schemes increases, as shown

in Figure 6.3 (a). However, Baseline always results in the largest cloaking ranges, about 10

times more, as compared to the other two. Given a service user, Baseline needs to ensure that

all cloaking circles generated for the user include a common set of K nodes. Since these nodes

may move on different directions, the cloaking range becomes increasingly large. When K is
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larger, the cloaking results also deteriorate quicker. As for the other two schemes, Figure 6.3

(a) shows that Quadratic always outperforms Linear. This, however, is achieved at a more

computation overhead.

Figure 6.3 (b) shows the average cloaking range on different types of roads. The primary

and secondary roads are popular. A small space on such roads may have a large number of

footprints from different users. Thus, the cloaking range is not very sensitive to the value of K.

As the figure shows, the corresponding two curves are almost flat. In contrast, the connecting

roads and neighborhood roads are less popular and have a much less number of trajectories

passing through them. When K increases, the average cloaking range increases sharply, since

a cloaking trajectory may have to cover different roads in order to guarantee a sufficient level

of anonymity protection. In reality, a user’s route typically covers different types of roads, and

a large portion of the route is on highways. Since it is the cloaking circles along these popular

areas that dominate the average cloaking range, cloaking with footprints allows users to select

a large K for anonymity protection while maintaining good cloaking results.
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6.2.2 Effect of base trajectory length

In this study, we investigated the impact of length of base trajectories on the performance of

the three techniques. The footprint database used in this study contains 200,000 trajectories.
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In each simulation run, we set K = 15 and generated 200 base trajectories. The average length

of these base trajectories is varied from 3000 meters to 8000 meters. The performance results

are shown in Figure 6.4. Under all three schemes, the average cloaking range increases as

the trajectory length increases, as shown in Figure 6.4 (a). However, Baseline performs much

worse as compared to its counterparts. It is worth mentioning that the cloaking range under

this scheme increases sharply as the base trajectory length increases. This again convinces that

cloaking with neighbors’ location is untenable for anonymity protection in continuous LBSs. As

for Linear and Quadratic, both are little sensitive to the base trajectory length. As explained

in the previous study, when a large portion of a user’s trajectory is on highways, the cloaking

circles on the highways determines the average cloaking ranges. Since our simulation uses the

fastest path between a start and a destination as a user’s route, when the user’s base trajectory

becomes longer, the increased portion is most likely on the the highways. Figure 6.4 (a) also

shows that Quadratic consistently outperforms Linear. In popular areas, base trajectories and

their corresponding additive trajectories usually overlap each other, so the cloaking order does

not have much impact on the cloaking results. Figure 6.4 (b) again shows that the average

cloaking range on popular roads is much smaller than that on unpopular roads. Also, as

base trajectories become longer, the cloaking range increases on unpupular roads, but remains

almost constant on popular roads.
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6.2.3 Effect of the number of historical trajectories

This study investigates the impact of the number of trajectories in the footprint database.

We varied the number of trajectories in the database from 100,000 to 300,000. For each

simulation, we generated 200 base trajectories, each averaged at 5000 meters with a deviation

of 500 meters. We set K = 15 for each service request. The performance results are plotted

in Figure 6.5. It is shown in Figure 6.5 (a) that the curve for Baseline is flat. This is not

a surprise since this scheme uses only the current position of mobile nodes for cloaking. As

for Linear and Quadratic, both have better cloaking results when the database contains more

trajectories. Clearly, more historical trajectories means more choices in selecting additive

trajectory candidates for cloaking. With the same anonymity level, it can then find enough

additive trajectories by searching in a smaller range for a base trajectory. Thus, the generated

KATs have a smaller cloaking range. Since base trajectories can be added to the database

for future cloaking, our proposed techniques can generated better and better cloaking results

as more and more footprints are collected. This feature makes them especially attractive

for large-scale anonymization services. Figure 6.5 (b) shows that the increase of the number

of historical trajectories has a significant impact on the average cloaking range on unpopular

roads, but not on popular roads. On the expressway or state roads, there is a sufficient number

of footprints for cloaking, even when the database contains as few as 100,000 trajectories. In
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contrast, for the unpopular roads, adding some new trajectories could increase their popularity

substantially.
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CHAPTER 7. Concluding Remarks

Personal location data can be correlated with restricted spaces such as home and office

addresses for subject re-identification. This is probably the most practical and economic way

for an adversary to identify the anonymous users of LBSs, which can cover a global wide area

with a large number of clients. To address this problem, we depersonalize users’ location based

on historical location data. For the users of sporadic LBSs, we ensure each location reported

to their service providers has been visited by at least K different people. For the users of

continuous LBSs, we ensure each trajectory reported has been traversed through by at least

K different people. The idea makes it much less costly to support anonymous uses of LBSs as

evidenced in our performance study.

Nevertheless, several interesting research problems arise from exploring historical location

data for anonymity protection. For instance, to cloak a trajectory, we should also consider

selecting the additive trajectories of mobile nodes with similar moving speeds during similar

time spans to further prevent an adversary from concluding what historical trajectories may

have been used. We also plan to investigate on-the-fly cloaking to provide anonymity protection

when a user needs to take a significantly different route after submitting the initial trajectory

for cloaking. Simply cloaking the new route may jeopardize the user’s anonymity if the two

trajectories contain footprints from different sets of users.
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