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CHAPTER 1. Introduction

Sensor networks are networks of small devices used for sensing and recording information

about environmental changes. Applications of sensor networks include civilian applications

(i.e. fire detection in forests [54], monitoring volcano eruptions [52], etc) as well military

applications such as battlefield surveillance [2]. Due to the fact that sensor networks operate

unattended for long periods of time, security protocols are required to protect the information

broadcast through the network. As the sensor nodes are resource constrained, new security

protocols have been specially designed to protect those networks.

Establishing the correctness of the security protocols has been a daunting task. Current

techniques for verification are classified under two categories: simulation and formal methods.

While simulation can detect some errors in the security protocol implementations, simulators

do not cover all possible behaviors of the implementation, thus some subtle errors might not

be discovered in the simulation process. Formal methods such as model checking [15] have

solved this problem by verifying that a property is satisfied against an abstract specification

(model) of the security protocol, thus covering all possible behaviors of the model.

There are four problems with model checking that make it hard to apply in the verification

of sensor network security protocols. Firstly, building models is a time consuming task that may

take more time than implementing the system itself [22]. Secondly, building the models required

for the verification requires expertise in modeling languages, which may prevent domain experts

from attempting such tasks [45]. Thirdly, the abstraction required to build the model may

abstract some of the details of the implementation that may contain security flaws, which in

turns will go undetected [5]. Finally, there is no guarantee that the abstract specification of

the protocol is actually implementing the intended behavior of the protocol. So, even though
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verifying the model can show that the protocol is secure, the implementation of the protocol

may still contain some flaws [5].

This work addresses these problems. In this thesis, I present our framework Slede for

automatic formal verification of sensor network security protocol implementations written in

nesC [18] 1. Slede does not require upfront model construction thereby significantly easing

the task of sensor network developer. Instead, a skeleton model is automatically extracted

from the nesC implementation of the security protocol. This extracted skeleton model is then

automatically composed with intrusion models and desired network topologies to create a

complete verifiable model. The key technical contributions of our work are:

• An automated technique for extracting a skeleton model of the protocol from its nesC

implementations,

• a light-weight language design to semi-formally describe the protocol specification,

• an approach for customizing the skeleton model of the protocol with the help of the proto-

col specification and inbuilt intrusion detection models to generate a complete verifiable

models, and,

• a technique for mapping the results of verification back to the domain terms.

The main challenge in this work was to overcome the state space explosion problem. Our

annotation language deals with this problem by providing necessary information about the

protocol specification to the intruder model generator, which uses this information to generate

a smart intruder, thus decreasing the state space.

We validated the framework Slede by using it to verify implementations of two sensor

network security protocols. The framework was able to confirm known flaws in these two

protocols.

Our approach is sound and complete within bounds. In other words, if the framework

returns a fault scenario in the protocol for a certain network topology and a given size, then
1These ideas were first proposed and discussed in our publication [23]. This thesis is a revised and an

extended version of this paper.
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there is indeed a fault in such a network. Otherwise, no faults in the protocol are present for

this network topology and given size or less (if the verifier halts).

1.1 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 1: The sensor networks are often deployed unattended to monitor and record

environmental changes. Security protocols have been designed to protect these networks.

Different verification methods ranging from testing, simulation and formal methods have been

used to ensure that security protocols are satisfying their goals. This chapter presents a brief

overview of the problem of verifying security protocols.

Chapter 2: This chapter gives an introduction about sensor networks, their applications

and the need to secure them. Model checking as a verification technique is also described in

this chapter.

Chapter 3: Discussion about existing approaches for verifying security protcols is pre-

sented in this chapter. Different works on verification from abstract specification as well as

verifying real code through model extraction are also discussed.

Chapter 4: The detailed problem definition for which this thesis proposes a solution as

well as motivation for verifying the sensor network security protocol implementation as opposed

to verify the specification are described in this chapter.

Chapter 5: Our proposed framework Slede for automating the verification of the sensor

network security protocol implementations is presented in this chapter. With the help of

information about the protocol such as message structure and topology presented using our

annotation language, Slede extracts a verifiable Promela model from the implementation. This

chapter describes the proposed framework and the annotation language in details.

Chapter 6: This chapter describes the results of verifying the sensor network security

protocols directly from the implementation using our proposed framework. The implementa-

tions of two sensor network security protocols were verified using our framework. Verification

results from the extracted models demonstrate the effectiveness of our proposed work.
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Chapter 7: This chapter concludes the thesis. The problems of verifying security protocols

from the abstract specification and the benefits of verifying the implementation of the protocols

automatically using our proposed framework are discussed here. The chapter also presents

future work such as extending the framework to include verification of the network lifetime,

introduction of the node compromise model and optimization techniques to reduce the state

space.
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CHAPTER 2. Background

A brief discussion on sensor networks and model checking is presented in this chapter.

2.1 Sensor Networks

A sensor network is a collection of small size, low power and low cost sensor node that have

limited storage, computation and communication capabilities. The nodes are often operated

unattended to monitor and record information about environmental changes. The applications

of sensor networks fall under two categories: civilian and military. Examples of civilian appli-

cations include fire detection in forests [54], habitat monitoring [33], etc. Military applications

include battlefield surveillance, battle damage assessment, targeting, etc [2].

The operating environment of sensor networks is often hostile, thus security protocols are

required to ensure secure communication between sensor nodes. Due to the low power, commu-

nication and storage capacity of the sensor nodes, securing the sensor network is challenging.

With sensor nodes of battery power as low as 1 joule per cubic mm [51], current cryptographic

protocols are often unusable. Therefore, new security protocol have been implemented to fit

the sensor nodes capabilities (see [8] for a survey).

2.2 Model Checking

In model checking, the system to be verified is represented as a finite-state model M, a

model that represents all possible scenarios of the system behavior. Given a property ϕ, the

verifier checks all the paths of the model M for any branch that violates the property. If

no branch in the model violates this property then the system is said to satisfy the property
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(denoted as M |= ϕ). Otherwise, the verifier outputs the branch that has violated the property,

known as the counterexample.

The main challenge in applying the model checking verification technique is the state ex-

plosion problem [50]. When the number of states in the model increases beyond a certain

limit, the verifier is unable to go through all of the branches of the model and thus may never

halt. Many approaches have been designed to reduce the state space of the model (i.e. partial

order reduction [3, 19, 21], bit-state hashing [24]), yet the state explosion problem remains the

greatest challenge when applying model checking technique.
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CHAPTER 3. Related Work

In this chapter we discuss previous and current work in the field of specification and veri-

fication of security protocols.

3.1 Specification and Verification Techniques

Security protocols specification methods range from informal narrations of the messages

exchanges to formal assertions of protocol properties [1]. The problem with describing the

security protocol using natural language is that though it is easy, it lacks rigor. The same

protocol could be easily interpreted in different ways when read by different people. The most

well known and influential approach for formally specifying and verifying security protocols is

the BAN logic, developed by Burrows, Abadi and Needham [10]. The key idea is to reason

about the state of beliefs among principals in a system.

A number of language-base approaches for specification of security protocols have been

developed. The common authentication protocol specification language (CAPSL) [38] is one

of the most visible work in this area. The problem CAPSL was to solve is that for every

verification mechanism for security protocols, the protocol has to be specified in terms of the

specification language required for this mechanism. The idea behind CAPSL was to create a

unified specification language where all different specification languages are translated to it,

thus working as an intermediate language.

There is a significant body of research on verifying security protocols. Meadows developed

the NRL protocol analyzer for the analysis of cryptographic protocols [36]. The NRL protocol

analyzer was used to find flaws in a number of cryptographic protocols including selective

broadcast protocol by Simmons [47], Resource Sharing Protocol by Burns and Mitchell [9],
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re-authentication protocol by Neuman and Stubblebine [40], etc. Longley and Rigby also

developed a tool and demonstrated a flaw in a banking security protocol [32]. Kemmerer [26]

used general-purpose formal methods technique as tools to verify cryptographic protocols.

For a detailed summary of verification techniques, please refer to a survey by Rubin and

Honeyman [46], Meadows [35], Gritzalis et al. [48], and a more recent survey by Buttyan [11].

3.2 Verification of Security Protocol Implementations

The closest work related to our approach is by Bhargavan et al. [5] and by Goubault-Larrecq

and Parrennes [22]. Bhargavan et al. [5] present an approach for verifying protocol implemen-

tations written in F# using ProVerif [6], a theorem prover as the underlying mechanism. Our

work is different in two dimensions: first, we are verifying protocol implementations written in

nesC, and second, we use a model checker as the underlying technology.

Goubault-Larrecq and Parrennes [22] present an approach for verifying protocol implemen-

tations in C. Their approach models secrecy properties as reachability properties of the C

implementation and analyzes these properties. A simple pointer analysis technique is used to

keep the verified model as close as possible to the actual implementation. Unlike our approach

that provides support for the entire nesC language, this approach is useful only for C imple-

mentations; however, the insights described by Goubault-Larrecq and Parrennes [22] could be

used to enhance the underlying verification technique for our framework.

Kothari et al [27] present their tool FSMGen for extracting finite state machines from

TinyOS programs. They apply symbolic execution in order to deal with the event-driven

nature of TinyOS, and then apply predicate abstraction to reduce the size of the generated

model; however, the goal of their work is different from ours. The main goal of their approach

is to derive the state machine from TinyOS applications to infer user-readable high-level rep-

resentation of the TinyOS program that can be used for automatic program verification (race

conditions, etc). Our framework, in addition to the model extraction, is able to generate

intruders, merge them with the extracted model and verify the resulting model for security

breaches.
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Tobarra et al. [49] propose an approach for verification of sensor network security protocols

using model checking. In their approach, they verify the models of the protocols written in

HLPSL [12] modeling language using the model checking tool Avispa [4]. They were able to dis-

cover attacks in two security protocols; however, unlike Slede, they verify the protocols against

models written manually, which does not provide any guarantee that the implementation of

the protocol is correct.
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CHAPTER 4. Problem Definition

Establishing the correctness of security protocol implementations continues to be a daunt-

ing task as their complexity continue to increase. In the past, even widely-studied security

protocols are shown to have faults that are detected much later [10, 47, 36].

Verifying sensor network security protocol implementations is even harder. The reason

behind this is that these implementations are developed for a severely resource constrained

environment. Efficiency and code size are more likely to weigh over readability and under-

standability, which in turn increases the likelihood of inconsistencies and errors.

The demand for robust performance in unattended deployment scenarios in hostile envi-

ronments makes this problem more severe, which necessitates uncovering any errors as early in

the development process as possible because on-site bug-fixes and updates are often impossible

or, at the very least, prohibitively costly. Therefore, detecting and removing errors from sensor

network security protocol implementations is extremely important.

4.1 Verification using Testing and Simulation

The variety of methodologies that have been suggested for verification may be classified

under two broad categories, simulation and formal methods. Functional simulation of the

implementation using simulators such as TOSSIM [29] and/or test runs of the protocol imple-

mentation on sensor network test beds are the primary techniques used within the research

community to verify implementations due to its simplicity and scalability. However, exhaustive

simulation is often impractical, and the likelihood that these tests will uncover subtle errors is

diminishing.

For instance, let our goal be to detect routing loops in an implementation of the AODV (Ad-
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hoc On Demand Distance Vector) protocol [42], a loop-free routing protocol for ad-hoc networks

that guarantees that the network is always free of loops. As the protocol has no mechanism

to detect or recover from loops, testing the implementation (as well as the specification) of

the protocol is necessary, otherwise the protocol will fail [16]. While testing may detect some

routing loops, there is no guarantee that the test cases have detected all routing loops. An

incomplete test case can easily miss one possible execution of the protocol where the routing

loop lies. Similarly, simulating such protocol implementation cannot ensure that all routing

loops have been discovered, because the simulator does not necessarily traverse all possible

executions of the protocol.

To avoid such problems of having some behaviors uncovered by testing or simulation, formal

methods such as model checking have emerged as verification techniques that promise to verify

against all possible behaviors.

4.2 Model Checking vs Simulation/Testing

Verification from abstract specifications using techniques such as model checking has been

used to find flaws in cryptographic protocols [34] (see [37] for a survey). The main benefit of

model checking over verification techniques like simulating using TOSSIM and manual inspec-

tion is that the model verified by the model checker covers all possible scenarios of the behavior

of the system. Unlike simulation that does not provide exhaustive coverage, verification using

model checking gives a more thorough analysis of the system by checking satisfiability of the

requirement through every branch of the model representing the system. For instance, in the

example of verifying AODV protocol for routing loops, since the model checker will go through

all possible executions of the protocol, the model checker should be able to detect all routing

loops if there are any, as opposed to simulation and testing where they may not discover them

due to the possibility that some possible executions of the protocol might go unverified.
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4.3 Problems in Applying Model Checking

Applying model checking technique for verification, however, requires non-trivial efforts

primarily because model checking tools often require a specification (model) of the system un-

der verification. This specification is written in a specialized language. Learning this language

itself can be a daunting task. This task is further complicated by the impedance mismatch

between the implementation language and the modeling language. For example, while the

dominant implementation language for sensor network applications (nesC) uses an event-based

paradigm, an example modeling language (Promela) uses message-driven paradigm. Moreover,

as described in Chapter 1, constructing a model from an implementation of the protocol may

not be desired because of the time consumed to build the models, the effort required to learn

the modeling language, the possible discrepancy of behavior between the model and implemen-

tation as well as the flaws that might go undetected due to the abstraction required to build

the model.

To illustrate the problem with building the model required for applying model checking,

we describe in this section the verification of an example sensor network security protocol, the

polynomial pool based pairwise key establishment protocol [31].

The polynomial pool based pairwise key establishment protocol includes two phases: sys-

tem initialization before network deployment and pairwise key establishment after deployment.

Before deployment, the network controller picks n symmetric bivariate polynomials fi(x, y)

(i = 0, · · · , n − 1); every sensor node with ID A is preloaded with m < n univariate polyno-

mials fik(A, y) (k = 0, · · · ,m − 1), which are shares of m out of n aforementioned bivariate

polynomials.

After deployment, if neighboring nodes A and B have shares derived from the same bivariate

polynomial, for example, f0(A, y) and f0(B, y), they can directly establish fi(A,B) = fi(B,A)

as their pairwise key. Otherwise, A and B will find one or more helping nodes I1, I2, · · · , Is

such that, each pair of adjacent nodes on the chain A, I1, I2, · · · , Is have shares derived from

the same bivariate polynomial, and thus can set up a pairwise key. Then, A picks a new key,

encrypts it with the pairwise key shared with I1, and sends it to I1. I1 and the following nodes
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1 event uint8_t* Channel.receive(uint8_t *msg){

2 uint16_t node_s ,node_d;

3 uint16_t key[4],keys[4],keyd [4];

4 uint8_t cks[2],ckd [2];

5 uint8_t i,j,type;

6 bool same ,sames ,samed ,cp;

7 ...

8 // every sensor that received the msg

9 // checks itself

10 if((type ==4)&&( node_s !=sID )&&( node_d !=sID)) {

11 msg [5+ss+ss] = msg[5+ss+ss]-1;

12 sames = check(msg +5+ss ,secret ,cks);

13 samed = check(msg+5,secret ,ckd);

15 if(( sames ==1)&&( samed ==1)){

16 // node_my send *cks *shares to node_s

17 j=cks [1];

18 i=ckd [1];

19 call ComputeKey.compute(

20 (uint8_t *)& secret[j],node_s ,( uint8_t *)keys);

21 call ComputeKey.compute(

22 (uint8_t *)& secret[i],node_d ,( uint8_t *)keyd);

23 // generate a random number

24 key [0] = call Random.rand ();

25 key [1] = call Random.rand ();

26 key [2] = call Random.rand ();

27 key [3] = call Random.rand ();

28 // encrypt key [0] with keys and keyd separately

29 call Primitive.encrypt(

30 (uint8_t *)keys ,( uint8_t *)key ,( uint8_t *)keys);

31 call Primitive.encrypt(

32 (uint8_t *)keyd ,( uint8_t *)key ,( uint8_t *)keyd);

33 msg [0] = 5; // type5: send path key

34 memcpy(msg+1,( uint8_t *)&sID ,2); // src node

35 memcpy(msg+3,( uint8_t *)&node_s ,2); // dest node

36 msg [5] = ckd [0];

37 memcpy(msg+6,( uint8_t *)keyd ,8);

38 msg [14] = cks [0];

39 memcpy(msg+15,( uint8_t *)keys ,8);

40 if(sendflag ==0) {

41 call Channel.send(node_s ,msg);

42 sendflag = 1;

43 }

44 ...

45 }

46 }

47 ...

48 }

Figure 4.1 A snippet of the polynomial pool based pairwise key establish-
ment protocol implementation [31]

in the chain uses the same approach to secretly transmit the new key hop-by-hop towards B.

This way, a pairwise key can be established between A and B.

A part of the nesC implementation of the polynomial pool based pairwise key establishment

protocol is shown in Figure 4.1. This part is responsible for the path discovery. First, we can

see that the implementation is much more complicated compared to the abstract description

of the protocol. Even though the manual inspection and mathematical analysis of the abstract

specification of the protocol might ensure security of the protocol, the implementation of the

protocol may not accurately implement the abstract protocol, thus leaving room for subtle

errors that can be exploited by adversaries. Moreover, verification of the implementation

using simulators like TOSSIM [29] or using testbeds may not exhaustively test all paths in the

protocol implementation, thus leaving room in the untested paths for possible attacks.

A model for this protocol in the Promela language is shown in Figure 4.2. This model can

be verified by the model checker Spin [25]. One challenge in building such model is to emulate

the physical characteristics of sensor networks in the model that plays a key role in verification.

For instance, to emulate the wireless channels, the receiver of the message should not prevent

other sensors from receiving it as well.

If Promela’s inbuilt construct for sending and receiving message is used to emulate sending
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1 do

2 /* Receiving a msg*/

3 :: channel.containsMsg ==1 ->

4 atomic {

5 msg.src = channel.msg.src;

6 msg.dest = channel.msg.dest;

7 msg.info = channel.msg.info;

8 ...

9 }

10 if

11 :: msg.type == 4

12 && msg.src == agent_id

13 && msg.dest == agent_id ->

14 ...

15 /* Non -determinism for

16 emulating random call*/

17 if

18 :: key [0] = 1;

19 :: key [0] = 2;

20 :: key [0] = 3;

21 ...

22 fi;

23 /* same for key[1], key [2]... */

24 ...

25 /* Sending message */

26 atomic{

27 channel.msg.src = msg.src;

28 ...

29 }

30 :: else -> ...

31 fi;

32 od;

Figure 4.2 Promela model for the code in Figure 4.1

and receiving message in this protocol, the message will be removed from the channel when

a receiver receives the message. Thus, a modified version of receiving like the one used in

Figure 4.2 (lines 3-9) is needed. Furthermore, some mechanism to emulate collision and mu-

tual exclusion is also needed. Here the atomic construct of Promela is used to ensure these

properties. This construct ensures that all statements between line 5 and 8 are executed as an

atomic transaction.

4.4 Model Extracting from Implementation

The moral of the story is that, even though model checking allows us to conduct more

rigorous verification compared to simulation and test-beds, a simple error in building the

model can easily deviate the behavior of the model from the intended behavior.

An approach that provides technique for automatically extracting a model from protocol

implementation and verifies them using existing model checkers seems to solve these problems.

Once the automatic extraction approach is verified to be correct, the models extracted by it

are guaranteed to faithfully represent the implementation. Thus there are no inconsistency

issues between the model and the protocol implementation during the model construction.

Such models can be kept synchronized with the actual implementation by a simple regener-

ation of the model after the implementation has changed. Such regeneration could be as simple

as compiling the protocol implementation and can also be incorporated into the compilers.

Furthermore, such approaches make the benefits of rigorous formal verification technique
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available to a developer without requiring them to learn the intricacies of formal techniques

and their specification languages, which in turn significantly reduces the overhead of protocol

implementation verification.

Our approach is an example of such technique. In the next chapter, we describe our

framework for verifying nesC implementations of sensor network security protocols.
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CHAPTER 5. Approach

Our framework provides automatic verification of sensor network security protocols by

extracting models from the protocol implementation. In addition, the framework automatically

generates intruder models that are necessary for verification of the security protocols. It is

built on top of the nesC compiler version 1.1.1 [39] and uses the Spin model checker [25] as

the backend.

Figure 5.1 Overview of Slede

The overview of Slede is shown in Figure 5.1. The framework takes the source code of

the protocol as input. In order to verify a protocol implementation, besides the source code,

the framework requires a small amount of extra information such as the structure of messages

used in the protocol, a deployment topology, and properties that need to be verified about

the protocol. This information is provided in a different file with extension sld. The gener-

ated protocol model is merged with the generated intruder model and then verified using the
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Spin model checker [25]. If there is a violation of the protocol objective, the counterexample

generated by Spin is translated into nesC statements using the counterexample translator.

In this chapter, we describe the annotation language required for protocol verification from

implementation as well as the main components Slede: the Protocol Model Generator, the

Intruder Model Generator and the Counterexample Translator.

5.1 Annotations in Slede

Verification of security protocols requires the presence of a principal that acts maliciously

to ensure that the protocol satisfies its goals with the presence of malicious behavior. In order

to automatically generate an intruder that behaves maliciously, the framework requires some

information about the protocol. Please note that the framework does not infer the protocols

from the nesC code (i.e. the framework does not infer the message sequencing of the protocol

from the implementation). What the framework does is verify that the implementations of the

security protocols satisfy their goals in the presence of malicious behavior.

In order to convey such information to Slede to generate the malicious behavior, we de-

veloped an annotation language for describing such information required by our framework.

This language is also used to describe the security goals against which the protocol should

be verified as well as some information required to bound the verification process such as the

network topology and the number of iterations of the protocol.

In this section, we describe the annotation language for Slede. The description includes

syntax, a small example, and informal semantics of the constructs.

5.1.1 Abstract Syntax

The abstract syntax of our annotation language is shown in Figure 5.2. A verification

configuration (〈V〉) consists of a sequence of message declarations (〈mdecl〉*), followed by

the message type mapping (〈tmap〉), followed by the bound on the number of iterations of

protocol execution (〈iter〉), followed by a sequence of node definitions (〈ndef〉) that specifies

the topology, followed by the set of objectives (〈obj〉). The objective is the property that is to
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〈V〉 ::= 〈mdecl〉* 〈tmap〉 〈iter〉 〈ndef〉 〈obj〉;
〈mdecl〉 ::= message 〈mtype〉 mapsto 〈t〉 { 〈term〉* }
〈term〉 ::= private* 〈tname〉 mapsto 〈f〉 ;
〈tmap〉 ::= msgtypes mapsto 〈t〉.〈f〉 { 〈mmap〉* }
〈mmap〉 ::= 〈d〉:〈mtype〉;
〈iter〉 ::= iteration:〈d〉;
〈ndef〉 ::= node 〈n〉 { 〈rdef〉* }
〈rdef〉 ::= 〈n〉;
〈obj〉 ::= objective 〈oname〉 { (〈o〉 ;)* }
〈o〉 ::= 〈condition〉 | ! 〈o〉 | (〈o〉) | 〈o〉 && 〈o〉 | 〈o〉 ‘||’ 〈o〉 | 〈o〉->〈o〉
〈condition〉 ::= 〈intruder〉* 〈mname〉.〈iname〉.〈fname〉(〈form〉*)
〈intruder〉 ::= Intruder:

〈form〉 ::= 〈mtype〉 | 〈d〉

where
m, n ∈ N , the set of node names

mtype ∈ MT , the set of message types
tname ∈ {sender, receiver, data}

e, f ∈ F , the set of field names in implementation
c, d ∈ I, the set of integers

oname ∈ O, the set of objective names
mname ∈ MN , the set of module names in implementation
iname ∈ IN , the set of interface names in implementation
fname ∈ FN , the set of function (command/event)

names in implementation

Figure 5.2 Abstract syntax for the core annotation language

1 message Data mapsto IntMsg{

2 sender mapsto src;

3 receiver mapsto dest;

4 data mapsto info;

5 private data mapsto authen;

6 }

7 message Ack mapsto IntMsg{

8 sender mapsto src;

9 receiver mapsto dest;

10 }

11 msgtypes mapsto IntMsg.type {

12 1: Data;

13 2: Ack;

14 }

15 node 0 { 1; }

16 node 1 { 0; }

17 objective Auth{

18 Intruder:SensorM.Send.send(Data)->

19 !SensorM.Send.send(Ack)

20 }

Figure 5.3 An Example Verification Configuration

be verified about the protocol with respect to the specified configuration. We explain message

declarations, node definitions, and other pieces of the syntax in the following subsections.

In the concrete syntax, the verification configuration is defined in the file of extension sld

as shown in Figure 5.3. The special words such as message are not keywords; they only have

special meanings in this context.

5.1.2 Message declarations

A verification configuration in Slede’s annotation language may contain a sequence of mes-

sage declarations that represent messages exchanged between nodes. A message declaration

has exactly one message type (〈mtype〉) named in the header message, followed by the key-

word mapsto, followed by 〈t〉, which is a structure defined in the implementation that is used

for exchanging messages between principals. The mapsto clause establishes a correspondence

between the protocol specification and implementation.

A message declaration may contain a sequence of terms (〈term〉*). A 〈term〉 is a term
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name, which can be one of the special words {sender, receiver, data}, followed by the keyword

mapsto, followed by a field 〈f〉, which is a field in the structure defined in the implementation

that is used for exchanging messages between principals. The types of fields that are mapped

to each other should be the same. If the term mapping starts with the word private, then

this field is the Message Authentication Code (MAC) used for authenticating the message. In

this case, the intruder checks first if it has the authentication key for this message. If it has it,

then it modifies on the message and sends it; otherwise it just saves it. If the term mapping

does not start with private, then the intruder can simply read the content of the field.

An example message declaration is given in Figure 5.3 (lines 7-10), where a message type

Ack is defined. This message type in specification is mapped to the structure IntMsg in the

implementation. The example defines that a message of this type will contain two integer fields

representing the sender and the receiver of the acknowledgement. These fields are mapped to

fields src and dest of the structure IntMsg.

The message declaration Data in Figure 5.3 (lines 1-6) is an example of a message including

a MAC for which the intruder needs a key (field authen in line 5). Similar to Ack, this message

is also mapped to the structure IntMsg in implementation. This example shows that two

different message types may be implemented using the same structure in the implementation.

We show in Section 5.1.3 how to distinguish different message types that are mapped to the

same message structure in the implementation. The way to read this message declaration is

“Data message contains sender address, receiver address and authenticated data”.

5.1.3 Differentiating between Message Types

One common approach in implementing protocols in nesC is that only one message struc-

ture is used for all different types of messages used in the protocol. To differentiate between

different types of messages, usually one field of the message structure in the implementation

is used to identify the type of the received message. In the annotation language, this field is

referenced using the msgtypes special word, followed by mapsto, followed by 〈t〉, which is a

structure defined in the implementation that is used for exchanging messages between princi-
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pals, followed by the field f responsible for identifying the type of messages, followed by the

mapping (〈mmap〉) that maps values of the field 〈f〉 to the message types 〈mtype〉s.

In Figure 5.3, we can see that both message declarations Data and Ack are mapped to

the same structure IntMsg. The field type of the structure IntMsg (lines 11-14) is the field

responsible for identifying if the type of the message is either Data or Ack (where the value of

type will be either 1 or 2 respectively).

5.1.4 Topology

The major challenge in extracting a model from the implementation is to generate a model

of small number of states as possible. If the number of states (also known as state space)

increases beyond a certain limit, the model checker will not be able to verify all the model

and may never halt. This problem is known as the state explosion problem, which is a major

challenge when applying the model checking technique. The number of states is directly

proportional to the possible executions of the protocol.

To avoid the problem of state explosion, our current prototype allows for verifying the

protocol with one topology at a time. This way, we are reducing the execution possibilities (as

opposed to checking that every broadcast message was received by all sensors if verification

is done against all possible topologies), which reduces the number of generated states. The

annotation language allows the user to define the topology of the network against which the

protocol will be verified.

To define the topology, every node n is declared using the special word node, followed by

rdef, which defines the reachable nodes to n.

In lines 15-16 of Figure 5.3, we define the nodes to be involved in the protocol using the

special word node. After the node name, the nodes to which the node is connected are stated.

In this example, we have a linear topology between nodes 0 and 1. Our framework allows the

intruder to listen to all the wireless channels, thus there is no need to include the intruder in

the topology.

Even though the topology specified is static, our intrusion model allows mimicking dynamic
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topologies. We discuss how this is possible in the description of the intruder model in details

in Section 5.3.1.

5.1.5 Number of Iterations

The sensor network security protocols are usually intended to run for as long as the resource

constraints of the motes can handle. In other words, most of the protocols (and sensor network

applications in general) tend to put no bound on the number of executions of the protocol,

leaving the protocol to run as much as the motes can survive.

While it is possible to implement such behavior, verifying such infinite system is not possible

in model checking. The main reason is simply that infinite executions will lead to an infinite

model, thus leading to the state explosion problem described earlier. Therefore, a bound is

required to make the model finite.

We chose to make the bound as the number of firings the mote’s timer is triggering. The

user should specify how many timer firings represent one iteration of the protocol execution. To

define the timer bound, the user has to specify how many timer firings represent one execution

iteration using the special word iteration. In case there is no timer used in the protocol

implementation, this bound is not necessary and should not be specified. For instance, in the

example in the figure, there was no timer used so we did not need to add the iteration.

5.1.6 Objectives

An objective is a linear temporal logic formula (LTL) [44] with some additional syntax.

An objective can be a literal, or a negated objective (!〈o〉) enclosed in parenthesis ((〈o〉〈)〉),

or opening and closing brackets followed by an objective (〈o〉).

An objective may also consist of two sub-objectives combined by logical and (〈o〉 && 〈o〉),

logical or (〈o〉 ‘||’ 〈o〉) or implication (〈o〉->〈o〉). These operators have the same meanings as

their LTL counterparts and they are translated accordingly.

A 〈condition〉 allows objectives to be expressed in terms of commands and events in the

protocol implementation. A 〈condition〉 can either describe an action done by an intruder or
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a legitimate node. If the action is done by an intruder, then this is represented using the

Intruder special word, otherwise it is a legitimate node, so the 〈condition〉 starts directly

with the module name where the function (command/event) is implemented (〈mname〉). This

is followed by the interface name of the function (〈iname〉), followed by the function name

(〈fname〉) that may take arguments (〈form〉). The arguments can be either a normal argument,

or in the case that the command is for sending, it can be one of the message types declared in

the annotation (〈mtype〉).

In lines 17-20 of Figure 5.3, the objective named Auth is that if the intruder sends a message

of type Data, then any legitimate node should not send a message of type Ack in return. The

intruder is described using the Intruder special key word. The intruder can use the functions

used by legitimate users for sending as shown. For specifying legitimate nodes activity (line

19), we directly write the module name SensorM where the function of sending was called,

followed by the interface of sending Send, followed by the command send. Note that the

parameters can be of the message types declared in the annotation language (in this example

messages were declared in lines 1 and 7).

5.2 Protocol Model Generator

The protocol model generation phase replaces the original code generation phase of the nesC

compiler on top of which our framework is built. It translates the protocol implementation

into a Promela model.

There are many challenges in extracting a model from the implementation. In this section,

we describe the most interesting challenges in the model extraction and how Slede deals with

it.

5.2.1 State Space Explosion

As mentioned in Section 5.1.4, the major challenge in extracting the model from the im-

plementation is to maintain the size of the model as small as possible, otherwise the verifier

may never halt while verifying the model, a problem known as the state space explosion.
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In order to generate a model with small state space, we follow two approaches. The

first approach is to translate only the application level code. This way, only the code that

implements the behavior of the protocol is translated. This is done by Mapping TinyOS

modules to Promela constructs. For example, let the protocol to be verified contain a call

to command Send that is required to send a message. When the nesC compiler compiles

this protocol, it compiles along with it all the necessary modules required to actually send

the message through the physical layer of the sensor. As our goal is to verify security of the

protocol, and not how the sending modules are behaving, whenever there is a call to the Send

command, our Promela code for sending a message is inserted in the model.

The second approach to avoid the state explosion is to put boundaries on the generated

model. Our current prototype requires a bound on the number of nodes involved in the

protocol, the topology of the network as well as the number of execution iterations of the

protocol that can be described using our annotation language discussed in Section 5.1.

5.2.2 Discrepancy between Implementation and Modeling Languages

The modeling languages are usually less complex than implementation languages. As their

goal is to model the behavior of the system to be verified, modeling languages tend to exclude

many of the constructs provided by the implementation languages that are required to actually

implement the system. For instance, constructing a message in nesC may require some C

operations like memcpy or pointer arithmetic, while in modeling language there are no similar

constructs.

In order to solve this problem, we make use of the embedding code feature provided by Spin

version 4.0 and higher. Using the Spin’s c code construct, we can embed C code in the Promela

model. Since nesC is a subset of C language and since nesC compiler translates the nesC code

into C, our prototype overcomes the problem of discrepancy between the implementation and

the modeling languages by embedding the protocol implementation at the application level in

the model.



24

5.2.3 Translating TinyOS Specific Features

To ensure accurate verification results of the security protocol implementations, the ex-

tracted model should have the same semantics as the implementation. In addition to the fact

that nesC is based on C, there are specific features related to TinyOS that need to be trans-

lated the exact way they behave. These specific features are tasks and events. We describe

how we translate both of them to Promela.

5.2.3.1 Tasks

Tasks are functions whose execution is deferred till the scheduler has nothing to run. When

a component posts a task, the task is placed in a queue. The scheduler checks the queue when

it is idle to run the queued tasks. Tasks run to completion and do not preempt each other.

As mentioned earlier in Section 5.2.1, Slede only translates application level code in order

to reduce the size of the generated model. Since the scheduler is not part of the protocol (it

is part of TinyOS), we need to emulate the behavior of the scheduler in the generated model.

In order to do so, we enumerate at compilation time all the tasks in the implementation.

Whenever a component posts a task, the number assigned to the corresponding task at the

compilation time is added to the queue of the corresponding node. At the end of the execution

of the function (command/event) that posted the task, the framework executes the tasks whose

corresponding numbers were added to the queue in FIFO order.

5.2.3.2 Events

TinyOS event handlers (i.e. firing Timer) are signaled from within the code of TinyOS.

Unlike user-defined event handlers that are explicitly signaled in the protocol implementation

which can be easily translated as a function call, TinyOS event handlers are triggered from

code that is out of scope of the protocol, thus not of interest to the framework to translate.

In order to deal with this problem, we create a Promela process (which is similar to a thread)

that contain all the TinyOS event handlers. Every event handler is triggered when its guard

expression is true. For instance, when calling Timer.start to start the Timer, the guard
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expression for the event handler of Timer.fired is set to true, thus the timer is fired. Similarly,

the event handler for receiving a message is triggered whenever there is a sent message in the

environment. Since the event handlers are run under a different thread than the protocol,

they can interrupt the normal execution of the protocol at any point of time, which is the way

events handlers behave in the real protocol execution.

5.3 Intruder Model Generator

In order for the generated intruder model to behave maliciously, the intruder should be able

to receive messages, read their content and send false data. To be able to do so, the intruder

needs to know the types of messages exchanged between principals in the protocol and the

structure of the message i.e. which fields in the message represents information about sender,

receiver, data, etc so that it can read and alter the message contents.

For example, imagine a simple protocol that consists of two message types: ping and ack,

each of which contain a source and destination address and a sequence number. In order to

attack this naive protocol, the intruder may intercept the messages to the destination, exchange

the source and destination address and reply back with this modified message as one possible

attack. In order to automatically generate this attack the intruder needs to be aware of the

structure of these message types in the implementation so that it can retrieve and manipulate

fields in the messages that are exchanged by the protocol e.g. sender and destination address.

The framework can get this information from the annotation language through which the

message structure is analyzed.

5.3.1 Current Intruder Model

The intruder model that the framework currently generates follows the Dolev-Yao style [14].

An intruder in this model can read all messages and modify on their contents. However, if the

message is authenticated using a MAC, then the intruder does not modify on it except if it

has the MAC key; otherwise, if the intruder modifies on the content without knowing the key,

the recipient will easily detect that the message was modified during its transmission. The
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intruder can know if the message is authenticated using MAC through the information about

message formats described using our annotation language (described in Section 5.1).

The intruder can also save messages in order to replay them. It can save only one message

of each message type used in the protocol. So, for a protocol of message types ping and ack, the

intruder can only save one message of type ping and one of type ack at a time. This limitation

is necessary to limit the state space, otherwise, with no bounds on the number of messages to

be saved by the intruder, the model will always be infinite.

The capability of the intruder to drop the packets allows mimicking the dynamic topology

property of the sensor networks. Even though the users are required to specify a topology

before the verification, an intruder that does not allow a message to be received by the receiver

(which can happen in real life by transmitting to destination at the same time the message

source is sending the message) can represent a message that runs out of power, thus modifying

on the network topology. In a sense, a sensor not receiving a message or not being able to

make its message be received by its destination is an isolated node (failed node). Thus, once

a node in the network fails, the protocol deals with this by trying to find different paths to

connect the network. This way, our intruder model with its capability of dropping messages

allows verification against dynamic topologies.

Even though our framework currently supports the generation of intruder models according

to Dolev-Yao model, our framework can easily be extended to provide generation of other

intruder models such as node capture attack according to different patterns. As Figure 5.1

shows, we intend to allow the users of our framework to add new intruder patterns to be used

for generating intruder models. This extensibility feature would help achieve more thorough

verification against different types of attacks.

5.4 Verification and Counterexamples

The generated model containing the model of the protocol implementation, the intrusion

model and the environment models are given as inputs to the Spin model checker [25], which

verifies whether the model violates the objectives stated using our annotation language. If the
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objectives are satisfied, the protocol is verified as secure. Otherwise, Spin produces a counter

example that violates the security objectives. This counter example is then translated to a

sequence of nesC statements. The protocol verification may not terminate if the Promela

model is too large.
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CHAPTER 6. Evaluation

In this chapter, we evaluate our framework prototype. We then describe verification of two

sensor network security protocol implementations using our framework. For both protocols,

the framework was able to find flaws in the implementation. All experiments described in this

chapter were conducted on a Dell PowerEdge 1850 with dual 3.8 GHz processors and 2 GB

RAM. The version of SPIN used for these experiments was 4.2.7.

6.1 Verification of the One-way Key Chain Based One-hop Broadcast

Authentication Scheme

6.1.1 Protocol Overview

The one-way key chain based one-hop broadcast authentication scheme was proposed by

Zhu et al. [55]. During the initialization step of this protocol, every node (denoted as A)

generates a one-way key chain of certain length; that is, kn, kn−1 = h(kn) , · · · , k1 = hn−1(kn),

k0 = hn(kn), where h(.) is a secure hash function.

The protocol then proceeds as follows: A transmits the first key of the key chain (i.e., k0) to

each neighbor separately, encrypted with the pairwise key shared between A and this neighbor.

When A broadcasts its first message m0, the message is authenticated with k1; that is, m0

is broadcast with message authentication code (MAC) h(m0, k1). After the broadcast, k1 is

released alone or with the next broadcast message, which is authenticated with the next key in

the key chain (i.e., k2). To generalize, the ith message mi is broadcast along with h(mi, ki+1),

and ki+1 is released after the broadcast.
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6.1.2 Known Flaw in the Protocol

As pointed out by Zhu et al. [55], the adversary can launch the following attack: First,

the adversary prevents a neighbor of A (denoted as B) from receiving the packet from A

directly. This can be achieved by, for example, transmitting to B at the same time when A

is transmitting message mi and when A is releasing authentication key ki+1. Second, after

knowing ki+1, the adversary sends a modified packet to B while impersonating A. Note that,

the adversary has already got the released authentication key before transmitting the modified

message to B, hence B will accept the modified packet. To defend against an outsider (not

a neighbor of A) from launching the above attack, the original authentication scheme can be

enhanced as follows: A shares a cluster key KC with all its neighbors; when A broadcasts

message mi, the MAC of the message will be h(mi, ki+1XORKC). However, the defense will

not be useful if the adversary has obtained KC by compromising a neighbor of A.

Verification using Slede To test if our prototype can automatically detect the above

attack, we verified an implementation of this protocol with respect to a property informally

stated as follows: “if a malicious node sends data, the receiver should detect that the sender

is an intruder.”

The verification setup including the verified property is shown in Figure 6.1 using our

annotation language. Two message structures are defined, KeyMsg that sends the keys, and

DataMsg that sends the message authenticated using the next key to be broadcast (the field

MAC responsible for authenticating the message is declared as private as shown in line 11).

Note that the field info in the implementation message structure IntMsg holds the key in the

first message type KeyMsg (line 4) and also holds the data for the message of type DataMsg

(line 9). This is one of the main reason message structure mapping is required since the fields

of the message structure in the implementation can be reused in different message types.

The field type in the message structure has a value of 1 or 2 corresponding to messages of

type KeyMsg and DataMsg respectively (lines 12-15).

To limit the size of the extracted model, we state the number of timer firings that represent
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1 message KeyMsg mapsto IntMsg {

2 sender mapsto src;

3 receiver mapsto dest;

4 data mapsto info;

5 }

6 message DataMsg mapsto IntMsg {

7 sender mapsto src;

8 receiver mapsto dest;

9 data mapsto info;

10 private data mapsto MAC;

11 }

12 msgtypes mapsto IntMsg.type {

13 1: KeyMsg;

14 2: DataMsg;

15 }

16 iteration: 3;

17 node 0 { 1; }

18 node 1 { 0; }

19 objective Auth {

20 Intruder:SensorM.Send.send(DataMsg) ->

21 !SensorM.Leds.greenOn ();

22 }

Figure 6.1 Verification Configuration for One-way Key Chain Based
One-hop Broadcast Authentication Scheme [55]

one protocol execution (line 16). In this case, we have 3 timer firings, which is the minimum

number of firings that makes one complete execution of the protocol. For the first timer firing,

the node sends the key, then the message authenticated with the next key in the key chain is

sent in the second timer firing, and finally the key with which the message was authenticated

is sent in the third timer firing, thus making a one complete protocol execution.

The objective (lines 20-22) uses the special word Intruder to represent the intruder model

generated by the framework as described in Section 5.1. Notice that the intruder can send

messages using the command Send.send(), which makes describing the objective easier since

it is in terms of commands/events of the protocol implementation. In our sample nesC imple-

mentation for this protocol, the legitimate nodes turn their green leds on when they receive

a message from an authenticated source. Thus the objective ensures that a legitimate node

should not turn its green led on if a message of type DataMsg is sent (intercepted and modified)

by an intruder, otherwise the intruder would have successfully impersonated a legitimate node

and fooled the legitimate node.

Our approach was able to detect this attack. The performance results for verifying this

protocol are discussed in Section 6.3.

6.2 Verification of the µTesla protocol

6.2.1 Protocol Overview

µTESLA [43] was proposed for securing broadcast in sensor networks. This protocol as-

sumes a network model that consists of a broadcast sender (e.g., base station) and multiple
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1 message Timestamp mapsto IntMsg {

2 sender mapsto src;

3 data mapsto info;

4 }

5 message DataMsg mapsto IntMsg {

6 sender mapsto src;

7 data mapsto info;

8 data mapsto timestamp;

9 private data mapsto MAC;

10 }

11 message KeyMsg mapsto IntMsg {

12 sender mapsto src;

13 data mapsto info;

14 data mapsto timestamp;

15 }

16 msgtypes mapsto IntMsg.type {

17 1: Timestamp;

18 2: DataMsg;

19 3: KeyMsg;

20 }

21 iteration: 3;

22 node 0 { 1; }

23 node 1 { 0; }

24 objective Auth{

25 Intruder:SensorM.Send.send(DataMsg) ->

26 !SensorM.Leds.greenOn ();

27 }

Figure 6.2 Verification Configuration for µTesla protocol [43]

receivers (e.g., ordinary sensor nodes). On receiving a broadcast message, each receiver needs

to verify whether the message is really from the sender and not tampered by any intermedi-

ate nodes. The correct working of the protocol relies on the assumption that all principals

(base station and ordinary sensor nodes) are loosely time synchronized. An implementer of

the µTESLA protocol may not fully understand the necessity of implementing secure time

synchronization for the security of the protocol, which is not explicitly specified in the descrip-

tion of the protocol itself. Hence, the implementer may choose to implement a simple but not

secure time synchronization protocol as the foundation of the µTESLA. As elaborated in the

following, our approach can automatically detect such flaws in the implementation.

6.2.2 Verification Using Slede

The verification resulted in the scenario shown in Figure 6.3. For time synchronization, node

A sends out its time stamp t0, which is intercepted by some malicious node I. Node I changes

the time stamp to be t0-2, and then forwards it to node B. Since the time synchronization

protocol is attacked, the clock in node B will not get synchronized with node A. Later, when

node A broadcasts message m1 (which is authenticated with key k1) at time t1, the message is

intercepted by node I who will not further forward it. At time t1+1, when node A releases key

k1, the key is also intercepted and held by node I. Right after that, node I forges a message

m1’ authenticated with key k1, and forwards it to B. Then, node I releases key k1 at t1+2.

Upon receiving k1, node B will accept message m1’ since it can be verified with k1 and the

time stamp of the message (i.e., t1) is within the valid scope for acceptance.
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Figure 6.3 Assumption Violation in µTesla Implementation

Figure 6.4 Performance in terms of time

6.3 Performance

In this section, we describe the performance of our framework in terms of number of states

generated, memory used and time taken to detect the flaws. In Table 6.1, the properties of
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Figure 6.5 Performance in terms of states

Figure 6.6 Performance in terms of memory

the sample implementations we used to verify the two protocols are displayed. The implemen-

tation of the µTesla protocol has more lines of code and more number of fields in the message

declarations than the one-hop broadcast authentication scheme.

In the performance charts in Figures 6.4, 6.5 and 6.6, when we verified the one-hop au-

thentication scheme against linear topology, we can see that once the flaw is detected, there is

no significant increase in the number of generated states, consumed memory or time taken to
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Lines of Code Message Declara-
tions

Message Fields

One-hop Broadcast Authentication
Scheme

180 2 4

µTesla 196 3 4

Table 6.1 Implementation properties of the protocols

verify even with the increase of number of nodes. The reason is that once the flaw is detected

for a certain topology, the model checker does not find a problem detecting the same flaw for a

larger number of nodes on the condition that the topology is the same. On the other hand, if

the topology is changed and is more complex, then the generated model becomes larger, which

leads to more time taken by the verifier to detect the flaw. For instance, when we changed the

topology for a non-linear one and used 5 nodes to verify the one-hop authentication scheme,

the model generated had 511,010 states, and the verifier consumed 1306.1 MB of memory and

took 16.4 seconds to detect the flaw (not shown in the figure) as opposed to 84,368 states,

219.1 MB of memory and 2.6 seconds taken when verifying the same protocol implementation

for the same number of nodes but with a linear topology.

The effect of topology on the size of the generated model is clear when we verified the µTesla

protocol. Up to 4 nodes (including the base station), the topology is that the base station is

connected to every node in the network. We can see that with the increase of number of

nodes that are connected to the base station, the number of states and memory consumed is

dramatically increasing. The reason is that having every node connected to the base station

create a significant amount of interleaving executions between the sensors that are receiving

every message from base station and process them at the same time. Starting with 5 nodes,

we kept only 3 nodes as neighbors to the base station, that’s why the number of states and

memory consumed did not increase dramatically as when we were adding new neighbors to the

base station.

We have concluded from our experiment that there are four main criteria that affect the

performance of our framework: the lines of code of the protocol implementation, the number

of message declarations, the number of fields in the messages exchanged and the topology of

the network used in the verification.
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CHAPTER 7. Conclusion

In this work, we presented our verification framework Slede for sensor network security

protocol implementations. The key advantages of the framework is that it automatically ex-

tracts verifiable models from nesC implementations and allows automatic generation of protocol

specific intrusion models from lightweight annotations. We described some of the challenges

in verifying directly from the implementation and techniques taken to overcome them. Our

framework confirmed the flaws in two sensor network specific protocols.

Our approach is sound and complete within bounds, i.e. if there is a fault scenario in the

protocol, the framework will detect it and if the framework terminates for a network topology

of given size declaring no faults, then there are no faults in this network or networks of smaller

size using the given intruder model.

Security in sensor networks is an important problem. Our approach brings the advantages

of explicit-state model checking to the sensor network applications, thereby paving the way to

improve their security at a relatively small cost.

7.1 Future Work

In this section, we describe different avenues that we plan to explore in the future.

7.1.1 Verify Unbounded Networks

A typical sensor network can be constituted of hundreds to thousands of nodes, with no

bound on the number of nodes that can join the network. As our underlying technology for

verification is based on model checking, there must be always a limit on the number of nodes

when verifying the security protocols, otherwise a large number of nodes will lead to a huge
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amount of possible executions, thus leading to a state explosion as described in Section 5.2.1.

Besides, even if the limit put on the number of participating nodes is large, there is no guarantee

that the security goals are satisfied for networks with larger number of nodes. For instance,

if the limit on the number of nodes is n, what is the guarantee that the protocol is secure

for network of n + 1 nodes? Therefore, we need a way to ensure that the security goals are

satisfied regardless of the number of nodes in the network.

In order to solve such a problem, we plan on modifying the underlying technology of our

framework by applying an approach similar to regular model checking [7], where the protocol is

represented as a regular language. Regular model checking is used for verifying parameterized

systems, systems which do not have a bound on the number of participants. The idea behind

regular model checking is to verify the regular language of the system, which ensures that the

property is satisfied regardless of the number of participants of the system.

We are going to follow this approach by extracting the regular language of the protocol

from its implementation. The alphabet of this language will be Linear Transition Systems

(LTS) where the action of every sensor can be represented as a LTS. For instance, for a simple

protocol with a node sending a message of type Ping, several nodes forwarding the message

to the destination node, a destination node replying with a message of type Ack, and several

nodes forwarding the reply to the source, there will be 3 LTS’s: one for sending the message

Ping, one for forwarding any type of message, and one for sending the message Ack. So the

regular language for such a protocol will be L = ping frwd∗ ack frwd∗. Malicious activity

will also be presented as LTS. Every action that the intruder is capable of performing will be

a separate LTS.

Our framework, taking the implementation as input, will generate malicious nodes that

perform as intruders in terms of the implementation language. Therefore, having the imple-

mentation of both the legitimate nodes and the malicious nodes (generated with the help of our

annotation language), our framework will generate the LTS of the intruder and the legitimate

nodes, and extract the regular language of the protocol with the presence of the malicious

intruder. So, the generated regular language will represent how the protocol is performing
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with the presence of malicious intruder in the network. The security goals will be translated

to words over this alphabet of LTS’s. Verification will be simply to check if the goal (word)

belongs to the regular language of the protocol. If the goal is a safety property (ensuring that

something bad does not happen), then we want to ensure that the language does not have this

word.

7.1.2 Verification of Sensor Network Lifetime

Sensor nodes are resource and bandwidth constrained. It may not be sufficient in this

environment for a node to have an excellent security property at the cost of depleting system

resources. For instance, while many security protocols use the public key (PK) cryptography

for encryption, it is costly to use the traditional PK schemes in sensors due to power constraints

on the sensors [17]1. Therefore, we plan to verify not only that the security protocol is actually

satisfying the security goals, but also that it does not deplete the sensors resources.

While there has been work on verifying the lifetime of the sensor network applications

(i.e. [13]), they are based on simulation, thus they have the same problems of verification using

simulation as described previously. We plan to extend our tool to not only verify security of

protocols, but also the lifetime of the sensor network when applying those protocols.

7.1.3 Introduction of Node Compromise Model

As discussed in Section 5.3.1, the current prototype of Slede generates intruders according

to the Dolev-Yao model. However, there are some attacks that are specific to the sensor

network which are not covered by the Dolev-Yao model. The physical nature of sensors allows

attackers to easily capture the node, which introduces new types of attacks. When a node is

compromised, the attacker may [28]:

• replicate the capture node indefinitely (known as Replication Attack [41]),

• establish pairwise keys with any legitimate node in order to eavesdrop communication,
1Some works have provided PK cryptography algorithms for sensors [17, 30], but still most implementations

use symmetric key for encryption
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• inject false reports to the network,

• advertise inconsistent routing information, thus disrupting the whole network topology,

and,

• drop silently legitimate reports.

While Dolev-Yao attack model can perform man-in-the-middle attacks (intercepting mes-

sages sent over the network channels), send/receive any message and act as a legitimate user

of the network, this attack model cannot perform different attacks caused by node compro-

mise [20]. For instance, node compromise can allow the intruder to get hold of the secret

keys, thus it can act as a legitimate node and send false data (attack known as insider at-

tacks [56, 53]). This cannot be modeled using Dolev-Yao model.

We plan to generate an intruder models that is able to launch such attacks introduced by

node compromise. The challenge is to make the model generic so it can be used on different

protocol implementations with the least human intervention possible.
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