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CHAPTER 1. INTRODUCTION

Finding cause-effect relationships is the central aim of many studies in the physical, behavioral, so-

cial and biological sciences. There have been many attempts to theorize about causality. We consider

two well-known mathematical causal models:Structural equation models (SEMs)andcausal Bayesian

networks (BNs). When we hypothesize a causal model, that model often imposes constraintson the

statistics of the data collected. These constraints enable us to test or falsify the hypothesized causal

model. We develop efficient and reliable methods to test a causal model using various types of con-

straints. For linear SEMs, we investigate the problem of generating a small number of constraints in

the form of zero partial correlations, providing an efficient way to test hypothesized models. For causal

BNs, we study equality and inequality constraints imposed on data and analyzethe structure of the

constraints and investigate a way to use these constraints for model testing.

1.1 Linear Structural Equation Models

Linear SEMs are widely used for causal reasoning in social sciences,economics, and artificial

intelligence (Goldberger, 1972; Bollen, 1989; Spirtes et al., 2001; Pearl, 2000). One important problem

in the applications of linear causal models is testing a hypothesized model against the given data. We

seek an efficient method to test linear SEMs with correlated errors. We adopt a local testing method that

involves testing for the vanishing partial correlations instead of the conventional method that involves

fitting the covariance matrix.

Since conditional independence relations correspond to zero partial correlations, the problem re-

duces to that of finding a small set of conditional independence relations that imply all other conditional

independence relations encoded in anacyclic directed mixed graph (ADMG). Such set of conditional

independence relations is called,local Markov propertyfor the ADMG. Using a set of axioms that con-
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ditional independence relations satisfy, we investigate a way to reduce the local Markov property for

ADMGs representing linear SEMs. An additional axiom, calledcomposition, which holds for normal

distributions, turns out to be a key to reducing the local Markov property.

1.2 Causal Bayesian Networks

In linear SEMs, the causal relationships are expressed in the form of functional equations. In con-

trast, causal BNs express causal relationships in a stochastic way. We study various types of constraints

implied by a causal BN for the purpose of model testing.

First, assuming that we have obtained a collection of interventional distributions by manipulating

various sets of variables and observing others, we can ask the followingquestion: it this collection

compatible with some underlying causal Bayesian network (even if we do notknow its structure)?

We show that the interventional distributions are completely characterized bya set of equalities and

inequalities. Our result enables us to reject the entire set of models under consideration. The violation

of any of these equalities and inequalities leads us to conclude that the underlying model is not semi-

Markovian (e.g., there may be feedback loops).

Second, we seek the polynomial equality constraints imposed by a causal BNon both non-experimental

and interventional distributions. We propose to use the implicitization procedure to generate polyno-

mial equality constraints. This approach places causal BNs into the realm ofalgebraic geometry. There

are two main challenges in this problem: (i) Computational complexity. (ii) Understanding structures

of constraints. To deal with challenge (i), we develop methods to reduce thecomplexity of the implicit-

ization problem utilizing the structural properties of causal BNs. To deal with challenge (ii), we present

some preliminary results on the algebraic structure of the constraints. We alsopropose a model testing

method using polynomial equality constraints.

Third, we study a class of inequality constraints imposed by a causal BN with hidden variables on

both non-experimental and interventional distributions. We derive boundson causal effects in terms

of non-experimental distributions and given interventional distributions. We derive instrumental in-

equality type of constraints upon non-experimental distributions. Although the constraints we give are

not complete, they constitute necessary conditions for a hypothesized modelto be compatible with the
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data. The constraints also provide information (bounds) on the effects of interventions that have not

been tried experimentally, from observational data and given experimental data.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses related work in linear SEMs and causal

BNs. Chapter 3 formally defines causal models. Chapter 4 considers the problem of testing linear SEMs

with correlated errors. Chapter 5 considers the problem of efficiently computing polynomial equality

constraints in causal BNs. Chapter 6 investigates inequality constraints in causal BNs. Chapter 7 is the

conclusion.
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CHAPTER 2. RELATED WORK

In this chapter, we overview related work in causal models. We focus on various constraints implied

by causal models.

2.1 Linear Causal Models

The conventional method of testing a linear SEM involves maximum likelihood estimation of the

covariance matrix. An alternative approach has been proposed recently which involves testing for

the conditional independence relationships implied by the model (Spirtes et al.,1998; Pearl, 1998;

Pearl and Meshkat, 1999; Pearl, 2000; Shipley, 2000, 2003). The advantages of using this new test

method instead of the traditional global fitting test have been discussed in Pearl (1998); Shipley (2000);

McDonald (2002); Shipley (2003). The method can be applied in small data samples and it can test

“local” features of the model.

To apply this test method, one needs to be able to identify the conditional independence relation-

ships implied by an SEM. This can be achieved by representing the SEM with a graph called a path

diagram (Wright, 1934) and then reading independence relations from the path diagram. For a linear

SEM without correlated errors, the corresponding path diagram is a directed acyclic graph (DAG). The

set of all conditional independence relations holding in any model associated with a DAG, often called a

global Markov property for the DAG, can be read by the d-separation criterion (Pearl, 1988). However,

it is not necessary to test for all the independencies implied by the model as a subset of those inde-

pendencies may imply all others. A local Markov property specifies a much smaller set of conditional

independence relations which will imply (using the laws of probability) all otherconditional indepen-

dence relations that hold under the global Markov property. A well-known local Markov property for

DAGs is that each variable is conditionally independent of its non-descendants given its parents (Lau-
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ritzen et al., 1990; Lauritzen, 1996). Based on this local Markov property, Pearl and Meshkat (1999)

and Shipley (2000) proposed testing methods for linear SEMs without correlated errors that involve at

most one conditional independence test for each pair of variables.

On the other hand, the path diagrams for linear SEMs with correlated errorsare DAGs with bi-

directed edges (↔) where bi-directed edges are used to represent correlated errors.A DAG with bi-

directed edges is called anacyclic directed mixed graph (ADMG)in Richardson (2003). The set of all

conditional independence relations encoded in an ADMG can still be read by (a natural extension of)

the d-separation criterion (called m-separation in Richardson, 2003) which provides the global Markov

property for ADMGs (Spirtes et al., 1998; Koster, 1999; Richardson,2003). A local Markov property

for ADMGs is given in Richardson (2003), which, in the worst case, mayinvoke an exponential number

of conditional independence relations, a sharp difference with the local Markov property for DAGs,

where only one conditional independence relation is associated with each variable. Shipley (2003)

suggested a method for testing linear SEMs with correlated errors but the method may or may not,

depending on the actual models, be able to find a subset of conditional independence relations that

imply all others.

2.2 Polynomial Constraints in Causal Bayesian Networks

There has been much research on identifying constraints on the non-experimental distributions im-

plied by a BN with hidden variables (Verma and Pearl, 1990; Robins and Wasserman, 1997; Desjardins,

1999; Spirtes et al., 2001; Tian and Pearl, 2002b). In algebraic methods, BNs are defined parametri-

cally by a polynomial mapping from a set of parameters to a set of distributions. The distributions

compatible with a BN correspond to asemi-algebraic set, which can be described with a finite number

of polynomial equalities and inequalities. In principle, these polynomial equalities and inequalities can

be derived by the quantifier elimination method presented in Geiger and Meek (1999). However, due

to high computational demand (doubly exponential in the number of probabilisticparameters), in prac-

tice, quantifier elimination is limited to models with few number of probabilistic parameters. Geiger

and Meek (1998); Garcia (2004); Garcia et al. (2005) used a procedure calledimplicitization to gen-

erate independence and non-independence constraints on the observed non-experimental distributions.
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These constraints consist of a set of polynomial equalities that define the smallestalgebraic setthat

contains the semi-algebraic set. Garcia et al. (2005) analyzed the algebraic structure of constraints for

a class of small BNs.

Algebraic approaches have been applied in causal BNs to deal with the problem of the identifiability

of causal effects (Riccomagno and Smith, 2003, 2004). However, to the best of our knowledge, the

implicitization method has not been applied to the problem of identifying constraintson interventional

distributions induced by causal BNs.

2.3 Inequality Constraints in Causal Bayesian Networks

It is well-known that the observational implications of a BN are completely captured by conditional

independence relationships among the variables when all the variables areobserved (Pearl et al., 1990).

When a BN invokes unobserved variables, calledhiddenor latentvariables, the network structure may

impose other equality and/or inequality constraints on the distribution of the observed variables (Verma

and Pearl, 1990; Robins and Wasserman, 1997; Desjardins, 1999; Spirtes et al., 2001). Methods for

identifying equality constraints were given in Geiger and Meek (1998); Tian and Pearl (2002b). Pearl

(1995) gave an example of inequality constraints in the model shown in Figure2.1. The model imposes

the following inequality, called theinstrumental inequalityby Pearl, for discrete variablesX, Y, andZ,

max
x

∑

y

max
z

P(xy|z) ≤ 1. (2.1)

This model has been further analysed using convex analysis approachin Bonet (2001). In principle,

all (equality and inequality) constraints implied by BNs with hidden variables canbe derived by the

quantifier elimination method presented in Geiger and Meek (1999). However, due to high computa-

tional demand (doubly exponential in the number of probabilistic parameters), in practice, quantifier

elimination is limited to BNs with few number of probabilistic parameters. For example, the current

quantifier elimination algorithms cannot deal with the simple model in Figure 2.1 forX, Y, andZ being

binary variables.

When all variables are observed, a complete characterization of constraints on interventional dis-

tributions imposed by a given causal BN has been given in (Pearl, 2000,pp.23-4). When a causal BN
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Z X

U

Y

Figure 2.1 U is a hidden variable.

contains unobserved variables, there may be inequality constraints on interventional distributions Tian

and Pearl (2002a). For the model in Figure 2.1, bounds on causal effectsPx(y) in terms of the nonex-

perimental distributionP(x, y, z) was derived in Balke and Pearl (1994); Chickering and Pearl (1996)

using linear programming method forX, Y, andZ being binary variables.

2.4 Characterizing Interventional Distributions

Another related problem is the characterization of the interventional distributions generated from

a causal Bayesian network of “unknown structure”. Assuming that we have obtained a collection of

interventional distributions by manipulating various sets of variables and observing others, we can ask

the following question: it this collection compatible withsomeunderlying causal Bayesian network

(even if we do not know its structure)? Tian et al. (2006) showed that theinterventional distributions

are completely characterized by a set of equalities and inequalities. While the purpose of Kang and Tian

(2006, 2007) is to test a single model (with a fixed structure), the result in Tian et al. (2006) enables

us to reject the entire set of models under consideration. The violation of any of these equalities and

inequalities leads us to conclude that the underlying model is notsemi-Markovian(e.g., there may be

feedback loops).
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CHAPTER 3. NOTATION AND DEFINITIONS

In this chapter, we give a formal definition of causal models. Also we introduce some concepts

related to algebraic geometry needed to obtain our results.

3.1 Linear Causal Models

The SEM technique was developed by geneticists (Wright, 1934) and economists (Haavelmo, 1943)

for assessing cause-effect relationships from a combination of statistical data and qualitative causal

assumptions. It is an important causal analysis tool widely used in social sciences, economics, and

artificial intelligence (Goldberger, 1972; Duncan, 1975; Bollen, 1989;Spirtes et al., 2001).

In an SEM, the causal relationships among a set of variables are often assumed to be linear and

expressed by linear equations. Each equation describes the dependence of one variable in terms of the

others. For example, an equation

Y = aX+ ǫ (3.1)

represents thatX may have adirect causal influence onY and that no other variables have (direct)

causal influences onY except those factors (represented by the error termǫ traditionally assumed to

have normal distribution) that are omitted from the model. The parametera quantifies the (direct)

causal effect of X on Y. An equation like (3.1) with a causal interpretation represents an autonomous

causal mechanism and is said to bestructural.

As an example, consider the following model from Pearl (2000) that concerns the relations between
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smoking (X) and lung cancer (Y), mediated by the amount of tar (Z) deposited in a person’s lungs:

X = ǫ1

Z = aX+ ǫ2

Y = bZ+ ǫ3

The model assumes that the amount of tar deposited in the lungs depends on the level of smoking (and

external factors) and that the production of lung cancer depends on the amount of tar in the lungs but

smoking has no effect on lung cancer except as mediated through tar deposits. To fully specify the

model, we also need to decide whether those omitted factors (ǫ1, ǫ2, ǫ3) are correlated or not. We

may assume that no other factor that affects tar deposit is correlated with the omitted factors that affect

smoking or lung cancer (Cov(ǫ1, ǫ2) = Cov(ǫ2, ǫ3) = 0). However, there might be unobserved factors

(say some unknown carcinogenic genotype) that affect both smoking and lung cancer (Cov(ǫ1, ǫ3) , 0),

but the genotype nevertheless has no effect on the amount of tar in the lungs except indirectly (through

smoking). Often, it is illustrative to express our qualitative causal assumptions in terms of a graphical

representation, as shown in Figure 3.1.

We now formally define the model that we will consider in this thesis. Alinear causal model(or

linear SEM) over a set of random variablesV = {V1, . . . ,Vn} is given by a set of structural equations of

the form

V j =
∑

i

c ji Vi + ǫ j , j = 1, . . . ,n, (3.2)

where the summation is over the variables inV judged to be immediate causes ofV j . c ji , called apath

coefficient, quantifies the direct causal influence ofVi onV j . ǫ j ’s represent “error” terms due to omitted

factors and are assumed to have normal distribution. We consider recursive models and assume that the

summation in Eq. (3.2) is fori < j, that is,c ji = 0 for i ≥ j.

We denote the covariances between observed variablesσi j = Cov(Vi ,V j), and between error terms

ψi j = Cov(ǫi , ǫ j). We denote the following matrices,Σ = [σi j ], Ψ = [ψi j ], andC = [ci j ]. The parameters

of the model are the non-zero entries in the matricesC andΨ. A parameterization of the model assigns

a value to each parameter in the model, which then determines a unique covariance matrixΣ given by
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X
Smoking

Z
Tar in lungs

Y
Cancer

a b

Figure 3.1 Causal diagram illustrating the effect of smoking on lung cancer

(see, for example, Bollen (1989))

Σ = (I −C)−1Ψ(I −C)t−1
. (3.3)

The structural assumptions encoded in the model are the zero path coefficients and zero error co-

variances. The model structure can be represented by a DAGG with (dashed) bi-directed edges (an

ADMG), called acausal diagram(or path diagram), as follows: the nodes ofG are the variables

V1, . . . ,Vn; there is a directed edge fromVi to V j in G if Vi appears in the structural equation forV j ,

that is,c ji , 0; there is a bi-directed edge betweenVi andV j if the error termsǫi andǫ j have non-zero

correlation. For example, the smoking-and-lung-cancer SEM is represented by the causal diagram in

Figure 3.1, in which each directed edge is annotated by the correspondingpath coefficient.

We note that linear SEMs are often used without explicit causal interpretation. In such cases, linear

SEMs can be regarded as an extension of regression models. A linear SEM in which error terms are

uncorrelated consists of a set of regression equations. Note that an equation as given by (3.2) is a

regression equation if and only ifǫ j is uncorrelated with eachVi (Cov(Vi , ǫ j) = 0). Hence, an equation

in an SEM with correlated errors may not be a regression equation. LinearSEMs provide a more

powerful way to model data than the regression models taking into account correlated error terms.

3.2 Causal Bayesian Networks and Interventions

A causal Bayesian network, also known as aMarkovian model, consists of two mathematical ob-

jects: (i) a DAGG, called acausal graph, over a setV = {V1, . . . ,Vn} of vertices, and (ii) a probability

distribution P(v), over the setV of discrete variables that correspond to the vertices inG.1 In this

1We only consider discrete random variables in this thesis.
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thesis, we will assume a topological orderingV1 > . . . > Vn in G. V1 is always a sink andVn is al-

ways a source. The interpretation of such a graph has two components, probabilistic and causal. The

probabilistic interpretation viewsG as representing conditional independence restrictions onP: Each

variable is independent of all its non-descendants given its direct parents in the graph. These restrictions

imply that the joint probability functionP(v) = P(v1, . . . , vn) factorizes according to the product

P(v) =
∏

i

P(vi |pai) (3.4)

wherepai are (values of) the parents of variableVi in G.

The causal interpretation views the arrows inG as representing causal influences between the cor-

responding variables. In this interpretation, the factorization of (3.4) still holds, but the factors are

further assumed to represent autonomous data-generation processes, that is, each conditional probabil-

ity P(vi |pai) represents a stochastic process by which the values ofVi are assigned in response to the

valuespai (previously chosen forVi ’s parents), and the stochastic variation of this assignment is as-

sumed independent of the variations in all other assignments in the model. Moreover, each assignment

process remains invariant to possible changes in the assignment processes that govern other variables

in the system. This modularity assumption enables us to predict the effects of interventions, whenever

interventions are described as specific modifications of some factors in the product of (3.4). The sim-

plest such intervention, calledatomic, involves fixing a setT of variables to some constantsT = t,

which yields the post-intervention distribution

Pt(v) =























∏

{i|Vi<T} P(vi |pai) v consistent witht.

0 v inconsistent witht.
(3.5)

Eq. (3.5) represents a truncated factorization of (3.4), with factors corresponding to the manipulated

variables removed. This truncation follows immediately from (3.4) since, assuming modularity, the

post-intervention probabilitiesP(vi |pai) corresponding to variables inT are either 1 or 0, while those

corresponding to unmanipulated variables remain unaltered. IfT stands for a set of treatment variables

andY for an outcome variable inV \ T, then Eq. (3.5) permits us to calculate the probabilityPt(y) that

eventY = y would occur if treatment conditionT = t were enforced uniformly over the population.

When some variables in a Markovian model are unobserved, the probabilitydistribution over the

observed variables may no longer be decomposed as in Eq. (3.4). LetV = {V1, . . . ,Vn} and U =
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{U1, . . . ,Un′} stand for the sets of observed and unobserved variables respectively. If no U variable

is a descendant of anyV variable, then the corresponding model is called asemi-Markovian model.

We only consider semi-Markovian models. However, the results can be generalized to models with

arbitrary unobserved variables as shown in Tian and Pearl (2002b).In a semi-Markovian model, the

observed probability distribution,P(v), becomes a mixture of products:

P(v) =
∑

u

∏

i

P(vi |pai ,u
i)P(u) (3.6)

wherePAi andU i stand for the sets of the observed and unobserved parents ofVi , and the summation

ranges over all theU variables. The post-intervention distribution, likewise, will be given as a mixture

of truncated products

Pt(v) =































∑

u

∏

{i|Vi<T}

P(vi |pai ,u
i)P(u) v consistent witht.

0 v inconsistent witht.

(3.7)

Assuming thatv is consistent witht, we can write

Pt(v) = Pt(v \ t) (3.8)

In the rest of the thesis, we will usePt(v) and Pt(v \ t) interchangeably, always assumingv being

consistent witht.

3.3 Algebraic Sets, Semi-algebraic Sets and Ideals

The set of all polynomials inx1, . . . , xn with real coefficients is called apolynomial ringand denoted

by R[x1, . . . , xn]. Let f1, . . . , fs be the polynomials inR[x1, . . . , xn]. A variety or an algebraic set

V( f1, . . . , fs) is the set{(a1, . . . ,an) ∈ Rn : fi(a1, . . . ,an) = 0 for all 1≤ i ≤ s}. Thus, an algebraic set is

the set of all solutions of a system of polynomial equations.

A subsetV of Rn is called asemi-algebraic setif V = ∪s
i=1 ∩

r i
j=1 {x ∈ R

n : Pi, j(x) ⇔i j 0} where

Pi j are polynomials inR[x1, . . . , xn] and⇔i j is one of the comparison operators{<,=, >}. Informally,

a semi-algebraic set is a set that can be described by a finite number of polynomial equalities and

inequalities.

A subsetI ⊂ R[x1, . . . , xn] is called anideal if it satisfies:
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(i) 0 ∈ I .

(ii) If f ,g ∈ I , then f + g ∈ I .

(iii) If f ∈ I andh ∈ R[x1, . . . , xn], thenh f ∈ I .

The ideal generated by a set of polynomialsg1, . . . ,gn is the set of polynomialsh that can be written as

h =
∑n

i=1 figi where fi are polynomials in the ring and is denoted by〈g1, . . . ,gn〉. The sum of two ideals

I andJ is the setI + J = { f + g : f ∈ I , g ∈ J} and it holds that ifI = 〈 f1, . . . , fr〉 andJ = 〈g1, . . . ,gs〉,

thenI + J = 〈 f1, . . . , fr ,g1, . . . ,gs〉. See Cox et al. (1996) for more details.
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CHAPTER 4. MARKOV PROPERTIES FOR LINEAR CAUSAL MODELS WITH

CORRELATED ERRORS

In this chapter, we seek to improve the local Markov property given in Richardson (2003) for lin-

ear SEMs with correlated errors. The local Markov property in Richardson (2003) is applicable for

ADMGs associated with arbitrary probability distributions. Specifically, only semi-graphoid axioms

which must hold in all probability distributions (Pearl, 1988) are used in showing that the set of condi-

tional independence relations specified by the local Markov property willimply all those specified by

the global Markov property. On the other hand, in linear SEMs, variablesare assumed to have normal

distributions, and it is known that normal distributions also satisfy the so-called composition axiom.

Therefore, in this chapter, we look for local Markov properties for ADMGs associated with probability

distributions that satisfy the composition axiom. We will show that for a class of ADMGs, the local

Markov property will invoke only one conditional independence relation for each variable, and there-

fore the testing for the corresponding linear SEMs will involve at most one conditional independence

test for each pair of variables. For general ADMGs, we provide a procedure that reduces the number

of conditional independencies invoked by the local Markov property given in Richardson (2003), and

therefore reduces the complexity of testing linear SEMs with correlated errors.

In the test of conditional independence relations, the efficiency of the test is influenced by the size

of the conditioning set (that is, the number of conditioning variables) with a small conditioning set

having advantage over a large one. The conditional independence relations invoked by the standard

local Markov property for DAGs use a parent set as the conditioning set. Pearl and Meshkat (1999)

have shown for linear SEMs without correlated errors how to find a set of conditional independence

relations that may involve fewer conditioning variables. In this chapter, we also generalize this result

to linear SEMs with correlated errors.
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The chapter is organized as follows. In Section 4.1, we introduce basic notation and definitions,

and present the local Markov property developed in Richardson (2003). In Section 4.2, we show

that for a class of ADMGs, there is a local Markov property for probability distributions satisfying

the composition axiom that invokes only a linear number of conditional independence relations. We

also show a local Markov property that may involve fewer conditioning variables. In Section 4.3, we

consider general ADMGs (for probability distributions satisfying the composition axiom) and show a

local Markov property that invokes fewer conditional independenciesthan that in Richardson (2003).

4.1 Preliminaries and Motivation

4.1.1 Model Testing and Markov Properties

One important task in the applications of linear SEMs is to test a model against data. One approach

for this task is to test for the conditional independence relationships implied bythe model, which can be

read from the causal diagram by the d-separation criterion as defined inthe following.1 A pathbetween

two verticesVi andV j in an ADMG consists of a sequence of consecutive edges of any type (directed

or bi-directed). A vertexVi is said to be anancestorof a vertexV j if there is a pathVi → · · · → V j .

A non-endpoint vertexW on a path is called acollider if two arrowheads on the path meet atW, i.e.

→ W←,↔ W↔,↔ W←,→ W↔; all other non-endpoint vertices on a path arenon-colliders, i.e.

← W →,← W ←,→ W →,↔ W →,← W ↔. A path between verticesVi andV j in an ADMG is

said to bed-connecting given a setof verticesZ if

1. every non-collider on the path is not inZ, and

2. every collider on the path is an ancestor of a vertex inZ.

If there is no path d-connectingVi andV j givenZ, thenVi andV j are said to bed-separatedgivenZ.

SetsX andY are said to bed-separatedgivenZ, if for every pairVi , V j , with Vi ∈ X andV j ∈ Y, Vi

andV j are d-separated givenZ. Let I (X,Z,Y) denote thatX is conditionally independent ofY givenZ.

The set of all the conditional independence relations encoded by a causal diagramG is specified by the

following global Markov property.

1The d-separation criterion was originally defined for DAGs (Pearl, 1988) but can be naturally extended for ADMGs and
is called m-separation in Richardson (2003).
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V5 V6 V7

V3 V4

V1 V2

Figure 4.1 A causal diagram

Definition 1 (The Global Markov Property (GMP)) A probability distribution P is said to satisfy the

global Markov property for G if for arbitrary disjoint sets X,Y,Z,

(GMP) X is d-separated from Y given Z in G=⇒ I (X,Z,Y). (4.1)

The global Markov property typically involves a vast number of conditional independence relations and

it is possible to test for a subset of those independencies that will imply all others. A local Markov prop-

erty specifies a much smaller set of conditional independence relations which will imply by the laws

of probability all other conditional independence relations that hold underthe global Markov property.

For example, a well-known local Markov property for DAGs is that each variable is conditionally inde-

pendent of its non-descendants given its parents. The causal diagram for a linear SEM with correlated

errors is an ADMG and a local Markov property for ADMGs is given in Richardson (2003).

Note that in linear SEMs, the conditional independence relations will correspond to zero partial

correlations (Lauritzen, 1996):

ρViV j .Z = 0⇐⇒ I ({Vi},Z, {V j}). (4.2)

As an example, for the linear SEM with the causal diagram in Figure 4.1, if we use the local Markov

property in Richardson (2003), then we need to test for the vanishing ofthe following set of partial

correlations (for ease of notation, we writeρi j.Z to denoteρViV j .Z):

{ρ21, ρ32.1, ρ43.2, ρ41.2, ρ54.3, ρ52.3, ρ51.3, ρ64.53, ρ62.53, ρ61.53, ρ64.3, ρ62.3, ρ61.3, ρ72.6543,

ρ71.6543, ρ72.643, ρ71.643, ρ75.4, ρ73.4, ρ72.4, ρ71.4}. (4.3)
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The local Markov property in Richardson (2003) is valid for any probability distributions. In fact,

the equivalence of the global and local Markov properties is proved using the following so-calledsemi-

graphoid axioms(Pearl, 1988) that probabilistic conditional independencies must satisfy:

• Symmetry

I (X,Z,Y)⇐⇒ I (Y,Z,X)

• Decomposition

I (X,Z,Y∪W) =⇒ I (X,Z,Y) & I (X,Z,W)

• Weak Union

I (X,Z,Y∪W) =⇒ I (X,Z ∪W,Y)

• Contraction

I (X,Z,Y) & I (X,Z ∪ Y,W) =⇒ I (X,Z,Y∪W)

whereX, Y, Z, andW are disjoint sets of variables.

On the other hand, in linear SEMs the variables are assumed to have normal distributions, and

normal distributions also satisfy the followingcompositionaxiom:

• Composition

I (X,Z,Y) & I (X,Z,W) =⇒ I (X,Z,Y∪W).

Therefore, we expect a local Markov property for linear SEMs to invoke fewer conditional indepen-

dence relations than that for arbitrary distributions. In this chapter, we willderive reduced local Markov

properties for linear SEMs by making use of the composition axiom. As an example, for the linear SEM

in Figure 4.1, a local Markov property which we will present in this chapter(see Section 4.2.3) says

that we only need to test for the vanishing of the following set of partial correlations:

{ρ21, ρ32, ρ43, ρ41, ρ54, ρ52, ρ51.3, ρ64, ρ62, ρ61.3, ρ75, ρ73, ρ71, ρ72.4}. (4.4)

The number of tests needed and the size of the conditioning setZ are both substantially reduced com-

pared with (4.3), thus leading to a more economical way of testing the given model.
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V5 V6 V7

V3 V4

V8 V9

V1 V2

V567

V3 V4

V89

V1 V2

(a) (b)

Figure 4.2 An ADMG and its compressed graph

4.1.2 A Local Markov Property for ADMGs

In this section, we describe the local Markov property for ADMGs associated with arbitrary prob-

ability distributions presented in Richardson (2003). In this chapter, this Markov property will be used

as an important tool to prove the equivalence of our local Markov properties and the global Markov

property.

First, we define some graphical notations. For a vertexX in an ADMGG, paG(X) ≡ {Y|Y→ X in

G} is the set ofparentsof X. spG(X) ≡ {Y|Y ↔ X in G} is the set ofspousesof X. anG(X) ≡ {Y|Y →

· · · → X in G or Y = X} is the set ofancestorsof X. And deG(X) ≡ {Y|Y← · · · ← X in G or Y = X} is

the set ofdescendantsof X. These definitions will be applied to sets of vertices, so that, for example,

paG(A) ≡ ∪X∈ApaG(X), spG(A) ≡ ∪X∈AspG(X), etc.

Definition 2 (C-component)A c-component of G is a maximal set of vertices in G such that any two

vertices in the set are connected by a path on which every edge is of the form↔; a vertex that is not

connected to any bi-directed edge forms a c-component by itself.

For example, the ADMG in Figure 4.2 (a) is composed of 6 c-components{V1}, {V2}, {V3}, {V4},

{V5,V6,V7} and{V8,V9}. Thedistrict of X in G is the c-component ofG that includesX. Thus,

disG(X) ≡ {Y|Y↔ · · · ↔ X in G or Y = X}.

For example, in Figure 4.2 (a), we have disG(V5) = {V5,V6,V7} and disG(V8) = {V8,V9}. A setA is said

to beancestralif it is closed under the ancestor relation, i.e. if anG(A) = A. Let GA denote the induced
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subgraph ofG on the vertex setA, formed by removing fromG all vertices that are not inA, and all

edges that do not have both endpoints inA.

Definition 3 (Markov Blanket) 2 If A is an ancestral set in an ADMG G, and X is a vertex in A that

has no children in A then theMarkov blanket of vertex X with respect to the induced subgraph on A,

denotedmb(X,A) is defined to be

mb(X,A) ≡ paGA

(

disGA(X)
)

∪
(

disGA(X) \ {X}
)

.

For example, for an ancestral setA = anG({V5,V6}) = {V1,V2,V3,V4,V5,V6} in Figure 4.2 (a), we have

mb(V5,A) = {V3,V4,V6}.

An ordering (≺) on the vertices ofG is said to be consistent withG if X ≺ Y⇒ Y < anG(X). Given a

consistent ordering≺, let preG,≺(X) ≡ {Y|Y ≺ X or Y = X}.

Definition 4 (The Ordered Local Markov Property (LMP, ≺)) A probability distribution P satisfies

the ordered local Markov property for G with respect to a consistent ordering ≺, if, for any X and

ancestral set A such that X∈ A ⊆ preG,≺(X),

(LMP,≺) I ({X},mb(X,A),A \ (mb(X,A) ∪ {X})). (4.5)

Theorem 1 (Richardson, 2003)If G is an ADMG and≺ is a consistent ordering, then a probability

distribution P satisfies the ordered local Markov property for G with respect to ≺ if and only if P

satisfies the global Markov property for G.

We will write (GMP)⇐⇒ (LMP,≺) to denote the equivalence of the two Markov properties. There-

fore the (smaller) set of conditional independencies specified in the ordered local Markov property

will imply all other conditional independencies which hold under the global Markov property. It

is possible to further reduce the number of conditional independence relations in the ordered local

Markov property. An ancestral setA, with X ∈ A ⊆ preG,≺(X) is said to bemaximal with respect

to the Markov blanketmb(X,A) if, whenever there is a setB such thatA ⊆ B ⊆ preG,≺(X) and

mb(X,A) =mb(X, B), then A = B. For example, suppose that we are given an ordering≺: V1 ≺

2The definition of Markov blanket here follows that in Richardson (2003) and is compatible with that in Pearl (1988).
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V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 for the graphG in Figure 4.2 (a). While an ances-

tral setA = anG({V3,V6,V7}) = {V1,V2,V3,V4,V6,V7} is maximal with respect to the Markov blanket

mb(V7,A) = {V4,V6}, an ancestral setA′ = anG({V6,V7}) = {V2,V4,V6,V7} is not. It was shown that

we only need to consider ancestral setsA which are maximal with respect to mb(X,A) in the ordered

local Markov property (Richardson, 2003). Thus, we will consider only maximal ancestral setsA when

we discuss (LMP,≺) for the rest of this chapter. The following lemma characterizes maximal ancestral

sets.

Lemma 1 (Richardson, 2003)Let X be a vertex and A an ancestral set in G with consistent ordering

≺ such that X∈ A ⊆ preG,≺(X). The set A is maximal with respect to the Markov blanketmb(X,A) if

and only if

A = preG,≺(X) \ deG(h(X,A))

where

h(X,A) ≡ spG

(

disGA(X)
)

\
(

{X} ∪mb(X,A)
)

.

Even though we only consider maximal ancestral sets, the ordered local Markov property may still

invoke an exponential number of conditional independence relations. For example, for a vertexX, if

disG(X) ⊆ preG,≺(X) and disG(X) has a clique ofn vertices joined by bi-directed edges, then there are

at leastO(2n−1) different Markov blankets.

It should be noted that only the semi-graphoid axioms were used to prove Theorem 1 on the equiv-

alence of the two Markov properties and no assumptions about probability distributions were made.

Next we will show that the ordered local Markov property can be further reduced if we use the com-

position axiom in addition to the semi-graphoid axioms. The local Markov properties we obtained (in

Sections 4.2 and 4.3) are not restricted to linear causal models in that they are actually valid for any

probability distributions that satisfy the composition axiom.

4.2 Markov Properties for ADMGs without Directed Mixed Cycles

In this section, we introduce three local Markov properties for a class ofADMGs and show that

they are equivalent to the global Markov property. Also, we discuss related work in maximal ancestral

graphs and chain graphs. First, we give some definitions.
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X Y

Z W

Figure 4.3 Directed mixed cycles

Definition 5 (Directed Mixed Cycle) A path is said to be a directed mixed path from X to Y if it

contains at least one directed edge and every edge on the path is either ofthe form Z↔W, or Z→W

with W between Z and Y. A directed mixed path from X to Y together with an edge Y→ X or Y↔ X

is called a directed mixed cycle.

For example, the pathX→ Z↔W→ Y↔ X in the graph in Figure 4.3 forms a directed mixed cycle.

In this section, we will consider only ADMGs without directed mixed cycles.

Definition 6 (Compressed Graph)Let G be an ADMG. The compressed graph of G is defined to be

the graph G′ = (V′,E′), V′ = {VC | C is a c-component of G}, E′ = {VCi → VC j | there is an edge X→

Y in G such that X∈ Ci ,Y ∈ C j}.

Figure 4.2 shows an ADMG and its compressed graph. If there exists a directed mixed cycle in an

ADMG G, there will be a cycle or a self-loop in the compressed graph ofG. For example, if for two

verticesX andY in a c-componentC of G there exists an edgeX→ Y, then the compressed graph ofG

contains a self-loopyVC. The following proposition holds.

Proposition 1 Let G be an ADMG. The compressed graph of G is a DAG if and only if G hasno

directed mixed cycles.

4.2.1 The Reduced Local Markov Property

In this section, we introduce a local Markov property for ADMGs without directed mixed cycles

which only invokes a linear number of conditional independence relations and show that it is equivalent

to the global local Markov property.
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Definition 7 (The Reduced Local Markov Property (RLMP)) Let G be an ADMG without directed

mixed cycles. A probability distribution P is said to satisfy the reduced local Markov property for G if

(RLMP) ∀X ∈ V, I ({X},paG(X),V \ f(X,G)) (4.6)

wheref(X,G) ≡ paG(X) ∪ deG({X} ∪ spG(X)).

The reduced local Markov property states thata variable is independent of the variables that are neither

its descendants nor its spouses’ descendants given its parents.

Theorem 2 If a probability distribution P satisfies the composition axiom and an ADMG G hasno

directed mixed cycles, then

(GMP)⇐⇒ (RLMP). (4.7)

Proof: (GMP)=⇒ (RLMP)

We need to prove that any variableX is d-separated fromV \ f(X,G) given paG(X) in G with no directed

mixed cycle. Consider a vertexα ∈ V \ f(X,G). We will show that there is no path d-connectingX and

α given paG(X). There are four possible cases for any path betweenX andα.

1. X← β · · ·α

2. X→ · · · → δ←∗ · · ·α

3. X↔ γ←∗ · · ·α

4. X↔ γ → · · · → δ←∗ · · ·α

A symbol∗ serves as a wildcard for an end of an edge. For example,←∗ represents both← and↔. In

case 1,β ∈ paG(X). In case 2, the colliderδ is not an ancestor of a vertex in paG(X) (otherwise, there

would be a cycle). In cases 3 and 4, neitherγ nor δ is an ancestor of a vertex in paG(X) (otherwise,

there would be directed mixed cycles). In any case, the path is not d-connecting. �

Proof: (RLMP) =⇒ (GMP)
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We will show that for some consistent ordering≺, (RLMP) =⇒ (LMP,≺). Then, by Theorem 1, we

have (RLMP)=⇒ (GMP).

We construct a consistent ordering with the desired property as follows.

1. Construct the compressed graphG′ of G.

2. Let≺′ be any consistent ordering onG′. Construct a consistent ordering≺ from ≺′ by replacing

eachVC (corresponding to each c-componentC of G) in ≺′ with the vertices inC (the ordering

of the vertices in C is arbitrary).

We now prove that (RLMP)=⇒ (LMP,≺). Assume that a probability distributionP satisfies (RLMP).

Consider the set of conditional independence relations invoked by (LMP,≺) for each variableX given

in (4.5). First, observe that for any vertexY in disGA(X), we have

A \ (paG(Y) ∪ {Y} ∪ spG(Y)) ⊆ V \ f(Y,G), (4.8)

since

A \ (paG(Y) ∪ {Y} ∪ spG(Y))

= A \
(

(

paG(Y) ∪ {Y} ∪ spG(Y)
)

∪
(

deG({Y} ∪ spG(Y)) \ ({Y} ∪ spG(Y))
)

)

(4.9)

= A \ f(Y,G).

The equality (4.9) holds since the vertices in deG({Y} ∪ spG(Y)) \ ({Y} ∪ spG(Y)) do not appear inA

(because of the way≺ is constructed, no descendant of disGA(X) is in A). Thus, by (4.6), for allY in

disGA(X), we have

I ({Y},paG(Y),A \ (paG(Y) ∪ {Y} ∪ spGA
(Y))). (4.10)

Let S1 = paG(disGA(X)) \ paG(Y) andS2 = A \ (mb(X,A) ∪ {X}). It follows that

S1 ⊆ A \ (paG(Y) ∪ {Y} ∪ spG(Y)) and (4.11)

S2 ⊆ A \ (paG(Y) ∪ {Y} ∪ spG(Y)). (4.12)

Also, we have

S1 ∩ S2 = ∅, (4.13)
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sinceS1 ⊆ mb(X,A). Therefore,

I ({Y},paG(Y),S1 ∪ S2) by decomposition (4.14)

I ({Y},paG(Y) ∪ S1,S2) by weak union (4.15)

I (disGA(X),paG(disGA(X)),A \ (mb(X,A) ∪ {X})) by composition (4.16)

I ({X},paG(disGA(X)) ∪ (disGA(X) \ {X}),

A \ (mb(X,A) ∪ {X})) by weak union. (4.17)

Thus, by the definition of the Markov blanket ofX with respect toA, we have

I ({X},mb(X,A),A \ (mb(X,A) ∪ {X})). (4.18)

�

As an example, consider the ADMGG in Figure 4.2 (a) which has no directed mixed cycles. The

graph in Figure 4.2 (b) is the compressed graphG′ of G described in the proof. From the ordering

≺′: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V567 ≺ V89, we obtain the ordering≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺

V8 ≺ V9. The ordered local Markov property (LMP,≺) involves the following conditional independence

relations:

I ({V2}, ∅, {V1}), I ({V3}, {V1}, {V2}),

I ({V4}, {V2}, {V1,V3}), I ({V5}, {V3}, {V1,V2,V4}),

I ({V6}, {V3,V4,V5}, {V1,V2}), I ({V6}, {V4}, {V1,V2,V3}),

I ({V7}, {V3,V4,V5,V6}, {V1,V2}), I ({V7}, {V4,V6}, {V1,V2,V3}),

I ({V7}, {V4}, {V1,V2,V3,V5}), I ({V8}, {V6}, {V1,V2,V3,V4,V5,V7}),

I ({V9}, {V2,V6,V7,V8}, {V1,V3,V4,V5}), I ({V9}, {V2,V7}, {V1,V3,V4,V5,V6}). (4.19)



25

(RLMP) invokes the following conditional independence relations:

I ({V1}, ∅, {V2,V4,V6,V7,V8,V9}), I ({V2}, ∅, {V1,V3,V5}),

I ({V3}, {V1}, {V2,V4,V6,V7,V8,V9}), I ({V4}, {V2}, {V1,V3,V5}),

I ({V5}, {V3}, {V1,V2,V4,V7,V9}), I ({V6}, {V4}, {V1,V2,V3}),

I ({V7}, {V4}, {V1,V2,V3,V5}), I ({V8}, {V6}, {V1,V2,V3,V4,V5,V7}),

I ({V9}, {V2,V7}, {V1,V3,V4,V5,V6}) (4.20)

which, by Theorem 2, imply all the conditional independence relations in (4.19).

For the special case of graphs containing only bi-directed edges,3 Kauermann (1996) provides a

local Markov property for probability distributions obeying the composition axiom as follows:

∀X ∈ V, I ({X}, ∅,V \ ({X} ∪ spG(X))). (4.21)

Since a graph containing only bi-directed edges is a special case of ADMGs without directed mixed

cycles, the reduced local Markov property (RLMP) is applicable, and itturns out that (RLMP) reduces

to (4.21) for graphs containing only bi-directed edges. Therefore (RLMP) includes the local Markov

property given in Kauermann (1996) as a special case.

4.2.2 The Ordered Reduced Local Markov Property

The set of zero partial correlations corresponding to a conditional independence relationI (X,Z,Y)

is

{ρViV j .Z = 0 | Vi ∈ X,V j ∈ Y}. (4.22)

Although (RLMP) gives only a linear number of conditional independencerelations, the number of

zero partial correlations may be larger than that invoked by (LMP,≺) in some cases. For example, 12

conditional independence relations in (4.19) involve 37 zero partial correlations while 9 conditional

independence relations in (4.20) involve 41 zero partial correlations. Inthis section, we will show an

ordered local Markov property such that at most one zero partial correlation is invoked for each pair of

variables.
3Kauermann (1996) actually used undirected graphs with dashed edgeswhich are Markov equivalent to graphs with only

bi-directed edges (see Richardson, 2003, for discussions).
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Definition 8 (C-ordering) Let G be an ADMG. A consistent ordering≺ on the vertices of G is said to

be a c-ordering if all the vertices in each c-component of G are continuously ordered in≺.

For example, the orderingV1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 is a c-ordering on the

vertices ofG in Figure 4.2 (a). The following holds.

Proposition 2 There exists a c-ordering on the vertices of G if G does not have directedmixed cycles.

We can easily construct a c-ordering from the compressed graph ofG. We introduce the following

Markov property.

Definition 9 (The Ordered Reduced Local Markov Property (RLMP,≺c)) Let G be an ADMG with-

out directed mixed cycles and≺c be a c-ordering on the vertices of G. A probability distribution P is

said to satisfy the ordered reduced local Markov property for G with respect to≺c if

(RLMP,≺c) ∀X ∈ V, I ({X},paG(X),preG,≺c
(X) \ ({X} ∪ paG(X) ∪ spG(X))). (4.23)

The ordered reduced local Markov property states thata variable is independent of its predecessors,

excluding its spouses, in a c-ordering given its parents. We now establish the equivalence of (GMP)

and (RLMP,≺c).

Theorem 3 If a probability distribution P satisfies the composition axiom and an ADMG G hasno

directed mixed cycles, then for a c-ordering≺c on the vertices of G,

(GMP)⇐⇒ (RLMP,≺c). (4.24)

Proof: (GMP)=⇒ (RLMP,≺c)

The set preG,≺c
(X) does not include any descendant of disG(X) since≺c is a c-ordering. We have

preG,≺c
(X) \ ({X} ∪ paG(X) ∪ spG(X))

= preG,≺c
(X) \

(

(

{X} ∪ paG(X) ∪ spG(X)
)

∪
(

deG({X} ∪ spG(X)) \ ({X} ∪ spG(X))
)

)

= preG,≺c
(X) \ f(X,G)

⊆ V \ f(X,G). (4.25)
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Hence, (RLMP,≺c) follows from (RLMP). �

Proof: (RLMP,≺c) =⇒ (GMP)

We will show that (RLMP,≺c)=⇒ (LMP,≺c). Assume that a probability distributionPsatisfies (RLMP,≺c).

Let g(Y) = preG,≺c
(Y) \ ({Y} ∪ paG(Y)∪ spG(Y). Consider the set of conditional independence relations

invoked by (LMP,≺c) for each variableX given in (4.5). By (4.23), for allY in disGA(X), we have

I (Y,paG(Y),g(Y)). (4.26)

Let S1 = paG(disGA(X)) \ paG(Y) andS2 = A \ (mb(X,A) ∪ {X}). We have that

S1 ⊆ g(Y). (4.27)

Note thatS2 \ g(Y) may be non-empty. LetS3 = S2 \ g(Y). It suffices to show that

I (Y,paG(Y),S3), (4.28)

which impliesI (Y,paG(Y),S2). Then, the rest of the proof would be identical to that of Theorem 2.

We first characterize the vertices inS3. We will show that

S3 = (preG,≺c
(X) \ preG,≺c

(Y)) \ spG(disGA(X)). (4.29)

By Lemma 1, we have

S2 = preG,≺c
(X) \

(

deG(h(X,A)) ∪mb(X,A) ∪ {X}
)

. (4.30)

Since≺c is a c-ordering, no descendant of disG(X) will appear inA. Hence,

S2 = preG,≺c
(X) \

(

spG(disGA(X)) ∪ paG(disGA(X))
)

. (4.31)

To identify some common elements ofS2 and g(Y), we will reformulateS2 and g(Y) as follows.

S2 =
(

B \ paG(disGA(X))
)

∪
(

(disG(X) ∩ preG,≺c
(X)) \ spG(disGA(X))

)

(4.32)

g(Y) =
(

B \ paG(Y)
)

∪
(

(disG(X) ∩ preG,≺c
(Y)) \ ({Y} ∪ spG(Y))

)

(4.33)
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whereB = preG,≺c
(X) \ disG(X). This can be verified by noting thatA1 = A2 \ (A3 ∪ A4) = (A11 \ A2)∪

(A12 \ A3) if A1 = A11 ∪ A12,A11 ∩ A12 = ∅,A2 ⊆ A11,A3 ⊆ A12. From paG(Y) ⊆ paG(disGA(X)), it

follows thatB \ paG(disGA(X)) ⊆ B \ paG(Y) and

S3 =S2 \ g(Y)

=
(

(disG(X) ∩ preG,≺c
(X)) \ spG(disGA(X))

)

\
(

(disG(X) ∩ preG,≺c
(Y)) \ ({Y} ∪ spG(Y))

)

. (4.34)

We can rewrite the first part of this expression as follows.

(disG(X) ∩ preG,≺c
(X)) \ spG(disGA(X))

=
(

(disG(X) ∩ preG,≺c
(Y)) \ spG(disGA(X))

)

∪
(

(preG,≺c
(X) \ preG,≺c

(Y)) \ spG(disGA(X))
)

(4.35)

From (disG(X) ∩ preG,≺c
(Y)) \ spG(disGA(X)) ⊆ (disG(X) ∩ preG,≺c

(Y)) \ ({Y} ∪ spG(Y)), (4.29) follows.

Thus, the vertices inS3 are those in the set preG,≺c
(X) \ preG,≺c

(Y) and not in the set spG(disGA(X)).

Now we are ready to proveI (Y,paG(Y),S3). For anyZ ∈ S3, we haveY ≺ Z andZ < spG(Y).

Hence,

I ({Z},paG(Z),g(Z)) (4.36)

I ({Z},paG(Z), {Y} ∪ (paG(Y) \ paG(Z))) by decomposition (4.37)

I ({Z},paG(Z) ∪ paG(Y), {Y}) by weak union (4.38)

I ({Y},paG(Y),paG(Z) \ paG(Y)) (4.39)

I ({Y},paG(Y), {Z}) by contraction. (4.40)

Therefore, by composition,I (Y,paG(Y),S3) holds. �

(RLMP,≺c) invokes one zero partial correlation for each pair of nonadjacent variables. For example,

for the ADMGG in Figure 4.2 (a) and a c-ordering≺c: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9,
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(RLMP,≺c) invokes the following conditional independence relations:

I ({V2}, ∅, {V1}), I ({V3}, {V1}, {V2}),

I ({V4}, {V2}, {V1,V3}), I ({V5}, {V3}, {V1,V2,V4}),

I ({V6}, {V4}, {V1,V2,V3}), I ({V7}, {V4}, {V1,V2,V3,V5}),

I ({V8}, {V6}, {V1,V2,V3,V4,V5,V7}), I ({V9}, {V2,V7}, {V1,V3,V4,V5,V6}) (4.41)

which involve 25 zero partial correlations while (4.19) involve 37 zero partial correlations.

4.2.3 The Pairwise Markov Property

In this section, we give a pairwise Markov property which specifies conditional independence re-

lations between pairs of variables and show that it is equivalent to the global Markov property. In

previous sections, we focused on minimizing the number of zero partial correlations. We now take

into account the size of the conditioning setZ in each zero partial correlationρXY.Z. When the size of

paG(X) for a vertexX in (RLMP,≺c) is large, it might be advantageous to use a different conditioning

set with smaller size (if the equivalence of the Markov properties still holds).Pearl and Meshkat (1999)

introduced a pairwise Markov property for DAGs (without bi-directed edges) which may involve fewer

conditioning variables and thus lead to more economical tests. The result canbe easily generalized to

ADMGs with no directed mixed cycles.

Let d(X,Y) denote the shortest distance between two verticesX andY, that is, the number of edges

in the shortest path betweenX andY. Two verticesX andY are nonadjacent ifX andY are not connected

by a directed nor a bi-directed edge.

Definition 10 (The Pairwise Markov Property (PMP,≺c)) Let G be an ADMG without directed

mixed cycles and≺c be a c-ordering on the vertices of G. A probability distribution P is said to

satisfy the pairwise Markov property for G with respect to≺c if for any two nonadjacent vertices

Vi ,V j ,V j ≺c Vi

(PMP,≺c) I ({Vi},Zi j , {V j}) (4.42)

where Zi j is any set of vertices such that Zi j d-separates Vi from Vj and∀Z ∈ Zi j ,d(Vi ,Z) < d(Vi ,V j).
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Note that, in ADMGs with no directed mixed cycles, there always exists such aZi j for any two non-

adjacent vertices. For example, the parent set ofVi always satisfies the condition forZi j . If the empty

set d-separatesVi from V j , then the empty set is defined to satisfy the condition forZi j . Therefore we

can always choose aZi j with the smallest size, providing a more economical way to test zero partial

correlations.

Theorem 4 If a probability distribution P satisfies the composition axiom and an ADMG G hasno

directed mixed cycles, then

(GMP)⇐⇒ (PMP,≺c). (4.43)

Proof: Noting that two verticesX andY are adjacent ifX ← Y, X → Y or X ↔ Y, the proof of

Theorem 1 by Pearl and Meshkat (1999) is directly applicable to ADMGs and it effectively proves that

(RLMP,≺c)⇐⇒ (PMP,≺c). We will not reproduce the proof here. �

As an example, for the ADMGG in Figure 4.2 (a) and a c-ordering≺c: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺

V6 ≺ V7 ≺ V8 ≺ V9, the following conditional independence relations (for convenience, wecombined

the relations for each vertex that have the same conditioning set) can be given by (PMP,≺c):

I ({V2}, ∅, {V1}), I ({V3}, ∅, {V2}),

I ({V4}, ∅, {V3,V1}), I ({V5}, ∅, {V4,V2}),

I ({V5}, {V3}, {V1}), I ({V6}, ∅, {V3,V1}),

I ({V6}, {V4}, {V2}), I ({V7}, ∅, {V5,V3,V1}),

I ({V7}, {V4}, {V2}), I ({V8}, {V6}, {V7,V5,V4,V2}),

I ({V8}, ∅, {V3,V1}), I ({V9}, {V2,V7}, {V6,V4}),

I ({V9}, ∅, {V5,V3,V1}) (4.44)

which involve the same number of zero partial correlations as (4.41) but involve smaller conditioning

sets than those in (4.41).
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4.2.4 Relation to Other Work

In this section, we contrast the class of ADMGs without directed mixed cyclesto maximal ancestral

graphs and chain graphs in terms of Markov properties.

4.2.4.1 Maximal Ancestral Graphs

It is easy to see that an ADMG without directed mixed cycles is amaximal ancestral graph (MAG)

(Richardson and Spirtes, 2002). An ADMG is said to beancestralif, for any edgeX ↔ Y, X is not

an ancestor ofY (and vice versa). Note that an edgeX ↔ Y and a directed path fromX to Y (or Y

to X) form a directed mixed cycle. Hence, an ADMG without directed mixed cyclesis ancestral. An

ancestral graph is said to bemaximalif, for any pair of nonadjacent verticesX andY, there exists a set

Z ⊆ V \ {X,Y} that d-separatesX from Y. From Theorem 4, it follows that an ADMG without directed

mixed cycles is maximal. On the other hand, there exist MAGs which have directed mixed cycles (see

Figure 4.3). Thus, the class of ADMGs without directed mixed cycles is a strict subclass of MAGs.

Richardson and Spirtes (2002) (pp.979) showed the following pairwise Markov property for a MAG

G:

I ({Vi},anG({Vi ,V j}) \ {Vi ,V j}, {V j})

for any two nonadjacent verticesVi andV j . Richardson and Spirtes (2002) proved that this pairwise

Markov property implies the global Markov property assuming a Gaussian parametrization. This does

not trivially imply our results in Section 4.2.3 and our results cannot be considered as a special case of

the results on MAGs. The two pairwise Markov properties involve two different forms of conditioning

sets. The pairwise Markov property for MAGs involves considerably larger conditioning sets than our

pairwise Markov property: the conditioning set includes all ancestors ofVi andV j , which is undesirable

for our purpose of using the zero partial correlations to test a model.

Also, it should be stressed that our results do not depend on a specific parameterization. We only

require the composition axiom to be satisfied. In contrast, Richardson and Spirtes (2002) consider only

Gaussian parameterizations. It requires further study whether the pairwise Markov property for MAGs

can be generalized to the class of distributions satisfying the composition axiom.



32

In the next section, we consider general ADMGs and try to eliminate redundant conditional inde-

pendence relations from (LMP,≺). The class of MAGs is clearly a (strict) subclass of ADMGs. Hence,

given a MAG, we have two options: either we use the result in the next section or the pairwise Markov

property for MAGs. Although the pairwise Markov property for MAGs gives fewer zero partial cor-

relations (one for each nonadjacent pair of vertices), it is possible thatin some cases we are better off

using the result in the next section (because of the cost incurred by the large conditioning sets in the

pairwise Markov property for MAGs). An example of this situation will be given in the next section.

Richardson and Spirtes (2002) also proved that for a Gaussian distribution encoded by a MAG all

the constraints on the distribution (that is, on the covariance matrix) are implied by the vanishing partial

correlations given by the global Markov property. Hence, this also holds in a linear SEM represented

by an ADMG without directed mixed cycles which is a special type of MAG.

4.2.4.2 Chain Graphs

The graph that results from replacing bi-directed edges with undirected edges in an ADMG without

directed mixed cycles is achain graph. The class of chain graphs has been studied extensively (see

Lauritzen, 1996, for a review).

Some Markov properties have been proposed for chain graphs. The first Markov property for chain

graphs has been proposed by Lauritzen and Wermuth (1989) and Frydenberg (1990). Andersson et al.

(2001) have introduced another Markov property. These two Markovproperties do not correspond

to the Markov property for ADMGs. LetG be an ADMG without directed mixed cycles andG′ be

the chain graph obtained by replacing bi-directed edges with undirected edges. In general, the set of

conditional independence relations given by the Markov property forG is not equivalent to that given

by either of the two Markov properties for chain graphs. However, there are other Markov properties

for chain graphs that correspond to the Markov property for ADMGs without directed mixed cycles

(Cox and Wermuth, 1993; Wermuth and Cox, 2001, 2004)4.

4In their terminology, ADMGs without directed mixed cycles correspond to chain graphs with dashed arrows and dashed
edges.
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Figure 4.4 (a) An ADMG with directed mixed cycles (b) Illustration of the proce-
dureGetOrdering. The modified graph after the first step is shown.

4.3 Markov Properties for General ADMGs

4.3.1 Reducing the Ordered Local Markov Property

When an ADMGG has directed mixed cycles, (RLMP), (RLMP,≺c), and (PMP,≺c) are no longer

equivalent to (GMP) while (LMP,≺) still is. In this section, we show that the number of conditional

independence relations given by (LMP,≺) for an arbitrary ADMG that might have directed mixed cy-

cles can still be reduced. First, we introduce a lemma that gives a condition bywhich a conditional

independence relation renders another conditional independence relation redundant.

Lemma 2 Given an ADMG G, a consistent ordering≺ on the vertices of G and a vertex X, assume that

a probability distribution P satisfies the global Markov property for GpreG,≺(X)\{X}. Let A= preG,≺(X)

and A′ be a maximal ancestral set such that X∈ A′ ⊂ A, A′ ∩ disGA(X) = disGA′
(X) andpaG(disGA(X) \

disGA′
(X)) ⊆ mb(X,A′). Then,

I ({X},mb(X,A),A \ (mb(X,A) ∪ {X})) (4.45)

implies

I ({X},mb(X,A′),A′ \ (mb(X,A′) ∪ {X})). (4.46)

We definerdG,≺(X) to be the set of all A′ satisfying this condition.
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Proof: First, we show the relationships amongA,disGA(X),mb(X,A) andA′,disGA′
(X),mb(X,A′). By

Lemma 1, we have

A′ = A \ deGA(h(X,A′)) (4.47)

where

h(X,A′) ≡ spGA

(

disGA′
(X)
)

\
(

{X} ∪mb(X,A′)
)

.

disGA′
(X) and h(X,A′) are subsets of disGA(X). Since disGA′

(X) ⊆ {X} ∪mb(X,A′) (by the definition of

the Markov blanket), disGA′
(X)∩h(X,A′) = ∅. Thus, we can decompose the set disGA(X) into 3 disjoint

subsets as follows.

disGA(X) = disGA′
(X) ∪ h(X,A′) ∪ B (4.48)

where

B ≡ disGA(X) \
(

disGA′
(X) ∪ h(X,A′)

)

.

We have

A′ ∩ disGA(X) = A′ ∩
(

disGA′
(X) ∪ h(X,A′) ∪ B

)

= disGA′
(X) ∪ B

since disGA′
(X) ⊆ A′, B ⊆ A′ and A′ ∩ h(X,A′) = ∅. From the assumption in Lemma 2 thatA′ ∩

disGA(X) = disGA′
(X), it follows thatB = ∅. Thus, from (4.48), we have

disGA(X) \ disGA′
(X) = h(X,A′). (4.49)

Let T = disGA(X) \ disGA′
(X) = h(X,A′). Then,

mb(X,A) = mb(X,A′) ∪ T ∪ paG(T)

= mb(X,A′) ∪ T (4.50)

since paG(T) ⊆ mb(X,A′) by our assumption. Thus A decomposes into

A = A′ ∪ deGA(T) (4.51)
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Figure 4.5 The relationship betweenA and A′ that satisfy the conditions in
Lemma 2. The induced subgraphGA is shown. The vertices ofGA

are decomposed into two disjoint subsets deGA(T) andA′.

since deGA(T) ⊆ A and (4.47).

The key relationships amongA,disGA(X),mb(X,A) andA′,disGA′
(X),mb(X,A′) are given by (4.49)–

(4.51). Figure 4.5 shows these relationships. We are now ready to provethat I ({X},mb(X,A′),A′ \

(mb(X,A′) ∪ {X})) can be derived fromI ({X},mb(X,A),A \ (mb(X,A) ∪ {X})). From (4.50) and (4.51),

it follows that

A \ (mb(X,A) ∪ {X}) = (A′ ∪ deGA(T)) \ (mb(X,A′) ∪ {X} ∪ T)

SinceA′ ∩ deGA(T) = ∅, (mb(X,A′) ∪ {X}) ∩ T = ∅,mb(X,A′) ∪ {X} ⊆ A′ andT ⊆ deGA(T), we have

A \ (mb(X,A) ∪ {X}) =
(

A′ \ (mb(X,A′) ∪ {X})
)

∪
(

deGA(T) \ T
)

. (4.52)

Plugging (4.50) and (4.52) into (4.45), we get

I
(

{X},mb(X,A′) ∪ T,
(

A′ \ (mb(X,A′) ∪ {X})
)

∪
(

deGA(T) \ T
))

.

From the decomposition axiom, it follows that

I ({X},mb(X,A′) ∪ T,A′ \ (mb(X,A′) ∪ {X})). (4.53)
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The last step is to removeT from the conditioning set to obtainI ({X},mb(X,A′),A′ \ (mb(X,A′) ∪

{X})). We claim that

I (T,mb(X,A′),A′ \ (mb(X,A′) ∪ {X})). (4.54)

We first argue thatT is d-separated fromA′ \ (mb(X,A′)∪{X}) given mb(X,A′). Consider a vertext ∈ T

and a vertexα ∈ A′ \ (mb(X,A′)∪ {X}). Note that for any bi-directed edget ↔ β in GA, β is either inT

or disGA′
(X). There are only four possible cases for any path inGA from t to α.

1. t ← γ · · ·α

2. t → · · · → γ←∗ · · ·α

3. t ↔↔ · · · ↔ δ← γ · · ·α

4. t ↔↔ · · · ↔ δ→ · · · → γ←∗ · · ·α

In case 1,γ ∈ mb(X,A′) since paG(T) ⊆ mb(X,A′). Thus, the path is not d-connecting. In case 2,γ is

a descendant oft. Since mb(X,A′) does not contain any descendant oft, the path is not d-connecting.

Case 3 is similar to case 1, but there are one or more bi-directed edges aftert. δ is either inT or

disGA′
(X). It follows thatγ ∈ mb(X,A′), so the path is not d-connecting. Case 4 is similar to case 2, but

there are one or more bi-directed edges aftert. If δ is in T, the argument for case 2 can be applied. If

δ is in disGA′
(X), thenδ ∈ mb(X,A′), which implies that the path is not d-connecting. This establishes

thatT is d-separated fromA′ \ (mb(X,A′)∪{X}) given mb(X,A′). By the assumption thatP satisfies the

global Markov property forGpreG,≺(X)\{X}, (4.54) holds. Finally, from (4.53),(4.54) and the contraction

axiom, it follows thatI ({X},mb(X,A′),A′ \ (mb(X,A′) ∪ {X})). �

For example, consider the ADMGG in Figure 4.1 and a consistent orderingV1 ≺ V2 ≺ V3 ≺

V4 ≺ V5 ≺ V6 ≺ V7. Assume that the global Markov property forGpreG,≺(V6) is satisfied . LetA =

{V1,V2,V3,V4,V5,V6,V7} andA′ = {V1,V2,V3,V4,V6,V7}. Then,

disGA(V7) = {V5,V6,V7} (4.55)

disGA′
(V7) = {V6,V7} (4.56)

A′ ∩ disGA(V7) = {V6,V7} = disGA′
(V7) (4.57)

paG(disGA(V7) \ disGA′
(V7)) = {V3} ⊆ {V3,V4,V6} = mb(V7,A

′). (4.58)
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Thus, by Lemma 2,I ({V7}, {V3,V4,V6}, {V1,V2}) can be derived byI ({V7}, {V3,V4,V5,V6}, {V1,V2}).

Note that in the proof of Lemma 2, the composition axiom is not used. Thus, Lemma2 can be used to

reduce the ordered local Markov property for ADMGs associated with an arbitrary probability distri-

bution.

We now introduce a key concept in eliminating redundant conditional independence relations from

(LMP,≺).

Definition 11 (C-ordered Vertex) Given a consistent ordering≺ on the vertices of an ADMG G, a

vertex X is said to be c-ordered in≺ if

1. all vertices indisG(X) ∩ preG,≺(X) are consecutive in≺ and

2. for any two vertices Y and Z indisG(X) ∩ preG,≺(X), there is no directed edge between Y and Z.

For example, consider the ADMGG in Figure 4.4 (a).≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺

V8 ≺ V9 is a consistent ordering on the vertices ofG. V1,V2, . . . ,V8 are c-ordered in≺ but V9 is not

sinceV5 andV9 are not consecutive in≺.

The key observation, which will be proved, is that c-ordered vertices contribute to eliminating many

redundant conditional independence relations invoked by the orderedlocal Markov property (LMP,≺).

We provide two procedures. The first procedureReduceMarkov in Figure 4.6 constructs a list of

conditional independence relations in which some redundant conditional independence relations from

(LMP,≺) are not included.ReduceMarkov takes as input a fixed ordering≺. The second procedure

GetOrdering in Figure 4.8 gives a good ordering that might have many c-ordered vertices.

We first describe the procedureReduceMarkov. Given an ADMGG and a consistent ordering≺,

ReduceMarkovgives a set of conditional independence relations which will be shown to be equivalent

to the global Markov property forG. For each vertexVi , ReduceMarkovgenerates a set of conditional

independence relations. IfVi is c-ordered, the relations that correspond to the pairwise Markov prop-

erty are generated. Otherwise, the relations that correspond to the ordered local Markov property are

generated. Also, Lemma 2 is used to remove some redundant relations (by rdG,≺(Vi)). The output
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procedure ReduceMarkov
INPUT: An ADMG G and a consistent ordering≺ on the vertices ofG
OUTPUT: A set of conditional independence relationsS
S← ∅
for i = 1, . . . ,n do

I i ← ∅

if Vi is c-ordered in≺ then
for V j ≺ Vi do

I i ← I i ∪ I ({Vi},Zi j , {V j}) whereZi j is any set of vertices such thatZi j d-separates
Vi from V j and∀Z ∈ Zi j ,d(Vi ,Z) < d(Vi ,V j)

end for
else

for all maximal ancestral setsA such thatVi ∈ A ⊆ preG,≺(Vi), A < rdG,≺(Vi) do
I i ← I i ∪ I ({Vi},mb(Vi ,A),A \ (mb(Vi ,A) ∪ {Vi}))

end for
end if
S← S ∪ I i

end for

Figure 4.6 A procedure to generate a reduced set of conditional independence
relations for an ADMGG and a consistent ordering≺

S = ReduceMarkov(G,≺) can be described as follows:

S =
⋃

X:X is c-ordered in≺

(
⋃

Y:Y≺X

I
(

{X},ZXY, {Y}
)

)
⋃

⋃

X:X is not c-ordered in≺

(
⋃

all maximal setsA:
X∈A⊆preG,≺(X),

A<rdG,≺(X)

I
(

{X},mb(X,A),A \ (mb(X,A) ∪ {X})
)

)

(4.59)

whereZXY is any set of vertices such thatZXY d-separatesX from Y and∀Z ∈ ZXY, d(X,Z) < d(X,Y).

If a vertex X is c-ordered,O(n) conditional independence relations (or zero partial correlations)

are added toS. Otherwise,O(2n) conditional independence relations may be added toS andO(n2n)

zero partial correlations may be invoked. Furthermore, a c-ordered vertex typically involves a smaller

conditioning set.I ({X},ZXY, {Y}) has the conditioning set|ZXY| ≤ |paG(X)| while I ({X},mb(X,A),A \

(mb(X,A) ∪ {X})) has the conditioning set|mb(X,A)| ≥ |paG(X)|.

We now prove that the conditional independence relations produced byReduceMarkovcan derive

all the conditional independence relations invoked by the global Markov property.

Definition 12 (S-Markov Property ( S-MP,≺)) Let G be an ADMG and≺ be a consistent ordering on
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the vertices of G. Let S be the set of conditional independence relations given byReduceMarkov(G,≺).

A probability distribution P is said to satisfy the S-Markov property for G with respect to≺, if

(S-MP,≺) P satisfies all the conditional independence relations in S. (4.60)

Theorem 5 Let G be an ADMG and≺ be a consistent ordering on the vertices of G. Let S be the set

of conditional independence relations given byReduceMarkov(G,≺). If a probability distribution P

satisfies the composition axiom, then

(GMP)⇐⇒ (S-MP,≺). (4.61)

Proof: (GMP)=⇒ (S-MP,≺) since every conditional independence relation in (S-MP,≺) corresponds

to a valid d-separation. We show (S-MP,≺) =⇒ (GMP). Without any loss of generality, let≺: V1 ≺

. . . ≺ Vn. The proof is by induction on the sequence of ordered vertices. Suppose that (S-MP,≺)

=⇒ (GMP) holds forV1, . . .Vi−1. Let Si−1 = I1 ∪ . . . ∪ I i−1. Then, by the induction hypothesis,

Si−1 contains all the conditional independence relations invoked by (LMP,≺) for V1, . . .Vi−1. If Vi is

not c-ordered,I i = I ({Vi},mb(Vi ,A),A \ (mb(Vi ,A) ∪ {Vi})) for all maximal ancestral setsA such that

Vi ∈ A ⊆ preG,≺(Vi), A < rdG,≺(Vi). The conditional independence relations invoked by (LMP,≺) with

respect toVi and anyA ∈ rdG,≺(Vi) can be derived from other conditional independence relations by

Lemma 2. Thus,Si = Si−1∪ I i contains all the conditional independence relations invoked by (LMP,≺)

for V1, . . .Vi , which implies (GMP). IfVi is c-ordered, applying the arguments in the proof of (GMP)

⇐⇒ (PMP,≺c), we have

I ({Vi},paG(Vi),preG,≺(Vi) \ ({Vi} ∪ paG(Vi) ∪ spG(Vi))). (4.62)

By the induction hypothesis and the definition of a c-ordered vertex, we have for all V j ∈ disG(Vi) ∩

preG,≺(Vi)

I ({V j},paG(V j),preG,≺(V j) \ ({V j} ∪ paG(V j) ∪ spG(V j))). (4.63)

By the arguments in the proof of (GMP)⇐⇒ (RLMP,≺c), we have for all maximal ancestral setsA

such thatVi ∈ A ⊆ preG,≺(Vi)

I ({Vi},mb(Vi ,A),A \ (mb(Vi ,A) ∪ {Vi})). (4.64)
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V1 V2 V3 V4

W

Figure 4.7 The c-component{V1,V2,V3,V4} has the root set{V1,V2}

Therefore,Si = Si−1 ∪ I i derives all the conditional independence relations invoked by (GMP).�

As we have seen earlier, the number of zero partial correlations critically depends on the number of

c-ordered vertices in a given ordering. This motivates us to find the ordering with the most c-ordered

vertices. An obvious way of finding this ordering is to explore the space ofall the consistent orderings.

However, this exhaustive search may become infeasible as the number of vertices grows. We propose

a greedy algorithm to get an ordering that has a large number of c-ordered vertices. The basic idea

is to first find a large c-component in which many vertices can be c-ordered and place the vertices

consecutively in the ordering, then repeating this until we cannot find a set of vertices that can be c-

ordered. To describe the algorithm, we define the following notion, which identifies the largest subset

of a c-component that can be c-ordered.

Definition 13 (Root Set)The root set of a c-component C, denotedrt(C) is defined to be the set{Vi ∈

C | there is no Vj ∈ C such that a directed path Vj → . . .→ Vi exists in G}.

For example, the c-component{V1,V2,V3,V4} in Figure 4.7 has the root set{V1,V2}. V3 andV4 are

not in the root set since there are pathsV2 → V3 andV1 → W → V4. The root set has the following

properties.

Proposition 3 Let≺ be a consistent ordering on the vertices of an ADMG G and C be a c-component

of G. If the vertices inrt(C) are consecutive in≺, then all the vertices inrt(C) are c-ordered in≺.

Proposition 4 Let≺ be a consistent ordering on the vertices of an ADMG G and C be a c-component

of G. If a vertex X in C is c-ordered in≺, then X∈ rt(C).

Proposition 3 and 4 imply that the root set of a c-component is the largest subset of the c-component

that can be c-ordered in a consistent ordering. IfG does not have directed mixed cycles, rt(C) = C for
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procedure GetOrdering
INPUT: An ADMG G
OUTPUT: A consistent ordering≺ onV
Step 1:
G′ ← G
while (there is a c-componentC of G′ such that|rt(C)| > 1) do

M ← ∅
for each c-componentC of G′ do

if |rt(C)| > |M| then
M ← rt(C)

end if
end for
Add a vertexVM to G′V′\M
Draw an edgeVM ← X (respectivelyVM → X, VM ↔ X) if there is
Y← X (respectivelyY→ X, Y↔ X) in G′ such thatY ∈ M,X ∈ V′

Let G′ be the resulting graph
end while
Step 2:
Let ≺′ be any consistent ordering onV′. Construct a consistent ordering≺ from ≺′ by replacing each
VS ∈ V′ \ V with the vertices inS (the ordering of the vertices inS is arbitrary)

Figure 4.8 A greedy algorithm to generate a good consistent ordering on the ver-
tices of an ADMGG

every c-componentC.

The procedureGetOrdering in Figure 4.8 is our proposed greedy algorithm that generates a good

consistent ordering forG. In Step 1, it searches for the largest root setM and then merges all the

vertices inM to one vertexVM modifying edges accordingly. Then, it repeats the same operation for

the modified graph until there is no root set that contains more than one vertex. Since the vertices in

a root set are merged at each iteration, the modified graph is acyclic as otherwise there would be a

directed path between two vertices in the root set, which contradicts the condition of a root set. After

Step 1, we can easily obtain a consistent ordering for the original graph from the modified graph.

4.3.2 An Example

In this section, we show the application of the proceduresReduceMarkov andGetOrdering by

considering the ADMGG in Figure 4.4 (a). First, we applyGetOrdering to get a consistent ordering

on the verticesV of G. In Step 1, we first look for the largest root set. The c-component{V6,V7,V8} has
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the largest root set{V6,V7,V8}. Then, the vertices in{V6,V7,V8} is merged into a vertexV678. Figure

4.4 (b) shows the modified graphG′ after the first iteration of the while loop. In the next iteration, we

find that every c-component has the root set of size 1. Note that forC = {V5,V9}, rt(C) = {V5,V9}

in G but rt(C) = {V5} in G′. Thus, Step 1 ends. In Step 2, fromG′ in Figure 4.4 (b), we can obtain

an ordering≺′: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V678 ≺ V9. This is converted to a consistent ordering

≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 for G.

With the ordering≺, we now applyReduceMarkov to obtain a set of conditional independence

relations that can derive those invoked by the global Markov property.It is easy to see that the vertices

V1, . . . ,V8 are c-ordered in≺. Thus, the following conditional independence relations correspondingto

the pairwise Markov property are added to the setS (initially empty).

I ({V2}, ∅, {V1}), I ({V3}, ∅, {V2}),

I ({V4}, ∅, {V3,V1}), I ({V5}, ∅, {V4,V3,V2,V1}),

I ({V6}, ∅, {V5,V4,V2}), I ({V6}, {V3}, {V1}),

I ({V7}, ∅, {V5,V4,V2}), I ({V7}, {V3}, {V1}),

I ({V8}, ∅, {V6,V3,V1}), I ({V8}, {V4}, {V2}). (4.65)

V9 is not c-ordered in≺ sinceV5 is not adjacent in≺. Thus, we use the ordered local Markov property

(LMP,≺) for V9. The maximal ancestral sets that we need to consider are

A1 = anG({V6,V8,V9}) = {V1,V2,V3,V4,V5,V6,V7,V8,V9} and (4.66)

A2 = anG({V4,V6,V9}) = {V1,V2,V3,V4,V6,V7,V9}. (4.67)

The corresponding conditional independence relations are

I ({V9}, {V7,V5}, {V8,V6,V4,V3,V2,V1}), (4.68)

I ({V9}, {V7}, {V6,V4,V3,V2,V1}). (4.69)

However, it turns out thatA2 ∈ rdG,≺(V9) and (4.69) is not added toS. Let’s check the condition of
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Lemma 2. The global Markov property forGpreG,≺(V8) is satisfied by (4.65). Also,

disGA1
(V9) = {V5,V9} (4.70)

disGA2
(V9) = {V9} (4.71)

A2 ∩ disGA1
(V9) = {V9} = disGA2

(V9) (4.72)

paG(disGA1
(V9) \ disGA2

(V9)) = ∅ ⊆ {V7} = mb(V9,A2). (4.73)

Therefore, the condition of Lemma 2 is satisfied and it follows that (4.69) is redundant. To see how

much we reduced the testing requirements, the conditional independence relations invoked by (LMP,≺)

are shown below.

I ({V2}, ∅, {V1}), I ({V3}, {V1}, {V2}),

I ({V4}, {V2}, {V3,V1}), I ({V5}, ∅, {V4,V3,V2,V1}),

I ({V6}, {V3}, {V5,V4,V2,V1}), I ({V7}, {V3}, {V5,V4,V2,V1}),

I ({V7}, {V6,V3}, {V5,V4,V2,V1}), I ({V8}, {V5,V4}, {V6,V3,V2,V1}),

I ({V8}, {V7,V5,V4,V3}, {V2,V1}), I ({V8}, {V7,V6,V5,V4,V3}, {V2,V1}),

I ({V9}, {V7}, {V6,V4,V3,V2,V1}), I ({V9}, {V7,V5}, {V8,V6,V4,V3,V2,V1}). (4.74)

S invokes 26 zero partial correlations while (LMP,≺) invokes 39. Also,S involves much smaller

conditioning sets. We have at most one vertex in each conditioning set in (4.65) and two vertices in

(4.68) while 23 zero partial correlations in (4.74) involve more than 2 vertices in the conditioning set.

The ADMG G in this example turns out to be a MAG. As we discussed in Section 4.2.4.1, we have

two options: either we use the constraints in (4.65) and (4.68) or the constraints given by the pair-

wise Markov property for MAGs. In this example, both sets of constraints involve the same number

of zero partial correlations. However, the pairwise Markov property for MAGs involves much larger

conditioning sets. For example, the pairwise Markov property for MAGs gives the following condi-

tional independence relation for the pairV6 andV8: I ({V8}, {V5,V4,V3,V2,V1}, {V6}). Our method uses

an empty set as the conditioning set for the pair. Hence, in this example, we are better off using the

constraints in (4.65) and (4.68).
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4.3.3 Comparison of (LMP,≺) and (S-MP,≺)

From (4.59), it is clear that (S-MP,≺) invokes less conditional independence relations than (LMP,≺)

if there are c-ordered vertices in≺. But how much more economical is (S-MP,≺) than (LMP,≺) and for

what type of graphs is the reduction large?

For simplicity, we will compare the number of conditional independence relations rather than zero

partial correlations and ignore the reduction done by Lemma 2. For now assume

S =
⋃

X:X is c-ordered in≺

I ({X},paG(X),preG,≺(X) \ ({X} ∪ paG(X) ∪ spG(X)))
⋃

⋃

X:X is not c-ordered in≺

(
⋃

all maximal setsA:
X∈A⊆preG,≺(X)

I
(

{X},mb(X,A),A \ (mb(X,A) ∪ {X})
)

)

.

Let M(X,≺) be the number of different Markov blankets of a vertexX, that is, M(X,≺) =
∣

∣

∣

∣

{disGA(X) | A

is an ancestral set such thatX ∈ A ⊆ preG,≺(X)}
∣

∣

∣

∣

, and C(≺) be the set of vertices that are c-ordered in

≺. Then, (LMP,≺) lists
∑

X∈V M(X,≺) conditional independence relations and (S-MP,≺) lists |C(≺)| +
∑

X<C(≺) M(X,≺) conditional independence relations. Hence, the difference in the number of conditional

independence relations between (LMP,≺) and (S-MP,≺) is

∑

X∈C(≺)

(

M(X,≺) − 1
)

.

This difference is large when|C(≺)| or M(X,≺) for eachX is large.

The size of C(≺) depends on the number of directed mixed cycles. From Definition 11, it follows

that C(≺) is large if there are a small number of directed mixed cycles. Note that a directed mixed cycle

such as that in Figure 4.3 induces the violation of the first condition in Definition11 and a directed

mixed cycle of the formα ↔→ β induces the violation of the second condition in Definition 11.

M(X,≺) depends on the structure of disG(X) ∩ preG,≺(X). We will reformulate M(X,≺) to show the

properties that affect M(X,≺). Let G↔,dis(X,≺) = (V′,E′) whereV′ = disG(X) ∩ preG,≺(X) andE′ =

{Vi ↔ V j | Vi ↔ V j in GV′}. For example, for an ADMGG in Figure 4.7 and an orderingV1 ≺ V2 ≺

V3 ≺ V4, G↔,dis(V3,≺) is V1 ↔ V2 ↔ V3. Let G↔,dis(X,≺)S be the induced subgraph ofG↔,dis(X,≺)

on a setS ⊆ disG(X)∩ preG,≺(X). Then, M(X,≺) =
∣

∣

∣

∣

{S | S ⊆ disG(X)∩ preG,≺(X) such thatG↔,dis(X,≺

)S is aconnected componentof G↔,dis(X,≺)S∪(anG(S)∩disG(X)∩preG,≺(X))}

∣

∣

∣

∣

, that is, M(X,≺) corresponds to



45

a set of subsetsS of disG(X) ∩ preG,≺(X) satisfying two conditions: (i)G↔,dis(X,≺)S is connected; and

(ii) for all Y ∈
(

anG(S) ∩ disG(X) ∩ preG,≺(X)
)

\ S, there is no path fromY to any vertices inS. The

condition (i) implies that M(X,≺) will be large if the vertices in disG(X) ∩ preG,≺(X) are connected by

many bi-directed edges. The condition (ii) implies that M(X,≺) will be large if there are few directed

mixed cycles. Note that for ADMGs without directed mixed cycles, (ii) trivially holds since
(

anG(S) ∩

disG(X) ∩ preG,≺(X)
)

\ S = ∅. For example, consider a subset of vertices{V1, . . . ,Vk} in an ADMG

with edgesVi ↔ Vk, i = 1, . . . , k − 1, which has no directed mixed cycles. Then, for an ordering

V1 ≺ . . . ≺ Vk, M(Vk,≺) = 2k−1. Also, consider a subset of vertices{V1, . . . ,Vk} in an ADMG with

edgesV1
↔
→ V2

↔
→ · · ·

↔
→ Vk, which hask − 1 directed mixed cycles. Then, M(Vk,≺) = 1. Hence, it is

clear that M(X,≺) is large if

1. the set disG(X) ∩ preG,≺(X) is large,

2. there are many bi-directed edges connecting vertices in disG(X) ∩ preG,≺(X), and

3. there are few directed mixed cycles.

Thus, (LMP,≺) will invoke a large number of conditional independence relations for an ADMG

with few directed mixed cycles and large c-components with many bi-directed edges. However, for

such an ADMG,
∑

X∈C(≺)

(

M(X,≺) − 1
)

, the reduction made by (S-MP,≺), is also large. An extreme

case is an ADMG that has no directed mixed cycles and each c-component of which is a clique joined

by bi-directed edges. An example of such an ADMG is given in Figure 4.9. For this ADMG and an

orderingW ≺ V ≺ X ≺ Y ≺ Z, (LMP,≺) invokes M(W,≺) + M(V,≺) + M(X,≺) + M(Y,≺) + M(Z,≺

) = 1+ 1+ 1+ 2+ 4 = 9 conditional independence relations while (S-MP,≺) invokes|C(≺)| = n = 5

conditional independence relations. If we enlarge the clique joined by bi-directed edges such that it

containsk vertices, then (LMP,≺) invokes 2+
∑k−1

i=0 2i = 1 + 2k conditional independence relations

while (S-MP,≺) invokesk+ 2.

In general, although (S-MP,≺) greatly reduces (LMP,≺), it may still invoke an exponential number

of conditional independence relations if there exist directed mixed cycles.
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X Y

V

W

Z

Figure 4.9 An example ADMG for which using (S-MP,≺) is most beneficial.
There is no directed mixed cycle and each c-component is a clique
joined by bi-directed edges.
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CHAPTER 5. POLYNOMIAL CONSTRAINTS IN CAUSAL BAYESIAN

NETWORKS

In this chapter, we seek the constraints imposed by a causal BN on both nonexperimental and inter-

ventional distributions. When all variables are observed, a complete characterization of constraints on

interventional distributions imposed by a given causal BN has been givenin (Pearl, 2000, pp.23-4). In

a causal BN containing hidden variables, a class of equality and inequality constraints on interventional

distributions are given in Kang and Tian (2006). In this chapter, we propose to use the implicitization

procedure to generate polynomial constraints on interventional distributions induced by a causal BN

with hidden variables. The main challenges in applying the implicitization procedure on interventional

distributions are:

(i) Computational complexity. The generic complexity of implicitization is known to be exponen-

tial in the number of variables (number of parameters for this problem). Whenwe consider

interventional distributions, the number of variables greatly increases compared to the case of

non-experimental distribution, which makes the computation infeasible even for small causal

BNs.

(ii) Understanding structures of constraints. Finding a syntactic structure of the constraints com-

puted by implicitization also becomes complicated.

To deal with challenge (i), we show three methods to reduce the complexity of the implicitization prob-

lem (Section 5.3). We illustrate our methods showing a model in which the genericimplicitization

procedure is intractable while our methods can solve the problem (Section 5.3.2). We also show an ex-

ample of new constraints on interventional distributions that are not captured by the types of constraints

in Kang and Tian (2006) (Section 5.3.2). To deal with challenge (ii), we present some preliminary re-

sults on the algebraic structure of polynomial constraints on interventional distributions implied by
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certain classes of causal BNs with hidden variables (Section 5.3.2). We show some preliminary results

in causal BNs without hidden variables, which are expected to be usefulin understanding syntactic

structures of the constraints for BNs with hidden variables (Section 5.2).

We provide a model testing procedure using polynomial constraints and present some experiments

validating this procedure (Section 5.4). We also discuss a possibility of usingpolynomial constraints

to differentiate Markov equivalent models (Section 5.4).

5.1 Problem Statement

We define theimplicitizationproblem for a set of interventional distributions. We explain what the

polynomial constraints computed by the implicitization problem mean algebraically.

Let PPPintv denote a set of interventional distributions. For example,PPPintv={P(v1, v2),PV1=1(V1 =

1, v2)} contains a non-experimental distributionP(v1, v2) and an interventional distributionPV1=1(V1 =

1, v2) where the treatment variableV1 is fixed to 1. We will regardP(v) to be a special interven-

tional distribution whereT = ∅ allowing it to be inPPPintv. Let P∗P∗P∗ denote the set of all interven-

tional distributionsP∗P∗P∗ = {Pt(v)|T ⊂ V, t ∈ Dm(T), v ∈ Dm(V), v is consistent witht} whereDm(T)

represents the domain ofT. For example, letV = {V1,V2} where both variables are binary, then

P∗P∗P∗ = {P(v1, v2),PV1=1(V1 = 1, v2),PV1=2(V1 = 2, v2),PV2=1(v1,V2 = 1),PV2=2(v1,V2 = 2)}.

We can describePPPintv in terms of a polynomial mapping from a set of parameters to the distributions

as follows.

First, consider a causal BNG without hidden variables. LetV1, . . . ,Vn be the vertices ofG. We

denote the joint space parameter definingPt(v) for v consistent witht by pt
v and the model parameter

definingP(vi |pai) by qi
vi pai

. The model parameters are subjected to the linear relations
∑

vi
qi

vi pai
= 1.

Thus, we have introduced (di−1)
∏

{ j|V j∈PAi }
d j model parameters for the vertexVi wheredi = |Dm(Vi)|.

Let JPPPintv denote the set of joint space parameters associated withPPPintv andM denote the set of model

parameters. For example, consider the causal BNG in Figure 5.1 (a) in which variables are binary. Let

PPPintv be the set of two distributions{P(v1, v2, v3),PV1=1(V1 = 1, v2, v3)}. Then,JPPPintv={p111, p112, p121,

p122, p211, p212, p221, p222, p
V1=1
111 , pV1=1

112 , pV1=1
121 , pV1=1

122 } andM = {q1
11,q

1
12,q

2
11,q

2
12,q

3
1}. The mapping re-
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lated to (3.5) is

φ : RM → RJPPPintv ,

pt
v =

∏

{i|Vi<T}

qi
vi pai

(5.1)

whereRM andRJPPPintv denote the real vector space of dimension|M| and|JPPPintv | respectively. For example,

the mapping for the previous example is given by the following relationships:

p111 = q1
11q

2
11q

3
1,

p112 = q1
12q

2
12(1− q3

1),

p121 = q1
11(1− q2

11)q
3
1,

p122 = q1
12(1− q2

12)(1− q3
1),

p211 = (1− q1
11)q

2
11q

3
1,

p212 = (1− q1
12)q

2
12(1− q3

1),

p221 = (1− q1
11)(1− q2

11)q
3
1,

p222 = (1− q1
12)(1− q2

12)(1− q3
1),

pV1=1
111 = q2

11q
3
1,

pV1=1
112 = q2

12(1− q3
1),

pV1=1
121 = (1− q2

11)q
3
1,

pV1=1
122 = (1− q2

12)(1− q3
1).

(5.1) induces a ring homomorphism

Φ : R[JPPPintv] → R[M] (5.2)

which takes the unknownpt
v to
∏

{i|Vi<T} q
i
vi pai

.

Second, consider a causal BNG with hidden variables. Let{V1, . . . ,Vn} and{U1, . . . ,Un′} be sets

of observed and hidden variables respectively. We denote the joint space parameters definingPt(v)

for v consistent witht by pt
v and the model parameters definingP(vi |pai ,ui) andP(u j) by qi

vi paiui and

r j
u j

respectively. The joint space parameters and the model parameters formtwo rings of polynomials



50

V2 V3

V4

V1
V1 V2

V3

(a) (b)

Figure 5.1 Two causal BNs.

R[JPPPintv] andR[M]. The mapping related to (3.7) is

π : RM → RJPPPintv ,

pt
v =
∑

u1...un′

∏

{i|Vi<T}

qi
vi paiui

n′
∏

j=1

r j
u j
. (5.3)

(5.3) induces a ring homomorphism

Ψ : R[JPPPintv] → R[M]. (5.4)

By Tarski-Seidenberg theorem, the image ofφ (or π) corresponds to a semi-algebraic set, which

can be described by a set of polynomial equalities and inequalities. Finding all of these equalities and

inequalities is usually infeasible. In this chapter, we choose to find a set of polynomial equalities that

define the smallest algebraic set that contains the image ofφ (or π). These polynomial equalities are

a subset of the constraints that describe the image ofφ (or π) and are equal to thekernelof the ring

homomorphismΦ (orΨ). Thekernelof Φ, denoted by ker(Φ) is the ideal consisting of all polynomials

f in R[JPPPintv] such thatΦ( f ) = 0. Thus, the vanishing of the polynomial equalities in ker(Φ) and

ker(Ψ) is a necessary condition that there exist the model parameters in (5.1) and(5.3) respectively.

The process of computing ker(Φ) is calledimplicitization.

Our goal is to compute and analyze the kernels for causal BNs with or without hidden variables.

5.2 Causal Bayesian Network with No Hidden Variables

Consider a causal BNG and a set of interventional distributionsPPPintv. If checking whether each

Pt(v) ∈ PPPintv factors as in (3.5) is the only goal, it is not necessary to solve the implicitization problem
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since you can use the constraints (3.5) given by the definition or the constraints given in (Pearl, 2000,

pp.23-4). However, we study the implicitization problem for a set of interventional distributions asso-

ciated with a causal BN without hidden variables, since we expect that the structure of the constraints

for a causal BN without hidden variables may reveal some syntactic structure of the constraints for a

causal BN with hidden variables. For non-experimental distribution, Garcia et al. (2005) showed that

the constraints for a BN without hidden variables can help finding the structure of the constraints for a

BN with hidden variables.

Since the computation of the constraints for causal BNs without hidden variables is relatively easy,

we will focus on the analysis of the computed constraints. In this section, we give a preliminary result

on the algebraic structure of the constraints for a set of interventional distributions associated with

causal BNs without hidden variables. The problem of characterizing thestructure of the constraints for

arbitrary set of interventional distributions is still open. We show a few cases in which the constraints

can be nicely described by a simple set of polynomials.

5.2.1 One Interventional Distribution

SupposePPPintv contains only one interventional distributionPt(v). For non-experimental distribution

P(v), Garcia et al. (2005) showed that

ker(Φ) = (I local(G) : p∞) + 〈
∑

v

pv − 1〉 (5.5)

whereI local(G) is the ideal associated to the local Markov property on a BNG andp is the product of

all linear formsp+...+vr+1...vn =
∑

v1,...,vr

pv1...vr vr+1...vn and I : f∞ = {g ∈ R[J{P(v)}] | g fN ∈ I , for someN}

denotes thesaturationof I by f .

The local Markov property onG is the set of independence statements

local(G) = {Vi y ND(Vi)|PA(Vi) : i = 1, . . . ,n} (5.6)

where ND(Vi) denotes the set of nondescendants ofVi in G and PA(Vi) denotes the set of parents ofVi

in G.

For example, consider the causal BNG in Figure 5.1 (a). Assume that all variables are binary.

The local Markov property onG has only one elementV1 y V2 | V3. The constraints induced by an
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independence statement,A y B | C are given by the vanishing of the polynomials

P(A = a, B = b,C = c)P(A = a′, B = b′,C = c)

− P(A = a′, B = b,C = c)P(A = a, B = b′,C = c) (5.7)

for all a,a′,b,b′, c. Thus, the idealI local(G) associated with the local Markov property onG is

I local(G) = 〈p111p221− p121p211, p112p222− p122p212〉. (5.8)

For this particular BNG, it turns out that

I local(G) : p∞ =I local(G) : (p111 . . . p222p+11 . . . p+22p++1p++2)∞

=I local(G). (5.9)

From (5.5), it follows that

ker(Φ) = I local(G) + 〈
∑

v

pv − 1〉. (5.10)

In general, however, ker(Φ) does not coincide withI local(G). For example,I local(G) : p∞ for the causal

BN G in Figure 5.1 (b) includes additional generators other thanI local(G). See Sturmfels (2002); Garcia

et al. (2005) for details.

The above result can be applied to an arbitrary interventional distributionPt(v). We see that the

mapping in (5.1) defined forPt(v) andG is equivalent to the mapping defined forP(v \ t) andG(V \ T)

whereG(C) denotes the subgraph ofG composed only of the variables inC. Thus, the following holds.

Proposition 5 LetΦ be a ring homomorphism

Φ : R[J{Pt(v)}] → R[M] (5.11)

induced by (5.1). Then, we have

ker(Φ) = (I local(G(V\T)) : p∞) + 〈
∑

v\t

pt
v − 1〉 (5.12)

wherep is the product of all linear formsp+...+vir+1 ...vik
whenV \ T = {Vi1, . . . ,Vik},Vi1 > . . . > Vik.
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5.2.2 All Interventional Distributions

Consider the set of all interventional distributionsP∗P∗P∗. For any joint space parameterpt
v, we have

pt
v =

∏

{i|Vi<T}

qi
vi pai
=
∏

{i|Vi<T}

pv\vi
vi
. (5.13)

Thus, every joint space parameter can be written as the product of some other joint space parameters.

Then,

ker(Φ) = 〈pt
v −
∏

{i|Vi<T}

pv\vi
vi

: ∀v, t〉. (5.14)

5.2.3 Two Interventional Distributions

Consider the case in whichPPPintv has two distributions. We show some cases in which ker(Φ) can

be described by a simple set of polynomials.

Consider the causal BNG in Figure 5.1 (a) where all variables are binary. SupposePPPintv =

{P(v),PV1=1(v)}. We have the following relation betweenpV1=1
1v2v3

andpv. For anyv2 andv3,

pV1=1
1v2v3
=
∑

v1

pv1v2v3. (5.15)

LetΦ denote a ring homomorphism

Φ : R[J{P(v),PV1=1(v2,v3)}] → R[M]. (5.16)

Since the joint space parameterpV1=1
1v2v3

for anyv2 andv3 is a polynomial function of some of joint

space parameterspv, we have

ker(Φ) = ker(Φ′) + 〈pV1=1
1v2v3
−
∑

v1

pv1v2v3 : ∀v2, v3〉 (5.17)

whereΦ′ denotes the ring homomorphism

Φ′ : R[J{P(v)}] → R[M]. (5.18)

From (5.10), it follows that

ker(Φ) =I local(G) + 〈
∑

v

pv − 1〉 + 〈pV1=1
1v2v3
−
∑

v1

pv1v2v3 : ∀v2, v3〉. (5.19)

Note that the equation in (5.15) holds because the set{V2,V3} contains its own ancestors inG. We

have the following proposition.
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Proposition 6 Suppose PPPintv = {P(v),Pt(v)}. LetΦ andΦ′ be ring homomorphisms

Φ : R[J{P(v),Pt(v)}] → R[M], Φ′ : R[J{P(v)}] → R[M]. (5.20)

If V \ T contains its own ancestors in G, we have

ker(Φ) = ker(Φ′) + 〈pt
v −
∑

t

pv : ∀(v \ t)〉. (5.21)

The relationship between two distributions in the above proposition is the resultof Lemma 5 in Section

5.3.

Now consider the causal BNG in Figure 5.1 (a) and suppose thatPPPintv = {P(v),PV3=1(v)}. In this

case,PV3=1(v) cannot be represented as a polynomial function ofP(v). However, we can describe the

generators of ker(Φ) as follows. Given an instantiation of all the variablesv and an instantiation of

treatment variablest, let Vcons = {Vi ∈ V \ T | vi pai in v is consistent witht} and cons(v, t) denote the

instantiation ofV obtained by replacing the inconsistent variables inv with the values oft. For example,

for G in Figure 5.1 (a), ifv = (V1 = 1,V2 = 1,V3 = 1) andt = (V2 = 2), thenVcons = {V1,V3} and

cons(v, t) = (V1 = 1,V2 = 2,V3 = 1). We have the following lemma.

Lemma 3 Suppose PPPintv = {P(v),Pt(v)}. LetΦ, Φ′ andΦ′′ be ring homomorphisms

Φ : R[J{P(v),Pt(v)}] → R[M], Φ′ : R[J{P(v)}] → R[M], Φ′′ : R[J{Pt(v)}] → R[M]. (5.22)

If for any two vertices Vi and Vj in V \ T, Vi is neither Vj ’s ancestor nor its descendent, then

(i) there exist two disjoint subsets W1 = {A1, . . . ,Ai} and W2 = {C1, . . . ,Ck} of T such that

A1 > . . . > Ai > B1 > . . . > Bj > C1 > . . . > Ck (5.23)

is a consistent topological ordering of variables in G where V\ T = {B1, . . . , Bj} and

(ii)

ker(Φ) =ker(Φ′) + ker(Φ′′) + 〈 f (v, t)
∑

w1,vcons

pv −
∑

w1

pv : ∀v〉 (5.24)

where

f (v, t) =
∏

{i|Vi∈Vcons}

∑

vcons\vi

pt
cons(v,t). (5.25)



55

Proof: We define the idealI associated withΦ.

I = 〈pv −
∏

i

qi
vi pai

: ∀v〉 + 〈pt
v −
∏

{i|Vi<T}

qi
vi pai

: ∀(v \ t)〉. (5.26)

The elimination idealI ∩ R[J{P(v),Pt(v)}] is equivalent to ker(Φ). The idea is that we can representI as

the sum of three idealI1, I2 andI3 such that the model parameters inI1 and those inI2 are disjoint and

no model parameter appears inI3 and thus

ker(Φ) =I ∩ R[J{P(v),Pt(v)}]

=I1 ∩ R[J{P(v)}] + I2 ∩ R[J{Pt(v)}] + I3

=ker(Φ′) + ker(Φ′′) + I3. (5.27)

Let I1 = 〈pv −
∏

i qi
vi pai

: ∀v〉 andI2 = 〈pt
v −
∏

{i|Vi<T} q
i
vi pai

: ∀(v \ t)〉. We will replace each generator

in I1 with two other polynomials and add one polynomial toI3 which is initially empty as follows.

For any polynomialpv −
∏

i qi
vi pai

, we have

pv −
∏

i

qi
vi pai

(5.28)

= pv −
(
∏

{i|Vi∈W1}

qi
vi pai

)(
∏

{i|Vi∈V\T}

qi
vi pai

)(
∏

{i|Vi∈W2}

qi
vi pai

)

= pv −
(
∏

{i|Vi∈W1}

qi
vi pai

)(
∑

w1

pv

)

(5.29)

since

∑

w1

pv −
(
∏

{i|Vi∈V\T}

qi
vi pai

)(
∏

{i|Vi∈W2}

qi
vi pai

)

is in I . Also,

∑

w1

pv −
(
∏

{i|Vi∈V\T}

qi
vi pai

)(
∏

{i|Vi∈W2}

qi
vi pai

)

=
∑

w1

pv −
(
∏

{i|Vi∈Vcons}

qi
vi pai

)(
∏

{i|Vi∈(V\T)\Vcons}

qi
vi pai

)(
∏

{i|Vi∈W2}

qi
vi pai

)

From the property that any two verticesVi andV j in V \ T, Vi is neitherV j ’s ancestor nor its parent, it

follows that the polynomial

∑

w1,vcons

pv −
(

∏

{i|Vi∈(V\T)\Vcons}

qi
vi pai

)(
∏

{i|Vi∈W2}

qi
vi pai

)

(5.30)
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is in I . Thus,

∑

w1

pv −
(
∏

{i|Vi∈V\T}

qi
vi pai

)(
∏

{i|Vi∈W2}

qi
vi pai

)

=
∑

w1

pv −
(
∏

{i|Vi∈Vcons}

qi
vi pai

)(
∑

w1,vcons

pv

)

=
∑

w1

pv −
(
∏

{i|Vi∈Vcons}

∑

vcons\vi

pt
cons(v,t)

)(
∑

w1,vcons

pv

)

. (5.31)

We replace the polynomial (5.28) with the polynomials (5.29) and (5.30) and add the polynomial (5.31)

to I3. After processing every polynomial inI1, we have three idealI1, I2 andI3 with the desired property.

�

We can use Lemma 3 to compute ker(Φ) for the causal BNG in Figure 5.1 (a) andPPPintv =

{P(v),PV3=1(v)} sinceV1 is neitherV2’s ancestor nor its descendent. It turns out that

ker(Φ) =ker(Φ′) + ker(Φ′′) + 〈pV3=1
v1v21

∑

v1,v2

pv1v21 − pv1v21 : ∀v1, v2〉

=I local(G) + 〈
∑

v

pv − 1〉 + I local(G({V1,V2}) + 〈
∑

v1,v2

pV3=1
v − 1〉

+ 〈pV3=1
v1v21

∑

v1,v2

pv1v21 − pv1v21 : ∀v1, v2〉. (5.32)

5.3 Causal Bayesian Network with Hidden Variables

Solving the implicitization problem for a causal BN with hidden variables has a high computational

demand. The implicitization problem can be solved by computing a certain Groebner basis and it is

known that computing a Groebner basis has the generic complexitymO(1)gO(N) wherem is the number

of equations,g is the degree of the polynomials andN is the number of variables. In our implicitization

problems,N is the sum of the number of joint space parameters and model parameters. Consider

the implicitization for non-experimental distribution. The number of joint space parameters for non-

experimental distribution isd1 . . . dn. Solving the implicitization problem becomes intractable as the

number of vertices in the causal BN and the domains of variables increase.Now consider the cases

in which we have a set of interventional distributions. The number of joint space parameters forP∗P∗P∗

is d1 . . .dn(d1 . . .dn − 1). This greatly increases the complexity of the already hard problem. In this

section, we show three methods to reduce the complexity of our implicitization problem.
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5.3.1 Two-step Method

Garcia et al. (2005) proposed a two-step method to compute ker(Ψ) for a BN with hidden vari-

ables and non-experimental distribution. It is known that this method usually works faster than direct

implicitization. We apply it to our problem in which we have a set of interventionaldistributions.

Suppose we have a causal BNG with n observed variablesV1, . . . ,Vn andn′ unobserved variables

U1, . . . ,Un′ and a set of interventional distributionsPPPintv for G. Let Ψ be the ring homomorphism

defined in (5.4). We denotePPPU
intv be the set of joint distributions assuming that allU1, . . . ,Un′ are

observed

PPPU
intv = {Pt(vu)|Pt(v) ∈ PPPintv}. (5.33)

LetΦ denote the ring homomorphism

Φ : R[JPPPU
intv

] → R[M] (5.34)

induced by the mapping

pt
vu =

∏

{i|Vi<T}

qi
vi paiui

n′
∏

j=1

r j
u j
. (5.35)

For the non-experimental distributionP(v), Garcia et al. (2005) showed that

ker(Ψ) = ker(Φ) ∩ R[J{P(v)}]. (5.36)

It can be naturally extended to the case of arbitraryPPPintv. We have

ker(Ψ) = ker(Φ) ∩ R[JPPPintv]. (5.37)

Following Garcia et al. (2005), ker(Ψ) can be computed in two steps. First, we compute ker(Φ) cor-

responding to the case where all variables are assumed to be observed.Then we compute the subset

of ker(Φ) that corresponds to the polynomial constraints on observable distributions. We have imple-

mented our method using a computer algebra system, Singular (Greuel et al., 2005).

5.3.2 Reducing the Implicitization Problem Using Known Constraints

We can reduce the complexity of the implicitization problem by using some known constraints

among interventional distributions. Given the set of joint space parametersJPPPintv, suppose that we have
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some known constraints amongJPPPintv stating that a joint space parameterpt
v can be represented as a

polynomial function of some other joint space parameters inJPPPintv \ pt
v. Then, the relation reduces the

implicitization problem as follows. Letf be a polynomial function such that

pt
v = f (JPPPintv \ pt

v) (5.38)

and letΨ andΨ′ be two ring homomorphisms

Ψ : R[JPPPintv] → R[M], Ψ′ : R[JPPPintv \ pt
v] → R[M]. (5.39)

Then, we have

ker(Ψ) = ker(Ψ′) + 〈pt
v − f (JPPPintv \ pt

v)〉. (5.40)

This suggests that the more we find such relations among parameters, the morewe can reduce the

implicitization problem. The following two lemmas provide a class of such relations.

A c-componentis a maximal set of vertices such that any two vertices in the set are connected by a

path on which every edge is of the formc U d whereU is a hidden variable. A setA ⊆ V is called

anancestral setif it contains its own observed ancestors.

Lemma 4 Tian and Pearl (2002b)Let T ⊆ V and assume that V\ T is partitioned into c-components

H1, . . . ,Hl in the subgraph G(V \ T). Then we have

Pt(v) =
∏

i

Pv\hi (v). (5.41)

Lemma 5 Tian and Pearl (2002b)Let C⊆ T ⊆ V. If V \ T is an ancestral set in G(V \C), then

Pt(v) =
∑

t\c

Pc(v). (5.42)

We give a procedure in Figure 5.2 that lists a set of polynomial relations among PPPintv based on

these two lemmas. Given a set of joint space parametersJPPPintv, it outputs a subsetJ′PPPintv
of JPPPintv which

contains the joint space parameters that cannot be represented as a polynomial function of other joint

space parameters, and the idealI generated by all the relations found by Lemma 4 and Lemma 5. In

Step 1, we look for the parameters that can be represented as the product of other parameters using

Lemma 4. In Step 2, we find the parameters that can be represented as the sum of other parameters

using Lemma 5. We have the following proposition.
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procedure PolyRelations(G,JPPPintv)
INPUT: a causal BNG, joint space parametersJPPPintv associated with a set of interventional distributions
PPPintv

OUTPUT: a subsetJ′PPPintv
⊆ JPPPintv of joint space parameters and the idealI containing polynomial

relations among the joint space parameters
Initialization:
I := ∅
J′PPPintv

:= JPPPintv

Step 1:
for eachpt

v ∈ J′PPPintv
do

Let H1, . . . ,Hl be the c-components in the subgraphG(V \ T).

I := I + 〈pt
v −
∏

i

pv\hi
v 〉

J′PPPintv
:= J′PPPintv

\ pt
v

end for
Step 2:
for eachpt

v ∈ J′PPPintv
do

if there is a joint space parameterpc
v that satisfies

(i) C ⊆ T ⊆ V
(ii) V \ T is an ancestral set inG(V \C)
then

I := I + 〈pt
v −
∑

t\c

pc
v〉

J′PPPintv
:= J′PPPintv

\ pt
v

end if
end for

Figure 5.2 A procedure for listing polynomial relations among interventional dis-
tributions

Proposition 7 Given a set of interventional distributions PPPintv, a causal BN G with hidden variables

and a ring homomorphismΨ defined in (5.4), let J′PPPintv
and I be the results computed byPolyRelations.

Then,

ker(Ψ) = ker(Ψ′) + I (5.43)

whereΨ′ is a ring homomorphism

Ψ′ : R[J′PPPintv
] → R[M]. (5.44)

To illustrate the procedure, consider a causal BNG with four observed variablesV1,V2,V3,V4 and

one hidden variableU1 in Figure 5.3 (a). We will compute ker(Ψ) for the set of all interventional
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V1 V2

U1

(a) (b)
V3 V4 V1 V2

U1

V3

Figure 5.3 Two causal BNs with one hidden variable

distributionsP∗P∗P∗ usingPolyRelations. In Step 1, we find that most of joint space parameters can be

represented as the product of other parameters. For example, we have

pv1
v = pv1v3v4

v pv1v2v4
v pv1v2v3

v (5.45)

sinceV \ V1 = {V2,V3,V4} is partitioned into three c-components{V2}, {V3} and{V4}. Also,

pv2
v = pv2v4

v pv1v2v3
v (5.46)

sinceV \V2 = {V1,V3,V4} is partitioned into two c-components{V1,V3} and{V4}. The only joint space

parameters that do not decompose in Step 1 are

pv2v4
v , pv1v3v4

v , pv1v2v3
v , pv2v3v4

v andpv1v2v4
v . (5.47)

Thus, after Step 1 we have

J′PPPintv
= J{Pv2v4(v),Pv1v3v4(v),Pv1v2v3(v),Pv2v3v4(v),Pv1v2v4(v):∀v1,v2,v3,v4}. (5.48)

In Step 2, we find that

pv2v3v4
v =

∑

v3

pv2v4
v andpv1v2v4

v =
∑

v1

pv2v4
v (5.49)

sinceV\{V2,V3,V4} = {V1} andV\{V1,V2,V4} = {V3} are ancestral sets inG(V\{V2,V4}) = G({V1,V3}).

After Step 2, we have

J′PPPintv
= J{Pv2v4(v),Pv1v3v4(v),Pv1v2v3(v):∀v1,v2,v3,v4} (5.50)
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andI is generated by all the relations found in Step 1 and 2. Finally, we have

ker(Ψ) = ker(Ψ′) + I (5.51)

whereΨ′ is the ring homomorphism

Ψ′ : R[J′PPPintv
] → R[M]. (5.52)

Moreover, we find that ker(Ψ′) can be represented as ker(Ψ1) + ker(Ψ2) + ker(Ψ3) where

Ψ1 : R[J{Pv2v4(v):∀v2,v4}] → R[M], Ψ2 : R[J{Pv1v3v4(v):∀v1,v3,v4}] → R[M], Ψ3 : R[JP{v1v2v3(v):∀v1,v2,v3}] → R[M]

(5.53)

since the mappings inducingΨ1, Ψ2 andΨ3 do not share model parameters. This gives

ker(Ψ) = ker(Ψ1) + ker(Ψ2) + ker(Ψ3) + I . (5.54)

Compared to the original implicitization problem of computing ker(Ψ) involving 240 joint space pa-

rameters which is intractable, we now have three small implicitization problems. Computing ker(Ψ1)

involves 16 joint space parameters and each of the computation of ker(Ψ2) and ker(Ψ3) involves 16

joint space parameters. The reduced problem can be solved easily.

Note thatJ′PPPintv
computed byPolyRelations in the above example contains only the joint space

parameters related to c-components inG. This holds generally forG in which the subgraphG(C) for

each c-componentC of G has no edges.

Proposition 8 Let C1, . . . ,Cl be c-components of a causal BN G. If every subgraph G(Ci) has no

edges, then

ker(Ψ) = ker(Ψ1) + . . . + ker(Ψl) + I (5.55)

where

Ψi : R[J{Pv\ci (v):∀v\ci }] → R[M] (5.56)

and I is the ideal computed by the procedurePolyRelations.
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The implicitization problem for a large causal BNG is computationally feasible ifG has the structure

described in Proposition 8 and the size of each c-component inG is small. Our method becomes

infeasible as the size of each c-component grows.

In general, there may be some constraints that are not included in the constraints for each c-

component and cannot be found by Lemma 4 and 5. For example, for the causal BNG in Figure 5.3

(b), we find the following constraint by the method in Section 5.3.1 using the Singular system:

p222pV2=2
122 pV2=1

211 + p222pV2=2
122 pV2=1

212 + p212pV2=2
122 pV2=2

221 + p122pV2=1
212 pV2=2

221 + p222pV2=1
212 pV2=2

221

− pV2=2
122 pV2=1

212 pV2=2
221 + p212pV2=2

122 pV2=2
222 − p122pV2=1

211 pV2=2
222 + p222pV2=1

212 pV2=2
222 − pV2=2

122 pV2=1
212 pV2=2

222

+ p212pV2=2
221 pV2=2

222 − pV2=1
212 pV2=2

221 pV2=2
222 + p212pV2=2

222 pV2=2
222 − pV2=1

212 pV2=2
222 pV2=2

222 − p222pV2=1
212

− p212pV2=2
222 + pV2=1

212 pV2=2
222 (5.57)

which is in ker(Ψ) but cannot be induced by Lemma 4 and 5.

5.3.3 Constraints in Subgraphs

When the sizes of the c-components of a causal BN are large, it may not befeasible to compute

the polynomial constraints by the methods described thus far. Instead, suppose that we wish to test a

part (subgraph) of a causal BN assuming that all the conditional independence relations captured by

the causal BN are correct. Our goal is to compute constraints (by implicitization) for this subgraph or

another subgraph that includes the subgraph with as small number of additional vertices as possible.

This can be achieved by finding a subgraph in which the local Markov property (every variable be

independent of all its nondescendants conditional on its parents) is satisfied. More formally, given a

causal BNG and a subsetS ⊆ V∪U, we seek to find the smallest setS∗ such thatS ⊆ S∗ ⊆ V∪U and

for everyX ∈ S∗, X y NDS∗(X)|PAS∗(X) where NDA(X) is the set of nondescendants ofX in G(A) and

PAA(X) is the set of parents ofX in G(A). It is easy to see that the local Markov property is satisfied for

G(AN(S)) where AN(S) is the union ofS and the set of ancestors of the vertices inS. However, there

can exist a smaller such setS∗ than AN(S). By these conditional independence relations, we have the
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V2

V1

U1

T

B

V3

V4

Figure 5.4 Testing a subgraph that includes the verticesV1,V2 andV3

following factorization:

P(s∗ ∩ v) =
∑

s∗∩u

∏

{i|Vi∈S∗∩V}

P(vi |paS∗(Vi))
∏

{ j|U j∈S∗∩U}

P(u j). (5.58)

Given this factorization, the truncated factorizations for interventional distributions are straightforward.

These factorizations define the implicitization problem for the subgraphG(S∗), which involves fewer

joint space parameters and model parameters than those in the implicitization problem forG. Then, we

can test the subgraphG(S∗) using the polynomial constraints computed by the methods described in

the previous sections.

The conditional independence relations in a causal BN are specified by the d-separation criterion

as defined in the following Pearl (1988). IfX,Y andZ are three disjoint subsets of vertices in a DAG,

thenZ is said tod-separate Xfrom Y if along every path between a vertex inX and a vertex inY there

is vertexw satisfying one of the following two conditions: (i)w has converging arrows and none ofw

or its descendants are inZ, of (ii) w does not have converging arrows andw is in Z. If a path satisfies

this condition, it is said to beblocked; otherwise, it is said to beactivatedby Z.

Suppose that we wish to test a subgraph including the verticesV1,V2 andV3 of a causal BNG in

Figure 5.4 whereT andB are subgraphs consisting of a large number of vertices. Consider a subgraph
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G({V1,V2,V3,U1}). If the local Markov property were satisfied, then we would have the factorization

P(v1, v2, v3) =
∑

u1
P(v1|v2)P(v2|u1)P(v3|u1)P(u1), which would define a new implicitization problem

with new sets of joint space parameters and model parameters. However,V2 y V3|U1 and V3 y

{V1,V2}|U1 do not hold in the entire graphG and the factorization does not follow. This is because

there is an activated path betweenV2 andV3: V2← V4→ V3 (also, there may be another activated path

via vertices inT) in G. Hence, we look for some other parents ofV2 (together withU1) that d-separate

V2 from V3. We find that{U1,V4} d-separatesV2 from V3. In G({V1,V2,V3,V4,U1}), the local Markov

property is satisfied:V1 y {V3,V4,U1}|V2,V2 y V3|{V4,U1},V3 y {V1,V2}|{V4,U1},V4 y U1. Thus,

we have the factorization

P(v1, v2, v3, v4) =
∑

u1

P(v1|v2)P(v2|v4u1)P(v3|v4u1)P(v4)P(u1) (5.59)

which defines an implicitization problem for the subgraphG({V1,V2,V3,V4,U1}).

The next lemma provides the basis for finding the smallest subgraph (containing a given subgraph)

in which the local Markov property is satisfied.

Lemma 6 Suppose that Xy NDS(X)|PAS(X) does not hold and T1 ⊆ PAV∪U(X) is a minimal set such

that Xy NDS∪T1(X)|PAS∪T1(X), that is, there is no T′1 ⊆ T such that Xy NDS∪T′1
(X)|PAS∪T′1

(X). Also,

suppose that T2 ⊆ PAV∪U(X) is a minimal set such that Xy NDS∪T2(X)|PAS∪T2(X). Then, T1 = T2.

In other words, there is a unique minimal setT ⊆ PAV∪U(X) such thatX y NDS∪T(X)|PAS∪T(X).

Proof: Suppose for a contradiction thatT1 , T2. Then, by the minimality assumption,T1 \ T2 , ∅ and

T2\T1 , ∅. Letα be a vertex inT1\T2. Then, there is an activated path (by PAS∪(T1\α)(X)) X← α · · ·n

for somen ∈ NDS(X) (otherwise,T1 would not be minimal). There are two cases to consider.

(i) For every vertext in the pathX ← α · · ·n, t < T2 \ T1. Let β1, . . . , βi ∈ T1 \ T2 such that

X ← α · · · β1 · · · βi · · ·n. Then, the pathX ← βi · · ·n is activated by PAS∪T2(X) sinceβi < T2.

This contradicts that PAS∪T2(X) d-separatesX from n.

(ii) There is a vertext in the pathX ← α · · ·n such thatt ∈ T2 \ T1. Let r1, . . . , r j ∈ T2 \ T1 such

thatX← α · · · r1 · · · r j · · ·n. Then, the pathX← r j · · ·n is activated by PAS∪T1(X) sincer j < T1.

This contradicts that PAS∪T1(X) d-separatesX from n.
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procedure MarkovSubgraph(G,S)
INPUT: a causal BNG, a listS of vertices inG
OUTPUT: an updated listS
while truedo

start size:= S.size()
i := 1
while i <= S.size() do

T := PA(S[i]) \ S
for eachA ∈ PA(S[i]) \ S do

if S[i] y NDS(S[i])|PA(S[i]) \ A then
T := T \ A

end if
end for
S := S ∪ T
i := i + 1

end while
Break ifS.size() == start size

end while

Figure 5.5 A procedure for finding a subgraph in which the local Markovproperty
is satisfied

Hence, it follows thatT1 = T2. �

We give a procedure calledMarkovSubgraph in Figure 5.5 that extends a given subgraph so that

the local Markov property is satisfied in the extended subgraph. Given asubgraphG(S), MarkovSub-

graph examines the local Markov property for each vertexS[i] in S. If the condition is not satisfied,

a minimal setT of parents ofS[i] that d-separates (together with PAS(S[i])) S[i] from NDS(S[i]) are

added toS. Finding this minimal set can be done by eliminating from PA(S[i]) \ S the vertices that

are not necessary for the d-separation. By Lemma 6, for anyS′ such thatS ⊆ S′ and the local Markov

property is satisfied inG(S′), we have thatT ⊆ S′ (otherwise, suchT cannot be unique). Thus, the

outputS of MarkovSubgraph is the smallest set such that the local Markov property is satisfied and

(5.58) follows.
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5.4 Model Testing Using Polynomial Constraints

In this section, we consider the problem of testing a causal BNG given a data setD using the

equality constraints induced byG. D may be either observational or experimental data. To simplify the

discussion, we will focus on a single data setD since it will be obvious that the same idea can be applied

to a set of experimental data sets. To apply these constraints to finite data in practice, we need to design

test statistics for non-independence constraints. However, these non-independence constraints are in

general too complex to obtain theoretical test statistics. We use abootstrapmethod (Efron, 1979) to

avoid this difficulty. In particular, we use a parametric bootstrap method, in which a parametric model

is fit to the data, by maximum likelihood, and samples are drawn from this parametric model. Then,

the estimate of a constraint is calculated from these samples.

In general, we may use any single equality constraintf induced byG as follows. First, we compute

the bootstrap distribution off . Then, we select an appropriate critical region. If the estimate off on

D is in the critical region, we rejectG. Our goal is to have small Type I and Type II errors. To this

end, we propose to use a set of equality constraints simultaneously by adding the absolute values of the

constraints and using it as a single constraint. For example, the causal BNG1 in Figure 5.6 induces the

following constraints: For anyv1 andv2,

g(v1, v2) =
∑

v3

P(V1 = v1|V2 = v2,V3 = v3,V4 = 1)P(V3 = v3|V4 = 1)

−
∑

v3

P(V1 = v1|V2 = v2,V3 = v3,V4 = 2)P(V3 = v3|V4 = 2)

=0 (5.60)

assuming thatV4 is binary. We can combine these equality constraints to form a single equality con-

straint:

f =
∑

v1,v2

∣

∣

∣g(v1, v2)
∣

∣

∣ = 0. (5.61)

Note that the combined constraint is satisfied if and only if all the original constraints are satisfied.

Moreover, a test using the combined constraint is likely to give a smaller TypeII error than using the

original constraints separately. Suppose thatD has been generated by some other causal BNG′. It
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V1 V2

U1

G1 G2

V3 V4 V1 V2

U1

V3 V4

Figure 5.6 Two causal BNs that are Markov equivalent

Testing a causal BNG given a data setD

1. Compute an equality constraintf from G.

2. Learn the parameters ofG using the EM algorithm.

3. Sample data setsD∗1,D
∗
2, . . . ,D

∗
k from G with the learned parameters.

4. Compute the estimatefD∗i of f on D∗i for i = 1, . . . , k.

5. Determine a critical region: Decide a valueα = argminβ
∣

∣

∣

∣

p −
∣

∣

∣{ fD∗i | fD∗i > β}
∣

∣

∣/k
∣

∣

∣

∣

wherep is a
significance level.

6. If the estimatefD of f on D is greater thanα, then rejectG.

Figure 5.7 A model testing procedure for a causal BN using a polynomial con-
straint

may be difficult to rejectG′ based on each constraint, but the combined constraint may give us enough

confidence to rejectG′. Figure 5.7 describes our proposed model testing procedure.

It is easy to generalize this procedure to a set of experimental data setsDDDintv. We simply replace a

data setD∗i with a set of data setsDDD∗intv in the procedure. Then, sampling data sets and computing the

estimate of the constraint are straightforward.

We now demonstrate our model testing procedure using data sets generatedby causal BNs in Figure

5.7. We wish to test a causal BNG1 against the alternative causal BNG2 given a data set. We used

the constraintf in (5.61) for the test. We generated 150 data sets fromG1 and another 150 data sets

from G2 and measured the Type I and Type II errors of our testing procedure.For Step 3 of the testing
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Table 5.1 The Type I and Type II errors in testingG1 againstG2

p = 0.05 p = 0.01
N Type I Type II Type I Type II

1000 0.0400 0.0733 0.0200 0.1733
2000 0.0667 0.0667 0.0067 0.1200

procedure, we sampled 100 data sets. We repeated this for two different sizesN = 1000,2000 of each

data set. Table 5.1 shows the Type I and Type II errors for two significance levelsp = 0.05,0.01.

Note thatG1 andG2 are Markov equivalent: They induce the same set of conditional independence

relations. It is known to be difficult to differentiate Markov equivalent models using only observational

data. Our testing procedure provides a way to differentiate Markov equivalent modelsG1 andG2. Now

suppose that we wish to select one model fromG1 andG2 given a data setD. Some scoring functions

can be used to evaluate each model. We experimented with theminimum description length (MDL)

scoring function for this purpose. We selectG1 if the MDL score ofG1 is smaller than that ofG2 and

selectG2 otherwise. We measured the error rate of the selection method on 150 data sets fromG1 and

another 150 data sets fromG2. Our testing procedure in this section gives an alternative way to select a

model fromG1 andG2: We selectG1 if G1 is not rejected by our test using the constraintf and select

G2 otherwise. The error rate of our selection method is simply the average of theType I and Type II

errors in Table 5.1. Table 5.2 compares the error rates of the two methods. Inthis experiment, our

method based on a polynomial constraint clearly outperformed the MDL-based method, which was not

better than random.

This model selection method based on a polynomial constraint is not easily generalized to selecting

a model from more than two models. A difficulty is that there may be multiple constraints, each of

which is induced by a distinct model. How to use these multiple constraints to selecta single model

from a set of candidate models needs further study. However, if you donot need to select a single

model, our testing procedure can be used to reduce the size of the set of candidate models.
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Table 5.2 Comparison of the error rates of two model selection methods

N
Constraintf

MDL
p = 0.05 p = 0.01

1000 0.0567 0.0967 0.5500
2000 0.0667 0.0634 0.5767
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CHAPTER 6. INEQUALITY CONSTRAINTS IN CAUSAL BAYESIAN

NETWORKS

We present a class of inequality constraints on the set of distributions induced by local interventions

on variables governed by a causal Bayesian network, in which some of the variables remain unmea-

sured. We derive bounds on causal effects that are not directly measured in randomized experiments.

We derive instrumental inequality type of constraints on nonexperimental distributions. The results

have applications in testing causal models with observational or experimentaldata.

6.1 Constraints on Interventional Distributions

Let P∗P∗P∗ denote the set of all interventional distributions induced by a given semi-Markovian model,

P∗P∗P∗ = {Pt(v)|T ⊆ V, t ∈ Dm(T), v ∈ Dm(V)} (6.1)

whereDm(T) represents the domain ofT. What are the constraints imposed by the model on the

interventional distributions inP∗P∗P∗? The structure of the causal graphG will play an important role in

finding these constraints. Ac-componentis a maximal set of vertices such that any two vertices in the

set are connected by a path on which every edge is of the formc U d whereU is a hidden variable.

The set of variablesV is then partitioned into a set of c-components. For example, the causal graph G

in Figure 6.1 consists of two c-components{X,Y,Z} and{W1,W2}.

Let G(H) denote the subgraph ofG composed only of the variables inH and the hidden variables

that are ancestors ofH. In general, equality constraints on the set of interventional distributions can be

found using the following three lemmas.

Lemma 7 Tian and Pearl (2002b)Let H ⊆ V, and assume that H is partitioned into c-components

H1, . . . ,Hl in the subgraph G(H). Then we have
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(i) Pv\h(v) decomposes as

Pv\h(v) =
∏

i

Pv\hi (v). (6.2)

(ii) Let k be the number of variables in H, and let a topological order of thevariables in H be

Vh1 < . . . < Vhk in G(H). Let H(i) = {Vh1, . . . ,Vhi } be the set of variables in H ordered before Vhi

(including Vhi ), i = 1, . . . , k, and H(0) = ∅. Then each Pv\h j (v), j = 1, . . . , l, is computable from

Pv\h(v) and is given by

Pv\h j (v) =
∏

{i|Vhi ∈H j }

Pv\h(i)(v)

Pv\h(i−1)(v)
, (6.3)

where each Pv\h(i)(v), i = 0,1, . . . , k, is given by

Pv\h(i)(v) =
∑

h\h(i)

Pv\h(v). (6.4)

A special case of Lemma 7 is whenH = V, and we have the following Lemma.

Lemma 8 Tian and Pearl (2002b)Assuming that V is partitioned into c-components S1, . . . ,Sk, we

have

(i) P(v) =
∏

i Pv\si (v).

(ii) Let a topological order over V be V1 < . . . < Vn, and let V(i) = {V1, . . . ,Vi}, i = 1, . . . ,n, and

V(0) = ∅. Then each Pv\sj (v), j = 1, . . . , k, is computable from P(v) and is given by

Pv\sj (v) =
∏

{i|Vi∈S j }

P(vi |v
(i−1)). (6.5)

The next lemma provides a condition under which we can computePv\w(w) from Pv\c(c) whereW

is a subset ofC, by simply summingPv\c(c) over other variablesC \W.

Lemma 9 Tian and Pearl (2002b)Let W⊆ C ⊆ V, and W′ = C \W. If W contains its own observed

ancestors in G(C), then
∑

w′
Pv\c(v) = Pv\w(v). (6.6)

The set of equality constraints implied by these three lemmas can be systematically listed by slightly

modifying the procedure in Tian and Pearl (2002b) for listing equality constraints on nonexperimental
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W1 X

U1

Y Z

U2

W2
U3

Figure 6.1 U1,U2 andU3 are hidden variables.

distributions. We will not show the details of the procedure here since the focus of this chapter is on

inequality constraints.

For example, the model in Figure 2.1 imposes the following equality constraints.

Pz(xy) = P(xy|z) (6.7)

Pyz(x) = P(x|z) (6.8)

Pxz(y) = Px(y) (6.9)

The model in Figure 6.1 imposes the following equality constraints.

Pw1w2(xyz) = P(z|w1xw2y)P(y|w1xw2)P(x|w1) (6.10)

Pw1w2z(xy) = P(y|w1xw2)P(x|w1) (6.11)

Pw1w2y(xz) = Pw1y(xz) (6.12)

Pw1w2x(yz) = Pw2x(yz) (6.13)

Pw1w2yz(x) = P(x|w1) (6.14)

Pw1w2xz(y) = Pw2x(y) (6.15)

Pw1w2xy(z) = Py(z) (6.16)

Pxyz(w1w2) = P(w2|w1x)P(w1) (6.17)

Pxyzw2(w1) = P(w1) (6.18)

Pxyzw1(w2) =
∑

w1

P(w2|w1x)P(w1) (6.19)
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6.1.1 Inequality Constraints

In this chapter, we are concerned with inequality constraints imposed by a model. TheP∗P∗P∗ set

induced from a semi-Markovian model must satisfy the following inequality constraints.

Lemma 10 For any S1 ⊆ V and any superset S′1 ⊆ V of S1, we have

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V) (6.20)

where|S2| represents the number of variables in S2.

Proof: We use the following equation.

k
∏

i=1

(1− ai) = 1−
∑

i

ai +
∑

i, j

aia j − . . . + (−1)ka1 . . .ak. (6.21)

Takea j = P(v j |paj ,u j), we have that

∑

u

∏

{i|Vi∈S1}

P(vi |pai ,u
i)

∏

{ j|V j∈S′1\S1}

(1− P(v j |paj ,u
j))P(u) =

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0 (6.22)

since for allVi ∈ V

0 ≤ P(vi |pai ,u
i) ≤ 1. (6.23)

�

For a fixedS′1 set, there are 2|S
′
1| number of Eq. (6.20) type of inequalities. For differentS′1 sets,

some of those inequalities may imply others as shown in the following proposition.

Proposition 9 If S′1 ⊂ S′′1 , then the set of2|S
′′
1 | inequalities,∀S1 ⊆ S′′1 ,

∑

S2⊆S′′1 \S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V) (6.24)

imply the set of2|S
′
1| inequalities,∀S1 ⊆ S′1,

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V) (6.25)

Assume that the set of variablesV in the model is partitioned into c-componentsT1, . . . ,Tk. Due

to the equality constraints given in Lemma 7, instead of listing 2|V| Eq. (6.20) type of inequalities, we

only need to give 2|Ti | Eq. (6.20) type of inequalities for each c-componentTi .



74

Proposition 10 Let the set of variables V in a semi-Markovian model be partitioned into c-components

T1, . . . ,Tk. The P∗P∗P∗ set must satisfy the following inequality constraints: for i= 1, . . . , k,∀S1 ⊆ Ti ,

∑

S2⊆Ti\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V) (6.26)

For example, Proposition 10 gives the following inequality constraints for themodel in Figure 2.1,

1− Pyz(x) − Pxz(y) + Pz(xy) ≥ 0 (6.27)

Pyz(x) − Pz(xy) ≥ 0 (6.28)

Pxz(y) − Pz(xy) ≥ 0 (6.29)

Pz(xy) ≥ 0, (6.30)

in which (6.30) is trivial, and (6.28) becomes trivial because of equality constraints (6.7) and (6.8).

For the model in Figure 6.1, Proposition 10 gives the following inequality constraints for the c-

component{X,Y,Z},

1− Pw1w2yz(x) − Pw1w2xz(y) − Pw1w2xy(z) + Pw1w2z(xy) + Pw1w2y(xz) + Pw1w2x(yz)

− Pw1w2(xyz) ≥ 0 (6.31)

Pw1w2yz(x) − Pw1w2z(xy) − Pw1w2y(xz) + Pw1w2(xyz) ≥ 0 (6.32)

Pw1w2xz(y) − Pw1w2z(xy) − Pw1w2x(yz) + Pw1w2(xyz) ≥ 0 (6.33)

Pw1w2xy(z) − Pw1w2y(xz) − Pw1w2x(yz) + Pw1w2(xyz) ≥ 0 (6.34)

Pw1w2z(xy) − Pw1w2(xyz) ≥ 0 (6.35)

Pw1w2y(xz) − Pw1w2(xyz) ≥ 0 (6.36)

Pw1w2x(yz) − Pw1w2(xyz) ≥ 0 (6.37)

Pw1w2(xyz) ≥ 0, (6.38)

some of which are implied by the set of equality constraints (6.10)-(6.19). It can be shown that all

inequality constraints for c-component{W1,W2} are implied by equality constraints.

Note that in general, the inequality constraints given in this section are not thecomplete set of

constraints that are implied by a given model. For example, for the model given in Figure 2.1, the sharp



75

bounds onPx(y) given in Balke and Pearl (1994) forX, Y, andZ being binary variables are not implied

by (6.27)-(6.30).

6.2 Inequality Constraints On a Subset of Interventional Distributions

Proposition 10 gives a set of inequality constraints on the set of interventional distributions inP∗P∗P∗. In

practical situations, we may be interested in constraints involving only a certainsubset of interventional

distributions. For example, (i) We have done some experiments, and obtainedPs(v) for some setsS.

We want to know whether these data are compatible with the given model. For thispurpose, we would

like inequality constraints involving only those known interventional distributions; (ii) A special case of

(i) is that we only have the nonexperimental distributionP(v). We want inequality constraints onP(v)

imposed by the model; (iii) In practice, certain experiments may be difficult or expensive to perform.

Still, we want some information about a particular causal effect, given some known interventional

distributions and nonexperimental distribution. We may provide bounds on concerned causal effect

that can be derived from those inequality constraints (if this causal effect is not computable from given

quantity through equality constraints).

To restrict the set of inequality constraints given in Proposition 10 to constraints involving only

certain subset of interventional distributions, in principle, we can treat each Ps(v) for an instantiation

of v ∈ Dm(V) as a variable, and solve the inequalities to eliminate unwanted variables using methods

like Fourier-Motzkin elimination or quantifier elimination. However, this is typically only practical for

small number of binary variables due to high computational complexity. In this chapter, we show some

inequality constraints involving only interventional distributions of interests that can be derived from

those in Proposition 10. In general, these constraints may not include all thepossible constraints that

could be derived from Proposition 10 in principle.

Instead of directly solving the inequality constraints given in Proposition 10,we consider the in-

equality in Eq. (6.20) for everyS′1 ⊆ Ti . We keep every inequality that involves only the interventional

distributions of interests. Those inequalities that contain unwanted interventional distributions may lead

to some new inequalities. For example, in the model in Figure 6.1, consider the following inequality
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that follows from (6.20) withS1 = {Z} andS′1 = {Y,Z},

Pw1w2xy(z) − Pw1w2x(yz) ≥ 0. (6.39)

Suppose we want constraints onPw1w2x(yz) and get rid of unknown quantityPw1w2xy(z). First we have

equality constraints (6.13) and (6.16), and Eq. (6.39) becomes

Pw2x(yz) ≤ Py(z) (6.40)

Pw2x(yz) is a function ofW2 andX but Py(z) is not, which leads to

max
w2,x

Pw2x(yz) ≤ Py(z) (6.41)

∑

z

max
w2,x

Pw2x(yz) ≤ 1 (6.42)

Eq. (6.42) is a nontrivial inequality constraint onPw1w2x(yz) = Pw2x(yz), which can also be represented

as

Pw2x(yz0) + Pw′2x′(yz1) ≤ 1 (6.43)

for anyw2 ∈ Dm(W2), x ∈ Dm(X), w′2 ∈ Dm(W2) andx′ ∈ Dm(X) whenZ is binary (Dm(Z) = {z0, z1}).

From the above considerations, we give a procedure in Figure 6.2 that lists the inequality constraints

on the interventional distributions of interest. The procedure has a complexity of 32|Ti |. Note thatA

will always contain the nonexperimental distribution and all interventional distributions that can be

computed fromP(v) (via equality constraints).

In Step 1, we list the inequalities that do not involve unwanted quantities (i.e., interventional dis-

tributions not included inA). Note that we remove some redundant inequalities based on the following

lemma.

Lemma 11 Let S up(S1) denote the set of supersets of S1 such that S′1 ∈ S up(S1) if and only if every

interventional distribution in eS1,S′1
=
∑

S2⊆S′1\S1
(−1)|S2|Pv\(s1∪s2)(v) ≥ 0 is in A. For a set of sets W, let

Max(W) = {S|S ∈ W, there is no S′ ∈ W such that S⊂ S′} denote the set of maximal sets in W. Then,

the set of inequalities

∀S1 ⊆ Ti ,∀S
′
1 ∈ Max(S up(S1)),

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V) (6.44)
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procedure FindIneqs(G,A)
INPUT: a causal graphG, interventional distributions of interestA, equality constraints implied byG
OUTPUT: inequalities of interests,IETi for each c-componentTi , i = 1, . . . , k
Step 1:
For eachc-componentTi , i = 1, . . . , k

For eachS1 ⊆ Ti (small to large)
For eachS′1 ⊆ Ti such thatS1 ⊆ S′1(small to large)

Study the inequality
eS1,S′1

=
∑

S2⊆S′1\S1
(−1)|S2|Pv\(s1∪s2)(v) ≥ 0

If every interventional distribution ineS1,S′1
is in A

IETi = IETi ∪ {eS1,S′1
≥ 0};

Remove anyeS1,R in IETi such thatR⊂ S′1;
Step 2:
For eachc-componentTi , i = 1, . . . , k

For eachS1 ⊆ Ti (small to large)
For eachS′1 ⊆ Ti such thatS1 ⊆ S′1(small to large)

Study the inequality
eS1,S′1

=
∑

S2⊆S′1\S1
(−1)|S2|Pv\(s1∪s2)(v) ≥ 0

If some interventional distribution ineS1,S′1
is

not in A
IETi = IETi ∪ {eS1,S′1

≥ 0 reformulated
in the form of (6.54)};

Figure 6.2 A Procedure for Listing Inequality Constraints On a Subset of Inter-
ventional Distributions

imply the inequalities

∀S1 ⊆ Ti ,∀S
′
1 ∈ S up(S1)

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V). (6.45)

Proof: We will show that if the inequalities in (6.44) hold, then for anyn ≤ |V| we have

∀S1 ⊆ Ti ,∀S
′
1 ∈ Maxn(S up(S1)),

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V) (6.46)

whereMaxn(S) = Max(S \ {R|R ∈ S, |R| > n}). (6.45) will follow from (6.46) if we letn be the size of

the setS′1 in (6.45). Assuming (6.44), we prove (6.46) by induction onn.

Base:n = |V|. (6.46) is equivalent to (6.44).



78

Hypothesis: Assume that

∀S1 ⊆ Ti ,∀S
′
1 ∈ Maxn(S up(S1)),

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V). (6.47)

Induction step: We show that

∀S1 ⊆ Ti ,∀S
′
1 ∈ Maxn−1(S up(S1)),

∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V). (6.48)

If |S′1| < n − 1, thenS′1 is in Maxn(S up(S1)). Thus, (6.48) follows from (6.47). If|S′1| = n − 1, then

one of the followings should hold.

Case 1:S′1 is in Maxn(S up(S1)).

Case 2: There exists a variableα such thatS′1 ∪ {α} is in Maxn(S up(S1)).

In Case 1, (6.48) follows from (6.47). In Case 2, we have

∑

S2⊆(S′1∪{α})\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V) (6.49)

and
∑

S2⊆S′1\S1

(−1)|S2|Pv\(s1∪{α}∪s2)(v) ≥ 0,∀v ∈ Dm(V). (6.50)

(6.50) follows from (6.47) sinceS′1∪ {α} is in Maxn(S up(S1∪ {α})). Summing (6.49) and (6.50) gives

(6.48).�

In Step 2, we deal with the inequalities that contain unwanted quantities as follows. We rewrite the

inequality in Eq. (6.20) aseS1,S′1
≥ 0, with

eS1,S′1
=
∑

R∈W1

(−1)|R|−|S1|Pv\r (v) +
∑

R∈W2

(−1)|R|−|S1|Pv\r (v) (6.51)

whereW1 = {S1 ∪ S2|S2 ⊆ S′1 \ S1,Pv\(s1∪s2)(v) is in A} andW2 = {S1 ∪ S2|S2 ⊆ S′1 \ S1,Pv\(s1∪s2)(v)

is not inA}. We have

∑

R∈W1

(−1)|R|−|S1|Pv\r (v) ≥ −
∑

R∈W2

(−1)|R|−|S1|Pv\r (v). (6.52)



79

Suppose the left-hand side is a function of variablesE1 and the right-hand side is a function of variables

E2. Then,

min
E1\E2

∑

R∈W1

(−1)|R|−|S1|Pv\r (v) ≥ −
∑

R∈W2

(−1)|R|−|S1|Pv\r (r). (6.53)

Let Q =
⋃

R∈W2
R. We obtain,

∑

Q

min
E1\E2

∑

R∈W1

(−1)|R|−|S1|Pv\r (v) ≥ −
∑

R∈W2

(−1)|R|−|S1|
∏

{i|Vi∈Q\R}

|Dm(Vi)|. (6.54)

Note that ifE1 \ E2 = ∅, then we do not need minE1\E2.

To illustrate the procedure, suppose we want to get the inequality constraints on the two inter-

ventional distributionsPw1w2xy(z) and Pw1w2x(yz) and we are given a tried interventional distribution

Pw1w2y(xz).

In Step 1, consider the loop in whichTi = {X,Y,Z} andS1 = {∅}. The procedure first addse∅,{X}

ande∅,{Z}. When it addse∅,{X,Z}, it will removee∅,{X} ande∅,{Z} from IETi and keepe∅,{X,Z} which turns

out to beMax(S up(∅)). This repeats for everyS1 ⊆ Ti .

In Step 2, consider the loop whereTi = {X,Y,Z} andS1 = {Y}. The procedure studieseS1,S′1
for

eachS′1 ∈ {{Y}, {X,Y}, {Y,Z}, {X,Y,Z}}. For example, forS′1 = {X,Y,Z}, we have the inequality (6.33).

From (6.10), (6.11), (6.13) and (6.15), we obtain

max
w1,z

(

P(y|w1xw2)P(x|w1) + Pw2x(yz) − P(z|w1xw2y)P(y|w1xw2)P(x|w1)
)

≤ Pw2x(y). (6.55)

Summing both sides overY gives

∑

y

max
w1,z

(

P(y|w1xw2)P(x|w1) + Pw2x(yz) − P(z|w1xw2y)P(y|w1xw2)P(x|w1)
)

≤ 1. (6.56)

6.2.1 Bounds on Causal Effects

Suppose that our goal is to bound a particular interventional distribution. For this case,A in the

procedureFindIneqs consists of the particular interventional distribution that we want to bound, the

nonexperimental distributionP(v), and all interventional distributions that are computable fromP(v).

For example, consider the graph in Figure 6.1. Suppose that we want to bound the interventional

distributionPw1w2xy(z) and that the interventional distributionPw1w2y(xz) is available from experiments.
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FindIneqs will list the following bounds forPw1w2xy(z) in Step 1.

1− P(x|w1) − Pw1w2xy(z) + Pw1w2y(xz) ≥ 0 (6.57)

Pw1w2xy(z) − Pw1w2y(xz) ≥ 0 (6.58)

which provides a lower and upper bound forPw1w2xy(z) respectively.

6.2.2 Inequality Constraints on Nonexperimental Distribution

Now assume that we want to find inequality constraints on nonexperimental distribution. For this

case,A in the procedureFindIneqs consists of the nonexperimental distributionP(v) and all interven-

tional distributions that are computable fromP(v).

The inequality constraints produced byFindIneqs in this case include the instrumental inequality

type of constraints. Consider the graph in Figure 2.1. For the c-component {X,Y}, FindIneqs will

produce the inequality (6.29). From (6.7) and (6.9), we have

max
z

P(xy|z) ≤ Px(y) (6.59)

and summing both sides overY gives

∑

y

max
z

P(xy|z) ≤ 1. (6.60)

Since this must hold for allX, we obtain the instrumental inequality (2.1).

To illustrate more general instrumental inequality type of constraints, consider the graph in Fig-

ure 6.1. ForS1 = {Y,Z} andS′1 = {X,Y,Z}, FindIneqs produces the inequality (6.37). From (6.10) and

(6.13), we have

max
w1

P(z|w1xw2y)P(y|w1xw2)P(x|w1) ≤ Pw2x(yz). (6.61)

Summing both sides overY andZ gives

∑

yz

max
w1

P(z|w1xw2y)P(y|w1xw2)P(x|w1) ≤ 1. (6.62)
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CHAPTER 7. CONCLUSION

This chapter provides a broad summary of our work and proposes several potential directions of

future work.

7.1 Markov Properties for Linear Causal Models with Correlated Errors

We present local Markov properties for ADMGs representing linear SEMs with correlated errors.

The results have applications in testing linear SEMs against the data by testing for zero partial corre-

lations implied by the model. For general linear SEMs with correlated errors, we provide a procedure

that lists a subset of zero partial correlations that will imply all other zero partial correlations implied by

the model. In particular, for a class of models whose corresponding path diagrams contain no directed

mixed cycles, this subset invokes one zero partial correlation for each pair of variables.

In general, our procedure may invoke an exponential number of zero partial correlations if the path

diagramG satisfies all of the following properties: (i)G has large c-components; (ii) the vertices in

each c-component are heavily connected by bi-directed edges; and (iii)G has directed mixed cycles.

If one of these properties is not satisfied, then the number of zero partialcorrelations derived by our

method is typically not exponential.

For the class of MAGs, which is a strict superclass of ADMGs without directed mixed cycles, one

might use the pairwise Markov property for MAGs given in Richardson and Spirtes (2002) instead of

our results in Section 4.3. However, when the two approaches give a similarnumber of constraints, it

may be better to use our approach since it may use smaller conditioning sets as shown in the example

in Section 4.3.2.

The potential advantages of testing linear SEMs based on vanishing partialcorrelations over the

classical test method based on maximum likelihood estimation of the covariance matrix have been
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discussed in Pearl (1998); Shipley (2000); McDonald (2002); Shipley (2003). The results presented in

this paper provide a theoretical foundation for the practical applications of this test method in linear

SEMs with correlated errors. How to implement this test method in practice still needs further study

as it requires multiple testing of hypotheses about zero partial correlations(Shipley, 2000; Drton and

Perlman, 2007). We also note that, in linear SEMswithoutcorrelated errors, all the constraints on the

covariance matrix are implied by vanishing partial correlations. This also holds in linear SEMswith

correlated errors that are represented by ADMGswithoutdirected mixed cycles. However, it is possible

that linear SEMswith correlated errors represented by ADMGswith directed mixed cycles may imply

constraints on the covariance matrix that are not implied by zero partial correlations.

Although the intended application is in linear SEMs, the local Markov properties presented in the

paper are valid for ADMGs associated with any probability distributions that satisfy the composition

axiom. For example, any probability distribution that is faithful1 to some DAG or undirected graph

(and the marginals of the distribution) satisfies the composition axiom.

Model debuggingfor ADMGs using vanishing partial correlations is another area of current re-

search. In this model debugging problem, the goal is to modify a graph based on the pattern of rejected

hypotheses. The properties of ADMGs presented in this paper may facilitatethe development of a new

model debugging method.

7.2 Polynomial Constraints in Causal Bayesian Networks

We obtain polynomial constraints on the interventional distributions induced bya causal BN with

hidden variables, via the implicitization procedure. These constraints constitute a necessary test for a

causal model to be compatible with given observational and experimental data. We present a model

testing procedure using theses polynomial constraints.

Future work will investigate the general characterization of the constraintscomputed by impliciti-

zation for causal BNs without hidden variables, which will be helpful in finding the algebraic structure

of the constraints implied by causal BNs with hidden variables which typically have complicated struc-

tures.
1A probability distributionP is said to be faithful to a graphG if all the conditional independence relations embedded in

P are encoded inG (via the global Markov property).
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7.3 Inequality Constraints in Causal Bayesian Networks

We present a class of inequality constraints imposed by a given causal BNwith hidden variables

on the set of interventional distributions that can be induced from the network. We show a method to

restrict these inequality constraints on to that only involving interventional distributions of interests.

These inequality constraints can be used as necessary test for a causal model to be compatible with

given observational and experimental data. Another application permits usto bound the effects of

untried interventions from experiments involving auxiliary interventions that are easier or cheaper to

implement.

We derive a type of inequality constraints upon the nonexperimental distribution in a complexity

of 32m wherem is the number of variables in the largest c-component. These constraints are imposed

by the network structure, regardless of the number of states of the (observed or hidden) variables

involved. These constraints can be used to test a model or distinguish between models. How to test

these inequality constraints in practice and use them for model selection wouldbe interesting future

research.
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