
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Integration of ab-initio nuclear calculation with
derivative free optimization technique
Anurag Sharda
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Sharda, Anurag, "Integration of ab-initio nuclear calculation with derivative free optimization technique" (2008). Graduate Theses and
Dissertations. 11146.
https://lib.dr.iastate.edu/etd/11146

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11146?utm_source=lib.dr.iastate.edu%2Fetd%2F11146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Integration of ab-initio nuclear calculation with derivative free

optimization technique

by

Anurag Sharda

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Masha Sosonkina, Co-major Professor

Leslie Miller, Co-major Professor
James P. Vary

Samik Basu

Iowa State University

Ames, Iowa

2008

Copyright c© Anurag Sharda, 2008. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my parents, who have been a constant source

of insipiration and blessings throughout my academic career.

iii

TABLE OF CONTENTS

LIST OF FIGURES . v

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1 OVERVIEW . 1

1.1 Introduction . 1

1.2 Motivations . 3

1.3 Problem Statement . 6

1.4 Contributions . 7

1.5 Thesis outline . 8

1.5.1 Chapter 1 . 8

1.5.2 Chapter 2 . 8

1.5.3 Chapter 3 . 9

1.5.4 Chapter 4 . 9

1.5.5 Chapter 5 . 9

CHAPTER 2 REVIEW OF LITERATURE 10

2.1 Background work . 10

2.1.1 Optimization Technique . 10

2.1.2 Many Fermion Dynamic Code . 20

CHAPTER 3 PROPOSED METHODS 21

3.1 Design of Integrated System . 21

iv

3.1.1 Enabling Seamless Integration . 22

3.1.2 Design of χ2 Function . 26

3.1.3 Design consideration for Driver 28

3.2 Implementation . 30

3.3 Alternative Design for High Performance Clusters 32

3.4 Alternative design for Grid Computing 35

3.5 Performance Monitor . 38

CHAPTER 4 RESULTS . 40

4.1 Platforms . 40

4.2 Results . 42

CHAPTER 5 CONCLUSIONS . 55

5.1 Summary . 55

5.2 Future Work . 56

BIBLIOGRAPHY . 57

v

LIST OF FIGURES

Figure 1.1 Matching of experimental (Exp) and theoretical energy levels of

49Sc using CD-Bonn potential in its initial version (CD-Bonn) and

new with searched terms (CD-Bonn+3terms). Each energy level

is annotated with its spin value 4

Figure 1.2 Example of the scatter plot of boxes. The F -axis is function

values, and the D-axis is box diameters 5

Figure 2.1 Global and local optima of a two dimensional function 13

Figure 2.2 Multiple snap shot of VTDIRECT search space at different point

in time while in execution. 16

Figure 3.1 Data Flow Chart for VTDIRECT95 23

Figure 3.2 Design layout for the integration system 25

Figure 3.3 Component Level Diagram of the integration system 26

Figure 3.4 Work flow diagram for the MFDn and VTDIRECT95 supple-

mented with stubs . 29

Figure 3.5 Design for implementing automation code for High Performance

Cluster . 34

Figure 3.6 Design for implementing automation code for Grid Computing . 37

Figure 4.1 Evaluations per iteration for 49Ca 44

vi

Figure 4.2 Execution times for 47K, 48Ca, and 49Ca on different numbers of

processors on Bassi . 45

Figure 4.3 Matching of experimental and theoretical energy levels for 48Ca . 46

Figure 4.4 Matching of experimental and theoretical energy levels for 49Ca . 47

Figure 4.5 Matching of experimental and theoretical energy levels for 49Ca

for parallel integration code . 49

Figure 4.6 Matching of experimental and theoretical energy levels for 47Ca . 51

Figure 4.7 Matching of experimental and theoretical energy levels for 49Ca

for multiple nucleus fit . 52

Figure 4.8 Matching of experimental and theoretical energy levels for 47Ca

for multiple nucleus fit . 53

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me on

the aspects of research pertaining to this thesis. First and foremost, Dr. Masha Sosonk-

ina and Dr. James P. Vary for their guidance, motivation and support throughout the

research. Weekly research meetings and discussion of the ongoing research work gave

me creative insights and deep understanding of the academic material and the research

field. Dr. Sosonkina helped me with planning and organizing my studies which allowed

me to finish the research work on time. I greatly appreciate her for supporting me with

an assistantship for my MS program. I sincerely thank my co-major professor Dr. Leslie

Miller for his constant support and invaluable suggestions. I would also like to thank

my committee member Dr. Samik Basu for his timely suggestions. I would also like to

thank Mark Klein, Brett Bode and Troy Benjegerdes for their timely help in running

simulations and configuring cluster nodes. I am thankful to Alina Negoita, Pieter Maris,

Miles V. Aronnax, Andrey Shirokov and Andy Davenport for all their help and support.

I would also like to extend thanks to my friends Abhishek Sinha, Abrar Hasan, Paras

Malhotra, Neevan Ramalingam, Narasimha Rao and August Heim for their constant

support and motivation. I would also like to acknowledge each and everyone in my

research group for their participation in my research presentations.

Last but not the least, I would like to thank my parents for their constant love,

support and encouragement.

viii

ABSTRACT

Optimization techniques are finding their inroads into the field of nuclear physics cal-

culations where the objective functions are very complex and computationally intensive.

A vast space of parameters needs searching to obtain a good match between theoretical

(computed) and experimental observables, such as energy levels and spectra. Manual

calculation defies the scope of such complex calculation and are prone to error at the

same time. This body of work attempts to formulate a design and implement it which

would integrate the ab initio nuclear physics code MFDn and the VTDIRECT95 code.

VTDIRECT95 is a Fortran95 suite of parallel code implementing the derivative-free op-

timization algorithm DIRECT. Proposed design is implemented for a serial and parallel

version of the optimization technique. Experiment with the initial implementation of the

design showing good matches for several single-nucleus cases are conducted. Determi-

nation and assignment of appropriate number of processors for parallel integration code

is implemented to increase the efficiency and resource utilization in the case of multiple

nuclei parameter search.

1

CHAPTER 1 OVERVIEW

1.1 Introduction

In many scientific and engineering arenas, a good combination of parameters to op-

timize some performance metric or cost function must be determined. Modern nuclear

physics practices require use of large, sophisticated, computer intensive calculations of

cost function(CF) to accurately model the interactions of a nuclei. Frequently, these

CF’s are not analytic, but are obtained from simulation, experiments, or from a series of

numerical computation (1). Generally the CF is not smooth and multiple local optima

are often present. Derivatives are usually not available in closed form, and are difficult

to calculate numerically. New optimization techniques for complex cost functions have

recently become an active research area, especially for global and large-region searches

(2). With the increasing availability of parallel computing systems, high-performance

approaches are now employed to address the high computational cost of these new op-

timization techniques (3),(5),(4). An optimization problem can be represented as:

Given: A function f : A→ R from the set A to the real numbers.

Find : An element x0 in A such that f(x0) ≤ f(x) for all x in A (”minimization”) or

such that f(x0) ≥ f(x) for all x in A (”maximization”).

Such a formulation can be called as an optimization technique or a mathematical

2

programming problem. Optimization techniques can be broadly classified under two cat-

egories, Single Variable Optimization(SVO) and Multiple Variable Optimization(MVO).

Thereafter optimization algorithms can be sub-classified as Linear Programming, Integer

Programming, Heuristic Algorithms, Combinatorial Optimization, Dynamic Program-

ming and many more. Some of the problems formulated using this technique in the

domain of computer science and physics may refer to the technique as energy minimiza-

tion where energy represents the value of the function f of the system begin modeled.

Typically, A is some subset of the Euclidean space Rn, often specified by a set of con-

straints, equalities or inequalities that the members of A have to satisfy. The domain A

of f is called the search space, while the elements of A are called candidate solutions or

feasible solutions. The function f is objective function, or CF. A feasible solution that

minimizes (or maximizes, if that is the goal) the objective function is called an optimal

solution. Generally, when the feasible region or the objective function of the problem

does not present convexity, there may be several local minima and maxima, where a

local minimum x∗ is defined as a point for which there exists some δ > 0, that for all x

the expressions;

‖x− x∗‖ ≤ δ (1.1)

f(x∗) ≤ f(x) (1.2)

holds; that is to say, on some region around x∗ all of the function values are greater

than or equal to the value at that point. Similarly local maxima can be defined as

a point in some region around x∗ where all the function values are less then or equal

to the value at that point. A number of algorithms proposed for solving non-convex

problems including the majority of commercially available solvers are not potentially

capable of making a distinction between local optimal solutions and rigorous optimal

3

solutions, and will treat the former as actual solutions to the target problem. The branch

of applied mathematics and numerical analysis that is concerned with the development

of deterministic algorithms, capable of guaranteeing convergence in finite time to the

actual optimal solution of a non-convex problem is called global optimization.

For twice-differentiable smooth functions, unconstrained problems can be solved by

finding the stationary points where the gradient of the objective function is zero and

using the Hessian matrix to classify the type of each point. If the Hessian is positive

definite, the point is a local minimum, if negative definite, a local maximum, and if

indefinite it is a saddle point. However, the existence of derivative is known a priori and

there are methods devised for these specific situations.

The following body of work is based on integration of Derivative Free Optimiza-

tion technique, DIvided RECTangle(DIRECT) Optimization algorithm and the ab inito

nuclear physics Multi Fermion Dynamics(MFDn) code.

1.2 Motivations

Unlike electrons in the atom, the interaction between nucleons is not known well

known and is complicated. The shell model is the fundamental tool to study the structure

of nuclei. The basic idea is that the nucleons move in an average potential generated by

the mutual interactions of the nucleons. The strong Nucleon-Nucleon (NN) interaction

as well as 3-nucleon (NNN) interactions generate the potential that describes the nucleon

energy levels in the nucleus. In particular, NN and NNN interactions tuned to fit light

nuclei are used in nuclear astrophysics for solar models, supernova modeling, and Big

Bang nucleosynthesis. The techniques for solving these problems also find applications in

the field of quantum chemistry, condensed matter physics, atomic, nuclear, and particle

physics (12).

Until recently, the No Core Shell Model (27),(28) was only applied to nuclei up to

4

0

0.8

1.6

2.4

3.2

4

4.8

5.6

E
xc

ita
tio

n
E

ne
rg

y
(M

eV
)

Exp CD-Bonn
+ 3 terms

CD-Bonn

��������

��

7/2-

1/2+

3/2+

3/2-

(5/2+3/2+)

7/2-

5/2+3/2+
7/2-
(9/2-)
1/2+
(9/2-)
5/2-

(11/2-)

(15/2-)

(5/2+)

5/2-

1/2-

3/2-

5/2-

7/2-

1/2-
11/2-
15/2-
3/2-
9/2-

5/2-
7/2-

9/2-
11/2-

5/2-
9/2-

3/2-
1/2-
5/2-
7/2-

13/2-
11/2-
7/2-

5/2-
11/2-
9/2-
7/2-
3/2-

Figure 1.1 Matching of experimental (Exp) and theoretical energy levels of
49Sc using CD-Bonn potential in its initial version (CD-Bonn)
and new with searched terms (CD-Bonn+3terms). Each energy
level is annotated with its spin value

5

F

D

box column

convex hull

Figure 1.2 Example of the scatter plot of boxes. The F -axis is function
values, and the D-axis is box diameters

atomic mass A of 16. Work is underway to extend this model to heavier nuclei (36).

The effective Hamiltonian operator derived from CD-Bonn interaction (35) begins to

give a poor description of nuclei with atomic mass greater then 48. Fig. 1.1 describes

the matches between the theoretical and experimentally obtained energy levels for 49Sc,

where the initial version of the theory is given in the rightmost column. A problem with

the existing Hamiltonian is that the computed spectra is too compressed compared with

the experimental spectra. The addition of the three parameters isospin-dependent V0,

central V1, and tensor-interaction Vtens results in a reasonable low lying spectra for the

nuclei involved in the double-beta decay of 48Ca. One of the physics goals is to test

6

whether the same modified Hamiltonian described for the nuclei with atomic mass of 48

is able to describe other heavy nuclei. These three parameters and possibly other (up

to 20) parameters need to be searched to obtain their best match to the experimental

values (see Fig. 1.1, for example). This process is know as fitting the parameters or the

fitting process. To find this match according to some criteria, it is required to evaluate

energies at locus of points in a parameter search space. In particular, a criterion χ2

may be calculated that quantifies the match using weighting (see Section 3.1.2). This

process may be automated by taking advantage of optimization techniques which will

generate the points at which χ2 may be evaluated. Note that, since derivatives do not

come into the picture for complex nuclear physics calculations on which χ2 depends, the

derivative-free optimization is chosen. As a trade-off, it is typically required that a large

number of function evaluations are needed to find a local minimum. The time taken

by such an optimization algorithm is directly proportional to the cost of the objective

function evaluation. Faster processors and memory access have substantially reduced

calculation time for objective functions, but parallel computing can potentially further

increase efficiency,and facilitate the use of optimization techniques that were formerly

considered too computationally expensive. Thus, parallel implementations of both the

function evaluation and optimization algorithm may be beneficial.

1.3 Problem Statement

The process of matching theoretical and experimental values in order to find a good

match typically requires large number of calculations and are thus tedious and error

prone. The number of calculations increases to a much higher number when more

number of parameters to be searched are introduced in the process. Each iteration of

calculation of energy function requires generation of values for different parameters to be

searched which can be error prone and is more complex. The probability of introduction

7

of error and uncertainty increases dramatically when multiple nuclei are to be fitted

simultaneously for same set of parameters. The automation process can take advantage

of optimized technique which can generate sample points at which energy function may

be evaluated. Based on these calculations more sample points are generated and thus

parameter search space is explored at a rapid pace to find the minimal or the maximum

function value for a given CF. Modern optimization techniques are also available in their

parallel implementation . Use of these parallel implementation would reduce the search-

ing time and thus can be more time efficient.

This body of work concentrate on implementation of a derivative free optimization

technique in order to automate the process of finding the minimal energy value for the

χ2 function and design of such implementation. Implementation for both, serial and

parallel version of the derivative free optimization technique is considered. To monitor

and improve the performance, a performance monitor pivoted over running time of nuclei

is developed which monitors running time of individual nuclei and assist in assigning

corresponding number of processors to each nuclei.

1.4 Contributions

The contributions of this study are as follows:

1. Automation of the fitting process that provides following advantages:

(a) Elimination of manual process of matching theoretical energy levels to exper-

imental energy level and subsequent reduction in risk of any error that can

be introduced in the process.

(b) Testing and qualification of different formulation of χ2.

(c) Experimenting with different weighting schemes for experimental observables.

8

2. Design on integration of derivative-free optimization technique and large-scale ap-

plication dealing with nuclear structure calculation.

3. Time Performance Monitor module to monitor the running time and performance

of different nuclei on certain number of processor and to balance the resources

amongst the running nuclei so as to gain the maximum resource utilization.

1.5 Thesis outline

The rest of the thesis is organized as follows

1.5.1 Chapter 1

In chapter 1, an overview on this work was provided. A brief introduction on op-

timization technique and ab intio nuclear calculation was given. In this chapter, the

motivation behind this study was provided along with the problem statements and con-

tributions of this study. This chapter briefly described the need of automation of fitting

process used for calculations in ab initio nuclear structure and the appropriateness of

derivative free optimization technique.

1.5.2 Chapter 2

In chapter 2, review of literature, related and background work for thesis is pre-

sented. It talks about various optimization techniques and their classifications in some

broad categories according to properties, method of operation, number of criteria, etc.

Derivative free search optimization techniques are studied in depth and in particular

about VTDIRECT95 algorithm. VTDIRECT95 algorithm is studied with its imple-

mentation with different aspects of algorithm being detailed. A brief introduction to ab

initio nuclear structure is presented.

9

1.5.3 Chapter 3

This chapter details the actual contributions of this thesis. Input/Output interfaces

of VTDIRECT95 and MFDn code are discussed and detailed. Thereafter, design and

implementation of serial and parallel automation code interfacing optimization technique

and the target problem is presented. An alternative design for automation code that

can be implemented for high performance computing platform and grid networks is also

discussed. An introduction to time performance monitor module and its integration

with central automation code is also presented.

1.5.4 Chapter 4

This chapter presents the results section. It details various hardware platforms that

were used for developing the code and conducting experiments, different nuclei that were

part of this experiment and reason for considering those nuclei. It also describes how

characteristics of different nuclei (Hamiltonian sizes) affect their running time which in

turn affect the number of processor allocated to avoid the bottleneck in multiple nuclei

scenarios.

1.5.5 Chapter 5

This chapter talks about the conclusion and the contribution of this thesis to the

field of science. It also talk about some of the future work, that can be undertaken to

broaden the horizon of the current study.

10

CHAPTER 2 REVIEW OF LITERATURE

This section covers a brief review of literature on various optimization techniques and

their classifications in some broad categories based on properties, method of operation,

number of criteria and others. Derivative free search optimization techniques are stud-

ied in depth and in particular, VTDIRECT95 algorithm. VTDIRECT95 algorithm is

studied with its design and implementation. Different aspects of algorithm are detailed.

A brief introduction to ab initio nuclear structure is also presented.

2.1 Background work

This section covers the necessary background knowledge to understand the rest of

the thesis. In the next section, related work leading to the problem statements of this

thesis is explained in detail.

2.1.1 Optimization Technique

As described by Fletcher, optimization is the science of determining the best solution

(6). The contribution to this is made through the mix attempts of science, statistics

and heuristics, where the individuals from different fields like engineering, economics,

bio-informatics and others mark a significant impact. In the following section, the state

of art in the optimization technique is presented. This is not an effort to classify every

possible type of optimization method.

11

The standard set of formulas which describe a constrained optimization problem, are

seen below in 2.1.

f : RD → R (2.1)

min f(x̀)

subject to ĝ(x̀) ≤ 0

h(x̀) = 0

Terminology that is used and associated with the equation above are as:

• Objective/Cost Function(f) : The function to be minimized or maximized. The

function need not be differentiable, or even continuous.

• Search space(ω): The part of RD for which the optimum value (maximum or

minimum) is to be found by optimization.

• Inequality and Equality constraints : Conditions that bounds the search space

(ĝ(x̀) and h(x̀)).

Optimization techniques can be categorized in many ways. The following categories

are quoted from (29).

1. Classification according to Method of Operation

Based on Method of Operation optimization algorithms can be divided in two main

types, Deterministic and Probabilistic algorithms.

• Deterministic Algorithms

Algorithms wherein no randomness is introduced in order to generate the

next candidate sampling points are known as deterministic algorithm. The

12

characteristic of the objective function provides an obvious relationship be-

tween the possible solutions for this type of problems. Then, the search space

can efficiently be explored using, for example, a divide and conquer scheme

(9).

• Probabilistic Algorithms

Sometimes the potential solution from the search space domain cannot be

mapped directly to solve a problem. This makes it difficult and complex to

solve a problem deterministically. One way to get an answer would be to apply

a brute force approach, which calls for enumerating all possible candidate

points in search space, which is not feasible even for relatively small problems.

For such scenarios, probabilistic algorithms finds its application. Monte Carlo

based approaches are one of the frequently used algorithms to answer such

scenarios. Correctness of a solution are traded in for a shorter runtime of the

algorithm. The decision to choose the next potential solution is made by the

information gathered by the algorithm in each iteration, normally known as

Heuristics.

2. Classification according to Properties

• Optimization Speed

Based on Optimization Speed, optimization algorithms can be distinguished

as two main types, Online and Offline. Some tasks are time critical, mean-

ing that should be solved in a specified period of time. The time span can

range from certain milliseconds to minutes. Problem statements falling under

such constraints are known as Online optimization problems. Examples for

Online optimization are robot localization, load balancing, etc. On the other

hand, problem domain where time is not a critical factor are known as Offline

optimization problems.

13

Figure 2.1 Global and local optima of a two dimensional function

• Number of Criteria

Based on Number of Criteria optimization algorithms can be divided in two

main categories, Single Objective Function and Multiple Objective function.

While calculating single objective function best values of single objective func-

tion f is searched and in the other case a sets F of target functions is tried to

optimize. The optimization for either of the case can be maximum or min-

imum. Algorithms designed to optimize such sets of objective functions are

usually named with the prefix multi-objective.

Figure 2.1 shows such a function f defined over a two-dimensional space X

= (X1, X2). A global optimum is an optimum of the whole domain X while

a local optimum is an optimum of only a subset of X. It is more likely that

one wants to optimize set of multiple objective functions F, containing n =

14

|F | objective functions fi, each representing one criterion to be optimized.

F = {fi : X → Yi : 0 ≤ i ≤ n, Yi ⊆ R } (2.2)

3. Optimization Methods

• Gradient Based Methods

For modern non linear functions, Gradient Based Methods, are primary opti-

mization techniques. Steepest Descent Method is a classic example of gradi-

ent based minimization technique. The decision of choosing the next point is

made by calculating the gradient, g , of the function at each iteration. Refer

to equation 2.3:

xk+1 = xk + αgk (2.3)

The line search step alpha is added as a refinement to this very simple opti-

mization routine. Alpha is a step size, for the sake of limiting the search step,

to prevent large overshoot, or oscillations while searching for the optimum.

This type of gradient-based method is a first order method, because we are

using solely gradient information. Another most popular method, Newton’s

Method, introduces second order information in the form of Hessian, equation

2.4.

xk+1 = xk + αHk
−1gk (2.4)

Other common derivate oriented algorithms is Sequential Quadratic Program-

ming. Gradient based approaches are efficient and are best known methods

for local optimization. The problems which this kind of methods can face are

as:

– Derivatives are not always available.

15

– Finite difference approximations are too expensive or inaccurate.

– Objective functions with various local minima or have added noise to it.

– High dimensional problems preclude accurate estimation of gradient. (16)

• Derivative Free Methods

Derivatives Free Methods were amongst the initial optimization methods.

They rely on ability to compute function values and make decision based on

relationship amongst the value rather then actual numeric value. The simplest

one can be referred to as DIRECT Search. This algorithm checks objective

function values, and accepts good points and rejects bad points, ending when

a maximum iteration number has been achieved. Jones DIRECT method

employs a bounding technique performing Lipschitz optimization without the

Lipschitz constant (33). The advantage of these techniques is that they do not

use gradients to find search directions, so in principle they can deal with noisy

problems. Through the years more and more sophisticated logic has been

developed to allow these types of algorithms to intelligently search through

the design space. These may be as simple as distributing the search, such as

in Parallel Direct Search (11), or using a simple method, as in Box’s Complex

Method (7).

VTDIRECT95 (11) is a FORTRAN 95 suite of parallel code that implements

derivative free optimization algorithm DIRECT. Jones et al.(10) invented

DIRECT (DIviding-RECTangles) as a Lipschitzian direct search algorithm for

solving global optimization problems (13),(14) subject to bound constraints

of the form:

min
x∈D

f(x) (2.5)

where D = x ∈ En| l ≤ x ≤ u is a bounded box in n-dimensional Euclidean

16

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

after 10 iterationsafter 5 iterations

after 1 iterationinitial

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2 Multiple snap shot of VTDIRECT search space at different point
in time while in execution.

17

space En, and f : En → E must satisfy a Lipschitz condition

|f(x1)− f(x2)| ≤ L ‖x1 − x2‖ ,∀x1, x2 ∈ D. (2.6)

VTDIRECT95 can be used for global and local optimization as it explores

potentially optimal regions to converge globally for Lipschitz continuous op-

timization problems. As a direct pattern search method, VTDIRECT95 pro-

duces deterministic results and is straightforward to apply without derivative

information or the Lipschitz constant of the objective function. It has been

used successfully in many multidisciplinary design optimization problems such

as high speed civil transport aircraft design (17), pipeline design (18), aircraft

routing (19), surface optimization (20), wireless communication transmitter

placement (21), molecular genetic mapping (22), and cell cycle modeling (24)

and (25). For an objective function f inside a feasible set D, each iteration

of DIRECT consists of following steps:

(a) INITIALIZATION. Normalize the feasible set D to be the unit hyper-

cube. Sample the center point ci of this hypercube and evaluate f(ci).

Initialize fmin = f(ci), evaluation counter m = 1, and iteration counter

t = 0.

(b) SELECTION. Identify the set S of “potentially optimal” boxes that are

subregions of D. A box is potentially optimal if, for some Lipschitz

constant, the function value within the box is potentially smaller than

that in any other box (a formal definition with parameter ε is given by

(33)).

(c) SAMPLING. For any box j ∈ S, identify the set I of dimensions with

the maximum side length. Let δ equal one-third of this maximum side

18

length. Sample the function at the points c± δei for all i ∈ I, where c is

the center of the box and ei is the ith unit vector.

(d) DIVISION. Divide the box j containing c into thirds along the dimensions

in I, starting with the dimension with the lowest value of wi = min{f(c+

δei), f(c − δei)}, and continuing to the dimension with the highest wi.

Update fmin and m.

(e) ITERATION. Set S = S − {j}. If S 6= ∅ go to 3.

(f) TERMINATION. Set t = t+ 1. If iteration limit or evaluation limit has

been reached, stop. Otherwise, go to 2.

Initially, only one box exists in the system. As the search progresses, more

boxes are generated, illustrated by the scatter plot shown in figure 1.2, where

each circle represents a box. The sizes of boxes increase along the D-axis

(diameter) and the function values at box centers increase along the F-axis

(function). All the boxes with the same diameter belong to a box column.

(33) proves that all potentially optimal boxes in S are on the lower right

convex hull of the scatter plot in 1.2. To produce more tasks in parallel,

new points are sampled around all boxes in S along their longest dimensions

during SAMPLING. This modification also removes the step ITERATION,

thus simplifying the loop. In the DIVISION step, multiple new boxes are

generated for each potentially optimal box. The multiple function evaluation

tasks at each iteration give rise to a natural functional parallelism, which is

especially beneficial for expensive objective functions. The parallel implemen-

tation distributes the work to multiple masters in the SELECTION phase.

The functions are then evaluated by the pool of workers to accomplish SAM-

PLING. The last step, TERMINTATION, offers a set of choices for stopping

conditions. These stopping conditions are as:

19

(a) Maximum number of iterations : MAX ITER

(b) Maximum number of evaluations : MAX EVL (exit after a specified

number of function evaluation)

(c) Minimum diameter of the box : MIN DIA (exit when the diameter of

the best box has reached the value specified by the user or the round off

level)

(d) Objective function convergence tolerance : OBJ CONV (exit when the

relative change in the optimum objective function value has reached the

given value)

One of the important characteristics of VTDIRECT95 is that it also supports

user-level check pointing method to restart function evaluations through log

files. Several other options are provided by the optimization algorithm to

improve the performance on large-scale parallel systems.

There are numerous cases where the evaluation of the objective function is

expensive and time consuming. A serial implementation of optimization tech-

nique for such categories of function would not be time and resource efficient.

The parallel version of VTDIRECT95 implemented by Jian He et al (11)

address such issues. The implementation takes the advantage of inherent

parallelism supported by DIRECT and supports coarse-grained parallelism,

which means that all the costly function evaluation are performed in parallel.

A Master-Worker paradigm is supported by the parallel implementation. A

single ”‘master”’ process is responsible for calculation of potential optimal

boxes, generating points and distributing this point to worker process for ob-

jective function evaluation. Each processor then calculates its own local set

of potential optimal boxes and send the results back to the master process.

Parallel VTDIRECT also supports dynamic load balancing which allows task

20

migration to other processors that have finished their own task or are idle.

Dynamic load balancing is achieved via a random polling algorithm using

token passing (38).

2.1.2 Many Fermion Dynamic Code

Many Fermion Dynamics nuclear (MFDn) (26) parallel code is used for large-scale

nuclear structure calculations in the NCSM formalism (27) (28), which has been shown

to be successful for up to 16-nucleon problems on present day computational resources.

MFDn code is charged to compute a few lowest (≈15) converged solutions, called wave

functions, to the many-nucleon Schrödinger equation:

H |φ〉 = E |φ〉 . (2.7)

Then other properties, called observables, are formed from the calculated wave func-

tions. The matrix H in equation (2.7) is the Hamiltonian operator, which is typically

solved using Lanczos diagonalization since H is symmetric and sparse. However, the

Lanczos iterative process may be very expensive due to huge dimensionality of H with

many off-diagonal elements. The number of Lanczos iterations also increases significantly

for the energy levels beyond the ground state. For example, for the 16O nucleus in the

6hω basis space, the ground-state energy level requires only 35 Lanczos iterations, while

15 excited states need at least 300 Lanczos iterations for convergence. Note that, in this

case, the constructed Hamiltonian H has the dimension of 26,483,625. MFDn constructs

the m-scheme basis space, evaluates the Hamiltonian matrix elements in this basis using

efficient algorithms, diagonalizes the Hamiltonian to obtain the lowest eigenvectors and

eigenvalues, then post-processes the wave functions to obtain a suite of observables and

to compare them with experimental values.

21

CHAPTER 3 PROPOSED METHODS

This chapter is divided into two parts. The first part of this chapter discusses design

consideration of the automation code needed for the integration of the VTDIRECT95

code and the MFDn code. It also discusses additional design needed for high perfor-

mance clusters and grid computing. The second part of the chapter concentrates on the

implementation of the proposed design and the performance module.

3.1 Design of Integrated System

To get a better understanding of design goals input and output interfaces of VT-

DIRECT95 and MFDn are discussed and detailed. From previous chapter it can be

recalled that VTDIRECT95(11) is a FORTRAN 95 suite of parallel code that imple-

ments derivative free optimization algorithm DIRECT. VTDIRECT95 normalizes the

search space and evaluate the center point of a D-dimensional rectangle, where D is the

number of parameters which forms a D dimensional search space. Next, it evaluates the

point around the center of the rectangle, and thereafter divide the rectangle according to

the function values. Lipschitz conditions and rectangle diameters are used to determine

which rectangle should be divided next. Point in potentially optimal boxes are then eval-

uated and iteration is carried on for division and evaluation until the stopping criteria

are met Fig. 3.1. VTDIRECT95 works with the notion of iterations and evaluations.

In one iteration, optimization algorithm divides one or many potentially optimal boxes

and samples multiple sample points. Evaluation of each such sample point is considered

22

as one evaluation. It implies directly that one iteration can have one or more evaluations.

This notion is important to understand as in serial implementation each evaluation is

done one after the other, while in parallel implementation a number of evaluations can

be done simultaneously, depending upon the availability of masters and workers.

MFDn code is a parallel code that is used for ab-initio nuclear calculation. MFDn

code requires a set of input files for performing ab-initio calculation. This input files

are the Hamiltonian files, the Interaction files and files that provide parameters set

and variable values, such as number of Lanczos iteration etc., for calculation to MFDn

code. The output of the MFDn code is a set a text file that have information about

theoretical observables, such as excitation energies at various level, their relative nuclear

spins and wave function values. This calculated excitation energy are matched against

experimental energy based on the nuclear spin of each level. The number of processor

required for MFDn execution typically depends on the size of the Hamiltonian matrix

of the nucleus taken in consideration and hardware platform used for experiment. The

typical size of Hamiltonian matrix considered for the experiments done for this work are

approximately 14,000.

3.1.1 Enabling Seamless Integration

It can be observed that MFDn and VTDIRECT95 code feature typical interfaces via

file I/O and function calls. In nuclear structure calculations, the computed (theoretical)

and experimental results are matched for single as well as multiple nuclei using the χ2

function. Also, the optimization techniques being considered provides a serial and a

parallel interface of its implementation. By saying, serial and parallel implementation of

optimization technique it is meant that in serial implementation there would be only one

worker, hence all the generated sample points would be evaluated one after the other.

While in parallel implementation, a number of workers would be available to evaluate

23

Sample at points
 around centers

with dimensions of
maximum side length.

Normalize Evaluate function values
at sampled points.

Identify potentially
optimal rectangles.

Group rectangles
by their diameters.

Divide rectangles according
to function value.

Convergence ?

NO

END

YES

Figure 3.1 Data Flow Chart for VTDIRECT95

24

sample points in parallel. Thus, a general case of multiple nuclei - multiple workers is

considered in the design. Figure Fig. 3.2 shows a diagram for the multiple nuclei -

multiple worker case, with one MFDn execution per nucleus, and multiple sub domain

masters for VTDIRECT95. A short description of design for both codes is outlined in

the following subsections.

By stating seamless integration it is meant that no modification is applied to the

interfaces that are defined by the packages but to use packages as ‘black box’ components.

Package interfaces are used in such a way that the existing optimization technique can use

any other problem domain and existing problem domain can use any other optimization

technique. Thus it gives a loose coupling between unrelated components in the design.

To create a logical flow of data, satisfy input requirement of components and produce

formatted output, stubs are defined and implemented. These stubs provide a bare bone

structure such that with the change in either optimization technique or problem domain,

minimum work is required to connect the new set of components.

Fig. 3.2 shows a diagram for the case of multiple nuclei, N1, N2, and N3, with one

MFDn execution per nucleus. Assuming that system runs in parallel mode, multiple

workers are active at any given instance. Each worker would execute all the three nuclei,

N1, N2, and N3, for each sample point it evaluates. The overall hierarchy consists of

three tiers. The first tier consists of VTDIRECT95 process that are responsible for

initialization, sampling and division for the optimization technique. Evaluation points

from this tier are then passed to the workers in the next tier, which in turn spawn

MFDn process, in the third tier, for evaluation of objective function. The MFDn pool of

workers is static in the case of sequential automation code while for parallel automation

code, this pool dynamic. The workers for MFDn pool are added and removed from the

group at run time. This is due to the fact that MFDn process are spawned dynamically

and they leave the group as soon as they finish evaluating the sample point.

The proposed integration system can be divided into basic three components, namely,

25

N3N1

N2

N3

N2

N1

WnW1 W2

MFDn pool

SM1 SM2 SMm

Figure 3.2 Design layout for the integration system

26

X
2

 Eval

VTDIRECT95 MFDn

DRIVER

Figure 3.3 Component Level Diagram of the integration system

the optimization code VTDIRECT95, the ab-initio nuclear calculation code MFDn and

the objective function evaluator χ2. A driver is build around to synchronize the data and

event flow between various components. Figure Fig. 3.3 describes the component level

diagram of the integration system. The high level data flow suggest that optimization

code will provide a set of input parameter (sample points) to the MFDn code, which

would in turn generate the input for objective function evaluator. Objective function

evaluator would calculate the CF and will feed its output to optimization code which

would then generate sample points for next iteration.

3.1.2 Design of χ2 Function

The chi-square distribution is a special case of the gamma distribution. In probabil-

ity theory and statistics, the chi-square distribution (also chi-squared or χ2 distribution)

is one of the most widely used theoretical probability distributions in inferential statis-

27

tics, e.g., in statistical significance tests (30) (31). It is useful because, under reasonable

assumptions, easily calculated quantities can be proven to have distributions that ap-

proximate to the chi-square distribution if the null hypothesis is true. The best-known

situations in which the chi-square distribution are used are the common chi-square tests

for goodness of fit of an observed distribution to a theoretical one, and of the inde-

pendence of two criteria of classification of qualitative data. Therefore design of χ2

function plays a important role in how fast and with what accuracy the computed and

experimental results would match.

The χ2 used in this experimentation is constructed using a theory file, an experi-

mental file, and the base energy value of the given nucleus. The theory file is an output

from the MFDn code which contains calculated observables. The experimental file has

the energy levels as found experimentally by different national scientific organizations

(? ; ?). In addition to the energy values, each energy level is associated with the spin

j of the protons/neutrons. This spins are used to match different levels in theoretical

and experimental observables. There are many options in construction of χ2. A partic-

ular choice depends on such parameters as the quality of the experimental data and the

questions nuclear physicists want to answer comparing the theoretical and experimental

energy levels. As an example consider the following χ2 definition:

χ2(v) =
∑

1≤it≤15
1≤ie≤k

[
Eie(v)− Ẽit(v)

]2 × σ2
ie , (3.1)

where v = (V0, V1, Vtens) and Ẽ are the absolute experimental and theoretical ener-

gies, respectively; ie and it are the indices of the corresponding matched energy levels

(one ie paired with one it).

Each experimental energy level le is assigned the weight σle . This weight is inversely

proportional to the distance of that energy level from the ground energy level. Many

nuclei have energy states where nuclei has more then one or an undecided spin. While

28

matching those experimental energy states it is important to decide their contribution

towards calculation of χ2 function. Therefore, assignment of weight is an important

step-in designing χ2 function. The weight assignment used for the experiments done in

this paper can be described mathematically as

σle = 1/2le (3.2)

3.1.3 Design consideration for Driver

It can be derived from the observations stated above that both MFDn and VTDI-

RECT95 have well-defined input and output interfaces. The goal is now to tunnel the

sample points in search space as generated by optimization technique appropriately to

MFDn, calculate the χ2 function value for the MFDn run and tunnel back this result to

optimization algorithm. Consider the following external additions (stubs) necessary to

interface MFDn and VTDIRECT95:

1. Input Modifier (IM). Parameters generated by optimization technique needs to

be inserted at proper places into an input file for MFDn. IM takes the set of

parameters from the optimization code, their corresponding position relative to

the first parameter and inserts them to the proper input file required by MFDn

code.

2. Wait (W). Once the parameters are written in input file, appropriate commands

are issued to spawn the MFDn run for the current evaluation. The flow of program

needs to be halted until MFDn code has completed the evaluation of parameters.

W is essentially responsible for halting the program until MFDn code completed

it evaluation. When multiple nuclei are considered in a fitting process, W waits

until it gets completion signal from all the MFDN process running different nuclei.

29

W Stub

IM Stub

OM Stub

VTDIRECT95

Χ Evaluator
2

MFD

Figure 3.4 Work flow diagram for the MFDn and VTDIRECT95 supple-
mented with stubs

3. Output Modifier (OM). It is essentially post processing the output produced by

MFDn process. After the completion of MFDn process, output files, such as the-

oretical observables, are generated. The output files have data such as excitation

energies and their relative nuclear spins for a given nucleus for the desired number

of states. This output file needs post-processing in order to become suitable input

for χ2 function calculation.

Fig. 3.4 shows a work flow between the VTDIRECT95 and MFDn codes aided by

the described additions.

30

3.2 Implementation

While initiating a optimization search run there can be multiple choices for configu-

rations. Two distinct and widely used configuration are as :

• Single Nucleus Multiple Parameters. In this configuration, single nucleus takes

part in the fitting process for a given set of parameter.

• Multiple Nuclei Multiple Parameters. In this configuration, multiple nuclei take

part in the fitting process for the same set of parameter.

Both of the above stated configurations can be run either in sequential or in parallel

mode of optimization technique. Each such mode of optimization technique are same at

the core level but differs slightly in the manner of how many sample points are evaluated

at any given instance. Sequential VTDIRECT evaluates each sample point in sequential

order, so it can be safely assumed that there is only one worker that evaluates the point.

In Parallel VTDIRECT algorithm each sub-domain master is responsible for generation

of points in there domain. Each such generated points are then evaluated by workers in

parallel. When multiple nuclei are used in experiments for fitting the parameters, each

worker is responsible for evaluating all the nuclei for a given set of parameters.

While running multiple nuclei in sequential mode, multiple instances of the same

nucleus would be running, with same set of parameters in their input file. It is im-

portant to maintain unique identification for each nucleus so that concurrently running

MFDn process do not write the output files to the same path, other stubs used for post

processing of output files do not pick the wrong output file for processing. The situation

gets a higher level of complexity when multiple nuclei are run in parallel mode, for in

that situation, multiple workers would evaluate the sampled points simultaneously and

each worker in turn would run instances of all the participating nuclei. It is necessary

once again to maintain enough uniqueness so that no two files, in input or output, are

31

overwritten or overlapped. This brings a couple of design consideration for each worker.

• Each worker should be able to write to separate input files for each nuclei.

• Each worker has to wait at ‘WAIT’ stub for completion of all the nuclei runs before

it can proceed further.

• Each worker should be able to store output for different nuclei at appropriate

places.

There can be a couple ways through which this problem can be addressed.

• Create different input/output filename at run time and make MFDn code flexible

enough to accept different file names. In this scenario each worker would append

some unique characteristic to the filename it is creating as a input to MFDn process

and would expect output in a similar format from the MFDn code. This unique

naming convention would then allow to identify each run uniquely.

• Setup a directory structure for calculations making use of the unique worker iden-

tification number, the evaluation number and the nuclei number. This unique

characteristic can be used to create subdirectories for each worker-nuclei pair so

that the MFDn runs with different nuclei, as performed by different workers, can

be identified uniquely.

Changing input or output file name according to a nucleus name or a iteration

number at MFDn code level defeats our efforts for seamless integration for it needs

to change the MFDn code interface so that it is molded to accept the input in the

way we like and similarly produce and output which can sustain this current design.

Similarly doing it from VTDIRECT95 process level is not helpful either. Therefore,

first approach can not be considered as a part of the solution. The second approach

takes the advantage of the fact that each worker in the worker pool of VTDIRECT95,

32

each evaluation and each participating nucleus can be uniquely numbered. As soon as a

worker gets a sample point for evaluation, it creates a directory, named after its unique

identifier. This directory is now the play ground for that worker. For each nucleus

,that are to be evaluated for a given sampled point, worker creates a sub-directory,

named after the nucleus number respectively. In this arrangement, each worker has its

own play ground, so no two workers can actually can get confuse with the set of each

other’s files. Within the directory structure of each worker, each nucleus has its own

sub-directory and therefore a worker can not overwrite files of a nucleus into the path of

other nucleus. Similarly, post-processing of the output files, that includes book-keeping

process of generated observables and calculation of χ2 would never be erred for two

different nucleus.

The current setup interfaces with VTDIRECT95 and MFDn code, but it also requires

some input to bridge the absence of information flow from VTDIRECT95 to MFDn code.

This information includes the positions where the sample points, as generated by the

search algorithm, needs to be inserted in the input file for MFDn code and names of the

nuclei which would participate in the fitting process. This information is provided by

the configuration file, nuclei config.dat.

3.3 Alternative Design for High Performance Clusters

Earlier suggested design and implementation for parallel integration code relies on

the fact that dynamic threads can be spawned from a running process. While working

on a self monitored or controlled cluster the schema mapping is quite apt, but running

the integration code on High Performance Clusters pose a different run time constraints

on the design. Almost all of the High Performance Computing clusters do not provide

dynamic spawns from a running process. A design that suggests the possible modification

in the proposed implementation is detailed below.

33

‘The Producer/Consumer design pattern is based on the Master/Slave pattern, and is

geared towards enhanced data sharing between multiple loops running at different rates.

As with the standard Master/Slave design pattern, the Producer/Consumer pattern

is used to decouple processes that produce and consume data at different rates. The

Producer/Consumer patterns parallel loops are broken down into two categories; those

that produce data, and those that consume the data produced’ (39).

It can be observed from the earlier mentioned text that the optimization technique is

responsible for generation of sample points, hence can be referred to as ‘Producer’, while

MFDn code is responsible for evaluating those points or in other sense are responsible

for consuming those points and therefore can be termed as ‘Consumer’. The time taken

by MFDn code to make a evaluation run is linearly dependent on the Hamiltonian

size of the matrix for that nucleus. Hence, time taken by MFDn code to calculate

observables for different nucleus would be different. Since sample point generation from

the optimization code occurs in a comparatively small time, for parallel integration code,

rate of generation of point would be faster then the rate their evaluation. Working along

this characteristic it can be observed that the problem statement of the thesis suits well

with Producer-Consumer design pattern.

The suggested design is based concept of classic Producer-Consumer paradigm. As

observed earlier the parallel optimization techniques samples multiple points and VT-

DIRECT workers evaluate them in parallel. Here producers would be the workers from

VTDIRECT95 pool, which on receiving a sample point would put the input file for

MFDn code in their directory, refer 3.2 or in other words would buffer them. The

consumers would be the MFDn calculation code, which would perform MFDn code run

for each such generated sample points. Multiple instances of MFDn code for partic-

ipating nuclei will start on a fixed number of processors with a distinct identification

number. Each such instance of ab-initio calculation code, which is consumer in this case,

would look for work from producers, which are workers from VTDIRECT95 worker pool.

34

W1

Scheduler

....

Nucleus 1 Nucleus r

SM1 SM2 SMm

W2 Wn

Figure 3.5 Design for implementing automation code for High Performance
Cluster

35

Scheduler would act as a ‘man in middle’, which would seek any unattended work from

producers (VTDIRECT workers) and then look for any idle MFDn consumer. If a con-

sumer is idle, it will attach the work from producer to the MFDn consumer. If none of

the MFDn consumer is idle, it will wait until the point in time on of the MFDn consumer

is free. Thus, Scheduler would be responsible for getting the work from the producers

and give them to the consumers.

Scheduler will, in general, have a data queue and a worker queue. The producers

would put their work request in data queue and the workers will maintain their status

in worker queue. Each nucleus would have its own data and a worker queue. One way

to approach the design of the Scheduler is to have a ‘Global View’. In this schema, any

producer can be served by any worker, i.e.. each producer would submit its work request

to the Scheduler, in data queue, which would in turn look through all the available

workers, in worker queue, seeking for an idle worker. If a worker is found idle, the

sample point, as generated by the producer (VTDIRECT worker), would be given to

the consumer for evaluation.

3.4 Alternative design for Grid Computing

Gird computing is one of the emerging technology that has provided a new horizon

in the field of resource utilization. As defined by IBM, ‘Grid computing allows you to

unite pools of servers, storage systems, and networks into a single large system so you

can deliver the power of multiple-systems resources to a single user point for a specific

purpose. To a user, data file, or an application, the system appears to be a single

enormous virtual computing system’ (15).

One of the critical requirement for any application to use Grid Computing is to have

software that can be farmed out in pieces and can be executed on multiple computers.

It can be referred that the components described during this work (VTDIRECT95, χ2

36

Calculator and MFDn code) can easily be distributed amongst multiple networks as

they are all loosely coupled. The suggested design to solve the problem statement of

the thesis on grid computing is a minuscule step which would present basic framework

considering Workload Management, Scheduler and Resource Management. Security and

User Interface is left has the milestone for the next iteration.

This design assume that VTDIRECT95 would run on same cluster, that is, we do

not apply grid computing for running VTDIRECT95 code. Similarly, a single MFDn

nucleus run would be executed on a single cluster. This assumption is made due to the

fact that, the communication and I/O overhead required by grid computing would be

much more in magnitude then the gain of using unused processor at different locations.

Therefore a valid scenario for the schema would be as shown in Figure Fig. 3.6:

The figure explains that VTDIRECT95 code would run at one geographical location,

and the MFDn code is running at another geographical location. If running with multiple

nucleus, each instance of nucleus can be distributed to different geographical location

or clusters. Again, Producer/Consumer design schema is applied to the current design.

Producer would be the VTDIRECT95 process which would produce sampled points

for evaluation. On the same cluster as that of VTDIRECT95, say VTDIRECT site ,

there would be a ‘Resource Manager’ process. The Resource Manager process would

have information like number of clusters attached to the gird, method to access those

locations and number of characteristic MFDn process running on each cluster or site.

The functionality of Resource Manager process can be listed as :

1. Collect the work (sample points) from Producers (VTDIRECT workers).

2. Calculate the amount of work needed to send to each site.

‘Scheduler’ process on the same site as that of VTDIRECT would then be responsible

for the following functionality.

37

Resource Manager

Scheduler

Workload Manager

....
....

VTDIRECT site

MFDn site

Nucleus 1 Nucleus r

W1 W2 Wn

Figure 3.6 Design for implementing automation code for Grid Computing

38

1. Establish connection to the remote site.

2. Send the data to the appropriate site.

3. Collect data from the appropriate site and channel it to originating VTDIRECT

worker.

Each such connected sites, say MFDn sites, will have a ‘Workload Manager’ process.

This process would run on each site that would be connected to VTDIRECT site. The

primary responsibility of this process would be:

1. Accept the incoming connection and data from the VTDIRECT site.

2. Schedule and distribute the work to the running MFDn process.

3. Send the calculated observables back to the VTDIRECT site.

3.5 Performance Monitor

As described earlier, running time for the ab-initio calculation is dictated by the

dimensionality of the Hamiltonian matrix of a nucleus. Higher the dimensionality of

the Hamiltonian matrix, larger will be the time taken for an execution as compared to

the one with a Hamiltonian matrix of smaller dimensionality. While running a multiple

nuclei case, each sample point needs to be evaluated by each nucleus and the final χ2

is the sum of calculations of χ2 of individual nucleus. When this nuclei are run in

parallel, the total time of one evaluation would be dictated by the nucleus with the

biggest Hamiltonian matrix. To make maximum utilization of the resources available,

it is in best of interests to reduce this bottleneck. To reduce this bottleneck, processor

allocation for each nucleus needs to be changed. Nuclei with lighter Hamiltonian matrix

should be given smaller number of processors while the one with heavier Hamiltonian

matrix should be given more number of processors to speed up these calculations.

39

This function is performed by ‘Performance Calculator’ module. During evaluation

of each sample point, MFDn executable for each participating nuclei is called by a

worker. This executable is forked as a child process and a timer is attached to each

child thus forked. As soon as child completes its evaluation and reports back to parent

process, another snapshot of the time stamp is taken. Having timestamps at start and

end of child process gives us total running time of the child process. Time statistics are

collected for predefined n evaluations. Gathering such information helps us decide what

could be the proper allocation of processor for existing nucleus to have optimum usage

of resource.

For each participating ith nucleus, average runtime local average i for n evaluations

is calculated. Then the average times from all the nuclei are added together to form

global average. Thereafter, ratio of local average i over global average is calculated as

δnuci. Then decision for allocation of processor to each nucleus follows the rule as :

1. δnuci ≤ 1 − ε ; then increase the number of processor to the next MFDn magic

number.

2. δnuci ≥ 1 + ε ; then decrease the number of processor to the previous MFDn

magic number.

The idea behind the formulation is to bring the average running time of each nucleus

within a user defined interval from each other. This interval can be set by modifying ε

and thus tolerance time can be set accordingly.

40

CHAPTER 4 RESULTS

Having discussed about the proposed design, various configurations and their imple-

mentation, this section presents results from experiments and plots as to how the above

contributions have met the problem statements of this thesis. The design implemented

for obtaining the results for this section is 3.1. This chapter is divided into two sections.

First section, details various hardware platforms used for experimentation and the basic

setup of the test, including the input files and the final output files as generated by the

current setup. Second section provides results from different test runs, respective graphs

and their interpretation.

4.1 Platforms

An implementation of the proposed design for single and multiple nuclei has been de-

veloped and tested. It integrates the serial and the parallel VTDIRECT95 and parallel

MFDn codes. Computing platform at the National Energy Research Scientific Com-

puting Center (NERSC) at the Lawrence Berkeley National Laboratory and Computing

platform at Scalable Computing Laboratory, Iowa State University served as testbeds

for the development and testing of serial and parallel version of the proposed design.

Specific systems that were used are as:

• Bassi. Bassi is a cluster at NERSC configured with IBM p575 POWER 5 system.

It is a distributed memory computer with 888 processors (comprising 111 nodes

and sharing 32 GBytes of memory) used for scientific applications. Each Bassi

41

processor has a theoretical peak performance of 7.6 GFlops, and the nodes are

interconnected by the IBM “Federation” HPS switch.

• Jacquard. Jacquard is a 712-CPU Opteron cluster running a Linux operating sys-

tem. Jacquard has 356 dual-processor nodes available for scientific calculations.

Each processor runs at a clock speed of 2.2GHz, and has a theoretical peak perfor-

mance of 4.4 GFlop/s. Processors on each node share 6GB of memory. The nodes

are interconnected with a high-speed InfiniBand network. Shared file storage is

provided by a GPFS file system.

• IBM Cluster at AmesLab. IBM Cluster at Scalable Computing Laboratory, Iowa

State University served as testbed for the development and testing for the parallel

version of the proposed design. It consists of 22 dual-processor IBM RS/6000

43P-260 nodes with 2.5 GB RAM / node and 18 GB disk / node. The nodes are

interconnected with Gigabit Ethernet network, plus Fast Ethernet.

The inputs to VTDIRECT95 are provided by the input files specified as direct**.nml

file for serial implementation and pdirect**.nml file for parallel implementation. The

”‘**”’ is replaced two letter acronym of the objective function. The input file speci-

fies number of parameters to be searched, number of iterations, number of evaluation,

minimum box diameters, checkpoint flag value and some more options to tweak the

performance of the optimization runs.

The current setup interfaces with VTDIRECT95 and MFDn code, but it also requires

some input to bridge the absence of information flow from VTDIRECT95 to MFDn

code. This information includes the positions where the sample points, as generated

by the search algorithm, needs to be inserted and names of the nuclei which would

participate in the fitting process. This information is provided by a configuration file

nuclei config.dat.

Two sets of outputs are generated for a given run of optimization run. They are as :

42

• func value.txt : This file contains the value of χ2 function at each sampled

point.In parallel version of the optimization algorithm, each workers writes the

point it has evaluated and the function value of χ2 at that sampled point. In

serial version, as there is no parallelism, each point is written by a single process

in the file. Once the files are generated, the lowest n functional valued and there

corresponding sampled point can be inferred. Iteration number or sampled points

associated with those functional values can there after be used to index the theory

observables.

• theory files : These are essentially the theory observables which are generated

at each iteration. There basic requirement is for book keeping, which helps after

the complete search process to look at theory files for sampled points of interest.

In serial version, to uniquely identify each iteration, iteration number,ITR NUM ,

is generated and the corresponding theory observables are written in a file name

of type theory mfdns ITR NUM . Each nuclei has its own sub-directory named

theory where this observables are put. In parallel version, we can still have a

common variable that can generate unique number for iteration number for all the

workers, but this would imply the application of critical section and may insert

some unwanted delay in the search process. So each iteration is uniquely identified

by the sampled point which a worker evaluates. It is stored similarly in theory

sub-directories of each nuclei as it is done for serial version.

4.2 Results

The following four nuclei have been considered for experiments : 47K,47Ca ,48Ca,

and 49Ca. The Hamiltonian matrices are sparse and their sizes are 136231, 12000, 14000

and 15666 respectively, in the lowest available model space. The MFDn execution time

depends heavily on the Hamiltonian size. Also, the complexity (‘shape’) of the objective

43

function drives the time required by the optimization algorithm to find the minimum.

Fig. 4.1 shows the number of evaluations required per VTDIRECT95 iteration as the

number of iterations grows for a sample nucleus. For a multiple nuclei fit, the runtime

is guided by the runtime of the heaviest nucleus since the evaluations for all the nuclei

are needed to construct the χ2 in this case. Therefore, it is desirable to adjust the

number of processors allocated to a particular nucleus based on its computational cost

relative to the other nuclei in the set. In particular, for our example, 47K has the largest

Hamiltonian matrix, so executing it on the largest subset of processors makes sense.

Fig. 4.2 depicts the case when all the three nuclei are evaluated once with three different

sets of processor numbers (shown in the x-axis). The parallel time to compute all three

nuclei indeed decreases as the number of processors is increased compared with the

base case of using small equal number of processor for each nucleus. When about twice

as many (15) processors are assigned to the calculation of each nucleus, the timings

for the smaller Hamiltonians decrease by about half. The runtime for 47K, however,

decreases only slightly. By augmenting the number of processors to 45 for 47K, the

execution time is decreased dramatically, while for the smallest Hamiltonian of 48Ca,

the time has actually increased with the increase in the number of processors to 21. The

latter indicates that the parallel overhead starts to dominate the overall execution time.

In general, besides the Hamiltonian matrix size, other factors such as communication

overhead and hardware characteristics, may affect the number of processors used to

calculate efficiently a particular nucleus. The setup was made to run for 59 iterations

and 6023 evaluations.

The serial optimization of the parameters for 48Ca produced the results (Fig. 4.3)

matching theoretical observables correctly to their counterparts in the experimental data

file. First six states have been matched correctly with their spins and the difference

in energy levels from theoretical observables and experimental data is less than 0.001

MeV. The set of parameter for the optimal result where nearly similar to those found

44

Figure 4.1 Evaluations per iteration for 49Ca

45

Figure 4.2 Execution times for 47K, 48Ca, and 49Ca on different numbers
of processors on Bassi

46

0

1

2

3

4

5

6

��������

��������

Experiment CD-Bonn
+ 3 terms

Ex
ci

ta
ti

on
 E

ne
rg

y
(M

eV
)

0+

3-
3(+)
1

4(-)

3-

(1)-

0+

2+

0+
4+

5+

3+

2+

2+

0+

2+

4+

3,4,5

1-,2,3,4+

5-

Figure 4.3 Matching of experimental and theoretical energy levels for 48Ca

47

0

1

2

3

4

5

6

Ex
ci

ta
ti

on
 E

ne
rg

y
(M

eV
)

Experiment CD-Bonn
+ 3 terms

��������

��������

3/2-

1/2-

(9/2)+
5/2-

(1/2-,3/2-)
5/2-
7/2+
3/2-

1/2-

5/2+
(5/2+)
9/2+
1/2

1/2-

9/2+

3/2-

7/2-

3/2-

5/2-
7/2-
5/2-
3/2-
9/2-

11/2-
7/2-
3/2-
1/2-
7/2-

11/2-
9/2-

Figure 4.4 Matching of experimental and theoretical energy levels for 49Ca

48

by physicists through manual iterations. 48Ca was then run with parallel optimization

technique with 2 sub-domain and 2 master configuration with optimization technique

running on 4 processors. The diameter of the smallest possible potential box was set

to be 10−3, due to the fact that parameters considered for fitting process are not much

sensitive after the third decimal place. Similar results confirming the serial search were

found.

The second nucleus considered is 49Ca. It was made to run with serial optimization

code and the ground-state level in the theoretical observable was matched within the

difference of 0.02 MeV of the experimental ground state energy value (Fig. 4.4). Higher

energy levels in the theoretical observables remained partially matched to counterparts

in the experimental data. A likely reason is that some of the energy levels in the

experimental data have uncertain spin levels. In spite of this uncertainty, the first five

states from the experimental data can be matched using the first ten states from the

theoretical observables. Similar arguments may be used to explain the unmatched energy

levels in 47K.

Second run of 49Ca was conducted by parallel optimization technique with 3 sub-

domains and 3 masters. The optimization code was made to run on 9 processors. The

parameters that were used for fitting were V0, V1 and Vtens but the domain range for

V0 and Vtens was modified so as to match the domain searched manually. The diameter

of the smallest possible potential box was set to be 10−3. Ground state energy were

matched within the difference of 0.5 Mev while the ground state energy level found by

manual search had a difference of ≈ 3.00 Mev. A better spectrum was obtained this

time, refer fig Fig. 4.5, owing to fact that much more sample points were generated

for the same number of iterations. The difference between excitation energies between

subsequent levels in theoretical and experimental observables has decreased significantly.

Still, the energy levels remains partially matched. The findings for 49Ca are important

from the physics point of view since they give new directions for fitting the nucleus with

49

0

1

2

3

4

5

E
x

c
it

a
ti

o
n

 E
n

e
rg

y
(M

e
V

)

Experiment CD-Bonn
+3 terms

3/2-

1/2-

9/2+
5/2-

(1/2- ,3/2-)

7/2+
5/2-

3/2-
1/2-

1/2-
5/2+

6

3/2-

7/2-

5/2-
3/2-

3/2-

9/2-

11/2-

3/2-

1/2-

7/2-

5/2-

7/2-

Figure 4.5 Matching of experimental and theoretical energy levels for 49Ca
for parallel integration code

50

a similar mass starting with obtained set of parameters.

The third nucleus considered is 47Ca. The best result as obtained by manual search

had a difference of ≈ 1.50 Mev. The serial optimization code for 47Ca was run to fit V0,

V1 and Vtens. The result obtained by the serial code is presented in Fig. 4.6. The results

thus produced matched the ground energy level within the difference of ≈ .01 MeV. It

was also made to run with parallel optimization technique with 2 sub-domains and 2

masters with optimization code running on 4 processors. It was observed that for the

same number of iterations, the number of evaluation completed by parallel optimization

code were more then the one completed by serial optimization code. Hence, more sample

points were generated for the same number of iterations. The run provided the minimum

χ2 value obtained until now although the difference between ground energy levels of

theoretical and experimental observables was increased to ≈ 0.3 MeV.

One of the physics goal is to fit multiple nucleus for the same set of parameters.

Experiments that were conducted to have preliminary results directed towards fulfillment

of this goal included 47Ca, 48Ca and 49Ca. In this type of experiments, each sample

point generated by VTDIRECT is evaluated by all the nuclei that are taking part in the

fitting process. The value of objective function χ2 for a sample point is the sum of all

individual χ2 calculated by each nucleus taking part in fitting process.

The first experiment in this series was conducted with 47Ca and 49Ca. The param-

eter that were used for fitting were V0, V1 and Vtens. The code was run with parallel

optimization technique with 2 sub-domain and 2 master. The diameter of the smallest

possible potential box was set to be 10−3. The minimum χ2 produced by the optimiza-

tion code is very enthusiastic as the matches for ground energy level for both the nuclei

where found within the approximation of 1.0 Mev. Figure Fig. 4.7 and Fig. 4.8 shows the

individual matches of 49Ca and 47Ca found for the run. We can see that all the 10 states

of 47Ca as found in theoretical observables were matched within the approximation of

0.4 Mev. The ground state energy level for 49Ca was matched aptly but higher states

51

0

1

2

3

4

5

Ex
ci

ta
tio

n
En

er
gy

 (M
eV

)

Experiment CDBonn
+3 terms

6

3/2

3/2+
1/2+

7/2

(1/2,3/2)

9/2

5/2
(5/2,7/2)

(5/2,7/2)

(7/2+, 11/2)

7/2

3/2

3/2

9/2

11/2

7/2

5/2

1/2
5/2

7/2

(1/2,3/2)

7/2

Figure 4.6 Matching of experimental and theoretical energy levels for 47Ca

52

0

1

2

3

4

5

Ex
ci

ta
tio

n
En

er
gy

 (M
eV

)

Experiment CDBonn
+3 terms

3/2

1/2

9/2+
5/2

(1/2 ,3/2)

7/2+
5/2

3/2
1/2

1/2
5/2+

6

3/2

7/2

5/2

7/2

3/2

9/2

11/2

3/2
1/2

5/2

Figure 4.7 Matching of experimental and theoretical energy levels for 49Ca
for multiple nucleus fit

53

0

1

2

3

4

5

Ex
ci

ta
tio

n
En

er
gy

 (M
eV

)

Experiment CDBonn
+3 terms

7/2

3/2

3/2+
1/2+

 (1/2,3/2)

7/2

(1/2,3/2)

9/2

(7/2+, 11/2)
5/2

(5/2,7/2)

6

(5/2,7/2)

7/2

3/2

3/2
9/2
5/2
7/2

11/2
7/2
5/2

Figure 4.8 Matching of experimental and theoretical energy levels for 47Ca
for multiple nucleus fit

54

could not be matched efficiently. A likely reason is that some of the energy levels in the

experimental data have uncertain spin levels as described earlier.

Similarly, three nuclei 47Ca, 48Ca and 49Ca were run simultaneously to fit for V0, V1

and Vtens. Each nuclei was run on 6 processor. The optimization technique was run for

around 2500 evaluations with each evaluation taking approximately 4 minutes. We have

already witnessed that χ2 is time extensive as each nuclei computation takes variable

time depending upon there Hamiltonian size. So it is quite expected that this process

would be more time consuming when multiple nuclei are introduced. To undertake

this problem and make best uses of the resources, search was discontinued at the point

where search space was seen to minimize in two different regions. Both of regions seemed

promising but depending upon the individual nuclei spin and energy level, one region

was chosen. The optimization method was restarted but with a restricted search space

this time. The result obtained so far are not the perfect but represent the matches quite

adequately.

Check pointing is a valuable feature of VTDIRECT95. We have seen an impor-

tant need of this feature in the previous paragraph where the search process has to be

stopped in between and then restarted again. Second need of this feature come from

the fact that supercomputers with batch scheduling typically have an upper bound on

the time any job is allowed to execute. For example, the maximum time permitted on

NERSC supercomputers is only 48 hours, which is surely not enough to find the global

or even local minimum for such an expensive function evaluation as described in this

thesis. Hence, the check pointing feature is utilized as a routine procedure to restart the

integrated code for the next maximum time allowed by the queuing system.

55

CHAPTER 5 CONCLUSIONS

5.1 Summary

This body of work has proposed a design for the integration of the MFDn and

VTDIRECT95 serial and parallel codes. The automation code uses the master-worker

paradigm of the VTDIRECT95 code and proposes a three-tier vertical scheme. The

contribution detailed in this body of work is to show how an expensive multiprocessor

function evaluation may fit into this scheme.

The body of work presented details the implementation of the proposed design for

the case of a) sequential VTDIRECT95, which produces one sample point at a time and

b) parallel VTDIRECT95, which produces multiple sample points at a time. Various

formulation of the objective function (χ2) were studied and the preferable choice was

evaluated during the course of experiment. Using the aforementioned objective function,

good matches between the theoretical and experimental energy levels were obtained for

both serial and parallel code for 48Ca and the ground-state energy level for 49Ca. Run

with multiple nuclei,47Ca, 48Ca and49Ca were investigated and enthusiastic results were

obtained that opens possibility for adding more nuclei or number of parameters to the

existing search. It was also found that assigning different numbers of processors to

different MFDn executions, typically in accordance with the Hamiltonian matrix size,

reduces the overall time for a function evaluation needed by VTDIRECT95. Therefore,

parallel integration code implements a performance monitor that monitors the running

time of each nuclei and then reassigns them working processors so that over all time

56

of single evaluation in a multiple nuclei run is optimized. In addition to the current

design, an alternative design is also proposed to implement integration code for high

performance cluster and grid computers.

5.2 Future Work

The implemented optimization technique, VTDIRECT95, can be replaced by other

derivative free optimization technique in order to have a comparative study between

optimization techniques. Similarly, objective function other then used for MFDn can

be tested and experimented. The suggested design for High Performance Clusters and

Grid Computers can be re-iterated and implemented which would broaden the scope of

existing implementation.

Peta byte calculations are the next horizon in the filed of supercomputing. Large

scale experiments can be conducted that would imbibe the essence for runs on emerging

petascale platforms such as Blue Water, which would provide the computational system

capable of sustained petaflop performance. Key features of Blue Water includes more

then 200,000 cores, 1 petabyte memory and more then 10 petabyte of user disk storage

(Blue Water).

57

BIBLIOGRAPHY

[1] T. G. Kolda and R. M. Lewis, and V. Torczon, Optimization by direct search:

new perspectives on some classical and modern methods, SIAM Review. SIAM

Review,vol. 45, pp. 385482, 2003.

[2] P. M. Pardalos, H. E. Romeijn, and H. Tuy, Recent developments and trends in

global optimization, Journal of Computational and Applied Mathematics,vol. 124,

pp. 209228, 2000.

[3] R. B. Schnabel, A view of the limitations, opportunities, and challenges in parallel

nonlinear optimization,. Parallel Computing, vol. 21, pp. 875905, 1995.

[4] A. Migdalas, G. Toraldo, and V. Kumar, Nonlinear optimization and parallel com-

puting,. Parallel Computing,vol. 29, pp. 375391, 2003.

[5] U. M. Garcia-Palomares and J. F. Rodriguez, New sequential and parallel

derivative-free algorithms for unconstrained minimization,. SIAM Journal on Op-

timization, vol. 13, pp. 7996, 2002.

[6] R. Fletcher, Practical method of Optimization. 2nd edition, John Wiley and Sons

Ltd., Chichester, UK, 1987.

[7] M.J. Box, A New Method of Constraint Optimization and a Comparison with Other

Methods. Computer J. 8(1965):42-52.

58

[8] Herbert Spencer. The Principles of Biology, volume 1. London and Edin-

burgh:Williams and Norgate, first edition, 1864 and 1867.

[9] http://en.wikipedia.org/wiki/Divide and conquer algorithm [accessed 2007-07-09]

[10] D.R.Jones, Pertunen, C.D.and and Stuckman. Lipschitzian optimization without

the Lipschitz constant. J. Optimization Theory and Applications 79, 157181.

[11] Jian He, Layne T. Watson, Masha Sosonkina. Algorithm XXX: VTDIRECT95: Se-

rial and Parallel Codes for the Global Optimization Algorithm DIRECT Association

for Computing Machinery, Inc.

[12] Masha Sosonkina, Anurag Sharda, Alina Negoita, James P. Vary. Integration of Ab

Initio Nuclear Physics Calculations with Optimization Techniques. Intl Conference

on Computational Science (ICCS08), Krakow, Poland, June 23-25, 2008.

[13] R. Horst, P.M. Pardalos,and N.V. Thoai. 2000. Introduction to Global Optimiza-

tion.Kluwer, Boston.

[14] R. Horst and H. Tuy 1996. Global Optimization: Deterministic Approaches.

Springer- Verlag, Berlin.

[15] IBM Develpoers. http://www.ibm.com/developerworks/grid/newto/

[16] Mark P. Wachowiak. High Performance and Parallel Optimization. Department of

Computer Science and Mathematics, Nipissing University.

[17] C.A. Baker, L.T. Watson, B. Grossman,R.T. Haftka and W.H. Mason. Parallel

global aircraft configuration design space exploration. High Performance Computing

Symposium 2000, A. Tentner (Ed.), Soc. for Computer Simulation Internat, San

Diego, CA, 101106.

59

[18] R.G. Carter, J.M. Gablonsky, A. Patrick, C.T. Kelly, and O.J. Eslinger. Algorithms

for noisy problems in gas transmission pipeline optimization. Optimization and en-

gineering 2, 139157.

[19] M.C. Bartholomew-Biggs, S.C. Parkhurst and S.P. Wilson. Global optimization ap-

proaches to an aircraft routing problem. EUR J. Operational Research 146, 417431.

[20] H. Zhu and D.D. Bogy. DIRECT algorithm and its application to slider air-bearing

surface optimization. IEEE Transactions on Magnetics 38, 21682170.

[21] J. He, A. Verstak, L.T. Watson, C.A. Stinson, N. Ramakrishnan, C.A. Shaffer, T.S.

Rappaport, C.R. Anderson, K. Bae, J. Jiang, and W.H. Tranter. 2004. Globally

optimal transmitter placement for indoor wireless communication systems. IEEE

Transactions on Wireless Communications 3, 19061911.

[22] K. Ljungberg, S. Holmgren and Carlborg. 2004. Simultaneous search for multiple

QTL using the global optimization algorithm DIRECT. Bioinformatics (Oxford,

England) 20,18871895.

[23] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A Secure On-

Demand Routing Protocol for Ad Hoc Networks. Proceedings of the Eighth Annual

International Conference on Mobile Computing and Networking (MobiCom 2002),

pp. 12-23, ACM, Atlanta, GA, September 2002.

[24] J.W. Zwolak, J.J. Tyson, and L.T. Watson. Globally optimised parameters for a

model of mitotic control in frog egg extracts. IEE Systems Biology 152, 8192.

[25] T.D. Panning, L.T. Watson, N.A. Allen, K.C. Chen, C.A. Shaffer and J.J. Tyson.

Deterministic global parameter estimation for a model of the budding yeast cell

cycle.

60

[26] J.P. Vary and D.C. Zheng, ibid., (unpublished), The Many-Fermion Dynamics Shell-

Model Code. Iowa State University,1992

[27] P. Navratil, J.P. Vary, B.R. Barrett. Properties of 12C in the ab-initio Nuclear Shell

Model Phys. Rev. Lett., volume 84, pages 5728

[28] P. Navratil, J.P. Vary, B.R. Barrett. Large-basis ab-initio No-core Shell Model and

its application to 12C Phys. Review., volume C 62, pages 54311

[29] Thomas Weise. Global Optimization Algorithms - Theory and Applications. Ver-

sion: 2008-09-24. http://www.it-weise.de/

[30] N.L. Jonhson, S. Kotz, , N. Balakrishnan. Continuous Univariate Distributions.

Second Ed., Vol. 1, Chapter 18.John Willey and Sons. ISBN 0-471-58495-9.

[31] Alexander Mood, Franklin A. Graybill, Duane C. Boes. Introduction to the Theory

of Statistics Third Edition, p. 241-246. McGraw-Hill. ISBN 0-07-042864-6.

[Electronic Data] Electronic Version of Nuclear Data Sheets. tel-

net://bnlnd2.dne.bnl.gov

[Blue Water] Blue Waters. Sustained Petascale Computing.

http://www.ncsa.uiuc.edu/BlueWaters/

[32] T.W. Burrows. Nuclear Data Sheets, 74, 1; Nuclear Data Sheets 76, 191

[33] D.R. Jones and C.D. Pertunen and B.E. Stuckman. Lipschtzian optimization with-

out the Lipscitz constant. J. Optimization Theory and Applications, Volume 79,

Pages 157-181

[34] D.R. Jones. The DIRECT global optimization algorithm. Encyclopedia of Optimiza-

tion,Kluwer Academic Publishers, Pages 431-440

61

[35] R. Machleidt and F. Sammarruca and Y. Song. Nonlocal nature of the nuclear force

and its impact on nuclear structure. Phys. Rev. C53; Phys. Rev. C63, 024001, Ref

9

[36] J.P. Vary, S. Popescu, S. Stocia and P. Navratil. No Core Shell Model A=47 and

A=49. nucl-th/0607041/

[37] S. Benson and L. Curfman McInnes and J.Moré and T. Munson and J. Sarich. TAO

User Manual (Revision 1.9) Mathematics and Computer Science Division, Argonne

National Laboratory, ANL/MCS-TM-242, http://www.mcs.anl.gov/tao

[38] Denitza T. Krasteva, Layne T. Watson, Chuck Baker, Bernard Grossman, William

H. Mason, Raphael T. Haftka: Distributed control parallelism in multidisciplinary

aircraft design. Concurrency - Practice and Experience 11(8): 435-459

[39] National Instruments. http://zone.ni.com/devzone/cda/tut/p/id/3023

	2008
	Integration of ab-initio nuclear calculation with derivative free optimization technique
	Anurag Sharda
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1 OVERVIEW
	1.1 Introduction
	1.2 Motivations
	1.3 Problem Statement
	1.4 Contributions
	1.5 Thesis outline
	1.5.1 Chapter 1
	1.5.2 Chapter 2
	1.5.3 Chapter 3
	1.5.4 Chapter 4
	1.5.5 Chapter 5

	2 REVIEW OF LITERATURE
	2.1 Background work
	2.1.1 Optimization Technique
	2.1.2 Many Fermion Dynamic Code

	3 PROPOSED METHODS
	3.1 Design of Integrated System
	3.1.1 Enabling Seamless Integration
	3.1.2 Design of 2 Function
	3.1.3 Design consideration for Driver

	3.2 Implementation
	3.3 Alternative Design for High Performance Clusters
	3.4 Alternative design for Grid Computing
	3.5 Performance Monitor

	4 RESULTS
	4.1 Platforms
	4.2 Results

	5 CONCLUSIONS
	5.1 Summary
	5.2 Future Work

	BIBLIOGRAPHY

