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CHAPTER 1. OVERVIEW OF IEEE 802.11 WIRELESS NETWORK

MANAGEMENT

IEEE 802.11 is a set of standards for wireless local area network (WLAN) computer com-

munication, developed by the IEEE LAN/MAN Standards Committee (IEEE 802) [1]. Based

on the physical layer technology used, it can be further categorized into 802.11a, 802.11b and

802.11g.

The 802.11a standard uses the same core protocol as the original standard, operates in 5

GHz band, and uses a 52-subcarrier orthogonal frequency-division multiplexing (OFDM) with

a maximum raw data rate of 54 Mbps, which yields realistic net achievable throughput around

20 Mbps. The 802.11b standard is a direct extension of the Direct-sequence spread spectrum

(DSSS) modulation technique defined in the original standard. On a carrier of 2.4 GHz, it uses

Complementary code keying (CCK) as its modulation technique. 802.11b has a maximum raw

data rate of 11 Mbps, with throughputs of up to 7.1Mbps in practice. The 802.11g physical

layer is designed to operate using OFDM at a carrier frequency of 2.4 GHz. The maximum

data rate is 54 Mbps, while in practice, it is possible to reach throughputs of up to 20 Mbps.

IEEE 802.11 networks have rapidly gained popularity, largely due to their low cost and ease

of deployment [2][3]. They are now widely deployed in homes, corporate offices and schools, to

offer wireless network connectivity and internet access [4][5].

Like large deployments of any kind of network, resource management is an important

consideration in 802.11 networks [6][7][8][9][10][11][12][13][14][15][16][17]. In order for these

networks to utilize the available spectrum efficiently, we need to adapt its behavior in response

to the load. The work presented in this thesis is a set of techniques that are used for load

estimation, such that it can be used for network management and performance optimization.
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Apart from traditional management of the network’s operational parameters, load estimation

also has applications in domains such as cooperative scheduling [2].

The remainder of this chapter is organized as follows. In section 1.1, we introduce the

modes of operation of IEEE 802.11 wireless networks. In section 1.2, we describe the two

protocols that form the 802.11 MAC layer. In section 1.3, we describe the motivation behind

our work, by emphasizing the importance of load estimation in network management. We

briefly explain how large 802.11 networks are deployed, and describe a few techniques for

network management. In section 1.4, we outline the rest of the thesis.

1.1 IEEE 802.11 Operational Modes

The IEEE 802.11 standard defines two modes of operation:

• Infrastructure Mode: This is the most commonly deployed mode of operation of 802.11

networks. They are characterized by the use of access points. Typically, these access

points are connected together using a wired backbone network [18]. Access points are

nothing but bridges that operate between the wired and wireless sides of the network.

Wireless stations (such as laptops and PDAs) access the network, with the access point

as the intermediate hop. The work presented in this thesis is focused on infrastructure

networks.

• Ad-HocMode In this mode, stations are allowed to communicate directly with one an-

other. Networks can be set up and torn down without the need of any backbone or

infrastructure. These networks are typically active for short periods of time, and torn

down when the stations no longer need to communicate with each other.

1.2 IEEE 802.11 MAC Protocol

The IEEE 802.11 standard [1] defines two medium access control (MAC) protocols, namely

the Distributed Coordination Function (DCF) and the Point Coordination Function (PCF).

These are described below:
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1.2.1 Distributed Coordination Function (DCF)

This is a contention based protocol, where stations compete against each other for the

chance to transmit their frames over the shared wireless channel. The DCF is primarily based

on CSMA/CA (Carrier sense multiple access, with collision avoidance). When a station wants

to transmit a frame, it senses the channel to check if it is busy or idle. This channel sensing

is done in two ways - physical carrier sensing and virtual carrier sensing. If the channel is

busy (as indicated by either the physical or virtual carrier sensing), it waits for the channel to

become idle. Once the channel remains idle for a period of DIFS, the station runs the backoff

procedure. It chooses a slot between 0 and CW , and begins counting down to 0. The station

which chose the smallest slot is the one which counts down to 0 the earliest. This station wins

the contention and transmits its frame.

The receipt of a positive acknowledgment is the only way a station knows if its transmission

was successful or not. If the station fails to receive an acknowledgment (ACK), it assumes that

the frame transmission has failed due to a collision. A collision is caused when two or more

stations chose the same smallest slot for transmission. Upon failure to receive the ACK, the

station then proceeds to retry the transmission.

The initial value of CW is CWmin , which is usually 31. Upon every frame transmission

failure (failure to receive the positive acknowledgment), it doubles the CW size, up to a maxi-

mum of CWmax , which is usually 1023. The new CW size is used for the next retransmission.

Upon successful frame transmission, it immediately reduces the CW size to CWmin . This

is known as the Binary Exponential Backoff (BEB) algorithm. The motivation behind such

a backoff algorithm is the following: When a frame transmission fails, the station assumes

that the failure was caused by a collision. The occurrence of collisions is closely related to

the amount of congestion in the network. The CW size is doubled, in order to decrease the

probability of subsequent slot choices coinciding, and hence collisions taking place.
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1.2.1.1 Exponential Increase Exponential Decrease (EIED)

One of the weaknesses of the legacy 802.11 DCF is caused by the fact that stations reset their

CW size to CWmin upon a successful frame transmission. For example, assume that a lot of

collisions have previously taken place, and hence the stations use high CW sizes. If the stations

reduce their CW sizes to CWmin upon a successful transmission, it increases the probability of

more collisions taking place in the immediate future. This also leads to unfairness in channel

access. To overcome these weaknesses, the authors in [19] propose a MAC modification called

EIED, where a successful frame transmission leads to stations reducing their CW size by half,

instead of resetting it to CWmin. However, if the CW size is already CWmin, then it is left

unchanged. This solution leads to higher channel throughput, and greater fairness.

1.2.2 Point Coordination Function (PCF)

The PCF enables the transmission of frames that have a time bound for transmission. This

protocol is centrally controlled by an entity known as the point coordinator, which typically

resides in the access point. It controls medium access, by determining which station is allowed

to access the medium at any point of time. Time is broken into alternating periods of contention

free period and the contention period. The point coordinator maintains a list of stations, which

it needs to poll during the contention free period. For example, the point coordinator may first

poll station A, and specify a certain time interval for which A has monopoly over the channel;

no other station is allowed to access it. By implementing a round-robin scheduling algorithm,

the point coordinator can give all stations an opportunity to transmit without contention.

This feature is particularly useful when stations have time-constrained data frames to

transmit; for example voice and video data. Stations that do not run the PCF wait for the

contention period, where they compete to access the channel, using the same mechanism as

the DCF . However, the PCF is rarely implemented, while the DCF is implemented by all

802.11 compatible devices.
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1.3 Motivation: Management of Large 802.11 Wireless Networks

IEEE 802.11 based wireless networks often have large deployments, such as in campus

and corporate installations. Such networks are almost always run in the infrastructure mode.

Since each access point has only a finite radio range and bandwidth capacity, these networks

are composed of a large number of access points, which are connected together using a wired

backbone. The radio range of each access point constitutes its individual cell. In order to

provide ubiquitous coverage, the access points are placed in such a way that their cells are

partially overlapping, such that a mobile station is always in the cell of at least once access

point, through which it can access the network. There are three principal techniques (associ-

ation control, channel selection and power control) used to manage and optimize operational

parameters used by the access points, such that the bandwidth utilization in the network is

maximized [6][7][8][9][10][12][13][14][15][16].

1.3.1 Association/Admission Control

Recent studies [20][3][9][13][14][15][21][22] have shown that in many networks, the load is

unevenly distributed amongst access points. Based on the IEEE 802.11 standard, it is the

duty of the wireless station to choose which access point it wants to associate with. During

this process, the station scans all available channels to see which access points it is in the

range of, along with their respective capabilities. From among the access points that satisfy

the required capabilities, the station associates with that access point from which it receives

the highest signal strength. This strength is given by the received signal strength indicator, or

RSSI [5].

Due to this behavior, it is common to see one access point A having a very high load, while

the other neighboring access points going virtually unused. For example, if there are many

users with their laptops in a conference room, there is a high probability that all the laptops

will associate with the same access point. This leads to very high contention at the overloaded

access point, which in turn leads to sub-optimal resource utilization. However, if a few of the

stations associated with A had in fact associated with some of the neighboring access points,
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the overall utilization would have been higher, due to reduced contention at the individual

access points.

One method of overriding the default association behavior of the stations is to modify the

code on device drivers of the stations. For example in [10], the client driver is modified to

recognize additional fields in the beacon frame, which aid in the association decisions being

made. There also exist other techniques (like for example, [8]) whereby the default association

behavior of the stations can be overridden, without making changes to the client code. In

this approach, the access points are connected with a controller, which resides in the wireless

backplane. The controller maintains a list (which is constantly updated) about which stations

are in the range of which access points, along with the respective RSSIs. When the controller

decides that a station A should associate with an access point B, then B is instructed to

respond to A’s probe request messages, while other access points ignore the probe requests. In

this method, only one access point is visible to the station, and it associates there.

Sometimes, the goal of association/admission control is to provide MaxMin fairness, as

opposed to blindly maximizing the network throughput. An allocation of bandwidth by means

of client-AP associations is MaxMin fair, if it is impossible to increase the available bandwidth

of a user A without decreasing the available bandwidth of a user B with equal or less bandwidth.

Examples of such work appear in [18] and [13]. Since association control is such an invaluable

tool in network management, much work [23][24][25][26][27] has focused on how fast handoffs

can be performed in a variety of scenarios. This enables association control to be executed on

a fine-grained time scale.

In order for any load-aware association control algorithm1 to function properly, it is ob-

vious that the load estimates generated by the individual access points must be meaningful.

Using weak techniques for load estimation can lead to association control decisions that may

exacerbate the problem of high contention.

1There exist many approaches, where the clients control the associations. However, we focus on algorithms
which are controlled by the access points and a network controller. These are the algorithms where no changes
to the code on client machines (to make association control decisions) are needed.
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1.3.2 Frequency / Channel Selection

Considering 802.11b/g, there are 11 channels (numbered 1 through 11), which are spaced

5MHz apart. In order for 2 channels to be completely non-overlapping, they have to be at

least 25 MHz apart [10][8]. Therefore, 802.11b/g has 3 non-overlapping channels, namely 1,

6 and 11 [28]. Ideally, we would like to have neighboring cells to be on orthogonal channels,

so that there is no mutual interference [4][29]. However, since network deployments are dense,

this is not always possible.

In areas of the network where the load is very high, we would like to operate the ac-

cess points on as far-apart channels as possible, whereas it is alright for access points in

lightly loaded areas to operate on partially overlapping channels. The channels used by the

individual access points can be changed on-the-fly, in response to changing network usage

[4][30][31][32][14][5]. Clearly, channel assignment for access points depends on the ability of

the access point to generate meaningful load estimates.

1.3.3 Power Control

As noted in [28], typical 2.4 GHz and 5 GHz transmit power, which is regulated by the

Federal Communications Commission (FCC), is around +17 to +30 dBm (50 mW to 1 W ).

Typical radio receiver demodulation maximum sensitivity is around 90 dBm for base data

rate modulations and all data packet headers for 802.11a/b/g. Antenna gain maximums are

limited by the FCC. If all access points are operated in the default setting, they all use the

same transmit power. This means that the cell-size of each access point is more or less time

invariant.

As noted in [33][34], the IEEE 802.11 standard currently merely provides a mechanism for

association and disassociation. No information regarding access point load is provided; as a

result, the only viable policy for access point selection is to pick the access point with the best

signal to noise (SNR) ratio.

It is a very common problem, where an access point A is heavily loaded, while a neighboring

access point B is more or less unused [33]. Suppose we decrease the transmit power of access
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Figure 1.1 Example for Power Control

point A, and increase that of access point B. This means that the cell of A becomes smaller,

while that of B becomes larger. Based on the default association behavior of the 802.11

stations, this will automatically force a few stations that are associated with A to reassociate

with B, thereby achieving some degree of load balancing. This technique forms the foundation

of what is known as cell breathing [35]. Implementations and adaptations of this technique are

available in [8][10][17][29].

For example, consider figure 1.1. Initially, most of the stations are associated with access

point A, while B has a low load. For simplicity, assume that each station has the same

bandwidth requirement. Initially, both access points transmit with the same power. Upon

decreasing the transmit power of A and increasing that of B, the figure shows how reassociations

take place. This load balancing has the effect of reducing the contention at A, while increasing

the bandwidth utilization at both access points A and B. Clearly, power control for the access

points depends on the ability of the access point to generate meaningful load estimates.
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1.4 Outline of the Thesis

In chapter 2, we take a look at existing load estimation metrics and estimation techniques,

and study a few simple case scenarios where they fail to provide meaningful load estimates.

In chapter 3, we present PigWin, which is a load estimation technique that can be used to

generate more meaningful load estimates in the context of network management. Through

simulations in NS-2 [36], we demonstrate how the load estimate varies in response to changing

network usage patterns. We also argue why PigWin generated load estimates are more useful

in the context of network management functions such as association control and channel control

across access points in large infrastructure networks. However, the weakness of PigWin is that

it requires modification to the 802.11 client code, and it measures only the load in the uplink

direction.

In chapter 4, we provide another set of techniques to estimate the load. These techniques

do not need any modification to the 802.11 client code. Furthermore, the load in the uplink

and downlink directions is independently measured using different metrics and techniques.

We demonstrate their behavior to changing network usage, via simulations in NS-2. We also

explain why these load estimates are better suited for network management functions.

In chapter 5, we describe our work on an actual testbed of 802.11 nodes. This work is built

upon the load estimation techniques presented in chapter 4. Using these load estimates, we have

implemented an association control algorithm that maximizes the total available throughput in

the network. We describe our load estimation techniques, the system architecture and finally,

the performance.

In chapter 6, we conclude this thesis and briefly describe future directions of work.
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CHAPTER 2. RELATED WORK IN LOAD ESTIMATION

There are two main approaches to load estimation in wireless networks, depending on the

type of application that uses the load estimate. The offline approach is used by applications

that do not need a real-time load estimate. For example, a network administrator might want

to analyze the network usage patterns over one month, to determine hot-spots ; the admin can

then deploy additional access points in the area to overcome persistent congestion. The online

approach is used for real-time applications such as association control. In this case, depending

on the current network usage, the associations of stations to access points can be adjusted to

improve network performance.

As mentioned in [37], several WLAN workload studies [21][22][38][39][40] performed offline

analysis on the trace of a building-wide or a campus-wide wireless network, including syslogs,

SNMP, and tcpdump. The major goal of these efforts is to study the user behavior, traffic

characteristics, usage patterns and network performance in a long term, and then to apply

the analysis results into the research of new wireless application development, future WLAN

deployment and management.

In this chapter, we take a look at existing load estimation metrics and online estimation

techniques, and study a few simple case scenarios to understand their behavior. In the liter-

ature, there is not much work focused on load estimation in itself. However, there are many

papers that define load in some way, and then use this load estimate as an input to their net-

work management subsystem. In this chapter, we take a closer look at how the related work

defines load, and through simple examples, explain why they do not provide meaningful load

estimates. In order to demonstrate their inapplicability in network management applications,

we use association control as an example network management function.
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2.1 Load as the Number of Stations

Some older papers [6][7] equate load to the number of stations in the Basic Service Set

(BSS). This definition may have been meaningful if we assume that each station has the same

traffic pattern, and hence the same bandwidth requirement. However in reality, there is no

correlation between the work done by two access points in terms of the number of stations

associated with each of them, because some stations might be actively transmitting, while

others remain dormant [22][41]. Even among the active stations, they might differ in their

bandwidth requirements.

For example in Fig. 2.1, there are two access points A and B. Access point A has stations

v1, v2, v3, v4 and v5 associated with it. Station v1 is sparingly using the network, while v2,

v3, v4 and v5 are inactive. Access point B has three stations w1, w2 and w3 associated with

it - all of which are actively contending for the channel. Going by this definition of load, we

incorrectly conclude that access point A is handling a higher load than B. Consequently, any

load balancing or association control algorithm is going to force reassociations/new associations

to access point B, thereby further exacerbating the problem.
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Figure 2.1 Example Topology 1
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2.2 Load as the Number of Frames

Newer papers [10][12][37][16] define load as the number of frames that the access point

successfully handles per unit time. Variants include defining load as the bandwidth demand

made by the stations on the access point. For simplicity, we assume that all frames are the

same size.

Consider Fig. 2.2, where there are two access points A and B, operating on orthogonal

frequencies. Access point A has many stations associated with it, all of which are actively

contending for the channel. Consequently, many collisions occur at A, which leads to decreased

throughput. Access point B has just one station w1 associated with it, which is transmitting

its data without any contention. Hence, w1 is capable of successfully sending a large number

of frames per unit time to B. By this definition of load, B has a higher load than A.

If an association control algorithm uses this load estimate, a new station x that can associate

with either A or B, will be incorrectly forced to associate with A. Clearly, this will lead to

further contention, congestion and collisions taking place in the cell of access point A.

Another weakness of this definition of load is caused by the multi-rate capabilities of 802.11

a/b/g/n [42][4][43]. Different stations may talk to the access point at different data rates, be-
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Index Rate (Mbps) SINR (dB)

1 54 Mbps 24.6

2 48 Mbps 24

3 36 Mbps 18.8

4 24 Mbps 17

5 18 Mbps 10.8

6 12 Mbps 9

7 9 Mbps 7.8

8 6 Mbps 6

Table 2.1 SINR Requirements for Different Data Rates

cause they each perceive the channel quality differently. When the channel noise or interference

is high, stations jump to a lower data rate, because the modulation at lower rates is more ro-

bust. The variations in channel quality could also be attributed to the varying distances of the

stations from the access point [29]. The varying distances have the effect of causing variations

in the RSSI at the receiver. Therefore for a given RSSI, there is an optimal data rate to use.

This is illustrated in table 2.1, which has been obtained from [4] and[17].

The time taken for a frame transmission depends on the data rate. Thus, the data rate

used by the stations also has an effect on the load at the access point. Consequently, a load

of say, x frames per second might indicate congestion if the data rate is 1Mbps, but the same

load might imply low channel utilization if the data rate is 54Mbps.

2.3 Load as the Percentage of Busy Time

Another definition of load is the percentage of time that the channel is busy [8]. This load

estimation is done by the access point, by simple physical layer carrier sensing. If the received

signal strength is greater than a certain threshold, then the channel is deemed to be busy, and

idle otherwise. This threshold is known as the clear channel assessment threshold, or CCA.

This metric improves on defining load as the number of frames handled per unit time,

because collisions also affect the load estimate. We know that when a collision takes place at

the receiver, the RSSI at the receiver is definitely greater than the CCA. However, even this
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metric/technique has its weaknesses.

From Fig. 2.2, the busy time for access point B is greater, because a lot of time is wasted in

BSS A by backoff delays and large contention window (CW) sizes (explained in section 1.2.1).

As a result, the load estimation algorithm will incorrectly tell us that B has a higher load

than A. In [37], the authors present a passive load estimation technique called Wintry, which

decomposes time and identifies busy periods by estimating the backoff time values.

In summary, the traditional definitions of load (explained in sections 2.1, 2.2 and 2.3) fail

to capture an intuitive notion of the actual conditions in the BSS. Consequently, any load

estimation technique based on these metrics of load will yield inaccurate results. Informally,

we would like to define load of an access point to capture an intuitive notion of the amount of

contention in its cell.

2.4 ProbeGap: Load Expressed in Terms of the Available Bandwidth

2.4.1 Introduction

ProbeGap [44] is a technique that is used to estimate the capacity and available bandwidth

of network paths. Previous work has focused on networks where links have a well defined

bandwidth, and packets/frames follow a first in first out (FIFO) ordering. However, this

model breaks down in many ways in 802.11 wireless networks, as explained below:

• Uncertain Bandwidth: We know that the maximum bandwidth of a link is 11Mbps

for 802.11b, and 54Mbps for 802.11a/g. However, this is the raw bandwidth, which is

significantly greater than the available bandwidth for the stations. The reasons are the

following:

– There is an overhead for every frame, because the physical layer convergence protocol

(PLCP) and physical medium dependent (PMD) headers are transmitted at the base

rate of 1Mbps [1]. Only the payload portion the frame is allowed to be transmitted

at the higher rate [28].
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– There is a fixed minimum idle time (DIFS) that is required between frame trans-

missions, followed by a variable wait time used for contention resolution.

– Since there are overheads on a per frame basis, the available useful throughput is a

function of the frame size.

– The usable data rate between the stations and the access point is a function of the

noise level, which in turn depends on the distance between them. For example, if

the station is 1m away from the access point, then communication between them

can take place at the full data rate. However, if they are far away, the bit error rate

(BER) increases, which in turn increases the packet error rate (PER). Rate control

features such as automatic rate fallback (ARF) determine the best data rate to

use. Lower data rates are associated with more robust modulation schemes, leading

to the BER (and hence PER) being decreased. The data rate used determines the

available bandwidth, and it depends on transient network conditions. Hence, 802.11

links do not have a well defined bandwidth.

• Non FIFO Ordering: Clearly, contention based MAC protocols do not offer FIFO packet

ordering.

2.4.2 Main Idea of ProbeGap

The idea is to estimate the fraction of time that a link is idle by probing for gaps in the busy

periods, and then multiplying by the capacity to obtain an estimate of the available bandwidth.

However, this capacity estimation is susceptible to errors because of rate adaptation [42].

ProbeGap estimates the idle time fraction by gathering samples of one-way delay (OWD)

over the link, as explained in [44]. The authors argue that the distribution of OWD samples

show two distinct regions, one corresponding to an idle channel, and the other corresponding

to a busy channel. The knee in the CDF of the OWD samples is used to calculate the idle

time fraction. Note that the idle time is not calculated by simple physical layer carrier sensing,

because based on their approach, hidden stations are a source of error. 1

1Parts of the discussion in this section have been quoted directly from [44]
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The sender sends a series of Poisson-spaced probes, each with a 20-byte payload containing

a local timestamp. The receiver subtracts the senders timestamp from the received time to

compute the OWD. The OWD is then normalized by subtracting out the smallest OWD from

the set of measurements, so that the smallest normalized OWD in the set is zero. The sender

and receiver clocks need not be synchronized; they just need to maintain a constant offset.2

The intuition is that if a probe finds the link to be free, it would experience a small OWD.

On the other hand, if it needs to wait for packets in transmission or ahead of it in the queue,

it would experience a larger OWD. In other words, large OWD values imply that the channel

idle fraction is smaller. This interpretation of load captures the effects of both uplink and

downlink load components together.

Now, let us consider how ProbeGap can be adapted to the case where the access points

estimate their idle time, expressed as a function of the OWD. Subsequently, the available

bandwidth can be estimated by multiplying the idle time with the channel capacity.

On the receiver side, timestamping is done by the device driver itself, when the packet is

received. That way, the overheads of packet processing in the protocol stack are minimized.

When the load estimation needs to be done, the following steps are taken, such that no code

modifications are needed on the device driver of client stations:

• A probe message is inserted into the transmit queue of access point A, and the timestamp

is noted.

• Access point A sends the probe message to access point B in its range, and piggybacks

this time stamp on the probe frame. The DCF is used for channel arbitration during

this process.

• Access point B receives the probe messages and calculates OWD. It then estimates the

idle time for A, as a function of the OWD. It then calculates the available bandwidth by

multiplying the idle time with the channel capacity.

2Compensating for clock skew is a very well studied problem in distributed systems, and there exist many
solutions for the same.
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• Access point B tells A the available bandwidth at A through a response frame over either

the wired or wireless channel.

It is possible to also perform the OWD estimation slightly differently (and more conve-

niently), as explained below:

• A probe message is inserted into the transmit queue of access point A, and the timestamp

is noted.

• An access point A sends the probe message to access point B in its range, using the

standard 802.11 DCF MAC protocol.

• Access point B receives the probe message and sends an ACK to A.

• When the ACK is received, the time difference is calculated as the OWD. We note that

the OWD calculated is correct, because B sends the ACK exactly SIFS after it received

the probe.

2.4.3 Weaknesses

We know that both A and B need to be on the same channel in order to communicate. If

A had to jump channels to talk with B, then the contention in A’s cell is not measured, and

this is clearly not the behavior that we want. In real networks, it is rare to have two access

points on the same channel, that are in direct radio range of each other. Hence, this method

of active probing may not always work.

The normalization process has its own associated sources of error. For example, the OWD

is not a function of the network contention alone. There are also variability in operating system

delay, which is not guaranteed to be eliminated through the normalization process.

Moreover, it is very common for the network to have heterogeneous devices, in terms of

the processing power and memory of the constituent systems. To overcome this condition, the

normalization should be done on a per-node-pair basis to reduce variations caused by node

heterogeneity.
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The normalization error can be minimized by sending a large number of probe packets.

However, if we want a more accurate load estimate, then the overhead is that we need to

transmit a large number of probes. This has the potential to waste network bandwidth, which

in itself, is a very precious resource.

2.5 Potential Bandwidth Estimation

2.5.1 Introduction

This approach has been presented in [34].3 The authors identify potential bandwidth as the

metric based on which hosts should make association decisions, and define it as the (MAC-

layer) bandwidth that the client is likely to receive if it were to associate with a particular

AP.

2.5.2 Main Idea

This approach is non intrusive, and relies solely on passive measurements. The approach

does not require a station to associate with an access point in order to estimate the bandwidth

it would receive from the access point. This allows the station to simultaneously evaluate the

potential bandwidth to multiple access points in its range. However, the limitation is that it

can estimate the bandwidth of only those access points that operate on the same channel that

the station is operating on, because the measurements are made by passive sniffing.

The authors propose a methodology for the estimation of potential upstream and down-

stream bandwidth between a client and an access point based on measurements of delay in-

curred by 802.11 Beacon frames from the access point.

Based on the IEEE 802.11 standard, beacon frames are broadcast by access points period-

ically, and this interval is usually 1024 µs. The purpose of the beacon frames is for the access

points to announce their identity as well as for the synchronization of the entire network. The

delay between the time when a beacon frame is scheduled for transmission and its eventual

3Parts of the discussion in this section have been quoted directly from this paper.
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transmission captures the load of the AP and the contention inside the network, conditions

that the client would face if affiliated with that AP.

The authors present a mechanism, where the potential bandwidth can be estimated by

observing the beacon delays. This is the bandwidth a client will receive from the AP, should

it associate with that AP.

The important point to note is that when an access point wants to transmit a beacon frame,

it must contend with all other stations in its radio range, which operate on the same channel.

Therefore, if the beacon frame gets delayed by a large amount, it indicates that many stations

were also trying to access the channel at that time, indicating high contention (load) in the

uplink direction.

The authors also assume that beacon frames are not prioritized over other frames, as

implemented in the access points used in their experiments. As a result, if the downlink load

is high, it means that the transmit queue of the access point is long. This implies that the

scheduled beacon transmission also has to wait longer before it can be sent.

Since beacon delays are computed solely based on timestamps provided by the access point,

synchronization issues do not arise.

Based on what we have seen, the beacon delays are indicators of both the uplink and

downlink load. But how do the authors differentiate between the two? For pure uplink load

estimates, the authors propose the use active measurements. The IEEE 802.11 standard allows

a station in an unassociated state to send data frames to an access point. The station sends

data frames to an access point in the unassociated state and records the time elapsed between

the instant when a frame is scheduled for transmission and the time when the end-host receives

an ACK message. This delay is an accurate estimate of the contention delay, in the uplink

direction.

2.5.3 Weaknesses

The drawback is that device driver modification is required on the client machines. Since

there are already millions of 802.11 cards already in the market, this might not be possible.
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However on the brighter side, a station with the modified device driver is fully compatible with

legacy networks.

Another issue is if the access point implements prioritization of beacon frames, then the

downlink load has no effect on the beacon delay. This technique will then capture only the

uplink load, which generally does not capture a notion of the actual network conditions.
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CHAPTER 3. PIGWIN: LOAD ESTIMATION

3.1 Introduction

PigWin [45] estimates the load by giving a measure of how easy or difficult it is for a frame

to be successfully transmitted. We define load in such a way that it captures the amount of

contention taking place in the BSS. As explained in section 1.2.1, if the stations are transmitting

frames with very few collisions, then a majority of the frames will use CWmin as their CW size.

This implies that the contention in the BSS is low. However, if there are a lot of collisions, then

a sizable percentage of frames are going to be successfully transmitted using CW sizes greater

than CWmin. If the access point knows the CW size used for every recent and successful uplink

frame transmission, it can estimate the current load.

Hence, by aggregating recent history of what percentage of frames have been successfully

transmitted using each of the permissible CW sizes, it is possible for the access point to

define the current ease of transmission in the BSS. We note that transmission failures can be

caused both by collisions, as well as by channel noise. One of the classical problems in wireless

networks is to distinguish between the two. Presently, we do not make this distinction, but

intend doing so in the future.

3.2 PigWin: The Protocol

3.2.1 MAC Modification on Clients

We know that in infrastructure mode WLANs, all frame transmissions take place with the

access point as the intermediate hop. Consequently, the access point can receive and process

any uplink frames sent by the stations.
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In order to support PigWin, every station piggybacks on to every frame the CW size

used for that transmission attempt. If the frame transmission fails, then the piggybacked

information is lost; and this is exactly the behavior we want. We want the access point to

know the CW size used only for successful frame transmissions. There are 6 permissible CW

sizes, and hence the amount of data required to be piggybacked onto every frame is just 3

bits, which is padded up to 1 byte. This overhead is very small and hence, there is no network

performance drop. As the contention window size is piggybacked on to every uplink frame,

this mechanism has been named PigWin.

3.2.2 Access Point Estimating Load

It is the duty of the access point (AP) to maintain recent history of the CW sizes used

for uplink frame transmissions. The AP stores this information in a circular queue, with each

node in the queue holding two values - a time stamp and a CW size. For every frame that

is received, the AP records the piggybacked CW size (as explained in section 3.2.1) and the

timestamp (when the frame was received) in the queue. If the queue is full, then the oldest

entry is purged, to make way for a new entry corresponding to the latest received frame. In

this manner, it retains only recent history of CW sizes used.

There is one parameter that influences the load estimate, which is the time difference

between the current time and the recorded time stamp that determines if an entry is recent

enough to be considered while estimating the load. For example, a PigWin policy can be set

that enforces that entries older than 10 seconds are not recent enough. This value is denoted

by β, and its units are seconds. When the AP needs to estimate its load, it does the following:

First, it makes one pass through the circular queue and deletes all entries that are older than

β seconds.

Each remaining entry in the queue corresponds to one frame that the access point has

received in the recent past. From these entries, the AP determines (by simple counting) a set

λ of values, where each λi is the number of entries in the queue, with CW size i. Since there

are six permissible CW sizes, the AP calculates six λi values, for i = {31, 63, 127, 255, 511,
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1023}. The AP then calculates the ease of transmission (denoted by φ), which is the reciprocal

of the average CW size used in the recent past.

1

φ
=

∑

i

λi × i

∑

i

λi

(3.1)

Large φ values imply that stations are using small CW sizes, and the amount of transmission

failures taking place is low. Small φ values imply that the stations are finding it more difficult

to transmit their frames. We define load to be the reciprocal of φ, where φ is the ease of

transmission. This definition of load captures the notion of difficulty in transmission, and

is measured by the average CW size of successful frame transmissions in the recent past.

Consequently, load has no units. When frames are being transmitted, the minimum permissible

value of load is CWmin, while the theoretical maximum is CWmax.

However, if there were no frames transmitted in the previous β seconds, then both the

numerator and denominator of equation 3.1 will be zero. In this case, the reported load is

CWmin, and a flag is set to differentiate this case from previously mentioned case where the

load is also CWmin.

3.2.3 Effect of β on the Load Estimate

A small value of β implies that the piggybacked CW information becomes invalid earlier;

history maintained by the access point is more recent. Conversely, a large value of β means

that history is maintained longer. It is a well known fact that most users’ internet usage

patterns are highly bursty; active for short periods of time, and inactive for most of the time.

As a result, if a small β value is used for load estimation during a network access burst, the

reported load will be very high; even though the network was possibly inactive for a long time

before the burst, and probably will become inactive soon after. Small β values reflect transient

network conditions. Hence, the load estimate can fluctuate greatly.
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On the other hand, large β values tend to keep stale values, which might not have any

bearing to the current network status. There is no optimal value for β; however an acceptable

value depends on the semantic of the application that uses the load estimated by PigWin.

3.3 Simulation Techniques and Results

NS [36] or the Network Simulator (also popularly called NS-2, in reference to its current

generation) is a discrete event network simulator, targeted at research. NS can simulate many

types of protocols, from across the protocol stack. We decided to use NS-2 for our simulations

because it can accurately model the shared wireless channel and it can be used to efficiently

simulate the network for a variety of topologies and simulation parameters [46].

We simulate an IEEE 802.11b network, operating in the infrastructure mode. The MAC

layer is configured to operate with the RTS-CTS exchange for every frame transmission. The

simulation parameters are shown in Table 4.1. Our simulation topology consists of one infras-

tructure mode BSS (one access point A, along with nine wireless stations v1 to v9). The access

point A is connected to a station B via a backbone ethernet. Our primary goal is to observe

the reported load by PigWin in response to changing network usage.

We simulate three different scenarios, which differ in the traffic patterns of the nine stations

(described in sections 3.3.1, 3.3.2 and 3.3.3). For each scenario, we show how the reported load

varies with time, for different values of β. The simulations are run for both the legacy 802.11

MAC and EIED. The load is measured every 100ms, starting at 5s and ending at 100s.
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Figure 3.1 Network Topology for Simulation Scenario 1, 2 and 3
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Parameter Value Parameter Value

UDP Header 8 bytes TCP Header 20 bytes

IP Header 20 bytes MAC Header 36 bytes

PHY Header 24 bytes Channel Bitrate 11 Mbps

CBR Payload 1000 bytes CBR Data Rate 0.6 Mbps

SIFS 10 µs PIFS 30 µs

DIFS 50 µs EIFS 364 µs

Slot Time 20 µs RTS size 44 bytes

CTS Size 38 bytes ACK size 38 bytes

Table 3.1 Simulation Parameters

3.3.1 Scenario 1

This scenario aims to simulate the case when the load on the access point is gradually

increased until it reaches saturation. Eight stations (v1 through v8) transmit constant bit

rate (CBR) traffic to B, via individual UDP connections. However, all the transmissions are

initiated 10 seconds apart. Station v1 starts transmitting at time 5s, v2 begins at 15s and so

on, and v8 begins transmitting at 75s. Station v9 remains silent during the entire course of the

simulation. The simulation terminates at 100s.

From Fig. 3.2, we observe the PigWin reported load over time, for the legacy 802.11

MAC. As the contention in the network increases, the reported load also increases, due to the

increased difficulty in transmission. The large increase in load at 65s to 70s is due to the fact

that network saturation occurs around this point. For β = 1, the reported load responds very

quickly to any changes in the network usage. Also, due to the short history maintained, the

load fluctuates in response to transient network conditions. For larger β values, we observe

less fluctuation in load, simply because the CW sizes are averaged over longer periods of time.

While large β values make the load estimate respond slower to changes in network usage, the

load is more stable.

From Fig. 3.3, we observe the PigWin reported load over time, for the EIED protocol.

The load estimate follows a pattern very similar to that seen in Fig. 3.2. However, due to the

different CW sizes used by the legacy 802.11 MAC and EIED, we see that the load estimate
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for EIED is higher. This is because at periods of high contention, EIED tends to use larger

CW sizes to reduce the probability of collisions taking place, when compared to the legacy

802.11 MAC. This comparison between the legacy 802.11 MAC and EIED is illustrated in Fig.

3.4.
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Figure 3.2 Scenario 1 - Legacy 802.11 MAC
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Figure 3.3 Scenario 1 - EIED

3.3.2 Scenario 2

This scenario aims to simulate a bursty network usage pattern. All nine stations trans-

mit constant bit rate (CBR) traffic to B, via individual UDP connections. Station v9 starts

transmitting at 5s and stops at 100s. At 15s, v1 and v2 start transmitting, and they both stop
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Figure 3.4 Scenario 1 - Comparison between Legacy 802.11 MAC and
EIED

transmitting at 25s. At 35s, v1, v2, v3, and v4 start transmitting, and they stop transmitting

at 45s. At 55s, v1, v2, v3, v4, v5 and v6 start transmitting, and they stop transmitting at 65s.

At 75s, stations v1 to v8 start transmitting, and they stop at 85s. The simulation terminates

at 100s.

From Fig. 3.5 (for Legacy 802.11), we observe that as the contention increases, the reported

load also increases. Small values of β make the reported load respond faster to changes in

difficulty in transmission. It is evident that the load for larger β values trails those of smaller

β values; this is due to the fact that the history is maintained longer for larger β values. As

seen earlier (for scenario 1), smaller β values tend to cause more fluctuation in the reported

load, when compared to larger β values.

The results for EIED (in Fig. 3.6) are very similar to those for the legacy 802.11 MAC.

However at saturation conditions, EIED uses higher CW sizes when compared to the legacy

802.11 MAC. As a result, the load reported in EIED is higher. This comparison is illustrated

in Fig. 3.7.

3.3.3 Scenario 3

The third scenario aims to simulate a heavily used channel, but with no contention, and

hence high ease of transmission. Station v1 sends a continuous burst of FTP packets to the
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Figure 3.6 Scenario 2 - EIED

station B via the access point A. The FTP runs over a TCP connection set up between v1 and

B. The FTP connection is established at 5s and is torn down at 100s. The remaining eight

stations remain inactive during the entire period of the simulation.

As seen in Fig. 3.8, the load is constant during the entire duration of the simulation. Also,

we note that this constant load is the minimum permissible load, because it corresponds to

the highest possible ease of transmission. Since there is no contention, collisions do not take

place, and the CW size used is always equal to CWmin. It does not matter whether the legacy

802.11 MAC or the EIED is used. Additionally, the β value is of no consequence, because the

CW size used does not change during the entire simulation.
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Through this scenario, we demonstrate that the load is independent of the number of

stations in the BSS. The result would not have changed if the number of idle stations changed.

Also, the load is independent of the number of frames transmitted to the access point. Clearly,

the number of frames handled by the access point is very high, yet the reported load is low.

It is this property of load that makes PigWin a good choice for load estimation, for use

with applications such as load balancing and association control. This is our rationale behind

defining load as the difficulty in transmission in the BSS.
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Figure 3.8 Scenario 3 - Legacy 802.11 MAC and EIED. (All β values)
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3.4 Conclusion

Traditional interpretations of the term load have resulted in load measurement metrics,

which fail to give an accurate idea of the actual BSS conditions. The redefinition of the term

load as the reciprocal of ease of transmission (alternatively as the difficulty in transmission)

gives us a more intuitive notion of the prevailing channel conditions.

The actual load estimation in PigWin is performed by leveraging off the behavior of the

binary exponential backoff (BEB) algorithm of the DCF. Additionally, PigWin uses a param-

eter β, which can be adjusted to suit the semantic of the application which uses the generated

load estimate. This leads to the potential use of PigWin in a variety of tasks such as load

balancing, association control, network monitoring and planned ESS expansion.

It is easy to understand why the aforementioned tasks perform better with a PigWin

generated load estimate, when compared to any of the traditional techniques mentioned in

chapter 2. PigWin can also be applied to MAC protocol variants, such as EIED.

In the future, we plan to design a load metric that takes into account the QoS priorities

of the data frames being sent. To this end, we plan to extend PigWin to work with the IEEE

802.11e standard [47]. In this case, the access point will generate up to 4 load estimates at any

instance of time; one for each priority of data.

Since stations cannot distinguish between channel losses and collisions, the CW growth

patterns are identical, irrespective of the cause of the frame loss. In the future, we want

to factor in the signal to interference and noise ratio (SINR) for the received packet and

estimate the packet error rate (PER), so we can estimate collision based losses more accurately.

Furthermore, rate adaptation can affect the load estimate, since the data rate is adapted to

minimize the PER. In the future, we aim to equip PigWin with the additional intelligence to

handle these additional issues.

Finally, we are working on methods to perform load estimation without requiring any code

changes on the device drivers on client machines. The work from this direction is presented in

chapter 4.
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CHAPTER 4. CLIENT UNAWARE LOAD ESTIMATION

4.1 Introduction

In this chapter, we propose a load estimation technique that makes two novel contributions

[48]. First, we redefine load by splitting it into two components - uplink and downlink, which

are measured using different metrics and independently of the other. Second, we present

simple protocols to efficiently measure this load. These protocols require minor code changes

on the access points, but the client machines remain untouched. Our techniques are applicable

to the legacy 802.11 DCF as well as variations such as Exponential Increase, Exponential

Decrease (EIED). Through mathematical analysis and simulations on a variety of network

scenarios using NS-2, we demonstrate the performance of our load estimation techniques. We

also explain why our definition of load is more meaningful when compared to traditional load

estimation metrics, in the context of applications such as load balancing, association control

and network management.

4.2 Load Estimation

As mentioned earlier, we split up load into two components - uplink and downlink, which are

estimated separately. Therefore, applications such as load balancing can make more accurate

decisions, on how to distribute the stations among the access points, because the load advertised

by the access points is more detailed and meaningful.
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4.2.1 Uplink Load Estimation

4.2.1.1 Motivation

As explained in chapter 2, traditional methods of load estimation are inaccurate. It is

intuitive that a meaningful interpretation of load should actually consider the amount of con-

tention that is taking place in the BSS, which in other words is a measure of how difficult it is

for a station to successfully transmit a frame. Informally, the amount of contention depends

on the number of stations that are actively contending for the channel. Since we do not want

to modify code on client machines, there is no mechanism for the access point to know which

stations are attempting to transmit at any instant of time. The access point only knows when

it successfully receives a frame on its wireless interface. Additionally, the amount of contention

should depend on the bandwidth demands that each station is making in the uplink direction.

Our mechanism of estimating this amount of contention is based on a fundamental property

of contention based protocols: More contention leads to more collisions.

4.2.1.2 Calculation

Let us consider an epoch of time β during which the load estimation takes place. For now,

assume that an access point knows what fraction of time in the epoch was spent in idle listening,

spent successfully receiving frames and wasted in collisions (In section 4.2.1.3, we explain how

these three fractions are obtained). These three fractions are denoted by idleT ime, busyT ime

and collT ime.

As explained in section 4.2.1.1, the load is proportional to the amount of time wasted in

collisions for that epoch of time. The load is therefore given by:

LoadUplink =
collT ime

idleT ime + busyT ime + collT ime
(4.1)

The lower bound on the uplink load is 0 (when no collisions take place) and the theoretical

upper bound is 1 (when all the time in the epoch is wasted in collisions).

Let us take a look at how rate adaptation affects the load estimate. We know that when a

station operating at a low data rate encounters a collision, more time is wasted in the collision,
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because the amount of time spent by the frame over the air is greater. Therefore, the reported

load on that access point is higher. This behavior is exactly what we want, because it indicates

that the amount of bandwidth that a new station would get (if it were to associate with that

access point) is lower. Our definition of load is intuitive, in that it gives a good comparison

between the available access points, and the type of service a station would receive if it were

to associate with them.

Another interesting aspect is that many rate control algorithms rely on frame loss ratios

as a factor when deciding to switch data rates [43]. The toggling of the data rate in response

to collisions, in turn closes the positive feedback loop. For example, suppose many stations

are close to access point A, and are all contending for the channel. The increased collisions

will lead to stations choosing lower data rates, thereby making the problem of contention even

worse. This implies that frames take a longer time over the air, and greater amounts of time are

wasted in collisions. Our load estimate responds to this condition by indicating a higher load.

Intuitively, we say that our load estimation technique captures the difficulty of transmission

over the wireless channel.

4.2.1.3 Implementation

We now ask the question: How do we obtain idleT ime, busyT ime and collT ime during

every epoch? Whenever the transceiver of the access point is in the receive mode and the

RSSI is lower than the CCA, then the channel is said to be idle. The aggregate of this time

is idleT ime. However, when the RSSI is greater than the CCA, then we really do not know

if the current frame transmission is going to be successfully received or not; in other words,

either a successful transmission or a collision might be going on. We store this time period as

xTime. However, whenever a frame is successfully received, the access point knows exactly

how much time that frame transmission held the channel busy. The access point keeps track of

every frame successfully received in an epoch, and in particular the amount of time taken by

each of these frames. This time is nothing but busyT ime. Obviously, the difference between

xTime and busyT ime is collT ime. these values are used to estimate the load, as explained in
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section 4.2.1.2

4.2.1.4 Comparison with Traditional Load Estimation Metrics

The most important weakness of defining load as the number of stations associated with

the access point is that inactive stations skew the load estimate. In our protocol, inactive

stations do not affect the amount of contention in the BSS, and hence do not affect the load

estimate. For example in Fig. 2.1, assume that stations v1, w1, w2 and w3 are all actively

transmitting frames, while v2, v3, v4 and v5 are inactive. In this case, the contention (and

hence collisions) at access point B is much higher than that at A, and hence our algorithm

will correctly indicate that B has a higher load than A.

Consider the other definition of load as the number of frames handled by the access point

per epoch. For example in Fig. 2.2, assume that all stations are actively trying to transmit their

frames. As explained in chapter 2, the number of frames successfully handled by B is more

than that of A, incorrectly implying that the load on B is higher. On the other hand, since the

contention (and collisions) at A is much higher than at B, our protocol correctly indicates that

the load on A is higher. Through these examples, we see that the load estimated by our protocol

is proportional to the number of actively transmitting stations, and is also proportional to the

bandwidth requirements of each of these stations. That is why our protocol is more suited for

applications such as load balancing.

4.2.2 Downlink Load Estimation

4.2.2.1 Motivation

Similar to the case for uplink load estimation, we want our downlink load estimate to

capture a notion of how much the stations are competing to receive frames from the access

point. This means that we are interested in how the access point’s transmit time is going to

be divided among the associated stations. Again, we do not want inactive stations (stations

that do not receive any frames) to affect our load estimate. We would like the load estimate

to be proportional to the number of stations that are currently receiving frames and also be
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proportional to the downlink bandwidth demand of each of these stations.

4.2.2.2 Calculation

For an access point to estimate the downlink load in an epoch of time β, it first measures

nmax µs, which is the amount of time in the epoch that the transceiver of the access point is

in the transmit state. Then for each station i that is associated with it, it measures ni µs,

which is the amount of time that the access point has spent transmitting frames destined to

station i. Then, it calculates the downlink load as follows:

LoadDownlink =
∏

i∈Stations

(1 +
ni

nmax

) (4.2)

The intuition behind this equation is the following: If there is high internal contention at

the access point, then the amount of time the access point spends serving each of the contending

stations is comparable. In other words, the ni values have a high probability of being close

together, for each contending station i. Under such conditions, our equation will result in a

high load estimate. On the other hand, if there is very low internal contention at the access

points, then the ni values are going to be skewed. In this case, our equation will result in a

lower load estimate.

It is easy to see that the lower bound on this downlink load is 1. This is the case when

there are no frames being transmitted by the access point at all. For the upper bound on load,

we assume that that there are a large number of stations that are (internally) contending to

receive frames from the access point, and hence the time taken by the access point to service

each station i is divided approximately equally among all the contending stations. This case

represents the highest internal contention at the access point. Clearly, the upper bound on

load in this case is when the number of stations in the network approaches infinity. In this

case, fraction ni

nmax
tends to 0. The equation for the theoretical upper bound on load reduces

to:

LoadTh−UB
Downlink = lim

x→0

(1 + x)∞ = e (4.3)
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However in reality, the 802.11 standard states that there can be no more than 128 stations

associated with an access point at any given point. As a result, the practical upper bound of

the load is equal to:

LoadPr−UB
Downlink = (1 +

1

128
)128 = 2.7077 (4.4)

Let us take a look at how rate adaptation affects our load estimate. Assume that the access

point has many stations, which are internally contending to receive frames from it. Assume

one of the stations x communicates with the access point at a low data date (say, 1Mbps),

while the others communicate with it at 54 Mbps. In this case, even though there is high

internal contention, the ni values are going to be skewed, with the nx value being large. This

will lead to a low load estimate, which is not the ideal behavior. However, if we approximate

the ni values by the number of frames received by station i in that epoch of time, then we

overcome this condition. This approximation has been explained in section 4.2.2.3.

4.2.2.3 Implementation

There is an alternate simple way to approximate the downlink load estimate, that avoids

the complicated procedure mentioned in section 4.2.2.2. First, let us assume that all the

frames are of the same size. In this case, we can substitute nmax by the total number of frames

transmitted by the access point, and each ni by the number of frames transmitted by the

access point to station i in the epoch. In this case, the ratio ni

nmax
will not be changed, if all

transmissions take place at the same data rate.

Now, let us consider what happens when the frame sizes are not the same. We argue that

the load estimate will not change by a large margin. Recent studies on high rate 802.11 channels

have shown that large fractions of the transmission time is spent on the low-rate (1 Mbps)

PLCP and MAC headers [49]. Only the payload is transmitted at the high rate (for example,

54Mbps). As a result, differences in payload size result in considerably smaller differences in

transmission times. As mentioned earlier, this approximation also has the effect of overcoming

the error caused by rate adaptation. However, this is just a loose approximation; for very
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accurate load estimates, we should fall back to the method described in section 4.2.2.2, and

explicitly consider rate adaptation. We intend further studying the effects of rate adaptation

in the future.

4.2.2.4 Comparison with Traditional Load Estimation Metrics

For simplicity, we use the optimization mentioned in section 4.2.2.3 for the load estimation.

Also assume that nmax is equal to 2100. For example, refer to network in Fig. 2.1. Stations

v1, w1, w2 and w3 want to receive a large (infinite) number of downlink frames, while the other

stations are inactive. In this case, v1 receives 2100 frames per second, while w1, w2 and w3

receive 700 frames each. Going by our definition of load, the load on access point A is 2, while

the load on access point B is 2.37. This reflects the fact that the amount of internal contention

at B is more than that of A. If we had defined load to be the number of stations in the BSS,

we would have incorrectly concluded that the load on A was higher.

For another example, consider the network in Fig. 2.2. Ignoring the direction of arrows in

the figure, we see that all stations are trying to receive a large (infinite) number of frames from

the wired network. Assuming nmax to be equal to 2100, we see that stations v1, v2, v3, v4, v5,

v6, and v7 receive 300 frames each, while station w1 receives 2100 frames. If we had defined

load to be the number of frames successfully handled by the access point per unit time, then

we would have incorrectly concluded that the load on both access points were equal, because

both handle a total of 2100 frames per second. However with our definition of load, we say

that the load on B is equal to 2, while the load on A is equal to 2.546, reflecting the fact that

the internal contention at A is higher.

Through these examples, we see that the load estimated by our protocol is proportional

to the number of stations which are actively receiving frames. The load is also proportional

to the bandwidth requirements of each of these stations. That is why our protocol generates

more meaningful and accurate downlink load estimates in the context of applications, such as

load balancing.
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Parameter Value Parameter Value

UDP Header 8 bytes MAC Header 36 bytes

IP Header 20 bytes Basic Rate 1 Mbps

PHY Header 24 bytes Data Rate 11 Mbps

CBR Payload 550 bytes Slot Time 20 µs

SIFS 10 µs ACK size 38 bytes

DIFS 50 µs EIFS 364 µs

Table 4.1 Simulation Parameters

4.3 Simulation Techniques and Results

As we did in chapter 3, we simulate an IEEE 802.11b network (basic rate 1Mbps, data

rate 11Mbps), operating in the infrastructure mode, using NS-2. However in this case, the

MAC layer is configured to operate with the RTS-CTS exchange turned off for every frame

transmission. This is because recent studies have shown that for high-rate channels, the RTS-

CTS exchange actually hurts network performance [49]. The simulation parameters are shown

in Table 4.1. As shown in Fig. 4.1, our simulation topology consists of one infrastructure

mode BSS (one access point A, along with fifty wireless stations v1 to v50). All the stations

are associated with A and have a transmit queue size of 50 frames. The access point A is

connected to a fixed station B via a high speed backbone ethernet. We set the bandwidth of

the ethernet to be very high and the delay very low, because we do not want the ethernet to be

the performance bottleneck. We are interested in studying only the MAC layer behavior of the

wireless network. Our primary goal is to observe the reported load of our protocol in response

to changing network usage. The traffic pattern, simulation parameters and load estimation

results for uplink and downlink traffic are discussed in section 4.3.1 and 4.3.2 respectively.

4.3.1 Uplink Traffic

4.3.1.1 Scenario 1

This is the scenario when the traffic in the network is constantly increasing. Each station

vi (1 ≤ i ≤ 49) has set up a UDP connection with the fixed station B, and transmits a one



39

 

67
898: 8;8<8=8>8? 8=@

Figure 4.1 Network Topology for All Simulations

way stream of Constant Bit Rate (CBR) frames to B. The payload in each frame is 550 bytes.

Including all headers (PHY, PLCP and MAC), the time taken to transmit one frame along

with the time taken to receive the corresponding acknowledgment frame is 926 µs. All stations

do not start their CBR flows at the same time; instead they start 5s apart. Station v1 starts

its flow at 10s, v2 starts at 15s, and so on until v49 starts at 250s. At 250s, the simulation

terminates.

As the number of active stations increases, the contention in the network increases, leading

to more collisions. Since we have defined load as the fraction of time wasted in collisions,

this implies that the load estimate also increases. Due to the BEB algorithm of the 802.11

DCF, we see that as the collisions increase, the CW sizes used also increases. The increased

CW sizes leads to lesser collisions taking place, which in turn leads to reduced collisions. In

this way, an equilibrium is reached, where the number of collisions taking place is stabilized.

This simulation is run for different values of frames per second (Fps), which is nothing but

the number of CBR frames that each station generates every second. The epoch size β is set

to 3s, and the graph obtained is shown in Fig. 4.2. From this graph, we observe that when

saturation occurs, the percentage of time wasted in collisions is around 25%. Therefore, we

can say that any load estimate of approximately 0.25 implies that the channel is saturated

because of excessively high contention. We also notice that when the stations transmit less

than 11FPS, saturation does not take place in our simulations, because the bandwidth demand

is less than what is available.

From Fig. 4.3, we examine the same scenario for the EIED variant. The behavior is



40

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50  100  150  200  250

Lo
ad

Time

21 Fps
19 Fps
17 Fps
15 Fps
13 Fps
11 Fps
9 Fps
7 Fps

Figure 4.2 Uplink Traffic - Scenario 1 - DCF. β=3s

very similar, with one important difference. As explained in section 1.2.1.1, the conservative

reduction of the CW size (as opposed to the one-shot reduction to CWmin upon a successful

transmission) leads to lesser collisions taking place. The decreased probability of collisions

leads to decreased load as shown in the graph, where the load saturates below 0.2, as opposed

to below 0.25 in the case of DCF.
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Next, we examine the effect of the epoch size β on the load estimate when the 802.11 DCF

is used. From Fig. 4.4, we observe that a small β value means that the load estimate responds

quicker to changes in the generated traffic. With larger β values, the load estimate is averaged

out over a longer period of time, and hence tends to respond slower. Consequently, small β

values lead to more jagged load graphs, while large β values yield smooth curves. From Fig.

4.5, we observe similar behavior with the EIED MAC variation, but the difference is that the

load estimates vary much less, with varying β. This is because the variations in collisions (and

hence load) in EIED are more gradual when compared to the DCF.
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Figure 4.4 Uplink Traffic - Scenario 1 - DCF. Effect of Varying β

4.3.1.2 Scenario 2

This is the scenario when the traffic in the network is highly fluctuating. Each station

vi (1 ≤ i ≤ 50) has set up a UDP connection with B, and transmits a one way stream of

CBR frames to B. As before, the payload in each frame is 550 bytes. Including all headers

(PHY, PLCP and MAC), the time taken to transmit one frame along with the time taken to

receive the corresponding acknowledgment frame is 926 µs. At time 5s, stations v1 to v5 start

transmitting, and they stop at time 10s. At 15s, stations v1 to v10 start transmitting, and they

stop at time 20s. At 25s, stations v1 to v15 start transmitting, and they stop at time 30s. This
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Figure 4.5 Uplink Traffic - Scenario 1 - EIED. Effect of Varying β

pattern goes on, until at 95s, stations v1 to v50 start transmitting, and they stop at time 100s.

The simulation terminates at 100s.

From Fig. 4.6, we observe the load for the 802.11 DCF MAC, and epoch size β equal to 3s.

When a group of stations start transmitting, the collisions (and hence, load) increases. When

the burst ends (stations stop transmitting), the collisions immediately end, but the load does

not immediately drop down to 0, because the load values are averaged out over the epoch. As

observed earlier, the load increases when the number of contending stations increases and is

proportional to the bandwidth requirements of the stations. From Fig. 4.7, we observe the

load for the EIED variant, for the same traffic pattern and epoch size of 3s. The behavior is

similar to that of the 802.11 DCF, except that the reported load is lower. As explained earlier,

this is due to the property of the EIED variant that reduces the probability of collisions taking

place, when compared to the 802.11 DCF.

From Fig. 4.8 and 4.9, we observe the effect of the epoch size β on the load estimate for the

802.11 DCF and the EIED variant respectively. As seen earlier, a small β value leads to the

load estimate responding to changes in the generated traffic quicker, while a large β value leads

to slower load response and a smoother load estimate. Therefore, depending on the semantic

of the application using the load estimate, an appropriate β value can be chosen.
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4.3.2 Downlink Traffic

This is the scenario when the downlink traffic in the network is constantly increasing. Each

station vi (1 ≤ i ≤ 50) is the sink of an individual UDP connection, with B as the source. B

transmits a one way stream of Constant Bit Rate (CBR) frames to each station vi over the

individual connections. The CBR flows are are started 5s apart. The flow to station v1 starts

at 10s, the flow to v2 starts at 15s, and so on until the flow to v50 starts at 255s. At 255s, the

simulation terminates.

Using the approximation mentioned in section 4.2.2.3, from Fig. 4.10, we observe how the

downlink load varies with time, for an epoch size β of 3s. This load value intuitively captures

the notion of the amount of internal contention taking place at the access point. As the

number of downlink flows increases, the internal contention increases, leading to an increase in

load. The load increases while the network is not saturated. Upon saturation, the load value

stabilizes, and does not significantly increase when the number of flows is further increased.

We also observe that the reported load is larger when the downlink bandwidth demand of the

individual stations is higher.

Next, we examine the effect of the epoch size β on the load estimate in Fig. 4.11. As

expected, small β values respond quicker to traffic variations, while large β values average out
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Figure 4.7 Uplink Traffic - Scenario 2 - EIED. β=3s

the load over the longer epoch; consequently, smaller β values detect saturation quicker.

Next, we consider the case when all stations in the network have an infinite number of

frames to receive from the access point. In this case, the network is always saturated, and the

load value depends on the number of stations that cause this saturation. If there are m stations

that are equally involved, then the saturated load is: (1 + 1

m
)m. Using this formula to obtain

Fig. 4.12, we plot the saturated load as a function of the number of stations. It is obvious

that any load value of greater than 2.0 indicates saturation. As explained in section 4.2.2.2,

the upper bound on load is equal to e (2.718), and is reached when the number of stations

tends to infinity. At first glance, it might seem strange that the reported load is almost equal,

whether the number of stations causing the saturation is 30 (load is 2.674) or 100 (load is

2.704). However, in the context of applications such as load balancing, this is inconsequential.

All we need to know is that a large number of stations are causing network saturation, and

load balancing should be done to relieve the overloaded access point.

4.4 Conclusion

In this chapter, we have addressed the problem of estimating the load on an access point, for

applications such as load balancing and association control. We split up load into uplink and
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Figure 4.8 Uplink Traffic - Scenario 2 - DCF. Effect of Varying β

downlink components, and measure them independently using different metrics. Our definition

of uplink load measures the amount of contention in the BSS, while our definition of downlink

load measures the amount of internal contention at the access point.

We have also argued why our load estimates are more meaningful than traditional load

estimates. Through simple numerical analysis and extensive simulations, we have shown how

our load estimates should be interpreted and what they tell us about the actual channel

conditions. We plan to extend our work by making it QoS aware - being able to estimate the

uplink and downlink load independently for each of the 4 priorities of data, as mentioned in

the IEEE 802.11e standard [47].
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CHAPTER 5. TESTBED IMPLEMENTATION

5.1 Introduction

The work presented in this chapter is outlined below: In section 5.2, we describe in detail

how we built our testbed. We describe its hardware, topology, software architecture, along with

explanations of every module that we implemented. In section 5.3, we demonstrate the efficacy

of our load estimation technique, using an association control algorithm that we implemented.

We also emphasize on a few interesting observations and insights gained, through the testbed.

5.2 System Design

In this section, we describe our testbed topology, and give a systems description of each

type of machine used. We also outline the different modules present in each of these types of

machines.

5.2.1 Topology and Configuration

There are three types of machines that we use for our experiments:

• Station (client) machines, that represent the end users of the wireless network

• Access Points

• Controller

As shown in figure 5.1, our testbed consists of 11 machines: 1 controller, 3 access points

and 7 clients. All machines are actually ordinary computers, with at least 1GHz of processing

power, 512MB of RAM and 20GB of hard drive space. All systems run the Fedora 7 distribution
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of Linux, with kernel 2.6.21 or higher. The entire testbed is located in 115/116 Atanasoff Hall,

Iowa State University.

 

ABBCDDEFGHI
J J J J J J J
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Figure 5.1 Topology of the Testbed

The access points and the controller are all connected to a high speed ethernet, that operates

at 100Mbps. The backbone ethernet uses a D-Link ethernet switch DES 1024D. The access

points and the controller are connected to the switch using Cat-5 straight cables. The controller

has only one network interface, which is the ethernet interface. It has a static Class-C IP

address, which is 192.168.1.12.

Each access point has two network interfaces: a wired 100Mbps ethernet interface, and a

wireless interface. The wireless interfaces we used in our testbed are Linksys WMP55AG PCI

wireless cards, which are capable of operating 802.11a/b/g. These cards use Atheros based

chipsets and are manufactured by Cisco. The maximum transmit power of these cards is -

19dBm. We used the Multi-mode Atheros Drivers for Wi-Fi (MadWifi) open source device

drivers to run the wireless interface.

We configured 3 machines to behave as access points as follows:

• For simplicity, assume that the wired interface is called eth0 and the wireless interface

is called ath0.
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• The DCHP client dhclient on the machine is killed, because we want static IP addresses

assigned.

• The interfaces eth0 and ath0 are brought down using ifconfig

• Using brctl (from the bridge-utils package of linux), create a bridge called br0.

• Using wlanconfig (present in MadWiFi), destroy the ath0 interface.

• Using wlanconfig, create the ath0 interface, in access point mode.

• Set the ESSID of ath0 to Testbed.

• Using brctl, add the interface eth0 to the bridge br0.

• Using brctl, add the interface ath0 to the bridge br0.

• Set the channel on ath0 using iwconfig.

• Bring the ethernet interface eth0 up using the command ifconfig eth0 0.0.0.0 up

• Bring the wireless interface ath0 up using the command ifconfig ath0 0.0.0.0 up

• Bring the bridge up, using ifconfig br0 192.168.1.x up. This is the IP address of

the access point. Note that the IP address isn’t assigned to any of its interfaces; instead,

the bridge assumes the IP address of the access point.

• Set the base data rate used by the access point using iwconfig, if needed.

• The access point 192.168.1.x is up and ready to use.

The seven clients have their wired interfaces turned off, and are not connected to the backbone

directly. Configuring a machine to behave as a client is considerably simpler:

• The DCHP client dhclient on the machine is killed, because we want static IP addresses

assigned.
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• The interfaces eth0 and ath0 are brought down using ifconfig.

• Using wlanconfig (present in MadWiFi), destroy the ath0 interface.

• Using wlanconfig, create the ath0 interface, in station mode.

• Set the ESSID of ath0 to Testbed.

• Bring the wireless interface up, using ifconfig ath0 192.168.1.y up. This is the IP

address of the station.

• The station is up and ready to use.

5.2.2 Software Modules

The block diagram of our system is shown in figure 5.2. We have built a module known

as Access Point Client that resides on each access point. Similarly, a module known as

Station Client resides on each station. The controller machine has many modules, each

with a well defined task.

The overview of our modules is as follows: The access point client periodically informs

the controller about which stations are associated with it, along with the bandwidth used by

each of these stations. The access point server module in the controller machine accepts

this information, and writes it into a SQL database. The station client periodically scans

all available channels, and makes a list of all access points that are currently in its radio range,

along with the respective signal qualities. This list is sent to the station server module in

the controller machine, which writes it into a database.

The association engine module in the controller machine looks at this information

present in the database, and makes a handoff decision if necessary. This information is com-

municated to the station, where it is received by the station client. The station client then

proceeds to handoff to a new access point, based on the instructions given by the association

engine.

Now, let us take a more detailed look at how each of these modules work:
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Figure 5.2 Modules of the Testbed System

5.2.2.1 Access Point Client

This module first makes list of stations that are associated with it. The wlanconfig ath0

list shell command produces a raw output dump, which needs to be parsed. This module

parses this output, and gets the list of associated stations stationMacList. We also need to

extract the utilized bandwidth by each of these associated stations.

The MadWifi driver has a tool known as athdebug, which can be used to get a dump of

all frames that are handled by the wireless interface. We have modified the MadWiFi source

code, to dump only the frame headers, as opposed to the entire frame. Among other fields,

the dump contains the source and destination address of every frame. This is done so as to
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reduce the size of the dump, and hence, the processing and parsing efficiency. The bandwidth

utilized by each associated station is extracted from this dump as follows:

• Clear all athdebug dumps.

• Start the athdebug dump, sleep for 3 seconds, and then stop the athdebug dump.

• For each associated station, parse the dump, to see how much bandwidth has been utilized

by that station during the sleep period of 3 seconds.

Additionally, the access point calculates its unified load, which is based on a modification

of the technique presented in section 4.2.2.2:

LoadUnified = 100 ×
∏

i∈Stations

(1 +
ni

nmax

)α (5.1)

Experimentally, we found that in our testbed settings, nmax is 750 frames. In our testbed,

all stations are capable of communicating at 54Mbps with all access points in their radio range.

However, if this condition were not to hold good in real-life, then nmax would be a function of

the data rates being used by the stations. We intend to conduct a deeper study of the effects

of rate adaptation in the future.

The equation found in section 4.2.2.2 is used only to calculate the downlink load. However,

we have experimentally found that there is a close correlation between the uplink and downlink

loads. This is because most higher layer protocols are two-way (like for example, TCP).

Therefore, an increase in the load in one direction automatically implies that the load in the

reverse direction is also increased. However, there is a subtle difference between the two: an

increase of downlink frames does not degrade throughput, whereas an increase in uplink frames

degrades throughput due to increased contention and collisions. As a result of this, in the

equation, we raise the product term by a factor of α, and we get a unified load estimate, which

approximates together the downlink and uplink loads. Experimentally (through association

control), we found that if we set α to 2, the unified load estimate efficiently captures both the

uplink and downlink loads together.
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The access point reports this unified load to the controller. As mentioned earlier, it also

reports to the controller, the list of associated stations, along with the bandwidth utilized by

each of them.

5.2.2.2 Access Point Server

This module resides in the controller machine. Previosuly, we have taken a look at the

duties of the access point client. Now, it is the duty of the access point server to

receive the information sent by the access point client, and to write it into the database.

The communication model between the access point client and access point server is

based on simple TCP sockets.

5.2.2.3 Station Client

This module resides on the client machines. Its duty is to report to the controller, the list

of all access points that are in its range, along with the respective signal qualities. It performs

its tasks as follows:

• The iwlist shell command is invoked, to scan all channels. This scanning process takes

about 1 second, and produces a dump of all access points that are in its radio range.

• This module parses this dump output, and removes information pertaining to all access

points that do not have their ESSID set to Testbed.

• This output is further parsed, to extract the access point MAC address and the received

signal quality from the access point.

• This information is passed on to the station server, which resides in the controller

machine.

5.2.2.4 Station Server

Much like the access point server that receives data from the access point client, this

module waits for the station clients to report their scanning data to it. Once this data is
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received, it is inserted into the database. The communication between the station client

and station server is also based on simple TCP sockets.

5.2.2.5 Database

The database used is MySQL 5.0.45, that is available for free on Linux. We use libmysql

to interface our C programs with the MySQL database. In our implementation, we use just

two tables:

• AP-LOAD: This table is populated by the access point server module. Its schema

and sample contents are shown in figure 5.3.

– AP MAC: The MAC address of the access point.

– STA MAC: The MAC address of a station that is associated with the access point

AP MAC. Note that AP MAC together with STA MAC form the primary key of this table.

– STA LOAD: The number of frames that the access point AP MAC handles for station

STA MAC in this aggregation epoch.

– NORM LOAD: This value is the normalized (unified) load for access point AP MAC,

calculated by equation 5.1.

• STATION: This table is populated by the station server module. Its schema and

sample contents are shown in figure 5.4.

– STA MAC: The MAC address of a station in the network.

– IP ADDRESS: It is the IP address of the station, whose MAC address is STA MAC.

– AP MAC: The MAC address of an access point that is in the radio range of the

station, whose MAC address is STA MAC. Note that STA MAC together with AP MAC

form the primary key of this table.

– QUALITY: It is the signal quality with which the station (with MAC address STA MAC)

receives beacon frames from the access point, whose MAC address is AP MAC.
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+-----------+----------+------+-----+---------+-------+ 
| Field     | Type     | Null | Key | Default | Extra | 
+-----------+----------+------+-----+---------+-------+ 
| AP_MAC    | char(18) | YES  |     | NULL    |       |  
| STA_MAC   | char(18) | YES  |     | NULL    |       |  
| STA_LOAD  | int(11)  | YES  |     | NULL    |       |  
| NORM_LOAD | int(11)  | YES  |     | NULL    |       |  
+-----------+----------+------+-----+---------+-------+ 

 
 

+-------------------+-------------------+----------+-----------+ 
| AP_MAC            | STA_MAC           | STA_LOAD | NORM_LOAD | 
+-------------------+-------------------+----------+-----------+ 
| 00:11:50:55:54:C0 | 00:11:50:55:4C:88 |        0 |       100 |  
| 00:11:50:55:54:C0 | 00:11:50:55:4B:4E |        0 |       100 |  
| 00:11:50:55:54:C0 | 00:11:50:55:4F:6C |        0 |       100 |  
| 00:11:50:55:54:C0 | 00:11:50:55:54:7F |        0 |       100 |  
| 00:11:50:55:54:C0 | 00:11:50:55:51:29 |        0 |       100 |  
| 00:11:50:55:4F:7C | 00:11:50:55:5D:49 |        0 |       100 |  
| 00:11:50:55:23:E5 | 00:11:50:55:51:B0 |        0 |       100 |  
+-------------------+-------------------+----------+-----------+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Table AP-LOAD

5.2.2.6 Association Engine

The association engine is at the heart of our testbed. Its duty is to manage the station-AP

associations, with the goal of maximizing network throughput. Note that this module takes its

inputs from the database. The steps taken by (algorithm used by) this engine are enumerated

below:

1. Find an overloaded access point A, using table AP-LOAD. If none exists, terminate.

2. For this access point A, use table AP-LOAD to find a station S that is utilizing between

5% and 50% of its total throughput. If none exists, terminate.

3. Using tables STATION and AP-LOAD, find a non-overloaded access point B, such that S is

in the range of B, and the signal quality between them is good. If such an access point

B cannot be found, terminate.

4. Send a command to the station S, telling it to reassociate from access point A to access

point B.
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+------------+-------------+------+-----+---------+-------+ 
| Field      | Type        | Null | Key | Default | Extra | 
+------------+-------------+------+-----+---------+-------+ 
| STA_MAC    | char(18)    | YES  |     | NULL    |       |  
| IP_ADDRESS | varchar(16) | YES  |     | NULL    |       |  
| AP_MAC     | char(18)    | YES  |     | NULL    |       |  
| QUALITY    | int(11)     | YES  |     | NULL    |       |  
+------------+-------------+------+-----+---------+-------+ 

 
 

+-------------------+-------------+-------------------+---------+ 
| STA_MAC           | IP_ADDRESS  | AP_MAC            | QUALITY | 
+-------------------+-------------+-------------------+---------+ 
| 00:11:50:55:4F:6C | 192.168.1.2 | 00:11:50:55:23:E5 |      38 |  
| 00:11:50:55:4F:6C | 192.168.1.2 | 00:11:50:55:54:C0 |      38 |  
| 00:11:50:55:4F:6C | 192.168.1.2 | 00:11:50:55:4F:7C |      68 |  
| 00:11:50:55:51:29 | 192.168.1.3 | 00:11:50:55:4F:7C |      69 |  
| 00:11:50:55:51:29 | 192.168.1.3 | 00:11:50:55:23:E5 |      44 |  
| 00:11:50:55:51:29 | 192.168.1.3 | 00:11:50:55:54:C0 |      43 |  
| 00:11:50:55:5D:49 | 192.168.1.4 | 00:11:50:55:23:E5 |      44 |  
| 00:11:50:55:5D:49 | 192.168.1.4 | 00:11:50:55:4F:7C |      56 |  
| 00:11:50:55:5D:49 | 192.168.1.4 | 00:11:50:55:54:C0 |      45 |  
| 00:11:50:55:4B:4E | 192.168.1.5 | 00:11:50:55:23:E5 |      43 |  
| 00:11:50:55:4B:4E | 192.168.1.5 | 00:11:50:55:54:C0 |      42 |  
| 00:11:50:55:4B:4E | 192.168.1.5 | 00:11:50:55:4F:7C |      47 |  
| 00:11:50:55:51:B0 | 192.168.1.6 | 00:11:50:55:4F:7C |      37 |  
| 00:11:50:55:51:B0 | 192.168.1.6 | 00:11:50:55:23:E5 |      42 |  
| 00:11:50:55:51:B0 | 192.168.1.6 | 00:11:50:55:54:C0 |      36 |  
| 00:11:50:55:54:7F | 192.168.1.7 | 00:11:50:55:54:C0 |      50 |  
| 00:11:50:55:54:7F | 192.168.1.7 | 00:11:50:55:4F:7C |      51 |  
| 00:11:50:55:54:7F | 192.168.1.7 | 00:11:50:55:23:E5 |      67 |  
| 00:11:50:55:4C:88 | 192.168.1.8 | 00:11:50:55:54:C0 |      45 |  
| 00:11:50:55:4C:88 | 192.168.1.8 | 00:11:50:55:4F:7C |      44 |  
| 00:11:50:55:4C:88 | 192.168.1.8 | 00:11:50:55:23:E5 |      62 |  
+-------------------+-------------+-------------------+---------+ 

Figure 5.4 Table STATION

5. Terminate. Note that in every run of this algorithm, at most one reassociation is forced.

This algorithm is invoked repeatedly, typically with a 15 second wait period, in order for

the network to re-attain steady state.

5.2.2.7 Traffic Workload Engine

This module is used to control the traffic in the testbed. The user (person who is running

experiments on the testbed) can determine before hand, the traffic patterns for each client

machine in the testbed. This pattern is entered by him/her into a traffic descriptor file. An

example of a traffic pattern is given below:

• At time 0s, let stations 192.168.1.2 and 192.168.1.3 start FTP downloads from the file
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server. Note that in our implementation, the file server is located on the same machine

as the controller.

• At time 30s, let stations 192.168.1.4 and 192.168.1.5 start FTP downloads from the file

server.

• At time 300s, kill all the FTP flows present in the testbed.

The traffic workload engine parses this descriptor file, and starts / kills flows accord-

ingly. This way, we can run experiments in a controlled manner, such that we can study the

performance of the testbed and association control algorithm.

5.2.2.8 Main Controller

This module is used to synchronize all the other modules in the controller machine. For

example, it invokes the association engine once every x seconds, where x is an adjustable

parameter. It also invokes the traffic start / stop engine during the start / stop of an experi-

mental run.

5.3 Results

In this section, we make three main observations, which are explained in the next few

subsections.

5.3.1 Association Engine Performance

In order to observe the performance of our association control algorithm, we start traffic

workloads, and observe how the total throughput varies as the reassociations are forced off.

Initially, all 7 stations are associated with the same access point. At time 0s, all 7 stations

start downloading a very large file from the file server. In our implementation, the file server

is located on the controller machine itself. The stations are configured not to handoff to other

access points, unless explicitly instructed to do so by the controller.
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The main controller module of the controller periodically invokes the association engine.

We have configured this action to be triggered once every 30s. Recall that in every invocation of

the association engine, at most one reassociation can be forced. This behavior is not required;

However in order to study the performance implication of a single handoff, we have configured

the system to behave in such a manner.

The throughput results are shown in figure 5.5. In this figure, the X axis is time, and the

Y axis is the total number of frames transmitted to the stations by all access points in the

previous 30 seconds. We notice that when a reassociation is triggered, there is usually a change

in the total throughput. Clearly, we see that a single reassociation can significantly change the

total throughput in the network. We ran this experiment 5 times, and the results are plotted.

In order to demonstrate the performance of our association engine, we ran the experiment

once, with the engine turned off. The throughput obtained is also shown in the graph. Clearly,

we see that the association engine helps in increasing the overall throughput and network uti-

lization. We did observe however, that sometimes the association engine can make suboptimal

decisions. We believe this is due to the fact that we have not chosen α carefully enough (see

section 5.2.2.1). In the future, we intend running experiments to find out what value of α is

optimal. However, for a large majority of cases, we found that setting α to 2 works well.

Our association control algorithm does not explicitly control fairness. The algorithm we use

is rather simplistic: find an active station that is associated with an overloaded access point, and

bump it off to a non-overloaded access point in its range. Although we do not currently know

whether this algorithm is fair, we intuitively say that by balancing the contention across access

points, we provide better access opportunities. We do not know if our forced reassociations

lead to balanced or skewed per-station throughput, although this is one of the several aspects

we intend to study further in the future. If we find that stations get unfair fractions of

the available bandwidth, then we will need to fundamentally redesign our association control

algorithm, to make smarter decisions. At the same time we note however, that MaxMin fairness

isn’t probably the ideal metric to judge fairness, as it potentially can conflict with the goal of

maximizing the network utilization and throughput [50].
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Figure 5.5 Performance of the Association Engine

5.3.2 Observing the Effect of Collisions

In order to understand the performance implications of high uplink contention, we ran the

following experiment. We associated all 7 stations with the same access point. Next, we began

uploading a very large file from each of the 7 stations, to the file server located on the controller

machine. As we have done before, the stations are configured not to handoff, unless explicitly

instructed to do so by the controller. In this experiment, we turned off the association engine.

We observed that the total throughput saturates very quickly, and then remains more or less

constant. These results are shown in figure 5.6.

We repeated the experiment three times, with 5, 3 and 1 station respectively. We found

that as the number of stations contending in the uplink channel is lowered, then the overall

throughput achievable is significantly higher. With only one station, the throughput reaches

close to the theoretically observed maximum throughput.

We repeated this experiment, but with downlink traffic instead of uplink traffic. We ran

the experiment 4 times, with 7, 5, 3 and 1 station respectively. As we mentioned before, since
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Figure 5.6 Uplink Saturation Throughput

protocols such as TCP and FTP involve end-to-end handshaking, an increase in downlink

load is typically followed by an increase in uplink load as well. However, the differences in

throughput was not as significant as observed in the case of uplink traffic. This behavior is

expected, because in this case, the amount of uplink traffic is not as significant when compared

to the case where the stations upload files to the file server.

From figure 5.6, it becomes very obvious that defining load as the number of frames handled

per unit time is not a good metric. By extension of a similar argument, even busy-time based

estimates of load are not accurate. In fact, they are counter intuitive, and may degrade network

performance, when applied to association control.

Based on our definition of load, we observed that when there were multiple actively con-

tending stations, the load was significantly higher than the case where just one station was

blasting away without any contention. This validates our claim that our definition of load is

meaningful, in such contexts.
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5.3.3 Unfairness in Channel Access Opportunities

It is interesting to note that although the 802.11 MAC is theoritically fair, in practice some

stations seem to get preferential treatment over other stations. To illustrate this, we ran the

following experiment: we associated all seven stations to the same access point; as before,

stations do not initiate any handoffs on their own accord. Each station begins to download a

large file from the file server using FTP over TCP.

At this point, we note that the only bottleneck in the network is the access point to client

channel. The wired back bone operates at nearly twice the data rate, when compared to the

wireless side. Moreover, the protocol overheads of 802.3 ethernet are smaller, when compared

to the 802.11 MAC.
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Figure 5.7 Throughput Distribution among the Stations

We run this experiment, while keeping a tab on the number of frames each of the seven

stations has received. At the end of 150 seconds, we terminate the traffic flows, and observe

the results. As shown in figure 5.7, some stations receive a significantly higher share of the

throughput, when compared to other stations. The possible causes for this behavior are:
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• Since these radios are inexpensive, their timers and clocks may have a certain skew. This

leads to some stations perpetually having an advantage over others.

• Although these 7 stations were placed in different physical locations in the laboratory,

they all were able to communicate with the access point at the full data rate. This means

that the throughput difference cannot be attributed to near-far effects. One explanation

is that due to multipath propagation, different stations perceive the channel quality

differenly.

• Although the interaction of TCP with the MAC layer could potentially cause this be-

havior, our experiments are inconclusive in this regard. We intend to study such cross

layer interactions in the future.

We have observed that different stations get different throughputs from the access point

over a large time scale. This effect is more pronounced over shorter time scales. We repeated

the same experiment; however, we observed the bandwidth distribution among the nodes over

a 3 second aggregation interval, as opposed to a 150 second aggregation interval. A few of

these distributions observed over different 3-second aggregation periods in a 150 second run

are shown in fig 5.8 and 5.9.

Sta 1 Sta 2

Sta 3 Sta 4

Sta 5 Sta 6

Sta 7

Figure 5.8 Throughput Distribution between 87s and 90s
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Sta 1 Sta 2

Sta 3 Sta 4

Sta 5 Sta 6

Sta 7

Figure 5.9 Throughput Distribution between 114s and 117s

5.4 Conclusion

Through this testbed, we have validated our load estimation schemes, and have demon-

strated its performance using association control as a target application. In the future, we

plan to design load estimation with adaptive α (explained in section 5.2.2.1). We also plan to

extend our network management plane to include channel selection and power control as well.

Based on our experience, we realised that building a real system that works is indeed very

challenging. We faced many issues during the process, primarily due to buggy software on

the MadWiFi device drivers. The challenges and subtleties involved in building this system,

trouble-shooting and designing practical solutions to problems faced cannot be emphasized

enough.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We know that careful management of resources can significantly improve the overall per-

formance of the network. Many of these management techniques (such as association control,

channel selection and power control) need to be carefully used in order to be effective.

We have also seen how and why the efficacy of these functions relies on a meaningful

load estimate. This is the motivation behind our work: to design metrics and techniques for

meaningful load estimation, in the context of network management functions.

Our initial work was on load estimation that required changes on the client code. We

extended this work, and designed a set of techniques to non-intrusively estimate the uplink

and downlink load on each access point.

In the future, we will see proliferation of many real-time applications being used over

wireless channels. An obvious extension to our work on load estimation is to estimate the load

for each of the traffic priorities independently, such that even smarter network management

decisions can be made.

Through testbed experiments, we have validated our load estimation techniques, by using

association control as the target application. We have also shown how our association control

algorithm performs well by significantly increasing the overall throughput. For our testbed,

we have modified the client unaware downlink load estimate technique, to generate a unified

load estimate that captures an intuitive notion of the amount of contention in the network.

We have realised that no amount of simulation or analysis can capture the behavior of

an actual network when in deployment. Through our experiments, we have seen that many

assumptions we commonly make do not hold in real life.

These advantages of a testbed have motivated us to extend our work on network manage-
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ment, by implementing channel selection and power control on the management plane.

We believe that there is enormous scope for more research in this field, as there are many

problems that are unsolved. This field is indeed very exciting, as the potential applications of

wireless technologies are innumerable.
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