
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

A software system for causal reasoning in causal
Bayesian networks
Lexin Liu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Liu, Lexin, "A software system for causal reasoning in causal Bayesian networks" (2008). Retrospective Theses and Dissertations. 15435.
https://lib.dr.iastate.edu/rtd/15435

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15435?utm_source=lib.dr.iastate.edu%2Frtd%2F15435&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A software system for causal reasoning in causal Bayesian networks

by

Lexin Liu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Jin Tian, Major Professor
Doug Jacobson
Shashi Gadia

Iowa State University

Ames, Iowa

2008

Copyright © Lexin Liu, 2008. All rights reserved.

1454603

1454603
 2008

 ii

TABLE OF CONTENTS

LIST OF FIGURES iv

LIST OF TABLES v

ABSTRACT vi

CHAPTER 1. INTRODUCTION 1
1.1 Bayesian Network [BN] 2
1.2 Causal Bayesian Networks 6

CHAPTER 2. DEFINITIONS 10
2.1 Introduction 10
2.2 Definitions 12

CHAPTER 3. ALGORITHMS 15
3.1 Identification of Causal-Effect in Causal BNs 15
3.2 Identifying Conditional Causal-Effect 19
3.3 Identifying Constraints Implied by Causal Models 23

CHAPTER 4. SOFTWARE DEVELOPMENT AND IMPLEMENTATION 26
4.1 Requirement 26

4.1.1 Functional Requirements 26
4.1.2 Non-functional Requirements 27

4.2 Design 28
4.2.1 System Model 28
4.2.2 Design Considerations 30

4.3 Implementation 31
4.3.1 Developing Environment 31
4.3.2 Data Transfer 32
4.3.3 Data Structure 34
4.3.4 Creating Executable Jar File 38

CHAPTER 5. SOFTWARE TESTING AND RESULT 39
5.1 Test Cases for Identifying causal effects Pt(s) 39
5.2 Test Cases for Identifying conditional causal effects Pt(s|c) 44
5.3 Test Cases for Identifying function constraints 45

CHAPTER 6. CONCLUSION AND FUTURE WORK 48
6.1 Conclusion 48
6.2 Future Work 49

APPEDIX A. LEMMAS 50

APPEDIX B. APPLICATION CODE EXAMPLES 52

ACKNOWLEDGEMENTS 67

 iii

REFERENCE 68

 iv

LIST OF FIGURES

Figure 1. A Bayesian network over four variables and its conditional probability table 4

Figure 2. Intervention example graph 7

Figure 3. Algorithm Computing Pt(S) 16

Figure 4. Algorithm Computing Q[S] 17

Figure 5. Algorithm Identify(C, T, Q) 18

Figure 6. An algorithm for identifying conditional causal effects, Pt(s|c) 22

Figure 7. Identifying non-independence constraints 23

Figure 8. The system architecture of the software system 28

Figure 9. A causal Baysian Network graph created by the software 33

Figure 10. XML Data File for Figure 2 (XMLBIF 0.3 format) 33

Figure 11. The process for call function algorithms 37

Figure 12. Causal Graph for test case 1 40

Figure 13. Our software system output for test case 1 40

Figure 14. Causal Graph for test case 2 41

Figure 15. Our software system output for test case 2 42

Figure 16. Causal Graph for test case 3 43

Figure 17. Our software system output for test case 3 43

Figure 18. Causal Graph for test case 4 44

Figure 19. Our software system output for test case 4 45

Figure 20. Causal Graph for test case 5 47

Figure 21. Our software system output for test case 5 47

 v

LIST OF TABLES

Table 1. Function Description of components 29

 vi

ABSTRACT

Knowing the cause and effect is important to researchers who are interested in

modeling the effects of actions, and Artificial Intelligence researchers are among them. One

commonly used method for modeling cause and effect is graphical model. Bayesian Network

is a probabilistic graphical model for representing and reasoning uncertain knowledge. It has

been used as a fundamental tool and is becoming a more and more important area for

research and application in the AI field. A common graphical causal model used by many

researchers in AI field is a directed acyclic graph (DAG) with causal interpretation known as

the causal Bayesian network (BN). Causal reasoning and causal understanding are the causal

interpretation part of a causal Bayesian Network. They enable people to find meaningful

order in events that might otherwise appear random and chaotic. Further more, they can even

help people to plan and predict the future. In this thesis, we develop a software system, which

is a set of tools to solve causal reasoning problems, such as to identify unconditional causal

effects, to identify conditional causal effects and to find constraints in a causal Bayesian

Networks with hidden variables. The features of the software system are presented in detail

and the applications of the software system are discussed.

1

CHAPTER 1. INTRODUCTION

In order to model the effects of actions, it is crucial for the researchers knowing the

cause and effect. One famous example would be the relationship of smoking and lung cancer.

The observation of a statistical correlation between smoking and lung cancer alone can not

lead to the conclusion that the cessation of smoking will change one’s chances of getting

lung cancer. However, if smoking is a cause for lung cancer, then the conclusion of one’s

choice to continue or quit smoking will affect one’s chances of getting lung cancer is valid

[1].

Researchers in Artificial Intelligence (AI) field, among others, are interested in

identifying causal effect relationships in order to modeling the effects of actions. Graphical

model is great for modeling cause and effect because it is intuitionistic and easy to be

understood. It is not a surprise that causal reasoning with graphical models has been a hot

topic in the artificial intelligence community in recent years [1]. Bayesian network (BN) has

been used as a fundamental tool for the representation and manipulation of beliefs. It is a

probabilistic graphical model for representing and reasoning uncertain knowledge and is

becoming a more and more important area for research and application in the AI field [2, 3].

Causal Bayesian network, a directed acyclic graph (DAG) with causal interpretation, is a

common graphical causal model used by many researchers in AI field [4].

The purpose of this thesis is to develop a software system, which is a set of tools to

create and manipulate causal Bayesian networks. In the mean time, the software system can

identify causal effects from non-experimental data in a causal Bayesian network and it can

also find independence and non-independence constraints from a causal Bayesian network.

2

1.1 Bayesian Network [BN]

In nineteen eighties, there was resurgence and new acceptance of the probability and

decision theory in AI community after Peter Cheeseman’s (1985) work “In Defense of

Probability” and Judea Pearl’s (1988) “Probabilistic Reasoning in Intelligent System” [5, 6].

A new approach, the Bayesian network formalism, was invented to allow not only efficient

representation of uncertain knowledge but also rigorous reasoning with them. The new

approach now dominates AI research area on uncertain reasoning and expert systems because

it largely overcomes many problems of the systems of the 1960s and 1970s [7].

Bayesian networks (also called belief networks sometimes) are powerful tools for

modeling causes and effects in a wide variety of domains. By using a graphical model, a

Bayesian network is to represent relationships among variables of interests. Briefly, Bayesian

network is a model that can be used to model anything, such as the weather, a disease and so

on. It is very effective for modeling vague, incomplete and uncertain situations [8, 9].

Graphically, Bayesian networks are models in which each variable is represented by a

node, and causal relationships are denoted by an arrow, which is called an edge. The

direction of the arrow indicates the direction of causality. The intuitive meaning of an edge

drawn from node X to node Y is that node X has a direct influence on node Y. When two

nodes are joined by an edge, the causal node is called the parent of the other node. Figure 1 is

a sample of Bayesian network. In Figure 1, Cloudy is a parent of Rain, and Rain is the child

of Cloudy. Child nodes are conditionally dependent upon their parent nodes. Next, Bayesian

network graphic model is explained via the sample in Figure 1 [10].

Variables in this Bayesian network could be whether the sprinkler is on, Cloudy, Rain

or whether grass is wet. Each node has different states or a set of probable values. For

3

example, the weather could be cloudy or sunny, Sprinkler could be on or off, the weather

could be raining or not, and grass could be wet or dry. There is some causality in the network:

If the weather is rainy, it will make the grass wet directly. However, the grass could also be

wet even in sunny weather by a homeowner turning on the sprinkler.

Not only Bayesian network is a model to represent the possible states of a given

domain, but also contains probabilistic relationships among some of the states of the domain.

In a Bayesian network, the state of some nodes may affect probabilities of other nodes. The

effect is dependent on the causal relationships among the nodes. Similarly, the chance that a

node is in one state is dependent on the state of another node according to prior information

about the relationships among nodes. In order to describe the probability of every node in the

Bayesian network, a conditional probability table (CPT) is used. A set of CPT Θ are showed

in Figure 1. For every variable X in the graph G, assume Y is X’s parents, we need to provide

the probability of x given y, Pr(x|y), for each value x of X and each instantiation y of parents

Y. We give the CPT of Pr(a), Pr(b|a), Pr(c|a) and Pr(d|bc) in the Figure 1 [11].

4

Figure 1. A Bayesian network over four variables and its conditional probability table

The following is a definition of Bayesian network.

Definition (Bayesian network): A Bayesian network for variables X is then a pair

(G, Θ), where,

• G is a directed acyclic graph over variables X;

• Θ is a set of conditional probability tables, one table ΘX|Y for each variable X and its

parents Y. the number assigned by CPT ΘX|Y to the conditional probability Pr(x|y) is

denoted by θx|u . It is required that | 1x yx
θ =∑ for every parent instantiation y.

5

The full specifications for Baysian network is as follows [7, 12]:

1. The random variables, either discrete or continuous, correspond to the nodes of

the network.

2. There are a set of directed links or arrows between the nodes of the network. If

there is an arrow from node A to node B, A is said to be a patent of B, and B is a

child of A.

3. The conditional probability distribution of each node Xi is represented as

P(Xi|Parents(Xi)). It quantifies the effect of the parents on the node.

4. The local probability distribution of node Xi is unconditional if it has no parents.

Otherwise, it is conditional [12].

5. A node is defined as an evidence node if value of the node is observed [12].

6. The graph has no directed cycles (and hence is a directed acyclic graph, or DAG).

7. The joint distribution of the node values can be written as the product of the local

distributions of each node and its parents [7].

1
1

(,...,) (| ())
n

n i i
i

P X X P X parents X
=

=∏

Bayesian network also encodes independencies between variables. The graphical

property of d-separation can determine conditional independence. If two sets of nodes X and

Y are d-separated in the graph by a third set Z, then the corresponding variable sets X and Y

are independent given the variables in Z. The definition of d-separation is given.

6

Definition (d-separation): Let X, Y and Z be disjoint sets of nodes in a DAG G. We

will say that X and Y are d-separation by Z, if and only if every path between a node in X

and a node in Y is blocked by Z.

The idea of blocking a path by Z is important to understand the definition of d-

separation, where a path is blocked by Z if at least one value on the path is closed given Z.

One way to understand the notion of blocking better is to use a model of pipe (the path) and

valve (each variable). A valve on the pipe can be either open or close depending on some

conditions. The path is unblocked only when all valves are open and is blocked when one or

more valves are closed. Only one closed valve is needed to block the whole path. Once the

conditions to close a valve are given, blocking of a path is determined.

1.2 Causal Bayesian Networks

A Bayesian network uses directed acyclic graph (DAG) to represent relationships of

variables. In a DAG, each node represents a variable and each arc represents probabilistic

influence. We can gather information about probabilities of events and changes of

probabilities with subsequent observations from a joint distribution. However, a probabilistic

system can not predict what will happen if there are environmental changes or external

interventions, because such predictions can not be obtained from probabilistic information

alone, no matter how specific the information is. Predictions are from the causal

understanding of the underlying processes. Because a Bayesian network is a carrier of the

conditional independencies of a set of variables, it does not necessarily represent causal

connections among variables. But the related causal Bayesian network (or causal network for

short) can be used to model causal relations closely [12]. A causal Bayesian network is a

7

Bayesian network in which the arrow between a parent node and a child node represents a

direct causal influence relative to other nodes in the network [13]. In a causal model, once we

know the identity of the mechanism altered by an intervention and the nature of the alteration,

the overall effect of an intervention can be predicted by modifying the corresponding factors

and using the modified product to compute a new probability function [14].

The following is an intervention example:

To represent the action “turning the sprinkler On”. We delete the link X1→X2 from

Figure 1 and assign X2 the value “On”.

 Figure 2. Intervention example graph.

Now, the joint distribution of the node values can be written as the following product:

2 1, 3 4 1 3 1 4 3 2(,) () (|) (| ,)X OnP x x x P x P x x P x x x On= = =

8

The deletion of the factor P(x2|x1) represents that whatever relationship existed

between Cloudy and Sprinklers prior to the action, that relationship is no longer in effect

after the action was performed. Once we physically turn the sprinkler on and keep it on, a

new mechanism determines the state of the sprinkler. We should note that the action do(X2 =

On) and the observation X2 = On are different. According to the definition of atomic

intervention: do(X2 = On) means to fix Variable X2 to be On.

Definition (Atomic intervention do (T = t)): fixing a set T of variables to some

constants T = t.

We can use the causal Markov assumption to connect causation with probability

distributions. In the causal Markov assumption, the probability distribution P generated by a

causal diagram G satisfies the causal Markov condition: each variable Vi is independent on

all its non-descendants, given its patents Pai in G

1(,...,) (|)n i i
i

P x x P x pa=∏

We can say that G and P are compatible or P is Markov relative to G, if above factorization is

true for a probability distribution function P in a DAG G [15, 16].

From the description above, a definition of Causal Bayesian Network is given.

Definition (Causal Bayesian Networks): let P(x) be a probability distribution on a

set X of variables, and let Py(x) denote the distribution resulting from the intervention do(Y =

y) that sets a subset Y of variables to constants y. Denote P* as the set of all interventional

distributions Py(x), Y ⊆X, including P(x), which represents no intervention (i.e., Y = Φ). A

DAG G is said to be a causal Bayesian network compatible with P* if and only if the

following three conditions hold for every Py ∈ P*:

9

i) Py(x) is Markov relative to G (() (|)x x i ii
P v P v pa=∏);

ii) Py(xi) = 1 for all Xi ∈Y whenever xi is consistent with Y = y;

iii) Py(xi| pai) = P(xi| pai) for all Xi ∉Y whenever pai is consistent with Y = y.

In this thesis, we focus on introducing some algorithms of causal reasoning in Causal

Bayesian Networks and our software system. In the next chapter, we present the definitions

and notations and lemmas used to support identify algorithms in this thesis. In chapter 3,

three systematic procedures (identify causal effect of T on S, conditional causal effects of T

on S conditioned on another set C and finding functional constraints) , which are

implemented in our software system, are introduced. In chapter 4, we present development

and implementation of our software system. In chapter 5, we present testing analysis and

result of our software system.

10

CHAPTER 2. DEFINITIONS

In this thesis, upper letters, such as V, are used for variable sets; lower letters, such as

v, are used for the instances of variable set V; upper letters, like X, Y and Vi,, are used for

single variable; x, y and vi can be presented as their value. In this chapter, definitions used in

this thesis are interpreted.

2.1 Introduction

One of the most common causal models for encoding distributional and causal

relationships is causal Bayesian Network (also known as Markovian model). A Markovian

model consists of a directed acyclic graph (DAG) G over a set N = {N1, …, Nn} of variables

and a set of directed edges. It is called a causal graph. Such a graph model consists two parts

of interpretation: probabilistic and causal interpretation. Markovian model is also called

causal Bayesian network, because a Bayesian network is just a Markovian model that holds

the probabilistic interpretation [17].

There are four elements in a Markovian model:

, , , (| ())V U i iM V U G P v pa V∪=< >

Where V is a set of observed variables; U is a set of unobserved variables; G is a DAG graph,

which includes variables V∪ U = N; P is the conditional probability of variable V given its

parents P.

The probabilistic interpretation says that each variable is independent of all its non-

descendants given its direct parents in the graph. Based on the probabilistic interpretation, the

11

joint probability function P(v) = P (v1, …, vn) can be factorized as product in equation (1)

[18]:

() (| ())
i

i i
V V

P v P v pa V
∈

=∏ (1)

The causal interpretation says that the directed edges in G represent causal influences

between the corresponding variables. This assumption enables us to predict the intervention

effects. Interventions are specific modifications of some factors in the above equation (1).

For example, fixing a set T ⊆ V of variables to some constants T = t, denoted by do(T = t) or

do(t), is the simplest kind of intervention. The post-intervention distribution yielded by the

intervention is equation (2):

 \
(| ())

()
0

i
i iV V T

t

P v pa V v consistent with t
P v

v inconsistent with t
∈

⎧⎪= ⎨
⎪⎩

∏ (2)

Where \iV V T∈ means i iV V and V T∈ ∉ .

If let T be a set of treatment variables and Y is V\T, we can calculate the probability

Pt(y) from equation (2). The quantity is called the causal effect of T on Y. If all the variables

V were observed, all causal effects in a given causal graph G would be computable.

V and U represent the sets of observed and unobserved variables in graph G

respectively. The observed probability distribution P(v) is given in equation (3):

() (| ()) (| ())
i j

i i j j
U V V V U

P v P v pa V P v pa V
∈ ∈

=∑∏ ∏ (3)

The post-intervention distribution Pt(v) is a mixture of truncated product given in

equation (4):.

12

\
(| ()) (| ())

()
0

i j
i i j jU V V T V U

t

P v pa V P v pa V v consistent with t
P v

v inconsistent with t
∈ ∈

⎧ ×⎪= ⎨
⎪⎩

∑ ∏ ∏
 (4)

If we only want to know the post-intervention distribution for an observed variable

subset S ⊂ V, Pt(S) is given by equation (5):

(\)\ \
(| ()) (| ())

()
0

l i j
i i j jV V S T U V V T V U

t

P v pa V P v pa V v consistent with t
P s

v inconsistent with t
∈ ∈ ∈

⎧ ×⎪=⎨
⎪⎩

∑ ∑ ∏ ∏
 (5)

We define Q[S] as a causal effect of a set of observed variables T on a set of observed

variables S, here T is V\S and V is all of observed variables in causal graph G [19]. In other

words, the quantity Q[S] denotes the post-intervention distribution of S under an intervention

of all other variables.

\

() { | } { | ()}

[] () ()

(|) (|)
i i

i i

V S t

i v i u
u S i V S i U U S

Q S P S P S

P v pa P u pa
∈ ∈

= =

=∑ ∏ ∏ (6)

Q[S] is a function of S, the observed parents of S, and the observed parents of U(S).

U(S) is a set of hidden variables that are ancestors of S in graph S UG ∪ [17, 19].

2.2 Definitions

In this section, we will introduce some definitions that are important in this thesis.

Definition 1 (Causal –Effect Identifiability ()tP s)

The causal effect of a set of variables T on a disjoint set of variables S is said to be

identifiable from a graph G if all the quantities ()tP s can be computed uniquely from any

positive probability of the observed variables-- that is, if 1 2() ()M M
t tP s P s= for every pair of

models M1 and M2 with 1 2() () 0M M
t tP v P v= > and G (M1) = G (M2) = G [17].

13

Definition 2 (Conditional Causal –Effect Identifiability (|)tP s c)

The causal effect of a set of variables T on a disjoint set of variables S conditioned on

another set C is said to be identifiable from a graph G if all the quantities (|)tP s c can be

computed uniquely from any positive probability of the observed variables-- that is, if

1 2(|) (|)M M
t tP s c P s c= for every pair of models M1 and M2 with 1 2() () 0M M

t tP v P v= > and G

(M1) = G (M2) = G [20].

Generally, Pa(Vi) is used to denote parent nodes set of variable Vi in a directed graph

G and pa(Vi), or pai is used to denote an instance of Pa(Vi); Ch(Vi) is used to denote children

nodes set of variable Vi in a directed graph G and ch(Vi) is used to denote an instance of

Ch(Vi).

We let An(C) denote the union of C and the set of ancestors of the variables in C, for

any set of C. Anu(C) denote the set of hidden variables in An(C), Anu(C) = An(C) ∩ U.

Anv(C) denote the set of observed variables in An(C), Anv(C) = An(C) ∩ V. So we have

() ()
S U

u
GU S An S

∪
= from the definition of U(S).

If a set A V⊆ contains its own observed ancestors, ()vA An A= , A is called an

ancestral set. Similarly, if a set A V⊆ contains its own observed descendants, ()vA De A= , A

is called a descendent set.

Definition 3 (c-component relation)

c-component (confounded component) relation is defined on the unobserved variable

set U of graph G as:

For any unobserved variable U1 and U2, they are related under the c-component relation if

and only if at least one of conditions below is satisfied:

14

 i). There is an edge between U1 and U2.

 ii). Both U1 and U2 are parents of the same observed variable.

 iii). Both U1 and U2 are in the c-component relation with respect of another

unobserved variable U3.

From the definition, we know that c-component relation is reflexive, symmetric and

transitive.

A c-component of variable set S on graph G includes all the unobserved variables that

are under the same c-component relation. It also includes all the observed variables that have

an unobserved parent, which must be a member of that c-component. Obviously, any

observed variable belongs to only one c-component. If an observed variable does not have an

unobserved parent, the observed variable is the only variable appearing in the c-component

[17].

15

CHAPTER 3. ALGORITHMS

In this chapter, we will introduce three identifying algorithms we used in the software

program.

3.1 Identification of Causal-Effect in Causal BNs

In this section, a function of this software program, which is to identify causal effects

from nonexperimental data in a causal Bayesian Network, will be introduced.

The identifiability function accesses strength of causal-effect relationships from a

causal Bayesian Network and gives the total causal effect in terms of estimable quantities. It

is to compute the probability of a set of variables given intervention on another set of

variables in a causal graph. In other words, the software program has been devised to show

whether a causal-effect, denoted as Pt(S), is identifiable or not. If the Pt(S) is identifiable, the

software program will calculate the causal-effect value. The identifiability method used in

this software is created by Tian and Pearl [19], where both algebraic and graphic methods are

used. In Tian and Pearl’s algorithm, a causal graph is a semi-Markovian graph, where every

unobserved variable (hidden) is a root and has exactly two observed variable children [21].

The algorithm is sound and complete even when the algorithm is used in a general causal

graph, which has been proved by Huang and Valtorta. A similar result was provided by

Shpitser and Pearl [17, 22].

In the software program, a causal graph G should be created before a user deploys the

function. V stands for all the observed variables in G. Then the user need to set both a set of

effect variables (denoted as S) and a set of intervention variables (denoted as T). In the

16

meantime, the user should know whether a given variable is observed or not in the created

causal Bayesian network. In our causal graph, S and T are disjoint observed variable sets.

The identifiability algorithms are presented in Figure 3, Figure 4 and Figure 5 based

on the lemmas in the Appendix A. Those algorithms are sound and complete. They have

been implemented in the software program.

Figure 3. Algorithm Computing Pt(S)

Algorithm Computing Pt(S)

INPUT: two disjoint observable variable sets S, T ⊂ V.

OUTPUT: the expression for Pt(S) or Fail

1. Let D = An(S) GV\T ∩ V

2. Using the Computing Q[S] algorithm shown in Figure 4 to

compute Q[D]

3. If the algorithm returns FAIL, then output FAIL.

4. Else, output Pt(S) =
\

[]
D S

Q D∑

17

Figure 4. Algorithm Computing Q[S]

Algorithm Computing Q[S]

INPUT: S ⊆ V

OUTPUT: Expression for Q[S] or FAIL.

Let V be partitioned into V1, …, Vk, each of them belonging to a c-components

in G, and S be partitioned into S1, …, Sl, each of them belonging to a c-

components in Gs, and Sj ⊆ Vj, We can:

i), Compute each []jQ V with lemma 2.

ii), Compute each []jQ S with Identify algorithm above with

C = jS , T = jV , Q = []jQ V .

iii), If in ii), we get FAIL as return value of Identify algorithm of any jS , then

Q[S] is unidentifiable in graph G; else Q [S]is identifiable and Q [S] =

1

[]
l

j
j

Q S
=
∏ .

18

Figure 5. Algorithm Identify(C, T, Q)

In figure 5, case i) and case iii) always work. Case ii) is determined by the following

lemma 4 [17].

Lemma 4: In a general Markovian model G, if

1. G itself is a c-componen

2. S V⊂ and SG has only one c-component

3. All variables in V\S are ancestors of S

Then Q[S] is unidentifiable in G.

Algorithm Identify(C, T, Q)

INPUT: C ⊆ T ⊆ V, Q = Q [T],

TG and CG are both composed of one single c-component.

OUTPUT: Exptession for Q [C] in terms of Q or FAIL.

Let A= An(C) GT ∩ T

i), If A = C, output Q [C] =
\

[]
T C

Q T∑ (Cf. lemma 1)

ii), If A = T, output FAIL.

iii), If C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component '
1T , T1 = '

1T ∩ A

2. Compute Q [T1] from Q [A] =
\

[]
T A

Q T∑ (Cf. lemma 2)

3. Output Identify(C, T1, Q [T1])

19

3.2 Identifying Conditional Causal-Effect

In this section, a software function identifying conditional causal effect is introduced.

This problem is important for evaluating conditional plans and stochastic plans [23]. The

function is to assess causal effect relationships from non-experimental data and theoretical

assumptions. Those assumptions are encoded in the form of a DAG including unobserved

variables. A systematic procedure identifying causal effects between two sets of variables

conditioned on another set of variables was provided by Tian. The procedure relies heavily

on results computed by the algorithm in section 3.1, which only concerns with identifying

unconditional causal effects [20]. The identifiable conditional causal effects are expressed

by factorization of the observed joint distribution [20]. The algorithm, identifiable

conditional causal effects, has been proven to be sound and complete and is implemented in

our software system.

In the software program, a causal Bayesian Network G should be created or loaded

before a user deploys the function. V stands for all the observed variables in G. Then the user

need to set both a set of effect variables (denoted as S) and a set of intervention variables

(denoted as T) and a set of conditional variables (denoted as C). In the meantime, the user

should know that every variable is observed or unobserved. In our causal graph, S, T and C

are disjoint observed variable sets.

We have equation 13 from Bayes conditioning.

(,)P (|)
()

t
t

t

P s cs c
P c

= (13)

Therefore,

20

1). If Pt(s,c) is identifiable, so is Pt(s|c). Then we can calculate Pt(s,c) with the

procedure provided by Tian [21]. We have introduced the procedure in detail in the section

3.1.

2). If Pt(s,c) is not identifiable but Pt(c) is, then Pt(s|c) is not identifiable. However, if

there is no variable in C belongs to T’s descendant variables set, that is, Pt(c) = P(c), and then

Pt(s|c) is identifiable if and only if Pt(s,c) is identifiable.

3). When both Pt(s,c) and Pt(c) are not identifiable, Pt(s|c) could be either identifiable

or unidentifiable. That will be depended on whether the unidentifiable terms can be canceled

out in the expression for Pt(s,c) and Pt(c).

In order to assess Pt(s|c), Pt(s,c) and Pt(c) should be computed first. We use the

method described in section 3.1. Then we have

(,) []t i
f i

P s c Q D=∑∏ (14)

() (,) []t t i
s s f i

P c P s c Q D= =∑ ∑∑∏ (15)

Where, \ ()F D S C= ∪ and
\

()
V TGD An S C= ∪ ; 1,..., kS S are the c-components

partitioned in V; 1,..., lD D are the c-components partitioned in subgraph DG ; Each iD is a

subset of jS and []iQ D can be calculated by algorithm (, , [])i j jIdentify D S Q S , which is

shown in figure 5. []jQ S can be calculated by Lemma 3 in Appendix A.

Let I stand by the sets of iD ’s that are identifiable, and let N stand by the sets of iD ’s

that are unidentifiable. We decompose F into F0 and F1, I into I0 and I1. F0 is over

unidentifiable terms and F1 over indefinable terms. Therefore, we can rewrite the equation

(14) and (15) as:

21

0 10 1

(,) ([] [])([])
i i i

t i i i
f fD N D I D I

P s c Q D Q D Q D
∈ ∈ ∈

= ∑ ∑∏ ∏ ∏ (16)

0 10 1

() ([] [])([])
i i i

t i i i
s f s fD N D I D I

P c Q D Q D Q D
∈ ∈ ∈

= ∑∑ ∑∑∏ ∏ ∏ (17)

We like F0 and I0 including as fewer elements as possible. The method we used to

partition F and I is shown in Phase 3 of the Figure 6 (Algorithm computing conditional

causal effects, Pt(s|c)).

If the unidentifiable terms
0 0

[] []
i i

i i
f D N D I

Q D Q D
∈ ∈

∑∏ ∏ could be totally canceled out by

0 0

[] []
i i

i i
s f D N D I

Q D Q D
∈ ∈

∑∑∏ ∏ , we can get (|)tP s c is identifiable and it can be represented as

equation (18). Otherwise, (|)tP s c is not identifiable.

1 1

1 1

[](,)P (|)
() []

i

i

if D It
t

t is f D I

Q DP s cs c
P c Q D

∈

∈

= =
∑ ∏
∑ ∑ ∏

 (18)

The procedure of identifying conditional causal effects is explained above. The

following is the algorithm of computing Pt(s|c). There are 4 Phases in the procedure. In

Phase-1, we define variable sets D and F in the graph G; the causal effect of each set of c-

component variables of G, Q[Si], is computed; each c-component set Di of subgraph GD are

found. In Phase-2, we find the c-component set Sj of G, which is compatible with Di; each

Q[Di] is calculated. If Q[Di] is identifiable then put Di into set I. Otherwise put Di into N. In

Phase-3, F is partitioned into F1 and F0; I is partitioned into I0 and I1; at the meantime, F0

and I0 are tried to contain as fewer elements as possible. In Phase-4, to determine whether

the unidentifiable term can be cancelled out from Pt(s,c) and P(c) totally, and then determine

Pt(s|c) is identifiable or not [20].

22

Figure 6. An algorithm for identifying conditional causal effects, Pt(s|c)

Algorithm 1(Computing Pt(s|c))

INPUT: Three disjoint sets T⊂V, S⊂V and C⊂V.

OUTPUT: The expression for Pt(s|c) or FAIL.

Phase-1:

1. Find the c-components of G: S1,….,Sk.

2. Compute Q[S1],….,Q[Sk] by Lemma 3.

3. Let D =
\

()
V TGAn S C∪ and \ ()F D S C= ∪ .

4. Find the c-components of the sub graph GD: D1,….,Dl

Phase-2:

1. For each set Di:

Find the set Sj to which Di belongs. Call algorithm Identify(Di, Sj, Q[Sj]).

If the algorithm returns FAIL, then put Di into the set I.

2. If N is empty , then stop and output
[]

(|)
[]

if i
t

is f i

Q D
P s c

Q D
=
∑ ∏
∑ ∑ ∏

Phase-3:
1. Initialize 0 (())

iD N iF F U Pa D∈= ∩ , 1 0\F F F= , and 0 1,I I Iφ= = .

2. For each 1iD I∈ :

If 0()iPa D F φ∩ ≠ , then remove iD from I1 and put it into I0.

3. Let
01 ()

iD I iB F U Pa D∈= ∩

• If B is not empty, remove variables in b from F1 and put them into

F0. Then go back to step 2.

• If B is empty, then continue to Phase-4.

Phase-4:
 If

01 ()
iD I iB F U Pa D∈= ∩ , then

 Output the expression for Pt(s|c) as given in Eq (;;)

Else

 Output FAIL

23

 3.3 Identifying Constraints Implied by Causal Models

Causal model may impose two types of constraints, namely conditional

independencies and functional constraints. Conditional independencies can be read via d-

separation criterions, but functional constraints are not available via general graphic

criterions. In this section, a systematic method of finding such functional constraints is

introduced. The systematic procedure was developed by Tian and Pearl, and is implemented

in our software system [19]. The algorithm has been proven to be sound.

Identifying non-independence constraints is very helpful for validating causal models

and for noticing or understanding the differences between causal models, where they have

the same set of conditional independence relationships among the observed variables [19].

For example, the two models in Figure 7 are the same set of independence statements (A is

independent of C given B) but their Verma’s constraint is different. In figure 7(a), we can

know that (| , ,) (|)
b
P d a b c P b a∑ is not a function of a by a simple analysis, because there is

no relation between node A and node D after eliminate node B from Figure 7 (a). But it is a

function of a obviously in Figure7 (b) [24].

 Figure 7. Identifying non-independence constraints

24

The following is the procedure of identifying constraints systematically. Lemma 1,

Lemma 2 and Lemma 3 (introduced in Appendix A) are applied in this procedure.

Let ()
1{ ,..., }i

iV V V= , i = 1,…,n. where 1 ... iV V< < they are in topological order.

For i = 1 to n

We look for constraints that involve iV and the variables before iV in the

topological order.

(A1) If the subgraph ()()iG V has more than one c-component, assuming that

iV is in the c-component iS of ()()iG V , []iQ S may be calculated from P(v)

by Lemma 3 and give a conditional independence constraint. iV is

independent of its predecessors given its effective parents, variables in iS

other than iV , and the effective parents of other variables in iS . That is, iV is

independent of () \ ()i
iV Pa S+ given () \{ }i iPa S V+ .

(A2) Consider []iQ S in the subgraph ()iG S

For each descendent set iD S⊂ in ()iG S , iV is not in D. We have the

following equation by Lemma 1.

 [] [\]i i
d

Q S Q S D=∑

If some effective parents of D are not effective parents of \iS D , then

a constraint on the distribution will be implied, that is,

 []id
Q S∑ is independent of (() \) \ (\)i iPa S D Pa S D+ +

Let ' \iD S D= .

25

Consider [']Q D in the subgraph (')G D

If (')G D has more than one c-component, assuming that iV is in the

c-component iE of (')G D , []iQ E may be calculated from [']Q D by

Lemma 2. It is understandable that ['] / [']
iv

Q D Q D∑ is a function

only of ()iPa E+ .

If (') \ ()iPa D Pa E φ+ + ≠ then a constraint on the distribution P(v) is

imposed.

Repeat the process (A2) on []iQ E , we use iE substitute for iS .

In the above procedure, effective parent is an observed variable’s parent or there is a

directed path from it to the observed variable. For example, if an observed variable iV is a

parent of jV or there is a directed path from iV to jV , we call iV is an effective parent of jV .

()Pa S+ denotes the union of S and the set of effective parents of S for any set S V⊆ .

26

CHAPTER 4. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

The requirements of our software system, design methods and implementation

processes are introduced in this chapter.

4.1 Requirement

In this section, we list and rationalize the requirements for our BNs identification

software. The requirements are organized into functional and non-functional groups.

Functional requirements are statements of services the system should provide, how the

system should react to particular inputs and how the system should behave in particular

situations. Non-functional requirements, as the name suggests, are those requirements which

are not directly concerned with specific functions delivered by the system. Non-functional

requirements are constraints on the services or functions offered by the system [25].

4.1.1 Functional Requirements

Functional requirements are more concrete than their non-functional requirements.

Those requirements for a system describe the functionality or services that the system is

expected to provide.

• Since our software provides analysis of causal effect in BNs for Bayesian Network

researchers, users are able to create and edit Causal graphs and read graphic models

from an appropriate window.

• The software system can save graphic models to a XML file following a Bayesian

Network Interchange Format.

27

• The software system provides appropriate viewer for users to read the solutions of

software analysis.

• The software system provides friendly interface for users to operate the functions of

software.

• The software system provides error handler. Once users use a software function

before complete all operations for satisfying the function, error messages will be

printed.

4.1.2 Non-functional Requirements

• This software system contains help tools for Bayesian Network researchers. It can run

on multi- platforms, such as Windows, Linux and Unix OS. It also can be adopted by

browsers.

• To save the software development cost and development time, we use free resources

from website. The software program makes use of the free resources as much as

possible.

• The algorithms implemented in our software have been proven to be sound and

completed or sound.

• Running time of the algorithms implemented in our software is polynomial.

• Space used in the algorithms implemented in our software is polynomial.

• Graphic models are saved in XML files. They consist with some standard interchange

formats of Bayesian Networks, such as the Bayesian Interchange Format version 0.1

(BIF 0.1), BIF 0.15 and XMLBIF 0.3. The software can open any graphic model in

those standard formats.

28

• The software system is easy to use and maintenance.

4.2 Design

Software design is a process of problem-solving and planning for a software solution.

After the requirements of software are determined, we design architecture view for our

software system. In this section, the design of our software is introduced.

4.2.1 System Model

The architectural design process is to establish a basic structural framework for a

system. As a part of the system requirements and design activity, it is necessary for the

architectural design process to model a set of components and relationships among these

components. The system architecture is usually presented as a block diagram showing the

major components and the interconnections between them. Each component is represented by

a rectangle and the relationship between those components is indicated by arrows linking

those rectangles [25]. Figure 8 shows the decomposition of our system into its principal

components.

Figure 8. The system architecture of the software system

29

 The Editor Frame and Console Frame are two user interfaces. Editor Frame obtains

graphic information from Data files via Parsers and Inference Graph component. Conversely,

it sends graphic information to Data files through the two components too. Create or Edit

Graph component can edit causal graph by clicking the buttons on Editor Frame. Console

Frame controls the software system via Inference Graph, since it holds all current causal BN

information. Console Frame communicates with Data File when the system needs save or

load a data file. Table 1 is the brief function descriptions of each component.

The system architecture is compact and manageable. It describes how the system is

organized and how the components interoperation [25]. The design satisfies the function

requirements of our software system.

Table 1. Function Description of components

Component Name Component Description
Data Files Xml Files with standard BN Interchange Formats
Create or Edit Graph A set of tools for Creating and Editing Graphic Models, such as

create node, delete node, create arc, move node, and so on.
Parsers Parsers hold definitions of the Interchange Format. It let system

obtain the parsed Bayesian networks.
Editor Frame It is an interface. The interface contains some graphic model edit

buttons. The causal BN graphs are displayed in the frame.
Console Frame It is an interface. The interface contains some menus, which are

used to operate a variety of functions of our software system.
Error messages, instruction messages and analysis results are
shown in the frame.

Inference Graph Inference Graph component contains all the information about
the graphical structure of a causal Bayesian network. It can
control system operations by changing operation models, such
as identify H_mode (Pt(s) mode) or create mode, and so on.

Causal Reasoning Causal Reasoning contains the components, which can solve
causal reasoning problems, such as identify causal effects in
causal Bayesian networks.

30

4.2.2 Design Considerations

. The software design should reflect the requirements of the software. The followings

are some aspects we considered during our design:

• Reliability - The software is able to perform required functions under stated

conditions for a specified period of time. All of the function algorithms implemented

in this system are proved be correct.

• Extensibility - New capabilities can be added to the software without major changes

to the underlying architecture.

• Robustness - The software is able to operate under stress conditions. It is also be able

to tolerate unpredictable or invalid input.

• Fault-tolerance - The software is resistant to and able to recover from component

failure.

• Compatibility - The software uses some free resources from internet, such as some

classes from software JavaBays. We design our system so that it has interoperability

with those software resources.

• Modularity - the resulting software comprises well defined, independent components.

That leads to better maintainability. The components could be then implemented and

tested in isolation before being integrated to form a desired software system. This

allows division of work in a software development project.

• Reusability - the designed modular components should capture the essence of the

functionality. This single-minded purpose renders the components reusable wherever

there are similar needs in other designs. For example, the implementation for those

31

lemmas and finding c-component set method are used frequently during programming

in our software.

• Portability – users can run the system on any computer that has a java interpreter

easily, once they obtain the software system. Users can use the system easily by

following the software instruction.

 4.3 Implementation

Software implementation is to integrate software based components into the

organizational structure systematically and effectively. In this section, we introduce the

system development environment, data structure and implementation process of our software.

4.3.1 Developing Environment

The software system is a full implementation in Java. A Java implementation has

several advantages. First, Java was designed to be easy to use so that it is easy to write,

compile and debug. Second, a Java package can be exported or run in a variety of platforms

such as UNIX, Macintosh and Windows with few modifications. Third, a program or

package written in Java can be intimately coupled with World Wide Web pages because Java

has been adopted by browsers in the Internet. This feature makes lots of people can access a

Java program or package. Forth, a Java package is an excellent tool for people who are

interested in using reasoning in network-based applications. Fifth, on Microsoft Windows

systems, the Java 2 Runtime Environment's installation program registers a default

association for Jar files so that double-clicking a Jar file on the desktop will automatically

32

run it with javaw -jar. Dependent extensions bundled with the application will also be

loaded automatically. This feature makes the end-user runtime environment easier to be used

on Microsoft Windows systems. Finally, Java is a good object-oriented language. Widgets in

java allow researchers to quickly prototype interfaces, and the multi-threaded processing in

Java facilities the future parallelization of inference algorithms [2].

The Java version used during the developing is JDK 1.5.0_06, which is available at

http://www.eclipse.org/downloads. Eclipse 3.3 is used as our main IDE. It is available at

http://www.eclipse.org/downlods. The OS used during development is Microsoft XP

Professional, SP2.

Our software interfaces use the main interfaces of JavaBayes, a BN software tools

developed by Fabio Gagliardi Cozman, Carnegie Mellon University. We use Abstract

Windows Toolkit (AWT) as Java GUI tool kit for compatibility with JavaBayes better. AWT

is very stable and standards with every version of Java technology, including Java

implementations in old Web browsers. Another advantage is that there is no need to install

AWT. It is available with all features everywhere under a Java runtime environment [26].

4.3.2 Data Transfer

Data can be locally loaded or saved when the user uses the software as an application.

The graph data files use XML-formatted text. Three Bayesian Interchange Formats (BIF 0.1,

BIF 0.15 and XMLBIF 0.3) are supported by our software. Figure 9 is a causal BN graph

created by our software and Figure 10 is the data file of the graph in XMLBIF 0.3 format.

33

Figure 9. A causal Baysian Network graph created by the software.

Figure 10. XML Data File for Figure 2 (XMLBIF 0.3 format)

34

In order to display relevant data, our System software needs parse out the desired

parts from the XML files. JavaBayes contains sets of XML parsers. We modified the parsers

in JavaBayes, so as to they can save or load the properties of a variable, such as whether the

variable is observed or not.

4.3.3 Data Structure

We designed our software in such a way that we can add more function components

to the software in the future. To satisfy the requirement, we defined different data structure

for different function components. We won’t have to modify the existed data structure when

adding a new function to the software is needed, even the function may require extra features

to BNs. By doing this, we can save a lot of coding work when we add new capabilities to the

software, because changing existed basic data structure requires lots of code changing.

We use class BayesNet, which is from JavaBayes, as Basic data structure to hold all

the variables and relationships among them in Bayesian networks. Below is the BayesNet

class. In the class, probability_variables gives the entire features of each variable node.

probability_functions gives each variable’s parent variables.

public class BayesNet {

 protected String name;

 protected Vector<String> properties;

 protected ProbabilityVariable probability_variables[];

 protected ProbabilityFunction probability_functions[];

 public final static int INVALID_INDEX = -1;

 public final static int S_INDEX = -1;

 public final static int T_INDEX = -1;

 public final static int C_INDEX = -1;

35

 public final static int BIF = 1;

 public final static int XML = 2;

 public final static int BUGS = 3;

}

All BN data structures in our software inherit from the basic class BayesNet. Class

QuasiBayesNet is defined in JavaBayes by Fabio Gagliardi Cozman. We modified it so that

it can recognize hidden variables. We defined class STBayesNet, which inherits from class

QuasiBayesNet, for the Pt(s) function. STBayesNet can let function algorithm get more

information than BayesNet, such as a set of S variables and a set of T variables. Below is the

class STBayesNet. In the class, we can get the size of S set and T set. We also know the entire

features and its directly parent set for each S set and T set variables.

public class STBayesNet extends QuasiBayesNet {

 ProbabilityVariable probability_variables_s[];

 ProbabilityFunction probability_functions_s[];

 ProbabilityVariable probability_variables_t[];

 ProbabilityFunction probability_functions_t[];

 int n_s;

 int n_t;

 }

We defined class STCBayesNet for computing conditional causal effects Pt(s|c)

function. It inherits from class SCBayesNet. STCBayesNet can let function algorithm

recognize C variable.

public class STCBayesNet extends STBayesNet {

 ProbabilityVariable probability_variables_c[];

 ProbabilityFunction probability_functions_c[];

 int n_c; }

36

We defined data structure Q representing Q[S], which is a basic factor, for

representing value of causal effects in Bayesian networks. The quantity of Q[S] denotes the

post-intervention distribution of S under an intervention of all other variables, that is, Q[S] =

Pv\s(s) (see equation (6)).

public class Q {

 ProbabilityVariable[] Summation;

 Probability[] Probability;

}

Probability class was defined as a data structure for representing conditional

probability. For example, a conditional probability P(a|b,c) is an object of Class Probability,

“a” is an instance of name, {b, c} is an instance of evidence.

public class Probability {

 DiscreteVariable name;

 DiscreteVariable[] evidences;

 int num_evi;

 int num_value;

}

In our software system, the main() method is in Class

BayesianNetworks.JavaBayes.java, where BayesianNetworks is a package and JavaBayes is

a class. The identification functions are called from JavaBayesInterface.EditorFrame.

process_query(), where JavaBayesInterface is a Package; EditorFrame is the Class by which

the graph editor can be shown; process_query() is a method. The function call selections

depend on a mode flag, named mode_menu_choice. For example, when mode_menu_choice

is IDENTIFY_H (mode identify causal-effect algorithm explained in Chapter 3.1), method

print_ identifiability_analysis (PrintStream pstream, InferenceGraph ig) is called from

37

method process_query(). Both of the methods are in class EditorFrame. Afterward, method

print_ identifiability_analysis (PrintStream pstream, InferenceGraph ig) of class

EditorFrame invokes method print_identifiability_analysis(PrintStream out) of Class

InferenceGraph, where the system accesses identifying function components in the end.

The process of method calling is described in Figure 11. The algorithms implemented in the

system are described in previous chapter. The implementation codes will be listed in

attachment A.

Figure 11. The process for call function algorithms

38

4.3.4 Creating Executable Jar File

 A feature of Java2 is the ability to create executable jar file. A jar file is simply a file

containing a collection of java .class files. To make a jar file executable, we need to specify

where the "main" Class is in the jar file, so the "java" command knows what main() method

to invoke in order to get the software going[27].

In the directory “Classes”, we created a file called "mainClass". This file contains a

single line specifying where the main class is to be found in the jar file. Here is the single line:

Main-Class: BayesianNetworks.JavaBayes

Next, we create a jar file called Class.jar using the "jar" command in Java2. We use

the "m" command line argument to specify the manifest file mainClass.txt, which adds

information to the jar file on where the main class will be found. Here is the jar command:

>jar cmf mainClass Class.jar *.class

At last, we create windows batch file BN.bat. Below is the content of the batch file.

>java -classpath ./Classes BayesianNetworks.JavaBayes

We can run the software via double click BN.bat in a windows operating system.

39

CHAPTER 5. SOFTWARE TESTING AND RESULT

We test our system with many representative test cases. The goal of the testing is to

expose latent defects in the system. In this chapter, we display some of the test cases and

compare their results with the system outputs.

Most test cases are generated from the related publications for ensuring they are

correct and we tried to let the test cases can test the entire algorithm implementation of the

system.

5.1 Test Cases for Identifying causal effects Pt(s)

In this section, we display three test cases to test the Identifying Causal-Effects

component, Pt(s).

Test Case 1

Consider the test case of identifying
1 2

()x xP y in Figure 12. The case was studied by

Pearl and Robins[23]. The causal BN graph G in Figure 12 is created by our software system.

G has two c-components S1 = {X1, Z, Y} and S2 = {X2}

The result of identifying
1 2

()x xP y in G is:

1 2 1 2 1() (| , ,) (|)x x
z

P y P y x x z P z x=∑

Figure 13 is the output of our software system.

40

Figure 12. Causal Graph for test case 1.

Figure 13. Our software system output for test case 1.

Obviously, the system output is same as the studied result.

41

Test Case 2

Consider the test case of identifying
1 2 1 1(, , ')x xP y z z in Figure 14. The case was studied

by Pearl and Robins too [23]. The causal BN graph G in Figure 14 is created by our software

system.

Figure 14. Causal Graph for test case 2.

G has three c-components S1 = {X1 }, S2 = {Y} and S3 = {X2, Z1, Z’1}.

The result of identifying
1 2 1 1(, , ')x xP y z z in G is Eq (19).

1 2

2

1 1 2 1 2 1 1 1 1 1(, , ') (| , ') [3] (| , ') (' | ,) ()x x
x

P y z z P y x z Q S P y x z P z x z P z= =∑ (19)

Figure 15 is the output of our software system for test case 2.

42

Figure 15. Our software system output for test case 2.

The system out show:

1 2

2

1 1 1 2 1 1 1 1 2 1 2 1(, , ') { () (| ,) (' | , ,)}{ (| , ')}x x
x

P y z z P z P x z x P z z x x P y x z= ∑ (20)

Since we know 1 2 1 1 1 1 2 1[3] () (| ,) (' | , ,)Q S P z P x z x P z z x x= from Lemma 3, we can

rewrite Eq (20) as
1 2

2

1 1 2 1(, , ') (| , ') [3]x x
x

P y z z P y x z Q S= ∑ . Obviously, Eq (19) and Eq (20)

have same value.

Hence, we have the conclusion that our system output has the same value with the

studied result.

Test Case 3

Consider the test case of identifying
1 2

()x xP y in Figure 16. The case was studied by

Kuroki and Miyakawa [28]. The causal BN graph G in Figure 16 is created by our software

system.

43

Figure 16. Causal Graph for test case 3.

G has three c-components S1 = {X1, X2, Y}, S2 = {Z1} and S3 = {Z2}.

The result of identifying
1 2

()x xP y in G is Eq (21).

1 2

1 2 1 2

, 1 1 2 1 2 1 2 1 2 2 1 1 1
, ,

() { (|) (| ,)}{ (| , , ,) (| ,) ()x x
z z x x

P y P z x P z x x P y x x z z P x x z P x= ∑ ∑ (21)

Figure 17 is the output of our software system for test case 3.

Figure 17. Our software system output for test case 3.

Obviously, the system output has the same accessed value as the studied result.

44

5.2 Test Cases for Identifying conditional causal effects Pt(s|c)

In this section, we display a test case which is used to test the Identifying Causal-

Effects component, Pt(s) component.

Consider the test case of identifying (|)xP y a in Figure 18. The case was studied by

Tian [20]. The causal BN graph G in Figure 18 is created by our software system.

Figure 18. Causal Graph for test case 4.

G has three c-components S1 = {B}, S2 = {Z} and S3 = {X, A, W, Y}. By lemma 3,

Q[{B}] = P(b|a), Q[{Z}] = P(z|x) and Q[S3] = P(y|z, w, b, a, x)P(w|b, a, x)P(a|x)P(x). The

ancestors of Y and A in the subgraph with X removed are D = {A, B, W, Z, Y}. The c-

component of the subgraph GD are {A}, {B}, {Z}, and {W, Y}.

Q[{B}] and Q[{Z}] are identifiable and are given above. Q[{W, Y}] can be

computed by algorithm Identify({W,Y}, S3, Q[S3]) (shown in figure 5).

Q[{W, Y}] =
,

[3]
x a

Q S∑

45

Tian’s study concludes that identifying (|)xP y a is identifiable and is given by Eq(22).

 , ,

, , ,

[{ }] [{ }] [{ , }]
(|)

[{ }] [{ }] [{ , }]
b w z

x
y b w z

Q B Q Z Q W Y
P y a

Q B Q Z Q W Y
=
∑
∑

 (22)

Figure 19 is the output of our software system.

Figure 19. Our software system output for test case 4.

 5.3 Test Cases for Identifying function constraints

In this section, we display a test case which is used to test the Identifying function

constraints component.

46

Consider the test case of looking for constraints involving V1 to V5 in Figure 20. We

can get the following result by algorithm described in section 3.3.

 Computing Q[{V1}], Q[{V2}] and Q[{V3}] does not give any constraint.

2

4 4 3 2 1 2 1[{ }] (| , ,) (|)
v

Q V P v v v v P v v=∑ implies a constraint on the distribution P(v) that

the right hand side is independent of v1.

V5 is in the c-component S={V1,V3,V5}. In the subgraph G(S), {V1},{V3} and

{V1,V3} are the descendent set not containing V5.

5 4 3 2 1 3 2 1 1[] (| , , ,) (| ,) ()Q S P v v v v v P v v v P v= implies no constraints.

For case descendent set {V1}, section 3.3 algorithm

gives 1

1

5 4 3 2 1 3 2 1 1
5

3 2 1 1

(| , , ,) (| ,) ()
[{ }]

(| ,) ()
v

v

P v v v v v P v v v P v
Q V

P v v v P v
=
∑

∑
. It implies a constraint that the right

hand side is independent of v2 and v3.

For case descendent set {V3}, G({V1,V5}) can not be further partitioned into c-

component. Algorithm cannot continue.

For case descendent set {V1,V3},

1 3
5 5 4 3 2 1 3 2 1 1,

[{ }] (| , , ,) (| ,) ()
v v

Q V P v v v v v P v v v P v=∑ implies a constraint that the right hand

side is independent of v2.

 The case was studied by Tian and Pearl [19]. The causal BN graph G in Figure 20 is

created by our software system. Figure 21 is the output of our software system for. Obviously,

the system output is same as the studied result.

47

Figure 20. Causal Graph for test case 5.

Figure 21. Our software system output for test case 5.

48

CHAPTER 6 CONCLUSION AND FUTURE WORK

In this chapter, I will introduce my conclusion of my thesis and the future work that is

helpful to improve the software.

6.1 Conclusion

Causal reasoning problems are critical for modeling the effects of actions and validate

causal models. There are some other projects that use Java with Bayesian networks, such as

JavaBayes produced by Carnegie Mellon University and BNJ developed by Kansas State

University (KSU) KDD Lab. However, a few programming system implemented causal

reasoning problems in causal Bayesian Networks.

In this thesis we describe a software system. The software system can solve some

causal reasoning problems, such as, identify conditional and unconditional causal effects and

find functional constraints in a given causal Bayesian Network with hidden variables. There

are two user interfaces in the system. One can be used to create and display causal BN graph,

the other one display the software use manual and analysis result of a given causal BN.

The presented design of the system meets the given requirements. The software

system is reliable, easy extensible, have portability and reusability. Every functional

component implementation follows the proved algorithms and lemmas that ensure the system

give valid output. We tested the software system on windows OS. The testing analysis results

show our software component implementation is correct and the output of the software match

with the result from studied tested cases in some publications. This software is very helpful

to researchers who are interested in Causal Bayesian Networks.

49

6.2 Future Work

The developed software system is to solve causal reasoning problems. Right now, we

have three components, namely identify unconditional causal effects, identify conditional

causal effects and find constraints in a causal Bayesian Networks with hidden variables. In

the future, we would like to add more components to solve other causal reasoning problems,

such as identifying causal-effects in a class of linear models and parameter identification in

structural equation models.

We used Abstract Windows Toolkit (AWT) in our software development. Using

AWT as Java GUI tool kit has some advantages as we mentioned in the thesis (4.3.1

Developing Environment). One of the advantages is that AWT lets our software has good

compatibility with JavaBayes. However AWT is a very simple tool kit with limited GUI

components, layout managers, and events. It is difficult to improve interface with AWT. On

the other hand, Standard Widget Toolkit (SWT) is a low-level GUI tool kit comparable in

concept to AWT. SWT makes the task of developing high quality user-interface easily. If

development cost was enough, changing Java GUI tool kit to SWT would be a good choice

to improve the user-interface.

50

APPENDIX A. LEMMAS

Lemma 1 [19]: LetW C V⊆ ⊆ . If W is an ancestral set in G(C) (()()v
G CW An W=),

or if 'W is a descendent set in G(C) (()' (')v
G CW De W=), then

\

[] []
iV C W

Q C Q W
∈

=∑ (7)

In Lemma 1, G(C) denotes the subgraph of G built only by variables in C and U(C).

' \W C W= .

And we always have [] 1
c
Q C =∑ .

From lemma 1, we can calculate Q[W] from Q[C] by summing out C\W. The process

is similar to marginalization in probability theory.

Lemma 2 (Generalized Q-decomposition) [19]: Let H ⊆ N, and we have c-

components from ' '
1,..., nH H in the sub graph GH, '

i iH H H= ∩ , 1 ≤ i ≤ n, then

(i) Q[H] can be decomposed as

1

[] []
n

i
i

Q H Q H
=

=∏
 (8)

(ii) Each Q[Hi] is computable from Q[H], in the following way. Let k be the number

of variables in H, and let a topological order of variables in H be
1

...
kh hV V< < in GH, Let

1

() { ,..., }
j

j
h hH V V= be the set of variables in H ordered before

jhV (including
jhV), j = 1, . . . ,

k, and (0)H φ= . Then each Q[Hi],i = 1, . . . , n, is given by

()

(1)
{ | }

[][]
[]

h ij

j

i j
j V H

Q HQ H
Q H −

∈

= ∏ (9)

Where each Q[H(j)], j = 0, 1, . . . , k, is given by

51

()

()

\

[] []
j

j

h h

Q H Q H= ∑ (10)

In a special case of Lemma 2, H = V, Tian and Pearl give the following corollary

(Lemma 3). All of unobserved variables are root nodes in the corollary [19].

Lemma 3 (Q-decomposition) [20]: Assuming that V is partitioned into c-

components S1,…, Sk, we have

(i) () []ii
P v Q S=∏ .

(ii) Each Q[Si] is computable from P(v). Let a topological order over V be V1 < … <

Vn, and let ()
1{ ,...., }i

iV V V= , i = 1,…,n, and (0)V φ= , Then each Q[Sj], j = 1,…., k, is given

by [20]

(1)

{ | }

[] (|)
i j

i
j i

i V S

Q S P v v −

∈

= ∏ (11)

 (iii) Each factor (1)(|)i
iP v v − can be expressed as

 (1)(|) (| () \{ })i
i i i iP v v P v pa T v− += (12)

Where iT is the c-component of ()()iG V that contains iV .

We see that when all of the variables in the graph model are observed, each variable

is independent of its non-descendants given its parents in the graph. When unobserved

variables are involved, a variable is independent of its non-descendants given its effective

parents, non-descendant variables in its c-component, and the effective parents of the non-

descendant variables in its c-component [19].

52

APPENDIX B. APPLICATION CODE EXAMPLES

B.1 Identifiability in Causal Bayesian Networks (algorithms in

section 3.2)

 /**
 * algorithm_computing()
 * This is a implementation for algorithm in Paper “Identifiability
 * in Causal Bayesian Network”. The paper was written by Huang and

 * Valtorta. The algorithms were studied by Tian and Pearl.
 * The S and T set should be set before use the function.
 * Both S and T are observable variables set.
 * the function will show whether a causal effect, that is,
 * the joint response of any sset S of variables to interventions
 * on a set T of action variables, denoted Pt(S) is identifiable or
 * not.
 */
 public void algorithm_computing(PrintStream out){
 System.out.println("where start it?");
 pts = "==";
 STInference sti = new STInference(qbn, true);
 Probability[] P_T_S = null;

 Verma_Type_Functional_Constraint VTFC = new
Verma_Type_Functional_Constraint();

 Method M = new Method();
 methods m = new methods();
 //st = new STBayesNet(qbn);
 Enumeration e;
 int N_size = st.number_observed();
 int T_size = st.number_t();
 int S_size = st.number_s();
 ProbabilityVariable pv;
 ProbabilityVariable[] N = new ProbabilityVariable[N_size];
 ProbabilityVariable[] T = new ProbabilityVariable[T_size];
 ProbabilityVariable[] S = new ProbabilityVariable[S_size];
 N = st.get_observed_variables();
 T = st.get_probability_variables_t();
 S = st.get_probability_variables_s();
 Vector<ProbabilityVariable> N_T = new

Vector<ProbabilityVariable>();

 N_T = m.Subtraction(N,T);

 for (e = N_T.elements(); e.hasMoreElements();) {
 pv = (ProbabilityVariable)(e.nextElement());
 System.out.println("^N_T^"+pv.get_name());
 }
 Vector D = new Vector();

53

 ProbabilityVariable [] N_t =
from_Vector_to_ProbabilityVariable(N_T);

 Vector DUP = new Vector();
 DUP = VTFC.DUP(qbn, N_t, out);
 ProbabilityVariable[] dup = new

ProbabilityVariable[DUP.size()];
 dup = m.from_Vector_to_ProbabilityVariable(DUP);
 ProbabilityVariable[] union = new

ProbabilityVariable[DUP.size()+N_t.length];
 union = m.Add(dup, N_t);
 M.print_ProbabilityVariableArray(out, union);
 BayesNet Gv_t = new BayesNet(VTFC.SubBayesNet(qbn, union,

"Gv_t"));
 QuasiBayesNet q_Gv_t = new QuasiBayesNet(Gv_t);

 D = m.Intersection(VTFC.ancestors(q_Gv_t, S), N);

 //
 out.println("Identifying Causal Effect Pt(s) in Graph G.");
 out.print("T = {");
 String t = M.print_ProbabilityVariableArray(out, T);
 out.println("}");
 out.print("S = {");
 String s = M.print_ProbabilityVariableArray(out, S);
 out.println("}");
 out.print("D = {");
 M.print_Vector(out, D);
 out.println("}");

 QFraction Q_D[] = new QFraction[D.size()];

 Q_D = Q(D, out);
 if (Q(D, out) == null){
 out.print("Pt(s) is UNIDENTIFIABLE!");
 return;
 }
 else{

 out.print("Pt(s) = ");
 ProbabilityVariable[] d = new

ProbabilityVariable[D.size()];
 d=from_Vector_to_ProbabilityVariable(D);
 Vector<ProbabilityVariable> Ds = new

Vector<ProbabilityVariable>();
 ProbabilityVariable[] D_S = new

ProbabilityVariable[D.size()-S_size];
 Ds = Subtraction(d, S);
 D_S = from_Vector_to_ProbabilityVariable(Ds);
 if (D_S.length==0){
 for (int i=0; i<Q_D.length; i++){
 out.print("{");
 out.print(QFprint(Q_D[i],out));
 out.print("}");
 }
 }

54

 else{
 String R = "∑(";
 for (int i=0; i<D_S.length; i++){
 if(i==D_S.length-1){
 R=R+D_S[i].get_name()+")";
 }
 else
 R=R+D_S[i].get_name()+" ";
 }
 System.out.print(R);
 out.print(R);
 for (int i=0; i<Q_D.length; i++){
 if(Q_D[i]!=null){
 out.print("{");
 System.out.print("{");
 out.print(QFprint(Q_D[i],out));
 out.print("}");
 System.out.print("}");
 }
 }
 }

 }
 return ;

 }

B.2 Identifying Conditional Causal Effect (algorithms in section

3.2)

 /**
 * algorithm_computing()
 * This is a implementation for algorithm in Paper “Identifying
 * Conditional Causal Effects”. The paper was written by Tian
 * . The algorithms were also studied by Tian.
 * The S, T and C set should be set before use the function.
 * The S, T and C are observable variables set, and they are
distinct.
 * the function will show whether a causal effect, that is,
 * the joint response of any set S of variables to interventions
 * on a set T of action variables and conditioned on another set C,
 * denoted Pt(s|c) is identifiable or not.
 */

 public void algorithm_computing(PrintStream out){

 STCInference stcI = new STCInference(qbn, true);
 AlgorithmComputing Huang = new AlgorithmComputing(stc);
 Method thisM = new Method();
 methods Method = new methods();
 Verma_Type_Functional_Constraint VTFC = new

55

Verma_Type_Functional_Constraint();
 int size = stc.number_observed();
 int U_size = stc.number_unobserved();
 int all_size = size+U_size;
 ProbabilityVariable[] All= new ProbabilityVariable[all_size];
 Vector[] G_C_Com = new Vector[all_size];

 All = stc.get_probability_variables();
 /***********/
 /* Phase 1 */
 /***********/

 /* Find c-components of G */
 G_C_Com = Huang.partition_c_component(All);
 Q[] Qs = new Q[G_C_Com.length];
 //Qs = print_C_Components(out, G_C_Com, stcI);

 ProbabilityVariable[] S = new

ProbabilityVariable[stc.number_s()];
 ProbabilityVariable[] C = new

ProbabilityVariable[stc.number_c()];
ProbabilityVariable[] S_U_C = new

ProbabilityVariable[stc.number_c()+stc.number_s()];

 S = stc.get_probability_variables_s();
 C = stc.get_probability_variables_c();

 /*S Union C*/
 S_U_C = Method.Add(S, C);
 Vector G_V_T = new Vector();
 ProbabilityVariable[] V = new

ProbabilityVariable[stc.number_observed()];
 ProbabilityVariable[] T = new

ProbabilityVariable[stc.number_t()];
 Vector<ProbabilityVariable> V_T = new

Vector<ProbabilityVariable>();
 V = stc.get_observed_variables();
 T = stc.get_probability_variables_t();
 /* V_T = V\T */
 V_T = Method.Subtraction(V, T);
 /* G_v_t = Gv\t That is a BayesNetwork, where include

variables in v\t*/
 G_V_T = Huang.Gc(V_T);
 QuasiBayesNet G_v_t = new QuasiBayesNet();
 G_v_t = Huang.from_Vector_to_QuasiBayesNet(G_V_T, "Gv_t");
 /* D = An(S U C) in BayesNetwork G_v_t */

 for (int k=0; k<G_v_t.number_variables(); k++){
 if (G_v_t.get_probability_variable(k).is_observed())
 }

 int An_len = VTFC.ancestors(G_v_t, S_U_C).length;
 ProbabilityVariable[] An_SC = new ProbabilityVariable[An_len];
 An_SC = VTFC.ancestors(G_v_t, S_U_C);

56

 int An_i = 0;
 ProbabilityVariable[] An = new ProbabilityVariable[An_len];
 for (int k=0;k<An_len; k++){
 if (An_SC[k].is_observed()){
 An[An_i] = An_SC[k];
 An_i ++;
 }
 }
 ProbabilityVariable[] D = new ProbabilityVariable[An_i];
 for(int k = 0; k< An_i; k++){
 D[k] = An[k];
 }
 /* subgraphh Gd */
 Vector DUP = new Vector();
 DUP = VTFC.DUP(qbn, D, out);
 ProbabilityVariable[] dup = new

ProbabilityVariable[DUP.size()];
 dup = Method.from_Vector_to_ProbabilityVariable(DUP);
 ProbabilityVariable[] union1 = new

ProbabilityVariable[DUP.size()+D.length];
 union1 = Method.Add(dup, D);
 BayesNet Gd = new BayesNet(VTFC.SubBayesNet(qbn, union1,

"Gd"));
 QuasiBayesNet q_Gd = new QuasiBayesNet(Gd);
 Vector[] G_D_Com = new Vector[Gd.number_variables()];
 AlgorithmComputing AC = new AlgorithmComputing(q_Gd);
 G_D_Com = AC.partition_c_component(D);
 int num_c = G_D_Com.length;
 out.println("Identifying Conditional Causal Effect Pt(s|c).");
 out.print("T = {");
 String t = thisM.print_ProbabilityVariableArray(out, T);
 out.println("}");
 out.print("S = {");
 String s = thisM.print_ProbabilityVariableArray(out, S);
 out.println("}");
 out.print("C = {");
 String c = thisM.print_ProbabilityVariableArray(out, C);
 out.println("}");
 out.println();
 out.println("Print C-Components in graph G.");
 Qs = print_C_Components(out, G_C_Com, stcI);
 out.println();
 out.print('\n'+"Print D = (An(S U C) in BayesNetwork G_v\t):

{");
 thisM.print_ProbabilityVariableArray(out, D);
 out.println("}");
 /* F = D\(S U C) */
 Vector<ProbabilityVariable> VF = new

Vector<ProbabilityVariable>();
 ProbabilityVariable[] F = new ProbabilityVariable[D.length –

S_U_C.length];
 VF = Method.Subtraction(D, S_U_C);
 F = Huang.from_Vector_to_ProbabilityVariable(VF);
 out.print("F = D|(SUC) : { ");
 thisM.print_ProbabilityVariableArray(out, F);

57

 out.println("}");
 /*******************/
 /* Phase 2 */
 /*******************/

 Vector N = new Vector();
 Vector I = new Vector();
 Vector I0 = new Vector();
 Vector I1 = new Vector();
 ProbabilityVariable[] F_0;
 ProbabilityVariable[] F_1;
 QFraction[] QF = new QFraction[G_D_Com.length];
 QFraction[] QF_out = new QFraction[G_D_Com.length];
 QF_out = Phase2_1(out, N, I, QF, G_D_Com, G_C_Com, Qs);
 Enumeration g, e;
 out.print("N: { ");
 for (g = N.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_N = (ProbabilityVariable[])

g.nextElement();
 out.print("{");
 thisM.print_ProbabilityVariableArray(out, PVs_N);
 out.print("} ");
 }
 out.println(" } ");

 out.print("I: { ");
 for (g = I.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_I = (ProbabilityVariable[])

g.nextElement();
 out.print("{");
 thisM.print_ProbabilityVariableArray(out, PVs_I);
 out.print("} ");
 }
 out.println(" } ");
 //Phase2_2
 if (N.size()==0){
 String R = output(out, QF_out,S, F, I, G_D_Com);
 out.println(R);
 return;
 }
 else {
 /***********/
 /* Phase 3 */
 /***********/

 /*Initialize F0 = F n (To all of Di in N Pa(Di)) */
 ProbabilityVariable[] Union_pa = null;
 for (g = N.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_N =

(ProbabilityVariable[]) g.nextElement();
 ProbabilityVariable[] PVs_N_pa =

VTFC.ancestors(qbn, PVs_N);
 Union_pa = Method.Add(Union_pa, PVs_N_pa);

 }

58

 ProbabilityVariable[] Union_parents = null;
 if (Union_pa != null){
 for(int i=0; i<Union_pa.length; i++){
 if (Union_pa[i].is_observed())
 Union_parents = Method.Add(Union_parents,

Union_pa[i]);
 }
 }
 Vector<ProbabilityVariable> F0 = new

Vector<ProbabilityVariable>();
 Vector<ProbabilityVariable> F1 = new

Vector<ProbabilityVariable>();
 F0 = Method.Intersection(F, Union_parents);
 if (F0.size()==0){
 out.println("F0 is Empty.");
 }
 else{
 out.print("F0 = ");
 thisM.print_Vector(out, F0);
 out.println("} ");
 }
 F_0 = new ProbabilityVariable[F0.size()];
 F_0 = Method.from_Vector_to_ProbabilityVariable(F0);
 F_1 = new ProbabilityVariable[F.length-F0.size()];
 /* F1 = F\F0 */
 F1 = Method.Subtraction(F, F_0);
 F_1 = Method.from_Vector_to_ProbabilityVariable(F1);
 out.print("F1 = {");
 thisM.print_ProbabilityVariableArray(out, F_1);
 out.println("} ");
 /* I0 = empty; I1 = I*/
 I0 = new Vector();
 I1 = I;
 // Print I1
 out.print("I1: { ");
 for (g = I1.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_I1 =

(ProbabilityVariable[]) g.nextElement();
 out.print("{");
 thisM.print_ProbabilityVariableArray(out, PVs_I1);
 out.print("} ");
 }
 out.println(" } ");
 boolean stop_Phase3_step2 = true;
 while (stop_Phase3_step2){

 Vector I1_copy = I1;
 for (g = I1.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_I1 =

(ProbabilityVariable[]) g.nextElement();
 ProbabilityVariable[] Di_pa = VTFC.ancestors(qbn,

PVs_I1);
 Vector Intersection = Method.Intersection(Di_pa,

F_0);
 if (Intersection.size()>0){

59

 I1_copy.remove(PVs_I1);
 I0.add(PVs_I1);
 }
 }
 I1 = I1_copy;
 ProbabilityVariable[] Union_pa_B = null;
 for (g = I0.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_I0 =

(ProbabilityVariable[]) g.nextElement();
ProbabilityVariable[] PVs_I0_pa =

VTFC.ancestors(qbn, PVs_I0);
 Union_pa_B = Method.Add(Union_pa_B, PVs_I0_pa);

 }
 int Union_size;
 if (Union_pa_B == null){
 Union_size = 0 ;
 }
 else{
 Union_size = Union_pa_B.length;
 }
 ProbabilityVariable[] Union_parents_B_tem = new

ProbabilityVariable[Union_size];
 int idx_b =0;
 if(Union_pa_B != null){
 for(int i=0; i<Union_pa_B.length; i++){
 if (Union_pa_B[i].is_observed()){
 Union_parents_B_tem[idx_b] = Union_pa_B[i];
 idx_b++;
 }
 }
 }
 ProbabilityVariable[] Union_parents_B = new

ProbabilityVariable[idx_b];
 for(int i=0; i<idx_b; i++){
 Union_parents_B[i] = Union_parents_B_tem[i];
 }

 Vector<ProbabilityVariable> B = new

Vector<ProbabilityVariable>();
 B = Method.Intersection(F_1, Union_parents_B);
 // Print B
 if (B==null){
 out.println("B is Empty.");
 stop_Phase3_step2 = false;
 }
 else if (B.size()==0){
 out.println("B is Empty.");
 stop_Phase3_step2 = false;
 }
 else{
 Vector F1_copy = F1;
 Vector F0_copy = F0;
 for (g = B.elements(); g.hasMoreElements();) {
 ProbabilityVariable pv_B =

60

(ProbabilityVariable) g.nextElement();
 F1_copy.remove(pv_B);
 F0_copy.add(pv_B);
 }
 F1 = F1_copy;
 F0 = F0_copy;
 F_1 = Method.from_Vector_to_ProbabilityVariable(F1);
 }// end else if B not null
 }//end while (stop_Phase3_step2)
 }//end the else of Phase 3
 /***********/
 /* Phase 4 */
 /***********/
 ProbabilityVariable[] Union_pa = null;
 for (g = N.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_N = (ProbabilityVariable[])

g.nextElement();
 ProbabilityVariable[] PVs_N_pa = VTFC.ancestors(qbn,

PVs_N);
 Union_pa = Method.Add(Union_pa, PVs_N_pa);

 }
 for (g = I0.elements(); g.hasMoreElements();) {
 ProbabilityVariable[] PVs_I0 = (ProbabilityVariable[])

g.nextElement();
 ProbabilityVariable[] PVs_I0_pa = VTFC.ancestors(qbn,

PVs_I0);
 Union_pa = Method.Add(Union_pa, PVs_I0_pa);

 }

 ProbabilityVariable[] Union_parents = null;
 if (Union_pa != null){
 for(int i=0; i<Union_pa.length; i++){
 if (Union_pa[i].is_observed())
 Union_parents = Method.Add(Union_parents,

Union_pa[i]);
 }
 }
 Vector<ProbabilityVariable> phase4 = new

Vector<ProbabilityVariable>();
 phase4 = Method.Intersection(S, Union_parents);
 if (phase4 == null){
 out.println("Intersection of S and Union parents of Di

is empty.");
 out.println();
 out.print("Pt(s|c) = ");
 String R = output(out, QF_out,S, F_1, I1, G_D_Com);
 out.println(R);
 }
 else if (phase4.size()==0){
 out.println("Intersection of S and Union parents of Di

is empty.");
 out.print("Pt(s|c) = ");
 String R = output(out, QF_out,S, F_1, I1, G_D_Com);

61

 out.println(R);
 }
 else{
 out.print("Pt(s|c) is unidentifiable ");
 }
 return;

}

B.3 Identifying Functional Constraints (algorithms in section 3.3)

 /**
 * Identifying_Constraints()
 * This is a implementation for algorithm in Paper “On the
 * Implications of Causal Models with Hidden Variables”. The
 * paper was written by Tian and Pearl.
 * The algorithms were also studied by Tian and Pearl.
 */
 public void Identifying_Constraints(QuasiBayesNet qbn, PrintStream

out){
 methods m = new methods();
 Method M = new Method();
 STCBayesNet STC = new STCBayesNet(qbn);
 STCInference STCI = new STCInference(qbn, true);
 int len = STC.number_observed();
 ProbabilityVariable[] V = new ProbabilityVariable[len];
 V = STC.get_observed_variables();
 V = STCI.TopologicalOrder(V);
 ProbabilityVariable[] Si = new ProbabilityVariable[len];
 Q Qs = new Q();
 String Qprint = "";
 String Q_variables = "";
 for(int i=0; i<len; i++){
 if (i==1){
 out.println("Q[" +V[0].get_name() +"] = P(" +

V[0].get_name() +")");
 out.println("Q[" +V[0].get_name() +"] does not

give any constraint.");
 out.println();
 }
 else{
 /* (A1) */
 /* subgraphh G(Vi) */
 out.println(V[i].get_name()+":");
 //i=2;
 ProbabilityVariable[] Vi = new ProbabilityVariable[i+1];
 Vi =get_Vi(V, i);
 Vector DUP = new Vector();
 DUP = DUP(qbn, Vi, out);
 ProbabilityVariable[] dup = new

ProbabilityVariable[DUP.size()];
 dup = m.from_Vector_to_ProbabilityVariable(DUP);
 ProbabilityVariable[] union = new

ProbabilityVariable[DUP.size()+Vi.length];

62

 union = m.Add(dup, Vi);
 BayesNet Gvi = new BayesNet(SubBayesNet(qbn, union,

"Gvi"));
 QuasiBayesNet q_Gvi = new QuasiBayesNet(Gvi);
 //LinkedList com = new LinkedList();
 Vector[] com = new Vector[i+1];
 AlgorithmComputing AC = new AlgorithmComputing(q_Gvi);
 com = AC.partition_c_component(Vi);
 int num_c = com.length;
 System.out.println("&&&&&"+com.length);
 int Si_idx = -1;
 if (num_c == 1){
 Q_variables = "";
 for (int k=0; k<Vi.length; k++){
 Q_variables += Vi[k].get_name() +",";
 }
 out.print("Q[" +Q_variables + "] ");
 out.println("Only one c-component. Cannot

continue.");
 out.println();
 }
 if(num_c >1){
 /* A1 */
 Si_idx = find_Si(com, V[i]);
 Q_variables = "";
 Si =

m.from_Vector_to_ProbabilityVariable(com[Si_idx]);
 Qs = Corollary_1(qbn, Si,out);
 for (int k=0; k<Qs.number_Probability(); k++){
 Q_variables +=

Qs.getProbability()[k].getName().get_name() +",";
 }
 Qprint = AC.Qprint(Qs);
 out.print("Q[" +Q_variables + "] = " + Qprint);
 out.print('\n');
 if (Si.length == 1){
 out.println("Q[" + Q_variables + "] does not

give any constraints.");
 out.print('\n');
 }
 else{
 boolean flag1 = true;
 while(flag1){
 /* (A2) */
 /* subgraph G(Si)*/
 DUP = DUP(qbn, Si, out);
 dup = m.from_Vector_to_ProbabilityVariable(DUP);
 union = m.Add(dup, Si);
 Gvi = new BayesNet(SubBayesNet(qbn, union, "Gsi"));
 q_Gvi = new QuasiBayesNet(Gvi);
 System.out.println("Gsi:");
 for (int k=0; k<q_Gvi.number_variables(); k++){

 ProbabilityVariable[] Si_Vi = new
ProbabilityVariable[Si.length-1];

 /* each descendent set D in G(Si), that not

63

contain Vi */
 Si_Vi = m.Subtraction(Si, V[i]);
 Vector subset = new Vector();
 Combine(Si_Vi, subset);
 //subset = getSubset(Si_Vi);
 Enumeration e;
 int number_D = subset.size();
 int D_Counter =0;
 for (e = subset.elements(); e.hasMoreElements();)

{ ProbabilityVariable[] pv = new
ProbabilityVariable[i];

 pv = (ProbabilityVariable[])(e.nextElement());
 out.print("D = {"); //pv is D of r305 algorithm.
 for (int j=0; j<pv.length; j++){
 out.print(pv[j].get_name()+",");
 }
 out.print("} ");
 int de_size = descendent(q_Gvi,

pv,out).length;
 ProbabilityVariable[] de = new

ProbabilityVariable[de_size];
 de = descendent(q_Gvi, pv,out);
 if(!equle (pv, de)){
 D_Counter ++;
 out.println("is not a descendent set.

");
 }
 else{
 System.out.println("is descendentral.

");
 ProbabilityVariable[] constraint = new

ProbabilityVariable[len];
 Vector Constraint = new Vector();
 int[] constraint_len = new int[1];
 Q Qsi_d = new Q();
 Vector<ProbabilityVariable> W_p = new

Vector<ProbabilityVariable>();
 W_p = m.Subtraction(Si, pv);
 ProbabilityVariable[] D_P = new

ProbabilityVariable[W_p.size()];
 D_P = m.from_Vector_to_ProbabilityVariable(W_p);
 Qsi_d = Lemma1 (qbn, q_Gvi,D_P, Si, Qs, Constraint,

constraint_len, out);
 Vector t1 = new Vector();
 if(Qsi_d !=null){
 //ProbabilityVariable[] tem2 = new

ProbabilityVariable[c_len];

 t1 = m.Subtraction(Paplus(qbn,Si,out),

pv);
 ProbabilityVariable[] tem1 = new

ProbabilityVariable[t1.size()];
 tem1 =

m.from_Vector_to_ProbabilityVariable(t1);
 //tem2 = Paplus(qbn,W_P,out);

64

 Constraint =m.Subtraction(tem1,
Paplus(qbn,D_P,out));

 Enumeration ff;
 ProbabilityVariable xxx = new

ProbabilityVariable();
 for (ff = Constraint.elements();

ff.hasMoreElements();) {
 xxx =

(ProbabilityVariable)(ff.nextElement());}
 if(D_P.length==1){
 flag1 = false;
 Q_variables = "";
 for(int q=0; q<D_P.length; q++){
 Q_variables += D_P[q].get_name()

+",";
 }
 out.print("Q[" +Q_variables + "] = " +

AC.Qprint(Qsi_d));
 out.print('\n');
 if (Constraint.size()==0){

 out.print("Q[" + Q_variables + "]

does not give any constraints.");
 out.print('\n');
 out.print('\n');
 }
 else{

out.println("Q[" + Q_variables +
"] It implies a constraint on
P(v) that the right hand side is
independent of " +
M.print_Vector(out, Constraint)
+ ".");

 out.print('\n');
 }
 } // if(D_P.length==1)
 if (D_P.length>1){
 /* subgraph G(D_pi)*/
 DUP = DUP(qbn, D_P, out);

 dup =
m.from_Vector_to_ProbabilityVariable(DUP);

 union = m.Add(dup, D_P);
 Gvi = new BayesNet(SubBayesNet(qbn,

union, "GDpi"));
 QuasiBayesNet q_Gvi_2 = new

QuasiBayesNet(Gvi);
 ProbabilityVariable[] Ei = new

ProbabilityVariable[D_P.length];
 AlgorithmComputing AC2 = new

AlgorithmComputing(q_Gvi_2);
 com = AC2.partition_c_component(D_P);
 num_c = com.length;
 Si_idx = -1;
 if (num_c>1){

65

 Si_idx = find_Si(com, V[i]);

 Ei =
m.from_Vector_to_ProbabilityVari

able(com[Si_idx]);
 D_P = STCI.TopologicalOrder(D_P);
 Q[] QDP = new Q[1];
 QDP[0] = Qsi_d;
 QFraction QDpi = new

QFraction(QDP);
 QFraction QEi = new QFraction();
 QEi = AC.lemma2(QDpi, Ei, D_P);

 Constraint =

m.Subtraction(Paplus(qbn, D_P,
out), Paplus(qbn, Ei, out));

 Q_variables = "";
 for(int q=0; q<Ei.length; q++){
 Q_variables +=

Ei[q].get_name() +",";
 }
 out.print("Q[" +Q_variables + "]

= ");
 AC.QFprint(QEi, out);
 out.print('\n');
 if (Constraint.size()>0){

out.println("Q[" +
Q_variables + "] It
implies a constraint on
P(v) that the right hand
side is independent of " +
M.print_Vector(out,
Constraint) + ".");

 out.print('\n');
 }
 else{
 out.print("Q[" +

Q_variables + "]
does not give any
constraints.");

 out.print('\n');
 out.print('\n');
 }
 if (Ei.length < 2){

 flag1 = false;
 }
 }// if (num_c>1)
 else if (num_c==1){
 flag1 = false;
 Q_variables = "";
 for(int q=0; q<D_P.length; q++){
 Q_variables += D_P[q].get_name() +",";
 }
 out.print("Q[" +Q_variables + "] ");

66

 out.println("Only one c-component.
Cannot continue.");

 } //else if (num_c==1) //else ---
 } //end if (D_P.length>0)
 }//if(Qsi_d !=null)
 }//end if ancestral or descendent
 }//end for
 if (D_Counter == number_D){
 flag1 = false;
 }
 }//while

 }//if (Si.length == 1) else{}/*A2*/
 }//end if c_num>1
 }//else /*A1*/
 }
 return;
}

67

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me

with various aspects of conducting research and the writing of this thesis.

First, I wish to thank Dr. Jin Tian for supervising and instructing this research and

this thesis and for providing lots of ideas and feedback for the thesis. I would like to thank

my committee members for their efforts and contributions to this work: Dr. Shashi K Gadia

and Dr. Doug Jacobson. Also, I would also like to extend my gratitude to Fang Peng, Jia Tao

and Changsung Kang for their comments and suggestions that eventually helped me finalize

the work. Finally, I would like to thank my family, especially my husband, for their

invaluable help during the university years and during my life.

68

REFERENCE

1. Heckerman, D., and Shachter, R. 1995. Decision-theoretic foundations for causal
reasoning. Journal of Artificial Intelligence Research, 3: 405–430.

2. Cozman, F.G., JavaBayes - version 0.346. 1998 - 2001,
http://www.cs.cmu.edu/~javabayes/Home/

3. Niedermayer, D. 1998. An Introduction to Bayesian Networks and their
Contemporary Applications. http://www.niedermayer.ca/papers/bayesian/index.html.

4. Tian, J. 2004 Identifying Linear Causal Effects. In Proceedings of the National
Conference on Artificial Intelligence (AAAI-04), 104-110.

5. Cheeseman, P. 1985. In Defense of Probability. In the Ninth International Joint
Conference on Artificial Intelligence (IJCAI-85), 1002-1009.

 6. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

7. Russell, S. and Norvig, P. 2006. Artificial Intelligence: A modern approach. 2ed.
492-533.

8. Nadkarni, S., and Shenoy, P. 2004. A causal mapping approach to constructing
Bayesian networks. Decision Support Systems, 38(2): 259-281.

9. Speigelhalter, J., Lauritzen, L. and Cowell, G. 1993. Bayesian analysis in expert
systems. Statistical Science, 8(3): 219-247.

10. Murphy, K. 1998. A Brief Introduction to Graphical Models and Bayesian Networks.
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html.

11. Charles River Analytics, Inc. 2004 About Bayesian Belief Networks.
http://www.cra.com/pdf/BNetBuilderBackground.pdf.

12. Bayesian network. http://en.wikipedia.org/wiki/Bayesian_network.
13. Yoo, C. and Cooper, F. 2003. A computer-based microarray experiment design-

system for gene-regulation pathway discovery. AMIA Annu Symp Proc-2003: 733-7.
14. Druzdzel, M., and Simon, H. 1993. Causality in Bayesian Belief Networks. In

Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence (UAI-93),
3-11.

15. Heckerman, D., Geiger, D. and Chickering, D. 1995. Learning Bayesian Networks, in
The Combination of Knowledge and Statistical Data. Machine Learning, 20(3): 197-
243.

16. Kang, C. and Tian, J. 2007. Polynomial Constraints in Causal Bayesian Networks. In
the 23rd Conference on Uncertainty in Artificial Intelligence (UAI-07) 200-208.

17. Valtorta, M., and Huang, Y. 2006. Identifiability in Causal Bayesian Networks: A
Sound and Complete Algrithm. In Twenty-First National Conference on Artificial
Intelligence (AAAI-06), 1149-1154.

18. Pearl, J. 2000. Causality: Models, Reasoning, and Inference. New York, USA:
Cambridge University Press.

19. Tian, J. and Pearl, J. 2002. On the Testable Implications of Causal Models with
Hidden Variables. In Proceedings of the Eighteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-02), 519-527.

20. Tian, J. 2004. Identifying conditional causal Effects. In Proceedings of the Twentieth
Annual Conference on Uncertainty in Artificial Intelligence (UAI-04), 561-568.

69

21. Tian, J. and Pearl, J. On the identification of causal effects. Artificial Intelligence,
accepted.

22. Shpitser, I. and Pearl, J. 2006. Identification of joint interventional distributions in
recursive semi-markovian causal models. In Proceedings of the Twenty-First
National Conference on Artificial Intelligence (AAAI-06), 1219-1226.

23. Pearl, J.and J.M.R. 1995. Probabilistic evaluation of sequential plans from causal
models with hidden variables. In Proceedings of the Eleventh Annual Conference on
Uncertainty in Artificial Intelligence (UAI-95), 444-453.

24. Verma, T. and Pearl, J. 1990. Equivalence and synthesis of causal models. In
Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-90), 255-270.

25. Sommerville, L., 2004. Software Engineering. 6th ed. New York, NY, USA: Addison
Wesley.

26. Feigenbaum, B. 2006. SWT, Swing or AWT: Which is right for you?
http://www.ibm.com/developerworks/grid/library/os-swingswt/

27. Packaging Programs in JAR Files.
http://java.sun.com/docs/books/tutorial/deployment/jar/.

28. Kuroki, M. 1999. Identifiability criteria for causal effects of joint interventions.
Journal of the Japan Statistical Society, 29(2): 105-117.

	2008
	A software system for causal reasoning in causal Bayesian networks
	Lexin Liu
	Recommended Citation

	Microsoft Word - le thesis final 7-7-08.doc

