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ABSTRACT

Intrusion detection has been at the center of intense research in the last decade owing to

the rapid increase of sophisticated attacks on computer systems. Typically, intrusion detection

refers to a variety of techniques for detecting attacks in the form of malicious and unautho-

rized activities. There are three broad categories of detection approaches: (a) misuse-based

technique that relies on pre-specified attack signatures, (b) anomaly-based approach, that typ-

ically depends on normal patterns classifying any deviation from normal as malicious; and

(c) specification-based technique that although operates in a similar fashion to anomaly-based

approach, employs a model of valid program behavior in a form of specifications requiring user

expertise.

When intrusive behavior is detected, it is desirable to take (evasive and/or corrective)

actions to thwart attacks and ensure safety of the computing environment. Such counter-

measures are referred to as intrusion response. Although the intrusion response component

is often integrated with the Intrusion Detection System (IDS), it receives considerably less

attention than IDS research owing to the inherent complexity in developing and deploying

response in an automated fashion. As such, traditionally, triggering an intrusion response is

left as part of the administrators responsibility, requiring a high-degree of expertise.

In this work we present an integrated approach to intrusion detection and response based on

the technique for monitoring abnormal patterns in the program behavior. The proposed model

effectively combines the advantages of anomaly-based and specification-based approaches rec-

ognizing a known behavior through the specifications of normal and abnormal patterns and

classifying unknown patterns using a machine-learning algorithm. Such combination not only

allows adaptation of the specification-based detection to the new patterns, but also provides a
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method for automatic development of specifications.

In addition to detection, our framework incorporates preemptive response. By preemption,

we imply deploying response before a monitored pattern is classified completely as an intrusion.

Such response deployment is likely to stop an intrusion before it can affect the system. However,

preemption also inherently suffers from false positives; i.e., responses are deployed to deter

correct execution which may look intrusive in its initial phase. To reduce false positives, we

have developed a multi-phase response selection and deployment mechanism based on the

evaluation of the cost information of the system damage caused by potential intrusion and

candidate responses.
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CHAPTER 1. Introduction

The information technology (IT) has long become an internal part of our modern society.

It is integrated in the infrastructure, vehicles, home appliances, daily communication etc.

Although we are dependent on it at home and at workplace, we rarely realize what challenges

the rapid IT development brings to the information security and what opportunities it opens

for the attackers. The rapid increase of the number, sophistication and impact of computer

attacks makes the computer systems unpredictable and unreliable, emphasizing the importance

of timely intrusion detection. However, as the intrusion detection alone does not provide

necessary assurance of the availability, reliability and security of the computer systems, it

becomes necessary to ensure accurate intrusion response.

The current research state in intrusion detection & response fields. Intrusion

detection has been at the center of intense research in the last decade owing to the rapid

increase of sophisticated attacks on computer systems. Typically, intrusion detection refers

to a variety of techniques for detecting attacks in the form of malicious and unauthorized

activities. There are three broad categories of detection approaches (Sekar et al., 2002) (a)

misuse-based (b) anomaly-based and (c) specification-based. Misuse-based technique relies on

pre-specified attack signatures, and any execution sequence matching with a signature is flagged

as abnormal. An anomaly-based approach, on the other hand, typically depends on normal

patterns, and any deviation from normal is classified as malicious or faulty. Unlike misuse-based

detection, anomaly-based techniques can detect previously unknown abnormalities. However,

anomaly-based approaches rely on machine learning techniques which can only classify pre-

specified, fixed-length behavioral patterns, and suffer from the disadvantage of a high rate of

false positives (Lazarevich et al., 2003). Specification-based techniques operate in a similar
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fashion to anomaly-based method detecting deviations from the specified legitimate system

behavior. However, as opposed to anomaly detection specification-based approach requires

user guidance in developing model of valid program behavior in a form of specifications. This

process, though tedious and reliant on user-expertise, can handle variable-length sequences

and is, therefore, more accurate than anomaly-based techniques.

The research in intrusion detection field for a long time has been mostly focused on anomaly-

based and misuse detection (Innella, 2001; Kemmerer and Vigna, 2002). However, nowadays,

as the number of attacks on computer systems increases and they become more sophisticated,

the focus of research shifts in a direction of highly automatic, dynamic and adaptable intrusion

detection solutions integrated with response mechanisms that are able to dynamically adapt

and respond to the novel threats (Kemmerer and Vigna, 2002; Gopalakrishna et al., 2005).

While some of the existing intrusion detection systems support adaptation based on learning

of new intrusion patterns through application of machine learning algorithms (Dalvi et al.,

2004; Eskin et al., 2000) or based on dynamic adjustment of system resources to changing

environment (Hinton et al., 1999), the adaptation in intrusion response component is often left

unaddressed.

Generally, intrusion response component, although often integrated with the intrusion de-

tection system (IDS), receives considerably less attention than research in the area of intrusion

detection. One of the reason to this is the inherent complexity in developing and deploying

response in an automated fashion.

Traditionally, triggering an intrusion response is left as part of the administrator’s respon-

sibility, requiring a high-degree of expertise. Although in recent years this focus has shifted,

automatic intrusion response support is still very limited. Most of the automatic response sys-

tems rely on the mapping of attacks to pre-defined responses (Toth and Kruegel, 2002; Carver

et al., 2000). These approaches allow the system administrators to deal with intrusions faster

and more efficiently. However, they lack flexibility mainly because few of these systems take

into account intrusion cost factors. Recent years have seen increased interest in developing

cost-sensitive modeling of response selection (Stakhanova et al., 2007b). The primary aim for
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applying such a model is to realize a balance between intrusion damage and response cost

to ensure adequate response without sacrificing the normal functionality of the system under

attack. However, defining accurate measurement of these cost and risk factors is one of the

challenges in using these models.

Another aspect that defines the efficiency of the intrusion response is the timeliness of the

response deployment. The response action in the majority of the existing response systems is

conservatively invoked once the existence of intrusion is confirmed. Though this strategy re-

duces false-positive response, delayed response action can potentially expose systems to higher

level of risk from intrusions, specifically in cases where it becomes impossible to restore systems

to its pre-attacked state.

Finally, the response mechanism must allow adaptation in response selection. Specifically,

if a triggered response fails to handle the corresponding intrusion multiple times then it can

be inferred that the system configuration, under which the triggered response was mapped to

the intrusion, has changed; this requires adaptation of response-mappings.

1.1 A Framework for Preemptive, Adaptive, Cost-Sensitive Intrusion

Detection and Response System

Our research work focuses on integrated approach to dynamic intrusion detection and re-

sponse combining the advantages of anomaly-based and specification-based intrusion detection

techniques. Such combination allows to recognize a known behavior through the specifications

of normal and abnormal patterns and to classify unknown patterns as correct or incorrect dur-

ing runtime of the system using a machine-learning algorithm. Thus, the proposed approach

not only provides adaptation of the specification-based detection to the new patterns, but also

allows automatic development of specifications.

To efficiently maintain the results of classification, we propose a novel structure EXtended

ACTion graph (Exact) that appropriately combines multiple sequences classified by machine

learning technique into variable-length patterns and memorizes them for future reference. In

our framework, we have two Exact graphs: one for storing normal patterns and the other for
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abnormal patterns. Sequences are classified using Exact, and the machine learning algorithm

is only invoked if necessary (Stakhanova et al., 2006).

The proposed Exact structure allows easy integration of intrusion detection process with

the response mechanism. In our work we focused on an intrusion response model which is

1. automated : deploying responses with little or no user-guidance.

2. cost-sensitive: assessing the risk and cost of (not) responding.

3. preemptive: triggering responses before the anticipated attack completes.

4. adaptive: updating the responses on-the-fly on the basis of their success and failure in

thwarting previously detected intrusions.

We approach the modeling of intrusion response from the integrated perspective of the

attack and the system resources views. On the one hand, the attack perspective allows locally

customize a response strategy to a specific attack trace at different attack steps. On the other

hand, we focus on an intrusion response from a global view of the attack impact on the system

resources.

To achieve this synergy of two perspectives, we develop a taxonomy of the system re-

sources that might potentially become targets during an attack and the responses that can

be effectively deployed to either counter possible attacks on these resources or defend system

services and regain secure system state. We also build a mapping between system resources,

the corresponding responses and specific attack patterns.

The association between system resources, response actions and intrusive patterns is recorded

in the abnormal graph; this is done by associating the start state of the pattern to the re-

source(s) it might affect. Monitored system activity is then continuously matched with patterns

in normal and abnormal graphs. Whenever a monitored sequence matches with a prefix of any

intrusive behavior (in abnormal graph), our algorithm decides whether or not to respond im-

mediately. Note that, the monitored activity is not yet classified as intrusive – it just matches

with a prefix of one or more intrusive behavior. If a response action is invoked at this stage,

we are forcing preemptive response to a possible intrusive behavior. However, we do not allow
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blind preemption, instead preemption depends on the probability of the potential intrusion.

If the prefix-pattern matched with the monitored sequence exhibits high probability (greater

than a pre-specified threshold or tolerance factor) of ending up in an intrusive behavior then

our algorithm decides to deploy a response action.

As a number of intrusive patterns can have the same prefix, there can be multiple candidate

response actions that can be deployed preemptively. Therefore, it is required to identify the

response that will have the least negative affect on the system. This is done by evaluating costs

and benefits of the available responses based on the utility theory (Coyle, 1972), that focuses

on providing maximum benefit at the lowest risk. In particular, we take into consideration the

past effectiveness of the possible responses and their respective severity. By severity, we imply

the negative impact the response can have on legitimate users.

If intrusive behavior continues after the preemptive response was deployed, the triggered

response’s effectiveness factor is lowered to adjust response selection in the future use of this

response action. This response selection and deployment are performed automatically without

any user intervention which allows fast containment of the intrusion and thus makes system

defense more effective.

1.2 Contributions of the dissertation

We see the following contributions of our work:

1. Development of an adaptive and proactive specification-guided anomaly based intrusion

detection enhanced with automatic development of specifications.

2. Development of intrusion response system with the following characteristics:

(a) response actions are triggered automatically.

(b) response actions are triggered proactively.

(c) response selection is based on probabilistic cost-benefit analysis.

(d) response selection mechanism is adaptive.
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3. Demonstration of the practical applicability of the proposed technique by

(a) developing a prototype of the proposed intrusion detection and response system

(b) performing experiments that demonstrate system effectiveness in detecting known

and novel attacks and in handling these intrusions

(c) performing experiments that test system performance, specifically, the overhead

that our model brings to the system while monitoring its behavior

1.3 Organization of the dissertation

The rest of the thesis is organized as follows:

1. In Chapter 2 we discuss the related work in intrusion detection and present a taxonomy of

intrusion response systems, together with a review of current trends in intrusion response

research.

2. In Chapter 3 we present an overview of the proposed model for monitoring program

behavior and discuss its components: Exact graph structure and machine learning-based

classification followed by the simulation results.

3. In Chapter 4 we provide the classifications of system resources, intrusion responses and

the correspondence between them. In this chapter we also explain the details of our cost-

sensitive model for intrusion response selection that incorporates preemptive deployment

of the response and the adaptive mechanism for adjusting response deployment at run-

time of the system.

4. In Chapter 5 we provide an implementation details together with the experiments results.

5. In Chapter 6 we summarize our results and discuss our future work.
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CHAPTER 2. Related Work

2.1 Intrusion Detection

Intrusion detection has been the center of intense research in the last decade owing to the

rapid increase of sophisticated attacks on computer systems. It typically refers to a variety of

techniques for detecting attacks in the form of malicious and unauthorized activity.

In general, the intrusion detection techniques can be broadly classified into three classes (Sekar

et al., 2002)

• Signature-based (misuse) detection relies on pre-specified attack signatures, rules

or events that precisely describe intrusion behavior. Any execution sequence matching

attack signature is marked as abnormal. While signature-based approach provides low

false alarm rate, it cannot identify novel intrusions, attacks that do not have pre-specified

signatures.

• Anomaly-based detection is based on the model of normal system behavior usually

developed using statistical or machine learning techniques. During the detection any

deviation from this model is considered abnormal and classified as potential intrusion.

Unlike signature-based technique, anomaly detection can recognize previously unknown

abnormalities.

• Specification-based detection operates in a similar fashion to anomaly-based method

detecting deviations from the specified legitimate system behavior. However, as opposed

to anomaly detection specification-based approach requires user guidance in developing

model of valid program behavior in a form of specifications.
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2.1.1 Signature-based detection

In the past two decades a number of misuse techniques have been proposed. Among these

are methods based on state-transition analysis of anomalous system behavior (d’Auriol and

Surapaneni, 2004; Ilgun, 1993; Ilgun et al., 1995), rule-based expert systems (Garvey and Lunt,

1991; Habra et al., 1992; Jean-Philippe Pouzol, 2002; Sebring et al., 1988) and attack graph-

based approaches (Kumar, 1995; Kumar and Spafford, 1994; Lin et al., 1998; Sheyner et al.,

2002; Staniford-Chen et al., 1996).

In recent years, several methods have been proposed to represent intrusion signatures

through attack graphs which can be constructed from the alerts reported by intrusion de-

tection system (Ning et al., 2004; Noel et al., 2005, 2004; Sheyner et al., 2002). These graphs

precisely model attack paths in the network through nodes representing host vulnerabilities

and edges showing connectivity between these hosts (Sheyner et al., 2002). While attack

graphs are exhaustive and precise, their manual construction is tedious and often error-prone.

Recently, several projects have focused on automatic generation of such graphs (Sheyner et al.,

2002; Swiler et al., 2001). Another concern related to attack graphs is their scalability. While

it became possible to build attack graphs for large networks using automatic tools, it is still

quite difficult to manage their complexity. Several visualization techniques have been proposed

to cope with this problem (Noel et al., 2005; Noel and Jajodia, 2004).

While signature-based approaches provide low false alarm rate, they cannot identify novel

intrusions, i.e. attacks that do not have a pre-specified signatures.

2.1.2 Anomaly-based detection

An anomaly-based approach relies on a model of normal system behavior. During the

detection any significant deviations from this model are considered abnormal and classified

as potential intrusions. Unlike signature-based techniques, anomaly detection can recognize

previously unknown abnormalities. However, since the detection process relies on potentially

incomplete model of legitimate behavior, anomaly detection suffers from the high false positive

rate.
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A model of normal system behavior is typically developed through statistical or machine

learning techniques (Axelsson, 2000). Statistical methods build normal model by collecting sta-

tistical values from data (such as mean, standard deviation, time series behavior etc.) (Smaha,

1988; Lunt et al., 1992; Huang et al., 2003). One disadvantage of these methods is the necessity

to select a threshold distinguishing normal and abnormal values which is not a trivial task.

Machine learning techniques usually construct model by analyzing normal system behav-

ior for potential patterns (Debar et al., 1992; Lane and Brodley, 1999). In this case, the

constructed model is highly dependent on the underlying data. Since system behavior is se-

quential in nature, the common data modeling technique is a sliding window approach that

breaks data stream into window-length sequences. Most methods employ fixed-length window

size (Forrest et al., 1996; Hofmeyr et al., 1998; Wang et al., 2004). An overview and comparison

of such methods is given in (Warrender et al., 1999). However, the common challenge in these

approaches is the selection of optimal window size that provides the best anomaly detection

performance (Tan and Maxion, 2002). While window size can potentially affect the detection

process (Hofmeyr et al., 1998), no algorithm for selection of optimal length was developed.

Debar (Debar et al., 1998) proposed generation of variable-length sequences based on suffix

trees augmented with a number of occurrences of each subsequence. The resulting tree is

pruned based on the frequency of patterns to reduce a number of false positives during detection

process. Thus the final tree contains only the most frequent patterns, and therefore prone to

high false positive rate.

Similar approach was proposed by Marceau (Marceau, 2000). However, the suffix tree

was employed as the underlying structure for constructing finite state machine with states

representing predictive sequences of variable length. Kosoresow and Hofmeyr (Kosoresow and

Hofmeyr, 1997) also employed finite automaton based on variable-length patterns for detection

process. As the automaton construction was done manually it does not seem scalable for real

systems.

Eskin et al. (Eskin et al., 2001) proposed an alternative algorithm for determining optimal

window size depending on the data context motivating the approach by the fact that different
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window sizes might be considered as optimal at different points in the process. Their approach

is based on Sparse Markov Transducers (SMTs), extension of probabilistic suffix trees. SMTs

allow to consider a mixture of possible trees and estimate the best tree for the given data. The

topology of the final tree defines the context dependent window sizes and wild card placement.

While proposed approach provides a good prediction for variable-length patterns in a particular

data set, it is static in its nature as the approach does not allow to update the prediction tree

as more system data becomes available.

2.1.3 Specification-based detection

Specification-based detection aims to overcome difficulties of both signature-based and

anomaly-based approaches. Specification-based technique, though tedious and reliant on user-

expertise, is more accurate than anomaly detection. At the same time, it does not rely on the

knowledge of all possible system vulnerabilities as signature-based technique, and thus able to

detect novel attacks.

One of the first specification-based models were introduced by Ko (Ko et al., 1994, 1997; Ko,

2000). Ko’s initial work (Ko et al., 1994) has been focused on the monitoring of the privileged

programs executions using audit trails. While the number of potential program vulnerabilities

is unknown, the intended program behavior is limited and can be specified in a concise fashion

in a form of specifications. Ko also introduced a specification language based on predicate logic

and parallel environment grammars (PE-grammars). While his initial work focused on host-

based intrusion detection, he later applied the proposed approach to distributed scenario (Ko

et al., 1997).

Another specification-based approach focused on monitoring program behavior has been

proposed by Sekar (Sekar et al., 1998; Sekar and Uppuluri, 1999). In addition to the moni-

toring program executions through system calls, this technique aims to enforce specified legal

behavior through isolation technique. It allows to isolate compromised process by preventing

its execution operations that can potentially damage the system. Examples of such prevention

are return of error code for suspicious system call or restriction of file access.
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While the above techniques are mostly based on the monitoring of the program behavior,

SHIM (System Health and Intrusion Monitoring) approach (Ko et al., 2001) employs speci-

fications in form of constraints that describe valid system behavior. Employing hierarchy of

such constraints and checking their validity during run-time, although does not directly detect

a potential attack, catches its manifestation.

One of the major downsides of the specification-based approach is the necessity to develop

the system specifications manually. As this process is time-consuming and error-prone, au-

tomatic generation of specifications is highly beneficial. As such, Ko(Ko, 2000) presented a

machine learning approach for developing security specifications automatically. He built an

induction engine based on Inductive Logic Programming(IPL) method that generates program

behavioral specifications at the system call level.

Wagner and Dean(Wagner and Dean, 2001) employed a static analysis to automatically

derive program specifications. They proposed three methods for generating the specifications:

callgraph model, based on control-flow analysis of code, abstract stack model represented as

pushdown automaton and digraph model based on all possible 2-gram sequences of system

calls derived from control-flow graph.

While ensuring completeness of the developed specifications is a common difficulty of the

specification-based models, only a few approaches have attempted to address this problem.

Song at el. (Song et al., 2003) proposed a formal framework based on ACL2 for analysis and

verification of specifications. Since the system specifications are developed based on certain

assumptions, deploying a mechanism to secure these assumptions will improve the security of

the system.

Our approach was inspired by the specification-based anomaly detection technique pro-

posed by Sekar et al. (Sekar et al., 2002). Their work aimed at augmenting machine learning

techniques with high-level specifications to achieve a high degree of precision in detecting

anomalies in software. The authors showed that the sliding window technique (Forrest et al.,

1996) using a machine learning algorithm may be excessively error-prone due to its inability

to classify sequences of varying length. They thus manually developed high-level specifications
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(as finite state machines) of software systems and annotated them using statistical informa-

tion learnt via machine learning technique. During detection process, they computed specified

statistics and compared them for deviations from the values indicated in specifications.

Several works have been focused on the specification languages (Uppuluri and Sekar, 2000;

AsmL, 2007). The Behavior Monitoring Specification Language (BSML) (Uppuluri and Sekar,

2000) was designed to capture event-based security properties of the program through the

system calls and their arguments. Another language, AsmL (Abstract State Machine Lan-

guage) (AsmL, 2007) was developed by Microsoft Research for software specification and ver-

ification. It is an executable specification language that models system as a series of states.

One of the recent approaches used AsmL to describe attack scenarios in misuse intrusion

detection (Raihan and Zulkernine, 2005).

More recently, several techniques applied specification-based approach to detect attacks

against AODV (Tseng et al., 2003), OLSR (Tseng et al., 2005) and cryptographic proto-

cols (Joglekar and Tate, 2005).

2.2 Intrusion Response

Intrusion response generally refers to evasive and/or corrective actions taken in the event of

detected intrusive behavior to thwart attacks and ensure safety of the computing environment.

2.2.1 Taxonomy of Intrusion Response Systems

To organize existing research efforts in the field of intrusion response we developed a taxon-

omy of IRS. The proposed taxonomy is given in Figure 2.1. In the reminder of this section we

provide details on each of the categories in the given classification. Intrusion response systems

can be classified according to the following characteristics:

Activity of triggered response.

• Passive: Passive response systems do not attempt to minimize damage already caused

by the attack or prevent further attacks. Their main goal is to notify the authority
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Figure 2.1 Taxonomy of the intrusion response systems

and/or provide attack information.

• Active: As opposed to passive systems, active systems aim to minimize the damage

done by the attacker and/or attempt to locate or harm the attacker.

Majority of the existing intrusion detection systems provide passive response. Among 20

IDS evaluated by Axelsson (Axelsson, 2000), 17 systems supported passive response while

only 3 systems were designed to mitigate the damage or harm the attacker. Table 2.1

gives an overview of the passive and active approaches used in the existing response

systems.
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Passive Active

Administrator notification: Host-based response actions:

generate alarm deny full/selective access to file
(through email, online/pager notification, etc.) delete tampered with file

generate report allow to operate on fake file
(can contain information about one intrusion restore tampered with file from backup
such as attack target, criticality, time, source IP, restrict user activity
user account, description of suspicious packets, etc. disable user account
as well as intrusion statistics for a period of time) shutdown compromised service/host
such as number of alarms from each IDS,) restart suspicious process
attack targets grouped by IP etc) terminate suspicious process

enable additional IDS disable compromised services
enable local/remote/network activity logging abort suspicious system calls
enable intrusion analysis tools delay suspicious system calls
backup tampered with files

trace connection for information gathering purposes Network-based response actions:

enable/disable additional firewall rules
restart targeted system
block suspicious incoming/outgoing
network connection
block ports/IP addresses
trace connection to perform attacker
isolation/quarantine1

create remote decoy1

Table 2.1 List of common passive and active intrusion responses.

Level of automation. The classification according to the level of automation has been

presented in early works by several authors (Toth and Kruegel, 2002; Carver et al., 2000;

Ragsdale et al., 2000). However, employing only these categories gives a very broad view

of the response systems and hence does not provide enough information about the existing

research efforts. The taxonomy presented here, on this categorization, also includes additional

principles that emphasize differences between various existing approaches.

• Notification systems: Notification systems mainly provide information about the

intrusion which is then used by system administrator to select an intrusion response.

Majority of the existing IDSs provide notification response mechanism.

• Manual response systems: Manual response system provides higher degree automa-

tion than notification-only systems and allows system administrator to launch an action

from a predetermined set of responses based on the reported attack information.

1Borrowed from (Wang et al., 2001a)
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• Automatic response systems: As opposed to manual and notification approaches,

automatic response systems provide immediate response to the intrusion through auto-

mated decision making process. Although intrusion detection systems are greatly auto-

mated nowadays, automatic intrusion response support is still very limited.

2.2.1.1 Automatic response systems

Response ability to adjust.

• Static: Majority of the IRS are static as the response selection mechanism remains

the same during the attack period. These systems can be periodically upgraded by the

administrator, however, such support is manual and often delayed till the moment when

considerable amount of intrusions exposes the inadequacy of current response mechanism.

Although this approach takes a conservative view of the system and environment, it is

simple and easy to maintain.

• Adaptive: The adaptability of the response is an ability of system to dynamically adjust

response selection to the changing environment during the attack time. Adaptation

capability can be represented in several ways including (a) adjustment of system resources

devoted to intrusion response such as activation of additional IDS, or (b) consideration

of success and failure of responses previously made by the system. The latter can refer

to both detection and response mechanisms. Failure of the response can be due to the

mistake of IDS that falsely flagged normal activity as intrusion or due to the mistake of

IRS that triggered an inappropriate response.

Time instance of the response.

• Proactive (preemptive): Proactive response system allows to foresee the incoming

intrusion before the attack has affected the resource. Such prediction is generally hard

and often relies on the probability measures and analysis of current user/system behavior.

Proactiveness of the response also requires that the detection and response mechanisms
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are tightly-coupled such that responses can be fired as soon as a likelihood of attack

is identified. Although proactive detection of the attack and early response is a desired

feature, it is often hard to guarantee 100% correctness of the triggered action. The trade-

off between the correctness of the attack detection and timely response to the possible

attack is an inherent characteristic of intrusion response systems.

• Delayed: The response action is delayed until the attack has been confirmed. Such

assurance may be provided through the confidence metrics of IDS or full match of the

intrusive trace with an existing attack signature. Although, majority of the existing

systems use delayed response approach, it may not be suitable for safety-critical systems.

For example, for systems relying on checkpoints as fault tolerance mechanism, a delayed

response might lead to inability of a system to roll back to the safe state.

Generally, the delayed response leaves more time to the attacker, consequently allowing

more damage to occur and therefore putting the greater burden of system recovery on

the system administrator.

The proactive and delayed intrusion response has also been considered by several authors as

incident prevention and intrusion handling of intrusion response (Fisch, 1996; Bishop, 2003)

respectively. Proactive response is merely an incident prevention that takes place before attack

has succeeded, while delayed response is intrusion handling that is performed after the intrusion

and includes actions to restore system state. While these two steps should be performed

sequentially to provide full system defense and repair, often systems fall back into one of

approaches.

Cooperation capabilities.

• Autonomous: Autonomous response systems handle intrusion independently at the

level it was detected. As such, a host-based IDS detecting an intrusion on a single

machine will trigger a local response action such as terminating a process, shutting down

the host, etc.
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• Cooperative: Cooperative response systems refer to a set of response systems that

combine efforts to respond to an intrusion. Cooperative system can consist of several

autonomous systems that are capable of detecting and responding to intrusions locally,

however the final or even additional response strategy is determined and applied globally.

Often network IRS are built in such cooperative manner. It allows to achieve better

performance in terms of speed of the response and volume of the contained damage.

Although cooperative systems provide more effective response than autonomous systems

alone, they are also more complex requiring strong coordination and communication

among their components.

Response selection mechanism. A step into distinguishing various response selection

principles was taken by Toth et al. (Toth and Kruegel, 2002; Toth, 2003). The authors noted

that majority of the existing approaches use static mapping tables or rules based dynamic

engines which we define as static and dynamic mapping approaches.

• Static mapping: Static mapping systems are essentially automated manual response

systems that map an alert to a predefined response. For example, alert about attack

on a host can trigger dropping incoming/outgoing network packets. These systems are

easy to build and maintain. However, they are also predictable and therefore, vulnerable

to intrusions, in particular, denial-of-service attacks. Another weakness of the static

mapping systems is their inability to take into account the current state of the whole

system. In static mapping systems the triggered response actions present isolated efforts

to mitigate the attacks without considering current condition and the impact on other

services and system in general. Additionally, as it has also been noted by Toth (Toth and

Kruegel, 2002), this approach seems to be infeasible for large systems where the volume

of threat scenarios to be analyzed and the constant changes in system policies make the

process of building such decision tables cumbersome and prone to errors.

• Dynamic mapping: Dynamic response mapping systems are more advanced than

static mapping systems as the response selection is based on the certain attack metrics
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(confidence, severity of attack, etc). In the dynamic mapping setting an intrusion alert

is associated with a set of response actions. The exact action is chosen in real-time based

on the characteristics of the attack. Generally the selection mechanism for an alert can

be presented by a set of ”if-then” statements. For example,

if unauthorized user gains access to the password file then
if confidence of attack is greater than 50% then

disable user account and restore password file from backup
if confidence of attack is smaller than 50% then

give a fake password file

Generally, by adjusting attack metrics we can provide more flexibility in intrusion re-

sponse selection. For example, attacks with low confidence and severity level can be

ignored; moderately severe intrusions with low certainty can be traced while high sever-

ity attacks can be responded with appropriate actions. Although this approach can still

be potentially exploited by an adversary, it provides much more fine-grained control in

response to an attack.

• Cost-sensitive: Cost-sensitive response systems are the only response systems that

attempt to balance intrusion damage and response cost. The optimal response is deter-

mined based on the cost-sensitive model that incorporates several cost and risk factors.

Usually these factors are divided into factors related to the intrusion such as damage cost

and factors characterizing response part such as response action cost. Accurate measure-

ment of these factors is one of the challenges in using these cost models. Numeric values

such as monetary values, probabilistic measurement or percentages that correspond to

some objective metrics are not always suitable, as more effective solution based on rel-

ative measurements can be applied (Peltier, 2001). The relative measurements can be

contracted based on organization security policies, risk factors, etc (Lee et al., 2000).

One of the downsides of this approach is the necessity to update cost factor values with

time. In most cases it is done manually which also puts additional burden on the system

administrator.
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2.2.2 Existing IRS

In this section we will discuss the existing intrusion response systems in relation to the

proposed taxonomy.

Static vs. Adaptive. The response models proposed by Foo et al. (Foo et al., 2005)

and Carver et al. (Carver and Pooch, 2000; Carver et al., 2000; Ragsdale et al., 2000) are

examples of an adaptive approach. AAIRS, due to (Carver and Pooch, 2000; Carver et al.,

2000; Ragsdale et al., 2000), provides adaptation through confidence metric associated with

each IDS and through success metric corresponding to the response component of the system.

The confidence metric indicates the rate of false positive alarms to correct number of intrusions

generated by each IDS employed by the system. Similarly, the success metric indicates response

actions and response plans that were more successful in the past.

Similar adaptation concept based on the feedback is presented in ADEPTS (Foo et al.,

2005). In this case, effectiveness index, a metric showing effectiveness of a response action

against particular attack, is decreased if the action fails. While ADEPTS supports automatic

update of the response effectiveness metric, AAIRS requires system administrator intervention

after each incident.

Unlike these two solutions, other models considered in Table 2.2 offer no adaptation support

in response mechanism.

Proactive vs. Delayed. Among the existing response systems presented in the litera-

ture, the majority fall into delayed response category. One of the solutions in these models is

suspension of the suspicious processes until the intrusion has been confirmed (Balepin et al.,

2003; Somayaji and Forrest, 2000). Such suspension can be temporal until further response

strategy is formulated (Balepin et al., 2003) or permanent until the system decides to abort

delayed program (Somayaji and Forrest, 2000). Another approach in delayed response is al-

lowing the execution of the suspicious behavior until the observed pattern has matched an

intrusive signature (White et al., 1996; Wang et al., 2001a).
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A rare example presented in recent work by Foo et al. (Foo et al., 2005) investigates a

proactive approach to response deployment. The proposed system employs an intrusion graph

(I-Graph) to model attack goals and consequently to determine possible spread of the intrusion.

The mechanism maps alarms provided by the involved IDS to I-Graph nodes and estimates

the likelihood of the attack spread based on the alarm confidence values. Finally, appropriate

response actions are deployed targeting identified attack goals.

Another proactive handling of response was recently proposed by Locasto et al. (Locasto

et al., 2005). FLIPS, intrusion prevention system, is based on STEM technique (Sidiroglou

et al., 2005) that allows to create unique environment for emulation of selected application

pieces prior to their real execution. Using this approach for code injected attacks, malicious

code can be recognized within a few bytes and prevented from execution.

The Cooperating Security Manager system (CSM) proposed by White et al. (White et al.,

1996), although not specifically designed to be proactive, can yield proactive reaction to intru-

sive behavior in certain cases. This is a distributed approach that combines individual hosts

equipped with CSM. While each host performs a local intrusion detection, it is also responsible

for notifying other CSMs about suspicious activity. Clearly, instead of waiting for intrusive

activity from a user, notified host can take a proactive action to prevent it. An example of

such situation is when attacker attempts to gain unauthorized access to an account by trying

different passwords. However, instead of checking all possible passwords on one machine, at-

tacker moves to a different host after each failed attempt. While several unsuccessful logins

can raise an alarm, single attempt will not be significant enough to be flagged as suspicious.

Therefore, reporting such activity to other CSM hosts allows to detect this attack.

Autonomous vs. Cooperative. There are several examples of the cooperative response

systems in the published literature. One such example, Survivable Autonomic Response Archi-

tecture (SARA) (Lewandowski et al., 2001) was developed as unified approach to coordinate

fast automatic response. It consists of several components that function as sensors (information

gathering), detectors (analysis of sensor data), arbitrators (selection of appropriate response

actions) and responders (implementation of response). These components can be arranged
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among participating machines in a manner that provides the strongest defense. Thus, each

host of the system can be equipped with arbitrator which can provide local intrusion response

and at the same time participate in a global response selection strategy.

Another cooperative model is EMERALD - a distributed framework for network monitor-

ing, intrusion detection and automated response proposed by Porras and Neumann (Porras

and Neumann, 1997). The framework introduces a layered approach allowing to deploy inde-

pendent monitors through different abstract layers of the network. The response component

of the framework is represented by the resolver that is responsible for analyzing attack reports

and coordinating response efforts. While resolvers are responsible for response strategy on

their local level, they are also able to communicate with resolvers at other EMERALD layers,

participating in global response selection.

The Cooperative Intrusion Traceback and Response Architecture (CITRA) presented in

(Schnackenberg et al., 2001) provides an example of cooperative agent-based system. This

architecture utilizes neighborhood structure where the information about detected intrusion is

propagated back through the neighborhood to the source of the attack and submitted to the

centralized authority. The centralized authority, referred to as Discovery Coordinator, finally

determines an optimal system response. While the Discovery Coordinator is responsible for

coordinating global response, local CITRA agents can issue a local response action on a local

intrusion detection report.

All of the cooperative approaches to response selection and deployment tend to be dis-

tributed network-oriented systems. While CSM system (White et al., 1996), discussed in the

previous section, presents an example of autonomous response system, it is a distributed IDS.

CSM system allows hosts to share information and detect intrusive user activity in a coop-

erative manner, however the response actions are determined and deployed by each machine

locally.

Other examples of autonomous response system include (Somayaji and Forrest, 2000;

Bowen et al., 2000; Uppuluri and Sekar, 2000). These are host-based systems specifically

oriented to handle local intrusion detection and response.
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Static mapping vs. Dynamic mapping. Most tracing techniques fall into static map-

ping category and automatically respond to an intrusion by tracing it back to the source and

applying predetermined response actions (Wang et al., 2001b; Schnackenberg et al., 2000).

Although automated, these approaches have a spirit of notification intrusion response systems

as they mainly report about the intrusion source.

Several recent tracing mechanisms take one step further offering a combination of static and

dynamic mapping techniques (Wang et al., 2001a; Schnackenberg et al., 2001). TBAIR (Wang

et al., 2001a) framework suggests to trace the intrusion back to the source host and dynam-

ically select the suitable response such as remote blocking of the intruder, isolation of the

contaminated hosts, etc.

Similar approach was taken by CITRA (Schnackenberg et al., 2001). This framework in-

tegrates network-based intrusion detection, security management systems and network infras-

tructure (firewalls, routers) to detect the intrusion, trace it back to the source and coordinate

local response actions based on the attack report. The response mechanism is based on two

factors: certainty and severity of the intrusion. While certainty represents the likelihood that

reported event is an intrusion, severity defines potential damage to the system and is mainly

based on the policy of the particular site. Depending on the reported certainty and severity

values, a response action is chosen from a predetermined set.

While these dynamic techniques rely on the underlying predefined set of responses, as

opposed to static mapping techniques, the actual action is determined dynamically based on

additional factors specific to the current intrusion attempt (intrusion confidence and severity).

Based on agent architecture SoSMART approach (Musman and Flesher, 2000) is an ex-

ample of statically mapped response selection system. User-designed incident cases mapped

to the appropriate responses present an available set of response actions. In addition to this

response decision set, SoSMART model employs a case-base reasoning (CBR) as an adapta-

tion mechanism that matches current system state to the situations previously identified as

intrusive. Based on the past experience an additional set of responses can be selected and

deployed. Dynamic addition of the new cases allows CBR system to evolve over time.
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The next two discussed approaches also offer static mapping response selection mechanism

as they rely on the deployment of the prespecified response actions. Authors of (Bowen et al.,

2000; Uppuluri and Sekar, 2000) proposed an approach to intrusion detection and response

based on the specifications of normal behavior expressed in BMSL (Behavioral Monitoring

Specification Language). BMSL specifies system behavior in a finite state machine automata

fashion and augments each intrusion specification path with a response action. This action

can be represented by invocation of a response function, assignment to a state variable or a

set of rules for process isolation.

The pH system developed by Somayaji and Forrest (Somayaji and Forrest, 2000) is an

intrusion detection and response system. Its detection component is based on the normal

behavioral profile of the system consisting of N-gram sequences of system calls. Sequences of

calls deviating from the normal behavior are considered anomalous and can be either aborted or

delayed. Although, these two response actions are simple and computationally not expensive,

authors acknowledge that they are not suitable for all applications and additional response

might need to be considered.

The detection component of this approach is closely related to our model. Although both

works automatically develop normal behavior of the system, our approach allows more flexibil-

ity in the detection part, representing specifications of both normal and anomalous behavior

in terms variable-length patterns, and supports easy extension to the sophisticated response

mechanism.

Dynamic mapping vs. Cost-sensitive. CSM (White et al., 1996) and EMERALD (Por-

ras and Neumann, 1997) are dynamic mapping systems. In both approaches the selection of

the response strategy is based on confidence information about detected intrusive behavior

produced by the detection component and severity metrics associated with an attack.

Another dynamic mapping technique specifically aimed at intrusion damage control and

assessment, DC&A, is proposed by Fisch (Fisch, 1996). DC&A tool contains two primary

components: damage control processor responsible for actions necessary to reduce or control

the damage done by the intruder while the intrusion is still in progress and damage assessment
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processor that performs post-attack measures aimed at system recovery. A specific response

action to an intrusion is selected by damage control unit based on a suspicion level of user’s

activity provided by IDS and from the responses available for the given suspicion level. If

user’s suspicion level increases with time a different response action can be later selected. After

intruder leaves the system, damage assessment processor will determine necessary actions to

restore original system state based on final suspicion level associated with the intruder. For

example, the assessment procedure can include analysis of log files followed by replacement of

the stolen files from backup storage.

One of the most complex dynamic mapping approaches is Adaptive, Agent-based Intrusion

response system based on agent architecture (AAIRS) (Carver and Pooch, 2000; Carver et al.,

2000; Ragsdale et al., 2000). Framework agents represent the layers of the response process.

Intrusion alarms are first processed by the Master analysis agent which computes confidence

level and classifies the attack as new or ongoing. This classification is mainly based on the

preset decision tables. This information is then passed to the Analysis agent which gener-

ates action plan based on the response taxonomy. Authors proposed 6-dimentional taxonomy

(Carver and Pooch, 2000): timing, type of attack, type of attacker, degree of suspicion, at-

tack implications and environmental constraints. Finally, the Tactics agent decomposes the

response plan into specific actions and invokes the appropriate components of the response

toolkit. This work mainly presents a foundation for intrusion response system as no specific

techniques or algorithms necessary for AAIRS are provided.

Compared to the amount of work published on static and dynamic response selection

mechanisms, the category of cost-sensitive selection is relatively small.

The approach to intrusion response proposed by Lee at al. (Lee et al., 2000) is based

on a cost-sensitive modeling of the intrusion detection and response. Three cost factors were

identified: operational cost that includes the cost of processing and analyzing data for detecting

intrusion, damage cost that assesses the amount of damage that could potentially be caused

by attack and response cost that characterizes the operational cost of reaction to intrusion.

These factors present the foundation of intrusion cost model, i.e total expected cost of intrusion
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detection, and consequently provides a basis for a selection of an appropriate response.

Models proposed by Toth and Kruegel (Toth and Kruegel, 2002) and Balepin el al. (Balepin

et al., 2003) not only consider costs and benefits of the response actions, but also attempt

to model dependencies between services in the system. Such modeling reveals priorities in

response targets and evaluates the impact of different response strategies on dependent services

and system.

The approach proposed by Toth and Kruegel (Toth and Kruegel, 2002) is a network-based

response mechanism that builds dependency tree of the resources on the network. The proposed

algorithm for optimal response selection takes into account a penalty cost of a resource being

unavailable and capability of a resource that indicates the resource performance if specified

response strategy is triggered, compared to the situation when all resources are available.

Clearly, the set of response actions with the least negative impact on the system (lowest

penalty cost) is chosen to be applied in response to the detected intrusion.

Similar approach, based on host-intrusion detection and response, was proposed by Balepin

el al. (Balepin et al., 2003). In this system, local resource hierarchy is represented by a directed

graph. Nodes of the graph are specific system resources and graph edges represent dependencies

between them. Each node is associated with a list of response actions that can be applied to

restore working state of resource in case of an attack. A particular response for a node is

selected based on the cost of the response action (sum of the resources that will be affected

by the response action), the benefit of the response (sum of the nodes, previously affected by

intrusion and restored to working state) and the cost of the node or resource.

Graph-based approach called ADEPTS, Adaptive Intrusion Response using Attack Graphs,

as discussed in the previous section, is proposed by Foo et al. (Foo et al., 2005). Modeling

intrusion using graph approach allows to identify possible attack targets and consequently

shows objectives of suitable responses. The response actions for the affected nodes in the graph

are selected based on the effectiveness of this response to the particular attack in the past, the

disruptiveness of the response to the legitimate users and confidence level that indicates the

probability that real intrusion is taking place.
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This work is the most closely related to our approach to intrusion response. Although

the approaches employ similar metrics, our schema allows more flexibility in determining the

response action. ADEPTS although calculates the attack confidence, does not use it in response

selection. This might lead to a situation when responses for nodes that are less likely to be

reached are more severe than the responses for the nodes currently under attack. ADEPTS also

relies on the I-graph in determining the intrusion spread, however, it does not allow dynamic

additions of the intrusion patterns which makes I-graph static and the system vulnerable to the

attacks not present in the graph. Though ADEPTS allows to trigger response preemptively,

it does not take any follow-up steps to contain the intrusion if the selected response failed.

In contrast, we continue a response selection algorithm until no traces of the intrusion can be

detected.

2.2.3 Summary

An overview of the research and development of intrusion response system in the last decade

is given in Table 2.2 and can be summarized as follows:

• Recent years have seen increased interest in developing cost-sensitive modeling of response

selection. The primary aim for applying such a model is to ensure adequate response

without sacrificing the normal functionality of the system under attack. Our survey

shows that though a number of response frameworks often offer facilities responsible for

these mechanisms, very few works provide the detailed algorithms.

• In terms of response-deployment time, majority of proposed frameworks conservatively

invoke responses once the existence of intrusion is a certainty. Though this reduces false-

positive response, delayed responses can potentially expose systems to higher level of

risk from intrusions with no mechanism for restoring system to its pre-attacked state.

Therefore, a few research effort developed proactive response mechanisms to enable early

response to intrusions, notably, most of them appeared just recently. It should be also

mentioned that developing an optimal proactive response mechanism is difficult as it can

prohibitively increase false positives.



27

• Another elusive characteristic of response systems is adaptiveness. It is a powerful feature

required to ensure normal functionality while still providing effective defense against

intrusive behavior, and to automatically deploy different responses on the basis of the

current system state. At the same time, adaptiveness brings system into the higher level

of complexity and poses new questions such as ”How can we automatically classify a

response as success or failure? If the response has failed how can we determine whether

the system state changed due to triggered (failed) response or continuance of the attack?

How can we separate the beginning of new intrusion and continuance of the old attack?”

As such, very few of the existing response mechanisms incorporate adaptation.

• Finally, we have seen the presence of both cooperative and autonomous response sys-

tems. Typically, host-based intrusion response techniques are autonomous while coop-

erative methods are deployed in network IDS. Although techniques presented here are

existing research efforts, several commercial products with limited automatic response

support are also available today (TippingPoint, 2007; Enterasys, 2007). While the re-

search approaches employ a range of different response selection principles, commercial

tools provide only static mapping response as simplest and easily maintainable solution.

An ideal intrusion response system. In light of the above discussion, we see the

following features as necessary requirements for a viable intrusion response system.

• Automatic. The volume and the intensity of the nowadays intrusions require rapid and

automated response. The system must be reliable to run without human intervention.

Human supervision often brings a significant delay into intrusion handling; the response

system alone should have means to contain incurred damage and prevent harmful activity.

Although complete automation may not be achievable in practice due to presence of

newer and novel intractable intrusions, significant reduction of human effort and expert

knowledge is desirable.

• Proactive. The modern software systems are built on multiple heterogeneously-developed

components that have complex interactions with each other. Because of these interac-
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tions, intrusions are likely to spread faster in the system, causing more damage. Proactive

approach to response is the most practical in intrusion containment.

• Adaptable. The presence of multiple components, that constitute a software system,

also results in a dynamic environment owing to the complex interactions between com-

ponents. As such, intrusive behavior can affect system in a way which is unpredictable.

The intrusion response system should be equipped with means to recognize and react to

the changes in the dynamic environment.

• Cost-sensitive. Response to intrusions in dynamic and complex systems requires careful

consideration of the trade-offs among cost and benefits factors. A simple basic response

action triggered every time certain symptom is observed might be a wasteful effort and

can cause more damage.

Considering the discussed above points as fundamental features of the intrusion response

system, we propose an intrusion response selection model that provides automatic and preemp-

tive selection and deployment of the optimal response strategy. The selection of the optimal

response takes into account a potential impact of the detected intrusion and possible damage

of the severe or incorrect response action and allows to adapt the response selection according

to the failure or success of the previously deployed responses. The details of the proposed

intrusion response selection model are presented in the following chapters.
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IRS Year Response Selection Response time Adjustment Cooperation
published ability ability

DC&A 1996 dynamic mapping delayed static cooperative
(Fisch, 1996)
CSM 1996 dynamic mapping delayed/proactive static autonomous
(White et al., 1996)
EMERALD 1997 dynamic mapping delayed static cooperative
(Porras and Neumann, 1997)
BMSL-based response 2000 static mapping delayed1 static autonomous
(Bowen et al., 2000)
SoSMART 2000 static mapping delayed2 static cooperative
(Musman and Flesher, 2000)
pH 2000 static mapping delayed static autonomous
(Somayaji and Forrest, 2000)
Lee’s IRS 2000 cost-sensitive delayed static autonomous
(Lee et al., 2000)
AAIRS 2000 dynamic mapping delayed adaptive autonomous
(Carver and Pooch, 2000)
SARA 2001 static/dynamic mapping3 delayed static cooperative
(Lewandowski et al., 2001)
CITRA 2001 static/dynamic mapping delayed static cooperative
(Schnackenberg et al., 2001)
TBAIR 2001 static/dynamic mapping delayed not defined4 cooperative
(Wang et al., 2001a)
Network IRS 2002 cost-sensitive not defined5 static cooperative
(Toth and Kruegel, 2002)
Specification-based IRS 2003 cost-sensitive delayed static autonomous
(Balepin et al., 2003)
ADEPTS 2005 cost-sensitive proactive adaptive autonomous
(Foo et al., 2005)
FLIPS 2005 static mapping proactive static6 autonomous
(Locasto et al., 2005)

Table 2.2 Classification of the surveyed systems.

aAlthough not clearly described, the approach can be extended to proactive response.
bAlthough use of case-based reasoning technique can be adjusted to recognize repetitive attacks in advance.
cThe authors also mention application of more complex response strategies based on some decision-making process.
dProposed work only describes the general principles of framework.
eThe paper only presents an algorithm for evaluation of response impact.
fAlthough the approach is called ”hybrid adaptive intrusion prevention”, adaptiveness mainly refers to the detection of future attacks based on the feedback,

and hence does not fall into adaptive response selection category
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CHAPTER 3. Detecting anomalous behavior of software system

In general, behavior of software systems can be specified in two ways: by internal system

state, for example, using value of the variables, or through observable interactions between the

system and the environment, for example, via commands issued by a controller or system calls

invoked by a device driver (Uppuluri, 2003). The main challenge of monitoring internal system

state is that it requires modification of the system execution which can be prohibitively expen-

sive. In the latter approach, program behavior can be captured by the monitoring sequences

of observable actions generated by the system. In this context, system behavior is represented

by a set of all possible sequences observed during any program execution in the system.

In our work we adapt the second approach and focus on the monitoring system behavior

represented in terms of system calls.

3.1 Intrusion detection component overview

Our model for monitoring system-call sequences issued by a program consists of a two-level

classification mechanism (Figure 3.1). Specification of normal and abnormal1 behavioral pat-

terns are provided in the first level. In the event that the sequence to be monitored matches

the specification, the second level classification is not invoked. The sequence that match legal

specifications is allowed to execute un-altered while an anomalous sequence is blocked and

appropriate response actions are triggered. If the sequence is not found in the specification

module, the second-level classifier is used. We then rely on machine learning techniques to de-

termine whether the sequence is normal or anomalous. In either case, the sequence is recorded

in the corresponding specification for future reference. One of the important features of our

1We will use terms normal and legal, and similarly, terms abnormal and anomalous interchangeably.
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Figure 3.1 Architectural model of our framework.

model is that the technique can be deployed with empty or partial specifications in the first

level. As more sequences are classified by the second level, the specifications are populated

automatically. This flexibility reduces the overhead of developing the specifications manually.

3.1.1 Extended Action Graph: Exact

We model specifications in terms of Extended Action Graph (Exact) which is defined as

follows:

Definition 1 (Exact) An Extended Action Graph is a tuple E = (S, S0,→,Σ, L) where S is

the set of states, S0 ⊆ S is the set of start states, Σ is a set of binary numbers used to represent

transition, →⊆ S × Σ × S is the set of transition relations, and L : S0 → Σ is a mapping of

start states to a binary vector.

A sequence in Exact is represented by s1, s2, . . . sn where each si has a transition to si+1.

Consider the example in Figure 3.2. Each transition and the start states are labeled by a
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Figure 3.2 Example of an Exact graph that was generated by three se-

quences s1, s2, s3, s2, and s2, s4, s5, s1, s3, s6, and s1, s3, s6. The

graph has six states and two start states s1 and s2.

binary vector; e.g., L(s1) = 101.

It is worth mentioning here that all the sequences in Exact are not classified as valid and

valid sequences form a superset of the known sequences (sequences from which the Exact was

constructed in the first place). In the above example, s1, s2, s3 and s1, s3, s6 are valid patterns,

and the graph also contains the sequence s1, s2, s3, s6 which is not valid.

To rule out invalidity, we use the transition label σ, a binary vector, whose k-th element is

denoted by σ[k]. If there exists a transition si
σi→ sj where σi[k] = 1, then si, sj are said to be

consecutive alphabets in the k-th known sequence. Note that the first sequence is identified

by setting the rightmost bit to 1; i.e., 001 is the identifier for the first sequence, 010 is the

identifier for the second sequence and so on. In Figure 3.2, s1, s2 are consecutive states in

the first pattern while s1, s3 are consecutive states in the second and third known sequences.

Every known sequence is also assigned a start state: s2 is the start state of the second known

sequence. Formally, using the known sequences, we define validity as follows:

Definition 2 (Validity) A sequence s1, s2, . . . , sn is said to be valid if s1 ∈ S0, L(s1) = σs
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1: bool match(sl... k, m, E) {

2: if (sl ∈ S0) && (sl

σl→ sl+1) {
3: m=(m & σl & L(sl))
4: if (m!=0) {
5: int i=l+1; visited(sl) = true;
6: while (i<k) {

7: if (si
σi→ si+1) {

8: if (m=m & σi)&&(m!=0) {
9: i=i+1; visited(si)=true; }

10: else if visited(si) {
11: reset(visited); m=set(1);
12: return match(si... k, m, E);
13: }
14: } else return false;
15: } // end-while
16: return true;
17: } else return false;
18: } else return false;
19:}

1: void insert(sl... k, m, E) {
2: int m1=set(1); // m1 is all 1’s
3: if match(sl... k, m1, E) return;
4: make start(sl, S0); update L(sl, L, m);
5: int i=l;
6: while (i<k) {
7: if (visited(si)) {
8: reset(visited); m=m<<1;
9: insert(si... k, m, E);
10: return;
11: } // end of if-then
12: else {
13: visited(si)=true;
14: update(si, si+1, m, E);
15: i=i+1;
16: } // end of if-else
17: } // end of while
18: return;
19:}

20: void update(si, sj , m, E) {

21: if (si
σ
→ sj ∈E) σ = σ | m;

22: else connect(si
m
→ sj , E);

23:}

(a) (b)

Figure 3.3 (a) Pseudo-code for Exact search. (b) Pseudo-code for Exact

insert.

and

∃k ∀i : 1 ≤ i < n, si
σi→ si+1 ⇒ (σs[k] = 1 ∧ σi[k] = 1)

In other words, there exists a specific element in the vector-label of each transition in this

sequence and the vector-identifier of the start state which is equal to 1. Furthermore, via

transitivity, if S1 = si, si+1, . . . , si+n is a valid sequence and S2 = sj, sj+1, . . . , sj+m is another

valid sequence such that si+n = sj then si, si+1, . . . , s(i+n)−1, sj, sj+1, . . . , sj+m is also a valid

sequence.

Validity takes care of unbounded (one or more) repetition of the alphabets in a sequence;

e.g., in Figure 3.2 s1, s2, s3, s2, s3, . . . is a valid sequence. In the above, s2 is said to be the

root of the loop and s2, s4, s5, . . . represents the exit from a loop. Note that the transitivity

relation in Definition 2 can be used to identify valid sequences with bounded repetition (from

a valid sequence with finite looping and a valid exit sequence). For example, in Figure 3.2

s1, s2, s3, s2 and s2, s4, s5 are valid sequences and they form, via transitivity, a new valid se-

quence s1, s2, s3, s2, s4, s5. Note that newly formed sequence might be a known as well as
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unknown sequence.

Searching Exact. Based on the validity definition, we present in Figure 3.3(a) the algo-

rithm to find out whether a given sequence is a valid sequence in Exact. Recursive procedure

match takes as input the given sequence sl...k, a bit-vector m and the Exact and returns true

if the sequence is present as a valid sequence in Exact. The top-level call to match is invoked

with m set to its maximal value (all bits set to 1). Line 2 checks whether the first state in the

sequence is a start state in Exact and records in m the possible sequence identifiers between s l

and sl+1 (Lines 3-4). The algorithm iteratively checks in Lines 6–15 for the validity of states

in the sequence by considering each transition. Lines 9–11 handle the situation where a given

sequence is comprised of several valid sequences obtained via transitivity (see Definition 2).

Line 11 identifies the preceding valid sequence and initializes m. Note that we use visited(s)

to track whether the state s is already visited in the search path. Line 12 recursively invokes

procedure match on obtained valid sequences.

Complexity of match. Exact is deterministic; i.e., for every pair of states there exists

at most one transition. Absence of non-determinism makes the complexity of searching for a

valid sequence linear in the size of the given sequence.

Constructing Exact. Figure 3.3(b) presents the algorithm for insertion of a new se-

quence in Exact graph. Procedure insert takes as arguments the sequence to be inserted, a

bit vector m identifying the new sequence and the graph Exact.

Lines 2–3 check whether the sequence to be inserted is already present in the graph (match

invoked). Otherwise, the first alphabet in the sequence is marked as the start state of the

sequence and the corresponding labeling function is updated (Line 4). For example, if s l had

a prior start-state label σs, then update L sets its new label to σs|m (bitwise OR-ing).

The remaining sequences of alphabets are introduced iteratively (Lines 6–17). We need

to consider the case where an alphabet repeats in the sequence. Recall from Definition 2

that repetitions are handled via transitivity, i.e., repetition results in new sequences. As
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Figure 3.4 Exact graph in Figure 3.2 shown after insertion of

s1, s2, s3, s6, s2, s4, s5.

in the matching algorithm, we use the auxiliary information visited to record whether a

state/alphabet has been already seen in the sequence. In the event of repetition (Line 7), all

the visited information is reset to false, a new sequence identifier is generated by left shifting

m (Line 8) and insert is invoked recursively on the rest of the sequence. Otherwise, as shown

in Lines 13–15, the transition between s i and si+1 is updated.

The update procedure elaborates this operation (Lines 20–23). If a transition already exists

between the source and destination states, its transition label is updated via bitwise OR-ing

of the existing transition-label and the new sequence identifier; otherwise a new transition is

inserted.

Complexity of insert. In the above algorithm, the procedure match is always invoked

before inserting any new sequence to avoid duplicate insertions. As such, the worst case

complexity of the insertion algorithm is O(r×n) where r is the number of repeated occurrences

of alphabets in the sequence of length n.

Illustrative Example. Let s1, s2, s3, s6, s2, s4, s5 be a sequence to be inserted in the

example Exact in Figure 3.2.
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1. Procedure match identifies two substrings s1, s2, s3, s6, s2 (up to the first repeated al-

phabet s2) and s2, s4, s5 (following the transitivity rule) and recursively invokes match

algorithm on each substring.

The sequence s1, s2, s3, s6, s2 is not present in the Exact graph shown in Figure 3.2 as

there is no transition from s6 to s2. The match algorithm (Figure 3.3(a)), in this case,

makes an early detection of its absence as the prefix s1, s2, s3, s6 of the given sequence is

not valid in the exact. Observe that, for this prefix, bit-wise “and”-ing of the transition

labels and the start state label results in 0 (101 AND 001 AND 001 AND 110 = 000, see

Figure 3.2) and our match algorithm returns false. As such, s1, s2, s3, s6, s2 is inserted as

a new sequence. Further, as s1 is already present in the set of start states, its start-state

label is updated using the new sequence identifier 1000. Recall that the identifier for the

first sequence is 001, identifier for the second sequence is 010 and for the third sequence

is 100. As such the identifier for the new (fourth) sequence is 1000.

2. Each transition of the new sequence is added to Exact graph with identifier 1000. We

start with transition s1 → s2. It already exists in the graph and its identifier is 001.

Applying bitwise-OR of the existing and new transition label we obtain 1001 and update

the transition with this new label (Figure 3.4). We continue in this fashion until we reach

transition substring s6, s2. There is no transition between s6 and s2. A new transition

(s6 → s2), therefore, is added with the transition 1000.

3. Due to the repeated appearance of s2, the second sequence s2, s4, s5 is set up to be

inserted as a new sequence with a new sequence number, 10000. However, its insertion

is avoided as the sequence s2, s4, s5 is already a valid sequence in Exact. The updated

Exact graph is shown in Figure 3.4.

3.1.2 Monitoring for abnormal behavior

We presented two main algorithms: match and insert for generating and maintaining the

Exact graph structure. In this section we present a procedure for monitoring system behavior

against patterns stored in Exact graphs.
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1: seq monitor(seqIn, sk, E) {
2: if ((seqIn) == null) {
3: seq = sk;
4: start(seq) = sk;
5: }
6: else {
7: start(seq) = start(seqIn);
8: seq = seqIn ⊕ sk;
9: } // ( end-if)
10: bool seqBad = false;
11: bool seqGood = false;
12: int m=set(1); // m is all 1’s
13: if (match(seq, m, Ebad))
14: seqBad = true;
15: m=set(1); // m is all 1’s
16: if (match(seq, m, Egood))
17: seqGood=true;
18: if (seqBad==true) {
19: if (seqGood==true) {
20: delay = true;
21: return seq;
22: }
23: else {
24: invokeResponse(seq);
25: return null;
26: }
27: } // ( end-if)
28: else { // ( seqBad == false)
29: if (seqGood==true)
30: return null;
31: else {
32: delay = false;
33: invokeClassifier(seq);
34: return null;
35: }
36: }
37:}

Figure 3.5 Pseudo-code for monitoring behavior.

Figure 3.5 describes an algorithm for monitoring system behavior for preemptive detection

of abnormal patterns of system calls.

System calls generated by the system are continuously matched with Exact containing

normal and abnormal patterns. System calls that represent normal behavior are allowed to

execute while suspicious calls are buffered until anomalous behavior is confirmed and response

mechanism is invoked.

Delay of suspicious pattern of system calls is necessary in cases when the observed prefix

matches patterns contained in normal and abnormal Exact graphs. To avoid a possibility

of a false alarm in this case, suspicious system calls are delayed until the observed sequence
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becomes truly abnormal, i.e. does not match Exact with normal patterns, or until sequence

becomes truly normal, in other words does not represent patterns contained in the abnormal

Exact. In the case, when encountered pattern is unknown which is indicated by its absence

in the Exact, the sequence is allowed to execute and later classified by the machine-learning

algorithm.

Procedure monitor describes the monitoring of the delayed system calls. This procedure

takes as input currently delayed sequence of system calls seqIn, the latest system call generated

by the system sk, and the Exact and returns the sequence seq.

The algorithm can be invoked with the empty input sequence seqIn, then current call

sk will be set as the start state of this sequence (Lines 2-4), or with the previously delayed

sequence. In the latter case, the start state of the sequence seqIn is set as the start of seq

(Line 7) and sk is added as a last call forming a sequence seq (Line 8).

Lines 10-35 determine the classification of the considered sequence.

In Lines 13-14 the match procedure is invoked to check whether a newly formed sequence

seq is a valid pattern of Exact with anomalous sequences and Lines 16-17 determine if this

sequence constitutes a prefix of a valid pattern of normal Exact Egood. In both cases match is

invoked with a bit vector m set to its maximal value (all bits set to 1).

If a newly formed sequence matches prefixes of patterns of normal and abnormal Exact,

the processing of the sequence should be delayed. This is indicated by global variable delay

set to true (Lines 18–21). Lines 24–25 handle the situation when a newly formed sequence

represents a prefix of the abnormal pattern and should be treated as truly normal.

If the sequence represents a truly normal pattern, the procedure return an empty sequence

indicating that the further monitoring of this sequence is not necessary (Lines 29-30). The last

lines (32-33) represent a case when observed pattern is unknown and needs to be processed by

the classification algorithm.
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3.1.3 Second-level Classifier

We rely on machine learning technique to classify behavioral patterns as normal and ab-

normal depending on how well they fit in the learnt data domain. While any machine learning

technique that provides fast and accurate classification can be applied as a second-level classi-

fier in our framework, in our study, we used support vector machines (SVM).

SVM were initially introduced by Vapnik (Vapnik, 1998) and have exhibited excellent accu-

racy on test sets in practice while having a strong theoretical motivation in statistical learning

theory. There have been proposed two versions of SVM algorithm: a supervised version, called

two-class SVM and unsupervised referred to as one-class SVM. A supervised version of SVM

works with labeled data sets and finds hyperplanes also called support vectors that maximally

separate the data belonging to different classes (Vapnik, 1998). As opposed to two-class SVM,

one-class SVM relies on separating all data from the origin using a hyperplane (Scholkopf et al.,

1999).

For the purpose of discussion, we illustrate the application of SVM classifier via an example.

Let the observed input stream be Istream ≡ s1, s2, s3, s2, s3, s4, s2 and Exact in Figure 3.3(b)

failed to recognize Istream as a valid sequence. First, we break-up Istream following the

transitivity relationship in Definition 2 of Section 3.1.1; i.e., Seq1 ≡ s1, s2, s3, s2 and Seq2 ≡

s2, s3, s4, s2. Note that the break-up point is at s2 which appears in Seq1 and Seq2, and is the

first alphabet to be repeated in Istream. SVM can only take fixed length sequences as input

and as such we apply classic sliding window technique to provide inputs to the SVM.

Let the sliding window size be 3, then SVM is fed with subsequences: (i) s1, s2, s3, (ii)

s2, s3, s2 (from Seq1), (iii) s2, s3, s4 and (iv) s3, s4, s2 (from Seq2). Finally, Seq1 and Seq2 are

termed as normal if and only if all their subsequences are classified by SVM as normal. Note

that, break-up of Seq1 and Seq2 using sliding window does not adversely effect end result, i.e.,

if any subsequence of Seq1/Seq2 is classified as anomalous, then the corresponding sequence is

conservatively classified as anomalous. Furthermore, the sequences Seq1 and Seq2 provide an

easy way of inserting Istream in the corresponding Exact.
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3.2 Analysis of Exact and SVM Sequences

As Exact represents variable-length sequences, the comparison with models based on the

fixed-length patterns is challenging; the main challenge being the difference in the number of

fixed-length and variable-length sequences generated from the same data set. The comparison

is also aggravated by the fact that classification of variable-length patterns in Exact depends

entirely on the underlying fixed-length classifier (SVM in this case).

In this section, we present a comparative study of number of sequences being examined by

Exact and the SVM classifier. We consider two possible cases: one where the SVM, used in

conjunction with Exact, acts as the backend for our framework (backend SVM) and the other

where SVM acts alone (stand-alone SVM).

For the purpose of analysis, we will consider average length of Exact sequences; the average

length computed using the weighted mean where the weight of a length denotes the number

(frequency) of sequences of the corresponding length. We represent this length as L. Let the

fixed sliding window size of SVM be W .

3.2.1 Exact vs. Backend-SVM

The two possible scenarios of interest are W > L and W < L. For W = L, the number of

Exact sequence and SVM sequence is identical.

1. W > L: In this case, several Exact sequences are combined to form one SVM sequence.

Consider first the case where x Exact sequences fit exactly in one SVM sequence of size

W . In other words, xL − (x − 1) = W (the subtraction of x − 1 from xL is required to

account for overlap between two consecutive Exact sequences). Therefore,

x =
W − 1

L − 1
(3.1)

In other words, the number of Exact sequences is greater than the number of SVM

sequences and classification of one SVM sequence influences the classification of x Exact

sequences.
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Secondly, consider the case where (W − 1)/(L− 1) is not a whole number; i.e., the Exact

sequences is not a integer-multiple of SVM sequences. Let x be the smallest number of

Exact sequences such that xL− (x− 1) > W and ∀y < x : yL− (y − 1) < W . Therefore,

the number of SVM sequences corresponding to x Exact sequences is,

xL − (x − 1) − W + 1 = x(L − 1) − W + 2

Then the number of Exact sequences is greater than the number of SVM sequences if

x < (W − 2)/(L − 2); otherwise the number of SVM sequences is greater than the

number of Exact sequences. In case of former, one SVM sequence classification influences

one Exact sequence classification while in latter, one SVM sequence can potentially effect

x Exact sequences.

2. W < L: In this case, the number of Exact sequences is less than the number of SVM se-

quences. Specifically, the number of SVM sequences corresponding to one Exact sequence

is (L−W +1) and therefore, one SVM sequence classification can effect the classification

of one Exact sequence.

3.2.2 Exact vs. Stand-alone SVM

Next, we consider the number of sequences examined by SVM if it is deployed alone.

Given that the total length of the input stream is IS, the total number of SVM sequences is

N = IS − W + 1. If the same input stream is input to our framework – Exact with backend-

SVM – the total number of Exact sequences is (IS−1)/(L−1); i.e., (N +W −2)/(L−1). The

number of sequences examined by SVM alone is greater than the number of Exact sequences

in our framework if N > (W − 2)/(L − 2).

Also, note that if W < L, the number of sequences examined by SVM, when deployed alone,

can be potentially greater than the number of sequences examined by SVM, when deployed in

conjunction to Exact. Specifically, the situation requires N > L−W +1 and can be explained

from the fact that number of sequences classified by backend-SVM depends on the number of

Exact sequences when W < L.
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3.3 Preliminary Simulation results

stand-alone SVM Exact (variable-length sequences)
snsndmailcp decode fwdloop snsndmailcp decode fwdloop

Number of normal
sequences in train data set 30792 30792 30792 3314 3314 3314

Number of sequences
in test data set 1098 2983 2499 78 405 204

Number of anomalous
sequences in test data set 264 741 387 24 92 43

Table 3.1 Information on sendmail normal and intrusive trace data sets

We evaluated our model in the security domain using synthetic sendmail data provided by

the UNM (Forrest, 2005). Sendmail data is an unlabeled collection of system calls. It consists

of a normal data sets which contain only legal patterns and trace data sets containing normal

patterns as well as anomalies. We considered three intrusion trace data sets: snsndmailcp,

decode and fwdloops. The one-class SVM classifier was trained on the normal data set (training

set), tested on the trace sets (test sets) and implemented using libsvm tool (Chang and Lin,

2001) and the window size of 8.

Data Sets. Table 3.1 presents the pattern of data being used for evaluation purpose

in terms of number of sequences. The training data set contains 30792 normal fixed-length

sequences. On the other hand, using Exact, the number of variable-length sequences is 3314.

The decrease in the number of sequences is due to the fact that Exact partitions sequences

using repetitions and as such can handle variable-length sequences (see Section 3.1.1). We

then processed the normal and abnormal patterns of the test data set to generate two test sets:

one for stand-alone SVM, containing fixed-length sequences obtained through sliding window

technique, and one for Exact, containing variable-length sequences generated in Exact fashion

(row 2 in Table 3.1).

Finally, the last row shows the number of sequences that are in the test data set but

are not present in the training data set. For example, out of 1098 fixed-length sequences

for snsndmailcp, there are 264 sequences which are not present in fixed-length sequences of
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snsndmailcp decode fwdloop

Exact of normal specifications 5 16 13

Exact of faulty specifications 14 31 39

Table 3.2 Maximum length of Exact binary vectors.

training data. For the purpose of evaluation, we can conservatively assume that sequences

not present in the training data set are anomalous; the goal is to identify all such anomalous

sequences.

Table 3.2 presents the maximum length of binary vectors after building Exact graphs on

data sets. In other words, this shows the number of distinct variable-length sequences in Exact.
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Figure 3.6 Initialization: empty Exact (decode intrusion).

Efficiency. In these experiments we focused primarily on the rate of populating the

Exact with normal(legal) and abnormal(anomalous) patterns. To evaluate our technique we

monitored the stage at which each sequence was classified. We examined two scenarios:

1. Both Exact graphs representing normal and abnormal specifications are initially empty
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Figure 3.7 Initialization: Exact partially populated with 10% of normal

sequences (decode intrusion).

2. Partial specification is available initially, i.e., the Exact graph corresponding to a normal

specification is populated with 10% of the patterns from the normal data set.

The results for both scenarios are presented in Figures 3.6, 3.8 and 3.7.

Figure 3.6 shows the frequency at which both levels of classifiers (Exact and backend SVM)

were invoked for classifying the incoming sequences. Since simulation started with an empty

Exact graph, almost every incoming sequence is classified at the second-level classifier. How-

ever, the access rate of second-level classifier rapidly decreases as more patterns were stored in

the Exact. Consequently, the number of sequences classified at the Exact graph level increases.

Figure 3.8 shows the number of new patterns added to the empty Exact over the same run of

decode trace set. The majority of patterns were recorded within about 200 sequences (out of

405 total sequences). After that, almost all patterns were found at the Exact level.

The result corresponding to the second scenario where the normal Exact graph is partially

populated is shown in Figure 3.7. As opposed to the previous figure, the access rate of the

second-level classifier in the beginning of the run is low while the Exact graph access rate is
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Figure 3.8 Populating Exact (decode intrusion).

Total time(sec) Backend SVM

running time(sec)

Exact with

empty specs 16 12

Exact with partially

populated specs 7 5

Figure 3.9 Mean running time(decode intrusion. Average over 10 runs.

high. This is explained by the partial presence of the sequences in the normal Exact speci-

fications. However, since only partial normal patterns were added to the specifications, the

second-level classifier was still accessed whenever new normal or anomalous sequence is found.

In this scenario we benefited from the available specifications having populated the Exact

in advance. This shortened the start-up time necessary to store a sufficient number of patterns

(Table 3.9). In fact, the processing time for 405 sequences was 2 times faster with the populated

specifications (7 sec) than with the empty specifications (16 sec). Note that it is the SVM

classifier access that requires most of this time.
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stand-alone SVM Our framework (results from the backend SVM
based on fixed-length sequences)

snsndmailcp decode fwdloop snsndmailcp decode fwdloop

Detection rate 98% 99% 99% 98% 100% 100%

FP rate 11% 7% 10.7% 13% 8% 10%

Table 3.3 Accuracy of classification with empty Exact shown in fixed-length sequences.

empty Exact Exact populated with 10% of normal
sequences

snsndmailcp decode fwdloop snsndmailcp decode fwdloop

Number of detected
sequences 24 out of 24 90 out of 92 42 out of 43 24 90 42

FP sequences 21 out of 54 62 out of 313 75 out of 161 0 1 9

Table 3.4 Accuracy of our framework classification shown in variable-length sequences.

Accuracy. As the Exact graph provides a succinct representation of learned through

machine-learning technique variable-length patterns, we focused in these experiments on the

comparison of the accuracy of our structure to the accuracy of SVM tested on a model built

using the sliding window technique.

For evaluation purpose we considered detection rate (ratio of detected anomalies to the

total number of anomalies presented in the set) and false positive rate (FP) (number of normal

instances incorrectly identified as anomalous).

As Table 3.3 show, classification results of fixed-length patterns for stand-alone SVM and

Exact integrated with SVM are similar. For example, for snsndmailcp, the detection rate is

98% for both stand-alone SVM and back-end SVM used in Exact. The results confirm the fact

that Exact structure, while recording variable-length patterns, truly represents information

given by the backend machine-learning based classifier in compact fashion. The existing 1–2%

variation in the results is explained by the potential difference in the number of sequences

examined by stand-alone SVM and back-end SVM used in Exact as discussed in Section 3.2.

The classification results are also given in terms of variable-length patterns stored by Exact

(Table 3.4). Examining Table 3.4, we notice that prediction results are slightly different from

the corresponding percentages given in Table 3.3. For example, the detection rate of Exact for

snsndmailcp intrusion given in fixed-length patterns is 98% while the corresponding number of

detected variable-length sequences is 24 out of 24. This happens when several SVM sequences,

including those that are correctly classified as anomalous and those that represent missed
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intrusions, are effectively combined into one Exact sequence resulting in an anomalous Exact

sequence and providing a higher detection rate.

An opposite scenario is represented by decode intrusion, where the detection rate in fixed-

length patterns is 100% which corresponds to 90 out 92 variable-length Exact sequences. Closer

inspection reveals that the result is as expected and can be explained by the fact that Exact

records sequences depending on the classification result from backend SVM classifier. There

are a couple of occurrences of one particular Exact sequence in the test data set which is not

present in the training data set. Hence, this sequence is classified as an anomaly (counted

as one of the anomalous patterns among 92 anomalies: see Table 3.1). It turns out that the

length of the sequence is 2 due to two consecutive identical system call-invocations. As such

the SVM using sliding window size 8 does not consider this sequence independently; instead

it combines the sequence with another (next) Exact sequence and performs classification. As

the combined sequences are classified as normal by SVM, the Exact also records the combined

sequence as normal. This is acceptable as the main purpose of Exact is to memorize variable

length sequence and closely follow SVM classifier. Note that if the SVM classifier used window

size of 2, then the above scenario would be removed.

The number of variable-length sequences falsely recognized as positive in Exact is also

different from the corresponding percentages given for fixed-length sequences. This is due

to the fact that several SVM sequences can represent one Exact sequence, thus significantly

reducing the total number of variable-length sequences in comparison to those in fixed-length.

The detailed analysis of this dichotomy was presented in Section 3.2. At the same time, manual

inspection of these results showed that a number of FP sequences in Exact graph fully comes

from the backend SVM.

While the trade-off between the number of detected and the false positives is inherently

present in many machine learning algorithms including SVM, this error can be effectively re-

duced with guidance from normal specifications. In fact, populating Exact even with the small

number of normal patterns reduces the number of false positives significantly (Table 3.4).

Since the overall variability of sendmail behavior is small, even approximately 10% of normal
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sequences leads to recognition of majority of normal patterns. However, generally a greater

variability in process behavior might require a larger set of normal patterns to improve the ac-

curacy of classification. Note that an Exact with partially populated normal specification does

not affect the number of detected sequences. This is because abnormal, incoming sequences

are still recognized as unknown and processed by SVM algorithm as they would be if the Exact

graph were empty.
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CHAPTER 4. Automated Intrusion Response

In the past chapter we introduced a model for detecting anomalous patterns in program

behavior based on the normal profile of the program. While this is a fundamental component

of the security system, it presents a challenge on how the system should react to the exposed

anomaly. Therefore, next we focus on the design on the response component that is tightly

coupled with the detection part of our IDR system.

Generally, the design of a response system can be approached from the attack point of view

when the response is determined at each attack step based on the available attack signatures

or from the system perspective that considers the impact of the successful attack on the system

services (Wu et al., 2007). The first approach is potentially limited as it only provides local

response to the current manifestations of the attack. While such response strategy works well

for simple attacks, it might not present necessary defense for the complex multi-stage attacks.

The latter approach focuses on the system state rather than an attack; and thus, is able to see

“the bigger picture”, for example, in a form of system services degradation. However, since its

primary goal is the system services, it might not be able to stop an intrusion, but rather limit

its capabilities to effect the system further.

Both of these approaches complement each other providing on the one hand, a locally

customized response strategy to a specific attack trace at different attack steps, and on the

other, a global view of the attack impact.

In our model we combine both approaches taking advantage of their strengths while avoid-

ing their weaknesses. We develop taxonomy of the system resources that might potentially

become targets during an attack and the responses that can be effectively deployed to either

counter possible attacks on these resources or defend system services and regain secure system



50

state. We also present a mapping between system resources, the corresponding responses and

specific attack patterns (Appendix A).

4.1 Classification of System Resources

A process running on an OS updates or reads the following resources at a high level:

memory, file systems and I/O devices such as network cards. Hence, any damage due to an

attack can be classified as an unauthorized read or update operation on these resources. Based

on the taxonomy of system resources proposed by (Bazaz and Arthur, 2005) we developed

classification of the system resources used by a process and the corresponding behavior targeted

into damaging the resource:

Memory Every process is allocated a process address space. Depending on the archi-

tecture this address space process is divided into several logical segments. Traditionally, these

segments include: text (code) segment, data segment and stack (Younan et al., 2006). Text

segment, sometimes also referred to as code segment, stores the code of the program and

is read-only memory. Data segment contains global, static and dynamically allocated data.

Functions and local variables are located on the stack. Both data and stack segments may be

readable and writable. As a large number of attacks are against data segment (heap) or stack,

we will further consider these two subcategories of the process memory.

Data segment. Typically, data segment includes the following sections heap, BSS (block

storage segment) that contains static and global variables, GOT (global offset table) that stores

pointers to dynamically linked functions and .dtors table that includes pointers to functions

executed on process exit (Younan et al., 2006). In some architectures the BSS table and the

heap are organized as separate memory segments (Krishnakumar, 2005).

Generally, any section of the data segment can be a target of an attack. These exploitation

efforts can be broadly divided into the following areas:

1. Illegal write to a process data segment: Overwriting memory locations in the data segment

a process can obtain access to the memory space of the current process as well as memory
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allocated for another executing processes.

This violation can occur due to several reasons:

• If the data accepted as input by the process is larger than a dynamically allo-

cated buffer space, then process overwrites memory that lies beyond bounds of the

buffer (Simon, 2002; Fayolle and Glaume, 2002; Younan, 2003; Younan et al., 2006;

Yong, 2004).

• If a pointer variable is overwritten to reference incorrect variable or memory location

outside of the process memory space (C0ntex, 2005; Younan, 2003).

• If a specially crafted data injected into the dynamic memory and interpreted by a

process as an executable code (Linn et al., 2005; Younan et al., 2005).

• Data interpreted by process as a format string can cause system to reveal process

stack and in case of specially constructed format string to write data to the process

stack (Younan, 2003).

2. Incorrect variable format/values: The following manipulations with a format or value of

the variables can result in vulnerable system state:

• Unauthorized modifications of the format or values of environment variables (Secu-

nia, 2004; Wheeler, 2003).

• The process stores a value of an integer variable larger/smaller than the maxi-

mum/minimum value allocated to it. This operation can result in the incorrect

value stored in the assigned location as the system will discard the higher bits of

the value; or in the possible heap overflow condition if the size of the integer is given

as 0xffffffff which will cause program to perform malloc(0) (Younan, 2003).

• The process using a negative value of integer variable/expression the object can

create an error condition in the system. This type of misuse is possible due to abuse

of signed and unsigned integer types (Younan, 2003).
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Stack segment. The stack segment contains the local variables and return addresses of the

functions for the particular process. Attacks can either write or read data from a stack illegally

as follows:

1. Illegal write to the stack memory: If the process writes the data which size is larger that

an allocated space on the stack, then the return address of the function requesting the

write might be overwritten which cause function upon its return to jump to a random

address in the stack. Such behavior is also known as stack overflow and might cause a

variety of system errors (AlephOne, 1996; Ogorkiewicz and Frej, 2002).

2. Illegal read of the stack memory: Data belonging to a process in execution can be revealed

if the content of the stack is observed by another process. Generally, this violation is

possible as a result of a stack overflow attack (AlephOne, 1996) or through crashing a

system and revealing its core file.

Input/Output resources Another main category of the presented classification of the

system resource vulnerabilities is I/O resources. We confine our discussion to the two most

widely used I/O resources: File system and Network interface.

File system Malicious behavior with regard to the file system can be broadly classified into

the following three areas (Tsyrklevich and Yee, 2003):

1. Illegal creation/deletion of files and file links: There are several possibilities to damage

the system through illegal creation or deletion of files and file links. One common method

used by the attackers is the creation of symbolic links in the temporary directory during

the execution of setuid program which as a result gives attacker an illegal access to the

privileged files (Wheeler, 2003). A number of Time of Use to Time of Check (TOCTOU)

attacks which exploit a race condition in file accesses are also based on creation/deletion

of file links (Bishop and Dilger, 1996).

2. Illegal read or write of file content: There are several ways a process can write to a file or

read from a file for which it does not have access. Most of them are possible due to the
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assumption that sequential operations on the file are performed ’atomically’. This can be

exploited by an attacker who accesses the file between successive operations performed by

a legitimate process (Uppuluri et al., 2005). Such exploits are known as race conditions

attacks. A detailed overview of these attacks can be found in (Uppuluri et al., 2005;

Tsyrklevich and Yee, 2003).

3. Incorrect file permissions: This violation often happens due to improper access permis-

sions assigned to a file or directory by a process and can result in unauthorized access to

the file or directory.

Network Interface This subcategory refers to the interface that system uses to send and

receive data from the network. As this interface is represented in a form of ports, network

interface from the process perspective is another resource that can be used to transfer the

data (Bazaz and Arthur, 2005). Thus, it can be classified into two broad subcategories:

1. Illegal access to the data: Unauthorized process can intercept the data sent by another

process via the network interface before it reaches its destination.

2. Wrong format/values of the data: The data received by the process through the network

interface are corrupted or do not have expected format.

Presented classification of the resources gives a general overview of possible violations

resulting from abnormal behavior of the process; thus, allowing to determine the potential

damage from the process actions.

4.2 Classification of Response Actions

Intrusion response is a reaction of the system directed to protect the system resources

threatened by an attack. Based on system resource classification presented in Section 4.1, we

developed the following classification of response actions that can be deployed to counter an

attacks. Note that the granularity of these responses will vary depending on the severity of an
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intrusion. For instance, filesystem isolation could imply isolation of one file as well isolation of

the entire filesystem.

Generally, by the activity of the triggered response, intrusion responses can be classified

into Passive responses and Active responses.

Passive response Passive response actions do not attempt to minimize damage already

caused by the attack or prevent further attacks. Their main goal is to notify the authority

and/or provide an attack information. This kind of responses includes:

1. Administrator notification: generation of alarm (through email, online/pager notification,

etc.), generation of report.

2. Other responses: enabling detailed/additional logging, intrusion analysis tools and back-

ing up tampered with files.

Active As opposed to passive response, active response actions aim to minimize the

damage done by the attacker and/or attempt to locate or harm the attacker. We can distinguish

three types of active response:

1. Process termination: A process can be terminated in response to an intrusion with or

without the following automatic restart. Termination with automatic restart can be

useful for remote servers such as sshd and httpd.

2. Process isolation: Process isolation refers to the execution of the process in the closed

environment with a goal to control and thus contain the undesired behavior. We can

distinguish complete and partial process isolation.

• Complete isolation: execution of the entire process in an isolated environment.

(a) Process migration: transferring the execution of the process to a different en-

vironment. Usually in distributed setting process migration indicates the exe-

cution of the process in a different machine.

(b) Process emulation: execution of the process in a virtual environment.
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• Partial isolation: execution of the process when its parts or used resources are

located in an isolated environment.

(a) Alternative methods to complete isolation: remote code execution, cloning, use

of mobile agents etc.

(b) Memory isolation

i. Create a separate memory for the process to make updates

ii. Disallow read of certain portions of memory

iii. Disallow read of certain portions of memory during certain times of its

execution

iv. Disallow read/write of certain portions of memory for certain processes

(c) Global Offset table (GOT) isolation. Global Offset table is mainly used by pro-

cesses linked to dynamic libraries by resolving the memory location of dynamic

library functions used by the process. An intrusive process can change GOT

to force the program to execute incorrect library functions. To avoid this the

GOT portion of a process can be isolated so that the illegal GOT changes will

result in unharmful behavior or will serve as a trap for an attacker.

(d) File system isolation

i. File writes are made in a chroot environment (option: file system rollback)

ii. File attribute changes are made in a chroot environment.

iii. Disallow full/selective access to file

iv. Allow read/write on sanitized/empty/dummy version of (privileged) file

(e) Network isolation

i. Isolate process by capturing at the packet filter level the data sent to certain

IP addresses/subnets

ii. Prevent the process from sending data

– to certain IP addresses/subnets
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1: Preemption:
-determine when to start response selection:

based on the preemption conditions defined in (Stakhanova et al.,
2007a)
2: Effect identification:

-identify the resources affected by an attack and the available responses

3: Response strategy selection
-determine whether response action should be taken at this point :

select responses such that
damageCost*confidence level > responseCost

- compute the costs of the selected responses :
compute expected value of the selected responses

-build a MinCostSAT formula
-find satisfiable solution through MinCostSAT solver

Figure 4.1 Algorithm for response deployment process.

– to any server other than the one from which a connection was made to

the process

iii. Prevent complete network utilization

iv. Prevent process access to all/some of the packet traffic

3. Protection measures: These actions are directed to prevent intrusive behavior or restore

the pre-attacked state of the system.

• Delete created/accessed tampered with file

• Restore original/backed version of tampered with file

• Delay suspicious process

4.3 Intrusion Response Selection Model

Our intrusion response technique relies on the existence of a pattern-based intrusion detec-

tion framework, i.e., execution sequence is monitored against known/already examined normal

(abnormal) patterns and is classified as anomalous or intrusive if the execution matches with
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(deviates from) the known patterns. While we specifically focus on IDS proposed in Section 3,

other pattern-based detection systems for example, specifying patterns of anomalous activi-

ties in a form of rules (Kumar and Spafford, 1994) or describing behavioral patterns using a

specification language (Sekar and Uppuluri, 1999; Uppuluri and Sekar, 2000) can be employed.

Our intrusion response system involves the three steps of preemption, effect identification

and response strategy selection (Figure 4.1).

4.3.1 Preemption

In this context, preemption, amounts to identifying the condition under which our system

decides to eagerly respond before the classification of the execution pattern is complete. In

other words, preemption leads to a deployment of response against prefix of a potentially

intrusive execution sequence. The decision for preemptive response depends on probability

threshold. We define this notion to indicate an acceptable level of confidence that some attack

is in progress and a response action should be triggered. Once the probability of occurrence

of a particular sequence, given its prefix, exceeds the pre-specified probability threshold , it

can be inferred that an attack is imminent. Formally, probability of occurrence of a sequence,

referred to as confidence level is defined as:

confidenceLevel=
number Of Sequence-Occurrences

total Number Of Sequences With This Prefix
(4.1)

It should be noted that responses can be also fired lazily, i.e. after confirmation of intrusion,

as opposed to preemptively (eagerly) as described above. This can be achieved, in our model,

by setting the probability threshold value to 1. Lazy reaction to intrusion will trigger accurate

response to an intrusion but can be risky as it allows more time to exploit a vulnerable system.

On the other hand, eager response provides preemption but might be aggravated by a high

probability of mistake (responding to falsely identified intrusions).

The probability threshold can be also viewed as tolerance level of system before a response

must be deployed. For example, for security critical systems, where ensuring security and

integrity is a priority, the tolerance level is low and as such the probability threshold is set to
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a low value as well. On the other hand, for service based systems where ensuring persistence

is important, the system may be tolerant to certain attacks and decide against preemptive

response that can potentially shutdown the system. In either case, to deploy responses intel-

ligently, response selection becomes one of the most important mechanism in our model. It is

based on the following two steps: effect identification and response strategy selection.

4.3.2 Effect Identification

An attack is directed (a) to render one or more resources of the system unavailable or

(b) to obtain unauthorized access to some resources. Response to an attack must be directed

to protect the resources that are in danger of being unusable or compromised under that at-

tack. Thus, to ensure safety of the system resources that might be effected by an intrusion

it is necessary to identify the responses that can be the most effective defending the effected

resources. To archive that we associate known intrusive patterns with the corresponding re-

sources. Whenever the prefix of monitored sequence matches with a set of intrusive patterns,

we say that the possible impact of the monitored sequence will be on the set of the resources

associated with the matching intrusive patterns.

Furthermore, each attack to each resource is associated with possible responses (see Ap-

pendix A). For each resource, the partial ordering of responses is obtained and they are

arranged in a form of a lattice. The ordering is done using the notion of response cost. Infor-

mally, responses with high cost has higher probability of stopping a possible attack but may

lead to unavailability of resources. The top element of the lattice is the most severe response

(highest cost) and the bottom element is the most passive response (lowest cost).

In summary, when a monitored sequence matches with the prefix of a set of known intrusive

pattern, the corresponding effect in terms of resources is identified and from the resources, the

possible set of responses is synthesized. The next step is to determine an optimal response

strategy.
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4.3.3 Response Strategy Selection

As noted above, intrusions effect resources and each resource is associated with a set of

responses organized in a form of a lattice. It is necessary to select a subset of candidate

responses from the corresponding lattices that are most likely to benefit the system, if deployed

preemptively against the detected attack. The selection is performed by analyzing the cost

information of damage to the system caused by (a) un-attended intrusion and (b) incorrect

and/or severe response. The first is referred to as damage cost (DC) of intrusion and the second

as response cost (RC). Both costs are computed based on the degree of loss of availability,

confidentiality and integrity of system resources due to an intrusion.

4.3.3.1 Assigning Damage and Response Cost

One of the main challenges in developing our cost-sensitive response selection model and

deployment mechanism is to accurately quantify with respect to the effected resources the

damage and the response costs. In the following section, we present an overview of the process

of assigning costs to intrusions and responses. Numeric values such as monetary values or

percentages that correspond to some objective metrics are not always suitable, more effective

solution based on relative measurements might be applied (Peltier, 2001). The relative mea-

surements can be constructed based on company-specific security policies, existing threats, risk

factors, etc. (Lee et al., 2000).

General classification of systems. Two important factors that guide the cost values

are the organizational role of the system and the resources available in a considered environ-

ment. Often systems in an environment will be categorized into different broad classes such as

public access systems, personal workstations, safety critical systems, business critical systems,

etc.. The boundaries between these categories separate areas by acceptable risk, and therefore

the cost for various damage types. For example, a public web server will be primarily focus on

the availability of the service, while a business critical system will put more emphasis on data

confidentiality.
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In practice, setting the measurements of these costs is the responsibility of system admin-

istrator and is usually a manual process consisting of an informal series of questions such as

”Will data be exposed?”, ”How critical is the confidentiality of the data?”, ”How concerned

are we with data integrity?”, and ”Will service availability be impacted?”. Although this gives

an ad-hoc relative assessment of potential damage, it is not sufficient to yield a quantitative

estimate.

Relative measurement of damage/response cost. Quantifying these assessments in

a manner suitable for automated decision making requires a numeric abstraction of damage and

a similar abstraction of system security goals (i.e., the security policy applied to the system).

This direction was taken by the Common Vulnerability Scoring System (CVSS) (Schiffman

et al., 2004) that we adopted in our work for the estimation of possible system damage due to an

attack (damage cost). CVSS allows to assess the severity of the existing software vulnerability

and if exploited its impact on the system resources.

CVSS combines three metrics: base, temporal and environmental, with each metric pro-

ducing a value ranging from 0 to 10 and a vector, representing compressed information used

to derive this value.

1. The base metric represents the constant characteristics of a vulnerability such as im-

pact on the availability, integrity and confidentiality of the resources due to an attack

and the methods on how this vulnerability can be exploited (complexity, necessity of

authentication etc.).

2. The temporal metric reflects the vulnerability features that change over time such as

existence of an exploit, remediation level and confidence in vulnerability technical details.

3. Finally, the environmental metric indicates the risks on the company level such as po-

tential damage to physical property, company productivity etc.

The approach we take for quantifying response cost is inspired by CVSS scheme. In our

model, we independently develop the numeric abstractions of damage and system security goals
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and combine them to provide a response-specific weighted cost value based on a system and

policy specific metric.

Response Impact estimation. Our approach to response damage assessment is based

on the following system security goals: service availability, data integrity, data confidentiality,

system performance, human resources (such as administrator time) and additional storage.

To estimate the impact of the specific response action, for each response we determine the

security goals it may affect. For instance, detailed logging consumes storage resources, requires

man-hours for review, and can also impact the performance.

To determine the numeric value of each response impact on a specific security goal, we

separately consider security goals and the responses falling into each goal category. Specifically,

all response actions effecting certain security goal are ordered based on their relative impact

on the considered goal and assigned a numeric value according to their place in that category.

These numeric values are evenly distributed between 1/n and 1, where n is the number of

responses in the considered goal category.

For example, all responses effecting data confidentiality security goal are ordered based

on their impact on the data confidentiality and assigned a score. Assume that the following

responses fall into this category: backup tampered with files, remote code execution: full code,

remote code execution: partial code and migrate process to a different environment. Based

on the historical data and the experience the system administrator will rank these responses

according to their impact on the data confidentiality. Let the ranking be the following (from

the least severe impact to the highest impact): backup tampered with files, migrate process to

a different environment, remote code execution: partial code and remote code execution: full

code. Since there are four responses in this category, the numerical values are given as follows

backup tampered with files: 0.25, migrate process to a different environment : 0.5, remote code

execution: partial code: 0.75 and remote code execution: full code: 1.

Security Policy Goals weight. To abstract the security policy goals, the categories

are ranked according to their importance (a value between 0 no importance and 1 absolute
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importance) based on the overall goals of the system. These decisions can be based on the

monetary values or other established business metric for the cost of failure to meet system

goals (i.e. the estimated dollar cost of a confidentiality breach). In the case of a classified

data processing system, for instance, data confidentiality may be a 0.9, indicating the extreme

importance of this security facet for this system. If response team is employed to analyze and

respond to potential threats on a continual basis, then controlling man-hour resources may

rank a 0.05, indicating little concern over how much time is spent ensuring the security of the

system.

Computation of Response Cost value. Using these two abstractions, the overall

impact rating of the response per category is computed by multiplying the category importance

value by the assigned impact for that category. The sum of the overall impact ratings for all

categories the response affects is the overall impact rating for the response or in other words

response cost which we define as Response Factor (RF). Formally, RF value of response r is

computed as follows:

RFr =
1

MAX(RFr)
∗

X

c∈PolicyCategory

impactr,c × weightc (4.2)

where impactr,c is the estimated impact of the response r on security category c, and

weightc is the importance value assigned to category c. 1/ MAX(RFr) is the normalization term

necessary to ensure range of RF value from 1 to 0.

For example, the RF value for response backup tampered with files for a public web server

( B.5) can be computed as follows : RFbackupfiles = 0.25 × 0.1 + 0.143 × 0.7 + 1× 0.1 = 0.225.

This value is then normalized using the maximum RF value for this system (in this case,

complete network isolation which has a pre-normalized value of 1) to obtain the final value of

0.225.

Computed RF values are provided for systems representing a public web server, sensitive

data storage system, and a business critical system (see Tables B.5, B.6, B.7).
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4.3.3.2 Identifying the Candidate Responses

The suitable costs to intrusions and responses are assigned by the system administrator

with respect to the specific security policies of the system under consideration before the

intrusion response system deployment.

Based on these costs a subset of responses is selected to ensure that the damage due to

possible incorrect deployment of response does not overshadow the benefits of early response.

The selected responses conform the following condition

DC× confidenceLevel> RF (4.3)

where DC is the damage cost corresponding to the possible intrusive behavior whose pre-

fix matches with the monitored sequence, RF is the response factor that indicates response

cost of a response associated with the resource being effected by the intrusive behavior, and

confidenceLevel is the probability that the monitored sequence indeed leads to some intrusive

behavior.

4.3.3.3 Evaluating Response Effectiveness

Though all the candidate responses satisfy the Equation 4.3, the effectiveness of the re-

sponses to adequately contain an attack will vary. We introduce the notion of response effec-

tiveness based on the prior experience of deploying the considered response and the probability

of successfully identifying the intrusion. Let r be a response corresponding to a resource being

effected by a known intrusion I. Let Pr(I) be the probability that the intrusion I will result

from the currently monitored pattern which matches with the prefix of I. Finally, let SF be

Success Factor defined as an expected success of the response r in handling the intrusion I

and computed as follows:

SF = Prsuccess(r) × Slevel (4.4)

where Prsuccess(r) is the percentage of successful deployment of the response r in handling

the intrusion I and Slevel is the Success level that denotes the degree indicating how successful

is the response r in handling the intrusion I.
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Generally, the common approach to response success quantification is the differentiation

of two response outcomes: response success, if the deployed response archived expected result

(e.g., blocked intrusion, collected the data), and response failure, otherwise. One of the limita-

tions of this approach is inability of the response system to distinguish intrusion steps disabled

as a result of response which may later result in a response wastefully deployed to counter

some of the disabled intrusive behaviors.

Another limitation lies on the response side, as the intrusion response is often represented

by the set of multi-targeted actions labeling such response strategy as failed essentially indi-

cates that none of the response actions succeeded, which also underestimated the value of the

deployed response.

While for the purpose of this work we adopt a common view of the response outcome, con-

sidering more complex strategies employing partial response success is the important direction

of the future work. As such we consider Success level as binary variable which takes a value

of 0 in case of the response failure and a value of 1 if the response succeeds.

Then, the effectiveness of the response, Ef(r, I) is computed as follows:

Ef(r, I) = [ Pr(I) × Sgain] − [ (1 − Pr(I)) × RF ] (4.5)

Therefore effectiveness is the difference between the response being correctly (accurately

identifying the intrusion for which the response is selected) and successfully deployed (Success

Factor) and the response being incorrectly deployed resulting in (additional) damages caused

by unsuccessful deployment of the response (denoted by RF or Response Factor). The above

response effectiveness computation is based on the utility theory (see (Coyle, 1972) for details).

4.3.3.4 Deploying the Most Effective Response

Finally, from the set of candidate responses, a response is selected which maximizes the

chances of containing the possible intrusion. This is realized using the effectiveness estimation

of the responses. The goal is to obtain the subset of candidate responses which can protect all

possible resources effected by all the potential intrusions and deploy the one from the subset
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which has the highest effectiveness.

The above problem can be reduced to cost-based satisfiability problem. Let monitored

execution sequence be E. Assume it matches with the prefix of known intrusive patterns which

effect n resources R1, R2, . . . , Rn. Further let a resource Ri be associated with m responses:

ri1 , ri2 , . . . , rim ; any of rij (1 ≤ j ≤ m) is capable of protecting the corresponding resource

Ri from the associated attack patterns Ii1, Ii2 , . . . , Iil (Ri is being effected by l known attack

patterns and E matches with prefix of each of these attacks). Therefore, for intrusions effecting

resource Ri, a disjunctive formula
∨

j≤m rij denotes the candidate responses. Finally, for

intrusions effecting resources R1, R2, . . . , Rn, the candidate responses can be obtained from

the satisfiability of the formula:
^

i≤n

[
_

j≤m

rij
] (4.6)

Proceeding further, for each i, response rij corresponds to attack patterns Ii1, Ii2 , . . . , Iil via

the resource Ri. The effectiveness of the response rij , denoted by Ef(rij) for handing all these

attacks is
l

X

k=1

Ef(rij
, Iik

) (4.7)

The set of responses that are likely to be most effective against the attacks whose prefix

matches with execution sequence E is, therefore, the set of rij , denoted by ∆, which satisfies the

Equation 4.6 and maximizes the objective function
∑m

j=1 Ef(rij , Iik). The deployed response

is the one which has the highest Ef value in ∆.

4.3.4 Adaptability

We consider the adaptability of the response mechanism in terms of its ability to adjust to

the changing environment according to the response decisions previously issued by the system,

in particular, success and failure of the triggered before responses. In the event that the

selected response succeeds in blocking the attack, its Success Factor is automatically increased

by one, otherwise, if the response fails to stop or divert a potentially anomalous pattern, its

SF is decreased by one to reflect this result. Note that the update of the SF in case of failed

response is performed after the monitored sequence fully matched the corresponding anomalous

pattern to exclude the possibility of an error. This approach allows to adjust response selection
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2 
DC = 0.1 

3 

1 

4 

DC= 0.1 

DC = 0.1 

7 8 
DC = 0.5 DC = 0.4 

DC = 0 

5 

DC = 0.1 

# Sequence # of repetitions of RF SF Response #
each attack-pattern

1 2, 3, 1 2 0.9 1.0 r11
0.3 0.5 r12

2 2, 3, 5 1 0.5 0.8 r21
3 2, 3, 4, 8 2 0.4 0.7 r31

0.2 0.6 r32
0.7 0.5 r33

4 2, 3, 4, 7 1 0.7 0.8 r41
0.1 0.4 r42

(a) Example setting

Pattern seen: 〈2〉 or 〈2, 3〉
Sequence Confidence level
2, 3, 1 (2/6) 0.33
2, 3, 5 (1/6) 0.16
2, 3, 4, 8 (2/6) 0.33
2, 3, 4, 7 (1/6) 0.16

Pattern seen: 〈2, 3, 4〉
Sequence Confidence level
2, 3, 4, 8 (2/3) 0.66
2, 3, 4, 7 (1/3) 0.33

(b) Steps 1 & 2 (c) Step 3

Select the responses
# Sequence Confidence level DC RF SF Response # DC vs. RF
3 2, 3, 4, 8 (2/3) 0.66 0.7 0.4 0.7 r31 (0.7*0.66)>0.4

0.2 0.6 r32 (0.7*0.66)>0.2
0.7 0.5 r33 (0.7*0.66)<0.7 → do not respond

4 2, 3, 4, 7 (1/3) 0.33 0.6 0.7 0.8 r41 (0.6*0.33)<0.7 → do not respond
0.1 0.4 r42 (0.6*0.33)>0.1

(d) Step 4&5

Compute EV
# Sequence Confidence level RF SF Response # EV
3 2, 3, 4, 8 (2/3) 0.66 0.4 0.7 r31 0.66 * 0.7 + (1-0.66)* 0.4 = 0.326

0.2 0.6 r32 0.66 * 0.6 + (1-0.66)* 0.2 = 0.464
4 2, 3, 4, 7 (1/3) 0.33 0.1 0.4 r42 0.33 * 0.4 + (1-0.33)* 0.1 = 0.199

(e) Step 5

MinCostSAT formula: (r31 ∨ r32) ∧ (r42) = (0.326 ∨ 0.464) ∧ (0.199)

(f) Step 6

Figure 4.2 Example demonstrating the response strategy selection process
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for the future occurrences of this sequence and consequently, effectively adapts our response

system to the changing environment.

4.3.5 Illustrative example

Let sequences presented in Figure 4.2(a) together with their graphical representation be

a part of specifications representing anomalous patterns. Assuming that complete monitored

pattern is 〈2, 3, 4, 8〉 and probability threshold = 0.5 we determine optimal response strat-

egy following the steps defined in Figure 4.1:

1. Pattern observed: 〈2〉. We compute confidence level for all sequences starting with

prefix 2 (Figure 4.2(b)). Since none of the considered sequences has confidence level

exceeding probability threshold we continue to monitor system executions without

taking any action.

2. Pattern observed: 〈2, 3〉. Now confidence level is computed for sequences starting with

prefix 〈2, 3〉 (Figure 4.2(b)). Similarly, confidence level of the considered sequences has

not reached probability threshold.

3. Pattern observed: 〈2, 3, 4〉. Now confidence level is computed for only two sequences

starting with prefix 〈2, 3, 4〉 (Figure 4.2(c)). Since confidence level >

probability threshold, we need to identify the resources possibly affected by intru-

sive patterns with prefix 〈2, 3, 4〉 and the corresponding set of responses. For example

purposes let us assume that responses provided in the Figure 4.2(a) represent the corre-

sponding to the sequences response actions. Thus, a set of candidate responses that we

will consider further includes r31, r32, r33, r41, r42.

As our next step we select response actions from this set that follow the condition

(4.3)(Figure 4.2(d)). Two response actions r33 and r41 do not comply with this re-

quirement which means that deploying them may cause more damage, and hence these

responses are eliminated from the further consideration.

The rest of responses will constitute a satisfiability formula. We compute EV values

for the selected set of responses (Figure 4.2(e)) and build a cost-satisfiability formula
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(Figure 4.2(f)). Finally, an optimal response strategy consisting of two responses r31

and r42 is deployed.

4.3.6 Preliminary Simulation Results

Attack Description Number Costs

of instances

Eject attack exploits a buffer overflow vulnerability in ’eject’ program. 16 DC = 1.0
RF = 0.4

Fdformat attack exploits a buffer overflow using the ’fdformat’ UNIX 5 DC = 1.0
system command. RF = 0.4

Ftp-write attack exploits FTP server misconfiguration. Remote FTP user 2 DC = 0.5
creates .rhosts file in world writable anonymous FTP RF = 0.2
directory and obtains local login.

Table 4.1 Attack descriptions (MIT, 1998).
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Figure 4.3 Average damage reduction (fdformat attack).

Data. We evaluated our model using the 1998 DARPA/Lincoln Lab offline evaluation data.

We used Basic Security Module (BSM) audit records representing system calls and correspond-

ing network traffic data indicating the attack starting points. For our experiments we used

two User-to-Root attacks that exploit buffer overflows: eject and fdformat and one Remote-



69

0

2

4

6

8

10

12

14

16

18

20

0.4 0.5 0.6 0.7 0.8 0.9 1

Probability threshold

%

Average damage reduction Error

Figure 4.4 Average damage reduction vs. error (fdformat attack).

to-Local attack: ftp-write. The descriptions of these attacks and corresponding damage and

response costs according to the attack taxonomy by (Lee et al., 2000) are given in Table 4.1.

Each state in an attack trace is associated with a damage cost; the overall damage cost of the

trace being the sum of damage costs of the states in the trace. Although our model allows

associating multiple response actions with one anomalous sequence, for evaluation purposes

we experimented with one response per sequence.

Results. Since the primary goal of this work is the intrusion response model we assume

that repository of anomalous patterns is provided by the intrusion detection framework. We

performed several experiments focusing on the effect of the cost-sensitive modeling and the

preemptiveness of the response in our model. As a primary criterion we defined damage

reduction metric that shows the difference between damage cost incurred by a full attack and

a damage cost caused by the prefix of the attack sequence (at the time of the response). These

measurements will be used to compare the systems without the cost-sensitive modeling with

the one equipped with our response approach.

Figure 4.3 shows the average damage reduction for eject, fdformat and ftp-write attacks
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Figure 4.5 Average damage reduction vs. error (ftp-write attack).

with respect to the probability threshold. The most significant damage reduction for

all attacks occurs with the lowest value of probability threshold (0.4). A high value of

probability threshold forces system to require more confirmation of the attack occurrence

before a response can be deployed and, consequently, may increase the damage incurred by the

late response. As such probability threshold = 1.0 does not carry any damage reduction

and thus corresponds to the “cost-insensitive” system.

It is important to note that all considered attacks have similar damage reduction patterns

with only curve difference. The difference in the graph can be correlated to the average

variability in attack-patterns with identical prefix. The variability is computed as the weighted

mean of the prefixLength valuations where the weights are defined by the frequency or number

of attack-patterns with the same prefix of a specific prefixLength.

V ariability =
1

N

X

(prefixLength * numOfSeq) (4.8)

In the above N is the total number of unique sequences of attack-patterns. A high value

of variability indicates a high number of sequences with unique prefixes. Clearly, in this case
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Figure 4.6 Average damage reduction vs. error (eject attack).

the correct attack pattern can be recognized early which would allow less damage to occur and

therefore, would correspond to the higher damage reduction.

Figures 4.4 and 4.5, 4.6 present a damage reduction against two types of error:

• Early response error : Low threshold may force preemption long before the distinguishing

aspects of different attack-patterns are seen (prefix of multiple patterns matches the

sequence being monitored). As a result, monitored sequence may eventually end up in one

attack-pattern while the response, selected and deployed preemptively, may correspond

to some other attack. We will focus primarily on these type of errors; however it must

be noted that any preemption can lead to such problems – the main challenge is to allow

flexibility and capability to fine tune thresholds to vary preemption depending on prior

results and security requirements.

• Never-seen-before sequence: when monitored sequence represents a novel pattern, al-

though matches a prefix of some existing anomalous sequence. We claim that intrusion

detection system is responsible for detecting new attacks and their addition to the attack-
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pattern repository. Responses can be attached only after the attacks are identified by

the intrusion detection system.
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Figure 4.7 Average damage reduction vs. sequence length (ftp-write at-

tack).

As expected, the results show that the error decreases with the increase of

probability threshold value. With the delay of response selection process increases a con-

fidence in some attack and consequently increases the accuracy of prediction of anomalous

sequence.

Figure 4.7 presents a damage reduction from the perspective of average sequence length on

the example of the ftp-write attack. Generally, damage reduction increases with the increase

in sequence length. We can also note that this increase is more gradual for higher values of

probability threshold (0.6, 0.8) and becomes very rapid for probability threshold =

0.4. This again confirms the observation that low probability threshold gives the highest

amount of damage reduction. There are two sudden changes in graph patterns: one at sequence

of size 8 and another at sequence of size 9. They represent two data extremes. Sequences of

length 8 are almost identical with slight differences (low variability) at the end. Therefore, to
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reach specified probability threshold system waits until almost the end of these patterns,

resulting in low damage reduction. On the other hand, a sequence of size 9 has a very unique

pattern, allowing system to recognize it early with little influence of probability threshold

value.

For the above experiments, it can be inferred that the systems focused on the significant

damage reduction with the ability to tolerate higher error level can set up a lower probability

threshold while systems more oriented on the accuracy of the deployed response should lean

towards probability threshold value that is closer to 1.0.
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CHAPTER 5. Implementation and experiments

Previous chapters presented the design of the detection and the response components of the

proposed IDR system. This chapter describes the implementation details of these components,

explains how the normal profiles of the programs are generated, what anomalous behavior can

be detected and examines several example of malicious program behavior.

5.1 Implementation overview

Our system implementation consists of the three components: Hybrid interposition of sys-

tem calls component (HISC), Detection module and Response module (Figure 5.1).

Hybrid interposition of system calls component (HISC) (Uppuluri et al., 2006) is a

system call interception mechanism built for Linux architecture. It serves as an additional layer

between the kernel and our IDR system by intercepting all system calls made by the processes

in the kernel and delivering them to the user space. The HISC architecture is presented in

Figure 5.2 (Uppuluri et al., 2006). It includes the following major components:

• HISCD: the user-level daemon responsible for intercepting all newly created processes.

• URT: the user-level monitor, forked by HISCD for a new process, invokes the execution

of UDE facility.

• UDE: the user-level detection engine that intercepts the system calls.

• KRT: the kernel-level runtime environment that mainly functions as a control center and

intermediate node for communication between KDE, HISCD and URT.

• KDE: the kernel-level detection engine that intercepts the system calls at the kernel level.
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Figure 5.1 Architecture of IDR system.

• Device Driver: mainly used for communication between URT and KRT components.

Detection module is the main component that directly interacts with the UDE module

of HISC infrastructure. It is responsible for monitoring and processing the system calls inter-

cepted by the kernel-level components of HISC. The observed behavior is matched with the

normal and abnormal profiles contained in the Exact graphs. In case an unknown sequence

is encountered, the detection module processes the pattern through the classifier (i.g. SVM

classifier) and makes necessary updates in the Exact graphs. If the observed pattern represents

abnormal behavior, detection module invokes the response component and redirects to it the

suspicious sequence.

Response module is responsible for the response selection mechanism that is invoked
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when an observable behavior matches abnormal program’s profile. This component deter-

mines the existence of the necessary conditions for the preemptive response deployment and

selects the most effective response action based on the risks involved in deploying considered

response and the potential damage from the monitored intrusive pattern. Current implemen-

tation of the response component only provides the selection of the optimal response action. It

does not include the cost-satisfiability modeling of the responses and does not provide response

deployment. Currently the optimal response action is selected based on the value of the effec-

tiveness of the response, while the success or failure of selected response action is determined

randomly.

Parameter Default value

probabilityThreshold 0.4

windowSize (SVM algorithm) 3

delay 10

Figure 5.3 The parameters of our IDR system.



77

5.1.1 Implementation details & parameters.

All components of the IDR system were implemented using C/C++ language. In our IDR

system we used HISC version for Linux kernel 2.4-18 (Uppuluri et al., 2006). The anomaly-

based classifier in the detection module was implemented using libsvm tool, version 2.84 (Chang

and Lin, 2001).

Table 5.3 summarizes the parameters and their default values used in our implementation.

ProbabilityThreshold parameter indicates an acceptable level of confidence that some attack is

in progress and a response action should be triggered. WindowSize is the size of the sliding

window used to break up variable-length Exact patterns into sequences of fixed length for

classification by the machine-learning algorithm. Delay parameter shows how many system

calls system waits before processing the monitored sequence in case the first system call does

not have any repetitions in this pattern (Section 3.1.2, algorithm 3.5).

5.2 Experiments

5.2.1 Building normal behavioral profile
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Figure 5.5 Growth of the length of binary ID associated with legal pat-

terns.

As we previously discussed, the detection module maintains two Exact structures: a struc-

ture containing normal patterns and abnormal or known intrusive sequences. If the monitored

sequence does not match any of the existing patterns, anomaly-based classification is triggered.

According to the result of the classification, the new pattern is recorded in the corresponding

Exact graph. To be able to rely on the anomaly-based classification, the algorithm needs a

training set of patterns. The presence of labels indicating normal or abnormal sequence, as

well as the existence of the intrusive patterns in the training set depends on the actual ma-

chine learning algorithm. In the implementation of our detection model we experimented with

two-class SVM, trained on the instances of normal and abnormal behavior.

In this section we focus primarily on the profiles of programs’ normal behavior and the

ability of our system to capture them.

In the evaluation of our model we used the following Unix utilities:

• The cat utility concatenates and prints files reading them sequentially and writing them

to the standard output (cat, 2007).
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SVM access: Exact sequences vs fixed length 
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Figure 5.6 SVM algorithm invocation (cat utility).

• The ls utility lists the files in the current working directory (ls, 2007).

• The mount utility requests file system found on a device to be attached to the general

file hierarchy (mount, 2007).

• The whoami prints an effective user name (whoami, 2007).

Utility name Version Length of binary ID # of distinct

(# of distinct Exact Exact states

sequences)

ls fileutils package, version 4.1 56 21

cat textutils package, version 2.0.21 26 11

mount version 2.11n 21 17

whoami package sh-utils, version 2.0.11-5 32 21

Table 5.1 Normal profiles of the used UNIX utilities.

Figures 5.4, 5.5, 5.7 and 5.8 show the population the Exact with normal patterns for cat

and ls utilities. Exact with abnormal(anomalous) patterns in these cases remains empty since

detection engine only encounters normal behavior of these utilities.
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Exactr growth (-ls command)
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Figure 5.7 Growth of the number of states in Exact graph with legal pat-

terns.

Figures 5.4 and 5.7 show the growth of the Exact graph in terms of system calls generated

by these utilities. These figures correspond to the number of the states in the Exact graph.

Since the behavior of ls is more variable than the behavior, of cat, the number of states in

the final normal profile is much higher (21 state) compared to the size of Exact for cat utility

(11 states).

Figures 5.5 and 5.8 present the growth of the length of binary vector associated with the

Exact graph with normal patterns. In other words, this shows the number of distinct variable-

length sequences in Exact. Similarly, the size of the binary id of the normal profile for ls

utility is much larger (56 digits) than the one for cat (26 digits). The summary of the normal

profiles of these utilities is provided in Table 5.1.

Figures 5.6 and 5.9 demonstrate the classification of system call patterns produced by cat

and ls utilities through the anomaly-based algorithm. Specifically, the graphs show how often

the new sequence needs to be classified through the SVM algorithm. In other words, these

graphs show how often the underlying SVM algorithm is invoked. Both graphs show two

perspectives: the view of the classification from the Exact side and the view from the SVM

algorithm side. Recall that one unknown variable-length sequence needs to be broken into
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Figure 5.8 Growth of the length of binary ID associated with legal pat-

terns.

one or more fixed-length sequences to be processed by SVM algorithm. Thus, classification

of a new Exact pattern might result in a number of invocations of SVM. This can be clearly

seen on the graphs: the number of fixed-length sequences is much higher than a number of

variable-length patterns. This difference also impacts the performance of our system during

the monitoring of program behavior as shown in Table 5.10.

The performance experiments were run on VMware Server 1.0.3 running Red Hat Linux

7.3 (Valhalla) Linux distribution with kernel 2.4.18-3 running on IBM Lenovo T61 (Intel Core

2 Duo CPU T7300@2GHz, 984 RAM). Tests were run for 20 iterations. Each command was

run without options. Partially populated Exact refers to the Exact graph containing normal

patterns for Unix utilities without options. Backend SVM denotes an anomaly-based algorithm

triggered by our system for classifying unknown patterns.

Table 5.10 shows the execution time of our system without and with the existing normal

profile. It is clear that the lack of any knowledge on the normal behavior of the program impacts

the performance of our system. Specifically, the absence of the normal profile increases the
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Figure 5.9 SVM algorithm invocation (ls utility).

running time on average by 30%. At the same time, depending on utility the running time may

be significantly higher. For example, in case of cat utility the running time (73 milliseconds)

almost doubled, compared to the case with partially populated Exact (46 milliseconds).

This increase in the system run time with empty profile is primarily caused by the classifi-

cation of the unknown patterns using the machine-learning algorithm. The average increase of

the time necessary for backend SVM is almost tripled, compared to the SVM use with partially

populated Exact.

Generally, the overhead that our model brings to the system while monitoring its behavior is

70.25 milliseconds, which is computed as the difference between the time of partially populated

Exact and running time of the utility. This overhead incorporates time required for several

operations: system calls interception by the HISC, system calls processing through detection

and response components and finally, the time necessary to wrap the system calls for the

classification and retrieve the SVM classification result. Current implementation employs

SVM as a stand alone classifier which requires several IO operations. Optimizing classification

to avoid costly file operations would lower the overall overhead of our model, thus, is being
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Utility Running Partially populated Exact Overhead Empty Exact

time Total time Backend SVM Total time Backend SVM

running time running time

ls 24 (12.7) 93.5 (14.6) 5 (6.1) 69.5 103 (28.5) 35 (18.8)

cat 4.5 (5.1) 46 (15.7) 8.5 (8.7) 41.5 73 (19.2) 19.5 (9.9)

mount 6.5 (6.7) 108.5 (14.6) 13 (10.3) 102 146 (22.3) 31.5 (16.3)

whoami 4.5 (6) 72.5 (13.7) 12.5 (8.5) 68 97.5 (12.9) 25 (8.9)

Figure 5.10 Mean CPU running time of Unix utilities in millisec (Standard

deviation is given in parentheses).

considered as one of the future work directions.

5.2.1.1 Abnormal behavior

Response action RF SF Illegal read Illegal shell access Buffer overflow

(ls) (whoami) (ls)

process termination 0.9 0.8 X X X

process delay 0.6 0.7 X X X

process restart 0.3 0.5 - - X

memory isolation 0.2 0.6 - X X

restore backup file 0.25 0.7 - - -

backup tampered with files 0.25 0.1 X - -

delete tampered with files 0.5 0.6 X - -

file isolation 0.8 0.8 X - -

detailed logging 0.28 0.1 X X X

generate report 0.07 0.15 X X X

generate alarm 0.1 0.2 X X X

Table 5.2 The response actions suitable to contain considered attacks ac-

cording to the Appendix B.

Our system relies on the existence of the profiles of normal and abnormal behavior of the

programs. The profile of abnormal behavior is not necessary to accurately detect abnormal

behavior; however, its existence is crucial for response component of the system.

Once these profiles are built, the system monitors the programs’ behavior for anomalous

changes. In this subsection we focus on the abnormal behavior of the programs.
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What type of abnormal behavior can be detected Our system is pattern-based,

i.e it detects the known patterns of normal or abnormal behavior represented by sequences

of system calls. Therefore, if the anomalous behavior does not manifest itself through the

change in the program’s system call behavior, it will not be detected. Naturally, some types of

intrusions known for their ability to disguise the behavior as normal remain hidden from our

system unless their intrusive behavior will cause program to behave differently.

One of these types of intrusions are mimicry attacks, that, in essence, are mimicking the

normal behavior of the program, thus making their detection a very challenging task (Wagner

and Soto, 2002). The examples of such mimicry attacks include exploiting normal although

vulnerable application behavior or embedding irrelevant system calls into a malicious code,

making it look as a legitimate system call sequence (Wagner and Soto, 2002).

Another type of intrusions that are hard to detect using system-call pattern-based IDS

are buffer overflow attacks. Generally, buffer overflow occurs when a program writes data

with size larger than a space allocated for this data. Often buffer overflow is a first step

of the attack that allows an attacker to overwrite data responsible for program flow control

and transfer the control over program to a malicious code (Fayolle and Glaume, 2002; Simon,

2002; Ogorkiewicz and Frej, 2002). Since buffer overflows do not cause change in the programs

behavior on the system-call level during their initial step, their detection and prevention usually

involves methods such as bound-checking (Jones and Kelly, 1997), static analysis of source

code (Wagner et al., 2000; Ganapathy et al., 2003) and dynamic run-time analysis of the

program (Lhee and Chapin, 2002). We will explore the behavior of our system for this type of

attacks on the example of integer overflow exploit.

Detection of new program behavior: cat vs mount. In this experiment we explored

the behavior of the detection engine of our IDR system when encountering the behavior that

differs from the sequences contained in the normal Exact graph. Although this new behavior

is not necessarily malicious, from the detection engine perspective it is abnormal.

For evaluation purpose we used mount utility as a program exhibiting anomalous behavior.

Classifier in this case was only trained with the data from normal executions of cat utility.
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System calls generated by cat & mount  utilities

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

0 50 100 150 200 250 300

Time line

S
y
s
te

m
 c

a
ll
 I
D

normal profile of cat utility mount /dev/sdb1 /mnt/usb2

Figure 5.11 System calls generated by cat and mount utilities.

We selected mount for comparison purposes, mainly due to the nature of system calls

generated by these two utilities. As Figure 5.11 shows there is a significant difference in the

system calls generated by cat and mount utilities. However, this difference appears only after

approximately 200 system calls. In the beginning of each run, calls produced by these utilities

at the same time units are similar, and thus sequences of variable-length produced by Exact

from this stream of system calls are also similar. Once the behavior of these utilities becomes

different, the detection component with Exact graphs containing only normal profile for cat

utility will recognize the execution sequences of mount utility as abnormal. This behavior can

be clearly seen on the Figures 5.12 and 5.13. Sequences not matching normal profile of cat

utility are recorded as anomalous in the Exact with abnormal patterns.

Detection of known program behavior: illegal read. As the examples of modified

normal behavior of the program we experimented with two commonly used programs ls and

whoami.

The motivation behind such experiments is the trojan horse scenario in which intelligent
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Figure 5.12 Growth of the length of binary ID associated with normal and

abnormal patterns.

attacker gains access to the system and modifies or leaves a modified version of the program

with some hidden (often malicious) features allowing an intruder to control the system after

attacker leaves. Usually trojan horse programs are masked under ordinary programs such

as ls, find, computer clock setting programs, games, etc (Dittrich, 2002). Often programs

necessary for break-in and cover-up steps are bundled together for convenience and referred to

as root kits.

The fundamental problem in detecting the root kits is uncertainty about the programs that

can be trusted (Wikipedia, 2007). We experimented with detection of the novel patterns in

the behavior of known programs, specifically ls and whoami (whoami, 2007).

As an example, the following fragment has been added to the ls main() body of the

program:
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Figure 5.13 Growth of the number of states in Exact graphs with normal
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#define MODE (S IRUSR‖S IWUSR‖S IRGRP‖S IROTH)

unsigned int nread, src, dst;

char *mybuff[100];

src = open("/etc/shadow",O RDONLY);

dst = creat("/home/natalia/myfile", MODE);

while((nread=read(src,mybuff, 100)) < 0){

write(dst,mybuff,nread);

}

The code creates a copy of /etc/shadow file in the user’s directory with read and write

permissions for the file owner and read permission for group and others. This code produces

the following abnormal sequence of system calls:

mmap2, open, open, read, write, read, write,..., read, write, ioctl, ioctl

This modified version was tested against the profile gathered with the original version of
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the program given in Table 5.1. Our IDR system detected this sequence as anomalous when

the system call write was produced. The first calls mmap2, open, open, read although

represent the beginning of the abnormal pattern also present as a pattern in the normal profile.

Therefore, the detection engine delayed the alert until the monitored sequence could not be

found in the normal profile and matched an abnormal pattern.

Among the responses suitable for this type of violation (Table 5.2), the IDR system selected

the response action delete tampered with files with risk factor= 0.5 and probability to succeed

= 0.6 as the most effective response.

Detection of known program behavior: illegal shell access. As another example

of the new pattern detection in the modified programs we experimented with whoami util-

ity. The following fragment has been added to the whoami main() body of the program:

if (argc>1 &&(strcmp(argv[1],"−−backdoor")==0)){

char *line[2];

args[0]= "sh";

args[1]= NULL;

setuid(0);setgid(0);

execve("/bin/sh", line);

}

The code allows user to type whoami --backdoor in command prompt to gain access to

the shell prompt without supplying a password. This shellcode; i.e., code that gives shell to

an attacker, is a common code used for the majority of local buffer overflows. It grants the

access to the shell /bin/sh by calling execve() (Younan, 2003). This shellcode produced one

abnormal sequence of system calls:

write, setuid, setgid, execve

The first system call of this sequence write is not present in the normal profile of the

original version of the program, this led the whole pattern is be classified as anomalous. Our

IDR system was able to detect it with the first anomalous call write. The response selected
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for deployment by IDR system among the applicable responses (Table 5.2) is memory isolation

action which intuitively seems to be the best choice as it has low risk factor (0.2) with a good

probability to succeed (0.6).

System calls generated by ls  utility
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Figure 5.14 System calls generated by ls utility.

Detection limitations. In addition to the above experiments we explored integer over-

flow vulnerability present in ls utility. This problem arises when ls is provided with exces-

sively large value for width -w option which will cause an incorrect handling of internal integer

variable (CVE-2003-0853, 2003).

The exploitable condition can be reproduced by typing the following line in the command

prompt:

/bin/ls -w 1073741828 -C

This command requests a listing of the current directory sorted by columns with column

position width 1073741828. The value provided for width variable is used in further calculations

of the actual columns’ width. However, as the code does not provide necessary bound-checking

of the accepted integer value, programs fails during the calculations.

The exploit produces the following behavior:
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vm73>>/bin/ls -w 1073741828 -C

Out of Memory:Killed process 1603 (ls)

Out of Memory:Killed process 1603 (ls)

Out of Memory:Killed process 1603 (ls)

· · ·

Although this vulnerability is non exploitable directly, due to the memory consumption it

may cause remote denial of service through wu-ftpd (CVE-2003-0853, 2003).

Figure 5.14 presents a stream of systems calls generated by ls utility during its normal

run and under integer overflow attack. System calls produced in each run are very similar.

However, the exploit generates a long sequence of brk system call which causes a memory

exhaustion.

The exploit was run against the profile of normal behavior generated with the original

version of ls. However, the IDR system was not able to detect it due to two reasons. Firstly,

our IDR system is not monitoring the data (e.g input parameters of the programs). Secondly,

although the exploit’s behavior is abnormal, it does not produce any changes on the system

call level. The abnormally long sequence of brk system calls after it is broken down into

variable-length Exact sequences, constitutes a set of short patterns that can be found in the

normal profile.

In the considered scenario the underlying operating system terminated the process. How-

ever, if the process continued to execute and proceeded to the next step of attack which is the

malicious code insertion and execution, IDR system would be able to detect and respond to

such unusual behavior.

In this chapter we presented the experiments with the prototype of our IDR framework.

We showed that our prototype is able to successfully detect different variations of abnormal

known/unknown program behavior by monitoring the system call patterns. Upon detecting

this anomalous behavior our system responds to it by selecting the most effective response.
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CHAPTER 6. Conclusion

In this work we presented an integrated approach to intrusion detection and response

based on the technique for monitoring abnormal patterns in the program behavior. The pro-

posed model effectively combines the advantages of anomaly-based and specification-based

approaches recognizing a known behavior through the specifications of normal and abnormal

patterns and classifying unknown patterns using a machine-learning algorithm. Such combi-

nation not only allows adaptation of the specification-based detection to the new patterns, but

also provides a method for automatic development of specifications.

In addition to detection, our framework also allows for preemptive response. By preemp-

tion, we imply deploying response before an monitored pattern is classified completely as an

intrusion. Such response deployment is likely to stop an intrusion before it can affect the

system. However, preemption also inherently suffers from false positives, i.e., responses are de-

ployed to deter correct execution which may look intrusive in its initial phase. To reduce false

positive, we have developed a multi-phase response selection and deployment mechanism. In

the first phase, we identify whether or not to preempt depending on a pre-specified threshold.

If the probability that the monitored pattern will result in a intrusion exceeds the threshold,

our response selection procedure is invoked. The threshold can be managed depending on the

tolerance level of system with respect to intrusions, as an example of this; the security-critical

systems with low tolerance might set up a low threshold.

In the second phase, response selection proceeds by taking into consideration the damage

that may be incurred by a possible intrusion against the damage that may be caused by the

response action. This consideration is performed in several steps. In the first step, a set

of responses corresponding to the anomalous pattern matched with the monitored sequence
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is selected. As a number of intrusive patterns can have the same prefix, multiple candidate

response actions are considered for deployment. To reduce the risk of damaging a monitored

system by triggering a severe or incorrect response, we identify resources that can be potentially

affected by the intrusion and corresponding response actions effective against this intrusion.

In the next step, candidate responses evaluated based on the cost information of the system

damage caused by intrusion and response. The final response strategy is determined through

cost-satisfiability modeling of the candidate responses and the response action with the highest

effectiveness is deployed.

We provide a prototype system implementation where we have deployed a host-based in-

trusion detection and response framework on Red Hat Linux 7.3 (Valhalla) Linux distribution

with kernel 2.4.18-3. The implementation includes three components: Hybrid interposition

of system calls component (HISC) responsible for system calls interception, Detection module

performing a system call monitoring and processing through Exact with profiles of normal and

abnormal behavior, and Response module determining the effective response. The experimen-

tation with the system prototype allowed us to draw the following conclusions:

• System-call based detection of abnormal behavior can be done effectively in practice.

Since the monitoring for anomalous patterns in programs behavior is based on the profile

of normal behavior, the effectiveness of the detection can be characterized by the following

factors:

– The profiles of normal behavior: Our system is able to generate specifications of

normal behavior automatically. We developed normal profiles for five Unix utilities

in a short period of time. Although considered programs have very simple behavior,

we believe that the profiles for more complex software applications can be generated

automatically in a similar fashion provided additional time.

– Detection of unknown anomalous behavior: Our system correctly recognized the

behavior of mount utility as abnormal based on the profile of normal behavior of

cat utility. Since the system did not have any information on the mount utility, its

behavior was novel to the system.
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– Detection of known anomalous behavior: We performed several experiments on the

detection of programs anomalous behavior based on the normal and abnormal pro-

files. Our system successfully detected the attacks which behavior caused changes

in the normal system-call flow of the programs.

• Cost-sensitive approach to preemptive intrusion response is an effective solution. Since

the intrusion response field lacks well developed benchmarks for quantifying the efficiency

of the response system, we evaluated our response framework based on the following

contributions:

– Preemptive deployment of the responses: Integration of pattern-based intrusion de-

tection and response allows effective early attack identification and preemptive de-

ployment of a response. Based on the profiles of normal and anomalous behavior

our system was able to detect malicious behavior on its first stages and immediately

select the most effective response action.

– Cost-sensitive response selection: Using the provided cost information of the system

resources and responses together with their correspondence matrix our response

component selected an optimal response action.

6.0.2 Future work

We see the following directions of future research:

• Development of resource list: We have presented a classification of system resources that

can be affected by a malicious process. One of the future avenues of research will be to

develop a comprehensive list of the resources for various types of systems.

• Development of domain-specific response mechanisms: We have provided an overview of

the response mechanisms mainly for a host-based IDR system. There is a need to develop

a comprehensive list of response mechanisms for various types of intrusive behavior, e.g.,

OS attacks, network attacks and for various types of systems.
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• Completion and Optimization of IDR system: The current prototype of the system is still

in its infancy state. The detection process performs the patterns matching twice with

the normal profile and similarly with the abnormal profile causing an additional over-

head. The repeated matching can be avoided if Exact containing normal and abnormal

sequences are integrated together.
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APPENDIX A. Resource/Response Correspondence Matrices

MEMORY RESOURCE RESPONSE LATTICE

A
:

D
A
T
A

S
E
G

M
E
N

T i. Illegal write to a process data segment

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

Memory isolation:
ւ ց

Create a separate memory Disallow write to certain portions
for the process to make updates of memory for certain processes

↓
protection: Delay suspicious process

↓
passive responses: notification, logging

ii. Wrong format/values of the used variables

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

protection: Delay suspicious process
↓

passive responses: notification, logging

Table A.1 Mapping between data segment resource and response actions
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MEMORY RESOURCE RESPONSE LATTICE

S
E
G

M
E
N

T i. Illegal write to the stack memory

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

Memory isolation:
ւ ց

Create a separate memory Disallow write to certain portions
for the process to make updates of memory for certain processes

↓
protection: Delay suspicious process

↓
passive responses: notification, logging

B
:

S
T
A

C
K ii. Illegal read of the stack memory

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

Memory isolation:
ւ ց

Disallow read of certain portions of Disallow read of certain portions of
memory memory during certain times of its execution

↓
protection: Delay suspicious process

↓
passive responses: notification, logging

Table A.2 Mapping between stack resource and response actions
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INPUT/OUTPUT RESOURCE RESPONSE LATTICE

S
Y

S
T

E
M

i. Illegal creation/deletion of file/file links

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

File system isolation:
↓

Disallow full/selective access to file
↓

protection:
ւ ց

Delete/restore created/deleted file/link Delay suspicious process
↓

passive responses: notification, logging

C
:

F
IL

E ii.Illegal read/write of file content

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

File system isolation:
ւ ↓ ց

File writes are made Disallow full/selective Allow read/write on
in a chroot environment access to file sanitized/empty/dummy

version of (privileged) file
↓

protection:
ւ ց

Restore original/backed Delay suspicious process
version of tampered with file

↓
passive responses: notification, logging

iii.Incorrect file permissions

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

protection: Delay suspicious process
↓

passive responses: notification, logging

Table A.3 Mapping between file system resource and response actions
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INPUT/OUTPUT RESOURCE RESPONSE LATTICE

D
:

N
E
T

W
O

R
K

IN
T

E
R

F
A

C
E i. Illegal access of the data

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

Network isolation
↓

1. Isolate process by capturing at the
packet filter level the data sent to certain IP addresses/subnets

2. Prevent the process from sending data
a) to certain IP addresses/subnets

b) to any server other than the one from which a connection
was made to the process

3. Prevent process access to all/some
of the packet traffic

↓
protection: Delay suspicious process

↓
passive responses: notification, logging

ii.Wrong format/values of the data

Process termination
↓

complete isolation : migration or emulation
↓

alternative methods to complete isolation
↓

protection: Delay suspicious process
↓

passive responses: notification, logging

Table A.4 Mapping between network interface resource and response ac-
tions
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APPENDIX B. Response Factor Values Tables

Response action Availability Confidentiality Integrity Man-hours Performance Storage
Backup tampered with files 0.25 0.14 1
Delay suspicious process 0.86
Delete tampered with file 1
Detailed logging 0.33 0.29 0.5
File system isolation 0.8
Generate alarm 1
Generate report 0.67
Global offset table isolation 0.1
Intrusion analysis tools 0.71
Memory isolation 0.2
complete network isolation 1
Network isolation:
prevent process access
to packet traffic 0.7
Network isolation:
block specific subnets 0.5
Network isolation:
packet inspection 0.6
Process isolation:
different environment 0.4 0.5
Process isolation:
virtual environment 1
Process restart 0.3
Process termination 0.9
Remote code execution:
full code 1 0.57
Remote code execution:
partial code 0.75 0.43
Restore original backup
version of tampered with file 0.5

Table B.1 Impact Values by category for Potential Responses

Policy Goal Weight
Availability 1
Integrity 0.5
Confidentiality 0.1
Performance 0.7
Man-hours 0.1
Storage 0.1

Table B.2 Assignment of Security Policy Priorities: Public Web Server
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Policy Goal Weight
Availability 0.2
Integrity 0.7
Confidentiality 1
Performance 0.2
Man-hours 0.01
Storage 0.1

Table B.3 Assignment of Security Policy Priorities: Classified

Policy Goal Weight
Availability 0.7
Integrity 0.9
Confidentiality 0.5
Performance 0.3
Man-hours 0.01
Storage 0.1

Table B.4 Assignment of Security Policy Priorities: Business Critical

Response RF Value
Generate-report 0.067
Global offset table isolation 0.100
Generate alarm 0.100
Memory isolation 0.200
Backup tampered with files 0.225
Restore original backup version of tampered with file 0.250
Detailed logging 0.283
Process restart 0.300
Remote code execution: partial code 0.375
Process isolation: different environment 0.450
Remote code execution: full code 0.500
Intrusion analysis tools 0.500
Delete tampered with file 0.500
Network isolation: block specific subnets 0.500
Delay suspicious process 0.600
Network isolation: packet inspection 0.600
Process isolation: virtual environment 0.700
Network isolation: prevent process access to packet traffic 0.700
File system isolation 0.800
Process termination 0.900
Network isolation: complete network isolation 1.00

Table B.5 Computed RF values: Public Web Server
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Response RF Value
Generate report 0.006
Generate alarm 0.009
Global offset table isolation 0.018
Memory isolation 0.036
Process restart 0.054
Network isolation: block specific subnets 0.090
Detailed logging 0.099
Network isolation: packet inspection 0.108
Network isolation: prevent process access to packet traffic 0.126
Intrusion analysis tools 0.128
File system isolation 0.144
Delay suspicious process 0.154
Process termination 0.162
Process isolation: virtual environment 0.179
Network isolation: complete network isolation 0.179
Restore original backup version of tampered with file 0.314
Backup tampered with files 0.340
Process isolation: different environment 0.521
Delete tampered with file 0.628
Remote code execution: partial code 0.750
Remote code execution: full code 1.00

Table B.6 Computed RF values: Classified

Response RF Value
Generate report 0.007
Generate alarm 0.011
Global offset table isolation 0.078
Detailed logging 0.154
Memory isolation 0.156
Process restart 0.233
Intrusion analysis tools 0.238
Delay suspicious process 0.286
Backup tampered with files 0.298
Process isolation: virtual environment 0.333
Network isolation: block specific subnets 0.389
Network isolation: packet inspection 0.467
Restore original backup version of tampered with file 0.500
Network isolation: prevent process access to packet traffic 0.544
Remote code execution: partial code 0.560
Process isolation different environment 0.589
File system isolation 0.622
Process termination 0.700
Remote code execution: full code 0.746
Network isolation: complete network isolation 0.778
Delete tampered with file 1.00

Table B.7 Computed RF values: Business Critical
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