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ABSTRACT 

Modern biologists face greater challenges for dealing with the enormous amount of 

biological data generated by a variety of modern biological studying methods. It becomes very 

important to extract and analyze specific information from these data efficiently. Nowaday, 

with the advantage of the World Wide Web, most of these data are available on the Internet. 

However, since these data are huge and diverse, to find and obtain these data on the Internet 

also is a daunting task. These tasks can be very difficult for researchers without computer 

programming skills to conduct, and they can also slow down the research and development 

process for many modern research areas.  

In this thesis, we introduce an auto-programming tool Vnet (Visual Network data Extraction 

and program Tool) for biologists to help them obtain specific web pages on the Internet and 

extract useful information from them. This tool can observe the visual extraction of sample data 

by users via a graphical user interface, i.e., through the mouse point-and-click operations 

familiar to most computer users. After that, it will be able to generate computer programs that 

can automatically carry out the same kind of data download and extraction tasks for users. That 

is to say, by memorizing the ways a user data download and extraction data, this tool can turn 

that into computer solutions. Vnet does not require any sophisticated computer science training 

to use it, and it can do the programming job automatically.  
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CHAPTER 1. INTRODUCTION 
 

Vnet is an auto-programming tool which can help users conduct the following jobs: 

1) Search the Internet manually on Vnet browser or by the spider search engine provided 

by Vnet;  

2) Select data from these web pages and compile the selections into regular expressions; 

and 

3) Output selected data and generate Perl programs which embed the functions for the web 

searching and automatic information extraction.  

The generated Perl programs can run independently. Users just need to specify several 

parameters as they gave to the Vnet spider search engine. The Perl programs will return the 

data which appear on the same areas as users have selected in Vnet browser. 

This thesis is organized into the following chapters. Chapter 2 provides the background 

information on current methods and tools that can collect information on the Internet or extract 

useful information from a huge amount of data, which leads to the discussion of the motivations 

for creating Vnet. Chapter 3 introduces the methods used to implement the functions of Vnet 

which includes how to create the spider for Vnet, how to translate user selections to correct 

regular expression sequences, the types of selections Vnet handles and how Vnet generates 

output views and Perl programs. Chapter 4 presents how Vnet works by showing a demo. 

Finally, Chapter 5 summarizes the contributions of this work and suggests future expansion 

directions. 
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CHAPTER 2. BACKGROUND AND MOTIVATION 

In many modern science and research fields, scientists such as biologists and biomedical 

researchers can reuse some experiment data generated previously by others and archived on 

some web pages for public access. By using or analyzing these data without repeating those 

experiments again, they may discover some important things or rules that are not noticed by the 

original researchers, or to follow up on prior work. The research advance process can be 

dramatically shortened by the interchange of data. However, the following issues prevent 

scientists from doing those tasks smoothly: 

a) Since most often the data are stored with an enormous amount of similar data in an 

online database, it is difficult for researchers to find the right data to use; 

b) The data could be huge and complicated for easy extraction and analysis; and 

c) Most web sites update their database frequently, therefore the data that researchers have 

extracted previously may not be the latest version. 

To avoid those conditions, scientists have to use some automatic tools to conduct these 

tasks and to update their data as needed. The following introduces some tools that can partially 

help them, but may be too complicated to achieve the purposes especially for non-programmers. 

2.1 Web Browser 

Since Internet has become more and more popular, viewing data from a web site within a 

web browser becomes an easy task for most of people in this decade [1]. Every kind of 

browsers, e.g., Microsoft Internet Explorer, Mozilla Firefox, Opera or Safari, can do this very 

simply by taking an URL or following some the hyperlinks on the WebPages, no matter what 

kind of operating system they are running on.  However, until now, their major functions are 

still just to view the web pages; none of them have the capability to automatically traverse the 
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Internet all by themselves. The closest they can do is to link their searching field to some 

popular web search engines.  

2.2 Search Engine 

A search engine or search service helps find information stored on a computer system or on 

the World Wide Web. It can work inside a corporate or proprietary network or on a personal 

computer [2]. From the user’s point of view, a search engine works under following process: 

a) Users input some specific search criteria using some keywords, and ask for contents 

meeting them; and 

b) The search engine then returns a list of references that match those criteria. 

 Most commonly, a search engine refers to a Web search engine, and it searches for 

information on the Internet. Google and Yahoo are two of the most popular web search engines. 

They both provide their web search services through their web pages. Users input and submit 

the search criteria to their web sites, and then they display the searching results on their web 

pages. Figure 1 is a screen snapshot of Google web searching result. 

 

Figure 1: Snapshot of a Google web searching result. 
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Web search engines are very convenience. however, they still have some limitations: 

1) Most of the time they return too much information, and most of the information are not 

what the users find useful. Sometimes, users need more specific searches on some specific 

known websites instead. Web search engine providers are working on this issue. Google 

provides a service called SiteSearch which enables users to search on some specific websites. 

Unfortunately, this service works only on static pages that can be directly linked from the 

Internet; it does not work on dynamically generated data.  

2) For some websites that provide huge online databases like the Genbank, web search 

engines are not able to obtain all the information from these databases to make their index. 

Therefore, if users want to search more specific information from those websites, web search 

engines cannot be used and users must individually access those database websites. 

3) Search engines cannot tell about the most current web pages. To provide fast searching 

for users they index billions of web pages routinely, but this indexing step takes a long cycle. 

Therefore, it is impossible for search engines to update all the indexed pages every minute. This 

is acceptable for most of the web pages that do not change after they are completed, but for 

some dynamic web pages that are updated very frequently, web search engines will not be able 

to give the most current results. People who want to keep track of the frequently updated web 

pages have to use some more complicated tools on their own. Spider is one of them. 

2.3 Spider 

A Web spider (also known as a Web crawler or Web robot) is an automated script or 

program which browses the website on the Internet in a predefined, automated process. This 

process is called Web crawling or spidering. Many legitimate websites, in particular search 

engines, use spidering as a method of providing up-to-date data. Spiders are mainly used to 
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create a copy of all the visited pages for later processing by a search engine that will index the 

downloaded pages to provide fast searches. Spiders can also be used for automating Web site 

maintenance tasks, such as checking broken links or validating HTML code. In addition, 

spiders can be used to gather specific types of information from Web pages, such as collecting 

e-mail addresses (usually for spams). 

The working process of a Web spider is as follows: 

1) It starts with a list of URLs to visit, called the seeds; 

2) As the spider visits these URLs, it identifies all the hyperlinks in the visited page and 

adds them to the list of URLs to visit; and 

3) It recursively runs step 2 according to a set of policies and depth limits. 

Spider is very powerful for web information collection. However, it needs some computer 

programming skill to implement, especially to set some special search requirements. Most of 

the Internet users do not have the ability to use this powerful tool. 

2.4 Vect 

Vect (the Visual Extraction and Conversion Tool) are developed by Dr. Hui-Hsien Chou [3]. 

Users can manipulate their sample data inside its data panels, and then Vect can generate Perl 

programs to repeat these tasks. Vect is able to satisfy the requirement to process textual format 

data. In this section, I will present how Vect works by showing a simple example.  

Vect has four panels: Input data, Convert data, Output data and Perl Program. In this 

example we will extract and convert data from a Genbank report file. First, we load the data file 

to the Input data panel and select the required data. Vect provides many kinds of selection rules, 

e.g., single left click selects one column, right mouse drug defines a new line selection, etc. 
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Generally, users need to define a group of selections to mark the specific data they want 

selected. Figure 2 shows the screen snapshot after a group of selections was made: 

 

Figure 2: Snapshot of data selection in Vect Input Data panel. 

 

Figure 3: Snapshot of Vect Convert Data panel. 

After the selection, in the second step users can click the move button to extract the selected 

data to the Convert data panel. In this panel, users can use many predefined rules to modify 

those data, e.g., the concatenate rule, quote rule, pattern rule, pick rule, merger rule, and so on. 
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Users can also define their own rules to modify those data. Users can see what the data look 

like after the conversion in Figure 3.  

In the third step, users select a converted data set and click the move button again, so the 

data will be moved to the Output data panel. This panel gives users a chance to format and 

preview the final output data.  

Finally, in the last step, users can compile the whole process into a Perl program for latter 

use in the Perl program panel. Since each Vect rule contains a part of Perl code in it, the 

combination of the rule set combines those Perl code with specific functionalities together. 

Therefore, Vect can generate a Perl program based on these code fragments. After the Perl 

program is generated, if users want to do the same kind of data extraction task on other files 

with similar format, they can just run the Perl program instead of having to do the same manual 

extraction process again.  

Vect is very convenient and powerful on data extraction and conversion. However, it 

currently works on local data files only and has no Internet access capability. As mentioned 

earlier, most of time people obtained the data files they need to work with from some web sites 

such as the GenBank web site. This project was the result of the idea to combine some 

functions of Vect and spider together, and provide more direct data extraction convenience for 

users.  
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CHAPTER 3. METHODS OF PROGRAM 

Vnet (Visual Network data Extraction and program Tool) is a software tool that has been 

created for searching and extracting specific information on some web pages. Its working 

process is as follows: 

1) Users can either find web pages to visit manually similar to using a normal web browser, 

or use the Vnet spider engine to automatically visit some web pages: 

1.1) If users want to find information manually, they can enter the web address into the 

URL text field and or click the left mouse on some hyperlinks appeared in some web pages. In 

this case Vnet works as a normal web browser. 

1.2) If users want to use the spider engine, they need to input an URL, a few keywords and 

the search level. Vnet will return a sequence of satisfied web pages. Users can browse through 

them and find the web pages they really want to visit.  

2) After users visit the web pages they expected, they can start to extract data from them. In 

other words, users can start to select data. There are two ways to select data. One is single right 

mouse click on some words, and the other is single right mouse click on some words in a table 

while holding the Shift key. The first method will highlight the block area that users selected to 

mark them as selected. The second method will highlight the column users selected and also 

mark the text in that column as selected. The information the position of each selection in the 

HTML source will be stored as a regular expression sequence for later use.  

3) If users are not satisfied with some selections or selected some data by mistake, they can 

perform single right mouse click on a highlighted area and the selection of that area will be 

canceled. They can also clear all of the selections by clicking the “Clear” button. 
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4) When users completed the data selection, they can move the selected data to the next 

panel similar to Vect. In this panel, users can view the selected data and save them to a text file. 

If they are not satisfied with the result, they can clear the selections and go back to select from 

the HTML again. 

5) After users finished all prior steps, they can create a Perl program in another panel. Vnet 

has the regular expression sequences that represent the position information of all user selected 

data that allow it to generate the Perl code. Users can run the Perl code in Vnet or independent 

of Vnet. In either case the Perl program will take the user specified URL, keywords and search 

level, conduct the search and extraction steps automatically and finally output the extracted data.  

The following sections in this chapter present more detail information of the methods we 

used to implement the above working process. 

3.1 Search and View Web Pages 

3.1.1 Use Perl to Load and Search Specific Web Pages 

To create a browser that can view the HTML web pages, we have to connect to web servers 

and download the HTML code from them. There are many options for this job in many 

programming langrages such as Java, C++, Perl, Visual Basic, and so on. All of them provide 

good libraries for network connection. However, we chose Perl in this project for the following 

reasons [4, 5, 6]: 

a) Perl has the incredible ability to process text easily, with powerful features like regular 

expressions and hash data structures built-in.  

b) Perl has many good modules (i.e., packages) for network access, HTML parsing, etc.  

c) Perl is easy to learn and use. 
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This project focuses on the HTML code searching and extraction. Therefore, Perl is the best 

choice. Actually, since Perl is so easy to learn and use, many popular spider software tools are 

written in Perl, such as CoBWeb [7]. 

3.1.2 Design of the Spider 

3.1.2.1 Input Parameters 

There are three input parameters for the web spider in Vnet, which are the destination URL, 

keywords, and search level. Destination URL is the starting web address that users expected to 

find the information they want. Keywords are word strings which define the specific search 

criteria. Search level specifies how deep the users want to go in the webpage hierarchy. Figure 

4 shows the structure of web pages Vnet might visit. 

 

Figure 4: Structure of web pages visited by Vnet. 
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User input:

URL,

Key words,

Level.

Store URL and

Level in a hash table

as:

key = URL

value = Level

int i = level

If key words

exist in

Source?

In hash table

Pick a key that value = i

currentURL = key

Source =

Getpage(currentURL)

Yes

No
Modify Source,

add Source to

answer.

If i = 0?

If all the key that

have

 value = i

are picked?

Yes

No

Yes

Finish and return

answer

No

i --
If i = 0

Yes

Extract all the

hyperlink in

Source and store

them in hash table

as

Key = URL

Value = i - 1

No

 

Figure 5: Spider Structure in Vnet. 
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3.1.2.2 Structure of The Spider Search Engine 

Figure 5 shows the work process sequences of the spider search engine used in Vnet. There 

are two loops in this process. The outer loop is based on the level that user specified. It assures 

that Vnet searches to the bottom level web sites from user input URL. The inner loop is based 

on the size of the hash table. It makes sure that all the web sites in the specific level are visited, 

so basically this is a breath-first search.  

Vnet first saves the user defined URL and level to the hash table, and then enters into the 

outer loop. At the beginning of the first run of the outer loop, there is only one URL in the hash 

table, but at the end of the first run, URLs with level = ( i - 1) will be added to the hash table. 

For each cycle of the outer loop, Vnet will visit all the URLs with level = i in the hash table, 

and add more URLs with level = i – 1 in it till the last loop. Once the condition i == 0 is true, 

Vnet will not extract the links from the loaded web pages. For the inner loop, Vnet will visit 

each key in the hash table and load that URL if their level is i. The running time of the inner 

loop will increase with the size of the hash table. 

In order to avoid visiting the same webpage more than once, before Vnet write an URL to 

the hash table it will do URL normalization and then check if the URL already exists in the 

hash table.  

URL normalization process in Vnet includes the following jobs: 

1) Converting the scheme and the whole URL into lower case. Since the scheme and 

host of URL are case insensitive, it is good to keep them both in lower case to reduce 

redundancy. However, for some operating system like UNIX, the path of an URL and the file 

name could be case sensitive. By the research of Sang, turning the URL into lower case reduce 

a big percentage of redundant web pages (52%), but only lost a very low percentage of unique 
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pages (1%) [8]. Therefore converting the whole URL string into lower case is worthy to do. 

Example: 

 HTTP://Foo.org/AABB/foo.html → http://foo.org/aabb/foo.html 

2) Removing the fragment. Because an URL with and without the fragment represent the 

same resource, the fragment portion of a URL is removed. Example: 

 http://foo.org/foo.html#section1 → http://foo.org/foo.html 

3) Removing port 80. Since the default http port is 80, it can be removed if specified in an 

URL. Example: 

 http://foo.org:80/index.html → http://foo.org/index.html 

4) Changing relative URL to absolute URL and removing “..” and “.” segments. The 

relative URLs will not point to the correct web address. Vnet convert them by using a Perl 

Package called HTML::LinkExtor. By giving a base URL, it will convert those URL 

automatically. Example: 

 ../abc.html → http://foo.org/abc.html 

 http://foo.org/../a/./b.html → http://foo.org/a/b.html 

5) Remove URLs that are not rooted with the base URL This requirement does not 

exist in the general URL normalization. However, for Vnet, since it is expected to visit only 

URLs under strict hierarchical relationship, we eliminate URLs that branch out of the hierarchy 

or to the other web servers. 

Since our purpose is to extract text data, we filter pictures, java scripts and many other 

multimedia features from the HTML code. Users can then focus on the text data when using 

our program. 
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3.1.3 HTML Browser 

There are many open source HTML browsers available such as Mozilla and Netscape. 

However, since our purpose is only to display and extract text from web pages, we need smaller 

and more efficient HTML browsers. wxHtmlWindow is one of them. wxHtmlWindow, 

designed by Vaclav Slavik,  is a class within wxWidgets[9], a popular C++ GUI toolkit. It is 

designed to display the help or about information files within an application written using 

wxWidgets, using either the rich text format or HTML format. It handles most of the basic 

markup tags and structure tags. Furthermore, it provides pluggable tag handlers so that 

developers can create their own customized tag handlers.  

Each word or text sequence that was shown on the wxHtmlWindow was contained by a 

container called wxHtmlCell. Each wxHtmlCell in the wxHtmlWindow has its coordinate and 

size values. When users click on some words on the wxHtmlWindow, the wxHtmlWindow will 

know which cell is clicked by comparing the coordinate values of the mouse clicking position. 

This property helps us to detect the data which the users intend to select. 
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3.2 Methods for Selection 

3.2.1 Regular Expression 

3.2.1.1 Definition 

A regular expression is a meta string that describes or matches a set of normal strings, 

according to certain syntax rules [10]. Regular expressions are used by many text editors and 

utilities to search and manipulate bodies of text based on certain patterns. Many programming 

languages support regular expressions for string manipulation. For example, Perl and Tcl have 

a powerful regular expression engine built directly into their syntax. Here, we used Perl to 

achieve our purposes. 

3.2.1.2 HTML (HyperText Markup Language) 

HTML (HyperText Markup Language) is developed and maintained by W3C. It is not a 

forced standard like Latex or some other markup languages [11]. An incorrectly formatted 

HTML webpage can still be accepted and displayed normally by most of the popular web 

browsers. Using regular expressions to find some dynamic data on those poorly formatted web 

pages could be very difficult. However, since our purpose is to extract data from some database 

websites, and normally these websites are well formatted, our mission is still possible. 

3.2.1.3 Why Regular Expression Can Query HTML Code. 

HTML is a markup language. It uses tags to describe information such as structure, 

presentation, hypertext and so on for the text in the web pages. The following is a simple 
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example of the HTML code: 

 

In a browser, the above HTML code produces the following text: 

 

We found that the tags that represent the structure of the HTML code can help us locate 

specific text. People usually group related information in HTML blocks like paragraphs, tables 

and table cells. By identifying these special tags in an HTML code and creating a regular 

expression sequence based on them, we can obtain the information which are contained in some 

blocks. We explain more by showing the following example. 

 In the sample code, the <p> tags represent paragraphs. We can easily find the text in the 

first paragraph by searching the HTML code between the first <p> and </p>. In Perl, we can 

use a regular expression sequence “.*?<p>(.*?)</p>” to extract the text within these two tags 
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from the HTML source. For HTML code with more complex structures we may use more 

elaborated regular expression sequences to extract data. In HTML, many tags can define 

structure information. The tags in Table 1 are used in Vnet to detect the correct structure of 

HTML code and generate regular expression sequences [11]: 

Tags Name Description Tags Name Description 

<blockquote> Large quotation <li> List item 

<body> Document body <ol> Ordered list 

<br> Line break <p> Paragraph 

<dd> Definition <pre> Preformatted text 

<dir> Directory list <table> Tables 

<div> Logical division <tbody> Table's body cell 

<dl> Definition list <td> Table cell 

<form> Input form <tfoot> Table's foot cell 

<h1> Header 1 <th> Same as <thead> 

<h2> Header 2 <thead> Table's header cell 

<h3> Header 3 <tr> Table row 

<hr> Horizontal rule <ul> Unordered list 

<html> HTML document     

Table 1: Structure tags used in Vnet. 

For some tags like <h1>, they represent more than the structure information, but we treat 

them the same as structure tags. 

3.2.1.3 Benefits of Using Regular Expressions. 

When users use normal web browsers to browsing the Internet, they can also obtain the 

information they are interested by selecting, copying and pasting the data as what we do within 

Vnet, so what is the benefit of using regular expressions? Indeed, if all the selections were 

made only for one time use, then there is no reason to use regular expressions. However, there 

are cases that the same kinds of selections have to be made again and again against different 

web pages [12]. For example, people may have to visit same web sites several times a day to 

get the updated information. The information they are looking for generally will be posted in 
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the same locations on those websites. With the help of regular expressions, we can easily query 

the HTML code of those web pages, and extract the information that are shown on those special 

positions within those web pages.  

There is another example. For some web sites, such as GenBank, lots of their web pages are 

dynamically generated by scripts. The data on those types of web pages are obtained from their 

database, therefore their web pages generally are created under the same format because they 

are generated by the same scripts. As a result, if we need to obtain similar information from 

these kinds of websites, we can use the same regular expressions to query them. 

3.2.2 Methods for Single Selection  

The process of single selection includes the following steps: 

1) Find which wxHtmlCell is selected. 

2) Obtain the position of the selection in the HTML code. 

3) Obtain a sequence of tags that can represent the position. 

4) Generate a regular expression sequence from the sequence of tags. 

5) Obtain the group text from the HTML source using the regular expression sequence. 

6) Mark the group of text that is selected by the regular expression sequence on the Vnet 

browser so users know what they have selected. 

The following sections describe the details of these steps. 

3.2.2.1 Find The wxHtmlCell That Is Clicked 

As we described in section 3.1.3, each wxHtmlCell in the wxHtmlWindow has its own 

coordinate and size values. When users click on a word on the browser window, the 

wxHtmlWindow will know which cell is being clicked by the coordinate values of mouse 

clicking position. In Vnet, we use the mouse right single click for the selection operation.  
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3.2.2.2 Obtain The Position of The Selection In The HTML Code 

Vnet needs to know the position of the clicked word in the HTML source code. To obtain 

that, Vnet uses the coordinate information of wxHtmlCell it obtained as described in the 

previous section. When a webpage is presented in the browser window, Vnet creates a vector 

and a string. The vector contains all of the wxHtmlCells’ coordinate values in turn. The string is 

a list of words which are contained by all the wxHtmlCells in the viewer. They are separated by 

line break characters in the string. Vnet knows the coordinate value of a selected cell. By 

looping though the vector we can find an index value for the selected cell. Since the text 

information of the web pages will not be changed, the index of each word in wxHtmlCell will 

not be changed either. The only thing that could be changed is the coordinate values of those 

wxHtmlCells when users resize the browser. Therefore, we renew the vector every time users 

resize the window or reload the page. With the index value, and the string which correspond to 

words in all the cells, we can obtain the unique position of the selection in the HTML source 

code. 

3.2.2.3 Obtain A Sequence Of Tags That Represent The Position 

With the index number and the text string from the previous step and the original HTML 

source code, Vnet can find a string of HTML tags that represent the position of the block of 

data which contains the selected words. Since Perl provides many functions and libraries for 

text string processing and HTML parsing, we used Perl to implement this search method. Using 

a utility class provided by Dr. Chou [3], we can easily call Perl programs from within a C++ 

program.  

In Vnet, three variables are passed to the Perl search function, i.e., the HTML source code 

we get from our spider method, the text string which represents the words of all the 
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wxHtmlCells and the index of the selected wxHtmlCell. In the Perl function, the text string is 

split into an array TEXT_ARRAY by the line break characters. The original HTML code is 

parsed by the Perl package HTML::SPL [4, 5, 6]. In the loop that does the parsing, Vnet 

compares the text data in the original code and the text in the array TEXT_ARRAY at the same 

time it writes the structure tags into another array TAG_ARRAY.  Since the text in 

TEXT_ARRAY originally comes from the HTML source code, if we ignore the spaces and line 

breaks, they should exactly match with each other. During the loop each time we find a 

structure tag we will update a variable START_CELL to the value of the current index number. 

Therefore, when the loop is stopped after reaching the selected cell index number, the 

START_CELL will contain the index number of the start wxHtmlCell for the group text. 

When the index of the selected word is reached, Vnet stops the loop. It then starts another 

loop to find the end tag of the selected text and the index number of the end wxHtmlCell for the 

selected text. The loop will continually parse the HTML code from the stop point of the last 

loop and compare the text code with text in TEXT_ARRAY. When it reaches the first structure 

tag the loop is stopped. The tag is recorded in END_TAG and the current index number minus 

one is stored in the variable END_CELL. At the end we have an array of structure tags 

TAG_ARRAY and the end tag. With these information we can create a regular expression 

sequence that can query the original HTML code and extract the group of text that was selected 

by users, for example, a paragraph, a table cell or a block of text. The START_CELL and 

END_CELL are used to identify if a user clicked wxHtmlCell is selected or not during 

selection cancellations. 
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3.2.2.4 Generate Regular Expression Sequence From The Sequence of Tags 

Although the information in TAG_ARRAY can be used to create a correct regular 

expression sequence, it contains too much information. It is possible to simplify the 

TAG_ARRAY.  For example, if we want to extract the second paragraph in the HTML code 

showed in Graph 1, after the prior step we can create a regular expression sequence that 

contains all those structure tags: 

.*?<html.*?< body.*?<h1.*?</h1.*?<p.*?</p.*?<p.*?>(.*?)</p 

We can simplify it to 

.*?<p.*?</p.*?<p.*?>(.*?)</p 

This simplified regular expression sequence can also extract the second paragraph from the 

HTML code. Simplification is very important especially for complicated web pages containing 

many structure tags which are unessential in identifying user selections. 

There are several methods to simplify the regular expression sequences.  

1) Single tags: 

This method starts from the last tag in array TAG_ARRAY, reads through the array from 

the tail to the head and collects the tags that are the same as the tail tag in TAG_ARRAY. This 

is similar to the simplification presented in the above example. This method is very efficient 

when the HTML code structures are simple. However, for complicated web pages, it does not 

provide a good simplification. For example, if a web page contains several big tables and a 

table cell in the last table is selected, the tag <td> will still appear too many times in the regular 

expression after the simplification because the method does not make the regular expression 

much shorter. 

2) Hierarchical tree structure: 
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Most web pages that follow the HTML standard will have a tree structure for their HTML 

code which is organized by tags. Generally, the tag <html> will be the root. The following 

HTML code is an example: 

<html> 

 <head> 

  <title>test page</title> 

 </head> 

 <body> 

  <p> 

   this is the paragraph one. this is the paragraph one. 

   this is the paragraph one. this is the paragraph one.  

   this is the paragraph one. this is the paragraph one. 

  </p> 

  <div> 

   <p> 

    this is the paragraph two. this is the paragraph two.  

    this is the paragraph two. this is the paragraph two.  

    this is the paragraph two. this is the paragraph two.  

   </p> 

   <p>test_1</p><p>test_2</p><p>test_3</p> 

  </div> 

  <span> 

   <p> 

    this is paragraph three. this is paragraph three.  

     <span> 

      this is inside paragraph three.  

     </span> 

    this is paragraph three. this is paragraph three.  

   </p> 

  </span> 

  <p> 

   this is paragraph four. this is paragraph four.  

   this is paragraph four. this is paragraph four.  

   this is paragraph four. this is paragraph four.  

  </p> 

 </body> 

</html> 

If the fourth paragraph is selected, Vnet will generate the following regular expression 

sequence before simplification:  

<html.*?<head.*?<p.*?</p.*?<div.*?<p.*?</p.*?<p.*?</p.*?<p.*?</p.*?<p.*?</p.*?</div.*?<span.*?<p.*?<span

.*?</span.*?</p.*?</span.*?<p.*?>(.*?)</p 

 

If we use method 1 to simplify this regular expression sequence, we will get: 

<p.*?</p.*?<p.*?</p.*?<p.*?</p.*?<p.*?</p.*?<p.*?</p.*?<p.*?</p.*?<p.*?>(.*?)</p 

In the HTML code, if the “test_i” after paragraph two is increased to test_n in general, then 

we will have more than n pairs of <p.*?</p.*? in our regular expression. However, if we use 
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method 2 to simplify it, we can get the following regular expression sequence disregard the 

potential of n pairs of <p.*?</p.*?: 

<html.*?<body.*?<p.*?</p.*?<div.*?</div.*?<span.*?<span.*?</span.*?</span.*?<p.*?>(.*?)</p 

The following description details method 2. 

 Loop through tags in TAG_ARRAY from end to head. The loop contains following 

oppressions: 

1) If the current tag is a start tag, leave it in a new array and go to the next tag; or 

2) If the current tag is an end tag, run SIMPLIFY algorithm below till the tag exactly 

matches the start tag of the current end tag. This start tag then becomes the current tag. Go to 

next tag. 

SIMPLIFY does the following things: 

1) Find the exactly matching start tag for the current end tag, and find all such tags in-

between them,  

2) Put all detected tags into a new array. Ignore all the other tags in-between them. 

3.2.2.5 Obtain The Selected Text Group 

This step is simpler. By applying the regular expression sequence on the HTML source 

code, we can get the group of text we expected. However, the text string extracted directly from 

the source code could still contain some tags which are not included in table_1, so we need to 

let the string go through the parser again to remove those tags.  

3.2.2.6 Mark The Text Group on The Browser 

It is important to notify users what they have selected after they clicked the mouse. The 

most straightforward way is to highlight the text group they selected on the browser. To create 
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this visual function, we used the property of wxHtmlWindow which allows users to add self-

defined tag handlers.  

We created two tag handlers: <highlightstart> and <highlightend>. The first one sets the 

background color to yellow and the second one stops the color change and reloads the original 

color settings. 

After the work described in Section 3.2.2.5, Vnet will insert <highlightstart> and 

<highlightend> to the HTML code by using the regular expression which we obtained. For 

example, if we get a regular expression sequence that will select the first paragraph of a 

webpage, it may look like this: <html.*?<body.*?<p.*?>(.*?)</p. We can modify it a little 

bit to create two more regular expressions. The first one, (<html.*?<body.*?<p.*?>), will be 

used to select HTML code before the first paragraph. The second one, 

<html.*?<body.*?<p.*?>.*?(</p.*?)$, will be used to select the HTML code right after the 

first paragraph. By inserting the new tag pair right before and after the code of the paragraph, 

and combining the three parts of code together again, we will have an HTML code that will 

highlight the user’s selection when displayed in the Vnet browser. This process is used to 

highlight the HTML code for a single selection. For the table selections, it is different, and will 

be described in the next section. 

At the end of these steps, the Perl function will return five values: the regular expression 

sequence, the selected text string, the modified HTML code (with highlights), and the start and 

end index values of the selected wxHtmlCells. The first, second, fourth and fifth values will be 

used to create the class that holds the selection’s information. 
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3.2.3 Methods for Table Selection 

Even though users are able to select a group of text now, if the information users want to 

select are contained in the columns of a big table with lots of rows, it is still very painful to 

select all of them individually. Furthermore, if the table is a dynamic table generated by some 

web server scripts, it is impossible to create a dynamic regular expression by selecting a fixed 

number of cells from the table. To solve this problem we created special methods for table 

selection. 

These methods are created based on the property of some regular expressions that can do 

multiple selections. For example, if we want to select the information in the second column of 

the first table, we can use the following regular expression 

“.*?<html.*?<body.*?<table.*?>(.*?)</table” 

to extract the HTML code of the first table. On this table of the HTML code, we can use the 

regular expression <tr.*?<td.*?</td.*?<td.*?>(.*?)</td with option “m” to repeatedly 

extract information from the second table column on each row. In the same way, if users want 

the information in the first and second columns of the table, we can use the regular expression 

<tr.*?<td.*?>(.*?)</td.*?<td.*?>(.*?)</td and again option “m” to extract the 

information from the table. Vnet takes the right mouse button shift-click as the users’ intention 

of the special table selections.  

To implement these methods we have to do the following additional steps of work: 

1) Find which wxHtmlCell is selected; 

2) Obtain the position of the selection in the HTML code; 

3) Obtain a sequence of tags that represent the table position and the selected column 

number; 

4) Obtain the groups of text from the HTML code; and 
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5) Highlight the selected groups of text. 

Steps 1 and 2 are same as the steps described for single selection. The difference starts from 

step 3 and beyond. 

3.2.3.1 Obtain A Sequence of Tags  

This method is still implemented by Perl. Similar to single selections, we have three input 

variables which are the HTML source code, the wxHtmlCell text string and the index number 

of the selected wxHtmlCell. However, this method writes only <table> and </table> tags to the 

TAG_ARRAY. It also adds a condition in the first parsing loop determining if the tag is <td>. 

In that case the variable COL_NUM will be increased by 1. If the tag </tr> or </table> is 

reached, COL_NUM will be reset to 0. When it reached the selected cell index number and the 

first parsing loop stopped, COL_NUM will then contain the number of columns selected by 

users. The second parsing loop is also similar to the single selection case, but the difference is 

that this method tries to find the first <table> or </table> after the stop point of the first loop. 

3.2.3.2 Obtain The Selected Text Groups And Highlight Them in The 

Browser 

Since TAG_ARRAY contains only table tags, the simplification step as in the single 

selection is omitted. Steps 4 and 5 are finished in the same loop. First, with the method we used 

in step 6 of single selection and the regular expression we got from the last step, we can 

generate two more regular expressions. With these regular expressions, we can divide the 

original HTML code into three pieces:  

1. HEADER, from the beginning to the selected table’s start tag; 

2. TABLE, the HTML code for the selected table which contains the selected columns; and 

3. TAIL, from the selected table’s end tag to the end of the HTML code. 
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We use a parsing loop to parse the second piece of HTML code for the tables. When there 

are the text strings in the tables, they will be compared with the text strings within 

TEXT_ARRAY. The index number starts at START_CELL that we got from last step. A 

counter is used to count the number of <td> tags seen. Each time when counter value is equal to 

COL_NUM, the following actions will be taken: 

1) A <highlightstart> tag will be inserted into the HTML code; 

2) The text code will be added to a text string SELECT_STR; and 

3) The current index number will be put into a variable START.  

After that, when the first </td> is reached, the following actions will happen: 

1) The <highlightend> will be inserted into the HTML code; 

2) The adding of the text to SELECT_STR will be stopped;  

3) A line break mark, “\n”, will be added at the end of SELECT_STR; 

4) The current index number will be written into variable END; and  

5) The values of START and END are pushed into array PAIRS. 

Each time a </tr> is reached, the counter will be reset to 0. 

After this looping, we will have the following results: 

1) A segment of HTML code with selected text highlighted; 

2) SELECT_STR with all its text information in the selected column; and 

3) PAIRS that have the starting and ending index numbers of all the pieces of selected 

wxHtmlCells. This information is useful to identify whether or not a wxHtmlCell is 

selected. 

At the end, we combine the HEADER, a fragment of table HTML code we obtain from the 

loop, and TAIL. This operation generates new HTML source code that highlights table cells. 

The following information will be returned to the main program: 
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1) A regular expression for extracting the selected table, 

2) SELECT_STR,  

3) PAIRS, 

4) START_CELL and END_CELL, and 

5) New HTML code, 

3.2.4 Data Structure to Hold Selections 

We create a class called HtmlSelection to hold the information from these two types of 

selections. The class contains a Boolean value IS_TABLE to designate whether it is a single 

selection or a table selection. If  a single selection, IS_TALBE will be set to false, otherwise it 

will be set to true. The class will store the regular expression sequence, the selected text string, 

and the starting and ending index numbers that represent the index range for the wxHtmlCells 

of the selected text group. If a table selection, IS_TABLE will be set to true, otherwise it will 

be set to false. The following information will be stored in the class: a regular expression for 

the selected table, strings that hold the text information of the selected columns, the selected 

column numbers, information in PAIRS which represents the index ranges of text in the 

selected columns, and the starting and ending index numbers for the wxHtmlCells of the 

selected table, representing its index range. 

3.2.5 Insertion of Selections 

All selections are stored in a Vector HtmlSelection. In Vnet, the order of selections is 

decided by the order of appearance of the selected text in the original HTML code. Since we 

have the value of the index number of all words in the HTML code as well as the index range 

of the selected text, we can easily determine the order of the selections if they are all single 

selections. However the table selections will be more difficult to be determine because a table 
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selection has a series of selected strings combined with a series of index ranges. It is difficult to 

decide the order between a table selection and a single selection if the index range of the single 

selection appears within the index ranges of the table selection. To avoid this problem, Vnet 

decides that single selections are always located before the table selection if they belong to the 

same table. 

We now can state the rule for setting order, and the methods for inserting new selections 

follow this rule. If the new selection is a single selection, the insertion conforms to the 

following operations: 

Loop through the selection vector using the following processes:  

1) if the current selection is a single selection and has an index range value smaller than the 

new selection, do nothing and continue;  

2) if the current selection is a single selection and has an index range value greater than the 

new selection, insert the new selection before the current selection and terminate the loop; 

3) if the current selection is a table selection and has a selected table index range smaller 

than that of the new selection, do nothing and continue the loop; 

4) if the current selection is a table selection and has selected table index range greater than 

the new selection, insert the new selection before the current selection and terminate the loop; 

and 

5) if the current selection is a table selection and the new selection has an index range 

within the table index range of the current selection, insert the new selection before the current 

selection and terminate the loop. 

The case in which insertion of a new selection which is a cell selected by a table selection 

will not exist because that would lead to a cancellation of that table selection. 

If the new selection is a table selection, the insertion is made as follows: 
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Loop through the selection vector using the following processes: 

1) if the current selection is a single selection and has an index range value smaller than the 

table index range of the new selection, do nothing and continue; 

2) if the current selection is a single selection and has an index range value bigger than the 

table index range of the new selection, insert the new selection before the current selection and 

terminate the loop;  

3) if the current selection is a single selection and has an index range value within the table 

index range of the new selection, test whether the current selection’s index range is within one 

of the index ranges of the selected column for the new selection. If the answer is yes, remove 

the current selection and continue. If the answer is no, do nothing and continue; 

4) if the current selection is a table selection and has a table index range value smaller than 

the table index range of the new selection, do nothing and continue; 

5) if the current selection is a table selection and has a table index range value greater than 

the table index range of the new selection, insert the new selection before the current selection 

and terminate the loop; and 

6) if the current selection is a table selection and has a table index range value equal to the 

new table index range values, then  another column in the same table as the , current selection is 

selected. Then the information in the new selection, including the column number, the selected 

string of the column,  and index ranges of wxHtmlCells of the column will be added to the 

current selection, following which the loop will be terminated. 

3.2.6 Methods for Canceling Selections 

To cancel selections, users can either clear all selections or only cancel some (presumably 

mistaken) selections. If users want to clear all selections, they can click a “Clear” button. Vnet 

will clear all the elements in the selection vector, clear all texts in the output view panel, and 
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remove all highlights on the browser. Users will then know that all selections have been 

removed.  

3.2.6.1 Canceling Selections Individually 

When users singly right-click wxHtmlCells on the Vnet browser, Vnet will do the following 

things: 

1) Loop through the selection vector and 

a. If the current selection is a single selection and the index of the currently selected 

wxHtmlCell is within the index range of the current selection, remove the current selection 

from the vector, remove the highlight tags for this selection, and terminate the loop. Details as 

to how to remove the highlight tags will be described in the next section; 

b. If the current selection is a table selection and the index of the currently selected 

wxHtmlCell is within the index ranges of one of the selected columns in the current selection, 

remove the column information from that table selection. The information removed includes 

the column number, the selected string for that column, and the index ranges of the selected text 

for that column. After that, if the table selection is empty, e.g., if all the selected columns are 

removed, remove the selection from the vector. The highlight tags for this selection must also 

be removed and the loop terminated; and 

c. For all other cases, do nothing and continue. 

2) If the loop finishes normally, it means that the user has clicked in an area that has not 

been selected yet, so proceed to the selection process. 

3.2.6.2 Removing Highlight Tags 

To cancel selections, we must not only remove the HtmlSelections from the vector, but we 

must also remove the related highlights from the HTML code so that users can observe the 
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results of the cancellation. Since we have a regular expression for these selections, we can use 

this advantage to remove the selection, and we will use Perl to implement this function. 

The input variables to Perl function enclose the HTML code, the regular expression 

sequence and an integer that represents whether the selection is a single selection or a table 

selection. If it is a single selection, we set the integer to 0. Otherwise, we set the value to be the 

column number of that selection. The returned value will be the updated HTML source code. 

If the selection is a single selection, it is simple to remove the highlight tags using a  

process similar to that of adding highlight tags. We create two more regular expression 

sequences based on the regular expression we have. Through these three sequences, we query 

the HTML source code and obtain the following three pieces of HTML code: 

1) HEAD, HTML code extending from the beginning to the position just before the tag 

<highlightstart>; 

2) BODY, code we select by the original regular expression sequence, containing 

<highlightstart> and <highlightend> tags; and 

3) TAIL, HTML code extending from the position after the tag <highlightend> to the end of 

the file. 

We can just remove the highlight tags in BODY to create a new BODY, and then combine 

HEAD, new BODY and TAIL together to create and return a new HTML source code segment.  

If the selection is a table selection, the method to remove highlight tags is also similar to the 

method of adding highlight tags. 

With the regular expression for the selected table we create two more regular expressions 

and divide the HTML source code into the following three segments: 

1) HEAD, HTML code extending from the beginning to the selected table’s start tag; 

2) TABLE, HTML code for the selected table containing the selected column; and 
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3) TAIL, HTML code extending from the selected table’s end tag to the end of the file. 

Now we can create a parsing loop to parse the HTML code in the TABLE as follows. Vnet 

has a 0-initialized counter to count the number of <td>s read. In the loop Vnet will remove the 

highlight tags if the counter is equal to the column number. Each time, if a </tr> is reached, set 

counter to 0. 

Now we have a new TABLE with the appropriate highlights removed. By combining the 

HEAD, new TABLE, and TAIL together, we obtain and return a new HTML source code 

fragment.  

3.3. Generating the Output View 

Users can preview what they have selected on the output panel. After they preview data and 

are satisfied with them, they can save the data to a file. Alternatively they can clear the 

selection and go back to the previous steps. The clearing process is similar to that described in 

section 3.4.2, but it also must remove the text on the output panel. This section will describe 

how the output text is generated. 

The output string results from combining all the selected strings in the selection vector. For 

a single selection, we will just use the selected string directly. For a table selection, if it 

contains more than one selected column, we will merge the selected strings for those columns. 

After the merge, the format of the final selected string for these columns looks like this: text 

strings from each row are separated by line breaks and text strings from each cell are separated 

by tab breaks. The original line breaks and tab breaks in the HTML code are removed when 

they are stored in the table selection. 
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3.4 Generating Perl Code 

After users save the data on the output panel to a file, they can terminate Vnet, since they 

get what they want immediately. However, most users would like to avoid the effort of reading 

through web pages again to find desired information in subsequent uses of the system. They 

may need to go to the same web sites and look for information that will always be put into the 

same position. Vnet can create Perl programs to help users find this information.  

Vnet can help a user create a Perl program according to what he or she has done from the 

spider search to the selection. By clicking the create Perl program button, the Perl code will be 

output to the Perl panel. Users that have some Perl programming skills can modify the code if 

they wish. Users have the option of running the Perl code by clicking the “Run” button to test 

whether the produced result is the same as that shown on the output panel.  

Initially, the program will create a spider search engine for the Perl program. The search 

engine will retain the same structure as that used in Vnet, with the parameters the users have 

input to the spider search engine retained as default values. Users will be able to specify the 

new values if they wish. 

 The second part of the Perl program is for data extraction. The required regular expression 

information comes from the selection vector. However, we still must simplify the regular 

expression sequences from single selections.  

3.4.1 Combine The Regular Expressions From Single Selections 

To avoid messing up the order of the selections, we combine the regular expression 

sequences only from neighboring single selections. We will use an example to show how two 

regular expression sequences may be combined. Suppose we have two regular expression 

sequences: <html.*?<body.*?<p.*?>(.*?)</p and 
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<html.*?<body.*?<p.*?</p.*?<p.*?>(.*?)</p. The first sequence will select the first 

paragraph from HTML code and the second will select the second paragraph. We can split 

these two regular expression sequences into two arrays using string “.*?”, and then begin 

comparing two arrays using a loop.  

During the loop, push the same elements into a new array. For elements present in the first 

one but not in the second, insert the remaining elements in the first array into the new array, and 

then insert the remaining elements in the second array into the new array. After the loop, we 

combine the new array into the string with “.*?” between each pair of elements. This produces 

a new regular expression sequence: <html.*?<body.*?<p.*?>(.*?)</p.*?<p.*?>(.*?)</p. 

that can extract both first and second paragraphs from the HTML source code. 

3.4.2 Completing the Regular Expression for the Table Selection 

To make the cancellation of the table selection simpler, we do not create regular 

expressions for the selected columns in the table selection. To create regular expressions for 

them, we need only the selected column numbers. For example, if we have 1, 3 and 4 as the 

selected column number we can create a regular expression sequence for them as follows: 

<tr.*?<td.*?>(.*?)</td.*?<td.*?</td.*?<td.*?>(.*?)</td.*?<td.*?>(.*?)</td 

We need the following two steps to produce each table selection in the Perl program  

1) Use the regular expression sequence for the selected table to extract HTML code for 

that table; and 

2) Use the regular expression sequence we just created to extract text in the selected 

columns. 
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CHAPTER 4. REAL-WORLD EXAMPLE 

We applied Vnet to the task which is detecting information about an Enzyme with E.C. 

(Enzyme Commission) number 5.3.1.1 on KEGG’s web site. KEGG (Kyoto Encyclopedia of 

Genes and Genomes) is an online bioinformatics database provided by Kanehisa Laboratories 

in Japan. Their pathway database is one of the most popular pathway databases in the world. 

Their web address is http://www.genome.jp/kegg/. Vnet can browse web pages from this 

address. 

4.1 Web Browsing and Spider Searching 

There are two ways to search information using Vnet. One is to search the information 

manually. Inputting a web address into a text field at the top of the browser window and hitting 

the Go button will cause Vnet to display that web page in the same manner as other web 

browsers.  Users can then search for desired information  by viewing the web pages or clicking 

on the links. Figure 6 is a screen snapshot of a KEGG web page produced by Vnet.  
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Figure 6: Snapshot for Vnet Search Data panel. 

The other search method is to use spider search engine in Vnet. Like shown in Figure 7, if 

the Spider button on the top of the window is clicked, a window will pop up. This window is 

provided for users to specify the factors related to the spider search, i.e., a URL,   keywords, 
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and a level. The URL is a web address used as the root during the spider search, keywords are 

the words expected to be found on the target web pages, and the level is the depth into which 

users want to dig at that web site. Generally, we recommend a maximum level of 3 at most. The 

running time of the spider could be long, depending on many factors such as Internet speed, 

size of the web pages, number of links on a given web page, and so on. If the level number is 

too large, the running time of the spider could be extremely long.  

Therefore, to save users’ time and make the search more efficient, we suggest combining 

two search methods. First, find an URL and start to search manually from it to some level with 

Vnet browser.  Second, copy the URL from the browser URL field to the spider’s pop up 

window; from that web page users can use the spider to find desired information. Returned 

pages will be put into a vector, and users can click the “next” or “previous” button to examine 

them to find the desired information. In this example users would browse the pathway page. 

Since we know that the pathway of Inositol metabolism uses the selected enzyme, we click the 

link to the Inositol metabolism pathway map and then start the spider. The URL of the pathway 

map is shown in a URL popup window. We just specify the keyword “5.3.1.1” and level 1. 

Figure 7 shows the operation at this step. After a search delay, one of the returned pages is 

shown on the browser, and the number “1/5” appears on the status bar. That means that 5 pages 

have been found and the displayed web page is the first one. By clicking the “next” button users 

can find the page containing information about enzyme 5.3.1.1.  
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Figure 7: Snapshot for using spider search engine in Vnet. 
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4.2 Data Selection. 

In data selection wee want to find information about name, class, sysname and references. If we 

right-click on the cells containing information we want, selected information in the table is 

highlighted. Figure 8 shows the selected data in the browser. 

 

Figure 8: Selections on Vnet Search Data panel. 
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4.3 Output Data 

When users finish the selection described in the previous section, they can click the “move” 

button to move the selected data to the output panel, as shown in Figure 9. 

 

Figure 9: Output data view on Selected Date panel. 
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4.4 Generate a Perl Code 

If users are satisfied with the data selected, they can generate a Perl program which reflects the 

information contained in the selection. If users click the “Create Perl” button on the output 

panel, Perl code will be generated on the Perl panel. Users can test the Perl code by clicking the 

run button on the Perl panel. The result will be shown on a popup window like Figure 10 shown 

below. 

 

Figure 10: Snapshot for running generated Perl program on Vnet. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

In this thesis, we have discussed the need for automatically and easily obtaining the most 

current data on selected web pages. We have also described limitations of existing software and 

tools that can be used to do part of this type of searching and extraction. We introduce Vnet,  

software developed under this thesis work, as an improvement in the methodology for 

searching web pages, for selecting specific data in particular areas on web pages, and for 

generating a Perl program to automate the whole process. Finally, a real-world example is 

introduced to evaluate the functionality of Vnet. The results produced by the example reveal 

that Vnet greatly enhances efficiency in doing this kind of work. 

The main contribution of this thesis work is the development of Vnet for Internet data 

searching and extraction. While these processes can be done separately using existing tools and 

software, this is usually both tedious and difficult for the end user. Vnet solves this problem by 

combining those functions into one program and generating a Perl program to perform the 

whole process in one run. By considering the real world example and the way Vnet solves the 

problem, the improved efficiency and convenience of using Vnet are obvious.  

There are several ways that Vnet can be enhanced in the future. Some popular web sites 

provide their own search engines. For those that don’t, they still can index their websites with 

Google and support a customized Google search. Under  various conditions, users can often 

take advantages of the web formats on those websites and obtain even more related information. 

Currently, Vnet does not yet have a property to support auto-filling a web form. In fact it can 

not even show a web form on the browser because wxHtmlWindow does not provide this 

property. Therefore, the property of displaying the web form on the browser also must be 

implemented before the property of web form auto-filling can be added.  
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The ability to modify output would be another useful addition. For example adding special 

symbols at the beginning of selections of interest to mark their differences would be helpful in 

later dealing with the various selected data. 

Currently, Vnet saves only the regular expressions of users’ selections into Perl. Therefore, 

if users want to modify selections after they terminate the Vnet, they must start over again with 

Vnet. If Vnet could save searching and extraction information to files that Vnet itself could 

import, users could modify the selections by loading a special file to Vnet and working on it. 
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