
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Protocol design, implementation and integration
for the protection of sensor data confidentiality and
integrity
Santosh Kumar Panchapakesan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Panchapakesan, Santosh Kumar, "Protocol design, implementation and integration for the protection of sensor data confidentiality and
integrity" (2008). Retrospective Theses and Dissertations. 15417.
https://lib.dr.iastate.edu/rtd/15417

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15417?utm_source=lib.dr.iastate.edu%2Frtd%2F15417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Protocol design, implementation and integration for the protection of sensor

data confidentiality and integrity

by

Santosh Kumar Panchapakesan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Wensheng Zhang, Major Professor

Johnny S. Wong
Daji Qiao

Iowa State University

Ames, Iowa

2008

Copyright c© Santosh Kumar Panchapakesan , 2008. All rights reserved.

1457544

1457544
 2008

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGEMENTS . vi

ABSTRACT . vii

CHAPTER 1. INTRODUCTION . 1

1.1 Background and Research Motivations . 1

1.2 Research Objectives . 4

1.3 Research Challenges and Methodologies . 4

1.4 Research Results . 6

CHAPTER 2. RELATED WORK . 7

2.1 Node Revocation schemes . 9

2.2 Confidentiality and Integrity Protocols . 10

2.2.1 APB - Adaptive Polynomial Based Scheme for Confidentiality 10

2.2.2 MAF . 12

CHAPTER 3. PROTECTING DATA INTEGRITY AND CONFIDENTIAL-

ITY AT USER NODE . 16

3.1 Background . 16

3.2 DKVP . 17

3.2.1 Network Assumptions . 17

3.2.2 Security Assumptions . 17

3.2.3 Design Goals . 18

iii

3.2.4 Proposed Privilege Deprivation Scheme 19

3.2.5 Overview . 19

3.2.6 Preparation at Network Controller . 20

3.2.7 Protection of Vulnerable Data at Sensor Nodes 23

3.2.8 Protection of Vulnerable Keys at Sensor Nodes 25

3.2.9 Key Updating at Innocent Users . 27

3.2.10 Data Retrieval by Innocent Users . 30

3.2.11 Security Analysis . 33

CHAPTER 4. INTEGRATING SECURITY PROTOCOLS 35

4.1 Background . 35

4.2 High-level Design . 37

CHAPTER 5. SYSTEM DEPLOYMENT AND USAGE MODELS: CASE

STUDIES . 49

5.1 Model I : Protocols Executing Individually . 49

5.2 Model II: Protocols Executing Together . 50

CHAPTER 6. IMPLEMENTATION AND RESULTS 53

6.1 Programming Limitations . 53

6.2 Network Model Assumed . 54

6.3 Results . 54

6.3.1 Storage Overhead . 54

6.3.2 Computation Overhead . 55

6.3.3 Communication Overhead . 64

6.4 Implementation on live network . 66

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 67

BIBLIOGRAPHY . 69

iv

LIST OF TABLES

Table 4.1 Security Level for APB . 39

Table 6.1 Storage Overhead . 55

Table 6.2 Time taken for operations . 66

v

LIST OF FIGURES

Figure 1.1 Application Scenario describing the problem. 3

Figure 2.1 Illustration Example for Polynomial Based Encryption. 8

Figure 2.2 An Example of Disseminating A New Seed Polynomial (r = 4, z = 0). 12

Figure 2.3 Illustration of the Integrity protocol. 15

Figure 3.1 Working of DKVP. 21

Figure 3.2 Illustration example. 32

Figure 4.1 Design of the Integration− Suite. 36

Figure 4.2 High-level Design of the APB. 38

Figure 5.1 Example Illustrating the 3 protocols working together. 52

Figure 6.1 Computation Overhead at Sensor/Storage Node. 57

Figure 6.2 Computation Overhead at User Node for APB. 58

Figure 6.3 Computation Overhead at User Node for DKVP. 59

Figure 6.4 Computation Overhead at User Node for Both APB and DKVP. . . . 59

Figure 6.5 Energy consumed at Sensor/Storage Node. 60

Figure 6.6 Computation Overhead of DKVP (Degree of Polynomial = 13). . . . 61

Figure 6.7 Computation Overhead of APB (Degree of Polynomial = 13). 62

Figure 6.8 Computation Overhead of Both (Degree of Polynomial = 13). 63

Figure 6.9 Energy Consumed at the Storage node. 63

Figure 6.10 Processing Time for Communication. 65

Figure 6.11 Energy Consumed for Communication. 65

vi

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost,

Dr. Wensheng Zhang for his guidance, patience and support throughout this research and

the writing of this thesis. His insights and words of encouragement have often inspired me

and renewed my hopes for completing my graduate education. I would also like to thank my

committee members for their efforts and contributions to this work: Dr. Johnny S. Wong and

Dr. Daji Qiao. I would also like to thank Nalin V. Subramanian, for his valuable inputs to this

work. I would additionally like to thank my parents for supporting me emotionally throughtout

my stay at Iowa State University. I would also like to acknolwdge the support given to me by

my friends whose encouragement have lifted my spirits to the level of completing my thesis.

Finally, I would like to thank Linda Dutton and Gloria Cain, for the patience shown in hearing

me out all all the times during my stay.

vii

ABSTRACT

Wireless sensor networks are data centric because in many applications, sensor nodes are

required to generate data, collect data, storage data and process data queries. Meanwhile,

wireless sensor networks are vulnerable to security attacks because they are deployed in unat-

tended (often hostile) environments and do not have tamper resistant hardware. Therefore,

secure and efficient data management schemes are necessary to sensor networks. In this thesis

work, we study how to secure a representative type of sensor data management approach called

data centric storage based (DCS) schemes, with focus on protecting data confidentiality and

integrity.

Considerable efforts have been made for securing DCS, however, existing work has the

limitations of (i) not considering user node compromise, (ii) lack of studies on real system

implementation and detailed experiments, and (iii) lack of studies on integrating security

schemes to defend against multiple attacks simultaneously. To overcome these limitations,

we have conducted the following research: Firstly, we have designed a new data confidential-

ity protocol called DKVP (data and key vulnerability protection) scheme to protect sensor

data confidentiality in presence of user node compromise. Secondly, we have implemented

three polynomial-based sensor data confidentiality and integrity protection schemes, namely,

the adaptive polynomial-based scheme for secure data storage and query (APB), the message

authentication function based schemes for data integrity (MAF), and the DKVP scheme, on

top of TinyOS/Mote platform. Thirdly, we have developed a prototype system that consists

of (i) integrated data confidentiality and integrity protection modules (i.e., the APB, MAF

and DKVP schemes), (ii) effective and friendly interfaces to application developers to facil-

itate inclusion of security features into application programs, and (iii) example programs to

viii

demonstrate the integration suite developed by us.

Extensive experiments have been conducted to study the feasibility and performance of the

above designs and implementations. The results show that, if system parameters are properly

chosen, desired security level can be achieved which is cost affordable by the current generation

of sensor nodes such as MICA motes. In particular, our study shows that running the three

integrated protocols together consumes only 27 msec of processing time and 60% of CPU usage.

1

CHAPTER 1. INTRODUCTION

1.1 Background and Research Motivations

A sensor network [1] is typically comprised of unattended-deployed sensor nodes (also called

motes) capable of performing simple computations, gathering information, and communicating

with other nodes.

With these attractive features, sensor networks are deployed in a wide variety of applica-

tions, including health care, military surveillance, smart homes, inventory management and

disaster rescue [1]. In these applications, the major duties of sensor nodes are monitoring their

direct environment, generating sensing data, collecting data and storing data, and answering

queries for data. To efficiently accomplish these duties, many data management schemes have

been proposed. In this thesis work, we focus on the data centric storage (DCS) [4] based data

management, in which data is stored in the network and storage nodes are responsible for

servicing queries from network users. It has been shown that this management approach can

reduce the overhead of communicating data from nodes to the base station [4]. It adopts the

concepts of geographic routing and the peer-to-peer lookup to facilitate storage and query.

Meanwhile, sensor nodes are often deployed in unattended (and sometimes hostile) fields.

If a field is invaded by an adversary, sensor nodes deployed there could be captured and

compromised. Hence, data transmitted or stored in the network are at risk if some nodes

of the network are compromised. Therefore, securing data communication and storage is of

critical importance. Figure 1.1 depicts an example where sensor nodes are deployed in a

forest and the DCS approach is adopted for data management. Here, the network consists of

a centralized base station, some storage nodes (i.e., nodes storing sensor data) and some user

nodes (i.e., nodes that query sensor data). Other nodes either generate data (i.e., data sources)

2

or are on paths connecting data sources and storage nodes (i.e., en-route nodes). a, b and c

denote a compromised en-route node, a compromised user node and a compromised storage

node, respectively. After these nodes have been compromised, the following threats to data

security are posed in the network:

• Violating Data Confidentiality: If the data stored in a storage node is not properly

protected, the data can be revealed once it is compromised. If the data in transmission

is not properly protected (e.g., encrypted), it could be revealed by a comopromised en-

router node.

• Violating Data Integrity: Without proper integrity protection, the data in transmission

can be modified by a compromised en-router node without being detected. A compro-

mised en-router node can even inject false data.

• Violating Authorized Data Access: It is important that every piece of data is accessed

only by the users that are authorized to so. If a user is compromised but is not properly

revoked, the desired property of authorized data access will no longer hold.

The problem of data security has attracted lots of attention and many schemes [7, 5, 19, 20]

have been proposed to protect data confidentiality and integrity. However, these efforts have

not or have not adequately addressed the following issues:

• Protecting data confidentiality when one or more user nodes are compromised.

• Implementing the schemes in a real sensor network testbed to evaluate its feasibility and

identify practical issues.

• Integrating multiple schemes together to defend against multiple simultaneous attacks.

• Providing effective and friendly interfaces to application developers to facilitate the de-

velopers to include security protection features in their newly developed applications

3

Figure 1.1 Application Scenario describing the problem.

4

1.2 Research Objectives

In order to address the afore-identified problems, this thesis work has the following objec-

tives:

• Designing a novel scheme, called DKVP, to protect data confidentiality and integrity in

the presence of User Node compromise

• Designing, implementing and evaluating (through experiments) a prototype system for

resilient protection, data confidentiality and Integrity

– Implementing the adaptive polynomial based (APB) scheme [7], the DKVP scheme

and the message authentication function (MAF) scheme [5].

– Providing effective and friendly interfaces to application developers. The system

hides all the internals of the security protocols, and facilitates the application de-

velopers to include security features in the applications developed by them.

– Developing a test-bed (including both security protocol implementations and various

test problems) and using the same to evaluate the protocols for their feasibility and

performance.

1.3 Research Challenges and Methodologies

In conducting this thesis work, we have met and addressed the following challenges:

• Efficiency: Due to stringent resource constraints in sensor networks, security protocols

should be light-weight and involve as little computation, communication and storage as

possible. For example, one of the main issues in sensor networks is that of memory

management. With 4KB of RAM and 40KB of ROM, it is important that on integrating

several protocols the usage is as low as possible. This is an addendum to the point

mentioned above.

• Resilience to attacks: Due to unattended deployment fields and lack of tamper resistance,

the designed protocols should be resilient to various kinds of attacks, especially node

5

compromises. In addition, the security protocols have to be flexible in the sense that, on

detecting node compromises, the system should be properly updated with fresh security

parameters.

• Ease of integration: Due to the possibility of coexistence of multiple attacks, security

protocols may not be used alone; instead, when adopted into other applications, multiple

protocols could be deployed together. Considering this, a protocol should be designed or

enhanced to facilitate seamless integration.

• Generalness: The implementation should be easy to adapt to various scenarios. Hence

it is important to abstract the features such that, applications need not worry too much

about the inherent implementation of the protocols.

To address the challenges of efficiency and resilience to attacks, we adopt the polynomial-

based approaches [3] which have been studied for sensor networks in detail in [7, 6]. The

protocol design of DKVP, polynomial-based encryption is adopted.

To address the challenges in integrating multiple protocols and providing general, effective

and friendly interfaces to application developers, we investigate security protocols and how

they should be included in applications, and then conduct the following steps:

• Identify the commonalities in the protocols developed to ensure that there is code re-use

to make the implementation efficient

• Abstract the functionalities into interfaces so that the inherent implementation is hidden

from the application developer

• Provide an infrastructure to the application developer to choose the security level at

which the protocols must be executed to ensure flexibility in implementation. This is

achieved by maintaining a configuration file where the initial setup values are registered.

6

1.4 Research Results

We have designed DKVP protocol, which has satisfactory performance in terms of low

storage and computation overhead. The results obtained from PowerTossim indicate that our

protocols when executed together use at most 27 msec of processing time and also indicated the

use of at most 60% of CPU usage. These results were obtained for very high values of security

parameters. Also the protocols used 75% of the ROM for program space, again when executed

with highest values of security parameters. Hence for a practical system that uses nominal

security parameters, the system would fare very efficiently. During the course of this work we

were also able to provide various results which can be used as guidelines for applications that

use our protocols.

In addition, we have implemented and integrated three security protocols for protecting

data confidentiality and security. These protocols were implemented in nesC and were executed

in TOSSIM and telosb motes for evaluation. We used the PowerTossim tool to evaluate the

work. We varied various security parameters to analyze the impact of the protocols and

hence provide guidelines to indicate, when to use necessary parameters for different hardware

architectures. Our experiments show that these protocols, run alone or together, have low

computation, communication and storage overhead while satisfying security requirements. We

also developed test programs to show how the protocols can be integrated into application

programs. As demonstrated, these protocols can be effectively and conveniently integrated

into application programs.

7

CHAPTER 2. RELATED WORK

Wireless sensor networks as mentioned earlier are resource constrained. There have been

various security solutions to address different aspects of the network. Unlike traditional net-

works, strength of the security protocol is not the only metric when used in sensor networks,

it is also important that the security protocol is feasible for the sensor network. For example,

it is not advisable to use Public-key cryptography in Wireless sensor networks. This is because

of the complexity and the computation overhead this would cause. For this purpose authors

of [7] and [6], had studied and designed protocols using Polynomial Base encryption, [3].

Polynomial based encryption works on the philosophy of pseudo-public-key cryptography.

Here there is an authentication server that generates a polynomial. Depending on number

of interacting entities the degree of the polynomial is set. For example if the interactions is

always dual then the degree could be set to 2. The authentication server evaluates one of the

variables of the polynomial and sends the coefficients to the interacting nodes. Based on the

identifiers of the interacting entities, the encryption key and decryption key is evaluated. This

can be illustrated as shown in Figure. 2.1. Here Authentication Server generates a 2-variable

polynomial of degree 2, f(x,y). It then disseminates the f(x,node id). For the sake of illustration

we use f(x,node id) for encryption and f(node id,y) for decryption. This is not a convention.

When a particular node u has to send data to v it evaluates f(u,v) and encrypts the data with

the evaluated value and sends the encrypted data to v. On receiving the decrypted data node

v evaluates f(u,v) and decrypts the data using that.

8

Figure 2.1 Illustration Example for Polynomial Based Encryption.

9

2.1 Node Revocation schemes

For the purpose of designing and developing DKVP, we surveyed a lot of work on Node

revocation schemes. Our main goal was to analyze the schemes to ensure that, when adopted

they will be feasible for wireless sensor networks. The problem of revoking privilege and

denying access has been studied in other scenarios but not in sensor networks. Some of the

existing solutions take the explicit revocation approach, in which a revocation list is broadcast

to all the related entities such that they are aware of the entities which should be revoked and

others take the implicit approach with group-keys that are updated at all entities except those

whose privileges have to be revoked.

Group key based revocation is an efficient method to revoke users as studied in [14]. Here

the authors propose a scheme to distribute a group decryption key that is shared by n users

in a group so that all but d users are revoked. The scheme uses a Leader node that distributes

revocation group keys based on the system parameters. The main disadvantage of this scheme

is that it is effective only when the key length is high of the order of 1024 bits, etc. This may

not be a very viable option for sensor networks.

In [13], the authors propose a novel mechanism to revoke users by generating polynomials

based on the list of revoked users. In this scheme, on obtaining the ID(s) of the nodes that

needs to be revoked, a list is prepared and hence a revocation polynomial based on the list.

The authors also introduce a concept of group-manager which generates a key based on 2

polynomials, say key-polynomials. The key-polynomials are embedded with the revocation

polynomial such that when a node that needs to be revoked obtains the key-polynomial, it

does not retrieve the original key. The essence of this mechanism is been adopted and modified

to design DKV P , which will be explained later. [10], [8] and [9] were few of the works that

we referred to analyze the solutions for node and key revocations. These techniques could not

be adapted directly into sensor network applications as they address different scenarios and

problems.

10

2.2 Confidentiality and Integrity Protocols

An integrated suite of products for the purpose of security infrastructure, should have

several individual components. In our case we implement two such protocols, namely APB [7]

and MAF [5]. Few of the parameters that will be used all through the protocols are

2.2.1 APB - Adaptive Polynomial Based Scheme for Confidentiality

This scheme addresses the security issue of confidentiality. Here the network controller

disseminates a polynomial periodically, which gives its name of being adaptive. In this pro-

tocol there are mainly three communicating entities - Network Controller, Storage Node and

User Node. The network controller disseminates a network-wide polynomial which enables en-

cryption and decryption. The encryption and decryption keys are based on the network-wide

polynomial.

• Fq : A finite field over which all the coefficients are used.

• l : The total number of bits which determines the Fq.

• r : The number of bits which are removed from the evaluated polynomials, remainder of

which will be used as key.

The protocol has mainly has 3 parts as described below -

• Dissemination of Network-wide Seed Polynomial

To disseminate the network-wide seed polynomial, the seed polynomial is perturbed. The

network controller firstly generates a polynomial which is used for encryption, let’s call it

f(x, y). This encryption polynomial is perturbed with another polynomial say p(x, y, z)

where x is substituted with the storage node id, y is substituted with dissemination

interval and z is substituted with perturbation interval. Here the dissemination interval

is less than perturbation interval. For all practical reasons, the perturbation interval is

divided into several slices of dissemination interval units. The perturbation polynomials

11

are generated as

pu(y, z) = p(u, y, z)− αu

These coefficients of pu(y, z) are evaluated at the storage node.

Based on the encryption polynomial and perturbation polynomial, a network-wide seed

polynomial is generated as follows:

w(x, y) = f(x, y) + p(x, y, v)

where v is the perturbation interval.

The network-side polynomial is disseminated to the storage nodes where the key to

encrypt is generated. Upon receiving w(x, y) the storage node derives its own seed

polynomial:

fu(y) = w(u, y)− pu(y, v)

Figure 2.2, which featured in [7], describes the dissemination part of the protocol as an

illustration.

fu(y) the storage node evaluates the keys for various intervals says is to ie. For a phase i

and initial dissemination interval, the key Ku,i,0 is constructed by evaluating fu(i) which

was obtained at the first dissemination interval. The data that needs to be securely

stored is encrypted with l−r bits of Ku,i,0. The hash of the key that was used to encrypt

is also stored along with the encrypted data. On securely encrypting the data, the key

that was used is erased from the mote.

• Securing Data Retrieval The user nodes (querying entities) are preloaded with fi(x)

which is derived as:

fi(x) = f(x, i) + βi

When a data is required the user node queries a storage node, the storage node sends

the encrypted data along with the hash of the key that was used to encrypt the data.

On receiving the data and the hash, the user node obtains the key by evaluating f(u, i).

On evaluating the key it checks for 3 combinations to see which could have been used to

12

Figure 2.2 An Example of Disseminating A New Seed Polynomial (r = 4,
z = 0).

determine which key was used. The key could be one of (l− r) bits of f(u, i), (l− r) bits

of f(u, i) + 2r or (l − r) bits of f(u, i) - 2r.

The security analysis and detailed proofs can be obtained from [7].

2.2.2 MAF

This scheme addresses the problem of integrity in data management. Unlike APB the

protocol here is not adaptive and the Network controller does not disseminate security infor-

mation periodically. In this protocol there are mainly 2 entities with respect to the security

aspect, namely - Network Controller and Sensor node. The Network Controller disseminates

the unique identifier to the sensor nodes along with the necessary polynomials. For all practical

purpose this part of the Network controller’s involvement can be eliminated by pre-loading all

the security information, but for the sake of reducing initialization setup and not using the

flash, we implement the additional communication between the Network controller and sensor

node. The network controller constructs a 3-variable polynomial f(x,y,z) which will be used as

13

verification and authorization. The security analysis and the theoritical analysis of this work

can be found in [5]. This protocol introduces a new security parameter γ for the purpose of

generating an ID space.

• Fq : A finite field over which all the coefficients are used.

• l : The total number of bits which determines the Fq.

• r : The number of bits which are removed from the evaluated polynomials, remainder of

which will be used as key.

This protocol can be divided into 4 phases as described below:

• Constructing a perturbation polynomial for message verification and authentication pur-

pose, and ID space for sensors [5]: The Network controller randomly picks a dx variable

polynomial α(x) over Fq. Based on the α(x) Fq is divided into 2l−(r−γ−1)s sets

Si = {x|x ∈ Fq, α(x)− i ∗ 2r−γ−1 ∈ 0,, 2r−γ−1 − 1}

for i = 0,.....,2l−(r−γ−1)s Let Sk be the largest set among all the Si’s. Let Is be the

largest set Sk and use α(x) given by:

α(x) = α(x)− k ∗ 2r−γ−1

α(x) is used for the verification purpose and Is is used to choose the identifier us. Similar

to Si, another polynomial Ri is generated with another polynomial β(y), such that:

Ri = {y|y ∈ Fq, β(y)− i ∗ 2r−γ−1 ∈ 0,, 2r−γ−1 − 1}

for i = 0,.....,2l−(r−γ−1)s Similar to Sk another set Rk′ is chosen. Let Ir be the largest

set Rk′ and use β(y) given by:

β(y) = β(y)− k′ ∗ 2r−γ−1

β(y) is used for the verification purpose and Ir is used to choose the identifier ur.

14

• Node Initialization: The Network controller, preloads each sensor node u with the fol-

lowing information as mentioned in [5].

– a unique sender ID, us where us ∈ Is

– a unique receiver ID, ur where ur ∈ Ir

– a polynomial authu(y, z) for authenticating outgoing messages where

auth(y, z) = f(us, y, z) + ru,0 ∗ β(y) + ru,1

ru,0 is randomly picked from 0,, 2γ and ru,1 is randomly picked from 0,, 2r−2

– a polynomial verfu(x, z) for authenticating outgoing messages where

verf(x, z) = f(x, ur, z) + r′u,0 ∗ α(x) + r′u,1

r′u,0 is randomly picked from 0,, 2γ and r′u,1 is randomly picked from 0,, 2r−1

– secure one-way hash h(.) and

• Messaging Sending at Senders When a sender u wants to send a message m, it constructs

a message authentication function:

MAFu,m(y) = f(x, ur, z) + r′u,0 ∗ α(x) + r′u,1

The Sender sends 〈m,MAF(y),us〉 to the receiver nodes.

• Message Verification at Receivers: On receiving the message m and MAF(y) the ver-

ifying node first evaluates the hash of the message by calling h(m). It then evaluates

verfu(us, h(m)) andMAF (ur). If verfu(us, h(m)) -MAF (ur) ∈ 0,, 2r−1, q − (2r−1)....q

then the message is verified. The proof of this can be found in [5].

An illustration of this can be found in Figure 2.3 adapted from [5]

15

Figure 2.3 Illustration of the Integrity protocol.

16

CHAPTER 3. PROTECTING DATA INTEGRITY AND

CONFIDENTIALITY AT USER NODE

3.1 Background

As discussed earlier, the APB scheme protects data at the storage node by periodically

updating the keys. In this scheme the user can periodically query the storage node. The user

node is pre-loaded with a polynomial, which can be used to generate the key to decrypt the

data that was retrieved from the storage node. The APB scheme however, does not deal with

malicious User Nodes, that is, if a user node is compromised, the keys that it has cannot be

revoked and hence it has access to all the data generated at the storage node. To address

this limitation of the APB scheme we propose a novel mechanism to solve the problem. Our

solution is comprised of four components - Protection of vulnerable data at the storage node,

Protection of vulnerable keys at the storage node, Key updating to innocent user nodes and

data retrieval by innocent user nodes. In our scheme, once a compromised user is detected, a

revocation process is invoked. Firstly, a polynomial to re-encrypt the data is generated and

disseminated to the storage nodes. On receiving the polynomial the storage nodes generate

their own perturbations to encrypt the data/keys. The re-encryption polynomial is selectively

broadcast to user nodes other than the revoked users. The process mentioned above ensures

that the data can be secured from malicious user-nodes.

17

3.2 DKVP

3.2.1 Network Assumptions

We consider a sensor network that is composed of a large number of sensor nodes, each

of which has a unique ID, and a network controller (NC), which may be online or offline.

Each sensor node has a certain capacity to store sensor data. The sensor network adopts the

distributed data storage and retrieval type approach for data management. Specifically, once a

sensor node has generated some data, the data are stored locally or at some designated storage

node. The stored data can be retrieved by authorized users. Similar to the APB scheme, we

assume that data are retrieved based on time for simplicity, though the scheme can be extended

to support more complicated modes of data retrieval. In addition, sensor nodes maintain loose

time synchronization. The lifetime of the network is divided into phases, denoted as Phase 0,

Phase 1, and so on, where each phase has the same time duration denoted as τ .

3.2.2 Security Assumptions

We assume that the Network controller is trustworthy and cannot be compromised. Any

sensor node is originally innocent before deployment, but it may get compromised after de-

ployment. Users can be compromised and the compromise of user nodes can be detected

eventually; further, user compromise will not happen frequently. Because of potential large

number of sensor nodes, we do not assume the detection of sensor node compromise. Also, all

user nodes w not know the identity of the other user nodes. Once a (sensor or user) node is

compromised all the information stored in the node can be read out by the attackers. Further-

more, the compromised nodes can be reprogrammed and thus fully controlled by the attackers.

The adversary can pose several threats for the system: i) all data encrypted in the past time

phases for which a compromised user is authorized to access will be exposed the adversary;

ii) the data that will be generated in the future time phases for which a compromised user is

authorized will also be open for the adversary.

Based on the assumptions we consider the following types of attacks:

18

• Outsider attacks: They are launched by attackers that have not compromised any sensor

or user nodes and therefore do not know any secret of the network. In particular the

attackers may overhear the communication channel and try to compute the secrets used

in the network. The analysis of the APB scheme [7] has shown that the success of such

attacks will require prohibitively high overhead. Hence we will not consider such attacks

in this thesis.

– [type-I attacks] do not permit the information broadcast to the user node or to the

sensor node to actually reach the desired destination.

• Insider attacks: They are launched by the attackers that have compromised a few sensor

or user nodes and therefore know some secrets preloaded to these compromised nodes.

Also, if the insider is a sensor node, then it can always receive valid information being

broadcast. Insider attackers can also launch the attack. In addition

– [type-II attacks] collect all the secret owned by the compromised nodes, and attempt

to derive secret held by innocent node.

– [type-III attacks] collect all the secrets owned by the compromised storage and user

nodes and try to collude, eventually decrypt the data stored.

3.2.3 Design Goals

Our scheme is designed with the following goals.

• Confidentiality: The data that is stored in the sensor node cannot be decrypted by the

adversary even if the user nodes are compromised or the sensor nodes are compromised.

• Authorization: Only authorized user nodes can access the data or shares stored; once

a user node is compromised it will not be able to access the data or share from other

innocent nodes.

• Efficiency: Even after implementing our protocol the overhead induced is low and ac-

ceptable.

19

In this thesis, the above design goals are achieved via accomplishing the following more

specific objectives:

• An innocent user can only retrieve the data that he/she is authorized to access.

• A compromised user should be deprived of the access privilege that he/she was granted.

In other words, it includes:

– A compromised user should be prevented from retrieving data that have been gen-

erated in the past.

– A compromised user should be prevented from retrieving data that have not been

generated yet but had been given access privilege before being compromised.

– Completely revoke the compromised user, such that the secrets revealed will be of

no use to the adversary.

• Colluding compromised user and sensor node should not be able to fetch protected data

either from innocent sensor nodes or from compromised sensor node.

3.2.4 Proposed Privilege Deprivation Scheme

3.2.5 Overview

We assume some users have been compromised, and these compromised users have been

granted the privileges to access the data that were or will be generated during certain time

phases (call risky time phases) thereafter:

• For any past risky time phase, the data associated with it becomes vulnerable and there-

fore are called vulnerable data. If sensor nodes are not aware of these user nodes being

compromised, the user nodes can still retrieve the vulnerable data; if some sensor nodes

are compromised, the vulnerable data stored in these nodes can be retrieved since the

compromised nodes can derive the keys and decrypt the data.

• For any future risky phase, the data associated with it have not been generated yet,

but the keys associated with it may have already been generated. These keys become

20

vulnerable and therefore are called vulnerable keys. Note that, if sensor nodes still use

the vulnerable keys to encrypt data, the data can still be retrieved by compromised users.

Protecting vulnerable data and keys is important to make the system secure.

After the compromise of some users has been identified, the network controller (NC) will

launch a revocation process. The process consists of three steps:

• First, the network controller (NC) prepares a polynomial to be used for vulnerable data

and/or vulnerable keys.

• Second, the polynomial is securely broadcast to all sensor nodes, and each sensor node

that receives it then derives certain perturbation number or perturbation polynomial to

protect the vulnerable data and/or keys it has.

• Third, the polynomial is securely broadcast only to innocent users, and based on the

received polynomial innocent users can update the information necessary for retrieving

the data they are authorized to.

3.2.6 Preparation at Network Controller

The functionality of the deprivation scheme is enabled, by preparing the system with the fol-

lowing: The network controller arbitrarily constructs a two-variable polynomial S(x, y) called

broadcast perturbing polynomial over a finite field Fq, where q is a large prime number. We

define three other integers l, r, and t, where l is the smallest integer such that 2l > q (every

element of the finite field Fq can be represented with l binary bits), r is smaller than l, and t

represents the degree of all the polynomials constructed by the network controller (NC).

Before each sensor node is deployed,

- a unique ID v is assigned to every node, where v is an element of Fq

- the node v is preloaded with a perturbed share of S(x, y), i.e.,

Ŝ(v, y) = S(v, y)− βv,

where βv is an element of Fq randomly picked from {0, · · · , 2(r−2) − 1}.

21

Figure 3.1 Working of DKVP.

22

When the sensor node is deployed, node v derives m (system parameter) perturbed shares

of S(v, y):

S′
1,v = Ŝ(v, 1)− γ1,

S′
2,v = Ŝ(v, 2)− γ2,

· · ·

S′
m,v = Ŝ(v,m)− γm

where γ1, γ2, · · · , γm, are elements of Fq randomly picked from {0, · · · , 2(r−2) − 1}. Ŝ(v, y) is

removed after the node derives these shares.

Suppose compromise of some users has been detected, the network controller (NC) prepares

a revocation list. Let the immediate risky time phase be j (also can be referred as, the

total number of revocations so far), for 1 ≤ j ≤ m. The revocation list Rj contains list of

compromised users between two subsequent risky time phases, j − 1 and j. Then R represent,

R = {R1 ∪R2 ∪ · · · ∪Rj}

= {w1, w2, · · · , wp}

where wi represents the ID of a compromised user, for i = 1, 2, · · · , p, and p is the total number

of compromised users at the starting of risky time phase j.

Once a user node is compromised, the network controller arbitrarily constructs a uni-

variate polynomial called vulnerable data/key protection (DKV Pj(x)) polynomial over Fq,

which provides the basis for:

(i) protecting vulnerable data at sensor nodes,

(ii) protecting vulnerable keys at sensor nodes,

(iii) key updates at innocent users,

(iv) enabling data retrieval at innocent users.

23

The network controller arbitrarily constructs a uni-variate polynomial h(y) called selective

broadcast perturbing polynomial, over Fq. Before a user node is deployed:

- a unique ID u is assigned, u is an element of Fq

- it is preloaded with h′u(= h(u)−ω), where ω is randomly picked from {0, · · · , 2(r−1)−1}..

- it is preloaded with perturbed set of allDKV P polynomials, i.e, {DKV P1(x) , DKV P2(x),

· · · , DKV Pe(x)}.

- it is preloaded with R.

3.2.7 Protection of Vulnerable Data at Sensor Nodes

In order to protect the data at the sensor nodes, the polynomials have to be securely

broadcast to the sensor nodes first, followed by the sensor nodes performing encryption of the

data. The network controller, on generating DKV Pj(x) for any risky time phase j, executes

the following two-phase procedure to securely broadcast the perturbed shares to all the sensor

nodes:

(i) Construction of network-wide dissemination polynomial.

To hide DKV Pj(x) from the adversary, it is perturbed with Sj(x), the network controller

constructs a network − wide dissemination polynomial Wj(x) as given below,

Wj(x) = DKV Pj(x) + Sj(x) + αj

where αj is an element of Fq randomly picked from {0, · · · , 2(r−1) − 1}.

(ii) The network controller broadcasts Wj(x) to all sensor nodes.

Upon receiving the network−wide dissemination polynomial We(x) (for risky time phase

e), the sensor node v executes the following steps to protect vulnerable data:

(i) Computing Perturbed share of DKVP polynomial.

The Node v executes the following procedure using the stored secret S′
e,v,

24

DKV Pe(v) = We(v)− S′
e,v

= (DKV Pe(v) + Se(v) + αe)

−(Se(v)− βv − γe)

= DKV Pe(v) + αe + βv + γe

From the previous definitions we can derive that, αe + βv + γe ∈ {0, 1, · · · , 2r − 1}.

The network controller uses Sj(x) and αj to secure the broadcast channel from: (a) an

adversary gaining access to DKV Pj(x) polynomial, and (b) an intermediate sensor node

from obtaining access to shares of other sensor nodes. This allows the DKV P shares to

be different for each sensor node.

(ii) Encrypting the vulnerable data.

Let the vulnerable data at sensor node be Dataj ,∀j = 1, 2, · · · , e, where e is the current

time period. To protect the vulnerable data, sensor nodes encrypt the data using the

newly received shares of DKV P as follows:

Data′j = Dataj + [l − r]DKV Pe(v),

∀j = 1, 2, · · · , e

where [l− r]DKV Pe(v) represents the decimal equivalent of left most (l− r) binary bits

of DKV Pe(v). After m revocations, the data stored at the sensor node will take the

form as given below,

Data′j = Dataj + Σm
k=1[l − r]DKV Pk(v),

∀j = 1, 2, · · · , e

(iii) VD Store-and-Erase.

The sensor node maintains a 1-bit variable V Dj − bit, to identify whether or not, the

25

data Dataj is protected with DKV P -shares. V Dj − bit is 0 by default, and set to

1 upon execution of step(ii). To enable data retrieval at the user node, the sensor

node also maintains hash(Dataj) and hash([l− r]DKV Pk(v)) for all j = 1, 2, · · · , e and

k = 1, 2, · · · ,m respectively. The hash(.) is a security hash function which generates

the message authentication code (MAC) for the input. After protecting the vulnerable

data, the sensor node erases DKV Pk(v), and S′
j,v, to prevent adversary from retrieving

protected data on compromising the same.

Example I.

Let system parameters be l = 8, r = 3, t = 2. Suppose some user compromise has been detected

for any risky time phase e = 10. NC constructs new DKVP polynomial DKV P10(x) = 3x2 +

4x+7. Along with DKV P10(x), the broadcast perturbing polynomial S10(x) = 19x2+18x+27,

and the arbitrarily chosen random numbers α10 = 1, NC constructs W10(x) = 22x2 + 22x+ 35

and broadcasts to all sensor node. Let us consider sensor v(= 1) receives W10(x). Sensor

node v uses the disseminated polynomial and the preloaded secret S′
10(v = 1) = 60 to derive

DKV P10(1) = W10(1) − S′
10(1) = 19. Let the vulnerable data at the sensor node v be,

Data10 = 44. The left most (l − r) bits of DKV P10(1), i.e, [8 − 3]DKV P10(1) = 16 is used

to protect Data10, such that, Data′10 = Data10 + 16 = 60 is replaced for Data10 and V D-bit

is set to 1. Sensor node stores hash([8 − 3]DKV P10(1)) = hash(16). Sensor v then erases

W10(v),W10(x), S′
10(v).

3.2.8 Protection of Vulnerable Keys at Sensor Nodes

Protecting vulnerable keys is an extension of the previous section. The network controller

does not perform any additional functionality from what has been mentioned in the previous

section. However, the sensor node executes a few additional steps to protect the vulnerable

keys. The steps that do not repeat from the previous section are:

(-) the network controller broadcasts the network − wide disseminating Wj(x) (as in Sec.

3.2.7),

26

(-) the sensor node compute the perturbed share of DKV P polynomial (as in Sec. 3.2.7),

The variation in the method from the previous section is as given below:

(i) Encrypting the Vulnerable keys. Let the vulnerable key at sensor node be Kj ,∀j =

e+ 1, · · · ,m, where e is the current time period or current risky time phase. To protect

the vulnerable key, the sensor node encrypts the key using the newly received shares of

DKV P polynomial as follows:

K ′
j = Kj + [l − r]DKV Pe(v),

∀j = e, e+ 1, · · · ,m

At the end of m revocations, the protected key stored at the sensor node will be as given

below,

K ′
j = Kj + Σm

k=1[l − r]DKV Pk(v),

∀j = e+ 1, · · · ,m

(ii) VK Store-and-Erase.

The sensor node maintains a 1-bit variable V Kj − bit for each key Kj . V Kj − bit is 0 by

default, and set to 1 upon execution of step (i). Once a key Kj is used to encrypt the

data Dataj , the key Kj is erased and the corresponding V Kj − bit is set to 1. This step,

enables users to identify during retrival of data, whether or not the key used to encrypt

any data is protected with DKV P -shares.

Example II.

As shown in Example. I, the sensor v = 1 receives W10(x) = 22x2 + 22x + 35. Using

S′
10(v = 1), v derives DKV P10(1) = 19. Say sensor node v holds the vulnerable key, K11 = 20.

Similar to Example I, [8 − 3]DKV P10(1) = 16 is used for protecting K11. After encryption,

K ′
11 = K11 + 16 = 36 is replaced for K11 and V K-bit is set to 1.

27

3.2.9 Key Updating at Innocent Users

The user nodes should receive new keys after the network controller (NC) identifies a

compromised user. A secure mechanism to illustrate the update of keys is described here.

Suppose some user compromises has been detected, as shown in Sec. 3.2.7, NC generates

a DKV Pj(x) for any risky time phase j and it is also responsible to distribute the newly

generated DKV Pj(x) to the users.

To enable the functionality of deprivation scheme, it is important to selectively broadcast

the polynomial only to innocent users. Selective broadcast prevents the compromised users

from knowing the new DKV Pj(x). In the literature, Liu et.al [13] have proposed a threshold

based selective broadcast scheme (call S-BCast scheme).

The deprivation scheme uses a variant of S − BCast (Enh − S − B − Cast) scheme to

satisfy the security requirement mentioned above.

(i) Overview of S-BCast Scheme.

Each user node u is preloaded with a secret polynomial share hu (=h(u)). At some risky time

phase j, let the set of compromised users be R. The network controller has to update a new

polynomial DKV Pj(x) only to innocent users. The following two-phase procedure is executed

by the network controller to selectively broadcast DKV Pj(x) to innocent users.

(1) Construction of network-wide dissemination polynomial.

Based on the set R (={w1, w2, · · · }), the network controller constructs a polynomial,

L(y), as follows.

Lj(y) = (y − w1)(y − w2) · · ·

Based on Lj(y), DKV Pj(x) polynomial, and the selective broadcast perturbing polyno-

mial h(y), the network controller constructs a network−wide dissemination polynomial

Hj(x, y), as given below,

Hj(x, y) = DKV Pj(x)× Lj(y) + h(y)

28

(2) The network controller then broadcasts polynomial H(x, y) and R to all user nodes.

When the user node u receives R, it can construct the polynomial L(y). Based on Hj(x, y),

hu and L(u), user u constructs DKV Pj(x) as follows,

DKV Pj(x) =
Hj(x, u)− hu

Lj(u)

In case u ∈ R, then Lj(u) = 0, and Hj(x, u) = hu. This prevents the compromised users from

receiving the polynomial DKV Pj(x).

The S−BCast scheme is t-threshold based secure broadcast scheme, where t is the degree

of the selective broadcast perturbing polynomial h(y). Since, an adversary can compromise t

or more user nodes, Enh− S −BCast Scheme is proposed to make the system more secure.

(ii) Description of Enh-S-BCast Scheme.

The main goal of this scheme is to protect h(y) from t or more user node compromises. This

goal is achieved by preloading a perturbed share of h(y) at each user node. This scheme is

elaborated in detail below:

Suppose a set of compromised users Rj are detected, for any risky time phase j. To enable

the innocent users to receive perturbed DKV Pj(x) polynomial, NC executes the following

steps -

(1) Construction of network-wide dissemination polynomial.

Based on Lj(y), h(y) and DKV Pj(x), the dissemination polynomial Hj(x, y) is con-

structed as follows,

Hj(x, y) = DKV Pj(x)× Lj(y) + hj(y) + ψ

where ψ is randomly picked from {0, · · · , 2(r−1) − 1}.

(2) The network controller then broadcasts polynomial Hj(x, y) and Rj to all user nodes.

When a user node u receives Rj , and Hj(x, y), it executes the following steps to construct

DKV Pj(x):

29

(1) Update the set R.

User u initially holds R, which was preloaded by the network controller (as in Sec. 3.2.6)

. User updates R as follows,

R = R ∪Rj

(2) Construction of Lj(u).

Based on R, the user u constructs Lj(u) as follows,

Lj(y) = (y − w1)(y − w2) · · ·

Lj(u) = Lj(y = u)

(3) Construction of DKV Pj(x).

The user-node is pre-loaded with h′u, where

h′u = h(y)− χ

where, χin0....2r−1 − 1 Based on Lj(u), Hj(x, y), and h′u, the user node u constructs a

perturbed DKV P polynomial as follows,

DKV Pj(x) =
Hj(x, u)− h′u

Lj(u)

= DKV Pj(x) +
ψ + ω

Lj(u)

where,
ψ + ω

Lj(u)
∈ { 0

Lj(u)
, · · · , 2

r − 1
Lj(u)

}

In case u ∈ R, then Lj(u) = 0, and Hj(x, u) = h′′u. This keeps compromised users away

from receiving the perturbed polynomial DKV Pj(x).

(4) Store-Erase Phase.

After obtaining DKV Pj(x), the user node erases all the received information. Each user

node maintains Lj(u), which helps the user in data retrieval phase (Sec. 3.2.10).

30

3.2.10 Data Retrieval by Innocent Users

Let us consider a user u who is authorized to query data generated in the past time phase

(i.e, any time ≤ e, for e is the current time phase). The procedure for the user to retrieve data

from the sensor include following steps:

(1) Preloading and updating Secrets.

Before the user can access the sensor data he is authorized to access, it is preloaded with

set of all DKV P perturbed polynomials, i.e, {DKV P1(x), DKV P2(x), · · · , DKV Pm(x)} (Sec.

3.2.6) at the initialization phasem. During the key update procedure, the innocent users receive

set of latestDKV P perturbed polynomials, i.e, {DKV Pm+1(x), DKV Pm+2(x), · · · , DKV Pe(x)}

(Sec. 3.2.9) .The user also holds Lj(u) ∀ j = 1, · · · , e. For simplicity, we presume the inno-

cent user nodes has the vulnerable keys (preloaded or updated) used by the sensor (i.e, Kj ∀

j = 1, 2, /cdots, e).

(2) Data Retrieval and Decryption.

Suppose the user u has sent out a query and received response from sensor v. The data is

encrypted and can take one of the following formats:

(a) < [Dataj], j, V Dj-bit=0, V Kj-bit=0>

(b) 〈[Dataj]′Kj
= [Dataj]Kj + Σe

k=1[l − r]DKV Pk(v), j, V Dj-bit=1, V Kj-bit = 0〉

(c) < [Dataj]K′
j

= [Dataj]Kj+Σe
k=1[l−r]DKV Pk(v)

,

j, V Dj-bit=0, V Kj-bit=1>

31

(d) < [Dataj]′K′
j

= [Dataj]Kj+Σm
k=1[l−r]DKV Pk(v)

+Σe
k=m+1[l − r]DKV Pk(v),

j, V Dj-bit=1, V Kj-bit=1>

u also receives hash(Dataj) and hash([l − r]DKV Pk(v)), where j = 1, 2, · · · , e and ∀

k = 1, 2, · · · , e respectively.

To identify DKV Pk(v) ∀ k = 1, 2, · · · , e, the user first evaluates the preloaded decryption

polynomial DKV Pk(x) at x = v and obtains DKV Pk(v). Let us represent [l − r]DKV Pk(v)

as Υ. For any k and v, the [l− r]DKV Pk(v) must be one of, Υ, or Υ + 2r. From DKV Pk(v),

the user computes [l − r]DKV Pk(v), and verify the same using hash([l − r]DKV Pk(v)).

Initially, the user has to derive DKV Pk(u) from DKV Pk(v). From Sec. 3.2.9, we know

the following,

DKV Pk(x) = DKV Pk(x) +
ψ + ω

Lk(u)

where,

ψ + ω

Lk(u)
∈ { 0

Lk(u)
, · · · , 2

r − 1
Lk(u)

} (3.1)

From DKV Pk(v), the user can derive DKV Pk(u) as follows,

DKV Pk(v) = DKV Pk(v)−
ψ + ω

Lk(u)

However, ψ + ω is unknown (since it was picked randomly). Hence, from Eq. (1),

DKV Pk(u) must be one of the following,

DKV Pk(v)−
0

Lk(u)
,

DKV Pk(v)−
1

Lk(u)
,

· · ·

· · ·

DKV Pk(v)−
2r − 1
Lk(u)

32

Figure 3.2 Illustration example.

Once the user computes DKV Pk(u), it can extract [l−r]DKV Pk(v) for all k = 1, 2, · · · , e.

Hence the data can be decrypted.

Fig.3.2 shows an example to illustrate the entire scheme. Let the system parameters be,

l = 8, r = 3, t = 2. Let the compromised user node be, ID we = 2 for current risky time phase

e. NC constructs new DKVP polynomial DKV Pe(x) = 3x2 + 4x + 7 and let the broadcast

perturbing polynomial be Se(x) = 19x2 +18x+27, and the arbitrarily chosen random number

αe = 1. The NC constructs We(x) = 22x2 + 22x + 35 and broadcasts to all sensor nodes.

Based on disseminated polynomial and with the preloaded secret S′
e(v) = 60, sensor node

v = 1 derives DKV Pe(v) = We(v) − S′
e(v) = 19. The left most (l − r) bits of DKV Pe(v) is

used to encrypt the vulnerable datas or vulnerable keys at the sensor node.

Similarly, with the selective broadcast perturbing polynomial h(y) = 3y2 + y + 11, and

Le(y) = (y−2), NC constructs He(x, y) = DKV Pe(x)×Le(x)+h(x)+ψ = 3x2y+4xy+22y2+

26y+ 21. Then, NC broadcasts He(x, y) to all the user nodes. Although, it is broadcast to all

user node, the Enh-S-BCast scheme lets only innocent user nodes to retrieve the DKV Pe(x)

polynomial. The innocent user node u = 3, having hu = 41, can compute DKV Pe(x) =

(He(x, u)−hu)/Le(u) = 3x2 +4x+8. From the results we can see DKV Pe(x)−DKV Pe(x) ∈

{0/Le(u), 1/Le(u), · · · , (2r − 1)/Le(u)} ∈ {0, 1, · · · , 7}.

33

When the user node u = 3, needs to decrypt data from sensor node v = 1, it calculates

DKV Pe(v) = 15. The user node then identifies, DKV Pe(v) ∈ {{15, 14, , 8}, DKV Pe(v)+23 ∈

{23, 22, , 16}}. As shown in the Fig.3.2, one of the possible choices matches the left most (l−r)

bits of the key used to protect the vulnerable data/keys at the sensor node using which the

user can decrypt the data.

3.2.11 Security Analysis

The security analysis for DKV P is similar to APB. In this case, just like APB we classify

2 types of attacks:

3.2.11.1 Attacks without Collusions

In this case we consider user-nodes which are compromised and try to derive the key without

colluding with other user nodes. Unlike APB, there is no key update at every interval and

hence the user node need not derive any previous keys. The user node will be updated with

the latest key till the time it was compromised. On being detected as a compromised node,

the base station would disseminate fresh polynomial for re-encryption. The following are the

ways of deriving at the key:

• One way of breaking the key is applying a brute-force attack to guess the re-encryption

key; the complexity of which will be 264, since all the operations we perform are on 64-bit

keys.

• Another way for the user-node to derive the key is to derive the coefficients of DKV P (x)

that is disseminated by the base-station. Since we use randomize function to generate

coefficients, which are also 64-bit in length, the coefficients and hence the key is almost

impossible to be derived.

• The compromised user node just gets H(x, y) from the Base-station, on substituting the

value of its own ID say u in the function, the user-node will end up with h(u)+χ, which

will not give the key at any point.

34

3.2.11.2 Attacks with Collusions

In the case of DKVP, the only thing that can be derived out of collusion is the perturbation

polynomial h(y). The reason being, for the user-node that is compromised to derive the master

polynomial DKV P it has to know the entire list of the nodes that are being revoked upto the

current revocation. This is because since l(y) is an addendum of the previous revocations and

the user-node must know all the revocations upto that point. If it does so even then, the

complexity to find out an h(y) is Ω(2(r−2)∗(t+1)). This is proved by the Theorem 1.

Theorem 1 Let h(y) =
∑t

j=0Bjy
j of degree t. Let us assume that the adversary can collude

with n nodes to obtain n shares of h(y), say hu0 , hu1 , ..hun−1, where u0, u1..un−1 are IDs of user-

nodes. Given t and the shares the complexity to find the coefficients of h(y) is Ω(2(r−2)∗(t+1))

Proof. To find out h(y), the attacker needs to find out its (t+1) the coefficientsB0, B1, · · · , Bt.

Since the adversary knows n shares of h(y), it can obtain the following system of linear equa-

tions:

hi =
t∑

j=0

Bj(i)j − χi, i = 0, · · · , n− 1.

Here, χi ∈ 0, ...2r−1 − 1, and thus hi = h(i) − χi. Bj (0 ≤ j ≤ t) and χk (1 ≤ k ≤ n) are

unknowns. Therefore the total number of unknowns are n + t + 1, while the total number

of linear equations is n. Since the number of linear equations are less than the number of

unknowns, the unique solution of Bi cannot be found. The only way to solve h(y) is to guess

some variables Bj (0 ≤ j ≤ t) or χk (1 ≤ k ≤ n). Suppose the adversary guesses n1 coefficients

Bj and n2 random number χk. n1 and n2 must satisfy n + t + 1 − (n1 + n2) ≤ n. This is

because the number of remaining unknowns cannot exceed the number of equations. Therefore,

we have n1+n2 ≥ t+1. Since χk ∈ 0...2r−1 − 1, which are shorter than the coefficients Bj . The

adversary must choose to guess t+ 1 of χk’s. Each χk is picked from a set of 2(r−2) numbers.

Since there is only a unique solution, the expected time complexity to guess the right answer

is Ω(2(r−2)∗(t+1)).

35

CHAPTER 4. INTEGRATING SECURITY PROTOCOLS

4.1 Background

Wireless sensor network solutions should have the following features: scalability, security,

reliability, self-healing and robustness. The main aim of this work is to implement an Integration

Suite, to be used for the purpose of protecting sensor data. For the sake of integration we use

three protocols that was mentioned earlier, namely -

• APB - Securing Data at the storage node.

• MAF - Maintaining the integrity of the data.

• DKV P - Protecting data confidentiality and integrity from compromised user nodes.

As mentioned earlier there are various applications that use wireless sensor network and

more importantly the distributed data storage or in-network storage feature. Hence the main

motivation for this work derives from providing End-to-End security solutions for applications

that use distributed data storage in WSN.

Designing a suite of features is a challenging task by itself and more so when it has to be

done for applications for WSN, which have resource constrained entities. The main goals that

were addressed in this work are:

• Provide an integrated security system.

• Provide an abstraction, for applications to easily include and adapt the security suite

provided.

36

Figure 4.1 Design of the Integration− Suite.

• Develop and efficient system which requires as limited resources as possible.

• Make the system flexible to different application scenarios.

• Provide feasibility study before-in-hand, so that applications do not have to go through

the effort of implementing the protocol to find this.

• Provide accurate implementation of the protocols that can be used in real-life implemen-

tations.

Figure 4.1 shows the main architecture that of the system as a whole. Here the applications

that need to use the security suite provide the Input based on the requirement and based on

37

which the necessary interfaces are used. The interfaces need to be abstracted such that the

inherent implementations of the underlying protocols are not exposed.

There has been a lot of work on providing security suites in real-life applications like

Wireless Ad-Hoc networks, LAN, etc. This is a new approach to provide the same for sensor

networks. This integration is an effort to make the system secure and also maintaining the

robustness and scalable features of the network. In this section we describe the High-level and

low-level design of the implementation.

4.2 High-level Design

Figure. 4.2 shows the high level design for the implementation of APB (MAF and DKVP

also has similar interfaces and function calls). Here above the red dotted line is the program

that will be developed with respect to the application. We have considered an application where

data from the detecting node is encrypted and stored in the storage node. The application

developer uses our interfaces for APB and DKVP. The goal to hide the background program and

the working from the application developer has been completely achieved and will be discussed

in the later sections. From the figure it can be inferred that the application developer is masked

from the internal working of the protocols. Most importantly, since our implementation also

provides the polynomial generation based on a seed value input by the user is also masked from

the user. Figure also shows the different messages that are passed from one node to another.

Here we have introduced a way where the message passing and the communication happens

over a particular type of the message data structure. (This can be viewed like a server listening

on a particular port for a particular application.)

The implementations of the interfaces for APB, DKVP and MAF have several similar pieces

of code which can be combined and presented in the form of the Common functionalities. All

of the functionalities of the Common interface have not been listed here. It can be noted that

the application developer does not use any of the Common interfaces as shown in the figure.

One of the most important goal of this work also has been to separate the common features

38

Figure 4.2 High-level Design of the APB.

to the protocols, as this will enable any future development of protocols. The other reason

to have the Common Interfaces is that in the big picture if an application developer requires

more access then all that needs to be done is access the appropriate function in any of the

interfaces. It is to an extent an efficient way of modularizing.

The main components of the implementation are

• Input

• Interfaces provided to the Application Developer

• APB, DKVP and MAF

• Common Features

4.2.0.3 Input

The inputs to this implementation from the application developer are:

39

Security Level Value of r Value of l Degree of the polynomial
1 16 64 15
2 12 56 13
3 8 48 11
4 4 40 9

Table 4.1 Security Level for APB

• Security Level: The security level is the most important input parameter. This is an

input so that the various security parameters are hidden from the user. The input is

pre-processed and the security parameters are set based on the security level. The Table.

4.1 shows the different values of the security level and their respective system parameters.

• Seed of the polynomials: The user inputs seeds of the various polynomials. This is done

to ensure that the same coefficients are generated when this implementation is executed

on different nodes.

• Type of the node: The user needs to input which node the program is being loaded into.

There is only one program that runs on all the nodes. But we use ifdef to check if the

current node is a base station, storage node or user node

• Interval for dissemination: The application developer needs to input the interval for

sending the perturbation and the seed polynomial, call it M INTERV AL and m int

respectively.

4.2.0.4 Interfaces

This section discusses and elaborates on the interfaces that the application developer is

exposed to. The application developer uses the interfaces provided for APB, DKVP and

MAF. They are as listed below

• apb.init : This interface initializes the polynomials that are required in the system. This

is the first interface that needs to be made as part of the application. On completion

40

of the execution of this interface an event initDone is thrown. The prototype of this

interface is as given below:

command result t apb.init();

• event apb.initDone: This is an event that needs to be implemented by the application

developer. This is introduced to prevent the call to the encrypt call before the storage

node being received any appropriate polynomials. The signaling of the event is described

in the later sections. The prototype of this is as given below:

event result t initDone();

• apb.encrypt : This interfaces encrypts the data using the key for the interval using the

TinySec’s primitive interface. The prototype for this is as given below: command

uint64 t apb.encrypt(uint64 t data, int interval);

• apb.decrypt : This interfaces decrypts the data using the key for the interval using the

TinySec’s primitive interface. The prototype for this is as given below: command

uint64 t apb.decrypt(uint64 t data, int interval, uint64 t hash);

• apb.getKey : This interfaces fetches the key for the interval mentioned from the shared

array. As an extended goal we wish to store the keys in the flash and hence this would be

read from the flash. This functionality is provided to the application developer, so as to

not curtail him from just using TinySec for encryption and decryption. The prototype

for this interface is as given below:

command uint64 t apb.getKey(int interval);

The interfaces for DKVP are as given below:

• dkvp.init : This interface initializes S(x, y) based on the seed that is inputted by the

application developer, at the storage node. At the user node it generates h′(y) and

evaluates for the interval that is inputed. The interface has the following prototype:

command result t dkvp.init();

41

• dkvp.initDone: This event is signaled when the user node receives a revocation list or

when a storage node receives a seed polynomial.

• dkvp.Send revok : Once the base station has detected a compromised user node, it sends

a revocation list to the user. This initiates a process at the Base station to send H to

the user node and W to the storage node. This is a sequential process starting from

sending the revocation list then followed by sending W to storage node and then H to

the user node. On receiving the revok list and other polynomials from the base station

the storage and user nodes perform the following.

– At Storage Node: The storage node evaluates DKV Pj(v) and encrypts the data

stored with this key.

– At User Node: The user node evaluates DKV Pk(v) and stores it locally. Once the

encrypted data is obtained it calls decrypt function to obtain the original data.

• dkvp.get encrypted data: This interface just fetches the data from the structure for a

particular query.

• dkvp.decrypt : This interface is called to decrypt the data. This is an expensive operation

from the basis of the protocol, as there will be 2(r − 1) iterations to get the correct key.

The interfaces for MAF are as given below:

• MAF.init : For the sake of the MAF protocol we have introduced a data structure

MAF struct. This structure will hold the sender id and the receiver id of every node. At

the base station it initializes f(x,y,z). At the node 2 polynomials Si and Ri are evaluated

to obtain us and ur. The node is also initialized with authu(y,z) and verfu(x,z).

• MAF.authorize: This interface will be called at the sender which wants to authorize

the data. Here the data that needs to be sent is hashed using a hash function. We use

TinySec’s hash implementation. The authorize interface calls the evaluate MAF function

which is inline and is not exposed. The output of authorize interface is the MAFu,m(y).

42

• MAF.send MAF : This interface internally calls MAF.authorize and generates the MAF.

This function just sends the MAF, us and the message m.

• MAF.verify : On receiving a message of a certain type which is dedicated for this protocol

the message is verified using the verfu(x,z) by substituting us for x and h(m) for y.

4.2.0.5 Implementation of APB

The main aim of the implementing APB is to provide the interfaces as mentioned earlier.

APB has some system parameters like the degree of the polynomials and, number of storage

and user nodes. The degree of the polynomial is pre-processed and derived from the security

level that is set by the user. On deriving the degree of the polynomials, say let the degree of the

polynomials be degreef (degree of master polynomial), and degreep (degree of the perturbed

polynomial), and the values of l and r be - value l (value of l as part of APB), value r (value

of r as part of APB). Based on this value we also derive 2 variable Q and q where Q = 2l 1

and q = 2r 1. Given below are the algorithms for each of the interfaces that APB provides.

Here in our implementation we assume that the base station is resource-full and need not store

the polynomials in the flash. We can also assume that the user node is not always a normal

sensor mote and can be a laptop or a PDA.

• Algorithm. 1 gives the algorithm for the apb.init() interface.

• Algorithm. 2 gives the algorithm for the apb.encrypt() interface.

• Algorithm. 3 gives the algorithm for the apb.decrypt() interface.

4.2.0.6 Implementation of DKVP

The main aim of the implementing DKVP is to provide the interfaces as mentioned earlier.

DKVP has some system parameters like the degree of the polynomials and, number of storage

and user nodes. The degree of the polynomial is pre-processed and derived from the security

level that is set by the user. On deriving the degree of the polynomials, say let the degree

of the polynomials be degreedkvp (degree of master polynomial), and degrees (degree of the

43

Algorithm 1 apb.init()

1: if BASE STATION then
2: Declare coefficents of f, p and w. Call it coeff f, coeff p and coeff w
3: Generate coeff p by calling Common.generateCoefficients. Here the seed to the polyno-

mial is as mentioned in the section earlier.
4: Evaluate p(x,y,i) where i = 0 M INTERVAL using coeff p
5: Start TimerSendPerturbation such that it fires every M INTERVAL epoch times
6: Start TimerSendSeedPolynomial such that it fires every epoch times
7: if STORAGE NODE then
8: Declare coefficents of p and p’. Call it coeff p storage, coeff p prime
9: Generate coeff p storage by calling Common.generateCoefficients. Here the seed to the

polynomial is as mentioned in the section earlier.
10: Evaluate p(u,y,i), where u is the ID of the storage node and i ranges from 1

M INTERVAL
11: Remove coeff p storage. Here we could allocate and de-allocate immediately
12: Generate the coefficients of w, as part of the pre-loading process. All the variables are

removed after pre-loading the first set of Keys in the storage node in memory say in a
variable Keys[m interval]

13: if USER NODE then
14: Declare coefficents of f and f’. Here coefficents of f are generated only in the initial set

up to preload the polynomial.
15: Evaluate f(x,i) where i ranges from 1 to m interval
16: Signal initDone()

Algorithm 2 apb.encrypt(uint64 t data, int interval)

1: Get l-r bits of the Keys[interval], call it current key
2: encrypted data = Call TinySec’s Primitive.encrypt(current key, data)
3: return encrypted data

Algorithm 3 apb.decrypt(uint64 t encrypted data, int interval, uint64 t
hash)

1: decryption key = evaluate f interval(storage node id say u)
2: decryption key final = Get the appropritate key based on the hash
3: decrypted data = Call TinySec’s Primitive.encrypt(decryption key final, data)
4: return decrypted data

44

perturbed polynomial), and the values of l and r be - value l (value of l as part of APB),

value r (value of r as part of APB). Based on this value we also derive 2 variable Q and q

where Q = 2l 1 and q = 2r 1. Given below are the algorithms for each of the interfaces that

APB provides. Here in our implementation we assume that the base station is resource-full

and need not store the polynomials in the flash. We can also assume that the user node is not

always a normal sensor mote and can be a laptop or a PDA.

• Algorithm. 4 gives the algorithm for the dkvp.init() interface.

Algorithm 4 dkvp.init()

1: if BASE STATION then
2: Once a user node is compromised, the revocation list and new polynomials needs to be

disseminated
3: Generate l(y) based on the node ids of the nodes compromised
4: Generate H(x,y) based on the coefficients of h(y), DKVP(x) and l(y)
5: Evaluate Wi(x) based on DKVP(x) and S(x,i)
6: Disseminate H(x,y) to the user nodes
7: Disseminate Wi(x) to the storage nodes
8: if STORAGE NODE then
9: Generate S(x,y) and evaluate the shares of S(u,i) for all i = 0 ... M DKVP INTERVAL

10: if USER NODE then
11: Generate h(y)
12: Evaluate DKVP user for M DKVP INTERVAL intervals
13: Signal initDone()

• Algorithm. 5 gives the algorithm for the dkvp.encrypt() interface. In DKVP for all

practical purposes we assume that the user knows the purpose of using the protocol and

will call encrypt separately for keys and data as per the convenience. In this regard, all

the function will do is generate the key for the current interval and add it to the value

of the data that needs to encrypted and store it.

• Algorithm. 6 gives the algorithm for the dkvp.decrypt().

45

Algorithm 5 dkvp.Send revok(uint8 t *revok list, int num of revok)

1: Generate the list of nodes that are revoked
2: Send the revocation list to user node(s)
3: Generate 1-variable polynomial W temp.
4: Based on W temp generate coeff W and hence generate DKVP.
5: Send the coefficients of W temp to the storage node(s)
6: Based on DKVP generate H based on revocation list and h.
7: Send the coefficients of H to user node(s)
8: return SUCCESS

Algorithm 6 dkvp.decrypt(uint64 t encrypted data, int interval, uint64 t
hash of key)

1: Evaluate DKVP”(u).
2: for i = 0 to 2r − 1 do
3: hash to check = hash(DKVP”(u) - i/l(u)
4: if hash to check = hash of key then
5: decrypted data = encrypted data - (l-r) bits of (DKVP”(u) - i/l(u))
6: return decrypted datat

4.2.0.7 Implementation of MAF

The main aim of the implementing MAF is to provide the interfaces as mentioned earlier.

MAF has some system parameters like the degree of the polynomials and, number of storage

and user nodes. The degree of the polynomial is pre-processed and derived from the security

level that is set by the user. On deriving the degree of the polynomials, say let the degree

of the polynomials be degreemaf (degree of master polynomial), and degrees (degree of the

perturbation polynomial), and the values of l and r be - value l (value of l as part of APB),

value r (value of r as part of APB). Based on this value we also derive 2 variable Q and q

where Q = 2l 1 and q = 2r 1. Given below are the algorithms for each of the interfaces that

APB provides. Here in our implementation we assume that the base station is resource-full

and need not store the polynomials in the flash. We can also assume that the other nodes can

be of any architecture normal sensor mote or PDA or node is not always a normal sensor mote

and can be a laptop or a PDA.

• Algorithm. 7 gives the algorithm for the maf.init() interface.

46

Algorithm 7 MAF.init()

1: if BASE STATION then
2: Declare coefficients for f, auth,α, β, Si and Ri

3: Call Common.generateCoefficients to generate 3 variable polynomial f
4: Call Common.generateCoefficients to generate a 1 variable polynomial α
5: Evaluate α for all values between 0 and Fq store it in Si

6: Choose the Si with the highest cardinality
7: Alot ids to the nodes based on the set Si for senders
8: Call Common.generateCoefficients to generate a 1 variable polynomial β
9: Evaluate β for all values between 0 and Fq store it in Ri

10: Choose the Ri with the highest cardinality
11: Alot ids to the nodes based on the set Ri for receivers
12: if NORMAL NODE then
13: Store the coefficients of authu(y,z)
14: Store the coefficients of verfu(x,z)
15: Signal initDone()

• Algorithm 8 gives the algorithm for authorize interface.

Algorithm 8 MAF.authorize(uint64 t data)

1: Evaluate h(m) using the TinySec hash function
2: Evaluate MAF(y) = authu(y, h(m)
3: Return MAF(y)

• Algorithm 9 gives the algorithm for send MAF interface.

Algorithm 9 MAF.send MAF(uint64 t data)

1: Call MAF.authorize(data)
2: Send (MAF(y), us, data

• Algorithm 10 gives the algorithm for Verify interface.

4.2.0.8 Separting the Common functionalities

Both APB and DKVP have several common functionalities. These functionalities are

separated to avoid repetitive code segments in both these implementations. The separation is

47

Algorithm 10 MAF.verify(uint64 t data, uint64 t MAF[], uint64 t send id)

1: maf value = Evaluate MAF(u r)
2: Evaluate hash of data
3: verf value = Evaluate verf u(send id, hash(data))
4: if (verf value - maf value) ¡ 2r−1 - 1 then
5: Data not tampered

such that if any other similar protocol needs to be implemented, then these code segments can

be used.

• Common.generate coefficients(): This interface is used to generate the coefficients based

on some seed value and the number of coefficients. Algorithm. 11 gives the algorithm

for this interface.

Algorithm 11 Common.generate coefficients(int seed, int degree, uint64 t
coeff, int no of variables)

1: srand(seed)
2: for i = 0 to no of variables ∗DEGREEF + 1 do
3: Coeff[i] = rand() mod Q
4: return decrypted data

• Common.evaluate 3 variable poly onevar(): This interface is used to evaluate 3 variable

polynomial. This is used mainly for the sed polynomial which is a 3 variable polynomial.

Algorithm.12 gives the algorithm for this interface.

• Common.evaluate one var(int value, uint64 t coeff)

We use Horner’s method to evaluate a uni-variate polynomial. Horner’s method works

on the philosophy of factorizing and representation of a polynomial. Given below is the

representation of the polynomial p(x):

p(x) = a0 + a1x + a2 x
2 + + an x

n

p(x) can be represented as:

p(x) = a0 + x(a1 + x(a2 + x(an−1 + an x

48

Algorithm 12 Common.evaluate 3 variable poly onevar(uint64 t *coeff,
uint64 t *pow 1, uint64 t *pow 2, uint64 t *coeff return)

1: count = 0
2: for i = 0 to DEGREE + 1 do
3: for j = 0 to DEGREE + 1 do
4: for k = 0 to DEGREE + 1 do
5: temp = coeff[count] * pow 1[i]
6: temp = temp mod Q
7: temp = coeff[count] * pow 2[k]
8: temp = temp mod Q
9: coeff return[j] += temp

Algorithm. 13 gives the algorithm for this interface.

Algorithm 13 Common.evaluate one var(int value, uint64 t coeff)

1: for i = 0 to DEGREE + 1 do
2: temp = value * coeff[i]
3: return value += temp
4: return return value

49

CHAPTER 5. SYSTEM DEPLOYMENT AND USAGE MODELS: CASE

STUDIES

As part of the research and analysis, of the protocols implemented, we present analysis

of the execution of the models with an illustrated example. The analysis is based on the

complexity and the amount of resource that may be required to execute the protocols. These

will be verified by the experimental results which will give a framework for an application

developer to know the limitations of using the protocols. We also provide the environment

where they may be useful with the necessary restrictions. Finally compromising on a certain

parameters implies reducing the security complexity. Hence it is important to establish a

tradeoff and to identify the necessary settings for every protocol to be executing to keep the

system secure.

5.1 Model I : Protocols Executing Individually

The models that are presented here are on a broader perspective. These may not be direct

application but are some analogy to the real system. The illustration of the protocols executing

individually can be obtained from the published work and for DKVP it is mentioned above.

The instances and scenarios for executing each of the protocols executing individually are as

given below:

• When Data Centric storage is used and the application developer may only need to

secure the data and hence only APB will be used. The application may be such that the

user node cannot be compromised and is trusted. Also the only communication may be

between nodes to access the data from the storage node which does not involve much of

tampering of data and hence there is not compromise on the integrity of the system.

50

• There can be a system where there are multiple hops in the network where the data could

be tampered by various entities. This system may not even use Data Centric Storage

and hence the only kind of security vulnerability and hence using any other protocol may

be an additional burden.

• In Data Centric storage there is a possibility where the nodes are in a secure and secluded

zone. In this case the nodes that are querying can be compromised. Hence it is important

to secure the system from the user nodes that can cause threat to the system. A direct

example to this could be an army environment where the nodes are placed to monitor

movement, but the user nodes are surveying nodes that capture the data from the field

and hence it is important to see to that only legitimate user nodes get the data.

5.2 Model II: Protocols Executing Together

To continue on the analysis we provide a model where the protocols can be executed in

groups and where all the protocols can be executed together as well. Here we would describe

where the combination of the protocols can be used and what could be the possible overhead.

Finally we give an illustration when all the 3 protocols execute together with an example.

Given below are the descriptions of the proposed combinations:

• APB and DKVP: This is the most obvious combination. These two protocols can be

used seamlessly together. In fact DKVP was developed as an extension to APB. The

most common application of this combination can be a traditional forest deployment.

The overhead of this combination is that at the storage node to store the coefficients.

Also if the interval of dissemination or if the number of user nodes compromised is high

then the communication overhead also increases considerably. This will be justified in

the experimental evaluations.

• APB and MAF: The main application of APB is to store data securely. Consider a forest

deployment or an army deployment movement of soldiers is monitored. When soldiers

51

want to query regarding the data stored, there may be necessity to see to that the data

will not be tampered at the intermediate hops. To ensure this the MAF is combined

with the APB. The disadvantage with this is that MAF has an inherent limitation that

it is not scalable to a very large network, but is definitely practical and will be shown

with the experimental results.

• DKVP and MAF: DKVP will not be used without APB, but as given above there can be

a hypothetical use of DKVP individually and hence in that system, it can be combined

with MAF. The overhead here is that of the coefficients being stored and that for the

coefficients for MAF to verify and authorize.

• APB, DKVP and MAF: This is the scenario where all the 3 protocols are used together.

To illustrate this we will show an example and to physically described as to what is stored

where.

52

Figure 5.1 Example Illustrating the 3 protocols working together.

53

CHAPTER 6. IMPLEMENTATION AND RESULTS

The implementation was carried out on the TinyOS using nesC. The initial implementation

was performed on TOSSIM [17]. The results were tested and evaluated using PowerTOSSIM

[18] an evaluation tool for TinyOS on TOSSIM.

6.1 Programming Limitations

During the working on this study/project various programming limitations with respect to

TinyOS and nesC were exposed. These were brought to the limelight the difference between

practical feasibility and theoretical analysis. These limitations ranged from memory limitations

to communication limitations. Listed below are few of the limitations:

• The size of code must be much less than 40KB as this would enable any other operation

code to be performed easily. This limitation is countered by making the implementation

efficient, by dividing the code into as many common modules so that, different protocols

can use the common functionalities.

• Data has to be allocated statically since dynamic allocations are not advisable in nesC

and TinyOS. Though not advisable, our implementation does use dynamic allocation,

but this is done efficiently such that the dynamic allocation and de-allocation happens

very quickly such that the program heap is not utilized for a long period of program

execution time.

• With respect to the MAF protocol, the value of l and r cannot be very high. This is be-

cause, the functionality of generating the IDs based on α(x) and β(y) is computationally

very expensive, hence this is done for reduced values of l and r. From our experiments we

54

have learnt that maintaining the value of l to 24 and r to 19, makes the system feasible

at the same time maintain the security.

6.2 Network Model Assumed

For the sake of simulation, we assumed a network of 3 nodes, namely - the Base station, a

storage node and another node which is used to perform the operations of a user node. The

performance of the base station is ignored as it is assumed that the base station is a powerful

and resourceful entity. The performance of the storage node is treated as a normal sensor node

and that of the user node to be a laptop or a PDA. Here the polynomial dissemination happens

from the Base station to the storage and user nodes. The experiments were performed at a

smaller scale to ensure that the results obtained were specific to operations of the protocols. For

the sake of the MAF protocol, we assume both the non-Base Station nodes to be authorizing

and verifying nodes. nesC on TinyOS are used for most of the implementation and a separate

tool to generate the IDs for the MAF protocol which was written in C.

6.3 Results

6.3.1 Storage Overhead

Table 6.1 shows the Storage Overhead at the storage node which is a normal sensor node for

the implementation of APB, DVKV P , MAF and All 3 protocols executing in mica2 motes.

The implementation is efficient enough to consume only a small portion of the RAM and ROM.

In TinyOS it can be noted that a feasible usage of ROM can go up to 40000 bytes and RAM

can go upto 4000 bytes. From the table it can be noted that the value of both the ROM and

RAM usage can still accommodate any other application. A lot of RAM and ROM will reduce

when the storage happens on the flash which means that all the global variables will be stored

on the flash rather than on RAM.

55

Model ROM (bytes) RAM (bytes)
DKVP 23098 1176
APB 27234 1188
MAF 22952 1152
All 33144 2568

Table 6.1 Storage Overhead

6.3.2 Computation Overhead

This section discusses the overhead that is incurred in our protocol implementation. Here

we have evaluated APB and DKV P separately and when executed together. The parameters

that we have varied are degree of polynomial and the value of r. The results will be displayed

as processing time for a single operation and the energy consumed for the same at the storage

node. We do not display the results for energy consumed at the user node as only the storage

nodes are power constrained and the main goal while implementing applications for sensor

networks is to minimize the power as much as possible. This section is divided into 3 parts.

The first part explains the results (Processing Time and Energy Consumed) obtained by varying

the degrees of the polynomial in the corresponding protocols when executed individually and

when executed together, followed by the Processing Time and Energy Consumed of APB,

DKV P and Both the protocols executing together while varying the value of r. It could be

noted that we do not vary the value of r for the MAF protocol as this will not impact the

execution of the APB protocol. However, varying the value of r does affect the execution of

the C program, but we do not evaluate this as it is a onetime operation and does not repeat

during the lifetime of a sensor network.

6.3.2.1 Simulation environment

The project was simulated using TOSSIM, using 3 motes, where one of them is the bases-

tation, another mote is behaves like a storage node (nodeID = 1) and the last node will behave

like a user node (nodeID = 1). We use PowerTOSSIM to evaluate the CPU Cycle count and

56

from that arrive at the processing time and energy consumed. The value of l is set to 64 bits.

We do not consider the initialization for the evaluation as that will happen when the mote

is connected to the base station and will draw energy from the system and not from its own

battery. The results given below are for just one operation of encryption/decryption at the

respective nodes.

The above mentioned values and setup is only for APB and DKV P . For the purpose of the

MAF protocol, we assume the l to be 24 bits and r to be 19 bits for the reasons mentioned

earlier. Also for the purpose of the MAF protocol, we assume both nodeID = 1 and nodeID

= 2 to be sensor nodes and hence do not treat any of them to be a PDA or a Laptop, like the

other protocols.

6.3.2.2 Varying the degree of polynomial

This section deals with the results of the system by varying the value of the degree of the

polynomial, namely, the master polynomial in DKVP and master polynomial in APB. It can

be noted that all the polynomials have the same degree and we do not consider varying degrees

for different variables in a polynomial. All the graphs that will be discussed in this section

have the following properties -

• X-Axis - Degree of Polynomial

• Y-Axis - Processing time for one operation.

• Value of r - 10 for APB and DKV P , whereas for MAF the value of r is set to 19.

• Processing speed of Laptop - 1.5 GHz

• Processing speed of PDA - 624 MHz.

• Processing speed of mica2 motes - 7.38 MHz

• Value of γ for MAF protocol is set to 5.

Here the value of r is set to 10 to maintain the complexity greater than 264.

57

Figure 6.1 Computation Overhead at Sensor/Storage Node.

Storage nodes are normal sensor nodes which in our case is assumed to be mica2 motes.

Since they are resource constrained and are the most important part of our protocol, it is

necessary for us to ensure that the processing time (CPU Usage) is feasible and low. The

results for executing the protocols on the storage node(s) is as shown in Figure 6.1. The figure

is a main reflection on the feasibility and somewhat a practical proof for the theory behind

the protocols. An assumption that was made during the evaluation is that - initialization of

polynomials, etc will happen when the node is connected to the base station and hence the

overhead for it can be ignored. From the figure the following can be noted:

• The values for processing time is very low in the order of milliseconds.

• A fact that is not noted in the figure is that the percentage of CPU used was less than

60% in the worst case scenario.

• As a proof for the protocols, as the value of the degree of the polynomial increases,

the processing time increases for all the protocols, for APB the increase is minimal

58

Figure 6.2 Computation Overhead at User Node for APB.

(negligible) as encryption just involves using the pre-computed keys for that time inter-

val.

Figure 6.2, 6.3 and 6.4 reflects on the processing time at the User node for APB, DKV P

and when both these protocols are executed together. These graphs are a reflection of the time

that is consumed when the querying node is a PDA or a Laptop. It can be noted that even

though the operation of decrypting is very high for DKVP, the processing time is in the order

of single-digit milliseconds, which in the case of a laptop is very low. The main purpose of this

graph is to provide a guideline for the user who would be using these protocols on a PDA or a

Laptop to query. It can also be noted that if the user node had to be a normal mica2 sensor

mote, the processing time would be in the order of several seconds, which is not advisable.

These figures are also a reflection of the feasibility of the protocols.

Figure 6.5 is another way to represent Figure 6.1, the only difference being here we represent

the energy consumed at the sensor node rather than the processing time. The motivation

behind this kind of representation is that, for several user-specific applications it would be

59

Figure 6.3 Computation Overhead at User Node for DKVP.

Figure 6.4 Computation Overhead at User Node for Both APB and DKVP.

60

Figure 6.5 Energy consumed at Sensor/Storage Node.

easy to find the amount of energy consumed. Hence this figure will be useful, to know the

feasibility of the user-specific coupled with any of our protocol implementations. Also, in

the long-run this result may provide a way to know the lifetime of the nodes in the network

depending on what protocol is being executed and the power supply connected to them.

6.3.2.3 Varying the value of r

This section deals with the results of the system when the value of r is varied. All the

graphs that will be discussed in this section have the following properties -

• X-Axis - Value of r

• Y-Axis - Processing time for one operation.

• Degree of polynomial in all protocols - 13.

• Processing speed of Laptop - 1.5 GHz

• Processing speed of PDA - 624 MHz.

61

Figure 6.6 Computation Overhead of DKVP (Degree of Polynomial = 13).

The value of the degree of the polynomial is chosen at 13 to maintain the complexity greater

than 264.

Figure 6.6 gives the overhead of DKVP when the value of r is varied. It can be noted

from the figure that as the value of r increases the processing time required at the storage

node remains the same. This is because all the storage node does is encrypts the data/key

by adding the new key and evaluate the hash using TinySec’s [11] encrypt function. This will

not be affected by the value of r and hence irrespective of the value of r the overhead is the

same. But at the user node the processing time increases as the value of r increases. This

is because, as mentioned earlier the decryption has to be done 2r − 1 times to verify the key.

Since the user node is considered to be powerful in the form of Laptop or PDA it is affordable

to perform this operation.

Figure 6.7 gives the overhead of APB when the value of r is varied. Here the values are

almost the same for all values of r. This is because no operation depends on the value of r. The

processing time is for one encryption at the storage node and one decryption at the user node.

The value is very low at the user node as the processor speed of the user node is very high. It

62

Figure 6.7 Computation Overhead of APB (Degree of Polynomial = 13).

can be noted that the time taken is very low either which ways on which ever architecture.

Figure 6.8 gives the overhead of APB and DKVP are executed simultaneously, when the

value of r is varied. It can be noted that the processing time is pretty much the addendum

of the times noted in APB and DKVP individually, but not exactly the sum as there can be

a lot of shared operation time and the CPU cycle count will not work in the sequence of one

protocol after another.

6.3.2.4 Analysis of Computation Overhead

From the various representations of the results the following can be inferred:

• All the implementations are feasible on the corresponding hardware architectures men-

tioned earlier.

• Results prove the theoretical description of the protocol.

• Various representation of the system provide a set of guidelines for user-specific applica-

tions to adopt our implementation.

63

Figure 6.8 Computation Overhead of Both (Degree of Polynomial = 13).

Figure 6.9 Energy Consumed at the Storage node.

64

• Experiment results provide a feasibility study on the parameters that can be used for

various protocols.

6.3.3 Communication Overhead

6.3.3.1 Simulation Environment

The simulation was performed on TOSSIM and the evaluation was based on the Power-

TOSSIM. Here we fix the value of r all through this section to 10 for APB and DKV P , but

for the implementation with the MAF protocol we use r as 19. We perform the experiments

varying the degree of the polynomial. To evaluate the communication overhead these were the

individual setup of the protocols:

• For APB there was a single query and a single dissemination of the coefficients of the

seed polynomial.

• For DKV P there was a single revocation and a single query.

• For MAF there was just a single data that was authorized and that was verified.

6.3.3.2 Varying Degree of Polynomial

Figure 6.10 gives the communication overhead for the protocols. This is a representation

of the time that was used only for communication, which was extracted out of the values for

AMStandard module. This is a reflection on the network usage and these values will vary as

the size of the network increases. These values can surely be used to understand the basic

feasibility of the protocol from the perspective of the network usage.

Figure 6.11, represents the energy consumed for the sending and receiving of messages

which is again denoted by AMStandard module. The main reason for this representation is as

mentioned earlier.

65

Figure 6.10 Processing Time for Communication.

Figure 6.11 Energy Consumed for Communication.

66

Operation Time Taken (msec)
APB Encrypt 15
APB Decrypt 50
DKVP Encrypt 15
DKVP Decrypt 468.75
MAF Authorize 28.25
MAF Verify 40.625

Table 6.2 Time taken for operations

6.4 Implementation on live network

We deployed the implementation in real motes to evaluate the time taken for each operation.

Table 6.2 shows the time taken for each operation.

The values obtained here are consistent with the theoretical description of the protocols.

67

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In this thesis, we have have proposed DKV P , to protect data confidentiality and integrity

in the presence of User-node compromise. This scheme achieves the goal of protecting the data

from unauthorized user node. From the theoritical analysis it can be noted that the protocol

is very secure and experimental results conducted on TOSSIM show that the protocol is very

efficient for sensor network applications.

We also implemented and integrated three security protocols - APB, MAF and DKV P , to

provide data confidentiality and integrity for secure data management. The integration suite

consists of effective and friendly interfaces for application developers. It also provides example

programs to demonstrate the integration. We conducted experiments on TOSSIM and telosb

motes and the results show that such a type of integration is affordable.

As a part of future work, we would like to implement 128-bit keys and coefficients. This is

to make the system more secure and make it more difficult for the adversary to compromise the

data. Currently the implementation module for the base station, is written for sensor motes,

that is, the sensors will be connected to a laptop or a work station, but the computations will

be performed on the sensor motes. Although this is a working architecture, this should be

changed, such that the base station performs the computation, etc and the sensor mote is only

used for the communication.

Currently we have implemented 3 protocols as mentioned earlier. We would like the basic

framework and infrastructure to be used to implement several other security protocols. In this

work, the security levels and parameters are not decided based on any experimental results,

which should be altered such that, extensive experiments should lead to a detailed analysis do

decide on the security parameters. Finally, for all our experiments, we have assumed a small

68

scale of sensor motes. As part of future analysis we would like to implement a larger scale

network which uses this work.

69

BIBLIOGRAPHY

[1] Ian F. Akhildiz, et. al. A Survey on Sensor Networks, IEEE Communications, August

2002, pp. 102-114.

[2] Tanveer Zia and Albert Zomaya Security Issues in Wireless Sensor Networks, Interna-

tional Conference on Systems and Networks Communication (ICSNC’06).

[3] Carlo Blundo et. al. Perfectly-Secure Key Distribution for Dynamic Conferences, Lecture

Notes in Computer Science, vol. 740, pp. 471486, 1993.

[4] Sylvia Ratnasamy et, al. Data Centric Storage in Sensornets, SIGCOMM, February, 2002.

[5] Wensheng Zhang, Nalin Subramanian, and Guiling Wang Lightweight and Compromise-

Resilient Message Authentication in Sensor Networks, IEEE INFOCOM, April, 2008.

[6] Wensheng Zhang, Minh Tran, Sencun Zhu, and Guohong Cao A Compromise-Resilient

Scheme for Pairwise Key Establishment in Dynamic Sensor Networks (A Random

Perturbation-Based Scheme for Pairwise Key Establishment in Sensor Networks), ACM

MobiHoc 2007, September 9-14, Montreal, QC, Candada.

[7] Nalin Subramanian, Chanjun Yang, and Wensheng Zhang Securing Distributed Data Stor-

age and Retrieval in Sensor Networks, IEEE International Conference on Pervasive Com-

puting and Communications (PerCom) March, 2007.

[8] Claude Crepeau and Carlton R. Davis A Certificate Revocation Scheme for Wireless Ad

hoc Networks, Proceedings of the First ACM Workshop on Security of Ad Hoc and Sensor

Networks (SASN’03), pages 54-61, October 2003.

70

[9] Sandeep S. Kulkarni, Bezawada Bruhadeshwar Rekeying and Storage Cost for Multiple

User Revocation, The 12th Annual Network and Distributed System Security Symposium

San Diego, California 3-4 February 2005.

[10] Yong Wang; Ramamurthy, B. Xukai Zou KeyRev: An Efficient Key Revocation Scheme

for Wireless Sensor Networks, Communications, 2007. ICC ’07. IEEE International Con-

ference on 24-28 June 2007 Page(s):1260 - 1265.

[11] Chris Karlof, Naveen Sastry, and David Wagner TinySec: A Link Layer Security Ar-

chitecture for Wireless Sensor Networks, Proceedings of the Second ACM Conference on

Embedded Networked Sensor Systems (SenSys 2004). November 2004.

[12] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler

The nesC Language: A Holistic Approach to Network Embedded Systems, Proceedings of

the ACM SIGPLAN 2003 Conference on Programming Language Design and Implemen-

tation (PLDI).

[13] D. Liu, P. Ning, and K. Sun Efficient Self-Healing Group Key Distribution with Revocation

Capability, In Proc. of the 10th ACM Conference on Computer and Communications

Security (CCS 03), October, 2003.

[14] Jun ANZAI et. al. A Distributed User Revocation Scheme for Ad-Hoc Networks, IEICE

Transactions 88-B(9): 3635-3642 (2005).

[15] Arno Wacker, Mirko Knoll, Timo Heiber and Kurt Rothermel A New Approach for Es-

tablishing Pairwise Keys for Securing Wireless Sensor Networks, Proceedings of the 3rd

international conference on Embedded networked sensor systems 2005, San Diego, Cali-

fornia, USA November 02 - 04, 2005.

[16] Cynthia Kuo et, al. Message-In-a-Bottle: User-Friendly and Secure Key Deployment for

Sensor Nodes, Proceedings of the 5th international conference on Embedded networked

sensor systems 2007, Sydney, Australia, November 06 - 09, 2007.

71

[17] Philip Levis, Nelson Lee, Matt Welsh, and David Culler TOSSIM: Accurate and Scalable

Simulation of Entire TinyOS Applications, SenSys 2003.

[18] Victor Shnayder, Mark Hempstead, Borrong Chen, Geoff Werner Allen, and Matt Welsh

Simulating the Power Consumption of LargeScale Sensor Network Applications, IEEE

INFOCOM, April, 2008.

[19] F. Ye, H. Luo, S. Lu, and L. Zhang Statistical En-route Filtering of Injected False Data

in Sensor Networks, IEEE INFOCOM, March, 2004.

[20] S. Zhu, S. Setia, S. Jajodia, and P. Ning An Interleaved Hop-by-Hop Authentication

Scheme for Filtering False Data in Sensor Networks, IEEE Symposium on Security and

Privacy, 2004.

[21] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar Spins: security protocols for

sensor netowrks, Proceedings of ACM Mobile Computing and Networking (Mobicom01),

2001, pp. 189199.

[22] X. Li, Y. Kim, R. Govindan, W. Hong Multi-dimensionalrange queries in sensor networks,

Proceedings of the 1st International Conference on Embedded Networked Sensor Systems

(SenSys), pp. 6375, 2003.

	2008
	Protocol design, implementation and integration for the protection of sensor data confidentiality and integrity
	Santosh Kumar Panchapakesan
	Recommended Citation

	tmp.1429891926.pdf.A7eMW

