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ABSTRACT

The identification and characterization of epitopes in antigenic sequences is critical for

understanding disease pathogenesis, for identifying potential autoantigens, and for designing

vaccines and immune-based cancer therapies. As the number of pathogen genomes fully or

partially sequenced is rapidly increasing, experimental methods for epitope mapping would

be prohibitive in terms of time and expenses. Therefore, computational methods for reliably

identifying potential vaccine candidates (i.e., epitopes that invoke strong response from both

T-cells and B-cells) are highly desirable.

Machine learning offers one of the most cost-effective and widely used approaches to de-

veloping epitope prediction tools. In the last few years, several advances in machine learning

research have emerged. We utilize recent advances in machine learning research to provide epi-

tope prediction tools with improved predictive performance. First, we introduce two methods,

BCPred and FBCPred, for predicting linear B-cell epitopes and flexible length linear B-cell

epitopes, respectively, using string kernel based support vector machine (SVM) classifiers. Sec-

ond, we introduce three scoring matrix methods and show that they are highly competitive

with a broad class of machine learning methods, including SVM, in predicting major histo-

compatibility complex class I (MHC-I) binding peptides. Finally, we formulate the problems

of qualitatively and quantitatively predicting flexible length major histocompatibility complex

class II (MHC-II) peptides as multiple instance learning and multiple instance regression prob-

lems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for

predicting MHC-II binding affinity using multiple instance regression.

The development of reliable epitope prediction tools is not feasible in the absence of high

quality data sets. Unfortunately, most of the existing epitope benchmark data sets are com-



x

prised of epitope sequences that share high degree of similarity with other peptide sequences in

the same data set. We demonstrate the pitfalls of these commonly used data sets for evaluating

the performance of machine learning approaches to epitope prediction. Finally, we propose a

similarity reduction procedure that is more stringent than currently used similarity reduction

methods.



1

CHAPTER 1. GENERAL INTRODUCTION

Introduction

The immune system is a network of cells, tissues, and organs that work together to defend

organisms against attacks by pathogens (e.g., bacteria, viruses, parasites, and fungi). The

immune system is composed of two major subdivisions, the innate immune system and the

adaptive immune system. The innate immune system is our first line of defense against invading

pathogens, while the adaptive immune system acts as a second line of defense and also affords

protection against re-exposure to the same pathogen. The adaptive immune system has two

arms: B-cells which secret antibodies and can neutralize pathogens outside the cells; and T-

cells which eliminate infected or malfunctioning cells and provide help to other immune system

responses.

Adaptive immunity relies on the capability of immune cells to distinguish between self cells

and foreign cells (e.g., bacteria and virally infected host cells). The process of recognizing non-

self cells is called antigen presentation. An antigen is anything that can trigger an adaptive

immune system response. B-cells recognize antigens on the surface of the pathogen in their

naive form, while T-cells recognize their cognate antigen in a processed form as a peptide in

the context of an MHC molecule. Peptides presented by MHC class I (MHC-I) molecules are

derived from proteasomal degradation of intracellular proteins and their lengths range from

8 to 11 amino acids. Peptides presented by MHC class II (MHC-II) molecules are derived

from endogenous proteins or intracellular pathogens and the binding peptides range from 11

to 30 residues in length. The recognition of Peptide-MHC complexes aids killer T-cells in

identifying and destroying abnormal or foreign cells. Peptides that can complete this pathway



2

are called T-cell epitopes. The identification and characterization of B-cell epitopes and MHC

binding peptides is critical for understanding disease pathogenesis, for identifying potential

autoantigens, and for designing vaccines and immune-based cancer therapies. As the number of

pathogen genomes fully or partially sequenced is rapidly increasing, experimental methods for

epitope mapping would be prohibitive in terms of time and expenses. Therefore, computational

methods for reliably identifying potential vaccine candidates (i.e., epitopes that invoke strong

response from both T-cells and B-cells) are highly desirable.

Several prediction methods have been proposed in the literature for predicting B-cell epi-

topes and MHC binding peptides (a survey of these methods is provided in the next section).

However, several recent studies have pointed the limitation of existing methods in reliably iden-

tifying potential epitopes (Blythe and Flower, 2005; Greenbaum et al., 2007; EL-Manzalawy

et al., 2008c; Wang et al., 2008; Gowthaman and Agrewala, 2008; EL-Manzalawy et al., 2008a).

Therefore, more efforts are urgently needed to introduce epitope prediction tools with a better

predictive performance, and hence, more reliability.

Machine learning offers one of the most cost-effective, and hence widely used approaches

to developing epitope prediction tools. In the last few years, several advances in the machine

learning research have emerged. For example, an extensive number of customized kernels

have been proposed and shown more effective than general purpose kernels (e.g., polynomial

and radial bias function kernels) (Lodhi et al., 2002; Saigo et al., 2004; Gärtner et al., 2003),

multiple instance learning (MIL) (Dietterich et al., 1997; Gartner et al., 2002; Chen et al.,

2006) has been proposed as an approach for learning from ambiguous or partially labeled

data, developing classifiers that explicitly optimize the area under ROC curve (AUC) has been

shown to be more useful than optimizing the classification error in cases where the AUC is

the performance metric of interest (Yan et al., 2003; Brefeld and Scheffer, 2005), and ensemble

learning methods (e.g., boosting and bagging) have been shown effective in improving the

performance of a single learning algorithm (Freund and Schapire, 1996; Breiman, 1996). More

details about these machine learning methods are given in the following chapters.

In this dissertation, we utilize recent advances in the machine learning research to pro-
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vide epitope prediction tools with improved predictive performance. First, we introduce two

methods, BCPred and FBCPred, for predicting linear B-cell epitopes and flexible length linear

B-cell epitopes, respectively, using string kernel based support vector machine (SVM) clas-

sifiers. Second, we introduce three scoring matrix methods and show that they are highly

competitive with a broad class of machine learning methods, including SVM, in predicting

major histocompatibility complex class I (MHC-I) binding peptides. Finally, we formulate the

problems of qualitatively and quantitatively predicting flexible length major histocompatibil-

ity complex class II (MHC-II) peptides as multiple instance learning and multiple instance

regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel

method for predicting MHC-II binding affinity using multiple instance regression.

The development of reliable epitope prediction tools is not feasible in the absence of high

quality data sets. Unfortunately, most of the existing epitope benchmark data sets are com-

prised of epitope sequences that share high degree of similarity with other peptide sequences in

the same data set. We demonstrate the pitfalls of these commonly used data sets for evaluating

the performance of machine learning approaches to epitope prediction. Finally, we propose a

similarity reduction procedure that is more stringent than currently used similarity reduction

methods.

Related work

Predicting B-cell epitopes

B-cell epitopes can be classified into two types: linear (continuous) epitopes and confor-

mational (discontinuous) epitopes. Linear epitopes are short peptides, corresponding to a

contiguous amino acid sequence fragment of a protein (Barlow et al., 1986; Langeveld et al.,

2001). In contrast, conformational epitopes are composed of amino acids that are not con-

tiguous in primary sequence, but are brought into close proximity within the folded protein

structure. Although it is believed that a large majority of B-cell epitopes are discontinu-

ous (Walter, 1986), experimental epitope identification has focused primarily on linear B-cell

epitopes (Flower, 2007).
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Several studies have reported correlations between certain physicochemical properties of

amino acids and the locations of linear B-cell epitopes within protein sequences (Pellequer

et al., 1991; Parker and Guo, 1986; Karplus and Schulz, 1985; Emini et al., 1985; Pellequer

et al., 1993), and several epitope prediction methods based on physicochemical properties of

amino acids have been proposed. For example, hydrophilicity, flexibility, turns, or solvent

accessibility propensity scales were used in the methods of Parker and Guo (1986), Karplus

and Schulz (1985), Pellequer et al. (1993) and Emini et al. (1985), respectively. PREDITOP

(Pellequer and Westhof, 1993), PEOPLE (Alix, 1999), BEPITOPE (Odorico and Pellequer,

2003), and BcePred (Saha and Raghava, 2004) predict linear B-cell epitopes based on groups

of physicochemical properties instead of a single property.

Recently, Blythe and Flower (2005) performed an exhaustive assessment of 484 amino

acid propensity scales, combined with ranges of profile parameters, to examine the correlation

between propensity scale-based profiles and the location of linear B-cell epitopes in a set of

50 proteins. They reported that for predicting B-cell epitopes based on amino acid sequence

information, even the best combinations of amino acid propensities performed only marginally

better than random. They concluded that the reported performance of such methods in the

literature is likely to have been overly optimistic, in part due to the small size of the data sets

on which the methods had been evaluated.

Motivated by Blythe and Flower (2005) results and the increasing availability of experimen-

tally identified linear B-cell epitopes, several studies have attempted to improve the accuracy of

linear B-cell epitope prediction methods using machine learning approaches. BepiPred (Larsen

et al., 2006) combines two amino acid propensity scales and a Hidden Markov Model (HMM)

trained on linear epitopes to yield a slight improvement in prediction accuracy relative to

techniques that rely on analysis of amino acid physicochemical properties. ABCPred (Saha

and Raghava, 2006b) uses artificial neural networks for predicting linear B-cell epitopes. Both

feed-forward and recurrent neural networks were evaluated on a non-redundant data set of

700 B-cell epitopes and 700 non-epitope peptides, using 5-fold cross validation tests. Input

sequence windows ranging from 10 to 20 amino acids, were tested and the best performance,



5

66% accuracy, was obtained using a recurrent neural network trained on peptides 16 amino

acids in length. In the method of Söllner and Mayer (2006), each epitope is represented using a

set of 1487 features extracted from a variety of propensity scales, neighborhood matrices, and

respective probability and likelihood values. Of two machine learning methods tested, decision

trees and a nearest-neighbor method combined with feature selection, the latter was reported

to attain an accuracy of 72% on a data set of 1211 B-cell epitopes and 1211 non-epitopes,

using a 5-fold cross validation test (Söllner and Mayer, 2006). Chen et al. (2007) observed

that certain amino acid pairs (AAPs) tend to occur more frequently in B-cell epitopes than

in non-epitope peptides. Using an AAP propensity scale based on this observation, in combi-

nation with a support vector machine (SVM) classifier, they reported prediction accuracy of

71% on a data set of 872 B-cell epitopes and 872 non-B-cell epitopes, estimated using 5-fold

cross validation. In addition, Chen et al. (2007) demonstrated an improvement in the pre-

diction accuracy, 72.5%, when the APP propensity scale is combined with turns, accessibility,

antigenicity, hydrophilicity, and flexibility propensity scales. Söllner et al. (2008) analyzed a

subgroup of linear B-cell epitopes, protective epitopes, and showed that protective linear B-cell

epitopes are more likely to be located in regions with high antigenicity, low sequence variability,

and absence of post-translational modification patterns.

Because the number of available antigen-antibody complexes in protein data bank (PDB) is

limited, only few methods for predicting conformational B-cell epitopes using structure infor-

mation have been proposed. Conformational epitope prediction (CEP) (Kulkarni-Kale et al.,

2005) utilizes an algorithm for predicting conformational and continuous B-cell epitope using

accessibility of residues in the antigen and spatial distance cut-off. DiscoTope (Haste Ander-

sen et al., 2006) is a method based on a weighted linear combination of sequentially smoothed

epitope log-odd ratios propensity scale and some structure-based information (number of in-

tramolecular Cα atom contacts for each residue). Even in the case of linear B-cell epitopes,

however, antibody-antigen interactions are often conformation-dependent. The conformation-

dependent aspect of antibody binding complicates the problem of B-cell epitope prediction,

making it less tractable than T-cell epitope prediction.
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Predicting T-cell epitopes

T-cells, a major type of the immune system cells, play a central role in the cell-mediated

immunity (Janeway et al., 2004). Cytotoxic T-cells attack cells that have certain foreign or

abnormal molecules on their surfaces. They have also been implicated in transplant rejec-

tion. Helper T-cells, or CD4+ T-cells, coordinate immune responses by communicating with

other cells. Once activated, they divide rapidly and secrete cytokines that regulate the im-

mune response. T-cells are also targets of HIV infection, with the loss of CD4+ T-cells being

associated with the appearance of AIDS symptoms. Regulatory T-cells are believed to be

crucial for the maintenance of immunological tolerance. T-cells epitopes are short linear pep-

tides that are generated by the cleavage of antigenic proteins. The identification of T-cell

epitopes in protein sequences is important for understanding disease pathogenesis, for identi-

fying potential autoantigens, and for designing vaccines and immune-based cancer therapies.

Predicting whether a given peptide will bind to a specific major histocompatibility complex

(MHC) molecule (and the binding affinity) is an important step in identifying potential T-cell

epitopes.

There are two classes of MHC molecules: MHC class I (MHC-I) molecules that are char-

acterized by short binding peptides, usually consisting of 9 amino acid residues; and MHC

class II (MHC-II) molecules that bind to peptides of variable length. MHC-II binding peptides

typically vary from 11 to 30 amino acids in length, although shorter and longer MHC-binding

peptides are not entirely uncommon (Rammensee et al., 1995). MHC-II molecules allow vari-

able length peptides to bind because the binding groove of MHC-II molecule is open at both

ends. However, it has been reported that a 9-mer core region is essential for MHC-II binding

activity of peptides (Madden, 1995; Rammensee et al., 1995). Because the precise location of

the 9-mer core region of the MHC-II binding peptide is unknown, predicting MHC-II binding

peptides is more challenging than predicting MHC-I binding peptides.

A variety of methods for predicting MHC-I binding peptides from amino acid sequence

information have been proposed. Examples of these MHC-I prediction methods include meth-

ods based on: scoring matrices (Parker et al., 1994; Rammensee et al., 1999; Reche et al.,
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2004; Bui et al., 2005; Peters and Sette, 2005); hidden Markov models (HMM) (Mamitsuka,

1998); additive method (Hattotuwagama et al., 2004); artificial neural networks (ANN) (Buus

et al., 2003); support vector machine (SVM) (Donnes and Kohlbacher, 2006); support vector

regression (SVR) (Liu et al., 2006). These methods can be categorized into two major types:

i) qualitative methods (e.g., (Reche et al., 2004; Donnes and Kohlbacher, 2006)), which pre-

dict whether a test peptide is an MHC-I binder or non-binder; ii) quantitative methods (e.g.,

(Hattotuwagama et al., 2004; Liu et al., 2006; Peters and Sette, 2005)), which predicts the

value of the binding affinity (e.g., IC50) of a test peptide.

Similarly, computational methods for predicting MHC-II can be categorized into:

• Qualitative MHC-II binding peptide prediction methods. Examples of such methods

include: (i) methods that use a position weight matrix to model ungapped multiple

sequence alignment of MHC binding peptides (Reche et al., 2004; Singh and Raghava,

2001; Nielsen et al., 2004; Rajapakse et al., 2007; Nielsen et al., 2007), or rely on Hid-

den Markov Models (HMMs) (Mamitsuka, 1998; Noguchi et al., 2002); (ii) supervised

machine learning methods based on Artificial Neural Networks (ANN) (Nielsen et al.,

2003; Buus et al., 2003) or Support Vector Machines (SVMs) (Donnes and Kohlbacher,

2006; Bhasin and Raghava, 2004; Cui et al., 2006a; Salomon and Flower, 2006); and (iii)

semi-supervised machine learning methods (Murugan and Dai, 2005; Hertz and Yanover,

2006).

• Quantitative MHC-II binding peptide prediction methods. Examples of such methods

include PLS-ISC (Doytchinova and Flower, 2003), MHCPred (Hattotuwagama et al.,

2004), SVRMHC (Liu et al., 2006), ARB (Bui et al., 2005), and NetMHCII (Nielsen

et al., 2007).

Most of the currently available MHC-II binding prediction methods focus on identifying

a putative 9-mer MHC-II binding core region, e.g., based on the degree of match with a 9-

mer MHC-II binding motif, typically constructed using one of the motif finding algorithms.

For example, MEME (Bailey and Elkan, 1995), Gibbs sampling (Lawrence et al., 1993), ma-

trix optimization techniques (MOTs) (Singh and Raghava, unpublished data), evolutionary
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algorithms (Fonseca and Fleming, 1993), Mont Carlo (MC) search (Metropolis et al., 2004),

and linear programming (Bennett and Mangasarian, 1992) form the basis of MHC-II binding

peptide prediction methods RankPEP (Reche et al., 2004), Gibbs (Nielsen et al., 2004), HLA-

DR4Pred (Bhasin and Raghava, 2004), MOEA (Rajapakse et al., 2007), NetMHCII (Nielsen

et al., 2007), and LP (Murugan and Dai, 2005), respectively. The success of these MHC-II pre-

diction methods in identifying MHC-II peptides relies on the effectiveness of the corresponding

motif-finding methods in recognizing the motif that characterizes the 9-mer core of MHC-II

binding peptides. An inherent limitation of such MHC-II prediction methods is their inability

to make use of any potentially useful signals that lie outside the 9-mer core region (Chang

et al., 2006; Nielsen et al., 2007). Moreover, Wang et al. (2008) showed that existing MHC-II

prediction tools lack consistency in identifying the 9-mer binding cores.

Recently, two methods (Cui et al., 2006a; Salomon and Flower, 2006) for predicting flex-

ible length MHC-II peptides have been proposed. Both methods use the entire sequences of

MHC-II peptides (as opposed to only the 9-mer cores) for training MHC-II binding peptide

predictors. The first method (Cui et al., 2006a) maps a variable length peptide into a fixed

length feature vector obtained from sequence-derived structural and physicochemical proper-

ties of the peptide. The second method (Salomon and Flower, 2006) uses a sequence kernel that

defines the pair-wise similarity of variable-length peptides as the average score of all possible

local alignments between the corresponding amino acid sequences.

Dissertation organization

The major aim of this dissertation is to improve the predictive performance, and hence, the

reliability of epitope prediction tools. We focus on machine learning methods trained using only

amino acid sequence information for training the predictors. To facilitate our major aim, we

divided it into three sub-aims: i) improving the predictive performance of linear B-cell epitope

prediction methods (Chapters 2 and 3); ii) improving the predictive performance of MHC-I

binding peptide prediction methods (Chapter 4); iii) improving the predictive performance of

MHC-II binding peptide prediction methods (Chapters 5 and 6). The following is the outline
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of this dissertation.

Chapter 1: We present the epitope prediction problem, related work, and the outline of

the dissertation.

Chapter 2: We propose BCPred, a novel method for predicting linear B-cell epitopes

using the subsequence kernel. We show that the predictive performance of BCPred (AUC =

0.76) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as

well as our implementation of the amino acid pair (AAP) propensity method (Chen et al.,

2007) (AUC = 0.70). The results have been published in the Journal of molecular recognition

(EL-Manzalawy et al., 2008d). Yasser EL-Manzalawy conceived the study, implemented the

algorithms, analyzed the results, and prepared the manuscript. Drena Dobbs and Vasant

Honavar contributed to the design of experiments, interpretation of results, and preparation

of the manuscript.

Chapter 3: We extend the work presented in Chapter 2 by introducing the problem of

predicting flexible length linear B-cell epitopes. We explore two machine learning approaches

for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence

kernels for determining a similarity score between any arbitrary pair of variable length se-

quences. The second approach utilizes four different methods of mapping a variable length

sequence into a fixed length feature vector. Based on our results, we propose FBCPred, a

method for predicting flexible length linear B-cell epitopes using string kernels. The results

have been published in the 7th International Conference on Computational Systems Bioinfor-

matics (CSB’08) (EL-Manzalawy et al., 2008b). Yasser EL-Manzalawy conceived the study,

implemented the algorithms, analyzed the results, and prepared the manuscript. Drena Dobbs

and Vasant Honavar contributed to the design of experiments, interpretation of results, and

preparation of the manuscript.

Chapter 4: We introduce three scoring matrix based methods: i) modified position specific

scoring matrix (MPSSM), a method for computing a PSSM from both binding and non-binding

training peptides; ii) area under ROC curve (AUC) optimized matrix method (AOMM), a

method for finding a scoring matrix that maximizes the AUC over the training data; iii) SMM-
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Bin, a method for qualitative via quantitative (QVQ) prediction using the Stabilized Matrix

Method (SMM) (Peters and Sette, 2005). We compare these methods with 10 different MHC-I

prediction methods covering major approaches for predicting MHC-I binding peptides. The

results of our experiments show that advanced scoring matrix based machine learning methods

(e.g., AOMM, SMM) are highly competitive with a broad class of machine learning methods

for predicting MHC-I peptides. Yasser EL-Manzalawy conceived the study, implemented the

algorithms, analyzed the results, and prepared the manuscript. Vasant Honavar contributed

to the design of experiments, interpretation of results, and preparation of the manuscript.

Chapter 5: We demonstrate that the previously reported similarity reduction methods

applied to MHC-II data sets may not eliminate highly similar peptides, i.e., peptides that

share > 80% sequence identity still pass the similarity test. We propose a two-step similarity

reduction procedure that is much more stringent than those currently in use for similarity

reduction with MHC-II benchmark data sets. We introduce three similarity-reduced MHC-II

benchmark data sets derived from MHCPEP (Brusic et al., 1998), MHCBN (Bhasin et al.,

2003), and IEDB (Peters et al., 2005) databases and utilize them in our experiments to show

that the performance of three MHC-II binding peptide prediction methods estimated using

data sets of unique peptides with that obtained using their similarity-reduced counterparts

show that the former can be rather optimistic relative to the performance of the same methods

on similarity-reduced counterparts of the same data sets. Furthermore, our results demonstrate

that conclusions regarding the superiority of one method over another drawn on the basis of

performance estimates obtained using commonly used data sets of unique peptides are often

contradicted by the observed performance of the methods on the similarity-reduced versions

of the same data sets. These results underscore the importance of using similarity-reduced

data sets in rigorously comparing the performance of alternative MHC-II peptide prediction

methods. The results have been published in PLoS ONE Journal (EL-Manzalawy et al., 2008a).

Yasser EL-Manzalawy conceived the study, implemented the algorithms, analyzed the results,

and prepared the manuscript. Drena Dobbs and Vasant Honavar contributed to the design of

experiments, interpretation of results, and preparation of the manuscript.
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Chapter 6: We formulate the problems of qualitatively and quantitatively predicting

flexible length MHC-II peptides as multiple instance learning and multiple instance regression

problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for

predicting MHC-II binding affinity using multiple instance regression. We present results of

experiments using a benchmark data set covering 13 HLA-DR and three H2-IA alleles that show

that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding

peptides. Yasser EL-Manzalawy conceived the study, implemented the algorithms, analyzed

the results, and prepared the manuscript. Drena Dobbs and Vasant Honavar contributed to

the design of experiments, and interpretation of results, and preparation of the manuscript.

Chapter 7: We conclude with a summary of the dissertation, the contributions, and future

work.
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CHAPTER 2. PREDICTING LINEAR B-CELL EPITOPES USING

STRING KERNELS

A paper published in the Journal of Moleculer Recognition

Yasser EL-Manzalawy, Drena Dobbs, Vasant Honavar

Abstract

The identification and characterization of B-cell epitopes play an important role in vaccine

design, immunodiagnostic tests, and antibody production. Therefore, computational tools for

reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector

Machine (SVM) classifiers trained utilizing five different kernel methods using 5-fold cross val-

idation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep

database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the

results of our computational experiments, we propose BCPred, a novel method for predicting

linear B-cell epitopes using the subsequence kernel. We show that the predictive performance

of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in

our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed

method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore,

we compared BCPred with AAP and ABCPred, a method that uses recurrent neural net-

works, using two data sets of unique B-cell epitopes that had been previously used to evaluate

ABCPred. Analysis of the data sets used and the results of this comparison show that con-

clusions about the relative performance of different B-cell epitope prediction methods drawn

on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly
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optimistic estimates of performance of evaluated methods. This argues for the use of carefully

homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading

conclusions about how different methods compare to each other. Our homology-reduced data

set and implementations of BCPred as well as the APP method are publicly available through

our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

Introduction

B-cell epitopes are antigenic determinants that are recognized and bound by receptors

(membrane-bound antibodies) on the surface of B lymphocytes (Pier et al., 2004). There are

many different types of B-cell receptors, but each B-cell produces only one type. When a B-

cell receptor binds its cognate antigen, the B-cell is stimulated to undergo proliferation. This

involves the generation of two types of cells, effector or plasma B-cells, which produce and se-

crete soluble antibodies, and memory B-cells, which remain in the organism and can proliferate

rapidly if re-exposed to antigen. Hence, understanding the sequence and structural features of

B-cell epitopes is critical both for the design of effective vaccines and for the development of

sensitive diagnostic tests.

B-cell epitopes can be classified into two types: linear (continuous) epitopes and confor-

mational (discontinuous) epitopes. Linear epitopes are short peptides, corresponding to a

contiguous amino acid sequence fragment of a protein (Barlow et al., 1986; Langeveld et al.,

2001). In contrast, conformational epitopes are composed of amino acids that are not con-

tiguous in primary sequence, but are brought into close proximity within the folded protein

structure. Although it is believed that a large majority of B-cell epitopes are discontinuous

(Walter, 1986), experimental epitope identification has focused primarily on linear B-cell epi-

topes (Flower, 2007). Even in the case of linear B-cell epitopes, however, antibody-antigen

interactions are often conformation-dependent. The conformation-dependent aspect of anti-

body binding complicates the problem of B-cell epitope prediction, making it less tractable

than T-cell epitope prediction. Therefore, the development of reliable computational methods

for predicting linear B-cell epitopes is an important challenge in bioinformatics and computa-

http://ailab.cs.iastate.edu/bcpreds/
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tional biology (Greenbaum et al., 2007).

Several studies have reported correlations between certain physicochemical properties of

amino acids and the locations of linear B-cell epitopes within protein sequences (Pellequer

et al., 1991; Parker and Guo, 1986; Karplus and Schulz, 1985; Emini et al., 1985; Pellequer

et al., 1993), and several epitope prediction methods based on physicochemical properties of

amino acids have been proposed. For example, hydrophilicity, flexibility, turns, or solvent

accessibility propensity scales were used in the methods of Parker and Guo (1986), Karplus

and Schulz (1985), Pellequer et al. (1993) and Emini et al. (1985), respectively. PREDITOP

(Pellequer and Westhof, 1993), PEOPLE (Alix, 1999), BEPITOPE (Odorico and Pellequer,

2003), and BcePred (Saha and Raghava, 2004) predict linear B-cell epitopes based on groups

of physicochemical properties instead of a single property.

Recently, Blythe and Flower (2005) performed an exhaustive assessment of 484 amino

acid propensity scales, combined with ranges of profile parameters, to examine the correlation

between propensity scale-based profiles and the location of linear B-cell epitopes in a set of

50 proteins. They reported that for predicting B-cell epitopes based on amino acid sequence

information, even the best combinations of amino acid propensities performed only marginally

better than random. They concluded that the reported performance of such methods in the

literature is likely to have been overly optimistic, in part due to the small size of the data sets

on which the methods had been evaluated.

Motivated by Blythe and Flower (2005) results and the increasing availability of experimen-

tally identified linear B-cell epitopes, several studies have attempted to improve the accuracy of

linear B-cell epitope prediction methods using machine learning approaches. BepiPred (Larsen

et al., 2006) combines two amino acid propensity scales and a Hidden Markov Model (HMM)

trained on linear epitopes to yield a slight improvement in prediction accuracy relative to

techniques that rely on analysis of amino acid physicochemical properties. ABCPred (Saha

and Raghava, 2006b) uses artificial neural networks for predicting linear B-cell epitopes. Both

feed-forward and recurrent neural networks were evaluated on a non-redundant data set of

700 B-cell epitopes and 700 non-epitope peptides, using 5-fold cross validation tests. Input
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sequence windows ranging from 10 to 20 amino acids, were tested and the best performance,

66% accuracy, was obtained using a recurrent neural network trained on peptides 16 amino

acids in length. In the method of Söllner and Mayer (2006), each epitope is represented using a

set of 1487 features extracted from a variety of propensity scales, neighborhood matrices, and

respective probability and likelihood values. Of two machine learning methods tested, decision

trees and a nearest-neighbor method combined with feature selection, the latter was reported

to attain an accuracy of 72% on a data set of 1211 B-cell epitopes and 1211 non-epitopes,

using a 5-fold cross validation test (Söllner and Mayer, 2006). Chen et al. (2007) observed

that certain amino acid pairs (AAPs) tend to occur more frequently in B-cell epitopes than

in non-epitope peptides. Using an AAP propensity scale based on this observation, in combi-

nation with a support vector machine (SVM) classifier, they reported prediction accuracy of

71% on a data set of 872 B-cell epitopes and 872 non-B-cell epitopes, estimated using 5-fold

cross validation. In addition, Chen et al. (2007) demonstrated an improvement in the pre-

diction accuracy, 72.5%, when the APP propensity scale is combined with turns, accessibility,

antigenicity, hydrophilicity, and flexibility propensity scales.

In this report, we present BCPred, a method for predicting linear B-cell epitopes using an

SVM machine learning method. Although the performance of SVM-based classifiers largely de-

pends on the selection of the kernel function, there are no theoretical foundations for choosing

good kernel functions in a data-dependent way. Therefore, one objective of this study was to

explore a class of kernel methods, namely string kernels, in addition to the widely used radial

bias function (RBF) kernel. Our choice of string kernels was motivated by their successful ap-

plication in a number of bioinformatics classification tasks, including protein remote homology

detection (Leslie et al., 2002, 2004; Zaki et al., 2005), protein structure prediction (Rangwala

et al., 2006), protein binding site prediction (Wu et al., 2006), and major histocompatibility

complex (MHC) binding peptide prediction (Salomon and Flower, 2006). In addition, we in-

troduce the subsequence kernel (SSK), which has been successfully used in text classification

(Lodhi et al., 2002), but has been under-explored in macromolecular sequence classification

applications. Our empirical results demonstrate superior performance of SSK over other string
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kernels and the RBF kernel. Hence, we employed the SSK in building SVM classifiers for our

proposed linear B-cell epitope prediction method, BCPred.

A second goal of this study was to determine how existing methods for linear B-cell epitope

prediction compare with each other and with BCPred. At present, little is known about the

relative performance of different methods, due to the lack of published direct comparisons

using standard benchmark data sets. Unfortunately, neither the data set used by Söllner and

Mayer (2006) nor the code used for generating and selecting the features used to represent

epitope peptides as input to the classifiers is publicly available. The code for the AAP method

(Chen et al., 2007) is also not publicly available, however, in contrast to the other methods,

it is relatively straightforward to implement. Fortunately, although the code used to train the

neural network classifier used in ABCPred is not publicly available, Saha and Raghava (2006b)

have made available the data set used for developing and evaluating the ABCPred server, as

well as a blind test set (Saha and Raghava, 2006a). Thus, although we are unable to include

direct comparisons with results of Söllner and Mayer (2006), in this paper we report direct

comparisons of the ABCPred method (Saha and Raghava, 2006b), our implementation of the

AAP method of Chen et al. (2007), and our proposed BCPred method, using the ABCPred

data sets made publicly available by Saha and Raghava (2006a).

Methods

Data sets

Homology-reduced data sets

Bcipep database (Saha et al., 2005) contains 1230 unique linear B-cell epitopes. We re-

trieved a set of 947 unique epitopes with each epitope satisfying one of the following two

conditions: i) the epitope length is at least 20 amino acids; or ii) the epitope is less than 20

amino acids in length and the accession number of the source antigen is provided.

A set of 20-mer peptides was derived from the 947 unique epitopes by: i) truncating

epitopes longer than 20 residues by removing amino acids from both ends to yield a 20-mer
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from the middle, and ii) extending epitopes shorter than 20 residues by adding amino acids on

both ends, based on the corresponding complete antigen sequences retrieved from SwissProt

(Bairoch and Apweiler, 2000). Because the resulting data set of 947 20-mer peptides was no

longer non-redundant, we removed duplicated and highly homologous peptides by filtering the

data set based on an 80% sequence identity cutoff using the CD-HIT program (Li et al., 2002) to

obtain a homology-reduced data set of 701 peptides (positive instances of B-cell epitopes). 701

non-epitope peptides were generated by randomly extracting 20-mer peptides from sequences

in SwissProt database (Bairoch and Apweiler, 2000) while ensuring that none of the negative

instances so obtained also occur in the positive instances.

Because there is no evidence that 20 amino acids is the optimal length for B-cell epitopes,

we decided to experiment with different epitope lengths. Variants of the 20-mer data set were

generated by repeating the above procedure for peptide lengths of 18, 16, 14, or 12 residues.

For the sake of brevity, we will refer to these data sets by BCPnn, where nn is a two digit

number representing the length of the peptides in the data set (e.g., BCP16 refers to the

homology-reduced data set where each peptide is composed of 16 residues).

It should be noted that deriving a data set of shorter peptides from the 20-mer data set by

trimming amino acids from both termini of each peptide is not guaranteed to produce a data set

with <80% sequence identity because such trimming could increase the similarity between two

peptides in the data set. Therefore, to ensure that the resulting data sets are homology-reduced,

we re-applied the 80% sequence identity cutoff filter in generating each data set of epitopes

less than 20 residues in length. The resulting homology-reduced data sets (BCP20, BCP18,

BCP16, BCP14, and BCP12) are available at http://ailab.cs.iastate.edu/bcpreds/.

ABCPred data set

Saha and Raghava (2006a) have made available the data sets used to train and evaluate

ABCPred. Because the best reported performance of ABCPred was obtained using a 16-mer

peptide data set (ABCP16), we chose this data set for directly comparing ABCPred with

BCPred and AAP (Chen et al., 2007) using 5-fold cross validation.

http://ailab.cs.iastate.edu/bcpreds/
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Blind test set

Saha and Raghava (2006a) have made available a blind test set comprising 187 epitopes,

none of which were used in training the ABCPred method, and a set of 200 16-mer non-epitope

peptides extracted from the non-allergen data set of Björklund et al. (2005). B-cell epitopes

less than 16 amino acids in length were extended to 16-mer peptides by adding an equal number

of residues to both ends based on the protein sequence of the source antigen. In the remaining

text, we will use the abbreviation (SBT16) to refer to Saha 16-mer blind test set.

Support vector machines and kernel methods

Support vector machines (SVMs) (Vapnik, 2000) are a class of supervised machine learning

methods used for classification and regression. Given a set of labeled training data (xi, yi),

where xi ∈ Rd and yi ∈ {+1,−1}, training an SVM classifier involves finding a hyperplane

that maximizes the geometric margin between positive and negative training data samples.

The hyperplane is described as f(x) = 〈w, x〉 + b, where w is a normal vector and b is a bias

term. A test instance, x, is assigned a positive label if f(x) > 0, and a negative label otherwise.

When the training data are not linearly separable, a kernel function is used to map nonlinearly

separable data from the input space into a feature space. Given any two data samples xi and xj

in an input spaceX ∈ Rd, the kernel functionK returnsK(xi, xj) = 〈Φ(xi),Φ(xj)〉 where Φ is a

nonlinear map from the input space X to the corresponding feature space. The kernel function

K has the property that K(xi, xj) can be computed without explicitly mapping xi and xj into

the feature space, but instead, using their dot product 〈xi, xj〉 in the input space. Therefore,

the kernel trick allows us to train a linear classifier, e.g., SVM, in a high-dimensional feature

space where the data are assumed to be linearly separable without explicitly mapping each

training example from the input space into the feature space. This approach relies implicitly

on the selection of a feature space in which the training data are likely to be linearly separable

(or nearly so) and explicitly on the selection of the kernel function to achieve such separability.

Unfortunately, there is no single kernel that is guaranteed to perform well on every data set.

Consequently, the SVM approach requires some care in selecting a suitable kernel and tuning
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the kernel parameters (if any).

String kernels

String kernels (Leslie et al., 2002, 2004; Lodhi et al., 2002; Saigo et al., 2004; Haussler, 1999)

are a class of kernel methods that have been successfully used in many sequence classification

tasks (Leslie et al., 2002, 2004; Saigo et al., 2004; Zaki et al., 2005; Rangwala et al., 2006;

Wu et al., 2006). In these applications, a protein sequence is viewed as a string defined on

a finite alphabet of 20 amino acids. In this work, we explore four string kernels: spectrum

(Leslie et al., 2002), mismatch (Leslie et al., 2004), local alignment (Saigo et al., 2004), and

subsequence (Lodhi et al., 2002), in predicting linear B-cell epitopes. The subsequence kernel

(Lodhi et al., 2002) has proven useful in text classification (Lodhi et al., 2002) and natural

language processing (Clark et al., 2006). However, to the best of our knowledge, this kernel has

not been previously explored in the context of macromolecular sequence classification problems.

A brief description of the four kernels follows.

Spectrum kernel

Let A denote a finite alphabet, e.g., 20 amino acids. x and y denote two strings defined on

the alphabet A. For k ≥ 1, the k-spectrum is defined as (Leslie et al., 2002):

Φk = (φα(x))α∈Ak (1)

where φα is the number of occurrences of the k-length substring α in the sequence x. The

k-spectrum kernel of the two sequences x and y is obtained by taking the dot product of the

corresponding k spectra:

Kspct
k (x, y) = 〈Φk(x),Φk(y)〉 (2)

Intuitively, this kernel captures a simple notion of string similarity: two strings are deemed

similar (i.e., have a high k-spectrum kernel value) if they share many of the same k-length
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substrings.

Mismatch kernel

The mismatch kernel (Leslie et al., 2004) is a variant of the spectrum kernel in which

inexact matching is allowed. Specifically, the (k,m)-mismatch kernel allows up to m ≤ k

mismatches to occur when comparing two k-length substrings. Let α be a k-length substring,

the (k,m)-mismatch feature map is defined on α as:

Φ(k,m)(α) = (φβ(α))β∈Ak (3)

where φβ(α) = 1 if β ∈ N(k,m)(α), where β is the set of k-mer substrings that differs from α

by at most m mismatches. Then, the feature map of an input sequence x is the sum of the

feature vectors for k-mer substrings in x:

Φ(k,m)(x) =
∑

k−mersα in x
Φ(k,m)(α) (4)

The (k,m)-mismatch kernel is defined as the dot product of the corresponding feature maps

in the feature space:

Kmsmtch
(k,m) (x, y) = 〈Φ(k,m)(x),Φ(k,m)(y)〉 (5)

It should be noted that the (k, 0)-mismatch kernel results in a feature space that is identical

to that of the k-spectrum kernel. An efficient data structure for computing the spectrum and

mismatch kernels in O(|x|+ |y|) and O(km+1|A|m(|x|+ |y|)), respectively, is provided in (Leslie

et al., 2004).

Local alignment kernel

Local alignment (LA) kernel (Saigo et al., 2004) is a string kernel adapted for biological

sequences. The LA kernel measures the similarity between two sequences by summing up scores

obtained from gapped local alignments of the sequences. This kernel has several parameters:
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the gap opening and extension penalty parameters, d and e, the amino acid mutation matrix

s, and the factor β, which controls the influence of suboptimal alignments on the kernel value.

Detailed formulation of the LA kernel and a dynamic programming implementation of the

kernel with running time complexity in O(|x||y|) are provided in (Saigo et al., 2004).

Subsequence kernel

The subsequence kernel (Lodhi et al., 2002) generalizes the k-spectrum kernel by considering

a feature space generated by the set of all (contiguous and non-contiguous) k-mer subsequences.

For example, if we consider the two strings “act′′ and “acctct′′, the value returned by the

spectrum kernel with k = 3 is 0. On the other hand, the (3, 1)-mismatch kernel will return 3

because the 3-mer substrings “acc′′, “cct′′, and “tct′′ have at most one mismatch when compared

with “act′′. The subsequence kernel considers the set (“ac− t′′, “a− ct′′, “ac−−− t′′, “a− c−

−t′′, “a−−− ct′′) of non-contiguous substrings and returns a similarity score that is weighted

by the length of each non-contiguous substring. Specifically, it uses a decay factor, λ ≤ 1, to

penalize non-contiguous substring matches. Therefore, the subsequence kernel with k = 3 will

return 2λ4 + 3λ6 when applied to “act′′ and “acctct′′ strings. More precisely, the feature map

Φk of a string x is given by:

Φ(k,λ)(x) = (
∑

i:u=x[i]

λl(i))u∈Ak (6)

where u = x[i] denotes a substring in x where 1 ≤ i1 < . . . < i|u| ≤ |x| such that uj = sij , for

j = 1, . . . , |u| and l(i) = i|u| − i1 + 1 is the length of the subsequence in x. The subsequence

kernel for two strings x and y is determined as the dot product of the corresponding feature

maps:

K(x, y)sub(k,λ) = 〈Φ(k,λ)(x),Φ(k,λ)(y)〉

=
∑
u∈Ak

∑
i:u=x[i] λ

l(i)∑
j:u=y[j] λ

l(j)

=
∑
u∈Ak

∑
i:u=x[i]

∑
j:u=y[j] λ

l(j)+l(j)

(7)
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This kernel can be computed using a recursive algorithm based on dynamic programming

in O(k|x||y|) time and space. The running time and memory requirements can be further

reduced using techniques described in (Seewald and Kleedorfer, 2005).

Amino acid pairs propensity scale

Amino acid pairs (AAPs) are obtained by decomposing a protein/peptide sequence into

its 2-mer subsequences. Chen et al. (2007) observed that some particular AAPs tend to occur

more frequently in B-cell epitopes than in non-epitope peptides. Based on this observation,

they developed an AAP propensity scale defined by:

θ(α) = log(
f+
α

f−α
) (8)

where f+
α and f−α are the occurrence frequencies of AAP α in the epitope and non-epitope

peptide sequences, respectively. These frequencies have been derived from Bcipep (Saha et al.,

2005) and Swissprot (Bairoch and Apweiler, 2000) databases, respectively. To avoid the dom-

inance of an individual AAP propensity value, the scale in Eq. 8 has been normalized to a

[−1,+1] interval through the following conversion:

θ(α) = 2(
θ(α)−min
max−min

)− 1 (9)

where max and min are the maximum and minimum values of the propensity scale before the

normalization.

Chen et al. (2007) explored SVMs using two kernels: a dot product kernel applied to the

average of the AAP scale values for all the AAPs in a peptide and an RBF kernel defined in

a 400-dimensional feature space as follows:

ΦAAP (x) = (φα(x) · θ(α))α∈A2 (10)

where φα(x) is the number of occurrences of the 2-mer α in the peptide x. The optimal

performance was obtained using the RBF kernel and a window of 20 amino acids (Chen et al.,
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2007).

Five-fold cross validation

In our experiments, we used stratified 5-fold cross validation tests in which the data set is

randomly partitioned into five equal subsets such that the relative proportion of epitopes to

non-epitopes in each subset is 1:1. Four of the five subsets are used for training the classifier

and the fifth subset is used for testing the classifier. This procedure is repeated five times, each

time choosing different subsets of the data for training and testing. The estimated performance

of the classifier corresponds to an average of the results from the five cross validation runs.

Implementation and SVM parameter optimization

We used Weka (Witten and Frank, 2005) machine learning workbench for implementing

the spectrum, mismatch, and LA kernels (RBF and the subsequence kernel are already im-

plemented in Weka). We evaluated the k-spectrum kernel, Kspct
k , for k = 1, 2, and 3. The

(k,m)-mismatch kernel was evaluated at (k,m) equals (3, 1), (4, 1), (5, 1), and (5, 2). The subse-

quence kernel, Ksub
(k,λ), was evaluated at k = 2, 3, and 4 and the default value for λ, 0.5. The LA

kernel was evaluated using the BLOSUM62 substitution matrix, gap opening and extension

parameters equal to 10 and 1, respectively, and β = 0.5. For the SVM classifier, we used the

Weka implementation of the SMO (Platt, 1998) algorithm. For the string kernels, the default

value of the C parameter, C = 1, was used for the SMO classifier. For methods that uses

the RBF kernel, we found that tuning the SMO cost parameter C and the RBF kernel pa-

rameter γ is necessary to obtain satisfactory performance. We tuned these parameters using a

2-dimensional grid search over the range C = 2−5, 2−3, . . . , 23, γ = 2−15, 2−13, . . . , 23. It should

be noted that the parameter optimization was performed using only the training data.

Performance evaluation

The prediction Accuracy (ACC), Sensitivity (Sn), Specificity (Sp), and Correlation coef-

ficient (CC) are often used to evaluate prediction algorithms (Baldi et al., 2000). The CC
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measure has a value in the range from -1 to +1, and the closer the value to +1, the better the

predictor. ACC, Sn, Sp, and CC are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(11)

Sn =
TP

TP + FN
and Sp =

TN

TN + FP
(12)

CC =
TP × TN − FP × FN√

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
(13)

where TP, FP, TN, FN are the numbers of true positives, false positives, true negatives, and

false negatives respectively.

Although these metrics are widely used to assess the performance of machine learning meth-

ods, they all suffer from the important limitation of being threshold-dependent. Thershold-

dependent metrics describe the classifier performance at a specific threshold value. It is often

possible to increase the number of true positives (equivalently, sensitivity) of the classifier at

the expense of an increase in false positives (equivalently, false alarm rate). The Receiver Op-

erating Characteristic (ROC) curve describes the performance of the classifier over all possible

thresholds. The ROC curve is obtained by plotting the true positive rate as a function of

the false positive rate or, equivalently, sensitivity versus (1-specificity) as the discrimination

threshold of the binary classifier is varied. Each point on the ROC curve describes the classifier

at a certain threshold value, i.e., at a particular choice of tradeoff between true positive rate

and false positive rate. The area under ROC curve (AUC) is a useful summary statistic for

comparing two ROC curves. AUC is defined as the probability that a randomly chosen positive

example will be ranked higher than a randomly chosen negative example. An ideal classifier

will have an AUC = 1, while a classifier assigning labels at random will have an AUC = 0.5,

any classifier performing better than random will have an AUC value that lies between these

two extremes.
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Results

SVM using the subsequence kernel outperforms other kernel methods and the

AAP method

In the first set of experiments, we used our homology-reduced data sets to evaluate SVMs

trained using the spectrum kernel at k = 1, 2, and 3, the (k,m)-mismatch kernel at (k,m) =

(3, 1), (4, 1), (5, 1), and (5, 2), the LA kernel, and the subsequence kernel at k = 2, 3, and 4. We

compared the performance of the four string kernels to that of the RBF kernel trained using

a binary representation of the data in which each amino acid is represented by a 20-bit binary

string. In addition, we evaluated our implementation of the AAP method (Chen et al., 2007)

on our data sets. For all methods, the performance was evaluated using 5-fold cross validation.

Because it is not feasible to include the complete set of results in this paper, we report only the

results on the 20-mer peptides data set, BCP20, and provide the results on data sets BCP18,

BCP16, BCP14, and BCP12 in the Supplementary Materials1.

Table 1 compares the performance of different kernel-based SVM classifiers on BCP20 data

set. The subsequence kernel has the best overall performance, in terms of AUC. The (5,1)-

mismatch kernel performs slightly better than the k -spectrum kernel, and the performance of

k-spectrum kernel with k = 1 and k = 3 is much better than its performance with k = 2. The

performance of both the k -spectrum and (k,m)-mismatch kernels appears to be very sensitive

to the choice of k and m parameters, because for some choices of k and m, the classifier

performance deteriorates to that expected for random assignment of labels to test instances.

In contrast, the performance of the subsequence kernel appears to be much less sensitive to

the choice of parameter k.

Our implementation of the AAP method (Chen et al., 2007) has the second best overall

performance and demonstrates the highest specificity. The LA kernel is very competitive

in performance with AAP. Interestingly, the AAP significantly outperforms the RBF kernel

trained using data in its binary representation. The AAP method is essentially an RBF

kernel trained on the same data but using a different representation, in which each peptide is
1supplementary materials are provided in APPENDIX A
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represented by a vector of 400 numeric values computed based on the AAP propensity scale.

The significant difference observed in performance of these two RBF-based methods highlights

the importance of the data representation in kernel methods. All of these observations hold

not only for the BCP20 data set but also for the homology-reduced data sets of peptides

with different lengths (see Supplementary Materials). Most of the methods have their best

performance on BCP20 data set and show slight decreases in performance on data sets with

decreasing peptide length.

Figure 1 shows the ROC curves for all methods evaluated in this experiment. The ROC

curve for the subsequence kernel, Ksub
(4,0.5), dominates the other ROC curves over a broad

range of choices for the tradeoff between true positive and false positive rates. For any user-

selected threshold corresponding to specificity in the range 100% to 20%, Ksub
(4,0.5) has the best

corresponding sensitivity. We conclude that BCPred, SVM-based classifier trained using the

subsequence kernel Ksub
(4,0.5), outperforms all other methods tested in predicting linear B-cell

epitopes.

Table 1 Performance of different methods on our BCP20 homology-reduced
data set using 5-fold cross validation. Best results are highlighted
in bold. BCPred method denotes Ksub

(4,0.5).

Method ACC(%) Sn(%) Sp(%) CC AUC
Kspct

1 62.62 60.63 64.62 0.253 0.681
Kspct

2 58.56 59.49 57.63 0.171 0.614
Kspct

3 64.12 63.2 65.05 0.283 0.660
Kmsmtch

(3,1) 48.86 50.5 47.22 -0.023 0.468
Kmsmtch

(4,1) 55.35 54.64 56.06 0.107 0.593
Kmsmtch

(5,1) 64.91 62.05 67.76 0.299 0.683
Kmsmtch

(5,2) 55.85 55.35 56.35 0.117 0.584
LA 64.76 61.63 67.9 0.296 0.696
Ksub

(2,0.5) 62.62 62.34 62.91 0.253 0.664
Ksub

(3,0.5) 65.83 67.48 64.19 0.317 0.722
BCPred 67.90 72.61 63.2 0.360 0.758
RBF 57.28 57.49 57.06 0.146 0.617
AAP 64.05 52.92 75.18 0.288 0.700
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Figure 1 ROC curves for different methods on BCP20 homology-reduced
data set. BCPred method denotes Ksub

(4,0.5). BCPred ROC curve
dominates all other ROC curves for any user-selected threshold
corresponding to specificity in the range 100% to 20%.

Statistical analysis

We summarize statistical analysis of the results and conclusions presented in the preceding

subsection. Specifically, we attempt to answer, from a statistical prospective, the following

questions: Is the performance of BCPred significantly different from those of other methods?

Or more generally, how do the different B-cell epitope prediction methods compare with each

other?

To answer these questions, we utilized multiple hypothesis comparisons (Friedman, 1940;

Fisher, 1973) for comparing a set of classifiers on multiple data sets. We chose to use the AUC

as the performance metric in these tests. Table 2 shows the AUC values of 13 classifiers on

the five homology-reduced data sets.

One approach for performing multiple hypothesis comparisons over the results in Table 2, is

to perform paired t-tests between each pair of classifiers at p-value equals 0.05. However, when

the number of classifiers being compared is large compared to the number of datasets, paired
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Table 2 AUC values for different methods evaluated on homology-reduced
data sets. For each data set, the rank of each classifier is shown
in parentheses.

Method BCP20 BCP18 BCP16 BCP14 BCP12 Avg
Kspct

1 0.681(6) 0.588(11) 0.652(7) 0.582(11) 0.591(10) 0.619(9)
Kspct

2 0.614(10) 0.636(8) 0.612(9) 0.597(9) 0.606(8) 0.613(8.8)
Kspct

3 0.660(8) 0.675(6) 0.645(8) 0.675(3) 0.636(6) 0.658(6.2)
Kmsmtch

(3,1) 0.468(13) 0.465(13) 0.460(13) 0.506(13) 0.450(13) 0.470(13)
Kmsmtch

(4,1) 0.593(11) 0.599(10) 0.569(11) 0.596(10) 0.548(11) 0.581(10.6)
Kmsmtch

(5,1) 0.683(5) 0.691(4.5) 0.667(6) 0.649(6) 0.594(9) 0.657(6.1)
Kmsmtch

(5,2) 0.584(12) 0.568(12) 0.563(12) 0.574(12) 0.535(12) 0.565(12)
LA 0.696(4) 0.691(4.5) 0.686(4) 0.671(4) 0.662(4) 0.681(4.1)
Ksub

(2,0.5) 0.664(7) 0.668(7) 0.681(5) 0.647(7) 0.643(5) 0.661(6.2)
Ksub

(3,0.5) 0.722(2) 0.726(2) 0.718(2) 0.697(2) 0.687(2) 0.710(2)
BCPred 0.758(1) 0.751(1) 0.730(1) 0.733(1) 0.709(1) 0.736(1)
RBF 0.617(9) 0.601(9) 0.594(10) 0.603(8) 0.620(7) 0.607(8.6)
AAP 0.700(3) 0.699(3) 0.689(3) 0.665(5) 0.663(3) 0.683(3.4)

t-tests are susceptible to type I error, i.e., falsely concluding that the two methods significantly

differ from each other in terms of performance when in fact they do not. To reduce the chance

of type I errors, we used Bonferroni adjustments (Neter et al., 1985) in performing multiple

comparisons. Specifically, two classifiers are considered different at 0.05 significance level, if the

null hypothesis (that they are not different) is rejected by a paired t-test at 0.05/12 = 0.0042

confidence level (12 denotes the number of comparisons). Table 3 summarizes the results of

Bonferroni-corrected tests comparing the performance of the classifiers. Significantly different

pairs of classifiers are indicated with a ×. The results in Table 3 show that the reported

performance of BCPred is significantly different from the performance of other classifiers. On

the other hand, the differences between the performance of Kspct
3 , Kmsmtch

(5,1) , LA, and Ksub
(3,0.5)

classifiers and the performance of AAP are not statistically significant.

A second approach for performing multiple hypothesis comparisons over the results in

Table 2 is to use non-parametric tests. Demšar (2006) has suggested that non-parametric tests

should be preferred over parametric tests for comparing machine learning algorithms because

the non-parametric tests, unlike parametric tests, do not assume normal distribution of the
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Table 3 Results of Bonferroni adjustments using p-value = 0.0042. “×”
indicates that the corresponding pair of methods is significantly
different.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Kspct

1 (M1)
Kspct

2 (M2) 0
Kspct

3 (M3) 0 0
Kmsmtch

(3,1) (M4) 0 × ×
Kmsmtch

(4,1) (M5) 0 × × ×
Kmsmtch

(5,1) (M6) 0 0 0 × ×
Kmsmtch

(5,2) (M7) 0 × × × × ×
LA (M8) × × 0 × × 0 ×
Ksub

(2,0.5) (M9) 0 × 0 × × 0 × ×
Ksub

(3,0.5) (M10) × × × × × × × × ×
BCPred (M11) × × × × × × × × × ×
RBF (M12) 0 0 0 × 0 0 × × 0 × ×
AAP (M13) × × 0 × × 0 × 0 × 0 × ×

samples (e.g., the data sets). Demšar suggested a three-step procedure for performing multiple

hypothesis comparisons using non-parametric tests. First, the classifiers being compared are

ranked on the basis of their observed performance on each data set (see Table 2). Second,

Friedman test is applied to determine whether the measured average ranks are significantly

different from the mean rank under the null hypothesis. Third, if the null hypothesis can be

rejected at 0.05 significance level, the Nemenyi test is used to determine whether significant

differences exist between any given pair of classifiers. Unfortunately, this procedure requires

the number of data sets to be greater than 10 and the number of methods to be greater than 5

(Demšar, 2006). Because we have 13 classifiers to compare and only 5 data sets, we cannot use

this procedure. However, as noted by Demšar (2006), the average ranks by themselves provide

a reasonably fair comparison of classifiers. Hence, we use average ranks to compare BCPred

with the other methods. As shown in Table 2, BCPred and Ksub
(3,0.5) have average ranks 1 and

2, respectively, followed by AAP and LA kernel with average ranks 3.4 and 4.1.

In summary, the results reported in Table 2 along with the statistical analysis of the results

lend support to the conclusion summarized in the preceding subsection that the performance
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of BCPred is superior to that of the other 12 methods.

Effect of epitope length on BCPred performance

Our choice of an epitope length of 20 in the experiments summarized above was motivated

by the previous work (Saha and Raghava, 2006b; Chen et al., 2007). Figure 2 shows the

distribution of unique epitope lengths in Bcipep database (Saha et al., 2005). The Bcipep

database contains 1230 unique B-cell epitopes with 99.4% of the epitopes have lengths ranging

from 3 to 38 amino acids. It turns out that 86.7% of the unique B-cell epitopes are at most

20 amino acids in length. However, it is natural to ask as to how the performance of BCPred

varies with the choice of epitope length. We now proceed to examine the effect of epitope

length on the performance of BCPred.

In order to study the effect of epitope length we compared the performance of BCPred

and other methods trained and tested on data sets with epitope lengths of 20, 18, 16, 14,

and 12. Our results show that BCPred and five other methods reach their best performance

(in terms of AUC) on data set BCP20 (corresponding to epitope length of 20) (see Table 2).

This observation raises an obvious question: Can we improve the predictive performance of

BCPred if we increase the epitope length to beyond 20? To explore this question, we gener-

ated five additional homology-reduced data sets, BCP22, BCP24, BCB26, BCP28, and BCP30

(corresponding to epitope lengths of 22, 24, 26, 28, and 30 respectively) and compared the

performance of BCPred on the resulting data sets using 5-fold cross validation. The perfor-

mance of BCPred on the five data sets is summarized in Table 4. It is interesting to note that

the measured AUC on BCP22 is 0.788 compared to 0.758 on BCP20. A slightly better AUC,

0.804, was observed on BCP28.

Why does BCPred have a better performance on BCP28 compared with its performance on

BCP20? There are at least three possible explanations: i) BCP28 includes longer segments of

epitope sequences of length greater than 20 amino acids in the data set than BCP20; ii) Some

of the hard-to-predict epitopes in BCP20 are eliminated from BCP28 because these epitopes

are located very close to the ends of the antigen sequence and so extending these epitopes to 28
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amino acids in length by adding an equal number of amino acids from both ends is not possible;

iii) amino acid neighbors of the epitopes carry some useful signal that helps the classifier to

better discriminate epitopes from non-epitopes.

To test these hypotheses, we constructed a modified version of BCP20 data set, MBCP20.

MBCP20 was derived from BCP28 by trimming 4 amino acids from both ends of each peptide

in BCP28. Therefore, BCP28 and MBCP20 can be viewed as two different representations of

the same set of epitope/non-epitope data. However, the sequence similarity between any pair

of epitopes in BCP28 is guaranteed to be less than 80% but this is not necessarily the case for

epitopes in MBCP20. The performance of BCPred on MBCP20 data set is shown in Table 4.

The results show that the performance of BCPred on MBCP20, the trimmed version of BCP28,

is worse than that on BCP28. This observation provides some evidence against the second of

the three possible explanations for observed improvements in performance with epitope length

chosen to construct the data sets used to train and test BCPred. It also lends some credence

to the suggestion that the amino acid neighbors of the B-cell epitopes may help the classifier

to better discriminate between epitopes and non-epitope sequences. As noted earlier, another

possibility is that increasing the length results in covering a larger fraction of epitope sequence

in the data set in the case of epitope sequences that are longer than 20 amino acid in length

(about 13% of the epitopes).

Table 4 Performance of BCPred on homology-reduced data sets containing
longer epitopes (22-30 residues) and modified BCP20, MBCP20,
data set.

Data set ACC(%) Sn(%) Sp(%) CC AUC
BCP20 67.90 72.61 63.2 0.360 0.758
BCP22 70.91 73.20 68.63 0.419 0.788
BCP24 67.70 79.81 55.59 0.365 0.783
BCP26 70.66 74.18 67.14 0.414 0.796
BCP28 72.06 72.37 71.74 0.441 0.804
BCP30 70.62 68.95 72.29 0.413 0.788
MBCP20 68.45 67.97 68.92 0.369 0.758
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Figure 2 Length distribution of unique linear B-cell epitopes in Bcipep
database. 86.7% of the epitopes are at most 20 amino acids in
length.

Comparing BCPred with existing linear B-cell epitope prediction methods

Although a number of machine learning based methods for predicting linear B-cell epitopes

have been proposed (Saha and Raghava, 2006b; Söllner and Mayer, 2006; Chen et al., 2007),

little is known about how these methods directly compare with one another due to the lack

of published comparisons using standard benchmark data sets. Unfortunately, because the

code and precise parameters used to train several of these methods are not available, we were

unable to make direct comparisons of these methods using the homology-reduced data sets

we used in our first set of experiments (summarized in Table 1 and Table 2). However, we

were able to compare BCPred with our implementation of APP and ABCPred, using the

publicly available benchmark data sets (Saha and Raghava, 2006a) that were used to evaluate

ABCPred. Because the best reported performance of ABCPred was obtained using a data set

of 16-mer peptides, comprising 700 epitopes and 700 non-epitopes peptides, we used the same

data set, ABCP16, to compare ABCPred with BCPred and AAP. In addition, a blind test set,

SBT16, consisting of 187 epitopes and 200 16-mer non-epitopes, also made available by Saha

and Raghava (2006a), was used to compare the three methods.
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Table 5 compares the performance of BCPred, AAP, and ABCPred on ABCP16 data set

(Saha and Raghava, 2006a), using 5-fold cross validation. In terms of overall accuracy, both

BCPred and AAP outperformed ABCPred on this data set, with BCPred showing the best

performance (74.57%). Interestingly, the performance of BCPred and AAP on ABCP16 data

set was better than their performance on the homology-reduced data set used in the first set

of experiments described above. The performance of the three classifiers trained on ABCP16

data set, but tested on the blind test set SBT16 is summarized in Table 6. In this case, the

performance of ABCPred was slightly better than that of BCPred and APP.

Table 5 Performance of BCPred, AAP, and ABCPred evaluated on
ABCP16 data set using 5-fold cross validation. “-” denotes un-
available information.

Method ACC(%) Sn(%) Sp(%) CC AUC
BCPred 74.57 70.14 79.00 0.493 0.801
AAP 73.14 50.17 95.57 0.518 0.782
ABCPred 65.93 67.14 64.71 0.319 -

Table 6 Performance comparison of BCPred, AAP, and ABCPred. The
three classifiers were trained using ABCP16 data set and evaluated
using SBT16 blind test set.

Method ACC(%) Sn(%) Sp(%) CC AUC
BCPred 65.89 66.31 65.50 0.318 0.699
AAP 64.60 64.17 65.00 0.292 0.689
ABCPred 66.41 71.66 61.50 - -

What explains the discrepancy between the performance estimated on ABCP16

data set and the performance on SBT16 blind test set?

Based on the empirical results summarized above, it is natural to ask: How can we explain

the differences in relative performance of BCPred and AAP on our homology-reduced data sets

versus the performance of these methods on ABCP16 data set (Saha and Raghava, 2006b)?

How can we explain the observation that BCPred and AAP outperform ABCPred in 5-fold

cross validation experiments using ABCP16 data set but not on the blind test set, SBT16 data
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set?

Could the observed differences in relative performance be explained by differences in the two

data sets, BCP16 and ABCP16? To explore this possibility, we considered the procedures used

to create the data sets. Recall that Saha et al. started with a data set of 20-mer peptides (after

extending the length of shorter B-cell epitopes based on the corresponding antigen sequences)

(Saha and Raghava, 2006b). As noted above, there is a possibility that the resulting data set

of 20-mer peptides includes several highly similar peptides (e.g., peptides that differ from each

other in only one or two amino acids). More importantly, the 16-mer data set, ABCP16, was

derived from the 20-mer data set, ABCP20, by trimming 2 amino acids from the ends of each

20-mer peptide; as a result, two 20-mers that were not duplicates of each other might yield

16-mers that are highly similar after the ends are trimmed off. In summary, the ABCP20 data

set reported in Saha el al. (Saha and Raghava, 2006b) was constructed from unique epitopes

without applying any homology reduction filters. Moreover, the procedure used by Saha and

Raghava (2006b) to derive ABCP16 from ABCP20 can be expected to increase the pair-wise

similarity between sequences in ABCP16 relative to the pairwise sequence similarity within

ABCP20.

Indeed, when we scanned the positive peptides in ABCP16 data set (Saha and Raghava,

2006a) for duplicate peptides, we found 37 cases in which a 16-mer peptide has at least one

exact duplicate in the 16-mer data set and several of these have multiple copies in the 16-mer

data set (see Table 7). Consequently, 5-fold cross validation using ABCP16 data set is likely

to yield overly optimistic performance estimates, especially for methods that rely on sequence

features such as those identified by the subsequence kernel and AAP.

To determine exactly how redundant are the positive peptides in ABCP16 data set, we

filtered them using an 80% sequence identity cutoff. We found that applying the 80% sequence

identity cutoff resulted in the number of positive peptides in the ABCP16 data being reduced

from 696 to 532. Thus, 23.5% of the positive peptides in ABCP16 data set have more than

80% sequence identity. This observation leads us to conclude that the observed differences

in the performance of BCPred and AAP on the homology-reduced data set (BCP16) relative
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to that on the ABCP16 data set, as well as the results of comparisons of AAP, ABCPred,

and BCPred on the blind test set (SBT16), are explained by the presence of a relatively large

number of highly similar peptides in ABCP16 data set.

The preceding analysis highlights an important issue in evaluating linear B-cell predic-

tion tools, which, to our knowledge, has not been addressed in previous studies. Previously

published linear B-cell epitope prediction methods (Larsen et al., 2006; Saha and Raghava,

2006b; Söllner and Mayer, 2006; Chen et al., 2007) have been evaluated using data sets of

unique epitopes without considering any sequence similarities that may exist among epitopes.

In reality, unique epitopes may share a high degree of similarity (e.g., a shorter epitope may

be included within a longer one, or two epitopes may differ in only one or two amino acids).

In this work, we demonstrated that cross validation performance estimated on such data sets

can be overly-optimistic. Moreover, such data sets can lead to false conclusions when used to

compare different prediction methods. For instance, our comparison of ABCPred, AAP and

BCPred using 5-fold cross validation on ABCP16 data set suggested that AAP and BCPred

significantly outperform ABCPred. Such a conclusion may not be valid because evaluation of

the three methods on a blind test set, SBT16, suggests that the three methods are comparable

to each other.

BCPREDS web server

We have implemented BCPREDS, an online web server for B-cell epitope prediction, using

classifiers trained on the homology-reduced data sets of B-cell epitopes developed in this work.

The server can be accessed at http://ailab.cs.iastate.edu/bcpreds/.

Because it is often valuable to compare predictions of multiple methods, and consensus

predictions are more reliable than individual predictions, the BCPREDS server allows users to

choose the method for predicting B-cell epitopes, either BCPred or AAP (and in the future,

additional methods). Users provide an antigen sequence and optionally can specify desired

epitope length and specificity threshold. Results are returned in several user-friendly formats.

In what follows, we illustrate the use of the BCPREDS server in a representative application

http://ailab.cs.iastate.edu/bcpreds/
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Table 7 List of 37 duplicated 16-mer peptides and number of occurrence
of each (N) in ABCP16 data set.

Peptide N Peptide N
RGPGRAFVTIGKIGNM 2 RKRIHIGPGRAFYTTK 3
GPQGLAGQRGIVGLPG 1 KSIRIQRGPGRAFVTI 9
QEVGKAMYAPPISGQI 2 SIRIQRGPGRAFVTIG 3
SEGATPQDLNTMLNTV 1 RQGPKEPFRDYVDRFY 1
LGIWGCSGKLICTTAV 1 AKATYEAALKQYEADL 1
GDRADGQPAGDRADGQ 1 NYNKRKRIHIGPGRAF 2
DGVGAASRDLEKHGAI 1 NNNTRKSITKGPGRVI 1
RLIEDNEYTARQGAKF 1 LQARILAVERYLKDQQ 1
EQELLELDKWASLWNW 2 KMQTLWDEIMDINKRK 1
NVTENFDMWKNDMVEQ 2 TRKSIRIQRGPGRAFV 2
NVTENFNMWKNDMVEQ 1 DPNPQEVVLVNVTENF 1
GIWGCSGKLICTTAVP 1 YLKDQQLLGIWGCSGK 1
QLLGIWGCSGKLICTT 1 TRKSITKGPGRVIYAT 1
QVTPGRGPGRAPCSAG 1 SFNISTSIRGKVQKEY 1
IRIQRGPGRAFVTIGK 1 RPVVSTQLLLNGSLAE 1
RIQRGPGRAFVTIGKI 3 RKDPVVYPWMKKVHVN 1
KRIHIGPGRAFYTTKN 2 RNRWEWRPDFESEKVK 1
AGTVGENVPDDLYIKG 1 FLQIYKQGGFLGLSNI 1
KRKRIHIGPGRAFYTT 4

of B-cell epitope prediction.

Identifying B-cell epitopes in the receptor-binding domain of SARS-CoV spike

protein

Since its outbreak in 2002, the development of an effective and safe vaccine against Severe

Acute Respiratory Syndrome coronavirus (SARS-CoV) has become an urgent need for pre-

venting future worldwide outbreak of SARS, a life threatening disease (Drosten et al., 2003;

Fouchier et al., 2003; Ksiazek et al., 2003; Peiris et al., 2003). Infection by SARS-CoV is

initiated by binding of its spike (S) protein to its functional receptor, angiotensin-converting

enzyme (ACE2), which is expressed on the surface of host cells (Dimitrov, 2003; Li et al.,

2003). The S protein comprises 1255 amino acids and consists of two functional domains: S1

(residues 1-667) and S2 (residues 668-1255) (Wu et al., 2004). The S1 domain is responsible

for binding to receptors on target cells (Li et al., 2003) and the S2 domain contributes to
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the subsequence fusion between viral envelope and cellular membrane (Beniac et al., 2006).

In addition, the S2 domain contains two highly conserved heptad repeat (HR) regions, HR1

and HR2 correspond to amino acid residues 915-949 and 1150-1184, respectively (Sainz et al.,

2005). Several studies reported that the receptor-binding domain (RBD), residues 318-510,

is an attractive target for developing SARS-CoV vaccine because blocking the binding of S1

domain to cellular receptors can prevent envelope fusion and virus entry mediated by the S2

domain (Sui et al., 2004; Prabakaran et al., 2006). Based on these findings, we surveyed the

literature to collect previously identified epitopes within the RBD fragment of the SARS-CoV

S protein. The collected epitopes are summarized in Table 8. None of these epitopes ap-

pears in our training data sets. Because epitope SP3 is included within the epitope (434-467)

(GNYNYKYRYLKHGKLRPFERDISNVPFSPDGKPC) reported by Lien et al. (2007), we

omitted the longer epitope.

We submitted 193 residues comprising the RBD region of SARS-CoV S protein (residues

318-510 according to accession AAT74874) to the BCPREDS, ABCPred, and Bepipred servers.

For BCPREDS, we used the default specificity threshold (75%) and set the epitope length to 16

residues. For the other two servers, we used the default settings. Figure 3 shows the BCPred

(top) and AAP (bottom) predictions returned by BCPREDS. Four of the B-cell epitopes

predicted by BCPred overlap with epitopes that have been identified in the antigenic regions

of RBD of SARS-CoV S protein through experiments. Three of the five epitopes predicted by

AAP have substantial overlap with the SP1, SP2, and SP5 epitopes, and the fourth partially

overlaps epitopes SP2 and SP3; the fifth does not overlap with any experimentally reported

epitopes. In contrast, the ABCPred server, using default parameters, returned 22 predictions

covering almost the entire query sequence. Bepipred returned 9 predicted variable-length

epitopes, but only three of them are longer than 4 residues in length. Two out of these four

epitopes overlap with experimentally reported epitopes. The complete ABCPred and Bepipred

predictions are provided in the Supplementary Materials. In evaluating these results, it is worth

noting that a high false positive rate is more problematic than an occasional false negative

prediction in the B-cell epitope prediction task (Söllner and Mayer, 2006), because a major
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goal of B-cell epitope prediction tools is to reduce the time and expense of wet lab experiments.

The B-cell epitopes predicted over the entire SARS-CoV S protein using BCPred is given

in Figure A.3. Interestingly, the predictions of BCPred over the RBD region are identical

regardless of whether the predictions are made over only the RBD sequence fragment or over

the entire S protein sequence of SARS-CoV.

Table 8 B-cell epitopes previously identified in the RBD of SARS-CoV S
protein.

Epitope Amino acid sequence PubMed ID
SP1 (336-352) SVYAWERKKISNCVADY 16725238
SP2 (424-435) NTRNIDATSTGN 17055022
SP3 (442-458) YLKHGKLRPFERDISNV 16725238
SP4 (459-470) PFSPDGKPCTPP 17055022
SP5 (483-494) FYTTTGIGYQPY 16337697

Discussion

In this paper, we explored a family of SVM-based machine learning methods for predict-

ing linear B-cell epitopes from primary amino acid sequence. We explored four string kernel

methods and compared them to the widely used RBF kernel. Our results demonstrate the

usefulness of the four string kernels in predicting linear B-cell epitopes, with the subsequence

kernel showing a superior performance over other kernels. In addition, we observed that the

subsequence kernel is less sensitive to the choice of the parameter k than the k-spectrum and

(k,m)-mismatch kernels. Our experiments using 5-fold cross validation on a homology-reduced

data set of 701 linear B-cell epitopes and 701 non-epitopes demonstrated that the subsequence

kernel significantly outperforms other kernel methods in addition to APP method (Chen et al.,

2007). To the best of our knowledge, the subsequence kernel (Lodhi et al., 2002), although

previously used in text classification and natural language processing applications, have not

been widely exploited in the context of macromolecular sequence classification tasks. The su-

perior performance of the subsequence kernel on B-cell epitope prediction task suggests that it

might find use in other related macromolecular sequence classification tasks, e.g., MHC bind-
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Figure 3 BCPREDS server predictions of epitopes within the RBD of
SARS-CoV S protein, made using BCPred (top) and AAP (bot-
tom). Experimentally identified epitopes are underlined. “E”
indicates that the corresponding amino acid residue lies in a pre-
dicted linear B-cell epitopes.

ing peptide prediction (Salomon and Flower, 2006; Cui et al., 2006b) and protein subcellular

localization prediction (Yu et al., 2006a; Bulashevska and Eils, 2006).

One of the challenges for developing reliable linear B-cell epitope predictors is how to

deal with the large variability in the length of the epitopes which ranges from 3 to 30 amino

acids in length. Many standard machine learning methods require training and testing the

classifier using sequences of fixed length. For example, the AAP (Chen et al., 2007) method

was evaluated on a data set where the length of the input sequences was fixed to 20 amino

acids. Saha and Raghava (2006b) experimented with data sets consisting of peptide sequences

of length 20 and shorter, and reported optimal performance of ABCPred classifier on a data

set consisting of 16-mer peptides. In BepiPred (Larsen et al., 2006) and propensity scale based

methods (Pellequer et al., 1991; Parker and Guo, 1986; Karplus and Schulz, 1985; Emini et al.,

1985; Pellequer et al., 1993; Saha and Raghava, 2004), the training examples are windows of
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five or seven amino acids labeled according to whether the amino acid at the center of the

window is included in a linear B-cell epitope or not. Here, we evaluated BCPred on several

data sets consisting of fixed length peptides with lengths ranging from 12-30 amino acids with

incremental step equals 2. Our results suggest that amino acid neighbors of the B-cell epitope

carry some useful information that can help the classifier better discriminate between epitopes

and non-epitopes. This is especially interesting in light of the observation that adding a single

amino acid to a linear B-cell epitope may affect binding to the antibody.

A similar situation arises in predicting major histocompatibility complex class II (MHC-

II) binding peptides. The length of MHC-II binding peptides typically varies from 11 to 30

amino acids in length. Most of the currently available MHC-II binding peptide prediction

methods focus on identifying a putative 9-mer binding core region. Therefore, classifiers are

trained using 9-mer peptides instead of variable length ones. Recently, two methods (Cui et al.,

2006b; Salomon and Flower, 2006) for predicting variable length MHC-II peptides have been

proposed. Both methods use the entire sequences of MHC-II binding peptides (as opposed

to only the 9-mer cores) for training MHCII binding peptide predictors. The first method

(Cui et al., 2006b) maps a variable length peptide into a fixed length feature vector obtained

from sequence-derived structural and physicochemical properties of the peptide. The second

method (Salomon and Flower, 2006) uses the local alignment (LA) kernel that we used in this

study. It would be interesting to apply these methods to the problem of learning to identify

variable length linear B-cell epitopes. Our ongoing work aims at exploring the application of

string kernels for learning from flexible length linear B-cell epitopes.

In light of the significant room for improvement in performance of B-cell epitope pre-

diction methods reported in the literature, it is important to understand the strengths and

limitations of different methods through direct comparisons on standard benchmark data sets.

Hence, we compared the BCPred method using the subsequence kernel-based SVM developed

in this paper with two published methods: AAP (Chen et al., 2007) and ABCPred (Saha

and Raghava, 2006b). In our experiments using the Saha 16-mer peptide data set (contain-

ing approximately 700 B-cell epitopes and 700 non-epitope peptides) on which ABCPred had
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the best reported performance of 66% (Saha and Raghava, 2006b), both BCPred and AAP

outperformed ABCPred, based on 5-fold cross validation. However, when the classifiers were

tested on a separate blind test set instead, no significant difference was observed in their per-

formance. Careful examination of the ABCPred 16-mer data set revealed that the data set has

a high degree of sequence redundancy among the epitope peptides, leading to overly optimistic

estimates of performance in some cases.

Our demonstration that the only publicly available data set of linear B-cell epitopes (Saha

and Raghava, 2006a) is, in fact, highly redundant (with almost 25% of individual 16-mer

epitopes having at least one other epitope with >80% sequence identity) is significant. We

showed that the redundancy in such a data set can be reflected in overly-optimistic performance

estimates, especially for certain types of machine learning classifiers. Consequently, using

such a data set can also lead to false conclusions when directly comparing different prediction

methods. Therefore, it is very important to evaluate and compare different linear B-cell epitope

prediction methods on data sets that are truly non-redundant or homology-reduced with respect

to their constituent epitope sequences, i.e., in which the level of pair-wise sequence identity

shared between individual epitopes is known. Towards this goal, we have made our homology-

reduced data set of linear B-cell epitopes (with <80% sequence identity) publicly available as

a benchmarking data set for comparing existing and future linear B-cell epitope prediction

methods.

Based on the results of this study, we developed BCPREDS, an online web server for pre-

dicting linear B-cell epitopes using either the BCPred method, which implements the subse-

quence kernel introduced in this paper, or the AAP method of Chen et al. (2007). A case study

in which BCPREDS was used to predict linear B-cell epitopes in the RBD of the SARS-CoV

S protein demonstrates the potential value of this server in guiding clinical investigations.

Work in progress is aimed at further development and empirical comparisons of different

methods for B-cell epitope prediction, in particular, addressing the more challenging problem

of predicting discontinuous or conformational B-cell epitopes.
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CHAPTER 3. PREDICTING FLEXIBLE LENGTH LINEAR B-CELL

EPITOPES

A paper published in 7th International Conference on Computational Systems Bioinformatics

(CSB’08)

Yasser EL-Manzalawy, Drena Dobbs, Vasant Honavar

Abstract

Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic

tests, and antibody production. Therefore, computational tools for reliably predicting B-cell

epitopes are highly desirable. We explore two machine learning approaches for predicting

flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for

determining a similarity score between any arbitrary pair of variable length sequences. The

second approach utilizes four different methods of mapping a variable length sequence into

a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred,

a novel method for predicting flexible length linear B-cell epitopes using the subsequence

kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers

evaluated in this study. An implementation of FBCPred and the datasets used in this study are

publicly available through our linear B-cell epitope prediction server, BCPREDS, at: http:

//ailab.cs.iastate.edu/bcpreds/.

Introduction

B-cell epitopes are antigenic determinants that are recognized and bound by receptors

(membrane-bound antibodies) on the surface of B lymphocytes (Pier et al., 2004). The iden-

http://ailab.cs.iastate.edu/bcpreds/
http://ailab.cs.iastate.edu/bcpreds/
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tification and characterization of B-cell epitopes play an important role in vaccine design, im-

munodiagnostic tests, and antibody production. As identifying B-cell epitopes experimentally

is time-consuming and expensive, computational methods for reliably and efficiently predicting

B-cell epitopes are highly desirable (Greenbaum et al., 2007).

There are two types of B-cell epitopes: (i) linear (continuous) epitopes which are short

peptides corresponding to a contiguous amino acid sequence fragment of a protein (Barlow

et al., 1986; Langeveld et al., 2001); (ii) conformational (discontinuous) epitopes which are

composed of amino acids that are not contiguous in primary sequence but are brought into close

proximity within the folded protein structure. Although it is believed that a large majority

of B-cell epitopes are discontinuous (Walter, 1986), experimental epitope identification has

focused primarily on linear B-cell epitopes (Flower, 2007). Even in the case of linear B-

cell epitopes, however, antibody-antigen interactions are often conformation-dependent. The

conformation-dependent aspect of antibody binding complicates the problem of B-cell epitope

prediction, making it less tractable than T-cell epitope prediction. Hence, the development of

reliable computational methods for predicting linear B-cell epitopes is an important challenge

in bioinformatics and computational biology (Greenbaum et al., 2007).

Previous studies have reported correlations between certain physicochemical properties of

amino acids and the locations of linear B-cell epitopes within protein sequences (Pellequer

et al., 1991; Parker and Guo, 1986; Karplus and Schulz, 1985; Emini et al., 1985; Pellequer

et al., 1993). Based on that observation, several amino acid propensity scale based methods

have been proposed. For example, methods in (Parker and Guo, 1986; Karplus and Schulz,

1985; Emini et al., 1985; Pellequer et al., 1993) utilized hydrophilicity, flexibility, turns, and sol-

vent accessibility propensity scales, respectively. PREDITOP (Pellequer and Westhof, 1993),

PEOPLE (Alix, 1999), BEPITOPE (Odorico and Pellequer, 2003), and BcePred (Saha and

Raghava, 2004) utilized groups of physicochemical properties instead of a single property to

improve the accuracy of the predicted linear B-cell epitopes. Unfortunately, Blythe and Flower

(Blythe and Flower, 2005) showed that propensity based methods can not be used reliably for

predicting B-cell epitopes. Using a dataset of 50 proteins and an exhaustive assessment of 484
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amino acid propensity scales, Blythe and Flower (Blythe and Flower, 2005) showed that the

best combinations of amino acid propensities performed only marginally better than random.

They concluded that the reported performance of such methods in the literature is likely to

have been overly optimistic, in part due to the small size of the data sets on which the methods

had been evaluated.

Recently, the increasing availability of experimentally identified linear B-cell epitopes in

addition to Blythe and Flower results (Blythe and Flower, 2005) motivated several researchers

to explore the application of machine learning approaches for developing linear B-cell epitope

prediction methods. BepiPred (Larsen et al., 2006) combines two amino acid propensity scales

and a Hidden Markov Model (HMM) trained on linear epitopes to yield a slight improvement in

prediction accuracy relative to techniques that rely on analysis of amino acid physicochemical

properties. ABCPred (Saha and Raghava, 2006b) uses artificial neural networks for predicting

linear B-cell epitopes. Both feed-forward and recurrent neural networks were evaluated on a

non-redundant data set of 700 B-cell epitopes and 700 non-epitope peptides, using 5-fold cross

validation tests. Input sequence windows ranging from 10 to 20 amino acids, were tested and

the best performance, 66% accuracy, was obtained using a recurrent neural network trained

on peptides 16 amino acids in length. In the method of Söllner and Mayer (Söllner and Mayer,

2006), each epitope is represented using a set of 1487 features extracted from a variety of

propensity scales, neighborhood matrices, and respective probability and likelihood values. Of

two machine learning methods tested, decision trees and a nearest-neighbor method combined

with feature selection, the latter was reported to attain an accuracy of 72% on a data set

of 1211 B-cell epitopes and 1211 non-epitopes, using a 5-fold cross validation test (Söllner

and Mayer, 2006). Chen et al. (Chen et al., 2007) observed that certain amino acid pairs

(AAPs) tend to occur more frequently in B-cell epitopes than in non-epitope peptides. Using

an AAP propensity scale based on this observation, in combination with a support vector

machine (SVM) classifier, they reported prediction accuracy of 71% on a data set of 872 B-

cell epitopes and 872 non-B-cell epitopes, estimated using 5-fold cross validation. In addition,

(Chen et al., 2007) demonstrated an improvement in the prediction accuracy, 72.5%, when
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the APP propensity scale is combined with turns accessibility, antigenicity, hydrophilicity, and

flexibility propensity scales.

Existing linear B-cell epitope prediction tools fall into two broad categories. Tools in the

first category, residue-based predictors, take as input a protein sequence and assign binary

labels to each individual residue in the input sequence. Each group of neighboring residues

with predicted positive labels define a variable length predicted linear B-cell epitope. Residue-

based prediction methods scan the input sequence using a sliding window and assign a score to

the amino acid at the center of the window based on the mean score of a certain propensity scale

(e.g., flexibility or hydrophilicity). The target residue is predicted positive if its score is greater

than a predetermined threshold. Unfortunately, it has been shown that the performance of

these methods is marginally better than random (Blythe and Flower, 2005). PepiPred (Larsen

et al., 2006) used the information extracted using the sliding window to train a HMM and

combined it with two propensity scale based methods. BcePred (Saha and Raghava, 2004)

combined several propensity scales and showed that the performance of the combined scales is

better than the performance of any single scale.

The second category of linear B-cell prediction tools consist of the epitope-based predictors.

An example of such predictors is the ABCPred server (Saha and Raghava, 2006b). For this

server, the input is a protein sequence and an epitope length (should be in {20, 18, .., 10}).

The server then applies a sliding window of the user specified length and passes the extracted

peptides to a neural network classifier trained using epitope dataset in which all the epitope

sequences have been set to the specified epitope length via trimming and extending longer and

shorter epitopes, respectively. A limitation of this approach is that the user is forced to select

one of the available six possible epitope lengths and can not specify a different epitope length.

Because linear B-cell epitopes can vary in length over a broad range (see Figure 1), it is nat-

ural to train classifiers using the experimentally reported epitope sequences without trimming

or extending them. Such an approach will allow us to provide a linear B-cell epitope prediction

tool that allows the user to experiment with virtually any arbitrary epitope length. In this

work, we explore two machine learning approaches for predicting flexible length linear B-cell



47

Figure 1 Length distribution of unique linear B-cell epitopes in Bcipep
database.

epitopes. The first approach utilizes several sequence kernels for determining a similarity score

between any arbitrary pair of variable length sequences. The second approach utilizes many

different methods of mapping a variable length sequence into a fixed length feature vector.

Based on our empirical comparisons, we propose FBCPred, a novel method for predicting flex-

ible length linear B-cell epitopes using the subsequence kernel. Our results demonstrate that

FBCPred significantly outperforms all other classifiers evaluated in this study. An implemen-

tation of FBCPred and the datasets used in this study are publicly available through our linear

B-cell epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

Materials and methods

Data

We retrieved 1223 unique linear B-cell epitopes of lengths more than 3 amino acids from

Bcipep database (Saha et al., 2005). To avoid over-optimistic performance of classifiers eval-

uated on the set of unique epitopes, we applied a homology reduction procedure proposed

by Raghava (Raghava, 2004) for reducing sequence similarity among flexible length major

histocompatibility complex class II (MHC-II) peptides. Briefly, given two peptides p1 and

http://ailab.cs.iastate.edu/bcpreds/
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p2 of lengths l1 and l2 such that l1 ≤ l2, we compare p1 with each l1-length subpeptide

in p2. If the percent identity (PID) between p1 and any subpeptide in p2 is greater than

80%, then the two peptides are deemed to be similar. For example, to compute the PID

between (ACDEFGHIKLMNPQRST) and (DEFGGIKLMN), we compare (DEFGGIKLMN)

with (ACDEFGHIKL), (CDEFGHIKLM), . . ., (IKLMNPQRST). The PID between (DEFG-

GIKLMN) and (DEFGHIKLMN) is 90% since nine out of 10 residues are identical.

Applying the above homology reduction procedure to the set of 1223 unique variable length

linear B-cell epitopes yields a homology-reduced set of 934 epitopes. Two datasets of flexible

length linear B-cell epitopes have been constructed. An original dataset constructed from the

set of 1223 unique epitopes as the positive examples and 1223 non-epitopes randomly extracted

from SwissProt (Bairoch and Apweiler, 2000) and a homology-reduced dataset constructed from

homology-reduced set of 934 epitopes as positive examples and an equal number of negative

examples extracted randomly form SwissProt sequences. In both datasets two selection criteria

have been applied to the randomly extracted non-epitopes: (i) the length distribution in the

negative data is identical to the length distribution in the positive data; (ii) none of the non-

epitopes appears in the set of epitopes.

Support vector machines and kernel methods

Support vector machines (SVMs) (Vapnik, 2000) are a class of supervised machine learning

methods used for classification and regression. Given a set of labeled training data (xi, yi),

where xi ∈ Rd and yi ∈ {+1,−1}, training an SVM classifier involves finding a hyperplane

that maximizes the geometric margin between positive and negative training data samples.

The hyperplane is described as f(x) = 〈w, x〉 + b, where w is a normal vector and b is a bias

term. A test instance, x, is assigned a positive label if f(x) > 0, and a negative label otherwise.

When the training data are not linearly separable, a kernel function is used to map nonlinearly

separable data from the input space into a feature space. Given any two data samples xi and xj

in an input spaceX ∈ Rd, the kernel functionK returnsK(xi, xj) = 〈Φ(xi),Φ(xj)〉 where Φ is a

nonlinear map from the input space X to the corresponding feature space. The kernel function
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K has the property that K(xi, xj) can be computed without explicitly mapping xi and xj into

the feature space, but instead, using their dot product 〈xi, xj〉 in the input space. Therefore,

the kernel trick allows us to train a linear classifier, e.g., SVM, in a high-dimensional feature

space where the data are assumed to be linearly separable without explicitly mapping each

training example from the input space into the feature space. This approach relies implicitly

on the selection of a feature space in which the training data are likely to be linearly separable

(or nearly so) and explicitly on the selection of the kernel function to achieve such separability.

Unfortunately, there is no single kernel that is guaranteed to perform well on every data set.

Consequently, the SVM approach requires some care in selecting a suitable kernel and tuning

the kernel parameters (if any).

Sequence kernel based methods

String kernels (Leslie et al., 2002, 2004; Lodhi et al., 2002; Saigo et al., 2004; Haussler, 1999)

are a class of kernel methods that have been successfully used in many sequence classification

tasks (Leslie et al., 2002, 2004; Saigo et al., 2004; Zaki et al., 2005; Rangwala et al., 2006;

Wu et al., 2006). In these applications, a protein sequence is viewed as a string defined on

a finite alphabet of 20 amino acids. In this work, we explore four string kernels: spectrum

(Leslie et al., 2002), mismatch (Leslie et al., 2004), local alignment (Saigo et al., 2004), and

subsequence (Lodhi et al., 2002), in predicting linear B-cell epitopes. A brief description of

the four kernels follows.

Spectrum kernel

Let A denote a finite alphabet, e.g., the standard 20 amino acids. x and y denote two

strings defined on the alphabet A. For k ≥ 1, the k-spectrum is defined as (Leslie et al., 2002):

Φk = (φα(x))α∈Ak (1)

where φα is the number of occurrences of the k-length substring α in the sequence x. The

k-spectrum kernel of the two sequences x and y is obtained by taking the dot product of the
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corresponding k spectra:

Kspct
k (x, y) = 〈Φk(x),Φk(y)〉 (2)

The k-spectrum kernel captures a simple notion of string similarity: two strings are deemed

similar (i.e., have a high k-spectrum kernel value) if they share many of the same k-length

substrings.

Mismatch kernel

The mismatch kernel (Leslie et al., 2004) is a variant of the spectrum kernel in which

inexact matching is allowed. Specifically, the (k,m)-mismatch kernel allows up to m ≤ k

mismatches to occur when comparing two k-length substrings. Let α be a k-length substring,

the (k,m)-mismatch feature map is defined on α as:

Φ(k,m)(α) = (φβ(α))β∈Ak (3)

where φβ(α) = 1 if β ∈ N(k,m)(α), where β is the set of k-mer substrings that differs from α

by at most m mismatches. Then, the feature map of an input sequence x is the sum of the

feature vectors for k-mer substrings in x:

Φ(k,m)(x) =
∑

k−mersα in x
Φ(k,m)(α) (4)

The (k,m)-mismatch kernel is defined as the dot product of the corresponding feature maps

in the feature space:

Kmsmtch
(k,m) (x, y) = 〈Φ(k,m)(x),Φ(k,m)(y)〉 (5)

It should be noted that the (k, 0)-mismatch kernel results in a feature space that is identical

to that of the k-spectrum kernel. An efficient data structure for computing the spectrum and

mismatch kernels in O(|x|+ |y|) and O(km+1|A|m(|x|+ |y|)), respectively, is provided in (Leslie
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et al., 2004).

Local alignment kernel

Local alignment (LA) kernel (Saigo et al., 2004) is a string kernel adapted for biological

sequences. The LA kernel measures the similarity between two sequences by summing up scores

obtained from gapped local alignments of the sequences. This kernel has several parameters:

the gap opening and extension penalty parameters, d and e, the amino acid mutation matrix

s, and the factor β, which controls the influence of suboptimal alignments on the kernel value.

Detailed formulation of the LA kernel and a dynamic programming implementation of the

kernel with running time complexity in O(|x||y|) are provided in (Saigo et al., 2004).

Subsequence kernel

The subsequence kernel (SSK) (Lodhi et al., 2002) generalizes the k-spectrum kernel by

considering a feature space generated by the set of all (contiguous and non-contiguous) k-

mer subsequences. For example, if we consider the two strings “act′′ and “acctct′′, the value

returned by the spectrum kernel with k = 3 is 0. On the other hand, the (3, 1)-mismatch kernel

will return 3 because the 3-mer substrings “acc′′, “cct′′, and “tct′′ have at most one mismatch

when compared with “act′′. The subsequence kernel considers the set (“ac− t′′, “a− ct′′, “ac−

−− t′′, “a− c−−t′′, “a−−− ct′′) of non-contiguous substrings and returns a similarity score

that is weighted by the length of each non-contiguous substring. Specifically, it uses a decay

factor, λ ≤ 1, to penalize non-contiguous substring matches. Therefore, the subsequence kernel

with k = 3 will return 2λ4 + 3λ6 when applied to “act′′ and “acctct′′ strings. More precisely,

the feature map Φ(k,λ) of a string x is given by:

Φ(k,λ)(x) = (
∑

i:u=x[i]

λl(i))u∈Ak (6)

where u = x[i] denotes a substring in x where 1 ≤ i1 < . . . < i|u| ≤ |x| such that uj = sij , for

j = 1, . . . , |u| and l(i) = i|u| − i1 + 1 is the length of the subsequence in x. The subsequence
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kernel for two strings x and y is determined as the dot product of the corresponding feature

maps:

K(x, y)sub(k,λ) = 〈Φ(k,λ)(x),Φ(k,λ)(y)〉

=
∑
u∈Ak

∑
i:u=x[i]

λl(i)
∑

j:u=y[j]

λl(j)

=
∑
u∈Ak

∑
i:u=x[i]

∑
j:u=y[j]

λl(j)+l(j) (7)

This kernel can be computed using a recursive algorithm based on dynamic programming

in O(k|x||y|) time and space. The running time and memory requirements can be further

reduced using techniques described in (Seewald and Kleedorfer, 2005).

Sequence-to-features based methods

This approach has been previously used for protein function and structure classification

tasks (Hua and Sun, 2001; Dobson and Doig, 2003; Eisenhaber et al., 1996; Luo et al., 2002)

and the classification of flexible length MHC-II peptides. The main idea is to map each

variable length amino acid sequence into a feature vector of fixed length. Once the variable

length sequences are mapped to fixed length feature vectors, we can apply any of the standard

machine learning algorithms to this problem. Here, we considered SVM classifiers trained on

the mapped data using the widely used RBF kernel.

We explored four different methods for mapping a variable length amino acid sequence

into a fixed length feature vector: (i) amino acid composition; (ii) dipeptide composition; (iii)

amino acid pairs propensity scale; (iv) composition-transition-distribution. A brief summary

of each method is given below.

Amino acid and dipeptide composition

Amino acid composition (AAC) represents a variable length amino acid sequence using a

feature vector of 20 dimensions. Let x be a sequence of |x| amino acids. Let A denote the set
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of the standard 20 amino acids. The amino acid composition feature mapping is defined as:

ΦAAC(x) = (φβ(x))β∈A (8)

where φβ(x) = number of occurrences of amino acid β in x
|x| .

A limitation of the amino acid composition feature representation of amino acid sequences

is that we lose the sequence order information. Dipeptide composition (DC) encapsulates infor-

mation about the fraction of amino acids as well as their local order. In dipeptide composition

each variable length amino acid sequence is represented by a feature vector of 400 dimensions

defined as:

ΦDC(x) = (φα(x))α∈A2 (9)

where φα(x) = number of occurrences of dipeptide α in x
total number of all possible dipeptides in x .

Amino acid pairs propensity scale

Amino acid pairs (AAPs) are obtained by decomposing a protein/peptide sequence into

its 2-mer subsequences. (Chen et al., 2007) observed that some specific AAPs tend to occur

more frequently in B-cell epitopes than in non-epitope peptides. Based on this observation,

they developed an AAP propensity scale defined by:

θ(α) = log(
f+
α

f−α
) (10)

where f+
α and f−α are the occurrence frequencies of AAP α in the epitope and non-epitope

peptide sequences, respectively. These frequencies have been derived from Bcipep (Saha et al.,

2005) and Swissprot (Bairoch and Apweiler, 2000) databases, respectively. To avoid the dom-

inance of an individual AAP propensity value, the scale in Eq. (10) has been normalized to a

[−1,+1] interval through the following conversion:

θ(α) = 2(
θ(α)−min
max−min

)− 1 (11)
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where max and min are the maximum and minimum values of the propensity scale before the

normalization.

The AAP feature mapping, ΦAAP , maps each amino acid sequence, x, into a 400-dimentional

feature space defined as:

ΦAAP (x) = (φα(x) · θ(α))α∈A2 (12)

where φα(x) is the number of occurrences of the 2-mer α in the peptide x.

Composition-Transition-Distribution

The basic idea behind the Composition-Transition-Distribution (CTD) method (Cai et al.,

2003; Cui et al., 2006a) is to map each variable length peptide into a fixed length feature vector

such that standard machine learning algorithms are applicable. From each peptide sequence,

21 features are extracted as follows:

• First, each peptide sequence p is mapped into a string sp defined over an alphabet of

three symbols, {1, 2, 3}. The mapping is performed by grouping amino acids into three

groups using a physicochemical property of amino acids (see Table 1). For example the

peptide (AIRHIPRRIR) is mapped into (2312321131) using the hydrophobicity division

of amino acids into three groups (see Table 1).

• Second, for each peptide string sp, three descriptors are derived as follows:

– Composition (C): three features representing the percent frequency of the symbols,

{1, 2, 3}, in the mapped peptide sequence.

– Transition (T): three features representing the percent frequency of i followed by j

or j followed by i, for i, j ∈ {1, 2, 3}.

– Distribution (D): five features per symbol representing the fractions of the entire

sequence where the first, 25, 50, 75, and 100% of the candidate symbol are contained

in sp. This yields an additional 15 features for each peptide.
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Table 1 shows division of the 20 amino acids, proposed by Chinnasamy et al. (Chinnasamy

et al., 2004) , into three groups based on hydrophobicity, polarizability, polarity, and Van

der Waal’s volume properties. Using these four properties, we derived 84 CTD features from

each peptide sequence. In our experiments, we trained SVM classifiers using RBF kernel and

peptide sequences represented using their amino acid sequence composition (20 features) and

CTD descriptors (84 features).

Table 1 Categorization of amino acids into three groups for a number of
physicochemical properties.

Proporty Group 1 Group 2 Group 3
Hydrophobicity RKEDQN GASTPHY CVLIMFW
Polarizability GASCTPD NVEQIL MHKFRYW
Polarity LIFWCMVY PATGS HQRKNED
Van der Waala volume GASDT CPNVEQIL KMHFRYW

Performance evaluation

We report the performance of each classifier using the average of 10 runs of 5-fold cross

validation tests. Each classifier performance is assessed by both threshold-dependent and

threshold-independent metrics. For threshold-dependent metrics, we used accuracy (ACC),

sensitivity (Sn), specificity (Sp), and correlation coefficient (CC). The CC measure has a

value in the range from -1 to +1 and the closer the value to +1, the better the predictor.

The Sn and Sp summarize the accuracies of the positive and negative predictions respectively.

ACC, Sn, Sp, and CC are defined in Eq. (13-15) where TP, FP, TN, FN are the numbers of

true positives, false positives, true negatives, and false negatives respectively.

For threshold-independent metrics, we report the Receiver Operating Characteristic (ROC)

ACC =
TP + TN

TP + FP + TN + FN
(13)

Sn =
TP

TP + FN
and Sp =

TN

TN + FP
(14)

CC =
(TP × TN)− (FP × FN)√

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
(15)
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curve. The ROC curve is obtained by plotting the true positive rate as a function of the false

positive rate or, equivalently, sensitivity versus (1-specificity) as the discrimination threshold

of the binary classifier is varied. Each point on the ROC curve describes the classifier at a

certain threshold value and hence a particular choice of tradeoff between true positive rate and

false negative rate. We also report the area under ROC curve (AUC) as a useful summary

statistic for comparing two ROC curves. AUC is defined as the probability that a randomly

chosen positive example will be ranked higher than a randomly chosen negative example. An

ideal classifier will have an AUC = 1, while a classifier performs no better than random will

have an AUC = 0.5, any classifier performing better than random will have an AUC value that

lies between these two extremes.

Implementation and SVM parameter optimization

We used Weka machine learning workbench (Witten and Frank, 2005) for implementing the

spectrum, mismatch, and LA kernels (RBF and SSK kernels are already implemented in Weka).

We evaluated the k-spectrum kernel, Kspct
k , for k = 1, 2, and 3. The (k,m)-mismatch kernel

was evaluated at (k,m) equals (3, 1)and(4, 1). The subsequence kernel, Ksub
(k,λ), was evaluated

at k = 2, 3, and 4 and the default value for λ, 0.5. The LA kernel was evaluated using the

BLOSUM62 substitution matrix, gap opening and extension parameters equal to 10 and 1,

respectively, and β = 0.5. For the SVM classifier, we used the Weka implementation of the

SMO (Platt, 1998) algorithm. For the string kernels, the default value of the C parameter, C

= 1, was used for the SMO classifier. For methods that uses the RBF kernel, we found that

tuning the SMO cost parameter C and the RBF kernel parameter γ is necessary to obtain

satisfactory performance. We tuned these parameters using a 2-dimensional grid search over

the range C = 2−5, 2−3, . . . , 23, γ = 2−15, 2−13, . . . , 23.

Results and discussion

Table 2 compares the performance of different SVM based classifiers on the original dataset

of unique flexible length linear B-cell epitopes. The SVM classifier trained using SSK with
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k = 4 and λ = 0.5, ksub(4,0.5), significantly (using statistical paired t-test (Nadeau and Bengio,

2003) with p-value = 0.05) outperforms all other classifiers in terms of the AUC. The two

classifiers based on the mismatch kernel have the worst AUC. The classifier trained using kspct3

is competitive to those trained using the LA kernel and ksub(2,0.5). The last four classifiers belong

to the sequence-to-feature approach. Each of these classifiers has been trained using an SVM

classifier and the RBF kernel but on different data representation. The results suggest that

representation of the peptides using their dipeptide composition performs better than other

feature representations on the original dataset. Figure 2 shows the ROC curves for different

methods on original dataset of unique flexible length linear B-cell epitopes. The ROC curve of

Ksub
(4,0.5) based classifier almost dominates all other ROC curves (i.e., for any choice of specificity

value, the Ksub
(4,0.5) based classifier almost has the best sensitivity) .

Table 3 reports the performance of the different SVM based classifiers on the homology-

reduced dataset of flexible length linear B-cell epitopes. We note that the performance of

each classifier is considerably worse than its performance on the original dataset of unique

epitopes. This discrepancy can be explained by the existence of epitopes with significant

pairwise sequence similarity in the original dataset. Interestingly, the SVM classifier based on

the ksub(4,0.5) kernel still significantly outperforms all other classifiers at 0.05 level of significance.

Figure 3 shows the ROC curves for different methods on homology-reduced dataset of flexible

length linear B-cell epitopes. Again, the ROC curve of Ksub
(4,0.5) based classifier almost dominates

all other ROC curves.

Comparing results on Table 2 and Table 3 reveals two important issues that to the best of

our knowledge have not been addressed before in the literature on B-cell epitope prediction.

First, our results demonstrate that performance estimates reported on the basis of the origi-

nal dataset of unique linear B-cell epitopes is overly optimistic compared to the performance

estimates obtained using the homology-reduced dataset. Hence, we suspect that the actual per-

formance of linear B-cell epitope prediction methods on homology-reduced datasets is somewhat

lower than the reported performance on the original dataset of unique peptides. Second, our

results suggest that conclusions regarding how different prediction methods compare to each
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other drawn on the basis of datasets of unique epitopes may be misleading. For example, from

the reported results in Table 2, one may conclude that kspct3 outperforms kspct1 and kspct2 while

results on the homology-reduced dataset (see Table 3) demonstrate that the three classifiers are

competitive with each other. Another example of misleading conclusions drawn from results

in Table 2 is that dipeptide composition features is a better representation than amino acid

composition representation of the data. This conclusion is contradicted by results in Table 3

which show that the classifier constructed using the amino acid composition representation of

the data slightly outperforms the classifier constructed using the dipeptide composition of the

same data.

The results in Table 2 and Table 3 show that the classifier that used the amino acid

composition features outperforms the classifier that used CTD features. This is interesting

because the set of amino acid composition features is a subset of the CTD features. Recall

that CTD is composed of 20 amino acid composition features plus 84 physicochemical features,

we conclude that the added physicochemical features did not yield additional information that

was relevant for the classification task. In addition, we observed that the classifier that used the

dipeptide composition outperforms the classifier that used the AAP features. This is interesting

because AAP features as defined in Eq. (12) can be viewed as dipeptide composition features

weighted by the amino acid propensity of each dipeptide.

Web server

An implementation of FBCPred is available as a part of our B-cell epitope prediction server

(BCPREDS) (EL-Manzalawy et al., 2008d) which is freely accessible at http://ailab.cs.

iastate.edu/bcpreds/. Because it is often valuable to compare predictions of multiple meth-

ods, and consensus predictions are more reliable than individual predictions, the BCPREDS

server aims at providing predictions using several B-cell epitope prediction methods. The

current implementation of BCPREDS allows the user to select among three prediction meth-

ods: (i) Our implementation of AAP method (Chen et al., 2007); (ii) BCPred (EL-Manzalawy

et al., 2008d), a method for predicting linear B-cell epitope using the subsequence kernel; (iii)

http://ailab.cs.iastate.edu/bcpreds/
http://ailab.cs.iastate.edu/bcpreds/
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Figure 2 ROC curves for different methods on original dataset of unique
flexible length linear B-cell epitopes. The ROC curve of Ksub

(4,0.5)

based classifier almost dominates all other ROC curves.

Figure 3 ROC curves for different methods on homology-reduced dataset of
flexible length linear B-cell epitopes. The ROC curve of Ksub

(4,0.5)

based classifier almost dominates all other ROC curves.
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Table 2 Performance of different SVM based classifiers on original dataset
of unique flexible length linear B-cell epitopes. Results are the
average of 10 runs of 5-fold cross validation.

Method ACC Sn Sp CC AUC
Kspct

1 62.86 61.76 63.95 0.257 0.680
Kspct

2 63.29 63.84 62.74 0.266 0.683
Kspct

3 65.36 79.28 51.44 0.320 0.720
Kmsmtch

(3,1) 47.88 48.42 47.33 -0.042 0.480
Kmsmtch

(4,1) 58.93 57.79 60.07 0.179 0.618
LA 65.41 63.36 67.46 0.308 0.716
Ksub

(2,0.5) 65.58 65.08 66.09 0.312 0.710
Ksub

(3,0.5) 70.56 71.05 70.07 0.411 0.778
Ksub

(4,0.5) 73.37 74.08 72.67 0.468 0.812
AAC 65.61 68.41 62.81 0.313 0.722
DC 70.55 68.28 72.83 0.411 0.750
AAP 65.65 66.20 65.11 0.313 0.717
CTD 63.21 63.15 63.28 0.264 0.686

FBCPred, the method introduced in this study for predicting flexible length B-cell epitopes.

The major difference between FBCPred and the other two methods is that FBCPred can pre-

dict linear B-cell epitopes of virtually any arbitrary length while for the other two methods

the length has to be one of possible six values, {12, 14, . . . , 22}.

Another goal of BCPREDS server is to serve as a repository of benchmark B-cell epitope

datasets. The datasets used for training and evaluating BCPred and the two datasets used in

this study can be freely downloaded from the web server.

Summary and discussion

We explored two machine learning approaches for predicting flexible length linear B-cell

epitopes. The first approach utilizes sequence kernels for determining a similarity score be-

tween any arbitrary pair of variable length sequences. The second approach utilizes several

methods of mapping a variable length sequence into a fixed length feature vector. Our results

demonstrated a superior performance of the subsequence kernel based SVM classifier compared

to other SVM classifiers examined in our study. Therefore, we proposed FBCPred, a novel
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Table 3 Performance of different SVM based classifiers on homology-re-
duced dataset of flexible length linear B-cell epitopes. Results are
the average of 10 runs of 5-fold cross validation.

Method ACC Sn Sp CC AUC
Kspct

1 58.22 56.70 59.74 0.165 0.621
Kspct

2 60.26 61.04 59.49 0.205 0.642
Kspct

3 60.86 62.45 59.27 0.217 0.635
Kmsmtch

(3,1) 46.42 46.34 46.50 -0.072 0.451
Kmsmtch

(4,1) 54.35 54.75 53.95 0.087 0.561
LA 61.38 60.41 62.35 0.228 0.658
Ksub

(2,0.5) 60.09 60.52 59.66 0.202 0.647
Ksub

(3,0.5) 63.85 65.05 62.65 0.277 0.701
Ksub

(4,0.5) 65.49 68.36 62.61 0.310 0.738
AAC 63.31 70.90 55.73 0.269 0.683
DC 63.78 63.05 64.51 0.276 0.667
AAP 61.42 62.85 60.00 0.229 0.658
CTD 60.32 59.66 60.98 0.206 0.639

method for predicting flexible length linear B-cell epitopes using the subsequence kernel. An

implementation of FBCPred and the datasets used in this study are publicly available through

our linear B-cell prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

Previous methods for predicting linear B-cell epitopes (e.g., (Saha and Raghava, 2004;

Larsen et al., 2006; Söllner and Mayer, 2006; Saha and Raghava, 2006b; Chen et al., 2007))

have been evaluated on datasets of unique epitopes without applying any homology reduction

procedure as a pre-processing step on the data. We showed that performance estimates re-

ported on the basis of such datasets is considerably over-optimistic compared to performance

estimates obtained using the homology-reduced datasets. Moreover, we showed that using such

non homology-reduced datasets for comparing different prediction methods may lead to false

conclusions regarding how these methods compare to each other.

Related work

Residue-based prediction methods (Pellequer et al., 1991; Parker and Guo, 1986; Karplus

and Schulz, 1985; Emini et al., 1985; Pellequer et al., 1993; Saha and Raghava, 2004; Larsen

http://ailab.cs.iastate.edu/bcpreds/
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et al., 2006) assign labels to each residue in the query sequence and therefore are capable of

predicting linear B-cell epitopes of variable length. However, most of these methods have been

shown to be of low to moderate performance (Blythe and Flower, 2005).

AAP method (Chen et al., 2007) maps each peptide sequence into a set of fixed length

numeric features and therefore it can be trained using datasets of flexible length sequences.

However, the performance of this method had been reported using a dataset of 20-mer peptides.

Söllner and Mayer (Söllner and Mayer, 2006) introduced a method for mapping flexible

length epitope sequences into feature vectors of 1478 attributes. This method has been eval-

uated on a dataset of flexible length linear B-cell epitopes. However, no homology reduction

procedure was applied to remove highly similar sequences from the data. In addition, the

implementation of this method is not publicly available.

Recently, two methods (Salomon and Flower, 2006; Cui et al., 2006a) have been successfully

applied to the problem of predicting flexible length MHC-II binding peptides. The first method

(Salomon and Flower, 2006) utilized the LA kernel (Saigo et al., 2004) for developing efficient

SVM based classifiers. The second method (Cui et al., 2006a) mapped each flexible length

peptide into the set of CTD features employed in our study in addition to some extra features

extracted using two secondary structure and solvent accessibility prediction classifiers. In our

study we could not use these extra features due to the unavailability of these two programs.
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CHAPTER 4. QUALITATIVE VERSUS QUANTITATIVE

APPROACHES FOR PREDICTING MHC-I PEPTIDES

A paper to be submitted to the Journal of Immunome Research

Yasser EL-Manzalawy and Vasant Honavar

Abstract

Several methods for predicting peptide binding to major histocompatibility complex class

I (MHC-I) molecules have been proposed in the literature. These methods can be categorized

into two major types: i) qualitative methods, which predict whether a test peptide is an MHC-I

binder or non-binder; ii) quantitative methods, which predict the value of the binding affinity

of a test peptide. For each type, we compare a representative set of scoring matrix based and

direct machine learning based prediction methods over a similarity-reduced data set covering

22 MHC-I human leukocyte antigen (HLA) alleles.

The 13 methods considered in this study include three new matrix based methods for

qualitative MHC-I binding peptide prediction: i) modified position specific scoring matrix

(MPSSM), a method for computing a PSSM from both binding and non-binding training

peptides; ii) area under receiver operating characteristic curve (AUC) optimized matrix method

(AOMM), a method for finding a scoring matrix that maximizes the AUC over the training

data; iii) SMMBin, a method for qualitative via quantitative (QVQ) prediction using the

Stabilized Matrix Method (SMM).

The results of our experiments show that quantitative MHC-I predictors based on direct

machine learning approaches outperform qualitative MHC-I predictors based on both machine
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learning and scoring matrix methods. However, the observed differences between the best-

performing quantitative MHC-I predictor and AOMM, SMMBin and support vector machine

(SVM) methods are not statistically significant. We conclude that advanced scoring matrix

based machine learning methods (e.g., AOMM, SMM) are highly competitive with a broad

class of machine learning methods for predicting MHC-I peptides. Our similarity-reduced data

set and an implementation of an online web server, MHCIPREDS, supporting predictions using

the best performing qualitative and quantitative MHC-I prediction methods considered in this

comparison study are freely available at http://ailab.cs.iastate.edu/mhcipreds.

Introduction

Major histocompatibility complex (MHC) molecules play a crucial role in the immune

system dynamics by binding short peptides and presenting them for recognition by T-cell re-

ceptors. Peptides presented by MHC class I (MHC-I) molecules are derived from proteasomal

degradation of intracellular proteins and their lengths range from 8 to 11 amino acids. Pep-

tides presented by MHC class II (MHC-II) molecules are derived from endogenous proteins

or intracellular pathogens and the binding peptides range from 11 to 30 residues in length.

The recognition of Peptide-MHC complexes aids killer T-cell in identifying and destroying ab-

normal or foreign cells. Peptides that can complete this pathway are called T-cell epitopes.

The identification of peptides binding to MHC molecules is a major step in identifying T-cell

epitopes. However, due to the fact that MHC genes are highly polymorphic and there exists a

substantial number of possible antigens, computational methods for identifying MHC binding

peptides are urgently needed to reduce the time and the cost of the laboratory work required

for mapping T-cell epitopes.

A variety of methods for predicting MHC-I binding peptides from amino acid sequence

information have been proposed. Examples of these MHC-I peptide prediction methods include

methods based on: scoring matrices (Parker et al., 1994; Rammensee et al., 1999; Reche et al.,

2004; Bui et al., 2005; Peters and Sette, 2005); hidden Markov models (HMM) (Mamitsuka,

1998); additive method (Hattotuwagama et al., 2004); artificial neural networks (ANN) (Buus

http://ailab.cs.iastate.edu/mhcipreds
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et al., 2003); support vector machine (SVM) (Donnes and Kohlbacher, 2006); support vector

regression (SVR) (Liu et al., 2006). These methods can be categorized into two major types: i)

qualitative methods (e.g., (Reche et al., 2004; Donnes and Kohlbacher, 2006)), which predict

whether a test peptide is an MHC-I binder or non-binder; ii) quantitative methods (e.g.,

(Hattotuwagama et al., 2004; Liu et al., 2006; Peters and Sette, 2005)), which predicts the

value of the binding affinity of a test peptide.

Recently, two studies (Trost et al., 2007; Lin et al., 2008) compared several publicly available

MHC-I peptide prediction servers. Trost et al. (2007) used test data sets extracted from the

community resource MHC-I benchmark (Peters et al., 2006) to compare 16 MHC-I peptide pre-

diction servers and showed that a consensus method combining the predictions of the 16 servers

is performing better than any individual server. Lin et al. (2008) compared 30 MHC-I peptide

prediction servers using a test data set of two antigens and showed that the best prediction

servers are implemented using ANN and SMM based predictors. An important limitation of

such comparison studies is that they neglect the possibility that some servers (especially those

that are recently developed) may have a considerable amount of overlap between the train-

ing and test data. Furthermore, because different servers have been developed using different

training data sets, the results of such comparison studies should be interpreted as comparisons

between different servers and not as comparisons between the underlying prediction methods

utilized to develop these servers. For example, we may conclude that the prediction servers

developed using ANN or SVM algorithms are performing better than the servers developed

using matrix based methods. However, the conclusion that ANN and SVM based prediction

methods outperform matrix based methods can not be judged from such comparison studies.

Consequently, studies comparing different MHC-I peptide prediction servers may be important

only from the user perspective because these studies can guide the user in selecting a server to

use among several existing servers. Alternatively, studies for directly comparing an extensive

number of MHC-I peptide prediction methods are needed to improve our understanding of the

peptide-MHC binding problem and to facilitate more advances in that field of study.

Against this background, we compare a representative set of scoring matrix based and
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machine learning based prediction methods using a similarity-reduced data set covering 22

MHC-I human leukocyte antigen (HLA) alleles. The 13 methods considered in this study

include three new matrix based methods for qualitative MHC-I binding peptide prediction: i)

modified position specific scoring matrix (MPSSM), a method for computing a PSSM from

both binding and non-binding training peptides; ii) area under ROC curve (AUC) optimized

matrix method (AOMM), a method for finding a scoring matrix that maximizes the AUC over

the training data; iii) SMMBin, a method for qualitative via quantitative (QVQ) prediction

using the Stabilized Matrix Method (SMM).

The results of our experiments show that quantitative MHC-I predictors based on direct

machine learning approaches outperform qualitative MHC-I predictors based on both machine

learning and scoring matrix methods. However, the observed differences between the best-

performing quantitative MHC-I predictor and AOMM, SMMBin and SVM methods are not

statistically significant. We conclude that advanced scoring matrix based machine learning

methods (e.g., AOMM, SMM) are highly competitive with a broad class of machine learning

methods for predicting MHC-I peptides. Our similarity-reduced data set and an implementa-

tion of an online web server, MHCIPREDS, supporting predictions using the best performing

qualitative and quantitative MHC-I prediction methods considered in this comparison study

are freely available at http://ailab.cs.iastate.edu/mhcipreds.

Methods

Qualitative and quantitative data

We constructed a benchmarking data set from the Immune Epitope Database and Analysis

Resource (IEDB) (Peters et al., 2005), which is a rich resource of MHC binding data curated

from the literature or submitted by immunologists. For each reported peptide, IEDB provides

qualitative (i.e., Negative or Positive) and quantitative (i.e., IC50) measurements whenever

available. We used both qualitative and quantitative measurements for constructing 22 HLA

binary labeled data sets as follows:

http://ailab.cs.iastate.edu/mhcipreds
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• Peptides with no reported quantitative measurements are discarded.

• Peptides with “Positive” qualitative measurement and quantitative measurement less

than 500 nM are classified as binders.

• Peptides with “Positive” qualitative measurement and quantitative measurement greater

than or equal 500 nM are classified as non-binders.

• Peptides with “Negative” qualitative measurement and quantitative measurement greater

than or equal 500 nM are classified as non-binders.

• Peptides with “Negative” qualitative measurement and quantitative measurement less

than 500 nM are discarded.

The length of peptides in each allele data set ranges from 8 to 11 amino acids. Because

the prediction methods considered in this study require all peptides to be of the same length,

we grouped peptides in each allele data set by their lengths and created a length-specific allele

data set only if the number of both length-specific binders and length-specific non-binders is

more than 100 peptides.

To avoid overly optimistic performance of prediction methods, we applied a similarity

reduction filter to the set of binders and non-binders separately in each length-specific allele

data set. Two peptides were considered similar if they share a sequence similarity ≥ 80%.

Table 1 summarizes the resultant qualitative MHC-I data set.

Finally, a quantitative MHC-I data set was derived from the qualitative data set described

above by replacing the binary label of each peptide with the associated binding affinity (e.g.,

IC50) reported in IEDB. Then, the IC50 scores in nM units are log-transformed using the

relation 1− log50k(IC50nM).

Modified position specific scoring matrix (MPSSM)

Let a sequence motif S = {s1, s2, . . . , sn} denote a set of fixed length substrings such that

each substring, si ∈ Σk, is drawn from a finite alphabet Σ of the twenty amino acids.
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PSSM is a commonly used probabilistic representation of sequence motifs. Given a motif

S of k−length subsequences in Σk, an k × |Σ| matrix M is constructed using Eq. 1:

Mij = log
pij
qij

(1)

where pij is the probability of finding amino acid j at position i in S subsequences and qij

is the probability of finding amino acid j at position i in a background model. Assuming

that positions within the motif are independent of each other, the probability that an input

subsequence s belongs to the motif is defined as
∑k
i=1Mis[i], where s[i] is the ith amino acid in

s.

For small data sets, some amino acids may not appear at all in some positions of the

motif. In such cases, the estimated pij probability will be zero. To avoid zero probabilities,

pseudo-counts based on substitution probabilities have been proposed by Henikoff and Henikoff

(1996).

An advantage of the PSSM method is that only positive data is required to build a model

assuming a background probability distribution (e.g., unified background probability distribu-

tion of amino acids). For the classification task at hand, building a PSSM using only the set of

binding peptides has the limitation of not utilizing all the available information in the training

data in order to improve the predictive performance. Therefore, we propose a slight modifi-

cation of the PSSM method described above where both positive and negative training data

are utilized to build the PSSM matrix. First, the foreground probabilities pij are estimated

from the set of binders, and pseudo-counts based on BLOSUM62 are computed as described

in (Henikoff and Henikoff, 1996) to avoid zero probabilities. Second, the same procedure is

applied to the set of non-binders to estimate the background probabilities qij . Finally, Eq. 1

is used to compute the resultant PSSM matrix.

AUC optimized matrix method (AOMM)

The idea of maximizing the AUC has been previously explored in the context of several

machine learning algorithms including AUC optimized artificial neural networks (Yan et al.,
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2003), RankOpt (Herschtal and Raskutti, 2004), and AUC maximizing SVM (Brefeld and

Scheffer, 2005). Inspired by this machine learning work in developing AUC optimized classifiers,

we introduce a novel method for determining a position specific scoring matrix (PSSM) that

maximizes the AUC over the training data.

Let D denote a set of k-length training MHC-I peptides. D = D+ ∪ D− where D+ and

D− denote the set of binding and non-binding examples, respectively. Let X = X+ ∪ X−

denote a binary representation of peptides in D where each amino acid is represented by a

20-bit binary string of 19 zeros and one in the position corresponding to the alphabetical order

of that amino acid in the set of the standard 20 amino acids. For example, amino acids A and

C will be represented as 10000000000000000000 and 01000000000000000000, respectively. Let

M be an k× 20 scoring matrix model of D (i.e., M could be a position specific scoring matrix

(PSSM)). Given a test peptide p, the score (rank) assigned to p by matrix M can be written

as M(p) = w · x, where w is a weight vector derived by concatenating all rows in M and x

is the binary representation of p. This notation implies that finding a scoring matrix M that

maximizes the AUC over D is equivalent to finding a weight vector w that maximizes the AUC

over X.

The AUC of a scoring matrix M over a set of training k-length peptides AUC(M,D)

or equivalently the AUC of a weight vector w over X, AUC(w,X), where X is the binary

representation of D has been shown equal to the normalized Wilcoxon-Mann-Whitney statistic

(WMW) (Mann and Whitney, 1947) in the form:

AUC(M,D) = AUC(w,X) =
1

|X+||X−|

|X+|∑
i=1

|X−|∑
j=1

1w·x+
i >w·x

−
j

(2)

The indicator function 1α returns 1 iff α is true, otherwise it returns zero. Because the

indicator function is non-differentiable, Yan et al. (2003) suggested maximizing an approxi-

mation of WMW by replacing the indicator function with a sigmoid function g(x) = 1
1+e−βx

.

The current implementation of AOMM applies a gradient algorithm to maximize the objective

function proposed by Yan et al. (2003) plus a regularization term in order to avoid overfitting



70

the training data (see Eq. 3).

R(w,D) =
1

|X+||X−|

|X+|∑
i=1

|X−|∑
j=1

g(w · (x+
i − x

−
j ))− 1

2
λ

k∑
l=1

w2
l (3)

Qualitative via quantitative (QVQ) approach

Classification via regression (CVR) (Frank et al., 1998) is a machine learning approach

where a regression algorithm (regressor) is used for a binary classification task. Simply, the

{0, 1} binary labels are treated as real value labels and the regressor is trained in such settings.

For assigning a binary label to a test instance, the regressor returns a real value and a positive

label is returned if and only if the real value returned by the regressor is greater than a threshold

value (e.g., 0.5). Otherwise, a negative label is returned.

In this study, we apply the same idea to solve a qualitative MHC-I prediction task using a

quantitative matrix method. Our proposed method, SMMBin, employs the quantitative matrix

method, SMM, for qualitative MHC-I predictions. The suggested approach is not limited to

SMM but it is applicable to any quantitative matrix based or machine learning based algorithm.

Implementation and parameters settings

We implemented PSSM, MPSSM, and AOMM in Java using Weka machine learning work-

bench (Witten and Frank, 2005). All machine learning classification and regression methods

considered in this study are already available in Weka. We also used the Visual C++ imple-

mentation of the SMM method freely available at http://70.167.3.42/smm/.

All the methods have been evaluated using their default parameter settings provided by

the developers of these methods except for the SMO (Platt, 1998) implementation of the SVM

classifier where we turned on the parameter “M” in order to allow the SVM classifier to return

the estimated probabilities. For the AOMM, the default value for β is 2 and the default value

for λ is 0.01.

http://70.167.3.42/smm/
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Performance evaluation

Receiver Operating Characteristic (ROC) analysis is probably the most widely used tech-

nique for assessing the performance of machine learning algorithms and the majority of bioin-

formatics classification methods. The ROC curve is obtained by plotting the true positive

rate as a function of the false positive rate or, equivalently, sensitivity versus (1-specificity) as

the discrimination threshold of the binary classifier is varied. Each point on the ROC curve

describes the classifier at a certain threshold value and hence a particular choice of tradeoff

between true positive rate and false negative rate. The area under ROC curve (AUC) is a

useful summary statistic for comparing two ROC curves. AUC is defined as the probability

that a randomly chosen positive example will be ranked higher than a randomly chosen neg-

ative example. An ideal classifier will have an AUC = 1, while a classifier performs no better

than random will have an AUC = 0.5, any classifier performing better than random will have

an AUC value that lies between these two extremes. In our experiments, we use the AUC to

assess the performance of both qualitative and quantitative MHC-I predictors.

The ROC analysis measures how good the predictors in ranking test data. A good predictor

is expected to assign higher ranks to positive data than negative data. Such a predictor can

easily discriminate between positive and negative instances. However, for quantitative MHC-I

predictors, we need also to assess how good is the correlation between predicted and actual

binding affinities. For this purpose, we used Pearson correlation coefficient (PCC) (Urdan,

2005) to assess the performance of quantitative methods.

Statistical analysis of the results

When comparing multiple predictors on multiple data sets, it is useful to know (from a sta-

tistical perspective) whether the differences in the reported performance of different predictors

are significant or not. To address this question, we utilized multiple hypothesis comparisons

(Friedman, 1940; Fisher, 1973) for comparing a set of classifiers on multiple data sets. We

followed a three-step non-parametric approach suggested by Demšar (2006). Briefly, the pre-

dictors being compared are ranked on the basis of their observed performance (AUC or PCC)
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on each data set (see Table 2 as an example). Then, Friedman test is applied to determine

whether the measured average ranks are significantly different from the mean rank under the

null hypothesis. Finally, if the null hypothesis can be rejected at 0.05 significance level, the

Nemenyi test is used to determine whether significant differences exist between any given pair

of classifiers.

Results and discussion

We report the results of comparing a representative set of scoring matrix based and machine

learning based methods for qualitative and quantitative MHC-I predictions. For qualitative

MHC-I predictions, we compared PSSM (Henikoff and Henikoff, 1996), MPSSM, AOMM, and

SMMBin matrix based methods with Naive Bayes (NB) (Mitchell, 1997), Logistic Regression

(LR) (Le Cessie and Van Houwelingrn, 1992), AdaBoost (Boost) with 50 Decision Stump

base classifiers (Freund and Schapire, 1996), Alternating Decision Tree (ADTree) (Freund and

Mason, 1999), and Support Vector Machine (SVM) (Vapnik, 2000) with linear kernel. For

quantitative MHC-I predictions, we considered the Stabilized Matrix Method (SMM) (Peters

and Sette, 2005) and three regression algorithms; Linear Regression (LR) (Witten and Frank,

2005), model trees (M5P) (Quinlan, 1992; Wang and Witten, 1997), and Gaussian Process

(GP) (MacKay, 1998) with linear kernel. The predictive performance of these classifiers was

estimated using the standard 10-fold cross-validation procedure.

Comparison of qualitative MHC-I predictors

The statistical post-hoc test, Table 3, shows that the three proposed matrix based methods,

MPSSM, AOMM, and SMMBin, are significantly performing better than the PSSM method.

This result suggest that incorporating non-binding information in building scoring matrices

leads to significant improvements in predicting MHC-I binding peptides. This result is con-

sistent with the results reported in the two recent comparison studies (Trost et al., 2007; Lin

et al., 2008) where the two servers implementing ARB (Bui et al., 2005) and SMM (Peters

et al., 2006) demonstrated a better performance than Rankpep (Reche et al., 2004) which was
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implemented using the PSSM method.

The AOMM is performing slightly better than MPSSM (average rank is 5.66 versus 7.75 for

the MPSSM) but the difference in performance is not statistically significant. Interestingly, the

method SMMBin, implementing our proposed qualitative via quantitative (QVQ) approach,

has the best average rank among all MHC-I qualitative prediction methods and its performance

is significantly petter than the remaining qualitative methods except AOMM and SVM.

SVM combined with a linear kernel has the best average rank among machine learning based

qualitative MHC-I peptide prediction methods (Table 2). However, a significant difference in

performance is reported only when comparing with ADTree method (see Table 3). The simple

but yet efficient NB classier demonstrates a competitive performance with SVM.

Comparison of quantitative MHC-I predictors

Table 2 shows that the GP methods combined with the linear kernel has the best average

rank, 3.1, followed by M5P and LnrReg with the ranks 4.12 and 4.29, respectively. However,

Table 3 shows the existence of no significant differences among the three machine learning re-

gression methods, LnrReg, M5P, and GP. However, the three methods significantly outperform

the quantitative matrix methods, SMM.

Table 4 compares the four MHC-I quantitative prediction methods in terms of Pearson

correlation coefficients between the actual and predicted binding affinities. The three machine

learning regression methods are competitive in performance to each other with the average

ranks 1.78, 2.16, and 2.31 for GP, M5P, and LnrReg, respectively. SMM has the lowest

average rank, 3.63. Furthermore, the application of the Friedman test indicated the rejection

of the null hypothesis at 0.05 level of significance. A Nemenyi test comparing each pair of

predictors suggested that the three regression methods are significantly better than SMM and

no significance difference in performance exists among the three regression methods.

It should be mentioned that the SMM performance reported in this study is different

from that reported in the study reported by Peters et al. (2006) due to two major differences

between the two studies according to the data sets and the experimental settings. First,
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the data sets used in our experiments are similarity-reduced while no similarity reduction

was applied to the data sets in (Peters et al., 2006). Hence, the reported performance of

SMM in (Peters et al., 2006) is expected to be overly optimistic. Second, Peters et al. (2006)

evaluated SMM using 5-fold cross-validation and tuned some parameters of the SMM program

while we evaluated SMM using 10-fold cross-validation and using the default SMM parameters

settings. However, regardless these differences, both studies demonstrate that machine learning

regression methods outperform SMM method on predicting MHC-I binding affinities.

Matrix based versus machine learning based methods

Table 2 indicates that the best performing method is the GP (average rank = 3.1) which

is a machine learning based quantitative MHC-I prediction method. This result suggests that

including the binding affinities in training MHC-I prediction methods may help improving the

predictive performance. Furthermore, quantitative MHC-I predictors have the advantage of

predicting the binding affinity of the query peptide not just whether the query peptide is a

binder or not.

The two best performing qualitative MHC-I predictors are SMMBin and AOMM with av-

erage ranks 3.57 and 5.66, respectively. Interestingly, these two methods are matrix based

methods and their performance although lower than GP but no statistically significant differ-

ence is observed. Hence, our results suggest that advanced scoring matrix methods trained

using both binding and non-binding information (e.g., AOMM and SMMBin) are highly com-

petitive with a representative set of machine learning methods for predicting MHC-I peptides.

Unlike several machine learning methods, scoring matrix methods requires less memory

and the running time required for scanning a submitted sequence using a scoring matrix is

generally much less than the time required for performing the scan using many machine learning

based predictors. Therefore, matrix based methods may be preferred for developing MHC-I

prediction servers (specially, when the server is supporting predictions for a large number of

MHC-I alleles). The faster testing time of matrix based methods compared with many other

machine learning based predictors suggests that matrix based predictors may be preferred for
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large scale studies (e.g., for identifying potential MHC-I alleles on a genomic scale).

MHCIPREDS web server

Several studies (Yu et al., 2002; Peters et al., 2006; Trost et al., 2007; Lin et al., 2008),

including this study, demonstrate that there is no single MHC-I prediction method that outper-

forms other methods consistently on every MHC-I allele data set. To deal with this limitation

of existing prediction tools, users are recommended to submit their query sequence to more

than one prediction tool. The underlying hypothesis is that consensus predictions are more

reliable than individual predictions. We believe that having an MHC-I prediction server that

allows users to get predictions from multiple MHC-I predictors, covering the major approaches

for predicting MHC-I peptides, in one web server that does not rely on submitting the query

sequence to other external MHC-I prediction servers would be a very useful resource for ex-

perimentalists to plan their MHC-I peptide mapping experiments. To facilitate this goal, we

implemented MHCIPREDS, an online web server for MHC-I peptide predictions. The server

supports predictions using the best performing qualitative and quantitative MHC-I predic-

tion methods considered in this comparison study. Specifically, the server supports qualitative

MHC-I predictions using MPSSM, AOMM, SMMBin, and SVM predictors. For quantitative

MHC-I predictions, the server provides predictions using SMM and GP predictors. The current

implementation of the server provides predictions for the 22 MHC-I HLA alleles conceived in

our comparisons. However, we plan to enrich the server with more MHC-I alleles as soon as

enough training data become available. The data sets used in our experiments and the web

server can be freely accessed via http://ailab.cs.iastate.edu/mhcipreds.

Conclusion

We empirically compared four major approaches for predicting MHC-I peptides: i) matrix

based qualitative MHC-I binding peptide predictions; ii) machine learning based qualitative

MHC-I binding peptide predictions; iii) matrix based quantitative MHC-I peptides binding

affinity predictions; v) machine learning based quantitative MHC-I peptides binding affinity

http://ailab.cs.iastate.edu/mhcipreds


76

predictions.

For each prediction approach, a representative set of prediction methods has been eval-

uated on a similarity-reduced MHC-I benchmark data set covering 22 MHC-I HLA alleles

using 10-fold cross-validation tests. A statistical multiple hypothesis comparison test has been

conducted to assess our conclusions regarding how each method compares to the others.

In addition, we proposed three matrix based qualitative scoring matrix methods and demon-

strated their usefulness in predicting MHC-I binding peptides. Specifically, we proposed: i)

MPSSM, a method for finding a PSSM matrix model using both binding and non-binding

training information; ii) AOMM, a method for finding a PSSM matrix model that maximizes

the AUC over the training data; iii) SMMBin, a method for finding a PSSM matrix model

using a quantitative matrix method, SMM (Peters et al., 2006).

Our results demonstrated that out of the 13 prediction methods evaluated in this study, the

Gaussian Process (GP) (MacKay, 1998) machine learning based regression method combined

with the linear kernel has the best predictive performance. However, the performance of GP

predictors is not significantly different from the observed performance of AOMM and SMMBin

predictors. Hence, we conclude that advanced scoring matrix methods trained using both

binding and non-binding information (e.g., AOMM and SMMBin) are highly competitive with

a representative set of machine learning methods for predicting MHC-I peptides.

An online web server, MHCIPREDS, supporting predictions using the best performing

methods in each MHC-I prediction approach was implemented and is freely accessible through

the link http://ailab.cs.iastate.edu/mhcipreds.
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Table 1 Summary of the MHC-I benchmark data set. Binding peptides
were identified using an IC50 binding threshold of 500 nM.

Allele Length binders non-binders
A0101 9 160 1911
A0201 10 614 792
A0201 9 1395 2398
A0202 10 472 586
A0202 9 691 672
A0203 10 482 574
A0203 9 697 666
A0206 10 361 693
A0206 9 601 757
A0301 10 523 602
A0301 9 628 2005
A1101 10 578 547
A1101 9 806 1763
A2402 9 197 566
A2902 10 108 113
A2902 9 167 368
A3002 9 145 270
A3101 10 386 716
A3101 9 506 1929
A3301 10 163 934
A3301 9 202 977
A6801 10 531 570
A6801 9 572 611
A6802 10 264 789
A6802 9 418 1226
B0702 10 103 146
B0702 9 228 1490
B1501 9 184 1156
B3501 9 219 260
B4002 9 70 69
B4501 9 68 66
B5101 9 98 405
B5301 9 108 167
B5401 9 91 189
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Table 2 AUC values for different methods evaluated on the similarity-re-
duced MHC-I data set. For each data set, the rank of each pre-
dictor is shown in parentheses.

Allele Length PSSM MPSSM AOMM SMMBin NB LR
A0101 9 0.94(7.0) 0.94(7.0) 0.95(3.0) 0.95(3.0) 0.93(10.5) 0.93(10.5)
A0201 10 0.84(12.0) 0.89(7.5) 0.89(7.5) 0.9(3.5) 0.89(7.5) 0.89(7.5)
A0201 9 0.92(10.5) 0.94(6.0) 0.93(9.0) 0.94(6.0) 0.94(6.0) 0.95(2.0)
A0202 10 0.76(13.0) 0.83(8.0) 0.83(8.0) 0.85(2.0) 0.83(8.0) 0.83(8.0)
A0202 9 0.82(12.0) 0.88(6.0) 0.87(9.0) 0.88(6.0) 0.88(6.0) 0.87(9.0)
A0203 10 0.72(13.0) 0.79(9.5) 0.8(7.0) 0.81(4.5) 0.79(9.5) 0.8(7.0)
A0203 9 0.79(12.0) 0.87(9.0) 0.87(9.0) 0.89(4.0) 0.87(9.0) 0.88(6.0)
A0206 10 0.76(12.0) 0.83(5.5) 0.82(7.5) 0.84(4.0) 0.83(5.5) 0.81(9.5)
A0206 9 0.84(11.0) 0.9(6.5) 0.9(6.5) 0.9(6.5) 0.9(6.5) 0.9(6.5)
A0301 10 0.73(13.0) 0.81(9.0) 0.82(6.5) 0.83(4.5) 0.81(9.0) 0.82(6.5)
A0301 9 0.88(10.0) 0.89(8.0) 0.89(8.0) 0.9(6.0) 0.89(8.0) 0.91(3.5)
A1101 10 0.74(13.0) 0.82(9.5) 0.83(7.0) 0.86(2.5) 0.82(9.5) 0.83(7.0)
A1101 9 0.91(10.5) 0.94(6.0) 0.93(9.0) 0.94(6.0) 0.94(6.0) 0.95(2.0)
A2402 9 0.81(7.0) 0.82(3.5) 0.83(1.5) 0.83(1.5) 0.82(3.5) 0.78(11.0)
A2902 10 0.64(8.5) 0.67(7.0) 0.71(2.5) 0.72(1.0) 0.68(5.0) 0.61(11.5)
A2902 9 0.76(11.0) 0.79(4.5) 0.83(1.0) 0.81(2.0) 0.79(4.5) 0.69(13.0)
A3002 9 0.75(10.0) 0.77(6.0) 0.78(3.5) 0.79(2.0) 0.77(6.0) 0.64(13.0)
A3101 10 0.67(13.0) 0.81(7.5) 0.82(4.5) 0.82(4.5) 0.81(7.5) 0.8(10.5)
A3101 9 0.84(13.0) 0.91(7.5) 0.91(7.5) 0.92(3.0) 0.91(7.5) 0.91(7.5)
A3301 10 0.71(13.0) 0.79(11.0) 0.82(6.0) 0.85(3.0) 0.8(8.5) 0.73(12.0)
A3301 9 0.73(13.0) 0.88(8.0) 0.89(4.5) 0.89(4.5) 0.88(8.0) 0.89(4.5)
A6801 10 0.68(13.0) 0.79(9.5) 0.81(6.5) 0.83(4.0) 0.79(9.5) 0.81(6.5)
A6801 9 0.66(13.0) 0.82(9.5) 0.84(6.5) 0.86(3.5) 0.82(9.5) 0.84(6.5)
A6802 10 0.75(11.5) 0.84(6.5) 0.84(6.5) 0.84(6.5) 0.84(6.5) 0.83(9.0)
A6802 9 0.81(11.0) 0.89(8.0) 0.89(8.0) 0.9(5.5) 0.89(8.0) 0.91(2.5)
B0702 10 0.77(10.0) 0.79(6.5) 0.84(1.0) 0.8(3.5) 0.8(3.5) 0.73(11.5)
B0702 9 0.94(6.0) 0.93(9.5) 0.95(2.5) 0.94(6.0) 0.93(9.5) 0.9(12.0)
B1501 9 0.87(12.0) 0.89(8.0) 0.9(5.5) 0.91(3.5) 0.89(8.0) 0.88(10.5)
B3501 9 0.6(13.0) 0.72(7.5) 0.73(5.0) 0.77(1.0) 0.72(7.5) 0.68(11.0)
B4002 9 0.67(7.5) 0.67(7.5) 0.68(5.0) 0.72(1.0) 0.65(10.0) 0.68(5.0)
B4501 9 0.66(11.0) 0.7(9.0) 0.74(5.0) 0.76(3.0) 0.71(8.0) 0.61(12.0)
B5101 9 0.78(11.0) 0.82(7.5) 0.86(2.0) 0.86(2.0) 0.82(7.5) 0.71(13.0)
B5301 9 0.78(12.0) 0.8(11.0) 0.85(4.0) 0.87(1.0) 0.81(9.5) 0.68(13.0)
B5401 9 0.76(12.0) 0.79(11.0) 0.84(7.0) 0.87(1.0) 0.8(10.0) 0.71(13.0)
Avg 0.77(11.19) 0.83(7.75) 0.84(5.66) 0.85(3.57) 0.83(7.6) 0.81(8.63)
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Table 2 (Continued)

Allele Length Boost ADTree SVM SMM LnrReg M5P GP
A0101 9 0.94(7.0) 0.93(10.5) 0.95(3.0) 0.68(13.0) 0.95(3.0) 0.93(10.5) 0.95(3.0)
A0201 10 0.86(11.0) 0.82(13.0) 0.9(3.5) 0.88(10.0) 0.9(3.5) 0.9(3.5) 0.91(1.0)
A0201 9 0.86(12.0) 0.85(13.0) 0.95(2.0) 0.92(10.5) 0.94(6.0) 0.95(2.0) 0.94(6.0)
A0202 10 0.81(11.0) 0.77(12.0) 0.84(4.5) 0.83(8.0) 0.85(2.0) 0.84(4.5) 0.85(2.0)
A0202 9 0.83(11.0) 0.79(13.0) 0.87(9.0) 0.89(4.0) 0.91(1.5) 0.9(3.0) 0.91(1.5)
A0203 10 0.77(11.0) 0.73(12.0) 0.81(4.5) 0.8(7.0) 0.83(1.5) 0.82(3.0) 0.83(1.5)
A0203 9 0.83(11.0) 0.78(13.0) 0.88(6.0) 0.88(6.0) 0.91(1.5) 0.9(3.0) 0.91(1.5)
A0206 10 0.77(11.0) 0.73(13.0) 0.82(7.5) 0.81(9.5) 0.86(2.0) 0.86(2.0) 0.86(2.0)
A0206 9 0.8(12.0) 0.78(13.0) 0.9(6.5) 0.89(10.0) 0.92(1.5) 0.91(3.0) 0.92(1.5)
A0301 10 0.76(11.0) 0.74(12.0) 0.83(4.5) 0.81(9.0) 0.85(2.0) 0.85(2.0) 0.85(2.0)
A0301 9 0.85(11.0) 0.84(12.5) 0.91(3.5) 0.84(12.5) 0.91(3.5) 0.92(1.0) 0.91(3.5)
A1101 10 0.8(11.0) 0.75(12.0) 0.84(5.0) 0.83(7.0) 0.86(2.5) 0.85(4.0) 0.87(1.0)
A1101 9 0.89(12.5) 0.89(12.5) 0.95(2.0) 0.91(10.5) 0.94(6.0) 0.95(2.0) 0.94(6.0)
A2402 9 0.79(10.0) 0.76(12.0) 0.81(7.0) 0.69(13.0) 0.81(7.0) 0.81(7.0) 0.81(7.0)
A2902 10 0.61(11.5) 0.64(8.5) 0.68(5.0) 0.62(10.0) 0.38(13.0) 0.71(2.5) 0.68(5.0)
A2902 9 0.79(4.5) 0.77(9.0) 0.79(4.5) 0.7(12.0) 0.77(9.0) 0.77(9.0) 0.78(7.0)
A3002 9 0.76(8.5) 0.76(8.5) 0.72(11.5) 0.72(11.5) 0.78(3.5) 0.81(1.0) 0.77(6.0)
A3101 10 0.8(10.5) 0.76(12.0) 0.81(7.5) 0.81(7.5) 0.85(2.0) 0.84(3.0) 0.86(1.0)
A3101 9 0.9(10.0) 0.88(11.0) 0.92(3.0) 0.87(12.0) 0.92(3.0) 0.92(3.0) 0.92(3.0)
A3301 10 0.83(5.0) 0.8(8.5) 0.8(8.5) 0.8(8.5) 0.85(3.0) 0.85(3.0) 0.86(1.0)
A3301 9 0.86(10.0) 0.83(12.0) 0.88(8.0) 0.84(11.0) 0.91(1.5) 0.89(4.5) 0.91(1.5)
A6801 10 0.77(11.0) 0.74(12.0) 0.82(5.0) 0.8(8.0) 0.84(2.5) 0.84(2.5) 0.85(1.0)
A6801 9 0.8(11.0) 0.76(12.0) 0.84(6.5) 0.84(6.5) 0.87(1.5) 0.86(3.5) 0.87(1.5)
A6802 10 0.75(11.5) 0.74(13.0) 0.85(3.0) 0.78(10.0) 0.85(3.0) 0.85(3.0) 0.86(1.0)
A6802 9 0.72(12.0) 0.71(13.0) 0.9(5.5) 0.85(10.0) 0.91(2.5) 0.91(2.5) 0.91(2.5)
B0702 10 0.72(13.0) 0.73(11.5) 0.79(6.5) 0.78(9.0) 0.79(6.5) 0.79(6.5) 0.81(2.0)
B0702 9 0.95(2.5) 0.93(9.5) 0.93(9.5) 0.88(13.0) 0.95(2.5) 0.94(6.0) 0.95(2.5)
B1501 9 0.89(8.0) 0.88(10.5) 0.9(5.5) 0.86(13.0) 0.92(1.5) 0.91(3.5) 0.92(1.5)
B3501 9 0.74(4.0) 0.66(12.0) 0.72(7.5) 0.7(10.0) 0.75(3.0) 0.72(7.5) 0.76(2.0)
B4002 9 0.68(5.0) 0.69(2.5) 0.69(2.5) 0.59(12.5) 0.62(11.0) 0.59(12.5) 0.66(9.0)
B4501 9 0.83(1.0) 0.72(7.0) 0.69(10.0) 0.79(2.0) 0.39(13.0) 0.73(6.0) 0.75(4.0)
B5101 9 0.86(2.0) 0.85(4.0) 0.8(10.0) 0.76(12.0) 0.82(7.5) 0.84(5.0) 0.82(7.5)
B5301 9 0.82(7.5) 0.85(4.0) 0.81(9.5) 0.83(6.0) 0.82(7.5) 0.86(2.0) 0.85(4.0)
B5401 9 0.85(5.5) 0.83(8.0) 0.82(9.0) 0.86(3.0) 0.85(5.5) 0.86(3.0) 0.86(3.0)
Avg 0.81(9.01) 0.79(10.65) 0.84(6.07) 0.80(9.34) 0.83(4.29) 0.85(4.12) 0.86(3.1)
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Table 4 Pearson correlation coefficient (PCC) values for different methods
evaluated on the similarity-reduced MHC-I data set. For each data
set, the rank of each classifier is shown in parentheses.

Allele Length SMM LnrReg M5P GP
A0101 9 0.22(4.0) 0.61(2.5) 0.74(1.0) 0.61(2.5)
A0201 10 0.71(4.0) 0.74(1.5) 0.73(3.0) 0.74(1.5)
A0201 9 0.74(4.0) 0.78(3.0) 0.82(1.0) 0.79(2.0)
A0202 10 0.61(4.0) 0.68(1.5) 0.66(3.0) 0.68(1.5)
A0202 9 0.74(4.0) 0.77(2.5) 0.77(2.5) 0.78(1.0)
A0203 10 0.64(4.0) 0.67(2.0) 0.66(3.0) 0.68(1.0)
A0203 9 0.72(4.0) 0.77(1.5) 0.76(3.0) 0.77(1.5)
A0206 10 0.6(4.0) 0.67(2.5) 0.67(2.5) 0.68(1.0)
A0206 9 0.73(4.0) 0.78(1.5) 0.77(3.0) 0.78(1.5)
A0301 10 0.65(4.0) 0.69(1.5) 0.67(3.0) 0.69(1.5)
A0301 9 0.63(4.0) 0.72(2.5) 0.77(1.0) 0.72(2.5)
A1101 10 0.68(4.0) 0.72(2.0) 0.7(3.0) 0.73(1.0)
A1101 9 0.75(4.0) 0.79(2.5) 0.84(1.0) 0.79(2.5)
A2402 9 0.38(4.0) 0.54(1.5) 0.53(3.0) 0.54(1.5)
A2902 10 0.32(3.0) -0.19(0.0) 0.42(1.0) 0.4(2.0)
A2902 9 0.44(4.0) 0.49(2.5) 0.5(1.0) 0.49(2.5)
A3002 9 0.49(4.0) 0.55(2.0) 0.62(1.0) 0.54(3.0)
A3101 10 0.66(4.0) 0.7(2.0) 0.69(3.0) 0.72(1.0)
A3101 9 0.66(4.0) 0.75(2.5) 0.79(1.0) 0.75(2.5)
A3301 10 0.63(4.0) 0.68(2.0) 0.67(3.0) 0.69(1.0)
A3301 9 0.6(4.0) 0.68(2.0) 0.66(3.0) 0.69(1.0)
A6801 10 0.64(4.0) 0.69(2.0) 0.69(2.0) 0.69(2.0)
A6801 9 0.69(4.0) 0.73(2.5) 0.73(2.5) 0.74(1.0)
A6802 10 0.56(4.0) 0.64(2.0) 0.63(3.0) 0.65(1.0)
A6802 9 0.64(4.0) 0.72(3.0) 0.75(1.0) 0.73(2.0)
B0702 10 0.61(1.5) 0.58(3.0) 0.54(4.0) 0.61(1.5)
B0702 9 0.61(4.0) 0.74(2.5) 0.77(1.0) 0.74(2.5)
B1501 9 0.61(4.0) 0.69(2.5) 0.71(1.0) 0.69(2.5)
B3501 9 0.49(4.0) 0.53(2.0) 0.5(3.0) 0.55(1.0)
B4002 9 0.28(2.0) 0.26(3.0) 0.24(4.0) 0.38(1.0)
B4501 9 0.69(1.0) 0.17(4.0) 0.55(3.0) 0.59(2.0)
B5101 9 0.48(4.0) 0.57(2.5) 0.6(1.0) 0.57(2.5)
B5301 9 0.65(2.0) 0.6(4.0) 0.7(1.0) 0.63(3.0)
B5401 9 0.69(2.0) 0.66(4.0) 0.7(1.0) 0.68(3.0)
Avg 0.60(3.63) 0.62(2.31) 0.66(2.16) 0.66(1.78)
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CHAPTER 5. ON EVALUATING MHC-II BINDING PEPTIDE

PREDICTION METHODS

A paper published in the Journal of PLoS ONE

Yasser EL-Manzalawy, Drena Dobbs, Vasant Honavar

Abstract

Choice of one method over another for MHC-II binding peptide prediction is typically

based on published reports of their estimated performance on standard benchmark datasets.

We show that several standard benchmark datasets of unique peptides used in such studies

contain a substantial number of peptides that share a high degree of sequence identity with

one or more other peptide sequences in the same dataset. Thus, in a standard cross-validation

setup, the test set and the training set are likely to contain sequences that share a high degree

of sequence identity with each other, leading to overly optimistic estimates of performance.

Hence, to more rigorously assess the relative performance of different prediction methods, we

explore the use of similarity-reduced datasets. We introduce three similarity-reduced MHC-II

benchmark datasets derived from MHCPEP, MHCBN, and IEDB databases. The results of our

comparison of the performance of three MHC-II binding peptide prediction methods estimated

using datasets of unique peptides with that obtained using their similarity-reduced counterparts

show that the former can be rather optimistic relative to the performance of the same methods

on similarity-reduced counterparts of the same datasets. Furthermore, our results demonstrate

that conclusions regarding the superiority of one method over another drawn on the basis of

performance estimates obtained using commonly used datasets of unique peptides are often
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contradicted by the observed performance of the methods on the similarity-reduced versions

of the same datasets. These results underscore the importance of using similarity-reduced

datasets in rigorously comparing the performance of alternative MHC-II peptide prediction

methods.

Introduction

T-cells epitopes are short linear peptides generated by cleavage of antigenic proteins. The

identification of T-cell epitopes in protein sequences is important for understanding disease

pathogenesis, identifying potential autoantigens, and designing vaccines and immune-based

cancer therapies. A major step in identifying potential T-cell epitopes involves identifying the

peptides that bind to a target major histocompatibility complex (MHC) molecule. Because

of the high cost of experimental identification of such peptides, there is an urgent need for

reliable computational methods for predicting MHC binding peptides (Korber et al., 2006).

There are two major classes of MHC molecules: MHC class I (MHC-I) molecules character-

ized by short binding peptides, usually consisting of nine residues; and MHC class II (MHC-II)

molecules with binding peptides that range from 11 to 30 residues in length, although shorter

and longer peptide lengths are not uncommon (Rammensee et al., 1995). The binding groove

of MHC-II molecules is open at both ends, allowing peptides longer than 9-mers to bind. How-

ever, it has been reported that a 9-mer core region is essential for MHC-II binding (Rammensee

et al., 1995; Madden, 1995). Because the precise location of the 9-mer core region of MHC-II

binding peptides is unknown, predicting MHC-II binding peptides tends to be more challenging

than predicting MHC-I binding peptides.

Despite the high degree of variability in the length of MHC-II binding peptides, most

existing computational methods for predicting MHC-II binding peptides focus on identifying

a 9-mer core peptide. Computational approaches available for predicting MHC-II binding

peptides from amino acid sequences include: (i) Motif-based methods such as methods that

use a position weight matrix (PWM) to model an ungapped multiple sequence alignment of

MHC binding peptides (Singh and Raghava, 2001; Reche et al., 2004; Nielsen et al., 2004,
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2007; Rajapakse et al., 2007), and a statistical approach based on Hidden Markov Models

(HMMs) (Mamitsuka, 1998; Noguchi et al., 2002); (ii) Machine learning methods based on

Artificial Neural Networks (ANN) (Nielsen et al., 2004, 2003; Buus et al., 2003; Burden and

Winkler, 2006) and Support Vector Machines (SVMs) (Donnes and Kohlbacher, 2006; Bhasin

and Raghava, 2004; Cui et al., 2006a; Salomon and Flower, 2006); (iii) Semi-supervised machine

learning methods (Murugan and Dai, 2005; Hertz and Yanover, 2006).

The choice of one method over another for MHC-II binding peptide prediction requires

reliable assessment of their performance relative to each other. Such assessments usually rely on

estimates of their performance on standard benchmark datasets (typically obtained using cross-

validation). Several studies (Reche et al., 2004; Bhasin and Raghava, 2004; Cui et al., 2006a;

Salomon and Flower, 2006; Hertz and Yanover, 2006) have reported the performance of MHC-II

binding peptide prediction methods using datasets of unique peptides. Such datasets can in fact

contain peptide sequences that share a high degree of sequence similarity with other peptide

sequences in the dataset. Hence, several authors (Nielsen et al., 2004, 2007; Noguchi et al.,

2002; Raghava, 2004) have proposed methods for eliminating redundant sequences. However,

because MHC-II peptides have lengths that vary over a broad range, similarity reduction of

MHC-II peptides is not a straightforward task (Nielsen et al., 2007). Consequently, standard

cross-validation based estimates of performance obtained using such datasets are likely to

be overly optimistic because the test set is likely to contain sequences that share significant

sequence similarity with one or more sequences in the training set.

In order to obtain more realistic estimates of performance of MHC-II binding peptide

prediction methods, we explored several methods for constructing similarity-reduced MHC-

II datasets. We constructed similarity-reduced MHC-II benchmark datasets, derived from

MHCPEP (Brusic et al., 1998), MHCBN (Bhasin et al., 2003), and IEDB (Peters et al.,

2005) databases, using several approaches to reduce the degree of pair-wise sequence similarity

shared by sequences in the resulting datasets. The similarity reduction procedures were applied

separately to binders and non-binders. Details of the similarity reduction methods are provided

in the Materials and Methods Section. Specifically, we generated:
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• Datasets of unique peptides MHCPEP-UPDS, MHCBN-UPDS, and IEDB-UPDS ex-

tracted from MHCPEP, MHCBN, and IEDB, respectively.

• Datasets of similarity-reduced peptides, MHCPEP-SRDS1, MHCBN-SRDS1, and IEDB-

SRDS1 derived from the corresponding UPDS datasets using a similarity reduction pro-

cedure which ensures that no two peptides in the resulting dataset share a 9-mer subse-

quence.

• Datasets of similarity-reduced peptides, MHCPEP-SRDS2, MHCBN-SRDS2, and IEDB-

SRDS2, extracted MHCPEP-SRDS1, MHCBN-SRDS1, and IEDB-SRDS1 respectively

by filtering the binders and non-binders in SRDS1 such that the sequence identity between

any pair of peptides is less than 80

• Datasets of similarity-reduced peptides, MHCPEP-SRDS3, MHCBN-SRDS3, and IEDB-

SRDS3, derived from the corresponding UPDS datasets using the similarity reduction

procedure introduced by Raghava and previously used to construct the MHCBench

dataset (Raghava, 2004).

• Datasets of weighted unique peptides, MHCPEP-WUPDS, MHCBN-WUPDS, and IEDB-

WUPDS, derived from the corresponding UPDS datasets (where the weight assigned to

a peptide is inversely proportional to the number of peptides that are similar to it).

We then used the resulting similarity-reduced benchmark datasets to explore the effect of

similarity reduction on the performance of different MHC-II binding peptide prediction meth-

ods and, more importantly, to rigorously compare the performance of the different predic-

tion methods. Our experiments focused on two state-of-the-art methods for training MHC-II

binding peptide predictors using variable-length MHC-II peptides and a third method that is

designed to exploit the sequence similarity between a test peptide sequence and the peptide

sequences in the training set (and is hence likely to perform well on non similarity-reduced

datasets but poorly on the similarity-reduced datasets).

Specifically, we compared: (i) An approach (Cui et al., 2006a) that maps each variable-

length peptide into a fixed-length feature vector (the so-called composition-transition distribu-
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tion or CTD) consisting of sequence-derived structural features and physicochemical properties

of the input peptide sequence; (ii) An approach (Salomon and Flower, 2006) that uses a local

alignment (LA) kernel that defines the similarity between two variable-length peptides as the

average of all possible local alignments between the two peptides; (iii) An approach that uses

the k-spectrum kernel (Leslie et al., 2002) with k = 5.

Because neither the programs used to calculate secondary structure and solvent accessibil-

ity of peptides used for generating the CTD representation (Cui et al., 2006a) nor the precise

choices of parameters used for training the LA kernel based classifier (Salomon and Flower,

2006) were available to us, we used in our experiments, our own implementations of the cor-

responding methods. Hence, the results of our experiments should not be viewed as providing

direct assessment of performance of the exact implementations of the CTD and LA methods

developed by the original authors and used in studies reported in (Cui et al., 2006a; Salomon

and Flower, 2006). However, it is worth noting that, the broad conclusions of our study are

largely independent of the specific machine learning methods or data transformations.

Our results demonstrate that, regardless of the similarity reduction method employed, a

substantial drop in performance of classifiers is observed compared to their reported perfor-

mance on benchmark datasets of unique peptide sequences. Our results also demonstrate that

conclusions regarding the superiority of one prediction method over another can be misleading

when they are based on evaluations using benchmark datasets with a high degree of sequence

similarity (e.g., the benchmark dataset of unique peptide sequences). These results underscore

the importance of using similarity-reduced datasets in evaluating and comparing alternative

MHC-II peptide prediction methods.

Results

Limitations of the unique peptides MHC-II data

Tables 1-3 show that MHC-II datasets derived from MHCPEP, MHCBN, and IEDB databases

have a large number of highly similar peptides: the number of peptides in the similarity-reduced

versions in the three benchmark datasets is ≈ 50%of the original number. In each case, the
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estimated performance of the prediction methods evaluated on similarity-reduced datasets is

substantially worse than that estimated using the datasets of unique peptides. This finding is

especially significant in light of the fact that MHCPEP and MHCBN datasets have been used

for comparing alternative MHC-II peptide prediction methods in most of the published studies

(Reche et al., 2004; Nielsen et al., 2004; Bhasin and Raghava, 2004; Cui et al., 2006a; Salomon

and Flower, 2006; Murugan and Dai, 2005; Hertz and Yanover, 2006; Yu et al., 2006b).

For the sake of brevity, we focus discussion here on the results of two representative ex-

amples of datasets extracted from the MHCPEP and MHCBN benchmarks and provide the

complete set of results in the supplementary materials (Data S1).

As shown in Table 4, for the MHCPEP benchmark, we focus on the results on the data

for HLA-DR4, which has the largest number of unique binders. On the MHCPEP-UPDS

version of the HLA-DR4 dataset, the 5-spectrum kernel outperforms the other two prediction

methods and CTD outperforms the LA kernel. We notice a substantial drop in the observed

performance of the three prediction methods on the similarity-reduced and weighted datasets

relative to that on their UPDS counterpart.

In the case of the MHCBN benchmark, we focus on the results on the HLA-DRB1*0301

data (Table 5) because it has been used in a number of recent studies of MHC-II binding

peptide prediction methods (Cui et al., 2006a; Salomon and Flower, 2006; Yu et al., 2006b).

Most MHCBN allele-specific datasets are unbalanced, i.e., the numbers of binding peptides

in the datasets are larger (typically by a factor of 2 to 4) than the corresponding numbers

of non-binding peptides (see Table 2). On such unbalanced datasets, classification accuracy

can be misleading in terms of providing a reliable and useful assessment of the performance of

the classifier. A classifier that simply returns the label of the majority class as the predicted

label for each instance to be classified can achieve a rather high accuracy. However such a

classifier is rather useless in reliably identifying members of the minority class. Hence, in the

case of unbalanced datasets, the correlation coefficient (CC) or the area under the Receiver

Operating Characteristic (ROC) curve (AUC) provide more useful measures than accuracy

in assessing the performance of the classifiers (Baldi et al., 2000). As shown in Table 5, the
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observed performance of the three prediction methods on HLA-DRB1*0301 MHCBN-UPDS

version of this dataset appears to be overly optimistic relative to that on its similarity-reduced

and weighted counterparts. Interestingly, the 5-spectrum kernel is competitive with CTD

and LA on the MHCBN-UPDS dataset, whereas its performance on MHCBN-SRDS1 and

MHCBN-SRDS2 is much worse than that of the CTD and the LA classifiers.

Our results also demonstrate that conclusions of superior performance of one method rel-

ative to another that are based on estimates of performance obtained using UPDS versions of

MHC-II benchmark datasets can be misleading. For example, from results shown in Tables

4 and 5, one might be tempted to conclude that predictors that use the 5-spectrum kernel

are competitive with those that use CTD representation and the LA kernel. However, the 5-

spectrum kernel is outperformed by CTD and LA on the similarity-reduced datasets. Similarly,

conclusions drawn from experiments using the UPDS datasets (Tables 4 and 5) regarding the

performance of the CTD and the LA kernel classifiers are contradicted by the their observed

performance on the corresponding similarity-reduced datasets SRDS1 and SRDS2.

Limitations of the MHCBench benchmark data

Comparison of SRDS1, SRDS2, and SRDS3 versions of the datasets used in this study

reveals an important limitation of the MHCBench dataset which is a widely used benchmark

for comparing MHC-II binding peptide prediction methods.

Recall that the SRDS3 versions of our datasets are derived using the same procedure that

was used in MHCBench to generate similarity-reduced datasets. It is clear from the data

summarized in Tables 1-3 that the size of a SRDS3 version of a dataset is: often larger than

the size of its SRDS2 counterpart, and sometimes larger than the size of its SRDS1 counterpart.

Closer examination of the peptides in SRDS3 datasets reveals that SRDS3 datasets may contain

several highly similar peptides (e.g., peptides with more than 80% sequence similarity). This

is illustrated by the example shown in Figure 1: the two peptides in the SRDS3 version of the

HLA-DRB1*0301 dataset share overall sequence similarity of 85.71%. However, the procedure
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Table 1 Number of binding peptides in MHCPEP benchmark dataset.
UPDS refers to datasets of non-redundant peptides. The last three
columns refer to similarity-reduced datasets (see text for details).

Allele UPDS SRDS1 SRDS2 SRDS3
HLA-DQ2 113 67 32 39
HLA-DQ4 97 84 79 82
HLA-DQ7 135 73 65 75
HLA-DR1 703 336 242 278
HLA-DR2 315 148 104 134
HLA-DR3 192 81 69 73
HLA-DR4 1085 439 298 353
HLA-DR5 189 92 61 75
HLA-DR7 341 137 87 101
HLA-DR8 125 47 46 54
HLA-DR9 94 41 34 37
HLA-DR11 473 160 100 103
HLA-DR13 121 68 34 36
HLA-DR15 121 48 36 49
HLA-DR17 158 82 40 45
HLA-DR51 115 45 39 55
I-Ab 136 62 51 61
I-Ad 415 168 101 135
I-Ag7 157 62 53 81
I-Ak 254 96 67 85
I-Ed 294 188 68 76
I-Ek 334 204 64 78

used to construct similarity-reduced MHCBench dataset will keep both of these peptides in

the resulting dataset because the computed percent identity (PID) between the two peptides is

only 7.7%, well below the threshold of 80% PID used to identify similar peptides in MHCBench

(Raghava, 2004). Thus, the similarity reduction procedure used in MHCBench dataset (which

relies on a strict gapless alignment) may not eliminate all highly similar peptides.

The preceding observation explains why the number of peptides in the SRDS3 versions

of the datasets is usually greater than that in SRDS1 and SRDS2 datasets (see Tables 1-3).

More importantly, because of the presence of a number of highly similar peptides in some

SRDS3 datasets, the observed performance of the three prediction methods on the SRDS3

datasets may be overly optimistic relative to that estimated from their SRDS1 and SRDS2
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Table 2 Number of binding/non-binding peptides in MHCBN benchmark
dataset. UPDS refers to datasets of non-redundant peptides. The
last three columns refer to similarity-reduced datasets (see text for
details).

Allele UPDS SRDS1 SRDS2 SRDS3
HLA-DR1 636/180 328/111 223/106 259/130
HLA-DR2 416/168 197/124 153/123 232/149
HLA-DR5 218/173 111/131 80/129 100/154
HLA-DRB10101 531/127 325/88 279/76 390/112
HLA-DRB10301 261/230 137/150 127/145 175/215
HLA-DRB10401 805/201 471/136 404/119 543/174
HLA-DRB10701 292/107 179/68 152/66 213/92
HLA-DRB11101 352/137 213/87 182/87 239/131

Figure 1 Example of two peptides from MHCBN-SRDS3 HLA-DRB1*0301
dataset. Although the two peptides share 85.71% sequence sim-
ilarity, the computed percent identity (PID) used to define the
similarity between these two peptides in MHCBench benchmark
is only 7.7%.

counterparts. Because the classifier using the 5-spectrum kernel in fact relies on the degree

of (gapless) match between a sequence pattern present in one or more training sequences and

a test sequence, it benefits from the presence of a high degree of similarity between a test

sequence and one or more training sequences in ways that the other two classifiers do not.

Consequently classifiers that use the 5-spectrum kernel can appear to be competitive with,

and perhaps even outperform those that use the CTD representation or the LA kernel when

their performance is compared using SRDS3 datasets (and for similar reasons, the MHCBench

benchmark data).
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Table 3 Number of binding/non-binding peptides in IEDB benchmark
dataset. UPDS refers to datasets of non-redundant peptides. The
last three columns refer to similarity-reduced datasets (see text for
details).

Allele UPDS SRDS1 SRDS2 SRDS3
HLA-DRB1-0101 1105/432 645/268 623/261 938/365
HLA-DRB1-0301 135/556 78/292 69/276 81/396
HLA-DRB1-0401 317/412 197/262 176/255 215/340
HLA-DRB1-0404 113/132 69/100 62/98 74/109
HLA-DRB1-0405 113/119 74/85 70/84 81/89
HLA-DRB1-0701 228/302 147/203 137/202 173/274
HLA-DRB1-0802 65/120 46/101 46/100 49/108
HLA-DRB1-1101 197/411 122/218 111/212 139/328
HLA-DRB1-1302 152/103 105/81 97/81 110/92
HLA-DRB1-1501 269/283 165/176 142/174 185/260
HLA-DRB4-0101 92/215 64/120 63/119 85/200
HLA-DRB5-0101 215/377 123/201 113/194 147/309

Comparison of the CTD, LA, and the k-spectrum kernel methods

In machine learning and bioinformatics literature, claims of superiority of one method over

another are often based on the outcome of suitable statistical tests. Hence, it is interesting to

examine the differences in the conclusions obtained when statistical tests are used to compare

the performance of prediction methods based on the empirical estimates of their performance

on the UPDS, SRDS1, SRDS2, SRDS3, and WPDS versions of the datasets.

Several non-parametric statistical tests (Friedman, 1940; Fisher, 1973) have been recently

recommended for comparing different classifiers on multiple datasets (accounting for the effects

of multiple comparisons) (Demšar, 2006). In our analysis, we apply a three-step procedure

proposed by Demšar (2006). First, the classifiers to be compared are ranked on the basis of

their observed performance (e.g., AUC) on each dataset. Second, the Friedman test is applied

to determine whether the measured average ranks are significantly different from the mean rank

under the null hypothesis. Third, if the null hypothesis can be rejected at a significance level

of 0.05, the Nemenyi test is used to determine whether significant differences exist between

any given pair of classifiers.
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Table 4 Performance of prediction methods on MHCPEP HLA-DR4
unique, similarity-reduced, and weighted datasets using 5-fold
cross-validation test.

Dataset Method ACC Sn Sp CC AUC
UPDS CTD 86.59 73.36 99.82 0.759 0.906

LA 77.10 71.71 82.49 0.545 0.862
5-spectrum 90.55 81.29 99.82 0.825 0.917

SRDS1 CTD 69.93 66.06 73.80 0.400 0.723
LA 68.56 63.78 73.35 0.373 0.751
5-spectrum 70.96 43.28 98.63 0.503 0.710

SRDS2 CTD 64.77 60.40 69.13 0.296 0.692
LA 64.43 65.10 63.76 0.289 0.711
5-spectrum 56.04 33.22 78.86 0.136 0.578

SRDS3 CTD 65.01 61.47 68.56 0.301 0.695
LA 64.02 62.89 65.16 0.281 0.717
5-spectrum 68.56 38.81 98.30 0.462 0.679

WUPDS CTD 85.41 31.98 99.91 0.516 0.730
LA 79.38 22.50 94.81 0.249 0.723
5-spectrum 87.14 42.14 99.35 0.580 0.723

Statistical analysis of results on the MHCPEP datasets

Tables 6-10 compare the AUC of the three prediction methods on the five versions of the

MHCPEP datasets. For each dataset, the rank of each classifier is shown in parentheses. The

last row in each table summarizes the average AUC and rank for each classifier. Demšar (2006)

has suggested that the average ranks by themselves provide a reasonably fair comparison of

classifiers. Interestingly, the LA kernel has the worst rank among the three methods when the

comparison is based on the observed performance on the UPDS datasets, whereas it has the

best rank among the three methods when the comparison is based on the similarity-reduced

or the weighted datasets. Tables 6-10 also show that the rank of the 5-spectrum kernel is

competitive with that of CTD on UPDS and SRDS3. This observation is consistent with the

presence of a number of highly similar sequences in SRDS3 datasets.

To determine whether the differences in average ranks are statistically significant, we ap-

plied the Friedman test (Demšar, 2006) to the rank data in Tables 6-10. At significance level

of 0.05, the Friedman test did not indicate a statistically significant difference between the
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Table 5 Performance of prediction methods on MHCBN HLA-DRB1*0301
unique, similarity-reduced, and weighted datasets using 5-fold
cross-validation test.

Dataset Method ACC Sn Sp CC AUC
UPDS CTD 72.51 73.95 70.87 0.448 0.787

LA 71.89 73.56 70.00 0.436 0.795
5-spectrum 70.26 82.76 56.09 0.405 0.770

SRDS1 CTD 63.41 64.23 62.67 0.269 0.661
LA 58.54 59.85 57.33 0.172 0.617
5-spectrum 42.16 63.50 22.67 -0.152 0.323

SRDS2 CTD 59.93 59.06 60.69 0.197 0.628
LA 55.88 54.33 57.24 0.116 0.563
5-spectrum 35.29 37.01 33.79 -0.292 0.273

SRDS3 CTD 64.62 60.57 67.91 0.285 0.675
LA 67.18 61.14 72.09 0.334 0.736
5-spectrum 63.08 49.71 73.95 0.244 0.678

WUPDS CTD 65.27 61.04 68.88 0.300 0.678
LA 66.66 64.47 68.53 0.330 0.710
5-spectrum 59.97 58.70 61.04 0.197 0.648

methods on the UPDS and WUPDS datasets. However, in the case of the similarity-reduced

datasets, the Friedman test indicated statistically significant differences between the meth-

ods being compared. Thus, we conclude that the three methods are competitive with each

other on the UPDS and WUPDS datasets, and that there is at least one pair of classifiers

with significant difference in performance on the three versions of similarity-reduced datasets.

Furthermore, for each version of MHCPEP similarity-reduced datasets, the Nemenyi test was

applied to determine whether significant differences exist between any given pair of classifiers.

Figure 2 summarizes the results of the pair-wise comparisons performed using the Nemenyi

test. We find that on the SRDS1 versions of the datasets, both the LA and the CTD methods

significantly outperform the 5-spectrum kernel and that there are no statistically significant

differences between the LA kernel and the CTD classifier. On SRDS2 datasets, we find that,

the performance of each of the three methods is significantly different from that of the other

two methods, with the LA and the CTD methods ranked first and second, respectively. On

SRDS3 datasets, we observe that the performance of the LA kernel is significantly better than

that of the CTD and the 5-spectrum classifiers, with no significant differences between the
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Figure 2 Pair-wise comparisons of classifiers with the Nemenyi test applied
to results on a) MHCPEP-SRDS1, b) MHCPEP-SRDS2, and c)
MHCPEP-SRDS3. Classifiers that are not significantly different
(at p-value = 0.05) are connected.

CTD and the 5-spectrum classifiers.

Statistical analysis of results on the MHCBN and the IEDB datasets

We summarize the results of applying Demar’s three-step procedure to the results obtained

on the five versions of MHCBN and IEDB datasets, respectively. In the case of the MHCBN

datasets, Tables 11-15 show the estimated AUC and rank of each classifier on each dataset.

The results of the Freidman test (at a significance level of 0.05) applied to the results in each

table did not indicate significant differences in performance among the CTD, the LA, and the

5-spectrum kernel classifiers on the UPDS dataset. However, the test indicated statistically

significant differences among the methods in the case of the SRDS1, SRDS2, SRDS3, and

the WUPDS datasets. Figure 3 summarizes the results of the pair-wise comparisons using the

Nemenyi test. In the case of the SRDS1 and the SRDS2 datasets, we find that the performance

of both the LA kernel and the CTD classifiers is significantly better than that of the 5-spectrum

kernel classifier and that there are no significant differences between the LA kernel and the

CTD classifiers. In the case of the SRDS3 datasets, we find that the performance of the LA
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Table 6 AUC values for the three methods evaluated on MHCPEP-UPDS
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DQ2 0.908(2) 0.905(3) 0.939(1)
HLA-DQ4 0.628(3) 0.903(2) 0.934(1)
HLA-DQ7 0.856(2) 0.860(1) 0.853(3)
HLA-DR1 0.883(1) 0.872(2) 0.863(3)
HLA-DR2 0.884(1) 0.866(2) 0.829(3)
HLA-DR3 0.854(3) 0.869(1) 0.862(2)
HLA-DR4 0.917(1) 0.862(3) 0.906(2)
HLA-DR5 0.905(1) 0.864(3) 0.887(2)
HLA-DR7 0.916(1) 0.858(3) 0.904(2)
HLA-DR8 0.894(3) 0.896(2) 0.903(1)
HLA-DR9 0.836(3) 0.880(2) 0.913(1)
HLA-DR11 0.910(3) 0.938(2) 0.958(1)
HLA-DR13 0.875(3) 0.905(2) 0.920(1)
HLA-DR15 0.887(1) 0.829(3) 0.867(2)
HLA-DR17 0.907(2) 0.907(2) 0.934(1)
HLA-DR51 0.924(1) 0.891(2) 0.886(3)
I-Ab 0.865(2) 0.855(3) 0.875(1)
I-Ad 0.942(1) 0.898(3) 0.902(2)
I-Ag7 0.916(1) 0.896(2) 0.887(3)
I-Ak 0.909(1) 0.872(3) 0.881(2)
I-Ed 0.918(3) 0.921(2) 0.936(1)
I-Ek 0.934(3) 0.940(2) 0.951(1)
Average 0.885(1.91) 0.886(2.27) 0.900(1.77)

kernel classifier is significantly better than that of the CTD and the 5-spectrum classifiers, and

that no significant differences exist between the CTD and the 5-spectrum classifiers. In the

case of the WUPDS datasets, we find that the LA kernel classifier significantly outperforms

the 5-spectrum kernel and that there are no significant differences between the LA and the

CTD and between the CTD and the 5-spectrum classifiers.

Results of Demšar’s statistical test applied to the IEDB datasets are shown in Tables

S46-S50 (Data S1 in supporting information) and Figure 4. As in the case of MHCPEP

and MHCBN, we see no significant differences in the performance of different classifiers on

IEDB-UPDS datasets. However, in the case of the other datasets, we find at least one pair



96

Table 7 AUC values for the three methods evaluated on MHCPEP-SRDS1
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DQ2 0.789(3) 0.852(2) 0.853(1)
HLA-DQ4 0.544(3) 0.854(2) 0.881(1)
HLA-DQ7 0.677(3) 0.799(1) 0.726(2)
HLA-DR1 0.662(3) 0.801(1) 0.744(2)
HLA-DR2 0.694(3) 0.795(1) 0.781(2)
HLA-DR3 0.603(2) 0.678(1) 0.572(3)
HLA-DR4 0.710(3) 0.751(1) 0.723(2)
HLA-DR5 0.691(3) 0.776(2) 0.784(1)
HLA-DR7 0.721(2) 0.702(3) 0.732(1)
HLA-DR8 0.552(3) 0.625(2) 0.694(1)
HLA-DR9 0.620(3) 0.746(1) 0.721(2)
HLA-DR11 0.703(3) 0.912(1) 0.890(2)
HLA-DR13 0.746(3) 0.827(2) 0.837(1)
HLA-DR15 0.711(2) 0.718(1) 0.667(3)
HLA-DR17 0.789(3) 0.806(2) 0.876(1)
HLA-DR51 0.651(2) 0.788(1) 0.603(3)
I-Ab 0.620(3) 0.705(1) 0.680(2)
I-Ad 0.787(3) 0.818(1) 0.804(2)
I-Ag7 0.718(2) 0.778(1) 0.702(3)
I-Ak 0.761(3) 0.800(1) 0.796(2)
I-Ed 0.826(3) 0.903(2) 0.932(1)
I-Ek 0.874(3) 0.913(2) 0.941(1)
Average 0.702(2.77) 0.789(1.45) 0.770(1.77)

of classifiers with significant differences in performance. As shown in Figure 4, both the LA

and the CTD classifiers significantly outperform the 5-spectrum classifier on the SRDS1 and

the SRDS2 versions of the IEDB datasets. However, no significant differences are observed

between the CTD and the 5-spectrum methods on the SRDS3 and WUPDS versions of the

IEDB datasets.

Performance on the blind test set

The results summarized above underscore the importance of similarity-reduced MHC-II

datasets for obtaining a realistic estimation of the classifier performance and avoiding mis-
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Table 8 AUC values for the three methods evaluated on MHCPEP-SRDS2
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DQ2 0.566(3) 0.678(1) 0.573(2)
HLA-DQ4 0.590(3) 0.954(1) 0.817(2)
HLA-DQ7 0.616(3) 0.713(1) 0.709(2)
HLA-DR1 0.562(3) 0.715(1) 0.711(2)
HLA-DR2 0.548(3) 0.633(1) 0.614(2)
HLA-DR3 0.514(3) 0.602(1) 0.572(2)
HLA-DR4 0.578(3) 0.711(1) 0.692(2)
HLA-DR5 0.583(3) 0.622(2) 0.625(1)
HLA-DR7 0.562(3) 0.622(1) 0.599(2)
HLA-DR8 0.526(3) 0.717(1) 0.680(2)
HLA-DR9 0.488(3) 0.754(1) 0.690(2)
HLA-DR11 0.528(3) 0.810(1) 0.792(2)
HLA-DR13 0.518(3) 0.827(1) 0.587(2)
HLA-DR15 0.592(3) 0.698(1) 0.689(2)
HLA-DR17 0.568(2) 0.612(1) 0.550(3)
HLA-DR51 0.578(3) 0.664(1) 0.595(2)
I-Ab 0.570(3) 0.624(2) 0.638(1)
I-Ad 0.623(2) 0.700(1) 0.618(3)
I-Ag7 0.713(2) 0.756(1) 0.632(3)
I-Ak 0.586(3) 0.664(1) 0.661(2)
I-Ed 0.645(3) 0.760(1) 0.744(2)
I-Ek 0.606(3) 0.756(1) 0.703(2)
Average 0.575(2.86) 0.709(1.09) 0.659(2.05)

leading conclusions. However, one might argue that in practice, when developers of MHC-II

binding peptide prediction methods make an implementation of their methods publicly avail-

able (e.g., as an online web server or as a web service), it might be better to utilize as much of

the available data as possible to train the predictor. Hence, it is interesting to explore whether

the UPDS datasets should be preferred over the similarity-reduced counterparts to avoid any

potential loss of useful information due to the elimination of highly similar peptides in a setting

where the goal is to optimize the predictive performance of the classifier on novel peptides. In

what follows, we attempt to answer this question using five allele-specific blind test sets (Wang

et al., 2008) to evaluate the performance of the three prediction methods trained on the unique,
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Table 9 AUC values for the three methods evaluated on MHCPEP-SRDS3
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DQ2 0.663(2) 0.655(3) 0.754(1)
HLA-DQ4 0.608(3) 0.900(1) 0.900(1)
HLA-DQ7 0.699(3) 0.757(1) 0.706(2)
HLA-DR1 0.676(3) 0.747(1) 0.720(2)
HLA-DR2 0.724(2) 0.736(1) 0.686(3)
HLA-DR3 0.623(2) 0.657(1) 0.532(3)
HLA-DR4 0.679(3) 0.717(1) 0.695(2)
HLA-DR5 0.719(2) 0.723(1) 0.617(3)
HLA-DR7 0.631(2) 0.765(1) 0.613(3)
HLA-DR8 0.608(3) 0.732(1) 0.714(2)
HLA-DR9 0.520(3) 0.779(2) 0.792(1)
HLA-DR11 0.544(3) 0.854(1) 0.850(2)
HLA-DR13 0.563(3) 0.623(2) 0.630(1)
HLA-DR15 0.805(1) 0.713(2) 0.663(3)
HLA-DR17 0.629(3) 0.769(1) 0.682(2)
HLA-DR51 0.800(1) 0.780(2) 0.672(3)
I-Ab 0.606(3) 0.611(2) 0.618(1)
I-Ad 0.821(1) 0.785(2) 0.676(3)
I-Ag7 0.823(1) 0.804(2) 0.757(3)
I-Ak 0.768(1) 0.766(2) 0.691(3)
I-Ed 0.828(2) 0.852(1) 0.787(3)
I-Ek 0.714(2) 0.789(1) 0.699(3)
Average 0.684(2.23) 0.751(1.45) 0.702(2.27)

similarity-reduced, and weighted versions of the MHCBN data for the corresponding alleles.

Table 16 shows that the 5-spectrum kernel classifier consistently performs poorly (AUC ≈

0.5) on the allele-specific blind test sets regardless of the version of the MHCBN dataset used

for training the classifier. This finding is consistent with the cross-validation performance

estimates obtained on the MHCBN SRDS1 and SRDS2 datasets (see Tables 12 and 13).

Table 17 shows the performance on the blind test sets of the CTD classifiers trained on

different versions of MHCBN datasets. Interestingly, the CTD classifiers appear to be relatively

insensitive to the choice of the specific version of the MHCBN dataset on which they were

trained, with an average AUC ≈ 0.66 in each case.
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Table 10 AUC values for the three methods evaluated on
MHCPEP-WUPDS datasets. For each dataset, the rank of
each classifier is shown in parentheses.

Allele 5-spectrum LA CTD
HLA-DQ2 0.717(3) 0.738(2) 0.772(1)
HLA-DQ4 0.543(3) 0.882(2) 0.925(1)
HLA-DQ7 0.716(3) 0.786(2) 0.812(1)
HLA-DR1 0.696(3) 0.710(1) 0.699(2)
HLA-DR2 0.682(2) 0.688(1) 0.617(3)
HLA-DR3 0.612(3) 0.678(1) 0.614(2)
HLA-DR4 0.723(2.5) 0.723(2.5) 0.730(1)
HLA-DR5 0.765(1) 0.709(3) 0.733(2)
HLA-DR7 0.714(1) 0.599(3) 0.632(2)
HLA-DR8 0.796(3) 0.810(1) 0.802(2)
HLA-DR9 0.806(2) 0.819(1) 0.738(3)
HLA-DR11 0.612(3) 0.798(2) 0.830(1)
HLA-DR13 0.620(2) 0.714(1) 0.605(3)
HLA-DR15 0.760(1) 0.627(2) 0.587(3)
HLA-DR17 0.747(2) 0.760(1) 0.679(3)
HLA-DR51 0.838(1) 0.786(2) 0.718(3)
I-Ab 0.650(2) 0.669(1) 0.636(3)
I-Ad 0.815(1) 0.740(2) 0.707(3)
I-Ag7 0.820(1) 0.797(2) 0.700(3)
I-Ak 0.778(1) 0.684(2) 0.680(3)
I-Ed 0.742(3) 0.760(2) 0.805(1)
I-Ek 0.734(3) 0.824(1) 0.805(2)
Average 0.722(2.11) 0.741(1.7) 0.719(2.18)

Finally, Table 18 summarizes the performance on the blind test sets of the LA classifiers

trained on the different versions of MHCBN datasets. Interestingly, the best performance (on

four out of the five allele-specific blind test sets) is observed in the case of the LA classifiers

trained on the SRDS2 versions of the corresponding allele-specific datasets.

In summary, our results show that MHC-II predictors trained on the similarity reduced

versions of the dataset generally outperform those trained on the UPDS dataset. This suggests

that similarity reduction contributes to improved generalization on blind dataset.
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Figure 3 Pair-wise comparisons of classifiers with the Nemenyi test ap-
plied to results on a) MHCBN-SRDS1, b) MHCBN-SRDS2, c)
MHCBN-SRDS3, and d) MHCBN-WUPDS. Classifiers that are
not significantly different (at p-value = 0.05) are connected.

Discussion

Related work

Several previous studies have considered the importance of similarity reduction in datasets

of MHC-II peptides. MHCBench (Raghava, 2004) is a benchmark of eight HLA-DRB1*0401

datasets representing a set of unique peptides (Set1), a dataset of natural peptides (Set2,

derived from Set1 by removing peptides with Alanine residues), two non-redundant datasets

(Set3a and Set3b derived from Set1 and Set2, respectively), two balanced datasets (Set4a and

Set4b derived from Set1 and Set2 by randomly selecting equal numbers of binding and non-

binding peptides), and two recent datasets of ligands (Set5a and Set5b, derived from Set1 and

Set2 by considering only the most recently reported peptides). However, this benchmark con-

siders only a single MHC-II allele, namely, HLA-DR4 (B1*0401). More importantly, as shown

by our analysis of SRDS3 datasets, the similarity reduction procedure used in MHCBench is
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Figure 4 Pair-wise comparisons of classifiers with the Nemenyi test applied
to results on a) IEDB-SRDS1, b) IEDB-SRDS2, c) IEDB-SRDS3,
and d) IEDB-WUPDS. Classifiers that are not significantly dif-
ferent (at p-value = 0.05) are connected.

not stringent enough to ensure elimination of highly similar peptides.

Nielsen et al. (2004) and Murugan and Dai (2005) trained their classifiers using data ex-

tracted from MHCPEP and SYFPETHI databases and evaluated the classifiers using ten test

sets, from which peptides similar to peptides in the training datasets had been removed. Re-

cently, Nielsen et al. (2007) presented an MHC-II benchmarking dataset for regression tasks:

each peptide is labeled with a real value indicating the binding affinity of the peptide. In this

benchmark dataset, each set of allele-specific data had been partitioned into five subsets with

minimal sequence overlap. However, neither of these studies explicitly examined the limita-

tions of widely used benchmark datasets or the full implications of using MHC-II datasets of

unique peptides in evaluating alternative methods.

Mallios (2003) compared three HLA-DRB1*0101 and HLA-DRB1*0401 prediction tools

using an independent test set of two proteins. A consensus approach combining the predictions

of the three methods was shown to be superior to the three methods. However, the significance
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Table 11 AUC values for the three methods evaluated on MHCBN-UPDS
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DR1 0.747(3) 0.768(2) 0.789(1)
HLA-DR2 0.806(1) 0.771(3) 0.786(2)
HLA-DR5 0.743(3) 0.748(2) 0.752(1)
HLA-DRB10101 0.758(3) 0.799(2) 0.804(1)
HLA-DRB10301 0.770(3) 0.795(1) 0.787(2)
HLA-DRB10401 0.705(3) 0.780(1) 0.721(2)
HLA-DRB10701 0.778(2) 0.842(1) 0.732(3)
HLA-DRB11101 0.754(3) 0.874(1) 0.832(2)
Average 0.758(2.63) 0.797(1.63) 0.775(1.75)

Table 12 AUC values for the three methods evaluated on MHCBN-SRDS1
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DR1 0.545(3) 0.784(1) 0.738(2)
HLA-DR2 0.456(3) 0.707(2) 0.750(1)
HLA-DR5 0.533(3) 0.657(2) 0.692(1)
HLA-DRB10101 0.456(3) 0.690(2) 0.748(1)
HLA-DRB10301 0.323(3) 0.617(2) 0.661(1)
HLA-DRB10401 0.381(3) 0.676(1) 0.655(2)
HLA-DRB10701 0.424(3) 0.665(2) 0.748(1)
HLA-DRB11101 0.493(3) 0.776(1) 0.759(2)
Average 0.451(3.00) 0.697(1.63) 0.719(1.38)

of this result is limited by the small dataset utilized in this study.

Two recent studies (Wang et al., 2008; Gowthaman and Agrewala, 2008) have pointed out

some of the limitations of existing MHC-II prediction methods in identifying potential MHC-

II binding peptides. Gowthaman and Agrewala (2008) used 179 peptides derived from eight

antigens and covering seven MHC-II alleles to evaluate the performance of six commonly used

MHC-II prediction methods and concluded that none of these methods can reliably identify

potential MHC-II binding peptides. Wang et al. (2008) introduced a large benchmark dataset

of previously unpublished peptides and used it to assess the performance of nine publicly

available MHC-II binding peptide prediction methods. Both studies showed that the predictive
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Table 13 AUC values for the three methods evaluated on MHCBN-SRDS2
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DR1 0.448(3) 0.717(1) 0.698(2)
HLA-DR2 0.374(3) 0.665(2) 0.716(1)
HLA-DR5 0.369(3) 0.459(2) 0.588(1)
HLA-DRB10101 0.351(3) 0.705(1) 0.683(2)
HLA-DRB10301 0.273(3) 0.563(2) 0.628(1)
HLA-DRB10401 0.261(3) 0.658(1) 0.620(2)
HLA-DRB10701 0.414(3) 0.617(2) 0.696(1)
HLA-DRB11101 0.386(3) 0.705(2) 0.757(1)
Average 0.360(3.00) 0.636(1.63) 0.673(1.38)

Table 14 AUC values for the three methods evaluated on MHCBN-SRDS3
datasets. For each dataset, the rank of each classifier is shown in
parentheses.

Allele 5-spectrum LA CTD
HLA-DR1 0.685(3) 0.768(1) 0.743(2)
HLA-DR2 0.709(3) 0.741(1) 0.719(2)
HLA-DR5 0.557(3) 0.616(1) 0.608(2)
HLA-DRB10101 0.691(3) 0.819(1) 0.725(2)
HLA-DRB10301 0.678(2) 0.736(1) 0.675(3)
HLA-DRB10401 0.624(3) 0.760(1) 0.710(2)
HLA-DRB10701 0.737(2) 0.794(1) 0.671(3)
HLA-DRB11101 0.755(3) 0.816(1) 0.775(2)
Average 0.680(2.75) 0.756(1.00) 0.703(2.25)

performance of existing MHC-II prediction tools on independent blind test sets is substantially

worse than the performance of these tools reported by their developers. Our work complements

these studies by providing a plausible explanation of this result.

We have shown that the previously reported similarity reduction methods may not eliminate

highly similar peptides, i.e., peptides that share> 80% sequence identity still pass the similarity

test. We have proposed a two-step similarity reduction procedure that is much more stringent

than those currently in use for similarity reduction with MHC-II benchmark datasets. We

have used the similarity reduction method used in MHCBench, as well as our proposed 2-stage

method to derive similarity-reduced MHC-II benchmark datasets based on peptides retrieved
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Table 15 AUC values for the three methods evaluated on MHCB-
N-WUPDS datasets. For each dataset, the rank of each classifier
is shown in parentheses.

Allele 5-spectrum LA CTD
HLA-DR1 0.655(3) 0.747(1) 0.732(2)
HLA-DR2 0.636(3) 0.717(2) 0.740(1)
HLA-DR5 0.518(3) 0.594(1) 0.543(2)
HLA-DRB10101 0.535(3) 0.672(1) 0.666(2)
HLA-DRB10301 0.648(3) 0.710(1) 0.678(2)
HLA-DRB10401 0.536(3) 0.757(1) 0.701(2)
HLA-DRB10701 0.667(3) 0.724(1) 0.702(2)
HLA-DRB11101 0.676(3) 0.820(1) 0.789(2)
Average 0.609(3) 0.718(1.13) 0.694(1.88)

Table 16 AUC values for 5-spectrum based classifiers trained using
MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets
and evaluated on the blind test sets of Wang et al. (2008).

Allele UPDS SRDS1 SRDS2 SRDS3 WUPDS
HLA-DRB1-0101 0.505 0.503 0.504 0.506 0.505
HLA-DRB1-0301 0.518 0.515 0.515 0.516 0.518
HLA-DRB1-0401 0.504 0.500 0.500 0.501 0.487
HLA-DRB1-0701 0.500 0.500 0.500 0.500 0.496
HLA-DRB1-1101 0.500 0.500 0.500 0.500 0.496
Average 0.505 0.504 0.504 0.505 0.500

from MHCPEP and MHCBN databases. Comparison of the similarity-reduced versions of

MHCPEP, MHCBN, and IEDB datasets with their original UPDS counterparts showed that

nearly 50% of the peptides in the UPDS datasets are, in fact, highly similar.

Extensions to multi-class and multi-label prediction problems

Our description of the proposed similarity reduction procedure assumes a 2-class prediction

problem. However, our proposed approach can easily be adapted to multi-class prediction

(wherein an instance has associated with one of several mutually exclusive labels). One can

simply apply the similarity reduction procedure separately to data from each class.

A more interesting setting is that of multi-label prediction (wherein each instance is as-

sociated with a subset of a set of candidate labels). Consider for example, the problem of
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Table 17 AUC values for CTD classifiers trained using MHCBN- UPDS,
SRDS1, SRDS2, SRDS3, and WUPDS datasets and evaluated on
the blind test sets of Wang et al. (2008).

Allele UPDS SRDS1 SRDS2 SRDS3 WUPDS
HLA-DRB1-0101 0.689 0.707 0.684 0.714 0.629
HLA-DRB1-0301 0.595 0.589 0.597 0.596 0.585
HLA-DRB1-0401 0.605 0.584 0.611 0.633 0.601
HLA-DRB1-0701 0.675 0.711 0.699 0.684 0.694
HLA-DRB1-1101 0.732 0.701 0.719 0.713 0.735
Average 0.659 0.658 0.662 0.668 0.649

Table 18 AUC values for LA classifiers trained using MHCBN- UPDS,
SRDS1, SRDS2, SRDS3, and WUPDS datasets and evaluated
on the blind test sets of Wang et al. (2008).

Allele UPDS SRDS1 SRDS2 SRDS3 WUPDS
HLA-DRB1-0101 0.675 0.650 0.756 0.736 0.703
HLA-DRB1-0301 0.604 0.647 0.651 0.637 0.604
HLA-DRB1-0401 0.554 0.548 0.610 0.595 0.573
HLA-DRB1-0701 0.627 0.692 0.692 0.677 0.627
HLA-DRB1-1101 0.775 0.722 0.701 0.730 0.775
Average 0.647 0.652 0.682 0.675 0.656

predicting promiscuous MHC binding peptides (Zhang et al., 2007), where each peptide can

bind to multiple HLA molecules. Current methods for multi-label prediction typically re-

duce the multi-label prediction task to a collection of binary prediction tasks (Tsoumakas and

Katakis, 2007). Hence, the similarity reduction methods proposed in this paper can be directly

applied to the binary labeled datasets resulting from such a reduction.

Implications for rigorous assessment of MHC-II binding peptide prediction meth-

ods

The results of our study show that the observed performance of some of the methods

(e.g., the CTD and the LA kernels) on benchmark datasets of unique peptides can be rather

optimistic relative to the performance of the same methods on similarity-reduced counterparts

of the same datasets or on blind test sets. This suggests that the performance of existing

MHC-II prediction methods, when applied to novel peptide sequences, may turn out to be less
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satisfactory than one might have been led to believe based on the reported performance of such

methods on some of the widely used benchmark. Moreover, the conclusions based on observed

performance on datasets of unique peptides regarding the superior performance of one method

relative to another can be highly unreliable in more realistic settings e.g., predictions of novel

peptides.

These results underscore the importance of rigorous comparative evaluation of a broad

range of existing methods for MHC-II binding peptides prediction methods using similarity-

reduced datasets. We expect that such studies are likely to show much greater room for

improvement over the state-of-the-art MHC-II prediction tools than one might be led to be-

lieve based on reported performance on the widely-used benchmark datasets and motivate

the research community to develop improved methods for this important task. We hope that

such comparisons will be facilitated by the availability of the similarity-reduced versions of

MHCPEP, MHCBN, and IEDB datasets used in our experiments. These datasets (Datasets

S1-S3), Java source code implementation of the similarity reduction and weighting procedures

(Code S1), and the supplementary materials (Data S1) have been made freely available (see

Supporting Information).

Materials and Methods

The datasets used in this study are derived from MHCPEP (Brusic et al., 1998), MHCBN

(Bhasin et al., 2003), and IEDB (Peters et al., 2005), which are manually curated repositories

of MHC binding peptides reported in the literature.

We extracted 22 MHC-II allele datasets (each with at least 100 binders) from the MHCPEP

database. Because MHCPEP contains only MHC-II binding peptides (”positive examples”), for

each allele, we generated an equal number of non-binders (”negative examples”) by randomly

extracting protein fragments from SwissProt (Bairoch and Apweiler, 2000) protein sequences

such that: (i) The length distribution of negative examples is identical to that of the positive

examples; (ii) None of the non-binding peptides appear in the set of binders.

Unlike MHCPEP, MHCBN is a database of binding and non-binding MHC peptides.
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MHCBN version 4.0 has 35 MHC-II alleles with at least 100 binders. Out of these 35 al-

leles, only eight alleles have at least 100 non-binders. We extracted the MHCBN benchmark

dataset used in this study from the alleles for which at least 100 binders and non-binders

peptides are available in MHCBN.

The Immune Epitope Database and Analysis Resource (IEDB) (Peters et al., 2005) is a rich

resource of MHC binding data curated from the literature or submitted by immunologists. For

each reported peptide, IEDB provides qualitative (i.e., Negative or Positive) and quantitative

(i.e., IC50) measurements whenever available. We used both qualitative and quantitative

measurements for constructing 12 HLA binary labeled datasets as follows:

• Peptides with no reported quantitative measurements are discarded.

• Peptides with “Positive” qualitative measurement and quantitative measurement less

than 500 nM are classified as binders.

• Peptides with “Positive” qualitative measurement and quantitative measurement greater

than or equal 500 nM are classified as non-binders.

• Peptides with “Negative” qualitative measurement and quantitative measurement greater

than or equal 500 nM are classified as non-binders.

• Peptides with “Negative” qualitative measurement and quantitative measurement less

than 500 nM are discarded.

The reported MHC binding sites are typically identified using truncation, substitution,

or mutations in a base peptide (O’Sullivan et al., 1991). Because different reported MHC-II

binding peptides might actually correspond to experimental manipulation of the same MHC-

II binding region using different experimental techniques or different choices of amino acids

targeted for truncation, substitution, or mutation, it is not surprising that that MHC databases

contain a significant number of highly similar peptides. Hence, we used several similarity

reduction methods to extract several different versions of the dataset from each set of sequences.
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It should be noted that the existence of highly similar peptides belonging to the same

category may result in an over-optimistic estimation of the classifier performance. Therefore,

we applied the similarity reduction procedures separately to the set of binders and non-binders

in each dataset. The following sections describe the similarity reduction procedures and the

resulting similarity-reduced datasets.

Similarity reduction procedures

An example of two different types of similar peptides that frequently occur in MHC peptides

databases is shown in Figure 5. In type I, two peptides differ from each other in terms

of only one or two amino acids (see Figure 5A). Such highly similar peptides are likely to

have come from different mutation experiments targeting different sites of the same MHC-II

binding peptide. For example, Garcia et al. (2007) report an HLA-DRB1*0401 binding peptide

(WGENDTDVFVLNNTR) and 12 additional binding peptides derived from that peptide by

replacing one of the amino acid in (WGENDTDVFVLNNTR) sequence with Glycine and

experimentally determining the binding affinity of the new peptide. In type II, we find that a

shorter peptide in one allele dataset corresponds to a sub-sequence of a longer one that is also

in the allele dataset (see Figure 5B).

Standard approaches to identifying similar peptide sequences rely on the use of a sequence

similarity threshold. Sequences that are within a certain predetermined similarity threshold

relative to a target sequence are eliminated from the dataset. However, the use of such a

simple approach to obtaining a similarity reduced dataset is complicated by the high degree

of variability in the length of MHC-II peptides. Using a single fixed similarity cutoff value

(e.g. 80%) might not be effective in eliminating type II similar peptides. On the other hand,

an attempt to eliminate one of the two such similar sequences by using of a more stringent

similarity threshold could result in elimination of most of the dataset.

To address this problem, we used a two-step similarity reduction procedure to eliminate

similar peptides of types I and II:

• Step 1 eliminates similar peptides based on a criterion proposed by Nielsen et al. (2007).
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Two peptides are considered similar if they share a 9-mer subsequence. This step will

eliminate all similar peptides of type II but is not guaranteed to remove all similar

peptides of Type I. For example, this method will not eliminate one of the two peptides

in Figure 5A although they share 84.6% sequence similarity.

• Step 2 filters the dataset using an 80% similarity threshold to eliminate any sequence

that has a similarity of 80% or greater with one or more sequences in the dataset.

In addition, we also used a procedure proposed by Raghava (2004) for similarity reduction of

MHCBench benchmark datasets. Briefly, given two peptides p1 and p2 of lengths l1 and l2 such

that l1 ≤ l2, we compare p1 with each l1-length subpeptide in p2. If the percent identity (PID)

between p1 and any subpeptide in p2 is greater than 80%, then the two peptides are deemed

to be similar. For example, to compute the PID between (ACDEFGHIKLMNPQRST) and

(DEFGGIKLMN), we compare (DEFGGIKLMN) with (ACDEFGHIKL), (CDEFGHIKLM),

. . ., (IKLMNPQRST). The PID between (DEFGGIKLMN) and (DEFGHIKLMN) is 90% since

nine out of 10 residues are identical.

Finally, we explored a method for assigning weights to similar peptides as opposed to

eliminating similar peptides from the dataset. Specifically, the peptides within the binders

category that are similar to each other (i.e., share a 9-mer subsequence or have sequence

similarity of 80% or greater) are clustered together. Each peptide that is assigned to a cluster

is similar to at least one other peptide within the cluster, and no two similar peptides are

assigned to different clusters. Each peptide in a cluster is assigned a weight 1/n, where n is

the number of peptides assigned to the cluster. The process is repeated with peptides in the

non-binders category. The result is a dataset of weighted instances.

Thus, from each MHC-II benchmark dataset, we generated five versions summarized below:

• Three datasets of unique peptides, MHCPEP-UPDS, MHCBN-UPDS, and IEDB-UPDS

extracted from MHCPEP, MHCBN, and IEDB, respectively after eliminating short pep-

tides consisting of fewer than 9 residues, unnatural peptides, peptides with greater than

75% Alanine residues, and duplicated peptides.
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• Three datasets of similarity-reduced peptides, MHCPEP-SRDS1, MHCBN-SRDS1, and

IEDB-SRDS1 derived from the corresponding UPDS datasets described above using only

step 1 of the two-step similarity reduction procedure described above which ensures

that no two peptides in the resulting datasets of binders or non binders share a 9-mer

subsequence.

• Three datasets of similarity-reduced peptides, MHCPEP-SRDS2, MHCBN-SRDS2, and

IEDB-SRDS2, extracted MHCPEP-SRDS1, MHCBN-SRDS1, and IEDB-SRDS1 respec-

tively by filtering the binders and non-binders in SRDS1 such that the sequence identity

between any pair of peptides in the binders category or in the non-binders category is

less than 80

• Three datasets of similarity-reduced peptides, MHCPEP-SRDS3, MHCBN-SRDS3, and

IEDB-SRDS3, derived from the corresponding UPDS datasets by applying the similar-

ity reduction procedure introduced by Raghava which has been used to construct the

MHCBench dataset (Raghava, 2004).

• Three weighted unique peptide datasets, MHCPEP-WUPDS, MHCBN-WUPDS, and

IEDB-WUPDS, derived from the corresponding UPDS datasets by applying the peptide

weighting method described above.

The procedure used to generate the five different versions of each allele-specific dataset

using the different similarity reduction methods and the peptide weighting method described

above is shown in Figure 6. Note that UPDS can contain similar peptides of both types I and

II; SRDS1 can contain similar peptides of type I; SRDS2 is free from both type I and type

II similar peptides; SRDS3 simulates similarity-reduced datasets using the method employed

with MHCBench; WUPDS is a weighted version of the UPDS dataset where similar peptides

are grouped into disjoint clusters and the weight of each peptide is set to one over the size of

its cluster.
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Figure 5 Two types of similar peptides that frequently appear in MHC
databases.

Summary of the datasets

Datasets derived from MHCPEP

Table 1 summarizes the number of binders in each unique peptides dataset, MHCPEP-

UPDS, and the corresponding three similarity-reduced datasets, MHCPEP-SRDS1, MHCPEP-

SRDS2, and MHCPEP-SRDS3. Note that on average, the number of binders in the similarity-

reduced datasets, MHCPEP-SRDS1, MHCPEP-SRDS2, and MHCPEP-SRDS3, is reduced to

48%, 33%, and 39%, respectively, of the number of binders in MHCPEP-UPDS datasets.

Datasets derived from MHCBN

Table 2 summarizes the number of binders and non-binders in MHCBN-UPDS, MHCBN-

SRDS1, MHCBN-SRDS2 and MHCBN-SRDS3 datasets derived for each of the eight MHCBN

alleles satisfying our selection criteria. Note that the average number of binders in similarity-

reduced datasets, MHCBN-SRDS1, MHCBN-SRDS2, and MHCBN-SRDS3, is reduced to

55.48%, 45.46%, and 61.39%, respectively, of the number of binders in MHCBN-UPDS datasets.

Similarly, the average number of non-binders in similarity-reduced datasets, MHCBN-SRDS1,

MHCBN-SRDS2, and MHCBN-SRDS3, is reduced to 67.55%, 64.24%, and 87.47%, respec-

tively, of the number of non-binders in MHCBN-UPDS datasets.

Datasets derived from IEDB

Table 3 summarizes the number of binders and non-binders in IEDB-UPDS, IEDB-SRDS1,

IEDB-SRDS2, and IEDB-SRDS3 datasets derived for 12 HLA alleles. We observed that the

average number of binders in similarity-reduced datasets, IEDB-SRDS1, IEDB-SRDS2, and
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Figure 6 An overview of the process used for generating five different ver-
sions of each allele dataset using the different similarity-reduction
methods described in the text.

IEDB-SRDS3, is reduced to 51.17%, 47.66%, and 63.5%, respectively, of the number of binders

in MHCBN-UPDS datasets. Similarly, the average number of non-binders in similarity-reduced

datasets, IEDB-SRDS1, IEDB-SRDS2, and IEDB-SRDS3, is reduced to 60.86%, 59.38%, and

82.9%, respectively, of the number of non-binders in MHCBN-UPDS datasets.

Independent blind set

Recently, Wang et al. (2008) introduced a comprehensive dataset of previously unpublished

MHC-II peptide binding affinities and utilized it to assessing the performance of nine publicly

available MHC-II prediction methods. The dataset covers 14 HLA alleles and two Mouse
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alleles. Out of the 14 HLA allele-specific datasets, five datasets are used in our experiments

as independent blind test data to evaluate the performance of the classifiers trained using the

corresponding MHCBN allele-specific datasets. Table 19 shows the number of test peptides in

each allele-specific dataset and the number of binders and non-binders obtained using an IC50

cutoff of 500 nM employed to categorize peptides into binders and non-binders (Nielsen et al.,

2007).

Table 19 Five allele-specific blind test set obtained Wang et al. (2008).
Peptides are categorized into binders and non-binders using an
IC50 cutoff 500 nM.

Allele peptides binders non-binders
HLA-DRB1-0101 3882 2579 1303
HLA-DRB1-0301 502 209 293
HLA-DRB1-0401 512 286 226
HLA-DRB1-0701 505 358 147
HLA-DRB1-1101 520 317 203

Prediction methods

Our experiments focused on two approaches for training MHC-II binding peptide predic-

tors from variable-length MHC-II peptides have been recently proposed in (Cui et al., 2006a;

Salomon and Flower, 2006) and a method based on k-spectrum kernel (Leslie et al., 2002)

that is designed to rely on the presence of high degree of sequence similarity between training

and test peptides (and hence is expected to perform well on redundant datasets but poorly

on similarity-reduced datasets). We implemented the three methods in java using Weka ma-

chine learning workbench (Witten and Frank, 2005). Brief descriptions of each of the three

prediction methods are included below.

Composition-Transition-Distribution (CTD)

The basic idea of this approach is to map each variable-length peptide into a fixed-length

feature vector such that standard machine learning algorithms are applicable. This method
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was used and explained in details in (Cai et al., 2003; Cui et al., 2006a). 21 features are

extracted from each peptide sequence as follows:

• First, each peptide sequence p is mapped into a string sp defined over an alphabet of

three symbols, {1, 2, 3}. The mapping is performed by grouping amino acids into three

groups using a physico-chemical property of amino acids (see Table 20). For example the

peptide (AIRHIPRRIR) is mapped into (2312321131) using the hydrophobicity division

of amino acids into three groups (see Table 20).

• Second, for each peptide string sp, three descriptors are derived as follows:

– Composition (C): three features representing the percent frequency of the symbols,

{1, 2, 3}, in the mapped peptide sequence.

– Transition (T): three features representing the percent frequency of i followed by j

or j followed by i, for i, j ∈ {1, 2, 3}.

– Distribution (D): five features per symbol representing the fractions of the entire

sequence where the first, 25, 50, 75, and 100% of the candidate symbol are contained

in sp . A total of 15 features are derived from each peptide.

Table 20 shows division of the 20 amino acids into three groups based on hydrophobicity,

polarizability, polarity, and Van der Waal’s volume properties. Using these four properties, we

derived 84 CTD features from each peptide sequence. In our experiments, we trained SVM

classifiers using RBF kernel and peptide sequences represented using their amino acid sequence

composition (20 features) and CTD descriptors (84 features).

Table 20 Categorization of amino acids into three groups for a number of
physicochemical properties Chinnasamy et al. (2004).

Property Group 1 Group 2 Group 3
Hydrophobicity RKEDQN GASTPHY CVLIMFW
Polarizability GASCTPD NVEQIL MHKFRYW
Polarity LIFWCMVY PATGS HQRKNED
Van der Waal’s volume GASDT CPNVEQIL KMHFRYW
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Local alignment (LA) kernel

Local alignment (LA) kernel (Saigo et al., 2004) is a string kernel designed for biological

sequence classification problems. The LA kernel measures the similarity between two sequences

by adding up the scores obtained from local alignments with gaps of the sequences. This kernel

has several parameters: the gap opening and extension penalty parameters d and e, the amino

acid mutation matrix s, and the factor β which controls the influence of suboptimal alignments

in the kernel value. Saigo et al. (2004) used the BLOSUM62 substitution matrix, gap opening

and extending parameters equal 11 and 1, respectively, and β ranges from 0.2 to 0.5. In our

experiments, we tried a range of values for gap opening/extension and β parameters and got

the best performance out of LA kernel using BLOSUM62 substitution matrix, gap opening and

extending parameters equal 10 and 1, respectively, and β = 0.5. Detailed formulation of the

LA kernel and a dynamic programming implementation of the kernel are provided in (Saigo

et al., 2004).

k-spectrum kernel

Intuitively, k-spectrum kernel (Leslie et al., 2002) captures a simple notion of string simi-

larity: two strings are deemed similar (i.e., have a high k-spectrum kernel value) if they share

many of the same k-mer substrings. We used the k-spectrum with relatively large k value,

k = 5. As noted earlier, the choice of a relatively large value for k was motivated by the desire

to construct a predictor that is expected to perform well in settings where the peptides in the

test set share significant similarity with one or more peptides in the training set.

Performance evaluation

The prediction accuracy (ACC), sensitivity (Sn), specificity (Sp), and correlation coefficient

(CC) are often used to evaluate prediction algorithms (Baldi et al., 2000). The CC measure

has a value in the range from -1 to +1 and the closer the value to +1, the better the predictor.

The Sn and Sp summarize the accuracies of the positive and negative predictions respectively.
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ACC, Sn, Sp, and CC are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(1)

Sn =
TP

TP + FN
and Sp =

TN

TN + FP
(2)

CC =
TP × TN − FP × FN√

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
(3)

where TP, FP, TN, FN are the numbers of true positives, false positives, true negatives, and

false negatives respectively.

Although these metrics are widely used to assess the performance of machine learning

methods, they all suffer from an important limitation of being threshold-dependent. Threshold-

dependent metrics describe the classifier performance at a specific threshold value. It is often

possible to increase the number of true positives (equivalently sensitivity) of the classifier at

the expense of an increase in false positives (equivalently false alarm rate). Receiver Operating

Characteristic (ROC) curve describes the performance of the classifier over all possible thresh-

olds. The ROC curve is obtained by plotting the true positive rate as a function of the false

positive rate or, equivalently, sensitivity versus (1-specificity) as the discrimination threshold

of the binary classifier is varied. Each point on the ROC curve describes the classifier at a

certain threshold value and hence a particular choice of tradeoff between true positive rate

and false negative rate. The area under ROC curve (AUC) is a useful summary statistic for

comparing two ROC curves. AUC is defined as the probability that a randomly chosen positive

example will be ranked higher than a randomly chosen negative example. An ideal classifier

will have an AUC = 1, while a classifier performs no better than random will have an AUC

= 0.5, any classifier performing better than random will have an AUC value that lies between

these two extremes.

Implementation and SVM parameter optimization

We used Weka machine learning workbench (Witten and Frank, 2005) for implementing

the spectrum, and LA kernels (RBF kernel is already implemented in Weka). For the SVM
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classifier, we used the Weka implementation of the SMO algorithm (Platt, 1998). For k-

spectrum and LA kernels, the default value of the cost parameter, C = 1, was used for the SMO

classifier. For the RBF kernel, we found that tuning the SMO cost parameter C and the RBF

kernel parameter γ is necessary to obtain satisfactory performance. We tuned these parameters

using a two dimensional grid search over the range C = 2−5, 2−3, . . . , 23, γ = 2−15, 2−13, . . . , 23.
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CHAPTER 6. PREDICTING MHC-II BINDING AFFINITY USING

MULTIPLE INSTANCE REGRESSION

A paper submitted to the Journal of IEEE/ACM Transactions on Computational Biology

and Bioinformatics

Yasser EL-Manzalawy, Drena Dobbs, Vasant Honavar

Abstract

Reliably predicting the ability of antigen peptides to bind to major histocompatibility com-

plex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering

the amino acid sequence correlates of MHC-II peptides binding affinity can contribute to a

deeper understanding of how pathogens cause disease and how the immune system responds

to them. Unfortunately, the variable length of MHC-II binding peptides complicates the pre-

diction task. Most existing computational methods for predicting MHC-II binding peptides

rely on methods for identifying a nine amino acids core region in each binding peptide. We

formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II

peptides as multiple instance learning and multiple instance regression problems, respectively.

Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II

binding affinity using multiple instance regression. We present results of experiments using a

benchmark dataset covering 13 HLA-DR and three H2-IA alleles that show that MHCMIR is

competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An on-

line web server that implements the MHCMIR method for MHC-II binding affinity prediction

is freely accessible at http://ailab.cs.iastate.edu/mhcmir.

http://ailab.cs.iastate.edu/mhcmir
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Introduction

T-cells, a major type of the immune system cells, play a central role in the cell-mediated

immunity (Janeway et al., 2004). Cytotoxic T-cells attack cells that have certain foreign or

abnormal molecules on their surfaces. They have also been implicated in transplant rejec-

tion. Helper T-cells, or CD4+ T-cells, coordinate immune responses by communicating with

other cells. Once activated, they divide rapidly and secrete cytokines that regulate the im-

mune response. T-cells are also targets of HIV infection, with the loss of CD4+ T-cells being

associated with the appearance of AIDS symptoms. Regulatory T-cells are believed to be

crucial for the maintenance of immunological tolerance. T-cells epitopes are short linear pep-

tides that are generated by the cleavage of antigenic proteins. The identification of T-cell

epitopes in protein sequences is important for understanding disease pathogenesis, for identi-

fying potential autoantigens, and for designing vaccines and immune-based cancer therapies.

Predicting whether a given peptide will bind to a specific major histocompatibility complex

(MHC) molecule (and the binding affinity) is an important step in identifying potential T-cell

epitopes. Consequently, predicting MHC binding peptides is an important and challenging

task in immunoinformatics (Korber et al., 2006; Gowthaman and Agrewala, 2008).

There are two classes of MHC molecules: MHC class I (MHC-I) molecules that are char-

acterized by short binding peptides, usually consisting of 9 amino acid residues; and MHC

class II (MHC-II) molecules that bind to peptides of variable length. MHC-II binding peptides

typically vary from 11 to 30 amino acids in length, although shorter and longer MHC-binding

peptides are not entirely uncommon (Rammensee et al., 1995). MHC-II molecules allow vari-

able length peptides to bind because the binding groove of MHC-II molecule is open at both

ends. However, it has been reported that a 9-mer core region is essential for MHC-II binding

activity of peptides (Madden, 1995; Rammensee et al., 1995). Because the precise location of

the 9-mer core region of the MHC-II binding peptide is unknown, predicting MHC-II binding

peptides is more challenging than predicting MHC-I binding peptides.

The computational methods that are currently available for predicting MHC-II peptides

can be categorized into two major categories:
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• Quantitative MHC-II binding prediction methods that attempt to predict the binding

affinities (e.g., IC50 values); Examples of such methods include PLS-ISC (Doytchinova

and Flower, 2003), MHCPred (Hattotuwagama et al., 2004), SVRMHC (Liu et al., 2006),

ARB (Bui et al., 2005), and NetMHCII (Nielsen et al., 2007).

• Qualitative MHC-II binding prediction methods that simply classify MHC peptides into

binders and non-binders; Examples of such methods include: (i) methods that use a

position weight matrix to model ungapped multiple sequence alignment of MHC binding

peptides (Reche et al., 2004; Singh and Raghava, 2001; Nielsen et al., 2004; Rajapakse

et al., 2007; Nielsen et al., 2007), or rely on Hidden Markov Models (HMMs) (Mamitsuka,

1998; Noguchi et al., 2002); (ii) supervised machine learning methods based on Artificial

Neural Networks (ANN) (Nielsen et al., 2003; Buus et al., 2003) or Support Vector

Machines (SVMs) (Donnes and Kohlbacher, 2006; Bhasin and Raghava, 2004; Cui et al.,

2006a; Salomon and Flower, 2006); and (iii) semi-supervised machine learning methods

(Murugan and Dai, 2005; Hertz and Yanover, 2006).

Most of the currently available MHC-II binding prediction methods focus on identifying

a putative 9-mer MHC-II binding core region, e.g., based on the degree of match with a 9-

mer MHC-II binding motif, typically constructed using one of the motif finding algorithms.

For example, MEME (Bailey and Elkan, 1995), Gibbs sampling (Lawrence et al., 1993), ma-

trix optimization techniques (MOTs) (Singh and Raghava, unpublished data), evolutionary

algorithms (Fonseca and Fleming, 1993), Mont Carlo (MC) search (Metropolis et al., 2004),

and linear programming (Bennett and Mangasarian, 1992) form the basis of MHC-II binding

peptide prediction methods RankPEP (Reche et al., 2004), Gibbs (Nielsen et al., 2004), HLA-

DR4Pred (Bhasin and Raghava, 2004), MOEA (Rajapakse et al., 2007), NetMHCII (Nielsen

et al., 2007), and LP (Murugan and Dai, 2005), respectively. The success of these MHC-II pre-

diction methods in identifying MHC-II peptides relies on the effectiveness of the corresponding

motif-finding methods in recognizing the motif that characterizes the 9-mer core of MHC-II

binding peptides. An inherent limitation of such MHC-II prediction methods is their inability

to make use of any potentially useful signals that lie outside the 9-mer core region (Chang
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et al., 2006; Nielsen et al., 2007). Moreover, Wang et al. (Wang et al., 2008) showed that

existing MHC-II prediction tools lack consistency in identifying the 9-mer binding cores.

Recently, two methods (Cui et al., 2006a; Salomon and Flower, 2006) for predicting flex-

ible length MHC-II peptides have been proposed. Both methods use the entire sequences of

MHC-II peptides (as opposed to only the 9-mer cores) for training MHC-II binding peptide

predictors. The first method (Cui et al., 2006a) maps a variable length peptide into a fixed

length feature vector obtained from sequence-derived structural and physicochemical proper-

ties of the peptide. The second method (Salomon and Flower, 2006) uses a sequence kernel that

defines the pair-wise similarity of variable-length peptides as the average score of all possible

local alignments between the corresponding amino acid sequences.

Against this background, the main contributions of this paper to the state-of-the-art in

predicting flexible length MHC-II peptides are as follows:

(a) Novel multiple instance learning (MIL) and multiple instance regression (MIR) formu-

lations (respectively) of the flexible length MHC-II binding prediction problem and the

MHC-II binding affinity prediction problem. In this setting, a peptide sequence, regard-

less of its length, is represented by a bag of 9-mer subsequences. The resulting bags are

labeled with a binary class label (indicating whether or not the peptide sequence binds to

an MHC-II molecule) or a binding affinity (respectively). This avoids the need to know

the precise location of the 9-mer MHC-II binding core within the peptide sequence prior

to training the corresponding classifier or regressor. The 9-mer binding cores are instead

determined as a result of training.

(b) MILESreg, an adaptation of MILES (Chen et al., 2006) for multiple instance regression

on bags of amino acid sequences.

(c) MHCMIR, a novel method for predicting the binding affinity of flexible lenghth MHC-II

peptides using MILESreg. The performance of MHCMIR evaluated on a benchmark

dataset covering 13 HLA-DR and three H2-IA alleles demonstrates the feasibility of our

proposed approach and shows that the proposed MHCMIR method is competitive with
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the state-of-the-art methods for predicting MHC-II binding peptides on a majority of

MHC-II alleles. An implementation of MHCMIR as an online web server for predicting

MHC-II binding affinity is freely accessible at http://ailab.cs.iastate.edu/mhcmir.

Multiple instance learning

The multiple instance learning (MIL) problem, first introduced by Dietterich et al. (Diet-

terich et al., 1997) was motivated by a challenging classification task in drug discovery where

the goal is to determine whether or not a given molecule will bind to a desired protein binding

site (Dietterich et al., 1997). In this task, each molecule can adopt multiple shapes (confor-

mations) as a consequence of rotation of some internal bonds. A good drug candidate is one

that has one or more conformations that bind tightly to the desired binding site on a target

protein whereas a poor drug candidate is one that has no conformations that bind tightly to

the desired binding site on the target protein. A multiple instance learning (MIL) formulation

of this problem (Dietterich et al., 1997) involves representing each candidate molecule by a bag

of instances, with each instance in the bag representing a unique conformation assumed by the

molecule. Under the so-called standard MIL assumption, a molecule (i.e., the corresponding

bag of conformations) is labeled positive if and only if at least one of the conformations in

the bag binds tightly to the desired binding site on the target protein; Otherwise, it is labeled

negative. More generally, a bag is labeled positive if it contains at least one positive instance,

and negative otherwise. During classification, the MIL classifier is given a bag of instances to

be assigned a positive or negative label based on the instances in the bag. What makes the

MIL problem challenging is the fact that the learning algorithm has access to the makeup of,

and the label assigned to, each bag; but not the specific instance(s) in a positively labeled bag

that are responsible for the positive label.

In the standard (single instance) supervised classifier learning scenario, typically, each

instance (input to the classifier) is represented by an ordered tuple of attribute values in the

instance space I = D1 × D2 × . . . × Dn, where Di is the domain of the ith attribute. The

output of the classifier is a class label drawn from a set C of mutually exclusive classes. A

http://ailab.cs.iastate.edu/mhcmir
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training example is a labeled instance in the form 〈Xi, c(Xi)〉 where Xi ∈ I and c : I → C

is unknown function that assigns to an instance Xi its corresponding class label c(Xi). For

simplicity we consider only the binary classification problem in which C = {−1, 1}. Given

a collection of training examples, E = {〈X1, c(X1)〉, . . . , 〈Xn, c(Xn)〉}, the goal of the (single

instance) learner to learn a function c∗ that approximates c as well as possible (as measured

by some pre-specified performance criterion, e.g., accuracy of classification).

The MIL problem involves training a classifier to label bags of instances (as opposed to

individual instances as is usually the case in the standard supervised learning scenario). Let

B = {B1, B2, . . . , Bm} be a collection of bags. Let Bi = {Xi1, Xi2, . . . , Xiki} denote a bag of

ki instances (ki ≥ 1). The set of multiple instance training examples, EMI , is a collection of

ordered pairs 〈Bi, f(Bi)〉 where f is unknown function that assigns to each bag Bi a class label

f(Bi) ∈ {−1, 1}. Under the standard multiple instance learning assumption (Dietterich et al.,

1997), f(Bi) = −1 iff ∀j ∈ {1 · · · ki}, c(Xij) = −1; and f(Bi) = 1 iff ∃j ∈ {1 · · · ki}, such that

c(Xij) = 1. Given EMI , a collection of MI training examples, the goal of an multiple instance

learner is to learn as good an approximation of the function f as possible (as measured by

some pre-specified performance measure e.g., accuracy of classification of bags).

Dietterich et al. (Dietterich et al., 1997) proposed a solution to the MIL problem under the

standard MIL assumption using a hypothesis space of axis-parallel rectangles (see Figures 1

and 2). Figure 1 (adapted from (Dietterich et al., 1997)) shows a schematic diagram of the MIL

problem wherein instances are represented as points in a two dimensional Euclidean instance

space. Instances that belong to the same bag are shown using the same shape. Unfilled shapes

represent instances that belong to the positively labeled bags; filled shapes represent instances

that belong to the negatively labeled bags. An axis parallel rectangle is used to classify bags as

follows: a bag is assigned a positive label if at least one of its instances is contained within the

rectangle; and a negative label otherwise. In this setting, given a set of labeled bags, the goal

of the MIL algorithm is to identify an axis parallel rectangle that includes at least one unfilled

point of each shape (i.e., at least one positively labeled instance from each positively labeled

bag) and does not include any filled points (i.e., instances from negatively labeled bags). Such
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Figure 1 A multiple instance classifier learning problem. Unfilled shapes
represent instances from positively labeled bags; filled shapes rep-
resent instances from negatively labeled bags. Instances extracted
from the same bag are shown using the same shape. This figure
is adapted from Figure 14 in (Dietterich et al., 1997).

a solution is shown in Figure 2.

Subsequently, many solutions to the MIL problem and its variants have been investigated

in the literature. Ramon and De Raedt (Ramon and De Raedt, 2000) introduced a variant of

the back-propagation algorithm for training a neural network for multiple instance classifica-

tion problem. Wang and Zucker (Wang and Zucker, 2000) proposed variants of the k-nearest

neighbor (k-NN) algorithm. Maron and Lozano-Perez (Maron and Lozano-Perez, 1998) in-

troduced the diverse density (DD) framework for solving multiple instance classifier learning

problems. The basic idea behind the DD method is to locate a point in the feature space

that is close to at least one instance from every positive bag and as far away as possible from

instances in the negative bags. Zhang and Goldman proposed EM-DD (Zhang and Goldman,

2001) which improves on DD by using Expectation Maximization (EM). The difficulty of MIL

comes from the ambiguity of not knowing which of the instances in a bag is most likely to be

responsible for its positive label. EM-DD models the mapping of instances to labels assigned

to the bag using a set of hidden variables, which are estimated using the EM. EM-DD starts

with an initial guess of the solution (obtained using original DD algorithm), and refines the
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Figure 2 Solving the MIL problem using axis parallel rectangles (APR).
The solid rectangle represents the initial solution, a rectangle that
covers all instances that belong to positively labeled bags. The
dashed rectangle represents the final APR solution, a rectangle
that covers at least one positive instance from each positively
labeled bag and no instances from negatively labeled bags. This
figure is adapted from Figure 15 in (Dietterich et al., 1997).

guess by applying EM. Andrews et al. (Andrews et al., 2003) and Gartner et al. (Gartner

et al., 2002) have proposed adaptations of support vector machines that involve changing the

objective function or the kernel function to suit the multiple instance classification problem.

Ray and Craven (Ray and Craven, 2005) compared several multiple instance classifier learning

algorithms as well as their standard supervised learning counterparts. Scott et al. (Scott et al.,

2005) introduced a generalization of the multiple instance learning model in which all of the

instances in a bag are used to determine its label. Tao et al. (Tao et al., 2008) have explored

kernel functions for the generalized multiple instance learning problem.

In addition to the drug discovery problem (Dietterich et al., 1997), MIL algorithms have

been used, with varying degrees of success, on a number of practical problems including:

content-based image retrieval (CBIR) (Maron and Ratan, 1998; Zhang et al., 2002) in which

each image is viewed as a bag of objects (image regions) and an image is assigned a label based

on the presence or absence of specific objects; web page classification (Zhou et al., 2005) in

which each web page is modeled by a bag of pages that it links to, and is labeled positive based
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on the user’s interest in at least one of the pages that a given page links to; and computer-aided

diagnosis (Fung et al., 2007) in which each medical case is modeled by a bag of medical images

(e.g., CT scans, X-ray, MRI etc) and is labeled positively if at least one of these medical images

indicate malignant tumors and lesions.

The multiple instance regression (MIR) problem is a generalization of the MIL problem

where each bag is labeled with a real number (as opposed to a discrete class label). Several

MIR algorithms have been reported in the literature including (Ray and Page, 2001; Zhang

and Goldman, 2001; Goldman and Scott, 2003).

MIL formulation of the MHC-II binding peptide prediction problem

We now proceed to introduce an MIL formulation of the variable length MHC-II binding

peptide prediction problem.

Recall that a 9-mer core region is believed to be essential for MHC-II binding (Madden,

1995; Rammensee et al., 1995). We represent each variable length MHC-II peptide sequence

by a bag of all 9-mer subsequences extracted from it. Under the standard MIL assumption, we

assign a positive label to a bag of 9-mers extracted from an MHC-II binding peptide; and a

negative label to a bag of 9-mers extracted from a non MHC-II binding peptide. Figure 3 shows

an example of an MHC-II binding peptide and its mapping into a bag of 9-mer subsequences.

It should be noted that labels are associated with bags of 9-mers, and not individual 9-mers.

Consequently, in preparing the training data, we do not need to know the 9-mer binding cores.

The proposed MIL formulation of the problem of predicting MHC-II binding peptide offers

several advantages over most of the existing MHC-II prediction methods:

(a) Unlike in the case of MHC-II binding prediction methods designed that work with fixed

length peptides, there is no need to know the precise location of 9-mer binding cores in

MHC-II binding peptides in the training data.

(b) Unlike MHC-II binding prediction methods that use only the positively labeled data to

determine a 9-mer binding core motif, our method makes use of both positive (i.e., 9-

mers extracted from binders) and negatively labeled data (i.e., 9-mers extracted from
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Figure 3 An example of an MHC-II binding peptide and its correspond-
ing multiple instance bag. Bold subsequence indicates the 9-mer
binding core. Mapping the peptide sequence into a bag does not
require the identification of the 9-mer binding core because no
labels are associated with the instances of the bag.

non-binders) to determine such binding core such that the performance of the classifier

is optimize.

(c) The resulting classifier can predict the MHC-II binding activity of a peptide of virtually

any length (because the input to the classifier is a bag (multiset) of all 9-mers extracted

from the peptide).

(d) The resulting classifier not only predicts the MHC-II binding activity of flexible length

MHC-II peptides but also predicts the 9-mer binding core.

The problem of learning to predict the MHC-II binding affinities of flexible length peptides

can be formulated as a multiple instance regression problem in a manner similar to that

described above for the classification setting, simply by mapping each peptide to a bag of

9-mers and substituting the class labels with the measured real-valued binding affinities for

each peptide.
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In summary, both qualitative and quantitative predictions of the MHC-II binding activity of

peptides can be obtained using predictive models based on the multiple instance formulations of

the corresponding classification and regression problems (respectively). The resulting multiple

instance problems can be solved using the corresponding multiple instance learning algorithms

or multiple instance regression algorithms available in the literature. In this paper, we focus

on the quantitative prediction of the binding activity of MHC-II peptides using a multiple

instance regression algorithm.

Materials and Methods

Data

We used the IEDB benchmark dataset introduced in (Nielsen et al., 2007) in our experi-

ments. The dataset consists of peptides along with their IC50 binding affinities for 14 HLA-DR

and three H2-IA alleles (hereafter referred to as IEDB dataset for short). Details of the IEDB

benchmark dataset are summarized in Table 1. Because each peptide is labeled with its binding

affinity (IC50) value, peptides were categorized into binders and non-binders using a binding

affinity threshold of 500 nM (Nielsen et al., 2007). To avoid overly optimistic estimates of the

performance of MHC-II binding peptide prediction methods, it is important to ensure that

the peptide sequences used to evaluate the performance of the predictor do not share a high

degree of sequence overlap (or similarity) with peptide sequences in the training set used to

train the predictor. Nielsen et al. (2007) have partitioned each IEDB allele dataset into five

subsets so as to minimize the degree of sequence overlap between any pair of subsets. In our

experiments, we used this partitioning of each MHC-II allele dataset in our 5-fold cross vali-

dation experiments. Following (Rajapakse et al., 2007), we excluded the DRB3-0101 MHC-II

allele dataset from our experiments because of its highly skewed distribution (only 3 binders

as opposed to 99 non-binders). Recall that in 5-fold cross validation, the dataset has to be

partitioned into 5 non-overlapping subsets. With only 3 MHC-II binders in the dataset, at

least 2 of the 5 subsets will have 0 positive instances. Consequently, the computation of AUC

is meaningless in such a setting. Therefore, if we were to report AUC estimated using 5-fold
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cross-validation on the DRB3-0101 dataset we would need to either exclude the 2 subsets with

0 positive instances or by combine the predictions over the 5 subsets and compute a single

value for the AUC.

MHCMIR method

In order to explore the feasibility of predicting MHC-II binding activity of peptides based on

the proposed multiple instance regression formulation, we developed MHCMIR, a novel method

for predicting the binding affinity of MHC-II peptides using multiple instance regression. Given

a dataset of MHC-II peptides where each peptide is labeled with its experimentally determined

binding affinity (IC50 value), MHCMIR maps each peptide to its corresponding bag of 9-mers

and uses the data in its multiple instance representation to train a multiple instance regression

model. The learned multiple instance regression model can be used to predict the affinity of

any query peptide by providing as input to the model the bag of 9-mers representation of the

query peptide sequence.

In this study, we chose to adapt an existing multiple instance learning algorithm, MILES

(multiple instance learning via embedded selection) (Chen et al., 2006), to work in the regres-

sion (as opposed to classification) setting. The original algorithm, MILES, maps each bag of

instances into a meta instance constructed by applying an Euclidean distance based similarity

measure to instances within each bag. Then, a 1-norm SVM classifier (Zhu et al., 2004) is

trained on the resulting dataset of meta instances. The competitive performance of MILES,

and its low computational cost of training are some of its main advantages relative to other

MIL algorithms (Chen et al., 2006).

Adapting the MILES algorithm for training a multiple instance classifier into a multiple

instance regression algorithm is rather straightforward. All we need to do is to replace the

1-norm SVM classifier by a support vector regression (SVR) model (Shevade et al., 2000).

Because in our application, the bags to be labeled are comprised of 9-mers over the amino-

acid alphabet, we replaced the Euclidean distance used in MILES for transforming a bag of

instances into a meta instance by a distance function that is customized for calculating the
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distance between amino acid sequences. This distance function is based on the BLOSUM62

amino acid substitution matrix (Henikoff and Henikoff, 1992).

The pseudocode shown in Algorithm 1 summarizes MILESreg, our proposed multiple in-

stance regression algorithm. The function dist(s1, s2) computes the distance between two

9-mers, s1 and s2. Note that BLOSUM62(aa1, aa2) is the corresponding BLOSUM62 matrix

entry for the amino acids aa1 and aa2 and s[i] denotes the amino acid in the ith position in

the sequence s.

Algorithm 1 Training MILESreg

1: Input : B = {〈B1, y1〉, . . . 〈Bm, ym〉} set of training bags
2: Let C =

{
x1, . . . , xn

}
be set of all instances extracted from B

3: for all i such that 〈Bi, yi〉 ∈ B do
4: Let Ii be a new instance of n attributes
5: for all k such that instance xk ∈ C do
6: Set kth attribute in Ii to minj dist(xij , xk)
7: end for
8: end for
9: Build an SVR model using meta instances I

10:

11: Function: dist
12: Parameters : s1 and s2 two 9-mer subsequences
13: for i = 1 to 9 do
14: d+ = BLOSUM62(s1[i], s2[i])
15: end for
16: if (d ≤ 0) then
17: return 1
18: else
19: return 1

d

20: end if

Predicting the label of a test bag Bi is performed in two steps. First, Bi is mapped into a

meta instance using the set of training instances C and the procedure described in lines 3 to

6 in the pseudocode. Then, a predicted real value is assigned to the meta-instance using the

learned support vector regression model.
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Results and Discussion

We compared the predictive performance of MHCMIR with that of several MHC-II binding

peptide prediction methods reported in the literature: Gibbs sampler (Nielsen et al., 2004),

TEPITOPE (Sturniolo et al., 1999), SVRMHC (Liu et al., 2006), MHCPred (Hattotuwagama

et al., 2004), ARB (Bui et al., 2005), NetMCHII (Nielsen et al., 2007), and MOEA (Rajapakse

et al., 2007). Because most reports of MHC-II binding activity prediction methods in the

literature focus on qualitative prediction of MHC-II binding activity, although MHCMIR is

able to produce both quantitative and qualitative predictions of MHC-II binding activity (the

latter by comparing the predicted binding affinity value with a threshold), our comparisons

focus on qualitative predictions of MHC-II binding activity. Specifically, we compared the

estimated area under ROC curve (AUC) (Swets, 1988) for the different methods. In the

case of MHCMIR, Gibbs sampler, NetMHCII (Nielsen et al., 2007), and MOEA (Rajapakse

et al., 2007) the performance estimates were obtained using 5-fold cross validation on the

partitioning of each MHC-II allele dataset into 5 subsets, ensuring minimal sequence overlap

between the different subsets provided by Nielsen et al. (Nielsen et al., 2007). Because the

codes for the SVRMHC, MHCPred, and ARB methods are not readily available, estimates

of the performance of these methods were obtained by submitting the data to the online web

servers that implement the respective methods (using the default parameter setting for each

server). As noted in (Nielsen et al., 2007), the reported performance of ARB method should

be interpreted with caution because the ARB method has been trained on data from IEDB

database (Peters et al., 2005), which, because of the overlap between the training and test

data, gives it an unfair advantage over other methods.

Table 2 compares the predictive performance, in terms of AUC, of the different MHC-II

peptide prediction methods. For a better visualization of the pairwise comparisons between

MHCMIR and other methods reported in Table 2, we used “*” to indicate results that are

outperformed by MHCMIR method. “-” indicates unavailable information either because the

online server does not support the corresponding allele (e.g., SVRMHC, MHCPred, and ARB

on a number of allele datasets) or because the data was not provided in the published work
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(e.g., detailed results of Gibbs method on the three mouse allele datasets were not provided in

(Nielsen et al., 2007)). The results show that MHCMIR has AUC that is superior to that of

the other methods on a majority of the MHC-II allele datasets. For example, MHCMIR out-

performs both NetMHCII and MOEA, the latest MHC-II binding peptide prediction method

reported in the literature, on 11 out of the 16 allele datasets. In addition, MHCMIR out-

performs Gibbs Sampler method on 11 out of 13 allele datasets. It is worth noting that the

MHCMIR is the only method with an estimated AUC that is greater than 0.7 on each of the

datasets.

In addition to the AUC, Table 3 compares the performance of the different MHC-II peptide

prediction methods as estimated by the Pearson’s correlation coefficient (Urdan, 2005) between

the predicted and actual labels. MOEA has not been included in this comparison because its

performance has been reported using only AUC (Rajapakse et al., 2007). MHCMIR has a

better correlation coefficient than NetMHCII on 8 out of the 13 HLA-DR allele datasets.

Overall, the results show that MHCMIR is very competitive with the state-of-the-art methods

for the same problem.

Statistical analysis

In comparing two classifiers, statistical tests can be employed to determine whether the

difference in performance between the two classifiers is significant or not. For comparing

multiple classifiers on multiple datasets, we followed the procedure that has recently been

recommended by Demšar (2006) which involves comparing the average rank of the classifiers

across the different datasets.

The statistical analysis of the performance comparisons was limited to NetMHCII, MOEA,

and MHCMIR methods because these are only the methods with reported performance (AUC)

on each of the allele datasets. First, the different classifiers are ranked on the basis of their

observed performance on each data set (see Table 4). Then we used the Friedman test to

determine whether the measured average ranks are significantly different from the mean rank

under the null hypothesis. We found that at 0.05 level of significance the null hypothesis could
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Table 1 Summary of the IEDB benchmark dataset. Binding peptides were
identified using an IC50 binding threshold of 500 nM.

Dataset Binders Non-binders
DRB1-0101 920 283
DRB1-0301 65 409
DRB1-0401 209 248
DRB1-0404 74 94
DRB1-0405 88 83
DRB1-0701 125 185
DRB1-0802 58 116
DRB1-0901 47 70
DRB1-1101 95 264
DRB1-1302 101 78
DRB1-1501 188 177
DRB3-0101 3 99
DRB4-0101 74 107
DRB5-0101 112 231
H2-IAb 43 33
H2-IAd 56 286
H2-IAs 35 91

not be rejected. Hence, we concluded that the reported performances of the three methods are

not significantly different.

MHCMIR has the best average rank of 1.63 while the average ranks for MOEA and

NetMHCII are 2.06 and 2.31, respectively (As noted by Demšar, the average ranks of the

classifiers provide a reasonably fair comparison of the classifiers (Demšar, 2006)).

Multiple Instance Learning Approaches to MHC-II prediction methods

The multiple instance learning literature offers three broad classes of approaches to MIL

based on different assumptions regarding the relation between the label assigned to a bag and

the labels of instances contained in the corresponding bag. In what follows, we demonstrate

that the different MIL methods have parallels among the existing approaches for predicting

MHC-II binding peptides. We further argue that the MIL formulation of the MHC-II binding

peptide prediction problem offers several advantages over existing methods.

The first class of MIL methods is the witness-based methods (Maron and Lozano-Perez,
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1998; Zhang and Goldman, 2001; Dietterich et al., 1997; Andrews et al., 2003; Mangasarian and

Wild, 2005; Ray and Page, 2001) which search for a single positive instance (witness) within

each positive bag. Existing MHC-II prediction methods that pre-determine a single 9-mer core

within each binding peptide (Reche et al., 2004; Nielsen et al., 2004; Bui et al., 2005; Liu et al.,

2006; Donnes and Kohlbacher, 2006; Nielsen et al., 2007; Rajapakse et al., 2007) can be seen as

the counterparts of the witness-based MIL methods. However, the MIL formulation of flexible

length MHC-II peptides proposed in this study offers two major advantages over this family

of MHC-II binding peptide prediction methods:

• First, our approach does not require the pre-identification of the binding cores; the

binding cores are identified as a side-effect of learning an MIR model that optimizes the

predictive performance on the MHC-II binding affinity prediction task. In contrast, the

performance of the MHC-II prediction methods that first identify 9-mer binding cores and

then use them to construct a predictor (e.g., using weight matrix) is critically dependent

on the correct identification of the 9-mer binding cores.

• Second, our approach uses training data obtained from both the binders and non-binders

to identify the binding cores that maximize the predictive performance of the learned

model whereas the MHC-II binding peptide prediction methods that rely on pre-identified

9-mer binding cores typically use only the data from the binders. As shown by several

studies (Murugan and Dai, 2005; Nielsen et al., 2007; Rajapakse et al., 2007) including

the one reported in this paper, using data from both the binders and non-binders to

identify the MHC-II binding cores yields predictive performance that is superior to that

of methods that rely only on the binders.

The second broad class of MIL methods is the generalized MIL methods that operate un-

der the assumption that all instances within a bag contribute the bag label (Ray and Craven,

2005; Zhou and Zhang, 2007; Gartner et al., 2002). Two recently proposed MHC-II prediction

methods (Cui et al., 2006a) and (Salomon and Flower, 2006) which train their classifiers us-

ing the entire peptide sequence can be seen as variants of the generalized MIL methods. In

principle, these two SVM-based qualitative MHC-II binding peptide prediction methods can
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be easily adapted to obtain quantitative MHC-II predictions by replacing the SVM classifiers

with support vector regression models but such an adaptation remains to be explored.

The third broad class of MIL methods is the generalized MIL methods which operate under

the assumption that only a subset of the instances within a bag contribute the bag label (Chen

et al., 2006; Weidmann et al., 2003). The iterative approach for predicting MHC-II peptides

(Murugan and Dai, 2005) can be seen as an exemplar of this third class of MIL methods.

However, the application of several additional variants of such generalized MIL methods to the

problem of MHC-II binding peptide or binding affinity prediction remain to be explored.

In summary, the multiple instance based formulations of the flexible length MHC-II binding

peptide and binding affinity prediction problems introduced in this paper open up, in light of

the parallels between MIL methods and MHC-II binding peptide prediction methods, the

possibility of adapting several other MIL and MIR based methods in this setting.

Conclusion

We have introduced a novel formulation of the problem of learning to predict variable length

MHC-II binding peptides as an instance of a multiple instance learning problem. Unlike many

existing MHC-II binding peptide prediction methods, the proposed method does not require

the pre-identification of the 9-mer core region in each binding peptide prior to training the

model. Moreover, the 9-mer binding cores are determined (during the training of the multiple

instance learning algorithm) from both binding and non-binding training data such that the

predictive performance of the learned model is maximized.

Based on our proposed formulation, we introduced a novel method, MHCMIR, for pre-

dicting the binding affinity of variable length MHC-II peptides. MHCMIR utilizes MILESreg,

our adaptation of MILES MIL classification method, for performing multiple instance regres-

sion on bags of amino acid sequences. Our experiments on the largest available benchmark

dataset covering 13 HLA-DR alleles and three H2-IA alleles have shown that MHCMIR is

quite competitive with the state-of-the-art methods for predicting MHC-II binding peptides.

Our formulation of the problems of qualitatively and quantitatively predicting flexible length
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MHC-II peptides as multiple instance learning and multiple instance regression problems, re-

spectively, has opened up the possibility of adapting a broad range of multiple instance methods

for classification and regression in this setting.

We have made our implementation of MHCMIR freely available to the scientific community

in the form of an online web server for predicting the binding affinity of MHC-II peptides. The

server can be accessed at http://ailab.cs.iastate.edu/mhcmir.
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Table 4 AUC values for NetMHCII, MOEA, and MHCMIR methods eval-
uated on IEDB benchmark datasets. For each dataset, the rank
of each classifier is shown in parentheses.

Dataset NetMHCII MOEA MHCMIR
DRB1-0101 0.716(2) 0.651(3) 0.780(1)
DRB1-0301 0.765(3) 0.778(1) 0.772(2)
DRB1-0401 0.758(2) 0.725(3) 0.774(1)
DRB1-0404 0.785(3) 0.786(2) 0.806(1)
DRB1-0405 0.735(2) 0.756(1) 0.715(3)
DRB1-0701 0.787(1) 0.735(3) 0.744(2)
DRB1-0802 0.756(3) 0.773(2) 0.779(1)
DRB1-0901 0.775(1) 0.712(3) 0.713(2)
DRB1-1101 0.734(3) 0.759(1) 0.758(2)
DRB1-1302 0.818(3) 0.820(2) 0.850(1)
DRB1-1501 0.736(3) 0.743(2) 0.781(1)
DRB4-0101 0.736(3) 0.759(2) 0.821(1)
DRB5-0101 0.664(2) 0.660(3) 0.708(1)
H2-IAb 0.908(3) 0.919(2) 0.924(1)
H2-IAd 0.818(2) 0.855(1) 0.791(3)
H2-IAs 0.898(1) 0.889(2) 0.843(3)
Avg. ranks 0.774(2.31) 0.770(2.06) 0.785(1.63)
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CHAPTER 7. GENERAL CONCLUSIONS

Summary and discussion

Computational methods for reliably identifying potential vaccine candidates (i.e., epitopes

that invoke strong response from both T-cells and B-cells) are highly desirable. Unfortunately,

the predictive performance of such prediction tool is still far from ideal. Machine learning offers

one of the most cost-effective and widely used approaches to developing epitope prediction

tools. We have proposed several machine learning based methods for epitope prediction using

only amino acid sequence information. First, we have introduced a method, BCPred, for

predicting linear B-cell epitopes using the subsequence kernel. Our results have shown that

BCPred significantly outperforms several other SVM based classifiers and a number of existing

linear B-cell epitope prediction methods.

One of the challenges for developing reliable linear B-cell epitope predictors is how to deal

with the large variability in the length of the epitopes which ranges from 3 to 30 amino acids

in length. Previous machine learning based linear B-cell epitope prediction methods, including

BCPred, require training and testing the classifier using sequences of fixed length. We have

constructed the first flexible length linear B-cell epitopes and explored two different approaches

for training classifiers using variable length amino acid sequences. Based on our results, we

have proposed FBCPred, a novel method for predicting flexible length linear B-cell epitopes

using the subsequence kernel. Unlike other linear B-cell epitope prediction methods, FBCPred

can predict linear B-cell epitopes of virtually any specified length.

For predicting MHC-I binding peptides, matrix based methods are fairly believed to be

less efficient than machine learning based methods due to the inability of many matrix based
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methods to modeling the correlations between different positions in the learned model. We

have presented a comparative study where we have directly compared an extensive number

of machine learning and matrix based MHC-I predictors. Unlike previous comparison studies

comparing different MHC-I prediction servers (note that these servers have been developed

using different training data), our study provides a direct comparison of different prediction

methods using a unified experimental setup (e.g., all methods were trained and evaluated

using the same training and test sets, respectively). The results have shown that AOMM

and SMMBin, two matrix based methods that we have proposed in this study, were highly

competitive with a broad class of machine learning methods for predicting MHC-I peptides.

For predicting MHC-II binding peptides, we have shown that the performance of many

MHC-II binding peptide prediction methods reported in the literature is substantially overly-

optimistic because the performance of such methods had been estimated using data sets of

unique peptides without applying any similarity reduction procedure to eliminate highly similar

peptides. Because MHC-II peptides have lengths that vary over a broad range, similarity

reduction of MHC-II peptides is not a straightforward task. We have shown that the previously

reported similarity reduction methods may not eliminate highly similar peptides, i.e., peptides

that share > 80% sequence identity still pass the similarity test. We have proposed a two-step

similarity reduction procedure that is much more stringent than those currently in use for

similarity reduction with MHC-II benchmark datasets. We have introduced three similarity-

reduced MHC-II benchmark data sets derived from MHCPEP (Brusic et al., 1998), MHCBN

(Bhasin et al., 2003), and IEDB (Peters et al., 2005) databases and have utilized them in

our experiments to show the pitfalls of these commonly used data sets for evaluating the

performance of machine learning approaches to MHC-II peptide binding predictions. Finally,

we have formulated the problems of qualitatively and quantitatively predicting flexible length

MHC-II peptides as multiple instance learning and multiple instance regression problems,

respectively. Based on this formulation, we have introduced MHCMIR, a novel method for

predicting MHC-II binding affinity using multiple instance regression. We have presented

results of experiments using a benchmark dataset covering 13 HLA-DR and three H2-IA alleles
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that showed that MHCMIR is competitive with the state-of-the-art methods for predicting

MHC-II binding peptides.

It is our hope that the results of this dissertation and our freely available benchmark data

sets and prediction servers will contribute to a better understanding of the dynamics of the

adaptive immune system and will facilitate more advances in the epitope prediction problem

which is a major challenge in Immunoinformatics.

Contributions

This dissertation has provided several contributions that can be categorized into three

categorizies:

• Algorithmic

– AUC optimized matrix method (AOMM), an algorithm for finding a position

specific scoring matrix (PSSM) that maximizes the AUC over the training data.

– Modified PSSM (MPSSM), a variant of the PSSM method (Henikoff and Henikoff,

1996) that utilizes motif and non-motif sequences in building the PSSM from the

provided training data.

– Qualitative via quantitative (QVQ), an approach for building a qualitative

scoring matrix using a quantitative matrix method.

– A formalization of the problem of qualitatively and quantitatively pre-

dicting flexible length major histocompatibility complex class II (MHC-

II) peptides as multiple instance learning and multiple instance regres-

sion problems, respectively.

– MILESreg, an adaptation of MILES (Chen et al., 2006) for multiple instance

regression over bags of amino acid sequences.

• Prediction servers and software
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– BCPREDS, a web server for predicting linear B-cell epitopes. The current im-

plementation supports three B-cell epitope prediction methods: (i) BCPred (EL-

Manzalawy et al., 2008d); (ii) FBCPred (EL-Manzalawy et al., 2008b); (iii) AAP

(Chen et al., 2007). The server is freely accessible at http://ailab.cs.iastate.

edu/bcpreds/

– MHCIPREDS, a web server for predicting MHC-I peptides using a number of

qualitative and quantitative MHC-I peptide prediction methods. The current im-

plementation of the server provides predictions for the 22 MHC-I HLA alleles. The

server is freely accessible at http://ailab.cs.iastate.edu/mhcipreds/

– MHCMIR, a web server for predicting MHC-II binding affinities using multiple

instance regression. The current version supports 13 HLA-DR alleles and three

mouse H2-IA alleles. The server is freely accessible at http://ailab.cs.iastate.

edu/mhcmir/

– WLSVM, a wrapper for integrating LibSVM (Chang and Lin, 2001) into Weka

framework (Witten and Frank, 2005). WLSVM has been contributed and integrated

into Weka since version 3.5.2.

– MPSSM, a Java program implementing our proposed MPSSM method. The pro-

gram is available upon request from the author.

– AOMM, a Java program implementing our proposed AOMM method. The pro-

gram is available upon request from the author.

• Benchmark data sets

– BCPred data sets, 10 homology-reduced data sets used in the evaluation and

implementation of BCPred method. To the best of our knowledge these are the

first and only available similarity-reduced linear B-cell epitope data sets. The data

sets can be downloaded from the BCPREDS server.

– FBCPred data sets, 2 flexible length linear B-cell epitope data sets used in the

evaluation and implementation of FBCPred method. To the best of our knowledge

http://ailab.cs.iastate.edu/bcpreds/
http://ailab.cs.iastate.edu/bcpreds/
http://ailab.cs.iastate.edu/mhcipreds/
http://ailab.cs.iastate.edu/mhcmir/
http://ailab.cs.iastate.edu/mhcmir/
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these are the first flexible length linear B-cell epitope data sets. The data sets can

be downloaded from the BCPREDS web server.

– MHC-I data sets, 22 HLA MHC-I allele-specific similarity-reduced data sets. The

data is available in two version, qualitative and quantitative, and can be downloaded

from the MHCIPREDS web server.

– MHC-II data sets, three benchmark data sets derived from MHCPEP (Brusic

et al., 1998), MHCBN (Bhasin et al., 2003), and IEDB (Peters et al., 2005) databases

using different similarity reduction methods. The data sets and the similarity re-

duction scripts can be downloaded from PLoS ONE web site, http://www.plosone.

org/article/info:doi%2F10.1371%2Fjournal.pone.0003268#s5, or be requested

from the author.

Future work

This dissertation has provided new machine learning based methods for attacking three

important epitope prediction related problems, predicting linear B-cell epitopes and predicting

both MHC-I and MHC-II binding peptides. From our study and several other related studies,

it seems that the problems of predicting MHC-II binding peptides and linear B-cell epitopes

are more challenging than the problem of predicting MHC-I binding peptides. The following

are some potential directions for future studies.

Predicting conformational B-cell epitopes

In this dissertation, we have focused on predicting linear B-cell epitopes using amino acid

sequence information. Although it is believed that a large majority of B-cell epitopes are dis-

continuous (Walter, 1986), experimental epitope identification has focused primarily on linear

B-cell epitopes (Flower, 2007). Because the number of available antigen-antibody complexes

in protein data bank (PDB) is limited, only few methods for predicting conformational B-cell

epitopes using structure information have been proposed. As enough data becomes available,

http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0003268#s5
http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0003268#s5
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the development of reliable conformational B-cell epitope prediction tools is expected to gain

more interest.

Predicting sub-types of linear B-cell epitopes

One approach of improving the performance of linear B-cell epitopes is to develop predictors

that focus on a sub-type of linear B-cell epitopes (e.g., predicting protective linear B-cell

epitopes (Söllner et al., 2008; EL-Manzalawy et al., 2008c)).

Improved prediction of MHC-II binding peptides using MIL/MIR methods

Our formulation of MHC-II binding peptide prediction problem as a multiple instance

learning problem has opened up the possibility of adapting a broad range of multiple instance

learning methods for classification and regression in this setting. Several avenues for further

improving the performance of MHCMIR could be explored: i) Expanding the coverage to more

MHC-II alleles; ii) Incorporating feature selection, feature abstraction, and dimensionality

reduction methods to reduce redundant and irrelevant features from the meta instance data

used to build the support vector regression model; iii) Exploring other regression methods (e.g.

Gaussian process (MacKay, 1998)) for building the regression model from the meta instance

data.

Exploring the application of the approaches and methods presented in this study

in several other Bioinformatics problems

Examples may include: i) The application of the scoring matrix methods, MPSSM, AOMM,

and SMMBin, in any Bioinformatics application where the scoring matrix approach is appli-

cable (e.g., predicting post translational modification sites (Caragea et al., 2007; Yang, 2007;

Xue et al., 2008)); ii) Implementing each residue in a protein sequence as a bag of its spatial

residues, where each spatial residue could be represented using a set of structure and physic-

ochemical features. Using this representation, multiple instance learning methods may be

applied for predicting functional sites using structure and sequence information (e.g., predict-
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ing conformational B-cell epitopes (Kulkarni-Kale et al., 2005; Haste Andersen et al., 2006) or

protein-RNA interface residues (Terribilini et al., 2006)).
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APPENDIX SUPPLEMETARY MATERIALS FOR CHAPTER 2

Table A.1 Performance of different methods on our BCP18 homology-re-
duced data set using 5-fold cross validation. BCPred method
denotes Ksub

(4,0.5).

Method ACC(%) Sn(%) Sp(%) CC AUC
Kspct

1 55.08 53.12 57.05 0.102 0.588
Kspct

2 59.28 60.57 57.99 0.186 0.636
Kspct

3 64.70 65.99 63.41 0.294 0.675
Kmsmtch

(3,1) 46.75 46.34 47.15 -0.065 0.465
Kmsmtch

(4,1) 57.79 57.72 57.86 0.156 0.599
Kmsmtch

(5,1) 64.77 61.92 67.62 0.296 0.691
Kmsmtch

(5,2) 55.01 56.50 53.52 0.100 0.568
LA 64.43 62.87 65.99 0.289 0.691
Ksub

(2,0.5) 61.52 61.92 61.11 0.230 0.668
Ksub

(3,0.5) 66.80 69.38 64.23 0.337 0.726
BCPred 69.04 65.72 72.36 0.382 0.751
RBF 56.98 57.99 55.96 0.140 0.601
AAP 66.94 56.91 76.96 0.346 0.699
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Table A.2 Performance of different methods on our BCP16 homology-re-
duced data set using 5-fold cross validation. BCPred method
denotes Ksub

(4,0.5).

Method ACC(%) Sn(%) Sp(%) CC AUC
Kspct

1 60.01 60.22 59.81 0.200 0.652
Kspct

2 58.99 59.54 58.45 0.180 0.612
Kspct

3 61.17 62.53 59.81 0.224 0.645
Kmsmtch

(3,1) 47.55 47.00 48.09 -0.049 0.460
Kmsmtch

(4,1) 54.36 52.86 55.86 0.087 0.569
Kmsmtch

(5,1) 64.24 61.58 66.89 0.285 0.667
Kmsmtch

(5,2) 54.70 55.18 54.22 0.094 0.563
LA 63.15 63.49 62.81 0.263 0.686
Ksub

(2,0.5) 63.76 63.62 63.90 0.275 0.681
Ksub

(3,0.5) 65.53 67.98 63.08 0.311 0.718
BCPred 65.94 74.93 56.95 0.324 0.730
RBF 57.29 56.81 57.77 0.146 0.594
AAP 65.05 60.90 69.21 0.302 0.689

Table A.3 Performance of different methods on our BCP14 homology-re-
duced data set using 5-fold cross validation. BCPred method
denotes Ksub

(4,0.5).

Method ACC(%) Sn(%) Sp(%) CC AUC
Kspct

1 55.66 54.76 56.56 0.113 0.582
Kspct

2 57.07 56.43 57.71 0.141 0.597
Kspct

3 65.75 66.71 64.78 0.315 0.675
Kmsmtch

(3,1) 50.06 49.23 50.90 0.001 0.506
Kmsmtch

(4,1) 57.07 55.53 58.61 0.142 0.596
Kmsmtch

(5,1) 63.11 65.04 61.18 0.262 0.649
Kmsmtch

(5,2) 55.98 54.24 57.71 0.120 0.574
LA 62.98 62.47 63.50 0.260 0.671
Ksub

(2,0.5) 60.48 60.41 60.54 0.210 0.647
Ksub

(3,0.5) 63.88 66.71 61.05 0.278 0.697
BCPred 64.78 73.14 56.43 0.300 0.733
RBF 57.65 58.35 56.94 0.153 0.603
AAP 61.38 55.40 67.35 0.229 0.665
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Table A.4 Performance of different methods on our BCP12 homology-re-
duced data set using 5-fold cross validation. BCPred method
denotes Ksub

(4,0.5).

Method ACC(%) Sn(%) Sp(%) CC AUC
Kspct

1 55.60 53.80 57.40 0.112 0.591
Kspct

2 57.21 58.17 56.24 0.144 0.606
Kspct

3 61.00 62.03 59.97 0.220 0.636
Kmsmtch

(3,1) 44.98 45.05 44.92 -0.100 0.450
Kmsmtch

(4,1) 53.47 53.80 53.15 0.070 0.548
Kmsmtch

(5,1) 56.89 65.51 48.26 0.140 0.594
Kmsmtch

(5,2) 53.41 52.38 54.44 0.068 0.535
LA 61.20 61.13 61.26 0.224 0.662
Ksub

(2,0.5) 59.91 61.00 58.82 0.198 0.643
Ksub

(3,0.5) 62.74 63.96 61.52 0.255 0.687
BCPred 65.83 53.80 77.86 0.326 0.709
RBF 59.33 60.36 58.30 0.187 0.620
AAP 64.22 69.50 58.94 0.286 0.663

Table A.5 BCPred predictions on RBD of SRAS-CoV S protein.

Position Epitope Score
142 PFSPDGKPCTPPALNC 1
159 WPLNDYGFYTTTGIGY 0.992
105 AWNTRNIDATSTGNYN 0.974
18 PSVYAWERKKISNCVA 0.946

Table A.6 AAP predictions on RBD of SRAS-CoV S protein.

Position Epitope Score
68 DSFVVKGDDVRQIAPG 1
140 NVPFSPDGKPCTPPAL 1
17 FPSVYAWERKKISNCV 1
166 FYTTTGIGYQPYRVVV 1
114 TSTGNYNYKYRYLKHG 1
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Table A.7 Bepipred predictions on RBD of SARS-CoV S protein.

No. Start Position End Position Peptide Peptide Length
1 17 17 F 1
2 72 72 V 1
3 75 88 DDVRQIAPGQTGVI 14
4 93 95 YKL 3
5 110 120 NIDATSTGNYN 11
6 133 133 P 1
7 136 154 RDISNVPFSPDGKPCTPPA 19
8 166 167 FY 2
9 171 174 GIGY 4

Table A.8 ABCPred predictions on RBD region of SARS-CoV S protein.

Rank Sequence Start position Score
1 MGCVLAWNTRNIDATS 100 0.93
2 TTTGIGYQPYRVVVLS 168 0.87
3 TSTGNYNYKYRYLKHG 114 0.86
4 DVRQIAPGQTGVIADY 76 0.83
4 PALNCYWPLNDYGFYT 153 0.83
5 TNLCPFGEVFNATKFP 3 0.82
5 DGKPCTPPALNCYWPL 146 0.82
5 DISNVPFSPDGKPCTP 137 0.82
5 TRNIDATSTGNYNYKY 108 0.82
6 KFPSVYAWERKKISNC 16 0.8
7 TGVIADYNYKLPDDFM 85 0.79
7 CFSNVYADSFVVKGDD 61 0.79
8 YRYLKHGKLRPFERDI 123 0.78
9 NCVADYSVLYNSTFFS 30 0.77
10 FSTFKCYGVSATKLND 44 0.76
11 ATKLNDLCFSNVYADS 54 0.74
12 FVVKGDDVRQIAPGQT 70 0.73
13 LNDYGFYTTTGIGYQP 161 0.72
14 SVLYNSTFFSTFKCYG 36 0.71
15 GEVFNATKFPSVYAWE 9 0.7
16 RVVVLSFELLNAPATV 178 0.65
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Figure A.1 Analysis of RBD of SARS-CoV S protein using Parker’s hy-
drophilic scale.

Figure A.2 ABCPred predictions on RBD region of SARS-CoV S protein.
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Figure A.3 BCPred predictions over entire SARS CoV S protein. “E”
indicates that the corresponding amino acid residue lies in a
predicted linear B-cell epitope. Shaded region represents the
RBD region.
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F., Watkins, D., and Sette, A. (2005). Automated generation and evaluation of specific

MHC binding predictive tools: ARB matrix applications. Immunogenetics, 57:304–314.

Bulashevska, A. and Eils, R. (2006). Predicting protein subcellular locations using hierarchical

ensemble of Bayesian classifiers based on Markov chains. BMC Bioinformatics, 7:298.

Burden, F. and Winkler, D. (2006). Predictive Bayesian neural network models of MHC class

II peptide binding. J. Mol. Graph. Model., 2005:481–9.

Buus, S., Lauemoller, S., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A.,

Hilden, J., Holm, A., and Brunak, S. (2003). Sensitive quantitative predictions of peptide-

MHC binding by a’Query by Committee’ artificial neural network approach. Tissue Antigens,

62:378–384.



155

Cai, C., Han, L., Ji, Z., Chen, X., and Chen, Y. (2003). SVM-Prot: web-based support vector

machine software for functional classification of a protein from its primary sequence. Nucleic

Acids Res., 31:3692–3697.

Caragea, C., Sinapov, J., Silvescu, A., Dobbs, D., and Honavar, V. (2007). Glycosylation

site prediction using ensembles of support vector machine classifiers. BMC Bioinformatics,

8:438.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chang, S., Ghosh, D., Kirschner, D., and Linderman, J. (2006). Peptide length-based predic-

tion of peptide-MHC class II binding. Bioinformatics, 22:2761.

Chen, J., Liu, H., Yang, J., and Chou, K. (2007). Prediction of linear B-cell epitopes using

amino acid pair antigenicity scale. Amino Acids, 33:423–428.

Chen, Y., Bi, J., and Wang, J. (2006). MILES: multiple-instance learning via embedded

instance selection. IEEE Trans. Pattern Anal. Mach. Intell., 28:1931–1947.

Chinnasamy, A., Sung, W., and Mittal, A. (2004). Protein structure and fold prediction using

tree-augmented naive Bayesian classifier. Pac. Symp. Biocomput., 387:98.

Clark, A., Florencio, C., Watkins, C., and Serayet, M. (2006). Planar languages and learnabil-

ity. International Colloquium on Grammatical Inference (ICGI06), pages 148–160.

Cui, J., Han, L., Lin, H., Tan, Z., Jiang, L., Cao, Z., and Chen, Y. (2006a). MHC-BPS: MHC-

binder prediction server for identifying peptides of flexible lengths from sequence-derived

physicochemical properties. Immunogenetics, 58:607–613.

Cui, J., Han, L., Lin, H., Tang, Z., Jiang, L., Cao, Z., and Chen, Y. (2006b). MHC-BPS:

MHC-binder prediction server for identifying peptides of flexible lengths from sequence-

derived physicochemical properties. Immunogenetics, 58:607–13.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


156
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Rammensee, H., Friede, T., and Stevanović, S. (1995). MHC ligands and peptide motifs: first

listing. Immunogenetics, 41:178–228.

Ramon, J. and De Raedt, L. (2000). Multi instance neural networks. Proceedings of the

ICML-2000 Workshop on Attribute-Value and Relational Learning.

Rangwala, H., DeRonne, K., Karypis, G., and of Computer Science, M. U. M. D. (2006).

Protein structure prediction using string kernels. Defense Technical Information Center.

Ray, S. and Craven, M. (2005). Supervised versus multiple instance learning: An empirical

comparison. In Proceedings of the Twentieth-Second International Conference on Machine

Learning, pages 697–704.

http://www.imtech.res.in/raghava/mhcbench/


165

Ray, S. and Page, D. (2001). Multiple instance regression. Proceedings of the Eighteenth

International Conference on Machine Learning, pages 425–432.

Reche, P., Glutting, J., Zhang, H., and Reinherz, E. (2004). Enhancement to the RANKPEP

resource for the prediction of peptide binding to MHC molecules using profiles. Immuno-

genetics, 56:405–419.

Saha, S., Bhasin, M., and Raghava, G. (2005). Bcipep: a database of B-cell epitopes. BMC

Genomics, 6:79.

Saha, S. and Raghava, G. (2004). BcePred: Prediction of continuous B-cell epitopes in antigenic

sequences using physico-chemical properties. Artificial Immune Systems, Third International

Conference (ICARIS 2004), LNCS, 3239:197–204.

Saha, S. and Raghava, G. (2006a). ABCPred benchmarking datasets. available at http:

//www.imtech.res.in/raghava/abcpred/dataset.html.

Saha, S. and Raghava, G. (2006b). Prediction of continuous B-cell epitopes in an antigen using

recurrent neural network. Proteins, 65:40–48.

Saigo, H., Vert, J., Ueda, N., and Akutsu, T. (2004). Protein homology detection using string

alignment kernels. Bioinformatics, 20:1682–1689.

Sainz, J. B., Rausch, J., Gallaher, W., Garry, R., and Wimley, W. (2005). Identification and

characterization of the putative fusion peptide of the severe acute respiratory syndrome-

associated coronavirus spike protein. Virology, 79:7195–7206.

Salomon, J. and Flower, D. (2006). Predicting class II MHC-peptide binding: a kernel based

approach using similarity scores. BMC Bioinformatics, 7:501.

Scott, S., Zhang, J., and Brown, J. (2005). On generalized multiple-instance learning. Int. J.

Comput. Intell. Appl., 5:21–35.

http://www.imtech.res.in/raghava/abcpred/dataset.html
http://www.imtech.res.in/raghava/abcpred/dataset.html


166

Seewald, A. and Kleedorfer, F. (2005). Lambda pruning: an approximation of the string

subsequence kernel. Technical report, Technical Report, Osterreichisches Forschungsinstitut

fur Artificial Intelligence, Wien, TR-2005-13.

Shevade, S., Keerthi, S., Bhattacharyya, C., and Murthy, K. (2000). Improvements to the

SMO algorithm for SVM regression. IEEE Trans. Neural. Netw., 11:1189.

Singh, H. and Raghava, G. (2001). ProPred: prediction of HLA-DR binding sites. Bioinfor-

matics, 17:1236–1237.
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