
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Service-oriented design in aspect-oriented and Petri
net-based approach
Tae-hyung Kim
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kim, Tae-hyung, "Service-oriented design in aspect-oriented and Petri net-based approach" (2007). Retrospective Theses and
Dissertations. 15985.
https://lib.dr.iastate.edu/rtd/15985

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15985?utm_source=lib.dr.iastate.edu%2Frtd%2F15985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Service-oriented design in aspect-oriented and Petri net-based approach

by

Tae-hyung Kim

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Carl K. Chang, Major Professor

Johnny S. Wong
Ying Cai
Dan Zhu

Morris Chang

Iowa State University

Ames, Iowa

2007

Copyright © Tae-hyung Kim, 2007. All rights reserved.

UMI Number: 3259509

3259509
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

ii

 TABLE OF CONTENTS

LIST OF TABLES...vi

LIST OF FIGURES ..vii

ACKNOWLEDGEMENTS ... ix

ABSTRACT ...x

CHAPTER 1. INTRODUCTION...1

1.1 Overview...1

1.2 Objectives ...2

1.3 Outline of Approach..3

1.4 Contributions...4

1.5 Dissertation Organization ..5

CHAPTER 2. BACKGROUND OF RESEARCH..6

2.1 Service-oriented Computing ..6

2.1.1 Services ..6

2.1.2 Service-oriented Architecture..7

2.2 Aspect-oriented Approach ...8

2.3 Petri Net ..9

2.3.1 Basic Petri Net..9

2.3.2 Time Extended Petri Nets ...11

2.3.3 High-Level Petri Nets ...12

2.3.4 Petri Net Markup Language (PNML)..12

CHAPTER 3. SOFTWARE SYSTEM DECOMPSITON WITH ASPECTS 14

iii

3.1 Introduction...14

3.2 Function-Class Decomposition with Aspect...16

3.2.1 Aspects ...16

3.2.2 Process of FCD-A...17

3.3 Example ..18

3.4 Related Work ..25

3.5 Summary and Discussion ..28

CHAPTER 4. SERVICE-ORINETED DESIGN WITH ASPECTS.................................... 30

4.1 Introduction...30

4.2 Services and Aspects ...31

4.2.1 Services ..32

4.2.2 Aspects ...35

4.3 Graphical Representation...38

4.3.1 Service Entity ...40

4.3.2 Service Chain..40

4.3.3 Service Net ...42

4.3.4 Aspect...43

4.3.5 Crosscut Relationship ...44

4.4 XML-Based Representation...47

4.4.1 Service Markup Language (SvML) ...48

4.4.2 Aspect Markup Language (AsML)..49

4.5 Weaving Process ...50

4.5.1 Weaving ...51

4.5.2 Overlapped Crosscut Points ..54

4.5.3 Restricted Instantiation of Aspects ..55

iv

4.6 Example ..57

4.6.1 Weaving ...59

4.6.2 Analysis..61

4.7 Related Work ..62

4.8 Summary and Discussion ..66

CHAPTER 5. EXTENSION OF SERVICE-ORIENTED DESINGS................................... 69

5.1 Introduction...69

5.2 Overview of Aspect-oriented Extension Mechanism..70

5.3 Extension Mechanism for Design-specific Data...74

5.3.1 Petri Net Extension Markup Language (PeML)...75

5.3.2 Extension Process ...76

5.3.3 Example..77

5.4 Extension Mechanism for Resource-related Data...79

5.4.1 Resource Extension Markup Language (ReML)..79

5.4.2 Resource Definition ..81

5.4.3 Resource Interference ...82

5.4.4 Extension Process ...83

5.4.5 Example..87

5.5 Related Work ..93

5.6 Summary and Discussion ..94

CHAPTER 6. CONCLUSIONS AND FUTURE WORK .. 97

6.1 Conclusions...97

6.2 Future Work..99

APPENDIX. ALGORITHMS ... 102

v

BIBLIOGRAPHY... 107

vi

LIST OF TABLES

Table 1: The crosscutting methods ..45

Table 2: The weaving results of the sequential server model..89

vii

LIST OF FIGURES

Figure 1: A basic Petri net ...10

Figure 2: The meta-model of PNML ...13

Figure 3: The process model of FCD-A...15

Figure 4: Process of FCD-A..18

Figure 5: The initial classes with the system-level functional module and

 the key aspects to be considered ..19

Figure 6: Allocating aspect links to the initially identified classes21

Figure 7: Analysis of aspect links after initial grouping decisions..23

Figure 8: Function-class and aspect views of the retailer system prior to

 identifying additional classes for the next level decomposition24

Figure 9: A sequential service with three atomic services ..33

Figure 10: A service-oriented system with a service entity and

 two service chains plus aspects ..38

Figure 11: The graphical representation of the crosscut relationship

 in the tagged value “pointcut”..46

Figure 12: The meta-model and structure of the SvML..48

Figure 13: The meta-model and structure of the AsML..49

Figure 14: The weaving process for generating an intergrate Petri net for a service51

Figure 15: The Petri net semantics for five crosscutting methods...52

Figure 16: An overlapped crosscut point with three aspects ...54

Figure 17: The aspect with the tagged value “sync”...56

Figure 18: The order service in the retailer service net with four aspects57

Figure 19: The integrated Petri nets for the different versions of the order service60

Figure 20: The meta-model of PeML including ReML ..72

viii

Figure 21: The weaving process for extending a Petri net for a service73

Figure 22: A PeML File ..75

Figure 23: The simulation results of integrated order services

 extended with the PeML file..78

Figure 24: A ReML file...80

Figure 25: Weaving instantiated resource aspects ..84

Figure 26: The augmented Petri net with two instantiated resource aspects..........................85

Figure 27: Multiple crosscutting of a service by a resource

 with the tagged value “limit” ...86

Figure 28: Two order services with the customer modeling ...88

Figure 29: The replaced weaving rules of the ReML file in Figure 2489

Figure 30: The augmented Petri nets for two order services

 after weaving the Resource_2.reml file..90

Figure 31: The simulation results of the sequential order service

 extended with two ReML files...91

Figure 32: The simulation results of the sequential and the parallel order service

 with varying resource availability ..92

ix

ACKNOWLEDGEMENTS
I would like to take this opportunity to express my thanks to those who helped me to

complete this work.

First and foremost, I would like to thank my advisor, Prof. Carl K. Chang, for his

guidance, patience and support throughout this research and the writing of this thesis. His

broad and critical insights had helped me more than he knows.

I also would like to thank Dr. Johnny S. Wong, Dr. Ying Cai, Dr. Dan Zhu, and Dr.

Morris Chang for their contributions as my committee members.

I especially would like to thank my friends and lab colleagues, in particular Minoh

Kang, Jinchun Xia, and Hsin-yi Jiang, for every kind of support they brought to me during

my work.

I am profoundly thankful for the endless love, trust and support so unselfishly given

to me from my mother, Neung-ja Oh, and my father, Woo-koo Kim.

Finally, I cannot express how much I love my wife, Jiyon Im, and my daughter,

Michelle Caen Kim. I am always happy with them.

x

ABSTRACT

Service-oriented computing (SOC) is an emerging paradigm utilizing services as core

elements in software development. However, the service design of SOC oftentimes fails to

capture various service-specific concerns required for delivering high-quality and user-

friendly services. This is because those concerns are intrinsically tangled within a service. If

such concerns, often crosscutting the system, are not satisfactorily treated, a service design

result will be inadequate to reflect all facets of a service. The objective of this research, thus,

is to provide a systematic, comprehensive, but generic and formal service-oriented design

approach that helps to effectively and efficiently develop services in service-oriented systems

in the design process.

Our approach is to provide a service-oriented design approach integrated with the

concept of aspects and supported by Petri net formalism. Recently, the aspect-oriented

programming (AOP) has gained growing interest and its “aspect” concept has received

attention as the newly found solution to the early stages of software development as an

abstraction and encapsulation mechanism with the purpose of enhancing separation of

concerns. We integrate the concept of aspect into the service-oriented design process that

consists of the decomposition of a service-oriented system, the structural and behavioral

representations of services, and the extension of the semantic annotations on services for the

analysis purpose.

In our approach, a service-oriented system is decomposed as a set of primitive

services that contain only essential functional features and aspects methodically defined and

used to capture pertinent service-specific or domain-specific concerns. Using primitive

services and aspects, our method delineates a service-oriented system in two views, the

structural view and the behavioral view, based on an extended UML2 and Petri net

representations, respectively. In particular, our method supports an automatic weaving

xi

process to generate an integrated Petri net for each distinct service from the behavioral

perspective of both a primitive service and a set of aspects related to it, and the relationships

between them. As a result, the integrated Petri nets obtained through the weaving process

facilitate the verification and evaluation of service design results. To exploit these integrated

Petri nets that correspond to composed services, our method supports an aspect-oriented

extension mechanism to help comparative evaluation of the service design results, for

example, in terms of performance or platform-specific resource interferences.

Finally, such a formal representation and extension method with a standardized

description in XML makes it possible to evolve and analyze service-oriented designs in

existence or construct varying versions of a service design with reduced development effort

by replacing or reusing existing design elements, especially aspects. Simulation results

provide convincing data as proof although further experiments with real-life system

development are still desirable, as our future work.

 1

CHAPTER 1. INTRODUCTION

Service-oriented computing (SOC) as an emerging paradigm in the software

engineering community utilizes services as core elements in software development. Due to

the multi-facets of a service, the service design of SOC oftentimes has difficulty to cover all

important service-specific concerns required for delivering high-quality and user-friendly

services. This is because those concerns are intrinsically tangled within a service [82]. If such

concerns, often crosscutting the system, are not satisfactorily treated, a service design result

would be inadequate to reflect all facets of a service. The primary objective of this

dissertation is to provide a systematic, comprehensive, but generic and formal service-

oriented design approach that helps developers to effectively and efficiently develop services

in the design process. In this chapter, we present the important goals and an outline of the

approach presented in this dissertation.

1.1 Overview

Generally speaking, a service-oriented system consists of a set of services rendered to

different classes of customers. As the services belonging to a service-oriented system need to

be developed independently, some of them quite often share identical functional and non-

functional features. From a bird’s eye view of whole service-oriented systems, some services

may be under the control of system-wide functional and non-functional features. Certain

services need to have varying versions in order to satisfy customer’s preferences.

Furthermore, services need to be updated or evolved in order to survive in the extremely

competitive e-service marketplace by following the rapid shifting e-commerce trends or

demands. This kind of issues related to reusability, customizability, manageability, and

maintainability of the service development needs to be considered at the early stage of

service-system development. To deal with those critical issues in an efficient and effective

manner, we develop a service-oriented design method based on an aspect-oriented approach

 2

and Petri net formalism. Recently, the aspect-oriented approach has gained growing interest

and its "aspect" concept has been extensively applied to the early stages of software

development, such as aspect-oriented software development (AOSD), as an abstraction and

encapsulation mechanism for crosscutting concerns with the purpose of enhancing separation

of concerns. In our approach, this aspect-oriented mechanism is comprehensively applied to

decompose a service-oriented system, and to describe, compose and extend its services in the

design process. In particular, the representation, fabrication and extension of a service from

its behavioral perspective are supported by a formal method based on the Petri net-based

semantics.

1.2 Objectives

The development of services in a service-oriented system is required to cover

significant concerns without causing unexpected side-effects such as redundancy. Some

services may call for variations in order to support a wide spectrum of customer’s

preferences or contexts. After services are developed, they need to be continuously updated

or evolved to catch up with changing e-service market trends or demands as well as the

rapidly shifting e-service technologies. To meets these requirements, a novel service-oriented

design method is necessary to support an affective way to identify services in a service-

oriented system, represent a service with all critical concerns, generate its variations,

facilitate its evolution and support service analysis process. The major goal of the design

approach in this dissertation is to make the development of services in the design process

effective and efficient by providing a generic and formal service-oriented design method.

Accordingly, the important purposes of the design method are addressed as follows:

 To support a decomposition process of service-oriented systems.

 To provide a standardized way to represent services in a decomposed service-oriented

system from both the structural perspective and the behavioral perspective.

 3

 To provide an automatic technique to generate a service or its variation from the

decomposed elements in terms of formal operational semantics.

 To provide an extension mechanism for assisting the design analysis process of the

generated services.

1.3 Outline of Approach

To achieve the objectives in the previous section, an aspect-oriented mechanism is

integrated to the entire procedure of the design method from the decomposition of a service-

oriented system to the extension of the composed services to be analyzed. The approaches in

the dissertation are summarized as follows:

 A generic software system decomposition method with aspect-oriented

approach:

A generic decomposition method integrated with the concept of aspect can be applied

to decompose any software system, including service-oriented systems, and organize

the design elements that can be functional or non-functional into two distinct views in

order to provide a high-level blueprint of a software system at the initial design stage.

 An aspect-oriented representation method for the structure and behavior of

services in a service-oriented system using an extended UML2 and a set of XML-

based description languages:

The graphical and XML-based representation methods provide a way of treating

every design element in service-oriented design separately in either structural or

behavioral viewpoint. Such methods help enhance the reusability, manageability and

traceability of the service-oriented design results and the corresponding service-

oriented system. The XML-based representation method not only increases

interchangeability and interoperability of service-oriented design results, but also

 4

facilitates the implementation of the weaving program independent of any specific

development tool.

 A Petri net-based semantics to support the formal definitions of service behavior

and service composition:

The Petri net-based semantics supports the description of any behavior of a design

element and composition of a service using the design elements in terms of their

behavior and relationships between them.

 An automatic weaving process to generate services composed of design elements

or their variations:

Various versions of a service design can be generated through an automatic weaving

process by weaving auxiliary behaviors of aspects into the behavior of a primitive

service.

 A systematic extension mechanism to validate and analyze the service design

results:

The service design results can be extended with the information related to its behavior

such as temporal values or resource interferences at the later design stage, which is

useful in estimating or predicting the behavioral characteristics of an generated

service design, such as its performance, or to comparatively evaluate candidate

service designs.

1.4 Contributions

The contributions of this research can be summarized as follows:

 An extended hybrid decomposition method for a software system.

This outcome supports a more flexible decomposition method to help understand a

developing system by means of identifying, separating and categorizing non-primitive

features as well as classifying and grouping primitive features.

 5

 A generic service-oriented design method strongly integrated with an aspect-

oriented approach to represent, generate and extend design results.

This outcome contributes to software engineering research by providing an effective

and efficient design method of service-oriented systems and successfully integrating

an aspect-oriented process into this design method.

 Useful design results in a standardized representation and in a harmonious

fashion of the structural and the behavioral perspectives.

The structure of a service-oriented system and the behavior of its services can be

represented in graphical and documental form. In particular, the documental form in

XML enhances interchangeability and interoperability of the design results.

 A formal and mechanical process to the generation of service design results and

their extension with behavior-specific information by providing an aspect-

oriented weaving mechanism.

A concrete weaving mechanism in the design stage constitutes the step stone of a

completely automated design process.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows.

In Chapter 2, we introduce important background concepts used in this dissertation.

In Chapter 3, we discuss a way to decompose software systems extended from the

function-class decomposition (FCD) method by means of integrating the concept of aspect.

In Chapter 4, we present the aspect-oriented and Petri net-based design method for

service-oriented systems named service-oriented design with aspect, abbreviated as SODA.

In Chapter 5, we explain an extension method with aspect-oriented mechanism for the

design results obtained through SODA in order to assist the design analysis process.

In Chapter 6, we conclude this dissertation with future work.

 6

CHAPTER 2. BACKGROUND OF RESEARCH

The service-oriented design method discussed in this dissertation is principally

dependent on two fundamental concepts: aspect-oriented approach and Petri net. This chapter

briefly introduces these two concepts after the meaning of services is explained first.

2.1 Service-oriented Computing

Service oriented computing (SOC) as an emerging cross-disciplinary paradigm for

distributed computing utilizes services as core elements in software development and

requires a new approach for architecting, designing, publishing and consuming software

elements. In this section, the meaning of services in SOC is discussed as a starting point.

Then, service-oriented architecture (SOA) is briefly introduced in terms of web services that

are for the present the most prominent technology based on the concept of SOC.

2.1.1 Services

In SOC, services are defined as self-describing and platform-agnostic functional

elements that support rapid construction of distributed systems at low cost [26]. A service

with a fundamental function with an interface that can be published and discovered entails a

variety of functional and non-functional features perceived and received by customers, in

order to complete a prescribed mission. To encapsulate all the necessary features, the concept

of service has been used as a basic abstraction unit in the service model developments

[37][38][39].

The concept of service becomes clear when compared with the one of component that

is regarded as a functional black-box object that delivers specific predefined features.

Compared with components in the strict sense, services provide coarse-grained granularity of

features varied from system to system. In a narrow sense, the component-based software

development (CBSD) could be regarded as a service-oriented software development with a

 7

restricted concept of the service. Some researches assume that service is another term for the

component [27]. Many researches for CBSD, however, are aware that the component concept

as an encapsulation unit is not sufficient to separate a broad range of issues related to a

service such as adaptability, security, availability, and performance. To overcome this

limitation, several CBSD methods incorporate with aspect-oriented approach for developing

service-oriented systems [16][46].

The more specific definition of services tends to be quite diverse according to

platforms, languages, or perspectives where the term “service” is applied. Moreover, the

concept of functionality is even more abstract and may not be realized via using only a set of

implementable units like classes or components. As a useful reference, the definition of

service in the development of Web services and its tool support is well discussed in [82].

2.1.2 Service-oriented Architecture

In SOC, service-oriented architecture (SOA) builds the service model that organizes a

set of software components into services. The infrastructure of SOA presumes loosely

coupled heterogeneous platforms with message-oriented peer-to-peer communication via the

wired and wireless Internet.

In particular, the SOA for web services based on the Publish-find-interact (or find-

bind-execute) paradigm needs to support a standard means of interoperating between peer

web services or communicating among three different roles: service provider, service register

and service requester. The interoperability in the web service architecture is achieved using

XML-based lingua francas, such as SOAP [77], UDDI [78]and WSDL [79], which lets a web

service cooperate with other web services across heterogeneous platforms or communicate

with other applications in a standardized way. In addition to those three basic web services

standards, the second-generation web service specifications have been developed to support

evolution of the service-oriented enterprise (SOE). Among them, BPEL4WS (WS-BPEL

 8

from 2.0) [34] is part of the second-generation specifications, but tends to be considered as

an essential one to express the behavior of a business process for a SOE. Although web

services technology currently provides the extended infrastructure for implementing SOA,

they are not sufficient to deliver a qualified service without supporting other standards such

as WS-Policy [80].

2.2 Aspect-oriented Approach

In terms of separation of concerns [1], object-oriented (OO) methods show

limitations to satisfy requirements related to a spectrum of important concerns that are

important, or critical, properties pertaining to a specific domain. Upon decomposing a

system, most OO methods support only a single dimension of concerns based on objects or

data. This problem is called the “tyranny of dominant decomposition” [2]. Moreover, this

single-threaded decomposition scatters concerns over multiple functional modules or classes

and hinders developers from injecting different concerns upon analyzing the system. As a

result, the codes relating these concerns are spread across or get tangled in several classes or

modules in the implementation phase. This phenomenon is called the “code-tangling

problem” [3]. In legacy implementations, these scattered concerns exist in tangled codes,

which decrease modularity, and make it hard to develop and maintain software systems.

To avoid these problems, many researchers have made contributions to achieve

separation of concerns [2][3][5]. In particular, Aspect-Oriented Programming (AOP) [3]

provided the mechanism to encapsulate crosscutting concerns into the abstraction known as

aspect and combine (weave) them with functional elements in the implementation phase.

This isolation improves modularity and traceability of a system. Aspects derived from

concerns conceptually involve functional and non-functional elements of the entire system.

Therefore, it is believed that non-functional requirements such as security, availability

and testability can be identified and cast into varying aspects. Since AOP concentrates on the

 9

implementation phase of software development cycle, a number of aspect-oriented

development approaches have been studied in order to provide a better understanding of a

system in its earlier stage of software development [14][15][16][17][18][19][44][63][64].

Aspect-oriented approach has been applied to extend web services as well. An

extended aspect-oriented component engineering (AOCE) method to support the

development of web services technology [44] proposed AO-WSDL and AO-UDDI that

include the annotated details derived from the proposed component aspects separated from

several modules, such as user interface, distribution, transaction processing, security,

persistency, configuration, etc. Although AO-WSDL and AO-UDDI can be performed with

support of web service-oriented systems, their extended AOCE approach illustrated that the

aspect-oriented approach can also help the development of web service-oriented systems.

AO4BPEL [45] was proposed as an aspect-oriented approach to tackle the lack of modularity

and the drawback of static composition of BPEL4WS. It uses aspect as a stand-alone

business logic or service in the XML format that can be plugged into or unplugged from the

composition process at runtime.

2.3 Petri Net

Since Petri net developed by C. A. Petri is supported by a sound mathematical

foundation and a graphical representation, it has been widely used to model software [67] as

well as hardware [65]. When Petri net is used to model software architecture or workflow

systems, it has the advantage over other diagrammatic representations such as statechart or

sequence diagram in UML due to its mathematical soundness and availability of various Petri

net tools. In this section, we discuss the fundamentals of Petri net.

2.3.1 Basic Petri Net

Basic Petri net (Place/Transition net or P/T net) is defined using the 5-tuple as follows.

 10

Definition 1: A Petri net P = (P, T, I, O, M0) where:

 P = {P1, P2, …, Pm} is a finite set of places.

 T = {T1, T2, …, Tn} is a finite set of transitions.

 I ⊆ P × T is a finite set of input arcs directed from places to transitions.

 O ⊆ T × P is a finite set of output arcs directed from transitions to places.

 M0: P → {0, 1, 2 …} is the initial marking.

 T ≠ ∅ and P ∩ T = ∅.

In terms of a transition, the places that can be reversely traced to via the input arcs are

called the input places of the transition while the places connected by the output arcs are

called the output places of the transition.

The above Petri net definition can have another tuple for a weight function W0 : T →

{1, 2, 3, …}. When a Petri net has a weight function, a transition t is enabled if the number of

tokens in each input place pI is equal to or larger than the weight of the input arc. After the

transition t fires, each output place pO has the same number of tokens as the weight of the

output arc. A Petri net is ordinary when all of its arc weights are 1's.

Figure 1: A basic Petri net

In graphical representation of basic Petri nets, places and transitions are drawn as

circles and bars (or squares) respectively. Input arcs connect places to transitions whereas

output arcs connect transitions to places. If a weight function is defined, its weight values are

 11

attached to arcs. Places may have tokens. The state of a Petri nets called the Petri net marking

is defined by the distribution of the number of tokens in each place. In particular, the initial

state of a Petri net is specified by an initial marking. Figure 1 shows the graphical

representation of a simple Petri net with one transition, three places, one input arcs, two

output arcs and two initial tokens. The more detailed introduction of Petri nets can be found

in [75] [29].

2.3.2 Time Extended Petri Nets

There are many extensions to Petri nets that consider time due to the necessity to

describe temporal behavior of a system to be modeled. A Petri net can be associated with

time whose values are either intervals (durations) or delays. The Petri net associated with

intervals are called time Petri net while the one with delays called timed Petri net. In the case

of timed Petri nets, the delay can be associated with transitions, places or arcs, which

produces timed transition Petri nets (TTPN), timed place Petri nets (TPPN) and timed arcs

Petri nets (TLPN), respectively. Among them, TTPN is mostly used to model a

software/hardware system by interpreting transitions as its operations or tasks. For this

purpose, the definition of the TTPN includes a set of delay values associated with its

transitions. TTPN can be classified according to the type of the delays introduced. The delays

of stochastic Petri nets (SPN) are stochastic and exponentially distributed. The delays of

generalized stochastic timed Petri nets (GSPN) can have either zero (immediate) in addition

to being exponentially distributed. The delays of deterministic and stochastic Petri nets

(DSPN) are either constant (deterministic) or exponentially distributed. The delays of

extended stochastic Petri nets (ESPN) are generally distributed. Finally, there is a Petri net of

which the delays are zero, constant (deterministic), or generally distributed. Usually, TTPN

uses three-phases firing for its transitions that hold the tokens during its associated delays.

 12

2.3.3 High-Level Petri Nets

There are many kinds of high-level Petri nets. In this section, we only discuss two

major high-level Petri nets: hierarchical Petri nets (HPN) and coloured Petri nets (CPN).

In HPN [76], the hierarchy construct, called a subnet represented with a rectangular

box, is used to encapsulate and hide part of the system at a certain level. This subnet makes it

possible to model a large and complex system in a hierarchical structure. Later, a system

modeled in HPN can be comparatively comfortable to be reviewed and modified owing to

the hierarchical structuring.

In CPN [68], the tokens are extended with color or type. Colored tokens represent

objects in the system modeled. Each transition uses the token values in the places connected

through its input arcs and produces the value for the places connected through its output arcs.

CPN can be used to define a high-level timed Petri net such as dynamically timed Petri nets

(DTPN) of which time constraints are defined using colored tokens.

2.3.4 Petri Net Markup Language (PNML)

PNML [57] is a tool interchangeable format in XML. Figure 2 shows the meta-model

of PNML explained in [30]. A Petri net tool that supports the PNML file format can edit a

Petri net stored in PNML files in a visual way. The high-level Petri nets are currently under

standardization process as ISO/IEC 15909 and the transfer format is being developed as Part

2 of this standard (ISO/IEC 15909-2) [74]. Timed Petri nets like GSPN require a time value

such as rate for each transition. The PNML specification strongly recommends such

information to be placed under the <toolspecific> tag or represented using a syntax proposed

for a generic Time Petri net based on the Mathematical Markup Language (MathML) [60].

 13

Figure 2: The meta-model of PNML

Petri net

Object

ToolInfo

*

*

*

Page Node

PetriNetFile

*

Label
*

*

*

Arc

Attribute Annotation

Place RefTransition Transition RefPlace

*

*

*
*

 14

CHAPTER 3. SOFTWARE SYSTEM DECOMPSITON WITH
ASPECTS

3.1 Introduction

Two major problems of OO methods, tyranny of dominant decomposition and code-

tangling explained in Section 2.2, make it difficult to model software system architecture

with various important concerns that should be carefully considered at the initial stage of the

design process, which justifies a new decomposition method to support the separation of

concerns principle. We use the Function-Class Decomposition (FCD) [4] as a cornerstone of

a new extended decomposition methodology that provides better understanding of the system

in the early system design phase by enhancing the principle of separation of concerns during

the decomposition process.

FCD, a powerful hybrid decomposition method, was proposed to combine structured

analysis methods with object-oriented methods and to provide a supportive architecture for

modeling software systems. By generating a hierarchical view that presents the structural

model of the software system, FCD can draw a clear alignment for identified classes in terms

of functional modules. FCD can alleviate the tyranny of dominant decomposition problem by

supporting another dimension based on functional decomposition process to extend the OO

approach. However, FCD is not capable of capturing various important concerns required to

build a software system and organizing them in a separated dimension. Furthermore, FCD

inherently suffers from the code-tangling problem like other traditional decomposition

methods. Consequently, the objective requirement for a new extended FCD method is to

capture various important concerns during software system modeling without avoidable

redundancy and loss of its advantages like simplicity. For this purpose, the concept of aspect

is integrated with the original FCD.

 15

To capture and organize various concerns appearing during the system decomposition,

an extended FCD method called Function-Class decomposition with Aspects (FCD-A) [72]

introduces the integrated concept of aspects and an additional decomposition view. FCD-A

partitions a software system iteratively and progressively in two system-wide views: the

function-class view and the aspect view. In the function-class view, the classes of a system

are identified and grouped into subsystems to create a hierarchal model of a system. In the

aspect view, aspects are used to identify, group and categorize the crosscutting concerns of

the identified classes or subsystems. They are investigated to recognize subsets of a high-

level initial set of aspects or common aspects after the validation procedure for grouping the

classes in the function-class view. The two views of FCD-A are tightly associated through

two types of links that represent the functional or non-functional relationships of the aspects

in the aspect view with the functional modules or classes in the function-class view. When

developing these two views repeatedly and alternately, we can specify a software system step

by step in a spiral way similar to the Twin Peaks model [22]. The decomposition process

model of FCD-A is illustrated in Figure 3.

Figure 3: The process model of FCD-A

Function-Class Decomposition Aspect Decomposition

(Requirements)

Domain-specific aspects

 16

Since FCD-A is a generic method, it can be straightforwardly adapted to identify core

functional features of services and isolate non-core functionality and quality features

scattered across a service-oriented system.

3.2 Function-Class Decomposition with Aspect

This section discusses the concept of aspects integrated to FCD-A and explains its

process.

3.2.1 Aspects

Concerns for a developing software system are important, or critical, properties that

pertain to a specific domain. The concerns scattered across multiple classes in the most

traditional OO approaches or tangled into existing codes of legacy implementations decrease

the modularity and deteriorate the development and maintenance of software systems [25].

Aspect-oriented programming (AOP) that concentrates on the implementation phase of a

software development cycle can encapsulate each concern in an isolated unit called aspect in

order to improve the modularity and traceability of a system. This separation based on

aspects can be applied to the system design process. In FCD-A, aspect-oriented technique is

used to help identify the crosscutting concerns and separate them from the system

functionality during the system decomposition process. Thus, we define aspect as follows.

Definition 2: Aspect is defined as a domain-specific concern for the system to group

common functional features for functional requirements or to specify a property or policy for

non-functional requirements.

A common functional feature is a group of operations, a class, or a functional module

found in multiple classes, functional modules or a system, respectively. Policy addresses a

 17

guideline on the behaviors of classes or functional modules, which means that an aspect can

be a means to control or manage one or several classes or functional modules at the design

stage. For example, the “synchronization” aspect identified in a communication module may

not enunciate how to synchronize the classes of the communication module or what kind of

method should be used, which will be determined in later steps or at the implementation

stage. FCD-A can constitute a hierarchy of aspects by allowing each aspect to be further

analyzed into child aspects.

3.2.2 Process of FCD-A

FCD provides a hierarchical structure of the system based on the functional modules.

As the system analysis goes further, FCD progressively clarifies the function-class view and

presents a more concrete system structure. This dominant view, however, cannot fulfill all

the considerable facets of the developing system. Furthermore, the class grouping procedure

of FCD for creating functional modules used in the next-level process cannot prevent a class

or a functional module from repeatedly and redundantly appearing in different branches of

the system’s hierarchical structure. FCD-A extended from the original FCD method fixes

these problems by introducing aspects and providing another new view for maintaining them,

called the aspect view, in addition to the function-class view of a system. The aspect view

gives a horizontal-cut view of the hierarchy in the function-class view. Each aspect in the

aspect view is the abstract container to group all or a subset of requirements identified in

multiple classes or functional modules. Consequently, the primary aim of the FCD-A

algorithm becomes to generate the aspect view of a system.

Figure 4 shows the outline of the FCD-A process. The detailed algorithm of FCD-A

is shown in Algorithm 1 in Appendix. The iterative decomposition process of FCD-A

consists of identifying classes, allocating the related requirements to the proper classes,

creating links between the classes or functional modules and the aspects, grouping classes

 18

using scenarios, building functional modules using grouped classes, creating child or

common aspects, and allocating scenarios to the functional modules. Note that this process

preserves the top-down approach in the original FCD. The completion of system

decomposition is followed by the integration of functional modules and aspects based on the

system development environment such as the programming language adopted.

Figure 4: Process of FCD-A

3.3 Example

We will apply the FCD-A method to the retailer system. Another example of the

application of the FCD-A method on the M-Net [24], an Internet-based real-time

Allocate
requirements
and scenarios

to each new FM

Identify classes
using scenarios

Create subgroups
of classes within

each FM

Create FMs at
the next level

Validate grouping
decisions using
use-case maps

Identify aspects
using requirements

and create links

Create initial
system-level FM and

candidate aspects

Construct UML
model of each FM

leaf module with links

Start

Stop

Integrate FMs and
aspects from the

bottom up

Allocate
the requirements

to each class

Check the links of
previous-level FMs
and reassign them

Search conflicts
and adjust links or

create a new aspect

Find commonality
and combine them

under a (new) aspect

 19

conferencing system, is presented in [72]. Note that the retailer system will be used as an

exemplary service-oriented system in the remainder of this dissertation.

Figure 5: The initial classes with the system-level functional module and the key aspects

to be considered

The initial level of analyzing a system starts with a single functional module in the

functional view and a few key aspects then need to be considered during decomposition. The

top-level key aspects at the initial level can include common functional features like logging

or quality features like security, availability, reliability, and so on. They can vary according

to the domain or the characteristics of a system under development. Figure 5 shows an initial

functional model with the identified classes and the three key aspects of the retailer system.

As you can see in the aspect view of Figure 5, we want to identify common features, security

and availability of the retailer system during the decomposition process. The “Common

 Notation:

Retailer System Level

Order
Records

Item
Records

Inventory
Process

Query
Manager

Report
Tool

Credit
card

Process

Function-Class view

Customer
Record

Aspect view

Security Availability Common
features

Aspect

Functional module Aspect Class

 20

features” aspect is used to combine redundant functional or non-functional features appearing

across a retailer system. Those three initial key aspects are placed under the aspect named

“aspects” of which role is to provide the root of a hierarchy in the aspect view.

After the functional and non-functional requirements are reallocated to each identified

classes, they are used to create aspect links from theses classes or functional modules to

appropriate aspects. To reflect the functional and non-functional concerns of the system, an

aspect link can be either of two types: operational or strategic. In other words, the type of an

aspect link is determined based on the allocated requirement for the classes. The operational

link depicted as a sold line is used to indicate an implementable functional feature that is

identified as an aspect and required to be embedded into classes in the OO approach. The

strategic link depicted as a dotted line is applied to address an abstract method or an

annotation that does not need to belong to the associated classes. During the investigation of

aspect links, the strategic link can be moved up to a subgroup when all the classes within the

subgroup contain the same strategic link, which is impossible for the operational link. Since

the strategic link for a functional module affects the behavior of all its classes, it may be

implemented independently such as a monitor class. An aspect link belongs to both a class,

or a functional module, and an aspect. These characteristics make our method flexible. Each

aspect link can be implemented as a method within the classes in the functional view. On the

other hand, the aspect links appertaining to an aspect can be implemented as an independent

aspect class.

Figure 6 shows the allocation of the aspect links for the initial identified classes. For

example, since each customer needs a password to access its customer record based on the

allocated requirement for the classes, an operational link are attached from the customer

record class to the security aspect. Only the customer who places the corresponding orders or

the service provider who deals with them can access the order records. Therefore, a strategic

link is applied from the order records to the security aspect. This strategic link is named

 21

“User ID” since we think that a User ID can be available to identify and check who access

this class. Similarly, three strategic links are drawn to associate the inventory process class,

the credit card process class and the report tool class with the security aspect because their

access requires a verification method based on an Order No. Five classes in the function-

class view need to access a system database to keep their information, which is represented

using the operation links named either “Update DB” or “Search DB” with a key value. If the

“Integrity” aspect is included as one of the initial key aspects, it could have been operational

links directed from those classes related to the system database.

Figure 6: Allocating aspect links to the initially identified classes

After creating aspect links from nodes in the function-class view to aspects in the

aspect view, FCD-A performs class grouping to align the classes in a structural model and

reveal the relationships among classes or functional modules. FCD-A performs the first class

Operational link
Notation
:

Retailer System Level

Order
Records

Item
Records

Inventory
Process

Query
Manager

Report
Tool

Credit card
Process

Function-Class view

Customer
Record

Aspect view

password User ID Search DB
(Item No)

Search DB
(Item No)

Update DB
(Item No)

Update DB
(Order No)

Order No

Order No

Order No

Update DB
(Order No)

Strategic link

Security Availability Common
features

Aspect

 22

grouping of the level 1 according to the high-level functionality of two services and

customers. The result of the class grouping is well reconciled with the cohesion and coupling

criteria for class grouping of later levels. In addition, it helps to develop and categorize child

aspects (or sub-aspect) in the next aspect categorization process.

The aspect links created need to be investigated from the aspect view after the

grouping of the classes in the function-class view has been done. This step allows us to

create a new child aspect by examining commonality and conflict of the names of the aspect

links. Here, we will explain using the six classes of the original seven. After the grouping

procedure identifies the functional modules named the customer and the order service in the

function-class view, we create four child aspects in the aspect view. The “Security” aspect

has the “Authentication” aspect derived from the operational link from the customer records

and the “Authorization” aspect based on three strategic links from the Inventory process class,

the Credit Card process class and the Reporting tool class. Actually, the three common

strategic links from those three classes are replaced with a new strategic link from the

identified order service functional module. This new strategic link intentionally includes the

Item Records class that does not have a strategic link to the security aspect in the previous

step, so that it can enhance security over the whole process of the order service. At the later

stage of the decomposition, this link will be rearranged if all classes or new subgroups of the

order service do not satisfy the requirements of the “Authorization” aspect. In a similar way,

the “common features” aspect has the “search DB” aspect and the “Update DB” aspect based

on the four operational links. These two child aspects could be replaced with a single child

aspect named “Access DB” to decrease the decomposition complexity if necessary. Since the

“search DB” and “Update DB” aspects already implies a primary function, the operational

links have the remaining part called parameters that were enclosed in parentheses in Figure 6.

No conflict among the aspect links can be found at this level. As a result, Figure 7 presents

the analysis result for the six classes of two functional modules in the function-class view,

 23

and the related aspects in the aspect view just before new requirements allocation for

identifying additional classes for the next level decomposition. The two aspects in the aspect

view have child aspects. This figure validates the first level grouping and aspect analysis.

There is no undesired cohesion or coupling in its path when we examine a mapped scenario

that denotes a customer places a new order to the order service.

Figure 7: Analysis of aspect links after initial grouping decisions

Figure 8 shows the entire system view after analyzing aspects and the aspect links of

which names are omitted for space reasons. The hierarchical aspectual model in the aspect

view provides a framework to classify aspects. Note that this hierarchical aspectual model

depends on the key aspects selected at the initial step and child aspects created during the

decomposition process.

Retailer System Level

Order
Records

Order Service

Customer
Record

Inventory
Process

Report
Tool

Credit card
Process

Order request
Customer

Function-class view

Aspect view

Security

Authentication Authorization

password

Common
features

Search DB

Aspect

Update DB

Item
Records

Item No Order No Order No Item No Order No

 24

Figure 8: Function-class and aspect views of the retailer system prior to identifying

additional classes for the next level decomposition

After the primary classes and aspects are identified, the entire system can be

integrated by defining the interfaces between the intermediate-level functional modules,

starting from the lowest level. This integration stage is dependent upon the system

development environment as well as the preference of the developer. For example, a

programming language applied to build the system can determinate how to implement aspect

links. General purpose programming languages can reflect them by means of design patterns.

OO programming language like Java can realize them in the interface or using abstract

classes. An aspect-oriented programming language like AspectJ [7] make it possible to

implement them in a straightforward manner. Some of the identified aspects may not appear

 Function-Class view

Aspect view

Security

Authentication Authorization

Common
features

Access DB

Aspect

Classes

Availability

Update DB Search DB Inventory
process

Report
Tool

Retailer
System

Order
Service

Catalog
Service

Customer
Record

Order
Records

Inventory
Process

Query
Manager

Inventory
Process

Item
Records

Report
Tool

Credit card
Process

Customer

Report
Tool

 25

at other development stages. For instance, a “testability” aspect used for the whole system

development cycle would never appear in the final system ready to deliver to customers.

3.4 Related Work

There have been a number of approaches to extend the AOP paradigm at the earlier

stage of the software development process.

Aspect-oriented Component Requirements Engineering (AOCRE) has been proposed

in [16]. Functional and non-functional requirements of a component are related to key

aspects that other components provide or require. By analyzing general or components

requirements, the aspects in the components are identified to distinguish the functionality and

interface of the components. These identified aspects at requirements-level can be directly

mapped into the design-level software component via interfaces, language reflection or

design patterns. However, they do not clearly explain how to identify aspects in components

using requirements.

To identify aspects during requirements engineering, a model for Aspect-Oriented

Requirements Engineering (AORE) is presented in [18][19]. Once concerns and

stakeholders’ requirements are specified, they are evaluated to find candidate aspects using a

relationship matrix. These candidate aspects and stakeholders’ requirements are composed by

means of the defined composition rules. Then, the contribution between the candidate aspects

is used to prioritize and resolve the conflicts between aspects and stakeholders’ requirements.

AORE model focuses on identifying aspects from stakeholders’ views and resolving their

conflict at requirements engineering level, but it does not treat the mapping with software

artifacts of the other stages of the software life cycle.

The Non-functional requirement (NFR) framework is also extended to find links

between functional requirements and crosscutting non-functional ones [15]. The NFR

framework analyzes non-functional requirements to select appropriate operationalizations

 26

that are detailed solutions for the system. Each operationalization is categorized as an aspect

or an architectural decision based on the influence of the software artifacts of later stages.

Then, the identified aspects are composed into functional requirements with aspect semantic

operators.

Composition patterns evolved from subject-oriented programming [5] are the

extension of the UML to increase the reusability of aspects [6]. The composition pattern of a

cross-cutting behavior like tracing is defined as a template with parameters and bound with a

base design. Again, composition patterns do not specify how to capture these patterns. In a

complex software system, the identification of these patterns is not easy.

COSMOS (Concern-Space Modeling Schema) [20] consists of two types of concerns

– logical and physical concerns, four types of relationships and predicates in order to support

a general-purpose representation for arbitrary concerns. Although types of concerns and

relationships are well categorized, predicates that enforce a consistency or a rule on concerns

remain as an open area.

For concurrent software architecture, the weakness of OO approaches and the AOP-

related issues were well discussed in [8]. To improve concurrent software quality in an OO

environment, an aspect-oriented framework (AOF) architecture was suggested in [14]. In the

AOF architecture, aspects are regarded as specifications such as the preconditions or

postconditions of a concurrent object, which seems to only partially cover the meaning of the

aspect for the design level. Also this framework does not describe a method to define the

relationship between components and aspects.

The Aspect-Oriented Design (AOD) [17] is based on the concept of software

architecture. Aspects are presented in architecture styles. Both functional design and aspect

design are performed independently and, then, weaved to deliver the final architecture.

However, AOD dose not have a mechanism to weave architectures. In [21], an aspect acts as

a building block or a module in the proposed aspect architecture. Each aspect is represented

 27

in a stereotype of a package. A concern diagram, which is a new UML diagram type, shows

the dependencies between aspects and overlapping aspects of different concerns. Several

aspects can be combined and replaced by a composite aspect to treat a concern. This

composition and the changed dependencies between concerns lead to a new concern diagram

to show the different architectural view. Thus, an aspect should be well divided or re-

modularized into sub-aspects that are the overlapping parts of different concerns. In the

example, the concerns to divide the system are based on only low-level functionality, not

high-level quality-attributes, although their definition of concerns covers non-functional

features.

AOP have been applied in the designing and implementation of an agent system [23].

Here, agent roles and role models correspond to classes and aspects, respectively. The role

model catalog at British Telecom Labs is used to design and analyze the agent system. The

identified aspects from the role model are implemented in AspectJ [7]. Their main goal is

improving the Role Object design for agent system.

An aspect-oriented decomposition for behavior of process-control systems has been

proposed in [9]. It uses a state machine notation for specifying system behavior and produces

independent components with partial system reliability. This approach is useful for

decomposing a system based on some specific system requirements, such as reliability, in

terms of dynamic behavior of the system.

The necessity and advantages of identifying aspects in the earlier life cycle of the

software development have been deeply discussed in [10]. Here, the main objective is to

propose a method to capture and pass aspects in two different phases, requirements

engineering and architecture design. Compared with it, our approach is a more integrated and

procedural solution to exploit the concept of aspect in a design phase by supporting the

linking between requirement aspects and architectural aspects and the mapping between

architectural elements in the function-class view and architectural aspects in the aspect view.

 28

The Theme approach [11] for identifying aspects from behaviors in requirements

specifications is proposed. It represents aspects and their interactions using an extended

UML without supporting an architectural view.

As a specific requirement-level instantiated version of [2], the decomposition of

requirements into multiple dimensions discussed in [13] uses multiple concrete concerns

derived from abstract concerns in a meta concern space. Then, trade-offs analysis of a

specific concern is conducted using the contribution matrix in which each cell shows the

relationship between two concrete concerns in terms of the other concerns affecting to them.

Although this approach may be useful to evaluate candidate architectures, it is not helpful to

construct an architecture since it does not support a way to categorize concrete concerns that

coexist in a flat system space and extract some of them to be essentially realized.

The aspectual software architecture analysis method (ASAAM) [12] provides a

systematic scenario-based architecture analysis method to identify crosscutting concerns

across architectural components using a set of heuristic rules. A scenario scattered across

components is considered as an aspectual scenario that is used to identify whether a

component is either tangled or ill-defined and to be the aspectual aspects derived from a

domain analysis process. This approach, however, represents all architectural components

and aspectual aspects in a single flat view.

3.5 Summary and Discussion

In this chapter, we present the FCD-A method that supports the fundamental concept

of the aspect at the design process. The FCD-A method decomposes a software system with

multiple concerns as a top-down approach using the two views. While a system is gradually

broken down into functional modules with the corresponding classes in the function-class

view, the aspects for domain-specific concerns like various system properties are identified,

separated and categorized simultaneously in the aspect view. The two views of FCD-A are

 29

connected via two types of aspect links that enhance the traceability of a system. When

system requirements are changed, the scope of changes can be determined using either

function-class view or aspect view. For example, if a password mechanism to a security

requirement in Figure 7 needs to be replaced with a smart card, it is obvious that the scope of

changes is restricted to the single class. This traceability can be identified by checking the

aspect links from the aspect view, not from the function-class view, which addresses how to

treat the traceability of the requirements and determine the scope of changes against the

change requests of requirements.

The searching process for commonalities and conflicts among aspect links may not be

easy as the decomposition goes on. Although both function-class and aspect hierarchies help

limit the checking scope of the aspect links, it is not sufficient especially for the complex

system. Therefore, a dictionary feature could be useful to help name the aspect link and

discover the related or opposite meaning in the names of the aspect links.

In particular, service-oriented systems tend to be extremely sensitive to quality

attributes, not only functionality. Therefore, the aspects related to non-core functional and

non-functional requirements play an important role in the delivery of user-friendly and high-

quality services. It also happens quite often that some features are overlapped in multiple

services in a service-oriented system due to the partial similarity of the processes of these

services. Some significant quality attributes of services, such as availability, adaptability and

security, need to be effectively identified to build flexible and quality-guaranteed service-

oriented systems without redundancy. We believe that the FCD-A method is capable to be

straightforwardly applied to any service-oriented design process in the field of service-

oriented computing.

 30

CHAPTER 4. SERVICE-ORINETED DESIGN WITH ASPECTS

4.1 Introduction

Services as autonomous abstract units can be structurally composed into a complex

service and grouped in a service-oriented system. Each service tends to be treated as a

process in SOC. Hence, designing a service involving two different views, the structural view

and the behavioral view, is a tricky and intricate process. Services should satisfy customers’

taste with supplementary functional and non-functional features. Moreover, services should

evolve according to the rapid changing e-service market trends and demands. Even a current

working service has to be adapted in order to support a wide spectrum of customers. This

requires not only an agile development of services, but also support of different versions of a

service for a service provider to satisfy various context and preferences of customers.

Practically speaking, the concurrent development of different versions of a service, usually

required to provide differential services, is considerably challenging. In order to support

these requirements for service development in the design process and to keep pace with this

shifting environment of SOC, the service design process for SOA needs to be efficient to

quickly build a service, extensible to modify or update specific features in services, and

generic to make possible “design in the large” like WS-BPEL that does “programming in the

large” by treating each web service as a process. In addition, service design results can be

reusable and interchangeable for service developers to share common features appearing

across varying services or multiple service-oriented systems.

In this chapter, we explain a generic service-oriented design approach with the

concept of aspect called the Service-Oriented Design with Aspects (SODA) [73]. Services

are structurally decomposed into primitive services that have only essential functional

features and aspects that include other supplementary functional or non-functional features

 31

for services. Aspects are used to capture and encapsulate service-specific concerns required

for delivering high-quality and user-friendly services.

The structure of a decomposed service-oriented system is represented using an

extended UML2 [28] whereas the behaviors of the functional features within services or

aspects are described using the Petri net. The interchangeability of all the design results is

guaranteed by means of a set of XML-based description languages called service-oriented

definition markup language (SODML) that includes the Petri net markup language (PNML)

explained in Section 2.3.4. We can efficiently modify a service just by replacing primitive

services, aspects, or their relationships in a service design. The different versions of

variations of a service also can be generated by means of changing or modifying aspects or

relationships. The aspect deserves as a reusable unit, which means that aspects applied to a

service design can be reused in the development of other service designs. Most of all,

weaving process can generate the behavior description of the composed service by weaving

aspects with a primitive service in the terms of the Petri net-based semantics. The Petri net

generated via weaving process is stored in PNML can be examined and analyzed using the

Petri net tools that support PNML as their input file format. Consequently, the generated

Petri nets for the composed service facilitates the analysis of service design results or the

selection of the appropriate service design among several candidate designs.

4.2 Services and Aspects

The SODA approach uses two abstraction mechanisms to decompose a service-

oriented system in the basis of two abstraction mechanisms, service and aspect. Due to these

two abstraction mechanisms, our design approach structurally arranges design elements for

services in two views, the service view for representing the basic architecture of a service-

oriented system and the aspect view for grouping the aspects separated from it. In particular,

the services in the service view are called primitive services that represent basic functional

 32

features and interfaces bound with it. Supplementary functional or quality features related to

the primitive services are encapsulated into aspects in the aspect view.

4.2.1 Services

As a self-description unit, a service can deliver a specific output of performing an

action or a task to customers. The type of a service is either atomic or sequential depending

on how many interactions are required with its customer. Similar distinction for services can

be found in OWL-S [58] that uses the terms atomic (simple) and composite (complex) for

this purpose.

Each interaction requires a message pair that consists of an input message for

requesting the invocation of a service and an output message for delivering the result of its

processing. A message pair works as a basic element to define the interface bound with a

service. An interface becomes either provided or required according to the intention of its

binding with a service – to allow the service to serve others or to want it to be assisted by

other services. In particular, a service is said to be autonomous if it does not have any

required interface, i.e., an autonomous service can deliver a single service by itself and be

deployed independently.

Although an interface can be defined independently from the service, it is identified

during the analysis process of a service. The UML use case diagram seemingly is sufficient

in order to identify a message pair for an atomic service during a single interaction whilst the

UML sequence diagram is necessary to identify multiple message pairs for a sequential

service. Then, the interface of each service is defined in terms of message pairs required

during the interaction with customers. Accordingly, the number of its message pairs becomes

equal to the one of the interactions required for a service. A service must be bound with a

provided interface to provide the gateway of a consistent service access to its customers.

 33

From the viewpoint of the customer, a service seems to perform a transactional

process called the atomic action between a message pair for a single interaction. In the

SODA process, the atomic action is regarded as a basic descriptive unit for a transactional

behavior in a primitive service or an aspect. Just like the class in object-oriented design, an

atomic action is treated as the reusable design element in our approach so that it can be

developed and managed independently of other atomic actions as well as interfaces. An

atomic action consists of operations and messages that comprise a procedural flow required

for processing a service in the behavioral (or process) view. For example, Figure 9-(a)

illustrates the sequence diagram of a primitive service that performs two atomic actions

(either 1-2 or 1-3). In proportion to the granularity of the service in the design phase,

operations as transactions that represent single logical units of work [83] can be mapped to

procedures, tasks, or stand-alone services while messages can be simple values or complex

XML documents. This mapping can be deferred to the later stages of the service

development process.

(a) Sequential diagram (b) Activity diagram

Figure 9: A sequential service with three atomic services

To describe the atomic action graphically and formally, the Petri net is used. The Petri

net as a high-level design tool is suitable to draw and verify dynamic characteristic of service

Message pair 1

[else] [cnd]

Atomic action 1

Message pair 2

Atomic action 2

Message pair 3 Atomic action 3
<<binding>>

<<binding>>

<<binding>>

Atomic service 1

:customer :service entity

Input Message

Output message

Atomic service 1

alt

[else]

[cnd] Atomic action 1

Operation

in

o

<<interface>>
{type=provided}

Atomic service 1

Atomic action 1

Input Message

Output message

Atomic service 2

Atomic action 2

Input Message

Output message

Atomic service 3

Atomic action 3

 34

behavior. Compared with other methods like the state machine for a service description [46],

the Petri net can effectively express the parallel or concurrent operations in atomic actions. It

is possible for the basic Petri net for an atomic action to be extended to a high-level Petri net

like CPN because of a special necessity during the service development process. However,

the use of a high-level Petri net leads to aggravating the complexity of a design process. Our

design approach sticks to the basic Petri net. Hence, the formal definition of the atomic

action is presented in the following paragraph.

Definition 3: An atomic action represents a procedural flow during a single

interaction with the customer. It is comprised of one or more operations and messages among

them. The atomic action is modeled using the Petri net shown in Definition 1 such that the

Petri net for an atomic action A = (P, T, I, O, M0) where P and T are mapped to messages and

operations in a service description, respectively. Tokens in a place denote instantiations of

the message. Generally, the Petri net for an atomic action is ordinary.

By regarding the message pairs required for the provided interface of a sequential

service as abstract actions, an activity diagram can represent the provided interface of a

sequential service. This activity diagram is useful for the customers who want to access the

sequential service since they are not interested in the concrete atomic actions to be bound.

For example, the activity diagram in Figure 9-(b) outlines the interaction order of the

sequential service in Figure 9-(a). In our design approach, the description of an interface can

be orthogonal to the one of an atomic action. To make a service deliverable in any case, a

binding mechanism needs to erect a bridge between the interface and a set of atomic actions.

The binding mechanism makes it possible that a service can be derived via different provided

interfaces. If a platform or a framework supports a dynamic binding mechanism, it can

deliver different services thorough the same provided interface. As a result, a service can be

 35

constructed by binding a provided interface with a set of atomic action. During the binding

process, each atomic action bound with a message pair becomes an atomic service. For

example, the “atomic service 1” in Figure 9-(a) is constructed by associating the single

operation for the “atomic action 1” with the “in” and “o” places added for a message pair in

the provided interface. Formally, the atomic service built by binding of a message pair in a

provided interface with an atomic action is specified as follows.

Definition 4: An atomic service is an atomic action accessible from the customer via

a provided interface. From the viewpoint of the service provider, an atomic action is initiated

by receiving an input message from the customer and terminated by sending an output

message to it. To be precise, an atomic action A becomes an atomic service S by binding with

a message pair mp m mp = (pi, po) where pi and po are an input and an output message in a

provided interface definition that is published to customers. Let TI, TO ⊆ T be the set of

transitions bound to pi and po respectively. Then, an atomic service S is expressed using the

binding operator ⊕ such that

!

S = A "
(TI ,TO)

mp. The operator ⊕ constructs the Petri net for S by

performing Algorithm 2 (the binding algorithm) in Appendix.

The binding algorithm does not allow the binding process to create a nondeterministic

choice or unsynchronized termination using a special operation “fork” or “join” that makes

several operations simultaneously executed from the input message or synchronously

terminated before an output message is created, respectively.

4.2.2 Aspects

In addition to atomic services that describe the basic functionality of a service, it is

important to consider many extra functional and non-functional features that help increase

the quality or value of the service in the process of service development. From a bird’s eye

 36

view of an entire service-oriented system, the same feature tends to appear across multiple

services. It is possible that a feature appears several times in a single service. These scattered

features make it hard to abstract a service into a single unit and maintain a service-oriented

system. By encapsulating these extrinsic or supplementary features scattered across a service-

oriented system using the concept of the aspect, we can enhance the modularity and

traceability of a service-oriented system. For the service-oriented design, we suggest three

generic types of high-level aspects: common, policy (or property) and value-added. The first

two aspects are derived based on the aspect definition in Definition 2. Compared with the

aspect in FCD-A, the aspect in SODA contains a more concrete feature such as a behavioral

description or a detailed specification.

The common aspect is used to denote a structural or functional redundancy in a

service-oriented system. Its goal is to keep the same version or copy of a design element

during a service-oriented system development. Especially, when several services for a system

are designed in parallel, it happens that different services have the identical design elements

varying from a message to a service itself. For example, the same atomic action could be

found in several services. Note that the common aspect is not used to separate extra

functional features from a primitive service. Usually, a common aspect would be realized

using shared classes, components, or libraries, but an AOP language might be useful to

implement it.

The policy aspect is used to classify the quality attributes for a service-oriented

system such as security, performance, availability and so on. Its objective is to provide a

behavioral guideline on service or its element or a means to control or manage one or several

services. Some policy aspects with a concrete behavior intervene in a primitive service

behavior. For example, a policy aspect for security enforces an access control to services.

This security aspect could be implemented in a monitor class or a component that uses an

authentication mechanism or probes all the messages produced inside a service if an aspect-

 37

oriented language is not available at the implementation phase. Other policy aspects that do

not interrupt the execution of a service could not be materialized at the implementation

phase. For instance, a performance aspect cannot be implemented as a software module and

may be used for validation or testing in the later phases.

The value-added aspect is used to customize the basic functions of services according

to customer’s context or preference. The context means any information that can be used to

characterize the situation of a customer or a service [31]. The primary goal of value-added

aspects is to satisfy customers’ preference and improve their convenience by altering the

messages or operations in a service. Recently, non-intrinsic functional features play a very

critical role in the survival of a service in a competitive e-service marketplace. For example,

the functions for context-awareness or adaptation become essential for a service to be offered

in a ubiquitous environment. Without them, customers who want to use a service in their

device are compelled to type extra information or transform the service output into a device-

specific format. The value-added aspect makes it possible to group these non-intrinsic

functions in terms of the set of customers, not services. Moreover, the value-added aspect

deserves as a reusable unit. Suppose that a value-added aspect that converts graphic files

helps a map service adapt to the display type of customer’s device. It can be reused in other

services that need to reformat their output message into a graphic file format. The difference

between value-added aspects and policy aspects relies on how much an aspect is related to

the customer’s context. On this basis, a performance-related aspect cannot be value-added,

but a security aspect may be policy-type if it supports extra functions over the existing

security mechanism or it is an option that requires an additional cost of customers. An AOP

language would be very useful to modularize value-added functions in the implementation

stage, although they could be realized using classes, components, or libraries.

 38

4.3 Graphical Representation

Our approach graphically represents a service-oriented system by means of an

extended UML2 diagram and Petri net. Precisely, the conceptual structure of a service-

oriented system designed is represented using an extended UML while the behavior of each

service delivered to the customer is draw using the Petri net. The support of a corresponding

XML-based representation method can increase interchangeability or interoperability of

service-oriented design results and make easier the implementation of a weaving program

independent of any specific development tool, which is explained in the next section.

Figure 10: A service-oriented system with a service entity and two service chains plus

aspects

To draw the conceptual structure of a service-oriented system, we can use three types

of service elements – the service entity, the service chain and the service net, aspects and the

 <<crosscut>>

<<crosscut>>

<<crosscut>>

<<crosscut>>

: Service entity

: Component icon

Legend

 <<aspect>>
Security

{type=policy}

 <<aspect>>
Performance
{type=policy}

 <<aspect>>
Adaptation

{type=value-added}

 <<aspect>>
Service entity
{type=common}

 <<aspect>>
Atomic action
{type=common}

 <<aspect>>
Foreign net

{type=common}

<< service net >>
S

<< service chain >>
C1

<< service chain >>
C2

 39

crosscut relationships between them. The service elements (i.e., service entities, service

chains, and service nets) and aspects are represented using the extended UML2 composite

structure. The crosscut relationships are denoted by the arrows with the stereotype

<<crosscut>>. The provided and the required interfaces bound to the atomic action in a

service entity are denoted using the ball-and-socket notation.

Figure 10 represents the design diagram for a service-oriented system that comprises

the service elements responsible for three different services, aspects and their crosscut

relationships. We discuss the service design elements shown in Figure 10 in the following

subsections. Not only does this design diagram show fundamental design elements required

for a service-oriented system in the development phase, but it is also useful at the deployment

phase of a service-oriented system across heterogeneous platforms.

As mentioned, an atomic action in a service entity or an aspect is drawn using the Petri

net that is likely to be well aligned with the UML graphical representation. Note that the

main advantage of using Petri net is that Petri net as a graphical and mathematical modeling

method is supported by well-defined formality and many available Petri net tools. In the rigid

sense, the activity diagram of UML may be another option to describe an internal behavior of

a service or an aspect. This alternative is less attractive since the weak formality of the UML

representation hinders the analysis of the service behavior. A UML activity diagram needs to

be translated into an input format for a model checker according to a formal semantics in

order to verify functional properties of design results such as workflow models [61].

Furthermore, the activity of UML2 is redesigned to use a Petri-like semantics [28]. As a

superset of a Petri net with syntactic sugar, an activity diagram is possible to be translated to

a variant of Petri net using the defined denotational semantics for the basic features of UML2

activity diagram [62].

 40

4.3.1 Service Entity

A service entity denoted by the stereotype <<service entity>> as a basic design unit in

the structural view is responsible to deliver a basic and specific service to the customer. Since

a service entity contains atomic services that are basic design unit in the behavioral view, it

manifests a primitive service in both the structural view and the behavioral view. The service

entity is said to be autonomous, which means that it can deliver a single service by itself and

be deployed independently. In practice, the mapping of a service entity varies from system to

system according to its granularity. In other words, a service entity can be mapped to any

modular unit ranging from a class to a system based on the designer’s decision. The

composite structure of a service entity could have a component icon if the service entity

would be straightforwardly mapped to one or more components at the implementation stage.

The following paragraph defines a service entity in terms of the behavioral view as well as

the required interactions with customers.

Definition 5: Let AA = {A1, A2, …, An} be the set of atomic actions and MP = {mp1,

mp2, …, mpn} be an set of message pairs in an provided interface definition. A service entity

E is a set of atomic services such that E = {S1, S2,…, Sn} = {(A1 ⊕ mp1), (A2 ⊕ mp2), …, (An

⊕ mpn)} = AA ⊕ MP. If |E| = 1, the service entity E is atomic. Otherwise, E is sequential. In

particular, an atomic service is said to be static when its binding is not changed during the

service development process as well as after the service deployment.

4.3.2 Service Chain

A service chain denoted by the stereotype <<service chain>> represents a composite

service that delivers a single service with cooperation of multiple service elements. A non-

autonomous service entity needs the support of other services via its required interfaces.

 41

This also happens when a service entity is mapped to a COTS (Commercial-Off-The-Shelf)

component with its required interface. Occasionally, service designers need to extend

functionality of an autonomous service entity. In this case, it is important to explicitly show

how to assemble all relevant service elements. A service chain is used to describe the peer-

to-peer relationships among those service elements. The service chain must be autonomous,

which means that all the exposed required interfaces of service entities within a service chain

must not remain unconnected. The provided interface of a service chain comes from a

service element in it. Therefore, the service chain may be thought of as the Façade object

[32] that provides a single interface for a subsystem or a service proxy that statically links

some services. From the behavioral view, the linkage of two service elements is achieved at

the level of the atomic services within them. The following definitions present how to link

atomic services in different service entities. Then, a service chain is defined.

Definition 6: We extend the binding operation ⊕ to support the concatenation of two

atomic services in different service entities. An atomic service S1 = (P1, T1, I1, O1, M01) ∈ E1

with a message pair mpr = (pq, pa), where pq, pa ∈ P1 are the query and the answer message

respectively, derived from the required interface can be connected to a message pair of the

provided interface mp2 = (pi2, po2) for another atomic service S2 = (P2, T2, I2, O2, M02) ∈ E2.

When E1 ≠ E2, an atomic service SH is expressed using the extended binding operation that

concatenates two Petri nets for S1 and S2 such that SH = (PH, TH, IH, OH, M0H)

=

!

S
1
"
mpr

S
2

= (A
1
" mp

1
) "
mpr

(A
2
" mp

2
)

!

= AH " mp
1
. The Petri net for SH is defined as follows:

 PH = P1 ∪ P2,

 TH = T1 ∪ T2 ∪ {tquery, tanswer},

 IH = I1 ∪ I2 ∪ {(pq, tquery), (po2, tanswer)},

 OH = O1 ∪ O2 ∪ {(tquery, pi2), (tanswer, pa)},

 M0H = M01 ∪ M02.

 42

Definition 7: The extended binding operator ⊕ is left-associative such that S = S1 ⊕

S2 ⊕ S3 = (S1 ⊕ S2) ⊕ S3 and S1 ⊕ S2 ≠ S2 ⊕ S1. Also, the operator ⊕ can be used to express

the case that the right operand is a set of atomic services if an atomic service for the right

operand has a set of message pairs MPr = {mpr1, mpr2, …, mprn} derived from the required

interface such that SH =

!

 S
0
"
MP

r

{S
1
,S

2
,...,S

n
} =

!

S
0
"
mpr1,

S
1
"
mpr 2,

... "
mprn

Sn =

!

S
0
"
mpr1,

(A
1
" mp

1
) "
mpr 2,

... "
mprn

(An " mpn), where if S0 ∈ E0 then S1, …, Sn ∉ E0. Similarly, the

binding operator ⊕ in Definition 4 is also left-associate by considering a message pair mp as

a Petri net that comprises two places such that S = A ⊕ mp1 ⊕ mp2 = (A ⊕ mp1) ⊕ mp2. In

this case, an atomic service S has an atomic action A bound to a couple of provided

interfaces.

Definition 8: A service chain H is a set of composite services such that H = {SH1, SH2,

…, SHn}. A composite service SHi ∈ H is composed by concatenating atomic services in

multiple service entities using the extended binding operator ⊕ in Definition 6 and 7 such

that SHi = S1 ⊕ … Si ⊕ … Sj ⊕ …⊕ Sn, where Si ∈ Ei, Sj ∈ Ej, and Ei ≠ Ej. If |H| = 1, a service

chain H is atomic. Otherwise, H is sequential.

4.3.3 Service Net

A service net denoted by the stereotype <<service net>> represents a collection of

assorted services offered by a service-oriented system or a service provider. For example, a

travel service-oriented system provides a set of services such as booking and check-in. The

service net just depicts a virtual boundary of a service-oriented system using service entities

or service chains that are really responsible for delivering real services. A service net

pertaining to a service chain or another service net is called the foreign service net. A foreign

 43

service net is considered as an entire black box, which implies that we can assume that the

services of a foreign service net are provided by autonomous service entities of which atomic

actions have a single operation inferred from their provided interfaces. The foreign service

net, for example, could be used to illustrate a portal service net that only contains a set of

foreign service nets. In this case all the service requests to this portal service net are

redirected to the corresponding service net represented using a foreign service net. The

definition of the service net is as follows.

Definition 9: Let EE = {E1, E2, …, En} be the set of service entities and HH = {H1,

H2, …, Hm} be a set of service chains. A service net SN is an union of the above sets such that

SN = EE ∪ HH. Also, a service net SN contains a set of service nets FSN = {SN1, SN2, …,

SNk} where SN ∉ FSN such that SN = EE ∪ HH ∪ FSN.

4.3.4 Aspect

The aspect denoted by the stereotype <<aspect>> collects various atomic services or

annotations in terms of domain-specific or service-related concerns. The type of an aspect is

specified in the tagged value “type”. In addition to three generic high-level aspects suggested

in Section 4.2.2, another high-level aspect or child aspects under them can be created if

needed. For instance, a logging aspect with a tagged value “{type=common/action}”

indicates that it has a common atomic action shared by a number of service entities.

Similarly, an aspect about the response time may have a tagged value

“{type=policy/performance}. Based on these type values, aspects can be classified in a

hierarchy structure that helps the traceability and maintainability of service design results.

Any change related for aspects like creating or renaming must be immediately announce to

all designers in order to keep the integrity of to the hierarchal structure. Note that these type

 44

values could be determined based on the aspects names in the aspect view of the FCD-A

method.

An aspect only includes autonomous atomic services to represent a functional feature

separated. In other words, an aspect cannot have a required interface. This atomic service in

an aspect is particularly called advice to distinguish it from the atomic service in a service

entity to be crosscut. An advice is a concern-specific method that crosscuts any service

element, which means that it intervenes in all the atomic services within a service element.

An advice should be statically bound with a provided interface called the advice interface

indicated using “ad” within the ball notation to provide a prescribed and consistent interface

during the development process. An advice does not need to be considered as a black box in

the design phases. The advice interface cannot be applied to an aspect with annotations for a

quality attribute like the “performance” aspect in Figure 10. The aspect is defined as follows.

Definition 10: An aspect is a concern-specific set of annotations in a text-based form, or

static and autonomous atomic services called advices. From behavioral viewpoint of a

service design, an aspect C = {S1, S2, …, Sn} is the finite set of advices just like a service

entity.

From now on, we use the service entity and the aspect to represent their atomic services

and advices respectively except where an obvious distinction is necessary

4.3.5 Crosscut Relationship

The crosscut relationship denoted by the stereotype <<crosscut>> associates an aspect

with a service element to be crosscut. In particular, the crosscut relationship from an advice

should stipulate how and where it crosscuts an atomic service in a service entity. This

crosscut-related information is specified within the “pointcut” tagged values in the crosscut

 45

relationship using one of five crosscutting methods in Table 1. These crosscutting methods

are derived from AspectJ [7], the aspect-oriented extension for the Java programming

language. The before and the after method make an aspect performed prior to or posterior to

an operation. These two methods can make an aspect work as either a pre-condition or a

post-condition of a specific task required for Design by Contract [35]. The around method is

used to replace a single operation in a service entity with an aspect. The proceed method to

concurrently execute an aspect with a single operation. The flow method as a variation of the

proceed method can concurrently execute an aspect by invoking the aspect before an

operation and finishing it after another one within an atomic service. If a flow method has the

two crosscut points of which operations are identical, it can be superseded with a proceed

method. There is no variation version for the around method of which necessity strongly

suggests that we should redesign or replace the service entity to be crosscut.

Table 1: The crosscutting methods

Method Description Syntax Crosscut point

Before
Perform extra operations of an aspect before the

operation in a service entity
Before(MPRE, O) (MPRE, O)

After
Perform extra operations of an aspect after the

operation in a service entity
After(MPOST, O) (O, MPOST)

Around

Bypass the single operation in a service entity

and perform alternative operations of an aspect

instead

Around(MPRE, O,

MPOST)

 (MPRE, O) and

(O, MPOST)

Proceed
Perform the single operation in a service entity

and the operations of an aspect concurrently

Proceed(MPRE,

O, MPOST)

(MPRE, O) and

(O, MPOST)

Flow
Perform the operations of an aspect along an

execution path of a service entity concurrently

Flow(MPRE, O,

MPOST, O’)

(MPRE, O) and

(O’, MPOST)

 46

As shown in Figure 11, a crosscut point is specified using the names of messages and

operations in the behavioral description of the service entity. Instead of a particular name of a

message or an operation, we can use the symbol “*” that stands for any messages or any

operations. If a crosscut relationship has the pointcut tag “{pointcut=before(*, OP1)}”, all the

input messages for the operation OP1 are interrupted. Only the before method or the after

method can have “*” in both the operation and message name at the same time. For example,

the pointcut tag “{pointcut=after(*, *)}” can be applied to a crosscut relationship from an

audit aspect to log the output messages of all operations in a service entity or chain.

Figure 11: The graphical representation of the crosscut relationship in the tagged value

“pointcut”

The following paragraph defines a crosscut relationship more formally in terms of

atomic services in a service entity and an advice in an aspect.

Definition 11: A crosscut relationship Rθ(cp) (E(SE), C(SC,)) represents an explicit

link between two Petri nets SE = (PE, TE, IE, OE, M0E) ∈ E and SC = (PC, TC, IC, OC, M0C) ∈

C, which implies that an atomic service SE in a service entity E is crosscut (intervened) by an

advice SC in an aspect C. A crosscut relationship has a crosscutting method θ with either one

<<Service entity>>
E0

<<crosscut>>
{pointcut = before (m2, OP3)}

<<crosscut>>
{pointcut = after (m4, OP3)}

m1

OP1

OP3 OP2

m3

m2

OP4

m4

Atomic action in

o

<<interface>>
{type=provided} Atomic service

ad

<<aspect>>
Aspect

{type=value-added}

Atomic action

Advice

 47

or two crosscut points shown in Table 1. A crosscut point cp = (m, o) or (o, m) defined by a

message m and operation o in an atomic service SE represents an input or output arc, called

the crosscut arc, such that (m, o) ∈ IE or (o, m) ∈ OE.

4.4 XML-Based Representation

The graphical representation based on the extended UML2 and the Petri net is not a

suitable format to be stored and manipulated. Moreover, we do not want our design approach

to stick to specific UML2 and Petri net tools. Their tool-specific representation format can

undermine the interchangeability of the design results. We want our approach to be free from

dependency of any particular tool that quite often dominates the whole design process. To

provide a standardized and representation format corresponding to the graphical reorientation

in the previous section, we define the service-oriented definition markup language

(SODML), a set of service-oriented description languages based on the XML specification.

Especially, SODML lets us implement the weaver program required for an automatic

processing mechanism independently of tool-specific file formats The main purpose of

defining SODML is to increase manageability and maintainability of the service-oriented

design results in addition to their interchangeability or interoperability. For example, an

automatic way to enforce designers to specify all the necessary information necessary for our

design approach can be achieved by providing XML Schema Definition (XSD) that checks

the validity of design results. Besides, we may use an XQuery [56] to find out repeated

design elements that would be a candidate for a common aspect.

SODML has two basic markup languages, the service markup language (SvML) and

the aspect markup language (AsML) over the Petri net markup language (PNML) explained

in Section 2.3.4. Note that SODML uses the standard feature of the basic PNML to store

Petri net for all the internal behavioral description for service entities and aspects. In addition

 48

to those two markup languages, another markup language used to extend the design results

for the analysis purpose is the part of the SODML. This extension markup language is

discussed in the next chapter.

4.4.1 Service Markup Language (SvML)

Figure 12 shows the meta-model and the structure of the SvML. The names of the

nodes in the meta-model are mapped to XML tags in the XML format.

<services ⋯ >
 <message name=“⋯”/>
 <interface name=“…”>
 <pair name=“…”>
 <in message=“⋯”/>
 <out message=“⋯”/>
 </pair>
 </interface>
 <binding interface=“⋯" name=“⋯” >
 <pair name=“…” pnml=“…” netId=“…”>
 <in>
 <operation name=“…”/> …
 </in>
 <out>
 <operation name=“…”/> …
 </out>
 </pair>
 </binding>
 <entity name=“…”>
 <provided binding=“⋯” name=“⋯”/>
 <required binding=“⋯” name=“⋯”/>
</entity>

 <chain name=“…”>
 <front name=“⋯” entity=“⋯”/>
 <connection entity=“…” required=“…”>
 <pair name=“…”>
 <linking entity=“⋯” provided=“⋯” pair=“⋯”/>
 </pair>
 </connection>
 </chain>
 <net name=“…”>
 <part include=“…”/> …
 </net>
</services>

Figure 12: The meta-model and structure of the SvML

The interface tag is defined based on the message pair that consists of an input and an

output message. The binding tag addresses how to build the Petri net for an atomic service by

binding an interface definition in the interface tag with the Petri net in a PNML file

designated by the netId and the pnml attribute in the pair tag under it. The interface definition

does not need to be modified to replace the binding information with a PNML file appearing

under the <binding> tag, which means that our approach allows service designers to change

the behavior of a service without touching the interface definition published to customers.

Interface

MessagePair

Message

net

Entity Chain 1

1

1

Binding

*
*

1..*

1
2

* *

1

*

1

2

1
*

1

*
Pair Provided Required

Operation
(In/Out)

1

*

1

1

Transition

PNML

Place

Arc 1 *

*
1

1

* *

* 1

Atomic action

Service

1
*

 49

The entity tag for a service entity contains necessary binding tags and decides whether their

interface type is either provided or required. If a Petri net appears in multiple binding tags

appertaining to a service entity, it is treated as a unique one within that service entity.

Suppose that the binding tag B1 and B2 under the entity tag E indicates the same Petri net N1

and they are defined as “provided” and “required” respectively. In this case, the service entity

E has only a single Petri net N1 with the provided interfaces B1 and the required interface B2.

The chain tag for a service chain states which message pair of the required interface for a

service entity is linked to which one of the provided interfaces for another service entity. It

also specifies which service entity offers a provided interface of a service chain. The net tag

for a service net should contain at least a service entity or a service chain or a foreign service

net.

4.4.2 Aspect Markup Language (AsML)

Figure 13 shows the meta-model and the structure of the AsML. In AsML, a

crosscutting method is represented using one of five tags: before, after, around, proceed and

flow.

<aspect …>
 <message name=“⋯”/>
 <advice name=“..” pnml=“…” netId=“…” sync=“…”>
 <in message=“⋯”>
 <operation name=“…”/> …
 </in>
 <out message=“⋯”>
 <operation name=“…”/> …
 </out>
 </advice>
 <before name=“…” adviceBinding=“…” crosscut=“…”>
 <pointcut message=“…” operation=“…”/> …
 </before>
 <after name=“…” adviceBinding=“…” crosscut=“…”>
 <pointcut message=“…” operation=“…”/> …
 </after>
 <around name=“…” adviceBinding=“…” crosscut=“…”>
 <pointcut preMessage=“…” operation=“…”
 postMessage=“…” /> …
 </around>
 <proceed name=“…” adviceBinding=“…” crosscut=“…”>
 <pointcut preMessage=“…” operation=“…”
 postMessage=“…” /> …
 </proceed>
 <flow name=“…” adviceBinding=“…” crosscut=“…”>
 <pointcut preMessage=“…” preOperation=“…”
 postMessage=“…” preOperation=“…”/> …
 </flow>
</aspect>

Figure 13: The meta-model and structure of the AsML

Pointcut

Aspect Advice

Crosscutting
method

Before Flow

After

Around

Proceed

1

Operation Message

*

1..2 1..2

*

1

*

1
*

Transition

PNML

Place

Arc 1 *

*

1

1

* *

*

Message
(In/Out)

*

Transition

PNML

Place

Arc 1 *

*

1

1

* *

*

1
2

1

1..*

Entity

*

1

Atomic action for the aspect

Atomic service for the service entity

 50

The adviceBinding attribute of a crosscutting method is used to associate an advice to

a service entity indicated in its crosscut attribute. If the adviceBinding attribute value is not a

name of the advice in the AsML file, we consider it as a file name for a non-implementable

policy aspect such as a performance aspect. The crosscut attribute has the name of either a

service chain or a service net in the sense that a crosscutting method is applied to all of the

service entities within it. The pointcut tag under a crosscutting method denotes a crosscut

point specified using the operation and message names or their IDs in the PNML file for a

service entity.

The AsML uses the reserved word “any” instead of the symbol “*” to represent any

message or operation. Care needs to be taken to specify a crosscut point of the Petri net that

appears multiple times in a service element or the same crosscut point that occurs in different

Petri nets in order to prevent from applying the crosscutting method to all matched crosscut

points in every Petri net in the service element. An advice tag is used to designate a specific

Petri net for the behavioral description and specify an advice interface that includes the input

and output message. In addition, the advice tag may include the sync attribute that restricts

the number of activated instantiations of the advice. The details about the sync attribute are

explained in Section 4.5.3.

4.5 Weaving Process

 The aspect-oriented approach applied in our design process supports an automatic

weaving process to obtain an integrated behavioral description using the Petri net

representation by weaving aspects into the service entity. The weaver pareses the SODML

files for a service-oriented system and generate integrated Petri nets for its services. Each

integrated Petri net corresponds to a service modeled. Figure 14 illustrates the weaving

process for generating an integrated Petri net for a service in the PNML format.

 51

<<aspect>>
Aspect 1

{type=value-added}
a
d

<<service entity>>
E1

<<crosscut>>
{pointcut = before (in, OP)} <<aspect>>

Aspect 1
{type=value-added}

OP1

Atomic action <<interface>>
{type=advice}

<<Aspect>>
Aspect 1

<<crosscut>>
{pointcut = before (in, OP)}

Call

Return

in

o

inMessage

outMessage
oi

<<interface>>
{type=provided}

<<service entity>>
E1

OP

atomic service

in

o

PNML file
(Integrated
Petri net)

PNML file
(Petri net for

an atomic action)

Weaver
(Java program)

Composition mode

PNML file
(Petri net for

an atomic action)

SvML file
(Service markup

language)

AsML file
(Aspect markup

language)

Figure 14: The weaving process for generating an intergrate Petri net for a service

We support this weaving process by means of the Petri net-based semantics explained

in the reminder of this section. In addition, we examine two cases of when several aspects

with different crosscutting methods are applied to the same crosscut points in a service entity

and when the number of instantiations of an aspect needs to be restricted.

4.5.1 Weaving

The weaving process produces an integrated Petri net using the Petri net for an atomic

service in a service entity and an advice in an aspect based on the crosscutting methods

specified in the crosscut relationships between them.

(a) Before method

 52

<<aspect>>
Aspect 2

{type=value-added}
a
d

<<service entity>>
E2

<<crosscut>>
{pointcut = after (o, OP)}

OP1

Atomic action <<interface>>
{type=advice}

<<Aspect>>
Aspect 2

<<crosscut>>
{pointcut = after (o, OP)}

Call

Return

in

o

inMessage

outMessage

oo

<<interface>>
{type=provided}

<<service entity>>
E2

OP

atomic service

in

o

 Atomic action <<interface>>
{type=advice}

<<Aspect>>
Aspect 3

<<crosscut>>
{pointcut = around (in, OP, o)}

Call

Return

in

o

inMessage

outMessage

<<interface>>
{type=provided}

<<service entity>>
E3

OP

atomic service

OP1

in

o

<<crosscut>>
{pointcut =flow (in, OP1, m3, OP3)}

Call

o
o

Return

oi

 Atomic action <<interface>>
{type=advice}

<<Aspect>>
Aspect 5

 atomic service

OP1

in

OP4

m
2

o

OP3

m
1

OP2

inMessage

outMessage

m
3

<<interface>>
{type=provided}

<<Service entity>>
E5

in

o

OP1

<<aspect>>
Aspect 5

{type=value-added}
a
d

<<service entity>>
E5

<<crosscut>>
{pointcut = flow (in, OP1, m3, OP3)}

 Atomic action <<interface>>
{type=advice}

<<Aspect>>
Aspect 4

<<crosscut>>
{pointcut = proceed (in, OP, o)}

Call

Return

in

o

inMessage

outMessage

oi

<<aspect>>
Aspect 2

{type=value-added}

<<service entity>>
E4

OP

atomic service

oo

in

o

OP1

<<aspect>>
Aspect 4

{type=value-added}
a
d

<<service entity>>
E4

<<crosscut>>
{pointcut = proceed (in, OP, o)}

<<aspect>>
Aspect 3

{type=value-added}
a
d

<<service entity>>
E3

<<crosscut>>
{pointcut = around (in, OP, o)}

Figure 15: The Petri net semantics for five crosscutting methods

(b) After method

(c) Around method

(d) Proceed method

(e) Flow method

 53

Figure 15 presents the Petri net-based semantics for the five crosscutting methods in the

graphical representation. The right side of the figure represents the integrated Petri nets after

the weaving process has been done. The first three methods directly modify the flow of the

behavior of the primitive services whereas the proceed or flow method makes the advice of

the aspect performed concurrently against one or more operations of the service entity. In

terms of the Petri net-based semantics represented in Figure 15, the weaving process is

formally described as follows.

Definition 12: Weaving process generates an atomic service by combining the

atomic service in a service entity and the advice in an aspect according to their crosscut

relationship between them. From Definition 11, the atomic service SW obtained after weaving

SE and SC is expressed using the weaving operator ⊗ such that SW = (PW, TW, IW, OW, M0W)

=)()(
)()(

CC
cp

EEC
cp

E mpAmpASS !"!="
##

!

= AW " mpE . The ⊗ operator constructs an

integrated Petri net for SW by performing Algorithm 3 (the first weaving algorithm) in

Appendix.

Definition 13: The weaving operator ⊗ is left-associative such that S = S1 ⊗ S2 ⊗ S3

= (S1 ⊗ S2) ⊗ S3 and S1 ⊗ S2 ≠ S2 ⊗ S1.

The weaving process introduces glue operations (or glue transitions) to resolve the

mismatch between the messages of a service entity and the input/output message of the

advice interface of an aspect. There are two types of glue operations: call and return (denoted

as tcall and treturn in Algorithm 2). The call operation converts an interrupted message in a

service entity into the advice’s input message while the return operation reformats the output

message of the advice into an original message used in a service entity. At the

implementation stage, these glue operations could be realized as glue code [36] that may

 54

extract the specific value of the message, cast its type, or translate a XML document into

another. These glue code may be implemented using BPELJ [59] if operations in a service

entity (or service entities in a service chain) are declared as Web services and programmed in

BPEL4WS.

4.5.2 Overlapped Crosscut Points

It happens quite often that several aspects are weaved into the same crosscut point. In

Figure 16, three aspects have the common crosscut points.

Figure 16: An overlapped crosscut point with three aspects

To deal with multiple aspects with overlapped crosscut points, the glue operations

demand to do an additional task. The call operation works as a fork operation that executes

attached aspects simultaneously while the return operation does as a join operation that

assures their termination. In fact, the glue operations for the process and flow methods

already play these role as shown in Figure 15-(d) and (e).

OP

in

o

inMessage

outMessage

<<interface>>
{type=provided}

ad

Call

Return

oi

oo

<<crosscut>>
{pointcut = proceed (in, OP, o)}

ad

ad

<<crosscut>>
{pointcut = before (in, OP)}

<<crosscut>>
{pointcut = after (o, OP)}

Return

Call

<<service entity>>
E6 <<aspect>>

Aspect A

<<aspect>>
Aspect B

<<aspect>>
Aspect C

 55

In addition to this role extension of the glue operations, we need a simple precedence

rule when the around method is related to overlapped crosscut points. When an around

method is applied to an operation, it suppresses the weaving of before, after and proceed

methods attached to two crosscut points prior and posterior to the operation. The flow

method is exceptional for this suppression because it is not attached to a single operation. For

example, when an aspect is attached to the operation OP in Figure 16 using the around

method, it invalidates the weaving of three aspects A, B and C.

4.5.3 Restricted Instantiation of Aspects

Basically, the weaving process uses a simple copy mechanism to knit an aspect into

service entities. More specifically, the Petri net for an advice is copied into the one for an

atomic service in a service entity as many as the number of the crosscut relationships

between them. Each copied Petri net is regarded as an instantiation of the aspect. During a

service execution or analysis, we often need to control the number of instantiations of an

aspect. Suppose that an aspect A in Figure 17 has an advice to access a database in an

exclusive way. Due to the copy mechanism applied, we can see that the corresponding Petri

net appear twice into the Petri net of a service entity. However, these two Petri nets derived

from the same aspect A should not be simultaneously executed. To limit the number of the

concurrent invocations of an instantiated aspect, the tagged value “sync” can be specified in

an aspect. Figure 17 is the weaving result of the aspect with the tagged value “{sync=1}”.

Here, two instantiations derived from the aspect A cannot be executed at the same time.

Either of them can be executed only when a token is available in the sync place. The sync

tagged value is useful to represent a critical section in the behavior of a service entity. If the

aspect A in Figure 17 is a vacant aspect that has a null operation, its “{sync=1}” prevents to

operations, OP1 and OP3, for being executed simultaneously.

 56

Figure 17: The aspect with the tagged value “sync”

During the weaving process, the weaver adds a special place called the sync place

similar to a run-place, and connects it to the transitions bound with the input and output place

for a message pair of an advice interface. The sync place has the initial tokens as many as the

number is specified in the corresponding sync tagged value. The following paragraph defines

the meaning of the sync.

Definition 14: A sync sync(k) for an advice restricts the number of activated

instantiations of an advice during a service execution to a nonnegative integer k. A sync(k)

applied to an aspect affects all advices. When an advice SC = (AC ⊕ {pi , po }) with sync(k) is

weaved into SE , Algorithm 4 in Appendix is performed as additional steps of Algorithm 3 in

Appendix.

OP1

in

OP3

o

m1

OP2

inMessage

outMessage

m3

<<interface>>
{type=provided}

Call

Return

i1

o1

Call

Return

i2

o2

<<crosscut>>
{pointcut = proceed (in, OP1, m1)}

<<crosscut>>
{pointcut = proceed (m3, OP3, o)}

{sync = 1}

Critical region
(Transactional operation)

The same aspect <<service entity>>
E7

ad

ad

<<aspect>>
Aspect A
{sync=1}

<<aspect>>
Aspect A
{sync=1}

 57

4.6 Example

We use the order service for a retailer service-oriented system as an exemplary

service to demonstrate our design approach.

Figure 18: The order service in the retailer service net with four aspects

Figure 18 presents the graphical representation for a primitive order service and four

aspects in the retailer service-oriented system. The upper box represents the primitive order

service stored in two XML files: the SvML file for the structure of the retailer system

including the order service and the PNML file for its behavior description. Upon customer’s

request, the primitive order service concurrently performs two operations for processing the

 << service net >>
Retailer service system

ad

password

ad

Translation

Exclusive

atomicSecurity.pnml atomicTransaction.pnml

atomicAdaptation.pnml

Service
(SvML file)

Aspects
(AsML file)

<<crosscut>>
{pointcut = before(…)}

<<crosscut>>
{pointcut = after(…)}

<<crosscut>>
{pointcut = proceed(…)}

<<aspect>>
{type=policy}

Security

<<aspect>>
{type=value-added}

Adaptation

response

ad

Back-order

atomicOrder.pnml

<<crosscut>>
{pointcut = flow(…)}

<<aspect>>
{type=value-added}

Back order

ad

<<service entity>>
Order Service

Request

<<crosscut>>
{pointcut = proceed(…)}

<<aspect>>
{type=policy, sync=1}

Critical region

Interface
{type=provided}

atomicOrder.pnml

 58

inventory-related data and verifying the credit card information, and then sends an order

acknowledge back to the customer. These two operations are essential to build an order

service and tend to remain unchanged even though the order service evolves.

This primitive order service is possible to evolve according to diverse reasons such as

e-market trends or customer’s needs. Suppose that a service provider wants to support the

following four requirements related to the order service.

 To increase security, check password before the order service processes its

request.

 To decrease the system workload, two operations the inventory process and the

credit card verification, should not be performed concurrently.

 To send the order acknowledgement to customer’s mobile device like a cellular

phone, the response of the order service should be reformatted using another

markup language such as Wireless Markup Language (WML).

 To place back orders into another retailer system if customer’s order request

includes items marked as “back-order” or “out-of-stock”.

The four aspects in the lower box of Figure 18 are derived from the above four

requirements. Each aspect is designed simply to have either one or two operations. The

crosscut relationships from those aspects include the crosscut method in the pointcut tagged

value of which the exact crosscut points are omitted for the sake of clarity. The aspects and

the crosscut relationships are stored in an AsML file and the behavioral description for each

aspect is stored in an individual PNML file. For the behavioral description of the back order

aspect, the PNML file used for describing the behavior of the primitive order service is used

again, which exemplifies the reusability of an atomic action as a basic design unit in the

behavioral view.

 59

4.6.1 Weaving

To obtain the integrated Petri net for the behavioral description of the order service

with aspects, we implement a weaver program using Java version 1.5 [51] and JDOM [81].

The weaver produces an integrated Petri net for the service in the basic format of PNML by

performing two steps: the binding step with the SvML file and the weaving step with the

AsML files. Both steps also process the related PNML files. The task of each step is

explained using the order service in Figure 18.

First, the weaver builds an atomic service for the primitive order service using the

SvML file and the PNML file. The binding process for the primitive order service can be

expressed as PrimitiveOrderService = atomicOrder.pnml ⊕ (submitOrderRequest,

submitOrderResponse). The weaver creates the request and response places based on the

message pair defined. The input message represented as a request place is defined to be

linked with two operations in the Petri net for the atomic service denoted in the dashed box.

To prevent a non-deterministic choice between those two operations, the weaver program

adds a fork operation that yields two cloned input messages for them. In Figure 18, the Petri

net for the primitive order service after the binding step is shown using the PIPE tool [52].

Note that it can be seen by any Petri net tool that supports the PNML file format such as Petri

net kernel (PNK) [53] and Renew [54].

Then, the weaver processes an AsML file with aspects and crosscut relationships and

generates a corresponding integrated Petri net according to the Petri net-based semantics

explained in Section 4.5. In this example, we create three versions of the order service as

follows.

 OrderService2 = PrimitiveOrderService ⊗before(…) Secutiry.Password ⊗after(…)

Adaptation.Translation

 OrderService3 = PrimitiveOrderService ⊗before(…) Secutiry.Password ⊗after(…)

Adaptation.Translation ⊗proceed(…) CriticalRegion.Exclusive

 60

Request

Response

Request

Response

Request

Response

 OrderService4 = PrimitiveOrderService ⊗before(…) Secutiry.Password ⊗after(…)

Adaptation.Translation ⊗proceed(…) CriticalRegion.Exlcusive ⊗flow(…)

BackOrder.Back-order

The weaving process generates the integrated Petri nets for the above three order

services specified. Figure 19 shows them using the PIPE tool. Compared with the Petri net

for the PrimitiveOrderService in Figure 18, those integrated Petri nets obtained are more

complex owing to the Petri nets from aspects, glue transitions, additional intermediate places

and arcs. The integrated Petri nets for the OrderService2 and the OrderService3 have an

initial token in the place created based on the tagged value “sync=1” of the critical aspect.

 (a) OrderService2 (b) OrderService3 (c) OrderService4

Figure 19: The integrated Petri nets for the different versions of the order service

 61

As mentioned, the back order aspect in Figure 19-(c) uses the same atomic action

with the primitive order service. If a back order process needs to be different from the order

service entity, a new integrated Petri net for the changed order service can be obtained simply

by performing a weaving process with a new back order aspect modified with a changed

atomic action.

4.6.2 Analysis

With the integrated Petri nets, we can perform their structural analysis that helps

verify the correctness of the service design results. The structural analysis of the integrated

Petri nets for the order services in Figure 19 is done with the analysis modules of the PIPE

tool. Note that some of its analysis modules require an initial token to be placed in the

request place, which represents a service input message from a customer. The classification

module identifies the subclasses of the integrated Petri net. The integrated Petri nets always

raise a deadlock, at least, at the response place during the analysis process. Therefore, the

detection of a real deadlock with a dangling operation that does not contribute the processing

of the order services requires a preprocess that makes the integrated Petri nets strongly

connected by inserting a transient transition and linking it with the request and response

place. The state space analysis results report that the integrated Petri nets are bounded, safe,

and deadlock free. In particular, the boundness is reassured by executing the invariant

analysis module that performs transition and place invariants (T- and P-invariants). The

simulations on the PIPE tool result in the average numbers of tokens for all the places of the

integrated Petri nets, which may help to find a bottleneck position in terms of structural view

of the order service.

Although the behavior analysis can be performed with these integrated Petri nets, its

results do not provide any significant meaning. This is because they have a simple flow of

 62

which behavior can be predictable based on their structural characteristics. More

comprehensive and meaningful behavioral analysis could be performed with the integrated

Petri net once some extra information is applied. For example, we can do the performance

analysis if the integrate Petri net has performance-related values such as temporal values for

each operations. Therefore, an automatic mechanism will be discussed in the next chapter to

extend the Petri net for a service with extra information related to the behavior of that

service.

4.7 Related Work

There are quite a lot of research works to help design service-oriented systems. Even

though the definitions or roles of their service seem to vary according to the viewer’s

perspectives [27], they recognize the service as an abstract design unit and treat it as a

significant element for modularization through a service-oriented software development. In

addition, the service-oriented design method is believed to support a coarser granularity of

abstraction, a higher level of visibility and a wider range of focus on service-oriented systems

than other current design practices such as object-oriented or component-oriented design

approaches [83].

Aspect-oriented approach is utilized quite often to cover various concerns raised

during service development process. For example, the component-based software

development (CBSD) could be regarded as a service-oriented software development with a

limited concept of the service. Here, a specific service is destined to be performed through a

component as a functional black box entity. Since the component concept is insufficient to

encapsulate a wide range of scope for the service concept, several CBSD methods

incorporate with aspect-oriented approach for developing service-oriented systems [16][46].

In a service-based model proposed in [38], services are incrementally elaborated and

mapped to components under consideration to cover the safety and security aspects. This

 63

approach requires a formally defined model for service architecture. They report that the

service contexts for context-adaptive services need to be incorporated into service

architecture models as future work. In [39], a service itself is defined as a crosscutting

architectural aspect. Using an Architecture Definition Language (ADL), services are captured

as interaction patterns among the roles of the system. During the weaving process, aspects

are used to assign roles to the component classes. The main purpose of services is to separate

roles from component configurations and architectures. In our opinion, other issues such as

customer-friendliness deserve attention from the very beginning stage of services design.

A service-oriented architecture (SOA) modeling based on the architecture style is

presented in [37]. A static and a dynamic part of the architecture style are depicted using

class diagrams and graph transformation system rules, respectively. A model checking

technique is used to validate consistency of scenarios captured in sequence diagrams with

respect to the dynamic behavior for the architectural style. This architecture-level design is

useful for business scenario analysis following the Publish-find-interact (or find-bind-

execute) paradigm rather than a generic service-oriented system from service-oriented

designers’ viewpoint.

Although web services [33] are a specific kind of services, most service-oriented

computing researches are more or less related to them. They provide basic and standard

technology for service publishing and customer interaction using XML-based languages,

SOAP [77], UDDI [78] and WSDL [79] in terms of the Publish-find-interact paradigm. The

business process behavior is expressed using BPEL4WS [34]. Although currently technology

provides the infrastructure for implementing web service-oriented systems, they are not

sufficient to deliver a qualified service. For instance, WSDL that is similar with our service

entity concept does not include any quality information of a service. The web service

offering language (WSOL) [40] is proposed to formally specify various constraints and

multiple classes of service provided by web services in addition to WSDL. Besides, many

 64

service-specific features such as context-awareness or data translation are still an important

factor, but are scattered across multiple modules in the design phases. For BPEL4WS, a

pattern-based Petri net semantic is developed to translate every BPEL process into a Petri net

[49]. This exemplifies that the Petri net is a useful method to express a business logic in a

composite service.

In [44], aspect-oriented component engineering (AOCE) is extended to support the

development of web services technology. The proposed component aspects such as user

interface, distribution, transaction processing, security, persistency, configuration, etc. are

separated from several modules. After the details are analyzed from these aspects, they are

annotated to WSDL or UDDI. Although these annotated WSDL and UDDL, named AO-

WSDL and AO-UDDI, cannot be processed without a common argument among web

services systems, they illustrate that the aspect-oriented approach can help the development

of web service-oriented systems. Aspect-oriented approach is applied to extend BPEL4WS

too. AO4BPEL [45] is proposed to cover two shortcomings of BPEL4WS: the lack of

modularity and the static composition. The aspect as a stand-alone business logic or service

in the XML format can be plugged or unplugged into the composition process at runtime. To

support AO4BPEL, an aspect-aware BPEL orchestration engine is devised. The BPEL

runtime, one of its five subsystems, manages most of process-related jobs including invoking

and joining aspects via the aspect manger. These works show the application and usefulness

of aspect-oriented approach to extend web services technology, rather than a means to

support aspect-oriented service design itself.

It is also important to compose existing services in an instantaneous and efficient way.

Some researches propose dynamic service composition frameworks in order to give

flexibility and adaptability to service-oriented systems. They build a composite service by

connecting simple and peer services. In our approach, it can be designed either using a

service chain or using functional aspects treated as individual services. Although, our work

 65

does not have a framework to support just-in-time adaptive service composition or aspect

weaving, it is worthy of surveying them in terms of how to construct a composite service

from basic services. In eFlow [41], a service broker finds necessary services based on the

predefined selection rules and constructs a composite service using a simple graph similar to

the UML activity diagram. When a service composition is modified, eFlow enforces

transactional semantics based on the predefined rules by verifying behavior consistency to

confirm that the migration does not result in run-time errors or non-deterministic behaviors.

Self-serv [42] uses the state chart to express the business logic of a composite service and

invoke component service operations in a procedural sequence. A service coordinate for a

composite service uses two routing tables for preconditions and postprocessing actions in

order to make an execution path from state chart to state chart. Based on Self-serv, the

quality model for web services is proposed in [43]. They suggest five generic quality criteria

for elementary services: execution price, duration, reliability, availability, and reputation.

Using them, the five corresponding aggregations for the QoS of composite service functions

are defined. Then, an execution plan for a composite service is selected by solving an

optimization problem using a linear programming method. JAsCo [46] is also a tailored

aspect-oriented language based on the Java Beans component model for component-based

development. Aspect beans are defined as a regular Java beans with hooks. The connector as

the collection of related aspects initializes the hooks of various aspect beans for a specific

context and executes their behaviors. It shows how to implement aspects in component-based

middleware, but does not explicitly present how to design and analyze them. Later, JAsCo is

applied to implement the Web services Management Layer (WSML) [47] that is placed

between the application and the world of web services in order to provide a just-in-time

integration based on dynamic AOP like eFlow and Self-serv. Just like other middleware,

WSML supports selecting and monitoring modules as well as generic management

functionalities.

 66

Our model is roughly comparable to four metalevels of the Meta Object Facility (MOF)

of the model driven architecture (MDA) [48] as a platform impendent model (PIM). For

example, the UML2 composite structure and associations extended with stereotypes and

tagged values in SODA could be the constructs of the level M3. With these constructs, two

metamodels for services and aspects shown in Figure 12 and 13 are created as the

metamodels for the level M2. Although our approach makes service design results reusable

across multiple implementations by transforming them into other models owing to the XML-

based representation, it omits many important factors in the MDA such as the platform

specific model (PSM), the transformation between models or from a model to a source code,

and automatic code generator from a more abstract model.

Similar approaches were proposed in [63][64] for modeling secure software based on

PrT (Predicate/Transition) nets. These domain-specific approaches are more appropriate to

patch developed software since they want to identify formulae mapped to transitions, which

hinders developers to sketch diverse software systems at the design stage. Furthermore, their

approaches could not be appropriate for evaluating system performance due to their use of

PrT nets. To apply their approaches, we could support an extension mechanism that converts

the basic Petri net used in SODA to PrT net by means of devising the syntax for those

inscription formula to be map to transitions

4.8 Summary and Discussion

In this chapter, we present the generic service-oriented design approach with the

concept of aspect named SODA. In SODA, a service belonging to a service-oriented system

is considered to be decomposed into the primitive function with an interface that can be

published and discovered and the aspects that denote supplementary features or annotate

quality attributes.

 67

The conceptual structure of a service-oriented system is drawn in the extended UML2

and represented using service elements, aspe cts, and their relationships. Among service

elements, a service entity is the fundamental structural unit that includes the Petri net for

describing its behavior. A composite service and a service-oriented system are drawn using a

service chain and a service net respectively. Aspects can be categorized under the three

generic high-level aspects: common, policy and value-added. The common aspect is used to

denote structural and functional redundancy in a service-oriented system. The policy aspect

annotates quality attributes across a service-oriented system and provides behavioral

guidelines for services. The value-added aspect is used to group extra functions for

customizing services. Domain-specific or service-dependent aspects can be defined if

needed. Each aspect is associated with multiple service elements using crosscut relationships.

To increase the interchangeability and interoperability of the service-oriented design

result, we define the service-oriented definition markup language (SODML) to store it in the

XML format. Service elements are stored using the service markup languages (SvML).

Aspects and their crosscut relationships with the service elements are specified in the aspect

markup languages (AsML). The Petri nets for their internal behavioral descriptions for the

functionality of the service or the aspect are stored using the Petri net markup language

(PNML). According to the Petri net-based semantics defined for the crosscutting methods in

the crosscut relationship, the weaver generates an integrated Petri net from the Petri nets of a

primitive service and aspects. As a result, by altering or updating aspects attached to a

primitive service, we can generate different versions or variations of a service. The integrated

Petri nets obtained through weaving process facilitate the analyses of the service design

results in both the structural perspective and the behavioral perspective.

Our aspect-oriented and Petri net-based approach is greatly expected to help increase

manageability, reusability and maintainability of service design results. Most of all, the main

advantage of our work is that the modification of a service design or the creation of its

 68

variation is allowed to be effectively and efficiently done with low or reduced effort by

changing or reusing any design elements, especially aspects. We believe that our design

approach helps a service-oriented software system development process and contributes to

the service-oriented computing community as well as the aspect-oriented software

development community.

 69

CHAPTER 5. EXTENSION OF SERVICE-ORIENTED DESINGS

5.1 Introduction

Services described in Petri nets have many advantages owing to the mathematical

soundness and graphical representations of Petri nets, and availability of various Petri net

tools. However, the basic Petri net used in our design process is absent from some

information necessary to identify the behavioral characteristics of its corresponding service.

For example, simulation of a Petri net for a service could find a structural problem such as a

deadlock path, but it cannot tell about the elapsed time for the service delivery or point out

where a performance bottleneck occurs. To discover this kind of behavioral characteristics

of a service, we need to consider the information specific to the service behavior during the

design analysis process. It is also very useful to evaluate a service or compare it with others.

In terms of aspect-oriented approach, such behavior-specific information can be regarded as

particular concerns that are only necessary during the behavior analysis process of the service

design result. Therefore, it can be separated from the design result and applied only when

necessary. For this purpose, an aspect-oriented extension mechanism is proposed for the Petri

net-represented service1. Note that the Petri net is used to describe the behavior of a service-

oriented design result. We provide a systematic method to extend a service design result with

its behavior-specific information. Also, this extension process needs to be independently and

automatically performed only in case of necessity to analyze the behavioral characteristics of

the service design result. There are two types of the behavior-specific information considered

in this chapter and applied for the extension at the service design level. One is the design-

specific data like temporal values required for executing the operations and the other is the

1 This extension mechanism can be applied to not only a Petri net-represented service, but

also any design result that can be represented using the basic Petri net and stored in a PNML file.

 70

resource-related data caused by an underlying platform. Accordingly, our extension

mechanism supports two different phases: the one for appending the design-specific data to

the Petri net for a service and the other for transforming a platform-independent service into

an platform-dependent service that takes into account the resources and their interferences in

terms of the Petri net-based semantics. Each extension stage can be performed individually.

The behavior-specific information separated from service designs is described using

XML-based representation languages that make this extension mechanism aligned with our

service-oriented design approach (SODA) presented in the previous chapter. Through the

weaving process, the basic Petri net for a service is transformed to an augmented Petri net

used for analyzing behavioral characteristics of the service extended with design-specific

information and resource interferences. This aspect-oriented extension mechanism facilitates

evaluating a service designed, or selecting an optimal or superior one among several service

design candidates.

5.2 Overview of Aspect-oriented Extension Mechanism

In this chapter, a service stands for an atomic service in a primitive service after

binding process or a service obtained via the weaving process of aspects for the convenience

of explanation. In other words, a service denotes an autonomous service represented using a

single Petri net with a request and a response place. Thus, a token in the request and response

place of the Petri net for a service implies a service invocation and termination respectively.

Also, the transitions and the places of the Petri net are interpreted as the operations and

messages constituting the corresponding service. We want to prevent a different

interpretation of the transitions and the places that can vary according to the granularity of

the design in the service development process.

As mentioned, our aspect-oriented extension mechanism consists of two independent

extension phases: one with the design-specific data and the other with resource-related data.

 71

The major difference between two phases is that whether an original structure of the Petri net

for a service needs to be modified or not. The design-specific data can be appended to the

Petri net for a service without causing its modification. The resource-related data, however,

requires it to be transformed because resources and their interactions need to be materialized

within the Petri net for a service.

The design-specific data is appended to the elements of the Petri net for a service. To

group and specify those data in the XML format, the PNML extension markup language

(PeML) is devised. Usually, the design-specific data contains extra information that

transform a basic Petri net used to represent the service design result to another class of Petri

net such as a generalized stochastic Petri net (GSPN) without touching the original structure

of the basic Petri net. Although a service seems to be sufficiently outlined with the basic Petri

net, its behavioral analysis tends to require some extra information. For example, the

performance analysis can be performed when a rate value is assigned to each transition.

Actually, the separation of this design-specific data is strongly recommended due to

following reasons. Firstly, the design-specific data is not needed until a behavioral analysis is

done. It can be managed separately and weaved automatically as the occasion demand.

Secondly, The separated design-specific data can be modified without causing any side effect

on the developed model. Through weaving process, a modified data leads a new Petri nets for

the service of which behavior characteristics would differ. Finally, the representation format

for those data also can be isolated. Most of currently available Petri net tools that support the

PNML file tend to represent the design-specific data using their own tags that severely

decrease the interchangeability of the PNML file. Once all of the data and its relevant tag are

removed from a PNML file, it would not happen that another Petri net tool fail to open that

PNML file because it cannot understand those PIPE tool-specific tags.

The resource-related data requires a specification about what kind of resources is

available and how they interact with the service developed. Since this data is intrinsically

 72

unrelated to the design results, its separation is natural. To provide a standardized

specification format for this resource-related data, the resource extension markup language

(ReML) is defined and used. In ReML, a resource-related data consists of resource

definitions and their weaving rules. A resource is defined as one of three abstract resources

that will be explained in the later section. Whenever a defined resource interacts with

(crosscuts) a Petri net for a service, it is treated and instantiated as an aspect. The interaction

of the defined resource is specified according to the weaving rules based on the Petri net-

based semantics. Since the resource-related data specified in ReML can be placed under the

PeML, we can conveniently group and store behavior-specific information mentioned in this

chapter within a single file. The meta-model for the PeML including ReML is shown in

Figure 20 and its details will be discussed in the following sections.

Figure 20: The meta-model of PeML including ReML

Toolspecific

PNML Extension

1

Global Local

*

1

*

1 *

*
1

1

* *

*

1..*

*
Atomic action for the aspect

Resource group

Crosscut Resource

Shared Exclusive Limited shared

Transition

PNML

Place

Arc

* 1

* *

*
1

1

*

* *

 73

Through the weaving process shown in Figure 21, the weaver in the extension mode

reads a PNML file for a service and a PeML file for design-specific data and resource-related

data, and then generates a PNML file for an augmented Petri net that represents a service

extended with design-specific data or various resource interferences.

Figure 21: The weaving process for extending a Petri net for a service

If a Petri net tool supports PNML and understands tags for appending design-specific

data, an augmented Petri net generated via weaving process could be immediately used to

analyze its performance characteristics. Otherwise, a transformation procedure of the PNML

file is necessary, for example, using the XML translation language (XSLT) [50], or a

translation program implemented.

Although this chapter focuses on the explanation of the extension mechanism in terms

of the behavior of a service, we want to mention that the behavior-specific information in

PeML or ReML used in the extension mechanism can be specified in the structural

representation of the service without causing any side effect. The design-specific data in

ReML can be simply specified using a UML note that is depicted as a rectangle with the top-

right corner folded over. The resource-related data in PeML can drawn just like the graphical

PNML file
(Integrated
Petri net)

Weaver
(Java program)

Extension mode

PeML file
(Domain-specific

data
to extend a Petr

net)
ReML data

(Resource definition
+ Weaving rules)

PNML file
(Petri net)

 74

representation of aspects of SODA so that each resource is represented using an aspect and

its interferences are expressed using crosscut relationships of which methods are restricted

according to the type of the resource.

5.3 Extension Mechanism for Design-specific Data

According to the PNML specification, the design-specific data should be placed under

the toolspecific tag. If the design-specific data is temporal values, its representation is

recommended to follow a syntax proposed for a generic Time Petri net based on the

Mathematical Markup language (MathML) [60]. However, most of Petri net tools that

support the PNML are representing those data using their own special tags. For example, the

PIPE tool uses the rate and value tag for specifying a stochastic value for each transition in a

PNML file in addition to the basic Petri net representation. As mentioned, those tool-

dependent tags decrease the interchangeability of the PNML file. The PeML is designed to

group this design-specific information enclosed with tool-dependent tags in a single file in

terms of an identifier – a unique name and a version. Through the weaving process, a group

of design-specific information can be selectively attached to a basic Petri net for a service.

Note that our extension mechanism is generic. Any kind of data described in XML can be

applicable to extend a Petri net although we only demonstrate the extension with a delay data

in this section.

Based on the Petri net definition in Definition 1, the extension with design specific

data can be considered to associate a set of the elements of the Petri net for a service to a set

of design-specific data. The extension with the design-specific data can be formally

described as follows.

Definition 15: If a Petri net for an atomic service is extended with the design-specific

data D = {d1, d2, d3,…}, the weaving process for this extension is to add an additional tuple

 75

for a mapping function X → D to the definition of the Petri net P = (P, T, I, O, M0), where X

⊆ P ∪ T ∪ I ∪ O.

For example, a mapping function E0: T → {d1, d2, …, di, …}, where di is a delay such

as a rate value, transforms a basic Petri net for a service to a timed transition Petri net.

5.3.1 Petri Net Extension Markup Language (PeML)

PeML places a group of a design-specific data under the toolspecific tag of which tool

and name attributes are used to indicate its unique identifier. For example, the PeML file in

Figure 22 has two toolspecific tags for the PIPE tool version 1.5b [52] and the StpnPlay tool

version 0.85b [55].

<PNMLextension>
 <toolspecific tool="PIPE" version="1.5b" netId="n1">
 <global type="transition" toolSpecificTag="false">
 <value tag="rate">
 <value tag="value">2.0 </value>
 </value>
 <value tag="timed">
 <value tag="value">false</value>
 </value>
 </global>
 < local name="InventoryProcess" toolSpecificTag="false">
 <value tag="rate">
 <value tag="value">0.5 </value>
 </value>
 <value tag="timed">
 <value tag="value">true</value>
 </value>
 </local>
 </toolspecific>

 <toolspecific tool="stpnplay" version="0.85b" netId="n1">
 <global type="transition" toolSpecificTag="true">
 <value tag="type">
 <value tag="value">Deterministic</value>
 </value>
 <value tag="value">
 <value tag="value">3.0</value>
 </value>
 </global>
 < local name=“CheckCreditCard" toolSpecificTag="true">
 <value tag="type">
 <value tag="value">Exponential</value>
 </value>
 <value tag="value">
 <value tag="value">20.0</value>
 </value>
 </local>

 <local name=“PasswordCheck" toolSpecificTag="true">
 <value tag="type">
 <value tag="value">Exponential</value>
 </value>
 <value tag="value">
 <value tag="value">10.0</value>
 </value>
 </local>
 <local name="TransactionControl" toolSpecificTag="true">
 <value tag="type">
 <value tag="value">Exponential</value>
 </value>
 <value tag="value">
 <value tag="value">25.0</value>
 </value>
 </local>
 <local name=“GenerateWML" toolSpecificTag="true">
 <value tag="type">
 <value tag="value">Exponential</value>
 </value>
 <value tag="value">
 <value tag="value">10.0</value>
 </value>
 </local>
 <!-- Extra communication delay for the Back Order
 <local name="FORK_SubmitBackOrderRequest" toolSpecificTag="true">
 <value tag="type">
 <value tag="value">Exponential</value>
 </value>
 <value tag="value">
 <value tag="value">30.0</value>
 </value>
 </local>
 -->
 </toolspecific>
</PNMLextension>

Figure 22: A PeML File

The global or local tag has a data described using the nested value tags. The global tag

specified with a node type appends a data to the transitions, the places, or the arcs of the

 76

same type while the local tag with a name of a node does it to the particular node. The

weaver is designed to process the global tags first. Thus, it is possible that the local tag

processing overwrites tag values created by the global tag processing.

5.3.2 Extension Process

The extension process is the weaving process of a set of data enclosed with the

toolspecific tag into a Petri net for a service. Although a PeML file can contain a number of

toolspecific tags, the weaver can work with one of them. Suppose that the weaver is invoked

with the PeML file in Figure 22 and the options, “tool=PIPE” and version=“1.5b”. Since the

processing of global tags precedes that of the local tags first, the weaver puts the set of tags

“<rate><value> 2.0 </value></rate>” and “<timed><value>false</value></timed>” under

all the transitions of the Petri net n1 in the input PNML file. The value of the tag attribute of

the value tag is used as a new tag name created during the extension process. If the

toolspecificTag attribute of the global tag is set to true, the corresponding generated tags are

enclosed by the toolspecific tag with attributes for the tool name and version. Then, the

weaver searches the “InventoryProcess” tag in the Petri net n1and tries to put “<rate><value>

0.5 </value></rate>” under it. Since the weaver program already creates it during the global

tag processing, it just changes the content of the <value> tags from 2.0 and false to 0.5 and

true respectively. The result of this weaving process transforms the basic Petri net to a

stochastic Petri net that can be analyzed in the PIPE tool.

Once the weaver is invoked with the same PeML file and the options,

“tool=stpnplay” and version=“0.85b”, it produces the PNML file for an augmented Petri net

with the hypothetical data required to use the StpnPlay tool version 0.85b. Unfortunately, the

StpnPlay tool for modeling and simulating stochastic Petri nets saves a Petri net in a simple

text file. Actually, there are many Petri net tools that stick to their own file format or its own

XML file format to store a Petri net and the design-specific data related to it. To exploit

 77

existing Petri net tools, a PNML file obtained after the extension process needs to be

transformed into another format file required by a Petri net tool. For this case, we decide to

use a simple conversion program implemented in Java in order to the transformation of a

PNML file to a text file for the StpnPlay tool. Another option for this transforming process is

to use the XML translation language (XSLT) [50] that facilitates the translations of a PNML

file into another format file such as text, HTML and XML including PNML by writing a

XSLT document for a Petri net tool. For example, an application of XSLT using the PNML

format is shown in [60] to convert a class of Time Petri nets into another class of Petri nets.

Note that a similar way could be applicable to translate SvML and AsML files for a service-

oriented system into an UML-tool accessible file, and vice versa.

5.3.3 Example

Based on three integrated Petri nets for the order service shown in Figure 19 and a

PeML file in Figure 22, we create five PNML files for augmented Petri nets with the design-

specific data for the StpnPlay tool: two from OrderServer2, one from OrderServer3 and two

from OrderServer4. One of the augmented Petri nets extended from OrderServer2 is obtained

by applying only the global tag section in the PeML file. One of the augmented Petri nets

extended from OrderServer4 has an extra communication delay for the back order aspect in

the commented local tag section in the PeML file. These PNML files are transformed to the

StpnPlay text file format by the Java program implemented. As an initial setting, we place

1000 initial tokens in the request place and run simulations to measure the time to complete

all 1000 service requests. The more tokens in the request places, the more service requests

for the order services.

 78

Figure 23: The simulation results of integrated order services extended with the PeML

file

The chart in Figure 23 results from the simulation of the five augmented Petri nets on

the StpnPlay tool. The X-axis represents a time unit. The service completion time of

OrderService2, OrderService3 and OrderService4 are more than six times as long as that of

OrderService2 with global tag only. OrderService4 with extra communication delay requires

ten times of the service completion time of OrderService2 with the global tag only. This is

because we assume that the back order aspect needs a long communication time. If temporal

or stochastic data for the operations in the order service are obtained historically or

experimentally, and applied in the simulation, we could measure or predict its performance

more precisely and more accurately.

The simulation result demonstrates that our design and extension approach can

support comparative evaluation of the variations of a service from the perspective of

performance. Here, the extension mechanism plays a vital role to make it possible to measure

the performance of services, accurately predict the performance change of modified or

0 5000 10000 15000 20000 25000 30000 35000

OrderService2

(Global tag only)

OrderService2

OrderService3

OrderService4

OrderService4

(Comm delay)

6.58

6.64

6.94

10.16

1.0

0 5000 10000 15000 20000 25000 30000 35000

OrderService2

(Global tag only)

OrderService2

OrderService3

OrderService4

OrderService4

(Comm delay)

6.58

6.64

6.94

10.16

1.0

 79

updated services, and comparatively evaluate the performance of different versions or

variations of a service.

5.4 Extension Mechanism for Resource-related Data

In many cases, the performance analyses of the Petri net for a service need to consider

the resource limitations caused by a specific platform. For this purpose, the extension with

the resource-related data modifies a basic Petri net in order to reflect the resource

interferences. The resource extension markup language (ReML) is designed to describe one

or more resource-related data by defining the resources in three types in accordance with its

accessibility and availability, and specifying their interactions with a service in terms of

weaving rules. The weaving process with a resource-related data generates augmented Petri

nets for a service extended to reflect interactions of the defined resources. These Petri nets

can be used to determine an optimal resource necessity to complete a service modeled.

Similarly, a particular resource-related data can be applied to several Petri net-represented

services in order to find a superior one under the circumstance of resource interference cased

by the underlying platform. Besides, a resource-related data, especially its resource

definitions, can be easily reused to describe another one.

We start with the assumption that any operation in a service cannot demand a

resource in the middle of its execution. In other words, all the transitions in the Petri net for a

service are considered as atomic operations. Hence, the operation that requires a resource

during the execution needs to be decomposed into multiple operations based on its resource

requests.

5.4.1 Resource Extension Markup Language (ReML)

In ReML, a resource-related data is enclosed with the resourcegroup tag of which

tool and version attributes is used to distinguish it from others. Thus, a ReML file can contain

multiple sets of resource-related data. Just like the weaving process with a PeML file, we can

 80

choose a resource-related data in a ReML file for the weaving process by passing the name

and version of a Petri net tool to the resource weaver. A resource-related data is divided into

two sets: a set of resource definitions and a set of the weaving rules

<?xml version="1.0" encoding="UTF-8"?>
<PNMLextension>
 <resourcegroup tool="stpnplay" version="0.85b" netId="n1" toolSpecificTag="true">
 <!-- RESOURCE DEFINITIONS -->
 <resource name="network" accessMode="shared">
 <value tag="type">
 <value tag="value">exponential</value>
 </value>
 <value tag="value">
 <value tag="value">20.0</value>

 </value>
 </resource>

 <resource name="memory" accessMode="shared" limit="1">
 <value tag="type">
 <value tag="value">exponential</value>
 </value>
 <value tag="value">
 <value tag="value">10.0</value>
 </value>
 </resource>

 <resource name="processor" accessMode="exclusive" limit="1">
 <value tag="type">
 <value tag="value">exponential</value>
 </value>
 <value tag="value">
 <value tag="value">5.0</value>
 </value>
 </resource>

 <!-- WEAVING RULES -->

<crosscut resourceBinding="network" operation="Operation0" position=before"/>
 <crosscut resourceBinding="memory" operation="Operation0" position="after"/>

<crosscut resourceBinding="processor" operation="Operation0" position="Operation0"/>
 </resourcegroup>
</PNMLextension>

Figure 24: A ReML file

In Figure 24, the resource-related data for StpnPlay tool version 0.85b contains three

resource definitions and three weaving rules. Each resource is defined using the resource tag

while an interaction of a defined resource is specified using the crosscut tag. Their details are

discussed in the following two subsections. Since that the ReML is orthogonal to the PeML,

the resource-related data in ReML can be placed under the same PNMLextension tag,

together with the design-specific data in PeML. As shown in Figure 24, the PNMLextension

tag surrounds the resource-related data in ReML.

 81

5.4.2 Resource Definition

In ReML, the resource tag is used to define an abstract and platform-independent

resource. A resource is defined as one of three types, exclusive, shared and limited shared, in

terms of its accessibility and availability. The value of the accessMode attribute of the

resource tag is used to specify whether a resource is shared or exclusive. A similar

classification of abstract resources is found in [69]. Based on resource accessibility, a

resource is regarded as exclusive if it can be occupied by one or multiple consecutive

operations in a service. Otherwise, a resource is considered as shared and can be accessed

before or after an operation is executed.

When a shared resource has unlimited availability, it only introduces an access or

contention delay without causing a bottleneck. However, some shared resources can be

simultaneously accessed only by a predetermined number of operations. For example, an

operation can access a common memory bus when any other operation does not use it. This

sort of shared resource needs to be explicitly acquired by an extra operation and released

then, which probably causes additional waiting delay and quite often leads a bottleneck.

Therefore, we need to distinguish the shared resource with limit availability from the one

with unlimited. A limited shared resource is identified when its resource definition with the

shared access mode has a limit attribute in its resource tag. Accordingly, its availability is

restricted within a specified value in the limited attribute. Sometimes, it is difficult to tell

whether a resource is shared or limited shared. In this case, the decision on a resource type is

left as designer’s option. On the other hand, all the exclusive resources are regarded as

having limited availability so that the limit attribute in their definition is mandatory.

The use of a resource always introduces an access or contention delay that occurs

before it is accessed or locked for a resource. Since a contention delay for a resource can be

considered as a design-specific data, it is stipulated using the nested value tags under a

resource tag, which is the same way to specify a design-specific data in PeML. For instance,

 82

a shared resource network in Figure 24 has two child nodes to represent its contention delay

of which stochastic type and value are exponential and 20.0 respectively. Accordingly, we

can define a resource as follows.

Definition 16: A resource R = (c, l, d) where c is either “shared” or “exclusive” that

denotes an access mode, l is a non-negative integer number that represents a maximum

number of instantiations of the resource, and d is a design-specific data such as a delay.

5.4.3 Resource Interference

The crosscut tag in ReML is used to specify how a defined resource interferes with a

service. Actually, each crosscut tag contains a weaving rule of a defined resource by means

of three attributes: resourceBinding, operation, and position. The resourceBinding attribute is

used to indicate a defined resource to be weaved, that is called the bound resource. The

operation attribute is used to denote an operation name that requires the bound resource. The

position attribute is differently interpreted according to the type of a bound resource. When

the type of a bounded resource is shared or limited shared, the operation attribute is used to

address when the operation specified in the operation attribute accesses the bound resource.

Remember that the operation is supposed to be atomic so that it can access the bound

resource before or after it is executed. Accordingly, the value of the position attribute for a

shared or limited shared resource is only allowed to be either before or after. For instance,

the network and memory resource in Figure 24 would be accessed before the execution of the

operation Operation0. When the type of a bounded resource is exclusive, the operation

attribute is used to designate an operation name that returns the bound resource occupied by

the operation specified in the operation attribute. Precisely speaking, an operation specified

in the operation attribute locks the bound resource before starting and the one in the position

 83

attribute releases after finishing. For example, the processor resource in Figure 24 would be

occupied only during the execution of Operation0. In summary, a resource interference can

be defined as follows.

Definition 17: An interference of the resource R = (c, l, d) with an atomic service SE

= (PE, TE, IE, OE, M0E) is specified by either of the following:

 θ (o) if c = “shared”, where a crosscutting method θ = “before” or “after”,

and a crosscut operation o ∈ TE.

 (o, o’) if c = “exclusive”, where two crosscut operations o, o’ ∈ TE

5.4.4 Extension Process

The extension process is the weaving process of adding the resources modeled in the

form of Petri net and modifying the Petri net for a service according to the interference

specifications. Based on the resource definitions in the resource tag and the specified

weaving rules in the crosscut tags, the weaver in the extension mode generates an augmented

Petri net by creating aspects for instantiating the resources and attaching them to the Petri net

for a service. In Figure 25, three augmented Petri nets are obtained by weaving each of three

crosscut tags in the ReML file of Figure 24 into the service S1 that consists of a single

operation and a message pair. When a weaving rule, i.e., a crosscut tag in a ReML file, refers

to a defined resource, the weaver program creates its corresponding aspect, called the

resource aspect. In other words, each crosscut tag is instantiated as a resource aspect with

fundamental operations required for manipulating its bound resource. For example, the

weaver creates a resource aspect with an access operation and two intermediate messages for

the crosscut tag referring to a shared type network resource, and weaves it before the

operation named Operation0. As shown in Figure 25, a resource aspect for a limited shared

 84

resource requires an additional demand operation before an access operation while a resource

aspect for an exclusive resource has a lock operation instead of an access operation.

(a) Shared resource using the before method

(b) Limited Shared resource using the after method

(c) Exclusive shared resource

Figure 25: Weaving instantiated resource aspects

Operation0

Request
message

Response
message

Service: S1
<<crosscut>>

{pointcut = before (Operation0)}

Request

Acquire

<<shared resource>>

network

Access

Contention delay
(Access delay)

<<crosscut>>

{pointcut = after(Operation0)}

Request

Acquire

Operation0

Request
message

Response
message

Service: S1
<<shared resource>>

memory
{limit=1}

Demand

m

Access

Contention delay
(Access delay)

Operation0

Request
message

Response
message

Service: S1
<<crosscut>>

{pointcut =(Operation0,
Operation0)}

Request

Acquire

 <<shared resource>>
processor
{limit =1}

Lock

Contention delay
(Access delay)

 85

If an explicit behavior is assigned to manipulate a resource and represented using a

Petri net, it can be regarded as a common behavior scattered across a module and

encapsulated in an aspect. This aspect can be weaved into a Petri net of the module using the

Petri net-based weaving rules of the SODA method in the previous chapter. Moreover, we

can reuse the Petri net for a common behavior in the aspect when we define another resource.

Figure 26: The augmented Petri net with two instantiated resource aspects

The resource aspect is linked with the Petri net for a service via two special

operations (transitions), request and acquire, of which role is almost identical to that of two

glue operations, call and return introduced at the crosscut points during the weaving process

of aspects in our service-oriented design approach. A pair of the request/acquire operation

could be created before or after an operation only when resource aspects crosscut it. The

request operation is used to invoke resource aspects simultaneously while the acquire

operation is used to wait for their completion. In addition, the multiple incoming or outgoing

arcs of an operation would be merged by the request operation placed before it or forked

Lock

<<shared resource>>
network

Access

Operation0

Request
message

Response
Message

Request

Acquire
<<exclusive resource>>

processor
{limit = 1}

Service: S1

 86

from an acquire operation placed after it. For example, Figure 26 shows the weaving result of

first two crosscut tags in the ReML file of Figure 24 into the service S1. Note that the

resources weaved at the same point cannot be invoked in order. This is because we do not

assume existence of a resource manager or an operating system that enforces a policy or a

rule designated for that purpose.

Figure 27: Multiple crosscutting of a service by a resource with the tagged value “limit”

The resource aspects for a limited shared or exclusive resource can only proceed after

it obtains one of its available resources. In contrast, the resource aspects for a shared resource

are free from this limitation. In terms of the Petri net-based semantics, the resource aspects

created from the same limited shared or exclusive resource definition are forced to include a

unique shared place with the tokens as many as a number value of its limit attribute. Each

token denotes an available resource instance. The shared places for a limited shared and an

exclusive resource are denoted by dashed places in Figure 25. Figure 27 clearly exhibits how

to represent the case that a limited shared resource is used twice in the module M2: before

two operations named Operation1 and after Operation2 using Petri net.

Customer

Operation1

Customer
request

Customer
acceptance

Request
message

Request

Acquire

Response
message

Request

Acquire

Operation2

Service S2

<<shared resource>>
memory
{limit = 1}

Demand

Access

<<shared resource>>
memory
{limit = 1}

Demand

Access

 87

As mentioned in Section 5.4.2, the access or contention delay of a resource is

represented using toolspecific tags created by recursively translating the value tags under its

corresponding resource tag. As seen in Figure 25, this delay information is associated with

the access operation for a shared resource, the demand operation for a limited shared

resource, or the lock operation of an exclusive resource. For instance, the resource weaver

would place “<type><value> exponential </value></type>” and “<value><value> 20.0

</value></value>” under the transition tag for the access operation in the resource aspects for

a shared resource network when processing with the ReML file in Figure 24. Formally, the

extension process with the resource-related data can be described as follows.

Definition 18: Weaving process with a resource R = (c, l, d) and its interference

specification θ(o) or (o, o’) based on Definition 17 to an atomic service SE = (PE, TE, IE, OE,

M0E) generates an augmented Petri net for an atomic service SW by performing Algorithm 5

(the second weaving algorithm) in Appendix.

5.4.5 Example

This section demonstrates how to apply a resource-related data using a sequential

order service and a parallel order service. Each service is represented using a Petri net stored

in a PNML file. In Figure 28 we use the PIPE tool [52] to open the PNML files of those two

order serves that are a little modified based on the order service shown in Figure 18. Again,

any Petri net tool that supports PNML such as Petri net Kernel [53]or Renew [54] can be

used to open and examine them. The sequential order service shown in Figure 28-(a)

performs two major operations, the InventoryProcess and the CheckCreditCard operation, in

sequence after the OrderReceive operation accepts a customer request, whereas the parallel

order service in Figure 28-(b) does both of them concurrently.

 88

(a) Sequential order service

(b) Parallel order service

Figure 28: Two order services with the customer modeling

In order to perform simulation during a certain period and eliminate an unnecessary

deadlock occurring at the result message place, we need to make the Petri net for the service

strongly connected. For this purpose, we add a customer that consists of two transitions

connecting with service’s request and response places (named the message_request and the

message_response in Figure 28) and a place having initial tokens. This customer also

promotes convenience of simulation. For example, we can append a probability distribution

<<before>>

<<before>>

<<after>>

<<after>>

Customer

Parallel order service

<<exclusive resource>>
Processor
{limit = 1}

<<shared resource>>
Memory

{limit = 1}

<<shared resource>>
Network

<<exclusive resource>>
Processor
{limit = 1}

<<shared resource>>
Memory

{limit = 1}

<<shared resource>>
Network

<<before>>

<<before>>

<<after>>

<<after>>

Customer

sequential order service

 89

function using a PeML file to the customer_request operation of the customer in order to

specify an arrival rate of each customer if necessary.

To observe how different resource composition models affect the performance of a

server model, we create two ReML files, Resource_1.reml and Resource_2.reml, based on

the ReML file in Figure 24. We use its resource definition without any modification, but

replace its weaving rules with the ones shown in Figure 29. Figure 28 delineates how the

resource-related data in the ReML file in Resource_2.reml intervenes in two different order

services. A rectangle and a dashed arrow denote a resource definition and a crosscut tag,

respectively.

<crosscut resourceBinding="processor" operation="InventoryProcess" position="CheckCreditCard"/>
<crosscut resourceBinding="memory" operation="InventoryProcess" position="before"/>
<crosscut resourceBinding="network" operation="CheckCreditCard" position="after"/>

(a) For Resource_1.reml
<crosscut resourceBinding="processor" operation="InventoryProcess" position="InventoryProcess"/>
<crosscut resourceBinding="processor" operation="CheckCreditCard" position="CheckCreditCard"/>
<crosscut resourceBinding="memory" operation="InventoryProcess" position="before"/>
<crosscut resourceBinding="memory" operation="CheckCreditCard" position="CheckCreditCard"/>
<crosscut resourceBinding="network" operation="proxy" position="after"/>
<crosscut resourceBinding="network" operation="InventoryProcess" position="after"/>
<crosscut resourceBinding="network" operation=" CheckCreditCard " position="after"/>

(b) For Resource_2.reml

Figure 29: The replaced weaving rules of the ReML file in Figure 24

Table 2: The weaving results of the sequential server model

Weaved ReML file #of Places #of Transitions #of Arcs

None 5 5 10

Resource_1.reml 16 13 32

Resource_2.reml 28 24 60

Table 2 shows the size of the augmented Petri nets obtained through the automatic

weaving process with Resource_2.reml and the PNML file for a sequential server model,

 90

which proves that increase of necessary resources and their interactions easily makes the

work of manually drawing an augmented Petri net impossible.

(a) Sequential (b) Parallel

Figure 30: The augmented Petri nets for two order services after weaving the

Resource_2.reml file

Figure 30 represents the augmented Petri nets that correspond to the two order

services with the illustrated resource composition model in Figure 28. They are obtained

through the automatic weaving process with the PNML file for each server model and

Resource_2.reml file via the weaver program implemented in Java. We put 1000 initial

tokens in the customer_pool place and run simulation on the PIPE tool. The resource

limitation caused by the weaved resource-related data has revealed some bottleneck places in

the sequential order service so that the tokens initially set in the customer_pool place would

 91

be piled up and left in these places after simulation has done. In other words, we can say that

the less interferences a resource-related data causes, the more tokens the customer_pool place

has after simulation and the better performance the model extended with it shows.

Figure 31: The simulation results of the sequential order service extended with two

ReML files

In Figure 31, the simulation results of two augmented Petri nets for the extended

sequential servers are shown with the simulation result of the Petri net for the base sequential

order service in Figure 28-(a). A lower and an upper number of tokens of the customer_pool

place are calculated from three runs of the PIPE simulation that yields the average number of

tokens of all the places and its variation for their 95% confidence interval. The sequential

order service extended with Resource_1.reml uses the defined resources once over two

operation executions after the OrderReceive operation accepts a customer request whereas

the one with Resource_2.reml does twice for each of them. Compared with the base

sequential order service, the average number of tokens in the customer_pool place of the

former decreases by 27.2%, while the one of the latter does by 17.6%. The simulation result

shows that the resource-related data in Resource_2.reml deteriorates the performance of the

 92

sequential order service less than the one in Resource_1.reml. This is because the resource-

related data specified in Resrouce_2.reml lets those two operations be executed more

independently of each other than the one in Resource_1.reml.

Figure 32: The simulation results of the sequential and the parallel order service with

varying resource availability

To find the optimal number of available resources in terms of a resource-related data,

we run simulations using the augmented Petri nets for both server models extended with

Resource_2.reml in Figure 30. Figure 32 shows the simulation results according to increasing

of the numbers of the available limited shared and exclusive resources. An average number

of the tokens in the customer_pool place are used again to stand for the performance of two

server models. Two bottleneck places caused by the processor and memory are identified and

its average numbers of tokens are shown too. In proportion to the increase of the number of

available resources, the performances of both order services are improved and their

 93

bottleneck places are mitigated. The performance improvement of both order services

happens until the numbers of two available resources become 8. Also, the performance of the

parallel order service is always a little better than the one of the sequential order service

regardless of the limitation of resource availability.

In this section, we do not show the analysis of the augmented Petri net for those order

services extended with design-specific data in a PeML file and the value tags of the resource

definitions. Just like the example in the previous section, we can measure or predict its

performance more precisely if the temporal or stochastic data for the operations in its base

services and the resources in a resource-related data to be weaved could be obtained

historically or experimentally.

5.5 Related Work

The Petri net representation of a multiprocessor system in [65] provides a good

example of how to abstract major resources such as memory in term of Petri net semantics

and supports the claim our simplified resources representation is reasonable from the

development perspective. In [66], a resource manager for workflow management systems

(wfms) is proposed and modeled using high-level Petri nets. It assigns a free resource in the

response to a request of a task connected to it. They assume that a supervisor system takes

the responsibility of control workflow by managing jobs and resources, but they omit how to

describe it using Petri net. Also, the employment of high-level Petri nets tends to make the

development of a model without a concrete algorithm or procedure more complex. In [70],

we can find an example of modularizing and implementing a read-write lock pattern for an

account class that models accounts in a banking system in AspectJ, which implies that the

resource aspects generated by the resource weaver could be treated as a reusable pattern and

implemented separately from base modules. In [69], a resource modeling framework is

proposed to support changing of the engineering model without changing of the logical

 94

model. The realization mapping using UML materializes a logical model of an application

into an engineering model with a set of engineering elements such as processors.

Conceptually, it is very similar to our weaving process. However, they leave its semantics

and validity as modeler’s choice. In [71], software and resource in UML state diagrams are

encapsulated using a capsule stereotype and combined via special dispatch modules for each

one. Compared with UML-based approaches, our Petri based-approach seems to be more

attractive owing to its strong formality and superior performance analysis support via various

Petri net tools. Again, PNML [30], an XML-based standard interchange format for Petri nets,

would help to encourage Petri nets to be used with other development tools or across

different domains like UML.

5.6 Summary and Discussion

In this chapter, an aspect-oriented technique for appending the behavior-specific

information is proposed to extend basic Petri nets in PNML to another class of Petri nets,

such as timed Petri nets, or model a resource-related data in order to consider resource

interferences at the design level. This aspect-oriented extension mechanism is devised to

support the analysis of a service design result in Petri net and the comparative evaluation of it

against other design results or its variations. In terms of separation of concerns, such

behavior-specific information is a particular concern only required and used during a design

analysis phases. Therefore, its separation and modularization are possible and necessary for

reducing the design process complexity. Moreover, those separated information can be

reused. For example, a resource-related data, particularly its resource definitions, can be

applied to the variations of a service design result as well as several different design results.

Those two data are represented in the XML format: the PNML extension markup language

(PeML) and the resource extension markup language (ReML) that can be regarded as part of

the SODML in Section 4.4.

 95

A design-specific data in PeML contains a description related to the behavioral

characteristics of a service, such as temporal values, that can be applied to its transitions,

places, or arcs of the Petri net for that service. The automatic weaving process knits the

design-specific data into a basic Petri net. Usually, this design-specific data is used to

transform a basic Petri net obtained via the design process to an extended Petri net like a

stochastic Petri net. The obtained Petri net can be applied to examine the service designed

from the behavioral perspective. Besides, the design-specific data separated in a PeML file

increases the interchangeability and interoperability of the PNML file for service design

results.

A resource-related data in ReML contains the resource definitions that stand for

abstract resources and the weaving rules that explain how to compose the defined resources

into a Petri net for a service. A Petri net-represented service with resource interferences can

be efficiently generated through weaving a resource-related data and immediately used by

various Petri net tools to analyze its behavioral characteristics like performance. During the

weaving process, a defined resource is instantiated as a corresponding resource aspect

whenever its associated weaving rules specify a crosscut of a Petri net-represented service.

This aspect-oriented mechanism makes it possible to develop and reuse a resource-related

data regardless of the design and development process of Petri net-represented services. We

demonstrate our approach using two variations of the order service and present the

simulation results to select a proper resource-related data for a service or identify a better

service against a resource-related data. Also, we show the simulation result to identify

optimal numbers of available resources in a resource-related data.

Although our current aspect-oriented extension approach does not cover all the

factors considered in the design analysis stage, it can be seen as a milestone in the automatic

extension of a Petri net-represented service with a set of behavior-specific information – the

design-specific data in PeML and the resource-related data in ReML. The augmented Petri

 96

net obtained via our extension method facilitates evaluating a service designed or selecting

an optimal or superior one among several service design candidates. Most of all, the

separated behavior-specific information and the automatic weaving process are expected to

reduce complexity of the development of a service by improving extensibility and

maintainability of design results during the development process.

 97

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In terms of service-oriented system design, we propose four objectives - the support

of a systematic decomposition process, the standardized representation method of a service-

oriented system, the formal and automatic composition of a complex service from the design

elements, and the extension mechanism of a service with the data facilitating service

analysis. In this chapter, we conclude this dissertation with a summary explaining how our

approach supports the objectives proposed and contributes to the state of the art of software

system development, in particular, the design process of service-oriented systems. In the end,

we discuss some directions of future work.

6.1 Conclusions

Our service-oriented design approach presented in this dissertation fully exploits the

fundamental concepts of aspect-oriented programming. Due to fact that the concept of aspect

is consistently applied and tightly integrated into the design phases, our approach can

enhance separation of concerns, which consequently helps to decrease the complexity of the

entire design process. In particular, the Petri net-based formalism supports the weaving

process that constructs services from design elements separated during the decomposition

process.

The FCD-A method, extended from its origin of the Function-Class Decomposition

(FCD) method as a generic decomposition method integrated with the concept of aspect, is

presented to decompose any software systems including service-oriented systems. It

organizes the functional elements in the function-class view and categorizes other

supplementary functional/non-functional elements in the aspect view. FCD-A also provides a

hierarchical view of a software system and a classified view of the important concerns. In the

case of the decomposition of service-oriented systems, FCD-A can be performed to assign a

primitive service, that contains a basic process to perform a specific task, to each functional

 98

module or class, whereas the simultaneously identified aspects can capture service-specific or

domain-specific concerns required for delivering high-quality and user-friendly services. At

the initial design stage, FCD-A supports a wide range of concerns with improved separation

of concerns during the decomposition process.

Using primitive services and aspects identified via FCD-A, the Service-Oriented

Design with Aspects (SODA) method delineates a service-oriented system in two views, the

structural view and behavioral view, based on an extended UML2 and Petri net

representations, respectively. In particular, SODA supports an automatic weaving process

based on the Petri net-based semantics and a standardized XML-based representation. It can

generate the integrated Petri net for a complex service composed of a primitive service and a

set of aspects based on the relationships between them. With the integrated Petri net obtained

through the weaving process, SODA facilitates the verification and evaluation of service

design results. Moreover, our aspect-oriented design approach makes it possible to evolve

service designs in existence or construct various versions of a service design with a reduced

development effort by replacing or reusing existing design elements, especially aspects.

A precise assessment or comparative evaluation of the integrated Petri net of a service

requires some behavior-related information tailored to the design analysis process. An

aspect-oriented extension mechanism provides two different extension processes of an

integrated Petri net according to whether those behavior-related information is the design-

specific data or resource-related data. An automatic weaving process is also supported to

append the design-specific data to an integrated Petri net of a service or reflect resource-

related data within it. As a result, the integrated Petri net of a service can become another

class of a Petri net or an augmented Petri net that is more useful and widely applicable to

identify the behavioral characteristics of the corresponding service including performance

evaluation.

 99

In summary, our service-oriented design approach to decompose, represent, construct,

and analyze a service-oriented system with highly sensitive quality attributes as well as

diverse functionalities utilizes the concept of aspect in a comprehensive and consistent

manner. As a result, our approach is expected to achieve improvement in reusability,

customizability, manageability maintainability, traceability and interchangeability of the

design results. Most of all, a formal and automatic weaving process for building and

extending a service in the design stage constitutes the step stone towards a completely

automated design process. Our aspect-oriented and Petri net-based approach contributes to

the field of service-oriented computing as well as software engineering by providing a

systematic, comprehensive, yet generic and formal service-oriented design method that

makes it possible to develop flexible and quality-guaranteed service-oriented systems in an

efficient and effective fashion.

6.2 Future Work

Since our service-oriented design approach is generic, it is insufficient to tackle the

detailed or domain-specific factors such as a dynamic adaptation feature of some service-

oriented systems. Hence, one area of future work involves further refinement or enrichment

of our approach so as to include detailed or domain-specific factors in our generic design

approach. This includes the development of a new syntax and semantics for the weaving

process according to the domain-specific system to be developed. For example, a dynamic

service-oriented system needs to change the associated aspects including resources according

to the flow of time, which requires to devise a new syntax for addressing a time frame in

which a set of relationships with the specific factors, such as the population of customers, are

specified, or to introduce crosscutting methods specific to that sort of dynamic service-

oriented systems.

 100

A significant concern is that our service-oriented design approach clings to the

underlying concepts and released specifications currently in use for service-oriented

computing. For instance, the Petri net-based behavioral representation of services of SODA

hinders modeling of service processes with multiple or nested alternative flows, which

requires our approach to support an extension method to convert a basic Petri net to a high-

level Petri net like CPN. This kind of extension would be studied and taken into account.

Another example is that the representation part of our SODA approach is based on the

specific versions of UML2 and PNML. Therefore, our approach is expected to be updated

including the update of the weaver program, at the pace of changes of these specifications.

In terms of interchangeability or interoperability, our design approach needs to be

supported by an adequate tool set. To support our design approach with a cooperative and

integrated work, we need to provide a plug-in or a conversion program that renders our

service-oriented design results in our XML-based representations visual using a graphical

design tool. To promote the convenience of the weaving process, our weaver program could

be combined into an integrated development tool (IDE) or a Petri net tool, along with a way

of specifying the crosscut relationships or the behavior-specific data. A management tool

would be considered to provide a tool-supported traceability or maintainability of our

service-oriented design elements being developed.

Based on the Petri net formalism and the simulation results that provide convincing

data as a proof, our approach is in theory expected to satisfactorily address many software

design issues such as reusability, customizability, manageability, traceability and

interchangeability. However, further experiments are necessary to investigate how much our

design approach is useful in the real-world environment or better than other design

approaches. Accordingly, our future work includes a wide range of case studies to

demonstrate the suitability of our service-oriented design approach, especially, by applying

our method to the design of real-life or large-scale service-oriented systems. We anticipate

 101

that the outcome out of such demonstration projects would result in identifying some critical

criteria or metrics to be used for systematic comparisons between our presented design

approach and others, as well as the measurement or evaluation of agility and flexibility of our

design approach. One specific target demonstration project is an on-going work to develop

frameworks that support the development of a smart home prototype in the Software

Engineering Laboratory at Iowa State University.

 102

APPENDIX. ALGORITHMS

Algorithm 1: The decomposition algorithm of FCD-A

The detailed steps of the FCD-A method are described as follows.

1) Initially, the whole system consists of a single functional module and key aspects to be

considered. Place the key aspects as child aspects of the virtual root, “Aspect”. Attach the top-

level requirements and the scenarios to the initial module.

2) Allocate the requirements including non-functional ones and their related scenarios to the

functional module at the current level and, using them, identify the necessary classes that

satisfy the functionality of the current level.

3) For identified classes within each functional module, rearrange or reallocate the requirements

and, using the requirements, identify aspects within the class.

4) Create aspect links from classes or functional modules to corresponding aspects. There are

two types of the aspect link. For the implementable feature, use an operational link. For a

method or a policy, apply a strategic link. Assign a feature-relevant name and attach the

requirements to the aspect link.

5) Examine the roles and interactions of each class in each functional module and put the classes

under the subgroups that can minimize external coupling and maximize internal cohesion.

6) Using the use case maps for each functional module, assess coupling and cohesion of

subgroups by selecting core scenarios and analyzing their paths. If needed, regroup classes to

meet the coupling and cohesion criteria in step 5.

7) If an aspect link starting from functional modules does not affect all of its lower-level functional

modules or its classes move it down to the appropriate functional modules or classes.

8) Find the commonality in the aspect links. From the aspect view, if several aspect links have the

common feature or the requirements, make a new child aspect and put it under the appropriate

high-level aspect. A new child aspect for a single link is allowed. From the function-class view,

if a common strategic link occurs in all the classes under a subgroup, it can be move up to the

subgroup.

9) Search the conflicts among the names of the aspect links for each aspect. If these conflicts

cannot be resolved by moving the aspect links to another aspect, make child aspects under the

aspect and adjust the aspect links.

 103

10) Create and name the next-level functional module.

11) Allocate the requirements and scenarios to the each new functional module. The requirements

and scenarios across functional modules should not be moved to the child functional modules.

12) Repeat from step 2 to 11 until the decomposition of the system identifies all the primary

functionality and aspects. If FCD-A is used for work allocation in distributed development

environment, we can stop decomposing the system earlier.

13) Using all the primary functionality and aspects, draw UML class diagram for each leaf node and

an appropriate UML diagram for each aspect. Each aspect can generate a stereotyped

package or a collaboration diagram by grouping the related classes. A new extended UML

diagram can be used if available.

14) From the lowest level in the function-class view, define interfaces between functional modules

at the intermediate-levels using the allocated scenarios and the related aspect links, which

integrate all the functional modules and weave the aspects into the entire system. This

integration step is considerably affected by the development environment.

Algorithm 2: The binding algorithm to construct an atomic service
Input: An atomic action A = (P, T, I, O, M0), a message pair mp = (pi, po), and two sets of the

transitions TI = {t1, …, tn} ⊂ T and TO = { t1, …, tm} ⊂ T.
Output: An atomic service S
Steps: P P ∪ {pi, po}
 IF | TI | = 1 THEN
 I I ∪ (pi, TI)
 ELSE
 P’ = {p1, ... pn} be a set of cloned messages of pi , where n = | TI |
 P P ∪ P’
 T T ∪ {tf} where tf is a fork operation
 I I ∪ {(pi, tf)} ∪ {(p1, t1), (p2, t2), …, (pn, tn)}
 O O ∪ ({tf} × P’)
 ENDIF
 IF | TO | = 1 THEN

 O O ∪ (TO, po)
 ELSE
 Let P’’ = {p1, ... pm} be a set of cloned messages of po , where m = | TO |
 P P ∪ P’’
 T T ∪ {tj} where tj is a join operation

 104

 I I ∪ (P’’, {tj})
 O O ∪ {(tj, po)} ∪ {(t1, p1), (t2, p2), …, (tm, pm,)}
 ENDIF

Algorithm 3: The weaving algorithm to generate an integrated Petri net
Input: An atomic service SE = (PE, TE, IE, OE, M0E) in a service entity, an advice SC = (PC, TC, IC, OC,

M0C) in an aspect, a crosscutting method θ, and its corresponding messages mpre, mpost and
operations o, o’ for crosscut points

Output: An atomic service SW = (PW, TW, IW, OW, M0W)
Steps: PW PE ∪ PC
 TW TE ∪ TC

 IW IE ∪ IC

 OW OE ∪ OC

 M0W M0E ∪ M0C

 mpC = {pi, po} ∈ PC, where pi, po are the input/output place for the interface of advice SC
 IF θ = “before” THEN
 cp (mpre, o)
 TW TW ∪ {tcall(cp), treturn(cp)}
 PW PW ∪ {pinput(cp)}
 IW IW ∪ {(mpre, tcall(cp)), (po, treturn(cp)), (pinput(cp), o)} - {cp}
 OW OW ∪ {(tcall(cp), pi), (treturn(cp),,pinput(cp))} – {(tcall(cp), pinput(cp))}
 ELSEIF θ = “after” THEN
 cp (o, mpost)

 TW TW ∪ {tcall(cp), treturn(cp)}
 PW PW ∪ {poutput(cp)}
 IW IW ∪ {(poutput(cp) , tcall(cp)), (po, treturn(cp))} – {(poutput(cp), treturn(cp))}
 OW OW ∪ {(o, poutput(cp)), (tcall(cp), pi), (treturn(cp), mpost)} – {cp}
 ELSE
 cp1 (mpre, o)
 IF θ = “flow” THEN
 cp2 (o’, mpost)
 ELSE
 cp2 (o, mpost)
 ENDIF
 TW TW ∪ {tcall(cp1), treturn(cp2)}
 IW IW ∪ {(mpre, tcall(cp1)), (po, treturn(cp2))} – {cp1}
 OW OW ∪ {(tcall(cp1), pi), (treturn(cp2), mpost)} – {cp2}
 IF θ = “proceed” or θ = “flow” THEN
 IF ∃ pinput(cp1) = FALSE THEN
 PW PW ∪ {pinput(cp1)}

 105

 IW IW ∪ {(pinput (cp1), o)}
 OW OW ∪ {(tcall(cp1), pinput(cp1))}
 ENDIF
 IF ∃ poutput(cp2) = FALSE THEN
 PW PW ∪ {poutput(cp2)}
 IW IW ∪ {(poutput(cp2), treturn(cp2))}
 OW OW ∪ {(o, poutput(cp2))}
 ENDIF
 ENDIF

 ENDIF

Algorithm 4: The additional steps for Algorithm 3 to process an advice in the aspect

with a “sync” value
Steps: PW PW ∪ {psync_Sc (Sc)}
 M0W (psync_Sc (Sc)) k
 FOREACH SC is copied
 Let tenter ∈ TC be the transition of which input arc is from pi such that (pi, tenter) ∈ IC

 Let tcommit ∈TC be the transition of which output arc is to po such that (tcommit, po) ∈ IC
 IW IW ∪ {(psync_Sc (Sc), tenter) }
 OW OW ∪ {(tcommit, psync_Sc (Sc))}
 ENDFOREACH

Algorithm 5: The weaving algorithm to generate an augmented Petri net with resource

interference
Input: An atomic service SE = (PE, TE, IE, OE, M0E), an resource R = (c, l, d), a crosscut operation o

and crosscutting method θ = “before” or “after” if c = “shared” or crosscut operations o, o’ if c
= “exclusive”

Output: An atomic service SW = (PW, TW, IW, OW, M0W)
Steps: IF c =“shared” THEN
 IF θ =”before” THEN
 cp (mpre, o), where mpre is any input place of the transition named o
 PW PE ∪ {pready(cp), pinput(R, cp), poutput(R, cp)}
 TW TE ∪ {trequest(cp), tacquire(cp), taccess(R, cp)}
 IW IE ∪ {(mpre, trequest(cp)), (poutput(R, cp), tacquire(cp)), (pready(cp), o)} - {cp}
 OW OE ∪ {(trequest(cp), pinput(R, cp)), (taccess(R, cp),,poutput(R, cp)), (tacqure(cp), pready(cp))}
 M0W M0E

 106

 ELSEIF θ = “after” THEN
 cp (o, mpost), where mpost is any output place of the transition named o
 PW PE ∪ {pwait(cp), pinput(R, cp), poutput(R, cp)}
 TW TE ∪ {trequest(cp), tacquire(cp), taccess(R, cp)}
 IW IE ∪ {(pwait(cp), trequest(cp)), (poutput(R, cp), tacquire(cp)), (pready(cp), mpost)}
 OW OE ∪ {(o, pwait(cp)), (trequest(cp), pinput(R, cp)), (taccess(R, cp),,poutput(R, cp)), (tacqure(cp),

pready(cp),)} - {cp}
 M0W M0E
 ENDIF
 IF l = 0 THEN
 IW IW ∪ {(pinput(R, cp), taccess(R, cp))}
 ELSE
 TW TW ∪ {tdemand(R, cp)}
 PW PW ∪ {ptransient(R, cp), p(R)}
 IW IW ∪ {(pinput(R, cp), tdemand(R, cp)), (ptransient(R, cp), taccess(R, cp)), (p(R), tdemand(R, cp))}
 OW OW ∪ {(tdemand(R, cp), ptransient(R, cp)), (taccess(R, cp),,p(R))}
 M0W (p(R)) l
 ENDIF
 ENDIF
 IF c = “exclusive” THEN
 cp (mpre, o), where mpre is any input place of the transition named o
 PW PE ∪ {pready(cp), pinput(R, cp), poutput(R, cp), p(R)}
 TW TE ∪ {trequest(cp), tacquire(cp), tlock(R, cp)}
 IW IE ∪ {(mpre, trequest(cp)), (pinput(R, cp), tlock(R, cp)), (poutput(R, cp), tacquire(cp)), (pready(cp), o),

(p(R), tlock(R, cp))} - {cp}
 OW OE ∪ {(trequest(cp), pinput(R, cp)), (tlock(R, cp),,poutput(R, cp)), (tacqure(cp), pready(cp)), (o, p(R))}
 M0W M0E
 M0W (p(R)) l
 ENDIF
 // The design specific data d of the resource R is associated with

 // either taccess(R, cp) or tlock(R, cp) if necessary

 107

BIBLIOGRAPHY

[1] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,”

Communication of ACM, vol. 15, no. 12, 1053-1058, December 1972.

[2] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N Degree of Separation: Multi-

Dimensional Seperation of Concerns”, Proceedings of the 21st Int’l Conference on

Software Engineering (ICSE), pp.107-119, May 1999.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J.

Irwin, “Aspect-Oriented Programming,” Proceedings of the European Conference on

Object-Oriented Programming (ECCOP’97), LNCS 1241, Springer-Verlag, pp. 222-

242, 1997.

[4] C. K. Chang, J. Cleland-Huang, S. Hua, and A. Kuntzmann-Combelles, “Function-Class

Decomposition: A Hybrid Software Engineering Method,” IEEE Computer, pp. 87-93,

December 2001.

[5] W. Harrison and H. Ossher, “Subject-Oriented Programming: A Critique of Pure

Objects,” Proceedings of the 8th Annual Conference on Object Oriented Programming

Systems Languages and Applications (OOPSLA’93), pp. 411-428, 1993.

[6] S. Clarke and R. J. Walker, “Composition Patterns: An Approach to Designing Reusable

Aspects,” Proceedings of the 23rd Int’l Conference on Software Engineering (ICSE),

pp.5-14, May 2001.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An

Overview of AspectJ,” Proceedings of the European Conference on Object-Oriented

Programming (ECOOP), pp. 327-353, 2001.

[8] C. A. Constantinides and T. H. Elrad, “On the Requirements for Concurrent Software

Architectures to Support Advanced Seperation of Concerns,” OOPSLA 2000 Workshops

on Advanced Separation of Concerns in Object-Oriented Systems, 2000.

 108

[9] D. Wang, F. B. Bastani, and I.-L. Yen, “Automated Aspect-Oriented Decomposition of

Process-Control Systems for Ultra-High Dependability Assurance,” IEEE Transactions

on Software Engineering, vol. 31, no. 9, pp. 713- 732, September 2005.

[10] E. Baniassad, P. C. Clements, J. Araújo, A. Moreira, A. Rashid, and B. Tekinerdoğan,

“Discovering Early Aspects,” IEEE Software, pp. 61-70, January/February 2006.

[11] E. Baniassad and S. Clarke, “Theme: An Approach for Aspect-Oriented Analysis and

Design,” Proceedings of the 26th Int’l Conference on Software Engineering (ICSE’04),

pp. 158-167, 2004.

[12] B. Tekinerdogan, “ASAAM: Aspectual Software Architecture Analysis Method,”

Proceedings of the 4th Working IEEE/IFIP Conference on Software Architecture

(WICSA’04), pp. 5-14, 2004.

[13] A. Moreira, A. Rashid, and J. Araújo, “Multi-Dimensional Separation of Concerns in

Requirements Engineering,” Proceedings of the 13th IEEE Int’l Conference on

Requirements Engineering, pp. 285-296, 2005.

[14] C. A. Constantinides, A. Bader, T.H. Elrad, M. E. Fayad, and P. Netinant, “Designing

an Aspect-Oriented Framework in an Object-Oriented Environment,” ACM Computing

Surveys, vol. 32, no.1, pp.41-53, March 2000.

[15] G. M. C. de Sousa, I. G. L. da Silva, J. B.de Castro, “Adapting the NFR Framework to

Aspect-Oriented Requirements Engineering,” Proceeding of XVII Brazilian Symposium

on Software Engineering, pp.83-98, 2003.

[16] J. Grundy, “Aspect-Oriented Requirements Engineering for Component-based Software

Systems,” Proceedings of IEEE Int’l Symposium on Requirements Engineering, pp. 84-

91, 1999.

[17] N. Noda and T. Kishi, “On Aspect-Oriented Design: An Approach to Designing Quality

Attributes,” Proceedings of 6th Asia Pacific Software Engineering Conferences

(APSEC’99), pp. 230-237, 1999.

 109

[18] A. Rashid, P. Sawyes, A. Moreira, and J. Araújo, “Early Aspects: a Model for Aspect-

Oriented Requirements Engineering,” Proceddings of IEEE Joint Int’l Conferences on

Requirements Engineering, pp. 199-202, 2002.

[19] A. Rashid, A. Moreira, and J. Araújo, “Modularisation and Composition of Aspectual

Requirements,” Proceedings of the 2nd Int’l Conference on Aspect-Oriented Software

Development (AOSD’03), pp. 11-20, 2003.

[20] S. M. Sutton Jr. and I. Rouvellou, “Modeling of Software Concerns in Cosmos,”

Proceedings of the 1st Int’l Conference on Aspect-Oriented Software Development

(AOSD’02), pp. 127-133, 2002.

[21] M. Katara and S. Katz, “Architectural Views of Aspects,” Proceedings of the 2nd Int’l

Conference on Aspect-Oriented Software Development (AOSD’03), pp. 1-10, 2003.

[22] B. Nuseibeh, “Weaving Together Requirements and Architectures,” IEEE Computer,

vol. 34, no. 3, pp. 115-119, March 2001.

[23] E. A. Kendall, “Role Modeling for Agent System Analysis, Design, and

Implementation,” IEEE Concurrency, pp. 34-41, April-June 2000.

[24] International Center for Software Engineering (ICSE), “M-Net: Meeting Net Online

Demo,” 2002, Available: http://icse.cs.iastate.edu.

[25] C. Zhang and H.-A. Jacobsen, “Quantifying Aspects in Middleware Platforms,” Int’l

Conference of Aspect Oriented Software and Development (AOSD), pp. 130-139, 2003.

[26] M. P. Papazoglou, “Service-Oriented Computing: Concepts, Characteristics and

Directions,” Proceedings of the 4th Int’l Conference on Web Information Systems

Engineering (WISE’03), pp. 3-12, December 2003.

[27] R. Perrey and M. Lycett, “Service-Oriented Architecture,” Proceedings of the 2003

Symposium on Applications and the Internet Workshops (SAINT’03 Workshops), pp.

116-119, January 2003.

 110

[28] Object Management Group (OMG), Unified Modeling Language (UML) 2.0

Specifications, August 2005, Available: http://www.omg.org/technology/documents/

modeling_spec_catalog.htm#UML.

[29] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the

IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

[30] J. Billington, S. Christensen, K. Hee, E. Kindler, O. Kummer, L. Petricci, R. Post, C,

Stehno, and M. Weber, “The Petri Net Markup Language: Concepts, Technology, and

Tools,” March 2003, Available: http://www.informatik.hu-berlin.de/top/pnml/about.

html.

[31] A. K. Dey, “Understanding and Using Context,” Personal and Ubiquitous Computing,

vol. 5, pp. 4-7, 2001.

[32] E. Gamma, R. Helm, R. Johanson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, ISBN: 0201633612, 1995.

[33] H. Kreger, “Web Service Conceptual Architecture (WSCA 1.0),” May 2001, Available:

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.

[34] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.

Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, Business Process

Execution Language for Web Services (BPEL4WS) Specification Version 1.1, May

2003, Available: http://www.ibm.com/developerworks/library/ws-bpel/.

[35] B. Meyer, “Applying “Design by Contract”,” IEEE Computer, vol. 25, no. 10, pp. 40-

51, October 1992.

[36] J. Baik, N. Eickelmann, and C. Abts, “Empirical Software Simulation for COTS Glue

Code Development and Integration,” Proceedings of the 25th Annual Int’l Computer

Software and Application Conference (COMPSAC’01), pp. 297-302, October 2001.

[37] L. Baresi, R. Heckel, S.Thöne, and D. Varró, “Modeling and Validation of Service-

Oriented Architectures: Application vs. Style,” Proceedings of the 9th European

 111

Software Engineering Conference held jointly with 11th ACM SIGSOFT Int’l Symposium

on the Foundations of Software Engineering (ESEC/FSE’03), pp. 68-77, September

2003.

[38] M. Deubler, J. Grünbauer, G. Popp, G. Wimmel, and C. Salzmann, “Toward a Model-

Based and Incremental Development Process for Service-Based Systems,” Proceedings

of IASTED Int’l Conference on Software Engineering (SE 2004), pp. 183-188, February

2004.

[39] I. H. Krüger and R.Mathew, “Systematic Development and Exploration of Service-

Oriented Software Architectures,” Proceedings of the 4th Working IEEE/IFIP

Conference on Software Architecture (WISCA’04), pp. 177-187, June 2004.

[40] V. Tosic, K. Patel, and B. Pagurek, “WSOL – Web Service Offering Language,”

Proceedings of the Workshop on Web Services, e-Business, and the Semantic Web (WES

2002), LNCS 2512, pp. 57-67, 2002.

[41] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan, Adaptive and Dynamic

Service composition in eFlow, Technical Report, HPL-2000-39, HP Labs, March 2000.

[42] B. Benatallah, Q. Z. Sheng, and M. Dumas, “The Self-Serv Environment for Web

Services Composition,” IEEE Internet Computing, vol. 7, no. 1, pp. 40-48,

January/February 2003.

[43] L. Zeng, B. Benatallah, and M. Dumas, “Quality Driven Web Services Composition,”

Proceedings of the 12th Int’l Conference on World Wide Web (WWW 2003), pp. 411-

421, May 2003.

[44] J. Grundy, T. Panas, S. Singh, and H. Stöckle, “An Approach to Developing Web

Service with Aspect-oriented Component Engineering,” Proceedings of the 2nd Nordic

Conference on Web Services, 2003, Available: http://www.cs.auckland.ac.nz/~john-

g/papers/ncws2003.pdf.

 112

[45] A. Charfi and M. Mezini, “Aspect-Oriented Web Service Composition with

AO4BPEL,” Proceedings of European Conference on Web Services (ECOWS 2004),

pp. 168-182, September 2004.

[46] D. Suvée, W. Vanderperren, and V. Jonckers, “JAsCo: an Aspect-Oriented approach for

Component Based Software Development,” Proceedings of the 2nd Int’l Conference on

Aspect-Oriented Software Development (AOSD 2003), pp. 21-29, March 2003.

[47] B. Verheecke, M. A. Cibrán, and V. Jonckers, “AOP for Dynamic Configuration and

Management of Web Services,” Proceedings of the Int’l Conference on Web Services –

Europe (ICWS-Europe’03), LNCS 2853, pp. 137-151, September 2003.

[48] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing,

OMG Press, ISBN: 0471319201, 2003.

[49] K. Schmidt and C. Stahl, “A Petri Net Semantics for BPEL4WS – Validation and

application,” Proceedings of the 11th Workshop on Algorithms and Tools for Petri Nets

(AWPN’04), pp. 1-6, September 2004.

[50] World Wide Web Consortium (W3C) Recommendation, XML Transformation (XSLT)

Version 2.0, January 2007, Available: http://www.w3.org/TR/xslt20/.

[51] Sun Microsystems, Java 2 Platform Standard Edition Development Kit (JDK) 5.0,

September 2004, Available: http://java.sun.com/.

[52] Imperial College DoC MSc Group and MSc Individual Project, Platform Independent

Petri Net Editor (PIPE), March 2007, Available: http://pipe2.sourceforge.net/.

[53] Petri Net Kernel Team (Humboldt-University Berlin, Germany), Petri Net Kernel

(PNK), June 2002, Available: http://www.informatik.hu-berlin.de/top/pnk/.

[54] O. Kummer, F. Wienberg, and M. Duvigneau, Renew, May 2006, Available:

http://www.renew.de/.

[55] J. Čapek, StpnPlay: A Stochastic Petri Net Modeling and Simulation Tool, February

2002, Available: http://dce.felk.cvut.cz/capekj/StpnPlay/.

 113

[56] World Wide Web Consortium (W3C) Recommendation, XQuery 1.0: An XML Query

Language, January 2007, Available: http://www.w3.org/TR/xquery/.

[57] Petri Net Markup Language (PNML) homepage, January 2006, Available:

http://www.informatik.hu-berlin.de/top/pnml/.

[58] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S.

Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara,

OWL-S: Semantic Markup for Web Services, November 2004, Available:

http://www.daml.org/services/owl-s/1.1/overview/.

[59] M. Blow, Y. Goland, M. Kloppmann, F. Leymann, G. Pfau, D. Roller, and M. Rowley ,

“BPELJ: BEPL for Java”, March 2004, Available: http://ftpna2.bea.com/pub/

downloads/ws-bpelj.pdf.

[60] C. Stehno, “Interchangeable High-Level Time Petri Nets,” Workshop on the Petri Net

Markup Language 2005 (PNML 05) - Towards an ISO/IEC Standard Transfer Syntax

for Petri Nets, Helsinki University of Technology, Finland, May 2005.

[61] R. Eshuis and R. Wieringa, “Tool support for Verifying UML Activity Diagrams,”

IEEE Transactions on Software Engineering, vol. 30, no. 7, pp. 437- 447, July 2004.

[62] H. Störrle, “Semantics of Control-Flow in UML2.0 Activities,” Proceeding of the 2004

IEEE Symposium on Visual Languages and Human Centric Computing (VLHCC’04),

pp. 235-242, September 2004.

[63] H. Yu, D. Liu, X. He, L. Yang, and S. Gao, “Secure Software Architectures Design by

Aspect Orientation,” Proceedings of the 10th Int’l Conference on Engineering of

Complex Computer Systems (ICECCS’05), pp. 47-55, June 2005.

[64] D. Xu and K. Nygard, “Threat-driven modeling and verification of secure software

using aspect-oriented Petri nets,” IEEE Transactions on Software Engineering, vol. 32,

no. 4, pp. 265- 278, April 2006.

 114

[65] M. A. Marsan, G. Conte, and G. Balbo, “A Class of Generalized Stochastic Petri Nets

for the Performance Evaluation of Multiprocessor Systems,” ACM Transaction on

Computer Systems, vol. 2, no. 2, pp. 93-122, 1984.

[66] W.M.P. van del Aalst, K.M. van Hee, and C.J. Houben, “Modelling and Analysing

Workflow Using a Petri-net Based Approach,” Proceedings of the 2nd Workshop on

Computer-Supported Cooperative Work, Petri nets and related formalisms, pp. 31-50,

1994.

[67] C. K. Chang and S. Kim, “I3: A Petri-net Based Specification Method for Architectural

Components,” Proceedings of the 23rd Annual Int’l Computer Software and Application

Conference (COMPSAC’02), pp. 396-402, 1999.

[68] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,

vol 1, Second Edition, ISBN: 3540609431, 1997.

[69] B. Selic, “A Generic Framework for Modeling Resources with UML,” IEEE Computer,

pp. 64-69, vol. 33, no. 6, June 2000.

[70] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming, Manning

Publications, ISBN: 1930110936, 2003.

[71] H.H. Ammar, V. Cortellessa, A. Ibrahim, “Modeling resources in a UML-based

simulative environment,” Proceeding of ACS/IEEE International Conference on

Computer Systems and Applications, pp. 405-410, June 2001.

[72] C. K. Chang and T.-H. Kim, “Distributed Systems Design Using Function-Class

Decomposition with Aspects,” Proceedings of the 10th IEEE Int’l Workshop on Future

Trends of Distributed Computing Systems (FTDCS’04), pp. 148-153, May 2004.

[73] T.-H. Kim and C. K. Chang, “Service-Oriented Design with Aspects (SODA),”

Proceedings of the 2005 Int’l Conference on Services Computing (SCC 2005), vol 1, pp.

319-322, 2005.

 115

[74] L. Hillah, F. Kordon, L. Petrucci, and N. Treves, "Building an API for ISO/IEC 15909,

based on model engineering techniques," Workshop on the Petri Net Markup Language

2005 (PNML 05) - Towards an ISO/IEC Standard Transfer Syntax for Petri Nets,

Helsinki University of Technology, Finland, May 26, 2005.

[75] J. L. Peterson, "Petri Nets," ACM Computing Surveys, vol. 9, no. 3, 1977.

[76] R. Valette, “Analysis of Petri Nets by Stepwise Refinement,” Journal of Computer and

System Sciences, vol. 18, pp. 35-46, February 1979.

[77] World Wide Web Consortium (W3C) Recommendation, Simple Object Access Protocol

(SOAP) version 1.2, June 2003, Available: http://www.w3.org/TR/soap/.

[78] OASIS Standards, Universal Description, Discovery and Integration (UDDI), February

2005, Available: http://www.uddi.org/.

[79] World Wide Web Consortium (W3C) Note, Web Service Description Language

(WSDL) 1.1, March 2001, Available: http://www.w3.org/TR/wsdl.

[80] World Wide Web Consortium (W3C) Member Submission, Web Services Policy 1.2 -

Framework (WS-Policy), April 2006, Available: http://www.w3.org/Submission/WS-

Policy/.

[81] JDOM Project, JDOM, October 2006, Available: http://www.jdom.org/.

[82] S. Jones, “Toward an Acceptable Definition of Services,” IEEE Software, pp. 87-93,

May/June 2005.

[83] O. Zimmermann, P. Krogdahl, and C. Gee, “Elements of Service-Oriented Analysis and

Design,” June 2004, Available: http://www-128.ibm.com/developerworks/webservices/

library/ws-soad1/.

	2007
	Service-oriented design in aspect-oriented and Petri net-based approach
	Tae-hyung Kim
	Recommended Citation

	Microsoft Word - D_thkim_Mac_Real_Final_revised.doc

