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ABSTRACT

Model-based object recognition has mostly been studied over inputs including images and

range data. Though such data are global, cameras and range sensors are subject to occlusions

and clutters, which often make recognition difficult and computationally expensive. In contrast,

touch by a robot hand is free of occlusion and clutter issues, and recognition over tactile data

can be more efficient.

In this thesis, we investigate model-based recognition of two and three dimensional curved

objects from tactile data. The recognition of 2D objects is an invariant-based approach. We

have derived differential and semi-differential invariants for quadratic curves and special cu-

bic curves that are found in applications. These invariants, independent of translation and

rotation, can be computed from local geometry of a curve. Invariants for quadratic curves

are the functions in terms of the curvature and its derivative with respect to arc length. For

cubic curves, the derived invariants also involve a slope in their expressions. Recognition of a

curve reduces to invariant verification with its canonical parametric form determined along the

way. In addition, the contact locations with the robot hand are found on the curve, thereby

localizing it relative to the touch sensor. We have verified the correctness of all invariants by

simulations. We have also shown that the shape parameters of the recognized curve can be re-

covered with small errors. The byproduct is a procedure that reliably estimates curvature and

its derivative from real tactile data. The presented work distinguishes itself from traditional

model-based recognition in its ability to simultaneously recognize and localize a shape from

one of several classes, each consisting of a continuum of shapes, by the use of local data.

The recognition of 3D objects is based on registration and consists of two steps. First,

a robotic hand with touch sensors samples data points on the object’s surface along three
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concurrent curves. The two principal curvatures at the curve intersection point are estimated

and then used in a table lookup to find surface points that have similar local geometries.

Next, starting at each such point, a local search is conducted to superpose the tactile data

onto the surface model. Recognition of the model is based on the quality of this registration.

The presented method can recognize algebraic as well as free-form surfaces, as demonstrated

via simulations and robot experiments. One difference in the recognition of these two sets of

shapes lies in the principal curvature estimation, which are calculated from the close forms and

estimated through fitting, respectively. The other difference lies in data registration, which is

carried out by nonlinear optimization and a greedy algorithm, respectively.
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CHAPTER 1. INTRODUCTION

A human being can easily recognize objects by his eyes. However, this ability depends on

the presence of light and on the appearance of the object in sight. When neither condition is

satisfied, the human being cannot see the object but can still feel its shape by his hands. The

hands are complementary to the eyes in object recognition tasks. In order to build a powerful

recognition system, touch sensing should be employed in addition to vision.

Object recognition has traditionally been the subject of computer vision. The availability

of high accuracy laser range scanners has enabled vision researchers to develop recognition

strategies for free-form objects. However, occlusion and clutter are still obstacles to object

recognition from range data. For instance, in an in-hand object manipulation task, most of

the object might be occluded by the robot hand. Equipped with tactile sensors, the hand is

able to record the contact positions on the object surface. Such tactile data could be more

effective than range data in recognizing the object, especially occlusion and clutter are no

longer the issues.

Tactile data do not require expensive preprocessing, like scene image segmentation in the

case of range data. Since they are local and sparse, the computation with tactile data is more

efficient than with dense range data. Past work on object recognition from tactile data has

been limited to certain classes of surfaces including polyhedra [18, 19], convex objects [2],

quadrics [30], and superquadrics [1].

In this thesis, we study object recognition using tactile data. Our focus is on the objects

with curved boundaries and surfaces. Recognition of such objects is harder than that of

polygons and polyhedra for the following reasons. The normal stays the same at every point

on a polygon edge or a polyhedron facet. Also, polygons and polyhedra are well defined. So,
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it is easy to distinguish between different polygons and polyhedra using angle, distance and

model constraints [18, 19]. In the case of curves and surfaces, the normal is different at every

point and they may not always have a closed form, which makes the recognition task very

challenging.

This thesis presents two different recognitions methods. The first one is invariant-based and

applicable to 2D objects. The second one is registration-based and applicable to 3D objects.

1.1 Invariant-based Recognition

Figure 1.1 illustrates a robotic hand with two tactile fingers touching a 2D object. Suppose

through local movements the fingers are able to estimate information such as the curvatures

at several points of contact. Also, suppose the shape is known to be from a finite number of

families of parametric curves. We would like to recognize the shape as well as determine the

finger placement.

shape invariants

global shape
finger placement

tactile data

Figure 1.1 A robotic hand touching an object to recognize its shape.

This problem draws several distinctions from traditional model-based recognition. First,

every model here is not a real shape but rather a continuum of shapes parameterized in the

same form. Second, we would like to keep the use of sensor data to the minimum. This is

because a touch sensor, unlike a vision system, does not generate global shape data. Third,

we hope to determine where the tactile data were obtained on the shape, so as to localize the

hand to it.

The characteristics of our problem naturally suggest an approach based on differential and
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semi-differential invariants. Such invariants of a shape are independent of its position and

orientation, the computation of which is often a burden. In addition, we are interested in

invariants that are also independent of point locations on a shape at which they are evaluated.

Given the local nature of touch sensing, such shape descriptors should be computable from

measurements at just a few points. Our investigation will be focused on quadratic and cubic

spline curves.

1.2 Registration-based Recognition

We present a novel method that recognizes 3D objects from tactile data. Based on fast

registration, the method is capable of recognizing closed-form as well as free-form objects.

Here, the model of an object to be recognized is from a known set.

Our approach is to acquire data points along three concurrent curves residing on the surface

of the object. Then, we find the best superposition of these data points onto every model surface

in the given set. To achieve this, we make use of the estimated local geometry at the curve

intersection point p, and combine table lookup with local search.

In the first phase, we estimate two principal curvatures κ1 and κ2 at p using only data points

in its neighborhood as described in [27]. Meanwhile, a table has been constructed in advance

for every model in the database to store the principal curvatures evaluated at discretization

points. We look up the table with the pair of curvature estimates (κ1, κ2) to find a set of

locations on the model that have similar local geometry to that of p. Starting with each

estimated location pi on the model, a local search will walk along a path to reach some point

p∗i n the neighborhood that induces the best superposition of the data points onto the model.

This is illustrated in Figure 1.2.

Matching between the data points and the surface, at some point q on the model, is done

by coinciding p with q and aligning the two corresponding tangent planes, and rotating the

first one (along with the data curves) to yield the smallest total distance from data points to

the surface. The quality of match is defined as the minimum aggregated distances from all

local searches. The model that yields the best match against the data is then recognized.
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locations
candidate

p

tactile data

surface model

registered 
location

object

Figure 1.2 Registering three data curves on a surface. The grey (green)
dots represent candidate locations of the curve intersection
point p on the surface found in a table lookup. A search path
leads from one of these locations to where the curves are “best”
superposed onto the surface.

The rest of the paper is organized as follows. In Chapter 2, we overview the related work

on invariants, curvature estimation, surface registration, and object recognition. In Chapter 3,

we describe the recognition of quadratic and cubic curves based on differential invariants. In

Chapter 4, we present the recognition of closed-form and free-form objects based on registration

of curve segments sampled on their surfaces. In Chapter 5, we summarize all the results.
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CHAPTER 2. RELATED WORK

In this chapter, we give an overview of previous work on invariants, curvature estimation,

surface registration, and object recognition.

2.1 Invariants

Algebraic invariants are expressions of the coefficients of polynomial equations describ-

ing curved shapes. The foundation was due to Cayley, Sylvester, Young, and among others,

Hilbert [22], who offered a procedure that constructs all independent algebraic invariants for

a given curve or surface. In real applications, polynomials are fit to image data and their

coefficients are extracted for invariant evaluation. Keren [29] and Forsyth et al. [15] presented

efficient methods for finding algebraic invariants and demonstrated on recognition of real ob-

jects. Civi et al. [10] also conducted object recognition experiments with algebraic invariants

of Euclidean, affine, and projective groups.

One drawback of algebraic invariants is the requirement of global shape data. This is

almost impossible to provide by a touch sensor, or by a vision system in case of occlusion.

Differential invariants depend on local data and deal with situations like occlusion well.

They are functions of curvature and torsion and their derivatives. Up till now, vision- and

invariant-based recognition has focused on differential invariants that are independent of var-

ious transformation groups but not of point locations on a shape. For recognition, multiple

invariants are computed along the shape boundary and plotted against each other to serve as

the shape’s signature.

Calabi et al. [5] introduced the “signature curve” that is invariant to Euclidean or affine

transformation. Rivlin and Weiss [41] derived differential invariants for a shape by applying
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to its quartic fit the same transformation that turns an osculating curve (a cubic) into the

canonical form, and extracted the resulting coefficients to plot a signature curve for recognition.

Semi-differential invariants combine global constraints and local information to ease the

correspondence issue faced by non-invariant-based methods and also relieve the burden on

estimating higher order derivatives for differential invariants. The theoretical foundation for

this type of invariants was presented by Moons et al. [36]. Pajdla and Van Gool [37] used

simple semi-differential invariants to match curves extracted from range data in the presence

of partial occlusion.

2.2 Curvature Estimation

Rusinkiewicz [42] generalizes a method of estimating a normal at a vertex, which takes

an average of the normals of incident faces, to estimate principal curvatures at the vertices

of triangular meshes. Curvature estimates are computed from an average of the accumulated

curvature tensor at a vertex, which is calculated using finite differences of estimated normals.

This method can also be generalized to estimate higher-order derivatives of a curvature.

Taubin [49] constructs a matrix, expressed as an integral, at a point on a surface. The

eigenvectors of the matrix form a Darboux frame at the point. The eigenvalue corresponding to

the normal is always zero. Two principal curvatures are the linear combinations of eigenvalues

corresponding to two principal directions, respectively. Chen and Schmitt [7] estimate normal

curvatures at a point on a surface in three or more tangent directions. By Euler’s theorem,

this gives a system of equations in terms of two principal curvatures and an angle between the

tangent and one of the principal directions. This system has a direct solution in the case of

three equations or can be solved as least-squares when more than three equations exist. These

two methods have later been modified to deal with real noisy range data [20].

In analytical approaches [14, 46, 32, 12], a local patch is fitted over a point on a surface

and its geometric neighbors. Usually, quadratic or cubic surfaces are used in a fit. Principal

curvatures are analytically calculated from the fitted patch.

An angle deficit [46, 32] is the summation of all angles around a vertex subtracted from
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2π. At the vertex, the ratio of the angle deficit to one-third of the sum of areas of all incident

triangles approximates the Gaussian curvature. Since no information about a mean curvature

is provided, the angle deficit method cannot be used to estimate principal curvatures.

In [48], several methods, including Taubin’s [49], Chen and Schmitt’s [7] and angle deficit [46,

32], to estimate Gaussian and mean curvatures on triangular meshes were compared. Accord-

ing to the results, angle deficit is the best and paraboloid fitting is the second best methods to

approximate the Gaussian curvature. For mean curvature estimation, paraboloid fitting is the

best approach. So, paraboloid fitting is the best method to estimate two principal curvatures

and will be used in the paper.

2.3 Surface Registration

In 3D registration, one of the most important tasks is to compute an optimal rigid trans-

formation from sensed shape to model shape which involves a minimization over 6 degrees of

freedom. If the correspondences between sensed and model data points are known, the opti-

mal transformation has a closed-form least-squares solution which uses quaternions to represent

rotations [13, 23, 3, 44].

Besl and McKay [3] have developed an iterative closest point (ICP) algorithm for 3D shape

registration. ICP works for different data representations: point sets, polylines, implicit and

parametric curves and surfaces, and triangular meshes. The algorithm iteratively computes

an optimal transformation from sensed data to model data. ICP always converges to a local

minimum, but the correct registration between model and data is not guaranteed.

Chua and Jarvis [8] select three dispersed data points on a sensed surface. Principal

curvature, Darboux frame and distance constraints are used to find the three corresponding

model points. Many possible 3-tuples on the model are found. A heuristic search is used to

single out the optimal transformation from the sensed 3-tuple to the model 3-tuple in low order

time.
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2.4 Object Recognition

A representation is a key in object recognition from range data. The representation should

have the following qualities: invariance to rigid transformations, ability to represent free-

form objects, ability to handle occlusion and clutter, robustness to noise, and efficiency in

computation [34, 45].

A number of surface representation schemes were developed in computer vision. They

include splashes [45], spherical attribute images [21], COSMOS [11], point signatures [9], spin

images [28], surface signatures [50], point fingerprints [47], regional point descriptors [16],

and salient geometric features [17]. A survey of recent free-form object representation and

recognition techniques is available in [6].

Object recognition methods based on hash tables [31, 35] consist of two phases: offline

and online. During an offline phase, a hash table is constructed from certain features derived

from all models in the database. During an online recognition phase, the similar features are

extracted from a scene and used to index the hash table casting a vote for a model in the

record. The models with the most votes are hypothesized to be present in the scene. The

hypothesis is verified by transforming these models and the scene into a common coordinate

frame and selecting the best matching model.

In touch sensing, the domain of object recognition have so far been limited to polyhedra,

convex objects, quadrics, and superquadrics.

Gaston and Lozano-Perez [18] recognize a polyhedra on a plane (having 3 degrees of free-

dom) from tactile data. They use an interpretation tree which shows the range of possible

pairings of contact points and object’s facets. Distance, angle and model constraints are used

to prune the tree removing a significant number of interpretations that are inconsistent with

input data. In case of ambiguities after applying all the constraints, additional contact points

are obtained to recognize the object from among a set of known objects. Grimson and Lozano-

Perez [19] have later generalized this method to recognize polyhedra with 6 degrees of freedom.

The exponential size of the interpretation tree makes the method computationally expensive for

polyhedra with very large number of facets. Therefore, this approach is practically inapplicable
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to free-form objects represented as triangular meshes.

In [2], internal and external volumetric approximations of a convex object are built from

sparse tactile data. Internal volume is approximated by the convex hull of contact points.

External volume is initially a workspace box. With each contact, the external volume is re-

cursively reduced by removing the external semispace of the contact plane. As the number

of contact points increases, the internal volume grows and the external volume shrinks, even-

tually approximating the volume of the object. The main disadvantage of this method is its

applicability to convex objects only. Also, in order to get good volumetric approximations, the

contact points need to be gathered from all over the surface, which is very hard to accomplish

with tactile sensors. In contrast, our method presented in this paper is applicable to free-form

objects and needs only local tactile data.

Allen and Roberts [1] fit a superquadric over sparse tactile data. The recovered parameters

of the superquadric are matched against a set of model parameters. Keren et. al. [30] derives

differential invariants for curves lying on surfaces of spheres, cylinders, cones, and tori. The

invariants are the expression in terms of curvature, torsion and their higher order derivatives

which need to be estimated from tactile data. Differential invariants are usually shape specific

and not applicable for the recognition of general objects.

To the best of our knowledge, there is no previous work on recognizing free-form objects

from tactile data.
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CHAPTER 3. RECOGNITION OF ALGEBRAIC CURVES

In this chapter, we describe the invariant-based recognition of algebraic curves. First, we

discuss the basics of curve geometry in Section 3.1. Then, we derive differential and semi-

differential invariants for quadratic and cubic curves in Section 3.2. Next, we describe how

to recognize the curves with invariants and locate the contact points on them in Section 3.3.

Finally, we demonstrate the invariant-based recognition with simulations and experiments in

Section 3.4.

3.1 Curve Geometry

The touch sensor in contact with a 2D object can “feel” its local geometry, which is de-

scribed by the curvature. At the contact point, denote by φ the tangential angle formed by

the tangent with the x-axis. The curvature κ is the rate of change of φ with respect to arc

length s, that is,

κ =
dφ

ds
.

Curvature is independent of parametrization, rotation, and translation. For the parametric

curves, in the form α(t) = (x(t), y(t)) the curvature is given by [43, p. 136]

κ(t) =
x′y′′ − x′′y′

(x′2 + y′2)3/2
. (3.1)

The touch sensor estimates the change of geometry with respect to arc length only. For

this reason, we are interested in the derivative of the curvature with respect to arc length:

κs =
dκ

dt

dt

ds
=

κ′(t)
(x′2 + y′2)1/2

. (3.2)

Section 3.4.2 will look at how the curvature and its derivative can be reliably estimated

from real data. Until then, we just assume that these two quantities are measurable.
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3.1.1 Signature Curve

The Euclidean signature curve of a curve α(t) is the set of all points (κ(t), κs(t)) evaluated

along the curve. An example is shown in Figure 3.1. The following result is well known [5]:

x

y

κ

κs

(a) (b)

Figure 3.1 (a) A cubical parabola y = 0.6x3 +0.4x; (b) its signature curve.

Theorem 1 Two smooth curves are equivalent up to an Euclidean transformation if and only

if their signature curves are identical.

The above result has led to the development of shape recognition methods [41, 38, 5] based

on matching signature curves. Construction of the signature curve, nevertheless, requires global

shape information, which the touch sensor does not provide. So, our aim is to make use of the

local geometry at a small number of points to perform the recognition task.

3.2 Differential and Semi-differential Invariants

We will derive differential and semi-differential invariants for algebraic curves. These in-

variants are the expressions in terms of the curvature and its derivative with respect to arc

length at one or two points. Some invariants depend on the slope as well. Our focus will be

on quadratic and cubic curves.



12

3.2.1 Quadratics

A quadratic curve has the general form:1

αx2 + 2βxy + γy2 + 2δx + 2εy + ζ = 0. (3.3)

It is known that through proper rotation and translation equation (3.3) can be transformed

into one of the following canonical forms:

x2

a2
+

y2

b2
= 1, if αγ − β2 > 0;

x2

a2
− y2

b2
= 1, if αγ − β2 < 0;

y2 = 4ax, if αγ − β2 = 0.

All quadratic curves are thus classified into three classes: ellipses, hyperbolas, and parabolas.

Together they are referred to as the conics.

A curve can be in any position and orientation. Since our recognition strategy is based on

local information, which is independent of rotation and translation, we can always transform

a quadratic curve into its canonical form.

To recognize a conic, we first identify which class it belongs to and then recover the shape

parameters a and b in the equation that describes the curve. For convenience, we will start with

some parametrization instead and derive an expression that is independent of the parametriza-

tion. This expression is based on local geometry at two points, namely, their curvatures and

derivatives with respect to arc length. However, its value is independent of specific points.

3.2.1.1 Parabola

Parabolas are identified with all the curves parametrized by quadratic polynomials:

x = a2t
2 + a1t + a0 and y = b2t

2 + b1t + b0. (3.4)
1The determinant

∆ = det

(
α β δ
β γ ε
δ ε ζ

)
6= 0

but ∆/(α + γ) < 0 when αγ − β2 > 0.
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To verify that the above two equations describe a parabola, we treat x and y as constants

and rewrite these equations as polynomials in t:

a2t
2 + a1t + a0 − x = 0,

b2t
2 + b1t + b0 − y = 0.

Taking the resultant of two polynomials will give us an implicit quadratic equation in the

form of (3.3). The coefficients α, 2β, and γ of terms x2, xy, and y2 are b2
2, −2a2b2, and a2

2

respectively. From αγ−β2 = b2
2a

2
2−(−a2b2)2 = 0, we know that the curve is indeed a parabola.

This also shows us that polynomial parametric curves are just a proper subset of polynomial

algebraic curves. As for quadratic curves, ellipses and hyperbolas can not be parametrized

using polynomials.

One curve can be parametrized in many different ways. The general parametrization of

parabola in (3.4) involves six shape parameters, namely, a2, a1, a0, b2, b1, and b0. To recognize

a parabola in this form, we have to solve for all six shape parameters. This can be very difficult.

To simplify our job, we will try to reduce the number of parameters while not changing the

geometry of curve. Since we are interested in the recovery of the shape of the curve, we are

not bounded by one particular parametrization. Moreover, the method we use to recognize

the curve does not assume particular position and orientation. So, we have the freedom to

translate, rotate, and reparametrize the curve in order to get its simplest parametric form.

To obtain simpler form for the parabola, we first rotate the curve by θ:

x =
(
a2t

2 + a1t + a0

)
cos θ +

(
b2t

2 + b1t + b0

)
sin θ,

y = −
(
a2t

2 + a1t + a0

)
sin θ +

(
b2t

2 + b1t + b0

)
cos θ.

To cancel the leading term of y, we choose rotational angle θ such that −a2 sin θ + b2 cos θ = 0,

or tan θ = b2/a2. Then, after some reparametrization and translation the equation of the

parabola reduces to its simplest form:

x = at2,

y = 2at,
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where

a =
(−a1 sin θ + b1 cos θ)2

(a2 cos θ + b2 sin θ)
.

The above parametric form has only one shape parameter, and it satisfies the canonical implicit

equation of the parabola, which is y2 = 4ax. From now on, we will use this simplest parametric

form to derive an invariant for the parabola.

From equation (3.1) the curvature for the parabola will be:

κ = − 1
2a(t2 + 1)3/2

. (3.5)

The speed of the curve is v(t) =
√

(x′2 + y′2) = 2a
√

(t2 + 1), so the derivative of curvature

with respect to arc length is:

κs =
κ′

v(t)
=

3t

4a2(t2 + 1)3
. (3.6)

From equation (3.5) we can obtain the expression for t2:

t2 =
1

(2aκ)2/3
− 1. (3.7)

Taking the square of left and right hand sides of (3.6) will give us:

κs
2 =

9t2

16a4 (t2 + 1)6
. (3.8)

We can eliminate t by substituting t2 in (3.7) into (3.8), then we will get an equation that

describes the signature curve of the parabola:

κ2/3

(
κ2

s

9κ4
+ 1

)
=

1
(2a)2/3

. (3.9)

Denote the left hand side of (3.9) by Ip, we get our invariant for the parabola:

Ip(κ, κs) ≡ κ2/3

(
κ2

s

9κ4
+ 1

)
. (3.10)

The expression Ip(κ, κs) has value independent of t. It is an invariant which has a one-

to-one correspondence to the shape of the parabola. Figure 3.2 illustrates three parabolas

distinguished by Ip. Since κ and κs are measurable, from (3.9) we can determine the shape

parameter a.
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0.5
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0.5 1

(a) (b) (c)

Figure 3.2 (a) Three parabolas in the form y2 = 4ax; (b) their signature
curves {(κ, κs)}; (c) corresponding values of the invariant Ip.
The invariant is evaluated using any point on a signature curve.

3.2.1.2 Ellipse

Let us start with the canonical parametrization:

x = a cos(t),

y = b sin(t),

which has the speed v(t) =
√

a2 sin2(t) + b2 cos2(t). From equations (3.1) and (3.2) the curva-

ture and its derivative with respect to arc length are

κ =
ab(

a2 sin2(t) + b2 cos2(t)
)3/2

, (3.11)

κs =
−3ab

(
a2 − b2

)
sin(t) cos(t)(

a2 sin2(t) + b2 cos2(t)
)3 . (3.12)

Next, we describe how to derive an invariant for the ellipse. By squaring both sides of (3.12)

we get:

κs
2 =

9a2b2
(
a2 − b2

)2 sin2(t) cos2(t)(
a2 sin2(t) + b2 cos2(t)

)6 . (3.13)

First, we eliminate cos(t) by substituting cos2(t) = 1− sin2(t) into (3.11) and (3.13), and get

the following:

κ =
ab(

(a2 − b2) sin2(t) + b2
)3/2

, (3.14)

κs
2 =

9a2b2
(
a2 − b2

)2 sin2(t)
(
1− sin2(t)

)(
(a2 − b2) sin2(t) + b2

)6 . (3.15)
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From equation (3.14) sin2(t) will be:

sin2(t) =

(
ab
κ

)2/3
− b2

a2 − b2
. (3.16)

Then, we eliminate sin(t) by substituting sin2(t) in (3.16) into (3.15), and after few more steps

we obtain an equation in terms of κ, κs, a, and b, that describes the signature curve (see

Figure 3.3(b)):

κ2/3

(
κ2

s

9κ4
+ 1

)
=

a2 + b2

(ab)4/3
− 1

(abκ)2/3
. (3.17)

In equation (3.17), the values of κ and κs are measurable, so we have only two unknown

quantities a and b. This means that two points on the ellipse are enough to solve for the shape

parameters a and b.

First, we derive an invariant for the ellipse using two points. Let κi and κsi, i = 1, 2, be

the curvature and its derivative at the ith point. We end up with two equations in the form

of (3.17). Subtracting one of them from the other yields the following (assuming κ1 6= κ2):

κ
2/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

2/3
2

(
κ2

s2

9κ4
2

+ 1

)
=

1
(abκ2)2/3

− 1
(abκ1)2/3

.

Taking 1/(ab)2/3 out of parenthesis gives:

κ
2/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

2/3
2

(
κ2

s2

9κ4
2

+ 1

)
=

1
(ab)2/3

κ
2/3
1 − κ

2/3
2

(κ1κ2)2/3
.

Finally, we get the following:

(κ1κ2)2/3

κ
2/3
1 − κ

2/3
2

(
κ

2/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

2/3
2

(
κ2

s2

9κ4
2

+ 1

))
=

1
(ab)2/3

. (3.18)

Write the left hand side of (3.18) as

Ic1(κ1, κ2, κs1, κs2) ≡
(κ1κ2)2/3

κ
2/3
1 − κ

2/3
2

(
κ

2/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

2/3
2

(
κ2

s2

9κ4
2

+ 1

))
. (3.19)

The expression Ic1 is a semi-differential invariant, since it involves the geometry at more than

one point. Its value 1/(ab)2/3 is independent of the two points that are used, and it is always

positive.
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The invariant Ic1 alone cannot distinguish ellipses with the same product ab, or equivalently,

with the same area. So, we find a second invariant by substituting Ic1 for 1/(ab)2/3 into

equation (3.17):

κ
2/3
1

(
κs

2
1

9κ4
1 + 1

)
+

Ic1(κ1, κ2, κs1, κs2)

κ
2/3
1

=
a2 + b2

(ab)4/3

From left hand side of the above equation we get second invariant:

Ic2(κ1, κ2, κs1, κs2) ≡
1

κ
2/3
1 − κ

2/3
2

(
κ

4/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

4/3
2

(
κ2

s2

9κ4
2

+ 1

))
. (3.20)

b =
a =

b =
a =

b =
a =

1.2
0.8

1.7
1.3

1.1
1.10.5

y

0.5
x

a = 
b =

a = 
b =

1.7
1.3

κ

κs

1.2
0.8

1.5

0.5

c1I

c2I

0.5

0.5

0.8
1.1

1.7
a =      , b = 

a =      , b = 

a =      , b = 1.2
1.1

1.3

(a) (b) (c)

Figure 3.3 (a) Three ellipses in the form x2/a2+y2/b2 = 1; (b) their signa-
ture curves (the one for the circle with a = b = 1.1 degenerates
into a point (1/1.1, 0)); (c) corresponding values of the invari-
ant pair (Ic1, Ic2). The invariants are evaluated using any two
points on the same signature curve.

A one-to-one correspondence exists between the tuples (Ic1, Ic2) and (a, b). Figure 3.3

compares two ellipses and a circle distinguished by the invariants Ic1 and Ic2. To recover the

shape parameters a and b, we let µ1 = ab. This product can be calculated from Ic1. Let

µ2 = a2 + b2, which can be calculated from Ic2. From µ1 and µ2 it is easy to obtain the

following:

a =

√√√√µ2 +
√

µ2
2 − 4µ2

1

2
,

b =

√√√√µ2 −
√

µ2
2 − 4µ2

1

2
.

Hence the ellipse is completely determined.
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3.2.1.3 Hyperbola

A hyperbola has the canonical parametric form

x = a cosh(t) = a
et + e−t

2
,

y = b sinh(t) = b
et − e−t

2
.

The curvature and its derivative with respect to arc length are

κ =
−ab

(a2 sinh2(t) + b2 cosh2(t))3/2
, (3.21)

κs =
3ab(a2 + b2) sinh(t) cosh(t)
(a2 sinh2(t) + b2 cosh2(t))3

. (3.22)

Using equations (3.21), (3.22), and cosh2(t) = sinh2(t) + 1, we eliminate cosh(t) and sinh(t)

and obtain the following:

κ2/3

(
κ2

s

9κ4
+ 1

)
=

a2 − b2

(ab)4/3
+

1
(abκ)2/3

, (3.23)

which is defined for one point on the hyperbola.

Taking the curvatures and derivatives at two points on the hyperbola, from the two copies

of equation (3.23) we derive

Ic1(κ1, κ2, κs1, κs2) ≡
(κ1κ2)2/3

κ
2/3
1 − κ

2/3
2

(
κ

2/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

2/3
2

(
κ2

s2

9κ4
2

+ 1

))
= − 1

(ab)2/3
. (3.24)

The invariant Ic1 for the hyperbola is the same expression as for the ellipse, but it’s values

is in different expression of a and b. From (3.24) we can see that Ic1 is always negative for

the hyperbola. The second invariant Ic2 is also the same expression as for ellipse, but with

different values in terms of a and b:

Ic2(κ1, κ2, κs1, κs2) ≡
1

κ
2/3
1 − κ

2/3
2

(
κ

4/3
1

(
κ2

s1

9κ4
1

+ 1

)
− κ

4/3
2

(
κ2

s2

9κ4
2

+ 1

))
=

a2 − b2

(ab)4/3
.

The invariants Ic1 and Ic2 completely determine the hyperbola. To solve for shape param-

eters a and b, let µ1 = ab and µ2 = a2 − b2. The values of µ1 and µ2 can be calculated from

Ic1 and Ic2, respectively. Then we can find a and b as

a =

√√√√√µ2
2 + 4µ2

1 + µ2

2
,

b =

√√√√√µ2
2 + 4µ2

1 − µ2

2
.
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3.2.1.4 Invariants for Conics

Both Ic1 and Ic2 are also invariants for a parabola. Since Ip defined in (3.10) is an invariant

for parabola from (3.9) we have:

κ
2/3
1

(
κ2

s1

9κ4
1

+ 1

)
= κ

2/3
2

(
κ2

s2

9κ4
2

+ 1

)
=

1
(2a)2/3

.

Then the values of Ic1 and Ic2 for the parabola will be:

Ic1 =
(κ1κ2)2/3

κ
2/3
1 − κ

2/3
2

(
1

(2a)2/3
− 1

(2a)2/3

)
= 0,

Ic2 =
1

κ
2/3
1 − κ

2/3
2

(
κ

2/3
1

1
(2a)2/3

− κ
2/3
2

1
(2a)2/3

)
=

1
(2a)2/3

.

As we have seen three conic curves share the same invariants. So, how do we recognize a

given conic curve then? It is the sign of invariant Ic1 that discriminates one conic from another.

When the Ic1 is positive the curve is an ellipse, when it is negative the curve is a hyperbola,

and when it is zero the curve is a parabola.

We estimate κ and κs at two points on the curve, and plug these values into Ip. If the value

of Ip is the same for both points, we know that the curve is a parabola.2 If not, we estimate κ

and κs at third point and test invariants Ic1 and Ic2 using three resulting pairs of κ and κs. If

the values of Ic1 and Ic2 stay constant, then the curve is either ellipse or hyperbola. The sign

of Ic1 will tell us which curve it is. Finally, if the test on Ic1 and Ic2 fails, we conclude that

the curve is not quadratic.

3.2.2 Cubics

There is no classification of all cubic curves. So, it seems very difficult to construct invari-

ants for all of them. However, we are interested in recognizing cubic splines, whose continuity

in curvature enables them to model curved shapes in graphics and geometric modeling. Every

segment of a cubic spline has the general form:

x = a3t
3 + a2t

2 + a1t + a0,

y = b3t
3 + b2t

2 + b1t + b0.
(3.25)

2Except for a degenerate case where the two points are on a non-parabolic curve and assume the same value
for the invariant.
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This section starts with two subclasses of cubic spline polynomials: cubical and semi-cubical

parabolas, before move on to general cubic splines.

3.2.2.1 Cubical Parabola

This class of curves has the parametric form:

x = a3t
3 + a1t + a0,

y = b3t
3 + b1t + b0, where a3b1 − a1b3 6= 0.

It is a subclass of cubic spline curves without quadratic terms in both x and y coordinates.

First, we derive a simpler but equivalent form. Since either a3 6= 0 or b3 6= 0, without loss

of generality we assume b3 6= 0. Rotate the curve by θ = arctan(−a3
b3

). Then, after some

reparametrization and translation the curve becomes:

x = t,

y = at3 + bt,

where

a =
−a3 sin θ + b3 cos θ

(a1 cos θ + b1 sin θ)3
,

b =
−a1 sin θ + b1 cos θ

a1 cos θ + b1 sin θ
.

Now, the curve has only two shape parameters a and b instead of six.

The curvature and its derivative with respect to arc length are given by

κ =
6at(

1 + (3at2 + b)2
)3/2

,

κs =
6a
(
1 +

(
3at2 + b

)2)− 108a2t2
(
3at2 + b

)
(
1 + (3at2 + b)2

)3 .

Figure 3.1 plots an example of cubical parabola and its signature curve.

The parameter value t is not a measurable quantity. So, we have to eliminate it from the

equations. In the case of quadratic curves we were able to do so, and obtained an invariant.



21

But this is not easy for cubic curves. To derive some invariants, we first reparametrize the

curve using the slope:

λ =
y′

x′
= 3at2 + b. (3.26)

The curvature and its derivative are rewritten in terms of the slope:

κ2 =
12a(λ− b)
(1 + λ2)3

κs =
6a(1 + λ2)− 36aλ(λ− b)

(1 + λ2)3
.

We can obtain a and b using λ, κ, and κs:

a =
(
κs + 3λκ2

) (
1 + λ2

)2
6

≡ Icp1(λ, κ, κs), (3.27)

b = λ− κ2
(
1 + λ2

)
2 (κs + 3λκ2)

≡ Icp2(λ, κ, κs). (3.28)

The expressions Icp1 and Icp2 are invariants of the cubical parabola provided that the slope λ

can be determined.

Next, we describe how we can obtain the slope. Suppose a straight jaw is mounted on the

robot and it is able to make contact everywhere on the curve. The tangent rotation from one

point to another is accurately measured as the jaw rotation by the robot. Thus if we know

the slope at one point we can then get the slope at any point. Let φ1 and φ2 = φ1 + ∆φ12 be

the tangential angles at two different points on the curve, where ∆φ12 is measured as the jaw

rotation. Writing λi = tanφi, i = 1, 2, and δ12 = tan(∆φ12), we have the following equation

relating the two slopes:

λ2 =
λ1 + δ12

1− λ1δ12
. (3.29)

Measure the curvatures κi and derivatives κsi, i = 1, 2, at two points. From invariant Icp2

we have:

λ1 −
κ2

1

(
1 + λ2

1

)
2
(
κs1 + 3λ1κ2

1

) = λ2 −
κ2

2

(
1 + λ2

2

)
2
(
κs2 + 3λ2κ2

2

) (3.30)

Elimination of λ2 from (3.29) and (3.30) results in a quartic polynomial:

d4λ
4
1 + d3λ

3
1 + d2λ

2
1 + d1λ1 + d0 = 0, (3.31)
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with coefficients:

d0 = κs1

(
κ2

2

(
5δ2

12 − 1
)

+ 2κs2δ12

)
+ κ2

1

(
3κ2

2δ12 + κs2

)
,

d1 = 2δ12

(
κs1

(
3κ2

2 − κs2δ12

)
+ 2κ2

1

(
3κ2

2δ12 + κs2

))
,

d2 = κs1

(
κ2

2

(
5δ2

12 − 1
)

+ 2κs2δ12

)
+ κ2

1

(
18κ2

2δ12 − κs2

(
5δ2

12 − 1
))

,

d3 = 2δ12

(
κs1

(
3κ2

2 − κs2δ12

)
+ 2κ2

1

(
3κ2

2δ12 + κs2

))
,

d4 = 5κ2
1δ12

(
3κ2

2 − κs2δ12

)
.

The values of κ1, κs1, κ2, κs2, and δ12 can all be estimated. So, by solving the quartic

polynomial in (3.31), we find the value of λ1. Then, using equations (3.27) and (3.28), we

calculate the shape parameters a and b of the curve. The invariants Icp1 and Icp2 of the cubical

parabola are different from the invariants for quadratic curves, their evaluation requires the

solution of the slope (λ1) at one point.

3.2.2.2 Semi-Cubical Parabola

This class of curves is described by the equations:

x = a3t
3 + a2t

2 + a0,

y = b3t
3 + b2t

2 + b0, where a3b2 − a2b3 6= 0.

The equivalent canonical parametrization involves only two shape parameters:

x = t2,

y = at3 + bt2, a 6= 0.

The slope is λ = y′/x′ = 3at/2 + b. So, this time we reparametrize the curve using

t =
2(λ− b)

3a
,

and derive the curvature and its derivative as:

κ =
9a2

8(λ− b)(1 + λ2)3/2
,

κs = −
81a4

(
1 + λ2 + 3λ(λ− b)

)
64(λ− b)3(1 + λ2)3

.
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From the above two equations we determine a and b in terms of λ, κ, and κs:

a =

√
−8κ3(1 + λ2)5/2

9(κs + 3λκ2)
≡ Iscp1(λ, κ, κs), (3.32)

b = λ +
κ2(1 + λ2)
κs + 3λκ2

≡ Iscp2(λ, κ, κs). (3.33)

The expressions Iscp1 and Iscp2 are the invariants for semi-cubical parabola. Using two points,

from invariant Iscp2 we can set up an equation:

λ1 +
κ2

1(1 + λ2
1)

κs1 + 3λ1κ2
1

= λ2 +
κ2

2(1 + λ2
2)

κs2 + 3λ2κ2
2

. (3.34)

After eliminating λ2 from (3.34) and (3.29), we will again get a quartic polynomial

d4λ
4
1 + d3λ

3
1 + d2λ

2
1 + d1λ1 + d0 = 0,

whose coefficients are:

d0 = κ2
1

(
κs2 + 3κ2

2δ12

)
− κs1

(
κs2δ12 + κ2

2

(
1 + 4δ2

12

))
,

d1 = δ12

(
κs1

(
κs2δ12 − 3κ2

2

)
− 5κ2

1

(
κs2 + 3κ2

2δ12

))
,

d2 = κ2
1

(
κs2

(
1 + 4δ2

12

)
− 9κ2

2δ12

)
− κs1

(
κs2δ12 + κ2

2

(
1 + 4δ2

12

))
,

d3 = δ12

(
κs1

(
κs2δ12 − 3κ2

2

)
− 5κ2

1

(
κs2 + 3κ2

2δ12

))
,

d4 = 4κ2
1δ12

(
κs2δ12 − 3κ2

2

)
.

Solving the above quartic polynomial will give us λ1, and subsequently λ2. Then, from equa-

tions (3.32) and (3.33), we will obtain the values of shape parameters a and b, respectively.

3.2.2.3 Cubic Spline

The general parametric form of cubic spline given by (3.25). By proper rotation, translation,

and reparametrization it can be simplified into the following form:

x = t2,

y = at3 + bt2 + ct, (3.35)

where a, b, and c are the shape parameters.
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The slope expression for cubic spline is:

λ =
3at2 + 2bt + c

2t
. (3.36)

This time, we can not completely reparametrize this curve using slope. So, the expression for

the curvature involves both t and λ:

κ =
3at2 − c

4t3 (1 + λ2)3/2
. (3.37)

The derivative of the curvature in terms of the t, λ, κ, and shape parameters will be:

κs =
κ2
(
1 + λ2

)
(3(λ− b)− 6at)

(λ− b)2 − 3ac
− 3κ2λ. (3.38)

Rewrite equations (3.36), (3.37) and (3.38) as polynomials in t:

3at2 + 2(b− λ)t + c = 0, (3.39)

2Lt3 − 3at2 + c = 0, (3.40)

6at + M
(
(b− λ)2 − 3ac

)
+ 3(b− λ) = 0, (3.41)

where

L = 2(1 + λ2)3/2κ,

M =
κs + 3κ2λ

(1 + λ2)κ2
.

Subtract (3.39) from (3.40) we will get:

Lt2 − 3at− (b− λ) = 0. (3.42)

We substitute c in (3.41) with (3.39):

9a2Mt2 + 6a
(
1 + M(b− λ)

)
t + M(b− λ)2 + 3(b− λ) = 0. (3.43)

Next, the resultant of equations (3.42) and (3.43) is computed to eliminate t:

81Ma4 + 18L
(
1 + 3M(b− λ)

)
a2 + L2(b− λ)

(
M(b− λ) + 3

)2
= 0. (3.44)

Since M can get very large when κ is small, we divide the left hand side of (3.44) by 81Ma4

and denote the resulting expression as the function g(a, b, λ).
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With curvatures and derivatives estimated at l ≥ 3 points, the shape parameters a, b, and

the slope λ1 at the first point can be estimated through a least-squares optimization:

min
a,b,λ1

l∑
i=1

g(a, b, λi)2,

where λi depends on λ1 according to (3.29). To determine the third parameter c, we first

eliminate the t2 terms from (3.39) and (3.42) and then eliminate t from the resulting equation

and (3.43).

c =

((
2(b− λ)L + 9a2

)(
M(b− λ) + 3

)
− 18a2

)
(b− λ)

3a
(
2L + 2M(b− λ)L + 9a2M

) .

3.3 Curve Localization and Recognition

Using the invariants introduced in Sections 3.2.1 and 3.2.2, we can recognize the given

curve. Since the canonical parametric form of the curve can be recovered, we also can localize

the curve relative to touch sensor. Next, we describe how to determine the locations of the

contacts on the curve.

3.3.1 Locating Contact

The parameter value t determines the contact location on the curve with the touch sensor.

Since the tangent at the contact is measurable, t also determines the relative pose of the shape

to the hand. The value of t can be easily determined for the quadratic and cubic curves

discussed in Sections 3.2.1 and 3.2.2. Below, we simply give its expressions:

t =



κs
3κ2 , if parabola;

sin−1

(√
(ab

κ )2/3−b2

a2−b2

)
, if ellipse;

sinh−1

(√
(ab

κ )2/3−b2

a2+b2

)
, if hyperbola;

±
√

λ−b
3a , if cubical parabola;

2(λ−b)
3a , if semi-cubical parabola;

−M((b−λ)2−3ac)+3(b−λ)

6a , if cubic spline.
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In the case of a cubical parabola, the sign is determined based on the relative configuration of

the two data points.

3.3.2 Recognition Tree

I p

I c1

I c2I c1,

I cp1, I cp2

I scp1, I scp2

>0 yes no

no

Ellipse

a, b

Parabola

a, b

Cubical 

Semi−Cubical
Parabola (all other

curves)

Unclassifieda, b

Hyperbola

<0

a, b

yes

yes no

Parabola

a

t

noyes

Sign of

Figure 3.4 Recognition tree for quadratic and special cubic curves.

A general recognition strategy is illustrated using the tree in Figure 3.4. We estimate the

values of κ and κs at as few as three points on the curve. Then, we test the invariants down

the tree to identify the curve type or determine that it is unclassified. Next, we recover the

shape parameters of the curve. Finally, we compute the parameter value t, which determines

the contact on the curve.

To determine whether a curve is quadratic, we may measure κ and κs at three different

points on the curve. Then evaluate the two invariants Ic1 and Ic2 according to (3.19) and (3.20)

for each of the three resulting pairs. If the values of the two invariants do not change, there is

a strong indication that the curve is a conic. For some curve, to satisfy the invariants, is the

necessary condition to be from that curve family.

For example, consider the ellipse in Figure 3.5(a). The values of κ and κs are estimated

at t1 = 0.36, t2 = 1.86, and t3 = 4.23. Invariant Ip has values 0.8971 and 0.4030 at the first



27

t 3

t1

2t

t

t 1

3t

2

(a) (b)

t2

t 1

t 3

t 2

t 1

(c) (d)

Figure 3.5 Recognition of four shapes based on local geometry at two or
three points. (a) An ellipse with a = 2.8605 and b = 1.7263;
(b) a cubical parabola with a = 3.2543 and b = −2.3215; (c) a
semi-cubical parabola with a = 2.5683 and b = 1.4102; and (d)
a parabola with a = 0.8685.

two points, so the curve is not a parabola. Invariant Ic1 yields values 0.3447, 0.3446, and

0.3449 at the three resulting pair of points, from which we infer that the curve is an ellipse.

The recovered coefficients (from Ic1 and Ic2) are a≈ 2.8609, and b≈ 1.7275. The computed

parameter values t1≈0.36, t2≈1.86, and t3≈4.23 are correct.

On the cubical parabola in Figure 3.5(b), estimates are taken at t1 = −0.86, t2 = 0.19,

and t3 = 1.03. Tests on both invariants Ip and Ic1 have failed, so we know that the curve

is not quadratic. Hypothesizing cubical parabola, we solve for λ1 from (3.31). Subsequent

tests on invariant Icp1 (for shape parameter a) yield values 3.2244, 3.2536, and 3.1872, and on

invariant Icp2 (for b) yield values −2.3237, −2.3237, and −2.3972. The parameter values are

estimated as t1≈−0.86, t2≈0.20, and t3≈1.04.

Similarly, we have successfully recognized a semi-cubical parabola and a parabola as shown

in Figure 3.5 (c) and (d), respectively.
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3.4 Simulations and Experiments

In simulations, we approximate the curvature and its derivative by finite difference quo-

tients:

κ ≈ φ(s + ∆s)− φ(s−∆s)
2∆s

and κs ≈
φ(s + ∆s)− 2φ(s) + φ(s−∆s)

(∆s)2
,

where s and φ are arc length and tangential angle, respectively. The arc length between two

points on the curve, close to each other, is approximated by their Euclidean distance. The

rotation of the tangent from one point to another uses the exact value since it can be measured

quite accurately in practice. 3

3.4.1 Verification of Invariants

The first group of simulations were conducted to verify the invariants of all curve classes

presented in this chapter. One curve out of each class was chosen, and for each curve, its invari-

ants were evaluated 100 times using randomly selected points. The results are summarized in

Table 3.1. Estimation errors of κ and κs were due to linear approximation. They showed up

Table 3.1 Invariant verification on five specific shapes. Each invariant is
labeled with the equation where it is defined. The first row shows
the real values of the invariants. The next three rows display the
min, max, and mean of 100 values.

inv. Ip Ic1 (3.19) Ic2 (3.20) Icp1 Icp2 Iscp1 Iscp2

(3.10) ellipse hyperbola ellipse hyperbola (3.27) (3.28) (3.32) (3.33)
real 0.2198 0.1857 −0.2678 1.2055 0.3222 6.9963 2.6127 1.3730 6.5107
min 0.2168 0.1801 −0.2729 1.1749 0.2937 6.7687 1.7312 1.4111 6.3945
max 0.2230 0.1863 −0.2655 1.2083 0.3615 7.0289 3.1684 1.4447 6.5834
mean 0.2198 0.1852 −0.2675 1.2035 0.3210 6.9355 2.5022 1.4220 6.5154

in Table 3.1 as the discrepancies between actual invariant values and their estimates. Although

three points on the curve are enough to recognize it, it would be more reliable to calculate the
3A method introduced in [5] approximates the osculating circle with one that passes through three local

points. This curvature estimation scheme was extended in [4]. These methods are able to generate slightly
better estimates than finite differencing but the simulation outcomes would not have been altered.
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invariant at more points and take the mean value. As we can see from Table 3.1, the mean

values of the invariants are close to real ones.

Having verified the correctness of invariants, we empirically demonstrate that the invariant

of one curve class would not hold for another. This is necessary for the recognition strategy

to work. Since all quadratic curves share the invariant Ic1, there are only three curve classes.

We tested the invariants of one curve class against the data from another. The results are

summarized in Table 3.2. From Table 3.2, we see that when an invariant is applied to curves

Table 3.2 Evaluating some invariants on data from curves of different
classes. Each cell displays the summary over 100 values.

\ data conic cubical semi-cub. cubic
inv.\ (ellipse) parabola parabola spline

−6.38(min) −22.84 −45.24
Ic1 −0.04(max) 28.37 −4.94

−0.73(mean) 3.37 −16.50
1.22(stdev) 6.76 10.86

−11.97 8.54 11.66
Icp2 15.46 19.03 1721.04

−0.04 13.76 55.52
2.53 3.07 217.34

−265.80 7.80 −150.68
Iscp2 5.83 65.22 1715.73

−3.22 29.17 38.97
26.75 17.19 182.24

outside the curve class it was derived for, it has different values for different points. So, each

invariant only holds for its own curve class.

Finally, we looked into how well a given curve can be recognized. In other words, we

examined how much the recovered parameters ā, b̄ and c̄ would differ from the real ones a, b

and c. For measurement, we calculated the relative errors of recovered parameters with respect

to real ones as
√(

a−ā
a

)2
+
(

b−b̄
b

)2
+
(

c−c̄
c

)2
. The calculations used 100 different shapes from

each family. For each recovered shape the relative error was calculated. The results are

summarized in Table 3.3. From the table we see that on the average the relative errors are

around 1%, except for cubic splines. These errors are likely due to finite differencing used for
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Table 3.3 Relative errors on estimating shape parameters. Summary over
100 different curves from each class (only 25 curves from the
cubic spline class).

ellipse hyperbola parabola cubical semi-cubical cubic
parabola parabola spline

min 0.02% 0.10% 0.01% 0.02% 0.04% 0.61%
max 7.99% 9.71% 3.35% 7.49% 8.09% 29.23%
mean 0.40% 1.15% 0.36% 0.83% 1.23% 11.27%

the estimation of the curvature and its derivative.

3.4.2 Experiments

We have assumed that the curvature and its derivative with respect to arc length can be

estimated at any point on the curve. In simulations, finite differencing was used to estimate κ

and κs. We also tried to use finite differencing with real data. The curvature was estimated

by the inverse of the radius of osculating circle as introduced in [5]. The derivative of the

curvature was estimated by finitely differentiating the estimated curvature values as described

in [4]. The results of such estimation are illustrated in Figure 3.6. From Figure 3.6, we see

x(cm)

y(cm)

1

1

(1/cm)κ

0.01

0.03

2κs(1/cm  )

(a) (b)

Figure 3.6 Estimating κ and derivative κs from tactile data using finite
differencing: (a) an ellipse and 16 sample points; (b) estimates
(κ̂, κ̂s) at these points plotted against the signature curve.

that the estimates of κ and κs are not accurate. The estimated values differ a lot from real

ones. Since the curvature and its derivative are the second and the third order derivatives of

the curve, respectively, they are very sensitive to noisy data. That’s why the finite differencing
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method failed in estimating κ and κs. So, we used different method to reliably estimate κ and

κs.

Tactile data used in our experiments were generated by a joystick sensor mounted on an

Adept Cobra 600 robot [33]. The joystick sensor gives a point location (x, y) on the boundary

of the shape, in the world coordinates. So, using such limited information, we have to come

up with a method that reliably estimates κ and κs. To estimate κ and κs at some point, we

perform local fitting twice. The first fitting is done to get estimates of curvatures, and the

second fitting is done to estimate derivatives.

Let (x0, y0), (x1, y1), . . . , (xp, yp) be a sequence of p neighboring points, generated by joystick

sensor on the boundary of the shape. Fit a quadratic curve over the first n points in the

sequence. 4 The resulting quadratic curve has the form:

y = a2x
2 + a1x + a0.

We use the curvature

κ =
2a2(

1 + (2a2x + a1)
2
)3/2

,

of this quadratic curve as the approximation to the curvature of the middle point in the se-

quence (x0, y0), (x1, y1), . . . , (xn−1, yn−1). So, we get our first curvature value. Next, we shift

the sequence of points by l, and fit a new quadratic curve over (xl, yl), (xl+1, yl+1), . . . , (xn−1+l, yn−1+l).

This will give us a second value of the curvature at the middle point of the new sequence. The

arc length between two points, at which curvatures were estimated, can be found as

s =
∫ x n−1

2 +l

x n−1
2

√
1 + (2a2x + a1)

2 dx.

Since the function
√

1 + (2a2x + a1)
2 is not integrable, we use Simpson’s method [39, p. 117]

to numerically estimate the arc length.

Now, we have two pairs (0, κ̂0), (ŝ1, κ̂1) of estimated arc length and curvature values. Re-

peating this process m times, will generate a sequence of pairs (0, κ̂0), (ŝ1, κ̂1), . . . , (ŝm−1, κ̂m−1).
4A quadratic curve is chosen because it has the same degree as the osculating circle but does a better job at

approximating a short curve segment.
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By fitting a quadratic curve over this sequence we will get a curvature as a function of arc

length

κ = b2s
2 + b1s + b0.

Differentiating the above function, gives us curvature derivative estimates at 0, ŝ1, . . . , ŝm−1.

Finally, we end up with m estimated pairs of κ and κs values, (κ̂0, κ̂s0), (κ̂1, κ̂s1), . . . , (κ̂m−1, κ̂sm−1).

The first experiment was done on the ellipse shown in Figure 3.7(a). Curvatures and

derivatives were estimated at 20 sample points in two different parts of the ellipse. These (κ̂, κ̂s)

estimates are plotted against the signature curve of the ellipse as shown in Figure 3.7(b). In

ideal case, these (κ̂, κ̂s) estimates would lie on the signature curve. From the figure we can see

that the estimated (κ̂, κ̂s) values are very close to real ones. Table 3.4 displays the summary

x(cm)

y(cm)

1

1

κs
2(1/cm  )

(1/cm)κ
0.01

0.03

(a) (b)

Figure 3.7 Estimating κ and derivative κs from tactile data generated by
a joystick sensor: (a) an ellipse and 20 sample points; (b) esti-
mates (κ̂, κ̂s) at these points plotted against the signature curve.

of evaluating the invariants Ic1 and Ic2 of the ellipse with the estimated (κ̂, κ̂s) values.

Table 3.4 Invariants Ic1, Ic2 and the recovered shape parameters a and b of
the ellipse in Figure 3.7(a). Summary over 80 values computed
from different pairs of estimated (κ̂, κ̂s) values.

Ic1 Ic2 a b

real 0.373836 1.30145 2.5 1.75
min 0.350559 1.26074 2.38636 1.62636
max 0.404903 1.36736 2.67234 1.83549
mean 0.377728 1.31825 2.51127 1.71959

The second experiment was performed on the closed cubic spline in Figure 3.8(a), which
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consists of five cubic spline segments. Curvature and derivative estimates were taken at 8

sample points on one of the spline’s segments. The estimated (κ̂, κ̂s) values are displayed in

Figure 3.8(b) along with the signature curve of that segment.

1

y(cm)

1

x(cm)

κ s (1/cm  )2

(1/cm)κ

0.01

0.03

(a) (b)

Figure 3.8 Estimating κ and κs from tactile data: (a) a closed cubic spline
with 8 sample points from one of its segment; (b) estimates
(κ̂, κ̂s) and the signature curve of the segment.

We used two groups of three estimates (κ̂, κ̂s) out of the eight from a cubic spline segment

in Figure 3.8(b). Due to inefficiency in nonlinear optimization, only two tests were performed.

The results are summarized in Table 3.5. Larger errors in the shape parameter estimation

Table 3.5 Recovering the cubic spline segment in Figure 3.8(a) from three
of the eight data points. The segment is of the form (3.35).

a b c

real 1.10734 1.67996 −0.401898
test 1 1.07246 1.57648 −0.39233
test 2 1.06594 1.55496 −0.44884

were observed, compared to the case of the elliptic part.
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CHAPTER 4. RECOGNITION OF CLOSED-FORM AND FREE-FORM

SURFACES

In this chapter, we present registration-based recognition method. The method is described

in Section 4.1 and it is applied to closed-form and free-form surfaces in Sections 4.2 and 4.3,

respectively. Experimental results with various objects will follow in Section 4.4.

4.1 Registration and Recognition Scheme

To recognize the shape of an object, a robot acquires a number of points on its surface.

Then, these data points are registered onto the all models in a database. The model yielding

the best match is selected as the shape of the object.

To facilitate the matching process, the data points are acquired in a specific configuration

which is described below.

4.1.1 Configuration of Data Points

The intersection of the object’s surface with a plane is a space curve. Data points are

sampled along three such space curves which intersect at one point p. Figure 4.1 displays an

object with three sequences of data points on its surface. These point sequences are called the

data curves and denoted by α, β, and γ, respectively. We refer to the planes of the three data

curves as sampling planes.

To register three data curves onto a model, which may or may not be for the object, we use

a surface normal and two principal curvatures at the intersection point p. They are estimated

in the following way.
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γ

αp

Plane of α

β

Figure 4.1 Three data curves α, β, and γ intersect at one point p on a
surface. Each data curve is sampled along the intersection of
the surface and a plane. The sampling plane of α is displayed.

4.1.1.1 Estimation of Surface Normal

In the sampling plane of each data curve, we fit a 2D quadratic parabola, y = ax2 + bx+ c,

over a few data points around p. Figure 4.2 shows a quadratic fit for the data curve α. The

α

Nα

Tαp
data

points
fit

quadratic

Figure 4.2 A quadratic curve fit over the neighborhood of p in the sampling
plane of α.

normal Nα, the tangent Tα, and the curvature κα of α at p are estimated by differentiating

the fitted parabola. Similarly, we can estimate the normals Nβ and Nγ , the tangents Tβ and

Tγ , and the curvatures κβ and κγ of the data curves β and γ at p, respectively.

The surface normal N at the intersection point p is orthogonal to the three tangents Tα,

Tβ, and Tγ . The cross product of any two of these tangents should give us the normal N . To

get a more reliable estimate, we solve the following least-squares formulation [27],

min
||N ||=1

(N · Tα)2 + (N · Tβ)2 + (N · Tγ)2. (4.1)
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4.1.1.2 Estimation of Principal Curvatures

We estimate the principal curvatures at the curve intersection point p using the method

described in [27].

In case the curve normal Nα coincides with the surface normal N at p, the curvature of α at

p is the normal curvature. If there is an angle between N and Nα, the normal curvature in the

direction of Tα is given by [40, p. 128], κ
(α)
n = κα (Nα ·N). Similarly, the normal curvatures

in the directions of Tβ and Tγ are κ
(β)
n = κβ (Nβ ·N) and κ

(γ)
n = κγ (Nγ ·N), respectively.

By Euler’s theorem [40, p. 137], the normal curvature can be written as a linear combination

of principal curvatures κ1 and κ2,

κ(α)
n = κ1 cos2 θ + κ2 sin2 θ, (4.2)

κ(β)
n = κ1 cos2(θ + θ1) + κ2 sin2(θ + θ1), (4.3)

κ(γ)
n = κ1 cos2(θ + θ2) + κ2 sin2(θ + θ2), (4.4)

where,

θ1 = cos−1 (Tα · Tβ) ,

θ2 = cos−1 (Tα · Tγ) ,

and θ is the angle between Tα and principal direction corresponding to κ1. We have three un-

knowns κ1, κ2, and θ in three equations (4.2), (4.3), and (4.4). First, the angle θ is determined

as,

θ =

tan−1

 sin(θ1−θ2)(
κ
(α)
n −κ

(β)
n

)
sin θ2(

κ
(α)
n −κ

(γ)
n

)
sin θ1

−cos(θ1−θ2)

− θ2

2
.

Then, principal curvatures κ1 and κ2 at the intersection point p of three data curves obtained

as,

κ1 =
κ

(α)
n sin2 (θ + θ1)− κ

(β)
n sin2 θ

cos2 θ sin2 (θ + θ1)− cos2 (θ + θ1) sin2 θ
, (4.5)

κ2 =
κ

(β)
n cos2 θ − κ

(α)
n cos2 (θ + θ1)

cos2 θ sin2 (θ + θ1)− cos2 (θ + θ1) sin2 θ
. (4.6)
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4.1.2 Registration of Data Curves

Let M be a model to be matched against the data curves. We calculate principal curvatures

at a set of points on the surface of M . This calculation depends on M and will be described

later for specific models. The values of the principal curvatures are stored in a table.

4.1.2.1 Table Lookup

We look up the table to find the points with local geometries similar to that of the inter-

section point p of the three data curves α, β, and γ. Let κ1i and κ2i be principal curvatures

at the ith point in the table. We select points which satisfy the following condition,

√
(κ1 − κ1i)

2 + (κ2 − κ2i)
2 < δ, (4.7)

where δ is a tolerance constant. Let p1, p2, . . . , pm be the points selected. We call them the

candidate points. The next step is to conduct local search, starting at each point pi, for the

best superposition of α, β, and γ onto M .

4.1.2.2 Local Search

We superpose the data curves α, β, and γ onto the model M by coinciding their intersection

point p with a candidate point pj and aligning the data normal N at p with the model surface

normal at pj . Let qi, 1 ≤ i ≤ n, be all the data points along α, β, and γ. Denote by d(qi,M)

the distance from qi to M . The superposition error E is defined as the average distance from

the data points to M :

E =
1
n

n∑
i=1

d(qi,M), (4.8)

for the data curves in their current positions and orientations.

We minimize the superposition error by moving p on the model surface, aligning the data

normal N with the corresponding model normal, and rotating α, β, and γ together about it.

This minimization depends on M and will be discussed later for closed-form and free-form

models separately.
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The registration error E(M) is the minimum of E over all possible locations of p and all

orientations of α, β, and γ about the surface normal at each location. To obtain the registration

error, we minimize the superposition error in the neighborhood of p for each candidate point

and select the minimum over the results.

4.1.3 Recognition

Let M1,M2, . . . ,Mk be a database of models. We compute the registration error E on each

model Mi. The model that yields the minimum registration error, which is

Emin = min{E(M1), E(M2), . . . , E(Mk)}, (4.9)

is recognized as the shape of the object.

4.2 Closed-Form Surfaces

We have discussed the recognition-by-registration scheme in general. This section describes

how it applies to surfaces with closed-form descriptions. Specifically, we consider a model M

bounded by a surface with an implicit form f(x, y, z) = 0 and a parameterization σ(u, v). The

parametric form is needed for domain discretization and principal curvature computation. The

implicit form is needed for using equation (4.11) to estimate point distance to the surface.

4.2.1 Lookup Table for a Closed-Form Model

Let σu and σv denote the first order partial derivatives of σ(u, v) with respect to u and v,

respectively. The surface normal is:

n =
σu × σv

||σu × σv||
. (4.10)

We use two matrices [40, p. 132] which consist of the coefficients of the first and second

fundamental forms, respectively:

FI =

 σu · σu σu · σv

σu · σv σv · σv
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FII =

 σuu · n σuv · n

σuv · n σvv · n

 ,

where σuu, σuv and σvv are the second order partial derivatives of σ. The eigenvalues of

F−1
I FII are the two principal curvatures.

We uniformly discretize the domain of σ(u, v). The principal curvatures are calculated at

all discretization points and their values are stored in a lookup table.

4.2.2 Registration on a Closed-Form Model

The normal N at the intersection point p of α, β, and γ is estimated according to (4.1).

The tangent plane at p is orthogonal to N . We arbitrarily pick two orthogonal tangent vectors

t1 and t2 at p. So, N , t1, and t2 form a local frame at p. All data points (xi, yi, zi), 1 ≤ i ≤ n,

along α, β, and γ, are converted into the local coordinates at p,
x′i

y′i

z′i

 = (t1 t2 N)T




xi

yi

zi

− p

 .

Suppose the intersection point p of α, β, and γ coincides with a point q on the model M

in its body frame. The normal n at q is given by (4.10). We align the two normals. Let d1

and d2 be two arbitrarily selected tangent vectors at q such that d1 × d2 = n. Let φ be the

angle of rotation from d1 to t1. Every data point (x′i, y
′
i, z

′
i) in the local coordinates at p is

transformed into some point (x′′i , y
′′
i , z′′i ) in the coordinate system of M :

x′′i

y′′i

z′′i

 = (d1 d2 n)


x′i cos φ− y′i sinφ

x′i sin φ + y′i cos φ

z′i

+ q.

This transformation depends on the parameters u and v, which locate the point q on M , as

well as on the angle φ.

The distance from the transformed data point (x′′i , y
′′
i , z′′i ), 1 ≤ i ≤ n, to M has a first order

approximation |f(x′′i ,y′′i ,z′′i )|
||5f(x′′i ,y′′i ,z′′i )|| . The superposition error (4.8) has the form:

E(u, v, φ) =
1
n

n∑
i=1

|f(x′′i , y
′′
i , z′′i )|

||∇f(x′′i , y
′′
i , z′′i )||

. (4.11)
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4.2.2.1 Error Minimization

Starting at every candidate point pj = σ(uj , vj), we search for a local minimum of the

function E(u, v, φ) using the steepest descent method [39, p. 318]. The gradient ∇E(u, v, φ) =

(Eu, Ev, Eφ) is obtained by differentiating (4.11) with respect to u, v, and φ, respectively.

The value (uj , vj) obtained from the table lookup is used as initial estimate of (u, v). Let

p
(0)
j = pj , such that u

(0)
j = uj and v

(0)
j = vj . Since u

(0)
j and v

(0)
j are known, the error E

depends on φ only. Figure 4.3 shows how it changes with φ when three (synthetic) data curves

are superposed onto an ellipsoid. We find φ
(0)
j that minimizes the registration error and use

2π0

E

φ
φ j

(0)

0.0021

Figure 4.3 Error (4.11) of superposing three data curves onto an ellipsoid.
The curves, each consisting of 61 points, were obtained from the
ellipsoid where they intersected at (u, v) = (1.02, 0.69). They
are now placed at the point (0.31, 0.63) and rotated about its
surface normal through an angle φ.

it as the initial value of φj .

To compute the initial estimate φ
(0)
j , we discretize the domain [0, 2π) of φ. All local minima

of E are bracketed. Within each bracket, bisection is performed to find a local minimum. Then,

φ
(0)
j is the angle yielding the smallest of these minima.

4.2.2.2 The Registration Algorithm

The input to the algorithm includes data points along α, β and γ and their intersection

point p. It also includes a model M with a lookup table recording precomputed principal

curvatures at discretization points. The pseudocode of the algorithm is given below.

1 estimate the normal N of data at p
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2 estimate two principal curvatures κ1 and κ2 at p

3 convert all data points into the local coordinates at p

4 use the lookup table to find candidate points on M

5 for each candidate point p
(0)
j = σ

(
u

(0)
j , v

(0)
j

)
6 φ

(0)
j ← initial estimate of φ

7 k ← 0

8 repeat

9 p
(k+1)
j ← steepest descent from p

(k)
j on M

along −∇E
(
u

(k)
j , v

(k)
j , φ

(k)
j

)
10 k ← k + 1

11 until no further minimization is possible

12 p∗j ← p
(k−1)
j

Each candidate point pj will converge to some point p∗j at which the superposition error

(4.11) achieves a local minimum E∗
j , as illustrated in Figure 4.4. Let p∗ be the point among

jp

jp* M

n

d1

d2

Figure 4.4 Translating and rotating three concurrent data curves (as dot-
ted lines) on the model M to find the best superposition. The
point pj is the initial estimate of the location of the curve in-
tersection while the point p∗j is the location found through op-
timization.

the resulting points p∗1, p
∗
2, . . . , p

∗
m that yields the registration error, which is

E(M) = min{E∗
1 , E∗

2 , . . . , E∗
m}. (4.12)
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Then p∗ is the estimated location of p on the model M .

4.2.3 Simulation

Table 4.1 lists four families of surfaces, in both implicit and parametric forms, which were

used in our simulation.

Table 4.1 Four surface families used in the simulation.

Implicit form Parametric form
x2

a2 + y2

b2
+ z2

c2
= 1 (a cos u sin v, b sinu sin v, c cos v)

(ellipsoid) (u, v) ∈ [0, 2π]× [0, π]
x2

a2 + y2

b2
= z (av cos u, bv sinu, v2)

(elliptic paraboloid) (u, v) ∈ [0, 2π]× [−1, 1]
x3 − 3xy2 = z (u, v, u3 − 3uv2)
(monkey saddle) (u, v) ∈ [−1, 1]× [−1, 1]
x2y2 = z (u, v, u2v2)
(crossed trough) (u, v) ∈ [−1, 1]× [−1, 1]

4.2.3.1 Curve Registration Results

Consider the elliptic paraboloid displayed in Figure 4.5. We select a point p, say, with

Figure 4.5 Three data curves (in black color) and their registered locations
(in white color) on the surface of an elliptic paraboloid given
by z = x2

1.52 + y2

1.12 .

parameter values (u, v) = (1.21, 0.43). Intersect the elliptic paraboloid with three arbitrary
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planes through p, and generate 61 data points along each of the three intersection curves.

Random noises within the range of ±0.001 are added to the generated data points.

The normal and the two principal curvatures at p are estimated as Ñ = (0.1611, 0.5764, 0.8011),

κ̃1 = 0.9548, and κ̃2 = 0.6370.1 A table lookup finds three candidate points: p1 = (1.26, 0.4),

p2 = (1.41, 0.4), and p3 = (0.63, 0.5), all in parameter values. The superposition errors (4.11)

at these points are respectively E1 = 0.000888, E2 = 0.000961, and E3 = 0.001654.

Local searches at the candidate points yields locations p∗1 = (1.26, 0.44), p∗2 = (1.27, 0.44),

and p∗3 = (1.17, 0.44). The corresponding superposition errors are E∗
1 = 0.000662, E∗

2 =

0.000666, and E∗
3 = 0.000686. The location of p is thus estimated to be p∗ = (1.26, 0.44),

which is very close to its real location (1.21, 0.43). The three curves are well registered onto

the elliptic paraboloid, as shown in Fig. 4.5.

More registration tests are conducted on the same elliptic paraboloid as well as on three

other shapes including an ellipsoid, the monkey saddle, and the crossed trough (see Figure 4.6).

The results are displayed in Figure 4.7.

(a) (b) (c)

Figure 4.6 Three surfaces used in the simulation in addition to the one
shown in Figure 4.5: (a) an ellipsoid with a = 1, b = 0.8, and
c = 0.5; (b) the monkey saddle; and (c) the crossed trough.

On each of the four surfaces, ten registration instances are performed with randomly gener-

ated intersection points p and three sampling planes through each. The real intersection points

p of three data curves are drawn as circular dots and their estimated locations p∗ as crosses. In
1To verify, we also compute their values using the surface equation: N = (0.1612, 0.5827, 0.7966), κ1 = 0.9074,

and κ2 = 0.6519, respectively.
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Figure 4.7 Instances of curve registration on the four shapes displayed in
Figures 4.5 and 4.6: (a) an ellipsoid; (b) an elliptic paraboloid;
(c) the monkey saddle; (d) the crossed trough. In each instance,
the intersection point p of three data curves is represented by a
circular dot and its estimated location p∗ by the closest cross.

the figure every original location p and its estimate p∗ lie the closest to each other. Table 4.2

summarizes the Euclidean distances ‖p− p∗‖ for the registration instances in Figure 4.7.

4.2.3.2 Recognition Tests

As a recognition example we generate three data curves through a randomly selected inter-

section point on the crossed trough, and register them onto the four surfaces. The registration

error (4.12) on the crossed trough itself is 0.000393. Using the estimated principal curvatures

values, we find no candidate curve intersection points on the ellipsoid and elliptic paraboloid

after table lookups. The error on the monkey saddle is 0.001020, 159% higher than that on

the crossed trough.
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Table 4.2 Minimum, maximum and average Euclidean distance ‖p − p∗‖
between the real and estimated locations of the curve intersection
calculated over the 40 registration instances in Figure 4.7.

ellipsoid elliptic monkey crossed
paraboloid saddle trough

min 0.0169 0.0148 0.0053 0.0171
max 0.0408 0.0448 0.0433 0.0396
avg 0.0288 0.0297 0.0234 0.0265

For each surfaces in Figures 4.5 and 4.6, ten recognition instances, each with a different

curve intersection, were carried out. The results are displayed in Table 4.3. In total, 12 out

Table 4.3 Summary of recognition tests, ten on each shape.

successes ellipsoid elliptic monkey crossed
paraboloid saddle trough

table lookup 2 1 9 0
local search 8 9 1 10

of 40 tests succeeded after table lookups had yielded no candidate points on the wrong models.

The other 28 successes involved both table lookups and local optimizations. In these tests, the

registration errors on the wrong models exceeded those on the right models by an average of

180%.

4.3 Free-Form Surfaces

Unlike closed-form shapes, free-form surfaces usually do not have implicit or parametric

forms. More specifically, the surface of a free-form object cannot be easily described by a single

function. Since most of the real world objects are free-form, it is important for them to be

recognized by a robot.

The general recognition scheme in Section 4.1 will be applicable. However, compared to

the recognition of shapes with closed-form description, the difference lie in the lookup table

construction and the registration of data curves onto a model. Let us begin with a brief

introduction to the models of free-form objects.
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4.3.1 Triangular Mesh Models

Free-form objects are often modeled as triangular meshes. Let a triangular mesh model

M = (V, F ) consists of a set V of vertices, and a set F of faces. A vertex v ∈ V is described

by its 3D coordinates. A face f ∈ F is represented by the indices of the three vertices of f . M

can be obtained by scanning a free-form object with a laser range sensor.

The connectivity information of neighboring vertices and faces on M is not explicit. Finding

a face incident to a vertex or adjacent to another face takes O(|F |) time. Such operations are

frequently performed during the lookup table construction and curve registration processes.

In order to perform these operations efficiently, for each vertex and face we need to store the

information about their neighbors.

4.3.1.1 Triangular Mesh Connectivity

Each vertex v ∈ V store its 3D coordinates and a pointer to one of its incident faces. Each

face f ∈ F has pointers to its three vertices and to the three adjacent faces, as shown in

Figure 4.8. Since all faces in F are triangles, we will refer to them as such from now on.

f
v v1

v2

f3

v3

f1

f2

f

(a) (b)

Figure 4.8 Connectivity of a triangular mesh: (a) each vertex has a pointer
to one of its incident triangles; (b) each triangle has pointers to
its three vertices and to the three adjacent triangles.

A k-ring neighborhood of a vertex v is a set of all vertices that lie at most k edges away from

v. Figure 4.8(a) shows an example of the 1-ring neighborhood of v. Using the connectivity

information illustrated in Figure 4.8, the k-ring neighborhood can be efficiently computed for

any vertex of M . Next, we describe how to construct a lookup table.
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4.3.2 Lookup Table for a Triangular Mesh Model

In contrast to a closed-form surface, the principal curvatures on a triangular mesh do not

have closed forms. They are estimated through fitting.

A typical triangular mesh model of an object consists of a large number of vertices. Esti-

mating principal curvatures at every vertex is inefficient and often unnecessary for the purpose

of object recognition. Instead, computation is carried out only at some sampled vertices on

the model.

4.3.2.1 Sampling a Triangular Mesh

The triangular mesh is sampled densely in high curvature regions and sparsely in low

curvature regions. Since the principal curvatures measure the rate of geometric change of a

surface, the sampling density should be adjusted according to the change rate of the surface

normal.

The surface normal n at v is estimated as,

n =
∑k

1 ni

‖
∑k

1 ni‖
, (4.13)

where k is the total number of triangles in the 1-ring neighborhood of v, and ni is the normal

of the ith such triangle.

We randomly select an unmarked vertex v ∈ V and compute its 6-ring neighborhood N .

Then, the angles between the normal at v and the normals of all triangles in N are calculated.

If any of these angles is greater than some specified value θ, we reduce the ring size of N by

one. The size reduction is repeated until all angles are less than θ, or N becomes a 2-ring

neighborhood of v. Then, if all the vertices in N are unmarked, we add v to a list L and mark

all vertices. The pseudocode of the sampling procedure is given below.

1 L ← ∅

2 repeat

3 randomly select an unmarked vertex v ∈ V



48

4 N ← 6-ring neighborhood of v

5 n← normal at v

5 repeat

6 φ← maximum angle between n and the

normals of all triangles in N

7 if φ > θ

8 ring(N )← ring(N )− 1

9 until φ ≤ θ or ring(N ) = 2

10 if all vertices in N are unmarked

11 add v to the list L

12 mark all vertices in N

13 until half of all vertices in V are marked

The procedure exits when half of all vertices in V are marked, for two reasons. Firstly, we

want to make sure that the procedure halts. Secondly, the surface of the model is well covered

by L when half of all vertices in V are marked.

The list L is the sample set of vertices at which the principal curvatures will be estimated.

We have empirically found the optimal value of θ to be π
8 .

Fig. 4.9 shows a model of a cat object with 64821 vertices and 129638 faces, generated by

NextEngine’s desktop 3D scanner. The sampling procedure selects 550 vertices (displayed as

black dots).

4.3.2.2 Estimation of Principal Curvatures

The product and half of the sum of two principal curvatures are Gaussian and mean cur-

vatures, respectively. A number of proposed approaches to estimate Gaussian and mean cur-

vatures on triangular meshes were compared in [48] where paraboloid fitting was found to be

the best estimation method. This method fits paraboloids in the form of z = ax2 + bxy + cy2

in the local neighborhoods of vertices on synthetic triangular mesh models that represent the
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(a) (b)

Figure 4.9 Sampling a cat model: front (a) and back (b) views of the model
with a total of 550 sample vertices displayed as black dots on
its surface.

tesselations of NURBS surfaces. Since the models used in our experiments were generated

from range data, we obtained more robust curvature estimation by fitting a paraboloid with

linear and constant terms:

z = ax2 + bxy + cy2 + dx + ey + f. (4.14)

The normal n at a vertex v is estimated according to (4.13). All vertices in the 6-ring

neighborhood N of v are transformed into the local frame formed by n and two orthogonal

tangents. The vertices in N are sorted by their Euclidean distances to v. We fit the paraboloid

in (4.14) over five local neighborhoods with 30, 40, 50, 60, and 70 geometrically closest vertices

to v, respectively. Each resulting paraboloid yields a pair of principal curvatures via closed-

form evaluation. The median values are selected as the estimates of principal curvatures at

v. The selection of two principal curvatures are independent of each other, meaning that they

might have been obtained from different paraboloids.

Principal curvatures are estimated for all vertices in L and stored in a lookup table used

for recognition.

4.3.3 Registration on a Triangular Mesh Model

Now, we describe how the three data curves α, β, and γ are superposed onto a surface of

a triangular mesh model.
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4.3.3.1 Superposing Data Curves onto a Model

Let v be a vertex on a triangular mesh model M . The normal n at v is estimated according

to (4.13) and the normal N at the intersection point p of α, β and γ is obtained from (4.1). To

superpose α, β, and γ onto M at v, we coincide p with v and align N with n. Consequently, all

data points along α, β, and γ are converted into the coordinate system of M . The alignment

eliminates all degrees of freedom except the rotation φ of α, β, and γ about n.

For a value of φ, we find the corresponding points (x′i, y
′
i, z

′
i)

T on M to the data points

(xi, yi, zi)T along α, β, and γ. To do so, we first fit three planes to α, β, and γ, respectively.

Then, we sample points along the intersections of the three planes and M with the same

separations between points as in α, β, and γ, respectively. Note that the points (x′i, y
′
i, z

′
i)

T

on M are not necessarily vertices. They can be points on the boundaries or in the interiors of

triangles.

From (4.8), the superposition error is

E(v) =
1
n

n∑
i=1

√
(xi − x′i)2 + (yi − y′i)2 + (zi − z′i)2. (4.15)

To minimize E at v over the orientation φ, we can no longer apply the bisection method. In-

stead, we discretize the domain [0, 2π) of φ and calculate E at every value of φ ∈ {0, π
18 , π

9 , . . . , 35π
18 }.

The minimum value is chosen.

4.3.3.2 Local Search

The superposition error E is further minimized in the neighborhood of a candidate vertex

vj using a greedy approach. We calculate E at each unvisited vertex of a 1-ring neighborhood

N of vj . Then, we mark all unvisited vertices in N as visited and move from vj to a vertex in

N with the smallest value of E. This movement is repeated until E achieve a local minimum.

Let v1, v2, . . . , vm be the candidate vertices found by the table lookup discussed in Sec-

tion 4.1.2.1. Perform a local search starting at every candidate vertex vi and let v′i be the local

minimum vertex. The registration error on the model M is

E (M) = min{E(v′1), E(v′2), . . . , E(v′m)}. (4.16)
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The vertex v′k which yields the registration error E is the estimated location of the intersection

point p of α, β, and γ on M .

4.3.4 Simulations

In simulations, we use synthetic data to test the registration algorithm on triangular meshes.

Experiments with real tactile data will be presented in Section 4.4. We scanned 10 objects using

NextEngine’s 3D desktop scanner. The images of their models are displayed in Figure 4.10.

The description of each model is given in Table 4.4.

On each model, we randomly select 10 vertices such that no selected vertex is in the

neighborhood of any other. This is to make sure that these vertices are spread all over the

surface of a model. There are 10 models in the database, so we have a total of 100 selected

vertices which are used as curve intersections for data generation.

To generate three concurrent data curves intersecting at the selected vertex v on a model

M , we intersect three planes passing through v with M . On each intersection curve, data

points are sampled with interval d such that v is the middle point. The data points are not

necessarily the vertices. They can be points in the interiors or on the boundaries of triangles.

With data generated at 100 selected vertices, we can perform 100 instances of recognition.

We look at how the time and success rate of recognition depend on the following parameters:

1) tolerance δ defined in (4.7),

2) length l of a data curve,

3) angle φ between sampling planes.

The length of data curve of n points is l = (n − 1)d, where d is the distance between two

neighbor points. All three sampling planes are perpendicular to a tangent plane at v. The

angle between sampling planes is φ.

Figure 4.11 plots recognition success rate and recognition time versus tolerance. We use

n = 81, d = 0.3mm, l = 24mm, and φ = 60◦. The larger the tolerance the more candidate

vertices are selected in a table lookup. With more candidate vertices, we are more likely to

recognize an object. The recognition time increases with the number of candidate vertices.
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Pear Stone Monkey

Bird Dog Frog

Cat Snail Fish

Elephant

Figure 4.10 Images of 10 models in the database.
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Figure 4.11 Recognition success rate and time versus tolerance. For all in-
stances of recognition, the length of data curves was l = 24mm
and the angle between sampling planes was φ = 60◦.

Figure 4.12 plots success rate and recognition time versus the length of a data curve. The

tolerance and the angle between sampling planes are δ = 0.03 and φ = 60◦, respectively.

Long data curves provide more information about the shape of the object than short ones. In

other words, it is easier to embed the shorter data curves onto the object than the longer ones.

Long data curves can only be embedded onto the object they were originally obtained from.

So, the recognition success rate is higher for longer data curves. Since long data curves contain

more data points that short ones, the recognition time increases with the length of the data

curves.

Figure 4.13 shows how the angle between sampling planes affects the recognition success

rate and time. For all values of φ, the tolerance is δ = 0.03 and the length of the data curves

is l = 24mm.

From Figure 4.13, we see that the success rate increases when the angle between sampling

planes increases. It is intuitive because data curves span more area on the object’s surface

when they more spread away from each other. Consequently, they possess more information

about the shape of the object and thus result in higher recognition rate. The angle between

sampling planes does not have much impact on the recognition time. Note that the angle

between first and second sampling planes does not have to be the same as the angle between
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Figure 4.12 Recognition success rate and time versus the length of data
curves. For all instances of recognition, we used tolerance
δ = 0.03 and angle between sampling planes φ = 60◦.

second and third sampling planes. We used the same angles for the simplicity of presentation.

4.4 Experiments

In this section, we present experiments with objects bounded by algebraic and free-form

surfaces.

4.4.1 Data Acquisition

Data points were obtained using a joystick sensor driven by an Adept robot as displayed

in Figure 4.14. The detailed description of the sensor is given in [27]. By constraining the

robot movement in three different planes the sensor sampled points along the corresponding

intersection curves with an object. The angle between two neighboring planes was set to be π
3 .

On each curve, n points including the curve intersection were sampled. The interval between

two neighboring points was set to d. The total number of points along the three data curves

was 3n− 2.
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Figure 4.13 Recognition success rate and time versus the angle between
sampling planes. For all instances of recognition, we used tol-
erance δ = 0.03 and length of data curves l = 24mm.

4.4.2 Results on Closed-Form Objects

Figure 4.15 displays four algebraic objects used in our experiments. For data curve sampling

we used n = 41 and d = 0.05mm. Due to symmetry, curve registration results on the sphere

and cylinders were meaningless. But the minimum registration error Emin defined by (4.9) was

still useful for recognition of these shapes. This error was computed for every object.

In Table 4.5, each column records the minimum registration error (4.9) for registering

three data curves acquired from the same object onto all four models. The diagonal cells

Figure 4.14 A robot is sampling data points on a dog object.
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Figure 4.15 Algebraic objects used in experiments: two regular cylinders
with diameters 50.4mm and 94mm, respectively, an elliptic
cylinder with semimajor axis 50.8mm and semiminor axis
31.75mm, and a sphere with radius 33mm.

Table 4.5 Minimum error (in millimeters) of registering data acquired from
the four objects shown in Figure 4.15 onto their models.

model object cylin. 1 cylin. 2 ell. cylin. sphere

cylinder 1 0.033 0.155 0.446 0.296
cylinder 2 0.182 0.072 0.195 1.056
elliptic cylinder 0.230 0.224 0.156 0.254
sphere 0.271 0.306 0.929 0.055

in the table correspond to registration onto the correct models, while the non-diagonal cells

correspond to registration on incorrect models. It is seen that every diagonal cell has the

smallest value in its column. As a result, all four objects were correctly recognized.

4.4.3 Results on Free-form Objects

Figure 4.16 shows the results from an experiment on ten free-form objects. In the figure,

each model is displayed next to the corresponding object. On each object, we selected a point

and sampled three data curves passing through it. This point is displayed as a white dot on the

surface of each object. The number of points per data curve was 21 and the interval between

points was 1.2mm. The tolerance δ was set to be 0.01.

The curve registration results are shown in Figure 4.16. The registered data curves are
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displayed in red color on the surface of each model. On every object the data curves were

registered at locations that were almost indistinguishable from the original ones.

Table 4.6 shows the results on recognizing ten objects based on curve registrations in Fig-

ure 4.16. Each cell aij in the table records the registration error (4.16) of the data curves

obtained on the object in jth column onto the model in ith row. The NC entries in the table

mean that no candidate vertices were found on those models. In such cases, they were imme-

diately rejected after table lookups. Within each column the minimum registration error (4.9)

is found on a diagonal cell aii. As a result, all ten objects were correctly identified.

Table 4.7 displays the time spent on recognition in Table 4.6. Each cell bij in the table

records the time taken to register three data curves acquired on the object in jth column onto

the model in ith row. The recognition time is the total time of registration onto all ten models.
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Intersection point of three data curves

candidate vertices

Figure 4.16 Curve registrations on ten objects. Each model is displayed
next to the corresponding object. The white dots on the sur-
face of each object indicate the locations through which the
robot sampled three concurrent curves. The black dots on the
surface of each model are the candidate vertices found after
table lookups. All data curves displayed in red color were suc-
cessfully registered on all models.
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CHAPTER 5. SUMMARY AND DISCUSSION

We have introduced two new methods that recognize objects from tactile data. The first

one is invariant-based, which is applicable to 2D objects. Invariants for quadratic curves and

two special cubic spline curves have been derived. The derivation of the invariants consists of

the following steps. First, the curve equation is reduced to its simplest canonical form through

rotation, translation and reparametrization which do not alter the shape of the curve. Then,

the parameter variable is eliminated from the equations of the curvature and its derivative with

respect to arc length resulting in a single equation that describes the signature curve. Finally,

the equation of the signature curve is modified to have the curvature terms on the left-hand

side and shape parameter terms on the right-hand side.

The invariants of quadratic curves are computable from local geometry, namely the curva-

tures and their derivatives, at a couple of points on the curve. Since the curvature and its deriva-

tive with respect to arc length are independent of rotation, translation, and reparametrization,

so are the invariants computed from them. Unlike the quadratic curves, the invariants for cubic

spline curves involve not only the curvature and its derivative, but also a slope. Although the

slope depends on rotation, we have shown that finding the slope is reducible to solving a quar-

tic polynomial, which always has a closed-form solution. In addition to recognizing an object,

we can also localize it relative to the robot’s hand. We have demonstrated the correctness of

invariants with simulations. Experimental results show that this method is applicable in real

life.

One advantage of the invariant-based approach is that, it is independent of object’s position

and orientation, which have three degrees of freedom in 2D. Another advantage is that, it

requires small amount of tactile data. The disadvantage is that, for some curves it is very



63

hard to derive such invariants. As for cubic splines, we can only recognize them by solving

non-linear optimization problem. Also, the invariant-based recognition is not extendable to

3D objects. Therefore, we use different method to recognize 3D objects which is summarized

below.

The second introduced method is registration-based, which is applicable to 3D objects.

It recognizes an object with a curved surface from a set of surface models based on “one-

dimensional” tactile data. More specifically, the data points are sampled along three concurrent

curves using a touch sensor on the object’s surface. The problem of recognition turns into

registering these data curves on each model and choosing the one that yields the best matching

result.

The special configuration of the tactile data, namely three concurrent curve segments,

makes it possible to estimate the principal curvatures at the curve intersection point. Also,

principal curvatures are estimated at discrete points on each model and saved in a table. We

look up the table to find the locations on the models that have similar local geometries with

the curve intersection point. The data curves are registered in the neighborhoods of those

locations and the model yielding the best match is then recognized.

We have applied this recognition method to closed-form and free-form surfaces. For closed-

form surfaces, a lookup table is constructed by uniformly discretizing the surface domain

and calculating the principal curvatures at discrete points using closed-from expressions. The

curve registration is converted to a nonlinear optimization problem, which is solved using

steepest descent algorithm. For free-form surfaces, the lookup table is constructed by randomly

sampling a triangular mesh and estimating the principal curvatures at the sampled vertices

using paraboloid fitting method. The curves are registered on the triangular mesh using a

greedy algorithm, which moves from one vertex to another by minimizing the total distance of

all data points to the surface. Experimental results successfully recognizing four closed-form

and ten free-form objects have been presented.

The dependency of the registration-based recognition method on curvatures may be re-

moved. We can bypass the curvature estimation and table lookup, and register the data
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curves starting at every selected discrete point on the model. However, this will increase the

recognition time but will produce more successful results.

The length and separation of the three data curves affect the recognition success rate. Using

longer data curves that are widely spread from each other provides the most information about

the local shape of the object, and thus results in more robust recognition.

Although the recognition method is presented using tactile data, it is not limited to a

certain sensing modality. The method can be used with any type of sensor as long as it is

able to generate three concurrent data curves. Especially, in the case of range sensors, our

recognition method would be robust to occlusions because it is based on local data.
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