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ABSTRACT

Colonoscopy is an important screening tool for colorectal cancer. During a colonoscopic

procedure, a tiny video camera at the tip of the endoscope generates a video signal of the in-

ternal mucosa of the colon. The video data are displayed on a monitor for real-time analysis by

the endoscopist. We call videos captured from colonoscopic procedures “colonoscopy videos”.

To the best of our knowledge, they are not captured for post procedural review or analysis in

the current practice. Because of the unique characteristics of colonoscopy videos, new types of

semantic units and new image/video analyzing techniques are required. In this dissertation,

we aim to develop new image/video analysis techniques for these videos to extract important

semantic units, such as colonoscopic scenes, operation shots, and appendix images. Our contri-

butions include two parts: (a) new definitions of semantic units (colonoscopic scene, operation

shot, and appendix image); and (b) novel image/video analysis algorithms, including novel

scene segmentation algorithms using audio and visual information to recognize scene bound-

aries, new computer-aided detection approaches for operation shot detection, and new image

analysis methods for appendix image classification. The new image processing and content-

based video analysis algorithms can be extended to videos from other endoscopic procedures,

such as upper gastrointestinal endoscopy, EGD, enteroscopy, bronchoscopy, cystoscopy, and

laparoscopy. Our research is very useful for the following platforms and resources: (a) plat-

forms for new methods to discover unknown patterns of diseases and cancers; (b) platforms

for improving and assessing endoscopists procedural skills; and (c) education resources for

endoscopic research.
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Colorectal cancer is the second most common cancer in both men and women (Jemal et al.,

2007). As the name implies, colorectal cancers are malignant tumors that are developed in

the colon and rectum. The survival rate is higher if (1) the cancer is found and treated

early before metastasis to lymph nodes or other organs occurs, or (2) the colonic polyps are

removed during the colonoscopy procedure. Colonoscopy is rapidly becoming the single most

important endoscopic screening modality for colorectal cancer. This is because colonoscopy

allows inspection of the entire colon (unless there are large lesions in the colon) and provides

the ability to perform a number of diagnostic and therapeutic operations (e.g., hot biopsy,

polyp removal) during a single procedure.

During a colonoscopic procedure, a tiny video camera at the tip of the instrument gen-

erates a sequence of images (frames) of the internal mucosa of the colon. These frames are

displayed on a monitor. The endoscopist interprets the displayed images and acts based on

his/her knowledge regarding the condition of the patient combined with his/her colonoscopic

expertise. The entire procedure typically lasts 20 and 45 minutes. The endoscopist may take

pictures of normal or abnormal mucosa of a certain part of the colon for educational purposes

or to document the extent of the procedure or specific findings. In current clinic practice, video

signals generated during endoscopic procedures are typically not recorded. Recent advances

in video compression and capturing hardware and software present excellent opportunities to

record these videos in a digital format for real-time and post-procedure analysis for early detec-

tion and diagnosis of diseases. We refer to the videos captured from colonoscopic procedures as

“colonoscopy videos”. Compared with produced videos (for instance, news videos and sports
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videos), colonoscopy videos have unique characteristics. For example, due to frequent shifts of

camera focus while moving along the colon, colonoscopy videos contain many blurry frames.

The lens of the current endoscopes cannot be focused because they are single, wide-angle lens.

Many manipulations, such as optimization of the sharpness, brightness and contrast of the

image, removal of stool and light scattering substances (via irrigation with water, suction of

cleansing material and water, and dispersal of air bubbles), minimal tip movement, appropriate

distance from the mucosal surface area, tangential illumination of the mucosa to prevent direct

light reflexes, and appropriate light intensity and color settings of the instrument (through

balancing of equipment prior to entering the patient), are reflected in colonoscopy videos and

may add noise to these videos. Hence, a sequence of images for the same object of interest

may exhibit totally different visual properties. Solving these technique challenges requires new

types of semantic units and new image/video analysis techniques.

Automatic analysis of colonoscopy semantics from colonoscopy videos is a very important

research problem for the following areas: (1) platforms for new methods to discover unknown

patterns of diseases and cancers. Currently, we lack easy ways to access colonoscopy video

data. Data access is important to apply data mining techniques to discover new abnormal

patterns that may lead to better understanding of diseases and cancers; (2) education resources

for endoscopic research. Currently, endoscopists typically capture images of interest using

proprietary software or occasionally record the entire procedure onto a VHS tape. Although

the captured analog video allows post-procedure analysis of the entire colonoscopic procedure,

images in the VHS tape are of relative poor quality. It is also time consuming to locate

a few interesting images within the entire video; (3) platforms for improving and assessing

endoscopists’ procedural skills. Currently, endoscopists’ skills are indirectly measured. It is

important to develop a system that can compare the quality of the procedures performed by

different operators, and provide quality measurements as well as educational means to improve

procedural skills automatically.
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1.2 Proposed Approach

To solve the problem of analyzing colonoscopy semantics, we first define three new seman-

tic units: colonoscopic scenes, operation shots, and appendix images. A colonoscopic scene is

defined as a segment of visual and audio data that corresponds to an endoscopic segment of

the colon. Scene segmentation is the first and necessary step to provide important statistics

such as the number of polyps appearing in a scene, various therapeutic operations performed

in a scene, and changes in the internal mucosa of the same scene of the same patient over time.

These statistics are valuable for diagnosis of colonic diseases. An operation shot is defined

as a segment of visual and audio data that corresponds to a diagnostic or therapeutic opera-

tion in a colonoscopy video. Operation shots are useful for reviewing causes of complications

due to diagnostic or therapeutic operations. An appendix image is defined as a colon image

that contains the shape of the opening of the appendix. Appearances of appendix images

in colonoscopy videos indicate the complete inspection of the colon, which is one of the im-

portant measurements for evaluating the quality of colonoscopic procedure. Based on these

new definitions, we first investigate new video segmentation techniques to extract colonoscopic

scenes. Then we present our algorithms for operation shot detection. We also introduce two

approaches on appendix image classification. To validate our new image/video analysis al-

gorithms, we develop software packages that implement the above algorithms. The software

is being integrated into a novel system aiming at automatic analysis for quality measures of

colonoscopy.

1.3 Organization

The remainder of this paper is organized as follows. Chapter 2 provides background on

colonoscopy, diagnostic and therapeutic operations, and appendix. Chapter 3 introduces the

current state-of-the-art of relevant research. Chapter 4 presents the scene segmentation tech-

niques. Methods for operation shot detection are introduced in Chapter 5. We discuss detection

algorithms for appendix images in Chapter 6. Finally, we offer our concluding remarks and

future work in Chapter 7.
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CHAPTER 2. BACKGROUND ON COLONOSCOPY

The colon is a hollow, muscular tube about 150 cm long (NationalCancerInstitute, 2007), as

illustrated in Figure 2.1. A normal colon consists of six parts: cecum with appendix, ascending

colon, transverse colon, descending colon, sigmoid and rectum. Anatomical landmarks, such

as the appendiceal orifice and the terminal ileum, appear in the most proximal part of the

colon.

 

1

2

3

4

5

6
Appendix

Terminal
Ileum

Figure 2.1 The colon endoscopic segments: 1-cecum, 2-ascending colon,
3-transverse colon, 4-descending colon, 5-sigmoid, 6-rectum.

Colonoscopy is a procedure that allows inspection of the colon. Prior to colonoscopic

procedures, patients are asked to cleanse the colon. During the colonoscopic procedure, a

flexible endoscope (a flexible tube with a tiny video camera at the tip) is advanced under direct

vision via the anus into the rectum and then gradually into the most proximal part of the colon

or the terminal ileum. Colonoscopy allows inspection of the colonic mucosa and provides the
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ability to perform a number of therapeutic operations during a single procedure. Besides the

detection of pre-malignant (polyps) or malignant colonic lesions, colonoscopy has a number of

other diagnostic and therapeutic applications. These include inspection of the mucosa of the

colon and terminal ileum for inflammatory or hemorrhagic lesions, diagnostic tissue sampling,

ablation of polypoid lesions, treatments of hemorrhagic lesions, and decompression of distended

colonic segments. A colonoscopic procedure consists of two phases: the insertion phase and

the withdrawal phase. During the insertion phase, the endoscopist rapidly advances the tip of

the endoscope to the most proximal location possible (cecum or terminal ileum). Frequently,

but not always, the endoscopist is able to identify important anatomic landmarks such as the

end of the sigmoid, the splenic flexure, and the hepatic flexure. Careful mucosal examination,

diagnostic and therapeutic operations are typically performed during the withdrawal phase

when the endoscope is gradually withdrawn. In a colonoscopic procedure, images with the

shape of the opening of the appendix usually appear in the end of the insertion phase or the

beginning of the withdrawal phase.

2.1 Diagnostic and Therapeutic Operations

An endoscope has instrument channels that allow the insertion of flexible accessories such

as biopsy forceps, cytology brushes, sclerotherapy needles, and diathermy snares from a port on

the endoscope control head through the shaft and into the field of view. These instruments are

used for tissue-sampling and therapeutic procedures. Biopsy forceps used for tissue sampling

consist of a pair of sharpened cups, a spiral metal cable, and a control handle. The tissue

specimen is used for microscopic examination of its structure or for searching for the presence

of infectious agents or Helicobacter pylori. “Hot” biopsy forceps (allowing the passage of

current) and diathermy snares are used for polyp removal. Figure 2.2 shows some examples

of these instruments. Figure 2.3 depicts images from actual colonoscopic procedures when a

snare and biopsy forceps are in use. Depending on endoscope models, the instrument may

appear in the images at a different position, e.g. the bottom right corner or the bottom left

corner.
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(a) Snare                       (b) Biopsy forceps                (c) Balloon

Figure 2.2 Examples of instruments.

      (a) Use of a snare                        (b) Use of biopsy forceps

Figure 2.3 Colon images with surgical instruments during colonoscopic
procedure.

2.2 Human Appendix

Appendix is a small, worm-shaped blind tube. It is about 7.6 cm long and 0.64 cm to 2.53

cm thick, projecting from the cecum on the right side of the lower cavity (ColumbiaUniversity,

2004). The appendix only appears in cecum. Figure 2.4 shows some colon images that contain

the shape of the opening of the appendix. The appendiceal orifice is annotated by a white

dot rectangle in each image. There are several ellipse shape rings around the center of the

appendix. The appendix forms the beginning of the colon. It indicates the end of the insertion

phase or the beginning of the withdrawal phase in a colonoscopic procedure.

Recent research on colonoscopy indicates that there is a significant miss-rate for the detec-

tion of even large polyps and cancers (Lieberman, 2005). The miss-rate may be related with

the experience of the endoscopist and the location of the lesion in the colon, but no prospective
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studies related to this have been done so far. In current practice, there is no objective way to

measure in detail what exactly is achieved during the procedure although a number of indirect

markers of quality have been proposed. These include duration of the withdrawal phase and

average number of polyps detected per screening colonoscopy, and thoroughness of inspection

of the colon. The presence of a sufficient number of images showing a closely inspected ap-

pendiceal orifice is one of the important objective indicators that the most distal end of the

colon has been reached during the procedure. Other indicators include presence of small bowel

mucosa and ileocecal valve. Reaching the end of the colon is one of the prerequisites for com-

plete inspection. If few or no appendix images are found in a colonoscopy video, the video

may require a second opinion to determine whether the entire colon indeed was visualized or

not. If we still could not find any evidence of showing the complete inspection of the colon,

the patient may have to undergo a second procedure.

(a) (b) (c)

Figure 2.4 Examples of colon images with appendix: (a) Appendix image
with a clearly seen appendiceal orifice in the top center of the
image; (b) Appendix image with a clearly seen appendiceal ori-
fice in the top left corner of the image; (c) Appendix image with
a clearly seen appendiceal orifice in the top middle of the image.
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CHAPTER 3. CURRENT STATE-OF-THE-ART OF RELEVANT

RESEARCH

Despite a large body of knowledge in medical image analysis, very little research has been

conducted to analyze colonoscopy videos or to provide efficient access to important images and

video segments from such videos, or to investigate automatic measurement method to evaluate

the quality of the colonoscopic procedure. The most related research efforts are in the areas of

gastrointestinal endoscopic research, content-based video segmentation, and object detection

and recognition. The following sections introduce the state-of-the-art in these three areas.

3.1 Gastrointestinal Endoscopic Research

Research efforts in this area include techniques for guiding a colonoscope (Sucar and Gillies.,

1990; Phee and Ng., 1998; Koh and Gillies., 1994) during a colonoscopic procedure, develop-

ment of colonoscope hardware (Dario and Lencioni., 1997; Khessal and Hwa., 2000; Lim and

Lee., 2001), analysis of images from biopsies of colon tissues (Todman et al., 2000; Hamilton

et al., 1997; Shuttleworth et al., 2002), classification and identification of colonic carcinoma

using microscopic images (Esgiar et al., 1998), detection of tumor in endoscopic videos (Karka-

nis et al., 2003), and virtual colonoscopy (Lakare et al., 2002; Chen et al., 2000; Lee et al.,

2000; Haker et al., 2000; Sharghi and I.W, 2001; Hietala and Oikarinen, 2000). Microscopic

images of the colon are captured from tissue samples using a light microscope mounted with

a CCD camera. Tissue samples are obtained from sequential resections of the colon. Unlike

the colonoscopy videos, microscopic images only reflect the morphology of the tissue in a spe-

cific location of the colon mucosa. In (Karkanis et al., 2003), an approach to detect tumors

in colonoscopic video is proposed. The main focus of this paper is to detect the small size
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adenomatous polyps, given a colonoscopy image. However, we are more interested in identify-

ing important semantic video segments and semantic video objects from a colonoscopy video

that corresponding to one colonoscopy procedure. In virtual colonoscopy, a virtual colon is

reconstructed from Computer Tomography (CT) cross-sectional images of the abdomen of a

patient. CT images are significantly different from those of colonoscopic procedures. Virtual

colonoscopy is still in its infancy. Actual colonoscopic procedures are still needed for definitive

examinations, histologic samplings, and therapeutic procedures.

3.2 Content-based Video Segmentation

Content-based video analysis is a promising paradigm that lets users browse and retrieve de-

sired video segments effectively and efficiently. The first and necessary step for content-based

video analysis is video segmentation, which segment the video into smaller but meaningful

chunks. Automatic video segmentation techniques are desired since manual segmentation is

very time consuming (i.e., ten hours of work for one hour of video (Bimbo, 1999)). Existing

video segmentation techniques typically divide a video file into shots, which is defined as a

contiguous sequence of video frames recorded from a single camera operation. High-level ag-

gregates of relevant shots termed scenes are then generated for browsing and retrieval. Scenes

are important as (i) users are more likely to recall important events rather than a particu-

lar shot or frame (Hanjalic et al., 1999); and (ii) the number of shots may be too large for

effective browsing (e.g., about 600-1500 shots for a typical film). A typical automatic video

segmentation involves three important steps. The first step is shot boundary detection (SBD).

A shot boundary is declared if a dissimilarity measure between consecutive frames exceeds a

threshold. Examples of recent SBD techniques are (Zhuang et al., 1998; Aigrain and Joly, 1994;

Zhang et al., 1993, 1997; Yeo and Liu, 1995; Shin et al., 1998; Gamaz et al., 1998; Dawood

and Ghanbari, 1999; Nang et al., 1999). The second step is key-frame selection that extracts

one or more frames that best represent the shot, termed key-frame(s). The third step is scene

segmentation.

Current research efforts on SBD focus on detection of three types of transitions: hard cut,
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fade, and dissolve. Here we briefly describe these techniques as follows.

1. Hard Cut Detection: A hard cut is a direct concatenation of two shots, which indicates

a temporal visual discontinuity in the video. Existing hard cut detection algorithms de-

tect significant changes in either intensity/color histograms (U.Gargi et al., 2000; Yusoff

and Kittler, 2000; Naphade et al., 1998) or edge pixels (R.Zabih, 1999) or motions (Han-

jalic and Zhang, 1999) between consecutive frames. For example, if the changes is over

a threshold, a shot boundary is declared.

2. Fade Detection: A production model of a fade sequence S(x, y, t) of duration T is de-

fined as the scaling of pixel intensities/color of a video sequence S1(x, y, t) by a temporally

monotone scaling function f(t) (Hampapur et al., 1995).

S(x, y, t) = f(t) × S1(x, y, t), t ∈ [0, T ] (3.1)

For a fade-in sequence, f(0) = 0 and f(T ) = 1, while f(0) = 1 and f(T ) = 0 for a fade-

out sequence. Typically, f(t) is a linear function. It was observed that a fade detector

based on edge changes does not perform as well as a fade detector based on changes in

standard deviations of pixel intensities (Lienhart, 1999).

3. Dissolve Detection: A dissolve sequence is defined as a combination of two sequences

where the first sequence is fading out and the second sequence is fading in. Existing

dissolve detectors utilize changes in pixel intensities (Nam and Tewfik, 2000) or variances

(Truong et al., 2000) or edges/contours (Lienhart, 1999) to detect dissolves.

Existing scene segmentation techniques can be divided into two categories: one using only

visual features (Rui et al., 1999; Hanjalic et al., 1999; Yeung and Liu, 1995; Corridoni and

Bimbo, 1998; Lin and Zhang, 2000; Veneau et al., 2000) and the other using both visual and

audio features (Sundaram and Chang, 2000a,b; Adams et al., 2000; Cao et al., 2003, 2004b,c).

In both categories, visual similarities of entire shots or key-frames (i.e., global color histograms

or color moments) are used for clustering shots into scenes. That is, global visual features of

nearby shots are compared. If the dissimilarity measure of the features representing the shots
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is within the threshold, these shots and the shots between them are considered in the same

scene. Global features, however, tend to be too coarse for shot clustering because they include

noise-objects that are excluded when human beings group shots into scenes. Determining the

appropriate areas of video frames (or objects) to use for correct shot clustering is challenging

even if objects can be reliably recognized using advanced object recognition techniques.

3.3 Object Detection and Recognition

Object detection and recognition is one of the fundamental problems in computer vision.

Much of the previous work has focused on extracting features from the image followed by

matching or classification algorithms. We call this approach feature-based approach. Methods

in this category range from simple template matching to sophisticated model-based methods.

The idea of template matching is to create a template (or kernel) of an object and search over

the image of interest to identify the object by measuring the similarity between the image and

the template. Common examples of features used to measure the image similarity include the

cross-correlation coefficient (Briechle and Hanebeck, 2001), Fourier descriptors (Aguado et al.,

1996), and texture features (Tan, 1998). Model-based approaches treat the recognition task

as a combinatorial problem and focus on efficiently searching for correspondences between the

model and the image features. Instead of searching through all possible locations in simple

template matching methods, model-based approaches always use various heuristics to guide and

improve the search. Different statistic models are frequently used in this approach. Under the

statistic framework, combined with different types of machine learning techniques, the selection

of the model parameters are usually more flexible and more accurate. Typical examples include

tree search-based methods (Ayache and Faugeras, 1986; Grimson and Lozano-Prez, 1987),

alignment-based methods (Fischler and Bolles, 1997; Huttenlocher and Ullman, 1990).

Another class of recognition methods processes images directly instead of extracting fea-

tures first. Eigenfaces method (PCA) (Turk and Pentland, 1991) was a classic example. There

are two stages (learning and recognition) in this method. In the learning stage, principal com-

ponent analysis is performed on the training images and the principal subspace (or feature
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space) is obtained. In the recognition step, the testing image is linearly reconstructed in the

obtained feature space. The distance between the reconstructing weights of the testing image

and the reconstructing weights of each training image is computed. Then the smallest distance

is selected and this distance is used to determine the existence of the object in the testing

image. Similar approaches can also be found in (Huttenlocher et al., 1993; Murase and Nayar,

1995).

Most of the above efforts typically solve the problem of recognition of specific objects such

as faces. A more difficult problem is object class recognition, which categorizes the objects into

object classes. It requires a generic model that can handle a large intra class variance. Part-

based model that represents the object in terms of a set of parts offers a possible solution. This

distributed model captures the appearances of the local parts and the spatial relations among

parts. There are many flavors of part-based representations. Early research on part-based

object detection focused on deterministic approaches with energy minimization (M.A.Fischler

and R.A.Elschlager, 1973). In (Weber et al., 2000; Fergus et al., 2003), a joint probabilistic

model called constellation model was proposed. It models multiple parts distributed normally

in appearance and location space. Appearance variations of object parts are modeled by

Principal Component Analysis. The spatial relations among parts are captured by a global

joint Gaussian probability distribution function. Weakly supervised learning of the model

parameters has been developed using the Expectation-Maximization algorithm. Another well-

known part-based model is called pictorial model (Felzenszwalb and Huttenlocher, 2005). It

models an object as a collection of parts arranged in a deformable configuration. It treats an

object as a graph-like entity. The nodes represent the object parts and the edges indicate the

spatial relations among parts. Originally, the pictorial model was used for object localization.

In (Crandall et al., 2005), the authors expand the capacity of the pictorial model by providing

efficient matching algorithms using general K-fan graphs. The parameter K controls both the

representational capacity of the models and the computational cost of doing inference with

them. For example, when k = 0, the locations of different object parts are independent (no

dependence exists). When k = n− 1 (where n is the number of parts in the model), there are
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dependencies between all pairs of parts. Generally, the larger value of k, the more computation

cost is needed to capture the relations among parts. This model provides a natural way of

relating different spatial priors that have been used for recognizing generic classes of objects.

Recent years have seen some interests in applying a part-based approach to medical imag-

ing analysis. For example, Towers et al. (Toews et al., 2006) proposed a part-based appearance

model to address the inter-subject MR brain image matching. In (Toews et al., 2006), the part-

based model consists of a collection of localized image parts whose appearance, geometry and

occurrence frequency are quantified statistically instead of global image representations such

as active appearance models. This model addresses the problem that one-to-one correspon-

dence does not exist between subjects due to anatomical differences. Solving the inter-subject

variability problem is important for us to understanding how individuals vary within a popula-

tion in the task of inter-subject registration, for example, determining correspondence between

images of different subjects of a population.
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CHAPTER 4. SCENE SEGMENTATION

In this chapter, we present our new audio-visual analysis approach for scene segmentation.

In Section 4.1, we define scene, a new type of semantic unit for colonoscopy videos and intro-

duce the challenges of scene segmentation. In Section 4.2, we present the audio-based scene

segmentation algorithm as the first step. In Section 4.3, we discuss how to apply the visual

analysis approach as the second step to refine the scene boundaries resulting from the first

step. Finally, we present our experimental results on colonoscopy videos in Section 4.4.

4.1 Challenges of Colonoscopic Scene Segmentation

We define a scene as a segment of visual and audio data that correspond to an endoscopic

segment of the colon. Since a typical colon has six different parts and as the terminal ileum

is also reachable during endoscopy, in a complete colonoscopic procedure, a total of thirteen

scenes are expected: seven scenes from the insertion phase and six scenes from the withdrawal

phase, as shown in Figure 4.1(a). Because a scene corresponds to an important endoscopic

segment of the colon, the identification of scenes is necessary to provide important statistics

such as the number of polyps appearing in a scene, various therapeutic operations performed

in a scene, and changes in the internal mucosa of the same scene of the same patient over

time. These statistics are valuable for diagnosis of colonic diseases. Note that scenes with

the same name in the insertion phase and the withdrawal phase typically do not contain

similar images. The length of the scenes with the same name is typically different. This is

because during the withdrawal phase, the endoscopist carefully examines each part of the colon

whereas in the insertion phase, the endoscopist typically attempts to reach to the most proximal

part of the colon as fast as possible. To apply this new scene definition to other endoscopic
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procedures, we only need to change “colon” to the organ of interest. For instance, scenes

of videos from upper gastrointestinal endoscopy (EGD) are shown in Figure 4.1(b). Because

of camera movements, patient’s conditions, and different ways an endoscopist can maneuver

the endoscope, visual properties alone are insufficient for scene segmentation. Common color

features that are popularly used for segmentation of produced videos (for instance, news videos

and sports videos) are not so useful since the different parts of the colon have similar color.

Rectum Sigmoid
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Transverse

Colon

Ascending

Colon
Cecum

Terminal

Ileum
Cecum

Ascending

Colon

Transverse

Colon
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Colon
Sigmoid Rectum

Insertion Phase Withdrawal Phase

Esophagus Stomach Duodenum

Insertion Phase Withdrawal Phase

(a) Colonoscopy

Duodenum Stomach Esophagus

(b) EGD

Figure 4.1 Scenes of endoscopic procedures.

4.2 Audio Analysis Scene Segmentation Algorithm

In this dissertation, we investigate an alternative approach that utilizes the endoscopist’s

comments and domain knowledge for scene segmentation. Since an endoscopy unit only gen-

erates a sequence of images with no audio information, we developed a capturing system that

allows recording of both the video signal from the endoscopy unit and the endoscopist’s dic-

tation when the tip of the endoscope is moving from one colonic segment into the next in

real-time. The captured videos do not contain any patient identifiable information. Although

the endoscopist can readily identify the location of the tip in straight, clean colons during the

insertion and withdrawal phases, this is not always the case in tortuous colons or in conditions

with limited visibility due to faeces. In such colons, definite location is only possible during the

withdrawal phase, when the endoscopist has an impression of the entire colon and its position

within the abdominal cavity. To facilitate scene segmentation, we have developed a set of

reserved terms to be spoken by the endoscopist during the colonoscopic procedure (see Table
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4.1). These terms were tested and found practical. The endoscopist also provides dictation

when seeing tumors, polyps or when performing biopsy and other therapeutic procedures. The

overview of the scene segmentation algorithm is depicted in Figure 4.2 (Cao et al., 2004b).

Table 4.1 Reserved terms for dictation for scene segmentation.

Insertion Phase Withdrawal Phase
Entering rectum Leaving terminal ileum

Leaving rectum, entering sigmoid Back in cecum and ascending colon
Leaving sigmoid, entering descending colon Leaving ascending colon, back in transverse colon

Leaving descending colon, entering transverse colon Leaving transverse colon, back in descending colon
Leaving transverse colon, entering ascending colon Leaving descending colon, back in sigmoid colon

Cecum Leaving sigmoid back in rectum
Entering terminal ileum Retroflexion

All done, taking out air

Phase 1:

Audio Frame

Classification

Audio Stream of

a Colonoscopy

Video

Frame

Tokens

Phase 2:

Speech Segment

Detection
Speech

Segments

Phase 3:

Speech

Recognition

Phase 4:

Scene

Identification

Text

Transcript

Scenes and

Corresponding

Names

Figure 4.2 Overview of the proposed audio-analysis scene segmentation.

4.2.1 Phase 1: Audio Frame Classification

This is the first phase in our algorithm. It accepts audio stream (composed of a sequence

of audio frames) as input and classifies each audio frame into four categories: silence, marker,

speech, and background types. The silence type is assigned to audio frames with very low
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amplitude whereas the speech type is assigned to audio frames with the endoscopist’s voice.

The marker type is for audio frames with special noise indicating the change in the status of

the microphone. The background type is assigned to audio frames with unvoiced speech such

as the paging system, and electrical noise of the microphone.

Hereafter, a classified audio frame is called a frame token. The rationale for the four types

is based on the observation that most speech segments in our collection of colonoscopy videos

have the pattern of frame tokens as shown in Figure 4.3.

Marker Speech Background Marker

Speech Segment

Silence

Colonoscopy Video

Silence

Figure 4.3 Typical pattern of frame tokens.

We select four existing audio features (Lu et al., 2001): Short-Time Energy, Zero-Crossing

Rate, Pitch, and Spectrum Flux, to classify each audio frame. We provide the formula to

compute these features here to make the dissertation self-contained. Let N denote the frame

length (the number of audio samples in a frame), and Sn(i) denotes the i th sample of the n

th audio frame.

• Short Time Energy (STE) is a reliable indicator for silence detection. Specifically, the

STE value of frame n is computed as follows.
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STE(n) =

√√√√ 1
N

N−1∑
i=0

Sn(i)2 (4.1)

• Zero-Crossing Rate (ZCR) is a useful feature to characterize different non-silence audio

signals. It is one of the most indicative and robust features to distinguish unvoiced

speech. The ZCR value of a frame is defined as the number of times the audio waveform

crosses the zero axis. It can be expressed mathematically as follows.

ZCR(n) =
1
2

(
N−1∑
i=1

∣∣∣sign
(
Sn(i)

)
− sign

(
Sn(i − 1)

)∣∣∣
)

fs

N
(4.2)

where fs is the sampling rate, and sign(.) is a sign function.

• Pitch is typically computed using the fundamental frequency of an audio waveform.

Normally, only voiced speech and harmonic music have well-defined pitch. There are

several different methods to extract pitch information. Here, we use a simple temporal

estimation method to extract pitch.

Rn(l) =
N−l−1∑

i=0

Sn(i)Sn(i + l) (4.3)

where l is a constant in the range of 1 to N .

• Spectrum Flux (SF) is defined as the average variation value of spectrum between two

adjacent frames in a short-time analysis window of length one second. SF has been shown

to be effective for discriminating speech and environmental sound.

SF =
1

(N − 1)(K − 1)

N−1∑
n=1

K−1∑
k=1(

log
(
A(n, k) + δ

)
− log

(
A(n − 1, k) + δ

))
(4.4)
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where A(n, k) is the Discrete Fourier Transform (DFT) of the samples in frame n with

order k.

A(n, k) =
∣∣∣ ∞∑
m=−∞

x(m)w(nL − m)eδ 2π
L

km
∣∣∣ (4.5)

where x(m) is the original audio sample; w(m) is the window function, and L is the

window length. δ is a very small value to avoid calculation overflow, and K is the order

of DFT

Start from the beginning of the audio stream
for each frame in the audio stream do

Compute the STE value of the frame
If the STE value is at most the STE threshold

return Silence
Compute the ZCR value of the frame
If the ZCR value is below the ZCR threshold

return Marker
Compute the R (Pitch) and SF values
If the R value is larger than the R threshold and the SF value is below the SF threshold

return Speech
Else return Background

Figure 4.4 Audio frame classification.

Figure 4.4 presents the algorithm for audio frame classification. The algorithm is easy to

implement and each phase has linear running time since it scans the input audio stream only

once.

We determine the values of the thresholds for each type of audio frames by performing sen-

sitivity analysis on the effect of each threshold. For silence detection, we chose STE threshold

to be zero as it gives the highest accuracy as shown in Figure 4.5(a). To detect the marker

type, we varied the ZCR threshold from 5 to 400 and measured the accuracy. We selected

150 as ZCR threshold since it offers the highest accuracy (see Figure 4.5(b)). To discriminate

between speech and background, SF and pitch are used. For the same SF value, Figure 4.5(c)

shows that the higher the pitch threshold, the lower the accuracy for background classification,

but the higher the speech classification. So we chose the pitch threshold that offers the best

accuracy for both categories (1000). For the same pitch threshold, the accuracy is good when
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the SF threshold is set to 30. The effectiveness of our frame classification is over 97% based

on our experiments. This is attributed to the choice of the audio features and the appropriate

threshold values we use.
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Figure 4.5 Sensitivity analysis for the selection of thresholds.

4.2.2 Phase 2: Speech Segment Detection

This phase locates the speech segment based on frame tokens using a Finite State Automa-

ton (FSA). The FSA recognizes the following regular expression of the frame tokens. This

expression denotes a pattern that starts with one or more Marker tokens, followed by one or

more Speech or Background tokens, and ended with one or more Marker tokens.
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Marker+ · (Speech ∨ Background)+ · Marker+ (4.6)

Formally, this FSA is defined as a quintuple as shown in Figure 4.6(a) and the finite state

diagram of the FSA in Figure 4.6(b).

Given a sequence of types of audio frame tokens, the FSA records the beginning and the

ending time of the speech segment if it ends in the “Yes” state. The FSA does not record any

information if it ends in the “No” state.
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Figure 4.6 Speech segment detection using a finite state automaton.

4.2.3 Phase 3: Speech Recognition

This phase accepts the speech segment as input and outputs the corresponding text tran-

script. Existing speech recognition techniques provide satisfactory performance when dealing
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with short speech segments from the same person. Since most of the speech segments generated

from Phase 2 are less than ten seconds, it is sufficient to use existing recognition software to

perform speech-to-text translation. In our implementation, we use Sphinx 2 recognition soft-

ware (CarnegieMellonUniversity, 2003). Other speech recognition engines can be used. The

output of this phase is the associated text transcript of the speech segment.

4.2.4 Phase 4: Scene Identification

This is the last phase (Phase 4) of our method. This phase aims for an understanding of

each speech segment using text transcript from Phase 3 and domain knowledge. We employ

another Finite State Automaton (FSA) in this phase. Recognized words are categorized into

six categories as follows.

• Location category includes the terms describing important anatomic landmarks of the

colon such as “cecum”, “terminal ileum”, “ascending colon”, “transverse colon”, “de-

scending colon”, “sigmoid”, “rectum”.

• Action category includes the terms indicating the action of the endoscopist such as “en-

tering”, “leaving”, and “back in”.

• Position category consists of the terms indicating the position of the endoscope such as

“begin”, “end”, “in the middle of”.

• Abnormal category includes the terms indicating abnormality such as “polyp” and “can-

cer”.

• Error category has the terms indicating errors that have been previously made such as

“sorry” and “wrong”. The error category is used to handle the case that the endoscopist

corrects his misunderstanding about the location of the camera during the insertion phase

of the colonoscopic procedure.

• Unused category includes words that cannot be classified in other categories such as a,

an, the, and non-communicative words such as uh. We use this last category to remove
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words that are not useful.

The finite state automaton (FSA) for this phase is formally defined in Figure 4.7(a). The

corresponding finite state diagram is shown in Figure 4.7(b). The FSA recognizes the following

regular expression. This expression represents a pattern that starts with zero or more Action

or Position, followed by exactly one Location.

(Action ∨ Position)∗ · Location (4.7)
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Figure 4.7 Finite state automaton for scene identification.
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To understand the meaning of the sequence of words produced by Phase 2, each word is

mapped into one of the six pre-defined types. The FSA processes the type of each word one

by one and changes its state according to the input sequence. When our FSA falls in one

of the final states, the FSA records the time of the beginning and the ending of the scene

and the corresponding name. The final state q4 indicates the case that the endoscopist’s

comment only has location information (e.g., “rectum”) whereas the final state q3 indicates

that the endoscopist’s comment provides more information. Based on the transcript and the

timestamp of each speech segment, we obtain the scene boundaries as follows. Starting from

the first speech segment, we locate the nearest speech segment that has the same name (e.g.,

rectum in “entering rectum” and in “leaving rectum, entering sigmoid”). The starting time of

the former speech segment and the ending time of the latter speech segment indicate the scene

boundaries.

To extend this phase to process videos from other endoscopic procedures such as EGD,

we only need to add appropriate terms in the location category: esophagus, stomach, and

duodenum. Similarly, the endoscopist can use different terms for other categories such as the

abnormal categories to reflect the standard of terms acceptable within that community.

4.3 Visual Model Approach to Refine the Scene Boundaries

By applying the audio analysis scene segmentation algorithm, we are able to identify the

majority of the scene boundaries. However, some scenes may not be detected because the

endoscopist’s speech is not recognized by the speech recognition software. To determine the

missing scene boundaries, we apply our visual analysis method based on our new visual model

as follows (Cao et al., 2004c,a).

4.3.1 Visual Model for Scene Segmentation

Based on our observations and consultations with our endoscopist, we observe a specific

pattern appearing around 60% of scene boundaries in colonoscopy videos. We call this pattern

the cornering pattern as it corresponds to the endoscopist’s action of steering the endoscope
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around the cornering parts of the colon (see Figure 4.8) (i.e., cecum and terminal ileum,

ascending and transverse colons, transverse and descending colons, and descending and sigmoid

colons). The cornering pattern consists of three sequences of images (see Figure 4.9). The

first sequence is composed of images with recognized edges. The second sequence has all

blurry images—images with unclear edges. The transition between these two sequences is

quite abrupt like a hard cut in produced videos. The third image sequence is like a fade-in

sequence with a gradual increase in pixel intensities/color and edges. This sequence happens as

the endoscopist starts to recognize some part of an anatomic landmark and gradually adjusts

the camera position to make the image clearer. Existing production models (Hampapur et al.,

1995; Truong et al., 2000) cannot capture the cornering pattern. Hence, we propose a new

visual model for this pattern. Let S1(x, y, t), S2(x, y, t), and S3(x, y, t) represent the first, the

second, and the third image sequences, respectively. The spatial dimension is represented by x

and y and the temporal dimension is represented by t. Hence, the cornering pattern S(x, y, t)

is defined in Equation(4.8).

Figure 4.8 Examples of the cornering action.

S(x, y, t) = (1 − H(t − t1)) × S1(x, y, t) +
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First sequence

searching pattern

t1

Images with recognized edges Blurry images

Second sequence Third sequence

Fade-like sequence

t2

Figure 4.9 Cornering pattern around a scene boundary.

H(t − t1) × (1 − H(t − t2)) × S2(x, y, t) +

H(t − t2) × f(t − t2) × S3(x, y, t) (4.8)

where t1 denotes the timestamp of the first frame after the first sequence and t2 is the timestamp

of the first frame after the second sequence (see Fig 4.9). H(t) is a function that outputs 1

when t ≥ 0 and 0 otherwise. When t < 0, f(t) produces zero; otherwise, the function is a

temporally scaling function. This function is typically not a linear function as in the case of a

production model for a typical fade sequence.

4.3.2 Feature Extraction and Analysis

Since our colonoscopy videos are already encoded in MPEG-2, we extract visual features

directly from the compressed videos to reduce the segmentation time. We first obtain a DC-

image from the Y-color plane (intensity) of each frame using the techniques in (Yeo and Liu,

1995). A DC-image is a spatially reduced version of the original image. We compute the

standard deviation of DCT coefficients in each DC-image. This is based on our observation

that the distribution of the standard deviations of the DC images in the cornering pattern

often follows the pattern in Fig. 4.10. That is, the standard deviation of each DC-image in

the second sequence is generally small and smaller than those of the frames in the other two

sequences. We call the second sequence monotone sequence. We observe that the standard

deviations of the frames in the fade-in sequence can be modeled using a curve fitting method.

We choose a linear regression model to describe the standard deviations of the frames in the

third sequence by one or more linear function. The challenge is to find the ending frame of

each linear curve automatically. Hence, the scaling function f(t) in Equation(4.8) may be a
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Figure 4.10 Pattern of standard deviations of DC images in the cornering
pattern.

combination of one or more linear function.

4.3.3 Scene Boundary Detection Algorithm

Step 1: Preprocessing: Since more than 99% of the scene boundaries fall in the speech

segments, we restrict visual analysis on the video segments corresponding to the en-

doscopist’s speech segments excluding those that contain the keyword in the abnormal

category. This is because the terms in this category are very specific and irrelevant to

scene boundaries. Next, we apply the filter that removes the black area (the area with DC

coefficients below a threshold) surrounding the useful portion of the image (see Fig. 4.11)

Figure 4.11 Original colon image and the image after the removal of the
black surrounding region.

Step 2: Detection of a monotone sequence: A sequence of consecutive frames is declared

as a monotone sequence if it has at least a pre-defined minimum number of consecutive

frames with the standard deviation of each of these frames below a monotone threshold.
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Step 3: Hard Cut Detection: To check a discontinuity between the first sequence and the

monotone sequence, we use a sliding-window of size 2w + 1 consecutive frames. The

parameter w is set to be smaller than the minimum duration between two sequence

changes. For example, setting m = 30 for 30 frames per second video means that there

can not be two sequence changes within one second. We first position the center of

the sliding window at the frame immediately before the first frame in the monotone

sequence. We derive a sequence of bin-wise histogram differences between DC-images

of two consecutive frames in the window. We declare a hard cut at the center of the

sliding-window if the histogram difference of the two consecutive frames at the center

is the largest within the window, and the ratio between the largest difference and the

second largest difference in the window is larger than a predefined hard-cut ratio. If a

cut is not found, we slide the window away from the monotone sequence by one frame.

The same process is repeated until a cut is found or a given number of frames before the

monotone sequence have been checked. In the latter case, no hard cut is detected.

Step 4: Detection of a fade-in sequence: We check whether two linear curves fit well

with the standard deviations of the coefficients of DC-images after the monotone se-

quence using the algorithm in Fig. 4.12.

Step 5: Boundary Identification: If both a monotone sequence and a fade-in sequence are

detected, the scene boundary is declared at the first frame after the ending frame of the

fade-in sequence. However, if a hard cut and a monotone sequence are detected without

the fade-in sequence, we declare the scene boundary at the hard-cut location.

4.4 Performance Study

As shown in the previous sections, our approach is divided into two steps. The first step

(Section 4.2) uses the audio analysis approach to perform scene segmentation. The second step

(Section 4.3) applies the visual model based method to refine the scene boundaries from the

first step. In the following sections, we present our experimental results for each step.
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/* Let σi be the standard deviation of the coefficients in the DC-image of frame i */
e := frame ID of the last frame in the monotone sequence
i := 0; c := 0;
repeat

n := 2; /* consider the ending frame of the previous sequence and n

subsequent frames */
repeat /* correlation coefficient value is in the range [0, 1] */

r2
1 is a correlation coefficient of σe, . . . , σe+n

r2
2 is a correlation coefficient of σe, . . . , σe+n+1

n := n + 1;
while r2

1 − r2
2 < (0.05 · r2

1) /* the change in correlation values is small */
if r2

1 > 0.8 then c := c + 1; /* a linear curve fits well with the values*/
i := i + 1; e := e + n;

while i < 2;
if c = 2, a fade-in sequence is detected

Figure 4.12 Fade-in sequence detector for a cornering pattern.

All the videos in our experiments were captured by the same endoscopist. Our test data

set consists of twenty colonoscopy videos captured during colonoscopic procedures. The video

format is MPEG-2, which is composed of audio and video stream. In the audio analysis

approach, we use Sphinx 2 recognition software (CarnegieMellonUniversity, 2003) for the phase

3 in section 4.2.3. Twenty videos are used in our experiments. We use the scene boundaries

determined manually as the reference and gather the following performance metrics. Note

that, the partially identified scenes, like a scene with a correct identified start frame yet an

incorrect identified end frame, are not counted as Relevant Scene.

For each video, we measure the values of Relevant, Irrelevant, and Missed. Relevant indi-

cates the number of correct scenes identified by the program whereas Irrelevant denotes the

number of scenes incorrectly detected by the program. Missed shows the number of correct

scenes that are undetected by the program. Recall is defined as the ratio of the value of Rele-

vant to the sum of the corresponding Relevant and Missed values. Precision is defined as the

ratio of the value of Relevant to the sum of the corresponding Relevant and Irrelevant values.

High recall and precision are desirable.
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4.4.1 Performance Evaluation of Audio-based Scene Segmentation Method

In this section, we discuss our experimental results on audio analysis approach in Section

4.2. The two finite state automata, the terms, and the categories used in the scene identification

phase are stored in a configuration file. The file is read by the segmentation software as an

input. Hence, the segmentation software can be extended to recognize other videos of other

endoscopic procedures by modifying the configuration file.

We tested the scene segmentation program on twenty colonoscopy videos. Table 4.2 illus-

trates the effectiveness of the program. The last row of Table 4.2 shows the average precision

and average recall of 0.95 and 0.80 over twenty videos, respectively. The precision and recall

quantitatively indicate that our segmentation algorithm performs well. Despite high precision

and recall, the program did miss a few scenes. This is mostly because the speech recognition

technique does not recognize the endoscopist’s voice indicating the location of the tip of the

endoscope.

Table 4.2 Precision and recall on twenty colonoscopy videos.

ID Relevant Irrelevant Missed Precision Recall
03001 8 1 5 0.89 0.62
03007 9 1 4 0.90 0.69
03009 10 1 3 0.91 0.77
03010 11 0 2 1.00 0.85
03014 10 1 3 0.91 0.77
03015 13 0 0 1.00 1.00
03017 9 1 4 0.90 0.69
03019 9 1 4 0.90 0.69
03020 13 0 0 1.00 1.00
03047 9 1 4 0.90 0.69
03062 10 2 3 0.83 0.77
03133 11 0 2 1.00 0.85
03148 12 0 1 1.00 0.92
03152 12 0 1 1.00 0.92
03163 12 0 1 1.00 0.92
03177 8 1 5 0.89 0.62
03179 9 0 4 1.00 0.69
03185 12 0 1 1.00 0.92
03190 10 1 3 0.91 0.77
03197 11 0 2 1.00 0.85
Average 10.40 0.55 2.60 0.95 0.80
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4.4.2 Performance Evaluation of Visual Model Scene Segmentation Method

In this section, we present our performance study by applying the visual model approach (

Section 4.3) to refine the scene boundaries from the previous step. We show the performance

of the fade-like detector using one linear curve (“Model 1”), two linear curves (“Model 2”),

and three linear curves (“Model 3”) in Table 4.3. The fade-like detector with two linear curves

(“Model 2”) produces the highest recall and precision.

Table 4.3 Effectiveness of fade-like detection models on ten colonoscopy
videos.

Model 1 Model 2 Model 3
Relevant 80 101 92
Irrelevant 8 6 15
Missed 50 29 38
Precision 0.91 0.94 0.86
Recall 0.62 0.78 0.71

Table 4.4 Precision and recall of three scene segmentation algorithms.

ID Length Precision Recall Time (sec.)
(min) A C U A C U C U C

U

03001 18:26 0.89 0.90 0.91 0.62 0.69 0.77 2597 7150 0.36
03007 25:08 0.90 0.91 0.91 0.69 0.77 0.77 3600 10588 0.34
03009 37:22 0.91 0.85 0.85 0.77 0.85 0.85 5310 13973 0.38
03010 34:24 1.00 1.00 1.00 0.85 0.85 0.85 4905 14420 0.34
03014 36:33 0.91 0.77 0.85 0.77 0.77 0.85 5199 14442 0.36
03015 23:00 1.00 1.00 1.00 1.00 1.00 1.00 3317 8965 0.37
03017 21:14 0.90 0.90 0.90 0.69 0.69 0.69 3029 8413 0.36
03019 24:05 0.90 0.92 1.00 0.69 0.85 0.92 3466 9903 0.35
03020 13:07 1.00 1.00 1.00 1.00 1.00 1.00 1800 4800 0.38
03047 28:29 0.90 0.82 0.82 0.69 0.69 0.69 4037 11214 0.37
03062 30:34 0.83 0.77 0.77 0.77 0.77 0.77 4328 11697 0.37
03133 33:02 1.00 1.00 1.00 0.85 1.00 1.00 4762 12806 0.37
03148 24:28 1.00 1.00 1.00 0.92 0.92 0.92 3460 9582 0.36
03152 11:55 1.00 1.00 1.00 0.92 1.00 1.00 1587 4376 0.36
03163 19:34 1.00 1.00 1.00 0.92 1.00 1.00 2742 7374 0.37
03177 21:29 0.89 0.89 0.89 0.62 0.62 0.62 3031 8156 0.37
03179 29:15 1.00 1.00 1.00 0.69 0.77 0.77 4184 11252 0.37
03185 21:34 1.00 1.00 1.00 0.92 0.92 0.92 3049 8168 0.37
03190 27:07 0.91 0.92 1.00 0.77 0.92 1.00 3896 10477 0.37
03197 14:54 1.00 1.00 1.00 0.85 0.85 0.85 2020 5437 0.37

Average 24:44 0.95 0.93 0.95 0.81 0.85 0.86 3516 9560 0.36
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Given the best parameter values, we compare the performance of our audio-based scene

segmentation (denoted as “A”), our model approach (denoted as “C”), and our model approach

using features derived from pixel intensities of uncompressed videos (denoted as “U”). Table 4.4

shows that our model-based approach, both in compressed domain and uncompressed domain,

outperforms the audio-based technique. Our method in uncompressed domain performs slightly

better than the one in compressed domain. This is because it can better detect the boundaries

of the terminal ileum scene. Hence, a hybrid approach that uses our method in uncompressed

domain for detecting boundaries of the terminal ileum scene and our method in compressed

domain for other scenes should give the best result. The average processing time using our

approach in compressed domain is only about a third of the time taken using our approach in

uncompressed domain on the same machine.

4.5 Summary

We have described our proposed scene segmentation techniques in this chapter. This new

approach employs both audio and visual analysis techniques for parsing colonoscopy videos.

Our approach is based on our new definition of semantic units (colonoscopic scenes). For audio

analysis, new algorithm of audio frame classification and novel usage of finite state automata,

combined with speech recognition techniques, produce satisfactory scene boundaries. A new

visual model that encodes the domain knowledge is employed to refine the scene boundary

results from audio analysis.
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CHAPTER 5. OPERATION SHOT DETECTION

In this chapter, we introduce our image/video analysis techniques for operation shot de-

tection. We first define a new type of semantic unit called operation shot, and discuss the

challenges of operation shot detection in Section 5.1. In Section 5.2, we present new techniques

to detect operation shots based on the detection of the cables of the diagnostic or therapeutic

instruments. We evaluate the effectiveness of the proposed techniques on colonoscopy videos

in Section 5.3.

5.1 Challenges of Operation Shot Detection

An operation shot is a segment of visual and audio data that correspond to a diagnostic or

therapeutic operation in a colonoscopy video. We map the problem of detecting operation shots

to the problem of identifying instruments used in diagnostic or therapeutic operations since the

operations cannot be performed without these instruments. Given a variety of instruments,

we further map the problem of detecting instruments to the problem of detecting the cables of

the instruments as the cable is frequently presented in an operation regardless of the types of

the instruments. The remaining difficulties are as follows. First, the cables come in different

directions, colors, and sizes. Second, the cable appears very bright in many frames; this is

related to light required to illuminate the colon. The light beam exits the endoscope tip

directly adjacent to the instrument channel opening. It causes any cable exiting this channel

to be exposed to undispersed light at maximal intensity which may result in over-exposure

of the camera’s CCD chip. The same holds true for colon mucosa and contents that are in

immediate proximity of the endoscope tip. The intense brightness and resulting over-exposure

may mask the actual color information of the cable and adjacent colon wall, making it difficult
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to utilize color features for operation shot detection. Last, the appearance of the cable in a

frame varies from one frame to another during an operation. Depending on the location in

the colon, the space between the endoscope tip and the lesion, and the position of the lesion

within the colon, one may see only the head of the instrument (without the cable) or the head

of the instrument with a segment of the cable.

5.2 Spatio-temporal Operation Shot Detection

We propose a new spatio-temporal segmentation approach for operation shot detection.

Figure 5.1 depicts an overview of our algorithm. The first five steps (A-E in the figure)

together identify the presence of the cable in each of the images extracted from the input

colonoscopy video. The first step is image preprocessing. In this step, each selected image

is first enhanced by our new light reflection filtering algorithm. The enhanced image is then

segmented into a number of regions. Next, we identify the insertion direction of an instrument.

This is useful for removing irrelevant regions (i.e., regions that are not part of the cable) in

the region filtering step. To remove the case that the instrument is falsely segmented into

several regions, we use the region merging step to combine these regions into one potential

cable region. Next, the region matching step matches the candidate regions in the image with

the pre-defined template of the cables. We use the terms cable image and non-cable image to

refer to an image with the cable and without the cable, respectively. The region matching step

outputs a 1 when the image has at least one region sufficiently similar to the cable templates.

Otherwise, the image is considered a non-cable image and the region matching step outputs a

0. Based on temporal information, the shot segmentation step utilizes our pre-defined rules to

determine the boundaries of operation shots given a series of binary numbers from the region

matching step. The details of each step of our algorithm are discussed below.

5.2.1 Image Preprocessing

This step includes four stages. Figure 5.2 shows the image examples in each stage. In the

first stage, we extracts t image(s) per second to reduce the analysis time for the subsequent
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Figure 5.1 Overview of operation shot detection.

steps. Figure 5.2(a) is an example of the selected image. The second stage is called light

reflection region filtering. In Figure 5.2(a), we can find many small over-bright white areas in

the right part of the image, manually annotated with ellipse. These light reflected regions are

generated due to foreign substances (i.e., stool, cleansing agent, air bubbles, etc.) covering the

colon wall. They may considerably disturb the subsequent image processing techniques such as

edge detection, texture analysis, and segmentation. We include our new light reflection filtering

as the second stage of the image preprocessing to address this problem. We observe that many

light-reflected areas are small. The majority of the pixels inside a light-reflected area can be

identified as edge pixels by commonly used edge detectors. Based on these observations, we

develop the following filtering procedure.

• Step 1: Using Sobel edge detector and the morphology closing operation with a flat,

disk-shaped structuring element (Sonka et al., 2000) to extract the edge pixels from

each image. This step generates a binary image where the white curvilinear structures

represent the real edges and the small isolated white regions represent small over-bright

areas in the original image, respectively.

• Step 2: Using a predefined w × w sliding window to scan the entire image. If we find

more than 85% of the pixels inside the window are edge pixels and more than 90% of the

pixels in the boundary of the window are not edge pixels, we claim the area delineated
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by the window is a real over-bright white area we desired. The percentage thresholds

(85% and 90%) are derived from experiments on different colonoscopy videos. Our image

enhancement technique is not very sensitive to these thresholds since the results do not

vary much when we performed experiments with different threshold values between 80%

and 95%.

• Step 3: Using the method in step 2, if we find the area covered by the sliding window

is a real over-bright white area, we calculate the average pixel intensity Iave for all the

pixels in the boundary of this window. Update the image by changing the intensity value

of the pixels inside the over-bright white area into value Iave.

The generated image is illustrated in Figure 5.2(b). We can see the majority of the over-

bright white areas circled by the red ellipse have been removed. Next, each enhanced image in

the reduced colonoscopy video is segmented into a number of regions using JSEG (Deng and

Manjunath, 2001). Figure 5.2(c) illustrates the segmentation results.

(a) (b) (c)

Figure 5.2 Image examples for image preprocessing step: (a) Original color
image; (b) Image after removing the light reflected regions; (c)
Segmented image using JSEG.

5.2.2 Identification of Instrument Insertion Direction

This step identifies the insertion direction of instruments. Only one endoscope is used

per colonoscopic procedure and standard colonoscopy models have only one working channel,
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in which instruments can be inserted. The insertion direction is determined by the location

of the working channel in relation to the camera lens (see Figure 5.3(a)). Therefore, each

colonoscopy video has one insertion direction. The instrument can appear in the field of

view of the endoscope in any direction, depending on the model of the endoscope used in

the procedure. We classify these directions into eight general directions as shown in Figure

5.3(b) and associate insertion direction i with a triangular “area i” where 1 ≤ i ≤ 8 as shown

in Figure 5.3(c). The ability to identify the correct triangular area can greatly improve the

accuracy and decrease the processing time of subsequent steps.
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Figure 5.3 Possible triangular areas and insertion directions of instru-
ments: (a) Various components of the tip of a current endoscope
model projected on top of the image area; note the position of
the working channel in relation to the lens; (b) Eight insertion
directions that correspond to eight triangular areas; (b) Eight
triangular areas that correspond to eight insertion directions.

We propose an algorithm to identify the insertion direction of the instrument for a video.

The cable of the instrument has a tubular shape. The tubular shape has a strong curvilinear

structure at the proximal end (most central in the image) with linear line shape of the lon-

gitudinal edges of the cable. If we can find this kind of shape in one of the eight triangular

areas (for example, “Area 6”) and the orientation of the shape is close to the insertion direc-

tion of that triangular area (for example, the angle between the orientation of the object and

the insertion direction 6 of triangular area 6 is very small), it is very likely that the insertion

direction of this image is the same as the orientation of the shape. For each video, we perform

the following algorithm which has two phases to identify the insertion direction.
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• Phase 1: Identification of the insertion direction of instruments for each clear

image I

A Calculate the 2-D line filter using the Hessian Matrix (Sato et al., 1998). The

Hessian Matrix of a pixel X of 2-D image I(X) (where X = (x, y)) is given by

�2I(X) = �Ixx(X) Ixy(X)	


Iyx(X) Iyy(X)� (5.1)

where partial second derivatives of the image pixel I(X) are represented by expres-

sions like Ixx(X) = δ2

δx2 I(X), Iyx(X) = δ2

δyδxI(X) and so on. Let the eigenvalues of

�2I(X) be λ1(X) and λ2(X) (|λ1(X)| > |λ2(X)|), and their corresponding eigen-

vectors be e1(X) and e2(X) respectively. The eigenvector e1(x), corresponding to

the largest eigenvalue λ1(X), represents the direction along which the second deriv-

ative is the maximum.

B Generate a binary image IB(X ′) and initialize all the pixel value as 0. For any

pixel X ′ (where X ′ = (x, y)) in the binary image IB(x′), check the corresponding

eigenvalue λ1(X) of pixel X (where X = (x, y)) in the original image I(X). If the

absolute value of λ1(X) is larger than a predefined threshold value THλ, we treat

the pixel X ′ as an edge pixel and set the value as 1.

C Perform a hierarchy clustering algorithm (Sonka et al., 2000) on the edge pixels of

IB and remove the clusters with a small number of pixels. For each cluster Ccluster

whose number of pixels is large enough, we extract its skeleton Cskeleton and check

the average curvature along Cskeleton. If the curvature is below some predefined

threshold, it means the corresponding cluster Ccluster can be approximated as a

linear line and it is a possible candidate for the boundary of the tubular shape

object. Otherwise, we remove the cluster from the image. We name the cluster

with linear line shape as CLinear.
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D For each possible insertion direction i (1 ≤ i ≤ 8) in Figure 5.3, check the corre-

sponding triangular area Areai (1 ≤ i ≤ 8). Specifically, we first check each CLinear

cluster in the entire image and select the cluster CLinearInAreaI where more than

90% of the pixels belong to the Areai. Then, for all the CLinearInAreaI clusters

in Areai, we choose the cluster CMaxLinear whose number of pixels is the largest

among all the clusters CLinear. Check the orientation of the CMaxLinear. If the angle

between the orientation of CMaxLinear and the insertion direction i is less than 22.5o

(90o/4), we claim i is a possible insertion direction. If there are multiple insertion

direction candidates, for example i1, whose corresponding cluster Ci1
MaxLinear is in

the triangular area i1, and i2, whose corresponding cluster Ci2
MaxLinear is in the tri-

angular area i2, we set the insertion direction as i1 if the number of edge pixels in

the corresponding cluster Ci1
MaxLinear is more than Ci2

MaxLinear. If we could not find

any linear line shape cluster whose orientation is close to the insertion direction in

any triangular areas, we do not consider this image.

• Phase 2: Identification of insertion direction of instruments for the entire

video:

A For each insertion direction i (where 1 ≤ i ≤ 8), calculate a value Pi, where 1 ≤ i ≤
8. Pi refers to the number of images determined as insertion direction i over the

total number of images in this video.

B Compare the eight value Pi (1 ≤ i ≤ 8) and select j, where j = argmax︸ ︷︷ ︸
1≤i≤8

(Pi), as the

final insertion direction for this video.

Figure 5.4 shows two example images for this procedure. Figure 5.4(a) is the original input

image and Figure 5.4(b) is the image after edge enhancement and clustering. In Figure 5.4(b),

there is a cluster with small curvature change in the triangle area 6, which is circled by a

triangular. The angle between the orientation of this cluster and the insertion direction 6 is

less than 22.5o, which means the insertion direction of this image is 6.
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Instrument Cluster with small curvature

(a) (b)

Figure 5.4 Image examples for insertion direction determination.

5.2.3 Region Filtering, Merging, and Matching

Region Filtering This step removes regions outside the triangular area of the corresponding

insertion direction detected in the pervious step. We do this because the other regions

are irrelevant to the cable of the instrument. Recall that in the image preprocessing step,

an image is enhanced and segmented by using JSEG. Even with our careful selection of

important parameters for JSEG, a segmented image still consists of roughly 30 regions

on average and over 50 regions in extreme cases. These cases are caused by (1) various

degrees of light reflection from the colon wall and (2) complex colon structure in some

parts of the colon. Obviously, not all detected regions are part of the cable and therefore

should be excluded. The following description of the filtering algorithm assumes that

the detected instrument insertion direction is “Direction 6”. By examining a set of

segmented cable images from several colonoscopy videos, we find that all the centroids

of the desired regions (cable regions) fall in the triangular area shown in Figure 5.5(a).

To remove irrelevant regions in our colonoscopy videos, we design the triangular filter as

follows. Let w and h be the width and the height of the image in pixels, respectively.

Given that the top-left corner of the image has the origin coordinate (0, 0), the filter F

is a triangle with three vertices: f1 = (w/2, h/2), f2 = (w/2, h), and f3 = (w, h). Let R

be a set of regions of a segmented image after the preprocessing step and let r.centroid

represent the centroid of region r. The region filtering step identifies the result set C
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where

C = {r|r ∈ R
∧

r.centroid ∈ F} (5.2)

In order to accommodate instrument detection in cases where the instrument appears in

a different position in the field of view (e.g., different type or brand of endoscope), we

define eight triangular filters as shown in Figure 5.5(b). Based on the triangular filter,

we remove all the regions in which the centroid of the region falls outside the filter.

 (0 , 0 ) (w, 0)

(0, h) f3=(w, h)

(w, h/2)

f2=( w/2, h)

(0, h/2)
f1

 

1

2 3

4

5

67

8

(a) (b)

Figure 5.5 (a) The triangular filter in area 6; (b) Eight triangular filters.

Region Merging This step identifies the possible instrument regions calculated from the set

of candidate regions from the region filtering step. Region merging is important since

a whole instrument is often segmented into several regions. Our previous method (Cao

et al., 2004a) generated all the combinations of regions if this combination contains at

least one bottom region (a region with its smallest bounding rectangle touches the bottom

of the image.). This method did not miss any combination of regions that represents the

true instrument. However, it also generated many redundant region combinations. To

overcome this problem without sacrificing performance, we propose a new region growing

algorithm based on texture features as follows.

• Feature Extraction: Extract four texture features (Sonka et al., 2000) (Standard

Deviation, Smoothness, Uniform, Entropy) for each region in the entire image.
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• Region Clustering: Apply K-means clustering method for this image to classify

each region into three categories: (a) Smooth region; (b) Periodic region; and (c)

Coarse region.

• Region Growing: This step treats a bottom region as a seed region. For each

seed, we perform region growing by adding a neighbor region if both of them belong

to the same category.

We refer to the set of the combined regions after the merging step as Q. It is composed

of merged regions used for the next stage.

Region Matching This step matches each of the regions in Q with a manually defined tem-

plate set of the cable regions. The template set represents the different representative

shapes of the cable found commonly in our colonoscopy videos. We manually selected

representative cable images and extracted the corresponding cable regions. Instead of us-

ing Fourier descriptors as in (Cao et al., 2004a), we use moment invariants (Sonka et al.,

2000) as our shape features. These features are not sensitive to linear transformation,

making it suitable to handle different insertion directions of the instrument.

Let shape(q) return seven moment invariant features of region q. Let S = {S1, S2, · · · , SK}
be a set of K feature vectors where Si = shape(i) for the template region i. Let dist(i, j)

return the “city-block” distance between feature vectors i and j (Sonka et al., 2000).

Given a similarity threshold d, the region matching step decides whether image I is a

cable image or not as follows.

I is a cable image if there exists an s such that dist(s, Shape(q)) ≤ d where s ∈ S
∧

q ∈ Q

In other words, the image is declared as a cable image if the dissimilarity between one

of its regions in Q and one of the template regions is less than the threshold. Otherwise,

the image is considered a non-cable image. The appropriate value of the threshold d

is found to be 0.025 from experiments. The region matching step outputs a 1 for each

detected cable image and a 0 otherwise. The “city-block” distance is used for similarity

measure since it has been reported to perform slightly better than other distance metrics
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for shape matching in (Eakins et al., 2003). Since the number of distinct cable shapes

is small (about ten shapes), these shape feature vectors are loaded in memory once, and

then are used during the matching process for the entire video.

Match

Figure 5.6 Example of region matching between an instrument image and
a template region.

5.2.4 Shot Segmentation

This step utilizes temporal information and domain knowledge to identify operation shots.

This step addresses the fact that the appearances of a cable vary in the same operation shot

and corrects the errors introduced by steps prior to this step. The shot segmentation step

accepts L, a sequence of 0’s and 1’s from the region matching step, as an input and locates

the boundaries of operation shots as follows.

• Step 1: This step aims to correct the misclassification results due to the region matching

step. A misclassification result is the case where the image without a cable is classified

as a cable image by the region matching step. We found that the detected cable image

when surrounded by several non-cable images is very likely a misclassification. We use

this observation to correct a misclassification. We first explain the algorithm when one

frame per second (t = 1) is used in the image preprocessing step. Let L′ be the output

sequence of binary numbers with the same length as the input sequence L. Starting

from the beginning of the input sequence L, we slide a sliding window W (covering 5

binary numbers at a time) over the input L to find the correction pattern [0, 0, 1, 0, 0]
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in L. When such a pattern is found, we correct the misclassification result by changing

the middle 1 to 0 in the corresponding position in the output sequence L′. Except this

change, the corresponding position in the output L′ has the same binary number as that

in L. In other words, we have [0, 0, 0, 0, 0] in L′ when [0, 0, 1, 0, 0] is under the current

sliding window in L. Next, we slide the window one number to the right and repeat the

same process until the end of the input sequence is reached. Note that we elected to

use the pattern [0, 0, 1, 0, 0] since in our experiments this pattern removed errors better

than other patterns with more zeros surrounding the middle one. We generalize the

correction pattern for different values of t as a pattern that has 2 ∗ t of zeros followed

by 1 ∗ t of one followed by 2 ∗ t of zeros. For instance, when t is 2 (2 frames per second

are used), we use the sliding window of size 5 ∗ 2 to search for the correction pattern of

[0, 0, 0, 0, 1, 1, 0, 0, 0, 0].

• Step 2: We scan L′ from the beginning to the end. We declared an operation shot when

we find a sequence O of consecutive frames in L′ with all of the following properties

– The sequence O starts with a 1 and ends with a 1 followed by at least 8∗t consecutive

zeros. In other words, the first frame and the last frame in the sequence O are cable

images. A fixed number (8 ∗ t) of consecutive non-cable images following the last

frame of the sequence O captures the withdrawal of the instrument quite well. We

have experimented with larger or smaller numbers of trailing zeros. However, we

found that the effectiveness of shot segmentation degrades with more or less trailing

zeros.

– The number sequence O has more 1′s than 0′s. That is, the sequence O has more

cable images than non-cable images. This rule is developed based on the observation

that an actual operation shot typically has more frames with a cable present than

without one.

– The sequence O lasts at least 4 seconds. Based on our experience and consultations

with our endoscopist, operation shots typically last more than 4 seconds. Only
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random biopsies (e.g., for tissue studies in patients with diarrhea or for dysplasia

screening in patients with ulcerative colitis) may result in operation shots shorter

than 4 seconds; sometimes these random, blind biopsies are even very difficult to be

observed by the human eye. Hence, for the studies presented in this article we do

not consider an operation shot shorter than 4 seconds.

5.3 Performance Study

This section presents experimental results to illustrate the effectiveness of our proposed

techniques on three test data sets: (1)Video Set I: for identification of insertion direction of

instruments. The accuracy of subsequent steps, such as region filtering and region merging,

depends on this step. We used videos generated from multiple endoscope models in different

endoscopic procedures, including colonoscopy and esophago-gastro-duodenoscopy (EGD), to

determine the effectiveness of our technique. The videos and their properties are listed in

Table 5.1. (2) Image Set: consists of about 1,000 cable and non-cable images extracted from

six colonoscopy videos. We used this set to evaluate the effectiveness of the region filtering,

region merging, and region matching steps of the operation shot detection technique. Details

are listed in Table 5.2. (3) Video Set II: consists of twenty five colonoscopy videos with and

without operation shots. This test set was used to evaluate the effectiveness of the operation

shot detection technique. Table 5.3 shows the total number of operation shots in each video,

the number of operation shots in each category, and the average length of the operation shots

in the video. The average length of an operation shot in all test videos with diagnostic and

therapeutic operations is about twenty two seconds.

5.3.1 Determining Important Parameters for the Proposed Approach

The first step for operation shot detection is “Image Preprocessing”. In this step, we obtain

the reduced colonoscopy video by extracting t frames per second from the input colonoscopy

videos. In the experiments, we chose t equal to one, which implies that the maximum temporal

distance between the actual boundary and the detected boundary due to temporal sampling is
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Table 5.1 Characteristics of “Video Set I”.

Video Type Video ID Insertion Direction
Colonoscopy Video 010 Direction 6
Colonoscopy Video 015 Direction 6
Colonoscopy Video 019 Direction 6
Colonoscopy Video 024 Direction 6
Colonoscopy Video 044 Direction 6

EGD Video 137 Direction 8
EGD Video 139 Direction 8
EGD Video 001 Direction 8
EGD Video 003 Direction 8

Table 5.2 Characteristics of “Image set”.

Video ID 010 015 017 019 024 044 Total
Cable Image 93 11 25 14 123 163 429

Non-cable Image 149 92 60 21 142 194 658

one second. This temporal distance is considered very small compared to the average length

of an operation shot (22 seconds). This distance can be made smaller with a higher value of

t, however, with the expense of a significant increase in the analysis time for operation shot

detection. Also in this step, we propose a non-linear filter to remove small over-bright white

areas. In this method, we use a w × w sliding window to scan the entire image to identify

these areas. The value of w is mainly determined by the resolution of the colon image because

the size of the white area is proportional to the size of the image. In our experiments, the

resolution of our colon image is 390 × 370 and we set the value w at 15. Recall that our

algorithm to identify insertion direction extracts the strong curvilinear structure in the colon

image and checks the orientation of the tubular shape object to determine the final direction.

One important parameter of this method is the predefined threshold Thλ used in the second

step of this algorithm. We set this value relatively high in order to remove most false positive

images (images that do not have any information about instrument insertion direction, but

detected as images that contain the insertion direction). At the same time, because of the high

threshold, our method generates more false negative images (images with a cable detected

as images without cable insertion direction information). However, this does not affect the
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Table 5.3 Characteristics of “Video Set II”.

Video Operation Forceps Snare Balloon Average Length of
ID Shots Operation Shot (second)
002 1 1 0 0 23.0
009 1 1 0 0 38.0
010 6 3 3 0 26.0
012 6 6 0 0 25.8
014 1 1 0 0 18.0
024 12 12 0 0 27.5
044 9 9 0 0 53.0
047 9 7 2 0 21.9
053 7 7 0 0 34.6
097 3 3 0 0 12.0
102 5 5 0 0 33.6
111 2 2 0 0 12.0
114 6 6 0 0 22.8
116 8 8 0 0 18.3
133 4 4 0 0 13.0
134 5 5 0 0 10.4
148 3 2 1 0 8.7
156 2 2 0 0 16.5
165 2 2 0 0 33.5
168 1 1 0 0 15.0
174 0 0 0 0 0
183 0 0 0 0 0
186 10 2 10 0 20.9
192 10 9 0 1 12.1
202 4 0 3 1 50.8

Total 117 96 20 1 -
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final results since our detection algorithm selects the insertion direction i with the maximal Di

(where 1 ≤ i ≤ 8 ) value as our final insertion direction. We will discuss this issue in detail in

the next section.

5.3.2 Effectiveness of Cable Detection

There are four important steps in detecting whether an image is a cable image or not. They

are identification of instrument insertion direction, region filtering, region merging, and region

matching steps. We quantify the effectiveness of each step as follows.

A Effectiveness of Identification of Instrument Insertion Direction: Table 5.4 illustrates the

test results for Video Set I. The column labeled “Total” represents the total number of

images extracted from the corresponding video. Recall that for each input image, our

algorithm either assigns an insertion direction or skips the image. Each number in column

“Di” is the number of images that are detected as images with “Insertion Direction i”.

We use column “Skip” to indicate the number of images that are detected as images

without an insertion direction and are skipped by our algorithm. In the final stage of

our method, we compare the eight Di (where 1 ≤ i ≤ 8 ) values and select the direction

i with the largest Di value as the final insertion direction. Based on this method, values

in column D6 for the first five videos and values in column D8 for the last four videos

are selected. This indicates that the insertion directions for the first five videos and the

last four videos are “Direction 6” and “Direction 8”, respectively. Hence, our algorithm

gives the correct results for all tested videos.

B Effectiveness of Region Filtering: The purpose of the region filtering step is to remove

irrelevant regions from further consideration. We use the image set for performance

evaluation. For each image in the image set, we obtain the total number of original

regions after image segmentation and the number of result regions—regions left after

region filtering. Table 5.5 shows the ratio of the number of the result regions to the

number of original regions gathered from selected images of each video. For the cable

images, only 18% of the original regions remain. For the non-cable images, only 13% of
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Table 5.4 Effectiveness of instrument insertion direction identification.

Video ID Insertion Total D1 D2 D3 D4 D5 D6 D7 D8 Skip
Direction

Colonoscopy 010 Direction 6 1367 25 48 20 32 40 147 4 10 1041
Colonoscopy 015 Direction 6 791 12 15 13 9 8 64 14 9 647
Colonoscopy 019 Direction 6 691 19 15 9 11 10 75 12 7 533
Colonoscopy 024 Direction 6 1625 69 20 70 95 78 382 60 59 792
Colonoscopy 044 Direction 6 1044 36 30 19 78 18 264 20 29 550

EGD 137 Direction 8 283 10 9 10 9 8 15 17 65 143
EGD 139 Direction 8 446 23 22 18 19 17 25 26 132 163
EGD 001 Direction 8 57 0 0 0 0 0 0 1 55 1
EGD 003 Direction 8 28 0 0 0 0 0 0 0 27 1

the original regions remain. More regions are left in the cable images due to the presence

of the cable. Although 82% of irrelevant regions are removed, no parts of the actual cable

region are removed.

Table 5.5 Effectiveness of region filtering.

Video ID Cable images Non-Cable Images
010 0.22 0.15
015 0.23 0.13
017 0.17 0.15
019 0.25 0.06
024 0.17 0.13
044 0.14 0.14

Average 0.18 0.13

C Effectiveness of Region Merging: To quantify the effectiveness of the region merging step,

we evaluated the effectiveness of cable detection with and without region merging. Out

of the 429 cable images in the image set, we manually identified all cable images whose

cable is fragmented into more than one region by JSEG. We performed region matching

with and without prior region merging on this sub-set of cable images. Table 5.6 shows

the results. Region matching with region merging correctly identifies 96% of the images

in the set as cable images. Without region merging, region matching only correctly

identifies 69% of the images in the set as cable images. Therefore, region merging step
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improves the accuracy for cable detection by 27%. Note that some fragmented cables

can be detected even without region merging because the fragment of the cable happens

to have a shape similar to that of the entire cable.

Table 5.6 Effectiveness of region merging.

Cable detection with Cable detection without
region merging region merging

Fragmented images Correctly Percentage Correctly Percentage
detected detected

107 103 96 % 72 69%

D Effectiveness of Region Matching: The region matching step is the last step for cable

detection. The effectiveness of this step is demonstrated via the effectiveness of the

entire cable detection. First, given an actual cable image, the cable detection algorithm

should indicate that the image is a cable image with a high accuracy. Second, given

a non-cable image, the cable detection algorithm should determine that the image is a

non-cable image with high accuracy. Table 5.7 shows the results of cable detection on

the image set. The average accuracy of 92% for cable images and 95% for non-cable

images in Table 5.7 are attributed by the effectiveness of (1) the region filtering step

that removes irrelevant regions from the cable images; (2) the region merging step that

combines fragmented regions that should have been detected as one region; and (3) the

use of moment invariants as shape features for matching the candidate region with the

template regions. Nevertheless, the cable detection algorithm still has 8% inaccuracy and

we rely on the shot segmentation step to correct these small errors due to the following

reasons: (1) The JSEG image segmentation algorithm sometimes merges parts of the

colon wall and the cable together, which results in a shape different from the template

cable shapes; (2) In a non-cable image, the shapes of one or more regions of the colon and

the cable may be similar by chance. This error is inevitable in our detection method. In

addition, the region merging step introduces the possibility that a combination of colon

regions is similar to one of the template cable regions. However, this case happens rarely.
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Table 5.7 Accuracy of cable detection.

Video ID Cable Images Non-Cable Images
010 0.96 0.89
015 0.75 0.92
017 0.99 0.92
019 1.00 0.95
024 0.90 0.96
044 0.94 0.95

Average 0.92 0.95

5.3.3 Effectiveness of Operation Shot Detection

To evaluate the effectiveness of the entire operation shot detection algorithm, we measured

the number of false operation shots, the number of missed operation shots, the true positive

fraction, the false positive fraction, and the boundary precision and recall. False operation

shots are software detected shots that are not actual operation shots determined manually.

A missed operation shot is an actual operation shot for which the software failed to detect

both boundaries. Note that if one of the two boundaries of an operation shot is incorrect,

the detected operation shot still captures part of the actual operation. In such cases we did

not treat the detected operation shot as a false or a missed operation shot, but we quantified

it using the following metrics. The True Positive Fraction (TPF) is the ratio of the total

number of correctly detected images as part of actual operation shots (true positives) to the

total number of images of actual operation shots. High TPF is desirable. The False Positive

Fraction (FPF) is defined as the ratio of incorrectly detected images as part of operation shots

(false positives) to the total number of images of actual operation shots. Low FPF indicates

that a small fraction of a detected operation shot is not part of an actual operation shot.

Note that our definition of FPF is different from the traditional FPF that uses the ratio of

false positives to real negatives. We chose a different definition for FPF because the number

of real negatives in general is much larger than the number of false positives our algorithm

produces. Using the traditional definition, we have around 0.006 FPF on our test data set.

To quantify the percentage of correctly detected boundaries, we use boundary precision and
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recall. Boundary precision is the ratio of the number of correctly detected boundaries to the

total number of detected boundaries. Boundary recall is the ratio of the number of correctly

detected boundaries to the number of actual boundaries determined manually by humans.

High boundary precision and recall are desirable.

We applied our method to 25 colonoscopy videos. Table 5.8 shows that only seven false

shots are detected. In our opinion this number is a very small number given that any pair

of frames in the videos can form a false operation shot. Averages of true positive and false

positive fractions are 94% and 10%, respectively. Table 5.9 gives a more detail results for

each video. The majority of the videos have a perfect true positive fraction of 1.0. For some

videos, the detected operation shots are shorter than the actual operation shots by a couple

of frames in the beginning or the end of an actual operation shot. The false positive fraction

is due to the case that some detected shots are false; in addition, some detected shots are

slightly longer than the actual operation shots. A boundary recall of 97% is very high. Only

3% of the actual boundaries are missed by the algorithm due to the following reasons. First,

intense brightness causes JSEG to combine parts of the cable and colon wall. Second, in rare

cases only the head of the biopsy forceps (without the cable) is presented in the video during

the starting or the ending of an operation. The head of the forceps remains open for several

seconds. Since the shape of the head of the open forceps is different from the shape of the cable,

we cannot detect the correct boundary in this case. Note that the cable detection algorithm

still declares a forceps head a cable image if the head of the forceps is closed since the closed

head shape is very similar to the cable shape. The boundary precision is lower compared with

the boundary recall. Our shot detection method introduces 257-234-7=16 false boundaries, of

which 14 boundaries are due to 7 false shots. All the experiments were conducted on a PC

with 3.40 GHz Pentium(R) 4 and 1GB of RAM. The processing time for each video frame once

the insertion direction has been identified is about 7 seconds on average, of which 6 seconds

are spent by JSEG to perform region segmentation. Better performance can be achieved with

the more efficient implementation of JSEG.
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Table 5.8 Effectiveness of operation shot detection: Overview results.

Number of false shots 7
Number of missed shots 0

Average true positive fraction 0.94
Average false positive fraction 0.10
Average boundary precision 0.88

Average boundary recall 0.97

Table 5.9 Effectiveness of operation shot detection: Detailed results for
each video.

Video ID # Actual #Detected #Correctly True False Boundary Boundary
Boundaries Detected Detected Positive Positive Precision Recall

Boundaries Boundaries Fraction Fraction
002 2 4 2 1.00 0.38 0.50 1.00
009 2 4 2 1.00 0.45 0.50 1.00
010 12 14 11 0.71 0.04 0.79 0.92
012 12 12 12 1.00 0.00 1.00 1.00
014 2 2 2 1.00 0.00 1.00 1.00
024 24 26 24 1.00 0.11 0.92 1.00
044 18 20 17 0.72 0.08 0.85 0.94
047 18 19 16 0.86 0.17 0.84 0.89
053 14 15 13 0.82 0.09 0.80 0.93
097 6 8 6 1.00 0.31 0.75 1.00
102 10 10 10 1.00 0.00 1.00 1.00
111 4 4 4 1.00 0.00 1.00 1.00
114 12 14 12 1.00 0.03 0.86 1.00
116 16 16 16 1.00 0.00 1.00 1.00
133 8 8 8 1.00 0.00 1.00 1.00
134 10 10 8 0.85 0.08 0.80 0.80
148 6 7 6 1.00 0.10 0.86 1.00
156 4 6 4 1.00 0.16 0.67 1.00
165 4 6 4 1.00 0.14 0.67 1.00
168 2 2 2 1.00 0.00 1.00 1.00
174 0 0 0 - - - -
183 0 0 0 - - - -
186 20 22 20 1.00 0.17 0.91 1.00
192 20 20 19 0.82 0.00 1.00 1.00
202 8 8 8 1.00 0.00 1.00 1.00

Total 234 257 226 - - - -
Average - - - 0.94 0.10 0.88 0.97
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5.4 Summary

In this chapter, we have introduced our new spatio-temporal algorithms for detecting the

operation shot, which is defined as a segment of visual and audio data that correspond to a

diagnostic or therapeutic operation in a colonoscopy video. Instead of detecting the operation

shot directly, we converted this problem into the detection of the cable of the instrument used

in the operation shot. Experiments on colonoscopy videos have showed the effectiveness of our

proposed approach.
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CHAPTER 6. APPENDIX IMAGE CLASSIFICATION

In this chapter, we introduce our image analysis techniques for appendix image classifica-

tion. We have developed two different approaches to solve this problem. The first technique we

proposed is based on new intermediate features extracted from each image, followed with dif-

ferent classifiers for image classification. Our second approach is a new model based approach

to capture both the local image parts and global spatial relations among the parts. We first

present the challenges of appendix image classification in Section 6.1. Then we introduce the

technique details of the two approaches in Section 6.2 and Section 6.3. Experimental results

are given in Section 6.4.

6.1 Challenges of Appendix Image Classification

we define an image with a closely inspected appendiceal orifice an “appendix image”. Our

purpose is to classify images in a colonoscopy video into two categories: appendix image class

and non-appendix image class. The appendix image classification problem is very challenging

because of the large intra variations in the appearance of the appendiceal orifice caused by the

following reasons. First, because the appendiceal orifice may appear in different locations in

the images, and may have different sizes, we must handle a wide range of transformation of

object translation and scaling, changes of the viewing direction and distance. Secondly, there

are large illumination and intensity variations among appendix images. For example, some

part of the appendix appears very bright in many frames; this is related to light required to

illuminate the colon. The light beam that exits the endoscope tip causes colon mucosa and

contents that are in immediate proximity of the endoscope tip to be exposed to undispersed

light at maximal intensity which may result in over-exposure of the camera’s CCD chip. The
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same holds true for colon mucosa and contents that are in an immediate proximity of the

endoscope tip. The intensive brightness and resulting over-exposure may mask the actual

color information of the appendix and adjacent colon wall, making it difficult to utilize color

features directly for appendix detection. Thirdly, depending on the location in the colon, the

space between the endoscope tip and the lesion, and the position of the lesion within the colon,

one may see only part of appendiceal office.

A direct application of existing object recognition techniques to detect the appendiceal

orifice leads to unacceptable results. One of the reasons is the failure of the interesting point

detector (or saliency operator). Many of the existing object recognition techniques are heavily

relying on the interesting point detector to identify the regions on the object. If the object of

interests (appendiceal orifice) always receive insufficient coverage from the detector, the object

recognition task may fail no matter how accuracy of other steps (such as feature extraction and

feature comparison) are. Figure 6.1 illustrates this case. The left image (Figure 6.1(a)) is the

original appendix image and Figure 6.1(b) shows the results of applying the well-known “Scale

Invariant Feature Transform” (SIFT) interesting point detector (Lowe, 2004). The location,

orientation, and magnitude of each interesting point are annotated by the arrows. The majority

of the appendiceal orifice (several elliptical shape muscles in the upper part of the image) is

not identified by the feature detector. We also applied the eigenface based method (Turk and

Pentland, 1991) to a set of appendix images and used the principle subspace to recognize new

image. Due to the large variations of shape, color, and illumination, this method failed to

detect the appendiceal orifice in many cases.

6.2 Feature-based Appendix Image Detection Approach

This is the first method to solve the appendix image classification problem. It consists

of two steps. First, we obtain from each image intermediate features that we introduce in

this section. Second, we use classification algorithms to group the images into two groups:

appendix image class and non-appendix image class. Three classifiers, K-Means, Decision-

Tree, and Support-Vector-Machine (SVM), are employed. The new intermediate features are
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a b

Figure 6.1 (a)Original appendix image; (b) Location, orientation, and
magnitude of interesting points identified by SIFT feature de-
tector.

derived based on the following two observations: 1) When the appendix is closely inspected, a

distant colon lumen is not visible (”no colon lumen”); 2) The clearly seen appendix orifice has

several curvilinear structures that are part of ellipses. These structures usually are located in

the center of the image when the appendix is the focal point of inspection.

The new features are as follows (1) Likelihood of no colon lumen; (2) Ratio of edge pixels

that are part of curvilinear structures; (3) Coverage of the ellipse inside the image; (4) Ratio

of edge pixels that are part of ideal ellipses. We describe the derivation of these features in

more detail below.

1 Feature representing the likelihood of no colon lumen: Based on the first observation,

this feature represents the possibility of the presence of distant lumen in the image. We

first segment the image using JSEG (Deng and Manjunath, 2001). The segmented image

contains multiple regions, as shown in Figure 6.2(b) and Figure 6.2(d). The likelihood

of no distant colon lumen is computed as follows.
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PNoLumen =
IDarkestRegion

IMax
(6.1)

PNoLumen is the likelihood of no distant colon lumen, IDarkestRegion is the average inten-

sity of the darkest region, and IMax is the maximal intensity of the image. The darkest

regions are pointed out by the arrows in Figure 6.2(b) and Figure 6.2(d). Generally, the

value of PNoLumen for an appendix image is larger than that of the image with distant

colon lumen since the average intensity value of the darkest region of appendix image is

larger than the value of images with ”dark” distant lumen. Figure 6.2 shows the visual

difference between the image with distant lumen and the appendix image. Note that the

small size regions are removed by filtering out all the regions whose size is less than a

pre-defined size threshold.

Darkest Region Segmented by JSEG
(a) (b)

(c) (d)

Darkest Region Segmented by JSEG

Figure 6.2 Image examples before and after segmentation: (a) Original
lumen image; (b) Lumen image after segmentation; (c) Original
appendix image; (d) Appendix image after segmentation. The
average intensity of the darkest region for the lumen image is
much smaller than the one for the appendix image, which is
consistent with our observation (1).

2 Feature representing the ratio of edge pixels belonging to curvilinear structure: Based on

the second observation, an appendix image has several curvilinear structures. We claim
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that the possibility that the image contains the appendiceal orifice is high if the many

edge pixels belong to curvilinear structures corresponding to the appendiceal orifice. To

get the edge image that includes the curvilinear structures, we employ the same Hessian

matrix-based technique used previously (Cao et al., 2007). In Figure 6.3, the binary image

(Figure 6.3(b)) contains ellipse-shape curves that are part of the appendiceal orifice. But

it also includes other curves, as shown in the bottom right part of Figure 6.3(b). We

select the true appendix curve by checking the curvature change along the skeleton of

each curve. The skeleton of the curve that is not a real appendiceal orifice has either a

small curvature change (curve with linear shape, illustrated as the left curve of the two

curves in the right bottom of Figure 6.3(b)) or a very large curvature change (curve with

round shape, illustrated as the right curve of the two curves in the right bottom of Figure

6.3(b)).

Curve that corresponding to the appendix orifice

(a) (b)

Curves that are not real appendix

(c) (d)

Curves that are not real appendix orifice

Figure 6.3 Image examples for image enhancement based on Hessian Ma-
trix: (a) Original appendix image; (b) Edge image for image(a)
after enhancement; (c) Original image without a clearly seen
appendiceal orifice; (e) Edge image for image(b) after enhance-
ment.

After the above preprocessing step, we compute the value of edge pixels in the curvilinear
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structures corresponding to the appendiceal orifice over the total number of edge pixels

in the binary image.

RCurve =
EdgeNumCurve

EdgeNumImg
(6.2)

RCurve indicates the ratio of edge pixels of the appendix curvilinear structures; EdgeNumCurve

is the number of edge pixels that belong to the curvilinear structures of the appendiceal

orifice. EdgeNumImg is the number of edge pixels in the entire image. In Figure 6.3(b),

many edge pixels in the binary image (generated from the appendix image) are curves

corresponding to the appendiceal orifice. But most edge pixels in Figure 6.3(d) are

curves that are not part of the appendiceal orifice. A large value of RCurve indicates a

high probability that the appendiceal orifice is present in the image.

3 Features representing partial ellipses in an image: Recall our second observation that a

closely inspected appendiceal orifice has several curvilinear structures that are part of

ellipses. To derive the two features that reflect this observation, we only consider curves

that are potential candidates for the true appendiceal orifice from the computation of the

previous feature (e.g., curve ACu in Figure 6.4). We want to find an ideal ellipse with

certain part fitting well with the candidate curve. For example, part of the ideal ellipse

A fits well with curve ACu as shown in Figure 6.4). We introduce a new modification to

the randomized Hough Transform (Xu et al., 1990) abbreviated to MHT. MHT works

as follows. Given an edge image with a curve, say ACu, we expand the image and get

the skeleton SkeACu of the curve. Then, we perform a boundary tracing algorithm on

SkeACu to get a boundary represented by a sequence of points P1, . . . , Pi, Pi+1, . . . , Pn

where Pi and Pi+1 are neighboring edge pixels. Next, we divide the sequence of points

into three segments with equal length, illustrated in Figure 6.4. We generate an ideal

ellipse as follows. We randomly pick one edge pixel from each segment and compute an

ideal ellipse whose boundary passes the three chosen edge pixels in a polar coordinate.

The ideal ellipse is represented by an ellipse tuple (x, y coordinates of the ellipse centroid,
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the length of the major axis, the length of the minor axis, and the orientation of the major

axis). If at least 90% of the edge pixels of the curve are on the boundary of the ideal

ellipse, we consider this ellipse as a valid ideal ellipse for the curve and stop the MHT for

this curve. Otherwise, we continue to select three random pixels from the three segments

and repeat the above procedure. If we can not find any valid ellipse after N iterations

where N is a predefined threshold, we skip this curve. Compared with other Hough

Transform techniques, we do not perform coordinate transform operations. Instead, we

randomly pick up three points from each segment to construct an ellipse based on ellipse

geometry (Xu et al., 1998). Then we determine the degree of curve fitting by checking the

ellipse coverage. This is different from many of existing curve fitting techniques, which

attempt to formalize and solve an energy minimization problem. Our experiments have

shown that the new techniques are simple yet effective in finding the desired curves.

As shown in Figure 6.5, the ideal ellipse (Ellipse A and Ellipse B) may or may not be

enclosed entirely in the original image. The more curvilinear structures we find in the

boundary of the ideal ellipse, the more likely the appendiceal orifice is present in the

image.

After this step, we get a number of ideal ellipses. We eliminate any detected ellipse

with less than 50% of its area inside the original image. We compute “Ellipse Cov-

erage (COVEllipse)” to reflect the amount of the ellipse area inside the original image.

Let k be the number of valid ellipses. Let PixelNumInsideOriImgEllipsei be the

number of pixels that are both inside the ellipse i and inside the original image and

PixelNumInsideEllipsei is the number of pixels inside the ellipse i, where i ∈ [1, k].

Combining this we have the following equation for the ellipse coverage.

COVEllipse =
∑k

i=1 PixelNumInsideOriImgEllipsei∑k
i=1 PixelNumInsideEllipsei

(6.3)

If this value is high, we can find many ideal ellipses with most of their area inside the

original image. Hence, the possibility of the presence of an appendix is high.
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Segment 1

Segment 2

Segment 3

Curve ACu
(Part of the Ideal Ellipse A)Ideal Ellipse A

Figure 6.4 Derivation of the ideal ellipse A from curve ACu, which is part
of the ideal ellipse A and resides in the boundary of ellipse A.

Curve ACu
(Part of the

Ideal Ellipse A)

Ideal Ellipse A

Curve BCu
(Part of the

Ideal Ellipse B)

Ideal Ellipse B

Figure 6.5 Relationship between the appendix curve and the ideal ellipse.
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We introduce another feature called “Ellipse Edge Coverage (COVEllipseEdge)” computed

as follows.

COVEllipseEdg =
∑k

i=1 EdgeNumOnEllipseBoundaryi∑k
i=1 TotalP ixelNumOnEllipseBoundaryi

(6.4)

where EdgeNumOnEllipseBoundaryi is the number of pixels on the appendix curve

that is on the boundary of ellipse i, and TotalP ixelNumOnEllipseBoundaryi is the

total number of pixels on the boundary of ellipse i, where i ∈ [1, k]. If this value is

high, many ideal ellipses are present with the majority of their boundaries covered by

the curvilinear structures of the appendiceal orifice. Thus, an appendix image has a high

value of COVEllipseEdge.

For each video, we extract the four intermediate features for each image and apply a

classifier. We provide three classifiers: for K-means classifier, Euclidean distance function and

equal weight for each feature are used; for the Decision-Tree classifier, we use C4.5 as our

classifier; for the SVM classifier, we use the sequential minimal optimization algorithm with

polynomial kernels. Any image in this video will be classified as either an appendix image or a

non-appendix image. The details of the experimental results will be discussed in Section 6.4.

6.3 Model-based Appendix Image Detection Approach

The four intermediate features in the previous section can capture the global visual proper-

ties of the object (appendiceal orifice). However, it may not be effective if the intra-variations

of the object are large. An alternative approach is to find some parts of the object that the

intra-variations of the part are small. If we use these parts to represent the object and convert

the problem of object recognition into the problem of parts recognition, we may achieve better

performance. In this section, we propose a new model based approach to capture both the local

image parts and global spatial relations among the parts. In our model, we decompose the

appendiceal orifice into a set of parts that are assembled in a deformable configuration. A Prin-

ciple Component Analysis (PCA) based appearance model and an N-star graph shape model
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are used to capture the appearance of each part and the spatial relations among these parts.

In the following sections, we first introduce the structure of the statistical model. Then we

present our algorithms for learning the model parameters. Followed by a detailed description

for recognizing an instance of the object (appendiceal orifice), given a new colon image.

6.3.1 Structure of the Statistical Model

We use a restricted pictorial structural model to encode the appearance and shape in-

formation. The pictorial structural model was first proposed by Fischler (M.A.Fischler and

R.A.Elschlager, 1973) and improved by Felzenszwalb and Huttenlocher (Felzenszwalb and

Huttenlocher, 2005). Motivated by their work, we represent the object by a set of parts

{p0, p1, . . . , pP } where the number of parts is (P + 1). We define a P-star graph G = (V,E)

where V = {v0, v1, . . . , vP } corresponds to the (P + 1) parts; an edge (v0, vj) represents a pair

of connected parts; v0 is the root node with vertex degree P and vj (j ∈ [1, P ]) represents the

leaf node with vertex degree 1. In addition, we define a configuration L = (l0, l1, l2, . . . , lP )

to represent an instance of the object where li indicates the location of part vi (i ∈ [0, P ]).

An example of the model structure is illustrated in Figure 6.6. The left image shows a colon

image that contains an object (appendiceal orifice) and the object is decomposed into four

parts. Each of them is annotated by a dot rectangle. The object can be mapped into a 3-star

graph. The top right part of the object corresponds to the root node v0 in the 3-star graph

shown on the right. The other three parts are mapped into the three leaves in the graph. Af-

ter we construct the P-star graph and establish the mapping between object parts and graph

nodes, we consider the model parameters. Let θf = (A,X) be a set of parameters that define

a foreground object model where parameters A = {a0, a1, a2, . . . , aP } represent the appear-

ance of the parts, and parameters X = {x0j |(v0, vj) ∈ E}(j ∈ [1, P ]) characterize the spatial

relationship between connected parts.

From the statistic point of view, our model can be best explained as follows. Suppose we

have already learnt a set of parameters θf for foreground objects and all non-object background

images are modelled by a fixed set of parameters θb. Given a new image I, we can determine
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Part 0 ( p0) at Location 0 ( l0)

Part 1 ( p1) at Location 1 ( l1)

Part 2 ( p2) at Location 2 ( l2)

Part 3 ( p3) at Location 3 ( l3)
V0 (Root Node)

V3

V1

V2

Figure 6.6 Illustration of the mapping between the image and the graph.

whether the image contains an instance of an object by considering posterior ratio R using

Bayes’ formulation:

R =
p(h1|I)
p(h0|I)

=
p(I|h1) · p(h1)
p(I|h0) · p(h0)

≈ p(I|θf ) · p(h1)
p(I|θb) · p(h0)

(6.5)

where h1 represents the hypothesis that I contains an instance of the object and h0 repre-

sents the hypothesis that I contains background only. The right most expression in Equation

6.5 is an approximation because we represent the category with the imperfect model (Fergus

et al., 2006). To compute the posterior ratio R, we should obtain the likelihood ratio and prior

ratio. The prior ratio may be estimated from training or may be set to a constant value manu-

ally. To compute the likelihood ratio, we need to compute two likelihood probabilities: p(I|θf )

and p(I|θb). The denominator p(I|θb) is the likelihood of seeing an image with background

parameters. It can be considered as a constant for a given image (Fergus et al., 2006). The

nominator p(I|θf ) indicates the likelihood of seeing an image with the foreground parameters.

To obtain this value, we should sum over all possible object configurations (Crandall et al.,

2005). Using conditional probability principles, we can get the following equation:

p(I|θf ) =
K∑

k=1

p(I|Lk, θf ) · p(Lk|θf ) (6.6)
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where Lk represents a possible configuration and K is the number of total configurations.

We define the score of the configuration Lk as the probability of this configuration occurs in the

image I with foreground parameters θf . We term this probability as p(Lk|I, θf ). In addition,

we name the configuration with the highest probability as the best configuration of this image

and term the best configuration using symbol “L”. In practice, we obtain the best results

of p(I|θf ) by only selecting the best configuration instead of summing up all configurations,

since usually, the background images contain many low-scoring configurations, which cause

false positives (Fergus et al., 2003, 2006). Based on this assumption and Equation 6.6, we get

the following formula:

p(I|θf ) =
K∑

k=1

p(I|Lk, θf ) · p(Lk|θf ) ≈ p(I|L, θf ) · p(L, θf ) (6.7)

where L represents the best configuration. Next we apply the Bayes’ formulation to the

probability score of the best configuration L and get the following formula:

p(L|I, θf ) ∝ p(I|L, θf ) · p(L|θf ) (6.8)

From Equation 6.7 and Equation 6.8, we can convert the problem of computing the likeli-

hood of seeing an image with foreground parameters (p(I|θf ), which is the left expression in

Equation 6.7) into the problem of computing the probability of the best configuration given

the image with foreground parameters (p(L|I, θf ), which is the left expression of Equation

6.8). This conversion simplifies the recognition step: given a new image, we can determine the

existence of the object by only considering the probability score of the best configuration.

The first term (likelihood probability p(I|L, θf )) in Equation 6.8 represents the likelihood

of seeing an image given that the object is at a particular configuration and it only depends

on the appearance of the parts. If the parts do not overlap (which is true in our case), we

can assume that each part is independent. Hence, the likelihood probability can be factored

as follows

p(I|L, θf ) = p(I|L,A) ∝
P∏

i=0

p(I|li, ai) (6.9)
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where li represents the location of part vi and ai indicates the appearance parameters.

The second term (prior probability p(L|θf )) in Equation 6.8 models the prior distribution over

object configurations and it only relies on the spatial relations among the connected parts. It

can be captured by a tree-structure Markov Random Field with edge set E, which is equal to

the joint distribution for pairs of parts connected by edges divided by the joint distribution

of each part (Poggi and Ragozini, 1999; Elia et al., 2003). Since we use a P-star graph to

model the relative spatial difference between the root and the leaves, we can simplify the prior

distribution with the following equation:

p(L|θf ) =
∏

(v0,vj)∈E

p(l0, lj |c0,j) (6.10)

where part v0 and vj are connected pairs; v0 is root node and vj is leaf node. l0 and lj are

the locations for part v0 and vj . c0,j are the parameters for modelling the connection between

part v0 and vj . Using Equation 6.9 and Equation 6.10 to replace the two terms in the right

expression of Equation 6.8, we can get the following formula

p(L|I, θf ) ∝
P∏

i=0

p(I|li, ai) ·
∏

(v0,vj)∈E

p(l0, lj |c0,j) (6.11)

In order to solve Equation 6.11, we need to obtain the parameters for both the appearance

model and shape model by learning from training examples. For recognition purpose, we

also need to assign the appearance probability score for each part candidate and the shape

probability score for connected parts. In the next sections, we will introduce how we learn the

model parameters from training examples and how to recognize an instance of the object for

a new image by computing the probability score.

6.3.2 Learning

Suppose we have N training images; each of them contains an instance of the object

and we annotate the location of each part in these images. The purpose of learning is to

obtain the parameters θf = (A,X) from the N training images {I1, I2, · · · , IN} with N object

configurations {L1, L2, · · · , LN}. The object in each image is decomposed into P +1 parts and
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we define the configuration of image Ik as Lk = (Lk0, Lk1, Lk2, · · · , LkP , )(k ∈ [1, N ]). We solve

this problem using maximal a posterior (MAP) method. We first define a function of θf as

below

f(θf ) = p(I1, L1, I2, L2, · · · , IN , LN |θf ) =
N∏

k=1

p(Ik, Lk|θf ) (6.12)

This is the likelihood function of θf with respect to a set of independent samples {< I1, L1 >

, < I2, L2 >, · · · , < IN , LN >}. For the single term of the right expression in Equation 6.12,

we obtain the following formula using conditional probability:

p(Ik, Lk|θf ) = p(Ik|Lk, θf ) · p(Lk|θf ) (6.13)

Based on Equations 6.12 and 6.13, we derive the maximal likelihood estimate for θf as

follows

θ∗f = argmax︸ ︷︷ ︸
θf

p(I1, I2, · · · , IN , L1, L2, · · · , LN |θf ) = argmax︸ ︷︷ ︸
θf

N∏
k=1

p(Ik|Lk, θf ) ·
N∏

k=1

p(Lk, θf )

(6.14)

The first part
∏N

k=1 p(Ik|Lk, θf ) of the last expression in Equation 6.14 relies only on the

appearance, and the second part
∏N

k=1 p(Lk|θf ) depends only on the spatial relations among

parts. We can independently obtain the parameters for the appearance model and for the

shape model by two algorithms introduced in the next two sections. The input for these

algorithms is a set of independent examples which is termed as “IndependentSet”. We define

IndependentSet = {S0, S1, · · · , SP } where Si = {< I1, L1i >,< I2, L2i >, · · · , < IN , LNi >}
(i ∈ [0, P ]), and Lki ( k ∈ [1, N ] and i ∈ [0, P ] ) represents the location of part vi of training

image Ik (k ∈ [1, N ]).

6.3.2.1 Learning Parameters for Appearance Model

The purpose for this part is to estimate the parameters A for the appearance model. Since

the first part of the last expression in Equation 6.14 is only related to the appearance of the
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part, we can get

A∗ = argmax︸ ︷︷ ︸
A

N∏
k=1

p(Ik|Lk, A) (6.15)

Recall that Equation 6.9 gives the formula for computing the likelihood of seeing an image

Ik, given that the image has a specific configuration Lk where Lk = (Lk0, Lk1, Lk2, · · · , LkP )

and Lki represents the location of part vi (i ∈ [0, P ]). Combine Equation 6.9 and 6.15, we have

the following maximal likelihood estimation.

A∗ = argmax︸ ︷︷ ︸
A

N∏
k=1

P∏
i=0

p(Ik|Lki, ai) (6.16)

This is the maximal likelihood estimation of the appearance parameters. As we mentioned

before, each part is assumed to be independent. Hence, we can solve Equation 6.16 by com-

puting ai independently as below

a∗i = argmax︸ ︷︷ ︸
A

N∏
k=1

p(Ik|Lki, ai) (6.17)

Hinted by the previous work in (Turk and Pentland, 1991; Moghaddam and Pentland,

1997), we introduce a new appearance model based on Principal Component Analysis (PCA).

We first construct a principal subspace (also called ”feature space” in (Turk and Pentland, 1991;

Moghaddam and Pentland, 1997)). Then we compute the reconstruction error of the eigenspace

decomposition (referred as “residual” or ”Distance From Feature Space” in the work of (Turk

and Pentland, 1991; Moghaddam and Pentland, 1997)) for each training example. In (Turk and

Pentland, 1991), the authors use the reconstruction error as an indicator of image similarity

directly. Unlike their work, we model the reconstruction error of the training data using

density estimation techniques. In (Moghaddam and Pentland, 1997), the authors use two types

of density estimation (a multivariate Gaussian and a Mixture-of-Gaussian) to estimate the

complete probability distribution of the object’s appearance. The target density is composed

of two parts: the density in the principal subspace (referred as “Distance In Feature Space”),

and the density in the orthogonal component of the principal subspace (referred as “Distance
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From Feature Space” or “reconstruction error”). In our method, we model appearance of

the part as a single Gaussian distribution and the problem of getting the parameter ai is

converted into the problem of deriving the values of mean and variance for the Gaussian

distribution. The reason is because the transformation and view angle change are small for

each part although the object in a whole has large variations. Hence, we can accurately model

the samples using a single Gaussian distribution. For the same reason, we only apply the

density estimation method to the reconstruction error (“residual” or “Distance From Feature

Space”). For each part vi(i ∈ [0, P ]), we perform the following two stages’ algorithm to obtain

the appearance parameter ai. In the description of the two stages’ algorithm, the symbol

“i” is a fixed value and it represents the part number. The input of the algorithm is a set

of independent examples “IndependentSet” where IndependentSet = {S0, S1, · · · , SP } and

Sj = {< I1, L1j >,< I2, L2j >, · · · , < IN , LNj >} (j ∈ [0, P ]).

• Stage 1: In this stage, we construct the principal subspace for part vi by eigenvector

extraction. Since our purpose in this stage is to obtain the principal subspace for part vi ,

we only need to perform the eigenvector extraction to element Si instead of all elements of

“IndependentSet”. Specifically, we use the following steps to get the principal subspace:

– Step 1: Based on the location Lki of part vi in each image Lk of Si, we crop a sub

image Subk with size m × n. Then we transform Subk into a column vector with

size mn × 1 and generate a sequence of training images S = SI1, SI2, · · · , SIN for

part vi. How to set the appropriate values for m and n will be discussed in Section

6.4.

– Step 2: Obtain the mean image M = 1
N

∑N
k=1 SIk and a set of difference images

D = {D1, D2, · · · , DN} where Dk = SIk − M .

– Step 3: Construct the covariance matrix CM from the set of difference images D

(obtained in step 2): CM = A ∗ AT where A = {D1, D2, · · · , DN}(k ∈ [1, N ]), and

∗ represents a matrix multiplication.

– Step 4: Compute the eigenvalues and eigenvectors from CM (obtained in step 3).
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The eigenvectors capture the source of the variance for part vi. We only select M

largest-eigenvalue eigenvectors {μ1, μ2, · · · , μM}. Let φi = {μ1, μ2, · · · , μM} and this

vector is called the principal subspace (or feature space) that contains the principal

components of part vi. How to set the appropriate values for M will be discussed

in Section 6.4

– Step 5: Reconstruct each SIk based on the linear combination of the M largest-

eigenvalue eigenvectors from step 4. For each SIk, we can get a sequence of re-

construction weights (coefficients) which is termed as “Weik”. We define Weik =

{ω1, ω2, · · · , ωM} where ωl is the coefficient for eigenvector μl during the reconstruc-

tion and it is computed as ωl = μT
l · (SIk − M) (l ∈ [1,M ]). Since we have N sub

images, we can get N sequences of reconstruction weights, which form a set denoted

as WeightSet4PartVi = {Wei1,Wei2, · · · ,WeiN}.

• Stage 2: The second stage includes distance calculation and parameter estimation. For

this stage, we use all elements from the “IndependentSet”. We project all the sub images

from each element Sj(j ∈ [0, P ]) of “IndependentSet” to the principal subspace φi of

part vi obtained from the step 4 of the first stage. The distance from the feature space

for each sub image is computed as follows. Similar to the first step of Stage 1, for each

element Sj (j ∈ [0, P ]), we can get N instances (sub images) by cropping from the original

image Ik (k ∈ [1, N ]) based on location Lkj of part vj(k ∈ [1, N ] and j ∈ [0, P ]). Hence,

we have a total of N · (P + 1) sub images. For each sub image, we reconstruct it with

the linear combination of the eigenvectors obtained in step 4 of the first stage and get a

sequence of reconstruction weights. Then we compute the Euclidean distance between the

new reconstruction weights with each element from the “WeightSet4PartVi” obtained

in step 5 of the first stage. The minimal Euclidean distance is selected. This distance

determines the degree of similarity between the newly cropped sub image and the sub

images of part vi obtained in step 1 of Stage 1: the smaller the distance, the more likely

the image belongs to part vi. Altogether, there are N · (P + 1) distance values since the

number of sub images is N ·(P +1). These values form DistanceSet = {D0, D1, · · · , DP },
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Dj = {d1j , d2j , · · · , dNj}, and dkj (k ∈ [1, N ]) indicates the minimal distance value of the

sub image cropped from location Lkj(k ∈ [1, N ] and j ∈ [0, P ]). Among the elements

in “DistanceSet”, the values for Dj(j ∈ [0, P ]) are all positive values except the values

for Di are zero because the values in Dj (j ∈ [0, P ]) are calculated based on the sub

images from element Si. Hence, we set 0 as the mean of the Gaussian distribution. For

all the distance values that are larger than zero, we can treat them as the values in the

right side of Gaussian distribution. We compute the value of variance σ of the Gaussian

distribution using the formula:

σ2 =
1

N · (P + 1)
·

P∑
j=0

(
N∑

k=1

d2
kj) (6.18)

6.3.2.2 Learning Parameters for Shape Model

The purpose of this step is to obtain the shape parameters X. Since the second term of

the last expression in Equation 6.14 only relies on the spatial relation among parts, we obtain

the following equation

X∗ = argmaxX

N∏
k=1

p(Lk|X) (6.19)

Recall that we use Equation 6.10 to model the prior distribution. Combine Equation 6.10

and Equation 6.19, we obtain the maximal likelihood estimation

X∗ = argmaxA

N∏
k=1

∏
v0,vj∈E

p(Lk0, Lkj |c0j) (6.20)

Recall that we use an N -star graph to represent the object and the N -star graph is a two

level tree structure. Hence, all the connected edges are between root v0 and leaf vj . The

location of each node is represented by the X−Y coordinates of the node. We use two random

variables < X, Y > where X and Y are the relative spatial difference between part v0 and vj

along the coordinate of X and Y axes, respectively. We model both X and Y using a Gaussian

distribution with their own mean and variance values as follows
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p(x) ≈ N(μx, σ2
x) =

1√
2πσx

exp(−1
2
(
x − μx

σx
)2) (6.21)

p(y) ≈ N(μy, σ
2
y) =

1√
2πσy

exp(−1
2
(
y − μy

σy
)2) (6.22)

Recall that the input for our algorithm is “IndependentSet” where IndependentSet =

S0, S1, · · · , SP and Si = {< I1, L1i >,< I2, L2i >, · · · , < IN , LNi >} (i ∈ [0, P ]). To obtain

the mean and variance values of the shape model for part vi, we only need the element Si

from the “IndependentSet”. In practice, we can use < xki, yki > to represent the relative

spatial difference between the centroids of part v0 and part vi of image Ik. Then we compute

parameters μxi and σxi as follows:

μxi =
1
N

N∑
k=1

xki (6.23)

σ2
xi =

1
N

N∑
k=1

(xki − μxi)2 (6.24)

μyi , and σyi can be calculated similarly.

6.3.3 Recognition

In this section, we introduce our method on determining the existence of the object (ap-

pendiceal orifice) given a new image. As we have discussed in Section 6.3.1, we need to find

the configurations with the maximal posterior probability in the image. Figure 6.7 shows three

major components for recognition in our part-based technique. Given a new image, we first

select parts candidates (Step A). Then, we calculate the appearance probability for each part

(Step B1) and compute the shape probability between paired parts (Step B2). Finally, we

compute the probability score of each configuration and select the best configuration based on

the probability value (Step C). If the score of the best configuration is more than a predefined

threshold, we claim that the image contains the object of interest. We describe each step in

detail in the following sections:
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Figure 6.7 System overview of detecting the appendiceal orifice under the
part-based statistical framework.

1 Parts Candidate Section

This is a preprocessing step to identify the candidate parts for computing the appearance

and shape probability. The goal is to identify the pixels that likely belong to the object

of interest and reduce the number of pixels used for next steps to make our algorithm

feasible and efficient. We encode the following domain knowledge to filter out non-object

pixels. Our observations and consultations with domain experts indicate that the clearly

seen appendix orifice has several curvilinear structures that are part of ellipses. These

structures usually are located in the center of the image when the appendix is the focal

point of inspection. Based on this fact, we propose an algorithm as below to discard the

pixels that are not likely to belong to the appendix orifice.

• Step 1: Curvilinear structure extraction. We obtain the edge image that includes

the curvilinear structures from the original image using the Hessian matrix based

techniques (Cao et al., 2006).

• Step 2: Non-appendix pixels removal. The edge image from step 1 contains ellipse-

shape curves that are part of the appendiceal orifice. But it also includes curves

that do not belong to the appendiceal orifice. We determine the curve that is likely

the true appendix curve by checking the curvature change along the skeleton of each

curve. The skeleton of the curve that is not part of the real appendiceal orifice has
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either a small curvature change (curve with linear shape) or a very large curvature

change (curve with round shape). Interested readers can refer to Section 6.2 for

more details.

• Step 3: Cluster refinement. We refine the results from step 2 by selecting the curves

that are more likely to be the real appendix curve by our new modification to the

randomized Hough Transform (Xu et al., 1990), abbreviated to MHT . The details

of MHT has been reported in Section 6.2

After performing the above algorithm, we can detect most of the pixels of interests

and remove the majority of the pixels that are unlikely part of the appendix orifice.

The output of this step is a set of pixels and each pixel will be the centroid of the

possible part for next steps. We term the pixel candidate as pc in the next section. Our

experiments indicate that the candidate selection algorithm can remove 60 to 70 percent

of the pixels from the original image. Since the number of the pixels of the original image

in our experiments is in the order of O(104), the number of pixel candidates after part

candidate selection is in the order of O(103).

2 Probability Computation

There are two types of probability computation: appearance probability computation

and shape probability computation. We can compute them separately since we assume

the appearance and the location are independent as assumed in most previous work.

• Appearance Probability Computation

The appearance probability is computed based on our assumption that the appear-

ance of the part follows the Gaussian distribution over the distance space. For each

pixel candidate from ”Parts Candidate Selection” step, we crop a sub image called

“SubImg” whose centroid is pc and window size is m × n. Since we decompose

the object into (P + 1) parts, we should compute (P + 1) probability values for

each sub image. Each of them indicates the appearance likelihood of this sub image

belongs to the particular part. We give an example to illustrate the computation
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of the appearance probability for part vi (i ∈ [0, P ]). The input of this example

are pc (the centroid of the part) and the corresponding “SubImg”, Si from the

“IndependentSet” (see Section 6.3.2 for the definition of “IndependentSet”). We

first convert the “SubImg” into a column vector SubI with size mn × 1. Then we

obtain the Euclidean distance between this image and the principal subspace using

the following steps:

– Step 1: Compare the sub image SubI with the mean image M = 1
N

∑
k=1

where SIk is the cropped image from Si (for the complete definitions of M and

SIk, please refer to step 1 and step 2 of stage 1 in the algorithm description in

Section 6.3.2.1). Then we multiple this value with eigenvectors and obtain the

corresponding reconstruction weight ωk = μT
k · (SubI − M) for the eigenvector

μk.

– Step 2: Form a new vector of weights ΩT = [ω1, ω2, · · · , ωM ] where M is the

number of the largest eigenvalues eigenvectors for part vi. We can compute

the Euclidean distance between this weight vector and the element from the

“WeightSet” obtained in step 5 of the stage 1 in the algorithm description of

Section 6.3.2.1. The minimal distance MinD is selected.

– Step 3: Compute the appearance probability score p of the sub image based

on the minimal distance MinD we obtained from step 2. It is computed based

on the Gaussian distribution assumption and the two parameters (mean μ and

deviation σ) obtained in Section 6.3.2.1. Specifically, we define

p =
1√
2πσ

exp

(
−1

2
· (MinD − μ)2

σ2

)
(6.25)

To further reduce the computation time in the following steps, we discard the sub

image with low score since the part with low probability score are not likely to be

the real part candidate. In our experiments, more than half of the part candidates

are removed. Recall that the number of pixel candidates is in the order of O(103)

after “part candidate selection”, we can reduce the number of possible location for
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each part to the order of O(102) by this refinement.

• Shape Probability Computation

To compute the shape probability for each connected part v0, vj , we model the

relative spatial distance between the two parts. The spatial differences of part vj

with respect to part v0 are recorded by two variables Diffx and Diffy. The shape

probability is computed using the following joint distribution

p(x, y) = p(x)·p(y) =
1

2πσxjσyj
exp(−1

2
((

Diffx − μxj

σxj
)2+(

Diffy − μyj

σyj
)2)) (6.26)

where μxi, μyi, σxi, and σyi are parameters obtained in Section 6.3.2.2

3 Best Configuration Selection

Once we obtain the appearance and shape probability, we can compute the score for

each possible configuration. We use a concrete example to illustrate how to get the score

for one particular configuration. Suppose we decompose the appendix into four parts

{p0, p1, p2, p3}. We obtain the appearance probability for each part as {AP0, AP1, AP2, AP3}.
Since we are using an N -star graph, we get 3 shape probabilities, {SP01, SP02, SP03} for

the three edges between the root and the leaves. Based on Equation 6.11, we compute

the log likelihood of this probability. The final score F is the sum up of the appear-

ance probability and shape probability for each part. The formula for final score is

F =
∑4

i=0 log(APi) +
∑3

i=0 log(SP0i). Since we may have multiple candidates for each

part, the total computation time is O(h2n) where n is the number of parts and h is the

number of possible locations for each part. This is computational feasible in our case

since the number of parts for the object is usually small, about 4 to 7 parts per object.

And the number of possible location for each part is usually in the order of O(102).

6.4 Performance Study

In this section, we present the experimental results to illustrate the effectiveness of our

proposed approach. We first describe the characteristics of our data sets. Then we discuss our
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experiments on model training. Finally, we present our experimental results on ten colonoscopy

videos.

6.4.1 Datasets

We used three sets of data for experiments. (1) Image Set I: is used for training the

decision tree model and SVM model for the first appendix detection technique (feature-based

method). (2) Image Set II: is used for training the statistic model for the second appendix

detection technique (model-based method) to achieve the best performance. (3) Video Set:

is composed of images from ten colonoscopy videos. We apply both techniques to the video

set. Table 6.1 shows the characteristics of “Image Set I”. For the second appendix detection

technique (model-based method), we further classify the appendix images into two categories:

appendix image class I and appendix image class II. Consequently, we need to construct two

object models and the “Image Set II” consists of two sets of training images (training set I

and training set II, one for each image class). Each training set is composed of both positive

examples (images with appendiceal orifice) and negative examples (images without the appen-

diceal orifice). The location of the object (the appendiceal orifice) in each positive example is

carefully annotated by the domain expert. For each run of the experiment, we randomly split

the positive examples into two separate clusters with equal size. We then train the model using

the first cluster and test the model using the combination of the second cluster and the nega-

tive examples. Figure 6.8 and Figure 6.9 illustrate the image examples from the two classes.

Table 6.2 shows the number of positive examples and negative examples used in each training

set. In our current model structure, we only use positive examples to construct the object

model. More sophisticated model structures are needed in the future if we want to train the

model using both positive and negative examples. The setting of the training images for the

first method is different from the setting for the second technique. In the “Image Set I” which

is used for model training of the first technique, we do not further categorize the appendix

images into multiple classes. This is because the intermediate features for the first technique

are global features and can handle the variance among different shapes of appendiceal orifice.
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Our experiment also shows that the feature values from different shape of appendiceal orifice

are close to each other.

The “Videos Set” is also very important to show the effectiveness of our approach. Table

6.3 shows the ten videos and the number of appendix images and non-appendix images in each

video. Each video represents one colonoscopic procedure. Recall that we have two models (one

for image class I and another for image class II) for the second appendix detection technique

(model-based method). Hence, we compute two probability scores for each image. If any of

the value is larger than the predefined threshold, we determine that the corresponding image

belongs to the appendix image class.

Figure 6.8 Positive training images for the appendix image class I.

Table 6.1 Characteristics of “Image Set I”.

# of Images with Appendiceal # of Images without
Orifice (Positive) Appendiceal Orifice (Negative)

500 500
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Figure 6.9 Positive training images for the appendix image class II.

Table 6.2 Characteristics of “Image Set II”.

Training Set # of Images with Appendiceal # of Images without
Orifice (Positive) Appendiceal Orifice (Negative)

Training Set I for 200 100
Appendix Image Class I

Training Set II for 500 250
Appendix Image Class II

Table 6.3 Characteristics of “Video Set”.

Video ID Number of Appendix Images Number of Non-appendix Images
03009 69 361
03010 135 608
03047 18 410
06047 57 473
06048 24 339
06036 153 419
06037 0 397
06038 0 425
06042 0 65
06043 39 257
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6.4.2 Model Training

The purpose for this step is using the two image sets (“Image Set I” and “Image Set II”)

to obtain the model parameters. We discuss model training for the two techniques as below.

We used “Image Set I” to train the two classifiers (Decision-Tree and SVM) used in the

first technique. We used Weka software from (Witten and Frank, 2005) as our training and

testing tool since this software provides the implementation of both Decision-Tree and SVM

algorithms. C4.5 (Witten and Frank, 2005) is used as the decision-tree classifier and Sequential

Minimal Optimization algorithm (SMO) algorithm with polynomial kernels (Platt, 1998; Wit-

ten and Frank, 2005) is used for SVM classifier. The optimal parameters for both classifiers

were chosen by performing ten-fold cross validation on the feature sets extracted from “Image

Set I”.

We used “Image Set II” to train the part-based model. First, we need to determine the

number of parts used to represent the object, which part of the object should be used as the

representative part, and what is the size of each part. These three issues are related with each

other. Recall the computation time for the best configuration selection step in our proposed

approach is O(h2n) where n is the number of parts. Since h is in the order of O(102), the

computation time will reach the level of O(105) if the number of parts is equal or more than 10.

In order to save the computation time, we should choose less than ten parts. At the same time,

the object decomposition should capture the most discriminate part of the object to achieve

optimal performance. Intuitively, more parts have more coverage of the object. However, more

parts may increase the learning and recognition time and it may cause an over-fitting problem.

Since usually the appendix has an ellipse shape, we choose to put parts in the arch of the

ellipse. In another word, different arches of the same ellipse are used for part representation.

Hence, different parts of the same object have the same scale. Based on this fact, we do not

need to use different scales for different parts of the same object. This is different from other

part-based approaches (Weber et al., 2000; Felzenszwalb and Huttenlocher, 2005). The size

of the part is related with the number of parts for the object and the size of the object in

the image. The more parts we decompose the object, the smaller the size of the part, and
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vice versa; the larger the size of the object, the larger the size of the part, and vice versa.

We ran our classifier using different combinations of the number of parts and the sizes of the

parts. The results show that the number of parts does have impact on the performance of the

classifier. However, our technique are not very sensitive to the change of the size since the

results do not vary much when we performed experiments with different size values between 30

and 50 pixels. In subsequent performance evaluation, we use the size 45×45 pixels for the part

in class I and 35 × 35 pixels for the part in class II. Figure 6.10 illustrates the error rates for

both image classes when varying the number of parts, given the above sizes of the parts. The

performance improvement is small if the number of parts is larger than four. Hence, we chose

four as the number of parts in subsequent experiments. Another important parameter is the

number of eigenvectors; our experiments suggest that while many eigenvectors are necessary

for accurate reconstruction of the sub image, the recognition can still be performed correctly

using fewer eigenvectors. Our result is similar to that obtained at (Turk and Pentland, 1991).

We set this value to 15 based on experiments. Figure 6.11 shows six images from training set

I. Each object in the image is decomposed into four parts, which covers part of the arch of the

ellipse shape of the appendiceal orifice. We annotated each part of the object with rectangles

in different color: red rectangle for part 0 (root), green rectangle for part 1, blue rectangle

for part 2, and cyan rectangle for part 3. Cropped sub-images for each part are displayed

in Figure 6.12. Figure 6.13 shows the first six largest-eigenvalue eigenvectors for each part.

For better illustration of the effectiveness of eigenvectors, we convert each eigenvector into its

corresponding eigenimage where the width and the height of the eigenimage are set to 45 for

image class I and they are equal to 35 for image class II. From these figures, we can tell that

the eigenvectors capture the variance of the original images and is a better representation for

classification.

To illustrate the procedure of getting the shape parameters, we use Figure 6.14 to show our

capacity of modeling the relative spatial relationship between parts. The top right red “+” sign

represents the spatial location of part 0 (root of the N-star graph). Since we model the relative

spatial location with respect to the location of the centroid of part 0, we can always put the
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part 0 in the origin. Based on the relative spatial difference between the root and the leaves,

we can plot the locations of all nodes in the graph in the same plot named the reference frame.

Points belong to the same part form a cluster in the reference frame. The three “+” symbols

represent the spatial centriod of the cluster of each part. Since we use Gaussian distribution

to model the relative spatial relations between the root and the leaves, the points of each

part except the first part (root) fall into a single cloud that is denoted by an ellipse. This

result verifies the correctness of our assumption of Gaussian distribution. Another important

parameter is the threshold to determine the existence of the object. Recall that our algorithms

generate a probability score for each image and we select the image with the largest score. If

this score is larger than a threshold, we claim the existence of the object in this image. We

obtain the threshold value by averaging the best operating point from each ROC curve. The

best operating point might be chosen so that the classifier gives the best trade off between the

costs of false positive (false positive) against the costs of missing a positive (false negative).

Figure 6.15 and Figure 6.16 show the ROC curves for the two models. Each figure contains 30

ROC curves; each of them corresponds to 30 runs of the training set (training set I or training

set II) from the “Image Set”. We compute the critical ratio z (Hanley and McNeil, 1983) to

determine whether the difference from the two ROC curves is statistically significant or not.

It is defined as follows:

z =
A1 − A2√

SE2
1 + SE2

2 − 2rSE1SE2

(6.27)

where A1 and SE1 indicate the area and the estimated standard error of the first ROC curve;

where A2 and SE2 refer to corresponding quantities for the second ROC curve; and where r

indicates the estimated correlation between A1 and A2. The area under ROC curve is computed

by the trapezoidal rule (Abramowitz and Stegun, 1972). The standard error is obtained by

Dorfman and Alf maximum likelihood estimation algorithm (Dorfman and Maximum, 1968).

The correlation value r is based on two values: rnormal (correlation in positive group) and

rabnormal (correlation in negative group). Both rnormal and rabnormal can be obtained by the

traditional Kendall tau rank correlation method (Kendall, 1938). For the 30 ROC curves from
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training set I, we select 2 curves each time and the total number of different combinations is

C2
30, which is 435. For each combination, we compute the critical ratio value and we get 435 z

values altogether. We assume the z values are samples from a population that belongs to the

normal distribution. Based on the central limit theorem, we estimate the mean and standard

deviation of the z values as 1.166 and 0.012 respectively. We then compute the 95% confidence

interval for the mean value and obtain the lower bound and upper bound of the confidence

interval as 1.165 and 1.167, respectively. The standard error for the estimated mean is 0.00058.

The above statistic values indicate that the difference among each ROC curves are very small

(not statistically significant), which means the ROC curves from each run for the training set

I are close to each other. Similar results are obtained for training set II. To compare the ROC

curves from training set I and training set II, we assume the samples from both training sets

belong to normal distribution. Based on this assumption, we perform the two samples two-

tailed t test. Having calculated the t-statistic, we compare the t-value with a standard table

of t-values to determine whether the t-statistic reaches the threshold of statistical significance.

From the low t value (1.68 in our case) and corresponding high p value (0.1 in our case) we

obtained, it is concluded that the difference between the areas under ROC curves from the two

models are not statistically significant if we set the significant level as 0.05. In another word,

the ROC curves of the two test sets are similar to each other. The average value of the area

under ROC curve (0.907 for the first model and 0.894 for the second model) also indicate the

good performance of our proposed models.

6.4.3 Test Results on Images from Colonoscopy Videos

After we obtained all the model parameters, we tested our techniques using the images

generated from colonoscopic procedures (“Video Set”). Since we define the appendix image

class as positive results, we can get four values for each video: true positive (the number of

real appendix images that are determined as appendix images by our algorithm), false negative

(the number of real appendix images but detected as non-appendix images), true negative

(the number of real non-appendix images that are detected as non-appendix images by our
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Figure 6.10 The relationship between the number of parts and the error
rates for the two image classes.

Figure 6.11 Positive training image examples with parts superimposed for
training the model of image class I. (This figure is best viewed
in color)
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Part 0 Part 1

Part 2 Part 3

Figure 6.12 Six sub-images for part 0 (root), part 1, part 2, and part 3
cropped from images in Figure 6.11.

Part 0 Part 1

Part 2 Part 3

Figure 6.13 The first six largest-eigenvalue eigenvectors for part 0 (root),
part 1, part 2, and part 3.
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Figure 6.14 Illustration of the shape model for the spatial relations between
root and leaves. (This figure is best viewed in color)

Figure 6.15 Thirty ROC curves of thirty runs on training set I of “Image
Set II”.
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Figure 6.16 Thirty ROC curves of thirty runs on training set II of “Image
Set II”.

algorithm), false positive (the number of real non-appendix images but detected as appendix

images). We use two widely used performance measurements: sensitivity and specificity, where

sensitivity is equal to true positive over by the number of real appendix images, and specificity

is defined as true negative divided by the number of real non-appendix images. High sensitivity

and specificity are desired.

Table 6.4 shows the results for the experiments on the colonoscopy videos. The first three

columns (“KM”, “DS”, “SVM”) denote the three classifiers (“K-Means”, “Decision-Tree”,

and “Support Vector Machine”) that belong to the feature-based approach. The column “PB”

represents the part-based method that belongs to the model-based approach. Using the similar

statistic methods we used in the previous section for comparing the ROC curves for the two

models, we find that the average values of sensitivity and specificity for the three classifiers

used in the feature-based technique are close to each other (not statistic significant). This

indicates that the most critical part of the first appendix detection technique (feature-based

technique) is the selection of the features. Once the features have been fixed, the performance

difference is small among different classifiers. The average sensitivity and specificity for the
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part-based technique are more than 90%. We perform two samples two-tailed t-test between

the results from part-based model and the results from feature-based technique. The p value

is between 0.1 and 0.05, which indicates that the performances for part-based technique are

only slightly better than the feature-based technique. The feature-based technique perform

poorly for video 06036 because many images in this video have weak edges and some parts of the

appendiceal orifice are covered by external materials (for example, stool). However, the impact

of the occlusion to the performance of the part-based technique is comparably smaller because

the part-based technique is searching for some representative parts of the object instead of

searching for the entire object. Even some parts of the object may be occluded, the part-based

technique can still identify the object if the most distinctive parts are not being occluded.

However, the four intermediate features extracted from these images may not be distinctive

enough to differentiate the object from the background if occlusion happens in the images.

In addition, the K-Means algorithm performs poorly on the videos without appendix images

(video 06037, 06038, and 06042), whereas the other two feature-based technique (“DS” and

“SVM”) perform better and the model-based technique can handle this case well. The reason

for the failure of K-Means technique is because it produces a number of false positive images

even there is no appendix image. The model-based approach does not perform well on video

06047 because some of the appendix images in this video have many strong light reflected areas

spread over the colon wall. These light reflected areas may produce a high probability score for

the appearance of the part. The problems are rooted from the PCA based appearance model.

It has been reported that PCA method is sensitive to illumination change (Belhumeur et al.,

1997). To address this issue using other dimension reduction methods, such as fisher linear

discrimination techniques (Belhumeur et al., 1997; Martinez and Kak, 2001; Cooke, 2002) will

be one of our future works.

6.5 Summary

In this chapter, we present two different approaches to solve the problem of appendix

image classification. The first one is a feature-based technique and the second one is a model-
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Table 6.4 Effectiveness of the appendiceal orifice detection on colonoscopy
videos.

Video ID Sensitivity Specificity
Feature-based Model-based Feature-based Model-based

KM DS SVM PB KM DS SVM PB
03009 0.85 0.86 0.87 0.87 0.92 0.92 0.93 0.89
03010 0.91 0.91 0.91 0.92 0.85 0.87 0.87 0.91
03047 0.97 0.97 0.98 0.95 0.86 0.86 0.86 0.92
06047 0.85 0.85 0.86 0.89 0.89 0.90 0.90 0.82
06048 0.84 0.85 0.85 0.92 0.88 0.90 0.90 0.91
06036 0.73 0.77 0.77 0.85 0.72 0.75 0.75 0.93
06037 – – – – 0.85 0.92 0.93 0.98
06038 – – – – 0.87 0.90 0.91 0.98
06042 – – – – 0.83 0.86 0.87 0.94
06043 0.85 0.86 0.86 0.92 0.78 0.82 0.81 0.88

Average 0.85 0.86 0.87 0.90 0.86 0.87 0.87 0.91

based technique. Both of them are applied to the colonoscopy videos and the experimental

results show the effectiveness of our proposed approach. In the first approach (feature-based

technique), our experiments indicate that the intermediate features we used are effective to

capture the global visual properties of some viewpoints of the appendiceal orifice. However,

if the variance of the visual property of the same appendiceal orifice is large (for instance,

part of the appendiceal orifice is occluded by other objects), the performance of the feature-

based technique is poor. The second approach (model-based technique) is a possible alternate

technique to address these problems. In this method, the object is represented by some parts

of the object. A new Principle Component Analysis (PCA) based appearance model and an

N-star graph shape model are used to capture the appearance of each part and the spatial

relations among these parts.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

Currently, colonoscopy videos are not captured and maintained in such a way that easily

allows post-procedure review or analysis. However, important medical knowledge may be pre-

sented in these videos. For instance, important statistics obtained from an endoscopic segment,

such as the number of polyps appearing in a segment, and various therapeutic operations per-

formed in a segment, are valuable for diagnosis of colonic diseases. Identifying a video segment

with therapeutic or diagnostic operation is useful for reviewing causes of complications due

to biopsy or therapeutic operations. The presence of a sufficient number of images showing

a closely inspected appendiceal orifice indicates that most distal end of the colon has been

reached during the procedure, which is one of the factors used to assess endoscopists’ proce-

dural skills. Automatic discovery of the medical knowledge by parsing the colonoscopy videos

into semantic units is highly desirable and very useful for educational activities (presentations,

teaching of fellows, manuscripts, etc.), for supporting GI endoscopic research, and for min-

ing unknown patterns that may lead to diseases and cancers, and for providing platforms for

improving and assessing endoscopists’ procedural skills.

In this dissertation, we have defined three semantic units: a colonoscopic scene (a segment

of visual and audio data that correspond to an endoscopic segment of the colon), an opera-

tion shot (a segment of visual and audio data that correspond to a diagnostic or therapeutic

operation of a colonoscopic procedure), and an appendix image (a colon image that contains

appendiceal orifice). Because of the unique characteristics of colonoscopy videos, novel algo-

rithms for determining boundaries of colonoscopic scenes and operation shots, and identifying

the appendix images, are presented. For scene segmentation, there are two major steps. The

first step is audio analysis based parsing algorithm; the second step is the algorithm that
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employs a visual analysis method based on a new visual model for colonoscopy videos. For

operation shot detection, we convert the problem of detecting operation shots to the problem

of identifying the cables of the instruments that are used during the operation. New spatio-

temporal segmentation approach are introduced. Finally, we gave two techniques for appendix

image classification. The first one is a feature-based method while the other is a model-based

technique. The model-based technique performs better than the feature-based technique in

our test sets. We have tested our algorithms using the colonoscopy videos captured during

colonoscopy procedures. Experimental results show the effectiveness of our algorithms. The

frameworks and algorithms presented in this dissertation can be extended to other important

endoscopic procedures. In addition, many of the techniques have the potential to be used in

medical information system to assist physicians in providing better health care. For example,

we are integrating part of the algorithms in this dissertation into a novel quality control system

to be used in a clinical trial at Mayo Clinic Rochester.

Our future work include (1) improve the performance of the detection algorithms for appen-

diceal orifice. Our current model-based method does not perform well when the illumination

variations among the objects of interest are large. We plan to integrate other appearance

models, such as an appearance model based on fisher linear discriminative method, into our

existing statistic framework. Another weak point of our method is that we rely on manual

annotation of the object for the positive examples in the training sets. Weakly supervised

training or unsupervised training are desired and will be investigated as future work. Other

potential improvements include improving the existing model structure by learning from both

positive and negative examples; (2) propose new detection algorithms of more types of seman-

tic units. Currently, we use different methods to detect different semantic units. However,

a generic model that can take advantage of multiple knowledge sources and parse multiple

semantic units is desirable; (3) representation of the detected semantic units in a manner that

is easy for retrieval and mining. Ontology related technique provides a possible solution for

this problem.
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