
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Representing and reasoning with modular
ontologies
Jie Bao
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bao, Jie, "Representing and reasoning with modular ontologies" (2007). Retrospective Theses and Dissertations. 15842.
https://lib.dr.iastate.edu/rtd/15842

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15842?utm_source=lib.dr.iastate.edu%2Frtd%2F15842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Representing and reasoning with modular ontologies

by

Jie Bao

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Vasant Honavar, Major Professor

Drena Dobbs
Gary Leavens

James McCalley
Giora Slutzki

Wallapak Tavanapong
Doina Caragea

Iowa State University

Ames, Iowa

2007

Copyright c© Jie Bao, 2007. All rights reserved.

UMI Number: 3289441

3289441
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

ii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . x

ABSTRACT . xi

CHAPTER 1. Motivation And Overview . 1

1.1 Motivation . 1

1.2 The Proposed Solution . 2

1.2.1 Outline of the Theoretical Approach . 2

1.2.2 Applications . 4

1.3 Content Guide . 6

CHAPTER 2. Preliminaries . 8

2.1 Description Logics . 8

2.1.1 Basic Notions . 8

2.1.2 The Basic Description Logics ALC . 10

2.1.3 Expressive Description Logics - the SH family 11

2.2 Reasoning with Description Logics . 13

2.2.1 Reasoning Tasks for Description Logics 13

2.2.2 Basic Tableau Algorithms . 14

2.2.3 Tableau Algorithms for Expressive DLs 17

2.3 Web Ontology Language - OWL . 20

CHAPTER 3. Modular Ontologies: Desiderata and Abstract Description . . 24

3.1 Modular Ontology Desiderata . 24

3.1.1 Syntactic Modularity . 25

iii

3.1.2 Semantic Modularity . 28

3.1.3 Other Modularity Considerations . 32

3.2 Modular Ontology Formalisms: Required Features 34

3.2.1 Semantic Requirements . 34

3.2.2 Expressivity Requirements . 39

3.3 A General Framework for Modular Ontologies . 41

3.3.1 Semantics of Modular Ontologies at a Glance 42

3.3.2 Abstract Modular Ontology . 43

3.3.3 Expressivity of AMO . 46

3.3.4 Semantic Requirements of AMO . 52

3.4 Discussion and Related Work . 56

3.4.1 Local Model Semantics and Distributed First Order Logic 57

3.4.2 Propositional Logic of Context . 58

3.4.3 Epistemic Semantics for Peer-to-Peer Databases 59

3.4.4 Modular Ontologies based on Conservative Extensions 62

CHAPTER 4. Package-based Description Logics 64

4.1 Overview . 64

4.2 Package-based Description Logics . 65

4.2.1 Syntax of P-DL . 65

4.2.2 Semantics . 67

4.2.3 SHOIQP Examples . 74

4.2.4 Reduction to Ordinary DL . 76

4.2.5 Properties of Semantic Importing . 77

4.2.6 Discussion on the P-DL Semantics . 79

4.3 Adopt OWL as the Syntax for P-DL . 84

4.3.1 Limitations of OWL Importing . 84

4.3.2 A Modular Semantics for OWL . 86

4.3.3 A Modular Syntax for OWL . 88

4.3.4 Summary and Discussion . 92

4.4 Related Work . 93

4.4.1 Other Modular Ontology Languages . 93

iv

4.4.2 Semantics of Modular Ontology Languages 98

4.4.3 Limitations of Existing Approaches . 106

4.4.4 Relation between Other Formalisms and P-DL 114

4.4.5 Syntax Extensions to OWL . 116

CHAPTER 5. Distributed Reasoning with P-DL 123

5.1 Overview . 123

5.2 Reasoning in ALCP−C . 125

5.2.1 ALCP−C . 125

5.2.2 Distributed Tableaux for ALCP−C . 128

5.2.3 A Tableau Algorithm for ALCP−C . 130

5.2.4 Soundness, Completeness, Termination and Complexity 142

5.3 A Reasoning Algorithm for ALCPC . 144

5.3.1 Extended Subset Blocking . 144

5.3.2 Correctness and Complexity . 146

5.4 Asynchronous Federated Reasoning for ALCPC 147

5.5 Reasoning in SHIQP . 150

5.5.1 Overview . 150

5.5.2 P-DL SHIQP . 151

5.5.3 A Tableau for SHIQP . 153

5.5.4 An Asynchronous Tableau Algorithm for SHIQP 155

5.5.5 Example . 160

5.6 Related Work . 160

CHAPTER 6. Reasoning with Hidden Knowledge 164

6.1 Overview . 164

6.2 Motivating Examples . 165

6.3 Privacy-Preserving Reasoning: General Framework 166

6.3.1 Partially Hidden Knowledge . 166

6.3.2 Privacy-Preserving Inference . 168

6.3.3 General Strategies . 171

6.4 Privacy-Preserving Reasoning with SHIQ Ontologies 173

6.5 Privacy-Preserving Reasoning with Hierarchical Ontologies 175

v

6.6 Discussion: Privacy-Preserving Reasoning in P-DL 178

6.6.1 Overview . 178

6.6.2 Distributed Privacy-Preserving Reasoning: General Setting 179

6.6.3 Requirement for Distributed Privacy-preserving Reasoners 184

6.7 Related Work . 185

6.7.1 Policy Languages . 185

6.7.2 Preventing Unwanted Inference . 186

6.7.3 Epistemic Semantics . 187

CHAPTER 7. Collaborative Building of Modular Ontologies 188

7.1 General Desiderate of Collaborative Ontology Building 188

7.1.1 Motivations . 188

7.1.2 Requirement of COB Environments . 190

7.2 CVS-based Collaboration and its Limitations . 191

7.3 COB-Editor . 194

7.3.1 Organizing Ontologies into Packages . 194

7.3.2 Benefits of Modular Organization for COB 196

7.3.3 The COB-Editor . 197

7.4 WikiOnt: Wiki-based Modular Ontology Editor 199

7.4.1 Overview . 199

7.4.2 Features . 200

7.5 Related Work . 203

CHAPTER 8. Conclusion and Discussion . 206

8.1 Contributions and Impacts . 206

8.2 Limitations and Future Work . 210

8.2.1 Modular Ontology Study in General . 210

8.2.2 Extending P-DL . 211

8.2.3 Reasoning Algorithms for Modular Ontologies 212

8.2.4 Privacy-Preserving Reasoning in Modular Ontologies 213

8.2.5 Applications of Modular Ontologies . 214

vi

CHAPTER Appendix: Proof of Lemmas and Theorems 215

A.1 Proofs for Chapter 4 . 216

A.2 Proofs for Chapter 5 . 242

CHAPTER Bibliography . 256

CHAPTER Index . 275

vii

LIST OF TABLES

2.1 Syntax and Semantics of DLs . 10

2.2 Negation Normal Form Transformation 15

2.3 OWL DL Class Constructors, Axioms and Facts 21

3.1 Semantic Connection Expressivity of Modular Ontology Languages . . . 41

3.2 Possible AMO Expressivity Features . 51

4.1 Semantics of Modular Ontology Languages 99

4.2 Comparison of Expressivity . 120

4.3 Comparison of Semantic Properties of Modular Ontology Languages . . 121

4.4 Comparison of Expressivity of Modular Ontology Languages 122

viii

LIST OF FIGURES

2.1 An Example of Description Logic Knowledge Base 8

3.1 Organizational Structure vs. Semantic Structure 26

3.2 Total Reuse vs. Syntactical Partial Reuse 27

3.3 Reasoning Exactness . 35

3.4 Directionality of Modular Ontologies . 37

3.5 Knowledge Transitive Reusability . 37

3.6 Domain Relation . 45

3.7 Image Domain Relation . 47

3.8 Concept Image . 47

3.9 Role Image . 48

3.10 Propagation of Knowledge Among Agents 52

3.11 Two Types of Inconsistencies between Agents 53

3.12 Agent Consensus . 54

3.13 Reusability . 55

4.1 One-to-One Domain Relation . 71

4.2 Compositionally Consistent Domain Relation 72

4.3 Cardinality Preservation for Roles . 73

4.4 Evolution of Modular Ontology Languages 97

4.5 Semantics of DDL Bridge Rules . 108

5.1 ALCP−C Distributed Tableaux Example 131

5.2 Subset Blocking Example in ALCP−C . 134

5.3 The Need for Token Blocking . 135

5.4 Transitive Subsumption Propagation in ALCP−C 139

ix

5.5 Detect Inter-module Unsatisfiability in ALCP−C 140

5.6 Reasoning from Local Point of View in ALCP−C 142

5.7 Non-termination Caused by Cyclic Importing 144

5.8 Example of SHIQP Tableau Expansion 160

5.9 Completion Graph in the DDL Tableau Algorithm 162

5.10 Completion Graph in P-DL Tableau Algorithms 162

5.11 Completion Graph in E-Connections Tableau Algorithms 163

6.1 Safety of Hierarchical Ontologies . 177

7.1 Non-collaborative Ontology Building . 188

7.2 Collaborative construction of an Animal Trait Ontology 190

7.3 Collaborative Ontology Building with CVS: Gene Ontology 192

7.4 COB Editor . 198

7.5 Collaborative Ontology Building with Package-extended Ontology 199

7.6 The Architecture of WikiOnt . 201

7.7 A Wiki Page in the WikiOnt System . 202

x

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me in one

way or another on conducting research and the writing of this dissertation.

I want to express my heartfelt thanks to my advisor, Vasant Honavar. The work presented

in this dissertation is not possible without his support and advice.

I gratefully acknowledge the help from many members of the ISU Computer Science de-

partment and the Artificial Intelligence Research Laboratory, as well as from other institutions:

several papers that the dissertation is based upon are helped by Giora Slutzki, George Vout-

sadakis and Doina Caragea; the work on collaborative ontology building is in collaboration with

LaRon Hughes, Zhiliang Hu, Peter Wong and James Reecy; the work on ontology building in

medical domain is in collaboration with Yu Cao and Wallapak Tavanapong; the work on seman-

tic data integration is in collaboration with Doina Caragea, Jyotishman Pathak, Changhui Yan

and Neeraj Koul. I also want to thank useful discussion and inspiration from Gary Leavens,

Dae-ki Kang, Rafael-Armando Jordan, Adrian Silvescu, Kewei Tu, Jun Zhang, Jaime Reinoso-

Castillo, Feihong Wu, Hua Pei and Hua Ming.

I also wish to thank many people in the semantic web community for useful discussions:

Jeff Pan, Yimin Wang, Luciano Serafini, Andrei Tamilin, Zhengxiang Pan and Jing Mei.

I cannot finish without saying “thanks” to my wife and parents, who are always my strong

support in all these years.

This Research is supported by assistantships offered by the Department of Computer Science

funded through grants from the National Science Foundation (IIS 0219699,0639230) and Na-

tional Institutes of Health (GM 066387), funding from Center for Integrated Animal Genomics

(ISU), and grants from USDA NAGRP Bioinformatics Coordination Project.

xi

ABSTRACT

The success of the world wide web can be attributed to the network effect: The absence of

central control on content and organization of the web allows thousands of independent actors

to contribute resources (web pages) that are interlinked to constitute the web. Recent efforts

to extend the web into a semantic web are aimed at enriching the web with machine inter-

pretable content and interoperable resources and services. Realizing the full potential of the

semantic web requires the large-scale adoption and use of ontology based approaches to sharing

of information and resources. In such a setting, instead of a single, centralized ontology, it is

much more natural to have multiple distributed ontologies that cover different, perhaps par-

tially overlapping, domains (e.g., biology, medicine, pharmacology). Such ontologies represent

the local knowledge of the ontology designers, that is, knowledge that is applicable within a

specific context. Hence, many application scenarios, such as collaborative construction and

management of complex ontologies, distributed databases, and large knowledge base applica-

tions, present an urgent need for ontology languages that support localized and contextualized

semantics, partial and selective reuse of ontology modules, flexible ways to limit the scope and

visibility of knowledge (as needed for selective knowledge sharing), federated approaches to

reasoning with distributed ontologies, and structured approaches to collaborative construction

of large ontologies. Against this background, this dissertation develops a family of description

logics based modular ontology languages, namely Package-based Description Logics (P-DL), to

address the needs of such applications. The main contributions of this dissertation include:

• The identification and theoretical characterization of the desiderata of modular ontology

languages that can support selective sharing and reuse of knowledge across independently

developed knowledge bases;

• The development of a family of ontology languages called P-DL, which extend the classical

description logics (DL) to support selective knowledge sharing through a novel semantic

xii

importing mechanism and the establishment of a minimal set of restrictions on the use

of imported concepts and roles to support localized semantics, transitive propagation

of imported knowledge, and different interpretations from the point of view of different

ontology modules;

• The development of a family of sound and complete tableau-based federated reasoning

algorithms for distributed, autonomous, P-DL ontologies including ALCP and SHIQP,

i.e., P-DL onologies where the individual modules are expressed in the P-DL counterpart

of DL ALC and SHIQ respectively, that can be used to efficiently reason over a set of

distributed, autonomous, ontology modules from the point of view of any specific module,

that avoid the need to integrate ontologies using message exchanges between modules as

needed.

• The formulation of criteria for answering queries against a knowledge base using hid-

den or private knowledge, whenever it is feasible to do so without compromising hidden

knowledge, and the development of privacy-preserving reasoning strategies for the case

of the commonly used hierarchical ontologies and SHIQ ontologies, along with a theo-

retical characterization of the conditions under which they are guaranteed to be privacy-

preserving.

• The development of some prototype tools for collaborative development of large ontologies,

including support for concurrent editing and partial loading of ontologies into memory.

1

CHAPTER 1. Motivation And Overview

1.1 Motivation

Ontologies that explicitly identify objects, properties, and relationships of interest in specific

domains of inquiry are essential for collaborations that involve sharing of data, knowledge, or

resources (e.g., web services) among autonomous individuals or groups in open environments.

Consequently, there has been a significant body of recent work on languages for specifying

ontologies, software environments for editing ontologies, algorithms for reasoning with, aligning,

and merging ontologies (Gomez-Perez et al., 2002). In particular, ontologies play important

roles in realizing the Semantic Web vision (Berners-Lee et al., 2001): extending existing World-

Wide Web with machine understandable meta data (knowledge) to facilitate more intelligent

information search and data sharing.

The rapid growth and adoption of Web was possible in part because it allowed a large com-

munity of individuals around the world to contribute to its construction by linking autonomous

pages via hyperlinks. We expect that effective mechanisms and tools that would enable indi-

viduals with expertise in specific areas to contribute ontology modules that can be conceptually

linked into larger ontologies would significantly accelerate the realization of the semantic web

vision.

Semantic Web ontologies have several important characteristics, as follows:

1. Constructing large ontologies typically requires collaboration among multiple individuals

or groups with expertise in specific areas, with each participant contributing only a part

of the ontology. Therefore, instead of a single, centralized ontology, in most domains,

there are multiple distributed ontologies covering parts of the domain.

2. Because no single ontology can meet the needs of all users under every conceivable sce-

nario, the ontology that meets the needs of a user or a group of users needs to be assembled

2

from several independently developed ontology modules. Since different ontologies or dif-

ferent modules of a single ontology are developed by people with diverse points of view,

contextual inconsistencies or conflicts between such modules are inevitable. Consequently,

there is a need for mechanisms for resolving or managing such contextual conflicts.

3. While ontologies are often used to facilitate sharing of knowledge, data, and resources,

many real-world scenarios also call for selectively hiding certain parts of an ontology (or

conversely, selectively sharing certain parts of an ontology). The need for knowledge

hiding may arise due to privacy and security concerns, or for managing and knowledge

engineering purposes.

Unfortunately, the current state of the art in ontology engineering is reminiscent of the state

of software engineering nearly four decades ago: Today’s ontology languages, like the very early

programming languages, are largely unstructured, and offer little support for modular design of

ontologies and selective knowledge sharing between ontology modules. As a consequence, many

existing ontologies are difficult to reuse in a larger context, leading to an ontology engineering

bottleneck, which is a significant hurdle in the large-scale design, development, and deployment

of semantic web applications. We need to come to terms with the characteristics of web on-

tologies. Specifically, next generation ontology languages need to support modular structure,

collaborative construction, selective sharing and use of ontologies. Against this background,

this study introduces the framework of Package-based Description Logics to meet this need.

1.2 The Proposed Solution

Package-based Description Logics (P-DL) (Bao et al., 2006f,c, 2007e) is aimed at solving

several problems presented in existing approaches for modular ontology formalisms and collab-

orative ontology building. P-DL language features are aimed at providing fine-grained modular

organization and controllable, selective knowledge sharing of an ontology.

1.2.1 Outline of the Theoretical Approach

In a P-DL ontology, an ontology is composed of a set of modules, called packages. P-DL

syntax adopts a semantic importing approach that allows a subset of symbols defined in one

package to be directly used in other packages, and imported symbols can be used to construct

3

concepts. In particular, this work studies the P-DL language SHOIQP as well as several of

its subsets. The resulting modular ontology languages:

• Allow each ontology module to use a subset of Description Logic (DL) SHOIQ (Horrocks

and Sattler, 2005), i.e., ALC augmented with transitive roles, role inclusion, role inversion,

qualified number restriction and nominal concepts, hence covers a significant fragment of

OWL-DL.

• Provide strong modeling ability compared with existing approaches (e.g., Distributed

Description Logics (DDL) (Borgida and Serafini, 2002) and E-connections (Grau, 2005)),

using the mechanism of semantic import of names (including concept, role and nominal

names) across ontology modules.

• Contextualize the interpretation of reused knowledge, hence the contextual inconsistency

between different ontology modules can be largely controlled. A natural consequence of

contextualized interpretation is that inferences are always drawn from the point of view

of a witness module. Thus, different modules might infer different consequences, based

on the knowledge that they import from other modules.

• Ensure that the result of reasoning is always the same as that obtained from a standard

reasoner over an integrated ontology resulting from combining the relevant knowledge in

a context-specific manner. This ensures the monotonicity of inference in the distributed

setting.

• Avoid many of the known reasoning difficulties of the existing approaches (e.g. knowledge

transitive reusability).

The reasoning procedure for P-DL is extended from existing DL tableau algorithms (Bao

et al., 2006a,e). We adopt a distributed tableau-based reasoning approach that can strictly avoid

reasoning with an integrated ontology, thus ensure the autonomy of constituting modules (e.g.,

without direct exposing of sensitive information) and improve the scalability of the reasoning

process. The whole reasoning process is preformed by a federation of local reasoners, each has

access only to the local knowledge in a specific module, to construct a collection of local tableaux

instead of a single global tableau by exchanging a set of messages between local reasoners.

4

P-DL allows selective knowledge hiding in ontology modules to address the needs of privacy,

copyright, and security concerns in ontologies. In such cases, an agent might want to hide a

part of its ontology while sharing the rest. However, prohibiting any use of the hidden part of

the ontology in answering queries from other agents may be overly restrictive. P-DL supports

scope limitation modifiers (SLM) that can be associated with terms and axioms defined in a

package (Bao et al., 2006f). A SLM (such as public and private) controls the visibility of the

corresponding term or axiom to entities (e.g. a user, a reasoner) on the web, in particular,

to other packages. We show how an agent can safely answer queries against its ontology

based on inferences drawn using both the hidden and visible part of its ontology, without

inadvertently revealing the hidden knowledge. In particular, we investigated such privacy-

preserving reasoning process in the case of the commonly used partial order ontologies (i.e.

hierarchies) and the SHIQ family of description logics. We also discussed the design desiderata

for distributed privacy-preserving algorithms of P-DL ontologies.

1.2.2 Applications

The work presented in this dissertation may have potential impacts in several application

scenarios (among others), including the following:

• Collaborative Ontology Building. The building process of an ontology is usually

a collaborative process that involves cooperation among multiple domain experts, and

the generation, management and integration of multiple components of the ontology in

a principled fashion. P-DL provides language features needed for efficient collaborative

construction of large, modular ontologies. We have developed WikiOnt (Bao and Honavar,

2004a) and COB-Editor (Bao et al., 2006g) software prototypes that provide ‘proof of

concept’ of this approach.

• Partial Ontology Reuse. Knowledge bases, and in particular ontologies, are very likely

to be reused. However, the lack of modularity in current ontology languages forces an

ontology to be totally reused or not be reused at all. An ontology has to be completely

reused even if only a small fragment of it is actually needed. Modular ontologies will

facilitate more flexible and efficient reuse of existing ontologies (Bao et al., 2006f).

5

• Web Security. Many semantic web applications, such as web services and online per-

sonal information repositories, require selective sharing of ontologies between autonomous

entities. The privacy-preserving inference algorithms provided in this work offer practical

solutions to semantic knowledge hiding such that hiding knowledge may still be used

in “safe” query answering process without potential compromising such hiding knowl-

edge. Our work provides the necessary privacy-preserving inference support on the top

of syntactic knowledge hiding as offered by access control or encryption of web resources.

• Semantic Data Integration. Data integration problems may require explicit descrip-

tion of the data semantics for involved data sources. Instead of relying on a single global

ontology, such applications typically require distributed, connected, multiple ontologies,

each capturing a subset of the domain of discourse. Based on the inference infrastruc-

ture provided by the modular ontology framework, we investigated the data integration

and query translation problem when data users and (possibly multiple) data sources have

multiple ontologies associated with the data (Bao et al., 2007a).

Potential applications of the work presented in this dissertation are no necessarily limited

to the ones listed above. Some other applications include:

• Modular Web Ontology Language. OWL (Patel-Schneider et al., 2003), the current

web ontology language, has limited provision for handling modular ontologies. Specifically,

the owl:imports construct for linking ontology modules lacks support for partial reuse

of or localized semantics for the linked ontology modules. The proposed work provides

an alternative to owl:imports, namely, semantic importing, for linking multiple modular

ontologies with support for localized semantics, partial ontology reuse, and distributed

reasoning.

• Scalable Inference Support for Large and Distributed Ontologies. The Seman-

tic Web will very likely utilize the networked effect that has been proven useful for the

success of the existing Web: there is no authoritarian central control of the huge amount

of resources (including ontologies) on the Web; instead, those resources are usually au-

tonomously created and maintained, and are interlinked to each other. Hence, inference

support in such a setting is necessarily distributed to meet the scalability challenge, the

6

lack of global knowledge (from an integrated knowledge base), and the context-specific

nature of involved ontologies. The P-DL framework may provide useful tools and methods

for such a need.

• Knowledge Representation and Query Process in Peer-to-Peer Applications.

Peer-to-Peer (P2P) applications demand selective data and knowledge sharing among a

set of autonomous peers. The modular ontology approach we presented here may be

adopted as the logic foundation for P2P applications to support distributed querying of

P2P resources and preserving of peer privacies.

• Ontology Mapping. The proposed techniques permits mappings between ontology

modules to be modeled as axioms in those modules or in independent mapping modules.

In particular, the general module transitive reusability in P-DL allows ontology mappings

to be safely composed to form new mappings.

• Ontology Evolution. The methods we presented for partial ontology reuse may also be

applied in ontology evolution, such that an existing ontology module can be “patched”

by a new module, and axioms in the existing module are selectively reused, replaced or

obsoleted in the new version of the ontology.

1.3 Content Guide

The dissertation contains the following chapters (in additional to this introduction chapter):

• Chapter 2 introduces the basic knowledge about Description Logics (DL) and web ontol-

ogy languages. We focus on the basic DL ALC and the SH family of DL languages on

their syntax, semantics and tableau-based reasoning algorithms. We also introduce the

OWL web ontology language.

• Chapter 3 presents desiderata and the general framework for modular ontologies. We first

enumerate the needs for modularity in ontologies from the aspects of ontology organiza-

tional structure, decentralized nature of web ontologies and contextuality of ontologies.

A set of desiderata for modular ontology languages, including decidability, reasoning

exactness, knowledge transitive reusability, and directional semantic connection, are in-

troduced. Then, we present an abstract framework of modular ontologies based on local

7

model semantics. It serves as the foundation for the P-DL proposal and the comparison

between P-DL and other formalisms.

• Chapter 4 presents the syntactical and semantic features of P-DL. We also give a brief

review on the evolution of modular ontology formalism and compare P-DL with several

other formalisms.

• Chapter 5 discusses reasoning algorithms for P-DL. We investigate sound and complete

tableau-based reasoning algorithms for several P-DL languages, including: ALCPC , which

extends ALC with concept name importing between packages, and SHIQP, which ex-

tends DL SHIQwith concept or role name importing between packages. These algorithms

allow the reasoning process to be distributed relying on local reasoning services offered

by each ontology module.

• Chapter 6 examines privacy-preserving reasoning in ontologies and, in particular, in P-DL

modular ontologies. We precisely formulate the problem of “privacy-preserving inference”.

We exploit the indistinguishability of hidden knowledge and incomplete knowledge under

the Open World Assumption (OWA) to develop an approach to safe use of hidden knowl-

edge in query answering without the risk of unintended disclosure of hidden knowledge.

We offer “history-safe” reasoning strategies for commonly used hierarchical ontologies and

the SHIQ family of description logic ontologies.

• Chapter 7 is concerned with collaborative ontology building exploiting the notion of mod-

ular ontologies (or ontology packages). We describe two ontology editing tools, WikiOnt

and COB Editor, which can support sharing, reuse, and collaborative editing of ontolo-

gies. Both tools allow ontology developers to create a community-shared ontology server,

with the support for concurrent browsing and editing of the ontology. Multiple users can

work on the same ontology on different packages (through locking mechanisms), without

inadvertent overwriting the work of others.

• Chapter 8 summarizes the work on its contributions and limitations, and gives several

open problems as the future work.

The dissertation also contains an appendix which gives detailed proofs of some original

lemmas and theorems given in the dissertation.

8

CHAPTER 2. Preliminaries

This chapter introduces the basic notions of description logics (DL) on its syntax, semantics

and reasoning algorithms, as well as the DL-based web ontology language OWL. Readers that

are familiar with DL may skip this chapter. For more details about DL, please refer the

Description Logics Handbook (Baader et al., 2003).

2.1 Description Logics

2.1.1 Basic Notions

Description Logics (DL) (Baader and Nutt, 2003) is a family of knowledge representation

languages which defines concepts of a domain, and then use these concepts to specify properties

of objects and individuals occurring in the domain. The basic syntactic blocks in DL are atomic

concepts (unary predicates), atomic roles (binary predicates), and individuals (constants). A

DL provides a set of constructors which allows to form complex concepts and roles from atomic

concepts and roles. For example, a simple ontology about animals is represented in DL as in

Figure 2.1:

Dog ⊑ Carnivore (2.1)

Carnivore ⊑ Animal ⊓ ∀eats.Animal (2.2)

Dog(goofy) (2.3)

eats(goofy, foo) (2.4)

Figure 2.1 An Example of Description Logic Knowledge Base

In the example, Dog,Carnivore,Animal are concept names, eats is a role name, and goofy, foo

are individual names; ⊓ (intersection) and ∀ (value restriction) are constructors. The ontology

asserts that a Dog is a Carnivore (2.1); a Carnivore is an Animal that only eats Animal (2.2);

goofy is a Dog (2.3); and that individual goofy eats another individual foo (2.4).

9

A description logic knowledge base may consist of a TBox (terminology box) and an ABox

(assertion box), where the TBox is a finite set of general concept inclusion (GCI) axioms in the

form of C ⊑ D (read as D subsumes C), and the ABox is a finite set of assertions in the form of

C(a) (a concept assertion) or R(a, b) (a role assertion). In the ontology given above, the TBox

contains axiom (2.1)-(2.2), and the ABox contains axiom (2.3)-(2.4). We may use C ≡ D as

the abbreviation of both C ⊑ D and D ⊑ C.

Some DLs (e.g., the SH family introduced in section 2.1.3) also have a RBox (role box)

that contains role inclusion axioms of the form R1 ⊑ R2 where R1, R2 are roles.

The precise meaning of a DL language can be defined in the model-theoretical semantics:

Definition 2.1 (DL Semantics) An interpretation of a description logic knowledge base is

a pair I = 〈∆I , (.)I〉, where the interpretation domain ∆I contains a nonempty set of objects

and the interpretation function (.)I maps each concept name C to a subset of the domain

CI ⊆ ∆I , each role name P to a binary relation P I ⊆ ∆I ×∆I over the domain ∆I , and each

individual name i to an element in the domain iI ∈ ∆I.

An interpretation I satisfies a GCI C ⊑ D, denoted by I |= C ⊑ D, iff CI ⊆ DI. I is a

model of a TBox T , denoted by I |= T , if I satisfies all GCIs in T .

An interpretation I satisfies the concept assertion C(a), denoted by I |= C(a), iff aI ∈ CI

and it satisfies the role assertion R(a, b), denoted by I |= R(a, b), iff (aI , bI) ∈ RI . I is a model

of an ABox A if it satisfies all the concept and role assertions in A.

An interpretation I satisfies a role inclusion axiom R1 ⊑ R2 iff RI1 ⊆ RI2 . I is a model of

a RBox R, denoted by I |= R, if I satisfies all role inclusions in R.

An interpretation I is a model of a knowledge base K = {T ,R,A}, denoted by I |= K,

where T is the TBox, R is the RBox, A is the ABox, iff I is model of T ,R, and A.

An knowledge base K entails an axiom γ, denoted by K |= γ, if every model I of K satisfies

γ.

For example, a model of the ontology in Figure 2.1 is I = 〈∆I , (.)I〉, where ∆I = {a, b}, (.)I

maps concept “Dog” to DogI = {a} ⊆ ∆I , “Carnivore” to CarnivoreI = {a} ⊆ ∆I , “Animal”

to AnimalI = {a, b} ⊆ ∆I , role “eats” to eatsI = {(a, b)} ⊆ ∆I × ∆I , individual “goofy” to

goofyI = a ∈ ∆I , and individual “foo” to fooI = b ∈ ∆I .

10

2.1.2 The Basic Description Logics ALC

One of the most influential DLs, which is the foundation of many other DLs, is ALC
(Attributive Language with Complements) (Schmidt-Schauß and Smolka, 1991). ALC pro-

vides boolean concept constructors (¬: negation or complement, ⊓: intersection, and ⊔: union)

plus the existential restriction (in the form of ∃R.C) and universal restriction (in the form of

∀R.C, also called value restriction) constructors. We also use the notation ⊤ (universal top

concept) as the abbreviation for A⊔¬A, and ⊥ (bottom concept) as the abbreviation for A⊓¬A,

where A is any concept name.

The semantics of ALC constructors is given in the Table 2.1.

Constructor Syntax Semantics

ALC top ⊤ ∆I

bottom ⊥ ∅

atomic concept C CI ⊆ ∆I

abstract role R RI ⊆ ∆I ×∆I

intersection C ⊓D CI ∩DI
union C ⊔D CI ∪DI
value restriction ∀R.C {a ∈ ∆I |∀b, (a, b) ∈ RI → b ∈ CI}
existential quantifica-

tion

∃R.C {a ∈ ∆I |∃b, (a, b) ∈ RI ∧ b ∈ CI}

negation ¬C ∆I\CI
.R+ transitive role R+ (a, b) ∈ RI ∧ (b, c) ∈ RI → (a, c) ∈ RI
S = ALCR+

H role hierarchies R ⊑ S (a, b) ∈ RI → (a, b) ∈ SI
I inverse role R− {(b, a) ∈ (R−)I |(a, b) ∈ RI}
Q qualified number re-

striction

⊲⊳ anR.C {a ∈ ∆I |#{b ∈ ∆I |(a, b) ∈ RI∧b ∈ CI} ⊲⊳
n}

N b number restriction ⊲⊳ nR {a ∈ ∆I |#{b ∈ ∆I |(a, b) ∈ RI} ⊲⊳ n}
Fc functional roles 6 1R {a ∈ ∆I |#{b ∈ ∆I |(a, b) ∈ RI} 6 1}

> 2R {a ∈ ∆I |#{b ∈ ∆I |(a, b) ∈ RI} > 2}
O nominal o #{oI} = 1

concept inclusion C ⊑ D CI ⊆ DI

a⊲⊳ is one of =, > , or 6
bcan be seen as a limited case of Q, ie. with C = ⊤
ccan be seen as a limited case of N , ie. with n = 1

Table 2.1 Syntax and Semantics of DLs

11

For example, the animal ontology in Figure 2.1 can be extended to the following ALC TBox:

Dog ⊑ Carnivore

Carnivore ⊑ Animal ⊓ ∀eats.Animal

Dog ⊑ ∃eats.Rabbit (2.5)

Plant ⊑ ¬Animal (2.6)

Plant ⊔ Animal ⊑ Life (2.7)

which further states that a Dog eats some Rabbit (2.5), Plants are not Animals (2.6), and both

Plants and Animals are types of Life (2.7).

2.1.3 Expressive Description Logics - the SH family

There are several extensions (with additional sets of concept and role constructors) on the

top of ALC to meet the needs of applications that require more expressivity. One of the most

important extensions is the SH DL family, which is closely related to several web ontology

languages, such as DAML+OIL (Horrocks, 2002) and OWL (Schreiber and Dean, 2004).

The logic SH (Horrocks and Sattler, 1999) is extended from ALC with transitive roles

(denoted as R+) and role inclusions (H)1. We denote by Trans(r)=true if a role r is transitive.

For example, in an ontology about people that in the logic of SH, we may have transitive role

hasSibling, role hasBrother and a role inclusion axiom:

hasBrother ⊑ hasSibling

Hence, if an ABox of the ontology contains assertions hasBrother(a, b) and hasSibling(b, c),

then we must have that hasSibling(a, b) (from the role inclusion) and hasSibling(a, c) (from the

transitivity of hasSibling) are true.

The logic SHOIQ (Horrocks and Sattler, 2005), which serves as the logic foundation of the

current web ontology language OWL (Horrocks et al., 2003), is further extended from SH with

nominals (O), inverse roles (I), and qualified number restrictions (Q).

More precisely, a nominal is a concept that has a singleton interpretation, i.e., there is one

and only one individual in the interpretation of a nominal. For example, the country name

FRANCE can be modeled as a nominal, such that the cardinality #(FRANCEI) will always be

1The logic ALCR+ is commonly denoted by the mnemonic S for its correspondence with the modal logic S4.

12

1 in any interpretation I. We may use nominals to define a concept with explicitly enumerated

members, such as

WeekEnd ≡ {SATURDAY,SUNDAY}

where SATURDAY and SUNDAY are nominals.

Inverse roles allow us to use a role in “both directions”. For example, suppose we have a

role advises to denote the relation between a faculty member and a student; we wish to define

a concept of students that are advised by a faculty member, then we can describe it with an

inverse role as

Student ⊓ ∃advises−.Faculty

We may use Inv(R) = R− as the inverse of a role R, and R−− = R. In the presence of role

inversions, Trans(R)=true iff R is transitive or Inv(R) is transitive. A role is called symmetric

if it is equivalent to its own inverse, i.e., R ≡ R−. For example, hasSibling is a symmetric role.

Qualified number restriction (Q) is in the form of ≥ nR.C, ≤ nR.C or = nR.C, where R

is a simple role such that it is neither transitive nor has transitive sub-roles2. For example,

to assert that every people must have exactly two parents who are also people, a woman is a

mother if she has at least one child which is a people, and one people is married to at most one

people, we have the following axioms:

People ⊑ (= 2 hasParent.People) (2.8)

Mother ⊑ Woman ⊓ (≥ 1 hasChild.People) (2.9)

People ⊑ ≤ 1 marries.People (2.10)

Unqualified number restriction (denoted by N) is a special case of Q such that the qualifi-

cation concept C is always the top concept ⊤, therefore we only have restrictions in the form

of ≥ nR, ≤ nR and = nR. For example, it may not be necessary to specify that a child is a

people to define motherhood, hence, axiom (2.9) can be reformulated as

Mother ⊑ Woman ⊓ (≥ 1 hasChild)

2Requiring roles to be simple here is necessary since it is known that qualified number restriction on non-
simple role may lead to undecidability in SHIQ (Horrocks et al., 1999). Such a restriction may be relaxed to
so called “admissible” RBoxes in SHQ (Kazakov et al., 2007).

13

Functional roles (denoted by F) is further restricted from N such that n = 1. Therefore,

concepts like (= 2 hasParent.People) will not be allowed in DLs with F constructors. In partic-

ular, SHIF (Horrocks et al., 2000) is important because it, when extended with data types, is

the DL language corresponding to OWL Lite.

Several other commonly used DLs of the SH family include the following:

• SHIQ (ALCHIQR+) (Horrocks et al., 1999) is obtained from SHOIQ by disallowing

the use of nominals;

• SHOQ (ALCHOQR+)(Horrocks and Sattler, 2001) is obtained from SHOIQ by disal-

lowing the use of inverse roles;

• SHIO (ALCHIOR+) (Hladik, 2004) is obtained from SHOIQ by disallowing the use of

(qualified) number restrictions.

The syntax and semantic of the SH family DLs are summarized in the Table 2.1.

2.2 Reasoning with Description Logics

2.2.1 Reasoning Tasks for Description Logics

DLs provide a good trade-off between the expressivity power and computational complexity.

Many inference tasks with DLs can be solved efficiently with highly optimized DL reasoners,

such as FaCT++ (Tsarkov and Horrocks, 2004), RACER (Haarslev and Möller, 2001) and

Pellet (Sirin et al., 2007).

Typical reasoning tasks in DL include the follows:

• Subsumption: to test if a concept C is subsumed by another concept D, i.e., if C ⊑ D;

• Satisfiability: to test if a concept C is satisfiable, i.e., if there is an individual in an

interpretation such that it is an instance of C;

• Equivalency: to test if two concepts are equivalent, i.e., C ≡ D;

• Disjointness: to test if two concepts must have no shared instances;

• Membership: to test if an individual a is an instance of a concept C, i.e., C(a);

14

Many reasoning problems can be reduced to other reasoning problems. For example, some

of them can be reduced to subsumption:

• C and D are equivalent ⇔ C ⊑ D and D ⊑ C

• C and D are disjoint ⇔ C ⊓D ⊑ ⊥.

• a is a member of C ⇔ {a} ⊑ C

Subsumption can also be reduced to satisfiability:

• C ⊑ D ⇔ C ⊓ ¬D is unsatisfiable

It is true because if C ⊓ ¬D is satisfiable, there must an interpretation I and an element

x ∈ CI but x 6∈ DI therefore C ⊑ D cannot hold. If no such an interpretation can be found,

C ⊓ ¬D is unsatisfiable, hence CI ⊆ DI holds in any I, therefore C ⊑ D is true.

Hence, all reasoning problems mentioned above can be in effect reduced to concept satis-

fiability checking. In the following discussion, we will focus on concept satisfiability checking

only.

2.2.2 Basic Tableau Algorithms

Modern DLs exploit Tableau Algorithms (Baader and Sattler, 2001; Hollunder et al., 1990)

for practical reasoning support. The basic idea of tableau algorithm is to check concept satis-

fiability (and hence also for concept subsumption) w.r.t. a knowledge base by constructing a

common model of the concept and the knowledge base.

A tableau algorithm for a specific DL language contains the following main elements:

• A completion graph, or a tableau that represents a model of the DL language. Such a

completion graph typically has the “tree model” property (Vardi, 1996).

• A set of tableau expansion rules to construct a complete and consistent completion graph.

• A set of blocking rules to detect infinite cyclic models and ensure termination.

• A set of clash conditions to detect logic contradictions.

15

In this subsection, we will demonstrate the basic process of tableau algorithms with the

DL ALC. For an ALC TBox T and an ALC -concept C0, a tableau algorithm will construct

a common model for both O and C0 to checking the satisfiability of C0 w.r.t. T . If one such

model (i.e., a completion graph) is found, C0 is satisfiable, otherwise C is unsatisfiable.

Before the reasoning process starts, the concepts in T and C0 should be transformed into

the Negation Normal Form (NNF), i.e., with negation only occurs in front of atomic concepts.

It can be done with rewriting rules in Table 2.2. We use ¬̇C to denote the NNF of ¬C.

¬¬C ≡ C

¬(C ⊓D) ≡ ¬C ⊔ ¬D
¬(C ⊔D) ≡ ¬C ⊓ ¬D
¬∃R.C ≡ ∀R.¬C
¬∀R.C ≡ ∃R.¬C

¬ 6 nR.C ≡ > (n+ 1)R.C

¬ > (n+ 1)R.C ≡ 6 nR.C

¬ > 0R.C ≡ C ⊓ ¬C

Table 2.2 Negation Normal Form Transformation

Reasoning w.r.t. a TBox T can be reduced to reasoning w.r.t. an empty TBox with the

internalization technique. Given T , a concept CT is defined as CT = ⊓
(Ci⊑Di)∈T

(¬Ci ⊔Di). Any

individual x in any model of T will be an instance of CT .

For an ALC knowledge base, a completion graph or a tableau T = 〈V,E,L〉 is a tree,

where V is the node set, E is the edge set, L is a function that assigns labels for each node

and edge. Each node x in the tree represents an individual in the domain of the model, and

the label L(x) contains all concepts of which x is an instance. Each edge 〈x, y〉 represents a

set of role instances in the model, and the label L(〈x, y〉) contains the names of those roles. If

R ∈ L(〈x, y〉), y is an R-successor of x. In an ALC -tableau:

• if C ∈ L(x), then ¬C 6∈ L(x),

• if C1 ⊓ C2 ∈ L(x), then C1 ∈ L(x) and C2 ∈ L(x),

• if C1 ⊔ C2 ∈ L(x), then C1 ∈ L(x) or C2 ∈ L(x),

• if ∀R.C ∈ L(x) and R ∈ L(〈x, y〉), then C ∈ L(y),

16

• if ∃R.C ∈ L(x), then there is some y such that R ∈ L(〈x, y〉) and C ∈ L(y).

Given a concept C and a TBox T , the tableau is a tree expanded from an initial root node

x0, L(x0) = C ⊓CT , with the following expansion rules:

• ⊓-rule: if C1⊓C2 ∈ L(x), x is not blocked, {C1, C2} 6⊆ L(x), then L(x) = L(x)∪{C1, C2};

• ⊓-rule: if C1⊔C2 ∈ L(x), x is not blocked, {C1, C2}∩L(x) = ∅, then L(x) = L(x)∪{C1}
or L(x) = L(x) ∪ {C2};

• ∃-rule: if ∃R.C ∈ L(x), x is not blocked, and x has no R-successor y with C ∈ L(y), then

create a new node y with L(〈x, y〉) = {R} and L(y) = {C};

• ∀-rule: if ∀R.C ∈ L(x), x is not blocked, and there is an R-successor y of x with C 6∈ L(y),

then L(y) = L(y) ∪ {C};

• CE-rule: if CT 6∈ L(x), x is not blocked, then L(x) = L(x) ∪CT .

To ensure termination, a node can be blocked with the subset blocking strategy: for any

node x, if there is an ancestor node y of x in the tree, and L(x) ⊆ L(y), then x is blocked. No

expansion rule will be applied to a blocked node. In fact, a blocked node prevents the cyclic

application of tableau expansion rules, hence represents infinitely many similar individuals in

the model.

An ALC tableau contains a clash if there is {C,¬C} ∈ L(x) for some node x and concept C.

A tableau is consistent (clash-free) if it contains no clash, and is complete if no expansion rule

can be applied. The given concept is satisfiable if and only if the algorithm finds a consistent

and complete tableau.

Note that the ⊔-rule is non-deterministic in that it generates different possible tableaux.

The algorithm needs to try multiple choices, i.e., search for different possible models. Once

a chosen search path leads to a clash, the algorithm needs to track back to the tableau state

before the choice, and try other remaining choices.

A tableau algorithm has to meet three requirements:

• Soundness: if a complete and consistent tableau is found by the algorithm, the tableau

must satisfies the initial concept C0.

17

• Completeness: if the initial concept C0 is satisfiable, the algorithm can always find an

complete and consistent tableau for it.

• Termination: the algorithm can terminate in finite steps with a result.

It can be proven that the aforementioned algorithm is terminating, sound and complete for

ALC (Baader and Sattler, 2001).

2.2.3 Tableau Algorithms for Expressive DLs

Similar tableau algorithms can be designed for more expressive DL languages. In this

subsection, we will briefly introduce such an algorithm for SHOIQ provided by (Horrocks and

Sattler, 2005).

A SHOIQ completion graph is T = 〈V,E,L, 6=〉. The symmetric binary relation 6= is used

to keep track of inequalities between nodes of T . The introduction of nominal concepts (the

“O” constructor) somehow relaxes the strict tree structure (Horrocks and Sattler, 2005) which

is enjoyed by ALC -tableau: a SHOIQ completion graph contains two types of nodes, i.e., the

blockable nodes which still form tree structures, and nominal nodes which may be arbitrarily

interconnected. A nominal node is a node that has nominal names in its labels; such a node

cannot be blocked since a blocked node represents infinitely many individuals while a nominal

is only allowed to have singleton instances.

If R ∈ L(〈x, y〉), y is said an R-successor of x and x is an R-predecessor of y. Ancestor is the

transitive closure of predecessor, and descendant is the transitive closure of successor. A node

y is called an R-neighbor of a node x if y is an R-successor of x or if x is an Inv(R)-successor

of y.

A node x is directly blocked iff none if its ancestors is blocked, and it has ancestors x′, y

and y′ such that

1) x is a successor of x′ and y is a successor of y′,

2) y, x and all nodes on the path from y to x are blockable,

3) L(x) = L(y) and L(x′) = L(y′), and

4) L(〈x′, x〉) = L(〈y′, y〉) 6= ∅
A node y is indirectly blocked iff one of its safe ancestor is blocked. A node is blocked

if either it is directly blocked or it is indirectly blocked.

18

An R-neighbor y of x is safe if x is blockable or if x is a nominal node and y is not blocked.

It is safe in the sense enough R-neighbors for nominal nodes can be generated (Horrocks and

Sattler, 2007).

We define ST (x,C) := {y ∈ V |S ∈ L(〈x, y〉) ∧ C ∈ L(y)} as the set of S-successor of x

with C in their labels. For an RBox R, we denote ⊑∗R as is the transitive-reflexive closure over

R∪ {Inv(R) ⊑ Inv(S)|R ⊑ S ∈ R}.
The set of SHOIQ tableau expansion rules is given as the follows (Horrocks and Sattler,

2007) (the notions of Merge operation will be introduced later):

• ⊓-rule: if C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} 6⊆ L(x), then

L(x) = L(x) ∪ {C1, C2};
• ⊔-rule: if C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} ∩ L(x) = ∅, then

L(x) = L(x) ∪ {C} for some C ∈ {C1, C2};
• ∃-rule: if ∃S.C ∈ L(x), x is not blocked, and x has no safe S-neighbor y of x with

C ∈ L(y), then create a new node y with L(〈x, y〉) = {S} and L(y) = {C};
• ∀-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and there is an S-neighbor y of x with

C 6∈ L(y), then L(y) = L(y) ∪ {C};
• ∀+-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and there is some R with Trans(R),

R ⊑∗S and there is an R-neighbor y of x with ∀R.C 6∈ L(y), then L(y) = L(y) ∪ {∀R.C};
• choose-rule: if (≤ nS.C) ∈ L(x), x is not indirectly blocked, and there is an S-neighbor

y of x with {C, ¬̇C} ∩ L(y) = ∅, then L(y) = L(y) ∪ {E} for some E ∈ {C, ¬̇C};
• ≥-rule: if (≥ nS.C) ∈ L(x), x is not blocked, and there are no n safe S-neighbors y1, ...yn

of x with C ∈ L(yk) and yk 6= yj for each 1 ≤ k ≤ j ≤ n, then create n new nodes y1, ...yn

with L(〈x, yk〉) = {S} and L(yk) = {C} and yk 6= yj for 1 ≤ k ≤ j ≤ n;

• ≤-rule: if (≤ nS.C) ∈ L(z), z is not indirectly blocked, |ST (x,C)| ≥ n and there are two

S-neighbors x, y of z with C ∈ L(x) ∩ L(y) and not x 6= y, then

1. if x is a nominal node, then Merge(y, x),

2. else if y is a nominal node or an ancestor of x, then Merge(x, y),

3. else Merge(y, x);

• o-rule: if for some nominal o there are two nodes x, y with o ∈ L(x)∩L(y) and not x 6= y,

then Merge(x, y);

• NN -rule: if (1) (≤ nS.C) ∈ L(x), x is a nominal node, and there is a blockable S-neighbor

19

y of x such that C ∈ L(y) and x is a successor of y; (2) there is no m such that 1 ≤ m ≤ n,

(≤ mS.C) ∈ L(x) and there exists m nominal S-neighbors z1, ..., zm of x with C ∈ L(zk) and

zk 6= zj for 0 ≤ k ≤ j ≤ m, then (1) guess m with 1 ≤ m ≤ n, set L(x) = L(x)∪{≤ mS.C}; (2)

create m new nodes y1, ...ym with L(〈x, yk〉) = {S} and L(yk) = {C, ok} for some new nominal

ok and yk 6= yj for 0 ≤ k ≤ j ≤ n;

• CE-rule: if CT 6∈ L(x), x is not indirectly blocked, then L(x) = L(x) ∪ CT .

The Merge operation is used in “shrinking” rules (≤- and o-rule) to merge one node into

another node. More precisely, it contains the following operations (Horrocks and Sattler, 2007):

Pruning: The operation Prune(y) removes a node y and all blockable successors of y

recursively. Formally, it performs the following operations:

1. for all successors z of y, remove 〈y, z〉 from E and, if z is blockable, Prune(z);

2. remove y from V .

Merging: Intuitively, the operation Merge(y, x) merges y into x by letting x inherits all

predecessors and nominal successors of y, while prune y and its blockable sub-trees. More

precisely, it has the following steps:

1. for all nodes z such that 〈z, y〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅;, then add 〈z, x〉 to E and set L(〈z, x〉) = L(〈z, y〉),

(b) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉),

(c) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S)|S ∈ L(〈z, y〉)}, and

(d) remove 〈z, y〉 from E;

2. for all nominal nodes z such that 〈y, z〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉} E = ∅;, then add 〈x, z〉 to E and set L(〈x, z〉) = L(〈y, z〉),

(b) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉),

(c) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S)|S ∈ L(〈y, z〉)}, and

(d) remove 〈y, z〉 from E;

3. set L(x) = L(x) ∪ L(y);

20

4. add x 6= z for all z such that y 6= z; and

5. Prune(y).

A SHOIQ tableau T contains a clash iff one of the following three situations occurs:

• {A,¬A} ⊆ L(x), for some concept name A and a node x ;

• for some simple role S and a node x, (6 nS.C) ∈ L(x) and there are n+ 1 S-neighbours

y0, ...yn of x such that C ∈ L(yi) and yi 6= yj for all 0 ≤ i ≤ j ≤ n;

• for some nominal name o, there are nodes x 6= y with o ∈ L(x) ∩ L(y).

let O be the set of nominal names that occur in T , then the tableau algorithm starts with

the initial completion graph T = ({r1, ..., rl}, ∅,L, ∅) such that for every o ∈ O, there is a ri ∈ V
with L(ri) = {o}. Then T is repeatedly expanded using the expansion rules introduced in the

above, until no rule can be applied or a clash occurs.

2.3 Web Ontology Language - OWL

There has been a significant body of recent work on languages for specifying ontologies

on the semantic web, including activities on the development of OIL (Ontology Inference

Layer) (Fensel et al., 2001), DAML (DARPA Agent Markup Language) (Ouellet and Ogbuji,

2002), their combination DAML+OIL (Horrocks, 2002), and the recent OWL (Web Ontology

Language) (Schreiber and Dean, 2004). In particular, OWL has been released as a W3C (World

Wide Consortium) recommendation in February 2004, and the last three years witnesses the

rapid development and adaption of OWL in a wide range of tools and services.

From the modeling point view, OWL has a strong correspondence to description logics (Hor-

rocks et al., 2003). Concepts and roles in DLs correspond to classes and properties in OWL,

respectively. Table 2.3 summaries OWL class constructors and axioms and their DL corre-

spondences (except for features involving data types). The abstract syntax given in the table

can be encoded in RDF/XML as its exchange syntax (Bechhofer et al., 2004). Hence, OWL

shares many common features with RDF (Resource Description Framework), such as the use

of Universal Resource Identifiers (URI) for the unambiguous reference of web resources. An al-

ternative syntax, the Manchester Syntax (Horridge et al., 2006), is recently proposed to obtain

a less verbose syntax that is more friendly for non-logician users.

21

Table 2.3: OWL DL Class Constructors, Axioms and Facts

Abstract Syntax DL Syntax Semantics

Class Constructors

A (URI reference) A AI ⊆ ∆I

owl:Thing ⊤ ⊤I = ∆I

owl:Nothing ⊥ ⊥I = ∅
intersectionOf(C1 C2 ...) C1 ⊓C2 (C1 ⊓ C2)

I = CI1 ∩CI2
unionOf(C1 C2 ...) C1 ⊔C2 (C1 ⊔ C2)

I = CI1 ∪CI2
complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1 ...) {o1, ...} {o1, ...}I = {oI1 , ...}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x|∃y, 〈x, y〉 ∈

RI and y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x|∀y, 〈x, y〉 ∈

RI → y ∈ CI}
restriction(R hasValue(o)) R : o (∀R.o)I = {x|〈x, oI〉 ∈ RI}
restriction(R minCardinality(n)) ≥ nR (≥ nR)I = {x|#({y|〈x, y〉 ∈

RI}) ≥ n}
restriction(R maxCardinality(n)) ≤ nR (≤ nR)I = {x|#({y|〈x, y〉 ∈

RI}) ≤ n}
Axioms

class(A partial C1 ...Cn) A ⊑ C1 ⊓ ... ⊓Cn AI ⊆ CI1 ∩ ... ∩ CIn
class(A complete C1 ...Cn) A = C1 ⊓ ... ⊓Cn AI = CI1 ∩ ... ∩ CIn
EnumeratedClass(A o1 ...on) A = {o1, ..., on} AI = {oI1 , ..., oIn}
SubClassOf(C1 C2) C1 ⊑ C2 CI1 ⊆ CI2
EquivalentClasses(C1 ...Cn) C1 = ... = Cn CI1 = ... = CIn

DisjointClasses(C1 ...Cn) Ci ⊓ Cj = ⊥ CIi ∩ CIj = ∅
ObjectProperty(R super(R1)...super(Rn) R ⊑ Ri RI ⊆ RIi
domain(C1) ...domain(Cm) ≥ 1R ⊑ Ci RI ⊑ CIi ×∆I

range(C1) ...range(Cm) ⊤ ⊑ ∀R.Ci RI ⊑ ∆I × CIi
Continued on the next page

22

Table 2.3 – continued from the previous page

Abstract Syntax DL Syntax Semantics

[inverseOf(R0)] R = R−0 RI = (RI0)−

[Symmetric] R = R− RI = (RI)−

[Functional] ⊤ ⊑≤ 1R ∀x,#({y|〈x, y〉 ∈ RI}) ≤ 1

[InverseFunctional] ⊤ ⊑≤ 1R− ∀x,#({y|〈y, x〉 ∈ RI}) ≤ 1

[Transitive]) Trans(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 ⊑ R2 RI1 ⊆ RI2
EquivalentProperties(R1 ...Rn) R1 = ... = Rn RI1 = ... = RIn

AnnotationProperty(S)

Facts

Individual(o type(C1) ...type(Cn o ∈ Ci oI ∈ CI

value(R1 o1)...value(Rn on)) 〈o, oi〉 ∈ Ri 〈oI , oIi 〉 ∈ RIi
SameIndividual(o1 ...on) o1 = ... = on oI1 = ... = oIn

DifferentIndividuals(o1 ...on) oi 6= oj , for i 6= j oIi 6= oIj , for i 6= j

OWL comes with three sub-languages with increasing expressivity power:

• OWL-Lite, which corresponds to the DL SHIF(D) (where (D) stands for data types),

provides a useful subset of the OWL language features, such as concept hierarchies and

property restrictions. The limitations on OWL Lite place it in a lower complexity class

than OWL DL, making reasoning with OWL Lite being more efficient.

• OWL-DL, which corresponds to the DL SHOIN (D), provides the maximal subset of

OWL with known decidability (hence ensure the existence of reasoners for OWL-DL)

at the time when OWL was developed3. For example, OWL-DL requires strict type

separation between classes, properties and individual, and cardinality constraints can

only be placed on simple properties (roles).

• OWL-Full contains all the OWL language constructs and provides free, unconstrained

use of RDF constructs. OWL Full also allows classes to be treated as individuals. How-
3As we have shown in the previous section, the DL SHOIQ is decidable and a practical reasoning algorithm

was found for it after OWL was developed.

23

ever, use of the OWL Full features generally leads to the loss of decidability (except for

under certain conditions, e.g., assuming contextual semantics (Motik, 2005)).

The most recent proposed extension to OWL is the OWL 1.1 language (Grau et al., 2006b),

which provides several new features, such as syntactic sugars, increased expressivity in prop-

erty constructs, increased datatype expressivity, meta-modeling ability, and semantic-free com-

ments. The increased expressivity offers a more powerful yet still decidable underlying DL (than

SHOIN (D)) for OWL 1.1, i.e., the DL SROIQ(D) (Horrocks et al., 2006), which provides

new constructors for acyclic complex role inclusions, disjoint roles (for simple roles), reflex-

ive, irreflexive and asymmetric roles (for simple roles), universal roles, negated role assertions

of the form ¬R(a, b) in an ABox, and concept constructor ∃R.Self (i.e., to express the “local

reflexivity” of a role).

OWL also provides a special construct, owl:imports, to bring information in different OWL

ontologies into a single ontology. It offers modularity in limited sense such that an ontology

can be syntactically divided into several files. However, as we will discuss later, OWL does not

allow semantic modularity or preserving of knowledge context. In Chapter 4, we will discuss

those limitations of OWL in more details and present solutions to adapt OWL as a modular

ontology language.

24

CHAPTER 3. Modular Ontologies: Desiderata and Abstract Description

In section 3.1, we introduce the need for modular ontologies in a wide range of applications;

in section 3.2, we give a set of informal requirements for modular ontology languages; in section

3.3, we present an Abstract Modular Ontology (AMO) language that is independent from

concrete language construct features, and give a formal description of the semantic requirements

on modular ontology languages specified in section 3.2. The AMO framework described in this

chapter will serve as the semantic foundation for the package-based description logics (P-DL)

that will be described in the next chapter, as well as for the comparison between P-DL and

other modular ontology formalisms.

3.1 Modular Ontology Desiderata

Some have argued for a single, comprehensive, and cohesive upper level ontology, e.g.,

CYC (Lenat, 1995) or SUMO (Niles and Pease, 2001), to bridge the semantic gaps between

different autonomous resources on the Semantic Web. However, since the web is a network

of loosely coupled, distributed, autonomous entities, differences in ontological commitments or

points of view are inevitable. In such a setting, no single, global ontology is unlikely to satisfy

the needs of all users. In practice, the sheer huge volume of web information leads to serious

scalability problem on building, storing and reasoning with a single ontology. Consequently,

ontologies on the web are likely to be modular, distributed, and targeted to specific users, and

are linked or (possibly only partly) reused as appropriate in a given setting.

Modularity has been a frequently mentioned, desirable feature to solve many of the existing

problems in ontology engineering. However, the notion of “modularity” and what is a “good”

module vary considerably in different applications. Different authors have given the require-

ments for modules from several specific contexts. Some of these requirements conflict with

each other (Loebe, 2006). In this section, we will examine the major desiderata of modular

25

ontologies, which will guide the design of a practical modular ontology formalism.

Generally speaking, the need for modularity in ontologies can be viewed along two dimen-

sions: the syntactical modularity and the semantic modularity. Syntactic modularity ad-

dresses the need to organize large ontologies in multiple, manageable, compact modules, so that

syntactic interactions between ontology modules are well-controlled for more efficient ontology

construction, revision and reuse. Semantic modularity addresses the need to allow localized

and contextual points of view of autonomous contributors of different ontology modules and

distributed reasoning. More details of these two types of modularity will be introduced in the

following two subsections.

3.1.1 Syntactic Modularity

Modules represent ideally more or less self-contained units of an ontology that are loosely

coupled. More precisely, syntactic modularity captures the need for the separation between

ontology units such that a unit can be added or deleted from the whole knowledge base without

modifying, or only needs minimal change of, the syntax of other units.

3.1.1.1 Loose Coupling

One of the major concerns in designing ontology modules is that the interaction between

ontology modules should be minimized so that different modules are only loosely coupled. Syn-

tactically, it can be measured by the connectedness (Schlicht and Stuckenschmidt, 2006) of

ontology modules, i.e., the number of shared symbols between axioms in different modules.

The intuition is that the communication overhead needed in distributed computation is heav-

ily influenced by the exchange of messages that contain the shared symbols. Hence, in order

for efficient reasoning to be possible, ontology modules must be only loosely connected (Amir

and McIlraith, 2005). Such a notion of modularity also leads to several structural criteria for

ontology modularity based on graph decomposition (Stuckenschmidt and Klein, 2004; Schlicht

and Stuckenschmidt, 2006).

3.1.1.2 Organizational Structure

It is often useful to distinguish between two types of structures in ontologies: organizational

structure and semantic structure. The organizational structure of an ontology consists of an

26

arrangement of symbols and axioms into moderate-sized units which is aimed at making the

ontology easy to design, use, and reuse. The semantic structure of an ontology, on the other

hand, deals with the relationship (e.g., concept hierarchy) between meanings of symbols in an

ontology.

People ⊑ ∀hasChild.People

Family ⊑ ∃hasMember.People

Marriage ⊑ = 2hasMember.People

Owner ⊑ People ⊓ ∃owns.⊤
...

People Ontology

Dog ⊑ Pet

DogOwner ⊑ People ⊓ ∃owns.Dog

...

Pet Ontology

Figure 3.1 Organizational Structure vs. Semantic Structure

For example, suppose there are two ontologies where knowledge is organized in different

modules about pet and people, respectively (Fig. 3.1). The division of knowledge (represented

by axioms) in different units (typically each with a focused domain, e.g., pet or people) forms the

organizational structure of the ontology. On the other hand, semantic structure of the ontology

is specified by axioms (possibly from multiple modules) explicitly (e.g., a DogOwner is a People

who owns Dog) or implicitly (e.g., a DogOwner is a Owner). Organizational substructure does

not necessarily always correspond to the semantic structure: concept subsumptions that form

one concept hierarchy may be from different modules (e.g., in an upper-level general ontology

and a domain-specific ontology), and concepts that are not directly semantically related may be

organized together in one module to describe a domain from multiple aspects (e.g., on marriage

and ownership about people in Fig. 3.1).

The distinction between organizational and semantic hierarchies can be understood by draw-

ing an analogy with object-oriented programming languages such as Java. In such languages,

new classes can be derived from (and hence semantically related to) existing classes. Such class

hierarchies offer an example of semantic structure. Java also has a notion of packages, which are

27

organized in a package hierarchy. Semantically unrelated classes can be organized into packages

that bundle together the classes that are used in a specific class of applications (e.g., graphics).

Unfortunately, unlike the case of software engineering where modular design of programs is

supported by formal methods, there still lacks principled ways to guide the design of ontology

organizational structure.

3.1.1.3 Syntactical Partial Reuse

Ontologies are very likely to be reused. However, the lack of modularity in ontologies often

leads to the “everything or nothing” choice in ontology reuse. For example, in creating a

“MyPet” ontology, one may want to import the knowledge about pets from a comprehensive

‘Animal’ ontology. However, if the “Animal” ontology is only treated as a monolithic entity, one

can only reuse the ‘Animal’ ontology in its entirety, although only a small part of it is needed.

Modular structure would enable flexible and efficient partial reuse of the ontology. As shown

in Fig. 3.2, a modularized version of the “Animal” ontology allows only the relevant parts of

the whole “Animal” ontology being reused by the “MyPet” ontology, thereby avoiding the need

to import unwanted ontology fragments. This is especially useful when the reused ontology is

very large.

General
 Pet

Poultry
 Livestock

Semantic importing

General

Animal Ontology

(Centralized)

Pet

Poultry

Livestock

MyPet

MyPet

Animal Ontology

(Package-extended)

Semantics incorporated in
 MyPet
 ontology

Semantics not presented in
 MyPet
 ontology

Legend
:

Figure 3.2 Total Reuse vs. Syntactical Partial Reuse

28

3.1.2 Semantic Modularity

3.1.2.1 Contextuality

Due to the distributed nature of the semantic web, ontologies on the semantic web typical

capture only contextual knowledge. Such knowledge may depend on many implicit assumptions

that the ontology users are not always aware of. Examples of contextual phenomena in web

ontologies include the following:

• Implicit Domain of Discourse. Consider two independently developed ontologies: a

People ontology and a Work ontology. The People ontology asserts (with an implicity

context of people) “those that is not a man is a woman”, and Work ontology asserts “an

equal opportunity enterprise employs both men and women”. Attempts to reuse that

knowledge without regard to it applicable context can lead to unintended consequences.

For example, an attempt to reuse the knowledge from the People ontology in the context

of the Work ontology may lead to the absurd conclusion: “every enterprise is either a

man or a woman”.

• Difference in the Universe of Discourse. Suppose we will query two ontologies

about people in two different departments. In the first ontology, the universe of people is

explicitly enumerated by their names, which can be modeled using nominals in description

logics, e.g., People = {Alice,Bob}. In the second ontology, the universe of people is also

explicitly enumerated but with a different set of names (which is disjoint from the ones in

the first ontology), e.g., People = {Carol,Dave,Eve}. Hence, the two ontologies disagree

on the members of People such that it has different interpretations in the two contexts.

• Subjectivity. Contextual differences also occur when there are conflicting political,

cultural or social points of view of ontology producers (Guha et al., 2004). For example,

in Western countries, the notion Weekend typically refers to Saturday and Sunday, while

in Muslim countries it is Friday and Saturday. For another example, an animal ontology

may assert a dog is a carnivore, a carnivore only eats animals, and a animal is not a plant:

Dog ⊑ Carnivore

Carnivore ⊑ ∀eats.Animal

Animal ⊑ ¬Plant

29

However, a dog ontology, which may reuse knowledge from the animal ontology, asserts

that a sick dog sometimes eats grass which is plant

SickDog ⊑ Dog ⊓ ∃eats.Grass

Grass ⊑ Plant

Both the modules capture truth from local points of view. There is no requirement for

the author of the general animal ontology module to know all possible “exceptions” in the

future, and the dog ontology module doesn’t want to give up the whole general animal

ontology module just because of few inconsistencies.

• Spatio-Temporal Contexts. The same sentence or symbol may have different validity

or meanings in different places or at different time. For example, the sentence “Today is

weekend” may be true or false in different time zones of the world at the same moment,

or in the same place but in different days. Ontology evolution can also lead to temporal

context change: For example, Hong Kong has recently changed from the 6-day work week

system to the 5-day work week system, hence the meaning of Weekend on web pages made

in different time in Hong Kong may refer only Sunday or both Sunday and Saturday.

Contexts in AI and KR (Knowledge Representation) has received increasing attention from

early 1990s, including the pioneering work of McCarthy and Guha (Guha, 1991; McCarthy,

1993; Guha et al., 2004), Local Model Semantics / Multi Context System (LMS/MCS) (Giunchiglia

and Ghidini, 1998; Ghidini and Giunchiglia, 2001), and Propositional Logic of Context (PLC) (Bu-

vac and Mason, 1993; Buvac and Kameyama, 1998). Please refer to a survey paper (Serafini

and Bouquet, 2004) for more details. Recently, some of those work is extended to the semantic

web setting (Bouquet et al., 2003; Guha and McCarthy, 2003; Bontas, 2004; Stoermer, 2006;

Stoermer et al., 2006). These efforts have led to the realization that, due to the unavoidable

contextuality of web ontologies, it is unrealistic to have a single ontology; instead, web ontologies

are necessarily contextualized, distributed and modular.

3.1.2.2 Semantic Partial Reuse

Syntactical partial reuse of ontologies addresses the need to reuse knowledge with the pre-

defined organizational structure of ontologies. However, such a syntactical solution is not

30

enough for “dynamic” reuse of ontologies, where no single pre-defined organizational structure

can provide efficient reuse of the ontology in all possible reuse scenarios. For example, suppose

one wants to develop a pet chicken ontology and reuse the animal ontology in Fig. 3.2. Even if

the ontology has pre-defined modules which are relevant (e.g. about Pet and Poultry), it may

not be necessary to reuse all the contents in those modules for this particular reuse scenario,

e.g., knowledge about dogs in the Pet module is not relevant and does not need to be reused.

A semantic solution to partial reuse may be realized by providing methods for automatic

discovery of semantically “relevant” modules for arbitrary reuse problems (Pan et al., 2006;

Grau et al., 2007; Alani et al., 2006). Hence, not all knowledge in the reused ontologies (or

ontology modules), but only the relevant part of it, will be propagated to the target ontology

(or ontology module). However, several problems that related to semantic partial reuse are

still remained open, including principled ways to support semantic partial reuse in ontology

language, and algorithms to extract minimal relevant modules from an ontology.

3.1.2.3 Semantic Encapsulation

Analogous to software engineering where the “the separation of concerns” is a highly desir-

able feature of programs, breaking an ontology into semantically distinct modules that overlap

in functionality as little as possible is desirable in knowledge engineering. (Loebe, 2006) argues

that, resembling to software engineering, the basic notion of modules in ontologies may also be

the separation of the interface (which defines services of a module) and the implementational

body. An interface of an ontology module can be either a query language or subset of the given

vocabulary. In this work, we refer such a feature as the semantic encapsulation of ontology

modules.

To obtain the intuition of semantic encapsulation, we can consider the following example.

Example 3.1 : Suppose Alice and Bob create ontologies for their pets. These ontologies might

be queried by their pet doctors. For example, a query against the two ontologies is that “if a

pet y eats grass”. This query can be denoted by ?(∃eats.Grass)(y) in description logic. There

is no requirement that both Alice and Bob maintain their pet ontologies in the same language.

For instance, Alice’s agent can use a TBox of the ontology language ALCO (in which x, y are

31

nominals):

x ⊑ Grass

y ⊑ Dog

y ⊑ ∃eats.x

while Bob’s agent can use an ontology written in ALC with an ABox:

{Grass(x),Dog(y), eats(y, x)}

Both approaches guarantee that the concept membership query ?(∃eats.Grass)(y) has the

same answer, although the underlying representations are different. Since implementation de-

tails are of no interest to users who query the ontologies, they can be easily hidden from such

users.

Based on the discussion above and (Loebe, 2006), we believe semantic encapsulation in

ontology modules means the following features:

• The Separation of Interface and Content. The communication between ontology

modules is necessarily controlled and is only possible through the interfaces of those

modules. It is also possible that one ontology has multiple interfaces (Bao and Honavar,

2005a).

• Information Hiding. Internal information of an module can be hidden from other

modules or agents that querying the module. Hence, it may not be necessary for the

whole vocabulary or axiom set of an ontology to be visible (i.e., in the reuse interface) to

other modules or users.

• Independence. Ontology modules, while may not be completely isolated from each

other, should have focused local knowledge domains such that an module can still answer

queries about a local domain when used independently. Hence, interaction between ontol-

ogy modules should not result in unintended changes of the inherent semantic structure

of those modules. In other words, modules should be semantically loosely coupled and

highly cohesive. Such a feature is very useful on the semantic web since ontologies, like

web pages, are very likely to be dynamically published or vanished, and a “bad link” to

a module should not result in other modules in the ontology being completely useless.

32

• Substitutability. Ideally, a semantically well-behaved module can be replaced by an-

other module of with the same query interface. That feature would be useful since software

agents on the semantic web, which produce ontologies/data and query ontologies/data of

other agents, could be the products of many different enterprises.

Note that two modules that are loosely connected in syntax may be strongly interact with

each other in semantics. For example, consider two ontologies:

O1 = {A1 ⊑ A2, A2 ⊑ A3, ... , An−1 ⊑ An}
O2 = {⊤ ⊑ A1}
The two modules only share a single symbol A1; however, when used together under the

first-order semantics, the semantic structure of O1 is strongly affected: all Ai (i = 1, ..., n)

become equivalent concepts.

It is also possible that two modules are semantically modular but have strong syntactic

connectedness. For example, consider:

O1 = {A1 ⊑ B, ... , An ⊑ B}
O2 = {C ⊑ A1, ... , C ⊑ An}
O1 and O2 share every symbol except B in O1 and C in O2. However, the two ontologies

do not influence the semantic structure of each other. Hence, they are only loosely coupled in

semantics.

3.1.3 Other Modularity Considerations

In addition to syntactic and semantic modularity concerns, other modularity considerations

include engineering benefits and scalability in reasoning and ontology building.

3.1.3.1 Engineering Benefits

Modularization brings benefits to software engineering “as a mechanism for improving the

flexibility and comprehensibility of a system while allowing the shortening of its development

time” (Parnas, 1972). Practice in ontology engineering suggests that modularity in ontologies

may bring similar benefits for the construction and management of large ontologies. More

precisely, the expected engineering benefits of ontology modularity include the following (in

analog to their software engineering counterparts):

33

• Collaboration. An ontology with modular structure can be more easily constructed col-

laboratively with separate groups working on different modules of the ontology. Editing

conflicts and semantic inconsistencies can be more easily detected and reconciled. Infor-

mation hiding can help ontology designers to focus on the modules that fit best for their

expertise.

• Flexibility. A modular structure allows ease composition or decomposition of an on-

tology; modules in existing ontologies can be more easily extracted and used in new

ontologies; an ill-designed or obsolete module can be replaced with a new module with

controlled impact on other modules.

• Comprehensibility. Building or using an ontology often requires human users to un-

derstand the content of the ontology. An ontology with coherent and compact modules

can significantly improve its understandability. Modularity may also improve query per-

formance.

• Debugging. Debugging an ontology is the process to detect and repair “errors” (e.g.,

inconsistency or unsatisfiable concepts) in the ontology (Kalyanpur et al., 2006). Well-

defined semantic modularity can help developers to quickly locate and eliminate problems

in ontologies.

Many of the above issues will be further addressed in detail in Chapter 7 (Collaborative

Building of Modular Ontologies).

3.1.3.2 Scalability

Many ontology tools, e.g., reasoners, editors and query engines, are known to perform well

on small-scale ontologies, but drastically degrade in performance when the size of the ontology

increases. Modularity can help to improve the practical scalability of such tools to handle

large-scale ontologies, including the following aspects.

• Reasoning. The memory and space cost of the reasoning process may dramatically in-

crease when ontologies become large. Theoretical time complexity of consistency checking

of ALC with TBox is already in exponential time and tableau-based algorithms used by

popular reasoners run in 2NExpTime. Scalability studies (Gardiner et al., 2006) have

34

revealed that popular description logic reasoners, despite being highly optimized, may fail

on reasoning tasks on ontologies with tens of thousands of concepts. Ontologies with large

instance sets can have millions of triples (Guo et al., 2005). Hence, it is often unrealistic to

preform reasoning over a large ontology in the centralized fashion. By decomposing a large

ontology into multiple semantically coherent modules, it may be possible to substantially

speedup reasoners. (Spaccapietra (Coordnator), 2005).

• Communication. Ontology modules are likely to be physically distributed. A central-

ized reasoning would require transferring ontologies to a single location. Partial reuse

of ontology can reduce the time and network overhead required: instead of the entire

ontology, only the relevant modules of the ontology are need to be transmitted.

• Editing and Visualization. Memory limits in semantic web terminals (especially for

mobile devices (Wahlster, 2006)) present a major bottle-neck in handling large ontologies.

Utilizing modularity, the memory required in editing and visualizing ontologies can be

reduced since it is possible to load only a selected subset of modules into memory.

• Ontology Evolution. Modularization of an ontology makes it possible to localize the

impact of changes to an ontology. For example, to track updates of an ontology, only the

changes to relevant modules or axioms need to be archived (Bao et al., 2006g). Ontology

evolution can also be realized by “patching” an ontology with new modules instead of

re-publishing the whole ontology.

3.2 Modular Ontology Formalisms: Required Features

The previous section lists some application desiderata for ontology modularity. This section

will further informally describe the desirable features of a “good” modular ontology formalism

in its semantics and expressivity to achieve those application desiderata.

3.2.1 Semantic Requirements

Based on the desiderata discussed in the previous section, we first list a set of minimal

semantic requirements for modular ontology languages (Bao et al., 2006b) on the semantic web

as the basis for our design and comparison of modular ontology formalisms.

35

3.2.1.1 Localized Semantics

A modular ontology should not only be syntactically modular (e.g., by storing ontologies

in separated XML name spaces), but also semantically modular. That is, the existence of a

global model should not be a requirement for integration of ontology modules. Otherwise, it is

difficult to support contextuality and reasoning with only local knowledge.

3.2.1.2 Exact Reasoning

The answer to a reasoning problem over a collection of ontology modules should be se-

mantically equivalent to that obtained by reasoning over an ontology resulting from a selec-

tiveintegration of the relevant ontology modules. For example (see Fig. 3.3), suppose an

ontology O contains

{A ⊑ B,B ⊑ C,C ⊑ D}

and a modularized version of O has two modules M1 = {A ⊑ B}, M2 = {C ⊑ D} and a

semantic connection B
⊑−→ C, which represents the modularized version of B ⊑ C. The answer

to any reasoning problem (e.g., if A ⊑ D) obtained by the integration of M1,M2 and B
⊑−→ C

should be the same as that obtained by using a sound and complete reasoner on O.

Modular Ontology

A ⊑ B

M1

C ⊑ D

M2

B
⊑−→ C

A
⊑−→ D

Integrated Ontology

A ⊑ B
B ⊑ C
C ⊑ D

O

A ⊑ D
Figure 3.3 Reasoning Exactness

We call such a property the reasoning exactness of module ontologies. The description given

above is only informal; more precise description depends on answers to the following questions:

• How are modules integrated? Are the modular ontology and the integrated ontology

indeed equivalent representations of the same intended modeling scenario? For example,

if we use B
⊑−→ C to represent concept inclusion between B and C in the modular ontology,

36

its correspondence in the integrated ontology should be B ⊑ C, and we expect “
⊑−→” in the

modular ontology to have the similar properties as that of “⊑” in the integrated ontology

(e.g., transitivity).

• From which context do we say that the reasoning is exact? Is the integrated ontology

unique from points of view of different modules? Is the global consistency of all modules

a prerequisite for integration?

• What reasoning problems should be answered identically by the modular ontology and its

integrated counterpart? For example, suppose we have “
⊑−→” to represent “⊑” and “

⊒−→”

to represent “⊒” in the modular ontology, the modular ontology entails A
⊑−→ D when the

integrated ontology entails A ⊑ D, should it also be required that the modular ontology

entails ¬A ⊒−→ ¬D when the integrated ontology entails ¬A ⊒ ¬D ?

A related property named “compositionality” is stated in (Loebe, 2006):

“If certain logical properties are proved for modules, there should be general means

to derive these properties for the overall system. For example, the consistency of a

set of modules may immediately result in the consistency of their combination, i.e.,

due to the combination operation defined for modules”

We regard reasoning exactness as a special case of compositionality. However, composition-

ality is a stronger requirement which may not hold in general. For example, even when all

modules are locally consistent, their combination may not necessarily be consistent.

3.2.1.3 Directionality

A modular ontology framework must support directional semantic relations from a source

module to a target module. A directional semantic relation affects only the reasoning within

the target module but not the source module. This requirement is motivated by the fact that

ontology reuse is typically an asymmetric process such that the “new” (target) module should

not have information “backflow” into the reused (source) module. A similar requirement has

been presented in (Borgida and Serafini, 2003).

For example, in the Fig. 3.4, module M1 reuses module M2; however, the new knowledge

B ⊑ C should not be back propagated into M1. Hence, M1 should not entail that A ⊑ D.

37

A ⊑ B
C ⊑ D

M1

B ⊑ C

M2

A ⊑ D A ⊑ D

Figure 3.4 Directionality of Modular Ontologies

3.2.1.4 Monotonicity and Transitive Reusability

Classic knowledge reuse in description logics is monotonic in the sense that new knowledge

does not alter logical consequences of existing knowledge. That is, if a statement α is provable

in a knowledge base K, then α is also provable in K∪K ′ where K ′ is a new knowledge base. We

wish that ontology reuse in a modular fashion will also have the monotonicity property, hence

extending a knowledge base in the modular way will have the same effect as that of extending

it in the classic way.

A special case of monotonicity is transitive reusability, i.e., knowledge contained in ontology

modules should be both directly and indirectly reusable. That is, if a module M1 reuses module

M2, and module M2 reuses module M3, then effectively, module M1 reuses module M3 (i.e.,

“relevant” axioms in M3). For example, in the Fig. 3.5, knowledge in M1 (A ⊑ B) may be

indirectly reused by M3 to obtain the conclusion that A
⊑−→ D.

A ⊑ B

M1

B ⊑ C

M2

C ⊑ D

M3

A
⊑−→ D

Figure 3.5 Knowledge Transitive Reusability

The monotonicity requirement is also different from monotonicity in classic knowledge reuse

on the following aspects:

• Different modules may draw conclusions from different contexts. For example, suppose a

38

People ontology (with the implicit context of people) asserts that “every individual is a

human” (⊤ ⊑ Human), and a Pet ontology reuse the People ontology, if the pet ontology

is required to also assert the same conclusion in the pet context, it will have to assert

that “every pet is a human” (Pet ⊑ Human). Hence, contextuality of knowledge should

be preserved when axioms “propagate” to other modules.

• An ontology module O may only be partially reused by another module O′, some axioms

in O may not be “relevant” to the reused part, hence it is not necessary to propagate

such axioms to O′. For example, assuming O contains {A ⊑ B,C ⊑ D}, O′ reuses O by

importing the symbols A,B but not C,D; C ⊑ D may not be required from the point of

view of O′ since it is “irrelevant” to the knowledge about A,B.

3.2.1.5 Decidability

Decidability is required to develop sound and complete reasoners for modular ontologies.

In practice, it is usually easier to ensure local decidability of component ontology modules as

opposed to decidability of the entire ontology. Hence in designing a modular ontology formalism,

we will focus on the “decidability transfer” property of modular ontologies, i.e., ensure that the

whole ontology is decidable if every component module is locally decidable.

It is known that unrestricted combination of ontology modules can result in undecidability

even when every component module is locally decidable. For example (from (Baader et al.,

2000)), the union of ALCF (ALC extended with functional roles and the same-as constructor

on chains of roles) and ALC+,◦,⊔ (ALC extended with transitive closure, composition and union

of roles), both known to be decidable, results in the undecidable logic ALCF+,◦,⊔.

3.2.1.6 Discussion of Other Desiderata

We believe that the desiderata listed above are among the most critical ones for a modular

ontology to be semantically sound and practically usable. Other desiderata that have been

considered in the literature include: the ability to cope with local inconsistency or global

inconsistency (Borgida and Serafini, 2003) and local completeness (Grau et al., 2006d) (i.e., a

module has the complete knowledge about its own vocabulary). We do not consider them here

since we believe they address disparate aspects from the desiderata required for the design of a

modular ontology language, hence are best handled by other machineries.

39

Inconsistency handling requires techniques to come up with meaningful results from incon-

sistent modular ontologies, such as removing locally inconsistent modules from the reasoning

process (Borgida and Serafini, 2003) (by giving empty interpretations to those modules), select-

ing a consistent subset of an inconsistent ontology (Huang et al., 2005), debugging “problems”

that lead to the inconsistency (Parsia et al., 2005; Kalyanpur et al., 2006; Meilicke et al., 2007),

and defeasible extensions to ontology languages (Heymans and Vermeir, 2002; Bassiliades et al.,

2004). However, such techniques are motivated by a very different set of desiderata in the more

general context of semantic web and are not special to modular ontologies. It is best to be

separated from the modular ontology language specification and be preformed as extra service

over the language layer.

Local completeness is a property that is best achieved by certain design pattern of ontol-

ogy modules instead of as a property of the ontology language. Furthermore, requiring local

completeness may preclude many useful modeling scenarios (e.g., refining the class hierarchy of

existing symbols with new knowledge).

3.2.2 Expressivity Requirements

The second group of requirements that we consider is aimed at evaluating the language ex-

pressivity. The expressivity of modular ontology formalisms can be measured in two dimensions:

the expressivity of component ontology modules and the expressivity of semantic connections

between component ontologies.

In semantic web applications, we expect each ontology module to be expressed using the

standard ontology language OWL, or can be translated into OWL by some mediators. Hence, in

this work we assume each component ontology module is expressed in a subset of the description

logic SHOIQ(D)1, which roughly corresponds to OWL-DL.

Semantic connections are relations between vocabularies in different modules. We illustrate

such a need using an example of an ontology with two modules: a people module and a pet

module. Typical semantic connections include the following:

• Concept Subsumption (and its special case, Concept Equivalency) between modules

is probably the most urgently needed feature. We may need to assert that a concept in

1For the purpose of conciseness, we will omit the concrete domain (D) from discussions hereafter. However,
the result we obtained can be easily extended to the case that with concrete domain.

40

one module is more general than (i.e., a generalization of) or less general than (i.e., a spe-

cialization of) another concept in another module. For example, we may need to say “Do-

gOwner in the pet module is less general than Human in the people module” (corresponds

to pet:DogOwner ⊑ people:Human in standard DL) and “Animal in the pet module is more

general than Human in the people module” (corresponds to people:Human ⊑ pet:Animal

in standard DL).

• Boolean Concept Constructors. They allow us to build complex concepts based on

concepts from different modules, using boolean operators such as negation (¬) , con-

junction (⊓) and disjunction (⊔), e.g., “not Pets” (e.g., in people:Human ⊑ ¬pet:Pet),

“Male DogOwner” (people:Male⊓pet:DogOwner), “Baby or Puppy” (e.g., in people:Baby⊔
pet:Puppy ⊑ pet:MilkFeeding)

• Restrictions. If R is a role and C is a concept, the language may include existential

restrictions (∃R.C), universal restrictions (∀R.C) and qualified number restrictions (e.g.,

≤ 2R.C). R or C may be a foreign symbol, or both are foreign symbols. These features

can be further divided into tree groups 1) with local role name and foreign concept name;

2) with foreign role name and foreign concept name; 3) with foreign role name and local

concept name.

• Role Inclusion (and its special case, Role Equivalency) between modules. For ex-

ample, we may need to say “ registering (a pet) implies ownership” (corresponds to

pet:registerPet ⊑ people:owns in standard DL).

• Role Inversion between modules. For example, the inverse of pet:ownedBy is human:owns

(corresponds to pet:ownedBy− ⊑ people:owns in standard DL).

• Transitive Role, which allows the use of a foreign transitive role, e.g., the pet module

reuses a transitive role olderThan in the people module.

• Nominal Correspondence. For example, the pet module declares that golden (a nom-

inal used to describe color) is the same as fair (a nominal to describe human hair color)

in the human module.

Table 3.1 summarizes the features described above. They may be extended with other

useful constructors, such as role construction (role complement (¬R) , conjunction (R⊓Q) and

41

Table 3.1 Semantic Connection Expressivity of Modular Ontology Lan-
guages

Feature Notation Corresponding Standard DL Features

Concept Subsumption ⊑ C ⊑ D
Nominal Correspondence O a = b

Role Inclusion H R ⊑ Q
Concept Negation C ¬C
Concept Conjunction ⊓ C ⊓D
Concept Disjunction ⊔ C ⊔D
Universal Restriction ∀ ∀R.C
Existential Restriction ∃ ∃R.C
Attributive Modular Language ALC = ⊓⊔∀∃C

Number Restriction Q ≤ nS.C, ≥ nS.C
Role Inversion I R−

Transitive Role R+ Trans(R)
S = ALCR+

C,D are concept names, a, b are nominal names, R,S,Q are role names and S is a

simple role, n is a non-negative integer. For each formula, at least one name in it is

a shared name (i.e., occurring in multiple modules).

disjunction (R ⊔ Q))2, transitive closure (R∗) and role chain (e.g., R ◦ S ⊑ R). We do not

consider them here since they have no correspondences in OWL-DL.

Based on different intended application scenarios, a specific modular ontology language

may only contain a subset of the possible expressivity features. For example, Distritbuted

Description Logics (DDL) (Borgida and Serafini, 2003; Ghidini and Serafini, 2006a) covers

concept subsumption and nominal correspondence, and E-connections (Grau et al., 2004b)

addresses only concept and role construction with a special type of roles called “links”.

3.3 A General Framework for Modular Ontologies

The goal of this section is to formalize many notions (informally) described in the previous

section and present a general semantic framework for modular ontology languages. We will

discuss an Abstract Modular Ontology (AMO) language, extending the Local Model Semantics

framework of (Ghidini and Giunchiglia, 2001) with multiple domain relations, for the formal

2Limited role construction has been provided in E-Connections (Grau, 2005).

42

specifications of semantic requirements and expressivity requirements of modular ontologies.

3.3.1 Semantics of Modular Ontologies at a Glance

“Ontology is the science of being”(Aristotle, Metaphysics). In a general sense, a modular

ontology is a set of individual descriptions of the same domain that represent correlated, but

not identical points of view of multiple observers, or agents. Thus, each ontology module can

be seen as describing a point of view (or epistemic state) held by an agent with respect to the

entities (objects) and their relations in the domain. We call the collection of entities that are

observed by an agent the local domain of the agent’s ontology.

For example, considering Alice and Bob who have different descriptions of the the same

global domain (people in the world) due to contextual differences and limited knowledge. For

example, Alice may believe “Bob is my best friend” while Bob believes “I’m not Alice’s best

friend”. The local domain of Alice will be the set of people she knows, which may be different

from Bob’s local domain (the set of people he knows).

However, such local descriptions are not always independent of each other. For example, if

Alice observes that “John is the father of Joe”, it should not be the case that Bob observes that

“Joe is older than John”. We say that semantic relations reflect the ability of agents to build

relations between their local points of view. For example, suppose agent Bob believes that

• “ ‘Joe’ mentioned by Alice is the same as the individual ‘Joe’ I mentioned, ‘John’ men-

tioned by Alice is the same as the individual ‘John’ I mentioned ” and

• “if an individual x is the father of y, then y is not older than x”,

then the apparent inconsistency between their beliefs can be avoided. In this setting, semantic

relations, just as ontologies, are also subjective beliefs rather than objective descriptions. For

example, it is possible that Alice believes “the ‘Joe’ I mentioned is the same individual ‘Joseph’

mentioned by Bob” while Bob believes “ ‘Joseph’ and ‘Joe’ I mentioned are two different per-

sons”; hence the individual correspondences in Alice and Bob’s beliefs are different. In general,

the scenario described above can be extended to a setting with multiple interacting agents.

Due to the subjectivity and contextuality of their beliefs, those agents’ local knowledge and

semantic relations between each other may only be partially compatible.

43

Ontology modules can be viewed as epistemic descriptions of the physical world held by dif-

ferent agents, and semantic relations between ontology modules establish the (possibly partial)

compatibility relation among those epistemic descriptions. In what follows, we will describe

the Abstract Modular Ontology (AMO), a special type of Distributed First-Order Logics

(DFOL) (Ghidini and Serafini, 1998), to provide the necessary framework for the evaluation of

modular ontology languages. In particular, we will investigate the following problems:

• How can we formally describe the semantic requirements and expressivity requirements

we presented in the last section?

• Under what circumstances can a reasoning process in a modular ontology language be

said to be sound and complete?

• What are the sources of possible semantic difficulties in some modular ontology languages?

How can such difficulties be avoided?

• How the compatibility relations between subjective beliefs are interpreted?

3.3.2 Abstract Modular Ontology

Distributed First-Order Logics (DFOL) was first introduced in (Ghidini and Serafini, 1998).

A DFOL knowledge base (KB) includes a family of first order languages {Li}i∈I , defined over

a finite set of indices I. We will use Li to refer to the i-th module of the KB, which represents

the description of agent i on its observed (partial) domain. An (i-)variable x or (i-)formula

φ occurring in module Li is denoted as i : x or i : φ (we drop the prefix when there is no

confusion). The signature (the set of all names) of Li are i-terms. A DFOL interpretation

constraint is in the form of i : φ(x1, ..., xn) → j : ψ(y1, ..., yn), where φ,ψ are n-ary predicates

and 〈xi, yi〉 is connected by a domain relation rij.

An Abstract Modular Ontology (AMO) (Bao et al., 2006b) KB 〈{Li}, {Rij}i6=j〉 is a

variation of DFOL such that each component language Li is a subset of description logics

(DL)3, and Rij represents the set of semantic relation rules between agent j’s own knowledge

and another agents i’s (j 6= i) knowledge, which extend DFOL interpretation constraints (details

3In general, not all description logics are subset of the first order logic, such as the case for Description Logics
that allow the transitive closure of roles or fixpoints, which can only be translated into predicate logic beyond
first order.

44

in the follows). We restrict ourselves to the setting where each Li is a subset of the expressive

DL SHOIQ. We also assume that semantic relation rules are binary, hence we do not consider

n-ary relations (n > 2)4, such as “if i : φ and j : ρ then k : ϕ”.

Instead of a single relation between each pair of agents, we assume that each agent may

need to interact with another in different roles in different contexts. For example, a company

can both buy and sell products from and to another company. Consequently, there may be

multiple semantic relation roles between ontologies held by a pair of agents. We denote the set

of roles of semantic relations between Li an Lj as rolij .

Example of semantic relation rules in concrete modular ontology languages includes bridge

rules in DDL (Borgida and Serafini, 2003), E-connection (Grau, 2005), and concept importings

in P-DL (Bao et al., 2006c) between two ontology modules. (Serafini et al., 2005b) have noted

that such rules can be mapped to DFOL interpretation constraints. Note that DL concepts are

unary FOL predicates and DL roles are binary predicates. Consequently, a semantic relation

rule in AMO is an axiom in the form of:

i : C(x)
{r},r∈rolij−−−−−−→ j : D(x) (3.1)

i : R(x1, x2)
{r},r∈rolij−−−−−−→ j : S(x1, x2) (3.2)

where C(D) is a DL concept formula and R(S) is a DL role formula constructed using symbols

from Li(Lj), {r} is a set of semantic relation roles via which the rule is enforced. Note that free

variables (e.g.,“x”) have different reading at the lhs and rhs of the equations: on the lhs they

denote variables in the domain of Li, while on the rhs they denote variables in the domain of

Lj.

A model of AMO includes a set of local models and domain relations. For each Li, there

exists a local interpretation domain ∆i. Let Mi be the set of all DL models of Li on ∆i. We

call each I ∈ Mi a local model of Li. For a model of Li, we have the usual DL interpretation

for its concept, role and nominal names. For each semantic relation role R ∈ rolij , the domain

relation rRij, where i 6= j, is a subset of ∆i ×∆j that represents the capability of the module j

to map the objects of ∆i into ∆j via R.

Hence, the general form of semantic relation rules in AMO can be interpreted as (in the

4Examples of proposals with n-ary semantic relations include (Franconi et al., 2003) (motivated for peer-to-
peer database applications) and (Serafini et al., 2005b).

45

FOL form):

i : C(x)
{〈x,x′〉∈rR

ij},R∈rolij−−−−−−−−−−−−→ j : D(x′) (3.3)

i : R(x1, x2)
{〈xp,x′

p〉∈rR
ij},p∈{1,2},R∈rolij−−−−−−−−−−−−−−−−−−→ j : S(x′1, x

′
2) (3.4)

Equation 3.3 should be read as “if i : C(x) and 〈x, x′〉 ∈ rR
ij, then j : D(x′)”. The reading

of the equation 3.4 is similar.

For a domain relation rR
ij of a semantic relation R ∈ rolij, we use 〈d, d′〉 ∈ rR

ij to denote that

from the point of view of j, the object d in ∆i is mapped to the object d′ in ∆j, via relation

R. Finally, rR
ij(d) denotes the set {d′ ∈ ∆j |〈d, d′〉 ∈ rR

ij}. For a subset D ⊆ ∆i, r
R
ij(D) denotes

∪d∈Dr
R
ij(d).

∆1

a2

a1
a3

StudentI2

∆2

b1

ResearchAssistantI2

b2

FacultyI2

radvisedBy
12

rtaughtBy
12

rsameAs
12

Figure 3.6 Domain Relation

Example 3.2 :An ontology contains two modules L{1,2}. L1 contains knowledge about stu-

dents, such as Graduate ⊑ Student (an 1-formula). L2 contains knowledge about faculties, such

as Professor ⊑ ∀hasAssistant.ResearchAssistant.

The semantic relation roles rol21 is empty, while rol12 contains three relation roles advisedBy

(to indicate advisorship between students and faculties), taughtBy (to indicate the student-

instructor relationship) and sameAs (to indicate individual correspondence between the two

domains). The semantic relation R12 contains the rule “a ResearchAssistant must be Student”,

formally described as

∀x ∈ ∆2,ResearchAssistant(x)
{〈x,y〉∈rsameAs

12 }−−−−−−−−−→ ∃y ∈ ∆1,Student(y)

A model of the ontology is shown in Fig. 3.6. The local domain ∆1 has Student objects

a1, a2, a3, and local domain ∆2 has Professor object b1 and ResearchAssistant object {b2}. The

46

domain relations rsameAs
12 is {〈1 : a3, 2 : b2〉}, radvisedBy

12 is {〈1 : a2, 2 : b1〉}, and rtaughtBy
12 is

{〈1 : a2, 2 : b1〉}, 〈1 : a3, 2 : b1〉}. Note that the same pair of individuals (1 : a2, 2 : b1) can be

related by two different relations (advisedBy and taughtBy). rsameAs
12 (1 : a3) = {2 : b2} indicates

that (from the point of view of L2) b2 is the same individual as a3.

3.3.3 Expressivity of AMO

The AMO framework given above does not address the ability of the language to express

semantic relations between ontology modules. For example, can two modules share parts of

their signatures? If some symbols are shared, does such a syntactical correspondence indeed

ensure shared symbols in the two modules are “consistently” interpreted? How is the meaning

of a symbol in one module related to the meaning other symbols in another module? How can

the expressivity requirements we outlined in the previous section be precisely defined?

To answer those questions, we first examine how local domains of different ontology modules,

as the epistemic descriptions of the physical world from multiple agents, are related.

3.3.3.1 Individual Image Relations

First, the same entity in the physical world may be observed by different agents (possibly

from different points of view), hence are represented in the local domains of those agents’

ontologies. For example (Fig. 3.7), suppose two agents i and j both know the person “Robert”;

the agent i identifies the person as bob and the agent j identifies the person as bobby. The agent

j may further observe that whenever the agent i mentions “bobby”, it refers to the same person

identified as “bob” by j. Such a correspondence can be represented as a special “image” domain

relation from the domain of i to the domain of j (denoted by r→ij), such that 〈d, d′〉 ∈ r→ij ,

implies that the object d′ in the j’s point of view denotes the same physical entity as the object

d in the i’s point of view; d′ is called an image of d and d is a pre-image of d′. Hence, in the

above example we have 〈bob, bobby〉 ∈ r→ij .

Note that the image domain relations, in general, are not necessarily one-to-one. For

example, agent i may have two different individuals MorningStar and EveningStar in its

local domain ∆i, while another agent j maps both of them to the individual V enus in its local

domain ∆j. In general, image domain relations are not necessarily symmetrical, either, due

to the subjective (“directed”) nature of domain relations, i.e., it may not always the case that

47

∆i

bob

∆j

bobbyr→ij

Robert
(in the physical world)

Figure 3.7 Image Domain Relation

r→ij = (r→ji)− (for any i 6= j). However, we will show in the following text that arbitrary image

domain relations can lead to semantic imprecision and reasoning difficulties, and principled

approaches to avoid such problems.

3.3.3.2 Concept Images

Suppose agent i interprets a concept Student in its local domain ∆i as StudentIi (a subset

of ∆i), then another agent j will regard r→ij (StudentIi) as “these objects in my local domain

correspond to the concept Student from agent i’s point of view”. In other words, r→ij (StudentIi)

indicates the reading of agent j on the interpretation of Student by agent i. We call r→ij (CIi)

as the concept image of CIi , and denote it as Ci→j.

∆i

CIi

∆j

Ci→j

r→ij

Figure 3.8 Concept Image

48

In general, a concept image Ci→j does not necessarily correspond to a named concept in

ontology module j, or even be an empty set (indicating that no physical objects identified as

C by i is observed by j). However, we may assert, in a local domain, the relation between

a concept image and the interpretation of a named concept, or between a concept image and

another concept image. The mechanisms to specify such relations varies in different concrete

modular ontology languages.

3.3.3.3 Role Images

Using the image domain relation, an agent may also create “images” of relations of individu-

als in another agent’s local domain. For example, suppose the local domain of an agent i has one

Planet individual V enus, one Star individual Sun, and the binary relation circles(V enus, Sun);

the domain relations are as that shown in Fig. 3.9; the pair 〈V enus, Sun〉 hence can be mapped

as pairs:

〈MorningStar, Sol〉 , 〈EveningStar, Sol〉

〈MorningStar,Helios〉 , 〈EveningStar,Helios〉

which indicate “the pairs of individuals in j’s domain that correspond to the instances of role

circles in i’s domain”.

∆i

Sun

Venus

circle

∆j

Sol

MorningStar EveningStar

Helios

circlesi→j

r→ij

Figure 3.9 Role Image

In general, agent j can map role instances in i’s domain to its local point of view: for any

relation instance 〈x1, x2〉 in ∆i ×∆i, j will regard r→ij (x1) × r→ij (x2) as a proper image of the

relation. It should also be kept in mind that rij is always a relation viewed from j’s point of

view. For example, the fact that a person x thinks “y is my best friend” doesn’t necessarily

mean that y thinks “I’m x’s best friend”.

In summary, the image of the interpretation of a concept C or a role P from i to j is:

49

• Ci→j: r→ij (CIi)

• P i→j:
⋃

〈x,y〉∈PIi r
→
ij (x)× r→ij (y)

Similarly, pre-image of a concept D or a role R from j to i is defined as

• Di←j: (r→ij)−(DIj)

• Ri←j:
⋃

〈x,y〉∈R
Ij r
→
ij
−(x)× r→ij −(y)

We may also extend such notations for concept image Ci
R−→j or pre-image Di

R←−j via domain

relation rR
ij, instead of r→ij .

3.3.3.4 Contextualized Constructors

Since each language Li only describes a local domain and will be interpreted in the local

domain ∆i, the set of concept constructors (e.g., ¬,⊓,⊔) in AMO have only contextualized

meaning. To see this, consider a special case of concept image, the images of negated concepts.

For example, if agent i constructs a concept ¬Student (those that are not students) in its

ontology about people, it refers to the set of individuals in ∆i but not in StudentIi , i.e.,

(¬Student)Ii = ∆i\StudentIi (3.5)

Another agent j may have a different local domain ∆j (not necessarily disjoint from ∆i)

about jobs. We let Cij be the (syntactical) place holder for the concept corresponding to the

image of C, i.e., (Cij)
Ij = r→ij (CIi) = Ci→j. We have that

(¬Studentij)
Ij = ∆j\(Studentij)

Ij = ∆j\Studenti→j (3.6)

i.e., those objects in j’s mind that do not correspond to “Student” in i’s mind. It does not

necessarily be the same as r→ij ((¬Student)Ii) (those objects in j’s mind that correspond to

“not Student” in i’s mind); for instance, ∆j\Studenti→j may contains objects that identify

physical entities that are not people, e.g., a company, which is not in r→ij (∆i) (hence not in

r→ij (∆i\StudentIi)). Hence, negation here has only local meaning: the “¬” in (4.4) is interpreted

in the domain ∆i and the “¬” in (4.5) is interpreted in the domain ∆j .

In general, other constructors also should be contextualized. To make the difference explicit,

we may attach subscripts “i” to the constructors of Li to obtain the following:

50

• Contextualized negation ¬i: (¬iC)Ii = ∆i\CIi

• Contextualized conjunction ⊓i: (C ⊓i D)Ii = CIi ∩DIi ⊆ ∆i

• Contextualized disjunction ⊔i: (C ⊔i D)Ii = CIi ∪DIi ⊆ ∆i

• Contextualized universal restriction ∀i: (∀iR.C)Ii = {x ∈ ∆i|∀y ∈ ∆i, (x, y) ∈ RIi → y ∈
CIi}

• Contextualized existential restriction ∃i: (∃iR.C)Ii = {x ∈ ∆i|∃y ∈ ∆i, (x, y) ∈ RIi ∧ y ∈
CIi}

• Contextualized number restriction ≤i: (≤i nR.C)Ii = {x ∈ ∆i|#({y ∈ ∆i|(x, y) ∈ RIi ∧
y ∈ CIi}) ≤ n} (similar for the ≥i case)

where C,D are i-concepts, R is an i-role.

One may ask the following questions: Can two local languages share a subset of their

signatures? Can a constructor of the language Li be used in the language Lj (i 6= j)? If a

concept name C is shared by two languages Li and Lj , how ¬iC and ¬jC are related? Is

it possible to reduce contextualized constructors to “normal” DL constructors under certain

conditions? In chapter 4, we will show that different modular ontology formalisms, motivated

by different application scenarios, make different assumptions to answer those questions.

3.3.3.5 Defining Semantic Relation Rules

In a more general setting, a modular ontology language may also create third party con-

straints. For example, module j may reuse i-concept Student and k-concept People, and locally

declare i : Student ⊑ k : People. However, such a third party constraint can be avoided by an

“alias” (place holder) such that Studenti→j and Peoplek→j are given local alias Studentij and

Peopleij, respectively, thus transforming the concept inclusion to the one that connects only

j-concepts.

A concept may be a complex concept constructed using a foreign role and/or a foreign

concept, such as universal restriction (e.g., ∀R.C) or existential restriction (e.g., ∃R.C), as

shown in the Table 3.2. It is also possible to construct concepts using semantic relations (see

Table 3.2); however, since a semantic relation Q ∈ rolij corresponds to a subset of ∆i ×∆j , we

51

Table 3.2 Possible AMO Expressivity Features
Syntax Semantics

Concept Constructors

Concept Negation ¬iC r→ij (∆i\CIi)

Concept Conjunction C ⊓j D Ci→j ∩DIj

Concept Disjunction C ⊔j D Ci→j ∪DIj

Universal Restriction ∀jR.C {x ∈ ∆j|∀y ∈ ∆j, (x, y) ∈ RIj → y ∈ Ci→j}
∀jQ

−.C {x ∈ ∆j|∀y ∈ ∆i, (y, x) ∈ rQ
ij → y ∈ CIi}

∀jP.D {x ∈ ∆j|∀y ∈ ∆j, (x, y) ∈ P i→j → y ∈ DIj}
∀jP.E {x ∈ ∆j|∀y ∈ ∆j, (x, y) ∈ P i→j → y ∈ Ek→j}

Existential Restriction ∃jR.C {x ∈ ∆j|∃y ∈ ∆j, (x, y) ∈ RIj , y ∈ Ci→j}
∃jQ

−.C {x ∈ ∆j|∃y ∈ ∆i, (y, x) ∈ rQ
ij ∧ y ∈ CIi}

∃jP.D {x ∈ ∆j|∃y ∈ ∆j, (x, y) ∈ P i→j ∧ y ∈ DIj}
∃jP.E {x ∈ ∆j|∃y ∈ ∆j, (x, y) ∈ P i→j ∧ y ∈ Ei→j}

Number Restriction1 ≤j nR.C {x ∈ ∆j |#({y ∈ ∆j |(x, y) ∈ RIj ∧ y ∈ Ci→j}) ≤ n}
≤j nQ

−.C {x ∈ ∆j |#({y ∈ ∆i|(y, x) ∈ rQ
ij ∧ y ∈ CIi}) ≤ n}

≤j nP.D {x ∈ ∆j |#({y ∈ ∆j |(x, y) ∈ P i→j ∧ y ∈ DIj}) ≤ n}
≤j nP.E {x ∈ ∆j |#({y ∈ ∆j |(x, y) ∈ P i→j ∧ y ∈ Ei→j}) ≤ n}

Role Constructors

Role Inverse P− {(y, x) ∈ ∆j ×∆j|(x, y) ∈ P i→j}
Transitive Role Trans(P) (P i→j)+ = P i→j

Semantic Relation Rules

Concept C ⊑ D Ci→j ⊆ DIj

Subsumption C ⊒ D Ci→j ⊇ DIj

Role P ⊑ R P i→j ⊆ RIj

Inclusion P ⊒ R P i→j ⊇ RIj

Nominal Correspondence {x} → {y} y ∈ r→ij (x)

1 ≥ case is similar.

C is an i-concept, D is a j-concept, E is a k-concept; P is an i-role, R is a j-role,

Q ∈ rolij ; x is an i-individual, y is a j-individual; i 6= j, j 6= k, i may be or may

not be k. All formulae represent module j’s point of view and constructed concepts

(roles) are j-formulae.

52

need to use its inverse (Q−) to construct a concept in Lj by universal, existential or number

restrictions.

Note that arbitrary combination of the possible expressivity features in AMO may even

lead to undecidability, since the union of multiple decidable logics may be undecidable (Baader

et al., 2000). The design of a practical modular ontology language has to be a tradeoff between

the expressivity and reasoning complexity.

3.3.4 Semantic Requirements of AMO

To precisely specify the semantic requirements of AMO, we need to answer several questions.

First, what are the logical consequences in an AMO? How can local constraints in agents’ local

points of view influence each other? For example (fig. 3.10), if agent i thinks “a is b’s best

friend”, and agent j thinks i : a is x and i : b is y in j’s mind, can j infer the constraint that

“x is y’s best friend”? or a non-identical but compatible constraint such as “x knows y”? In

other words, can knowledge in agent i’s ontology propagate to agent j’s ontology?

b

a

bestFriendOf

y

x

knows?

r→ij

Figure 3.10 Propagation of Knowledge Among Agents

Second, if there are inconsistencies in the points of view of two agents, what are the possible

causes of such inconsistencies? For example, if agent j holds the belief that “x is y’s enemy”,

possible causes can be either i and j hold incompatible points of view while the image domain

relations (a → x, b → y) are sound (fig. 3.11 (a)), or i and j actually hold compatible points

of view but the image domain relations are wrong (e.g., j has mistaken z as y and names b as

z locally, while z is x’s enemy) (fig. 3.11 (b)). While the first type of inconsistency is hard

to eliminate (subjectivity), are there principled ways to avoid the second type of inconsistency

(miscommunication)?

Third, if beliefs of agents are compatible, what is an “objective” way to integrate their

knowledge? How can we “restore” a description of the physical world that reflects the consensus

53

b

a

bestFriendOf

y

x

enemyOf

r→ij

(a) Subjectivity

b

a

bestFriendOf

y z

x

enemyOf

r→ij

(b) Wrong Domain Relation (Miscommunication)

Figure 3.11 Two Types of Inconsistencies between Agents

among the agents, such that logical consequences are consistent in the integrated description

and each local descriptions? For example (Fig. 3.12), if a person Alice (identified as i : a and

j : x) is observed as the best friend of another person Bob (identified as i : b and j : y) by both

i and j, how can we construct an “integrated” description that is acceptable by both i and j,

such that if i(j) asserts a conclusion (e.g. x is y’s best friend), the “integrated” description can

also confirm the conclusion?

Addressing such problems is critical in identifying and solving several semantic difficulties

that arise in modular ontology languages. Next, we introduce some definitions that are useful

in precisely stating the problems we informally outlined above.

Definition 3.1 (AMO Satisfiability) Let M = 〈{Ii}, {rij}〉 be a model for an AMO O =

〈{Li}, {Rij}〉, where Ii = 〈∆i, (.)i〉 is the local interpretation of i (∆i is the local domain of

i, (.)i is the interpretation function of i) and rij denotes all domain relations between Ii and

Ij, including “image (→)”. We say that M satisfies O, denoted as M � O, iff Ii �c Li, for

all i, and M �c Rij , for all i and j, where �c stands for classic satisfiability. A concept C is

54

b

a

bestFriendOf

∆i

y

x

bestFriendOf

∆j

r→ij

∆

b/y

a/x

bestFriendOf

Figure 3.12 Agent Consensus

satisfiable in O witnessed by Lj if there is a model M of O such that CIj 6= ∅.

Definition 3.2 (AMO Entailment) An AMO O entails C ⊑ D witnessed by Lj, iff for any

model M = 〈{Ii}, {rij}〉 of O, Ij �c C ⊑ D.

Although the above definition only addresses intra-module subsumption, it can be easily

extended to inter-module subsumption with a simple syntactical rewriting. If C is an i-concept,

we can always create a j-concept C ′ interpreted as Ci→j, and then i : C ⊑ j : D can be

transformed as j : C ′ ⊑ j : D.

We now precisely define the semantic requirements for modular ontologies given in section

3.2 with the following definitions:

Definition 3.3 (Localized and Globalized Semantics) An AMO O = 〈{Li}, {Rij}〉 has

only globalized semantics, iff for any model M = 〈{Ii}, {rij}〉 of O, M � O, Ii = 〈∆i, (.)i〉,
local domains {∆i} of {Li} must be identical. Otherwise, it has localized semantics.

Definition 3.4 (Decidability) An AMO O = 〈{Li}, {Rij}〉 is decidable if for every concept

satisfiability problem (therefore also entailment problem) C, there exists an algorithm that is

capable of deciding in a finite number of steps whether there exists a model M = 〈{Ii}, {rij}〉,
M � O, such that C is satisfiable in Ii.

55

Directional Semantic Relations can be understood in the example: if j believe i : a → j :

x, i : b→ j : y and x is y’s best friend, it is not required i believes a is b’s best friend. Formally,

we have:

Definition 3.5 (Directionality) Domain relations in an AMO are directional, iff for any

model M = 〈{Ii}, {rij}〉 of O, for any i 6= j, the fact that Ci→j ⊆ Di→j is true in every Ij does

not imply that CIi ⊆ DIi must be true in every Ii.

Transitive reusability means that an agent can infer local constraints based on observing

constraints in other agents’ beliefs. For example, if i believes “a is b’s best friend”, and j

believes domain relation i : a → j : x, i : b → j : y, then j may reuse i’s knowledge and infer

that “x is y’s best friend”. Furthermore, if another agent k who is confident in j’s judgement,

and believes j : x→ k : p, j : y → k : q, then k also believes “p is q’s best friend”.

Definition 3.6 (Monotonicity and Transitive Reusability) For an AMO O = 〈{Li}, {Rij}〉,
Li is said to be reusable by Lj (j 6= i) if for any concepts C,D in Li, such that Li � C ⊑ D,

we have that for any M = 〈{Ii}, {rij}〉 of O, Ci→j ⊆ Di→j must be true in Ij. M is said to be

monotone if for every i 6= j, Li is reusable by Lj. Li is said to be transitively reusable if for

any j, k (i 6= j 6= k), if Li is reusable by Lj, and Lj is reusable by Lk, then we must have Li is

reusable by Lk.

CIi

DIi

CIi ⊆ DIi

Ci→j

Di→j

Ci→j ⊆ Di→j

r→ij

Figure 3.13 Reusability

The definition of reusability is illustrated in Fig. 3.13. Note that to ensure transitive

reusability it is critical for an agent to have confidence in other agent’s judgement and the

sound communication (image domain relation) between agents. This requirement may enforce

strong restrictions on possible image domain relations. We we will show in the next chapter

that it is not always satisfiable in some modular ontology languages.

56

Exact reasoning means that the partial descriptions of all agents is consistent with the

physical world in the sense that their combination is equivalent to the complete description

of an agent with access to the combined knowledge base. Hence, compatible beliefs of agents

may be combined such that the “merged belief” will be the consensus of individual agents.

For example, if i believes x is the identifier of a person Alice, j believes a is the identifier

of Alice and i : x → j : a, then the merged state of the two agents will “believe” i : x

and j : a are both identifiers of Alice. Thus, semantic relation rules, in their AMO form

i : φ(x1, ..., xn)→ j : ψ(y1, ..., yn) (n=1 or 2), where xi, yi are connected by r→ij , will be reduced

to a normal FOL formula φ(x1, ..., xn)→ ψ(x1, ..., xn).

Definition 3.7 (Exact Reasoning) Reasoning in an AMO O = 〈{Li}, {Rij}〉 is exact, iff

for any model M = 〈{Ii}, {rij}〉 of O, M � φ ⇔ M ′ �c φ for all concept formula φ, where

M ′ = 〈∆I , (.)I〉 is a classical model obtained from M as the follows:

• ∆I = ∪i∆i

• The assignment function (.)I is defined as: for every (concept, role or nominal) name

i : T , T I = T Ii;

• for every image domain relation, if 〈i : x, j : y〉 ∈ r→ij , add i : x = j : y.

• for every other domain relation R, if 〈i : x, j : y〉 ∈ rR
ij , add 〈x, y〉 to RI.

3.4 Discussion and Related Work

There is a large body of literature on modularity in AI and knowledge representation (KR)

in general, such as in intelligent agents (Bryson and Stein, 2001; Mukerjee and Mali, 2002),

theorem proving (Plaisted and Yahya, 2003; Amir and McIlraith, 2000), logic programming

(Bugliesi et al., 1994; Antoniou and Sperschneider, 1992; Antoniou, 1992), modal Logic (Herzig

and Varzinczak, 2004), and relevant logic (Meghini and Straccia, 1996; Garson, 1989). We only

focus here on the discussion of the general framework of the semantics of modular ontologies,

instead of the detailed specification of module ontology languages (which will be discussed in

Chapter 4).

57

3.4.1 Local Model Semantics and Distributed First Order Logic

The AMO framework presented here is strongly influenced by the Local Model Seman-

tics (LMS) (Ghidini and Giunchiglia, 2001) framework and Distributed First Order Logic

(DFOL) (Ghidini and Serafini, 1998) . The LMS framework is based on two principles:

• The principle of locality: an agent performs its local reasoning procedure only using

locally available knowledge.

• The principle of compatibility: there is compatibility among the kinds of reasoning

preformed in different agents.

More precisely, let {Li}i=1,...,n be a family of languages, and let Mi to be the class of all the

models of Li, we call each m ∈Mi a local model of Li. A compatibility sequence c = 〈c0, ..., cn〉
is a subset of M1 × ...×Mn. Hence, a compatibility sequence eliminates arbitrary co-existence

of local models that are not compatible to each other.

In DFOL, compatibility sequences are syntactically represented as interschema constraints

(or bridge rules) in the form of i : φ → j : ψ5. AMO semantic relation rules can be seen

as restricted cases of DFOL interschema constraints. The difference between AMO semantic

relation rules and general DFOL interschema constraints are as follows:

• Instead of assuming a single domain relation in DFOL interschema constraints, AMO

semantic relation rules allow two ontologies to be connected by multiple domain relations.

• AMO semantic relation rules only allow unary or binary formulae on both sides of the

rules, due to the fact that DL concepts and roles can be mapped to unary and binary

predicates in FOL. Such a restriction is not required in general DFOL interschema con-

straints.

• AMO semantic relation rules are further obligated to satisfy semantic requirements of

modular ontologies, such as decidability and knowledge reuse monotonicity, which are not

required for general DFOL interschema constraints.

5There is also an extended version of interschema constraints of the form i1 : φ1, ..., in : φn → j : ψ to
represent constraints among multiple languages (Serafini et al., 2005b).

58

3.4.2 Propositional Logic of Context

The Propositional Logic of Context (PLC) (Buvac and Mason, 1993; Buvac et al., 1995) is

motivated to provide contextual description of knowledge. In PLC, a formula is always stated

in a context and is represented by formulae of the form ist(κ, φ), where κ is a context and φ

is a formula. Intuitively, it means that φ is true in the context of κ. This is interpreted using

possible world semantics: ist(κ, φ) means that φ is true in every possible situation (i.e., truth

assignment) of the context κ. Hence, PLC is in fact a multi modal language which extends

propositional logic with the modality ist. A context κ1 may be dependent on another context

κ2, which can be denoted by a context sequence κ1κ2. For example, if κ1 represents Alice’s

belief and κ2 represents Bob’s belief, then κ1κ2 will represent that “Alice believes that Bob

believes...”.

It has been shown (Serafini and Bouquet, 2004) that PLC is multi-modal logic K restricted

to a vocabulary (i.e., each context sequence is associated with a subset of atomic propositions)

and extended with an axiom ∆:

ist(κ1, ist(κ2, φ) ∨ ψ)→ ist(κ1, ist(κ2, φ)) ∨ ist(κ1, ψ)

Serafini and Bouquet (2004) have shown that PLC can be reduced to a multi-context system

MPLC within the LMS framework. More precisely, for each context sequence κ, the language Lκ

is the smallest propositional language that contains all propositions in all context sequences and

the atomic formula φκ (corresponding to ist(κ, φ)) for any formula φ ∈ Lκκ. The interschema

constraints between {Li} (i stands for a context sequence) are:

κ : φκ → κκ : φ

κκ : φ→ κ : φκ

κκ : φκ′ → κ : (φκ′
)κ

Bouquet and Serafini (2003) have shown that LMS with bridge rules can not be embedded

in PLC. Thus, the LMS framework is more expressive than PLC.

It is easy to further reduce MPLC to the AMO framework presented above, such that propo-

sitions are concept names and interschema constraints are translated as semantic relation rules

connected by the image domain relation. Note that the notion of κ : φκ in AMO corresponds

to the image of the concept φ in Lκκ, i.e., κ : φκ will be interpreted as φκκ→κ in any model

59

of the knowledge base. It confirms the intuition of context sequences such that κ : φκ is the

observation of agent κ on the belief of φ of agent κκ. Hence, the AMO framework we introduced

is adequate to capture the contextual properties of ontologies that are supported by PLC.

3.4.3 Epistemic Semantics for Peer-to-Peer Databases

A peer-to-peer (p2p) database system (Calvanese et al., 2003) contains a federation of

autonomous local (peer) databases that are connected by a set of mapping rules. Each local

database has a relational schema (possibly a mediated view over the real data). A p2p mapping

rule is in the form of

q1 q2

where q1 (the tail of the rule) is a FOL formula over the union of the alphabets of the peers in

the system, q2 (the head of the rule) is a FOL formula over the alphabet of a single peer, and

q1 and q2 are of the same arity.

The p2p data integration problem is closely related to the modular ontology problem if we

regard the schema of each peer database as a local logic theory and the mapping rules between

peers as the semantic relation rules between local theories.

The p2p mapping rules can be interpreted in the FOL semantics, as been studied in (Catarci

and Lenzerini, 1993; Halevy et al., 2003; Koch, 2002) as :

∀x, (q1(x)→ q2(x)) (3.7)

where x is a tuple of free variables.

Calvanese et al. (2004) have argued that, instead of interpreting p2p mapping rules in

the FOL semantics, it is better using epistemic semantics to interpret those mapping rules

to ensure desirable properties of p2p systems, such as modularity, generality and decidability.

The difference between the FOL semantics and the epistemic semantics is illustrated using the

following example:

Example 3.3 : Suppose there are three knowledge bases: O1 about student, O2 about faculty,

O3 about payroll. The semantic relation rules (R1) between the three knowledge bases are:

• Any Graduate in O1 must be either a Research Assistant or a Teaching Assistant in O2;

• Any Research Assistant in O2 must have a Salary in O3;

60

• Any Teaching Assistant in O2 must have a Salary in O3.

SupposeO1 does not contain any information that whether a Graduate is a Research Assistant

or Teaching Assistant in O2. But, we may infer (in the classical first order semantics) from the

given semantic relation rules that “any Graduate in O1 must have a Salary in O3”.

However, suppose we have a different set of semantic relation rules (R2):

• Anyone that is known to be a Graduate in O1 must be either a Research Assistant or a

Teaching Assistant in O2;

• Anyone that is known to be a Research Assistant in O2 must have a Salary in O3;

• Anyone that is known to be a Teaching Assistant in O2 must have a Salary in O3.

The only difference between R1 and R2 is on that the latter is based on epistemic descrip-

tions. Hence, with (R2) as the semantic relation rules among O{1,2,3}, we are not be able to

infer whether an person is known to be a Research Assistant or Teaching Assistant, therefore can

not infer that “anyone that is known to be Graduate in O1 must have a Salary in O3”.

Formally, the epistemic interpretation of p2p mapping rules q1 q2 is (Calvanese et al.,

2003, 2004):

∀x, (Kq1(x)→ q2(x))

where K is the epistemic operator (Donini et al., 1992, 1998) that can be read as “it is known

that...”. Kα means the objects that are known to satisfy α, i.e., that satisfy α in all possible

FOL models.

The formal semantics of the “K” operator can be given in a simplified view of a Kripke

structure (Kriple, 1962) of an S5 modal system (such that accessibility relations between possible

worlds (models) are equivalence relations): an epistemic interpretation is a pair (I,W), where

W is a set of FOL interpretations and I ∈ W; the models in W hold the Common Domain

Assumption such that they share the same interpretation domain of individuals ∆. “Kα”

actually represents the minimal knowledge about α, such that Kα is satisfied in (I,W) by a

tuple x iff α(x) is satisfied in all pairs (J ,W) such that J ∈ W. We define the interpretation

of Kα as

(Kα)(I,W) =
⋂

J∈W

α(J ,W) (3.8)

61

The main difference between the FOL semantics (3.7) and the epistemic semantics (3.8) of a

mapping rules q1 q2 is that: in epistemic semantics, not all tuples that satisfies q1 will satisfy

q2, but only a subset of such tuples that are known to be q1 will satisfy q2. Hence, the epistemic

semantics can be seen as a well-behaved approximation of the FOL semantics (Calvanese et al.,

2004). For example, it can prevent the undecidability of query answering under the FOL

semantics due to the interaction of inclusion dependencies, functional dependencies and cyclic

mappings (Calvanese et al., 2004).

As shown in (Franconi et al., 2003), the epistemic semantics is equivalent to the context-

based semantics of DFOL (Ghidini and Serafini, 1998). Indeed, different from the FOL seman-

tics approach, in the context-based approach the overall system will not be reduced to a single

flat theory (which may lead to the problems described in (Calvanese et al., 2004)), but to a

set of local theories connected by interpretation constraints. The DFOL translation for the

mapping rule q1 q2 will be:

∀x, (q1(x)
{〈xi,yi〉∈r→12}−−−−−−−−→ q2(y)) (3.9)

Hence, not all tuples in the domain of L1 that satisfies q1 will be “mapped” (by the image

domain relation) as q2, but only a subset of them that has “images” in the domain of L2 (i.e.,

the ones that agent 2 “knows”) will be mapped. In that sense, an interpretation constraint (or

a semantic relation rule in AMO) represents the epistemic knowledge about the “source” agent

by the “target” agent. This is clearly demonstrated using the following example

Example 3.4 : Suppose we have an AMO with three modules and following semantic relation

rules between them:

∀x,Graduate(x)
{r→12}−−−→ ResearchAssistant(x) ∨ TeachingAssistant(x)

∀x,ResearchAssistant(x)
{r→23}−−−→ HasSalary(x)

∀x,TeachingAssistant(x)
{r→23}−−−→ HasSalary(x)

However, in resemblance to the epistemic semantics approach, we cannot infer from those

rules that

∀x,Graduate(x)
{r→13}−−−→ HasSalary(x)

A closer look at the interpretation constraints in DFOL and semantic relation rules in AMO

reveals that they have strong resemblance to rules. In general, we may compare an AMO to

62

a hybrid systems of multiple DL theories connected by rules, which may not necessarily be

reducible to a single description logic system. It is interesting to explore that whether modular

ontologies in their general forms can be represented as an integration of description logics and

rule-based systems, e.g., Horn Rules (Levy and Rousset, 1998), logic programming (Motik and

Rosati, 2007; Motik et al., 2006) or MKNF (Minimal Knowledge, Negation as Failure) (Lifschitz,

1991). We believe that some of the results obtained in the study of combining DL and rules can

be useful in the study of modular ontologies, e.g., the decidability and complexity of reasoning

and query answering in modular ontologies.

3.4.4 Modular Ontologies based on Conservative Extensions

An alternative approach to modular ontologies is based on the notion of conservative

extensions (Ghilardi et al., 2006; Grau et al., 2007, 2006a; Grau and Kutz, 2007) which

allow ontology modules to be interpreted using the classical FOL semantics by requiring that

they share the same global interpretation domain. The main intuition behind conservative

extensions is to ensure local completeness of ontology modules, such that the combination of

ontology modules will not alter the knowledge in any component module (Grau et al., 2006d).

In particular, combining ontology modules cannot induce a new concept inclusion relation

between existing concepts in any module. Hence, interaction between modules are controlled

by requiring axioms in each module to have only “local” effects.

More precisely, if O is the union of a set of ontology modules {O1, ..., On}, then we say O

is a (deductive) conservative extension6 of Oi if O |= αi ⇔ Oi |= αi for any αi of the form

C1 ⊑ C2, where C1, C2 are concepts in the language of Oi.

In general, to judge whether an extension is a conservative extension is a hard problem

even for the DL ALC (decidable only in 2ExpTime-complete) (Grau et al., 2006a). It quickly

becomes undecidable for the logic ALCQIO (Lutz et al., 2007). Nevertheless, there are practical

methods to ensure conservativity of ontology extensions for a particular class of local ontologies.

(Grau et al., 2007) have shown that if K1 and K2 are local ontologies, then K1∪K2 must be the

conservative extension of Ki (i = 1, 2), and the checking of ontology locality for SHOIQ can be

6There is also a related notion of model conservative extension (Lutz et al., 2007), such that O is a model
conservative extension of O1 if and only if every model of O1 can be extended to a model of O. Model con-
servativity is strictly stronger than deductive conservativity. In what follows in this section, by default we only
address deductive conservative extensions.

63

carried out in NExpTime time (Grau et al., 2007). There is also an syntactical approximation

of locality which can be checked in polynomial time (Grau et al., 2007), which forbids the use

of any axiom that is not “local” (e.g., ⊤ ⊑ C).

Both the conservative extension approach and our approach offers solutions to controlling

unintended interactions among different ontology modules. However, the two approaches differ

on whether keeping the conventional FOL semantics. The conservative extension approach

forces a single global FOL interpretation domain for all ontology modules. However, it also

prevents the different modules from interpreting axioms within their own local contexts since

it in fact results in a single flat theory for all agents. Thus, the designers of different ontology

modules have to play it safe by accounting for all possible contexts in which knowledge from

a specific module might be reused. Locality of knowledge is achieved by precluding several

otherwise useful modelling scenarios, such as the refining of relations between existing concepts

in an ontology module and the reuse of nominals (Lutz et al., 2007). Furthermore, due

to the requirement of a global model, reasoning with conservative extension based modular

ontologies cannot benefit from the use of only local knowledge, which is one of the major

intended advantage to having modular ontologies.

On the contrast, the contextualized semantics approach adopted by DFOL and AMO local-

izes the interpretation of reused knowledge. Locality of axioms in ontology modules is obtained

“for free” by the contextualized semantics, thereby freeing ontology engineers from the burden

of ensuring the reusability of an ontology module in contexts that are hard to foresee at the

time of ontology construction. Thus, it is not necessary to explicitly restrict axioms in ontology

modules for having only local effects.

64

CHAPTER 4. Package-based Description Logics

4.1 Overview

As noted by (Bouquet et al., 2003), ontologies on the semantic web need to satisfy two

apparently conflicting objectives: Sharing or reuse of knowledge across autonomously developed

ontologies, and accommodation of the local points of view or contextuality of knowledge, as we

have illustrated by the examples in the previous chapter.

This chapter explores a formalism that can support context-aware reuse from multiple on-

tology modules. The resulting modular ontology language, package based description logics,

allows the representation of ontology modules using components called packages. Each package

consists of a set of highly related terms and relationships between them, with clearly defined

access interfaces. In particular, it

• Allows each ontology module to use a subset of SHOIQ, i.e., ALC augmented with

transitive roles, role inclusion, role inversion, qualified number restriction and nominal

concepts, hence covers a significant fragment of OWL-DL.

• Supports more flexible modeling scenarios than those supported by existing approaches,

using a mechanism of semantic importing of names (including concept, role and nominal

names) across ontology modules.

• Contextualizes the interpretation of reused knowledge. Locality of axioms in ontology

modules is obtained “for free” by its contextualized semantics. A natural consequence of

contextualized interpretation is that inferences that are drawn are always from the point

of view of a witness package.

• Ensures that the result of reasoning is always the same as that obtained from a standard

reasoner over an integrated ontology resulting from combining the relevant knowledge in

65

a context-specific manner. This ensures the monotonicity of inference in the distributed

setting.

• Avoids many of the known reasoning difficulties of the existing approaches.

Part of this chapter was previously published in (Bao et al., 2006f,b,c; Bao and Honavar,

2006b,a; Bao et al., 2007e,c).

4.2 Package-based Description Logics

This section will introduce the basic features of the proposed language, package-based de-

scription logics (P-DL) SHOIQP.

4.2.1 Syntax of P-DL

4.2.1.1 Packages

Informally, a package in SHOIQP can be viewed as a SHOIQ TBox and RBox. We define

the signature Sig(Pi) of a package Pi as the set of names used in Pi. Sig(Pi) is the disjoint

union of the set of concept names NCi, the set of role names NRi and the set of nominal names

NIi used in package Pi. The set of roles in Pi is defined as NRi = NRi ∪ {R−|R ∈ NRi} where

R− is the inverse of the role name R.

The signature Sig(Pi) of package Pi is divided into two disjoint parts: its local signature

Loc(Pi) and its external signature Ext(Pi). For all t ∈ Loc(Pi), Pi is the home package of t,

denoted by Pi = Home(t), and t is called an i-name (more specifically, an i-concept name, an

i-role name, or an i-nominal name). We use i-role to refer to an i-role name or its inverse.

A role name R ∈ NRi may be declared to be transitive in Pi using an axiom Transi(R). If R

is declared transitive, R− is also said to be transitive. We use Tri(R) to denote a role R being

transitive in Pi.

A role inclusion axiom in Pi is an expression of the form R ⊑ S, where R and S are i-roles.

The role hierarchy for Pi is the set of all role inclusion axioms in Pi. The RBox Ri consists

of the role hierarchy for Pi and the set of role transitivity declarations Transi(R). For a role

hierarchy R, if R ⊑ S ∈ R, then R is called a sub-role of S and S is called a super-role of R

w.r.t. R. An i-role is called locally simple if it not transitive nor has any transitive sub-role in

Pi.

66

The set of SHOIQP concepts in Pi is defined inductively by the following grammar:

C := A|o|¬kC|C ⊓ C|C ⊔ C|∀R.C|∃R.C|(≤ nS.C)|(≥ nS.C)

where A ∈ NCi, o ∈ NIi, n is a finite non-negative integer, R ∈ NRi, and S ∈ NRi is a locally

simple role; ¬kC denotes the contextualized negation of concept C w.r.t. Pk. For any k and

k-concept name C, ⊤k = ¬kC ⊔ C, and ⊥ = ¬kC ⊓ C. Thus, there is no universal top (⊤)

concept or global negation (¬). Instead, we have for each package Pk, a contextualized top ⊤k

and a contextualized negation ¬k. This allows a logical formula in P-DL (including SHOIQP)

to be interpreted within the context of a specific package.

A general concept inclusion (GCI) axiom in Pi is an expression of the form C ⊑ D, where

C,D are concepts in Pi. The TBox Ti of Pi is the set of all GCIs in Pi. Thus, formally, a

package Pi is a pair Pi := 〈Ti,Ri〉. A SHOIQP ontology Σ is a set of packages {Pi}. We

assume that every name used in a SHOIQP ontology Σ has a home package in Σ.

4.2.1.2 Semantic Importing between Packages

If a concept, role or nominal name t ∈ Loc(Pj) ∩ Ext(Pi), i 6= j, we say that Pi imports t

and denote it as Pj
t−→ Pi. We require that transitivity of roles be preserved under importing.

Thus, if Pj
R−→ Pi where R is a j-role name, then Transi(R) iff Transj(R). If any local name of

Pj is imported into Pi, we say that Pi imports Pj and denote it by Pj 7→ Pi.

The importing transitive closure of a package Pi, denoted by P+
i , is the set of all packages

that are directly or indirectly imported by Pi. Let P ∗i = {Pi} ∪ P+
i . A SHOIQP ontology

Σ = {Pi} has an acyclic importing relation if, for all i 6= j, Pj ∈ P+
i → Pi 6∈ P+

j ; otherwise, it

has a cyclic importing relation.

A concept C is understandable by a package Pi if each concept and role name occurring in

C has a home package in P ∗i .

We denote a Package-based Description Logic (P-DL) by adding the letter P to the notation

for the corresponding DL. For example, ALCP is the package extension of the DL ALC. We

denote by PC a restricted type of P-DL that only allows importing of concept names. P−

denotes a P-DL with acyclic importing. In particular, ALCP−C was studied in (Bao et al.,

2006a), ALCPC was studied in (Bao et al., 2006e) and SHOIQP was studied in (Bao et al.,

2007e).

67

4.2.1.3 Syntax Restrictions on Semantic Importing

Restrictions on Negations. We require that ¬kC (hence also ⊤k) can appear in Pi,

i 6= k, only if Pk 7→ Pi and all names in C are in Sig(Pk). Intuitively, this means that k-

negation can only be used before a formula that is composed using names in Pk, and it can

appear only in Pk or any package that directly imports Pk. Note that this also implies that

Sig(C) ⊆ Sig(Pi) ∩ Sig(Pk).

Restrictions on Imported Role Names. We require that an imported role should not

be used in role inclusion axioms. This restriction is imposed because of two reasons. First,

decidability requires that a role that is used in number restrictions be “globally” simple, i.e.,

that it has no transitive sub-role across any importing chain1 (Horrocks et al., 1999). In practice,

it is useful to restrict the use of imported roles in such a way that a role is globally simple iff it

is locally simple. Second, a reduction of SHOIQP without such a restriction to an integrated

ontology may require some features that are beyond the expressivity of SHOIQ, such as role

intersection. The decidability of SHOIQP with unrestricted use of imported role names still

remains an open problem.2

4.2.2 Semantics

4.2.2.1 Local Semantics and Interpretation Constraints

A SHOIQP ontology has localized semantics in the sense that each package has its own

local interpretation domain. Formally, for a SHOIQP ontology Σ = {Pi}, a distributed in-

terpretation is a tuple I = 〈{Ii}, {rij}Pi∈P+
j
〉, where Ii is a local interpretation of package

Pi, with domain ∆Ii , rij ⊆ ∆Ii × ∆Ij is the (image) domain relation for the interpreta-

tion of the direct or indirect importing relation from Pi to Pj . For convenience, we use

rii = id∆Ii := {(x, x)|x ∈ ∆Ii} to denote the identity mapping in the local domain ∆Ii .

Taking this convention into account, the distributed interpretation I = 〈{Ii}, {rij}Pi∈P+
j
〉 may

also be denoted by I = 〈{Ii}, {rij}Pi∈P ∗
j
〉.

1This follows from the reduction from SHOIQP to SHOIQ given in Section 4.2.4.
2For some subsets of SHOIQP , this restriction may be relaxed. For example, ALCIOP can be reduced to

the DL ALBO (Schmidt and Tishkovsky, 2007) (extending ALCO with boolean role operators, inverse of roles
and domain and range restriction operators), which is known to be decidable.

68

To facilitate our further discussion on interpretations, the following notational conventions

will be used throughout. Given i, j, such that Pi ∈ P ∗j , for every x ∈ ∆Ii , A ⊆ ∆Ii and

S ⊆ ∆Ii ×∆Ii , define:

rij(A) = {y ∈ ∆Ij |∃x ∈ A, (x, y) ∈ rij},

rij(S) = rij ◦ S ◦ r−ij
= {(z,w) ∈ ∆Ij ×∆Ij |∃(x, y) ∈ S, (x, z) ∈ rij ∧ (y,w) ∈ rij},

S(x) = {y ∈ ∆Ii |(x, y) ∈ S}.

Moreover, let ρ be the equivalence relation on
⋃

i ∆Ii generated by the collection of ordered

pairs
⋃

Pi∈P ∗
j
rij . This is the symmetric and transitive closure of the set

⋃

Pi∈P ∗
j
rij. Define, for

every i, j, ρij = ρ ∩ (∆Ii ×∆Ij).

Each of the local interpretations Ii = 〈∆Ii , ·Ii〉 consists of a domain ∆Ii , and the inter-

pretation function ·Ii , which maps every concept name to a subset of ∆Ii , every role name to

a subset of ∆Ii ×∆Ii and every nominal name to an element in ∆Ii , such that the following

equations are satisfied, where R is a j-role, S is a locally simple j-role, C,D are concepts:

RIi = (RIi)+, if Transi(R) ∈ Ri

(R−)Ii = {(x, y)|(y, x) ∈ RIi}

(C ⊓D)Ii = CIi ∩DIi

(C ⊔D)Ii = CIi ∪DIi

(¬jC)Ii = rji(∆
Ij)\CIi , for Sig(C) ⊆ Sig(Pi) ∩ Sig(Pj)

(∃R.C)Ii = {x ∈ rji(∆Ij)|∃y ∈ ∆Ii , (x, y) ∈ RIi ∧ y ∈ CIi}

(∀R.C)Ii = {x ∈ rji(∆Ij)|∀y ∈ ∆Ii , (x, y) ∈ RIi → y ∈ CIi}

(> nS.C)Ii = {x ∈ rji(∆Ij)| |{y ∈ ∆Ii |(x, y) ∈ SIi ∧ y ∈ CIi}| > n}

(6 nS.C)Ii = {x ∈ rji(∆Ij)| |{y ∈ ∆Ii |(x, y) ∈ SIi ∧ y ∈ CIi}| 6 n}

Note that, when i = j, since rii = id∆Ii , (¬jC)Ii reduces to the usual negation (¬iC)Ii =

∆Ii\CIi . Similarly, the other semantic definitions also reduce to the usual DL semantic defini-

tions.

A local interpretation Ii satisfies a role inclusion axiom R1 ⊑ R2 iff RIi

1 ⊆ RIi

2 and a GCI

C ⊑ D iff CIi ⊆ DIi . Ii is a model of Pi, denoted by Ii � Pi, if it satisfies all axioms in Pi.

69

The proposed semantics of SHOIQP is motivated by the need to overcome some of the

limitations of existing approaches that can be traced back to the arbitrary construction of

domain relations and the lack of support for contextualized interpretation. Specifically, we seek

a semantics that satisfies the following desiderata:

• Preservation of concept unsatisfiability. The intuition is that an unsatisfiable con-

cept expression can never be reused so as to be interpreted as a satisfiable concept.

Formally, we say that a domain relation rij preserves the unsatisfiability of a concept C

if whenever CIi = ∅, it is necessarily the case that CIj = ∅.

• Transitive reusability of knowledge. The intuition is that the consequences of some

of the axioms defined in one module can be propagated in a transitive fashion to other

ontology modules. For example, if a package Pi asserts that C ⊑ D, and Pj directly or

indirectly imports that axiom from Pi, then it should be the case that C ⊑ D is also valid

from the point of view of Pj .

• Contextualized interpretation of knowledge. The intuition is that the interpretation

of assertions in each ontology module is constrained by their context. When knowledge,

e.g., axioms, in that module is reused by other modules, the interpretation of the reused

knowledge should be constrained by the context in which the knowledge is being reused.

• Improved expressivity. In particular, the language should support

1. both inter-module concept inclusion and concept construction using foreign concepts,

roles and nominals;

2. more general reuse of roles and of nominals than allowed by existing approaches.

A major goal of this chapter is to explore the constraints that need to be imposed on local

interpretations so that the resulting semantics for SHOIQP satisfies the desiderata enumerated

above. These constraints are presented in the following:

Definition 4.1 An interpretation I = 〈{Ii}, {rij}Pi∈P ∗
j
〉 is a model of a SHOIQP KB Σ =

{Pi}, denoted as I � Σ, if the following conditions are satisfied.

1. For all i, j, rij is one-to-one, i.e., it is an injective partial function.

70

2. Compositional Consistency: For all i, j, k s.t. i 6= j, Pi ∈ P+
k and Pk ∈ P+

j , we have

ρij = rij = rkj ◦ rik.

3. For every i-concept name C that appears in Pj , we have rij(C
Ii) = CIj .

4. For every i-role R that appears in Pj , we have RIj = rij(R
Ii).

5. Cardinality Preservation for Roles: For every i-role R that appears in Pj and every

(x, x′) ∈ rij, y ∈ RIi(x) iff rij(y) ∈ RIj (x′).

6. For every i-nominal o that appears in Pj , (oIi , oIj) ∈ rij .

7. Ii � Pi, for every i.

The proposed semantics for SHOIQP is an extension of the semantics for ALCPC (Bao

et al., 2006e), which uses Conditions 1,2,3 and 7 above, and of the semantics for Semantic

Importing (Pan et al., 2006), which introduced Condition 5 above.

Intuitively, one-to-oneness (Condition 1, see Figure 4.1) and compositional consistency (Con-

dition 2, Figure 4.2) ensure that the parts of local domains connected by domain relations match

perfectly. Conditions 3 and 4 ensure consistency between the interpretations of concepts and of

roles in their home package and the interpretations in the packages that import them. Condi-

tion 5 (Figure 4.3) ensures that rij is a total bijection from RIi(x) to RIj (rij(x)); in particular,

the sizes of |RIi(x)| and |RIj (rij(x))| are always the same in different local domains. Condition

6 ensures the uniqueness of nominals. In Section 4, we will show that Conditions 1-7 are min-

imally sufficient to guarantee that the desiderata for the semantics of SHOIQP as outlined

above are indeed satisfied.

Note that Condition 2 implies that if Pi and Pj mutually (possibly indirectly) import one

another, then rij = ρij = ρ−ji = r−ji. However, if Pj 6∈ P ∗i , rji may not exist even if rij exists.

Also note that rij need not be a total function.

Definition 4.2 An ontology Σ is consistent as witnessed by a package Pw of Σ if P ∗w has a

model I = 〈{Ii}, {rij}Pi∈P+
j
〉, such that ∆Iw 6= ∅. A concept C is satisfiable as witnessed by

Pw if there is a model I of P ∗w, such that CIw 6= ∅. A concept subsumption C ⊑ D is valid as

witnessed by Pw, denoted by C ⊑w D, if for every model I of P ∗w, CIw ⊆ DIw .

71

∆Ii

CIi

∆Ij

rij(C
Ii) = CIj

rij

An image domain relation in P-DL is one-to-one, i.e., it is a partial injective function.

It is not necessarily total, i.e., some individuals of CIi may not be mapped to ∆Ij .

Figure 4.1 One-to-One Domain Relation

Hence, in SHOIQP, the questions of consistency, satisfiability and subsumption problems

are always answered from the local point of view of a witness package, and it is possible that

different packages draw different conclusions from their own points of view.

As immediate consequences of the proposed semantics for the P-DL SHOIQP, we have

the following useful semantical equivalences, which extend various versions of the De Morgan’s

Law to SHOIQP (Proof is in the appendix).

Lemma 4.1 Let Pi 7→ Pj , C,D be concepts, R a k-role, such that Sig(C) ∪ Sig(D) ∪ {R} ⊆
Sig(Pi) ∩ Sig(Pj). Then, the following equalities hold from the point of view of Pj :

1. ¬iC = ⊤i ⊓ ¬jC;

2. ¬i(C ⊓D) = ¬iC ⊔ ¬iD;

3. ¬i(C ⊔D) = ¬iC ⊓ ¬iD;

4. ¬i(∃R.C) = ¬i⊤k ⊔ ∀R.¬jC;

5. ¬i(∀R.C) = ¬i⊤k ⊔ ∃R.¬jC;

6. ¬i(≤ nR.C) = ¬i⊤k ⊔ ≥(n+ 1)R.C;

7. ¬i(≥ (n+ 1)R.C) = ¬i⊤k ⊔≤nR.C.

72

∆Ii

CIi

∆Ij

CIj

∆Ik

CIk

rij

rjkrik

rjk ◦ rij = rik

Figure 4.2 Compositionally Consistent Domain Relation

Note that when i = j = k, the equations in Lemma 4.1 reduce to the ordinary versions of

De Morgan’s Law in DL. These equations are helpful in simplifying proofs of other properties

of SHOIQP. Also note that, under the same hypotheses as those in Lemma 4.1,

(∃R.C)Ij = {x ∈ rkj(∆
Ik)|∃y ∈ ∆Ij , (x, y) ∈ RIj ∧ y ∈ CIj}

= {x ∈ rkj(∆
Ik)| |{y ∈ ∆Ij |(x, y) ∈ RIj ∧ y ∈ CIj}| ≥ 1}

= (≥1R.C)Ij

(∀R.C)Ij = {x ∈ rkj(∆
Ik)|∀y ∈ ∆Ij , (x, y) ∈ RIj → y ∈ CIj}

= {x ∈ rkj(∆
Ik)| |{y ∈ ∆Ij |(x, y) ∈ RIj ∧ y 6∈ CIj}| ≤ 0}

= (≤0R.¬jC)Ij

Hence, proofs involving existential restriction and value restriction may be reduced to those

involving the corresponding number restrictions3. In what follows, we will only consider nega-

tion, conjunction and at-most number restriction as concept constructors since, as we have just

pointed out, arguments for other constructors can be reduced to them.

3Note that R may not be a locally simple role in which case it cannot be used in number restrictions. However,
the formulas above still allow us in practice to rephrase arguments involving existential restriction or universal
restriction into corresponding arguments on number restrictions (for n = 1 or n = 0) regardless of the simplicity
of R.

73

∆Ii

x

q p p

∆Ij

x′

p p

rij

If an i-role p is imported by Pj , then every pair of p instances must have a “preim-

age” pair in ∆i. The Cardinality Preservation for Roles, illustrated in this picture,

requires that, if an individual x in ∆Ii has an image individual x′ in ∆Ij , then each

of its p-neighbors must have an image in ∆Ij which is a p-neighbor of x′.

Figure 4.3 Cardinality Preservation for Roles

Next, we show that Condition 3 of Definition 5.1 holds not only for concept names, but, in

fact, for arbitrary concepts (Proof is in the appendix). Lemma 4.2 will be used in Section 4

to show that the package description logic SHOIQP supports monotonicity of reasoning and

transitive reusability of modules .

Lemma 4.2 Let Σ be a SHOIQP ontology, Pi, Pj two packages in Σ such that Pi ∈ P+
j , C a

concept such that Sig(C) ⊆ Sig(Pi)∩Sig(Pj), and R a role name such that R ∈ Sig(Pi)∩Sig(Pj).

If I = 〈{Iu}, {ruv}Pu∈P+
v
〉 is a model of Σ, then rij(C

Ii) = CIj and rij(R
Ii) = RIj .

4.2.2.2 P-DL Semantics based on Partially-Overlapped Local Domains

A simplified version of the P-DL semantics may be given for the special case in which

domain relations are interpreted as identity relations, i.e., (x, y) ∈ rij iff x = y ∈ ∆Ii ∩ ∆Ij .

Note that, in this case, local domains of ontology modules are in fact partially overlapping. The

one-to-one and compositional consistency requirements are automatically satisfied by identity

relations. Conditions 4 and 5 of Definition 5.1 may be unified so that the semantics in Definition

5.1 can be simplified as follows:

Definition 4.3 An overlapping domain interpretation I = {Ii} is a model of a SHOIQP
ontology Σ = {Pi} if the following conditions are satisfied.

1. For every i-concept name C that appears in Pj , C
Ij = CIi ∩∆Ij .

74

2. For every i-role R that appears in Pj , R
Ij = RIi ∩ (∆Ij ×∆Ii) = RIi ∩ (∆Ii ×∆Ij).

3. For every i-nominal name o that appears in Pj , o
Ii = oIj .

4. Ii � Pi, for every i.

A similar semantics for terminology mappings between ontology modules based on partially

overlapping domains is proposed in (Catarci and Lenzerini, 1993). In that framework, there is a

global interpretation I = 〈∆I , ·I〉 and local domains ∆Ii , such that each local domain ∆Ii is a

subset of ∆I and two local domains may be partially overlapping. Mappings between concepts

are of the following two forms:

i : C ⊑ext j : D (extensional inclusion), semantics: CI ⊆ DI

i : C ⊑int j : D (intensional inclusion), semantics: CI ∩∆Ii ∩∆Ij ⊆ DI ∩∆Ii ∩∆Ij

Intensional inclusions in (Catarci and Lenzerini, 1993) can be reduced to P-DL concept

inclusions C ⊑ D ⊓ ⊤i in package Pj , based on the following equations:

CI = CIi ⊆ ∆Ii

DI = DIj ⊆ ∆Ij

CIj = CIi ∩∆Ij = CI ∩∆Ii ∩∆Ij

DIj ∩∆Ii = DI ∩∆Ij ∩∆Ii

Extensional inclusions, however, have no equivalent translation into P-DL. On the other

hand, our approach is different from the approach in (Catarci and Lenzerini, 1993) in that

extensional inclusions and intensional inclusions are not directional (under a global semantics),

while semantic importing in P-DL is directional. Hence, the terminology mappings of (Catarci

and Lenzerini, 1993) cannot, in general, be reduced to P-DL.

4.2.3 SHOIQP Examples

The semantic importing approach described here can model a broad range of scenarios that

can also be modeled using existing approaches.

75

Example 4.1 :Inter-module concept and role inclusions. Suppose we have a people ontology

P1:

⊤1 ⊑ 1 : Man ⊔ 1 : Woman

1 : Boy ⊔ 1 : Girl ⊑ 1 : Child

1 : Husband ⊑ 1 : Man ⊓ ∃1 : marriedTo.1 : Woman

Suppose the Work ontology P2 imports some of the knowledge from the people ontology:

2 : FemaleEmployee ⊑ 2 : Employee (4.1)

2 : MaleEmployee ⊑ 2 : Employee (4.2)

2 : MaleEmployee ⊑ 1 : Man (4.3)

2 : FemaleEmployee ⊑ 1 : Woman (4.4)

1 : Child ⊑ ¬22 : Employee (4.5)

Axioms (4.3) and (4.4) model inter-module concept inclusions. This example also illustrates

that the semantic importing approach can realize concept specialization ((4.3) and (4.4)) and

generalization (4.5).

Example 4.2 :Use of foreign roles or foreign concepts to construct local concepts. Suppose a

marriage ontology P3 reuses the people ontology:

(= 1 (1 : marriedTo).(1 : Woman)) ⊑ 3 : Monogamist (4.6)

3 : MarriedPerson ⊑ ∀(1 : marriedTo).(3 : MarriedPerson) (4.7)

3 : NuclearFamily ⊑ ∀(3 : hasMember).(1 : Child) (4.8)

A complex concept in P3 may be constructed using an imported role (4.7), an imported

concept (4.8), or both an imported role and an imported concept (4.6).

Example 4.3 :The use of nominals. Suppose the work ontology P2, defined above, is aug-

mented with additional knowledge from a calendar ontology P4, to obtain an augmented work

ontology. Suppose P4 contains the following axiom:

4:WeekDay = {4:Mon, 4:Tue, 4:Wed, 4:Thu, 4:Fri},

76

where the nominals are shown in italic font. Suppose the new version of P2 contains the

following additional axioms:

4 : Fri ⊑ ∃(2 : hasDressingCode).(2 : CasualDress)

⊤2 ⊑ ∃(2 : hasDressingCode−).(4 : WeekDay)

4.2.4 Reduction to Ordinary DL

A reduction ℜ from a SHOIQP KB Σd = {Pi} to a SHOIQ KB Σ can be obtained

as follows: the signature of Σ is the union of the local signatures of the component packages

together with a global top ⊤, a global bottom ⊥ and local top concepts ⊤i, for all i, i.e.,

Sig(Σ) =
⋃

i Loc(Pi) ∪ {⊤i} ∪ {⊤,⊥}, and

a) For all i, j, k such that i 6= j, Pi ∈ P+
k , Pk ∈ P+

j , ⊤i ⊓⊤j ⊑ ⊤k is added to Σ.

b) For each GCI X ⊑ Y in Pj , #j(X) ⊑ #j(Y) is added to Σ. The mapping #j() is defined

below.

c) For each role inclusion X ⊑ Y in Pj , X ⊑ Y is added to Σ.

d) For each i-concept name or i-nominal name C in Pi, i : C ⊑ ⊤i is added to Σ.

e) For each i-role name R in Pi, ⊤i is stipulated to be its domain and range, i.e., ⊤ ⊑ ∀R−.⊤i

and ⊤ ⊑ ∀R.⊤i are added to Σ.

f) For each i-role name R in Pj , the following axioms are added to Σ:

− ∃R.⊤j ⊑ ⊤j (local domain);

− ∃R−.⊤j ⊑ ⊤j (local range).

g) For each i-role name, add Trans(R) to Σ if Transi(R).

The mapping #j() is adapted from a similar one for DDL (Borgida and Serafini, 2003) with

modifications to facilitate context preservation whenever name importing occurs. For a formula

X used in Pj , #j(X) is:

• X, for a j-concept name or a j-nominal name.

• X ⊓ ⊤j, for an i-concept name or an i-nominal name X.

77

• ¬#j(Y) ⊓ ⊤i ⊓ ⊤j, for X = ¬iY , where Y is a concept.

• (#j(X1)⊕#j(X2)) ⊓ ⊤j, for a concept X = X1 ⊕X2, where ⊕ = ⊓ or ⊕ = ⊔.

• (⊗R.#j(X
′)) ⊓ ⊤i ⊓ ⊤j , for a concept X = (⊗R.X ′), where ⊗ ∈ {∃,∀,≤ n,≥ n} and R

is an i-role.

For example, if C,D are concept names and R a role name,

#j(j : (¬ii : C)) = ¬(C ⊓⊤j) ⊓ ⊤i ⊓ ⊤j

#j(j : (j : D ⊔ i : C)) = (D ⊔ (C ⊓ ⊤j)) ⊓ ⊤j

#j(j : ∀(j : R).(i : C)) = ∀R.(C ⊓ ⊤j) ⊓ ⊤j

#j(j : ∃(i : R).(i : C)) = ∃R.(C ⊓ ⊤j) ⊓ ⊤i ⊓ ⊤j

It should be noted that #j() is contextualized so as to allow a given formula to have different

interpretations when it appears in different packages.

4.2.5 Properties of Semantic Importing

In this section, we further justify the proposed semantics for SHOIQP. More specifically,

we present the main results showing that SHOIQP satisfies the desiderata given earlier (proofs

are in appendix A.1).

The first main theorem shows that the consistency problem of a SHOIQP ontology can be

reduced to a satisfiability problem of a SHOIQ concept w.r.t. the ontology obtained from the

integration of all packages.

Theorem 4.1 A SHOIQP KB Σ is consistent as witnessed by a package Pw if and only if

⊤w is satisfiable with respect to ℜ(P ∗w).

Using Theorem 4.1 and the fact that concept satisfiability in SHOIQ is NExpTime-

complete (Tobies, 2000, 2001), we can prove the following important consequence.

Theorem 4.2 The concept satisfiability, concept subsumption and consistency problems in

SHOIQP are NExpTime-complete.

The next theorem shows that concept subsumption problems in SHOIQP can be reduced

to concept subsumption problems in SHOIQ.

78

Theorem 4.3 (Reasoning Exactness) For a SHOIQP KB Σ = {Pi}, C ⊑j D iff ℜ(P ∗j) |=
#j(C) ⊑ #j(D).

Proof: As usual, we reduce subsumption to (un)satisfiability. It follows directly from Theo-

rem 4.1 that P ∗j and C ⊓¬iD have a common model if and only if ℜ(P ∗j) and #j(C)⊓¬#j(D)

have a common model. Hence Theorem 4.3 holds. Q.E.D.

Discussion of Desiderata. To show that the package description logic SHOIQP supports

transitive reusability and preservation of unsatisfiability, we prove the monotonicity of reasoning

in SHOIQP.

Theorem 4.4 (Monotonicity and Transitive Reusability) For a SHOIQP KB Σ = {Pi},
if Pi ∈ P+

j and C ⊑i D, then C ⊑j D, where Sig(C) ∪ Sig(D) ⊆ Sig(Pi) ∩ Sig(Pj).

Proof: Suppose that C ⊑i D. Thus, for every model I of P ∗i , CIi ⊆ DIi . Now consider a

model I of P ∗j . Since Pi ∈ P ∗j , I is also a model of P ∗i . Therefore, we have that CIi ⊆ DIi .

Hence, we obtain that rij(C
Ii) ⊆ rij(D

Ii), whence, by Lemma 4.2, CIj ⊆ DIj . This proves

that C ⊑j D. Q.E.D.

Theorem 4.4 ensures that when some part of an ontology module is reused, the restrictions

asserted by it, e.g., domain restrictions on roles, will not be relaxed in a way that prohibits

the reuse of imported knowledge. Theorem 4.4 also ensures that consequences of imported

knowledge can be transitively propagated across importing chains.

In the special case where D = ⊥, we obtain the following corollary:

Corollary 4.1 (Preservation of Unsatisfiability) For a SHOIQP knowledge base Σ =

{Pi} and Pi ∈ P+
j , if C ⊑i ⊥ then C ⊑j ⊥.

Finally, the semantics of SHOIQP ensures that the interpretation of an axiom in an on-

tology module is constrained by its context, as seen from the reduction to a corresponding

integrated ontology: C ⊑ D in Pj is mapped to #j(C) ⊑ #j(D), where #j(C) and #j(D) are

now relativized to the corresponding local domain of Pj .

When a package Pi is directly or indirectly reused by another package Pj through name

importing, some axioms in Pi may be effectively “propagated” to module Pj (i.e., may influence

79

inference from the point of view of Pj). P-DL semantics ensures that such axiom propagation

will only affect the “overlapping” domain rij(∆
Ii) ∩ ∆Ij , and not the entire domain ∆Ij .

Suppose package Pi contains an axiom ¬iMale ⊑ Female and package Pj imports Pi. In this case,

it is not required in Pj that ⊤j ⊑ Male⊔ Female, since rij(∆
Ii) ⊆ ∆Ij , ∆Ii\MaleIi ⊆ FemaleIi ,

i.e., ∆Ii = MaleIi ∪ FemaleIi does not necessarily imply ∆Ij = MaleIj ∪ FemaleIj .

Hence, the effect of an axiom is always contextualized within its original designated context.

Therefore, it is not necessary to explicitly restrict the use of the ontology language to ensure

locality of axioms, as is required, for instance, by conservative extensions (Grau et al., 2007).

Instead, the locality of axioms follows directly from the semantics of SHOIQP.

4.2.6 Discussion on the P-DL Semantics

4.2.6.1 Necessity of P-DL Constraints on Domain Relations

The constraints on domain relations in the semantics of SHOIQP are minimal in the sense

that if we drop any of them, we can no longer satisfy the desiderata summarized in Section

4.2.2.

Dropping Condition 1 of Definition 5.1 (one-to-one domain relation) leads to difficulties in

preservation of concept unsatisfiability. For example, if the domain relations are not injective,

then C1 ⊑i ¬iC2, i.e., C1 ⊓ C2 ⊑i ⊥, does not ensure C1 ⊓ C2 ⊑j ⊥. If the domain relations

are not partial functions, multiple individuals in ∆Ij may be images of the same individual in

∆Ii via rij , whence unsatisfiability of a complex concept can no longer be preserved when both

number restriction and role importing are allowed. For example, in such a case, if R is an i-role

name and C is an i-concept name, ≥ 2R.C ⊑i ⊥ does not imply ≥ 2R.C ⊑j ⊥.

Dropping Condition 2 of Definition 5.1 (compositional consistency of domain relations)

would result in violation of the transitive reusability requirement, in particular, and mono-

tonicity of inference based on imported knowledge, in general. In the absence of compositional

consistency of domain relations, the importing relations would be like bridge rules in DDL, in

that they are localized w.r.t. the connected pairs of modules without supporting composition-

ality (Zimmermann and Euzenat, 2006).

In the absence of Conditions 3 and 4 of Definition 5.1, the reuse of concept and role names

would only be syntactical, i.e., the local interpretations of shared concepts and role names would

be independently determined resulting in no shared meaning.

80

Dropping Condition 5 (cardinality preservation of role instances), it would not be possible to

ensure the consistency of local interpretations of complex concepts that use number restrictions.

This consistency requirement ensures that the numbers of R-successors and R-predecessors of

an individual are always the same as those in the interpretation corresponding to R’s home

package.

Condition 6 of Definition 5.1 is needed to ensure that nominals can only have one instance

(which may be “copied” by multiple local interpretations associated by domain relations).

Condition 7 is quite natural.

4.2.6.2 Contextualized Negation

Contextualized negation has been studied in logic programming (Polleres, 2006; Polleres

et al., 2006). Existing modular ontology languages DDL and E-Connections do not explicitly

support contextualized negation in their respective syntax. In fact, in those formalisms, a

negation is always interpreted with respect to the local domain of the module in which the

negation occurs, not the union of all local domains. Thus, both DDL and E-Connections in fact

implicitly support the use of i-negation in the module i.

The P-DL syntax and semantics, proposed in this work, supports a more general use of

contextualized negation so that a package can use the negations of its imported packages4.

Hence, a statement can always be explicitly asserted in a specific context with the same semantic

effect, regardless of where it is syntactically located. This allows some flexibility in refining

existing modules by new modules that import them and prevents possible ambiguities in the

contextual meaning of axioms.

4.2.6.3 Directionality of Importing

It has been claimed (Grau and Kutz, 2007) that the importing relation in P-DL is non-

directional and that, therefore, it can be mapped to an imports-free semantics. More precisely,

it has been claimed that a P-DL model I satisfies rij(s
Ii) = sIj if only if it satisfies rji(s

Ij) = sIi ,

for any symbol s such that Pi
s−→ Pj (Definition 18 and Proposition 19 in (Grau and Kutz, 2007)).

Hence, the claim goes, a P-DL ontology can be equivalently reduced to an imports-free ontology

where a shared symbol s of Pi and Pj always has the same interpretation from the point of

4We thank Jeff Pan for discussions on this issue.

81

view of both Pi and Pj , i.e., sIi = sIj . However, such an observation is based on an incorrect

understanding of the P-DL semantics. This deviation from the original P-DL semantics, as

presented in (Bao et al., 2006b,c), is due to an erroneous interpretation of the following three

points:

• The P-DL semantics does not require the existence of both rij and rji. Their joint

existence is only required when Pi and Pj mutually import one another. Hence, even if

rij(s
Ii) = sIj , it is possible that rji does not even exist, in which case the expression

rji(s
Ij) is meaningless.

• Domain relations are not total functions, but only partial functions. Hence, it is not

required that every individual of sIi be mapped (by the one-to-one domain relation rij)

to an individual of sIj .

• Satisfiability and consistency have only contextualized meaning in P-DL. If Pj is not

in P ∗i , the transitive importing closure of Pi, then models of P ∗i are independent from

Pj . This is made clear in Definition 5.2 where satisfiability and consistency are always

considered against a witness package.

4.2.6.4 P-DL Consistency and TBox Consistency

It has been argued that P-DL consistency can be reduced to TBox consistency in classic

DL (Grau and Kutz, 2007)5. This is, indeed, possible by applying the reduction from P-DL

to DL as presented in Section 4.2.4 and Theorem 4.1. Therefore, the argument goes, P-DL,

similarly with the other two major modular ontology languages, DDL and E-Connections, does

not increase expressivity as compared to conventional DL languages. However, the reduction

from P-DL to DL based on S-Compatibility, as proposed in (Grau and Kutz, 2007), is incorrect.

Given two TBoxes T1 and T2 in the same DL and S, the shared signature of them:

“...that they (T1 and T2) are S-Compatible if we can find an interpretation for

the symbols in S that can be extended to both a model to T1 and a model to T2
by interpreting the additional predicates and possibly adding new elements to the

interpretation domain.” (Grau and Kutz, 2007)

5In (Grau and Kutz, 2007) the consistency of a P-DL ontology is called the satisfiability of the ontology, i.e.,
the condition that the ontology has a model.

82

Formally S-Compatibility is defined in (Grau and Kutz, 2007) as follows:

Definition 4.4 (Expansion) An S-interpretation J = (∆J , ·J) is an expansion of an S′-

interpretation J ′ = (∆J
′
, ·J ′

) if 1) S′ ⊆ S, 2) ∆J
′ ⊆ ∆J , and 3) sJ = sJ

′
for every s ∈ S′.

Definition 4.5 (S-compatibility) Let T1 and T2 be TBoxes expressed in a description logic

L, and let S be the shared signature of them. We say that T1 and T2 are S-compatible if there

exists a model JS of the symbols in S that can be expanded to a model J1 of T1 and to a model

J2 of T2.

It is claimed that for any TBoxes T1 and T2 in SHIQ, an imports-free ontology O = {T1,T2}
is consistent (i.e., has a model) iff T1 and T2 are S-compatible for the shared signature S

(Corollary 29 (Grau and Kutz, 2007)). However, since a P-DL ontology is not always reducible

to an imports-free ontology as the simple union of all modules (packages), a P-DL ontology

consistency problem may not be reducible to an S-compatibility problem, as shown by the

following example.

Example 4.4 :Let T1 = {D⊔¬D ⊑ C}, T2 = {C ⊑ ⊥}. The shared signature S is {C} and T1
and T2 are not S-compatible. However, suppose we have a P-DL ontology such that T1 C−→ T2
and negation in T1 becomes contextualized negation ¬1, then we have a model:

∆1 = CI1 = DI1 = {x}

∆2 = {y}

r12 = r21 = ∅

On the other hand, a P-DL ontology such that T2 C−→ T1 only has models with empty ∆1.

This example also demonstrates that P-DL importing is directional.

The next example shows that when we have nominals, we cannot reduce P-DL consistency

problem6 to an imports-free ontology as the simple union of all packages without preserving

the contextuality of P-DL axioms.

Example 4.5 Use of Nominals: Let us consider the following TBoxes:

T1 = {⊤ ⊑ i ⊔ j, i ⊓ j ⊑ ⊥}

T2 = {⊤ ⊑ i}
6It is decidable with nominal importing according to Theorem 4.2.

83

where i, j are nominals, with the shared signature S = {i}. T1 and T2 are S-compatible but

T1 ∪ T2 is not consistent. Suppose we have a P-DL ontology with T1 i−→ T2. Since “⊤” only has

contextualized meaning in P-DL, these TBoxes in fact should be represented as

T1 = {⊤1 ⊑ i ⊔ j, i ⊓ j ⊑ ⊥}

T2 = {⊤2 ⊑ i}

Then, there exists a model for this P-DL ontology:

∆1 = {x, y}, iI1 = {x}, jI1 = {y}

∆2 = {x′}, iI2 = {x′}

r12 = {〈x, x′〉}

In general, the reduction from P-DL modules to imports-free TBoxes with shared signatures,

as suggested by (Grau and Kutz, 2007), does not preserve the semantics of P-DL. There is a

fundamental difference between the two formalisms: in P-DL there is no universal top concept

and, as a result, axioms only have localized effects while, in the imports-free TBoxes, concepts

are not contextualized in their definitive domains and axioms in a module may interact freely.

This is made clear in the reduction presented in Section 4.2.4.

In (Grau and Kutz, 2007) an alternative reasoning strategy for P-DL is suggested: reasoning

about a P-DL ontology with modules {Ti} can be reduced to standard DL reasoning over the

union of all ontology modules T = T1∪...∪Tn. Such a reduction is in general not correct because

of the difference between the P-DL contextualized semantics and the conventional semantics of

reasoning in the union of all modules.

Nevertheless, in the previous section we have shown that such a reduction from P-DL rea-

soning to DL reasoning is possible when we adopt the correct translation from P-DL to DL (i.e.,

the reduction process from P-DL modules to an ordinary DL). However, in general, it is not

desirable to perform reasoning with P-DL using such a reduction, since this process requires

the integration of all ontology modules, which is typically costly, and in many cases (e.g., in

peer-to-peer applications) practically impossible. In fact, the suggested integration-based rea-

soning counteracts many of the motivating reasons for introducing modular ontologies, such as

scalability and reasoning with local knowledge. Hence, instead of using standard DL reasoners,

major modular ontology languages typically resort to specialized reasoning algorithms, e.g., for

84

E-connections see (Grau et al., 2004b,a), for DDL (Serafini and Tamilin, 2004; Serafini et al.,

2005a) and for P-DL (Bao et al., 2006e).

4.3 Adopt OWL as the Syntax for P-DL

4.3.1 Limitations of OWL Importing

Using name importing to connect multiple ontologies has been explored in the literature.

Ontolingua (Fikes et al., 1997) is one of the first available tools that support reusing existing

ontology modules7 when designing new modules. It allows an ontology module to “include”

another ontology module. Such an inclusion has the following features:

• It imports both vocabulary and axioms. When an ontology module A is included by

another module B, not only terms defined in A, but also axioms of A, are translated into

B.

• It is transitive. If a module A includes a module B, and B includes C, then A indirectly

includes C.

• It reuses an ontology in its entirety. If a module A is reused, then all of its terms and

axioms will be reused, even if the referring modules refers only a single symbol in A.

Thus, there lacks “a more refined rule could include only those axioms that could affect

the possible interpretations of the symbol”(Fikes et al., 1997).

The Ontolingua ontology inclusion mechanism will result in a union of all ontology modules

in the inclusion transitive closure. Thus, if an assertion is satisfied by a module A, it will also

be satisfied by any other module that directly or indirectly includes A.

OWL (Schreiber and Dean, 2004) provides a similar mechanism, the owl:imports construct,

that allows multiple OWL ontologies being connected into a larger ontology. OWL Semantics

and Abstract Syntax (Patel-Schneider et al., 2003) specifies that:

• “If an ontology imports another ontology, the axioms in the imported ontology (and any

ontologies it imports, and so on) can be used for these purposes.” (Section 2. Abstract

Syntax)

7In what follows, we do not distinguish the use of “ontology” and “ontology module” since a single ontology
can also be used as a module to construct another ontology.

85

• For any OWL ontology O and an abstract OWL interpretation I of O, “I satisfies each

ontology mentioned in an owl:imports annotation directive of O” (Section 3. Direct

Model-Theoretic Semantics)

Thus, OWL importing, similar to Ontolingua inclusions, provides a syntactical solution to

connect and integrate ontologies staying in different OWL files into one ontology. However,

such an approach is unsatisfactory in many aspects for modeling and reasoning with modular

ontologies. Indeed, owl:imports may be one of the most debated features of OWL during

and ever since the specification of the language8. Controversies about owl:imports are mainly

focused on the follows problems:

• It does not provide localized semantics. (Bouquet et al., 2003) argued that OWL only

provides a global semantics for an ontology module that satisfies all axioms and facts in

all (directly and indirectly) imported modules of that module. Thus, from the logical

point of view, if a module A imports module B, it is equivalent to copying all statements

of B into A. On the contrast, a localized semantics (Bouquet et al., 2003; Bao et al.,

2007e) will allow different ontology modules to have loosely coupled local interpretations

so that statements in a module can be retained in their context, thus it will not require a

complete consensus among involved ontology modules and can support reasoning without

a forced integration of all ontology modules (while current OWL semantics implies such

an integration for reasoning).

• It does not support partial ontology reuse. OWL provides no support for organizational

granularity inside an ontology module, thus an ontology designer are faced with the all-

or-nothing choice when reuses a module. That may cause problems when a user wants to

customize an existing ontology module for partial reuse, or when the imported ontology

module is very large. Therefore, it is heavily relied on developer’s discipline to avoid

unmanageable blow up of ontology size (Grau et al., 2004b).

Consequently, there are growing interests in extending OWL to support modular ontologies,

including several syntactical extensions to OWL, e.g., dOWL (Avery and Yearwood, 2003),

C-OWL (Bouquet et al., 2003) and E-Connections (Grau et al., 2004b). However, existing

8Many of those discussions are archived in the email list of the W3C Web-Ont Working Group
(http://lists.w3.org/Archives/Public/www-webont-wg/), 2002-2003

http://lists.w3.org/Archives/Public/www-webont-wg/

86

approaches are limited in expressivity and may present reasoning difficulties (which will be

discussed in details in the next section).

Against this background, we argue for a semantic extension to OWL, i.e., a new interpre-

tation of OWL grounded in modular semantics that allows the connected ontology modules

to have contextualized local interpretations, which may overcome some of the limitations of

existing approaches to linking OWL ontology modules. We also argue for restrictions on the

use of OWL syntax for supporting syntactical partial reuse.

4.3.2 A Modular Semantics for OWL

Instead of introducing syntactic extensions to OWL, we propose a new semantics for owl:imports

that provides direct support for modular ontologies. The basic intuition is that, instead of treat-

ing owl:imports connected OWL ontology modules as a single flat DL theory, we may treat

them as a P-DL theory with each module as a package. Hence, owl:imports will correspond

to the semantic importing in P-DL SHOINP(D)9.

Formally, a modular semantics for OWL is specified as:

Definition 4.6 (Modular OWL Interpretation) . A modular OWL interpretation for a

set of OWL ontology modules O = {Oi} is a interpretation of a P-DL O′ obtained from O

in the following way: 1) owl:Thing in Oi is translated as ⊤i; 2) owl:complementOf in Oi is

translated as ¬i; 3) Oi
t−→ Oj if Oj imports Oi and refers t where t is a term in the name space

of Oi; 4) Other OWL constructs are translated into P-DL formulae accordingly.

Hence, a modular OWL Interpretation is a pair I = 〈{Ii}, {rij}〉 , where each Ii = 〈∆i, (.)
Ii〉

is the local interpretation of Oi. According to Definition 5.1, for any term importing relation

Oi
t−→ Oj , we have rij(t

Ii) = tIj .

The resulting semantics differs from the current OWL semantics in that it does not require

the complete overlapping of local domains, i.e., ∆i = ∆j, for any i, j. Thus, it offers a selective

importing mechanism that allows the parts of an imported ontology module (that are selected

for reuse by another module) to “share” their interpretations with that module, whereas the

other parts of the ontology (i.e., those that are not selected for reuse) may retain their local

9Note that the discussion on SHOIQP in the last section can be easily extended to the case with datatype
support, i.e., SHOIQP(D). SHOINP(D) is obtained from SHOIQP(D) by allowing number restriction but
not qualified number restriction.

87

interpretations. As we have shown in the last section, such a semantics allows knowledge sharing

with localized semantics and the preservation of knowledge context.

Our proposal differs from existing approaches in several respects (which will be discussed

in details in the next section):

1. Improved expressivity. For example, it supports both inter-module class subsumptions

(e.g. i : C ⊑ j : D) and inter-module role relations (e.g. i : C ⊑ ∃i(: r).(j : D)).

2. The avoidance of associated reasoning difficulties in existing approaches.

Example 4.6 :Consider two ontology modules capturing knowledge about wine and food,

respectively. Suppose the food module contains the following terms and axioms:

food : Apple ⊑ food : Fruit (4.9)

food : Grape ⊑ food : Fruit (4.10)

Suppose the wine module imports the food module and contains axioms:

wine : WineGrape ⊑ food : Grape (4.11)

wine : Wine ⊑ ∃wine : madeFrom.(food : Grape) (4.12)

An interpretation of the ontology contains two local interpretations:

• I1: food : FruitI1 = {x1, x2}, food : AppleI1 = {x1}, food : GrapeI1 = {x2}.

• I2: food : GrapeI2 = wine : WineGrapeI2 = {y1}, wine : WineI2 = {y2},
wine : madeFromI2 = {〈y2, y1〉}.

• r12 = {〈x2, y1〉}.

Hence, the importing relation from food to wine is not complete, but partial in that only the

terms selected for reuse (e.g., food:Grape) are interpreted in the shared part of local domains

({x2} in the example), whereas the terms that are not selected for reuse (e.g., food:Apple)

retain their local interpretations.

The example also shows that the semantic importing strategy supports both inter-module

class subsumptions (e.g., axiom 4.11) and inter-module role relations (e.g., axiom 4.12).

88

Hence, OWL, based on the proposed modular semantics, can be adapted as the syntax

for P-DL. Because such an approach requires no new syntactic extensions to OWL, it ensures

backward compatibility of the resulting modular OWL ontologies to many of the existing tools,

for instance, ontology editors, parsers, visualizers and database storage. Such a backward

compatibility may significantly reduce the cost in adopting modular ontologies. In addition, as

we will discuss in the next chapter, it also supports distributed reasoning on OWL ontologies.

4.3.3 A Modular Syntax for OWL

OWL lacks the support for partial ontology reuse partly due to no syntactical modularity

inside an ontology. For example, one might state the following OWL axioms in an ontology O

(in abstract syntax)

Class(Cat partial intersectionOf(Animal, restriction(someValuesFrom(loves Fish))))(4.13)

Class(Fish partial Animal) (4.14)

which may have the RDF/XML syntax as10:

<owl:Class rdf:ID="Cat">

<rdfs:subClassOf>

<owl:Class rdf:ID="Animal"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty><owl:ObjectProperty rdf:ID="loves"/></owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:ID="Fish">

<rdfs:subClassOf rdf:resource="#Animal"/>

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

10Validated by the WonderWeb OWL Ontology Validator (http://www.mygrid.org.uk/OWL/Validator)

89

Suppose there is another OWL ontology that reuses the class Fish and the fact that Fish ⊑
Animal, but does not need knowledge about Cat . However, since the “definition” of Fish and

Animal are syntactical components of the “definition” of Cat, extracting such information from

the reused ontology requires either manual processing or semantic analysis of the ontology.

When the reused ontology is large, it is usually a time consuming task.

Hence, in addition to the lack of semantic modularity, current version of OWL also lacks

the support for syntactical modularity, including the following problems:

• The RDF/XML syntax of OWL (will be called the “OWL syntax” by default in the

follows) does not require explicit declaration of a class, a property or an individual. A

class (property, individual) can be freely “defined” in any axiom, which makes partial

reuse of ontologies being diffcult11.

• The OWL syntax allows arbitrary nesting of a (grammatically legal) syntactical RDF/XML

block inside another block, even if they are not parts of the same axiom in semantics.

For example, the axiom 4.14 is represented as a syntactical part of axiom 4.13 in the

OWL syntax. In general, OWL syntax does not require the correspondence between the

semantic structure and the syntactical structure of an ontology.

• There is no organizational structure inside an OWL ontology. It is not possible for an

OWL ontology to import a selective subset of axioms from another OWL ontology.

We argue that such problems can be solved without introducing new constructs to the OWL

syntax. Syntactical modularity can be realized in OWL by disciplined usage of OWL syntax

and extra-logical annotations. The proposal includes the following restrictions on the OWL

syntax:

Required declaration. A term should always be “declared” before it is used in other

semantic construction block. For example, Fish in the example given above should be first

declared as

<owl:Class rdf:ID="Fish"/>

11(Motik and Horrocks, 2006) shows that the lack of declaration in OWL syntax may lead to some other
problems, e.g., ambiguous interpretation of certain syntactically well-formed OWL ontologies, and mismatches
between OWL RDF and abstract syntax.

90

before it can be referred. Such declarations should not be nested in any other RDF/XML

block nor has any nested subblock. To simplify the design of parsers, such declarations may be

organized together at the beginning of the OWL file (after the file header)12.

Disallowing nested axioms. A top-level RDF/XML block should corresponds to an

axiom in the abstract syntax. Hence, no axiom in the abstract syntax will be nested inside

another axiom in the RDF/XML syntax.

Assigning axioms into organizational units. Each top-level RDF/XML block (corre-

sponds to an axiom) has an annotation property inUnit, which identifies the organizational unit

of which the axiom belongs to.

Importing by units. Instead of requiring the range of owl:imports to be owl:Ontology,

we may allow it to be URIs of “units” of ontologies, which are associated with selected subsets

of axioms in the ontology. Thus, an ontology can be partially reused (imported) for a selected

subset of its units by other ontologies.

For instance, the example ontology O given above can be rewritten as

<owl:AnnotationProperty rdf:ID="inUnit"/>

<owl:Class rdf:ID="Animal"/>

<owl:Class rdf:ID="Cat"/>

<owl:Class rdf:ID="Fish"/>

<owl:ObjectProperty rdf:ID="loves"/>

<owl:Class rdf:resource="#Cat">

<inUnit>Unit_Mammals</inUnit>

<rdfs:subClassOf>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:resource="#Animal"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#loves"/>

<owl:someValuesFrom><owl:Class rdf:resource="#Fish"/></owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

12For other solutions for declaration in OWL, please refer (Motik and Horrocks, 2006).

91

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:resource="#Fish">

<inUnit>Unit_Fishes</inUnit>

<rdfs:subClassOf rdf:resource="#Animal"/>

</owl:Class>

In this syntax, each class or property is declared before it is used in any axiom (except for

the declaration axiom itself). The two non-declaration axioms (possibly among other axioms

of O) belong to two units: Unit_Mammals and Unit_Fishes. When another OWL ontology O′

reuses the ontology O, O′ may selectively reuse the axioms in Unit_Mammals or Unit_Fishes,

or both of them.

The proposed modular syntax for OWL has the following advantages:

• It is backward compatible to existing OWL syntax and ontology tools. Ontologies in the

new syntax may still be processed using existing parsers, editors and visualizers. On the

other hand, extending existing tools to support syntactical modularity is relatively easy

(compared to several other syntactical extensions to OWL).

• It ensures direct correspondence between the semantic structure and the syntactical struc-

ture of an ontology. Hence, an ontology in the modular syntax will have better human

readability and is easier to be reused or maintained. The proposed syntax conforms to

the principle of “separation of concern”, which has been proven successful in software

engineering.

• It allows syntactical partial reuse of an ontology. By selective importing of units, only

axioms belonging to the imported units will be propagated to the referring ontology.

However, a unit in the modular syntax should not be considered as a semantic module, e.g.,

a package. While a package has its own local interpretation domain, units in the same OWL

file (which itself may be considered as a package) share the same interpretation domain. In

addition, a package has its own local signature (the set of names belonging to the namespace

92

of the package), while units in the same OWL ontology share the same local signature of the

ontology; hence there is no importing relation between units in the same OWL ontology.

4.3.4 Summary and Discussion

The proposed modular semantics and syntax of OWL offers a promising approach to sup-

porting localized semantics (hence the preservation of knowledge context) and partial reuse of

ontologies. Because it requires no new syntactic extensions to OWL, it ensures backward com-

patibility of the resulting modular OWL ontologies processable using existing tools (in settings

that do not require support for modularity).

The proposed syntax can serve as the syntax for the P-DL SHOIN (D). Hence, the cre-

ation, storage, parsing and visualization of P-DL ontologies are readily supported by many

existing ontology tools. However, such an approach is also limited in several ways, including

the following:

• The proposed semantics and syntax do not allow the contextualized negation (¬i) and

contextualized “top” (⊤i) being used in ontology modules other than the module i.

• Relaxing the range of owl:imports to including objects that are not owl:Ontology ob-

jects will make owl:imports not being an instances of owl:OntologyProperty. This may

lead to potential problems when the argument of owl:imports is not a valid ontology or

ontology unit.

• The proposed semantics and syntax only partially support semantic partial reuse. It

allows partial interpretation of terms in the imported module, such that terms not being

explicitly imported may not be interpreted in the referring module. However, it does not

address the problem of automatic identification of “axioms that could affect the possible

interpretations of the (imported) symbol”(Fikes et al., 1997). A promising solution to

such a problem is recently explored in (Grau et al., 2007).

An alternative syntax, P-OWL, that supports the full modeling ability offered by P-DL is

proposed in (Bao and Honavar, 2004c). On the other hand, P-OWL is not backward compatible

to existing ontology tools.

93

4.4 Related Work

4.4.1 Other Modular Ontology Languages

4.4.1.1 Early Development

Some of the modular ontology ideas can be traced to studies of knowledge engineering

over the past few decades. The Cyc project (Lenat, 1995) divides the comprehensive Cyc

knowledge base (expressed in the CycL language) into many microtheories - collections of

concepts and facts pertaining to particular knowledge domains. Partition-based Logics (Amir

and McIlraith, 2000) provides an approach to automatically decompose propositional and first-

order logic (FOL) into partitions and an algorithm for reasoning with such partitions using

message passing. These efforts provided the important initial experiences on building and

reasoning with modular knowledge bases.

Both CycL and Partition-based Logics do not provide localized semantics for knowledge

modules or principled ways of connecting ontology modules, Neither do they support partial

reuse or mechanisms for controlling semantic heterogeneity among knowledge base modules.

Indeed, even reusing a small portion of Cyc, OpenCyc 13, because of the lack of modularity,

requires the entire OpenCyc ontology to be loaded although only a small part of it may be of

interest. The OWL scaffolding version of OpenCyc v0.7.8b (>700MB), containing assertions for

over 60,000 Cyc constants, “takes approximately 9 hours to load into Protege” (from OpenCyc

homepage, 2004/06/04 announcement).

4.4.1.2 DFOL, DDL and C-OWL

Recent work on modular ontology languages is heavily influenced by contextual logics, and in

particular, the Local Models Semantics (LMS) (Giunchiglia and Ghidini, 1998). LMS theory

allows a family of logic languages to have local models that represent the local semantic points

of view of each of the languages. A formula in one language may be the logical consequence of

a formula in another language. Thus, LMS provides a practical tradeoff between locality and

compatibility in multi-context knowledge bases.

A Distributed First Order Logics (DFOL) knowledge base (KB) (Ghidini and Serafini,

1998) (and hence, a DFOL ontology) includes a family of first order languages, each represents

13http://www.opencyc.org/

94

a piece of the global knowledge. DFOL semantics includes a set of local models (first order

interpretations) for each of the language, and a set of domain relations between objects in

those local models. Inference with DFOL is enabled by a calculus as an extension of natural

deduction that allows theorem exporting among different languages, i.e., a theorem can be the

logical consequence of another theorem in a different language.

Based on DFOL, Distributed Description Logics (DDL) (Borgida and Serafini, 2002)

allows directional relations among multiple description logic modules where each module is in

a subset of SHIQ. The initial proposal provides bridge rules between concepts and individuals

in different ontologies in forms of:

i : C
⊑−→ j : D (INTO)

i : C
⊒−→ j : D (ONTO)

i : x 7→ j : y (partial individual correspondence)

i : x
=7→ j : {y1, y2, ...} (complete individual correspondence)

where C,D are concepts, x, y are individuals, i, j indicate indexes of ontologies.
≡−→ is used

as the shorthand for both
⊑−→ and

⊒−→. INTO and ONTO rules are meant to simulate concept

subsumptions across ontologies. For example, there may be bridge rules as

i : Dog
⊑−→ j : Pet

i : Animal
⊒−→ j : Pet

to indicate that i : Dog is less general than j : Pet, and i : Animal is more general than j : Pet.

Individual correspondences in DDL allow one-to-one or one-to-many mappings between

individuals across ontologies, such as

i : US 7→ j : UnitedStates

i : NYC
=7→ j : {Bronx,Manhattan,Queens,Brooklyn,StatenIsland}

Syntax of DDL includes CTXML (ConTeXt Markup Language) (Bouquet et al., 2002) and

C-OWL language (Bouquet et al., 2003).

Subsequent extensions to DDL include heterogenous mapping between roles and concepts (Ghi-

dini and Serafini, 2006b; Ghidini et al., 2007). For example, marriage relation can be represented

by a concept Marraige in one ontology but by a role marriesTo in other ontology; a concept/role

95

bridge rule can be declared as

Marriage
⊑−→ marriesTo and

Marriage
⊒−→ marriesTo

to indicate that Marriage instances are always linked to certain pairs of individuals (as marriesTo

instances) of the other ontology.

4.4.1.3 View-based Modular Ontologies

A notable variation of DDL is the approach adopted by (Stuckenschmidt and Klein, 2003a).

Influenced by DDL semantics, they adopt a view-based information integration approach to

express relationships between ontology modules. In particular, in this approach ontology mod-

ules are connected by correspondences between conjunctive queries. This way of connecting

modules provides a tradeoff between the simplicity of one-to-one mappings between concept

names and the unrestricted use of logical languages to connect different modules.

(Stuckenschmidt and Klein, 2003a) defines an ontology module as a triple M = (C,R,O),

where C is a set of concept definitions, R is a set of relation definitions and O is a set of object

definitions. A conjunctive query Q over an ontology module M = (C,R,O) is defined as an

expression of the form q1∧ ...∧ qm, where qi is a query term of the form C(x), R(x, y) or x = y,

C and R are concept and role names, respectively, and x and y are either variables or object

names.

Concepts in one module can be defined in terms of a conjunctive query over another module.

Thus, the set of concept definitions C is divided into two disjoint sets of internally and externally

defined concepts CI and CE, respectively. An internal concept definition is specified using regular

description logics based concept expressions in the form of C ⊑ D or C ≡ D, where C and D

are atomic and complex concepts, respectively. An external concept definition is an axiom of

the form C ≡M : Q, where M is a module and Q is a conjunctive query with one free variable

over M . Similarly, we can define external relations (i.e., roles) using conjunctive queries with

two free variables. A modular ontology is then defined as a set of modules that are connected

by external concept or relation definitions.

The semantics of these modules is defined in the same fashion as in DDL. In fact, an external

concept definition C ≡ M : QC can be translated into a DDL bridge rule between concepts:

96

M : QC
≡−→ C. However, an external relation definition P ≡ M : QP cannot be translated

into a DDL bridge rule between roles (Serafini et al., 2005b), since in (Stuckenschmidt and

Klein, 2003a) external relations are interpreted using on quarternary domain relations for roles,

which is different from the binary domain relations for concepts. The semantics correspondence

between the two types of domain relations is not specified by (Stuckenschmidt and Klein, 2003a).

(Stuckenschmidt and Klein, 2003b) extends this approach with caching previous query re-

sults of external modules and resolving inconsistencies between the cached results and the

external ontology when ontology modules may evolve.

As far as when only concept reasoning is concerned, the approach of (Stuckenschmidt and

Klein, 2003a) can be seen as a restricted form of DDLs. Hence, we will not discuss it as a

sperate approach in what follows.

4.4.1.4 E-Connections

DDL is limited in connecting modules with roles. For example, roles defined in other

ontology modules (i.e., foreign roles) cannot be used to construct new concepts, or to construct

new roles from foreign roles. On the contrast, E-Connections (Kutz et al., 2002) focus on

offering inter-module role connections. Some of the ideas incorporated into E-connections can be

traced back to the fusion of abstract description systems (ADS) (Baader et al., 2000), in which

atomic roles are partitioned into disjoint sets that each can only be used in the constructors of

the language of a single module. E-connections between DLs (Kutz et al., 2003; Grau et al.,

2004b, 2006c) restrict the concept languages of the component modules to be disjoint, and

each of the E-connected ontology modules is interpreted in a local domain (therefore ensure

localized semantics). Roles are divided into disjoint sets of local roles (connecting concepts in

one module) and links (connecting concepts in different modules). For example, two concepts

i : PetOwner and j : Pet can be connected with a link owns such that:

i : PetOwner ⊑ ∃owns.(j : Pet)

Such a division of links and local roles ensures the decidability transfer property: if all

ontologies connected by E-connections (the set of links) are locally decidable, then their union

is also decidable (Kutz et al., 2003).

97

An XML Syntax of E-Connections is first provided in (Grau et al., 2004b) for the e-connected

version of OWL-Lite, denoted as CE(SHIF(D)). More expressive extensions are reported in

(Grau, 2005) as CE
IHN+

s
(SHOIQ(D)) which allow each connected modules to be a subset

of OWL-DL, including SHIQ,SHOQ, and SHIO. Subscripts IHN+
s

stand for several link

constructors of the form:

I : owns = ownedBy− (link inverse)

H: sonOf ⊑ childOf (link inclusion)

N : PetMania ⊑ (≥ 5 owns.⊤j) (link number restriction)

+: Trans(largerThan) (transitive link)

s: Symmetric(brotherOf) (symmetric link)

An extension of transitive link, called generalized link, is reported in (Parsia and Grau,

2005), which can control transitivity of links among modules.

The evolution of modular ontology language proposals is summarized in Figure 4.4.

1998

DFOL

2002

DDL

CTXML

OWL

E-Connections

2003

C-OWL

2004

CE(SHIF(D))

2005

CE

IHN+
s
(SHOIN (D))

P-DL

2006

Role↔Concept

Mapping

Figure 4.4 Evolution of Modular Ontology Languages

98

4.4.2 Semantics of Modular Ontology Languages

Although various modular ontology language proposals differ from each other in terms of

language features, they share one feature in common in contrast with traditional ontology

languages: all of the modular ontology language proposals support localized semantics. In

other words, a (global) model for a modular ontology would contain a set of local models as

well as a set of relations between those local models. In contrast, a traditional ontology (as

well as in the fusion of logics (Baader et al., 2000) and in the approach based on conservative

extensions (Grau et al., 2007)) always requires a single model that satisfies all restrictions in

all modules of that ontology.

(Serafini et al., 2005b) compared the semantics of different modular ontology language

proposals in the light of DFOL semantics. We will follow their approach and further investigate

some important properties of modular ontology semantics (e.g., local domain disjointness) in

the abstract modular ontology (AMO) framework we introduced in the last chapter.

To make this chapter self-contained, we briefly repeat the AMO framework. Formally,

an abstract modular ontology (AMO) is a DFOL knowledge base consisting of a family of

component languages {Li} (each called a module) and semantic relation rules {Rij}(i 6= j).

Each Li is in a subset of description logics (DL). In this paper, we restrict ourself to the setting

where each Li is a subset of the expressive DL SHOIQ(D). Modular ontology language

proposals differ mainly with respect to how to define and interpret semantic relation rules

{Rij}.
A model of AMO includes a set of local models {Ii} and domain relations {rij}. For each Li,

there exists a local model Ii = 〈∆i, (.)i〉, where ∆i is the local interpretation domain, (.)i is the

assignment function for concept, role and individual terms in Li. Each domain relation rij ∈ rij

is a subset of ∆i×∆j. Note that it is possible to have multiple domain relations between a pair

of local models. In particular, the image domain relation, denoted by r→ij , indicating (from the

point of view the module j) object correspondences between ∆i and ∆j, such that 〈x, y〉 ∈ r→ij
if x, y identify the same physical object. Finally, rij(d) denotes the set {d′ ∈ ∆j|〈d, d′〉 ∈ rij}.
For a subset D ⊆ ∆i, rij(D) denotes ∪d∈Drij(d).

4.4.2.1 Semantics of DDL

Semantics: DDL Homogenous bridge rules are in the form of:

99

Semantic Mapping Syntax Semantics

DDL

Homogenous INTO i : φ
⊑−→ j : ψ rij(φ

Ii) ⊆ ψIj

Homogenous ONTO i : φ
⊒−→ j : ψ rij(φ

Ii) ⊇ ψIj

Heterogenous concept/role INTO i : C
⊑−→ j : R crij(C

Ii) ⊆ RIj

Heterogenous concept/role ONTO i : C
⊒−→ j : R crij(C

Ii) ⊇ RIj

Heterogenous role/concept INTO i : P
⊑−→ j : D rcij(P

Ii) ⊆ DIj

Heterogenous role/concept ONTO i : P
⊒−→ j : D rcij(P

Ii) ⊇ DIj

Partial individual correspondence i : x 7→ j : y yIj ∈ rij(xIi)

Complete individual correspon-

dence

i : x
=7→ j :

{y1, y2, ...}
rij(x

Ii) = {yIj

1 , y
Ij

2 , ...}

E-Connections

Existential Link Restriction i : (∃E.(j : D)) r−E(DIj)

Universal Link Restriction i : (∀E.(j : D)) ∆i\r−E(∆j\DIj)

Number Link Restriction i : (> nE.D) {x| |rE(x) ∩DIj |6= > n}
Link Inverse E = F− rE = r−F
Link Inclusion E1 ⊑ E2 rE1 ⊆ rE2

Transitive Link Trans(G; I) (x, y) ∈ rG(ij) ∧ (y, z) ∈
rG(jk) → (x, z) ∈ rG, for

i, j, k ∈ I
Symmetric Link Symmetric(G) rG(ij) = r−

G(ji)

P-DL

Importing i
φ−→ j rij(φ

Ii) = φIj

Notations:

• DDL: φ is an i-concept(or role), ψ is an j-concept(or role); C is an i-concept, D is a j-

concept, P is an i-role, R is a j-role; x is an i-individual, yi is a j-individual; rij ⊆ ∆i×∆j

is the domain relation from i to j; rcij ⊆ ∆i × ∆i × ∆j is the role to concept domain

relation, crij ⊆ ∆i ×∆j ×∆j is the concept to role domain relation.

• E-Connections: E,E1, E2 are E-connections from i to j, F is an E-connection from j to

i; D is a j-concept; G is a generalized link; I is a set of module indices; rE is the domain

relation for E, r−E is the inverse of rE; |S|6= stands for all-different cardinality of a set S,

i.e. the number of elements in S if equivalent elements only counted as one element.

• P-DL: φ is a concept, role or individual name. Complete semantics is presented in section

4.2.2.

Table 4.1 Semantics of Modular Ontology Languages

100

INTO rule: i : φ
⊑−→ j : ψ (semantics: rij(φ

Ii) ⊆ ψIj)

ONTO rule: i : φ
⊒−→ j : ψ (semantics: rij(φ

Ii) ⊇ ψIj)

where φ is an i-concept and ψ is a j-concept (defined in (Borgida and Serafini, 2002)), or φ

is an i-role and ψ is a j-role (defined in (Ghidini and Serafini, 2006a)). rij ⊆ ∆i ×∆j is the

interpretation of Bij . We use rij(x) to denote {y ∈ ∆j|(x, y) ∈ rij}; rij(φIi) is defined as

• ⋃

x∈φIi rij(x), when φ is a concept

• ⋃

(x,y)∈φIi rij(x)× rij(y), when φ is a role name

Similarly, heterogenous rules (defined in (Ghidini and Serafini, 2006b)) are interpreted using

special types of domain relations rcij (for role to concept mapping) and crij (concept to role

mapping). Semantics of DDL is summarized in Table 4.1.

Translation into AMO: DDL homogenous bridge rules can be translated into semantic

relation rules in AMO as:

i : C
⊑−→ j : D ⇒ ∀x ∈ ∆i, C(x)

〈x,y〉∈r→ij−−−−−−→ D(y)

i : C
⊒−→ j : D ⇒ ∀x ∈ ∆j,D(x)

〈y,x〉∈r→ij−−−−−−→ ∃y ∈ ∆i, C(y)

i : P
⊑−→ j : R ⇒ ∀x1, x2 ∈ ∆i, P (x1, x2)

〈x1,y1〉∈r→ij ,〈x2,y2〉∈r→ij−−−−−−−−−−−−−−−→ R(y1, y2)

i : P
⊒−→ j : R ⇒ ∀x1, x2 ∈ ∆j , R(x1, x2)

〈y1,x1〉∈r→ij ,〈y2,x2〉∈r→ij−−−−−−−−−−−−−−−→ ∃y1, y2 ∈ ∆i, P (y1, y2)

Note that partial and complete individual correspondence can be seen as special cases of

concept bridge rules.

4.4.2.2 Semantics of E-Connections

Semantics: E-connections allow construction of new concepts using links. Formally, given

ontology modules {Li}, an (one-way binary) link (more expressive E-connections are beyond

the scope of our discussion) E ∈ Eij , where Eij(i 6= j) is the set of all links from the module i to

the module j, can be used to construct a concept in module i, with the syntax and semantics

specified as follows:

• 〈E〉(j : C) or ∃E.(j : C) : {x ∈ ∆i|∃y ∈ ∆j , (x, y) ∈ rE , y ∈ CI}

101

• ∀E.(j : C) : {x ∈ ∆i|∀y ∈ ∆j, (x, y) ∈ rE → y ∈ CI}}

• ≤ nE.(j : C) : {x ∈ ∆i|#({y ∈ ∆j|(x, y) ∈ rE, y ∈ CI}) ≤ n}

• ≥ nE.(j : C) : {x ∈ ∆i|#({y ∈ ∆j|(x, y) ∈ rE, y ∈ CI}) ≥ n}

where I = 〈{Ii}, {rE}E∈Eij 〉 is a model of the E-connected ontology, Ii is the local model of Li;

C is a concept in Lj, with interpretation CI = CIj ; rE ⊆ ∆i ×∆j is the interpretation of an

E-connection E.

Such an I can seen as a special case of a DFOL or AMO model Md = 〈{Ii}, {rij}〉 with each

rE (E ∈ Eij) acting as a domain relation rij (Serafini et al., 2005b). Extending the semantics

of E-connection axioms ((1) and (3) below) given in (Serafini et al., 2005b) so as to allow the

use of constructed concepts (∃E.D and ∀E.D) on either side of subsumptions, we have:

1) C ⊑ ∀E.D : rE(CIi) ⊆ DIj

2) C ⊒ ∀E.D : (¬C)Ii ⊆ r−E((¬D)Ij), i.e., rE(CIi) ⊇ DIj

3) C ⊑ ∃E.D : CIi ⊆ r−E(DIj)

4) C ⊒ ∃E.D : rE((¬C)Ii) ⊆ (¬D)Ij , i.e., CIi ⊇ r−E(DIj)

where r−E is the inverse of rE, C is an i-concept and D is a j-concept, C can be an atomic

or complex concept. Note that case (2)(similarly also for (4)) can not be reduce to defining

C ′ ≡ ∀E.D and C ′ ⊑ C in i, since ≡ is the short for ⊑ and ⊒.

Since interpretations of links are acting as domain relations, a distributed model of an E-
connected ontology may have multiple domain relations between two local models. Such a

semantics for links is equivalent to allowing an i-role to have the range from and only from

∆j. Thus, link constructors, like inversion or inclusion, are different from role constructors that

bridge roles in different modules (which are illegal in E-connections).

All concepts constructed using a link E from i to j are i-concepts. Thus they can be used

in i as other local i-concepts. For example, the axiom

i : PetOwner ⊑ ∃owns.(j : Pet)

would indicate a restriction in ∆i such that:

PetOwnerIi ⊆ r−owns(PetIj) ⊆ ∆i

102

Note that the semantics of E-connections given in Table 4.1 is strictly equivalent to the

forms given in (Kutz et al., 2003; Grau et al., 2004b) (introduced above) and (Serafini et al.,

2005b). Using this representation, we may represent semantic relations other than concept

subsumptions. For example, a concept intersection ∃owns.(j : Pet)⊓ i : Man can be interpreted

as:

r−owns(PetIj) ∩ManIi

and i : (∀E.(j : D)) will be interpreted as ∆i\r−E(∆j\DIj) since ∀E.D = ¬∃E.(¬D).

Transitive and symmetric links are generalized links (Parsia and Grau, 2005) based on the

“punning” idea, i.e., allowing a link being interpreted in different contexts, and each of the

interpretation is denoted with a superscript. For example, a link G may be used as G(1) from

i to j and G(2) from j to k; G’s interpretation will be the union of rG(1) ⊆ ∆i × ∆j and

rG(2) ⊆ ∆j ×∆k.

The semantics of E-Connections when local domains of each ontology module are not re-

quired to be disjoint is called the free-floating semantics (Grau and Kutz, 2007). A different

semantics called separated semantics that requires all local domains to be mutually disjoint has

also been studied (Grau, 2005; Grau et al., 2006c). It has been claimed that the two semantics

are equivalent in answering queries for all legal assertions in E-Connections (Grau and Kutz,

2007).

Translation into AMO: Let E ∈ Eij , C be an i-concept and D be a j-concept, we may

translate axioms in E-Connections into AMO semantic relation rules:

C ⊑ ∀E.D ⇒ ∀x ∈ ∆i, C(x)
〈x,y〉∈rE−−−−−→ D(y)

C ⊒ ∀E.D ⇒ ∀x ∈ ∆j,D(x)
〈x,y〉∈r−

E−−−−−→ ∃y ∈ ∆i, C(y)

C ⊑ ∃E.D ⇒ ∀x ∈ ∆i, C(x)
〈x,y〉∈rE−−−−−→ ∃y ∈ ∆j,D(y)

C ⊒ ∃E.D ⇒ ∀x ∈ ∆j,D(x)
〈x,y〉∈r−

E−−−−−→ C(y)

4.4.2.3 Relation Between DDL and E-Connections

Both DDL and E-Connections conform to the “linking” approach such that concept lan-

guages of ontology modules are disjoint, and semantic relations between modules are only

given by mappings like DDL bridge rules and E-connection links. In fact, one-way binary E-
connections with inverse links is as expressive as DDL with bridge rules between concepts.

103

Reduction from DDL to E-Connections: It has been argued that E-connections are

more expressive than DDL (Kutz et al., 2004; Grau, 2005; Grau and Kutz, 2007) because DDL

can be reduced to E-connections. However, the reliance of the reduction on the equivalence

of C
⊑−→ D (by default we denote C as an i-concept and D as a j-concept) to 〈E〉.C ⊑ D

and C
⊒−→ D to 〈E〉.C ⊒ D (Kutz et al., 2004; Grau, 2005), presents semantic difficulties with

regard to DDL and E-connections semantics in the DFOL framework (Serafini et al., 2005b).

For example, ONTO(
⊒−→) rules in DDL is mapped to type d interpretation constraints in DFOL

while 〈E〉.C ⊒ D is mapped to type b interpretation constraints in DFOL. It is also clear in

their AMO translations:

C
⊒−→ D ⇒ ∀x ∈ ∆j,D(x)

〈x,y〉∈r→ij−−−−−−→ ∃y ∈ ∆i, C(y)

D ⊑ ∃E.C ⇒ ∀x ∈ ∆j,D(x)
〈x,y〉∈r−

E−−−−−→ ∃y ∈ ∆i, C(y)

C
⊑−→ D ⇒ ∀x ∈ ∆i, C(x)

〈x,y〉∈r→ij−−−−−−→ D(y)

D ⊒ ∃E.C ⇒ ∀x ∈ ∆i, C(x)
〈x,y〉∈r−

E−−−−−→ D(y)

Such a result is because of a fundamental difference between the two formalisms on linking

subjectivity. In DDL, a bridge rule Bij is always the subjective point of view of j and to be used

by reasoning in j. On the other hand, an E-connection Eij provides the module i the ability to

construct new concepts, therefore it actually represents i’s point of view of the domain relation,

and is used by reasoning in i. It can be confirmed in the syntax proposal of E-connections

(Grau, 2005) where the domain of a link is the module in which it has been declared.

In fact, an ONTO bridge rule C
⊒−→ D can be translated into D ⊑ ∃E−.C (in module j) or

∀E.D ⊑ C (in module i), and an INTO bridge rule C
⊑−→ D can be translated into C ⊑ ∀E.D

(in module i) or ∃E−.C ⊑ D (in module j), where E− is the inversion of E.

Since DDL bridge rules are directional, we argue that a translation of a DDL bridge rule

should be placed in the “target” module, not in the “source” module. Hence, C
⊒−→ D should be

translated into D ⊑ ∃E−.C (in module j) and C
⊑−→ D should be translated into ∃E−.C ⊑ D

(in module j). Therefore, inverse links being allowed is a necessary condition for DDL bridge

rules to be translated into E-connections axioms with preserved directionality.

Lemma 4.3 One-way binary E-connections, as presented in (Kutz et al., 2004; Grau, 2005) is

at least as expressive as DDL with bridge rules between concepts as presented in (Borgida and

Serafini, 2002), when each module is in SHIQ, only if inverse links are allowed.

104

Thus, the language CEHI(SHIQ) is at least as expressive than DDL but CEHQ (SHIQ)

(allowing no inverse link) (Grau, 2005) is not.

Note that for i : C
⊒−→ j : D, defining an E-connection F from j to i, the onto rule still

cannot be translated into D ⊑ ∃F.C, since DDL semantics does not assume rij = r−ji, therefore

F 6= E−. To assert the inverse relation, we still need inverse link constructors in E-connections.

Reduction from E-Connections to DDL: On the other hand, it is also possible to

reduce one-way binary E-connections into DDL. It is because a link in E-connections can be

simulated as a normal role by giving a “foreign” concept in its range a local alias. Without loss

of generality, we assume for every formula of the form ∀E.D, ∃E.D, ≤ nE.D or ≥ nE.D where

E is a link, D must be a concept name, otherwise we can always replace D with a new concept

name which is equivalent to D.

Definition 4.7 A reduction π from a knowledge base K = 〈{Li}, {Eij}〉 in one-way binary E-
connections to a knowledge base π(K) = K ′ = 〈{L′i}, {Bij}〉 in DDL with bridge rules between

concepts (where each module is in SHIQ) is as the follows, where πi is a mapping function

from formulae in Li to formulae in L′i:

• For every i, let L′i = Li, define a concept ⊤′i in Li, and let πi(⊤i) = ⊤′i;

• For every concept formula C occurring in Li that only uses i-names, let πi(C) = C ⊓⊤′i,
and add C ⊑ ⊤′i to L′i; for every i-role name P occurring in Li, let πi(P) = P , and add

⊤′i as its domain and range in L′i; recursively (starting with atomic ones) replace every

formula t with πi(t) in L′i;

• For every Eij 6= ∅, define a concept ⊤ji in L′i, add a bridge rule ⊤′j
≡−→ ⊤ji to Bji, and let

πi(⊤j) = ⊤ji;

• For each E ∈ Eij , replace it with a new role E′ in L′i, with domain ⊤′i and range ⊤ji, and

let πi(E) = E′;

• For every j-concept D occurring in Li, replace D with a new concept D′ in L′i, add

D′ ⊑ ⊤ji to L′i, a bridge rule D
≡−→ D′ to Bji, and let πi(D) = D′.

105

Lemma 4.4 Let K ′ = π(K) be a knowledge base in DDL with bridge rules between concepts

obtained from a knowledge base K in one-way binary E-connections where each module is in

SHIQ, C is a concept that is legal in the module i of K, then K � C ⊑ ⊥ iff K ′ � πi(C) ⊑ ⊥.

Proof: we show that K has a model with CIi 6= ∅ iff K ′ has a model with πi(C)I
′
i 6= ∅. If

K has a model I = 〈{Ii}, {rE}E∈Eij 〉, we can construct a model I ′ = 〈{I ′i}, {rij}〉 of K ′ in the

following way:

• For every i, let ∆I
′
j ← ∆Ij and ⊤′iI

′
i = ∆Ij ;

• For every i and for every i-name t occurring in Li, let πi(t)
I′i = tIi ;

• For every E ∈ Eij and every (x, y) ∈ rE, 1) if rji(y) = ∅, then add a new individual y′ in

∆I
′
i and (y, y′) to rji; 2) else add (x, rji(y)) to πi(E)I

′
i (note that rji is one-to-one);

• For every j-concept D occurring in Li, let πi(D)I
′
i = rji(D

Ij);

• For every Eij 6= ∅, let ⊤ji
I′i = rji(∆

I′j);

• If CIi 6= ∅, then πi(C)I
′
i = CI

′
i ∩ ⊤′iI

′
i = CIi ∩∆Ii = CIi 6= ∅

On the other hand, if K ′ has a model I ′ = 〈{I ′i}, {rij}〉, we can construct a model I =

〈{Ii}, {rE}E∈Eij 〉 of K in the following way:

• For every i, let ∆Ij = ⊤′iI
′
i ;

• For every i and for every i-name t occurring in Li, let tIi = πi(t)
I′i ;

• For each E ∈ Eij and every (x, y) ∈ πi(E)I
′
i , add (x, r−ji(y)) to rE ;

• If πi(C)I
′
i 6= ∅, it is easy to verify that CIi = πi(C)I

′
i , thus CIi 6= ∅. �

Therefore, a concept satisfiability problem (hence a concept subsumption problem) in one-

way binary E-connections can be reduced to an equivalent problem in DDL with bridge rules

between concepts. Together with the possible reduction from DDL to E-connections, we have

the theorem:

Theorem 4.5 One-way binary E-connections with inverse links, as presented in (Kutz et al.,

2004; Grau, 2005), is as expressive as DDL with bridge rules between concepts as presented in

(Borgida and Serafini, 2002), when each module is in SHIQ.

106

Discussion: Despite that the mutual reduction between DDL as in (Borgida and Ser-

afini, 2002) and E-connections is possible, there are notable differences between their intuitions.

Bridge rules are intended to simulate general concept inclusions (GCI), hence should not be

seen only as a special type of E-connections. For example, empty E-connection rE is allowed,

while GCIs between satisfiable concepts enforce restrictions on non-empty interpretations. Ar-

bitrary “link” relations (when acting as bridge rules) may not preserve concept unsatisfiability

among different modules which may result in some reasoning difficulties (Bao et al., 2006c).

Furthermore, subset relations (between concept interpretations) is transitive, while links in

general are not transitive14. Recent study on DDL reveals that arbitrary domain relations

should be avoided, e.g., they should be one-to-one (Serafini et al., 2005a; Bao et al., 2006c) and

non-empty (Stuckenschmidt et al., 2006). It is also not possible to translate DDL bridge rules

between roles into E-Connections axioms. Hence, we believe DDL (with its recent advance)

and E-Connections actually cover different application scenarios, and thus are complementary

in their expressivity.

4.4.3 Limitations of Existing Approaches

4.4.3.1 DDL

Distributed concept correspondence between two modules in DDL covers some important

scenarios of modular ontologies. However, DDL may present semantic difficulties in some situa-

tions. While DDL bridge rules are intended to simulate concept inclusions (Borgida and Serafini,

2002; Bouquet et al., 2003), arbitrary modelling with bridge rules may lead to undesired se-

mantics, such as in the Subsumption Propagation problem and the Inter-module Unsatisfiability

problem, as noted in (Grau et al., 2004b; Grau, 2005):

Example 4.7 Subsumption Propagation: A KB Σd includes modules L{1,2,3}, each with

an empty TBox; bridge rules B12 = {1 : Bird
⊒−→ 2 : Fowl}, B23 = {2 : Fowl

⊒−→ 3 : Chicken}.
The relation 1 : Bird

⊒−→ 3 : Chicken is not inferred since bridge rules B13 is not specified, nor

can be inferred.

14Transitive links (Parsia and Grau, 2005) are “punning” based, which is rather syntactical sugar. Also note
that for E-connections to simulate concept inclusions, the transitivity of links have to be explicitly declared
between every pair of modules.

107

Note that bridge rules may be inferred between the same pair of modules. For example,

if 1 : A
⊑−→ 2 : B and 2 : B ⊑ 2 : C, it can be inferred that 1 : A

⊑−→ 2 : C. Intra-module

subsumption may also be reused in some particular cases. For example, if 1 : A ⊑ 1 : B,

1 : A
⊒−→ 2 : C and 1 : B

⊑−→ 2 : D, it can be inferred that 2 : C ⊑ 2 : D (Serafini and Tamilin,

2005b). However, Example 4.7 shows that in general bridge rules in DDLs are not transitively

reusable, thereby are restricted for many application scenarios, for instance, ontology alignment

composition (Zimmermann and Euzenat, 2006).

Example 4.8 Inter-module Unsatisfiability(Grau et al., 2004b; Grau, 2005): DDLs

may not detect unsatisfiability across ontology modules. A KB Σd includes modules L{1,2},

L1 = {1 : Bird ⊑ 1 : Fly}, L2 = {2 : Penguin ⊑ ⊤}, B12 = {1 : Bird
⊒−→ 2 : Penguin, 1 : ¬Fly

⊒−→
2 : Penguin}. Penguin is still satisfiable in Σd since such a distributed model exists:

• m1: ∆1 = {a, b}, BirdI1 = FlyI1 = {a}, (¬Fly)I1 = {b}

• m2: ∆2 = {x}, PenguinI2 = {x}

• r12: {〈a, x〉, 〈b, x〉}

Such difficulties are rooted in the difference between DDL bridge rules and concept inclusion.

DDL has implicit local domain disjointness assumption, i.e., individuals in each local domain

are private to that domain, and DDL semantics does not take into account if individuals in

different local domains may represent the same physical world object. Therefore, a bridge rule,

while intended to simulate concept inclusion, cannot be read directly as concept inclusion, such

as i : A ⊑ j : B. Instead, it must be read as a classic DL axiom in the following way (Borgida

and Serafini, 2002):

• i : A
⊑−→ j : B ⇒ (i : A) ⊑ ∀Rij.(j : B)

• i : A
⊒−→ j : B ⇒ (j : B) ⊑ ∃R−ij.(i : A)

where Rij is a new role representing correspondences Bij between Li and Lj. Such translations

are best understood as shown in Figure 4.5.

Therefore, for the given subsumption propagation example, if B13 = ∅, entailment Chicken ⊑
∃R−13.Bird is not always true. For the inter-module unsatisfiability problem, concept Penguin

(⊑ ∃R−12.(Fly) ⊓ ∃R−12.(¬Fly)) is satisfiable.

108

∆i

CIi

∆j

r→ij (CIi)

DIj

r→ij

(∀Rij.D)Ii

(b) C
⊑−→ D

∆i

CIi

∆j

DIj

r→ij (CIi) = (∃R−
ij .C)Ij

r→ij

(a) C
⊒−→ D

Figure 4.5 Semantics of DDL Bridge Rules

Thus, the semantics of DDL are designed to simulate concept inclusion with a special type

of roles, i.e., bridge rules. However, in the absence of a principled approach to avoid arbitrary

domain relation interpretations for bridge rules, all semantic relations (bridge rules) between

DDL modules are localized to pairs of modules that are bridged by the rules in question. Con-

sequently, semantic relations between a pair of DDL modules cannot be safely reused by other

modules, thereby precluding general subsumption propagation, and more generally, module

transitive reusability. Note further that in order to enable distributed (not necessarily exact)

reasoning in general, a DDL KB needs explicit declaration of domain relations between each pair

of modules, leading to a blowup in the number of bridge rules, with the attendant inefficiency

and increased risk of inconsistencies.

(Serafini et al., 2005a) has asserted that the inter-module unsatisfiability difficulty is the

result of incomplete modelling. They have argued that it can be eliminated if extra information,

109

for example, 1 : ¬Bird ⊑−→ 2 : ¬Penguin and 1 : Fly
⊑−→ ¬2 : Penguin, is added to guarantee

one-to-one domain relations. Our investigation reveals a more general result: one-to-one domain

relations can guarantee that reasoning over DDL always yields the same result as that obtained

from an integrated ontology when bridge rules are replaced with general concept inclusions

(GCI). First, we have the definition:

Definition 4.8 A domain relation rij for bridge rules Bij is said to be one-to-one if it is

an injective partial function, i.e., if (x1, y) ∈ rij ∧ (x2, y) ∈ rij → x1 = x2, and (x, y1) ∈
rij ∧ (x, y2) ∈ rij → y1 = y2.

An integration process from a DDL ontology to an ordinary (global) DL ontology is given

in (Borgida and Serafini, 2002). For a DDL ontology {Li}, the global DL (GDL) ontology is

defined as follows:

• There is a new top concept ⊤g and a new bottom concept ⊥g in GDL.

• The primitive concepts of GDL consist of i : A obtained from primitive concepts or

constant concepts A (such as ⊤i and ⊥i) of Li

• The primitive roles of GDL include i : p obtained from primitive or constant roles p of Li

The mapping #() from concepts/roles in Li to concepts/roles in GDL is defined as follows:

for atomic concepts, roles, and individuals i : M , #(i : M) = i : M ; for a complex concept

constructor ρ with k arguments, #(i : ρ(X1, ...,Xk)) = ⊤i ⊓ ρ(#(X1), ...,#(Xk)). For example,

#i : (∀p.C) = ⊤i ⊓ ∀(i : p).(⊤i ⊓ i : C).

Applying #() to a DDL knowledge base Σ = 〈{Li}, {Bij}〉, we get an integrated GDL

(Borgida and Serafini, 2002) #(Σ) that contains:

• #(i : A) ⊑ #(i : B) for all i : A ⊑ B ∈ Li

• ⊥i ⊑ ⊥g

• #(i : A) ⊑ ⊤i for each atomic concept A of Li

• Axioms that ensure the domain and range of any i-role to be ⊤i: ⊤i ⊑ ∀(i : s).⊤i,

¬⊤i ⊑ ∀(i : s).⊥g

110

However, in contrast to the approach taken in (Borgida and Serafini, 2002), we will translate

bridge rules in DDL as GCIs in GDL. Hence, in addition to the above, #(Σ) will include:

• #(i : C) ⊑ #(j : D) for all i : C
⊑−→ j : D ∈ Bij

• #(i : C) ⊒ #(j : D) for all i : C
⊒−→ j : D ∈ Bij

Since the motivation of DDL bridge rules is to simulate concept subsumption as mentioned

in DDL proposals (Borgida and Serafini, 2002; Bouquet et al., 2003; Serafini et al., 2005a), we

believe that GCIs offer a more appropriate translation for bridge rules in comparing the result

of reasoning in the distributed setting with that of the centralized setting. Note that the seman-

tic difficulties of DDL under incomplete modelling is actually due to the semantic differences

between concept subsumptions (i.e., GCIs) and bridge rules (as shown in the Examples 4.7 and

4.8). The following theorem reveals that the domain relations being one-to-one is a sufficient

condition for exact reasoning in DDL if bridge rules are intended to represent inter-module

concept inclusions (proof can be found in appendix).

Theorem 4.6 Suppose Σ = 〈{Li}, {Bij}〉 is a DDL KB, where none of Li uses role constants

or role constructors, and all domain relations in all models of Σ are one-to-one, then

• #(Σ) � #(i : X) ⊑ #(i : Y) if and only if Σ �d i : X ⊑ i : Y

• #(Σ) � #(i : X) ⊑ #(j : Y) if and only if Σ �d (i : X
⊑−→ j : Y or (j : Y

⊒−→ i : X)

At present, there is no principled approach in DDL to specify such domain relations. Adding

¬C ⊑−→ ¬D for each C
⊒−→ D, as suggested in (Serafini et al., 2005a), does not necessarily result

in injective (and hence, also not one-to-one) domain relations for every inter-module concept

relations.

Example 4.9 :A KB Σd includes modules L{1,2}, TBox of L1 is {Woman ≡ ¬Man}, TBox of

L2 is {Girl ≡ ¬Boy}; bridge rules B12 = {1 : Man
⊒−→ 2 : Boy}. According to (Serafini et al.,

2005a), we should also add ¬1 : Man
⊑−→ ¬2 : Boy i.e. 1 : Woman

⊑−→ 2 : Girl to B12. However,

that does not rule out the possibility of a Girl object being both an image of a Man object

and a Woman object, neither ensure one-to-one correspondence between Man objects and Boy

objects.

111

Example 4.10 :(adopted from (Stuckenschmidt et al., 2006)) Module L1 entails ⊤ ⊑ 1 : Car,

module L2 entails UsefulThing ⊑ ¬UselessThing, and there are bridge rules 1 : Car
⊑−→ 2 :

UsefulThing and 1 : Car
⊑−→ 2 : UselessThing. There is no required new bridge rules to be added

according to (Serafini et al., 2005a). However, 1 : Car is not unsatisfiable, since DDL semantics

allows empty domain relations.

(Zimmermann, 2007) presents a solution for the subsumption propagation problem. It

defines a global domain of interpretation ∆ǫ which plays the role of a “blackboard” for all local

domains. For a bridge rule in Bij, instead of interpreting it using the domain relation rij , it

is relying on two “equalizing functions” ǫi and ǫj from ∆Ii and ∆Ij (respectively) to ∆ǫ, such

that i : C
⊑−→ j : D indicates ǫi(C

Ii) ⊆ ǫj(D
Ij) and i : C

⊒−→ j : D indicates ǫi(C
Ii) ⊇ ǫj(D

Ij).

However, such an approach cannot solve the inter-module unsatisfiability problem.

On the other hand, (Homola, 2007) presents a solution for the inter-module unsatisfiability

problem. It defines a special type of bridge rules called conjunctive onto-bridge rules
⊒
 , such

that for two such bridge rules i : C
⊒
 j : G and i : D

⊒
 j : H, we must have rij(C

Ii ∩DIi) ⊇
GIj ∩HIj . However, this approach cannot solve the subsumption propagation problem.

Decidability of DDL with only (homogenous) bridge rules between concepts is obtained by

its mutual reducibility with conventional DL as given in (Borgida and Serafini, 2002). However,

it is remained open for the decidability of DDL with homogenous bridge rules between roles

and heterogenous bridge rules.

DDL, as presented in (Borgida and Serafini, 2002), meets the localized semantics, decidability

(for bridge rules between concepts) and directional semantic relations requirements, but not

the exact reasoning and monotonicity (and its special case, transitive reusability) requirements.

We have shown in section 4.2.5 that P-DL is able to solve those problems of DDL.

4.4.3.2 E-Connections

E-connections allow multiple links between modules and the construction of new concepts

while DDL does not. Localized semantics is supported by E-connections since local domains

of modules are disjoint (Grau, 2005). Reasoning in E-connections without generalized links

is decidable and exact w.r.t a combined TBox of the E-connected ontology, since a concept is

satisfiable in the E-connected ontology if and only if there is a combined model for the combined

TBox and the concept (Grau et al., 2004b,a).

112

Directionality: Although links in E-connections are directional, information may propa-

gate through both directions of links, as shown in the following examples.

Example 4.11 :Let L1 = {1 : C ⊑ (∃E.2 : G), (∃E.2 : H) ⊑ 1 : D}, L2 = {2 : G ⊑ 2 : F},
where E ∈ E12 is a link. 1 : C ⊑ 1 : D is not entailed by L1 alone, but is entailed from L1 and

L2 together.

Example 4.12 :Let L1 = {⊤ ⊑ {1 : o1} ⊓ (∃E.2 : C) ⊓ (∃E.2 : D) ⊓ (= 1E.⊤)}, L2 = {⊤ ⊑
{2 : o2}} where o1, o2 are nominals, E ∈ E12 is a link. 2 : C ⊑ 2 : D is not entailed by L2 alone,

but is entailed from L1 and L2 together.

Hence, E-connections CE
IHN+

s
(SHOIQ(D)) as presented in (Grau, 2005) do not support

directionality (as defined in Definition 3.5) in general. Note that it is not contradicting to

Theorem 4.5 (the equivalency of DL and E-connections) and the directionality of DDL, since

Theorem 4.5 requires that each module to be in a subset of SHIQ.

Transitive Reusability: Since inter-module concept inclusion is not supported by the E-
connections syntax, in general modules in an E-connected ontology is not transitively reusable.

Although it has been claimed that E-connections can simulate DDL bridge rules which is in-

tended for modeling inter-module concept inclusion, since DDL itself does not support mod-

ule transitive reusability, E-connections do not support it either. It is even true if transitive

links (Parsia and Grau, 2005) are allowed, as shown in the following example.

Example 4.13 :As we have shown earlier, a DDL into bridge rule C
⊑−→ D can be translated

into an axiom ∃E−.C ⊑ D in E-connections, where E is a link. Suppose we have an ontology

O with three modules in E-connections:

• L1 = ∅

• L2 = {(∃E−.1 : C) ⊑ 2 : D} (i.e., “C
⊑−→ D”)

• L3 = {(∃E−.2 : D) ⊑ 3 : F} (i.e., “D
⊑−→ F”)

• Trans(E, (1, 2), (2, 3), (1, 3)), where E is a transitive link

However, we cannot infer that (∃E−.1 : C) ⊑ 3 : F (i.e., “C
⊑−→ F”), since the follow model

of O exists:

113

• ∆I1 = CI1 = {x}

• ∆I2 = DI2 = {w}

• ∆I3 = {y, z}, F I3 = {y}

• rE = {(x, z)}

Thus, (∃E−.1 : C)I3 = {z} 6⊆ F I3

E-connections, as presented in (Grau et al., 2004b; Grau, 2005), meets the localized seman-

tics, exact reasoning and decidability requirements, but not the directional semantic relations

and monotonicity (and its special case, transitive reusability) requirements.

Expressivity: The applicability of E-connections in practice is also limited by its expres-

sivity limitations (Grau, 2005):

• A concept cannot be declared as subclass of another concept in a foreign module thereby

ruling out the possibility of asserting inter-module subsumption; a role cannot be declared

as sub-role of a foreign role; neither foreign concepts nor foreign roles can be instantiated;

cross-module concept conjunction or disjunction are also illegal. Note that such restric-

tions are presented under both the separated semantics and the free-floating semantics of

E-Connections, since the two semantics are equivalent.

• E-connected ontologies have difficulties to be used with OWL importing mechanism, since

importing may actually “decouple” the combination and result in inconsistency.

• E-connected ontologies do not allow a name to be used as both a link name and a local

role name, nor role inclusions between links and roles. The“punning” approach suggested

by (Grau, 2005), where a name can have different interpretations, is rather a syntactical

sugar and is limited for many applications15.

We have shown earlier P-DL may overcome those limitations of E-connections.

15For example, suppose E is used both as a local role in L1 and a link in E12; however, it is unable to define a
concept with at most n E-“neighbours”, since ≤ nE(⊤1 ⊔ ⊤2) is an illegal expression in E-Connections.

114

Applicability: E-connections requires strong domain separation among ontology modules,

which may not be satisfied by many application scenarios, for instance, when the modular

ontology makes use of an upper-ontology (Seidenberg and Rector, 2006). Several recent studies

(Seidenberg and Rector, 2006; D’Aquin et al., 2007) reveal that the ontology segmentation

technique based on the E-connections notion (Grau et al., 2005) fails to generate useful modules

for many representative ontologies, e.g., GALEN16, ISWC17, and TAP18. For many of those test

cases, the segmentation based on E-connections renders a single module that include most of

the content in the original ontology (D’Aquin et al., 2007). Such results, together with the

expressivity limitations, suggests that E-connections may be too restrictive to be used as a

general modular ontology formalism on the semantic web.

4.4.4 Relation between Other Formalisms and P-DL

Several other modular ontology formalisms can be reduced to P-DL we defined in this

chapter.

Several other modular ontology formalisms can be simulated using the semantic importing

approach we adopted in this paper.

4.4.4.1 Reduction of E-Connections

In what follows, we will show how one-way E-Connections KBs, as given in (Kutz et al.,

2004; Grau et al., 2004b), can be reduced to SHOIQP KBs (proof is in the appendix).

Theorem 4.7 One-way E-Connections CEHQ(SHOIQ) knowledge bases can be reduced to SHOIQP
knowledge bases.

It is easy in SHOIQP to reuse imported transitive roles or symmetric roles without the

need for any specifically designed mechanism. SHOIQP also offers some additional modeling

flexibility not provided by E-Connections in its current form. For example, it is possible in

SHOIQP to use foreign roles to define local concepts.

16http://www.co-ode.org/galen/
17http://annotation.semanticweb.org/iswc/iswc.owl
18http://athena.ics.forth.gr:9090/RDF/VRP/Examples/tap.rdf

115

4.4.4.2 Reduction of DDL

Theorem 4.8 DDL with homogenous bridge rules between concepts can be reduced to SHOIQP.

Proof: It is due to the fact that DDL with homogenous bridge rules between concepts can

be reduced one-way E-connections which by Theorem 4.7 can be reduced to P-DL SHOIQP.

Hence, a reasoning task in DDL with bridge rules between concepts can be reduced to an equiv-

alent reasoning task in SHOIQP. Q.E.D.

Note that DDL with bridge rules between roles has no equivalent translation in SHOIQP.

In fact, given an i-role R and a j-role S, a translation of the into bridge rule R
⊑−→ S in P-DL

(in package Pi) is R−ij ◦R ◦ Rij ⊑ S and a translation of the onto bridge rule R
⊒−→ S in P-DL

is Rij ◦ S ◦R−ij ⊑ R, which are both beyond the expressivity of SHOIQP.

On the other hand, it is not possible, in general, to reduce SHOIQP to DDL either.

Since DDL allows arbitrary domain relations, compositionally consistent domain relations, as

required by SHOIQP, are not realizable in DDL. Hence, there is no reduction from a SHOIQP
knowledge base Σ to a DDL knowledge base T ensuring that every model of T can be mapped to

a model of SHOIQP. Syntactically, this is manifested by the bridge rule propagation problem

in DDL (Bao et al., 2006c), e.g., i : C
⊑−→ j : D and j : D

⊑−→ k : E do not entail i : C
⊑−→ k : E.

By contrast, Theorem 4.4 enables transitive reuse of subsumptions in SHOIQP ensuring that

such inference difficulties can be avoided.

4.4.4.3 Relation to Semantic Importing of Pan et al.

The proposed P-DL SHOIQP improves the semantic importing introduced in (Pan et al.,

2006) in several significant ways:

• Increased expressivity: The use of SHOIQ instead of the rather restricted ALC in

individual modules and the support for concept, role and nominal importing contribute

to this property.

• Contextualized negation: This ensures preservation of unsatisfiability.

• Monotonicity: This property is not guaranteed by the semantic importing approach of

Pan et al. (Pan et al., 2006).

116

4.4.4.4 Summary

The expressivity of DDL, of E-Connections and of SHOIQP are summarized in Table

4.4.4.4.

It is possible to simulate the one-to-one domain relations that are required in P-DL by the

combination of DDL and E-connections. If we use bridge rules as a special type of E-connections

with “≤ 1” cardinality restriction in E-connections, it effectively encodes the one-to-one domain

relations. More precisely, for any pair of module i, j, if we denote E as the E-connection for

bridge rules from i to j, F as the E-connection for bridge rules from j to i,, the following axioms

can be added:

• In module i: ⊤i ⊑≤ 1E.⊤j

• In module j: ⊤j ⊑≤ 1F.⊤i

• F = E−.

However, such a simulation does not always meet the compositional consistency requirement

of P-DL. Therefore, such a combination of DDL and E-connections, while it can solve the inter-

module unsatisfiability problem, may fail on some problems that require module transitive

reusability, such as the general subsumption propagation problem as outlined in Example 4.7.

Hence, SHOIQP is appealing in its expressivity power to model many representative sce-

narios supported by existing approaches. In addition, it also supports the general reuse of roles

and nominals which is not supported by any of the existing approach.

The comparison of DDL, E-Connections, and P-DL SHOIQP is summarized in Table 4.3

and 4.4. For convenience, we also include OWL-DL in Table 4.3.

4.4.5 Syntax Extensions to OWL

There are several efforts to support modular ontologies by extending the OWL syntax.

4.4.5.1 dOWL

dOWL (Avery and Yearwood, 2003) provides a “customization” mechanism to reuse an

OWL ontology. dOWL replaces owl:imports with dowl:importsAll (imports all the el-

ements of an ontology except elements explicitly mentioned that should be left out) and

117

dowl:importsNone (imports none of the elements of an ontology except elements explicitly

mentioned that should be reused). In additional, dOWL provides a set of tuning assertions

to modify an existing OWL ontology. For example, dowl:removeClass indicates removing of

a class definition from the imported ontology, and dowl:removeRange means to remove the

range restriction of a property from that ontology. Thus, dOWL may be used to “patch” an

existing ontology, i.e., derive a new ontology by reusing an older version of the ontology. It may

also support partial ontology reuse in a limited sense with explicit importing exceptions over

dowl:importsNone. However, the major limitation of dOWL is the lack of a formal semantics.

It is not clear whether the imported ontology and the importing ontology should share a global

interpretation, or how to control possible inconsistencies due to the removal of statements from

the imported ontology.

4.4.5.2 C-OWL

C-OWL (Bouquet et al., 2003), driven by the notion of DDL (Borgida and Serafini, 2002),

provides a set of “bridge rules” to create class, property and individual correspondences between

two OWL ontologies. C-OWL is extended from OWL and a previous syntax for DDL, CTXML

(ConTeXt Markup Language) (Bouquet et al., 2002), an ontology mapping language across

XML-based hierarchies.

Possible bridge rules include
⊒−→(onto, or more general than),

⊑−→(into, or less general than),

=−→(equivalent),
∗−→(compatible) and

⊥−→(disjoint). An XML syntax for C-OWL is given in (Bou-

quet et al., 2003), and an example for wine : ReadWine
⊒−→ vino : VinoRosso is shown as follows

(adapted from (Bouquet et al., 2003)):

<cowl:mapping>

<cowl:sourceOntology rdf:resource="http://example.org/wine.owl"/>

<cowl:targetOntology rdf:resource="http://example.org/vino.owl"/>

<cowl:bridgRule cowl:br-type="onto">

<cowl:sourceConcept rdf:resource="http://example.org/wine.owl#RedWine"/>

<cowl:targedConcept rdf:resource="http://example.org/vino.owl#VinoRosso"/>

</cowl:bridgRule>

</cowl:mapping>

Instead of using owl:imports to connect ontology modules, C-OWL resorts to bridge rules.

118

The formal semantics of bridge rules is given in DDL interpretations as the follows((Bouquet

et al., 2003), Definition 16):

• i : x
⊒−→ j : y: rij(x

Ii) ⊇ yIj

• i : x
⊑−→ j : y: rij(x

Ii) ⊆ yIj

• i : x
=−→ j : y: rij(x

Ii) = yIj

• i : x
∗−→ j : y: rij(x

Ii) ∩ yIj = ∅

• i : x
⊥−→ j : y: rij(x

Ii) ∩ yIj 6= ∅

4.4.5.3 E-Connections Syntax

E-Connections (Grau et al., 2004b) extension to OWL allows a property (called link prop-

erty) to have range from classes of other modules, and such link properties can be used to

construct local classes, as shown in the following example (adapted from (Grau, 2005)):

<owl:LinkProperty rdf:ID="providesAccommodation">

<owl:foreignOntology rdf:resource="&acco;"/>

<rdfs:domain rdf:resource="#Destination"/>

<rdfs:range>

<owl:ForeignClass rdf:about="&acco;#Accommodation">

<owl:foreignOntology rdf:resource="&acco;"/>

</owl:ForeignClass>

</rdfs:range>

</owl:LinkProperty> <owl:Class rdf:ID="BudgetDestination">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#providesAccommodation"/>

<owl:foreignOntology rdf:resource="&acco;"/>

<owl:someValuesFrom>

<owl:ForeignClass rdf:about="&acco;BudgetAccommodation"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

119

E-Connections also allows each ontology module to have a local domain. Editing E-Connected

ontology is supported by Swoop (Kalyanpur et al., 2005).

C-OWL and E-Connections both provide formal semantics for their syntactical extensions

to OWL, thus are able to support inference, witnessed by DARGO (Serafini and Tamilin,

2005b)(for C-OWL) and Pellet (Sirin and Parsia, 2004)(for E-Connections) implementations.

However, such approaches are also limited in several ways:

• Each of them only covers some subset of expressivity that are needed for an expressive

modular ontology language (Bao et al., 2006b). C-OWL does not support linking two

classes in different modules with properties, and E-Connections has no direct support for

inter-module class subsumption.

• Those extensions may experience inference difficulties in certain setting as we analyzed

in section 4.4.3.

• Their syntactical extensions are not compatible with existing OWL tools. With the

introduction of a new set of syntax symbols on the top of OWL, those extensions are not

directly supported by existing OWL tools such as ontology editors, parsers and reasoners.

On the contrast, the suggested modular semantics and syntax for OWL based on the notion

of P-DL can overcome those limitations.

120

Table 4.2 Comparison of Expressivity
Modeling Scenario Syntax DDL E-Connections SHOIQP
Concept C ⊑ D √ × √

Subsumption C ⊒ D √ × √

Concept Negation ¬C ×2 × √

Concept Conjunction C ⊓D ×2 × √

Concept Disjunction C ⊔D ×2 × √

Universal Restriction ∀R.C ×2 √ √

∀P.E ×2 × √

Existential Restriction ∃R.C ×2 √ √

∃P.E ×2 × √

Number Restriction1 ≤ nR.C ×2 √ √

≤ nP.E ×2 × √

Role P ⊑ R √ × ×
Inclusion P ⊒ R √ × ×
Role Inverse P− ×2 × √

Transitive Role Trans(P) × √3 √

Nominal {x} → {y} √ × √

1 ≥ case is similar.

2 While they are not directly supported by the DDL syntax, they can be realized in

DDL in a limited sense by declaring “alias”’s for foreign names. For example, if C

is an i-concept name, we may introduce C ′ in module j and require that C
⊑−→ C ′

and C
⊒−→ C ′, and, similarly, for an i-role name P . Thus, name importing can be

simulated (in restricted ways) using DDL bridge rules.

3 With generalized links (Parsia and Grau, 2005).

C is an i-concept, D is a j-concept, E is a k-concept; P is an i-role, R is a j-role, Q

is a k-role; x is a i-individual, y is a j-individual; i 6= j, j 6= k, i, j may be or may

not be k. All formulas represent module j’s point of view and constructed concepts

(roles) are j-terms.

121

Localized Exact Directional Transitive Decidability

Semantics Reasoning Relation Reusability

OWL-DL No Yes No Yes Yes

DDL Yes No Yes No Yes1

E-Connections Yes Yes2 No No Yes

P-DL Yes Yes Yes Yes Yes3

1 yes for bridge rules between concepts, open for bridge rules between roles; 2 yes without

generalized links; 3 yes for SHOIQP.

Table 4.3 Comparison of Semantic Properties of Modular Ontology Lan-
guages

122

Modeling Scenario Syntax DDL E-Connections SHOIQP
Concept C ⊑ D √1 ×3 √

Subsumption C ⊒ D √1 ×3 √

Concept Negation ¬C ×2 ×3 √

Concept Conjunction C ⊓D ×2 ×3 √

Concept Disjunction C ⊔D ×2 ×3 √

Universal Restriction ∀R.C ×2 √ √

∀P.E ×2 ×3 √

Existential Restriction ∃R.C ×2 √ √

∃P.E ×2 ×3 √

Number Restriction∗ ≤ nR.C ×2 √ √

≤ nP.E ×2 ×3 √

Role P ⊑ R √ × √

Inclusion P ⊒ R √ × √

Role Inverse P− ×2 × √

Transitive Role Trans(P) × √4 √

Nominal {x} → {y} √ × √

∗ ≥ case is similar.
1 In restricted ways, presenting difficulties for the transitive reusability problem and inter-
module unsatisfiability problem.
2 While they are not directly supported by the DDL syntax, they can be simulated in DDL
in limited sense by declaring “alias” for foreign names. For example, let C ba an i-concept

name, we may declare C′ in module j and require that C
≡−→ C′, and similarly for an i-role

name P . Thus, name importing can be simulated (in restricted ways) using DDL bridge
rules.
3 While they are not directly supported by the E-connections syntax, they can be simulated
in E-connections in limited sense by using a special link acting as domain relations in DDL.
Details in section 4.4.2.3.
4 With generalized links (Parsia and Grau, 2005).

C is an i-concept, D is a j-concept, E is a k-concept; P is an i-role, R is a j-role, Q is a
k-role; x is an i-individual, y is a j-individual; i 6= j, j 6= k, i, j may be or may not be k.
All formulae are constructed in module j and represent j’s point of view.

Table 4.4 Comparison of Expressivity of Modular Ontology Languages

123

CHAPTER 5. Distributed Reasoning with P-DL

Before P-DL can be used in practice, effective reasoning algorithms need to be developed.

This chapter presents several reasoning algorithms for three P-DL languages with increasing

expressivity:

• ALCP−C , i.e., ALC extended with acyclic concept importing;

• ALCPC , i.e., ALC extended with (possibly cyclic) concept importing;

• SHIQP, i.e., SHIQ extended with concept and role importing.

Part of this chapter was previously published in (Bao et al., 2006a,e, 2007b).

5.1 Overview

Effective use of web ontologies in practice requires support for inference across a loosely

coupled federation of multiple, distributed, autonomous ontology modules, without having to

combine the ontologies in one location. Current web ontology languages such as OWL (Schreiber

and Dean, 2004) and the associated reasoners (e.g., FaCT++ (Tsarkov and Horrocks, 2004)

and Pellet (Sirin and Parsia, 2004)) provide at best, very limited capabilities in such a setting.

For example, an OWL ontology can “reuse” knowledge from another OWL ontology via the

owl:imports construct. When one ontology imports another, the result is a union of the

two ontologies with a single domain of interpretation. Inference in such a setting requires an

integration of the relevant ontologies.

Because an OWL ontology can indirectly import knowledge from other OWL ontologies

through arbitrarily deep importing chains (which collectively constitute its importing transitive

closure), querying a small ontology might involve inference over a significant portion of the

semantic web. This presents scalability challenges in terms of memory, time, and bandwidth

124

requirements: ontologies with more than a few tens of thousands of concepts are often beyond

the capabilities of current reasoners (Gardiner et al., 2006).

The situation is further complicated in applications where no global knowledge of all ontology

modules is available. For example, in a peer-to-peer setting that is not at all atypical of semantic

web applications, each peer has access to only a subset of peers, namely, its local acquaintances

(Bonifacio et al., 2004). In addition, many web applications require protection on private

information in their ontologies; hence, those applications only provide limited query interfaces

instead of exposing their ontologies explicitly (see Chapter 6 for more discussion). In both

scenarios, integration of all ontologies is not possible.

Against this background, this chapter presents federated reasoning algorithms for several

modular ontology languages in the P-DL family. The proposed reasoning algorithms can pre-

form reasoning in a peer-to-peer fashion, such that each peer reasoner only requires local knowl-

edge, and the overall reasoning process is enabled by messages exchanged between the federation

of those peer reasoners. Hence, no integration of all ontology modules is required. In particular,

we explore the following algorithms:

• In section 5.2, we present a synchronized, tableau-based reasoning algorithm for the rela-

tively simple language ALCP−C , i.e., ALC extended with acyclic concept importing. This

algorithm illustrates the basic features of P-DL reasoning algorithms.

• The acyclicity restriction is removed in section 5.3, hence leading to a reasoning algorithm

for ALCPC .

• Section 5.4 presents an asynchronous, parallel reasoning algorithm for ALCPC such that

local reasoners can concurrently work on different subtasks in the reasoning process.

• Finally, in section 5.5 we explore an asynchronous reasoning algorithm for the P-DL

SHIQP, i.e., SHIQ extended with (possibly cyclic) concept and role importing.

Although our discussion focuses on the description of federated reasoners for several sub-

sets of SHIQP for ease of exposition, we note that the approach can be extended in a rather

straightforward way to more expressive P-DL logics, namely, SHOIQP(D) (an extension of

SHIQP that allows the use of nominals and datatypes within individual modules and im-

porting of nominals between modules) based on the techniques introduced for reasoning with

125

nominals and data types in the centralized setting for SHOIQ (Horrocks and Sattler, 2005)

and SHOQ(D) (Horrocks and Sattler, 2001).

In this chapter, we focus on algorithmic design rather than on implementation details. The

latter may include the communication protocols between the local reasoners and aspects of the

process of synchronization and backtracking, such as, e.g., handshaking and acknowledgement

protocols, remembering of previous choices, dependency between choices and the token passing

protocol. We leave those details to the implementation of the algorithm, that is expected to

be influenced by experimental studies for best performance. Some of those techniques have

already been applied in popular DL reasoners, e.g., Pellet (Sirin and Parsia, 2004).

The basic idea of tableau algorithms has already been introduced in section 2.2, and P-DL

SHOIQP has been introduced in section 4.2.

5.2 Reasoning in ALCP−C

One reason for which description logics enjoy good computational properties, e.g., being

robustly decidable, is that they have the tree model property (Vardi, 1996; Grädel, 2001), i.e.,

if the ontology in question is consistent, it has at least one model which has a tree-shaped

relational structure. Hence, a tableau algorithm for DL may decide the consistency of an

ontology by searching for the existence of such a tree-shaped model, or a completion graph1.

P-DL, as an extension of DL, still enjoys the tree-model property, but in a distributed fashion.

If a P-DL ontology is consistent, it has a distributed model such that each local model (tableau)

of it (for a component module of the ontology) is a forest, and all those local models can be

seen as fragments of a conceptual, tree-shaped “global model”. The P-DL tableau algorithm

is motivated by the desire to discover such a model using a federation of local reasoners, each

maintaining a local tableau, by message exchanging between those reasoners.

5.2.1 ALCP−C

To make this section self-contained, we first briefly introduce the P-DL ALCP−C , which is

a subset of the P-DL SHOIQP we introduced in the last chapter. An ALCP−C ontology has

a set of packages each is an ALC TBox. For every package Pi, we replace the universal top

1In some expressive DLs, such as the ones with transitive roles, the completion graph is a tree-shaped skeleton
of a model from which the model can be reconstructed. In DLs with nominals, the completion graph may not
be a tree but a forest.

126

(⊤) and global negation (¬) with their contextualized counterparts: contextualized top ⊤i and

contextualized negation ¬i. The set of names occurring in a package Pi is its signature Sig(Pi).

Every concept or role name t is associated with a home package, denoted as Home(t). A

name t ∈ Sig(Pj), but has a home package Pi (i 6= j) is called an imported name in Pj . We say

that Pj imports i : t and denote it as Pi
t−→ Pj . If any name with home package Pi is imported

into Pj , we say that Pj imports Pi and denote it as Pi 7→ Pj . ¬kC (hence also ⊤k) can appear

in Pi (i 6= k) only if Pk 7→ Pi and all names in C are in Sig(Pk).

The importing closure P+
i of a package Pi contains all packages that are directly or indirectly

imported into Pi, such that:

• (direct importing) Pj 7→ Pi ⇒ Pj ∈ P+
i

• (indirect importing) Pk 7→ Pj and Pj ∈ P+
i ⇒ Pk ∈ P+

i

An ALCP−C ontology Σ = 〈{Pi}, {Pi 7→ Pj}i6=j〉 has acyclic importing relation such that for

any i 6= j, Pj ∈ P+
i → Pi 6∈ P+

j .

We use P ∗i to denote Pi ∪P+
i . A concept C is understandable in a package Pi if the concept

is constructed only using names in Pi and concept names in P+
i .

An ALCP−C ontology has localized semantics in the sense that each package has its own local

interpretation domain. Formally, for an ALCP−C ontology Σ = {Pi}, a distributed interpretation

is a tuple I = 〈{Ii}, {rij}Pi∈P+
j
〉, where Ii is the local interpretation of package Pi, with domain

∆Ii , and rij ⊆ ∆Ii ×∆Ij is the (image) domain relation for the interpretation of the direct or

indirect importing relation from Pi to Pj . For convenience, we use rii = {(x, x)|x ∈ ∆Ii} to

denote the identity mapping on the local domain ∆Ii .

Given i, j, such that Pi ∈ P ∗j , define:

rij(A) = {y ∈ ∆Ij |∃x ∈ A, (x, y) ∈ rij}, for every A ⊆ ∆Ii .

Moreover, let ρ be the equivalence relation on
⋃

i ∆
Ii generated by the collection of all

domain relations, i.e., the symmetric and transitive closure of the set
⋃

Pi∈P ∗
j
rij. For every i, j

such that Pi ∈ P ∗j , ρij = ρ ∩ (∆Ii ×∆Ij).

Each of the local interpretations Ii = 〈∆Ii , ·Ii〉 consists of a domain ∆Ii and an interpreta-

tion function ·Ii , which maps every concept name to a subset of ∆Ii and every role name to a

subset of ∆Ii ×∆Ii , such that the following equations are satisfied, where R is an i-role name

127

and C,D are concepts:

(C ⊓D)Ii = CIi ∩DIi

(C ⊔D)Ii = CIi ∪DIi

(¬jC)Ii = rji(∆
Ij)\CIi

(∃R.C)Ii = {x ∈ ∆Ii |(∃y ∈ ∆Ii)((x, y) ∈ RIi ∧ y ∈ CIi)}

(∀R.C)Ii = {x ∈ ∆Ii |(∀y ∈ ∆Ii)((x, y) ∈ RIi → y ∈ CIi)}

Note that, when i = j, (¬jC)Ii reduces to the usual negation (¬iC)Ii = ∆Ii\CIi .

A local interpretation Ii is said to satisfy a GCI C ⊑ D if CIi ⊆ DIi . Ii is called a model

of Pi, denoted by Ii � Pi, if it satisfies all axioms in Pi.

Definition 5.1 An interpretation I = 〈{Ii}, {rij}Pi∈P ∗
j
〉 is a model of an ALCPC KB Σ =

{Pi}, denoted by I � Σ, if the following conditions are satisfied.

1. For all i, j, rij is one-to-one, i.e., it is an injective partial function;

2. Compositional Consistency: For all i, j, k, i 6= j, s.t. Pi ∈ P ∗k and Pk ∈ P ∗j , we have

ρij = rij = rkj ◦ rik;

3. For every i-concept name C that appears in Pj , we have rij(C
Ii) = CIj ;

4. Ii � Pi, for every i.

Note that if Pj 6∈ P ∗i , rji does not exist even if rij exists. Moreover, we have that rij = r−ji

if Pi and Pj mutually import one another. Also note that rij may not be a total function.

Definition 5.2 An ontology Σ is consistent as witnessed by a package Pi of Σ if P ∗i has a

model I = 〈{Ii}, {rij}Pi∈P+
j
〉, such that ∆Ii 6= ∅. A concept C is satisfiable as witnessed by

Pi if there is a model of P ∗i , such that CIi 6= ∅. A concept subsumption C ⊑ D is valid as

witnessed by Pi, denoted by C ⊑i D, if for every model of P ∗i , CIi ⊆ DIi. We use C ≡j D as

the abbreviation of C ⊑j D and D ⊑j D.

128

5.2.2 Distributed Tableaux for ALCP−C

Before the reasoning process starts, all concepts are converted into negation normal form

(NNF), i.e., a form in which negation only occurs before concept names, including local “tops”,

and there are only j-negations in a package Pj . We use ¬̇iC to denote the NNF of ¬iC. We

can transform formulae in Pj into NNF by applying the following rules:

¬i(¬kD)⇒ ⊤i ⊓ (D ⊔ ¬i⊤k) ¬iC ⇒ ⊤i ⊓ ¬jC, where C is a concept name or a local top,

¬i(C1 ⊓C2)⇒ ¬iC1 ⊔ ¬iC2 ¬i(C1 ⊔ C2)⇒ ¬iC1 ⊓ ¬iC2

¬i∃R.D⇒ ⊤i ⊓ ∀R.¬jD, ¬i∀R.D ⇒ ⊤i ⊓ ∃R.¬jD

¬i⊥ ⇒ ⊤i ¬i⊤i ⇒ ⊥

Lemma 5.1 For any concept C in a package Pj and for any i such that Pi 7→ Pj , ¬̇iC ≡j ¬iC.

Proof is in the appendix.

The main idea behind the ALCP−C tableau algorithm is to construct multiple, federated

local tableaux using only knowledge locally available to each module, instead of creating a

single tableau using the integrated ontology resulting by combining all those modules. A set of

messages will be exchanged between the local modules to connect the local tableaux by creating

partial correspondences between them. Formally, we have:

Definition 5.3 The set of subconcepts sub(C) of an ALCP−C concept C in NNF is inductively

defined by:

sub(A) = {A}, for a concept name , including a local top concept, or its negation A

sub(C ⊓D) = {C ⊓D} ∪ sub(C) ∪ sub(D)

sub(C ⊔D) = {C ⊔D} ∪ sub(C) ∪ sub(D)

sub(∃R.C) = {∃R.C} ∪ sub(C)

sub(∀R.C) = {∀R.C} ∪ sub(C)

For every package Pi, we define CTi
= ⊓

(C⊑D)∈Ti

(¬̇iC ⊔D).

Definition 5.4 Let Pw be a witness package and D be an ALCP−C -concept in NNF w.r.t.

Pw, such that D is understandable by Pw. A distributed tableau for D w.r.t. Pw is a tuple

129

T = 〈{Ti}, {tij}Pi∈P+
j
〉, where each Ti is a local tableau, for Pi ∈ P ∗w, and tij is the tableau

relation from a local tableau Ti to a local tableau Tj. Each local tableau is a tuple Ti = (Si,Li, Ei),
where

• Si is a set of individuals,

• Lw : Sw → 2sub(D)∪sub(CTw) and Li : Si → 2sub(CTi
), i 6= w, map individuals to correspond-

ing sets of concepts,

• Ei : NRi → 2Si×Si maps roles to the corresponding sets of pairs of individuals.

Each tableau relation tij is a subset of Si×Sj. Let ρt be the symmetric and transitive closure

of the set
⋃

Pi∈P ∗
j
tij . And, for all i, j, such that Pi ∈ P ∗j , set ρt

ij = ρt ∩ (Si × Sj).

The distributed tableau T should satisfy the following conditions:

(E) there exists x ∈ Sw, such that D ∈ Lw(x);

(A0) for every x ∈ Si, CTi
∈ Li(x);

(A1) if C ∈ Li(x), then ¬iC 6∈ Li(x);

(A2) if C1 ⊓ C2 ∈ Li(x), then C1 ∈ Li(x) and C2 ∈ Li(x);

(A3) if C1 ⊔ C2 ∈ Li(x), then C1 ∈ Li(x) or C2 ∈ Li(x);

(A4) if ∀R.C ∈ Li(x) and 〈x, y〉 ∈ Ei(R), then C ∈ Li(y);

(A5) if ∃R.C ∈ Li(x), then, there exists y ∈ Si, such that 〈x, y〉 ∈ Ei(R) and C ∈ Li(y);

(B1) tij is a one-to-one partial function, for all i, j;

(B2) ρt
ij = tij = tkj ◦ tik for all i, j, k, i 6= j, such that Pi ∈ P ∗k and Pk ∈ P ∗j ;

(B3) if C is an i-concept name, Pi
C−→ Pj , i 6= j, then

(∀x′ ∈ Sj)((∃x ∈ Si)(〈x, x′〉 ∈ tij and C ∈ Li(x)) iff C ∈ Lj(x
′));

Explanation: Conditions (A0)-(A5) are similar to the ones used in the tableau definition

of ALC (Horrocks et al., 1999). Intuitively, Conditions (B1) and (B2) ensure that domain

130

relations are one-to-one and compositionally consistent. On the other hand, Condition (B3)

ensures that rij(C
Ii) = CIj , for any concept name C.

It should be noted that the correspondence of individuals across multiple local tableaux is

only partial. Some individuals in a local tableau may not be connected to any individuals in

another local tableau. This conforms with the localized semantics of P-DL stipulating that

each ontology module has its own interpretation domain.

The following lemma establishes the correspondence between concept satisfiability, hence,

also between TBox consistency and concept subsumption, and the existence of a tableau for

that concept in ALCP−C (proof is in the appendix):

Lemma 5.2 Let D be an ALCP−C concept that is understandable by an ALCP−C package Pw.

Then D is satisfiable as witnessed by Pw iff D has a distributed tableau w.r.t. Pw.

5.2.3 A Tableau Algorithm for ALCP−C

We now proceed to describe a sound and complete algorithm to determine the existence of

a tableau for an ALCP−C concept w.r.t. a witness package. The algorithm allows each local

tableau to be created and maintained by a local reasoner. Thus, reasoning is carried out by

a federation of reasoners that communicate with each other via messages instead of a single

reasoner over an integrated ontology.

5.2.3.1 Distributed Completion Graph

The algorithm works on a distributed completion graph, which is a partial finite description of

a tableau. A distributed completion graph is G = {Gi}, where {Gi} is a set of local completion

graphs. Each local completion graph Gi = 〈Vi, Ei,Li〉 consists of a finite set of finite trees, i.e.,

a forest, where Vi and Ei are the corresponding sets of nodes and edges respectively, and of

a function Li, that assigns labels to nodes and edges in Gi. Each node x in Vi represents an

individual in the corresponding tableau, denoted as i : x, and is labeled with Li(x), a set of

concepts of which x is a member. Each edge 〈x, y〉 ∈ Ei represents a set of role memberships

in the tableau, and is labeled with Li(〈x, y〉), the corresponding set of role names.

If R ∈ Li(〈x, y〉), y is said to be a local R-successor of x and x is said to be a local R-

predecessor of y. Local ancestors and local descendants of a node are defined in the usual

manner.

131

Every node x has associated with it a node origin(x), which, informally speaking, is the

“original” node from which x is “copied”. If origin(i : x) = origin(j : y) and Pi ∈ P+
j , we say

that node y in Gj is an image of node x in Gi, denoted by y = xi→j, that node x is a pre-image

of y, denoted by x = yi←j, and that there is a graph relation 〈x, y〉.2

A typical distributed completion graph is shown in Figure 5.1. Dotted edges in the graph

represent graph relations. If we merge nodes of the same origin, all local graphs may, in fact,

be merged into a tree-shaped global graph. Tree(s) in a local graph are fragments of the

corresponding (virtual) global tree. In fact, the virtual global tree represents a conceptual

model for the ontology resulting by integrating all modules.

Figure 5.1 ALCP−C Distributed Tableaux Example

5.2.3.2 Distributed Tableau Expansion

A distributed ALCP−C completion graph is constructed by applying a set of tableau expan-

sion rules and by exchanging messages between local reasoners. The ALCP−C expansion rules

are adapted from the ALC expansion rules (see Section 2.2.2) as follows: Each module is only

locally internalized, instead of being globally internalized with respect to a combined TBox. A

local completion graph can create “copies” of its local nodes in another local completion graph,

as needed, during an expansion.

2Sometimes we use the same name with different prefixes for two nodes to indicate that they have the same
origin, e.g., i : x and j : x means origin(i : x) = origin(j : x). We may omit the prefix when it is clear from the
context.

132

A concept reporting message propagates concept labels of a node to the corresponding image

node or pre-image node. We use S+= X to denote the operation of adding the elements of the

set X to a set S, i.e., the operation S = S ∪X. Using this notation, we have:

• A forward concept reporting message ri→j(x,C) executes the following action: if there is

a node x′ ∈ Vj , such that origin(x) = origin(x′) and C 6∈ Lj(x
′), then Lj(x

′)+= {C}.

• A backward concept reporting message rj←i(x,C) executes the following actions: if there

is a node x′ ∈ Vj , such that origin(x) = origin(x′), then do Lj(x
′)+= {C} if C 6∈ Lj(x

′)

and C 6= ⊤j; else create a node x′ in Vj with origin(x′) = origin(x), and do Lj(x
′)+= {C}

if C 6= ⊤j .

Some nodes in the graph may be blocked, as will be explained later. The expansion rules

are:

• CE-rule: if CTi
6∈ Li(x), then Li(x)+= CTi

.

• ⊓-rule: if C1 ⊓ C2 ∈ Li(x), x is not blocked, and {C1, C2} 6⊆ Li(x), then Li(x)+=

{C1, C2}.

• ⊔-rule: if C1⊔C2 ∈ Li(x), x is not blocked, and {C1, C2}∩Li(x) = ∅, then Li(x)+= {C}
for some C ∈ {C1, C2}.

• ∃-rule: if ∃R.C ∈ Li(x), x is not blocked and x has no local R-successor y of x in Gi

with C ∈ Li(y), then create a new node y with origin(y) = y, Li(〈x, y〉) = {R} and

Li(y) = {C}.

• ∀-rule: if ∀R.C ∈ Li(x), x is not blocked and there is a local R-successor y of x in Gi

with C 6∈ Li(y), then Li(y)+= {C}.

• CPush-rule: if C ∈ Li(x), where C is an i-concept name, with Pi
C−→ Pj , x is not blocked

and there exists an x′ = xi→j ∈ Vj , such that x′ is not blocked, with C 6∈ Lj(x
′), then

transmit ri→j(x,C).

• CReport-rule: if C ∈ Li(x), where C is ⊤j or a j-concept name, x is not blocked and

xj←i does not exist or (x′ = xj←i exists, x′ is not blocked and C 6∈ Lj(x
′)), then transmit

rj←i(x,C).

133

• r-rule: if origin(i : x) = origin(j : x′), x, x′ are not blocked, and there exists k such

that Pi ∈ P+
k , Pk ∈ P+

j and there is no k : x′′ with origin(j : x′) = origin(k : x′′), then

transmit rk←j(x′,⊤k).

Explanation: The ⊓-, ⊔-, ∃-, ∀- and CE- rules are adaptations of the corresponding ALC
expansion rules. The r-rule serves to ensure the compositional consistency of domain relations

according to tableau Property (B2). The CPush- and CReport- rules are introduced to ensure

rij(C
Ii) = CIj , for every i-concept name C, according to tableau Property (B3). The reader

will get an even better feeling for the adoption of these rules while studying the soundness and

completeness lemmas for the distributed algorithm, that will be presented later.

A distributed completion graph is complete if no ALCP−C expansion rule can be applied to

it, and it is clash-free if there is no x in any local completion graph Gi, such that both C and

¬iC are in Li(x), for some concept C.

For a satisfiability query of a concept C as witnessed by a package Pw, where C is under-

standable by Pw, a local completion graphGw, with an initial node x0, such that origin(x0) = x0

and Lw(x0) = {C}, will be created first. The ALCP−C tableau expansion rules will be applied

until a complete and clash-free distributed completion graph is found or until all search efforts

for such a distributed completion graph fail.

5.2.3.3 Blocking and Backtracking

When only acyclic importing among packages is considered, the termination and correctness

of the algorithm can be obtained by using subset blocking and token passing.

Subset blocking has been applied in the ALC tableau algorithm. The motivation behind

subset blocking is the detection of cycles in tableau expansions, as illustrated in the following

example.

Example 5.1 Subset Blocking: Suppose we have two packages:

P1 : {⊤1 ⊑ 1 : A,⊤1 ⊑ ∃(1 : R).(2 : B)},
P2 : {⊤2 ⊑ ∃(2 : P).(2 : B)};
The reasoning task is to check the consistency of P1, therefore P1 is the witness package.

In Figure 5.2, G1 and G2 are local completion graphs for the two packages. In G1, due to

the ∃- and CE-rule, we may further expand w with an infinite chain of nodes, each with

134

labels {B,A,∃R.B}. Such a cycle may be detected using the subset blocking technique: since

L1(w) ⊆ L1(y), it is not necessary to further expand 1 : w otherwise we will just repeat the

expansion we did on 1 : y. We say 1 : w is locally blocked by 1 : y. Similarly, 2 : z is locally

blocked by 2 : y′. (End)

G1

x

R

R

y

w

L1(x) = {A, ∃R.B}

L1(y) = {B,A, ∃R.B}

L1(w) = {B,A, ∃R.B}

G2

P

y′

z

L2(y
′) = {B, ∃P.B}

L2(z) = {B, ∃P.B}

Figure 5.2 Subset Blocking Example in ALCP−C

Formally, we have:

Definition 5.5 (Subset Blocking) For a distributed completion graph of an ALCP−C ontol-

ogy, a node x is directly blocked by a node y, if both x and y are in the same local completion

graph Gi, for some i, y is a local ancestor of x, and Li(x) ⊆ Li(y). Node x is indirectly blocked

by a node y if one of x’s local ancestors is directly blocked by y. Node x is blocked by y if it is

directly or indirectly blocked by y.

Subset blocking in ALCP−C only depends on the local information in completion graphs,

i.e., a local completion graph determines blocking regardless of whether a node has any image

or preimage nodes in any other local completion graphs and irrespective of the labels of those

nodes. Thus, a node is blocked only by its local ancestors. As we will show in Example 5.5,

subset blocking is required to guarantee the correctness of reasoning.

Token passing is used to coordinate expansions in different local completion graphs, as

illustrated by the following example.

Example 5.2 : Suppose we have two packages:

P1 : {⊤1 ⊑ (2 : D3),⊤1 ⊑ ((2 : D1) ⊓ ∃(1 : R).(1 : C) ⊓ ∀(1 : R).(¬1(1 : C))) ⊔ ¬1(2 : D2)}
P2 : {(2 : D1) ⊑ (2 : D2)}
The reasoning task is to check the consistency of P1. Figure 5.3 (a) and (b) show the running

of ALCP−C tableau expansions in one scenario, which will be referred to as Scenario 1. In (a),

135

we first apply the CE-rule and ⊓-rule, adding D3 into L1(x), which results in the firing of the

CPeport-rule, the message r2←1(x,D3) and the creation of x′. Next, due to the CE- and ⊔-rule,

we may choose adding D1 ⊓ ∃R.C ⊓ ∀R.¬1C into L1(x), which leads to a reporting message

r2←1(x,D1). Further applying expansion in G1, we will generate node y and find a clash in

L1(y).

In Figure 5.3 (b), due to the clash, we will restore the status of node 1 : x, as it had been

before the choice in the ⊔-rule was made, and try the next choice, i.e., adding ¬1D2 into L1(x).

In the meantime, local completion graph G2 may apply the CE- and ⊔-rules and add D2 into

L2(x
′). Since, by a domain relation that was established before the clash in Phase 1, x is

an image node of x′ and P1 imports D2, G2 will apply the CPush-rule and send the message

r2→1(x′,D2), which will lead to a clash in L1(x). Hence, according to Scenario 1, we may assert

that P1 is not consistent since all choices in the tableau expansion of G1 lead to clashes.

However, Figure 5.3 (c) shows another expansion scenario, which will be referred to as Sce-

nario 2, that finds a consistent distributed completion graph. Hence, P1 is actually consistent.

G1

R

x

y

L1(x) = {D3, (D1 ⊓ ∃R.C...

... ⊓ ∀R.¬1C) ⊔ ¬1D2,

D1 ⊓ ∃R.C ⊓ ∀R.¬1C, D1,

∃R.C, ∀R.¬1C}

L1(y) = {C,¬1C}

G2

x′ L2(x′) = {D3, D1}

r(x, D3)

r(x, D1)

(a) Scenario 1, Phase 1

G1

xL1(x) = {(D1 ⊓ ∃R.C ⊓ ∀R.¬1C)...

... ⊔ ¬1D2, D3, ¬1D2, D2}

G2

x′ L2(x′) = {D3, D1,

¬2D1 ⊔ D2, D2}r(x′, D2)

(b) Scenario 1, Phase 2

G1

xL1(x) = {(D1 ⊓ ∃R.C ⊓ ∀R.¬1C)...

... ⊔ ¬1D2, D3, ¬1D2}}

G2

x′ L2(x′) = {D3,

¬2D1 ⊔ D2, ¬2D1}r(x, D3)

(c) Scenario 2

Figure 5.3 The Need for Token Blocking

136

The problem with Scenario 1 in Example 5.2 is caused by the asynchronous operation of the

different local reasoners. The message r2→1(x′,D2) in Phase 2 is in fact a consequence of the

choice of adding D1 ⊓ ∃R.C ⊓ ∀R.¬1C into L1(x) and the subsequent message r2←1(x,D1) in

Phase 1. However, since local reasoners run autonomously and communication between them

may be delayed, as it relies on network conditions, when the message r2→1(x′,D2) arrives at

G1, the previous choice, in which r2←1(x,D1) was sent, has already been abandoned. Thus, the

clash arising in Phase 1 is a false one, since it mixes consequences of different choices during

the tableau expansion.

To avoid such problems, we resort to the techniques of token passing and of clocks in order

to synchronize the creation of the local completion graphs by the local reasoners. The basic

idea is to coordinate the expansion of all local completion graphs in such a way that, at any

time, all node and edge labels in all local completion graphs always belong to the same sequence

of non-deterministic choices.

Definition 5.6 (Local Clocks) Clocks of local completion graphs are maintained in the fol-

lowing way:

• Every local completion graph Gi has a local clock Ki of integer type, initialized to 0.

• For every concept label C in Li(x) where x is a node in Gi, there is a timestamp ti(x,C)

of integer type. Informally speaking, this time stamp records the clock value of the last

choice in the application of the ⊔-rule before C was added into Li(x), possibly in another

local completion graph.

• For every role label R in Li(〈x, y〉), where 〈x, y〉 is an edge in Gi, there is a timestamp

ti(x, 〈x, y〉) of integer type.

• If a reporting message ri→j(x,C) or rj←i(x,C) is sent, tj(j : x,C) will be the same as

ti(i : x,C) and Kj = max{Kj , ti(i : x,C)};

• When a new label is added in Gi by an application of CE-, ⊓-, ∀- or ∃- rules, its timestamp

will be the value of the clock Ki;

• When a new concept label is added in Gi by an application of the ⊔- rule, the clock Ki is

increased by 1 and the label’s timestamp is set to be the new value of the clock Ki.

137

Definition 5.7 (Token and Backtracking) A token T is passed between local completion

graphs. It is originally assigned to the local completion graph of the witness package. Only the

local completion graph that has T can apply the ⊔-rule. A local completion graph whose clock

value is no smaller than the clock value of any other local completion graph is a token target.

We require that 1) T only stays at a token target; 2) if Gi has T and Gi is complete, then T is

transferred to a token target that is not complete.3

A node x in Gi is said to have a t-clash if both C and ¬iC are in Li(x), for some concept

C, and t = max{ti(x,C), ti(x,¬iC)}.
A distributed completion graph is said to be synchronized if 1) all concept report messages

have arrived at targets; and 2) all local completion graphs have stopped expansion.

A pruning operation Prune(t) (where t is the timestamp parameter) in Gi does the following:

• Removes all concept and role labels in Gi with timestamp ≥ t.

• Removes every node with empty label set and its incoming edges.

• Sets Ki to the largest timestamp of concept labels in Gi after the pruning, i.e., Ki =

max{ti(x,C) : x ∈ Vi, C ∈ Li(x)}.

If a t-clash occurs in Gi, Gi will broadcast a t-clash message to all other local completion

graphs, such that the following steps will be executed in order:

• Stop all expansions at all local completion graphs, until the distributed completion graph

is synchronized.

• Perform Prune(t) in all local completion graphs.

• Transfer T to a token target.

The pruning operation is necessary to restore all local completion graphs to their status

just before the choice which led to the clash, or to the initial status of the local tableau, if no

choice at all had ever been made.

3We do not require a particular token passing protocol (i.e., when and how T should be transferred) on purpose.
We believe it is best that it be determined based on empirical results. In what follows, for the sake of concreteness,
we adopt a strategy according to which T may be transferred immediately after a concept reporting message, if the
message target becomes a token target after the message is sent. We emphasize that this is not the only strategy
that can be adopted, nor do we claim that it is the most efficient one.

138

Token passing ensures that all local completion graphs are synchronized and that there

is only one local completion graph that can apply non-deterministic expansions at any time.

Whenever a t-clash is detected, consequences (i.e. nodes and edge labels) dependent on the

choice at time t in all local completion graphs will be purged before any other non-deterministic

choice can be made. Hence, the handling of a t-clash ensures that different choices in the

searching for a clash-free distributed completion graph are always being kept separate. In

Example 5.2, Scenario 1, after G1 detects the clash, it will send a clash message to G2 and

all local completion graphs will be synchronized. Hence, even if the message r2→1(x′,D2) has

already been sent before the clash is detected, D2 will be purged from L1(x) during pruning,

before G1 tries other choices. Hence, problems like the one encountered in Phase 2 of Scenario

1 are avoided.

Note that local completion graphs may perform expansions on different reasoning subtasks

concurrently. This improves the overall efficiency and scalability of the reasoning process.

Further, note that with the introduction of messages, subset blocking in ALCP−C is dynamic: it

can be established, broken and re-established. Moreover, the completeness of a local completion

graph is also dynamic. A complete local completion graph may become incomplete, i.e., some

expansion rules may become applicable, when a new reporting message arrives.

5.2.3.4 ALCP−C Expansion Examples

Example 5.3 Transitive Subsumption Propagation: Given three packages:

P1 : {1 : A ⊑ 1 : B}

P2 : {1 : B ⊑ 2 : C}

P3 : {2 : C ⊑ 3 : D}

The query is 1 : A ⊑ 3 : D w.r.t. the witness package P3. The expansion and message

exchange between local completion graphs are shown in Figure 5.4. The following steps result

from the execution of the algorithm:

1. G3 is initialized with the token T and the node x with L3(x) = {A ⊓ ¬3D}; applying ⊓-

and CE- rules in G3, A,¬3D and ¬3C ⊔D are added into L3(x). K3 = 0 and all concept

labels in G3 have the timestamp 0.

139

G3
x L3(x) = {A ⊓ ¬3D,A,

¬3D,¬3C ⊔D,C,D}

G1

x
L1(x) = {A,
¬1A ⊔B,B}

r(x,A)

G2

x
r(x,B)

L2(x) = {B,
¬2B ⊔ C,C}

r(x,C)

Figure 5.4 Transitive Subsumption Propagation in ALCP−C

2. Since A has home package P1, a message r1←3(x,A) is sent and G3 transfers T to G1. G1

is initialized with L1(x) = {A}. Applying ⊔- and CE- rules in G1, ¬1A ⊔ B and B are

added into L1(x). K1 = 1.

3. Since P2 imports P1, P3 imports P2 and origin(1 : x) = origin(3 : x), we apply the r-rule,

creating 2 : x, with origin(2 : x) = origin(3 : x).

4. Applying the CPush-rule, G1 sends the message r1→2(x,B) and T to G2. Applying the

⊔- and CE- rules in G2, ¬2B ⊔C and C are also added into L2(x). K2 = 2.

5. Applying the CPush-rule in G2, C is added to L3(x) and T is passed to G3. Applying

the ⊔-rule in G3, K3 = 3 and D is added to L3(x). The 3-clash {D,¬3D} ⊆ L3(x) is

detected.

6. As a result, D is now removed from L3(x) and clash messages with timestamp 3 are sent

to G1 and G2, but nothing is removed from G1 or G2. K3 is set to 0. T is transferred to

G2, since it has the largest clock value.

7. Similarly, all other choices in applying the ⊔-rule lead to clashes. Hence, no clash-free and

complete distributed tableau can be found for A ⊓ ¬3D. Therefore A ⊑ D, as witnessed

by P3.

This example shows that P-DL offers a solution to the well-known problem of non-composability

of ontology mappings, that is present in DDL Zimmermann and Euzenat (2006).

140

Example 5.4 Detect Inter-module Unsatisfiability: Given two packages P1 : {1 : B ⊑
1 : F}, P2 : {2 : P ⊑ 1 : B, 2 : P ⊑ ¬2(1 : F)}, test the satisfiability of 2 : P , as witnessed by

P2. The results shows 2 : P is unsatisfiable as witnessed by P2 (Figure 5.5):

1. G2 is initialized with T and the node x with L2(x) = {P}, K2 = 0. Applying the ⊔-rule

and the CE-rule, ¬2P ⊔B, ¬2P ⊔ ¬2F , B and ¬2F are added into L2(x) and K2 = 2.

2. Since B’s home package is P1, we apply the CReport-rule, resulting in the creation of 1 : x

and L1(x) = {B}. T is passed to G1. K1 = 2.

3. Applying the ⊔- and CE- rules in G1, ¬1B ⊔ F and F are added into L1(x). K1 = 3.

4. Applying the CPush-rule, the message r1→2(x, F) is sent and F is added into L2(x),

resulting in a clash.

5. Since t2(x,¬2F) = 2 and t2(x, F) = 3, G2 has a 3-clash. F is removed from L2(x) and a

clash message is sent to G1. K2 = 2.

6. G1 receives the clash message and removes F from L1(x). However, the next choice, i.e.,

adding ¬1B, also leads to a clash.

7. Similarly, all other choices in G1 lead to clashes.

G2

x
L2(x) = {P,¬2P ⊔B,
¬2P ⊔ ¬2F,B,¬2F , F}

G1

x
r(x,B)

L1(x) = {B,¬1B ⊔ F, F}
r(x, F)

Figure 5.5 Detect Inter-module Unsatisfiability in ALCP−C

This example shows that P-DL can also solve the inter-module unsatisfiability problem,

that is present in DDL Grau et al. (2004b).

Example 5.5 Reasoning from the Local Point of View: Given two packages

P1 : {1 : A ⊑ 1 : C}

P2 : {1 : A ⊑ ∃(2 : R).(2 : B), 2 : B ⊑ (1 : A) ⊓ ¬2(1 : C)}

141

We need to test the satisfiability of 1 : A, as witnessed by P1 and P2, respectively. It is easy

to see that A is satisfiable as witnessed by P1, but unsatisfiable as witnessed by P2. Figure 5.6

shows one possible execution when the witness package is P2.

• G2 is initialized with T , 2 : x and L2(x) = {A}; applying the CE-, ⊓- and ⊔- rules,

¬2A ⊔ ∃R.B, ¬2B ⊔ (A ⊓ ¬2C), ∃R.B and ¬2B are added to L2(x). K2 = 2.

• A has home package P1, whence a message r1←2(x,A) is sent. Consequently, 1 : x is

created, with L1(x) = {A}. T is not transferred to G1 because K1 = 0 < K2.

• Applying the CE-rule in G1, ¬1A⊔C is added to L1(x). Now G1 stops, since it does not

have T .

• In the mean time, G2 applies the ∃-, CE-, ⊓ and ⊔-rules, creating the node 2 : z

with L2(z) = {B,¬2A ⊔ ∃R.B,¬2B ⊔ (A ⊓ ¬2C),∃R.B,A ⊓ ¬2C,A,¬2C}. The mes-

sage r1←2(z,A) is sent. Node 1 : z is created with L1(z) = {A}. K1 = K2 = 4. T is

transferred to G1.

• Applying the CE- and ⊔-rules in G1, C is added to L1(x) and L1(z). Two messages

r1→2(x,C) and r1→2(z,C) are sent. K1 = K2 = 6. T is transferred back to G2.

• Since {C,¬2C} ⊆ L2(z), a 6-clash is detected in G2. Prune(6) is preformed at G1 and G2.

• Similarly, all other choices lead to clashes.

This example shows that reasoning in P-DL always supports the local semantic point of view

of the witness package. In this way, the same reasoning problem may have different answers

from the points of view of different packages.

This example also illustrates the fact that subset blocking in ALCP−C only depends on the

local ancestorship rather than on the “global” ancestorship. One might have argued that, since

2 : x is the local ancestor of 2 : z, 1 : x is a global ancestor of 1 : z, whence it should have

been allowed to block 1 : z. However, that strategy would have resulted in incorrect blocking:

after the message r1←2(z,A) is sent, L1(1 : z) = {A}, which is a subset of L1(1 : x). If this had

resulted in blocking 1 : z, adding C to L1(1 : z) would have been prevented and this would have

led to the erroneous discovery of a consistent distributed completion graph. On the other hand,

142

G2

x

L2(x) = {A,¬2A ⊔ ∃R.B,
¬2B ⊔ (A ⊓ ¬2C),

∃R.B,¬2B,C}

z

L2(z) = {B,¬2A ⊔ ∃R.B,
¬2B ⊔ (A ⊓ ¬2C),

A ⊓ ¬2C,A,¬2C,

∃R.B,C}

P

G1

z

x
r(x,A)

L1(x) = {A,¬1A ⊔ C,C}
r(x,C)

r(z,A)

L1(z) = {A,¬1A ⊔C,C}
r(z, C)

Figure 5.6 Reasoning from Local Point of View in ALCP−C

in the next section, it is shown that, with the presence of cyclic importing, global ancestorship

is needed in blocking to ensure termination.

5.2.4 Soundness, Completeness, Termination and Complexity

In order to show that the algorithm is a decision procedure for concept satisfiability in

ALCP−C , it is necessary to prove that the algorithm terminates, that the models that can

be constructed from clash-free and complete distributed completion graphs, generated from

the algorithm, are valid with respect to the semantics of the logic (soundness) and that the

algorithm always finds a model if one exists (completeness). Proofs of lemmas and theorems

can be found in the appendix.

Termination and complexity of the algorithm is obtained by proving that there is an upper

bound for the total size of all local completion graphs.

Lemma 5.3 Let Σ be an ALCP−C ontology and D be an ALCP−C concept that is understand-

able by a witness package Pw in Σ. The ALCP−C tableau algorithm runs in worst case non-

deterministic O

(

2m×∏

Pj∈P ∗
w

22nj×log nj

)

time, where ni = |CTi
|, i 6= w, nw = |CTw |+ |D| and

m = |P ∗w|.

Lemma 5.4 (Termination and Complexity) Let Σ be an ALCP−C ontology and D be an

ALCP−C concept, that is understandable by a witness package Pw in Σ. The ALCP−C tableau

algorithm runs in worst case 2NExpTime w.r.t. the size of D and the size of the largest package

in P ∗w.

143

Proof : Let nk = max{|CTi
|} be the size of the largest package in P ∗w, nD = |D| be the

size of D, and m = |P ∗w| be the number of packages in the importing closure of Pw. In general,

m ≪ 2nk log nk . By Lemma 5.3, it follows that the total size of all local completion graphs is

bounded by

O
(

2m × 2m×2(nk+nD)×log (nk+nD)
)

< O
(

22(nk+nD)2
)

Q.E.D.

.

In fact, by the proof of Lemma 5.3, it follows that the complexity of the ALCP−C algorithm

is bounded by NTime
(
∏

Pj∈P ∗
w

22nj log nj
)

=NTime

(

2

P

Pj∈P∗
w

2nj log nj
)

, where ni = |CTi
|, for i 6= w,

and nw = |CTw | + |D|. On the other hand, an equivalent reasoning task over the integrated

ontology4 using the ALC tableau algorithm of ? will be bounded by NTime
(

22nΣ log nΣ
)

, where

nΣ =
∑

Pj∈P ∗
w

nj is the size of the integrated ontology. Since, ordinarily, m≪ 2nk log nk ,

∑

Pj∈P ∗
w

2nj log nj ≪ 2

P

Pj∈P∗
w

nj log nj

< 2nΣ log nΣ

The last inequality holds because, for every x1 ≥ 1, x2 ≥ 1, we have x1 log x1 + x2 log x2 −
(x1 +x2) log (x1 + x2) = x1(log x1− log (x1 + x2))+x2(log x2− log (x1 + x2)) < 0. Thus, under

the hypotheses that each module in the ontology is moderately sized and that the communica-

tion between local reasoners is reliable, it would be reasonable to expect the distributed ALCP−C
reasoning algorithm to terminate significantly faster than its classical counterpart applied on

the integrated ontology.

In the following two lemmas, soundness and completeness of the ALCP−C algorithm are

proven.

Lemma 5.5 (Soundness) If the ALCP−C algorithm yields a complete and clash-free distributed

completion graph for a concept D w.r.t. a witness package Pw, then D has a tableau w.r.t. Pw.

Lemma 5.6 (Completeness) If an ALCP−C concept D has a distributed tableau w.r.t. a

witness package Pw, then the ALCP−C algorithm produces a complete and clash-free distributed

completion graph for D w.r.t. Pw.

4A reduction to an integrated ontology is described in Bao et al. (2007e).

144

By the proceeding lemmas, we obtain the following theorem:

Theorem 5.1 Let Σ be an ALCP−C ontology and D be an ALCP−C concept, that is under-

standable by a witness package Pw in Σ. The ALCP−C tableau algorithm is a sound, complete,

and terminating decision procedure for satisfiability of D as witnessed by Pw. This decision

procedure is in 2NExpTime w.r.t. the size of D and the size of the largest package in P ∗w.

5.3 A Reasoning Algorithm for ALCPC

5.3.1 Extended Subset Blocking

The reasoning algorithm for ALCP−C may fail if we relax the acyclicity assumption, i.e.,

when applied to the P-DL ALCPC , as illustrated by the following example.

Example 5.6 : Suppose we have two packages that mutually import one another:

P1 : {⊤1 ⊑ ∃(1 : R).(2 : D)}

P2 : {⊤2 ⊑ ∃(2 : P).(1 : C)}

The reasoning task is to check the consistency of the ontology as witnessed by P1. If we

employ the decision procedure for ALCP−C , the algorithm will not terminate, as shown in

Figure 5.7. Since there is mutual importing, each of the local completion graphs G1 and G2 can

send reporting messages and create new nodes in the other. Subset blocking, as given in the

previous section, cannot prevent local completion graphs from exchanging messages in a cyclic

fashion, which leads to non-termination.

G1

x1L1(x1) = {∃R.D}

x2L1(x2) = {D, ∃R.D}
R

x3L1(x3) = {C, ∃R.D}

x4L1(x4) = {D, ∃R.D}
R

G2

x2 L2(x2) = {D, ∃P.C}

x3 L2(x3) = {C, ∃P.C}

x4 L2(x4) = {D, ∃P.C}

...

r(x2, D)

r(x3, C)

r(x4, D)

Figure 5.7 Non-termination Caused by Cyclic Importing

145

Extending the ALCP−C algorithm to handle cyclic importing relations requires the detection

and prevention of cyclic message exchanges as well as of cyclic local expansions. In fact,

termination of the ALCP−C algorithm is due to the fact that a local completion graph Gi can

cause the creation of a local top node, i.e., a node without a local predecessor, in another local

completion graph Gj by an application of the CReport- or the r-rule if and only if the package Pi

directly or indirectly imports package Pj . With the presence of cyclic importing, the creation of

infinitely many local top nodes in a local completion graph may not be avoided. Thus, subset

blocking may fail, since it can only ensure that the number of local descendant nodes of a local

top node is limited.

Termination with cyclic importing can be regained if we can ensure that, in any local

completion graph, the number of local top nodes as well as the number of local descendant

nodes of each local top node are limited. This goal will be realized by an appropriate extension

of subset blocking.

Definition 5.8 (Extended Subset Blocking) A node x is a global ancestor of another node

y, which may be in a different local graph, if origin(x) 6= origin(y) and there is a path from

x to y on the graph G′ =
⋃

iGi ∪ {(u, v)|origin(u) = origin(v)}, i.e., a path using both local

edges and edges in the symmetric closure of graph relations. For any i and any x, y, such that

x ∈ Vi, x is a least global ancestor of y in Gi if x is a global ancestor of y and there is no other

z ∈ Vi such that z is a global ancestor of y and x is a global ancestor of z.

For a distributed completion graph of an ALCPC ontology, a node x in Gi is directly blocked

by a y in Gi if 1) y is a global ancestor of x and Li(x) ⊆ Li(y), and 2) for every j 6= i, if there are

x′, y′ in Gj such that origin(x′) = origin(x) and origin(y′) = origin(y), then Li(x
′) ⊆ Li(y

′).

Node x is indirectly blocked by a node y if one of x’s global ancestors is directly blocked by y.

Finally, node x is blocked by y if it is directly or indirectly blocked by y.

Explanation: With extended subset blocking, a node x, including a local top node, can be

blocked by one of its global ancestors y, if every local “copy” of x contains no more information

than the corresponding local “copy” of y. In this case, expansions at x are not needed, since

corresponding expansions must have been preformed at y. Hence, the creation of infinitely many

local top nodes as well as of infinitely large local trees under each local top node is avoided. A

more detailed analysis of this point will be presented in the termination proof of the algorithm.

146

For instance, in Example 5.6, 1 : x4 will be blocked by 1 : x2. As a result, the backward

concept reporting messages r2←1(x4,D) will not be sent (a similar message r2←1(x2,D) has

been sent before) and the reasoning process will terminate. On the other hand, when applying

extended subset blocking in Example 5.5, node 1 : z will not be blocked by node 1 : x, whence

the necessary forward reporting message r1→2(z,C) will not be undesirably blocked.

Labeling for Global Ancestorship: Since each local reasoner is autonomously main-

tained, the topology of a local completion graph may not be available to other reasoners. To

keep track of the global ancestor relationship in the distributed setting, we may use a label-

ing schema for dynamic tree representation, since, by merging nodes of the same origin, all

local completion graphs can be combined into a tree. The basic intuition is to assign localized,

informative labels to each node in the distributed graph which will contain global topology

information of the graph. Each node of the same origin will be assigned the same label. In

this way, testing global ancestorship can be reduced to comparison of the labels of different

nodes. Several labeling schemas for static and/or dynamic trees have been recently proposed

Christophides et al. (2004); Chen et al. (2004); Korman et al. (2004); Cohen et al. (2005). The

adoption of a particular labeling schema is to be decided during the implementation of the

algorithm. It will partially depend on the communication protocol on which the algorithm will

be based to achieve best performance.

5.3.2 Correctness and Complexity

The reasoning algorithm for ALCPC is a modified version of theALCP−C algorithm, resulting

by replacing subset blocking by extended subset blocking and by adding the labeling technique

of the various nodes, as described previously.

Theorem 5.2 Let Σ be an ALCPC ontology and D an ALCPC concept, that is understandable

by a witness package Pw in Σ. The ALCPC tableau algorithm is a sound, complete and termi-

nating decision procedure for satisfiability of D as witnessed by Pw. This decision procedure is

in 2NExpTime w.r.t. the size of D and the total size of packages in P ∗w.

Proof: Proofs of the soundness and completeness are similar to the proofs of Lemmas 5.5

and 5.6, respectively. So we concentrate on termination and complexity.

147

Termination will be proven by showing that the “combined” completion graph G′, resulting

from the various local completion graphs by merging all nodes of the same origin into one node,

is finite. For a local completion graph Gi, let ni = |CTi
|, for i 6= w, nw = |CTw |+ |D|, nΣ = Σ

i
ni

and m = |P ∗w|. Let x0 be the initial node of Gw.

For every node in Gi, its out-degree is at most ni, whence, for every node in G′, its out-

degree is bounded by nΣ. Similarly, the size of the concept label set of each node in Gi is

bounded by nΣ. The depth of G′ is a most 2nΣ due to the extended subset blocking. Hence,

the total number of nodes in G′ is bounded by

O
(

(nΣ)2
nΣ

)

= O
(

22nΣ log nΣ
)

.

Therefore, the total number of nodes in the distributed completion graph is bounded by

O
(

m× 22nΣ log nΣ
)

. Q.E.D.

With the presence of cyclic importing, the worst-case time complexity of the ALCPC algo-

rithm is bounded by the total size of all packages, while that of the ALCP−C algorithm is only

bounded by the size of the largest package involved in the reasoning task. This result indicates

that avoiding cyclic importing between ontology modules will significantly improve reasoning

performance.

The ALCPC algorithm has the same worst-case time complexity with the ALC tableau al-

gorithm applied on the combined ontology from all modules. However, the analysis in Theorem

5.2 does not take into account the gain resulting from local reasoners concurrently exploring

different reasoning sub-tasks. We believe that, with the proper design of communication pro-

tocols between local reasoners, the distributed ALCPC tableau algorithm has the potential of

processing a reasoning task more efficiently than would a centralized reasoner.

5.4 Asynchronous Federated Reasoning for ALCPC

TheALCP−C and ALCPC algorithms we presented above utilize token passing to synchronize

expansions in multiple local reasoners. However, whenever a clash occurs, other local reasoners

have to stop for synchronization, thus reasoners cannot concurrently work together on different

non-deterministic choices. To maximize usage of the computational resources in peer reasoners,

148

it is desirable to allow asynchronous reasoning strategy such that local reasoners can solve the

reasoning task in parallel fashion.

Instead of using the token passing, we may adopt a thread-based labeling strategy to keep

the local completion graphs in sync with regard to the logical consequences of different non-

deterministic choices.

We assign a thread id for each label in a local completion graph, and each reporting message.

Let λ be the set of all threads. Threads in λ have a tree-structure, such that every thread except

the root thread has exactly one parent. We will use partial order (≤) over λ to identify thread

ancestry, i.e., a ≤ b denotes that thread a is an ancestor of thread b. Two threads are said

to belong to the same thread lineage if one of them is an ancestor of the other. To record

thread ancestry in the distributed setting, we can use a prefix numbering strategy, e.g., a.b is

the parent of a.b.c.

For every concept label C in Li(x) and every role label R in Li(〈x, y〉), there is an associated

thread th(x,C), th(〈x, y〉, R) and th(〈x, x′〉), respectively. Labels not belonging to the same

thread lineage are treated as different labels (graph relations).

For a local completion graph Gi and a thread t, Gi(t) is a projection of Gi, obtained by

including only the labels in Gi that are associated with the thread t or t’s ancestors. A node

x in Gi is said to be subset blocked for thread t if x is blocked in Gi(t). G(t) = {Gi(t)} is the

projection of the global completion graph for thread t.

We have the following rules to assign threads:

• When the graph for the witness package is initialized, the label of its root node has the

initial thread id t0; labels resulting from CE-rule also have thread id t0.

• When a deterministic rule (any rule except the ⊔-rule) is applied in Gi, if its triggering

(“if”) condition is true in Gi(t), then the resulting expansion will be based on G(t), and

any new label or messages resulting from the application of the rule will inherit the same

thread id t.

• When a non-deterministic rule (the ⊔-rule) is applied in Gi, if its triggering condition is

true in Gi(t), then the expansion will be based on G(t), and any new label or messages

resulting from its application will have a new thread id t′ such that t ≤ t′.

149

• If the triggering condition of a rule is true for two threads t1 and t2 of the same thread

lineage in Gi and t1 ≤ t2, we will trigger the expansion rule on Gi(t1).

A local completion graph sends a t-clash message to others local completion graphs when

it detects a t-clash. Some details are provided below. A local completion graph Gi is said to

have a clash on thread t if it receives a t-clash message, a clash is detected in Gi(t), or every

child thread of t has a clash and there is no more child thread of t can be tried in this local

completion graph. When Gi has a clash on thread t, it will immediately: 1) remove all labels

of thread t′ such that t ≤ t′; 2) remove all edges and nodes with empty label set caused by such

deletion; 3) broadcast the clash to all other local completion graphs that have no clash at t; 4)

try another choice (thread).

A thread represents a sequence of choices in applying non-deterministic rules. Note that

the timestamp approach used in token blocking is a special case of thread, i.e., when we only

allow a single active thread in all local completion graphs. With thread-based labeling, a local

completion graph does not need a token to apply non-deterministic rules. Hence, multiple local

reasoners can preform the reasoning task in asynchronous and parallel fashion.

Because each thread can be handled separately, the soundness, completeness, termination

and complexity of the thread-based algorithm is similar to the the token-based algorithm for

ALCP−C and ALCPC .

Lemma 5.7 Let Σ be an ALCP−C ontology and D be an ALCP−C concept that is understandable

in a witness package Pw in Σ. The thread-based ALCP−C tableau algorithm with subset blocking

is a sound, complete, and terminating decision procedure for satisfiability of D as witnessed by

Pw. The decision procedure is in 2NExpTime w.r.t. the size of D and the size of the largest

package in P ∗w.

Lemma 5.8 Let Σ be an ALCPC ontology and D be an ALCPC concept that is understandable

in a witness package Pw in Σ. The thread-based ALCPC tableau algorithm with extended subset

blocking is a sound, complete, and terminating decision procedure for satisfiability of D as

witnessed by Pw. The decision procedure is in 2NExpTime w.r.t. the size of D and the total

size of all packages in P ∗w.

An alternative representation of the asynchronous tableau algorithm for ALCPC is the ABox

tree representation (Bao et al., 2006e), wherein each label is represented as a fact and all facts

150

in a local completion graph are organized in a tree. Each branch in the tree corresponding to

a thread, i.e., a sequence of non-deterministic choices in tableau expansions. It can be easily

proven that the ABox tree and the completion graph based representations are equivalent.

5.5 Reasoning in SHIQP

5.5.1 Overview

The P-DL SHIQP (i.e., ALCR+HIQP) is extended from ALCPC with the following addi-

tional features:

• The (possibly cyclic) importing of role names (“P”);

• The use of transitive roles, inverse roles and role hierarchies (“R+HI”);

• The use of qualified number restriction (“Q”).

Hence, a reasoning algorithm for SHIQP presents several challenges to handle those fea-

tures:

• In which way role instances in multiple local tableaux correspond? What kind of messages

should be sent to establish such correspondences?

• How can we extend the use of more complex blocking strategies (e.g., double block-

ing (Horrocks and Sattler, 2005)) required by the additional role constructors?

• How can we ensure that correct counting of neighbors of a node required by the number

restrictions in the distributed setting?

• How can we adapt additional tableau expansion rules (e.g., the “shrinking” rule for ≤
number restriction) used for SHIQ to work in the distributed setting?

In this section, we will present an asynchronous, federated reasoning algorithm for SHIQP
based on the asynchronous reasoning algorithm for ALCPC introduced in the last section and

the tableau algorithm for SHIQ (Horrocks et al., 1999).

151

5.5.2 P-DL SHIQP

We briefly remind the syntax and semantics of SHIQP .

Syntax: A SHIQP ontology consists of a finite set of modules called packages and im-

porting relations between packages.

Informally, a package in SHIQP can be seen as a SHIQ TBox and RBox. We define the

signature Sig(Pi) = Ni of a package Pi, as the set of names used in Pi. Sig(Pi) is the disjoint

union of the set of concept names NCi and the set of role names NRi used in package Pi. We

denote by NR+
i (NR+

i ⊆ NRi), the set of of transitive role names in Pi. The set of roles in Pi

is defined as NRi = NRi ∪ {R−|R ∈ NRi} where R− is the inverse of role R. A role R ∈ NRi is

said to be a transitive in Pi, denoted as Transi(R), iff R ∈ NR+
i or R− ∈ NR+

i .

For each package Pi, Sig(Pi) is divided into two disjoint parts: its local signature Loc(Pi)

and its external signature Ext(Pi). ∀t ∈ Loc(Pi), Pi is the home package of t, and t is called an

i-name (more specifically, an i-concept name or an i-role name). We use i-role to refer to an

i-role name or its inverse.

A role inclusion axiom in Pi is an expression of the form R ⊑ S, where R and S are i-roles

in Pi. The role hierarchy for Pi is the set of all role inclusion axioms in Pi. The RBox Ri

consists of the role hierarchy for Pi and the set of role transitivity declarations Transi(R).

The set of SHIQP concepts in Pi is defined inductively by the following grammar:

C := A|¬kC|C ⊓ C|C ⊔C|∀R.C|∃R.C|(≤ nS.C)|(≥ nS.C)

where A ∈ NCi, n is a positive integer, R ∈ NRi, and S ∈ NRi is a locally simple role (defined

below); ¬kC denotes the contextualized negation of concept C w.r.t. Pk. For any k and k-

concept name C, ⊤k = ¬kC ⊔C, and ⊥ = ¬kC ⊓C. ¬kC and ⊤k can appear in Pi (i 6= k) only

if Pk 7→ Pi and Sig(C) ⊆ Sig(Pk)

A general concept inclusion (GCI) axiom in Pi is an expression of the form C ⊑ D, where

C,D are concepts in Pi. The TBox Ti of Pi is the set of all GCIs in Pi.

If a concept or role name t ∈ Loc(Pj)∩Ext(Pi) (i 6= j), we say that Pi imports t and denote

it as Pj
t−→ Pi. We require that transitivity of roles is preserved under importing. Package

importing relation (7→) and importing transitive closure of a package are defined in the usual

way.

152

For an RBox Ri, we define Ri = {R− ⊑ S−|R ⊑ S ∈ Ri} and ⊑∗i, the transitive-reflexive

closure of ⊑ over the Ri ∪Ri.

For a role hierarchy R, if R ⊑ S ∈ R, then R is called the sub-role of S and S is called the

super-role of R w.r.t. R. A role is said to be locally simple in Pi if it is neither transitive nor

has any transitive sub-roles w.r.t. R∗i .
Semantics: For a SHIQP ontology Σ = 〈{Pi}, {Pi 7→ Pj}i6=j〉, a distributed interpretation

is a tuple I = 〈{Ii}, {rij}i6=j〉, where Ii = 〈∆Ii , (.)Ii〉 is a local interpretation of package Pi;

rij ⊆ ∆Ii×∆Ij is the (image) domain relation for the interpretation of importing relation from

Pi to Pj . Each local interpretation Ii satisfies the following conditions (where R is a j-role):

RIi = (RIi)+, for transitive role R

(R−)Ii = {〈x, y〉|〈y, x〉 ∈ RIi}

(C ⊓D)Ii = CIi ∩DIi

(C ⊔D)Ii = CIi ∪DIi

(¬jC)Ii = rji(∆
Ij)\CIi , for Sig(C) ⊆ Sig(Pi) ∩ Sig(Pj)

(∃R.C)Ii = {x ∈ rji(∆Ij)| ∃y, 〈x, y〉 ∈ RIi ∧ y ∈ CIi}

(∀R.C)Ii = {x ∈ rji(∆Ij)| ∀y, 〈x, y〉 ∈ RIi → y ∈ CIi}

(> nR.C)Ii = {x ∈ rji(∆Ij)| #{y|〈x, y〉 ∈ RIi ∧ y ∈ CIi} > n}

(6 nR.C)Ii = {x ∈ rji(∆Ij)| #{y|〈x, y〉 ∈ RIi ∧ y ∈ CIi} 6 n}

A local interpretation Ii satisfies a role inclusion axiom R1 ⊑ R2 iff RIi

1 ⊆ RIi

2 and a GCI

C ⊑ D iff CIi ⊆ DIi . Ii is a model of Pi, denoted as Ii � Pi, if it satisfies all axioms in Pi. I is

a model of Σ, denoted as I � Σ, if the following restrictions on domain relations are satisfied:

1. For all i, j, rij is one-to-one, i.e., it is an injective partial function.

2. Compositional Consistency : For all i, j, k s.t. i 6= j, Pi ∈ P+
k and Pk ∈ P+

j , we have

ρij = rij = rkj ◦ rik, where ρ is the symmetric and transitive closure of the union of all

domain relations.

3. For every i-concept name C that appears in Pj , we have rij(C
Ii) = CIj .

4. For every i-role R that appears in Pj , we have RIj = rij(R
Ii).

153

5. Cardinality Preservation for Roles: For every i-role R that appears in Pj and every

(x, x′) ∈ rij, y ∈ RIi(x) iff rij(y) ∈ RIj(x′).

6. Ii � Pi, for every i.

Concept satisfiability, concept subsumption and ontology consistency are defined in the

same fashion as that of ALCP−C .

5.5.3 A Tableau for SHIQP

A SHIQP formula can be transformed in the Negation Normal Form (NNF) using the

similar rules for ALCP−C and the following additional rules:

¬i(6 nR.C) ⇒ ⊤i ⊓ (> (n+ 1)R.C)

¬i(> (n+ 1)R.C) ⇒ ⊤i ⊓ (6 nR.C)

Let closi(C) be the closure of “subconcepts” of a SHIQP concept C w.r.t. ⊑∗i (similar to

the Definition 6.20 of (Tobies, 2001)), defined as the smallest set X of SHIQP-concepts that

satisfies the following conditions:

• C ∈ X,

• X is closed under sub-concepts5 and ¬̇i,

• if ∀R.D ∈ X, T ⊑∗iR, and Trans(T), then ∀T.D ∈ X.

Let D be a SHIQP-concept in NNF and Pw be a witness package (D is understandable in

Pw). A distributed tableau is a tuple T = 〈{Ti}, {tij}Pi∈P+
j
〉 for D w.r.t. Pw, where each Ti is a

local tableau for Pi ∈ P ∗w, and tij is the tableau relation between Ti and Tj.

Each local tableau is a tuple Ti = (Si,Li, Ei), where Si is a set of individuals, Lw : Sw →
2closw(D)∪closw(CTw) and Li : Si → 2closi(CTi

) (for i 6= w) map individuals to corresponding sets

of concepts, Ei : NRi → 2Si×Si map roles to the corresponding sets of pairs of individuals. There

must be some individual x ∈ Sw such that D ∈ Lw(x). We define ST
i (x,C) := {y ∈ Si|〈x, y〉 ∈

Ei(S) ∧ C ∈ Li(y)}.
5Sub-concepts of a SHIQP concept C is defined by extending the Definition 5.3 with sub(≤ R.C) = {≤

R.C} ∪ sub(C) and sub(≥ R.C) = {≥ R.C} ∪ sub(C).

154

Each tableau relation tij is a subset of Si × Sj.

Furthermore, the following conditions should hold for T . The conditions (A0)− (A11) are

similar to the ones used in the tableau definition for SHIQ (Horrocks et al., 1999):

(A0-A5) are the same as that of the ALCP−C tableau algorithm (section 5.2.3).

(A6) if ∀S.C ∈ Li(x) and 〈x, y〉 ∈ Ei(R) for some R ⊑∗iS with Transi(R), then ∀R.C ∈ Li(y),

(A7) 〈x, y〉 ∈ Ei(R) iff 〈y, x〉 ∈ Ei(R−),

(A8) if 〈x, y〉 ∈ Ei(R) and R ⊑∗iS, then 〈x, y〉 ∈ Ei(S),

(A9) if ≤ nS.C ∈ Li(x), then |ST
i (x,C)| ≤ n,

(A10) if ≥ nS.C ∈ Li(x), then |ST
i (x,C)| ≥ n,

(A11) if ⊲⊳ nS.C ∈ Li(x) and 〈x, y〉 ∈ Ei(S), then {C, ¬̇iC} ∩ Li(x) 6= ∅, where ⊲⊳ is ≤ or

≥.

The second set of requirements is required by the semantics of package extensions:

(B1-B4) are the same as that of the ALCP−C tableau algorithm (section 5.2.3).

(B4) If R is an i-role , Pi
R−→ Pj , i 6= j, then ∀x′, y′ ∈ Sj , ((∃x, y ∈ Si, 〈x, x′〉 ∈ tij, 〈y, y′〉 ∈ tij

and 〈x, y〉 ∈ Ei(R)) iff 〈x′, y′〉 ∈ Ej(R)

(B5) If 〈x, y〉 ∈ Ei(R), R is an i-role that appears in Pj (i 6= j), and there are some x′ ∈ Sj

such that 〈x, x′〉 ∈ tij , then there is some y′ ∈ Sj such that 〈y, y′〉 ∈ tij and 〈x′, y′〉 ∈ Ej(R).

Explanation: Intuitively, B4 ensures rij(R
Ii) = RIj for any role R; B5 ensures cardinality

preservation of roles.

The following lemma establishes the correspondence between concept satisfiability and the

existence of a tableau for that concept:

Lemma 5.9 Let D be a SHIQP concept that is understandable in a SHIQP package Pw.

Then D is satisfiable as witnessed by Pw iff D has a distributed tableau w.r.t. Pw.

Proof sketch (full proof is in the appendix): The proof of this lemma is analogous to that

for SHIQ (Horrocks et al., 1999). We can construct a distributed model I from a tableau by

taking Si as the local interpretation domain of Pi (for all i such that Pi ∈ P ∗w) and adding

the missing role-successors for transitive roles. Domain relations in I correspond to tableau

relations. This construction ensures that all restrictions on domain relations are satisfied; and

155

if C ∈ Li(x) then x ∈ CIi . Conversely, we can also transform a model of D and P ∗w into a

corresponding distributed tableau.

5.5.4 An Asynchronous Tableau Algorithm for SHIQP

We now proceed to describe a sound and complete algorithm to determine the existence of

a tableau for a SHIQP concept w.r.t. a witness package.

5.5.4.1 Distributed Completion Graph

The algorithm works on a distributed completion graph, similar to that of ALCP−C . A

distributed completion graph is G = {Gi}, where {Gi} is a set of local completion graphs.

Gi = 〈Vi, Ei,Li〉, origin of nodes, and image/preimage nodes are defined similar to that of

ALCP−C .

If S ∈ Li(〈x, y〉) and S ⊑∗iR, y is said to be a local R-successor of x and x is said to be a local

R-predecessor of y. Local ancestors and local descendants of a node are defined in the usual

manner. A node y is called a local R-neighbor of a node x in Gi if y is either an R-successor of

x or an R−-successor of y in Ti. Global ancestorship is defined similar to that of ALCPC .

A node is called a local top node if it has no local ancestor. We define SG
i (x,C) := {y ∈

Vi| y is an S-neighbor of x and C ∈ Li(y)}.
Whenever necessary, we use x 6= y to denote that the nodes x and y in a local completion

graph Gi represent distinct individuals.

5.5.4.2 Distributed Tableau Expansion

A distributed SHIQP completion graph is constructed by applying a set of tableau expan-

sion rules and by exchanging messages between local reasoners.

Blocking: The blocking strategy for SHIQP is similar to the double blocking used for

SHIQ (Horrocks et al., 1999) to ensure the termination of the algorithm.

A node u is directly blocked by a v if for every two nodes x, y in any local completion graph

Gi such that origin(x) = origin(u) and origin(y) = origin(v), iff none of x’s global ancestors

is blocked, and either

156

• x has no global predecessor in Gi, y is a global ancestor of x and Li(x) = Li(y), or

• x has a global ancestors x′, y and y′ in Gi such that 1) x is a global successor of x′ and

y is a global successor of y′, 2) Li(x) = Li(y) and Li(x
′) = Li(y

′), and 3) Li(〈x′, x〉) =

Li(〈y′, y〉) 6= ∅.

A node y is indirectly globally blocked iff one of its local ancestor is blocked, or it is a

successor of a node x and Li(〈x, y〉) = ∅. A node is globally blocked if either it is directly

blocked or it is indirectly blocked.

Intra-Tableau Expansions: The first set of “intra-tableau” expansion rules is similar to

the ones used in SHIQ.

• CE-rule: if CTi
6∈ Li(x) and x is not indirectly blocked, then Li(x)+= {CTi

}

• ⊓-rule: if C1 ⊓ C2 ∈ Li(x), x is not indirectly blocked, and {C1, C2} 6⊆ Li(x), then

Li(x)+= {C1, C2}

• ⊔-rule: if C1 ⊔ C2 ∈ Li(x), x is not indirectly blocked, and {C1, C2} ∩ Li(x) = ∅, then

Li(x)+= {C} for some C ∈ {C1, C2}

• ∃-rule: if ∃R.C ∈ Li(x), x is not blocked, and x has no local R-neighbor y in Gi with

C ∈ Li(y), then create a new node y with Li(〈x, y〉) = {R} and Li(y) = {C}

• ∀-rule: if ∀R.C ∈ Li(x), x is not indirectly blocked, and there is an R-neighbor y of x in

Gi with C 6∈ Li(y), then Li(y)+= {C}

• ∀+-rule: if ∀S.C ∈ Li(x), x is not indirectly blocked, an there is some R with Transi(R),

R ⊑∗iS and there is an R-neighbor y of x with ∀R.C 6∈ Li(y), then Li(y)+= {∀R.C}

• choose-rule: if (⊲⊳ nS.C) ∈ Li(x), x is not indirectly blocked, and there is a local S-

neighbor y of x in Gi with {C, ¬̇iC} ∩ Li(y) = ∅, then Li(y)+= {E} for some E ∈
{C, ¬̇iC}, where ⊲⊳ is ≤ or ≥.

• ≥-rule: if (≥ nS.C) ∈ Li(x), x is not indirectly blocked, and there are no n local S-

neighbors y1, ..., yn of x with C ∈ Li(yk) and yk 6= yj for each 0 ≤ k < j ≤ n, then

create n new nodes y1, ..., yn with Li(〈x, yk〉) = {S} and Li(yk) = {C} and yk 6= yj for

0 ≤ k < j ≤ n.

157

• ≤-rule: if (≤ nS.C) ∈ Li(x), x is not indirectly blocked, |SG
i (x,C)| ≥ n and there are

two S-neighbors y, z of x with C ∈ Li(y) ∩ Li(z), y is not a local ancestor of x, and not

y 6= z, then Merge(y, z).

The Merge operation merges a node with another node. Merge(y, z) merges y into z by

letting z inherit all the predecessors of y, and blocking y and its sub-trees (Horrocks et al.,

1999), with the following operations:

• Li(z)+= Li(y)

• Let x be the local predecessor of y. if z is an ancestor of x, then Li(〈z, x〉)+= Inv(Li(〈x, y〉))
else Li(〈x, z〉)+= Li(〈x, y〉)

• Li(〈x, y〉)← ∅

• set u 6= z for all u with u 6= y

Messages Between Local Reasoners: In addition to concept reporting messages, lo-

cal reasoners may also communicate with each other via role reporting messages. A role

reporting message propagates role labels of an edge to the corresponding image or preimage

edge.

• A forward role reporting message ri→j(〈x, y〉, R) where x, y ∈ Vi (i 6= j) and R is a role

in Pi executes the following actions: if there is x′ = xi→j ∈ Vj , then

(a1) if there is no yi→j ∈ Vj , then create y′ in Vj with origin(y′) = origin(y) else let

y′ = yi→j;

(a2) if there is no edge 〈x′, y′〉 ∈ Ej , then create 〈x′, y′〉 with Lj(〈x′, y′〉) = {R};

(a3) else if P 6∈ Lj(〈x′, y′〉) then Lj(〈x′, y′〉)+= {R}.

• A backward role reporting message rj←i(〈x, y〉, R) executes the following actions:

(b1) Transmit rj←i(x,⊤j) and rj←i(y,⊤j). As a result, x′ = xj←i and y′ = yj←i.

(b2) Do similar operations (a2)-(a3) as in ri→j(〈x, y〉, R).

158

Inter-Tableau Expansions: We now proceed to describe “inter-tableau” expansion rules.

These rules essentially connect the local completion graphs (tableaux) together by establishing

the correspondences between nodes (individuals) and edges (role instances) across the local

completion graphs.

• CPush-rule, CReport-rule and r-rule are the same as we introduced before.

• RPush-rule: if y is an R-successor of x in Gi, x is not blocked, R is an i-role, Pi
R−→ Pj ,

there are x′ = xi→j, and yi→j does not exist or it exits but is not an R-successor of x′,

then transmit ri→j(〈x, y〉, R).

• RReport-rule: if y is an R-successor of x in Gi, x is not blocked, R is a j-role (i 6= j),

and there is no x′ = xj←i and y′ = yj←i in Gj such that y′ is an R-successor of x′, then

transmit rj←i(〈x, y〉, R).

• 6=-rule: if x, y ∈ Vi and x 6= y and there is some j (i 6= j) such that there are x′, y′ in Vj

such that origin(x) = origin(x′), origin(y) = origin(y′) and x′ 6= y′ is not in Gj , then

add x′ 6= y′ to Gj

• merge-rule: if Merge(x, y) is preformed in Pi, then for all j 6= i if there are x, y ∈ Vj

such that origin(x) = origin(x′), origin(y) = origin(y′), perform Merge(x′, y′).

We require that 6=-rule has higher priority than the merge-rule.

Maintenance of the origins of nodes ensure that the tableau relations mirror the one-to-one

domain relations (tableau property B1). RPush-rule and RReport-rule ensure tableau property

B5; RPush-rule also ensures tableau property B6 (cardinality closure of roles); 6=-rule ensures

that nodes that represent distinct individuals are not merged.

The merge-rule propagates a Merge operation to the image and preimage nodes of the

merged nodes. Note that it is guaranteed that if a local completion graph is a forest before the

merge operation it is still a forest after the operation. This is because for every x, y ∈ Vi, y is

a successor of x iff yi→j is a successor of xi→j (if they exist).

5.5.4.3 Backtracking and Parallel Reasoning

We say that a distributed completion graph contains a clash if

159

1. for some Gi, some concept name C and a node x of Gi, {C,¬iC} ⊆ Li(x), or

2. for some Gi, some role S and node x of Gi, ≤ nS.C ∈ Li(x) and there exist n + 1 S-

neighbors y0, ..., yn of x in Gi with C ∈ Li(yk) for each 0 ≤ k ≤ n and yk 6= yj for each

0 ≤ k < j ≤ n, or

A distributed completion graph is said to be clash-free if it contains no clash, and it is said

to be complete if no SHIQP expansion rules can be applied to it.

Whenever a clash is detected, the algorithm should backtrack to the previous choice and try

one of the other possible choices. Similar to the asynchronous algorithm for ALCPC introduced

in the last section, we adopt a thread-based labeling strategy to keep the local reasoners in sync

with regard to the logical consequences of different non-deterministic choices. The differences

from the thread-based labeling strategy of ALCPC are:

• Non-deterministic rules also include choose- and ≤- rules, in addition to the ⊔-rule;

• We assign a thread id also for each inequality between nodes, and each Merge operation,

in addition to each node or edge label, each graph relation, and each reporting message.

To determine the satisfiability of a SHIQP concept D as witnessed by Pw, the tableau

algorithm starts with a local completion graph Gw, x ∈ Vw and Lw(x) = {D}. Then the

distributed tableaux is expanded according to the expansion rules until no rule can be applied

or a clash is found. If this process results in a complete, clash-free distributed completion graph,

then D is satisfiable as witnessed by Pw, otherwise D is unsatisfiable as witnessed by Pw.

The following theorems give the correctness and complexity of the algorithm:

Theorem 5.3 Let Σ be a SHIQP ontology and D be a SHIQP concept that is understandable

in a witness package Pw in Σ. The SHIQP tableau algorithm with double blocking is a sound,

complete, and terminating decision procedure for satisfiability of D as witnessed by Pw. The

decision procedure is in 2NExpTime w.r.t. the size of D and the toal size of all packages in

P ∗w.

Thus, the complexity of the distributed reasoning algorithm for SHIQP is no worse than

that of the complexity of the corresponding DL SHIQ (Tobies, 2001). That result suggests

limiting the size of ontology modules to be moderate will be helpful to ensure the scalability of

160

the reasoning process. Note that this analysis ignores the efficiency gains resulting from differ-

ent local reasoners being able to concurrently process different threads during the distributed

tableau expansion process.

5.5.5 Example

Example 5.7 :(Figure 5.8): There are two packages:

P1 : R1 = {1 : R2 ⊑ 1 : R1},T1 = {⊤1 ⊑ (≤ 2(1 : R1).⊤1) ⊓ (∃1 : R2.⊤1)}.
P2 : R2 = ∅,T2 = {2 : C ⊑ ⊤2}.
and Trans1(1 : R2),Trans2(1 : R2).

The reasoning task is to check satisfiability of ∀R2.C⊓ ≥ 2R1.(∃R2.¬2C) as witnessed by

P2 (answer is NO). x′1 is initially created in G2; after applying the ≥-rule, two R1 successor

(x′2, x
′
3) of x′1 are created, and RReport-rule is triggered, thus nodes x1, x2, x3 and edges (x1, x2)

and (x1, x3) are created in G1. Then, a R2-successor x4 of x1 is generated in G1 by ∃-rule; x′4 is

generated by CPush-rule in G2; then x4 is merged into x3 by ≤-rule, and x′4 is merged into x′3

by merge-rule. Hence, R2 ∈ L2(〈x′1, x′3〉), therefore ∀R2.C is added to L2(x
′
3) according to ∀+

rule, which will finally result in a clash in x′5 (created by ∃-rule). In this example, role reporting

messages are critical to discover R2 ∈ L2(〈x′1, x′3〉) so as to ensure the correct application of the

∀+-rule.

x1

x2 x3 x4

R1

R1 R2

G1

L1(x1) = L1(x2) = L1(x3) =

{≤ 2R1.⊤1,∃R2.⊤1}

x′1 L2(x′

1) = {∀R2.C, ≥ 2R1.(∃R2.¬2C)}

x′2

L2(x′

2) = {∃R2.¬2C}

x′3
L2(x′

3) = {C, ∃R2.¬2C, ∀R2.C}

x′4

R1

R1, R2

x′5 L2(x′

5) = {C,¬2C}

R2, R3

G2

Figure 5.8 Example of SHIQP Tableau Expansion

5.6 Related Work

Partition-based Logics and Somewhere: Several authors have recently investigated

distributed reasoning algorithms for modular ontologies. Partition-based Logics (Amir and

161

McIlraith, 2000) provides an approach to automatically decompose propositional and first-

order logic (FOL) into partitions and an algorithm for reasoning with such partitions using

message passing. The Somewhere peer-to-peer data management system (Adjiman et al.,

2006) provides a distributed query answering algorithm in a “propositional” fragment of De-

scription Logics. On the hand, our focus is on sound and complete distributed reasoning with

description logics.

DDL: (Serafini and Tamilin, 2004; Serafini et al., 2005a) describe a tableau-based reasoning

algorithm for Distributed Description Logics (DDL) with acyclic bridge rules between concepts.

The algorithm divides a reasoning problem w.r.t. a DDL TBox into several local reasoning

problems answered by local modules. The basic idea behind this algorithm is to infer concept

subsumption in one module from subsumptions in another module and inter-module bridge

rules. For example, consider ontology modules i and j in which the concepts A,B and G,H

respectively are defined, given the bridge rules i : A
⊒−→ j : G, i : B

⊑−→ j : H and module i

entails A ⊑ B, then it is possible for module j to infer that G ⊑ H. Thus, an ontology module

may submit a subsumption query (or unsatisfiability query) to another module to complete a

local reasoning task.

The algorithm is implemented in the DRAGO system (Serafini et al., 2005a; Tamilin, 2007),

which allows multiple reasoners communicate with each other (via TCP connections) to preform

a reasoning task.

This approach is extended by (Serafini and Tamilin, 2005a) on distributed instance retrieval

in DDL, by (Serafini et al., 2005a) on reasoning with cyclic bridge rules (with a fix-point

semantics), and by (Ghidini and Serafini, 2006a) on reasoning with bridge rules between roles.

The DDL reasoning algorithm in fact builds a virtual tree shaped global completion graph

(for the integrated ontology from all modules) by constructing multiple trees in local reasoners

using local knowledge. That is in accord with the basic intuition of P-DL reasoning algorithms.

However, the two approaches are different on how to decompose the virtual global completion

graph. In the DDL approach (Figure 5.9), each local reasoner builds a “branch” of the global

tree. On the other hand, in the P-DL approach (Figure 5.10), since the concept languages of

modules are not disjoint, a local reasoner build a “projection” of the global tree, and some

nodes may be “shared” by multiple local trees.

162

x
1

x
2
 x
3

x
4

x
1

x
2

x
3

x
4

x
3

x
5

x
5

Figure 5.9 Completion Graph in the DDL Tableau Algorithm

x
1

{A
1
,B
1
}

{A
2
}

{A
3
,B
3
}

{B
2
}

x
2
 x
3

x
4

x
1

{A
1
,B
1
}

{A
2
}

{A
3
,B
3
}

{B
2
}

x
2
 x
3

x
4

x
1

{A
1
}

{A
2
}

{A
3
}

x
2

x
4

x
1

{B
1
}

{B
3
}

{B
2
}

x
3

x
4

The (conceptual)

global tableau
 Local Reasoner

for package A

Local Reasoner

for package B

Figure 5.10 Completion Graph in P-DL Tableau Algorithms

The DDL reasoning algorithm is limited in several ways. Due to limitations of the DDL

semantics as we discussed in the last chapter, transitive reuse of bridge rules is not supported

in general. The algorithm also does not support inference of bridge rules. For instance, if

L1 = {1 : A ⊑ 1 : B}, L2 = ∅,B12 = {1 : B
⊑−→ 2 : C}, the algorithm cannot infer that

1 : A
⊑−→ 2 : C6. On the contrast, P-DL can solve such problems since 1) P-DL seman-

tics ensures transitive reusability of ontology modules; 2) semantic importing in P-DL allows

“inter-module” semantics relations (like DDL bridge rules) and “intra-module” semantics re-

lations (like local concept subsumptions) to be treated in the same fashion, hence the P-DL

reasoning algorithms can handle both the two scenarios.

E-Connections: In (Grau et al., 2004b; Grau, 2005; Grau et al., 2006c) a tableau-based

6Reasoning about properties of bridge rules has been addressed in (Stuckenschmidt et al., 2006). However,
(Stuckenschmidt et al., 2006) does not provide a decision procedure for the inference of bridge rules.

163

reasoning procedure for E-Connections is presented. It generates a set of local completion graphs

(typically trees) linked by E-connection instances (cross-module role instances), as illustrated in

Figure 5.11. Each local completion graph is associated with a color and the reasoning process is

performed on the combined completion forest resulting by combining all those local completion

graphs.

x
1

x
2
 x
3

x
4

x
1

x
2

x
4

x
5

x
3

x
6
x
5
 x
6

E

E

{A
1
}

{A
1
}
{A
2
}
 {A
3
}

{
B
1
}

{
B
2
}
 {
B
3
}

{A
2
}
 {A
3
}

{
B
1
}

{
B
2
}
 {
B
3
}

Figure 5.11 Completion Graph in E-Connections Tableau Algorithms

The E-connections algorithm adopts the approach of “coloring”, but not of physically sepa-

rating, local completion graphs. Hence, it is assumed in the algorithm that a local completion

graph can freely access information of other local completion graphs, e.g., the node successor

relationship and neighborhood, node and edge labels and blocking conditions. Therefore, no

message passing or any other forms of communication between local completion graphs are

required, nor are specially designed distributed backtracking strategies provided. Thus, the im-

plementation of the algorithm in the Pellet reasoner (Sirin et al., 2007) utilizes a single reasoner

to preform reasoning tasks for an E-connected ontology.

However, such an approach implicitly assumes the availability of global knowledge in all on-

tology modules for the reasoning in a modular ontology to be possible. This counteracts many

of the benefits of having a modular ontology; in particular, scalability and the preservation of

module privacy. For example, as is implied by the CE-rule of its algorithm, the Pellet imple-

mentation requires that all ontology modules be loaded into the same memory space. Thus,

this implementation implicitly requires the integration of all ontology modules. By contrast,

P-DL, and also DDL, reasoning algorithms are genuinely distributed reasoning algorithms, not

requiring, either implicitly or explicitly, the integration of ontology modules.

164

CHAPTER 6. Reasoning with Hidden Knowledge

In the previous chapters we explored selective knowledge reuse in modular ontologies. The

focus of this chapter is on another aspect of selective knowledge reuse, i.e., reuse ontologies

with partially hidden knowledge.

Part of this chapter was previously published in (Bao and Honavar, 2006c; Bao et al.,

2007d).

6.1 Overview

The imperative for sharing information on the semantic web has to be balanced against

copyright, privacy, security, or commercial concerns which require the participants to protect

sensitive information e.g., data, knowledge, from other parties. Hence, there is a need for

mechanisms that enable the participants to selectively share information with other parties

without risking disclosure of sensitive information. Our focus in this chapter is on selective

sharing of ontologies on the web: in particular, answering queries against an ontology, without

disclosing hidden knowledge, i.e., knowledge that needs to be protected from disclosure.

Current proposals for policy languages (Tonti et al., 2003) for information hiding on the

semantic web rely on complete denial of access to the hidden parts of an ontology when an-

swering queries against the ontology. We argue that such approaches are overly restrictive in

that they prohibit the use of hidden knowledge in answering queries even in scenarios where it

is possible to do so without disclosing the hidden knowledge.

Against this background, this chapter examines the problem of answering queries against

ontologies based on reasoning with hidden knowledge without risking its unintended disclosure.

Specifically, we explore a framework for privacy-preserving reasoning on the semantic web.

Unlike access control policies used in databases (Jajodia and Wijesekera, 2001) or their web

counterparts (e.g., XACML (Godik and Moses, 2002)) that protect hidden knowledge on a

165

syntactic level, our approach protects hidden knowledge on the semantic level. Thus, queries

against an ontology can be answered based on inference using hidden knowledge whenever it is

possible to do so without disclosing the hidden knowledge.

The main contributions of the chapter are:

• A precise formulation of the problem of privacy-preserving reasoning on the semantic web.

• A general framework for privacy-preserving reasoning for semantic web ontologies that

exploits the indistinguishability of hidden knowledge from incomplete knowledge under

the Open World Assumption (OWA).

• A set of privacy-preserving reasoning strategies for description logic (DL) ontologies using

the notion of conservative extension (Grau et al., 2006a).

• Privacy-preserving reasoning strategies for the important special case of hierarchical on-

tologies via a reduction of privacy-preserving reasoning to graph reachability analysis.

• Preliminary investigation for privacy-preserving reasoning with P-DL.

6.2 Motivating Examples

We start with some examples of applications to motivate the need for privacy-preserving

reasoning on the semantic web.

Example 6.1 (Online Calendar): Consider Bob who uses an online calendar to manage his

schedule and to coordinate his daily activities with others. Suppose the fact that Bob has a date

with his girlfriend at noon is stored in Bob’s calendar, along with additional knowledge, e.g.,

“date is a kind of activity” and “If person x has an activity at time t, person x is busy at time t”

and so on. Suppose Bob does not wish to share with his colleagues that he has a date with his

girlfriend at noon. However, it might be necessary for his colleagues to know that Bob is busy

at noon. In such a scenario, a query to Bob’s calendar as to whether Bob is busy at noon should

be answered as “Yes” (which is inferred using both the sensitive knowledge and non-sensitive

knowledge), whereas a query as to whether Bob has a date with his girlfriend at noon should

be answered as “Unknown”. However, if the use of hidden knowledge was forbidden, it would

be impossible for the calender to inform Bob’s colleagues that “Bob is busy at noon”, although

it is possible to do so, without revealing the details of Bob’s noon-time activity.

166

Example 6.2 (Commercial Information Service): Consider a company, say U-Travel that

provides travel information to online customers. Suppose U-Travel offers a query service that

provides limited information to the public but more detailed information to subscribers who

paid a fee. Suppose the U-Travel ’s ontology contains the following knowledge: (a) Sun Lodge

is a 2-star hotel (b) a 2-star hotel is a hotel. Suppose U-Travel is be willing to reveal that “Sun

Lodge is a hotel” to the public, yet it wants hide the fact that “Sun Lodge is a 2-star hotel” from

all but its subscribers. If U-Travel query service could not use hidden information i.e., that Sun

Lodge is a 2-star hotel, it would not be able to inform a non-paying subscriber that Sun Lodge

is a hotel, although it is possible to do so, without compromising the hidden knowledge.

Example 6.3 (Healthcare): (based on a similar example given in (Farkas et al., 2006)): Jane

needs to take a certain preventive medicine which is intended for use by women who are believed

to have a high risk of developing breast cancer. Jane does not want her pharmacy to supply the

details of the prescription to her health insurance company, otherwise the insurance company

may infer that she has a high risk of developing breast cancer and increase her health insurance

premium. In such a setting, in order for Jane to be reimbursed by her insurance company, the

pharmacy needs to be able to certify to the insurance company that Jane has indeed incurred

a medical expense (without the full details) that is covered by her insurance policy.

One can easily imagine similar needs for selective sharing of inferences based on hidden

knowledge in many other scenarios including, for example, business dealings between companies,

interactions between different governmental agencies (e.g., intelligence, law enforcement, public

policy), cooperation among independent nations on matters of global concern (e.g., counter-

terrorism).

6.3 Privacy-Preserving Reasoning: General Framework

6.3.1 Partially Hidden Knowledge

We proceed to introduce the basic notion of hidden knowledge. A knowledge base (KB) K

over a language L consists of a set of axioms K = {α1, ..., αn}. We assume that K is consistent

and every axiom in it is not a tautology. We use Sig(αi) to denote the set of names occurring

in an axiom αi and Sig(K) to denote the signature of a KB K, Sig(K) = ∪n
i=1Sig(αi).

167

For a specific agent, the set of axioms in a KB K is divided into two mutually exclusive

parts: a visible part Kv and a hidden part Kh, with the corresponding signatures Sig(Kv) and

Sig(Kh). We call Sig(Kv) the visible signature and Sig(Kh) − Sig(Kv) the hidden signature.

In what follows, a wide hat (e.g., ̂HiddenName) is used to indicate that a name is hidden. We

denote a KB K with a visible part Kv and a hidden part Kh by (Kv,Kh).

We write K ⊢ γ to mean that γ is classically provable from K. If every axiom in a KB K2 is

classically provable from another KB K1, we say that K1 entails K2 and denote it as K1 ⊢ K2.

In some scenarios, it is useful to tailor the hidden and the visible parts of a KB K with

respect to different agents that might queryK. We call the division of the visible and the hidden

KB of K w.r.t. an agent a the scope policy of K for a. In principle, a KB may have different

scope policies for different agents. In what follows, we will focus on “safe” query answering for

one agent against a partially hidden KB.

An abstract scope policy can be specified by associating scope limitation modifiers (SLM)

with names and axioms in a knowledge base, and in particular, for packages in a P-DL ontol-

ogy (Bao et al., 2006f). An SLM controls the visibility of the corresponding name or axiom to

agents1.

Definition 6.1 (SLM) The scope limitation modifier of a name or an axiom t in an ontology

K is a boolean function f(x, t), where x is an agent which can access t iff f(x, t) = true.

For example, we can define SLMs as follows:

• ∀x, public(x, t) := true, means t is accessible everywhere.

• ∀x, private(x, t) := (t ∈ x), means t is visible only locally (by the agent of its home

package).

We can also define other types of SLMs as needed. For example, ∀x, friend(x, t) := (x = P1)

will grant the access of t to a particular agent P1. More complex SLMs may be realized using

some concrete policy languages, e.g., KAoS (Uszok et al., 2003) or Rei (Kagal et al., 2003).

1WLOG, we assume that a KB or a module is always associated with an agent.

168

Example 6.4 : Consider an ontology K = (Kv,Kh) of the U-Travel company. We use the

partial-order relation ≤ to indicate concept inclusion. The hidden part Kh contains

SunLodge ≤ ̂2StarHotel

̂2StarHotel ≤ Inn

where the hidden signature is { ̂2StarHotel}. The visible part Kv contains

SunLodge ≤ AAADiscountable

Inn ≤ Hotel

Hence, the visible signature is Sig(Kv) = {SunLodge, Inn, AAADiscountable, Hotel}.

6.3.2 Privacy-Preserving Inference

Our basic approach to designing a privacy-preserving reasoner for a partially-hidden KB is to

ensure that the answers to queries do not reveal hidden knowledge unintendedly. The central

idea is to design a reasoner that exploits the Open World Assumption (OWA) of ontology

languages, to make it impossible for the querying agent to distinguish between knowledge that

is unknown to the reasoner (because of the incompleteness the KB) and the knowledge that

is being protected by the reasoner. A query that cannot be safely answered without running

the risk of disclosing hidden knowledge will be answered as if the reasoner lacks the complete

knowledge to answer the query.

Unlike the Closed World Assumption (CWA) which is implicit in databases, OWA assumes

that an ontology may be incomplete with regard to the knowledge of the world being modeled.

Therefore, and failure to prove an assertion does not imply the validity of the negation of

the assertion. For instance, in Example 6.1, when queried whether “Bob has a date with his

girlfriend at noon”, if the answer is “Unknown”, the querying agent cannot conclude that “Bob

does not have such a date” (the negation of the assertion). Consequently, the querying agent

cannot determine if the relevant information (the details of Bob’s noon-time activity) is not in

the KB or if the information is in the KB but is protected.

Before we formalize the notion of privacy-preserving reasoning using hidden knowledge to

answer queries against an ontology, we state some natural requirements that need to be met by

a reasoner operating in the setting outlined above.

169

1. Honesty. The reasoner should not “lie”. That is, answers produced by the reasoner

should always be consistent with its KB.

2. History Independence. The reasoner should always respond to a given query q against

a fixed KB K with the same answer regardless of the history of queries that have been

posed against K.

3. History Safety. The reasoner must ensure that the answers it produces are safe in the

sense that it is not possible for a querying agent to infer hidden knowledge based on the

answers to past queries from the same reasoner and the visible part of KB.

The first requirement is desirable if the goal of the reasoner is to provide as much information

as it can, without providing wrong information (i.e., information that is inconsistent with its

KB). The last two requirements are natural because it is unrealistic to assume that any reasoner

that is used on the semantic web can “memorize” all previous queries that it has answered or

track the identity of every agent that has queried it.

We now proceed to define a reasoner and a privacy-preserving reasoner:

Definition 6.2 (Reasoner) Let K be a KB over a language L, Q the query space (the set of

possible assertions to be tested against K) over L, and A the answer space. A reasoner R for

K is an algorithm that defines a function R : K × Q → A. For a specific KB K we define

RK : Q→ A by setting RK(q) = R(K, q).

An immediate consequence of this definition is that a reasoner R is “history independent”

in the sense suggested by requirement 2 above.

R might employ an inference engine which can be viewed as a classical reasoner with answer

space A = {Y,N} such that ∀q ∈ Q, RK(q) = Y iff K ⊢ q (thus, RK(q) = N iff K 6⊢ q). While

an inference engine always responds in a truthful manner, a reasoner, in order to protect some

parts of K, may have an incentive to pick an answering strategy which does not respond with

the “whole truth”. For example, a reasoner may answer “U” (Unknown) even if the correct

answer (from the inference engine) is “Y” or “N”. The answer to a query q may be “U” either

because the reasoner has incomplete knowledge (i.e., K 6⊢ q and K 6⊢ ¬q) under OWA, or

because the “truthful” answer to q might risk disclosure of hidden knowledge. Under OWA,

170

because the querying agent can not distinguish between these two cases, the reasoner is able to

answer queries based on inference using hidden knowledge without revealing it.

Definition 6.3 (Privacy-Preserving Reasoner) Let K = (Kv,Kh) be a KB over a lan-

guage L, Q the query space in L, and A = {U,Y,N} the answer space, and R a reasoner for

K. We define: QY = R−1
K (Y), QN = R−1

K (N), QU = R−1
K (U). Clearly, Q = QU ∪QY ∪QN .

(a) R is strongly privacy-preserving w.r.t. K if it satisfies the following two axioms:

• Honesty Axiom: (q ∈ QY ⇒ K ⊢ q) and (q ∈ QN ⇒ K ⊢ ¬q).

• Strong Safety Axiom: ∀α that is not a tautology and Sig(α) ⊆ Sig(Kh), Kh ⊢ α ⇒
(Kv ∪QY 6⊢ α).

(b) R is weakly privacy-preserving w.r.t. K if it satisfies the Honesty Axiom and the

following axiom:

• Weak Safety Axiom: ∀α, α ∈ Kh ⇒ (Kv ∪QY 6⊢ α)

The honesty axiom requires that reasoners provide answers that do not contradict the given

KB (i.e., K ∪ QY is consistent). The strong safety axiom requires that the answers provided

by reasoners do not disclose any consequence that can be drawn from the hidden knowledge

alone. The weak safety axiom requires the reasoner to protect only axioms that are explicitly

mentioned in the hidden part of the KB (but not necessarily their consequences). It is easy to

see if a reasoner is strongly privacy-preserving then it is also weakly privacy-preserving.

The distinction between “strong safety” and “weak safety” is useful since different applica-

tions need different degrees of privacy preservation. In the U-Travel example, if the ontology

provider is willing to disclose consequences of the hidden knowledge, e.g., “SunLodge ≤ Inn”,

it can utilize a weakly privacy-preserving reasoner. On the other hand, in the online calendar

example, suppose we have an additional piece of hidden knowledge “Alice is Bob’s girl friend”.

Now, if Bob wants to protect any conclusion that may follow from the hidden part of his KB,

e.g., that “Bob has a date with Alice at noon”, Bob will need a strongly privacy-preserving

reasoner.

It can be shown that in a general setting, strong safety is a very restrictive requirement.

For example, if there exist axioms β ∈ Kh and γ ∈ Kv (with Sig(γ) ⊆ Sig(Kh)) such that β ∨ γ

171

is not a tautology, then there is no strongly privacy-preserving reasoner for K = (Kv ,Kh). On

the other hand, weakly privacy-preserving reasoners exist for any KB that satisfies α ∈ Kh ⇒
Kv 6⊢ α. Intuitively, this means that no hidden axiom is provable from the visible KB. However,

as we shall see later, it is possible to design strongly privacy-preserving reasoners in special

cases, for instance, hierarchical ontologies (e.g., the U-Travel example).

6.3.3 General Strategies

In this section, we discuss general strategies to designing privacy-preserving reasoners.

Definition 6.4 (Strategy) Let L be a language, KL the class of all knowledge bases over L,

and RL the class of all reasoners over KL. A strategy for L is a function R : KL → RL such

that for every K ∈ KL, R = R(K) is a reasoner for K. The strong/weak safety scope of a

strategy R, Scope(R) = {K ∈ KL| R(K) is a strongly/weakly privacy-preserving reasoner for

K}.

A strategy needs to compromise between two possibly conflicting goals:

1. Generality : An ideal strategy has the largest possible safety scope, i.e., is able to yield

safe reasoners for the largest possible subclass of KL.

2. Informativeness: An ideal strategy is one that yields reasoners that provide as much

information as possible in their answers to queries against their KBs, that is, reasoners

that result in the smallest possible QU .

The following two strategies correspond to the “extreme” choices with respect to these two

goals:

• Dummy Strategy, i.e., one that always generates a dummy reasoner, who answers “U”

to every possible query against its KB. Obviously, a dummy reasoner is weakly privacy-

preserving for any KB K = (Kv ,Kh) such that ∀α, α ∈ Kh ⇒ Kv 6⊢ α. Note that

this condition is the weakest condition for a KB to have privacy-preserving reasoners.

A dummy strategy is most general, but least informative. It has the largest scope, but

answers given by reasoners that are based on it provide no information at all.

172

• Naive Strategy, i.e., one that generates a naive reasoner that reveals everything that

follows from its knowledge base, including the hidden part of the KB. A naive reasoner

is most informative, but is least general: It is privacy-preserving only for those KB that

have no hidden knowledge at all (i.e., Kh = ∅).

In practice, we may need to make tradeoff between the conflicting requirements of generality

and informativeness of strategies.

We now proceed to present a general approach for generating weakly privacy-preserving

reasoners for semantic web ontologies based on the notion of conservative extension (Grau

et al., 2006a). The basic idea behind this approach is as follows: Answers to previous queries

may be used by the querying agent to extend the visible part of the KB. The safety of the

strategy can be guaranteed if we can ensure that no conclusions compromising the hidden

knowledge can be inferred from such an extension.

Definition 6.5 (Conservative Extension, (Grau et al., 2006a)) Let K and K ′ be two

knowledge bases. K ∪ K ′ is a conservative extension of K, written as K ∪ K ′ ⇄ K, if for

every formula α such that Sig(α) ⊆ Sig(K), K ∪K ′ ⊢ α iff K ⊢ α.

Let Kvc ⊆ Kv be the minimal set of visible axioms that contain names in Sig(Kh), i.e.,

Sig(Kv) ∩ Sig(Kh) ⊆ Sig(Kvc). Intuitively, because the querying agent does not know names

that are not in Sig(Kv), the names in Kvc correspond to “critical signature”, i.e., the subset

of Sig(Kh) that is known to the querying agent. If we can ensure that answers to queries

together with Kv −Kvc do not reveal any knowledge about Sig(Kh) beyond those in Kvc, we

can effectively protect every axiom in Kh. Therefore, if we can ensure that any extension of Kv

with the results of previous queries is a conservative extension of the critical visible axioms Kvc,

we can protect hidden knowledge. The following lemma captures this intuition more formally:

Lemma 6.1 Let K = {Kv,Kh} be a KB such that ∀α, α ∈ Kh ⇒ Kv 6⊢ α, R a reasoner

for K. R is a weakly privacy-preserving reasoner for K if it satisfies the honesty axiom and

Kv ∪QY ⇄ Kvc.

173

Proof: We only need to show that the weak safety axiom holds under the stated conditions:

α ∈ Kh ⇒ Kv 6⊢ α

⇒ Kvc 6⊢ α

⇒ Kv ∪QY 6⊢ α �

6.4 Privacy-Preserving Reasoning with SHIQ Ontologies

In this section we present a “safe” reasoning strategy based on conservative extensions for

the description logic SHIQ, which covers a significant part of OWL. (Grau et al., 2007) have

shown that in the special case of semantically local ontologies, it is possible to check whether

an extension of a SHIQ ontology is a conservative extension in polynomial time.

Informally, an axiom is semantically local w.r.t. a signature S if it imposes no restrictions

on the interpretation of names in S. A finite set of axioms is local w.r.t. S if every axiom in

it is local w.r.t. S. Practical ways to ensure semantic locality of SHIQ ontologies have been

elucidated by (Grau et al., 2007):

Definition 6.6 (Locality) (Definition 3 of (Grau et al., 2007)) Let S be a SHIQ-signature

and let E ⊆ S. Positively local concepts C+
E and negatively local concepts C−E are defined as

follows:

C+
E := A|(¬C−)|(C ⊓C+)|(∃R+.C)|(∃R.C+)|(> n R+.C)|(> n R.C+)

C−E := (¬C+)|(C−1 ⊓ C−2)

where A is a concept name from S\E, R ∈ Rol(S), C ∈ Con(S), C+ ∈ C+
E , C−(i) ∈ C

−
E , i = 1, 2,

and R+ 6∈ Rol(E). A role inclusion axiom R+ ⊑ R or transitivity axiom Trans(R+) is local

w.r.t. E. A GCI is local w.r.t. E if it is either of the form C+ ⊑ C or C ⊑ C−, where

C+ ∈ C+
E , C− ∈ C−E and C ∈ Con(S). A SHIQ ontology K is local w.r.t. E if every axiom in

it is local w.r.t. E.

(Grau et al., 2007) established relationship between the notions of conservative extension

and locality of ontologies which we summarize (adapted for simpler presentation in our setting)

in the following lemma:

Lemma 6.2 (Definition 3 and Lemma 5 of (Grau et al., 2007)) Suppose K1 and K2 are two

174

SHIQ TBoxes such that K1 is local w.r.t. Sig(K2) and K2 is local w.r.t. ∅. Then K1 ∪K2 is

a conservative extension of K2.

We can now define RCE (read CE -strategy), a reasoning strategy for SHIQ ontologies,

based on the notion of conservative extension. Given a SHIQ TBox K = {Kv ,Kh} and sub-

sumption query q, RCE specifies a reasoner for K that answers q as follows:

IF q is local w.r.t. Sig(Kvc) and Sig(q) ⊆ Sig(Kv)

IF K ⊢ q, return Y

ELSE IF K ⊢ ¬q, return N

ELSE return U /*incomplete knowledge)*/

ELSE return U /*hidden knowledge*/

Note that if q := C ⊑ D, K ⊢ q means ∀I, I � K ⇒ CI\DI = ∅, and K ⊢ ¬q means ∀I,
I � K ⇒ CI\DI 6= ∅.

Lemma 6.3 The weak safety scope of RCE includes all SHIQ TBoxes K = {Kv ,Kh} that

satisfy the following properties:

• Kv −Kvc is local w.r.t. Sig(Kvc);

• Kvc is local w.r.t. ∅;

• ∀α ∈ Kh, Kv 6⊢ α

Proof: Let R = RCE(K), where K satisfies the given properties. Clearly, R satisfies the

honesty axiom. By the definition of the algorithm, QY is local w.r.t. Sig(Kvc). Since Kv −Kvc

is local w.r.t. Sig(Kvc), QY ∪ (Kv −Kvc) is local w.r.t. Sig(Kvc). Since Kvc is local w.r.t. ∅,
by Lemma 6.2, (Kv − Kvc) ∪ QY ∪ Kvc = Kv ∪ QY ⇄ Kvc. By Lemma 6.1, R is a weakly

privacy-preserving reasoner for K. �

It is worth noting that we do not require the hidden knowledge Kh also to be local, as long

as α ∈ Kh ⇒ Kv 6⊢ α. This affords considerable flexibility for ontology engineers in designing

the KB.

An important advantage of the CE -strategy for SHIQ ontologies is that a weakly privacy-

preserving reasoner can be built as a meta reasoner which calls inference service from a standard

175

DL reasoner for SHIQ. Thus, implementing a weakly privacy-preserving reasoners for SHIQ
ontologies is quite straightforward.

6.5 Privacy-Preserving Reasoning with Hierarchical Ontologies

Unlike in the case of general DL ontologies, it is possible to define a strongly safe strategy,

and hence strongly safe privacy-preserving reasoners in the case of hierarchical ontologies e.g.,

tree or DAG-structured ontologies.

Formally, a hierarchical ontology K over a finite set of names S can be represented as a set

of visible or hidden partial order axioms, denoted by K = (S,≤) (as illustrated in Example 6.4).

Reasoning with K can be reduced to the graph reachability problem by defining a corresponding

directed graph G = (V,E), where V is the vertex set corresponding to elements of S, and E

is the edge set corresponding to ≤ axioms. Let G be the set of all directed graphs. In the

following, we will identify K with the corresponding G.

A vertex (or edge) is said to be a visible vertex (or edge) if it is mapped from a visible term

(or axiom); otherwise it is said to be hidden. A hidden edge only connects hidden vertices. Let

Eh be the set of all hidden edges, Ev be the set of all visible edges, and E = Eh ∪Ev. For any

set edges F ⊆ E, let F+ denote the transitive closure of F , and F≤m = ∪m
k=1F

k.

For any two visible vertices x and y, y ≤ x if x is reachable from y in the graph G, i.e.,

there exists a path from y to x (which in general, may contain both visible and hidden edges).

Note that because of the open world assumption, it is not necessarily the case that y ≤ x is

false simply because there is no path from y to x in G.

An affirmative answer to a query about the reachability from y to x in G is equivalent to

augmenting G by adding a new visible edge 〈y, x〉. Hence, in order to realize privacy-preserving

reasoning, we should ensure that the initial graph G (derived from K) can be augmented with

previous answers without revealing the existence of hidden edges.

First, it is easy to see that strong safety and weak safety properties can be reduced to each

other in the case of hierarchical ontologies:

Lemma 6.4 R is a strongly privacy-preserving reasoner for G = (V,Ev ∪Eh) iff R is a weakly

privacy-preserving reasoner for G = (V,Ev ∪E+
h).

176

This lemma follows from the fact that E+
h contains all possible inference results that can be

obtained by considering only the hidden edges Eh. Henceforth, we will focus on weak safety.

We now proceed to define several classes of graphs that have safe strategies with different

degree of informativeness:

Sm,n = {G ∈ G|(E≤m − Eh)≤n ∩Eh = ∅},

where m,n can be “+” indicating transitive closure. Graphs in Sm,n are called (m,n)-safe.

Intuitively, m represents the ability of the reasoner to detect possible safety hazards, and

n represents the ability of the querying agent to discover knowledge from previous answers

and the visible part of the graph. We are only interested in the case when n is + since it

represents the case when the querying agent is the most powerful2. It is easy to verify that:

S+,+ = ∩∞m=1Sm,+.

Now we will consider several specific reasoning strategies for those classes of graphs. Since

there is no negation, the resulting reasoners will answer only with “Y ” or “U ” (i.e., there are no

“N ” answers). Note that requirements for a weakly privacy-preserving reasoner in this context

are:

• Honesty Axiom: QY ⊆ E+

• Weak Safety Axiom: (Ev ∪QY)+ ∩ Eh = ∅.

The dummy reasoner: A dummy reasoner responds to every query with the answer “U ”

(i.e., QY = ∅). It preserves the safety of precisely those graphs that satisfy E+
v ∩ Eh = ∅. This

is exactly the defining condition of the class of (1,+)-safe graphs S1,+. Obviously, this strategy

has the widest safety scope, and not surprisingly, is also least informative.

The obvious reasoner: An obvious reasoner responds with an answer “Y ” to only those

queries whose answers follow from Ev i.e. QY ⊆ E+
v . Its weak safety scope is the same as that

of the dummy reasoner (S1,+).

The safe reasoner: let QY = E+−Eh. Clearly, this reasoner satisfies the honesty axiom.

To satisfy the weak safety axiom, we need (Ev∪(E+−Eh))+∩Eh = ∅, i.e., (E+−Eh)+∩Eh = ∅.
Hence, its weak safety scope is S+,+ (which is smaller than S1,+). Similarly, if QY = E≤m−Eh,

the corresponding weak safety scope is Sm,+.

2We note that for every m,n, we can easily construct a reasoning strategy whose safety scope is Sm,n.

177

The naive reasoner: this reasoner always gives away all the information it has, i.e.,

QY = E+. It is trivially honest, and its weak safety scope consists of only those graphs that

do not have any hidden edges, i.e, {G|Eh = ∅}, which is clearly a subset of S+,+.

The above reasoning strategies for hierarchical ontologies clearly illustrate the tradeoff be-

tween generality and informativeness. Among these, the safe reasoner is of particular interest

since it is able to generate informative answers for a fairly large class of graphs without com-

promising the hidden knowledge 3. Given a query x ≤ y, it will answer “Y” if 〈x, y〉 is in E+

but not in Eh, and “U” otherwise.

a

b

c

d

e

Y

Y

U
Y

a

b

c

d

a

b

c

d

a

b

c

d

e

a

b

c

d

e

(a)
 (b)
 (c)

Solid edges are visible, dashed edges are hidden, edges labeled with “Y” or “U” are queries with correspond-

ing answers, dotted edges in (a) show some possible edges that are not present in the graph.

Figure 6.1 Safety of Hierarchical Ontologies

Some examples of hierarchical ontologies are shown in Figure 6.1 as graphs. The graph in

(a) is (+,+)-safe. For instance, the query a ≤ d can be answered “Y ” using both visible and

hidden edges without revealing hidden edge b ≤ c. This is because, due to OWA, there might

exist unknown paths that connect a and d but not b and c. The graph shown in (b) is not

(+,+)-safe: two “seemingly safe” queries a ≤ c and c ≤ e may be combined to reveal the hidden

edge a ≤ e. Note that the graph will become (+,+)-safe if we remove the hidden edge a ≤ e.

3A simple Java implementation of the reasoner is available athttp://www.cs.iastate.edu/~baojie/pub/wi2007

http://www.cs.iastate.edu/~baojie/pub/wi2007

178

It is easy to verify that the graphs in Figure 6.1 (c) and Example 6.4 are also (+,+)-safe.

The safe reasoner only requires computation of transitive closure to test if a graph is safe,

which takes O(|V |3) time and O(|V |2) space. More efficient algorithm exists for sparse, tree-like

ontologies (Wang et al., 2006): reachability problem can be answered in constant time, with

index time O(|V |+ |E|+ t3) and index size O(|V |+ t2), where t≪ |V | is the number of non-tree

edges.

6.6 Discussion: Privacy-Preserving Reasoning in P-DL

6.6.1 Overview

In the previous sections we discussed privacy-preserving reasoning in a single ontology.

It would be interesting to explore whether such approaches can be extended to the case of

privacy-preserving reasoning with modular ontologies. The objective of this section is to explore

several minimal requirements of a privacy-preserving reasoner for modular ontologies in P-DL

languages. While the design of such a reasoner is still remained open, we believe discussion in

this section will be helpful for the future investigation on this topic.

Privacy-preserving reasoning in modular ontologies is different from that in classic DLs (e.g.,

SHIQ) in that knowledge is distributed in multiple modules and controlled by different agents.

In such a setting, it is not possible to integrate all modules into a single ontology and use a

single reasoner, which has the access to the global knowledge about all modules, to perform a

reasoning task. Hence, it is necessary to preform the reasoning task in a distributed fashion,

such that no agent of any module may infer hidden knowledge in any other module during the

reasoning process.

In the last chapter, we described several distributed reasoning algorithms for P-DL, where

the overall reasoning task is undertook by a federation of multiple local reasoners, each for an

ontology module (i.e., a package in P-DL). Local reasoners may exchange messages, including

concept and role reporting messages and clash messages, to construct a distributed tableau for

the ontology in question. Extending such a strategy to working with partially hidden knowledge

presents several challenges, including the following:

• What is the precise notion of privacy-preserving reasoning in the distributed setting?

179

• Can we ensure that, for any sequence of messages exchanged between any local reasoners,

no local reasoner may logically infer hidden knowledge of any other package from those

messages?

• For what types of P-DL ontologies there exists useful (e.g., reasonably informative)

privacy-preserving reasoning strategies?

In what follows we will conduct some preliminary investigations on those problems. For

the cause of simplicity, we only consider the P-DL ALCPC , i.e., ALC extended by (possibly

cyclic) concept importing between packages. However, similar results may be obtained for more

expressive P-DLs, e.g., SHIQP .

It should be noted that in this section we are restricted to only logical safety of reasoning,

i.e., no hidden knowledge may be inferred by logical methods. We do not address the statistical

aspect of privacy preserving reasoning or belief revising based on multiple queries, e.g., (Gray

and Syverson, 1998). Combining the strength of the two approaches will be our future work.

6.6.2 Distributed Privacy-Preserving Reasoning: General Setting

6.6.2.1 Distributed Partially Hidden Knowledge

For an ALCPC ontology 〈{Ki}, {Ki 7→ Kj}i6=j〉, each package Ki is the disjoint union of a

hidden part Kih and a visible part Kiv
4. We require that imported names can not be in Ki’s

hidden signature (i.e., Sig(Ki)− Sig(Kiv)) and no hidden name in K+
i can be imported by Ki.

We use Ki ⊢ α to mean that α is witnessed by Ki regardless the division of visible and

hidden knowledge.

For anALCPC ontology Σ, we denote by Σv the visible part of all packages 〈{Kiv}, {Kiv 7→ Kjv}i6=j〉.
We assume each package is controlled by an autonomous agent which may query other

packages using a reasoner. An agent can access both visible and hidden knowledge in the

package of its own, but only “see” the visible parts of packages of other agents. Hence, an agent

may not know the complete imported signature of another package.

4It may also be possible that each package has different scope limitation policies toward different other
packages. For the cause of simplicity, we do not consider privacy-preserving reasoning in such a setting and will
investigate it in the future.

180

6.6.2.2 Message Safety: Informal Description

In the course of reasoning in an ALCPC ontology, the agent of each package may use a local

reasoner5 which may exchange messages with reasoners of other packages in the manner we

described in the last chapter. Note that in the ALCPC tableau algorithm, there is only concept

reporting messages but no role reporting messages.

There are two types of communication between a local reasoner and the outside world: the

queries and answers it exchanged with an agent who submit those queries, and messages (i.e.,

concept labels of some individuals) it exchanged with other local reasoners. Accordingly, there

are two general types of “unsafe” behavior of a local reasoner, i.e., unsafe answers to queries

(which is similar to the single ontology setting), and unsafe messages exchanged with other

local reasoners under certain circumstances, which are demonstrated by the following example.

Example 6.5 : Suppose we have a P-DL ontology with two packages:

K1 = K1h = {1 : C ⊓ 1 : D ⊑ ⊥} and

K2 = K2v = {2 : E ⊑ 1 : C ⊓ 1 : D}
Suppose R1,2 are local reasoners for K1,2, respectively, which will construct local completion

graphs G1,2. The reasoning task is to check the satisfiability of 2 : E as witnessed by K2. G2

has an initial node 2 : x such that L2(2 : x) = {E} in the thread t0. Applying ALCPC expansion

rules (all operations belong to thread t0):

1. L2(2 : x) = {E,C,D};

2. two messages r1←2(x,C) and r1←2(x,D) are sent to G1, hence a node 1 : x is created in

G1 with L1(1 : x) = {C,D}

3. G1 sends back a clash message ⊥1→2(t0).

If there is no other local reasoner involved in the reasoning process, R2 may infer that C⊓D
is unsatisfiable in K1, hence the hidden knowledge of K1 is compromised. (End)

We extend the (informal) requirements for privacy-preserving reasoners to the distributed

setting. In addition to Honesty, History Independence and History Safety requirements, a local

reasoner should also satisfy that

5We refer by “the local reasoner of a package” to mean the reasoner used by the agent of the package
henceforth.

181

4 Message Safety. For any local reasoner, no other local reasoners can logically infer hid-

den knowledge in the package of this local reasoner through messages exchanged between

them.

6.6.2.3 Message Safety: Formal Definition

Formally, we have the following definition:

Definition 6.7 Let K = 〈{Ki}, {Ki 7→ Kj}i6=j〉 be an ALCPC ontology. Let R be a set of

reasoners for K, such that every Ri ∈ R a reasoner for Ki based on the ALCPC tableau

algorithm. Let Gi be the local completion graph generated by Ri.

For every concept reporting message exchanged among R, let node i : x be the sender and

node j : x be the receiver, we say (i : x, j : x) is a message edge. A message path is a sequence

of message edges, such that the receiver of a message (except the last one) in the path is the

sender of the next message and there is no circle in the path.

For every i 6= j, every thread t, and every node i : x (in Ri), a conversation Ci↔j(x, t) of t

and x between Ri and Rj is a sequence of messages such that:

• Each message is either a concept report message or a clash message exchanged between

i : x and its image or preimage nodes j : x in Rj (i.e., origin(i : x) = origin(j : x)) in

the same thread linage of t;

• There is at most one clash message in the conversation; if it exists, it must be the last

one in the conversation and have thread argument t;

Note that one clash message may exists in different conversations for different nodes.

We use Ci→j(x, t) to denote the conjunction of concepts (note that they are concept names

or its negation in Sig(Ki) ∩ Sig(Kj)) occurred in concept report messages from i : x to j : x in

the conversation Ci↔j(x, t).

A conversation C = Ci↔j(x, t) is risky for i against j if

1) i : x is created by a concept reporting message from j : x (hence the first message in C is

a backward concept reporting message from j : x);

2) Let S be the set of nodes exists before i : x is created and have the same origin as i : x, then

all message paths from a node in S to i : x share the same last message edge (j : x, i : x);

182

3) C is ending with a clash message ⊥i→j(t);

4) At least one message from j to i belongs to the thread t;

5) There is no other node i : y such that Ci↔j(y, t) satisfies conditions 1-4.

Intuitively, the fact that a conversation Cj↔k(x, t) is risky for j against k means that

expansions at j : x are only influenced by k : x. Thus, Rk may potentially infer a concept

inclusion witnessed by Kj, as shown in Example 6.5. Formally, we have the lemma:

Lemma 6.5 Let K 〈{Ki}, {Ki 7→ Kj}i6=j〉 be an ALCPC ontology, Ri a reasoner for Ki based

on the ALCPC tableau algorithm (for every i). Let Rj,k be reasoners for packages Kj,k in K, if

there is a conversation Cj↔k(x, t) that is risky for j against k, for some node j : x and thread

t, then Cj→k(x, t) ⊑j ⊥.

Proof sketch: j : x must be a local top node as a result of the ALCPC tableau expansion.

Expansions at j : x are the logical consequence of messages it received. Let S be the set of nodes

exists before j : x is created and have the same origin as j : x, it must be case that expansions

at j : x are the logical consequence of messages sent from k : x. Hence, if Cj↔k(x, t) is risky, it

is equivalent to query the satisfiability of Cj→k(x, t) against Kj with a negative answer. Hence

Rk may infer that Cj→k(x, t) ⊑j ⊥.

Note that j : x may send message to some nodes in S, or send/receive messages with

some nodes not in S and not “reachable” by message paths from nodes in S except through

(k : x, j : x). j : x’s local descendants may also communicate with nodes in other reasoners.

Those communications do not change the conclusion. (End)

Note that if any of the 5 conditions for risky conversation in Definition 6.7 is not satisfied,

Cjk(x, t) ⊑j ⊥ can not be inferred, as shown by following examples.

Example 6.6 (Condition 1 Relaxed): K1 = {1 : D ⊑ ∃R.2 : C} K2 = {2 : C ⊑ 2 : E},.
The reasoning task is to check satisfiability of (1 : D ⊓ (∀1 : R.¬12 : C) witnessed by K1. A

distributed completion graph may be constructed as follows:

G1 : {E,∃R.C,∀R.¬1C} ∈ L1(x), {D,C,¬1C} ∈ L1(y), L1(〈x, y〉) = {R}, r21 = 〈2 : y, 1 : y〉;
G2 : L2(y) = {C,D}.
The messages exchanged between G1 and G2 are r2←1(x,C), r2→1(x,D) and the clash

message ⊥1→2 (thread argument omitted). However, D is satisfiable witnessed by K1.

183

Example 6.7 (Condition 2 Relaxed): Suppose we have four ALCPC packages:

K1 : {2 : D ⊑ 3 : E}
K2 : {4 : C ⊑ 2 : D}
K3 : {3 : E ⊑ 4 : F}
K4 : {4 : C ⊔ 4 : F ⊑ ⊤4}
The reasoning task is to check satisfiability of C ⊓ ¬4F witnessed by K1. Using ALCPC

expansion rules, we can construct a distributed completion graph as follows:

G1 : L1(x) = {C,¬4F,D,E}, r21 = 〈2 : x, 1 : x〉, r31 = 〈3 : x, 1 : x〉, r41 = 〈4 : x, 1 : x〉
G2 : L2(x) = {C,D}, r42 = 〈4 : x, 2 : x〉
G3 : L3(x) = {C,E,F}, r43 = 〈4 : x, 3 : x〉
G4 : L4(x) = {C,¬4F,F}
The messages exchanged between G3 and G4 are r4←3(x, F) and the clash message ⊥4→3

(thread argument omitted). However, F is satisfiable witnessed by K4. The clash detected at

4 : x is the result of messages from G1,2,3 together. (End)

Example 6.8 (Condition 3 Relaxed): Let Kj = Kjh = {C ⊑ D} where C,D are visible

j-concept names. Ki import C,D from Kj . The local completion graph Gi sends a message

rj←i(x,C) to Gj . Gj may send back the message rj→i(x,D). Gi can not infer from the answer

that C ⊑j D. For example, it is possible that C ⊑ D ⊔ E in Kj where E is a hidden concept

name in Kj . Due to the non-deterministic nature of tableau expansion, Gi can not distinguish

from the two scenarios based on the exchanged messages. (End)

Example 6.9 (Condition 4 Relaxed): Let K1 = K1h = {1 : C ⊑ 1 : D⊔1 : E, 1 : E ⊑ ¬11 :

C},K2 = {1 : C ⊓ 1 : D ⊑ ⊤2}. The reasoning task is to check satisfiability of 1 : C witnessed

by K2. The local completion graph G2 sends a message r1←2(x,C) of thread t0 to G1. G1 may

make a non-deterministic choice (hence generates a new thread t1 as a child thread of t0) and

add {E,¬1C} to L1(x) and send back a clash with argument t1. However, G2 cannot infer that

C is unsatisfiable in K1. (End)

Example 6.10 (Condition 5 Relaxed): K1 = ∅,K2 = {2 : C ⊑ ⊥}, K1 imports 2 : C, 2 : D

from K2. The reasoning task is to check satisfiability of (∃1 : R.2 : C)⊓(∃1 : R.2 : D) witnessed

by K1. A distributed completion graph may be constructed as follows:

184

G1 : L1(x) = {(∃1 : R.2 : C) ⊓ (∃1 : R.2 : D)}, L1(y1) = {C}, L1(y2) = {D} L1(〈x, y1〉) =

L1(〈x, y2〉) = {R}, r21 = {〈2 : y1, 1 : y1〉, 〈2 : y2, 1 : y2〉};
G2 : L2(y1) = {C},L2(y2) = {D}.
The messages exchanged between G1 and G2 are r2←1(y1, C), r2←1(y2,D) and the clash

message ⊥2→1 (thread argument omitted). However, G1 cannot distinguish C ⊑2 ⊥ or D ⊑2 ⊥.

6.6.3 Requirement for Distributed Privacy-preserving Reasoners

We now proceed to describe requirements for distributed privacy-preserving local reasoners.

Definition 6.8 Let K = 〈{Ki}, {Ki 7→ Kj}i6=j〉 be an ALCPC ontology. Let Ki = (kiv ,Kih) be

a package in K, Qi the set of concept subsumption queries for Ki, A = {Y,N,U} the answer

space, and Ri a reasoner for Ki. QiY , QiN , QiU are defined as usual.

For all i, We use QiM to denote the set of all axioms of the form Ci→j(x, t) ⊑ ⊥, for each

conversation Ci↔j(x, t) that is risky for i against j, for every j, x, t;

Ri is distributed weakly privacy-preserving w.r.t. Ki if it satisfies the Honesty Axiom,

the Weak Safety Axiom (see Definition 6.3) and the following axiom:

• Message Safety Axiom: for all α ∈ Kih, we have Kiv ∪QiY ∪QiM 6⊢ α.

However, extending the distributed tableau-based algorithms for P-DL as we presented in

the last chapter to obtain a distributed privacy-preserving reasoning algorithm is still remained

as an open problem. We give in the follows some discussions that might be useful for the

investigation of such an algorithm in the future.

Local reasoners should only have local knowledge abut messages. We first argue that a local

reasoner should know only messages exchanged between itself and its local acquaintances, but

not messages exchanged between other local reasoners, the existence of such messages, nor

the structure of local completion graphs in other local reasoners. That is because each local

reasoner is autonomously created and maintained, thus it is neither practical nor desirable to

share information about messages globally. Hence, typically a local reasoner may not know

whether another reasoner can detect if a conversation between them is risky since it requires

global knowledge about messages. Thus, a practical algorithm may need to avoid potentially

risky using only local knowledge about messages.

185

The reasoner should be conversation independent. Note that each local reasoner should

be history independent, hence for a given query, it should always return the same answer

regardless what conversations have been exchanged in particular reasoning processes. (Note

that it is possible that reasoner sends out different messages giving the same set of “incoming”

messages due to the non-deterministic nature of tableau expansions.) That will guarantee the

uniqueness of query answering.

Not all risky conversations are “unsafe”. While a risky conversation may expose knowledge

of a package, it is not necessary to avoid all risky conversations. For example, if the subsumption

revealed by a risky conversation is entailed by the visible part of the package, no hidden axiom

will be compromised from it. Thus, a privacy-preserving algorithm only needs to detect and

avoid risky conversations that are indeed “unsafe”.

Conservative extensions in the modular setting may be useful. Conservative extension is

proven useful in privacy-preserving reasoning in the single ontology setting. However, existing

work on conservative extension (Lutz et al., 2007; Grau et al., 2007) do not support localized

semantics which is foundation of all major modular ontology languages. Extending such a

notion to the modular ontology setting may be helpful to design distributed privacy-preserving

reasoners.

6.7 Related Work

Problems of trust and privacy on the web in general, and the semantic web in particular,

are topics of significant current interest.

6.7.1 Policy Languages

Access control policies have been widely studied in databases (Jajodia and Wijesekera,

2001). Knowledge scope limitation was introduced into knowledge bases in Ontolingua (Fikes

et al., 1997), which restricts access, during ontology integration, to symbols that are designated

as private. Early efforts aimed at developing formal languages for access control include Ex-

tensible Access Control Markup Language (XACML) (Godik and Moses, 2002; Kolovski et al.,

2007) and Security Assertions Markup Language (SAML) (Hallam-Baker and Maler, 2002).

Recently, there is growing body of work on trust and privacy on the semantic web. In particu-

lar, there are several policy language proposals (Tonti et al., 2003; Bonatti et al., 2006; Kagal

186

et al., 2004), such KAoS (Uszok et al., 2003), Rei (Kagal et al., 2003) and Ponder (Damianou

et al., 2001), that can control the access to resources or operations from unauthorized users.

Research on encryption of sensitive information focuses on preventing unauthorized access

to such information using cryptographic protocols. W3C XML Encryption6 working group

has proposed an XML syntax for encrypting or decrypting digital content in XML documents.

(Giereth, 2005) has studied the hiding of a fragment of an RDF document by encrypting it

while the rest of the document remains publicly readable.

These access control policies and encryption techniques either allow or prohibit access to

information in a complete fashion. They do not allow the use of private knowledge to answer

queries that can be safely answered using private knowledge without revealing it. In contrast,

this chapter explores how to relax the restriction on access to private or hidden knowledge so

that they can still be used in answering queries with guaranteed safety.

6.7.2 Preventing Unwanted Inference

Our work is closely related to the work of Farkas and other (Farkas, 2006; Farkas et al., 2006;

Jain and Farkas, 2006) on preventing unwanted inferences in data repositories. (Farkas, 2006)

outlines several important aspects of preventing unwanted inference on the semantic web. Their

privacy information flow model (Farkas et al., 2006) includes a privacy mediator that prevents

agents in the system from being able to (indirectly) infer the private data of other agents.

The inference algorithm assumes a tree-like data model, selection-projection queries, and a

domain knowledge base (consisting of assertions in the form of Horn clauses) with closed world

semantics. In contrast, the approach proposed in this paper assumes open world semantics

which is more natural in the semantic web setting.

(Jain and Farkas, 2006) have proposed an RDF authorization model that can selectively

control access to stored RDF triples, assign security classification to inferred RDF triples and

check for unauthorized inferences. This model assigns a highest-level security label to each

(stored or inferred) RDF triple using a pre-specified set of syntactic rules. In contrast, the

focus of our work is on mechanisms that allow the use of hidden knowledge to answer queries

without revealing hidden knowledge.

6http://www.w3.org/Encryption/2001/

187

6.7.3 Epistemic Semantics

Logics with specially designed semantics have also been applied in information hiding. (Cup-

pens, 1990; Glasgow et al., 1992) describe a logic that includes epistemic operators for reasoning

about knowledge and deontic operators for reasoning about permission and obligation. (Gray

and Syverson, 1998) adopt a hybrid approach by connecting the information-theoretic formula-

tions of security and logical formulations of knowledge and probability in distributed systems.

Such methods may be extended to description logics if we add the “K” (epistemic) operator,

e.g. ALCK (Donini et al., 1998). In contrast, our approach is based on the standard first-order

semantics, thus is easier to implement based on existing standard reasoners.

188

CHAPTER 7. Collaborative Building of Modular Ontologies

Modular ontologies provide an attractive framework for the necessary compromise between

the need for knowledge sharing and the need for knowledge hiding in collaborative design and

use of ontologies. Structured organization of ontology entities in modules may bring to ontology

design and reuse, the same benefits as those provided by modules in software design and reuse

in software engineering. In this chapter we will present principled ways and software tools for

collaborative ontology building (COB) driven by the notion of modular ontologies.

Part of this chapter was previously published in (Bao and Honavar, 2004a, 2005a; Bao et al.,

2006g).

7.1 General Desiderate of Collaborative Ontology Building

7.1.1 Motivations

The process of constructing a small-scale ontology is typically non-collaborative, which

means that it involves only a single user (see Fig. 7.1). Such an ontology is usually stored

in one or several files. When editing the ontology with an available tool (e.g., Protege1, OBO-

Edit2), the curator needs to make a local copy of this ontology. After editing, the initial ontology

is completely replaced with the new version that is the result of the editing process.

Download

Ontology
 Local Editing

Upload

Ontology

(
single curator)

Figure 7.1 Non-collaborative Ontology Building

In contrast, the process of constructing large-scale ontologies is necessarily collaborative.

1http://protege.stanford.edu/
2http://oboedit.org/

189

Ontologies that are intended to be useful to specific communities often consist of thousands of

terms. For example, the Gene Ontology contains 2× 105 terms and the Gramineae Taxonomy

contains 7× 105 terms. Furthermore, such ontologies have to capture the collective knowledge

and expertise of multiple experts and research groups. An unavoidable consequence of the

increasing size and complexity of ontologies is the need for collaboration among multiple experts

or research groups. Such collaboration can be either direct (as in collaborative creation of an

ontology), or indirect (through the reuse of previously published, autonomously developed

ontologies). In such a setting, a large ontology is built and curated by a community, with each

of its members contributing only a small part of the ontology.

A typical large-scale ontology construction scenario is given in the following (Figure 7.2):

The animal genomics community consists of several autonomous, geographically dispersed, re-

search groups around the world. Animal Trait Ontology (ATO) (Hu et al., 2006) has been

developed for a diverse set of species (e.g., for cross-species comparisons). No single research

group possesses all of the expertise needed to construct the desired ATO. Consequently, it is

necessary and natural for groups with different areas of expertise (e.g., species-specific expertise

about horses, chicken, pigs, etc.) to work more or less independently to create ontology mod-

ules that can then be linked together as needed. Because multiple groups might hold different

ontological commitments, terminological clashes or conceptual differences between the groups

(and hence the ontology modules created by them) are simply unavoidable. Hence, there is a

need for mechanisms for linking ontology modules so as to preserve the semantic locality while

ensure a partial consensus on publicly shared knowledge. Furthermore, inherent inefficiencies

(with regard to memory and processing time needs) in the use (e.g. editing, reasoning, com-

municating) of large ontologies can be minimized by taking advantage of the modular nature

of the ontologies.

This argues for a modular approach to design and use of complex ontologies wherein ontolo-

gies such as ATO, instead of being treated as a monolithic entity, are organized into modules

that reflect the organizational structure of knowledge in a domain of interest. For instance, it

is natural to organize ATO (at a fairly high level), in terms of species-specific modules (e.g.,

those that focus on horse, cattle, chicken, etc).

Unfortunately, existing ontology editing tools such as the DAG-Edit (Day-Richter, 2004) and

OBO-Edit (Mungall, 2005) offer, at best, limited support for such collaborative development.

190

Swine

Cattle
 Chicken

Horse

Figure 7.2 Collaborative construction of an Animal Trait Ontology

Consequently, there is an urgent need for tools for creating and processing increasingly large,

collaboratively developed ontologies, with bounded time and space resources. To address this

need, we have developed extensions to ontology languages and software tools for collaborative

ontology building (COB). Our approach builds on recent advances in modular ontologies Bao

et al. (2006f) to facilitate the creation of large ontologies within a distributed curator model.

7.1.2 Requirement of COB Environments

We draw on our experience with the construction of ATO to articulate some of the re-

quirements of a COB environment. A COB environment needs to offer support for several

tasks:

Knowledge Integration: The target ontology typically requires integration of ontology

fragments contributed by multiple participants. For example, ATO needs to integrate contri-

butions from individuals or research groups with expertise with regard to specific species.

Concurrent Management: Different curators need to be able to work on different parts

of the ontology simultaneously. Suppose that curator A downloads the current version of

ATO and performs local editing on “PigMeatQuality”; before A submits the modified version

of ATO, another curator B may submit changes on “PigHealth”. Therefore, COB environment

191

must ensure that when A submits his or her locally edited copy, the version updated by B is

not inadvertently overwritten.

Consistency Maintenance: Components of the same ontology developed by different

curators may be inconsistent since an ontology usually reflects the local point of view of each

curator. For example, “PigLoinWeight” may be taken as a sub-trait of “PigMeatQuality” by

one expert, but as a “PigProduction” trait by another expert. Inconsistencies can arise as a

result of obsoleting ontology terms. For instance, while a user A is in the midst of defin-

ing a term “NumberOfTeatsOfSow” under “ExteriorTraits”, another user B may be eliminating

“ExteriorTraits” (e.g., by merging it with with ”ReproductiveTraits”) and submitting the change

before user A does. Hence, ensuring the semantic consistency of the resulting ontology requires

reconciliation of different points of view.

Privilege Management: In order to ensure the accuracy of the ontology, the COB cu-

rator community needs to include individuals with different levels of privileges, based on their

expertise, authority, and responsibility. For instance, a curator A may be responsible for all pig

traits (all terms under “SusScrofa”), while a curator B may be responsible only for pig health

traits (all terms under “PigHealth”).

History Maintenance: COB environments should have mechanisms to recover from

wrong, unintended or even malicious changes to an ontology. Therefore, changes to an on-

tology must be recorded in order to be able to track the authorship of a change and to prevent

loss of important information.

Scalability: Many ontologies consist of tens of thousands of terms. Consequently, the COB

process has to be scalable to large ontologies. For example. if curator A only intends to edit

the ontology component about pig meat quality, it is neither necessary, nor desirable to make

A download and submit the parts of ATO that are not affected by his or her work.

7.2 CVS-based Collaboration and its Limitations

There is a growing awareness in the ontology community about the need for collaboration in

the construction of large ontologies. Consequently, there is a growing interest in the development

of COB environments and tools. The Gene Ontology consortium represents one of the most

successful collaborative efforts aimed at creating large ontologies in the biological domain. The

GO collaborative building process (Gene Ontology Consortium, 2005) is based on a concurrent

192

versions system (CVS), a request tracking system hosted on SourceForge, and natural language

communications among GO users and curators (facilitated by several email lists). This process

consists of the following major steps (Fig. 7.3):

Get GO CVS

Account

Get Source

Forge Account

Set Up CVS

Access

Submit Change

Request

Track the

Request

User submit change suggestion

(in natural language)

Get Source

Forge Account

Take a Change

Request

Curator

Download Whole

GO Flat File

Local Editing

Make Local

Log File

Save GO Flat

File

Version

Control

Commit Whole New

Ontology to CVS

Figure 7.3 Collaborative Ontology Building with CVS: Gene Ontology

1. A user submits a change request on SourceForge.

2. One of the GO curators claims the request.

3. The curator downloads the GO flat file from CVS.

4. (optional) The curator declares “ownership” of the GO terms in a file (GO numbers) in

the CVS.

5. (optional) The curator sends emails to other curators to avoid conflicting.

6. The curator edits the flat file downloaded (e.g., with DAG-edit) and saves the modified

file.

7. The curator compares the local flat file with the current version in the CVS repository

and merges all changes made by other curators after his or her last download.

193

8. The curator uploads the modified ontology to CVS.

CVS and email list based collaboration approach, while useful, fails to satisfactorily ad-

dress the key requirements of COB environments enumerated above because of the following

drawbacks:

Unprincipled Authorization and Organization: There is no principled mechanism to

ensure curator privilege assignments, nor clear organizational division of the whole ontology

into smaller manageable units.

Risk of Inconsistency: There is no principled way to avoid unintended couplings and

over-writing. The validity and consistency of the ontology are dependent almost entirely on

the discipline exercised by the human curators (e.g., the habit of checking differences between

versions before submission) and good community communications (e.g., via email lists). Hence

it is not surprising that there are many inconsistencies in GO (Yeh et al., 2003).

Lack of Support for Editing or Reuse of Parts of the Ontology: A curator has to

download the entire ontology, before editing, and submit the entire modified ontology, after

editing, although a small part of the ontology may actually be affected by the changes. Similarly,

a user cannot download and reuse only a selected subset of GO, e.g., the part of GO that is

concerned with description of Kinases.

Expensive History Maintenance: In CVS version control, even a minor edit of the

ontology, e.g., editing of a single term, relationship or property, causes the ontology file to be

replicated in its entirety. In addition, tracing the changing history of a term requires process-

ing the entire ontology text file for comparisons. As a consequence, retrieving the relevant

information about editing history of a relevant ontology fragment is rather expensive.

Limited Participation: In the absence of a principled way to grant different levels of priv-

ileges to different types of users (e.g., core curators versus normal curators), and a handy tool

to accept/deny/modify/revert local changes made by other curators, the curator community

has to be limited to a small number of trusted curators. This limits the participation of the

broader scientific community in the ontology building process and results in a bottleneck that

slows down the rate at which ontology can change in response to community input.

Therefore, success of the CVS-based approach to COB relies heavily on the implicit com-

munity commitment and cooperation, and on the self-discipline of the involved participant as

opposed to mechanisms that are designed specifically to support collaboration. Hence, there is

194

an urgent need for knowledge representation formalisms, as well as systems and and software

for COB. In what follows, we describe an approach based on an organization of a complex

ontology into ontology modules or packages as we described in previous chapters.

7.3 COB-Editor

Many of the drawbacks of current approaches to COB arise from lack of support for lo-

calizing the interactions among different parts of a large ontology. The primary source of this

difficulty is the lack of an organizational structure which forces us to treat an ontology in its en-

tirety. In other words, the current state of knowledge representation languages for ontologies is

reminiscent of the early programming languages which lacked support for organizing programs

into coherent units (e.g., subroutines).

7.3.1 Organizing Ontologies into Packages

We observe that an ontology that results from collaboration among multiple experts or

research groups can be viewed as consisting of smaller modules, called packages (Bao et al.,

2006f). Each such package encapsulates a closely related set of terms and relations between

terms. Together, these terms and relations represent the ontological commitments of an indi-

vidual expert or a research group (or a sub-community) regarding a small, coherent part of the

universe of discourse (e.g., traits of interest to the livestock community).

The notion of package is closely related to Package-based Description Logics as we intro-

duced in Chapter 4. For it to be useful in the COB setting, we extend the notion of package-

based ontology to also support hierarchial organization structure and scope limitation. To make

this chapter self-contained, we briefly introduce the notion of package:

Definition 7.1 (Package) Let an ontology O be a set of axioms. A package P of O is a subset

of axioms in O, Sig(P) is the signature of P ; a subset of Sig(P), denoted by Loc(P), is called

P ’s local signature; for every name t in Loc(P), P is called the home package of t, denoted by

P = Home(t); Ext(P) = Sig(P) − Loc(P) is P ’s external signature. If t ∈ Loc(P1) ∩ Ext(P2),

we say P2 imports t from P1.

For example, in the ATO ontology, Pig is a package in ATO, “LoinEyeArea” and “MeatQuality”

are names in Pig; subclassOf(“LoinEyeArea”, “MeatQuality”) is an axiom in Pig; “LoinEyeArea”

195

is a member of Pig and Pig is the home package of “LoinEyeArea”.

Note that the axioms in an ontology package specify its semantic structure. However, COB

calls for recognition of the organizational structure of an ontology. The package-based ontology

language offers language constructs that allow an ontology package to be declared as a sub

package of another package. Such organizational relations among packages allow specification

of the organizational structure of an ontology in terms of hierarchical nesting of packages.

Definition 7.2 (Package Nesting) A package P1 can be nested in one and only one other

package P2. This is denoted by P1 ∈N P2. P1 is said to be a sub package of P2 and P2 is the

super package of P1. ∈∗N is the transitive closure of ∈N . The collection of all package nesting

relations in an ontology constitutes the organizational hierarchy of the ontology.

For example, the package Pig can contain smaller packages, such as PigMeatQuality and

PigHealth. PigMeatQuality (the sub package) is nested in Pig (the super package).

Package-extended ontologies also allow creators of packages to exert control over the visibil-

ity of each name within the package, thereby allowing selective sharing (or conversely, hiding)

of ontological commitments captured by a package. It is realized using scope limitation modifier

as we introduced in section 6.3.1.

We utilize three default SLMs in this study:

• public(p, t) := True, means name t is accessible everywhere.

• protected(p, t) := (t ∈ p) ∨ (p ∈∗N Home(t)), means name t is visible to its home package

and all its descendant packages on the organizational hierarchy.

• private(p, t) := (t ∈ p), means name t is visible only to its home package.

We require that if a package P imports a name t, t should be visible to P and cannot be in

Loc(P).

Scope limitation helps in collaboration on specifying term extensibility and reducing un-

wanted coupling. Thus, a package may selectively allow or forbid names in its local signature

from being imported, thus being changed in semantics, by other packages. For example, if the

PigMeatQuality package contains a local name texture which is not intended to be further

196

used by other packages (e.g., adding new restrictions on texture), texture may be declared as a

private name in PigMeatQuality. On the contrast, PigMeatQuality package may contain

a name color, which is best further defined by other packages, color may be declared as a public

name. Note that the released ontology may have a different scope limitation policy (or does

not require scope limitation) from that in the design phase.

7.3.2 Benefits of Modular Organization for COB

Modular structure of ontologies can be exploited in COB in several ways:

Division of Labor: A package consists of a set of closely related terms and axioms in a

smaller sub domain (e.g., pig traits) of a main domain. Therefore, a package can be assigned to

curators or experts with the best knowledge of the relevant sub-domain. The package hierarchy

helps organize and manage interactions among collaborating groups of sub-domain experts with

different degrees and scopes of expertise.

Scalability: When the ontology has a modular structure, a curator is not required to work

with the entire ontology. Instead, the curator can download and edit one or more packages that

fall within his or her (sub) domain of expertise, while other packages are being edited by other

curators. Because the effects of edits are localized, different curators can independently work on

packages e.g., PigMeatQuality and PigHealth, that belong to different parts of the organiza-

tional hierarchy. This simplifies the task of propagating the effect of changes within individual

packages through the rest of the ontology. The result is significant reduction in communication

overhead, computational cost (e.g., parsing, consistency check), memory requirements, as well

as the cost of history tracking in collaborative editing of very large ontologies.

Partial Reuse: Ontologies with modular structure can be partially reused. For example,

a user interested in pig traits would only need to download packages about pig (e.g., Pig and

PigMeatQuality), and avoid having to deal with ontology packages such as Cattle and Horse

which are no interest to the user.

Broadened Participation: One of the reasons behind the success of the world-wide web

is the network effect: a large number of users were able to contribute modules (web pages)

that make up the world-wide web. The power of the network effect is confirmed by experi-

ence with collaborative projects like DMOZ and Wikipedia. Effective COB environments can

enable broader participation in ontology building efforts without sacrificing the quality of the

197

resulting ontology. Specifically, a user with the appropriate privileges can make a change to the

PigMeatQuality package (as opposed to just proposing such a change for consideration via

an email list); this change could be approved or denied by a curator with higher privileges.

7.3.3 The COB-Editor

Based on the package-based ontology framework, we have developed COB Editor3 (See

Figure 7.4), a collaborative ontology editor prototype for building and deploying biological

ontologies. The editor allows ontology developers to create a community-shared ontology server

with remote database storage and support for concurrent browsing and editing of an ontology.

Specifically, the current implementation of the COB Editor offers support for:

Support for Module: A large ontology is organized into packages with nested scope.

This helps localize the effects of changes to an ontology in a setting where multiple experts

collaborate in developing a large ontology.

Database Storage for Ontologies: The ontology is stored on a relational database server

(e.g., Postgres); a user can connect to the server and check out one or more packages, edit them,

and check them back in the database (when finished with editing). Database storage allows

retrieval of only the relevant parts of an ontology (as opposed to the entire ontology).

Concurrent Editing: Multiple users can concurrently edit an ontology, through appro-

priate locking mechanisms, without a user inadvertently overwriting the work of others. Thus,

different modules of an ontology can be developed by different authors. A user can edit an

ontology by editing one or more packages. The packages being edited are locked for writing

and unlocked when a the user submits the edited version(s) of the checked out package(s)

Change Tracking: When a user submits an updated version of an ontology module, the

ontology server automatically creates the change log for affected terms and relations in the

package. This feature can be used to track the history and if necessary, to revert a term or a

relation to its previous version.

User Privilege Management: Authors of the ontology can have different levels of privi-

leges (such as ontology administrator, and package administrator) over modules in an ontology.

3http://www.animalgenome.org/bioinfo/projects/ATO/. COB-Editor was developed from July 2005 to Au-
gust 2006, in collaboration with Zhiliang Hu (requirement specification and database maintenance), LaRon
Hughes (testing) and Peter Wong (testing and documentation). It is evolved from the ATO Editor
(http://boole.cs.iastate.edu/indus/ato/ato.html), developed by a ISU group including Jie Bao, Swetha Got-
timukkula, LaRon Hughes, Jialin Le and Jia Tao.

198

Figure 7.4 COB Editor

The author of a package can authorize other users the access to certain terms, therefore con-

trolling the extensibility of that package.

Navigation: Users can browse and edit DAG-structured ontologies using a GUI. Contextual

information, such as superclasses and subclasses are provide for fast identification of related

term. The editors allows terms in an ontology being arranged and viewed in different hierarchial

trees, e.g., both is-a and part-of trees. Different packages may be browsed using different

settings.

User Communication The editor has a built-in instant messenger for the user community

to coordinate editing actions.

Import and Export of Ontologies in Multiple Formats: Users can import and export

ontologies in several standard formats, such as OBO (Open Biomedical Ontologies) and OWL

into and out of the COB Editor.

199

The editing process in COB Editor is summarized in Fig. 7.5.

Get Ontology

Account

Check out a

package

Curator

Create new

package

or
 Lock Package

Edit the

Package

Commit the

Package

(Auto) Server

Change Log

Figure 7.5 Collaborative Ontology Building with Package-extended Ontol-
ogy

The editor is implemented in Java to ensure its universal portability across different hard-

ware and operating system platforms.

7.4 WikiOnt: Wiki-based Modular Ontology Editor

7.4.1 Overview

WikiOnt is another collaborative ontology editor prototype driven by the modular ontology

notion. WikiOnt is among the first efforts that are aimed to bring together collaboration

technique from the social web (or “web 2.0”) and the efforts on providing formal “meaning”

of resources on the semantic web. It is designed as a light-weight, easily-accessible (e.g., from

hand-held devices) ontology building tool with a wiki-like editing environment.

Wiki is typically used in collaborative documentation writing and website building. A

typical wiki system (e.g. wikipedia.com) includes

• a script language (usually a simplified subset of HTML tags),

• a set of wiki pages written in the script language and shown in translated HTML pages,

• a RCS version control system to record modification of contents,

• a user profile and concurrent conflict management system to enable multiple users editing

the same contents,

• a content navigation system such as showing link-in and link-out pages,

200

• and a simple-to-use, browser-based editing environment to generate or modify content on

the fly.

Many of those features are also desirable in collaborative building of modular ontologies.

WikiOnt turns a wiki system into an ontology building tools by using wiki script as the syntax

of an ontology language and using wiki pages as the storage of ontology modules. By borrow-

ing many of the mature features of wiki systems, WikiOnt is ideal for fast and collaborative

development of OWL and P-DL based ontologies.

WikiOnt shares many features with COB-Editor, e.g., concurrent editing, partial editing of

an ontology, change tracking and the support for module. We present in what follows, some

unique features of WikiOnt.

7.4.2 Features

Figure 7.6 shows the architecture of WikiOnt. A user or software agent may interact with

wiki storage, which can be implemented either in file-based system or in relation database.

An in-memory model of the ontology may be created when it is necessary (e.g., for consistency

checking) using the Jena4 RDF parser and repository. WikiOnt supports the import and export

between an existing OWL ontology and the constructed ontology in the wiki storage.

Wiki Engine. The core of the system is a wiki engine which is implemented in Java and

JSP extending the JSPWiki engine5. The wiki engine:

- provides a web interface for users;

- translates the ontology markup script to HTML pages presented in the web browser;

- manages the storage of wiki pages, in plain file or in database (depending on user choice);

- provides version control: when a modification for an axiom is submitted, the previous

version is stored and could be restored when the committed version is found incorrect or

impropriate;

- provides transaction management to prevent editing conflicts (will be explained later);

4http://jena.sourceforge.net/
5http://www.jspwiki.org

201

Figure 7.6 The Architecture of WikiOnt

- generates reference report for wiki pages: terms being used in a module, and other modules

that referring the module in question, are listed for navigation purpose.

- generates a RSS feed for ontology repository updates.

User Management. Each participant in WikiOnt is considered as an agent. Agent is

assigned with different privileges, such as ontology administrator and package manager. Agent

could join the editing of any existing ontology module or create new modules. It is possible

that an agent is a software agent which may collect knowledge from other sources (e.g., other

published ontologies).

WikiOnt Script. An ontology is organized in multiple wiki pages, each is described using

a markup script that corresponds to the a simplified syntax of the OWL language. When a wiki

page is under editing, its wiki markup script is loaded and translated into user friendly repre-

sentation, such as a HTML web page. The WikiOnt markup script is a human readable syntax

equivalent to the N-Triple syntax of OWL, where each axiom in the ontology is represented

by a set of triples (an example is shown in Figure 7.7). Closely related axioms are organized

in the same wiki page that corresponds to a module in the ontology. A user can create a new

page or modify the source script of an existing page. The editing action may be assisted by

several wizards (such as class creating wizard) and a browser (eg. showing the subclasses and

202

Figure 7.7 A Wiki Page in the WikiOnt System

superclasses of the concept in question).

Partial In-memory Model. While many popular ontology editors have an in-memory

model for the whole ontology in editing, WikiOnt does not maintain in-memory model for each

resident ontology for several reasons.

• An in-memory model limits the scalability of the system with respect to both the size of

an ontology and the number of ontologies in the ontology repository.

• In-memory model implicitly assumes the existence of a global ontology during the ontology

development process, which is not practical in general in a collaborative ontology building

scenario.

• Even when the size of the ontology in question is huge, usually only a small fraction of

its axioms are involved during an editing action.

Hence, we store the ontology as a set of separate, possibly distributed blocks in WikiOnt.

203

Each block is serialized to external storage when it’s not being actively edited, and being loaded

into the memory only if it’s edited or referred. A partial ontology model will be dynamically

loaded into memory only if it is needed. This is inspired by widely used techniques of database

memory management where partial content of the database is dynamically loaded and unloaded

to allow manipulation of of a much larger volume of data than can fit in limited memory.

Ontology exporting/importing. When a serialized ontology is needed, e.g., for reason-

ing, we export selected set of wiki pages as a single ontology file. User may also upload an

ontology file in OWL format into Wiki ontology repository. We use the Jena toolkit to create

the in-memory model and as parser/writer for ontology files.

Transaction Management. Transaction management is to ensure consistency of module

and protect critical resource from multiple access. If a page (i.e., a module) is under the editing

of an agent, WikiOnt will deny the write-access of other agents to the module and other related

modules.

Current implementation of WikiOnt is limited in several ways. There is no graphical user

interface that may assist users to visualize and edit an ontologies. The support for modular-

ization is limited, e.g., no support for package hierarchy or scope limitation. A new version of

WikiOnt is currently under development that will address those problems.

7.5 Related Work

With the growing need for ontologies, there are growing efforts on developing ontology

editors (Gomez-Perez et al., 2002; Denny, 2002, 2004). While most widely-used ontology editors,

such as Protege (before version 3.1 of 2006), SWOOP (Kalyanpur et al., 2005) and DAG-Edit

(Day-Richter, 2004), work very well for developing a single ontology module, they do not lend

themselves to collaborative ontology building. This is due to the lack of a built-in formalism

to support modular ontology representation, and the lack of support for communication and

cooperation among multiple individuals in editing a shared ontology consisting of multiple,

independently developed modules.

Support for collaborative ontology development has begun to receive some attention, for

example in systems such as CODE (Hayes et al., 2003), OntoEdit 6, Ontolingua (Farquhar

et al., 1995), and WebODE (Vega et al., 2001). Most of them provide concurrent access con-

6http://www.ontoknowledge.org/tools/ontoedit.shtml

204

trol with transaction oriented locking, and in some cases, even rollback. However, to the best

of our knowledge, none of the existing ontology editors offer support for a modular ontology

representation - a feature that is critical for collaborative development of large ontologies by

communities of users. Consequently, parsing, editing, consistency checking, and change track-

ing processes do not scale to large ontologies. In contrast, the COB tools presented in this

chapter complement existing ontology development tools in areas where there is a need for

active collaboration among experts in developing ontologies and the complete ontology can be

naturally viewed as consisting of many loosely coupled modules.

Recent versions of Protege offers a multi-user mode7 (released in April 2006), which allows

multiple users to edit the same ontology concurrently. The ontology in question is resided on a

ontology server, all the changes made by one user are seen immediately by other users. Protege

3.3 (released in June 2007) further supports several collaboration features including change

annotation, discussion thread, proposal, voting and chat (Tudorache and Noy, 2007). However,

current Protege implement does not support modular presentation of an ontology, hence there is

no principled way to control conflicts in editing or the control of the propagation of inadvertent

editing mistakes. Since an in-memory model of the whole ontology is required for each client,

scalability of the tool may be a concern when the ontology in question is large. There also lacks

automatic version control and reverting mechanism as provided by COB-Editor and WikiOnt.

TopBraid Composer (from version 1.2.0, August 2006) supports a multi-user mode by allow-

ing all users to work on a shared Sesame8 repository. An ontology may import other ontologies,

which may be selectively loaded into local memory, thus it provides (limited) support for organi-

zational separation of an ontology. User may also selectively lock a local file to make it read-only.

Thus, TopBraid Composer might be used as a collaborative ontology building tool. Compared

with TopBraid Composer, COB-Editor provides stronger support on hierarchial management

of ontology modules and multi-level privilege management of users.

Using Wikis as collaboration tools on the semantic web has received considerable attentions

in the past two years (Krorzsch et al., 2005; Oren et al., 2006; Muljadi et al., 2006; Fischer

et al., 2006; Kawamoto et al., 2006; Schaffert, 2006; Buffa and Gandon, 2006; Auer et al., 2006;

Backhaus et al., 2007), including several devoted workshops (Völkel et al., 2006b,a). However,

7http://protege.cim3.net/cgi-bin/wiki.pl?MultiUserTutorial
8http://www.openrdf.org/

205

to the best of our knowledge, no existing system supports the construction of modular ontologies

as supported by COB-Editor and WikiOnt.

206

CHAPTER 8. Conclusion and Discussion

8.1 Contributions and Impacts

Ontologies with clearly defined modularity and selective knowledge hiding are needed in a

wide range of applications. In this research, we propose a package-based description logics (P-

DL) approach as a modular ontology language. Compared with existing proposals, the P-DL

approach is distinguished by stronger expressivity and the avoidance of many known semantic

problems in existing approaches. In particular, this work makes original contributions to the

field of knowledge representation (KR) and semantic web on the following problems.

The formal investigation of semantics and expressivity requirements of modular

ontologies and detailed comparison of existing approaches (Bao et al., 2006b,c; Bao

and Honavar, 2006b; Wang et al., 2007) (Chapter 3 and Section 4.4). We investigated:

• modular ontology desiderata in terms of syntactical modularity, semantic modularity,

managerial benefits and scalability, thus clarify many controversies regarding to the notion

of “modularity” in ontologies;

• the comparison of several semantics of modular ontologies, including local model se-

mantics, contextual semantics, epistemic semantics and first-order semantics based on

conservative extensions; we show that local model semantics is capable of encoding the

contextual semantics and episematic semantics;

• the specification of the Abstract Modular Ontology (AMO) framework, extended from

distributed first-order logic (DFOL) (Ghidini and Serafini, 1998) based on the local model

semantics, as the basis for comparing different modular ontology languages.

• the formal description of minimal semantic requirements (e.g., directionality and transitive

reusability) and expressivity of modular ontologies using AMO.

207

• the comparison of Distributed Description Logics (DDL), E-Connections and P-DL; we

prove that DDL with bridge rules between concepts and one-way binary E-connections

where each module is in SHIQ are equivalent, while it was believed that the latter is

strictly more expressive than the former; we show that both DDL and E-connections do

not in general support module transitive reusability, which is supported by P-DL; we

also show that DDL with homogenous bridge rules and one-way binary E-Connections

CEIHQ(SHOIQ) can be reduced to P-DL SHOIQP.

The syntax and semantics of Package-based Description Logics (P-DL) (Bao and

Honavar, 2004b; Bao et al., 2006f,d; Bao and Honavar, 2006a; Bao et al., 2007e) (Chapter 4).

We investigated:

• extending description logics with contextualized negations and package divisions to sup-

port the desiderata of modular ontologies; we present the syntax and semantics of P-DL

SHOIQP, which exhibits stronger expressivity and avoids many semantic problems of

existing approaches; in particular, we show that P-DL is well-suited for establishing gen-

eral inter-ontology concept and role subsumption relations which are only restrictively

supported by existing approaches;

• the integration of P-DL into OWL and semantics web tools; we show that it is possible

to adopt OWL as the syntax for P-DL (with minor restrictions) without introducing

new language constructs, hence ensuring the maximal backward compatibility to existing

tools.

Distributed reasoning algorithms for modular ontologies based on P-DL (Bao

et al., 2006a,e, 2007b) (Chapter 5). We investigated:

• distributed tableau algorithms for several languages in the P-DL family, includingALCP−C ,

ALCPC, and SHIQP; the proposed algorithms is capable of preforming reasoning tasks

in peer-to-peer fashion without the integrating of all ontology modules; we show that

the proposed reasoning algorithms are significantly less complex than the corresponding

classical reasoning algorithms over integrated ontologies;

• asynchronous reasoning algorithms for P-DLs such that local reasoners may concurrently

working on different reasoning sub-task to improve performance.

208

Reasoning with hidden knowledge (Bao and Honavar, 2006c; Bao et al., 2007d) (Chap-

ter 6). We investigated:

• the precise formulation of the problem of privacy-preserving reasoning on the semantic

web, which may offer the necessary reasoning support on the top of syntactical access

control provided by semantic web policy languages;

• the general framework for privacy-preserving reasoning exploits the indistinguishability

of hidden knowledge from incomplete knowledge under the open world assumption;

• a general approach to design weakly privacy-preserving reasoners based on the notion of

conservative extensions; in particular, we provide privacy-preserving reasoning strategies

for description logics based on the notion of local ontologies from the modular ontology

study (Grau et al., 2007);

• privacy-preserving reasoning strategies for the important special case of hierarchical on-

tologies via a reduction to graph reachability analysis;

• preliminary investigation on the notion of hidden knowledge and privacy-preserving rea-

soning in P-DL.

The development of collaborative ontology building tools based on the notion

of modular ontologies (Bao and Honavar, 2004a; Bao et al., 2006g). (Chapter 7). We

investigated:

• the requirement of collaborative ontology building (COB) environment and the limitation

of existing approaches, including CVS-based collaboration and the shared server based

approaches;

• the benefits of using modular ontologies COB in tools; motivated from software engineer-

ing experiences, we extend the package-based ontology notion with package hierarchies

and scope limitation modifiers to support collaborative management of large ontologies;

• the development of research prototypes as the proof-of-concept tools for COB using the

modular ontology notion, including COB-Editor (targeted for editing biological ontolo-

gies) and WikiOnt (browser-based, general purpose ontology editor).

209

Impacts: the work presented in this dissertation may have potential impacts in several fields

in KR and semantic web, including modular ontologies, the combination of logic formalisms,

partial ontology reuse, the specification of next generation web ontology language, distributed

reasoning, and collaborative ontology building. Part of the work has been presented or will be

presented in major international conferences including (among others):

• Twenty-Second Conference on Artificial Intelligence (AAAI-07), July 2007, Vancouver,

Canada;

• The First International Conference on Web Reasoning and Rule Systems, June 2007,

Innsbruck, Austria;

• IEEE/WIC/ACM International Conference on Web Intelligence (WI’06), Dec. 2006,

Hong Kong SAR, China;

• International Semantic Web Conference (ISWC 2006). Nov. 2006, Athens, GA, USA

• Asian Semantic Web Conference (ASWC 2006), Sept., 2006, Beijing, China (Best Paper

Award)

The work presented in the dissertation is in active community involvement. In particular,

we organized or made significant contribution to several related workshops including:

• Second International Workshop on Modular Ontologies (WoMO 2007), Fourth Interna-

tional Conference on Knowledge Capture, Whistler, British Columbia, Canada, October

2007.

• IJCAI 2007 Workshop on Semantic Web for Collaborative Knowledge Acquisition (SWeCKa

2007), International Joint Conference on Artificial Intelligence, Hyderabad, India, Jan-

uary 2007.

• First International Workshop on Modular Ontologies (WoMO 2006), International Se-

mantic Web Conference, Athens, Georgia, USA, November 2006.

• AAAI 2006 Fall Symposium on Semantic Web for Collaborative Knowledge Acquisition

(SWeCKa 2006), Arlington, VA, USA, October 2006.

210

On the ground of preliminary results obtained from this study, research on this topic is cur-

rently supported by US National Science Foundation grant (IIS-0639230) SGER: Exploratory

Investigation of Modular Ontologies (Sept. 2006-Feb. 2008).

The work presented in the dissertation has caused interests from industrial organizations

and has been presented in the following invited talks:

• Collaborative Development, Selective Sharing and Reuse of Ontologies. SemGrail 2007

Workshop, organized by the Microsoft Corporation, June 21-22, 2007 Redmond, WA,

USA;

• On Selective Sharing and Reuse of Ontologies, Semantic Technology Conference, May

18-22, 2007, San Jose, CA, USA.

8.2 Limitations and Future Work

The work presented in this dissertation may be extended in several promising directions.

8.2.1 Modular Ontology Study in General

Further investigation of semantics of modular ontologies. In chapter 3 we compared

several semantics of modular ontologies. We will further compare expressivity and semantic

correctness of those semantics. In particular, we believe that in general modular ontologies may

be viewed as the hybrid of description logics (for each module) and rules (for semantic relations

between modules). Lending recent progress in the study of combining DL and rules (e.g., logic

programming), such an approach may provide us a more fundamental understanding of some

properties of modular ontologies, e.g., decidability and semantic locality. Such a study may also

deepen our understanding on the relation between combining many-sorted theories (Baader and

Ghilardi, 2005) and modular ontologies.

Further comparative analysis of modular ontology languages. The comparison on

modular ontology languages in Chapter 4 is limited to DDL with bridge rules between concepts,

one-way binary E-connections and P-DL SHOIQP. We will further extend the comparison in

more general setting, e.g., including DDL with heterogenous bridge rules; in particular, we will

study the support of different formalisms on the reuse of nominals.

211

A modular syntax and semantics for RDF. Existing study on modular ontologies is

focused on logical formalisms extending OWL and its corresponding DLs. In the semantic web

language stack, OWL is on the top of RDF, which may also be used in applications that require

strong modularity support. We will investigate the possibility of extending RDF as a modular

ontology language.

Combining Conservative Extensions and Modular Ontology Languages. Conser-

vative extensions offers design patterns in ontology language to ensure semantic modularity

under the classic first-order semantics. On the other hand, specially designed modular ontology

languages (e.g., P-DL) realize modularity using the local model semantics. Combining the two

approaches may offer principled ways to guide the design of ontology modules, as well as provide

the necessary, yet still unexplored, distribute reasoning support for modular ontologies based

on conservative extensions.

8.2.2 Extending P-DL

Extending P-DL to support ABox modularity. Current work on P-DL is focused

on TBox modularity only. However, many applications (e.g., distributed data retrieval on

the semantic web) requires connecting multiple data-intensive sources which are best described

using ABoxes. Extending P-DL to support modularity in both TBox and ABox would be useful

for such scenarios.

Querying P-DL. RDF and OWL are supported by the query language SPARQL. Providing

a similar query language is necessary for the success of modular ontology languages. We will

investigate the possibility of extending SPARQL as a query language for web ontologies based

on P-DLs.

Using Named Graph as the syntax for P-DL1. Instead of re-interpreting owl:imports

and adopt OWL as a syntax for P-DL, an alternative approach is to use Names Graph as the

syntax for P-DL, where each ontology file has clearly defined organization structure to embed

multiple ontology modules. Such an approach may provide stronger support for partial ontology

reuse and human readability of ontologies.

Formal semantic analysis on package hierarchies and scope limitations in P-DL.

We extended P-DL with package hierarchies and scope limitations in Chapter 7. However, there

1We thank Jing Mei for discussions on this problems.

212

is still missing the formal semantic specification of those extension of P-DL and their impacts

on semantic properties of P-DL.

Reusing P-DL Ontology Through Interfaces and Views. In (Bao et al., 2006f), P-

DL ontologies may be partially reused through interfaces (for a single module) and views (for

integrating contents from multiple modules), which are subset of the signatures of the reused

modules. We will formally investigate such an extension to P-DL for better support of semantic

partial reuse. In particular, we will investigate practical methods to identify axioms in reused

modules that are relevant to the interface or view in question. Such a study may also be useful

for the modularization of a large ontology.

8.2.3 Reasoning Algorithms for Modular Ontologies

Implementation of the SHIQP tableau algorithm. Current study on P-DL is theory-

oriented. Providing a scalable and stable reasoner for P-DL is critical for its success. Since the

SHIQP tableau algorithm as we described in Chapter 4 is a natural extension of the SHIQ
reasoning algorithm, we may extend existing DL reasoners, e.g. Pellet (Sirin et al., 2007), to

support reasoning with SHIQP (hence also for ALCP−C and ALCPC)2.

Design federated reasoning algorithms for SHOIQP and SROIQP. We believe the

federated reasoning approach we applied for SHIQP can be extend to more expressive P-DL

languages, such as SHOIQP and SROIQP, on the basis of tableau algorithms for classic DLs

SHOIQ (Horrocks and Sattler, 2005) and SROIQ (Horrocks et al., 2006), thus allowing each

ontology module to be in OWL-DL and OWL 1.1.

Optimizing distributed reasoning with P-DL. The reasoning algorithms we presented

in Chapter 5 are subject to optimization in several ways. Promising approaches include caching

query results, pre-computing of message query and answering lookup table, and borrowing

optimization techniques used in ExpTime tableau algorithms for DLs (Donini and Massacci,

2000; Ding and Haarslev, 2007).

Improving scalability of DL reasoners utilizing modularity in ontologies. The re-

sult obtained in reasoning with modular ontologies may also be applied in improving scalability

of a DL reasoner. For example, if the ontology in question has good semantic modularity w.r.t.

the query in question, the reasoning task may be preformed by using only knowledge in related

2Future progress will be released at https://sourceforge.net/projects/phoenix-project

https://sourceforge.net/projects/phoenix-project

213

parts of the ontology as needed instead of considering the whole ontology.

Reasoning with light-weight modular ontologies. Light-weight ontologies that are

widely used in biological domains and social web (e.g., FOAF3 and folksonomy) can be modeled

by highly efficient subsets of OWL-DL, e.g., concept hierarchies or EL (Baader et al., 2005).

Exploring modularity and efficient distributed reasoning algorithms for those ontologies will

be extremely useful for tools on the semantic web, e.g., semantic search engine, to tackle very

large sets of ontologies that might contain billions of terms. We will investigate the correspond

subsets of P-DL to meet those needs.

Debugging modular ontologies. Debugging is a non-standard reasoning process of de-

tecting and identifying possible reasons of problems (e.g., unsatisfiable concepts and ontology

inconsistency) in an ontology (Kalyanpur et al., 2006). Reconciling inconsistencies in modular

ontologies has been investigated only in several limited cases, such as generating consistent

subset of an inconsistent modular ontology (Bao and Honavar, 2005b) and the debugging of

DDL bridge rules (Meilicke et al., 2007). We will extend the work mentioned above to address

the debugging of modular ontologies in the general setting. Results from this work will be use-

ful to resolve inconsistencies between ontology modules in the course of collaborative ontology

building.

8.2.4 Privacy-Preserving Reasoning in Modular Ontologies

Privacy-Preserving Reasoning with P-DL. In chapter 6 we discussed issues to be

addressed in designing privacy-preserving reasoners for P-DL. We will further explore a practical

distributed algorithm that is capable of doing reasoning with partially hidden knowledge in

modular ontologies.

Design secure reasoners for RDF graphs. We will explore the possibility of extending

the graph theory based analysis for privacy-preserving reasoning with hierarchical ontologies

to ontologies that can be modeled using more complex graphs, e.g., RDF graphs. One promis-

ing approach is to extend the study of reachability in graphs with a single type of edges to

reachability in graphs with labeled edges.

Privacy protection in medical ontologies. Medical information systems may require

sharing of patient data among doctors, healthcare providers and health insurance companies,

3http://xmlns.com/foaf/spec/

214

in the form of ontologies, e.g., for describing metadata about medical videos (Bao et al., 2004).

Our work on selective knowledge sharing allows us to address the necessity to protect sensitive

information in medical knowledge bases from unauthorized access or inference. We will inves-

tigate algorithms and application tools for the secure knowledge discovery from medical and

health knowledge bases.

8.2.5 Applications of Modular Ontologies

Collaborative Ontology Building. We will extend COB-Editor and WikiOnt for better

usability. Currently, WikiOnt2, which will support a browser-based, interactive graphical user

interface and a new wiki engine for editing modular ontologies, is under development4. Both

COB-Editor and WikiOnt may be connected to a reasoner for modular ontologies for consistency

checking between modules. A collaborative ontology building plugin for Protege driven by the

modular ontology notion may also be developed in the future.

Semantic Data Integration. The massive size, the relative autonomy and the distributed

nature of data sources on the semantic web requires tractable approaches to integrate informa-

tion from multiple, semantically heterogeneous data sources. We have previously investigated

Ontology-Extended Data Sources (OEDS) that are associated with explicit ontologies of schema

and content of data sources (Caragea et al., 2005a,b) and query translation under such a set-

ting (Bao et al., 2007a). Those work can be extended using results from modular ontologies in

several ways: 1) modular ontologies may provide the right framework to capture the contextual

and distributed nature of OEDS; 2) semantics-preserving query translation in OEDS may be

studied as a special case of reasoning in modular ontologies; 3) translating retrieved data into

the ontology that is understandable by the user may be studied as a special case of instance

retrieval in modular ontologies.

4Future progress will be available at http://sourceforge.net/projects/wikiont/.

http://sourceforge.net/projects/wikiont/

215

Appendix: Proof of Lemmas and Theorems

216

A.1 Proofs for Chapter 4

Some useful properties of image domain relations are listed in the below:

Lemma A.1 Suppose C,D are concepts. A model I = 〈{Ii}, {rij}i6=j〉 of a SHOIQP KB has

the following properties:

1. If Pi ∈ P+
j and Pj ∈ P+

i , then rij = r−ji.

2. rij(C
Ii ∩DIi) = rij(C

Ii) ∩ rij(DIi)

3. rij(C
Ii ∪DIi) = rij(C

Ii) ∪ rij(DIi)

4. rij(C
Ii) ∩ rij((¬iC)Ii) = ∅

5. CIi ⊆ DIi → rij(C
Ii) ⊆ rij(DIi)

6. rij(C
Ii \DIi) = CIj \DIj

Proof: 1): We must have rij ◦ rji = rii. If (x, y) ∈ rij and (y, z) ∈ rji, we must have x = z,

i.e. (x, y) ∈ r−ji. The other direction is similar.

2) and 3): They are true since domain relations are one-to-one.

4): A corollary of 2).

5): x ∈ rij(CIi)→ r−ij(x) ∈ CIi ⊆ DIi → x ∈ rij(DIi).

6): From CIi \DIi = CIi ∩ (¬iD)Ii and 2)

Proof of Lemma 4.1

• For Equation 1, we have

(⊤i ⊓ ¬jC)Ij = ⊤Ij

i ∩ (¬jC)Ij (by the definition of ·Ij)

= rij(∆
Ii) ∩ (∆Ij\CIj) (by the definition of ·Ij)

= rij(∆
Ii)\CIj (since rij(∆

Ii) ⊆ ∆Ij)

= (¬iC)Ij . (by the definition of (¬iC)Ij)

• For Equation 2,

217

(¬i(C ⊓D))Ij

= rij(∆
Ii)\(C ⊓D)Ij (by the definition of ·Ij)

= rij(∆
Ii)\(CIj ∩DIj) (by the definition of ·Ij)

= (rij(∆
Ii)\CIj) ∪ (rij(∆

Ii)\DIj) (set-theoretically)

= (¬iC)Ij ∪ (¬iD)Ij (by the definition of ·Ij)

= (¬iC ⊔ ¬iD)Ij . (by the definition of ·Ij)

• The proof of Equation 3 is dual to that of Equation 2.

• For Equation 4, we first note that Pk
R−→ Pi and

∀R.¬jC ⊑j ⊤k (since (∀R.¬jC)Ij ⊆ (⊤k)
Ij by the definitions)

⊑j ⊤i, (since (⊤k)
Ij = rkj(∆

Ik) = rij ◦ rki(∆
Ik) ⊆ rij(∆Ii))

(¬i(∃R.C))Ij = rij(∆
Ii)\(∃R.C)Ij (by the definition of ·Ij)

= rij(∆
Ii)\{x ∈ rkj(∆

Ik)|∃y ∈ ∆Ij , (x, y) ∈ RIj ∧ y ∈ CIj}
(by the definition of (∃R.C)Ij)

= (rij(∆
Ii)\rkj(∆

Ik)) ∪ (rij(∆
Ii) ∩ {x ∈ rkj(∆

Ik)|
∀y ∈ ∆Ij , (x, y) ∈ RIj → y 6∈ CIj})

(set-theoretically)

= (¬i⊤k)
Ij ∪ (⊤Ij

i ∩ (∀R.¬jC)Ij)

(by the definition of ·Ij)

= (¬i⊤k ⊔ (⊤i ⊓ ∀R.¬jC))Ij (by the definition of ·Ij)

= (¬i⊤k ⊔ (∀R.¬jC))Ij . (since ∀R.¬jC ⊑j ⊤i)

• The proof of Equation 5 is dual to that of Equation 4.

218

• For Equation 6, as for Equation 4, we have ≥(n+ 1)R.C ⊑j ⊤i.

(¬i(≤nR.C))Ij = rij(∆
Ii)\(≤nR.C)Ij (by the definition of ·Ij)

= rij(∆
Ii)\{x ∈ rkj(∆

Ik)| |{y ∈ ∆Ij |(x, y) ∈ RIj

∧ y ∈ CIj}| ≤ n}
(by the definition of (≤nR.C)Ij)

= rij(∆
Ii)\rkj(∆

Ik) ∪ (rij(∆
Ii) ∩ {x ∈ rkj(∆

Ik)|
|{y ∈ ∆Ij |(x, y) ∈ RIj ∧ y ∈ CIj}| ≥ n+ 1})

(set-theoretically)

= (¬i⊤k)
Ij ∪ (⊤Ij

i ∩ (≥(n+ 1)R.C)Ij)

(by the definition of ·Ij)

= (¬i⊤k ⊔ (⊤i ⊓≥(n+ 1)R.C))Ij

(by the definition of ·Ij)

= (¬i⊤k ⊔ ≥(n+ 1)R.C)Ij .

(since ≥(n+ 1)R.C ⊑j ⊤i)

• The proof of Equation 7 follows the dual steps to those in the proof of Equation 6. Q.E.D.

Proof of Lemma 4.2

Proof: For a k-role name R, such that R ∈ Sig(Pi) ∩ Sig(Pj), we have rij(R
Ii) = rij ◦

rki(R
Ik) = rkj(R

Ik) = RIj .

To prove the claim for concepts, structural induction on the concept formula C will be used.

If C is a k-concept name or a k-nominal name, we have

rij(C
Ii) = rij(rki(C

Ik)) (by the definition of CIi)

= rkj(C
Ik) (by compositional consistency)

= CIj . (by the definition of CIj)

For C = ¬kD and rij(D
Ii) = DIj , we have

219

rij(C
Ii) = rij((¬kD)Ii) (since C = ¬kD)

= rij(rki(∆
Ik)\DIi) (by the definition of (¬kD)Ii)

= rij(rki(∆
Ik))\rij(DIi) (since rij is one-to-one)

= rkj(∆
Ik)\DIj (by compositional consistency and

the induction hypothesis)

= (¬kD)Ij (by the definition of (¬kD)Ij)

= CIj . (since C = ¬kD)

For C = D ⊓ E, assuming inductively that rij(D
Ii) = DIj and rij(E

Ii) = EIj , we have

rij(C
Ii) = rij((D ⊓ E)Ii) (since C = D ⊓ E)

= rij(D
Ii ∩ EIi) (by the definition of ·Ii)

= rij(D
Ii) ∩ rij(EIi) (since rij is one-to-one)

= DIj ∩ EIj (by the induction hypothesis)

= (D ⊓ E)Ij (by the definition of ·Ij)

= CIj . (since C = D ⊓ E)

Let C = ≤nR.D, with R a k-role, and assume inductively that rij(D
Ii) = DIj . We first

prove two auxiliary claims.

Claim 1: Let x′ = rij(x). Then rij : RIi(x)→ RIj(x′) is a total bijection.

Proof: rij is a one-to-one function by definition. It is onto because

RIj(x′) = rij(R
Ii)(x′)

= (rij ◦RIi ◦ r−ij)(rij(x))

= (rij ◦RIi)(x)

= rij(R
Ii(x))

By cardinality preservation (item 5 in Definition 5.1), rij is a total function from RIi(x) to

RIj(x′), whence rij is a total bijection from RIi(x) to RIj (x′). Q.E.D.

Claim 2: Let x′ = rij(x). Then rij : RIi(x) ∩DIi → RIj (x′) ∩DIj is also a total bijection.

Proof: rij is one-to-one and total on RIi(x) by Claim 1. Hence,

rij(R
Ii(x) ∩DIi) = rij(R

Ii(x)) ∩ rij(DIi) = RIj(x′) ∩DIj .

220

Thus, rij is onto RIj(x′) ∩DIj , whence the claim holds. Q.E.D.

Using the two claims, we now obtain

x′ ∈ rij((≤ nR.D)Ii) ⇔ ∃x ∈ (≤ nR.D)Ii such that x′ = rij(x)

(by the definition of rij)

⇔ ∃x ∈ rki(∆
Ik), |RIi(x) ∩DIi | ≤ n ∧ x′ = rij(x)

(by the definition of (≤ nR.D)Ii)

⇔ x′ ∈ rkj(∆
Ik), |RIj (x′) ∩DIj | ≤ n

(⇒: by compositional consistency and Claim 2)

(⇐: by compositional consistency and Claim 2)

⇔ x′ ∈ (≤ nR.D)Ij (by the definition of (≤ nR.D)Ij)

Q.E.D.

Proof of Theorem 4.1: Sufficiency is proven in Lemma A.2 and necessity in Lemma A.3.

Lemma A.2 Let Σ be a SHOIQP KB and Pw a package of Σ. If ⊤w is satisfiable with respect

to ℜ(P ∗w), then Σ is consistent as witnessed by Pw.

Proof: If ⊤w is satisfiable with respect to ℜ(P ∗w), then ℜ(P ∗w) has at least one model

I = 〈∆I , ·I〉, such that ⊤Iw 6= ∅. Our goal is to construct a model of P ∗w from I, such that

∆Iw 6= ∅. For each package Pi, a local interpretation Ii is constructed as a projection of I in

the following way:

• ∆Ii = ⊤Ii .

• For every concept name C that appears in Pi, C
Ii = CI ∩ ⊤Ii .

• For every role name R that appears in Pi, R
Ii = RI ∩ (⊤Ii ×⊤Ii).

• For every nominal name o that appears in Pi, o
Ii = oI .

For every pair i, j, such that Pi ∈ P ∗j , we define

rij = {(x, x)|x ∈ ∆Ii ∩∆Ij}.

221

Clearly, we have ∆Iw = ⊤Iw 6= ∅, by the hypothesis. So it suffices, now, to show that

〈{Ii}, {rij}Pi∈P ∗
j
〉 is a model of the modular ontology P ∗w, i.e., that it satisfies the seven condi-

tions postulated in Definition 5.1.

First, it is clear from the definition that each rij is in fact a one-to-one relation.

Second, we must show that Compositional Consistency holds.

• Suppose that Pi ∈ P ∗j , x ∈ ∆Ii , y ∈ ∆Ij , and (x, y) ∈ ρij . Therefore, x and y must be

connected by some chain of domain relations and/or inverse domain relations according

to the definition of ρij . Because all domain relations are identities, this implies that

x = y ∈ ∆Ii ∩∆Ij , whence, once more by the definition of rij, we obtain that (x, y) ∈ rij .
This proves that ρij ⊆ rij.

• Assume that i, j, k, with i 6= j, are such that Pi ∈ P ∗k , Pk ∈ P ∗j and (x, y) ∈ rij. Then

x = y ∈ ∆Ii ∩∆Ij . Since, in that case, ⊤i ⊓ ⊤j ⊑ ⊤k, this implies that x ∈ ∆Ik , whence

x ∈ ∆Ii ∩∆Ij ∩∆Ik , showing that (x, x) ∈ rik and (x, x) ∈ rkj. Therefore rij ⊆ rkj ◦ rik.

• From the definition of ρij , we have rkj ◦ rik ⊆ ρij.

Hence, ρij = rij = rkj ◦ rik, for Pi ∈ P ∗k and Pk ∈ P ∗j .

Next, it is shown that Conditions 3,4 and 6 of Definition 5.1 hold for the distributed inter-

pretation. Let X be an i-concept name or an i-nominal name. Then, we have that

rij(X
Ii) = XIi ∩∆Ij (by the definition of rij)

= XI ∩∆Ii ∩∆Ij (by the definition of XIi)

= XI ∩∆Ij (since i : X ⊑ ⊤i)

= XIj . (by the definition of XIj)

For X an i-role name, the same equalities hold with all local interpretation domains replaced

by their cartesian squares.

To show Cardinality Preservation for Roles, suppose that R is an i-role in Pj and that

(x, x′) ∈ rij , i.e., x = x′ ∈ ∆Ii ∩∆Ij . Then, we have

222

y ∈ RIi(x) iff (x, y) ∈ RIi (by the definition of RIi(x))

iff (x, y) ∈ RI (since RI ⊆ ∆Ii ×∆Ii)

iff (x′, y) ∈ RI ∩ (∆Ij ×∆Ij) (by the local domain and local

range axioms, and x = x′ ∈ ∆Ij)

iff (x′, y) ∈ RIj (by the definition of RIj)

iff y = rij(y) ∈ RIj (x′). (by the definition of RIj(x′))

Thus, cardinality preservation for roles holds.

Finally, it remains to show that Condition 7 of Definition 5.1 holds, i.e., that Ij is a model

of Pj, for every j.

For every role inclusion of the form R ⊑ S in Pj, R and S must be j-roles (by our restriction

on the use of imported roles), whence we have that

RIj = RI ∩ (∆Ij ×∆Ij) (by the definition of RIj)

⊆ SI ∩ (∆Ij ×∆Ij) (since R ⊑ S holds in the integrated ontology)

= SIj . (by the definition of SIj)

For a role R that appears in Pj , we have that Transj(R) if and only if Trans(R), whence

(RIj)
+

= (RI ∩ (∆Ij ×∆Ij))+ (by the definition of RIj)

= (RI)+ ∩ (∆Ij ×∆Ij) (set-theoretically)

= RI ∩ (∆Ij ×∆Ij) (since Trans(R) holds)

= RIj . (by the definition of RIj)

Finally, suppose that C ⊑ D is a concept inclusion in Pj . Then we must have #j(C)I ⊆
#j(D)I , whence, to prove that CIj ⊆ DIj , it suffices to show that, for every concept formula

X that appears in Pj, we have #j(X)I = XIj . We do this by structural induction on X.

We will consider in detail only concepts constructed using negation, conjunction and number

restriction. All other constructors may be handled similarly.

For the basis of the induction, if X is a j-concept name or a j-nominal name, then we have

#j(X) = X, whence #j(X)I = XI = XI ∩∆Ij = XIj , whereas, if X is an i-concept name or

an i-nominal name, with i 6= j, we have #j(X)I = (X ⊓ ⊤j)
I = XI ∩∆Ij = XIj .

Suppose, next, as the induction hypothesis, that for concepts C and D appearing in Pj ,

#j(C)I = CIj and #j(D)I = DIj , and also note that #j(R) = R for every i-role R appearing

in Pj . Thus, we have

223

#j(¬iC)I = (¬#j(C) ⊓ ⊤i ⊓ ⊤j)
I (by the definition of #j(¬iC))

= (¬#j(C))I ∩ ⊤Ii ∩ ⊤Ij (by the definition of ·I)
= (∆I\#j(C)I) ∩∆Ii ∩∆Ij (by the definition of ·I)
= (∆Ii ∩∆Ij)\#j(C)I (since ∆Ii ∩∆Ij ⊆ ∆I)

= rij(∆
Ii)\CIj (by the definition of rij and

the induction hypothesis)

= (¬iC)Ij . (by the definition of (¬iC)Ij)

#j(C ⊓D)I = (#j(C) ⊓#j(D) ⊓ ⊤j)
I (by the definition of #j(C ⊓D))

= #j(C)I ∩#j(D)I ∩∆Ij (by the definition of ·I)
= CIj ∩DIj ∩∆Ij (by the induction hypothesis)

= CIj ∩DIj (since CIj ,DIj ⊆ ∆Ij)

= (C ⊓D)Ij . (by the definition of ·Ij)

#j(≤ nR.C)I = ((≤ nR.#j(C)) ⊓ ⊤i ⊓ ⊤j)
I

= (≤ nR.#j(C))I ∩∆Ii ∩∆Ij

= {x ∈ ∆I | |RI(x) ∩ (#j(C))I | ≤ n} ∩∆Ii ∩∆Ij

= {x ∈ ∆Ii ∩∆Ij | |RI(x) ∩ CIj | ≤ n}
= {x ∈ ∆Ii ∩∆Ij | |RIj (x) ∩ CIj | ≤ n} (*)

= {x ∈ rij(∆Ii)| |RIj (x) ∩ CIj | ≤ n}
= (≤ nR.C)Ij

(*) is because RIj ⊆ RI and for any y ∈ RI(x) ∩ CIj , y ∈ ∆Ij , hence y ∈ RIj(x) ∩ CIj .

Q.E.D.

Next, we proceed to show the reverse implication.

Lemma A.3 Let Σ be a SHOIQP KB. If Σ is consistent as witnessed by a package Pw, then

⊤w is satisfiable with respect to ℜ(P ∗w).

Proof: Suppose that Σ is consistent as witnessed by Pw. Thus, it has a distributed model

〈{Ii}, {rij}Pi∈P ∗
j
〉, such that ∆Iw 6= ∅. We proceed to construct a model I of ℜ(P ∗w) by

merging individuals that are related via chains of image domain relations or their inverses.

More precisely, for every element x in the distributed model, we define its equivalence class

224

x = {y|(x, y) ∈ ρ} where ρ is the symmetric and transitive closure of the set
⋃

Pi∈P ∗
j
rij .

Moreover, for a set S, we define S = {x̄|x ∈ S} and for a binary relation R, we define

R = {(x, y)|(x, y) ∈ R}.

Claim 3: (a) For all i and for all x, |x ∩∆Ii | ≤ 1.

(b) For all i and any set S ⊆ ∆Ii , |S| = |S|.
(c) For all i and all sets A1, A2 ⊆ ∆Ii , A1\A2 = A1\A2.

(d) For all i and for all S ⊆ ∆Ii ×∆Ii , (S)+ = (S+).

Proof: (a) Suppose u, v ∈ x∩∆Ii , u 6= v. Then there must exist a y ∈ (x\∆Ii)∩∆Ij for some

j, which implies that {(v, y), (u, y)} ⊆ ρij = rij or {(y, u), (y, v)} ⊆ ρji = rji, contradicting the

assumption that domain relations are one-to-one. Hence |x ∩∆Ii | ≤ 1.

(b) We prove this statement by showing that f : x→ x is a total bijection from S to S. f

is a total and onto function by the definition of S. f is injective because for x ∈ S, if there are

two distinct x1, x2 in S, such that x1 = x2 = x, then {x1, x2} ⊆ x ∩∆Ii , contradicting (a).

(c) This statement holds because

x ∈ A1\A2 ↔ (x ∈ A1 and x 6∈ A2)

↔ ∃x′, {x′} = x ∩∆Ii , x′ ∈ A1\A2 (by Part (a))

↔ x ∈ A1\A2

d) First we prove (S)+ ⊆ S+. It is because S ⊆ S+, hence (S)+ ⊆ (S+)+; on the other hand,

if (x, y) ∈ (S+)+, there exist x1, ..., xn such that (x, x1), (xn, y) and (xk−1, xk) (for k = 2, ..., n)

∈ S+, hence (x|i, x1|i), (xn|i, y|i) and (xk−1|i, xk|i) ∈ S+ (for k = 2, ..., n), hence (x|i, y|i) ∈ S+,

thus (x, y) ∈ S+.

In the other direction, if (x, y) ∈ S+, then (x|i, y|i) ∈ S+, hence there exist x1, ..., xn

such that (x|i, x1), (xn, y|i) and (xk−1, xk) ∈ S (for k = 2, ..., n), therefore (x, x1), (xn, y) and

(xk−1, xk) ∈ S (for k = 2, ..., n), thus (x, y) ∈ (S)+.

Claim 3 Q.E.D.

We denote by x|i the element (if it exists) in ∆Ii that belongs to x, i.e., x|i ∈ ∆Ii ∩ x.
We now proceed to define a model of Σ. Let I = 〈∆I , ·I〉 be defined as follows:

• ⊤I = ∆I =
⋃

i ∆
Ii , and ⊥I = ∅.

225

• For every i-name X, XI := XIi .

• For every i, ⊤Ii = ∆Ii .

We must show that I is a model of ℜ(P ∗w), such that ⊤Iw 6= ∅.
We have ⊤Iw = ∆Iw 6= ∅, by the hypothesis.

a) Suppose, next that i, j, k are such that i 6= j, Pi ∈ P ∗k and Pk ∈ P ∗j . To see that

⊤i ⊓ ⊤j ⊑ ⊤k holds in I, suppose that x ∈ (⊤i ⊓ ⊤j)
I = ⊤Ii ∩⊤Ij = ∆Ii ∩∆Ij . Then x ∈ ∆Ii

and x ∈ ∆Ij , therefore (x|i, x|j) ∈ ρij = rkj ◦ rik. Hence, there exists x′ ∈ ∆Ik , such that

(x|i, x′) ∈ rik ⊆ ρ and (x′, x|j) ∈ rkj ⊆ ρ, implying x = x′ ∈ ∆Ik = ⊤Ik .

b) is discussed at the end of the proof.

c) For every role inclusion R ⊑ S in Pj , since both R and S must be j-roles, we obtain

RI = RIj (by the definition of RI)

⊆ SIj (since R ⊑ S is in Pj)

= SI (by the definition of SI)

d) If C is an i-concept name or an i-nominal name, then we do have C ⊑ ⊤i, since CI =

CIi ⊆ ∆Ii = ⊤Ii .

e) If R is an i-role, then RI = RIi ⊆ ∆Ii ×∆Ii = ⊤Ii ×⊤Ii , whence the domain and range

of RI are both restricted to ⊤Ii .

f) Next, let R be an i-role name in Pj . It must be shown that ∃R.⊤j ⊑ ⊤j and ∃R−.⊤j ⊑ ⊤j

are both valid in I. Only the first subsumption will be shown. The second follows using a similar

argument. For any x,

x ∈ (∃R.⊤j)
I ⇒ ∃y, (x, y) ∈ RI and y ∈ ⊤Ij
⇒ ∃y, (x, y) ∈ RIi and y ∈ ∆Ij

⇒ ∃x′ = x|i, y′ = y|i, (x′, y′) ∈ RIi and y′′ = y|j , (y′, y′′) ∈ ρij = rij

⇒ ∃x′′ ∈ ∆Ij and (x′, x′′) ∈ rij = ρij

(because rij is a total bijection from (R−)Ii(y′) to

(R−)Ij (y′′) by Claim 1 in the proof of Lemma 4.2.)

⇒ x = x′ = x′′ ∈ ∆Ij = ⊤Ij

226

g) For a transitive i-role R, we have RI
+

= (RIi)+ = RIi
+

= RIi = RI (the second equality

is by Claim 3 part (d)).

b): For concept inclusions, we first prove, by induction on the structure of concepts, that

for any concept E appearing in Pj ,

#j(E)I = EIj . (A.1)

For the basis of the induction, let E be a concept such that Sig(E) ⊆ Sig(Pi) ∩ Sig(Pj):

Claim 4: EIi ∩∆Ij = rij(EIi) = EIj

Proof:

EIi ∩∆Ij = {x|x ∈ EIi} ∩ {x′|x′ ∈ ∆Ij} (by definition)

= {x′|∃x ∈ EIi ∧ x′ ∈ ∆Ij ∧ x = x′}

= {x′|∃x ∈ EIi ∧ x′ ∈ ∆Ij ∧ (x, x′) ∈ ρij = rij}

(by compositional consistency)

= {x′|x′ ∈ rij(EIi)} (by the definition of rij(·))

= rij(EIi) (by definition)

= EIj (since rij(E
Ii) = EIj) Q.E.D.

The proof of the basis case of the induction is concluded as follows: if E is an i-concept

name or an i-nominal name, then

#j(E)I = (E ⊓⊤j)
I

= EI ∩ ⊤Ij
= EIi ∩∆Ij

= EIj . (by Claim 4)

For the induction step, assume that for concepts C and D appearing in Pj , we have that

#j(C)I = CIj and #j(D)I = DIj .

If E = ¬iC, then

227

#j(E)I = #j(¬iC)I (since E = ¬iC)

= (¬#j(C) ⊓⊤i ⊓⊤j)
I (by the definition of #j(¬iC))

= (∆I\#j(C)I) ∩ ⊤Ii ∩ ⊤Ij (by the definition of ·I)
= (∆I\(CIj)) ∩∆Ii ∩∆Ij (by the induction hypothesis)

= (∆Ii ∩∆Ij)\(CIj) (since ∆Ii ∩∆Ij ⊆ ∆I)

= (rij(∆Ii))\(CIj) (by Claim 4)

= (rij(∆Ii)\CIj) (by Claim 3c)

= (¬iC)Ij (by the definition of (¬iC)Ij)

= EIj .

If E = C ⊓D, then

#j(E)I = #j(C ⊓D)I (since E = C ⊓D)

= (#j(C) ⊓#j(D) ⊓ ⊤j)
I (by the definition of #j(C ⊓D))

= #j(C)I ∩#j(D)I ∩ ⊤Ij (by the definition of ·I)
= CIj ∩DIj ∩∆Ij (by the induction hypothesis)

= CIj ∩DIj (since CIj ∩DIj ⊆ ∆Ij)

= {x|x ∈ CIj} ∩ {x|x ∈ DIj} (by the definition of (·))
= {x|x ∈ CIj ∩DIj} (follows from Claim 3a)

= (C ⊓D)Ij (by the definition of ·Ij)

= EIj .

For E = ≤nR.C, where R is an i-role, we first need to show:

Claim 5: If x ∈ ∆Ii ∩∆Ij , then (x, y) ∈ RIi iff (x|j , y|j) ∈ RIj , for any y.

Proof:

x ∈ ∆Ii ∩∆Ij and (x, y) ∈ RIi

⇒ (x|i, y|i) ∈ RIi and (x|i, x|j) ∈ ρij = rij

⇒ ∃y′ ∈ ∆Ij , (x|j , y′) ∈ RIj , and (y|i, y′) ∈ rij = ρij

(because rij is a total bijection from RIi(x|i) to

RIj(x|j) by Claim 1 in the proof of Lemma 4.2.)

⇒ (x|j , y|j) = (x|j , y′) ∈ RIj

228

and conversely

x ∈ ∆Ii ∩∆Ij and (x|j , y|j) ∈ RIj

⇒ (x|j, y|j) ∈ rij(RIi) (since rij(R
Ii) = RIj)

⇒ ∃x′, y′ ∈ ∆Ii , (x′, x|j) ∈ rij , (y′, y|j) ∈ rij , (x′, y′) ∈ RIi

⇒ (x, y) ∈ RIi . Q.E.D.

Based on Claims 3,4 and 5, we have:

#j(E)I = #j(≤nR.C)I (since E = ≤nR.C)

= (≤nR.#j(C) ⊓⊤i ⊓⊤j)
I (by the definition of #j(≤nR.C))

= {x| |{y|(x, y) ∈ RI ∧ y ∈ #j(C)I}| ≤ n} ∩ ⊤Ii ∩ ⊤Ij
(by the definition of ·I)

= {x| |{y|(x, y) ∈ RIi ∧ y ∈ CIj}| ≤ n} ∩∆Ii ∩∆Ij

(by the definitions of RI ,⊤Ii ,⊤Ij and the induction hypothesis)

= {x ∈ ∆Ii ∩∆Ij | |{y|j ∈ ∆Ij |(x, y) ∈ RIi ∧ y ∈ CIj}| ≤ n}
(by Claim 3b)

= {x ∈ ∆Ii ∩∆Ij | |{y|j ∈ ∆Ij |(x|j , y|j) ∈ RIj ∧ y|j ∈ CIj}| ≤ n}
(by Claim 5)

= {x ∈ rij(∆Ii)| |{y|j ∈ ∆Ij |(x|j , y|j) ∈ RIj ∧ y|j ∈ CIj}| ≤ n}
(by Claim 4)

= {x|x ∈ rij(∆Ii), |{z ∈ ∆Ij |(x, z) ∈ RIj ∧ z ∈ CIj}| ≤ n}
(by Claim 3a)

= (≤nR.C)Ij (by the definition of (≤nR.C)Ij)

= EIj .

Finally, using Equation (A.1), we have that

#j(C)I = CIj (by Equation (A.1))

⊆ DIj (since C ⊑ D is in Pj)

= #j(D)I . (by Equation (A.1))

Lemma 4 Q.E.D.

That finishes the proof of Theorem 4.1

.

229

Proof of Theorem 4.6:

Given a DDL KB Σ and its integration #(Σ) as outlined in Section 4.4.1.2, we first prove

that distributed models of Σ and the traditional DL models of #(Σ) can be mapped to each

other.

For any distributed model Md = 〈{Ii}, {rij}〉 of Σ, where Ii = 〈∆i, (.)
Ii〉, we can construct a

traditional DL model I = 〈∆I , (.)I〉 by merging individual pairs connected by domain relations

into single individuals in I. For any concept or role i : A, (i : A)I in I is the same as AIi in

Md. It is easy to see that

• AIi ⊆ BIi → (i : A)I ⊆ (i : B)I

• ∆i ⊆ ∆I

• (i : A)I ⊆ ∆i for every atomic concept i : A

• for any 〈x, y〉 ∈ (i : s)I , we have x ∈ ∆i and y ∈ ∆i

• (INTO) rij(C
Ii) ⊆ DIi → (i : C)I ⊆ (i : D)I

• (ONTO) rij(C
Ii) ⊇ DIi → (i : C)I ⊇ (i : D)I

The last two conditions are true since domain relations rij in Md are one-to-one. Therefore,

I is a model of #(Σ).

In the other direction, given a traditional DL model I = 〈∆I , (.)I〉 of the integrated KB

#(Σ), we may also construct a distributed model Md = 〈{Ii}, {rij}〉 (where Ii = 〈∆i, (.)
Ii〉) of

Σ in the following way: for any concept name i : A, ∆i contains all individuals of (i : A)I . (.)Ii

maps each i-concept and i-role to the same set as (.)I does. For any bridge rule C
⊑−→ D or

C
⊒−→ D in Bij, ∆j also contains all individuals of (i : C)I and the domain relation rij contains

shared individual pairs in ∆i and ∆j .

It is easy to see that by making “copies” of some individuals in different local domains such

a decomposition creates a distributed model for Σ. The domain relations in the distributed

model are one-to-one.

Now we prove reasoning in Σ is exact w.r.t the integrated ontology #(Σ). For any i-concept

i : X and i : Y , if Σ �d i : X ⊑ i : Y , we have that for any distributed model Md of Σ,

XIi ⊆ Y Ii . Consequently, since any traditional DL model I of #(Σ) can be reduced to a

230

distributed model, XI ⊆ Y I must be hold, i.e. #(Σ) � #(i : X) ⊑ #(i : Y). Similarly, if

#(Σ) � #(i : X) ⊑ #(i : Y), we also have Σ �d i : X ⊑ i : Y .

For any i-concept i : X and j-concept j : Y , if Σ �d i : X
⊑−→ j : Y , for any distributed model

Md of Σ, we have: rij(X
Ii) ⊆ Y Ij . Consequently, for any traditional DL model I of #(Σ)

reduced from Md, since rij is one-to-one, rij(X
Ii) will be merged with XIi . Hence, XI ⊆ Y I

in any I, i.e., #(Σ) � #(i : X) ⊑ #(j : Y). Similarly, if Σ �d i : X
⊒−→ j : Y , we will have

#(Σ) � #(i : X) ⊒ #(j : Y).

For any i-concept i : X and j-concept j : Y , if #(Σ) � #(i : X) ⊑ #(j : Y), for any classical

model I of #(Σ), we have: XI ⊆ Y I . For any distributed model Md that is obtained from I,
either rij(X

Ii) ⊆ Y Ij or rji(Y
Ij) ⊇ XIi , i.e., Σ �d (X

⊑−→ Y or Y
⊒−→ X).

Therefore, if domain relations in DDL are one-to-one, the results of reasoning in DDL are

identical to the results of reasoning with the integrated ontology. Q.E.D.

Proof of Theorem 4.7: A CEHQ(SHOIQ) knowledge base T = 〈{Ti}, {Eij}i6=j〉 contains

a set of local TBoxes Ti, each of which is expressed over a subset of SHOIQ, and a set of

one-way E-connections Eij . A reduction from T to a SHOIQP knowledge base Σ = {Pi} can

be defined in the following way. For a formula in Ti, we define a translation function .# (in

what following, nominal names are treated as concept names):

A# := A for a concept name A

⊤#
i := ⊤′i where ⊤′i is a new concept name

⊥#
i := ⊥

(C ⊓D)# := C# ⊓D#

(¬C)# := ⊤′i ⊓ ¬iC
#

(∃R.C)# := ⊤′i ⊓ ∃R.C# where R is an i-role

(≤ nR.C)# := ⊤′i⊓ ≤ nR.C# where R is an i-role

(∃E.C)# := ⊤′i ⊓ ∃E.C# for E ∈ Eij , where C is a j-concept name

(≤ nE.C)# := ⊤′i⊓ ≤ nE.C# for E ∈ Eij, where C is a j-concept name

For simplicity, we do not discuss ∀ and ≥ n constructors since they can be reduced to other

concept constructors.

231

For each Ti, we define a package Pi that contains

• Loc(Pi) = {i-concept names and i-role names} ∪ {E|E ∈ Eij ,∀j} ∪ {⊤i} ∪ {⊤′i} ∪ {⊥};

• Ext(Pi) = {non-i concept names appears in Ti} ∪ {⊤′j |Eij 6= ∅,∀j};

• C# ⊓ ⊤′i ⊑ D# ⊓ ⊤′i, for each GCI C ⊑ D in Ti;

• R ⊑ S, for each role inclusion R ⊑ S in Ti;

• E1 ⊑ E2, for each link inclusion E1 ⊑ E2, where E1, E2 ∈ Eij, for some j;

• For every i-concept name C, add C ⊑ ⊤′i;

• For every j-concept name C (i 6= j) appearing in Ti, add C ⊑ ⊤′j;

• For every i-role name R, add domain(R) = range(R) = ⊤′i;

• For every E ∈ Eij , add domain(R) = ⊤′i and range(R) = ⊤′j ;

• For every j such that Eij 6= ∅, add ⊤′j ⊓ ⊤′i ⊑ ⊥.

Now we prove that a concept i : C is satisfiable in T iff C# ⊓ ⊤′i is satisfiable in Σ as

witnessed by Pi.

If i : C is satisfiable in T , there is a model J = 〈{Ji}, {rE}E∈Eij 〉 of T , such that CJi 6= ∅.
We construct an interpretation I = 〈{Ii}, {rij}Pi∈P ∗

j
〉 of Σ as follows: for every i,

1 ⊤′iIi = ∆Ji , ·Ii ← ·Ji ;

2 For every 〈x, y〉 ∈ rE , where E ∈ Eij , if rij(y) = ∅, add y′ in ∆Ii and let 〈y, y′〉 ∈ rji,
otherwise let y′ = rji(y); let 〈x, y′〉 ∈ EIi ;

3 For every i, j, add minimal new domain relation instances that satisfies ρij = rij = rkj◦rik,

for every k such that Pi ∈ P ∗k and Pk ∈ P ∗j ;

4 For every j and every j-concept name C in Pi, let CIi = rji(C
Ij);

5 Let ⊤′iIj = rij(∆
Ii).

We now prove I is a model of Σ and C# ⊓⊤′i. First, we note the following properties of I:

232

• Compositional consistency is satisfied from the construction of I;

• For every i, j such that Pi ∈ P+
j , rij is one-to-one; that is because that 1) for {(x, y) ∈ rij}

added in step 2 above, it must be an one-to-one function, 2) for any (x, y) ∈ rij added in

step 3 above, it must be the case that x = y before it was added, hence the one-to-one

property still holds.

• For a link E ∈ Eij , we note that EIi = rji ◦ rE , which follows from the construction of

EIi .

• For every i, j such that Pi ∈ P+
j and x ∈ ∆Ij , ∆Ji ∩ rji(x) = ∅, that is because rji(x)

must be a “new” element that does not exist in ∆Ji . Hence, for any S ⊆ ∆Ij , we have

∆Ji ∩ rji(S) = ∅.

Next, we prove (X# ⊓⊤′i)Ii = XJi for every concept X and every i.

If X is ⊤i or ⊥, (X# ⊓ ⊤′i)Ii = XJi trivally.

If X is an i-concept name,

(X# ⊓ ⊤′i)Ii = (X ⊓ ⊤′i)Ii (because X# = X)

= XIi (because XIi ⊆ ∆Ii = ⊤′iIi)

= XJi (from the construction of Ii)

If X is a j-concept name (i 6= j)

(X# ⊓ ⊤′i)Ii = (X ⊓ ⊤′i)Ii (because X# = X)

= XIi ∩∆Ji (from the construction of Ii)

= ∅ (because XIi = rji(X
Ij) is disjoint from ∆Ji)

= XJi (from the construction of Ji)

In what follows, we suppose, as induction hypothesis, (C#⊓⊤′i)Ii = CJi and (D#⊓⊤′i)Ii =

DJi .

If X = C ⊓D, we have:

(X# ⊓ ⊤′i)Ii = (C# ⊓D# ⊓ ⊤′i)Ii (from the definition of .#)

= (C# ⊓ ⊤′i)Ii ∩ (D# ⊓ ⊤′i)Ii (from the definition of .Ii)

= CJi ∩DJi (from induction hypothesis)

233

If X = ¬C, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i ⊓ ¬iC
⊓ ⊤′i)Ii (from the definition of .#)

= (∆Ii\(C#)Ii) ∩ (⊤′i)Ii (from the definition of .Ii)

= (⊤′i)Ii\(C#)Ii (because (⊤′i)Ii ⊆ ∆Ii)

= (⊤′i)Ii\(C# ⊓ ⊤′i)Ii (from set theory)

= ∆Ji\CJi (from induction hypothesis and the construction of Ii)

= (¬C)Ji (from the definition of .Ji)

= XJi (since X = ¬C)

If X = ∃R.C, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i ⊓ ∃R.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′iIi ∩ (∃R.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |∃y, (x, y) ∈ RIi ∧ y ∈ (C#)Ii} (from the definition of .Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ RIi ∧ y ∈ (C#)Ii} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ RJi ∧ y ∈ CJi}

(from induction hypothesis and RIi = RJi)

= (∃R.C)Ji (the definition of .Ji)

= XJi (since X = ∃R.C)

If X =≤ nR.C, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i⊓ ≤ nR.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′i
Ii ∩ (≤ nR.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |card{y|(x, y) ∈ RIi ∧ y ∈ (C#)Ii} ≤ n}

(from the definition of .Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ RIi ∧ y ∈ (C#)Ii} ≤ n} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ RJi ∧ y ∈ CJi} ≤ n}

(from induction hypothesis and RIi = RJi)

= (≤ nR.C)Ji (the definition of .Ji)

= XJi (since X =≤ nR.C)

234

If X = ∃E.C where E ∈ Eij and C is a j-concept name, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i ⊓ ∃E.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′i
Ii ∩ (∃E.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |∃y, (x, y) ∈ EIi ∧ y ∈ (C#)Ii} (from the definition of .Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ EIi ∧ y ∈ (C#)Ii} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ rji ◦ rE ∧ y ∈ CJi}

(from induction hypothesis and EIi = rji ◦ rE)

= {x ∈ ∆Ji |∃y, (x, y) ∈ rji ◦ rE ∧ y ∈ rji(CJj)}

(since CJi = rji(C
Jj))

= {x ∈ ∆Ji |∃y, y′, y′ ∈ ∆Ji , y = rji(y
′), (x, y′) ∈ rE ∧ y′ ∈ CJj}

(from the definition of rij(.))

= (∃E.C)Ji (the definition of .Ji)

= XJi (since X = ∃R.C)

235

If X =≤ nE.C where E ∈ Eij and C is a j-concept name, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i⊓ ≤ nE.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′i
Ii ∩ (≤ nE.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |card{(x, y) ∈ EIi ∧ y ∈ (C#)Ii} ≤ n}

(from the definition of .Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ EIi ∧ y ∈ (C#)Ii} ≤ n} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ rji ◦ rE ∧ y ∈ CJi} ≤ n}

(from induction hypothesis and EIi = rji ◦ rE)

= {x ∈ ∆Ji |card{y|(x, y) ∈ rji ◦ rE ∧ y ∈ rji(CJj)} ≤ n}

(since CJi = rji(C
Jj))

= {x ∈ ∆Ji |card{y|∃y′ ∈ ∆Ji , y = rji(y
′), (x, y′) ∈ rE ∧ y′ ∈ CJj} ≤ n}

(from the definition of rij(.))

= {x ∈ ∆Ji |card{y′ ∈ ∆Ji |(x, y′) ∈ rE ∧ y′ ∈ CJj} ≤ n}

(because rij is one-to-one from its construction)

= (≤ nE.C)Ji (the definition of .Ji)

= XJi (since X =≤ nR.C)

Other constructors can be handled similarly.

Next, we return to the proof of that I is a model of Σ and C# ⊓ ⊤′i. That is because for

every i, j:

• (C# ⊓ ⊤′j)Ij = CJj 6= ∅ must be true;

• Condition 1 and 2 in Definition 5.1, i.e., one-to-one and compositional consistency of

domain relations, are satisfied by construction as we already shown;

• rij(XIi) = XIj (Condition 3 and 6 in Definition 5.1) is true, for every concept or nominal

name X;

• Since there is no role importing, Condition 4 and 5 in Definition 5.1 are trivially satisfied.

Next we prove that the Condition 7 in Definition 5.1 holds, i.e., Ij is a model of Pj , for

every j:

236

• For every concept inclusion C ⊑ D in Tj, since CJj ⊆ DJj , we have (C#⊓⊤′j)Ij = CJj ⊆
DJj = (D# ⊓ ⊤′j)Ij ;

• For every role inclusion R ⊑ S in Tj, RIj = RJj ⊆ SJj = SIj ;

• For every link inclusion E1 ⊑ E2, E1, E2 ∈ Eji, we have rE1 ⊆ rE2, and E
Ij

k = rij◦rEk
, k =

1, 2, hence E
Ij

1 ⊆ E
Ij

2 ;

• XIj = XJj ⊆ ∆Jj = (⊤′j)Ij , for every j-concept name X;

• XIj = rij(X
Ii) ⊆ rij(∆

Ii) = (⊤′i)Ij , for every i-concept or nominal name X imported in

Pj ;

• For every j-role R, RIj = RJj ⊆ ∆Jj × ∆Jj = (⊤′j)Ij × (⊤′j)Ij , hence its domain and

range restrictions are satisfied;

• For every link E ∈ Eij , EIi = rji ◦ rE ⊆ ∆Ji × rji(∆Jj) = (⊤′i)Ii × (⊤′j)Ii , hence its

domain and range restrictions are satisfied.

• For every j such that Eij 6= ∅, (⊤′j ⊓ ⊤′i)Ii = rji(∆
Ii) ∩∆Ji ⊆ ∅.

On the other direction, if C#⊓⊤′i is satisfiable in Σ as witnessed by Pi, there is a model I =

〈{Ii}, {rij}Pi∈P ∗
j
〉 of P ∗i such that (C#⊓⊤′i)Ii 6= ∅. We construct a model J = 〈{Ji}, {rE}E∈Eij 〉

of T , with CJi 6= ∅, in the following way:

• For every i, let ∆Ji = ⊤′iIi ;

• For every i and for every i-name t occurring in Ti, let tJi = tIi ;

• For each E ∈ Eij, let rE = r−ji ◦ EIi ; hence rji ◦ rE = rji ◦ r−ji ◦ EIi = EIi (since rij is

one-to-one).

Now we prove J is a model of T with CJi 6= ∅. We first prove that (X# ⊓⊤′i)Ii = XJi for

every concept X and every i.

If X is ⊤i or ⊥, (X# ⊓ ⊤′i)Ii = XJi trivally.

237

If X is an i-concept name,

(X# ⊓ ⊤′i)Ii = (X ⊓ ⊤′i)Ii (because X# = X)

= XIi (because X ⊑ ⊤′i)

= XJi (from the construction of Ji)

If X is a j-concept name (i 6= j)

(X# ⊓⊤′i)Ii = (X ⊓ ⊤′i)Ii (because X# = X)

= ∅ (because X ⊑ ⊤′j and ⊤′j ⊓ ⊤′i ⊑ ⊥)

= XJi (from the construction of Ji)

In what follows, we suppose, as induction hypothesis (C# ⊓⊤′i)Ii = CJi and (D# ⊓⊤′i)Ii =

DJi .

If X = C ⊓D, we have:

(X# ⊓ ⊤′i)Ii = (C# ⊓D# ⊓ ⊤′i)Ii (from the definition of .#)

= (C# ⊓ ⊤′i)Ii ∩ (D# ⊓ ⊤′i)Ii (from the definition of .Ii)

= CJi ∩DJi (from induction hypothesis)

If X = ¬C, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i ⊓ ¬iC
⊓ ⊤′i)Ii (from the definition of .#)

= (∆Ii\(C#)Ii) ∩ (⊤′i)Ii (from the definition of .Ii)

= (⊤′i)Ii\(C#)Ii (because (⊤′i)Ii ⊆ ∆Ii)

= (⊤′i)Ii\(C# ⊓ ⊤′i)Ii (from set theory)

= ∆Ji\CJi (from induction hypothesis and the construction of Ji)

= (¬C)Ji (from the definition of .Ji)

= XJi (since X = ¬C)

238

If X = ∃R.C, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i ⊓ ∃R.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′i
Ii ∩ (∃R.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |∃y, (x, y) ∈ RIi ∧ y ∈ (C#)Ii} (from the definition of .Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ RIi ∧ y ∈ (C#)Ii} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ RJi ∧ y ∈ CJi}

(from induction hypothesis and RIi = RJi)

= (∃R.C)Ji (the definition of .Ji)

= XJi (since X = ∃R.C)

If X =≤ nR.C, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i⊓ ≤ nR.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′iIi ∩ (≤ nR.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |card{y|(x, y) ∈ RIi ∧ y ∈ (C#)Ii} ≤ n}

(from the definition of .Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ RIi ∧ y ∈ (C#)Ii} ≤ n} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ RJi ∧ y ∈ CJi} ≤ n}

(from induction hypothesis and RIi = RJi)

= (≤ nR.C)Ji (the definition of .Ji)

= XJi (since X =≤ nR.C)

239

If X = ∃E.C where E ∈ Eij and C is a j-concept name, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i ⊓ ∃E.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′i
Ii ∩ (∃E.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |∃y, (x, y) ∈ EIi ∧ y ∈ (C#)Ii} (from the definition of .Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ EIi ∧ y ∈ (C#)Ii} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |∃y, (x, y) ∈ rji ◦ rE ∧ y ∈ CJi}

(from induction hypothesis and EIi = rji ◦ rE)

= {x ∈ ∆Ji |∃y, (x, y) ∈ rji ◦ rE ∧ y ∈ rji(CJj)}

(since CJi = rji(C
Jj))

= {x ∈ ∆Ji |∃y, y′, y′ ∈ ∆Ji , y = rji(y
′), (x, y′) ∈ rE ∧ y′ ∈ CJj}

(from the definition of rij(.))

= (∃E.C)Ji (the definition of .Ji)

= XJi (since X = ∃R.C)

240

If X =≤ nE.C where E ∈ Eij and C is a j-concept name, we have:

(X# ⊓ ⊤′i)Ii = (⊤′i⊓ ≤ nE.C# ⊓ ⊤′i)Ii (from the definition of .#)

= ⊤′i
Ii ∩ (≤ nE.C#)Ii (from the definition of .Ii)

= ∆Ji ∩ {x ∈ ∆Ii |card{(x, y) ∈ EIi ∧ y ∈ (C#)Ii} ≤ n}

(from the definition of .Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ EIi ∧ y ∈ (C#)Ii} ≤ n} (since ∆Ji ⊆ ∆Ii)

= {x ∈ ∆Ji |card{y|(x, y) ∈ rji ◦ rE ∧ y ∈ CJi} ≤ n}

(from induction hypothesis and EIi = rji ◦ rE)

= {x ∈ ∆Ji |card{y|(x, y) ∈ rji ◦ rE ∧ y ∈ rji(CJj)} ≤ n}

(since CJi = rji(C
Jj))

= {x ∈ ∆Ji |card{y|∃y′ ∈ ∆Ji , y = rji(y
′), (x, y′) ∈ rE ∧ y′ ∈ CJj} ≤ n}

(from the definition of rij(.))

= {x ∈ ∆Ji |card{y′ ∈ ∆Ji |(x, y′) ∈ rE ∧ y′ ∈ CJj} ≤ n}

(because rij is one-to-one)

= (≤ nE.C)Ji (the definition of .Ji)

= XJi (since X =≤ nR.C)

Other constructors can be handled similarly.

Now we prove J is a model of T and C.

• CJi = (C# ⊓ ⊤′i)Ii 6= ∅;

• For every concept inclusion C ⊑ D in Tj, we have CJj = (C# ⊓ ⊤′j)Ij ⊆ (D# ⊓ ⊤′j)Ij =

DJj ;

• For every role inclusion R ⊑ S in Tj, RJj = RIj ⊆ SIj = SJj ;

• For every link inclusion E1 ⊑ E2, E1, E2 ∈ Eij , we have EIi

1 ⊆ EIi

2 , rEk
= r−ij ◦EIi

k , k = 1, 2

and rij is one-to-one, hence rE1 ⊆ rE2 ;

• For every i-role R, RJj = RIj ⊆ (⊤′j)Ij × (⊤′j)Ij = ∆Jj ×∆Jj , as being required for an

i-role;

241

• For every link E ∈ Eij ,

rE = r−ji ◦ EIi

⊆ r−ji ◦
(

(⊤′i)Ii × (⊤′j)Ii
)

(from the domain and range restriction of E in Pi)

⊆ r−ji ◦
(

∆Ji × rji((⊤′j)Ij)
)

(since ⊤′j is an imported concept)

⊆ ∆Ji ×
(

r−ji ◦ rji((⊤′j)Ij)
)

(from the definition of function composition)

⊆ ∆Ji × (⊤′j)Ij (since rji is one-to-one)

⊆ ∆Ji ×∆Jj (from the construction of J)

as being required for a link in Eij;

Hence, every axiom in T is satisfied by J . Hence, Σ can answer any query that might be

answered by T . Q.E.D.

242

A.2 Proofs for Chapter 5

Proof of Lemma 5.1: The statement is obvious if C = ⊤i or C = ⊥. For any model I of

P ∗j , we have:

• if C is a concept name or a local top concept, (¬̇iC)Ij = (⊤i ⊓ (¬jC))Ij = rij(∆
Ii) ∩

∆Ij\CIj = rij(∆
Ii)\CIj = (¬iC)Ij ;

• if C = ¬kD, then

(¬̇iC)Ij = (⊤i ⊓ (D ⊔ ¬i⊤k))
Ij (by NNF transformation rules)

= ⊤Ij

i ∩ (DIj ∪ (¬i⊤k)
Ij) (by the definition of ·Ij)

= rij(∆
Ii) ∩ (DIj ∪ (rij(∆

Ii)\rkj(∆
Ik))) (by the definition of I)

= (rij(∆
Ii)\(rkj(∆

Ik)\DIj)) (set-theorectically)

= (¬i(¬kD))Ij (by the definition of ·Ij)

= (¬iC)Ij ; (since C = ¬kD)

• if C = C1 ⊓ C2, then

(¬̇iC)Ij = (¬iC1 ⊔ ¬iC2)
Ij (by NNF transformation rules)

= (rij(∆
Ii)\CIj

1) ∪ (rij(∆
Ii)\CIj

2) (by the definition of ·Ij)

= rij(∆
Ii)\(CIj

1 ∩ C
Ij

2) (set-theorectically)

= (¬i(C1 ⊓ C2))
Ij (by the definition of ·Ij)

= (¬iC)Ij ; (since C = C1 ⊓ C2)

• if C = C1 ⊔ C2, the proof is similar;

• if C = ∃R.D, then

(¬̇iC)Ij = (⊤i ⊓ ∀R.¬jD)Ij

= {x ∈ rij(∆Ii) ∩∆Ij |(∀y ∈ ∆Ij)((x, y) ∈ RIj → y ∈ (¬jD)Ij)}
= {x ∈ rij(∆Ii)|(∀y ∈ ∆Ij)((x, y) ∈ RIj → y 6∈ DIj)}
= rij(∆

Ii)\{x ∈ ∆Ij |(∃y ∈ ∆Ij)((x, y) ∈ RIj ∧ y ∈ DIj)}
= (¬i(∃R.D))Ij

= (¬iC)Ij ;

243

• if C = ∀R.D, the proof is similar to the previous case.

Hence, (¬̇iC)Ij = (¬iC)Ij holds, for every model I of P ∗j , whence ¬̇iC ≡j ¬iC. Q.E.D.

Proof of Lemma 5.2: Proof: For the “if” direction, suppose that 〈{Ti}, {tij}Pi∈P+
j
〉, with

Ti = (Si,Li, Ei), is a tableau for D w.r.t. P ∗w. Then, a model I = 〈{Ii}, {rij}Pi∈P+
j
〉 of P ∗w may

be defined as follows:

∆Ii = Si;

AIi = {x|A ∈ Li(x)}, for every concept name A;

RIi = Ei(R), for every i-role name R;

rij = tij .

By using induction on the structure of concepts, we show that

C ∈ Li(x) implies x ∈ CIi. (A.2)

• If C is a concept name, then the statement follows by the definition of CIi .

• If C = ¬iE, where E is a concept name, then, by Property (A1) of the tableau, E 6∈ Li(x),

whence, by the definition of EIi , x 6∈ EIi and, hence, x ∈ ∆Ii\EIi = CIi .

• If C = C1 ⊓ C2, then, by Property (A2), C1 ∈ Li(x) and C2 ∈ Li(x), whence, by the

induction hypothesis, x ∈ CIi

1 and x ∈ CIi

2 and, therefore, x ∈ (C1 ⊓ C2)
Ii .

• The case C = C1 ⊔ C2 may be handled similarly.

• If C = ∀R.E and 〈x, y〉 ∈ RIi , then 〈x, y〉 ∈ Ei(R) and, by Property (A4), E ∈ Li(y),

whence, by the induction hypothesis, y ∈ EIi and, hence, x ∈ (∀R.E)Ii .

• If C = ∃R.E, then, by Property (A5), there exists y ∈ Si, such that 〈x, y〉 ∈ Ei(R) and

E ∈ Li(y), whence, by definition, 〈x, y〉 ∈ RIi and, by the induction hypothesis, y ∈ EIi ,

and, therefore, x ∈ (∃R.E)Ii .

Next, using Implication (A.2), it is shown that all ALCP−C restrictions on domain relations

are satisfied.

244

• First, DIw is not empty, since there exists, by hypothesis, x ∈ Sw, such that D ∈ Lw(x).

• The image domain relations rij are one-to-one and compositionally consistent by tableau

Properties (B1) and (B2).

• For every concept importing Pi
C−→ Pj , where C is an i-concept name, we have rij(C

Ii) =

CIj , by Property (B3).

• For every Pi ∈ P ∗w, every axiom C ⊑ D ∈ Pi and every individual x ∈ Si, we have, using

tableau Properties (A0) and (A2), that ¬iC ⊔D ∈ Li(x). Thus, by Property (A3), either

¬iC ∈ Li(x) or D ∈ Li(x). Hence, by Implication (A.2), x 6∈ CIi or x ∈ DIi , whence

CIi ⊆ DIi , and, therefore, Ii |= Pi.

For the “only if” direction, if I = 〈{Ii}, {rij}Pi∈P+
j
〉 is a model of P ∗w, with CIw 6= ∅, then

a tableau T = 〈{Ti}, {tij}Pi∈P+
j
〉 for P ∗w may be defined as follows:

Si = ∆Ii ;

Li(x) = {C ∈ sub(CTi
)|x ∈ CIi}, x ∈ ∆Ii , i 6= w;

Lw(x) = {C ∈ sub(D) ∪ sub(CTw)|x ∈ CIw}, x ∈ ∆Iw ;

Ei(R) = RIi ;

tij = rij .

We now verify that T is indeed a tableau for D w.r.t. Pw, i.e., that it satisfies all conditions

in Definition 5.2:

• (E): Since CIw 6= ∅, there exists x ∈ Sw, such that C ∈ Lw(x).

• (A0): Since Ii is a model of Pi, we have, for every x ∈ Si, x ∈ CIi

Ti
, whence CTi

∈ Li(x).

• (A1): If C ∈ Li(x), then x ∈ CIi, whence x 6∈ (¬iC)Ii = ∆Ii\CIi , and, hence, ¬iC 6∈
Li(x).

• (A2): If C1 ⊓ C2 ∈ Li(x), then x ∈ (C1 ⊓ C2)
Ii = CIi

1 ∩ CIi

2 , hence C1 ∈ Li(x) and

C2 ∈ Li(x).

• (A3): The proof is similar to the previous one.

245

• (A4): If ∀R.C ∈ Li(x) and 〈x, y〉 ∈ Ei(R), we have x ∈ (∀R.C)Ii and 〈x, y〉 ∈ RIi ,

whence, according to the semantics of ∀R.C, y ∈ CIi and, hence, C ∈ Li(y).

• (A5): If ∃R.C ∈ Li(x), then there exists y ∈ ∆Ii = Si, such that 〈x, y〉 ∈ RIi = Ei(R)

and y ∈ CIi , whence C ∈ Li(y).

• (B1): tij = rij must be an one-to-one partial function, for all i, j.

• (B2): By the compositional consistency of the rij , we have, for all i, j, k, i 6= j, such that

Pi ∈ P ∗k and Pk ∈ P ∗j , that ρij = rij = rkj ◦ rik, whence, by the definition of {tij}, we

have ρt
ij = tij = tkj ◦ tik.

• (B3): If C is an i-concept name, Pi
C−→ Pj, j 6= i, then rij(C

Ii) = CIj , whence, since

tij = rij, (∀x′ ∈ Sj)((∃x ∈ Si)(〈x, x′〉 ∈ tij and C ∈ Li(x)) iff C ∈ Lj(x
′)).

Q.E.D.

Proof of Lemma 5.3: We start with a set of observations:

• For every node that has no local predecessor (called local top node henceforth), its local

descendants have a tree shape. This observation follows from the form of the expansion

rules.

• For every local top node j : x, j 6= w, x must be a preimage of a node in another local

completion graph Gi, such that Pj 7→ Pi. This holds because such an x must be created

by a backward concept reporting message triggered by an application of the CReport-rule

or of the r-rule. Suppose, for the sake of concreteness, that the message is rj←i(x′, C),

i 6= j, where x′ ∈ Vi, origin(x) = origin(x′) and C is ⊤j or a j-concept name. Note that,

since x does not exist before the message, C is not added to Li(x
′) by a concept reporting

message, whence it must be case that C appears in Pi. Thus, Pi imports Pj and, hence,

x is a preimage of x′.

• For any j,x, all local descendants of j : x in Gj are not preimages of nodes in any other

local completion graph. This holds because a local descendant of j : x is generated only

by an application of the ⊔-rule, while a preimage node is created only by an application

of the CReport-rule or of the r-rule.

246

Hence, 1) each local completion graph is a forest; 2) the root of every tree, i.e., a local top

node, in a local completion graph, except for the root of Gw, is “copied” from, i.e., it is the

preimage of, a node in another local completion graph.

Next we prove that the size of each local completion graph, hence also the total size of the

“global completion graph”, is limited. For convenience, we define a function f(x) = 22x×log x
.

First, due to subset blocking, for any local top node in Gj , the depth of its local descendant

tree is bounded by O(2nj) and its breadth is bounded by the number of “∃” in CTj
, for j 6= w,

or in CTw ⊓D, for j = w, which is smaller than nj. Thus, the size of the tree is bounded by

O(nj
2nj

) = O(f(nj)).

Since there is only acyclic importing, we can put all packages in P ∗w in an ordered list L,

such that L1 = Pw and each package comes in L before all packages in its importing transitive

closure, in a way similar to topological sorting in DAG. Let #(Lj) be the subscript of the

package at Lj . Then, we have that the size of G#(Lj) is bounded by:

|G#(L1)| : O(f(nw))

|G#(Lj)| : O
(

∑

k<j

|G#(Lk)| × f(n#(Lj))
)

, for j > 1

This holds because there is only one local top node in G#(L1) = Gw (the original node), and,

for every j > 1 and p = #(Lj), the number of local top nodes in Gp is limited by
∑

Pp 7→Pq

|Gq|,

i.e., by the total size of the local completion graphs of packages that directly import Pp, since

all nodes in Pp must be preimage nodes of nodes in those local completion graphs. In the worst

case, {Pq|Pp 7→ Pq} contains all packages that are before j in L. On the other hand, the size of

a tree under a local top node in Gk is limited by f(nk).

Setting |G#(Lj)| = tj and ej = f(n#(Lj)), we obtain that tj is bounded by

O
(

(t1 + t2 + ...+ tj−1)× ej
)

. (A.3)

Using induction, it will now be shown that tj is bounded by

O
(

2j−2 × e1 × ...× ej
)

, for j > 1. (A.4)

By Equation (A.3), when j = 2, t2 is bounded by O(t1× e2) = O(e1× e2), whence Equation

(A.4) holds. Let j > 2. Assuming, as the induction hypothesis, that, for every 1 < k < j,

247

Equation (A.4) holds, we have, by Equation (A.3), that tj is bounded by

O
(

(t1 + t2 + · · ·+ tj−1)× ej
)

< O
(

(e1 + 20e1e2 + · · ·+ 2j−3e1e2 · · · ej−1)ej
)

< O
(

(1 + 20 + · · ·+ 2j−3)× e1e2 · · · ej
)

= O
(

2j−2e1e2 · · · ej
)

This finishes the induction step and concludes the proof of Equation (A.4). Hence, the size

of all local completion graphs is bounded by:

O

(

e1 +
∑

2≤j≤m

(

2j−2
∏

k≤j

ej

)

)

≤ O

(

2m−1 ×
∏

Pj∈P ∗
w

f(nj)

)

< O

(

2m ×
∏

Pj∈P ∗
w

22nj×log nj

)

Q.E.D.

Proof of Lemma 5.5: Let G = {Gi}, with Gi = (Vi, Ei,Lg
i), be a complete and clash-free

distributed completion graph generated by the ALCP−C algorithm. We will obtain a tableau

by “unraveling” blocked nodes and tableau relations. For a directly blocked node x, we denote

by bk(x) the node that directly blocks x. Thus, we have Lg
i (x) ⊆ L

g
i (bk(x)). We can define a

tableau T = 〈{Ti}, {tij}Pi∈P+
j
〉, with Ti = (Si,Lt

i, Ei), for D w.r.t. Pw in the following way:

Si = {x ∈ Vi| neither x nor any image or preimage node of x is blocked};

Lt
i(x) = Lg

i (x);

Ei(R) = {〈x, y〉 ∈ Vi × Vi| y is an R-successor of x, y is not blocked};

∪{〈x, bk(y)〉 ∈ Vi × Vi| y is an R-successor of x, y is directly blocked};

tij = {〈x, y〉 ∈ Si × Sj | origin(x) = origin(y)}, for Pi ∈ P+
j .

We show that T satisfies all tableau properties.

• Property (A0) holds due to the CE-rule.

• Property (A1) holds since G is clash-free.

• Properties (A2) and (A3) hold because of the ⊓- and ⊔-rules and the fact that G is

complete.

248

• To show Property (A4), suppose that ∀R.C ∈ Lt
i(x) = Lg

i (x) and 〈x, y〉 ∈ Ei(R). Then

it must be the case that either 1) 〈x, y〉 ∈ Ei, R ∈ Lg
i (〈x, y〉), whence, according to

the ∀-rule, C ∈ Lg
i (y) = Lt

i(y); or 2) there exists a y′, such that y = bk(y′), whence

Lg
i (y
′) ⊆ Lg

i (y), 〈x, y′〉 ∈ Ei, R ∈ Lg
i (〈x, y′〉). Thus, according to the ∀-rule and the fact

that G is complete, C ∈ Lg
i (y
′) ⊆ Lg

i (y) = Lt
i(y). Therefore, in both cases, Property (A4)

holds.

• Property (A5) may be shown to hold by a proof dual to that of Property (A4).

• Property (B1) holds because, according to the concept reporting message, for any i, j, a

node i : x has at most one node of the same origin in Gj .

• For Property (B2) we have: 1) For any Pi ∈ P+
j , (x, y) ∈ tij iff origin(x) = origin(y),

whence (x, y) ∈ ρt
ij iff origin(x) = origin(y) and, therefore, ρt

ij = tij . 2) For all Pi ∈ P+
k

and Pk ∈ P+
j , i 6= j, if there exist x ∈ Si and x′ ∈ Sj, such that origin(x) = origin(x′),

then, according to the r-rule and the fact that G is complete, there must also exist an

x′′ ∈ Vk, such that origin(x′′) = origin(x) = origin(x′). This x′′ cannot be blocked, since

it must be a local top node, whence x′′ ∈ Sk. Therefore, it follows that tij ⊆ tkj ◦ tik. On

the other hand, tkj ◦ tik ⊆ tij follows by construction.

• Finally, the “only if” direction of Property (B3) holds because of the CPush-rule and the

“if” direction because of the CReport-rule.

Q.E.D.

Proof of Lemma 5.6: Let T = 〈{Ti}, {tij}Pi∈P+
j
〉, with Ti = (Si,Lt

i, Ei), be a tableau for

D w.r.t. Pw. Following Horrocks et al. (1999), we will use T to guide the application of the

non-deterministic ⊔-rule in a way that yields a complete and clash-free distributed completion

graph G = {Gi}, with Gi = (Vi, Ei,Lg
i).

To construct G, we start with a single node x0 in the local tableau Tw, with D ∈ Lt
w(x0).

Such an x0 exists, since T is a tableau for D w.r.t. Pw. Let π ⊆ ⋃

i(Vi × Si) be a function that

maps all individuals in local completion graphs to individuals in corresponding local tableaux.

Initially, we have Vw = {x0}, Lg
w(x0) = {D} , π(x0) = x0 and all Gi, i 6= w, being empty.

Next, we apply ALCP−C expansion rules to extend G and π, in such a way that the following

249

conditions always (inductively) hold:






















Lg
i (x) ⊆ Lt

i(π(x))

if R ∈ Lg
i (〈x, y〉), then 〈π(x), π(y)〉 ∈ Ei(R)

if origin(i : x) = origin(j : y) in G, then 〈π(x), π(y)〉 ∈ tij in T , for Pi ∈ P+
j

(A.5)

• CE-rule: if CTi
6∈ Lg

i (x), then Lg
i (x)+= {CTi

}. Since, by Property (A0), CTi
∈ Lt

i(π(x)),

this rule can be applied without violating Conditions (A.5).

• ⊓-rule: if C1 ⊓ C2 ∈ Lg
i (x), x is not blocked, and {C1, C2} 6⊆ Lg

i (x), then Lg
i (x)+=

{C1, C2}. Since, by Property (A2) of ALCP−C tableaux, C1 ⊓ C2 ∈ Lt
i(π(x)) implies

C1 ∈ Lt
i(π(x)) and C2 ∈ Lt

i(π(x)), Conditions (A.5) are not violated.

• ⊔-rule: if C1⊔C2 ∈ Lg
i (x), x is not blocked, and {C1, C2}∩Lg

i (x) = ∅, then Lg
i (x)+= {C},

for some C ∈ {C1, C2}∩Lt
i(π(x)). Such a C must exist because T is a tableau and, hence,

satisfies Property (A3), and C1 ⊔ C2 ∈ Lt
i(π(x)), by the induction hypothesis. Hence, in

this case, Conditions (A.5) are not violated either.

• ∀-rule: if ∀R.C ∈ Lg
i (x), x is not blocked, and there is a local R-successor y of x in Gi

with C 6∈ Lg
i (y), then Lg

i (y)+= {C}. By the induction hypothesis, 〈π(x), π(y)〉 ∈ Ei(R)

and ∀R.C ∈ Lt
i(π(x)), whence, by Property (A4), C ∈ Lt

i(π(y)). Thus, Conditions (A.5)

are not violated.

• ∃-rule: if ∃R.C ∈ Lg
i (x), x is not blocked, and x has no local R-successor y of x in Gi,

with C ∈ Lg
i (y), then 1) create a new node y, with orgin(y) = y, Lg

i (〈x, y〉) = {R} and

Lg
i (y) = {C}; 2) let π(y) = y′, where y′ ∈ Si, 〈π(x), y′〉 ∈ Ei(R) and C ∈ Lt

i(y
′). Such

a y′ must exist because T is a tableau and, hence, it satisfies Property (A5) and, by the

induction hypothesis, ∃R.C ∈ Lt
i(π(x)). Therefore, Conditions (A.5) are not violated.

• r-rule: if origin(i : x) = origin(j : x′), there exists k such that Pi ∈ P+
k , Pk ∈ P+

j and

there is no k : x′′ with origin(j : x′) = origin(k : x′′), then 1) transmit rk←j(x′,⊤k).

This will create k : x′′, such that origin(k : x′′) = origin(j : x′) = origin(i : x); 2)

let π(x′′) = z, where z ∈ Sk, 〈π(x′), z〉 ∈ tik and 〈z, π(x′)〉 ∈ tkj; such a z must exist

because, by the induction hypothesis, 〈π(x), π(x′)〉 ∈ tij and, by the tableau Property

(B2), tij = tkj ◦ tik. After this operation Lg
k(x
′′) = ∅. Therefore, Conditions (A.5) are not

violated.

250

• CPush-rule: if C ∈ Lg
i (x), where C is an i-concept name, Pi

C−→ Pj, x is not blocked and

there exists an x′ = xi→j ∈ Vj , such that C 6∈ Lg
j(x
′), then transmit ri→j(x,C). This

will set Lg
j (x
′)+= {C}. By the induction hypothesis, 〈π(x), π(x′)〉 ∈ tij, C ∈ Lt

i(π(x)),

whence, by Property (B3), C ∈ Lt
j(π(x′)). Hence, Conditions (A.5) are not violated.

• CReport-rule: if C ∈ Lg
i (x), where C is ⊤j or a j-concept name, x is not blocked and

there is no x′ = xj←i ∈ Vj such that C ∈ Lg
j (x
′), then 1) transmit rj←i(x,C). This

will create x′ = xj←i, with origin(x′) = origin(x), if such an x′ had not already been

created, and set Lg
j (x
′)+= {C}; 2) let π(x′) = x′′, if π(x′) has not yet been given, where

x′′ ∈ Sj, 〈x′′, π(x)〉 ∈ tji and C ∈ Lt
i(x
′′). Such a, x′′ must exist because, by the induction

hypothesis, C ∈ Lt
i(π(x)) and T satisfies tableau Property (B3). Therefore, Conditions

(A.5) are not violated in this case either.

G must be clash-free, since, if there existed i, x, C, such that {C,¬iC} ⊆ Lg
i (x), then, by

Conditions (A.5), {C,¬iC} ⊆ Lt
i(π(x)), which would contradict tableau Property (A1) for T .

Hence, whenever an expansion rule is applicable to G, it can be applied in such a way that

maintains Conditions (A.5). By the Termination Lemma, any sequence of rule applications

must terminate. Hence, we will obtain a complete and clash-free completion graph G for D

from T . Q.E.D.

Proof of Lemma 5.9: For the if direction, if 〈{Ti}, {tij}i6=j〉 (where Ti = 〈Vi, Ei,Li〉) is a

tableau for D w.r.t. Pw, a model I = 〈{Ii}, {rij}i6=j〉 of D and P ∗w can be defined as :

∆Ii = Si

AIi = {x|A ∈ Li(x)}, for all concept name A

RIi = Ei(R)+, for all i-role name R that is transitive

RIi = Ei(R) ∪
⋃

S⊑∗iR,S 6=R

SIi , for all i-role name R that is not transitive

rij = tij

By the induction on the structure of concepts, we show that, if C ∈ Li(x), then x ∈ CIi

and all SHIQP restrictions on domain relations are satisfied.

• If C is an i-concept name, then x ∈ CIi by definition.

251

• The C = ¬jE case is similar to the proof of Lemma 5.2.

• Similar to the proof for SHIQ (Tobies, 2001), we can prove if C ∈ Li(x), then x ∈ CIi

for other cases that using ⊓,⊔,∃,∀,≤,≥ constructs .

• rij is one-to-one and compositional consistent by tableau property B1 and B2.

• For every concept importing Pi
C−→ Pj where C is an i-concept name, due to tableau

property B3, we have rij(C
Ii) = CIj .

• Similar to the concept importing case, for every role importing Pi
R−→ Pj where R is an

i-role name, we have rij(R
Ii) = RIj due to tableau property B5.

• Cardinality Preservation: For every i-role name R that appears in Pj and every (x, x′) ∈
rij , if (x′, rij(y)) ∈ RIj = Ej(R), then by Property (B4) we have (x, y) ∈ RIi = Ei(R); on

the other hand, if (x, y) ∈ RIi = Ei(R), by Property (B5) we have (x′, rij(y)) ∈ RIj =

Ej(R).

• For every Pi ∈ P ∗w, every axiom C ⊑ D ∈ Ti, for every individual x ∈ Si, we have

¬iC ⊔D ∈ Li(x); by induction, either x 6∈ CIi or x ∈ DIi , hence CIi ⊆ DIi , therefore

Ii |= Ti.

• Ii |= Ri due to tableau property A8.

• DIw is not empty, since the root node x0 in Tw has the label D.

For the only if direction, if I = 〈{Ii}, {rij}i6=j〉 is a model of P ∗w, then a distributed tableau

〈{Ti}, {tij}i6=j〉 for P ∗w can be defined as:

Si = ∆Ii

Li(x) = {C ∈ closi(CTi
)|x ∈ CIi}, i 6= w

Lw(x) = {C ∈ closw(D) ∪ closw(CTw)|x ∈ CIw}

Ei(R) = RIi

tij = rij

Similar to the SHIQ proof (Tobies, 2001), the tableau holds property A0-A11. Property

B1-B5 follow from the semantics of SHIQP. Q.E.D.

252

Proof of Theorem 5.3 Because each thread can be handled separately, in what follows we

only discuss for one thread.

Termination: we prove termination by showing that the “combined” completion graph G′,

resulting from the various local completion graphs by merging all nodes of the same origin into

one node (and the corresponding edges), is finite.

For a local completion graph Gi, let mi = #(X), where X is (closw(D) ∪ closw(CTw)) for

Gw or closw(CTw) for i 6= w, ki = #NRi, and bi the maximum n that occurs in a concept of the

form ≤ nS.C or ≥ nS.C in X.

Let and ni = |CTi
| + |Ri| (for i 6= w) and nw = |CTw | + |Rw| + |D|. Let nΣ = Σ

j
nj.

Let l = |P ∗w| be the number of packages involved. We have mi = O(n2
i), ki = O(ni), and

bi = O(2ni).

For any node in Gj , the number of its children that generated by the application of the

∃-rule is bounded by the number of “∃” in CTj
, for j 6= w, or in CTw ⊓D, for j = w, which is

smaller than mjbj (Detailed analysis is similar to the SHIQ tableau algorithm (Tobies, 2001)).

In the combined graph G′, the total number of children of a node can be, in worst case, as

many as Σ
j
mjbj .

In the combined graph G′, the size of labels of a node is limited by Σ
j
mjkj ; thus it is blocked

at least at the depth 2
2Σ

j
mjkj

due to double blocking. Hence, the number of nodes in G′ is

bounded by

O

(

(Σ
j
mjbj)

2
2Σ

j
mjkj

)

= O

(

(Σ
j
n2

j · 2nj)2
Σ
i
(2n3

i)
)

≤ O

(

(Σ
j
22nj)2

2n3
Σ

)

≤ O

(

(22nΣ)2
2n3

Σ

)

≤ O

(

2((22n3
Σ)·2nΣ)

)

Hence, the SHIQP− algorithm runs in worst case 2NExpTime w.r.t. the size of the con-

cept D plus the total size of all packages.

253

Soundness: If the SHIQP algorithm generates a complete and clash-free distributed

completion graph for a concept D w.r.t. a witness package Pw, then D has a tableau w.r.t. Pw.

Let G = 〈{Gi}, {γij}i6=j〉 be a complete and clash-free distributed completion graph, we can

obtain a tableau by “unraveling” blocked nodes. The construction extends a similar process for

SHIQ (Lemma 6.38 of (Tobies, 2001)). The basic idea is that, since SHIQP does not have the

finite model property (SHIQ already has no finite model property), the constructed tableau

may also be infinite. Hence, instead of directly translating nodes in the completion graph into

individuals in the tableau as we did for ALCPC , we will construct (possibly infinitely long)

paths from the graph as individuals in the tableau, and each blocked nodes will be translated

into infinitely many such paths. The details go as the follows.

A path is a sequence of pairs of nodes of the form p = [x0
x′
0
, . . . , xn

x′
n
]. For such a path p, we

define Tail(p) = xn and Tail′(p) = x′n. We denote by [p|xn+1

x′
n+1

] the path [x0
x′
0
, . . . , xn

x′
n
, xn+1

x′
n+1

]. We

denote by rank(p) as the rank of p, which may be countably infinite, that will be assigned as

the following.

For a local tableau Ti, the set of all paths of it is denoted as Path(Ti). {Path(Ti)} are

inductively defined as:

• When i = w, let x be the root node of Ti, p = [x
x
] ∈ Path(Ti) and rank(p) = 1;

• If p ∈ Path(Ti), then

– if y is a successor of Tail(p) and y is not blocked, then q = [p|y
y
] ∈ Path(Ti) and

rank(q) = rank(p);

– if y is a successor of Tail(p) and y is blocked by z, then q = [p| z
y
] ∈ Path(Ti) and

rank(q) = rank(p) + 1;

– if y is a local top node in Gj (j 6= i) such that origin(y) = origin(Tail(p)) , and

there is no path r ∈ Path(Tj) such that rank(r) = rank(p) and origin(Tail(r)) =

origin(Tail(p)), then q = [p|y
y
] ∈ Path(Tj) and rank(q) = rank(p).

254

Note that, for any i, Path(Ti) may be an infinite set. We now define a tableau T =

〈{Ti}, {tij}〉 (where Ti = (Si,Li, Ei)) for D w.r.t. P ∗w in the following way:

Si = Path(Ti)

Li(p) = Li(Tail(p))

Ei(R) = {(p, q) ∈ Si × Si| either q = [p| x
x′

] and x′ is an R-neighbor of Tail(p)

or p = [q| x
x′

] and x′ is an R−-neighbor of Tail(q)}

tij = {(p, q) ∈ Si × Sj|rank(p) = rank(q), origin(Tail(p)) = origin(Tail(q))}, for Pi ∈ P+
j

We show that T satisfies all tableau properties. A0-A11 hold similarly as for the analysis

of SHIQ (Tobies, 2001). We focus on properties B1-B5.

• Property (B1) holds because for each path p ∈ Path(Ti) there is at most one path q ∈
Path(Tj) such that rank(p)=rank(q), and, according to the concept reporting message, the

node Tail(p) has at most one node of the same origin in Gj .

• For Property (B2) we have: 1) ρt
ij = tij because “=” is an equivalency relation over path

ranks and node origins. 2) For all Pi ∈ P+
k and Pk ∈ P+

j , i 6= j, if there exist p ∈ Si and

q ∈ Sj , such that rank(p) = rank(q) and origin(Tail(p)) = origin(Tail(q)), then, according

to the r-rule and the fact that G is complete, there must also exist an x ∈ Vk, such that

origin(Tail(p)) = origin(x) = origin(Tail(q)). By the construction of the tableau, there

must be a path r ∈ Sk such that Tail(r) = x and rank(r) = rank(q). Therefore, it follows

that tij ⊆ tkj ◦ tik. On the other hand, tkj ◦ tik ⊆ tij follows by construction.

• The “only if” direction of Property (B3) holds because of the CPush-rule and the “if”

direction because of the CReport-rule. Let C be an i-concept name, Pi
C−→ Pj , i 6= j,

– ∀q ∈ Sj, if ∃p ∈ Si such that 〈p, q〉 ∈ tij and C ∈ Li(p)), then let x = Tail(p),

x′ = Tail(q), we have that C ∈ Li(x)) and origin(x) = origin(x′), hence by the

CPush-rule C ∈ Lj(x
′)), therefore C ∈ Lj(q)).

– ∀q ∈ Sj , if C ∈ Lj(q)), then let x′ = Tail(q), we have that C ∈ Lj(x
′)); by

the CReport-rule, there must be a x ∈ Vi such that C ∈ Li(x)) and origin(x) =

origin(x′). Hence, there must exist a p ∈ Si with x = Tail(p), such that 〈p, q〉 ∈ tij
and C ∈ Li(p)).

255

• B4 holds because of the RPush- rule (for the only if direction) and RReport-rule (for the

if direction). Detailed proof is similar to the Property B3.

• B5 holds because of the RPush-rule. If 〈p, q〉 ∈ Ei(R), R is an i-role that appears in Pj

(i 6= j), and there are some p′ ∈ Sj such that 〈p, p′〉 ∈ tij, then rank(p) = rank(p′); let

x = Tail(p), x′ = Tail(p′), and there are two possibilities:

– q = [p| z
y
] and y is an R-neighbor of x; since origin(x) = origin(x′), then by the

RPush-rule, there is a y′ ∈ Vj such that origin(y) = origin(y′) and y′ is an R-

neighbor of x′. Thus, there is some q′ = [p′| z′
y′] ∈ Sj such that 〈x′, y′〉 ∈ Ej(R); also

note that since z blocks y iff z′ blocks y′ due to double blocking, we also have that

rank(q′) = rank(p′).

– p = [q|x
y
] and y is an R−-neighbor of z = Tail(q); then by the RPush-rule, there is a

z′ ∈ Vj such that origin(z) = origin(z′) and z′ is an R−-neighbor of x′; according to

the construction of the tableau, there must be a q′ ∈ Path(Tj) such that Tail(q′) = z′

and rank(q′) = rank(q) (due to double blocking); hence 〈p′, q′〉 ∈ tij and 〈p′, q′〉 ∈
Ej(R).

In both cases, there is some q′ ∈ Sj such that 〈q, q′〉 ∈ tij and 〈p′, q′〉 ∈ Ej(R). Hence

Property (B5) holds.

Completeness (proof sketch): If the concept D has a tableau w.r.t. the witness package

Pw, then the SHIQP algorithm can generate a complete and clash-free distributed completion

graph for D w.r.t.Pw.

Let T = 〈{Ti}, {γij}i6=j〉 be a tableau for D w.r.t.Pw. We can construct T by triggering

SHIQP rules. We start with a single node x0 in the local tableau Tw with Lk(x0) = {CTw}.
Similar to (Horrocks et al., 1999), we can use T to guide the application of the non-deterministic

⊔, choose,≤-rule in a way that yields a complete and clash-free distributed graph.

256

Bibliography

Adjiman, P., Chatalic, P., Goasdou, F., Rousset, M.-C., and Simon, L. (2006). Distributed

Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web . Journal of Artificial

Intelligence Research, 25:269,314. 5.6

Alani, H., Harris, S., and O’Neil, B. (2006). Winnowing ontologies based on application use.

In ESWC, pages 185–199. 3.1.2.2

Amir, E. and McIlraith, S. A. (2000). Partition-based logical reasoning. In KR, pages 389–400.

3.4, 4.4.1.1, 5.6

Amir, E. and McIlraith, S. A. (2005). Partition-based logical reasoning for first-order and

propositional theories. Artif. Intell., 162(1-2):49–88. 3.1.1.1

Antoniou, G. (1992). Modularity for logical knowledge bases. In Fourth International Confer-

ence on Software Engineering and Knowledge Engineering, pages 87–93. 3.4

Antoniou, G. and Sperschneider, V. (1992). Modularity for logic programs. In ALPUK, pages

97–107. 3.4

Auer, S., Dietzold, S., and Riechert, T. (2006). Ontowiki - a tool for social, semantic collabo-

ration. In Cruz et al. (2006), pages 736–749. 7.5

Avery, J. and Yearwood, J. (2003). DOWL: A dynamic ontology language. In ICWI, pages

985–988. 4.3.1, 4.4.5.1

Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL envelope. In IJCAI, pages 364–369.

8.2.3

257

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., edi-

tors (2003). The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press. 2

Baader, F. and Ghilardi, S. (2005). Connecting many-sorted theories. In CADE, pages 278–294.

8.2.1

Baader, F., Lutz, C., Sturm, H., and Wolter, F. (2000). Fusions of description logics. In

Description Logics, pages 21–30. 3.2.1.5, 3.3.3.5, 4.4.1.4, 4.4.2

Baader, F. and Nutt, W. (2003). Basic description logics. In Baader, F., Calvanese, D.,

and et.al., D. M., editors, The Description Logic Handbook: Theory, Implementation, and

Applications, pages 43–95. Cambridge University Press. 2.1.1

Baader, F. and Sattler, U. (2001). An overview of tableau algorithms for description logics.

Studia Logica, 69(1):5–40. 2.2.2, 2.2.2

Backhaus, M., Kelso, J., Bacher, J., Herre, H., Hoehndorf, R., Loebe, F., and Visagie, J. (2007).

Bowiki - a collaborative annotation and ontology curation framework. In Workshop on Social

and Collaborative Construction of Structured Knowledge at 16th International World Wide

Web Conference (WWW2007). 7.5

Bao, J., Cao, Y., Tavanapong, W., and Honavar, V. (2004). Integration of domain-specific and

domain-independent ontologies for colonoscopy video database annotation. In Arabnia, H. R.,

editor, Proceeding of International Conference on Information and Knowledge Engineering

(IKE 04), pages 82–88. CSREA Press. 8.2.4

Bao, J., Caragea, D., and Honavar, V. (2006a). A distributed tableau algorithm for package-

based description logics. In the 2nd International Workshop On Context Representation And

Reasoning (CRR 2006), co-located with ECAI 2006. 1.2.1, 4.2.1.2, 5, 8.1

Bao, J., Caragea, D., and Honavar, V. (2006b). Modular ontologies - a formal investigation

of semantics and expressivity. In Asian Semantic Web Conference (ASWC), pages 616–631.

3.2.1, 3.3.2, 4.1, 4.2.6.3, 4.4.5.3, 8.1

258

Bao, J., Caragea, D., and Honavar, V. (2006c). On the semantics of linking and importing in

modular ontologies. In International Semantic Web Conference (ISWC), pages 72–86. 1.2,

3.3.2, 4.1, 4.2.6.3, 4.4.2.3, 4.4.4.2, 8.1

Bao, J., Caragea, D., and Honavar, V. (2006d). Package-based description logics - preliminary

results. In Cruz et al. (2006), pages 967–969. 8.1

Bao, J., Caragea, D., and Honavar, V. (2006e). A tableau-based federated reasoning algorithm

for modular ontologies. In IEEE/WIC/ACM International Conference on Web Intelligence,

pages 404–410. IEEE Press. 1.2.1, 4.2.1.2, 4.2.2.1, 4.2.6.4, 5, 5.4, 8.1

Bao, J., Caragea, D., and Honavar, V. (2006f). Towards collaborative environments for ontology

construction and sharing. In International Symposium on Collaborative Technologies and

Systems (CTS 2006), pages 99–108. IEEE Press. 1.2, 1.2.1, 1.2.2, 4.1, 6.3.1, 7.1.1, 7.3.1, 8.1,

8.2.2

Bao, J., Caragea, D., and Honavar, V. (2007a). Query translation for ontology-extended data

sources. In AAAI’07 Workshop on Semantic e-Science (SeS’07). 1.2.2, 8.2.5

Bao, J. and Honavar, V. (2004a). Collaborative ontology building with wiki@nt - a multi-agent

based ontology building environment. In ISWC 2004 Workshop on Evaluation of Ontology-

based Tools (EON), pages 37–46. 1.2.2, 7, 8.1

Bao, J. and Honavar, V. (2004b). Ontology language extensions to support localized semantics,

modular reasoning, and collaborative ontology design and ontology reuse. Technical report,

TR-341, Computer Science, Iowa State University. 8.1

Bao, J. and Honavar, V. (2004c). Ontology language extensions to support localized semantics,

modular reasoning, collaborative ontology design and reuse. In 3rd International Semantic

Web Conference (ISWC2004), Poster Track. 4.3.4

Bao, J. and Honavar, V. (2005a). Collaborative package-based ontology building and usage.

In IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically

Heterogeneous Data and Knowledge Sources, ICDM 2005, pages 35–44. 3.1.2.3, 7

Bao, J. and Honavar, V. (2005b). Reconciling inconsistencies between package-extended ontol-

ogy modules. Technical report, TR-403, Computer Science, Iowa State University. 8.2.3

259

Bao, J. and Honavar, V. (2006a). Adapt OWL as a modular ontology language. In OWL:

Experiences and Directions (OWLED 2006), CEUR Workshops Vol. 216. 4.1, 8.1

Bao, J. and Honavar, V. (2006b). Divide and conquer semantic web with modular ontologies -

a brief review of modular ontology language proposals. In ISWC 2006 Workshop on Modular

Ontologies (WoMo 2006). 4.1, 8.1

Bao, J. and Honavar, V. (2006c). Representing and reasoning with modular ontologies. In

AAAI Fall Symposium on Semantic Web for Collaborative Knowledge Acquisition (SWeCKa

2006), Arlington, VA, USA, October 2006. 6, 8.1

Bao, J., Hu, Z., Caragea, D., Reecy, J., and Honavar, V. (2006g). Developing frameworks

and tools for collaborative building of large biological ontologies. In the 4th International

Workshop on Biological Data Management (BIDM), DEXA Workshops, pages 191–195. 1.2.2,

3.1.3.2, 7, 8.1

Bao, J., Slutzki, G., and Honavar, V. (2007b). Distributed reasoning with expressive modular

ontologies on the semantic web. Technical report, Computer Science, Iowa State University,

http://www.cs.iastate.edu/~baojie/iswc2007tr.pdf. 5, 8.1

Bao, J., Slutzki, G., and Honavar, V. (2007c). Ontology Modularization, chapter P-DL: A

Semantic Importing Approach to Selective Knowledge Reuse In Modular Ontologies. Berlin:

Springer (In Press). 4.1

Bao, J., Slutzki, G., and Honavar, V. (2007d). Privacy-preserving reasoning on the

semantic web, tr 544. Technical report, Computer Science, Iowa State University,

http://archives.cs.iastate.edu/documents/disk0/00/00/05/44/. 6, 8.1

Bao, J., Slutzki, G., and Honavar, V. (2007e). A semantic importing approach to knowledge

reuse from multiple ontologies. In AAAI, pages 1304–1309. 1.2, 4.1, 4.2.1.2, 4.3.1, 4, 8.1

Bassiliades, N., Antoniou, G., and Vlahavas, I. P. (2004). Dr-device: A defeasible logic system

for the semantic web. In PPSWR, pages 134–148. 3.2.1.6

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-

Schneider, P. F., and Stein, L. A. (2004). Owl web ontology language reference.

http://www.w3.org/TR/owl-ref/. 2.3

http://www.cs.iastate.edu/~baojie/iswc2007tr.pdf
http://archives.cs.iastate.edu/documents/disk0/00/00/05/44/

260

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American,

284(5):34–43. 1.1

Bonatti, P. A., Duma, C., Fuchs, N., Nejdl, W., Olmedilla, D., Peer, J., and Shahmehri, N.

(2006). Semantic web policies - a discussion of requirements and research issues. In ESWC,

pages 712–724. 6.7.1

Bonifacio, M., Bouquet, P., Busetta, P., Danieli, A., Donà, A., Mameli, G., and Nori, M. (2004).

Keex: A peer-to-peer solution for distributed knowledge management. In P2PKM. 5.1

Bontas, E. P. (2004). Context representation and usage for the semantic

web: A state of the art. Technical Report B-04-30, Freie Universität Berlin,

http://www.inf.fu-berlin.de/inst/pubs/tr-b-04-30.abstract.html. 3.1.2.1

Borgida, A. and Serafini, L. (2002). Distributed description logics: Directed domain correspon-

dences in federated information sources. In CoopIS, pages 36–53. 1.2.1, 4.4.1.2, 4.4.2.1, 4.3,

4.5, 4.4.2.3, 4.4.3.1, 4.4.3.1, 4.4.3.1, 4.4.3.1, 4.4.5.2

Borgida, A. and Serafini, L. (2003). Distributed description logics: Assimilating information

from peer sources. Journal of Data Semantics, 1:153–184. 3.2.1.3, 3.2.1.6, 3.2.2, 3.3.2, 4.2.4

Bouquet, P., Dona, A., Serafini, L., and Zanobini, S. (2002). Conceptualized local ontologies

specification via CTXML. In AAAI-02 Workshop on Meaning Negotiation (MeaN-02) July

28, 2002, Edmonton, Canada. 4.4.1.2, 4.4.5.2

Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., and Stuckenschmidt, H. (2003).

C-OWL: Contextualizing ontologies. In Fensel et al. (2003), pages 164–179. 3.1.2.1, 4.1, 4.3.1,

4.4.1.2, 4.4.3.1, 4.4.3.1, 4.4.5.2

Bouquet, P. and Serafini, L. (2003). On the difference between bridge rules and lifting axioms.

In CONTEXT, pages 80–93. 3.4.2

Bryson, J. and Stein, L. A. (2001). Modularity and design in reactive intelligence. pages

1115–1120. 3.4

Buffa, M. and Gandon, F. (2006). Sweetwiki: semantic web enabled technologies in wiki. In

Int. Sym. Wikis, pages 69–78. 7.5

http://www.inf.fu-berlin.de/inst/pubs/tr-b-04-30.abstract.html

261

Bugliesi, M., Lamma, E., and Mello, P. (1994). Modularity in logic programming. J. Log.

Program., 19/20:443–502. 3.4

Buvac, S., Buvac, V., and Mason, I. A. (1995). Metamathematics of contexts. Fundam. Inform.,

23(2/3/4):263–301. 3.4.2

Buvac, S. and Kameyama, M. (1998). Introduction: Toward a unified theory of context?

Journal of Logic, Language and Information, 7(1):1. 3.1.2.1

Buvac, S. and Mason, I. A. (1993). Propositional logic of context. In AAAI, pages 412–419.

3.1.2.1, 3.4.2

Calvanese, D., Damaggio, E., Giacomo, G. D., Lenzerini, M., and Rosati, R. (2003). Semantic

data integration in p2p systems. In DBISP2P, pages 77–90. 3.4.3, 3.4.3

Calvanese, D., Giacomo, G. D., Lenzerini, M., and Rosati, R. (2004). Logical foundations of

peer-to-peer data integration. In PODS, pages 241–251. 3.4.3, 3.4.3, 3.4.3

Caragea, D., Bao, J., Pathak, J., Silvescu, A., Andorf, C. M., Dobbs, D., and Honavar, V.

(2005a). Information integration from semantically heterogeneous biological data sources. In

Proceedings of the 3rd International Workshop on Biological Data Management (BIDM’05)

at DEXA 2005, pages 580–584. 8.2.5

Caragea, D., Pathak, J., Bao, J., Silvescu, A., Andorf, C. M., Dobbs, D., and Honavar, V.

(2005b). Information integration and knowledge acquisition from semantically heterogeneous

biological data sources. In Proceedings of the 2nd International Workshop on Data Integration

in Life Sciences (DILS’05), San Diego, CA, pages 175–190. 8.2.5

Catarci, T. and Lenzerini, M. (1993). Representing and using interschema knowledge in coop-

erative information systems. In CoopIS, pages 55–62. 3.4.3, 4.2.2.2

Chen, Y., Mihaila, G. A., Bordawekar, R., and Padmanabhan, S. (2004). L-tree: A dynamic

labeling structure for ordered xml data. In EDBT Workshops, pages 209–218. 5.3.1

Christophides, V., Karvounarakis, G., Plexousakis, D., Scholl, M., and Tourtounis, S. (2004).

Optimizing taxonomic semantic web queries using labeling schemes. J. Web Sem., 1(2):207–

228. 5.3.1

262

Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., and Peleg, D. (2005). Labeling schemes

for tree representation. In IWDC, pages 13–24. 5.3.1

Cruz, I. F., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., and

Aroyo, L., editors (2006). The Semantic Web - ISWC 2006, 5th International Semantic Web

Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006, Proceedings, volume 4273

of Lecture Notes in Computer Science. Springer. A.2

Cuppens, F. (1990). An epistemic and deontic logic for reasoning about computer security.

In First European Symposium On Research In Computer Security (ESORICS 90), pages

135–145. 6.7.3

Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The ponder policy specification

language. In POLICY, pages 18–38. 6.7.1

D’Aquin, M., Schlicht, A., Stuckenschmidt, H., and Sabou, M. (2007). Ontology modularization

for knowledge selection: Experiments and evaluations. In DEXA. 4.4.3.2

Day-Richter, J. (2004). DAG-Edit: A controlled vocabulary editor. In

http://www.godatabase.org/dev/java/dagedit/docs/. 7.1.1, 7.5

Denny, M. (2002). Ontology building: A survey of editing tools. Technical report, XML.com,

http://www.xml.com/pub/a/2002/11/06/ontologies.html. 7.5

Denny, M. (2004). Ontology tools survey, revisited. Technical report, XML.com,

http://www.xml.com/pub/a/2004/07/14/onto.html. 7.5

Ding, Y. and Haarslev, V. (2007). An exptime tableau decision procedure for ALCQI. In

Description Logics Workshop, CEUR-WS Vol 250. 8.2.3

Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and Schaerf, A. (1998). An epistemic

operator for description logics. Artificial Intelligence, 100(1-2):225–274. 3.4.3, 6.7.3

Donini, F. M., Lenzerini, M., Nardi, D., Schaerf, A., and Nutt, W. (1992). Adding epistemic

operators to concept languages. In KR, pages 342–353. 3.4.3

Donini, F. M. and Massacci, F. (2000). Exptime tableaux for alc. Artif. Intell., 124(1):87–138.

8.2.3

263

Farkas, C. (2006). Web and Information Security, chapter Data Confidentiality on The Semantic

Web: Is There an Inference Problem? Chapter IV, pages 73–91. Idea Group Inc. 6.7.2

Farkas, C., Brodsky, A., and Jajodia, S. (2006). Unauthorized inferences in semi-structured

databases. Information Sciences, 176(22):3269–3299. 6.3, 6.7.2

Farquhar, A., Fikes, R., Pratt, W., and Rice, J. (1995). Collaborative ontology construction for

information integration. In Technique Reports of Knowledge Systems Laboratory, Department

of Computer Science, KSL-95-63. 7.5

Fensel, D., Sycara, K. P., and Mylopoulos, J., editors (2003). The Semantic Web - ISWC 2003,

Second International Semantic Web Conference, Sanibel Island, FL, USA, October 20-23,

2003, Proceedings, volume 2870 of Lecture Notes in Computer Science. Springer. A.2

Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider, P. F.

(2001). OIL: An ontology infrastructure for the semantic web. IEEE Intelligent System,

16(2):38–45. 2.3

Fikes, R., Farquhar, A., and Rice, J. (1997). Tools for assembling modular ontologies in on-

tolingua. In AAAI/IAAI, pages 436–441. 4.3.1, 4.3.4, 6.7.1

Fischer, J., Gantner, Z., Rendle, S., Stritt, M., and Schmidt-Thieme, L. (2006). Ideas and

improvements for semantic wikis. In ESWC, pages 650–663. 7.5

Franconi, E., Kuper, G. M., Lopatenko, A., and Serafini, L. (2003). A robust logical and

computational characterisation of peer-to-peer database systems. In DBISP2P, pages 64–76.

4, 3.4.3

Gardiner, T., Horrocks, I., and Tsarkov, D. (2006). Automated benchmarking of description

logic reasoners. In Proc. of the 2006 Description Logic Workshop (DL 2006), volume 189.

3.1.3.2, 5.1

Garson, J. (1989). Modularity and relevant logic. Notre Dame Journal of Formal Logic,

30(2):207–223. 3.4

Gene Ontology Consortium (2005). Go editor guides. In

http://www.geneontology.org/GO.contents.curator.guides.shtml. 7.2

264

Ghidini, C. and Giunchiglia, F. (2001). Local models semantics, or contextual reason-

ing=locality+compatibility. Artificial Intelligence, 127(2):221–259. 3.1.2.1, 3.3, 3.4.1

Ghidini, C. and Serafini, L. (1998). Frontiers Of Combining Systems 2, Studies in Logic and

Computation, chapter Distributed First Order Logics, pages 121–140. Research Studies Press.

3.3.1, 3.3.2, 3.4.1, 3.4.3, 4.4.1.2, 8.1

Ghidini, C. and Serafini, L. (2006a). Mapping properties of heterogeneous ontologies. In 1st

International Workshop on Modular Ontologies (WoMo 2006), co-located with ISWC. 3.2.2,

4.4.2.1, 5.6

Ghidini, C. and Serafini, L. (2006b). Reconciling concepts and relations in heterogeneous

ontologies. In ESWC, pages 50–64. 4.4.1.2, 4.4.2.1

Ghidini, C., Serafini, L., and Tessaris, S. (2007). On relating heterogeneous elements from

different ontologies. In Description Logics Workshop, CEUR-WS Vol 250. 4.4.1.2

Ghilardi, S., Lutz, C., and Wolter, F. (2006). Did i damage my ontology? a case for conservative

extensions in description logics. In KR, pages 187–197. 3.4.4

Giereth, M. (2005). On partial encryption of rdf-graphs. In Gil et al. (2005), pages 308–322.

6.7.1

Gil, Y., Motta, E., Benjamins, V. R., and Musen, M. A., editors (2005). The Semantic Web

- ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland,

November 6-10, 2005, Proceedings, volume 3729 of Lecture Notes in Computer Science.

Springer. A.2

Giunchiglia, F. and Ghidini, C. (1998). Local models semantics, or contextual reasoning =

locality + compatibility. In KR, pages 282–291. 3.1.2.1, 4.4.1.2

Glasgow, J. I., MacEwen, G. H., and Panangaden, P. (1992). A logic for reasoning about

security. ACM Trans. Comput. Syst., 10(3):226–264. 6.7.3

Godik, S. and Moses, T. (2002). Oasis extensible access control markup language (xacml).

OASIS Committee Secification cs-xacml-specification-1.0, November 2002, http://www.oasis-

open.org/committees/xacml/. 6.1, 6.7.1

265

Gomez-Perez, A., Angele, J., Fernandez-Lopez, M., Christophides, V., Stutt, A.,

and Sure, Y. (2002). Ontoweb deliverable 1.3: A survey on ontology tools,

http://ontoweb.org/about/deliverables/d13 v1-0.zip/. 1.1, 7.5

Grädel, E. (2001). Why are modal logics so robustly decidable? In Current Trends in Theoretical

Computer Science, pages 393–408. 5.2

Grau, B. C. (2005). Combination and Integration of Ontologies on the Semantic Web. PhD

dissertation, Dpto. de Informatica, Universitat de Valencia, Spain. 1.2.1, 2, 3.3.2, 4.4.1.4,

4.4.2.2, 4.4.2.3, 4.3, 4.4.2.3, 4.5, 4.4.3.1, 4.8, 4.4.3.2, 4.4.3.2, 4.4.3.2, 4.4.5.3, 5.6

Grau, B. C., Horrocks, I., Kazakov, Y., and Sattler, U. (2007). Just the right amount: Ex-

tracting modules from ontologies. In Proc. of the Sixteenth International World Wide Web

Conference (WWW 2007). 3.1.2.2, 3.4.4, 4.3.4

Grau, B. C., Horrocks, I., Kazakov, Y., and Sattler, U. (2007). A logical framework for mod-

ularity of ontologies. In IJCAI, pages 298–303. 3.4.4, 4.2.5, 4.4.2, 6.4, 6.6, 6.4, 6.2, 6.6.3,

8.1

Grau, B. C., Horrocks, I., Kutz, O., and Sattler, U. (2006a). Will my ontologies fit to-

gether? In Proc. of the 2006 Description Logic Workshop (DL 2006), volume 189. CEUR

(http://ceur-ws.org/). 3.4.4, 6.1, 6.3.3, 6.5

Grau, B. C., Horrocks, I., Parsia, B., Patel-Schneider, P., and Sattler, U. (2006b). Next steps

for OWL. In OWL: Experiences and Directions (OWLED 2006), CEUR Workshops. 2.3

Grau, B. C. and Kutz, O. (2007). Modular ontology languages revisited. In Workshop on

Semantic Web for Collaborative Knowledge Acquisition (SWeCKa), co-located with IJCAI.

3.4.4, 4.2.6.3, 4.2.6.4, 5, 4.2.6.4, 4.2.6.4, 4.4.2.2, 4.4.2.3

Grau, B. C., Parsia, B., and Sirin, E. (2004a). Tableau algorithms for e-connections of de-

scription logics. Technical report, University of Maryland Institute for Advanced Computer

Studies (UMIACS), TR 2004-72. 4.2.6.4, 4.4.3.2

Grau, B. C., Parsia, B., and Sirin, E. (2004b). Working with multiple ontologies on the semantic

web. In McIlraith et al. (2004), pages 620–634. 3.2.2, 4.2.6.4, 4.3.1, 4.4.1.4, 4.4.2.2, 4.4.3.1,

4.8, 4.4.3.2, 4.4.3.2, 4.4.4.1, 4.4.5.3, 5.4, 5.6

http://ceur-ws.org/

266

Grau, B. C., Parsia, B., and Sirin, E. (2006c). Combining owl ontologies using epsilon-

connections. J. Web Sem., 4(1):40–59. 4.4.1.4, 4.4.2.2, 5.6

Grau, B. C., Parsia, B., Sirin, E., and Kalyanpur, A. (2005). Automatic partitioning of owl

ontologies using -connections. In Description Logics. 4.4.3.2

Grau, B. C., Parsia, B., Sirin, E., and Kalyanpur, A. (2006d). Modularity and web ontologies.

In KR, pages 198–209. 3.2.1.6, 3.4.4

Gray, J. W. and Syverson, P. F. (1998). A logical approach to multilevel security of probabilistic

systems. Distributed Computing, 11(2):73–90. 6.6.1, 6.7.3

Guha, R. V. (1991). Contexts: a formalization and some applications. PhD dissertation,

Stanford University. 3.1.2.1

Guha, R. V. and McCarthy, J. (2003). Varieties of contexts. In CONTEXT, pages 164–177.

3.1.2.1

Guha, R. V., McCool, R., and Fikes, R. (2004). Contexts for the semantic web. In McIlraith

et al. (2004), pages 32–46. 3.1.2.1

Guo, Y., Pan, Z., and Heflin, J. (2005). Lubm: A benchmark for owl knowledge base systems.

J. Web Sem., 3(2-3):158–182. 3.1.3.2

Haarslev, V. and Möller, R. (2001). Racer system description. In IJCAR, pages 701–706. 2.2.1

Halevy, A. Y., Ives, Z. G., Suciu, D., and Tatarinov, I. (2003). Schema mediation in peer data

management systems. In ICDE, pages 505–. 3.4.3

Hallam-Baker, P. and Maler, E. (2002). Assertions and Protocol for the OASIS Security As-

sertion Markup Language (SAML). OASIS Committee Specification sstc-core, May 2002.

6.7.1

Hayes, P., Saavedra, R., and Reichherzer, T. (2003). A collaboration development environment

for ontologies. In Proceedings of the Semantic Integration Workshop, Sanibel Island, Florida,.

7.5

Herzig, A. and Varzinczak, I. J. (2004). On the modularity of theories. In Advances in Modal

Logic, pages 93–109. 3.4

267

Heymans, S. and Vermeir, D. (2002). A defeasible ontology language. In

CoopIS/DOA/ODBASE, pages 1033–1046. 3.2.1.6

Hladik, J. (2004). A tableau system for the description logic shio. In IJCAR Doctoral Pro-

gramme. 2.1.3

Hollunder, B., Nutt, W., and Schmidt-Schauß, M. (1990). Subsumption algorithms for concept

description languages. In ECAI, pages 348–353. 2.2.2

Homola, M. (2007). Distributed description logics revisited. In Description Logics Workshop,

CEUR-WS Vol 250. 4.4.3.1

Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., and Wang, H. (2006).

The Manchester OWL syntax. In OWL: Experiences and Directions (OWLED 2006), CEUR

Workshops. 2.3

Horrocks, I. (2002). DAML+OIL: a description logic for the semantic web. IEEE Data Engi-

neering Bulletin, 25(1):4–9. 2.1.3, 2.3

Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible SROIQ. In KR,

pages 57–67. 2.3, 8.2.3

Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2003). From SHIQ and RDF to

OWL: the making of a web ontology language. J. Web Sem., 1(1):7–26. 2.1.3, 2.3

Horrocks, I. and Sattler, U. (1999). A description logic with transitive and inverse roles and

role hierarchies. 9(3):385–410. 2.1.3

Horrocks, I. and Sattler, U. (2001). Ontology reasoning in the SHOQ(D) description logic. In

Nebel, B., editor, Proceeding of the 17th Int. Joint Conf. on Artificial Intelligence, pages

199–204. AAAI, Morgan Kaufmann. 2.1.3, 5.1

Horrocks, I. and Sattler, U. (2005). A Tableaux Decision Procedure for SHOIQ. In IJCAI,

pages 448–453. 1.2.1, 2.1.3, 2.2.3, 5.1, 5.5.1, 8.2.3

Horrocks, I. and Sattler, U. (2007). A tableaux decision procedure for SHOIQ. Journal of

Automated Reasoning, To Appear. 2.2.3

268

Horrocks, I., Sattler, U., and Tobies, S. (1999). Practical reasoning for expressive description

logics. In LPAR, pages 161–180. 2, 2.1.3, 4.2.1.3, 5.2.2, 5.5.1, 5.5.3, 5.5.3, 5.5.4.2, A.2, A.2

Horrocks, I., Sattler, U., and Tobies, S. (2000). Practical reasoning for very expressive de-

scription logics. Logic Journal of the Interest Group in Pure and Applied Logic (IGPL),

8(3):239–264. 2.1.3

Hu, Z., Bao, J., Rothschild, M. F., Honavar, V., and Reecy, J. M. (2006). Developing frameworks

and tools for animal trait ontology (ato). In Plant and Animal Genome XIV Conference.

Poster Track. January 14-18, 2006,San Diego, CA. 7.1.1

Huang, Z., van Harmelen, F., and ten Teije, A. (2005). Reasoning with inconsistent ontologies.

In IJCAI, pages 454–459. 3.2.1.6

Jain, A. and Farkas, C. (2006). Secure resource description framework: an access control model.

In SACMAT, pages 121–129. 6.7.2

Jajodia, S. and Wijesekera, D. (2001). Recent advances in access control models. In DBSec,

pages 3–15. 6.1, 6.7.1

Kagal, L., Finin, T. W., and Joshi, A. (2003). A policy based approach to security for the

semantic web. In Fensel et al. (2003), pages 402–418. 6.3.1, 6.7.1

Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T. W., and Sycara, K. P. (2004).

Authorization and privacy for semantic web services. IEEE Intelligent Systems, 19(4):50–56.

6.7.1

Kalyanpur, A., Parsia, B., and Hendler, J. A. (2005). A tool for working with web ontologies.

Int. J. Semantic Web Inf. Syst., 1(1):36–49. 4.4.5.3, 7.5

Kalyanpur, A., Parsia, B., Sirin, E., and Grau, B. C. (2006). Repairing unsatisfiable concepts

in owl ontologies. In ESWC, pages 170–184. 3.1.3.1, 3.2.1.6, 8.2.3

Kawamoto, K., Kitamura, Y., and Tijerino, Y. A. (2006). Kawawiki: A semantic wiki based

on rdf templates. In IAT Workshops, pages 425–432. 7.5

269

Kazakov, Y., Sattler, U., and Zolin, E. (2007). How many legs do i have? non-simple roles

in number restrictions revisited. In Proc. of the 14th Int. Conf. on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR’2007), volume To appear. 2

Koch, C. (2002). Query rewriting with symmetric constraints. In FoIKS, pages 130–147. 3.4.3

Kolovski, V., Hendler, J., and Parsia, B. (2007). Analyzing web access control policies. In

WWW, pages 677–686. 6.7.1

Korman, A., Peleg, D., and Rodeh, Y. (2004). Labeling schemes for dynamic tree networks.

Theory Comput. Syst., 37(1):49–75. 5.3.1

Kriple, S. A. (1962). Semantical considerations on modeal logic. In A Colloquium on Modal

and Many-Valued Logics, Helsinki. 3.4.3

Krorzsch, M., Vrandecic, D., and Volkel, M. (2005). Wikipedia and the semantic web - the

missing links. In Proceedings of the WikiMania2005. 7.5

Kutz, O., Lutz, C., Wolter, F., and Zakharyaschev, M. (2003). E-connections of description

logics. In Description Logics Workshop, CEUR-WS Vol 81. 4.4.1.4, 4.4.2.2

Kutz, O., Lutz, C., Wolter, F., and Zakharyaschev, M. (2004). E-connections of abstract

description systems. Artif. Intell., 156(1):1–73. 4.4.2.3, 4.3, 4.5, 4.4.4.1

Kutz, O., Wolter, F., and Zakharyaschev, M. (2002). Connecting abstract description systems.

In KR, pages 215–226. 4.4.1.4

Lenat, D. B. (1995). Cyc: A large-scale investment in knowledge infrastructure. Commun.

ACM, 38(11):32–38. 3.1, 4.4.1.1

Levy, A. Y. and Rousset, M.-C. (1998). Combining horn rules and description logics in carin.

Artif. Intell., 104(1-2):165–209. 3.4.3

Lifschitz, V. (1991). Nonmonotonic databases and epistemic queries. In IJCAI, pages 381–386.

3.4.3

Loebe, F. (2006). Requirements for logical modules. In 1st International Workshop on Modular

Ontologies (WoMo 2006), co-located with ISWC. 3.1, 3.1.2.3, 3.1.2.3, 3.2.1.2

270

Lutz, C., Walther, D., and Wolter, F. (2007). Conservative extensions in expressive description

logics. In IJCAI, pages 453–458. 3.4.4, 6, 6.6.3

McCarthy, J. (1993). Notes on formalizing context. In IJCAI, pages 555–562. 3.1.2.1

McIlraith, S. A., Plexousakis, D., and van Harmelen, F., editors (2004). The Semantic Web

- ISWC 2004: Third International Semantic Web Conference,Hiroshima, Japan, November

7-11, 2004. Proceedings, volume 3298 of Lecture Notes in Computer Science. Springer. A.2

Meghini, C. and Straccia, U. (1996). A relevance terminological logic for information retrieval.

In SIGIR, pages 197–205. 3.4

Meilicke, C., Stuckenschmidt, H., and Tamilin, A. (2007). Repairing ontology mappings. In

AAAI. 3.2.1.6, 8.2.3

Motik, B. (2005). On the properties of metamodeling in owl. In Gil et al. (2005), pages 548–562.

2.3

Motik, B. and Horrocks, I. (2006). Problems with OWL syntax. In OWL: Experiences and

Directions (OWLED 2006), CEUR Workshops. 11, 12

Motik, B., Horrocks, I., Rosati, R., and Sattler, U. (2006). Can owl and logic programming live

together happily ever after? In Cruz et al. (2006), pages 501–514. 3.4.3

Motik, B. and Rosati, R. (2007). A faithful integration of description logics with logic program-

ming. In IJCAI, pages 477–482. 3.4.3

Mukerjee, A. and Mali, A. D. (2002). Modular models of intelligence - review, limitations and

prospects. Artif. Intell. Rev., 17(1):39–64. 3.4

Muljadi, H., Takeda, H., Shakya, A., Kawamoto, S., Kobayashi, S., Fujiyama, A., and Ando,

K. (2006). Semantic wiki as a lightweight knowledge management system. In ASWC, pages

65–71. 7.5

Mungall, C. (2005). Integrated ontologies for biological annotation: The national center for

biomedical ontologies. In The First International Biocurator Meeting. Pacific Grove, CA,

December 8-11, 2005. 7.1.1

271

Niles, I. and Pease, A. (2001). Towards a standard upper ontology. In FOIS, pages 2–9. 3.1

Oren, E., Völkel, M., Breslin, J. G., and Decker, S. (2006). Semantic wikis for personal knowl-

edge management. In DEXA, pages 509–518. 7.5

Ouellet, R. and Ogbuji, U. (2002). Introduction to DAML. http://www.daml.org/about.html.

accessed Jan. 2007. 2.3

Pan, J., Serafini, L., and Zhao, Y. (2006). Semantic import: An approach for partial ontology

reuse. In 1st International Workshop on Modular Ontologies (WoMo 2006), co-located with

ISWC. 3.1.2.2, 4.2.2.1, 4.4.4.3

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commun.

ACM, 15(12):1053–1058. 3.1.3.1

Parsia, B. and Grau, B. C. (2005). Generalized link properties for expressive epsilon-connections

of description logics. In AAAI, pages 657–662. 4.4.1.4, 4.4.2.2, 14, 4.4.3.2, 4.2, 4.4.4.4

Parsia, B., Sirin, E., and Kalyanpur, A. (2005). Debugging owl ontologies. In WWW, pages

633–640. 3.2.1.6

Patel-Schneider, P., P.Hayes, and Horrocks, I. (2003). Web ontlogy language (owl) abstract

syntax and semantics. http://www.w3.org/TR/owl-semantics/. 1.2.2, 4.3.1

Plaisted, D. A. and Yahya, A. H. (2003). A relevance restriction strategy for automated deduc-

tion. Artif. Intell., 144(1-2):59–93. 3.4

Polleres, A. (2006). Logic programs with contextually scoped negation. In WLP, pages 129–136.

4.2.6.2

Polleres, A., Feier, C., and Harth, A. (2006). Rules with contextually scoped negation. In

ESWC, pages 332–347. 4.2.6.2

Schaffert, S. (2006). Ikewiki: A semantic wiki for collaborative knowledge management. In

WETICE, pages 388–396. 7.5

Schlicht, A. and Stuckenschmidt, H. (2006). Towards structural criteria for ontology modu-

larizationc. In 1st International Workshop on Modular Ontologies (WoMo 2006), co-located

with ISWC. 3.1.1.1

272

Schmidt, R. and Tishkovsky, D. (2007). Deciding ALBO with tableau. In Proceedings of

the 20th International Workshop on Description Logics (DL-2007), pages 135–146. Bozen-

Bolzano University Press. 2

Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept descriptions with complements.

Artif. Intell., 48(1):1–26. 2.1.2

Schreiber, G. and Dean, M. (2004). Owl web ontology language reference.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/. 2.1.3, 2.3, 4.3.1, 5.1

Seidenberg, J. and Rector, A. L. (2006). Web ontology segmentation: analysis, classification

and use. In WWW, pages 13–22. 4.4.3.2

Serafini, L., Borgida, A., and Tamilin, A. (2005a). Aspects of distributed and modular ontology

reasoning. In IJCAI, pages 570–575. 4.2.6.4, 4.4.2.3, 4.4.3.1, 4.4.3.1, 4.4.3.1, 4.9, 4.10, 5.6

Serafini, L. and Bouquet, P. (2004). Comparing formal theories of context in ai. Artif. Intell.,

155(1-2):41–67. 3.1.2.1, 3.4.2

Serafini, L., Stuckenschmidt, H., and Wache, H. (2005b). A formal investigation of mapping

language for terminological knowledge. In IJCAI, pages 576–581. 3.3.2, 4, 5, 4.4.1.3, 4.4.2,

4.4.2.2, 4.4.2.3

Serafini, L. and Tamilin, A. (2004). Local tableaux for reasoning in distributed description

logics. In Description Logics Workshop 2004, CEUR-WS Vol 104. 4.2.6.4, 5.6

Serafini, L. and Tamilin, A. (2005a). Distributed instance retrieval in heterogeneous ontologies.

In Proceedings of SWAP 2005, CEUR Workshop Vol 166. 5.6

Serafini, L. and Tamilin, A. (2005b). Drago: Distributed reasoning architecture for the semantic

web. In ESWC, pages 361–376. 4.4.3.1, 4.4.5.3

Sirin, E. and Parsia, B. (2004). Pellet: An OWL DL Reasoner. In Description Logics Workshop.

4.4.5.3, 5.1

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet: A practical

owl-dl reasoner. J. Web Sem., 5(2). 2.2.1, 5.6, 8.2.3

273

Spaccapietra (Coordnator), S. (2005). Report on modulariza-

tion of ontologies. Deliverable D2.1.3.1, Knowledge Web,

http://wasp.cs.vu.nl/knowledgeweb/Deliverables/D2.1.3.1/D2.1.3.1-Modularization.pdf.

3.1.3.2

Stoermer, H. (2006). Introducing Context into Semantic Web Knowledge Bases. In Proceedings

of the CAISE*06 Doctoral Consortium. http://dme.uma.pt/caise06dc/papers/Stoermer.pdf.

3.1.2.1

Stoermer, H., Palmisano, I., Redavid, D., Iannone, L., Bouquet, P., and Semeraro, G. (2006).

Contextualization of a rdf knowledge base in the vikef project. In ICADL, pages 101–110.

3.1.2.1

Stuckenschmidt, H. and Klein, M. (2003a). Modularization of ontologies - wonderweb: On-

tology infrastructure for the semantic web. http://wonderweb.semanticweb.org/ deliver-

ables/documents/D21.pdf. 4.4.1.3

Stuckenschmidt, H. and Klein, M. C. A. (2003b). Integrity and change in modular ontologies.

In IJCAI, pages 900–908. 4.4.1.3

Stuckenschmidt, H. and Klein, M. C. A. (2004). Structure-based partitioning of large concept

hierarchies. In McIlraith et al. (2004), pages 289–303. 3.1.1.1

Stuckenschmidt, H., Serafini, L., and Wache, H. (2006). Reasoning about ontology mappings.

In ECAI 2006 Workshop on Context Representation and Reasoning (CRR). 4.4.2.3, 4.10, 6

Tamilin, A. (2007). Distributed Ontological Reasoning: Theory, Algorithms, And Applications.

Phd dissertation, University of Trento. 5.6

Tobies, S. (2000). The complexity of reasoning with cardinality restrictions and nominals in

expressive description logics. J. Artif. Intell. Res. (JAIR), 12:199–217. 4.2.5

Tobies, S. (2001). Complexity results and practical algorithms for logics in Knowledge Repre-

sentation. Phd thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany. 4.2.5,

5.5.3, 5.5.4.3, A.2

http://wasp.cs.vu.nl/knowledgeweb/Deliverables/D2.1.3.1/D2.1.3.1-Modularization.pdf

274

Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., and Uszok, A. (2003). Semantic

web languages for policy representation and reasoning: A comparison of kaos, rei, and ponder.

In Fensel et al. (2003), pages 419–437. 6.1, 6.7.1

Tsarkov, D. and Horrocks, I. (2004). Efficient reasoning with range and domain constraints. In

Description Logics. FaCT++. 2.2.1, 5.1

Tudorache, T. and Noy, N. (2007). Collaborative protege. In Workshop on Social and Collabo-

rative Construction of Structured Knowledge (CKC) at 16th International World Wide Web

Conference (WWW2007). 7.5

Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N., Hayes, P. J., Breedy, M. R., Bunch, L.,

Johnson, M., Kulkarni, S., and Lott, J. (2003). Kaos policy and domain services: Toward

a description-logic approach to policy representation, deconfliction, and enforcement. In

POLICY, pages 93–96. 6.3.1, 6.7.1

Vardi, M. Y. (1996). Why is modal logic so robustly decidable? In Descriptive Complexity and

Finite Models, pages 149–184. 2.2.2, 5.2

Vega, J. C. A., Corcho, Ó., Fernández-López, M., and Gómez-Pérez, A. (2001). WebODE: a

scalable workbench for ontological engineering. In K-CAP, pages 6–13. 7.5

Völkel, M., Schaffert, S., and Decker, S., editors (2006a). First Workshop on Semantic Wikis:

From Wiki to Semantic (SemWiki2006), at the 3rd Annual European Semantic Web Confer-

ence (ESWC) in Budva, Montenrego. 7.5

Völkel, M., Schaffert, S., Pasaru-Bontas, E., and Auer, S., editors (2006b). Wiki-based knowledge

engineering: second workshop on semantic Wikis, workshop at Int. Sym. Wikis. 7.5

Wahlster, W. (2006). Smartweb: Getting answers on the go. In ECAI (Invited Talk), page 6.

3.1.3.2

Wang, H., He, H., Yang, J., Yu, P. S., and Yu, J. X. (2006). Dual labeling: Answering graph

reachability queries in constant time. In ICDE, page 75. 6.5

Wang, Y., Bao, J., Haase, P., and Qi, G. (2007). Evaluating formalisms for modular ontologies

in distributed information systems. In RR, pages 178–193. 8.1

275

Yeh, I., Karp, P. D., Noy, N. F., and Altman, R. B. (2003). Knowledge acquisition, consistency

checking and concurrency control for gene ontology (go). Bioinformatics, 19(2):241–248. 7.2

Zimmermann, A. (2007). Integrated distributed description logics. In Description Logics Work-

shop, CEUR-WS Vol 250. 4.4.3.1

Zimmermann, A. and Euzenat, J. (2006). Three semantics for distributed systems and their

relations with alignment composition. In International Semantic Web Conference, pages

16–29. 4.2.6.1, 4.4.3.1, 5.3

Index

E-Connections, 96, 100, 111, 114, 162

ABox, 9

Abstract Modular Ontology, AMO, 43

Image Domain Relation, 46

COB Editor, 194

Collaborative Ontology Building, 4, 33, 188

Conservative Extension, 62

Contextual Semantics, 28

Contextualized Constructors, 49

Contextualized Negation, 80

Description Logics, 8

SHOIQ, 11, 17

ALC, 10

Reasoning Tasks, 13

Semantics, 10

Distributed Description Logics, DDL, 94, 98,

106, 115, 161

Distributed First Order Logic, 57

Distributed Tableau, 128

Entailment, 9

Epistemic Semantics, 59

General Concept Inclusion, GCI, 9

Interpretation, 9

Local Model Semantics, 57, 67

Local Semantics, 28, 35, 54

Model, 9

Modular Ontology, 24

Decidability, 38, 54, 77

Directionality, 36, 55, 80

Exact Reasoning, 35, 56, 78

Monotonicity, 37, 55, 78

Transitive Reusability, 37, 55, 78

NNF, Negation Normal Form, 15, 128

Open World Assumption, OWA, 168

Organizational Structure, 195

OWL, 20, 84

OWL 1.1, 23

Package, 65

Nesting, 195

Package-based Description Logics, P-DL, 2, 64

SHOIQP, 65

SHIQP, 150

ALCPC , 144

ALCP−C , 125

Partial Ontology Reuse, 4, 27, 29

Privacy-Preserving Inference, 168

SHIQ, 173

276

277

General Strategy, 171

Hierarchical Ontologies, 175

Propositional Logic of Context, PLC, 58

RBox, 9

Satisfiability, 13, 70

Scope Limitation Modifier, 167

Semantic Encapsulation, 30

Semantic Modularity, 28

Semantic Web, 1

Subsumption, 13

Syntactical Modularity, 25

Tableau Algorithm, 14

for ALC, 15

for SHOIQ, 17

for SHIQP, 150

for ALCPC , 144, 147

for ALCP−C , 125

TBox, 9

WikiOnt, 199

	2007
	Representing and reasoning with modular ontologies
	Jie Bao
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	Motivation And Overview
	Motivation
	The Proposed Solution
	Outline of the Theoretical Approach
	Applications

	Content Guide

	Preliminaries
	Description Logics
	Basic Notions
	The Basic Description Logics ALC
	Expressive Description Logics - the SH family

	Reasoning with Description Logics
	Reasoning Tasks for Description Logics
	Basic Tableau Algorithms
	Tableau Algorithms for Expressive DLs

	Web Ontology Language - OWL

	Modular Ontologies: Desiderata and Abstract Description
	Modular Ontology Desiderata
	Syntactic Modularity
	Semantic Modularity
	Other Modularity Considerations

	Modular Ontology Formalisms: Required Features
	Semantic Requirements
	Expressivity Requirements

	A General Framework for Modular Ontologies
	Semantics of Modular Ontologies at a Glance
	Abstract Modular Ontology
	Expressivity of AMO
	Semantic Requirements of AMO

	Discussion and Related Work
	Local Model Semantics and Distributed First Order Logic
	Propositional Logic of Context
	Epistemic Semantics for Peer-to-Peer Databases
	Modular Ontologies based on Conservative Extensions

	Package-based Description Logics
	Overview
	Package-based Description Logics
	Syntax of P-DL
	Semantics
	SHOIQP Examples
	Reduction to Ordinary DL
	Properties of Semantic Importing
	Discussion on the P-DL Semantics

	Adopt OWL as the Syntax for P-DL
	Limitations of OWL Importing
	A Modular Semantics for OWL
	A Modular Syntax for OWL
	Summary and Discussion

	Related Work
	Other Modular Ontology Languages
	Semantics of Modular Ontology Languages
	Limitations of Existing Approaches
	Relation between Other Formalisms and P-DL
	Syntax Extensions to OWL

	Distributed Reasoning with P-DL
	Overview
	Reasoning in ALCPC-
	ALCPC-
	Distributed Tableaux for ALCPC-
	A Tableau Algorithm for ALCPC-
	Soundness, Completeness, Termination and Complexity

	A Reasoning Algorithm for ALCPC
	Extended Subset Blocking
	Correctness and Complexity

	Asynchronous Federated Reasoning for ALCPC
	Reasoning in SHIQP
	Overview
	P-DL SHIQP
	A Tableau for SHIQP
	An Asynchronous Tableau Algorithm for SHIQP
	Example

	Related Work

	Reasoning with Hidden Knowledge
	Overview
	Motivating Examples
	Privacy-Preserving Reasoning: General Framework
	Partially Hidden Knowledge
	Privacy-Preserving Inference
	General Strategies

	Privacy-Preserving Reasoning with SHIQ Ontologies
	Privacy-Preserving Reasoning with Hierarchical Ontologies
	Discussion: Privacy-Preserving Reasoning in P-DL
	Overview
	Distributed Privacy-Preserving Reasoning: General Setting
	Requirement for Distributed Privacy-preserving Reasoners

	Related Work
	Policy Languages
	Preventing Unwanted Inference
	Epistemic Semantics

	Collaborative Building of Modular Ontologies
	General Desiderate of Collaborative Ontology Building
	Motivations
	Requirement of COB Environments

	CVS-based Collaboration and its Limitations
	COB-Editor
	Organizing Ontologies into Packages
	Benefits of Modular Organization for COB
	The COB-Editor

	WikiOnt: Wiki-based Modular Ontology Editor
	Overview
	Features

	Related Work

	Conclusion and Discussion
	Contributions and Impacts
	Limitations and Future Work
	Modular Ontology Study in General
	Extending P-DL
	Reasoning Algorithms for Modular Ontologies
	Privacy-Preserving Reasoning in Modular Ontologies
	Applications of Modular Ontologies

	Appendix: Proof of Lemmas and Theorems
	Proofs for Chapter 4
	Proofs for Chapter 5

	Bibliography
	Index

