
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 12-2015

Using Software-Defined Networking to Improve
Campus, Transport and Future Internet
Architectures
Adrian Lara
University of Nebraska-Lincoln, adrianlara@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Digital Communications and Networking Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Lara, Adrian, "Using Software-Defined Networking to Improve Campus, Transport and Future Internet Architectures" (2015).
Computer Science and Engineering: Theses, Dissertations, and Student Research. 93.
http://digitalcommons.unl.edu/computerscidiss/93

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/93?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages


USING SOFTWARE-DEFINED NETWORKING TO IMPROVE CAMPUS,

TRANSPORT AND FUTURE INTERNET ARCHITECTURES

by

Adrian Lara

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Byrav Ramamurthy

Lincoln, Nebraska

December, 2015



USING SOFTWARE-DEFINED NETWORKING TO IMPROVE CAMPUS,

TRANSPORT AND FUTURE INTERNET ARCHITECTURES

Adrian Lara, Ph.D.

University of Nebraska, 2015

Adviser: Byrav Ramamurthy

Software-defined Networking (SDN) promises to redefine the future of networking.

Indeed, SDN-based networks have unique capabilities such as centralized control,

flow abstraction, dynamic updating of forwarding rules and software-based traffic

analysis. SDN-based networks decouple the data plane from the control plane,

migrating the latter to a software controller. By adding a software layer between

network devices and applications, features such as network virtualization and

automated management are simpler to achieve.

In this dissertation, we show how SDN-based deployments simplify network

management at multiple scales such as campus and transport networks, as well as

future Internet architectures. First, we propose OpenSec, an SDN-based security

framework that allows network operators to implement security policies in campus

networks. Second, we propose the eXtensible Traffic Engineering Framework

(XTEF) to enable application-driven traffic engineering and provision transport

network resources using on-demand Wavelength Division Multiplexing (WDM)

tunnels. Third, we demonstrate how SDN can be used to dynamically create intra-

domain cut-through switching tunnels to bypass the routing layer in MobilityFirst.

Finally, we propose how to extend the cut-through capabilities to inter-domain

routing in MobilityFirst.

In our work, we run experiments on the GENI testbed (Global Environment



for Network Innovations), the ORBIT (Open-Access Research Testbed for Next-

Generation Wireless Networks) and Mininet. The results show that SDN can be

used to simplify policy-based network management, virtualize an entire WAN

as a single switch, create Wavelength Division Multiplexing (WDM) tunnels on

demand and create inter-domain tunnels using techniques that scale better than

traditional distributed methods.



iv

ACKNOWLEDGMENTS

I would first like to thank my advisor, Prof. Byrav Ramamurthy, for his infinite

patience to guide me through my Ph. D. He provided a working environment

where I was never afraid of asking questions and felt motivated to work. Likewise,

I would like to thank my committee members, Prof. Witawas Srisa-an, Prof. Mark

Walker and Prof. Lisong Xu, for their valuable feedback and suggestions to improve

my work. Other professors have also contributed significantly to improve the

quality of my research. In particular, I would like to thank Dr. Nagaraja at Ericsson,

Prof. Raychaudhuri at Rutgers University and Prof. Ramakrishnan at UC Riverside,

for their immense help to understand and investigate the MobilityFirst project.

Next, I would like to thank Mr. Inder Monga and Mr. Eric Pouyoul, for their

feedback and cutting-edge research ideas during my time at ESnet and afterwards.

Finally, I would like to thank Ms. Anisha Kolasani, Mr. Aravind Krishnamurthy

and Ms. Shreyasee Mukherjee for co-authoring papers with me.

Next, I would like to thank the National Science Foundation for partially

funding this work through grants CNS-1040765 and CNS-1345277. Likewise, I

would like to thank BBN Technologies for continuously funding my travels to the

GENI Engineering Conference meetings. Likewise, I would like to thank the US

Dept. of Energy (DOE) for partially funding this work through Award Number

DE-SC0001277.

I would also like to thank all my friends at the Netgroup Lab throughout these

years. Mr. Santiago Gimenez, Mr. Saichand Palusa, Ms. Pan Yi, Ms. Sara El Alaoui

and many others listened to my presentations repeatedly and always provided

suggestions to improve my work.

I would have never finished my Ph. D. without the support of my parents and



v

sister. They supported this adventure even before it started and pushed me to

pursue my dreams and make them come true. I owe them for teaching me to face

life with a smile on my face and to never look back. Many thanks to them for

always being there for me.

Finally, my biggest gratitude goes to Mariana, my fiancee, for being strong

during these years, for believing in me and for finding the perfect words to cheer

me up every time. The end of my Ph. D. journey also means a new beginning

with her back home, and I look forward to many years together.



vi

Table of Contents

List of Figures xiv

List of Tables xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Software Defined Networking and OpenFlow . . . . . . . . . 4

1.2.2 Future Internet Architectures and MobilityFirst . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Software Defined Networks and OpenFlow 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Background of programmable networks . . . . . . . . . . . . . . . . . 11

2.2.1 Software Defined Networking . . . . . . . . . . . . . . . . . . . 12

2.2.2 Standardizing the communication between the control plane

and the data plane . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 OpenFlow specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 OpenFlow 1.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 OpenFlow 1.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



vii

2.3.3 OpenFlow 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3.1 OpenFlow 1.3.0 . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Implementing applications using OpenFlow . . . . . . . . . . 22

2.3.5 OpenFlow: a specification, a protocol or an architecture? . . . 25

2.3.6 OpenFlow and SDN . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.7 Capabilities of OpenFlow . . . . . . . . . . . . . . . . . . . . . 26

2.3.8 Centralized control of the network . . . . . . . . . . . . . . . . 26

2.3.9 Software-based traffic analysis . . . . . . . . . . . . . . . . . . 28

2.3.10 Dynamic updating of forwarding rules . . . . . . . . . . . . . 29

2.3.11 Flow abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 OpenFlow-based applications . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Ease of configuration . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Network management . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 OpenFlow deployments . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Performance of OpenFlow-based networks . . . . . . . . . . . . . . . 48

2.6.1 Measuring and modelling the performance of OpenFlow-

based networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.2 Improving the performance of OpenFlow-based networks . . 50

2.7 Challenges of OpenFlow-based networks . . . . . . . . . . . . . . . . 51

2.7.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7.4 Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7.5 CAPEX and OPEX . . . . . . . . . . . . . . . . . . . . . . . . . 55



viii

2.7.6 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . 57

3 Campus scale: Policy-based security management using OpenSec 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Policy-based management without SDN . . . . . . . . . . . . 63

3.2.2 Policy-based network management using SDN . . . . . . . . . 64

3.2.3 Candidate frameworks for comparison against OpenSec . . . 65

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Moving middleboxes away from the main datapath . . . . . . 67

3.3.2 Reacting automatically to security events . . . . . . . . . . . . 68

3.3.3 Creating a simple policy specification language . . . . . . . . 68

3.4 OpenSec components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Policy specification language . . . . . . . . . . . . . . . . . . . 70

3.4.2 Northbound interface . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.3 Policy manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.4 Processing units . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.5 Security event processor . . . . . . . . . . . . . . . . . . . . . . 73

3.4.6 OpenFlow controller . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.7 Data repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Operation of OpenSec: policy implementation . . . . . . . . . . . . . 75

3.5.1 Policy parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.2 Policy checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.3 Policy implementation . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.4 Policy enforcement . . . . . . . . . . . . . . . . . . . . . . . . . 78



ix

3.5.5 Step-by-step example . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Operation of OpenSec: reaction to security events . . . . . . . . . . . 80

3.6.1 Configuration of processing units . . . . . . . . . . . . . . . . 81

3.6.2 Reaction to security event . . . . . . . . . . . . . . . . . . . . . 81

3.6.3 Creation of new OpenFlow rules . . . . . . . . . . . . . . . . . 82

3.6.4 Step-by-step example . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Use case 1: traffic analysis for campus networks . . . . . . . . . . . . 83

3.7.1 Controlling outgoing traffic using OpenSec . . . . . . . . . . . 83

3.7.2 Protecting the residential network from outsider attacks . . . 86

3.8 Use case 2: Deploying a Science DMZ . . . . . . . . . . . . . . . . . . 88

3.8.1 Science DMZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8.2 Deployment of a Science DMZ using OpenSec . . . . . . . . . 89

3.9 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9.2 Gain in throughput . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.10 Comparison with existing solutions . . . . . . . . . . . . . . . . . . . 94

3.10.1 Procera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.10.2 CloudWatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.10.3 Fresco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 WAN scale: Dynamic Network Provisioning for SDN Transport Net-

works 100

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Network virtualization using OpenFlow . . . . . . . . . . . . 102



x

4.2.2 SDN at a WAN scale . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.3 Multi-layer bandwidth provisioning using SDN . . . . . . . . 104

4.3 Description of challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 WAN virtualization . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.3 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.5 Multi-domain circuits . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.6 Multi-layer provisioning . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Components of XTEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 OneSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.2 Traffic engineering . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.3 Dynamic Tunnel Setup algorithm . . . . . . . . . . . . . . . . . 114

4.4.4 ONOS controller . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Implementation of XTEF . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.1 OneSwitch implementation . . . . . . . . . . . . . . . . . . . . 115

4.5.2 DTS implementation . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.3 ONOS application implementation . . . . . . . . . . . . . . . . 119

4.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.1 GENI testbed topology . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.1.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6.2 Mininet emulation topology . . . . . . . . . . . . . . . . . . . . 121

4.6.2.1 Scenarios 2 and 3 . . . . . . . . . . . . . . . . . . . . . 122

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7.1 Virtualization delay and scalability of OneSwitch . . . . . . . 123

4.7.2 Application-driven TE . . . . . . . . . . . . . . . . . . . . . . . 125



xi

4.7.3 Network provisioning . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Internet scale: Intra-domain cut-through switching in MobilityFirst 129

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Overview of MobilityFirst . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 Software defined networking implementation of MobilityFirst 135

5.2.3 ORBIT testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.4 GENI testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Bypassing the routing layer . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 Challenges and design goals of a bypassing technique . . . . 138

5.3.2 Bypassing L3 using Layer 2 VLAN switching . . . . . . . . . . 140

5.3.3 Deciding when to create a bypass . . . . . . . . . . . . . . . . 142

5.3.4 Deciding when to remove a bypass . . . . . . . . . . . . . . . . 143

5.4 Implementation using OpenFlow . . . . . . . . . . . . . . . . . . . . . 144

5.4.1 Mapping chunks to VLANs . . . . . . . . . . . . . . . . . . . . 144

5.4.2 Bypassing functionality . . . . . . . . . . . . . . . . . . . . . . 145

5.4.3 Discussion: Challenges addressed . . . . . . . . . . . . . . . . 146

5.4.4 Discussion: Centralized control plane . . . . . . . . . . . . . . 147

5.4.5 Expected improvements using OpenFlow 1.4 . . . . . . . . . . 148

5.5 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.1 Single-switch network . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.2 Multi-switch network . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.2.1 Reducing the transfer time . . . . . . . . . . . . . . . 151



xii

5.5.2.2 Scaling through flow aggregation . . . . . . . . . . . 153

5.5.3 Routing and bypassing in a mesh topology . . . . . . . . . . . 153

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Internet scale: Inter-Domain Routing with Cut-Through Switching in

MobilityFirst 156

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . 158

6.2.1 Inter-domain routing using SDN . . . . . . . . . . . . . . . . . 158

6.2.2 Inter-domain cut-through switching . . . . . . . . . . . . . . . 159

6.2.3 Inter-domain optimization . . . . . . . . . . . . . . . . . . . . . 160

6.3 Dynamic creation of inter-domain tunnels . . . . . . . . . . . . . . . . 160

6.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3.4 Study of sample topologies . . . . . . . . . . . . . . . . . . . . 165

6.3.5 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Routing framework description . . . . . . . . . . . . . . . . . . . . . . 170

6.4.1 The need for SDN . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.2 Increased visibility between domains . . . . . . . . . . . . . . 172

6.4.3 Dynamic creation of inter-domain tunnels using the GNRS . 173

6.5 Traffic engineering techniques used by the framework . . . . . . . . . 175

6.5.1 Deciding which flows to forward through a tunnel . . . . . . 175

6.5.1.1 Controller-initiated cut-through based on flow rate

and duration . . . . . . . . . . . . . . . . . . . . . . . 175

6.5.1.2 Controller-initiated cut-through based on mobility . 176



xiii

6.5.1.3 Sender-initiated cut-through . . . . . . . . . . . . . . 177

6.5.2 Deciding how to setup a tunnel . . . . . . . . . . . . . . . . . . 178

6.5.2.1 Combined technique . . . . . . . . . . . . . . . . . . . 178

6.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.6.1 Elephant flow detection . . . . . . . . . . . . . . . . . . . . . . 182

6.6.2 Mobility-aware routing . . . . . . . . . . . . . . . . . . . . . . . 184

6.6.3 Inter-domain tunneling and flow aggregation . . . . . . . . . 185

6.6.4 Reduction of label distribution messages . . . . . . . . . . . . 187

6.6.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Conclusions and future directions 193

7.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Bibliography 200



xiv

List of Figures

2.1 OpenFlow components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Elements of an OpenFlow-compliant switch. . . . . . . . . . . . . . . . . 16

2.3 How a packet is processed and forwarded in an OpenFlow 1.0.0 switch. 18

2.4 Components of an OpenFlow 1.1.0 switch. Source: [1]. . . . . . . . . . . 20

2.5 Draft of the planned U.S. UCAN network using the Internet2 100G

deployment. (Source: [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Topology of the ANI OpenFlow testbed. . . . . . . . . . . . . . . . . . . . 45

2.7 Topology of the ORBIT OpenFlow testbed. . . . . . . . . . . . . . . . . . 46

3.1 The OpenSec framework: Security functions are provided by the pro-

cessing units; traffic is routed to each processing unit based on require-

ments given through security policies; the reaction to security alerts is

automated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 OpenSec’s graphic user interface. This interface allows the network

operator to add, remove and view policies. It can also be used to

re-authorize blocked sources. . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Steps needed to implement a policy. . . . . . . . . . . . . . . . . . . . . . 75

3.4 Steps needed to react to a security event. . . . . . . . . . . . . . . . . . . 80

3.5 Campus topology for housing Internet traffic. . . . . . . . . . . . . . . . 83



xv

3.6 Automated blocking of sources 192.168.1.2 and 192.168.1.3 after de-

tecting a SYN flood and a Smurf attack. Source 192.168.1.1 remains

unblocked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Science DMZ in a campus network. . . . . . . . . . . . . . . . . . . . . . 88

3.8 Number of bytes received by end-hosts in the Science DMZ and the

LAN. The host in the science DMZ receives more traffic because the

path between end-points is faster. For the host in the LAN, security

devices such as the firewall decrease the performance and the traffic

rate is lower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.9 Number of bytes received by the firewall and the spyware detection

units. The amount of traffic that visits the spyware detection unit

is lower because only traffic with destination port TCP 25 is routed

through this unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 Time elapsed between the detection of malicious traffic and the blocking

of the source. Independently of the traffic rate, the time needed by

OpenSec to detect malicious traffic and block the sender remains constant. 92

3.11 Increase in round-trip latency as more middleboxes are traversed by

the traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.12 Decrease in throughput as more middleboxes are traversed by the traffic.

This experiment only considers the decrease due tu an increased latency.

The throughput can be reduced further based on packet loss as shown

in Fig. 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



xvi

3.13 TCP throughput achieved using OpenSec and in-line DPI using a

10Mbps link. The packet loss caused by in-line DPI reduces the through-

put significantly, whereas it remains constant when using OpenSec

because the traffic is only mirrored to the DPI and the packet loss is

smaller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.14 Number of packets that go through after detection of malicious traffic.

As the traffic rate increases, the number of packets that go through

while the blocking is being implemented grows linearly. . . . . . . . . . 97

4.1 The XTEF framework uses the OneSwitch WAN abstraction model, the

DTS provisioning algorithm and the ONOS controller. . . . . . . . . . . 112

4.2 Message exchanges using OpenFlow or XMPP as northbound API . . . 115

4.3 Operation of DTS using sFlow and a point-to-point optical intent appli-

cation on ONOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Experimental topology emulated in GENI . . . . . . . . . . . . . . . . . . 120

4.5 Round-trip ping time between Los Angeles and New York for a single

flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Delay introduced by OneSwitch for varying number of tenants. . . . . . 125

4.7 Latency limits guaranteed for each flow with and without traffic engi-

neering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Percentage of flows that received the requested bandwidth guarantee. . 127

5.1 Basic Protocol Building Blocks in MobilityFirst. Figure was redrawn by

co-authors (Source: Raychaudhuri et al. [3]). . . . . . . . . . . . . . . . . 133

5.2 Hybrid GUID/NA packet headers in MobilityFirst. Figure was redrawn

by co-authors (Source: Raychaudhuri et al. [3]). . . . . . . . . . . . . . . 134



xvii

5.3 Diagram of the SB9 testbed. Figure was redrawn by co-authors (Source:

ORBIT [4]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Example of a bypass in MobilityFirst. . . . . . . . . . . . . . . . . . . . . 139

5.5 Single-switch topology deployed in ORBIT . . . . . . . . . . . . . . . . . 150

5.6 Total transfer time for a varying number of chunks . . . . . . . . . . . . 150

5.7 Total delay at the controller for a varying number of chunks . . . . . . . 150

5.8 Experimental topology deployed in GENI . . . . . . . . . . . . . . . . . . 151

5.9 Total transfer time with and without bypass. 95% confidence intervals

are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.10 Number of packet in messages received by the controller with and

without bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.11 Number of flow rules pushed with and without aggregating flows. . . . 153

5.12 Experimental mesh topology. . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1 Sample network with two domains and two cut-through tunnels (3-6

and 4-7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Distribution of intra-domain and inter-domain tunnels for varying inter-

domain controller latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Total delay caused by controller processing with low and high inter-

controller latency for Topology 1. . . . . . . . . . . . . . . . . . . . . . . . 166

6.4 Total delay caused by controller processing with low and high inter-

controller latency for Topology 2. . . . . . . . . . . . . . . . . . . . . . . . 167

6.5 Sample topology used to evaluate the heuristic. . . . . . . . . . . . . . . 168

6.6 Steps needed to setup an inter-domain tunnel across multiple ASes . . . 170

6.7 aNode-vLink topology abstraction for an AS. . . . . . . . . . . . . . . . . 173

6.8 Structure of network state packets propagated across domains. . . . . . 173



xviii

6.9 Experimental topology. Sender nodes are connected to switch intra 1

and the destination device is in another domain. . . . . . . . . . . . . . . 183

6.10 Detection of a large flow. When sender C starts a large flow, the

controller tags it at elephant. Next it removes the tag when the load is

reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.11 Downgrading a large flow due to destination mobility. When the

destination becomes mobile, the flow is switched to a different path. . . 185

6.12 Experimental topology. Three SDN-based domains are deployed with

end-nodes on ASes 1 and 3 and traffic going through an in-transit

domain (AS2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.13 Accumulated number of packet in messages received by the AS2 domain

controlle with and without inter-domain tunnels. . . . . . . . . . . . . . 186

6.14 Number of messages needed to setup inter-domain tunnels using LDP

or our framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.15 Total delay encountered by the first packet of each new flow. . . . . . . 190

6.16 Total number of tunnels created by the framework and the ILP solver. . 190



xix

List of Tables

2.1 Example OpenFlow-compliant switches. . . . . . . . . . . . . . . . . . . . 9

2.2 Match fields of a flow table entry in an OpenFlow 1.0.0 switch. . . . . . 17

2.3 Match fields of a flow table entry in an OpenFlow 1.1.0 switch. . . . . . 19

2.4 Comparison of OpenFlow specifications. . . . . . . . . . . . . . . . . . . 22

2.5 OpenFlow controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Comparison of security applications using OpenFlow. . . . . . . . . . . . 31

2.7 Comparison of network virtualization applications using OpenFlow. . . 37

3.1 Syntax to create policies using OpenSec. . . . . . . . . . . . . . . . . . . . 71

3.2 Registered security processing units for Fig. 3.1. . . . . . . . . . . . . . . 73

3.3 Type of traffic in the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Results of implementing the blocking policy . . . . . . . . . . . . . . . . 87

3.5 Syntax to create policies using OpenSec and Procera. . . . . . . . . . . . 89

3.6 Time needed to create OpenFlow rules in OpenSec and CloudWatcher

for a single policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Time needed to create and push OpenFlow rules in OpenSec and Fresco

for a single policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Existing network virtualization models . . . . . . . . . . . . . . . . . . . 106

4.2 Order of priority for short-term deployments . . . . . . . . . . . . . . . . 107



xx

6.1 Comparison of heuristic against ILP solver . . . . . . . . . . . . . . . . . 169

6.2 Summary of components and key parameters used in the experiments . 184

6.3 Number of packet in messages received by the controller based on the

traffic rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4 Message equivalency between LDP and SDN-GNRS . . . . . . . . . . . . 188



1

Chapter 1

Introduction

Networks of the future need to be flexible and dynamic to accommodate the

expected demand. For example, global mobile data reached 2.5 exabytes per

month at the end of 2014 [5] and a growth of more than 50% is expected till

2019, where the data load could reach 24.3 exabytes. By the same token, the

Large Hadron Collider (LHC, the world’s largest particle accelerator), is capable

of sending data at a rate of 10 gigabytes per second for processing at facilities

worldwide [6]. Clearly, networks need to provide sufficient bandwidth to transfer

such huge amounts of data. However, they also need to be dynamic and flexible

so that data transfers can be initiated when needed. To illustrate this, imagine that

the LHC generates 10 gigabytes but it takes two days to create a circuit in order

for a scientist in New York to receive the data. By then, it is already faster to ship

two DVDs by mail.

Networks of the future also need to be manageable. As the complexity of

network deployments increases, the number of devices deployed increases as well.

Manual configuration of such devices is error-prone and time-consuming. As a

consequence, one expectation of future networks is to provide mechanisms to the

operators to simplify network management, reduce the amount of time needed to

configure devices and minimize configuration errors.



2

Software Defined Networking (SDN) [7] is an increasingly popular paradigm

that decouples the data plane from the control plane, migrating the latter to a

software controller. The motivation is to move the complexity away from the

hardware and to allow for flexibility and innovation in the software. As a result,

hardware tends to become simpler and focus only on forwarding traffic. In

contrast, the software becomes responsible for managing the network and how

devices forward traffic. SDN deployments have inherent capabilities that allow for

innovative ways to manage networks. First, control of the network is centralized,

since a software controller is responsible for managing all forwarding devices.

Second, all traffic is abstracted as a flow, independently of whether it carries data

over IP, Ethernet or lower layers. Third, in SDN forwarding rules can be updated

dynamically, thus providing great flexibility to network management. Fourth, SDN

facilitates software-based analysis of traffic traversing the forwarding devices. This

allows the centralized controller to use multiple software techniques for detection

and pattern identification. All these capabilities have enabled a significant body of

research focusing on how SDN can redifine the way networking is done today.

OpenFlow [8] is the most commonly used SDN protocol. It standardizes how

a software-based controller and an OpenFlow-compliant Ethernet switch should

communicate. The protocol contains an extensive list of messages that are used by

the controller and the switches to exchange information. For instance, it allows a

switch to notify the controller of an incoming packet for which no forwarding rule

matched. Similarly, it specifies how the controller can send a message to the switch

requesting to add a new forwarding rule in the flow table that will match the

incoming packet. These are only two examples of messages that can be exchanged

through the OpenFlow channel, a Transmission Control Protocol (TCP) connection

established between the controller and the switch to exchange data.



3

1.1 Motivation

The motivation of this dissertation is to analyze how SDN can be used to sim-

plify network operation and create flexible and manageable deployments. By

adding a software layer between network devices and applications, a great deal

of simplification can be achieved. However, it is also true that anything that can

be done using SDN can also be achieved without it. The challenge, thus, is to

justify how SDN-based deployments are more flexible and manageable compared

to traditional networks.

When OpenFlow was proposed, it was considered a tool to enable network

innovation in campus networks. The benefit of using OpenFlow was to allow

researchers to run novel experiments on real hardware without disrupting pro-

duction traffic. As a consequence, an effort to simplify network management

at campus scale resulted in OpenSec [9], the first product of this dissertation.

OpenSec is an SDN-based security framework that allows network managers to

implement security policies in the network.

When the popularity of SDN increased, so did the scope of SDN-based deploy-

ments. In particular, the deployment of an entire backbone network at Google

using OpenFlow [10] was a demonstration that an SDN-based wide area network

(WAN) was possible. Our motivation to shift to the WAN was driven by our

interest in the optical layer. As a consequence, we focused on how SDN could sim-

plify transport networks and we proposed the the eXtensible Traffic Engineering

Framework (XTEF) [11] to provide application-driven traffic provisioning using

on-demand Wavelength Division Multiplexing (WDM) tunneling in SDN transport

networks.

Finally, our collaboration with the MobilityFirst team motivated us to look into



4

the role of SDN in the Future Internet. MobilityFirst is a Future Internet architec-

ture project funded by the National Science Foundation that decouples network

addresses and identifiers to better support mobility. To achieve mobility-awareness,

the MobilityFirst network must be capable of fine-grained, per-flow routing to pro-

vide mobility support while staying efficient for large flows that traverse the core

network. Consequently, we designed an SDN-based routing framework for Mobili-

tyFirst that benefits from the traffic analysis and centralized control capabilities of

SDN to ensure mobility-aware, efficient routing in MobilityFirst.

1.2 Background

1.2.1 Software Defined Networking and OpenFlow

Since this work focuses heavily on SDN and OpenFlow, an entire chapter (Chapter

2) is devoted to provide a detailed explanation of the topic. This chapter includes

a brief description of the historical background of programmable networks and

the reasons why OpenFlow was more successful than previous attempts. The

chapter also provides a detailed description of the OpenFlow protocol, starting at

the specification 1.0. Finally, we survey innovative work using OpenFlow, as well

as current large scale deployments based on SDN.

1.2.2 Future Internet Architectures and MobilityFirst

Future Internet Architectures (FIAs) are research projects aimed at re-designing

the Internet. The common thread of all projects is the identification of limitations

of the current Internet, such as the lack of support for mobile devices or the lack

of security. Also, they highlight that the Internet was designed to enable com-

munication between one client and one server, whereas nowadays Internet traffic



5

is content-oriented independently of the location of the required content. These

projects were born in 2010 when the National Science Foundation (NSF) created

the FIA project and funded novel initiatives to propose clean slate architectures

for the Future Internet. Projects such as Named Data Networking (NDN) [12],

MobilityFirst [13], Nebula[14] and ChoiceNet [15] are currently funded by the NSF

as a result of the initiative. We are part of the MobilityFirst team and we collaborate

on investigating how MobilityFirst can benefit from SDN and optical networks.

Detailed review on MobilityFirst mechanisms such as globally unique identifiers

(GUID), global name resolution system (GNRS) and hop-by-hop transmission is

given in Chapter 5.

1.3 Contributions

The first contribution of this dissertation is a survey on network innovation using

OpenFlow, published in the IEEE Communications Surveys & Tutorials online

journal [7]. To the best of our knowledge, this work was the first comprehensive

survey to describe the difference between SDN and OpenFlow, as well as the

capabilities, applications, challenges and deployments of SDN-based networks

using OpenFlow.

The second contribution of this dissertation is OpenSec, an SDN-based frame-

work that allows network operators to write human-readable security policies and

implement them automatically in the network. Through this work, we reinforced

the idea of moving middleboxes away from the main datapath of a LAN to improve

scalability and reliability. Furthermore, we proposed a new policy specification

language that is simpler than the ones proposed by the related work. Our work

was published in the proceedings of IEEE GLOBECOM 2014 [9] and a journal



6

submission is currently under review.

The third contribution of this dissertation is the eXtensible Traffic Engineering

Framework (XTEF), a WAN framework capable of creating dynamic, on-demand,

end-to-end circuits in transport networks. XTEF uses OneSwitch, a WAN abstrac-

tion model, to expose the WAN as a single switch to external tenants. Using

XTEF, the tenants can request bandwidth or latency guarantees and XTEF uses

dynamic WDM tunnels to provision the network and allocate such demands. An

implementation and evaluation of OneSwitch was published in the proceedings of

IEEE/OSA OFC 2015 [16]. A description of the main challenges in WAN for scien-

tific flows was published in the proceedings of the SDN Workshop for Scientific

Computing at Super Computing 2015 [17]. The XTEF work was submitted to a

conference and is currently under review [11].

The fourth contribution of this dissertation is the implementation of an OpenFlow-

based control plane for MobilityFirst with intra-domain cut-through switching.

The motivation for this framework is to perform efficient data transfer in Mobility-

First for flows with static end-points. To avoid the overheads of the routing layer,

the proposed framework creates Ethernet-layer tunnels for improved efficiency

and flow aggregation. This work was published in the proceedings of IEEE ANTS

2013. An extended version of the paper was also published in the Photonic Com-

munication Networks Journal special issue consisting of selected papers from IEEE

ANTS 2013.

Finally, the fifth contribution of this dissertation is to extend the MobilityFirst

SDN framework to an inter-domain scale. To this end, we first model and solve an

optimization problem to minimize the total transfer time of flows across domains.

Next, we propose a routing framework that enables domain controllers to exchange

topology information and communicate to create inter-domain tunnels. This is an



7

important contribution to the SDN field because it proposes a novel mechanism to

create inter-domain tunnels that is scalable and uses fewer messages than current

protocols such as the label distribution protocol (LDP). This work was submitted

to a conference and is currently under review.

1.4 Dissertation organization

The rest of this dissertation is organized as follows. First, Chapter 2 provides

detailed background on SDN and OpenFlow. Next, Chapter 3 introduces OpenSec,

a framework that enables network operators to implement security policies in

a campus network. After that, Chapter 4 describes XTEF, a WAN provisioning

framework. After that, Chapters 5 and 6 address the topic of cut-through switching

in MobilityFirst using OpenFlow at intra-domain and inter-domain scale. Finally,

we draw our conclusions and describe future work in Chapter 7.



8

Chapter 2

Software Defined Networks and OpenFlow

2.1 Introduction

A recent approach to programmable networks is the Software Defined Networking

(SDN) architecture. SDN consists of decoupling the control and data planes of a

network. It relies on the fact that the simplest function of a switch is to forward

packets according to a set of rules. However, the rules followed by the switch

to forward packets are managed by a software-based controller. One motivation

of SDN is to perform network tasks that could not be done without additional

software for each of the switching elements. Developed applications can control

the switches by running on top of a network operating system, which works as an

intermediate layer between the switch and the application. Another motivation

is to move part of the complexity of the network to the software-based controller

instead of relying only on the hardware network devices.

OpenFlow [8] was proposed to standardize the communication between the

switches and the software-based controller in an SDN architecture. The authors

identify that it is difficult for the networking research community to test new

ideas in current hardware. This happens because the source code of the software

running on the switches cannot be modified and the network infrastructure has

been “ossified” [8], as new network ideas cannot be tested in realistic traffic



9

settings. By identifying common features in the flow tables of the Ethernet

switches, the authors provide a standardized protocol to control the flow table of a

switch through software. OpenFlow provides a means to control a switch without

requiring the vendors to expose the code of their devices.

Table 2.1: Example OpenFlow-compliant switches.

Switch Company Series
Arista Arista extensible modular operat-

ing system (EOS), Arista 7124FX
application switch

Ciena Ciena Coredirector running
firmware version 6.1.1

Cisco Cisco cat6k, catalyst 3750, 6500 se-
ries

Juniper Juniper MX-240, T-640

HP HP procurve series- 5400 zl, 8200

zl, 6200 yl, 3500 yl, 6600

NEC NEC IP8800

Pronto Pronto 3240, 3290

Toroki Toroki Lightswitch 4810

Dell Dell Z9000 and S4810

Quanta Quanta LB4G

Open vSwitch Software switch. Latest version:
1.10.0

OpenFlow was initially deployed in academic campus networks [8]. Today,

at least nine universities in the US have deployed this technology [18]. The

goal of OpenFlow was to provide a platform that would allow researchers to

run experiments in production networks. However, industry has also embraced

SDN and OpenFlow as a strategy to increase the functionality of the network

while reducing costs and hardware complexity. Table 2.1 shows a list of several

OpenFlow-compliant switches available in the market. The Open Networking

Foundation (ONF) [19] was founded in 2011 by Deutsche Telekom, Facebook,



10

Google, Microsoft, Verizon, and Yahoo to promote the implementation of SDN and

OpenFlow-based networks. Currently, ONF has more than 95 members including

several major vendors.

OpenFlow networks have specific capabilities. For example, it is possible to

control multiple switches from a single controller. It is also feasible to analyze

traffic statistics using software. Forwarding information can be updated dynami-

cally as well and different types of traffic can be abstracted and managed as flows.

These capabilities have been exploited by the research community to experiment

with innovative ideas and propose new applications. Ease of configuration, net-

work management, security, availability, network and data center virtualization

and wireless applications are those that have been investigated the most using

OpenFlow. They have been implemented in different environments, including

virtual or real hardware networks and simulations. Researchers have also focused

on evaluating the performance of OpenFlow networks and on proposing methods

to improve their performance.

OpenFlow offers great opportunities for network innovation but it also faces

challenges. The fact that the availability of the network depends on a single

controller at a given time, creates scalability and availability problems. There are

security concerns regarding the fact that all the network information is contained

in one single server. Compatibility issues must also be taken into consideration.

Questions remain about future directions of OpenFlow research as well. We discuss

the extension of this technology to network-layer devices such as IP routers, as

well as the deployment of OpenFlow in wide area networks (WAN).

In this chapter we describe the capabilities, applications, deployments and

challenges of OpenFlow networks in local and wide area environments. We also

describe SDN and alternative standards such as ForCES [20]. We explain how



11

OpenFlow has received major attention among SDN technologies but we also point

out the difference between SDN and OpenFlow.

We begin by giving a background of programmable networks and describing

SDN in Section 2.2. We explain the OpenFlow specification in Section 2.3. Then

we present the capabilities of OpenFlow networks in Section 2.4 and we survey

how they have been exploited in different applications in Section 2.5. We describe

deployments of OpenFlow-based networks in Section 2.6. Next we discuss studies

that have evaluated the performance of OpenFlow in Section 2.7. Then we discuss

the challenges faced by OpenFlow in Section 2.8. We conclude by proposing future

research directions in Section 2.9.

2.2 Background of programmable networks

In this section we present several contributions to programmable networks prior

to SDN and OpenFlow. One of the first approaches was SOFTNET [21], an

experimental multihop packet radio network that introduced the idea of adding

commands to the contents of each packet. The goal was to modify a network node

during operation time, using commands written in the SOFTNET language. The

motivation of the authors in creating this network was to enable experiments with

different network protocols. SOFTNET was deployed as a proof of concept. There

were no further large scale deployments, but the idea behind it was the motivation

for Active Networks [22, 23].

The main idea of Active Networks (AN) was to allow packets to contain

programs that could be executed by the network devices that they traversed. The

concept of active network is due to the fact that switches perform computations

on the data of the packets flowing through them and the users can inject programs



12

into the network [22]. A survey on AN research is available in [24]. Although

AN became an active field of research, it ultimately failed at being widely used.

Recently, NetServ [25] was proposed as ActiveNetworks 2.0. The authors argue

that NetServ contains all the necessary elements to be deployed.

SOFTNET and ActiveNetworks did not use software components to control the

network devices. The programmability of the network was achieved by adding

source code to the payload of the packets. More recent approaches proposed

separating the control plane from the data plane by moving the first one to general

purpose servers. We describe SoftRouter [26], ForCES [20] and finally we focus on

OpenFlow [8]. They are all based on software defined networking architectures,

where the network devices are controlled by software components.

2.2.1 Software Defined Networking

The difference between SDN and the previous approaches is that a software

component running on a server or a CPU is added to the architecture of the

network. In SDN, the software component is responsible for the control plane of

the network. This is why we say that SDN decouples the control and data planes,

as this distinction was not as clear in previous approaches.

One important feature of SDN is its ability to provide a network wide abstrac-

tion. Keller et al. [27] discuss the idea of the “platform as a service” model for

networking. According to the authors, it is a common trend to decouple the infras-

tructure management from the service management. In this model, the underlying

physical network and the topology are hidden to the user. Instead, the abstraction

presented to the user is a single router. According to them, the customer is mostly

interested in being able to configure policies and defining how packets are handled.

We will see during the rest of this chapter that a large number of publications aim



13

at hiding the complexity of the network and providing an easier way to configure

a service. Using names instead of IP addresses, or high level policies instead of

access control configuration files are examples of this abstraction.

Network operating system is a key concept in SDN. It comes from the idea of

abstracting the complexity of the underlying network. Lazar [28] explains how an

early approach to programmable networks introduced the term of kernel in terms

of networking. The idea was precisely to draw a parallel between the network

operating system and the typical operating system. In an operating system, the

abstraction includes the hardware components of the CPU. In a network, the

abstraction hides the topology and the network devices. Therefore, the network

operating system is responsible for the abstraction provided by SDN to its users.

Another important advantage of SDN is that it enables innovation and flexibility.

If the control and data plane are managed by a hardware network devices, there

is little room for innovating and experiment, as the software or firmware of

those devices cannot be easily modified. Instead, by having access to a software

component to manage the control plane, many ideas can be explored.

2.2.2 Standardizing the communication between the control plane and the

data plane

SDN provides network-wide abstraction to the user and any software-based tech-

nique can be used to manage the control plane. However, we have not discussed

how is the communication between the control and data plane standardized. Next

we describe how several researchers have proposed to standardize this communi-

cation.

One early proposal is the IEEE P1520 Standards Initiative for Programmable

Networks Interfaces [29]. The authors identify the need of abstracting the complex-



14

ity of the network to the user as well as the necessity of a programming interface

to define the network. They also discuss the need of having a protocol to access

the network elements.

The SoftRouter architecture [26] allows dynamic binding between the network

element running the data plane and the control element (software-based). This

architecture was proposed for network-layer devices that can be controlled by

standard purpose servers. The software component does not need to be wired to

the network device and a network element can have more than one control element

across the network.

ForCES (Forwarding and Control Element Separation) [20] was created by the

Internet Engineering Task Force (IETF). ForCES was proposed to standardize the

way that controlling elements communicate with network elements. However, this

standard did not experience widespread adoption by the vendor community. The

Internet Research Task Force (IRTF) has also undertaken efforts regarding SDN.

The Software Defined Networking Research Group (SDNRG) [30] aims to identify

SDN approaches that can be used in the nearby future, as well as to identify future

challenges. It also aims at providing a forum to SDN researchers [31].

OpenFlow [8] came next and was based on the same motivation: how to

standardize the communication between the control plane and the data plane.

It describes how software applications can program the flow table of different

switches. OpenFlow quickly became an active research topic and we describe it in

detail in the next section. Before, we briefly compare ForCES and OpenFlow.

The IETF documented the differences between ForCES and OpenFlow [32].

According to this document, both standards decouple the control and data planes

and they both standardize the communication between the two planes. Regarding

the architecture of the network, one difference can be found between ForCES and



15

OpenFlow. ForCES defines networking and forwarding elements and how they can

communicate with each other. The architecture of the network remains unchanged.

On the other hand, OpenFlow modifies the architecture in the sense that data

plane elements become simple devices that forward packets according to rules

given by the control element. ForCES allows multiple control and data elements

within the same network and the logic can be spread through all the elements.

OpenFlow aims at having a centralized control plane.

Due to the emergence of OpenFlow as the SDN architecture that has received

major attention, we focus this chapter on network innovation using OpenFlow.

Figure 2.1: OpenFlow components.

2.3 OpenFlow specification

The OpenFlow specification describes an open protocol to allow software applica-

tions to program the flow table of different switches. An OpenFlow architecture

consists of three main components: an OpenFlow-compliant switch, a secure

channel and a controller, as shown in Fig 2.1. Switches use flow tables to forward

packets. A flow table is a list of flow entries. Each entry has match fields, counters



16

and instructions. Incoming packets are compared with the match fields of each

entry and if there is a match, the packet is processed according to the action

contained by that entry. Counters are used to keep statistics about packets. The

packet can also be encapsulated and sent to the controller.

The controller is a software program responsible for manipulating the switch’s

flow table, using the OpenFlow protocol. The secure channel is the interface

that connects the controller to all switches. Through this channel, the controller

manages the switches, receives packets from the switches and sends packets to

the switches. An OpenFlow-compliant switch must be capable of forwarding

packets according to the rules defined in the flow table. Figure 2.2 shows a

high level description of how a network device processes a packet. First, the

communication between the switch and the controller is possible through flow

table rules. Internally, a switch uses Ternary Content Addressable Memory (TCAM)

and Random Access Memory (RAM) to process each packet.

Figure 2.2: Elements of an OpenFlow-compliant switch.

Different versions of the OpenFlow protocol specification are available. The

first version was the OpenFlow version 0.2.0 released in March, 2008. Versions 0.8.0



17

and 0.8.1 came next in May, 2008. Version 0.8.2, released in October, 2008, added

the Echo Request and Echo Reply messages. Then, version 0.8.9 was released

in December, 2008. It included IP netmasks, additional statistic information and

several other updates. OpenFlow 0.9 was released in July, 2009. Finally, OpenFlow

version 1.0, the most widely deployed version, was released in December, 2009.

Next, we focus on versions 1.0.0 [33], 1.1.0 [1], 1.2 [34] and 1.3.0 [35], as previous

versions are now deprecated. A detailed list of changes included in every version

is available in the OpenFlow 1.3.0 specification document [35].

Table 2.2: Match fields of a flow table entry in an OpenFlow 1.0.0 switch.

Ingress Port
Ether src
Ether dst

Ether type
VLAN id

VLAN priority CoS
IP src
IP dst

IP Proto
IP ToS bits

TCP/UDP src port
TCP/UDP dst port

2.3.1 OpenFlow 1.0.0

Currently, the most widely used specification is the version 1.0.0. A switch

supporting OpenFlow specification 1.0.0 uses 12 header fields present in the

header and payload of the Ethernet packets coming into the switch. Table 2.2

shows all the header fields.

A packet can be matched to a particular flow entry in the flow table by using

one or more header fields of the packet. A field in the flow table can have the



18

Figure 2.3: How a packet is processed and forwarded in an OpenFlow 1.0.0 switch.

value of ANY and it will match all packets. If the forwarding table is implemented

using Ternary Content Addressable Memory (TCAM), ANY can be implemented

in the switch hardware using the third masking state of the TCAM.

In Fig. 2.2 we showed the main elements of an OpenFlow switch. Figure 2.3

shows the details of the data plane in an OpenFlow 1.0.0 switch. In step 1, the

Ethernet packet entering the switch goes to a packet parsing system. In step 2, the

header fields are extracted and placed in a packet lookup header, as they are used

for matching purposes. In step 3, the packet lookup header generated is sent to

the packet matching system. In step 4, the packet lookup header is compared to

the rules defined for each flow entry in the OpenFlow flow table. Note that the



19

flow entries in the table are present in the descending order of priority. Therefore,

the comparison of the packet lookup header is done starting from the first flow

entry on the flow table. If a match is found, the actions in the matched flow entry

are performed on the packet (step 5B). Otherwise, the first 200 bytes of the packet

are sent to the controller for processing (step 5A).

Table 2.3: Match fields of a flow table entry in an OpenFlow 1.1.0 switch.

Ingress port
Metadata
Ether src
Ether dst

Ether type
VLAN id

VLAN priority
MPLS label

MPLS EXP traffic
class

IPv4 src
IPv4 dst

IPv4 proto / ARP
opcode

IPv4 ToS bits
TCP/UDP/SCTP src

port. ICMP Type
TCP/UDP/SCTP dst

port. ICMP Code

2.3.2 OpenFlow 1.1.0

In the OpenFlow 1.1.0 specification, a switch contains several flow tables and a

group table, instead of just one single flow table, as in OpenFlow 1.0.0. Figure

2.4 shows the main components of the OpenFlow 1.1.0 switch. The match fields

are also different, as shown in Table 2.3. We have highlighted in bold the added

cells. The metadata field is used to pass information between the tables as the



20

packet traverses through them. It is a register used to carry information between

the tables. The Multiprotocol Label Switching (MPLS) fields are used to support

MPLS tagging.

The processing of a packet entering the switch has changed as there are multiple

flow tables available in the switch. The flow tables in the switch are linked to each

other through a process termed as pipeline processing.

Figure 2.4: Components of an OpenFlow 1.1.0 switch. Source: [1].

Pipeline processing involves a set of flow tables linked together to process the

packet coming in. When the packet first enters the switch, it is sent to the first

table to look for the flow entry to be matched. If there is a match, the packet gets

processed there and if there is another table that the particular flow entry points

to, the packet is then sent to that flow table. This happens until a particular flow

entry does not point to any other flow table.

The flow entries in the flow tables can also point to the group table. The group

table is a special kind of table designed to perform operations that are common

across multiple flows. This means that actions belonging to a set of flows are

grouped together. Also, the set of flows is controlled to perform various actions

collectively under a single group. Complex forwarding actions such as multipath



21

and link aggregation are enabled through the group table.

Finally, specification 1.1.0 introduces instructions instead of actions. Previously,

an action was associated to each flow table entry. That action could be to forward

the packet or to drop it, as well as processing it normally as it would be in a

regular switch. Instructions are more complex and they include modifying a

packet, updating an action set or updating the metadata.

2.3.3 OpenFlow 1.2

The OpenFlow specification version 1.2, was released in December 2011 and it

includes a few major features. First of all, support to IPv6 addressing is added.

Matching could be done using the IPv6 source and destination addresses. Another

important feature supported is the possibility of connecting a switch to multiple

controllers concurrently. The switch maintains connections with all the controllers

and these can communicate with each other to do hand overs. Having multiple

controllers provides faster recovery during failure and it is also possible to achieve

load balancing.

2.3.3.1 OpenFlow 1.3.0

The OpenFlow specification version 1.3 was released in June 2012. Some of the

improvements over version 1.2 are listed next. It is possible to control the rate of

packets through per flow meters. Also, auxiliary connections between the switch

and the controller have been enabled. Another improvement is that cookies can be

added to the packets sent from the switch to the controller and specific durations

field have been added to most statistics. A complete list of changes is available in

the specification’s document [35].

Table 2.4 compares specifications 1.0.0, 1.1.0, 1.2 and 1.3.0.



22

Table 2.4: Comparison of OpenFlow specifications.

Specification 1.0.0 1.1.0 1.2 1.3.0
Widely de-
ployed

Yes No No No

Flow table Single flow
table

Multiple
flow tables

Multiple
flow tables

Multiple
flow tables

MPLS
matching

No Yes Yes Yes, bottom
of stack bit
added

Group table No Yes Yes Yes, more
flexible
table miss
support

IPv6 sup-
port

No No Yes Yes, new
header field
added

Simultaneous
communi-
cation with
multiple
controllers

No No Yes Yes, aux-
iliary con-
nections
enabled

2.3.4 Implementing applications using OpenFlow

In order to run applications on top of a single controller to manipulate the flow

table of a switch, a network operating system is required (see Fig. 2.1). It acts

as an intermediate layer between the OpenFlow switch and the user application.

The network operating system communicates with the switch using the OpenFlow

protocol and notifies the application of network events. Nox [36], Beacon [37]

and Maestro [38] are examples of network operating systems. Recently, Big

Switch released Floodlight [39], an open source Java based controller. Foster

et al. [40] proposed Frenetic, a network programming language that simplifies

the development of applications on top of network operating systems. NEC

proposed Trema [41] to develop OpenFlow applications using Ruby and C. Finally,



23

DreamersLab developed Node.flow [42], a package to build a JavaScript based

flow controller using Node.js [43]. Table 2.5 summarizes comparative data for the

OpenFlow controllers that we have mentioned.

There are at least four possibilities to implement OpenFlow-based applications.

First, an OpenFlow-compliant hardware switch can be used. We have provided a

list in Table I. It is also possible to implement an OpenFlow-compliant software-

based switch using Open vSwitch [44, 45]. A third option is to deploy virtual

networks using Mininet [46], a virtual environment developed by the Stanford

University that can be used to simulate multiple hosts in virtual network within

one single host machine. Finally, a NetFPGA platform can be used. It consists of

a PCI card that provides four 1G Ethernet ports, static RAM and other network

functionalities [47]. The NetFPGA is also available with four 10G Ethernet ports.

Since physical and virtual switches can be used to deploy an OpenFlow net-

work, it is important to note some similarities and differences between them.

The advantage of a virtual switch is definitely the cost. Open vSwitch can be

downloaded for free and it can be installed using commonly used virtual machine

tools. A virtual switch performs the operations shown in Fig. 2.2 and Fig. 2.3

in software. Therefore, its main drawback is the performance. Hardware based

switches perform data plane operations faster.

It is worth mentioning that debugging network applications is not a common

technique yet. However, a first prototype of a debugger has recently been proposed

by Handigol et al. [48].

Using OpenFlow, experimental and production traffic can share the same

OpenFlow switch. The action of a flow table entry of an OpenFlow switch can be

to send the packet to the switch data path. On the other hand, a different flow

entry can be defined for experimental traffic. This way, experimental traffic can



24

Table 2.5: OpenFlow controllers.

Controller Language Created by Comments
NOX C++ Nicira Networks NOX was donated to the re-

search community in 2008.
It has several branches at
Stanford University, such as
classic NOX, new NOX and
POX. New NOX is the ver-
sion that will be further
developed. POX supports
Python and it is used for ed-
ucational or research appli-
cations [49].

Beacon Java Stanford University Supports both event-based
and threaded operation.
Mostly used for research
and experimentation [37].

Maestro Java Rice University Licensed under licensed un-
der LGPL v2.1. Not as
common as other controllers
such as NOX [50].

Floodlight Java Big Switch Networks Forked from Beacon and ex-
tended for enterprise usage.
Apache-licensed [39].

Trema Ruby and C NEC Supports Linux applications
only [41].

Node.Flow JavaScript DreamersLab Works on top of Node.js, a
platform built on Chrome’s
JavaScript runtime [42, 43].

be tested without interfering with the production traffic [8]. In order to further

enhance this, Sherwood et al. proposed FlowVisor [51]. Using this technique, it is

possible for several single controllers to share the control of a switch. A centralized

OpenFlow- based controller “slices” the network and acts as an intermediate layer

between the switch and all the OpenFlow controllers that manipulate the switch.



25

2.3.5 OpenFlow: a specification, a protocol or an architecture?

OpenFlow can be viewed as a specification when it is in the context of an Open-

Flow switch. An OpenFlow switch is achieved by implementing the requirements

specified in the OpenFlow specification, in the device. For instance, in the Open-

Flow specification, it is required that the switch has to support the flood action

on the packets belonging to a particular flow. The flood action floods the packet

using the normal pipeline of the switch [1]. Whether or not to implement this

feature is a decision made by the vendor, but an OpenFlow switch must provide

this functionality.

The OpenFlow protocol deals with defining the format of the messages passed

between the control plane and the OpenFlow switch through the secure channel.

The format of the messages has to be understood as well as generated by both

the entities. This standard format of message passing is defined in the OpenFlow

protocol. In fact, the OpenFlow protocol is part of the OpenFlow specification and

it applies to the OpenFlow control plane as well as to the OpenFlow switch.

Finally, OpenFlow is viewed as architecture in the context of an entire network.

In an OpenFlow network, OpenFlow switches are being controlled by one or more

OpenFlow controllers. Such a network can be viewed as supporting the OpenFlow

architecture.

It is important to keep in mind that the data plane implementation of the

switch is vendor specific. As long as a switch can communicate with an OpenFlow

controller, the data plane can be implemented differently by each vendor. Therefore,

the fact that two switches are OpenFlow-compliant does not make them equal.

Actually, not all switches implement all the features of the OpenFlow specification.

It is possible that an OpenFlow-based application works using one switch but does



26

not work using a different switch.

2.3.6 OpenFlow and SDN

Since OpenFlow has become the most popular SDN technology, some consider

these terms as synonyms. However, it is important to note the difference between

them. SDN consists of decoupling the control plane from the data plane, whereas

OpenFlow describes how a software controller and a switch should communicate

in an SDN architecture. SDN gives the user an abstraction of the network-wide

state and OpenFlow abstracts a network component. As an analogy, an operating

system provides a system-wide abstraction, just like SDN provides a network-wide

abstraction. On the other hand, just like the operating system communicates with

hardware through drivers, OpenFlow can be considered a driver to communicate

a single controller and a network component.

As an SDN technology, OpenFlow networks have specific capabilities that we

describe next.

2.3.7 Capabilities of OpenFlow

OpenFlow architectures allow centralized control of the network, software-based

traffic analysis, dynamic updating of forwarding rules and flow abstraction. In

this section we describe these capabilities and we give examples that illustrate how

they can be exploited.

2.3.8 Centralized control of the network

One important capability of an OpenFlow network is that the controller has

network-wide knowledge of the system. Several OpenFlow switches can be

connected to a single controller and it is then possible to make decisions in a



27

centralized manner. Instead of having several network devices with a limited

knowledge of the network, a single controller can take decisions based on its

knowledge of a broader part of the network.

One example of this is Ethane [52], an architecture proposed for managing the

network of an enterprise. The key idea is to create a centralized policy that is

managed by the controller. The switches become simple machines that forward

and drop packets according to the rules defined by the controller. Using this

architecture, it is possible to manage the network policies using high-end names.

Routing decisions are also considered by the policy and finally, it becomes easier

to bind a packet to its origin.

Another example of this capability deals with link failure recovery. In a

traditional network, each switch has a limited knowledge of the network. When a

link fails, then routes get adjusted at each switch until new routes are found. In an

OpenFlow network, a centralized controller can find new paths in a much faster

and easier way.

A comparison between the Path Computation Element (PCE) [53] architecture

and OpenFlow is worth being mentioned when discussing this capability. Path

computation in large and complex networks may require cooperation between

different domains. The PCE architecture was proposed to address these challenges.

A PCE is an entity that is capable of computing a network path or route based

on a network graph [53]. A PCE architecture is not fully centralized. However,

a cooperation between different entities does exist. Nevertheless, it can also

occur that an entity does not have visibility over another element. Therefore, the

knowledge of the network is not full. In OpenFlow-based networks, the controller

usually has a broader knowledge of the network and therefore the control of the

network is centralized. On the other hand, OpenFlow controllers do not cooperate



28

together as it happens in a PCE architecture. Giorgetti et al. [54] propose OpenFlow

and PCE architectures to control wavelength switched optical networks.

To illustrate the difference between PCE and OpenFlow architectures, we

describe how the OSCARS [55] (On-Demand Secure Circuits and Advance Reserva-

tion System) project provides a PCE module [56]. Through this module, researchers

can deploy PCE elements in the network in a distributed manner. Therefore, it is

possible to perform path computation without using a single centralized point. If

we compare this to an OpenFlow testbed, we will find that researchers deploy the

code on top of an OpenFlow controller and all computations are performed from

there.

Another centralized approach towards network management is the Bandwidth

Broker (BB) architecture [57]. A BB consists of one or more servers that perform

network functionalities such as quality of service (QoS), policy enforcement or

admission control. The data plane communicates with the BB modules. The

advantage of this architecture is that part of the complexity is assumed by the BB

and minimal configuration is required in the network device. This architecture can

be used at the edge of a network to control bandwidth allocation.

2.3.9 Software-based traffic analysis

Software-based traffic analysis is a powerful capability of OpenFlow networks. This

capability greatly enables innovation, as it is possible to improve the capabilities of

a switch using any software-based technique. Traffic analysis can be performed in

real time using machine learning algorithms, databases and any other software

tool.

As an example, a distributed denial of service attack (DDoS) detection method

is proposed in [58] and it heavily relies in traffic analysis. The method is based



29

on retrieving traffic data on periodic intervals and using self organizing maps

to classify traffic as normal or malicious. Because the traffic analysis is done by

software, there are more possibilities of using advanced features to perform the

analysis, such as neural networks.

Another application of this capability is source address validation. Yao et al.

[59] proposed checking the source address of each new flow. When a switch

forwards a packet to the controller because it does not match any rule in the flow

table, the controller can validate whether or not that source address corresponds

to a valid flow.

2.3.10 Dynamic updating of forwarding rules

Another capability of OpenFlow networks is that they allow dynamic updates of

forwarding rules. All kinds of changes in the topology can be performed in real

time, based on the decisions taken by a software controller. No human interaction

is required. This is possible because the controller can modify the flow table entries

at any time.

In [60], the controller is notified of a link failure and it modifies the entries of

the flow table to re-route the traffic. By doing this, the network can react to link

failures without requiring any action by the network administrator. The authors

also suggest that the controller can automatically allocate more or less bandwidth

according to the traffic load, to save energy.

Another application of this capability is load balancing. The controller can

assess the load of several servers and dynamically change the forwarding rules

to make sure that the load is properly balanced. Handigol et al. [61] proposed

Plug-n-Serve, a load balancer that can dynamically add new servers to the cluster

without interrupting the service.



30

2.3.11 Flow abstraction

Finally, networks using OpenFlow abstract all traffic as flows. For each flow there

is an entry in the flow table. For each entry, different rules can be defined. One

flow could be all traffic using one specific TCP protocol. Another could be all

packets travelling between two defined MAC addresses or all data with one IP

address destination. One could also define a non standard header to identify traffic

of a specific entry. This allows managing different kinds of flows using the same

control element.

Merging packet and circuit networks in a single infrastructure has been studied

by several authors and it relies on this capability. Packet and circuit networks are

treated as two different flows but they can be managed by the same controller.

In the next section we survey how the capabilities described above have been

exploited in OpenFlow-based applications.

2.4 OpenFlow-based applications

In this section we survey studies that use OpenFlow for different kinds of applica-

tions. Ease of configuration, network management, security and availability are

examples of these applications. OpenFlow has also been used to achieve network

and data center virtualization, as we describe next.

2.4.1 Ease of configuration

OpenFlow-based applications can simplify the configuration of the network. Com-

mon approaches include access control lists and configuration files whose admin-

istration is time consuming and can lead to errors. By using SDN, it is possible to

use software to take care of this. Yamasaki et al. [67] proposed using OpenFlow



31

Table 2.6: Comparison of security applications using OpenFlow.

Publication Problem ap-
proached

Description of
the solution

Implementation SDN capabili-
ties exploited

Suh et al.
(CONA) [62]

DDoS attack
detection

Frequency and
pattern of re-
quests are ana-
lyzed to detect
DDoS attacks.

NetFPGA-
OpenFlow
switches

Traffic analysis
and dynamic
rules updating

Braga et al. [58] DDoS attack
detection

Statistic infor-
mation in the
flow table is
used to clas-
sify traffic as
normal or mali-
cious.

Simulation of a
NOX based net-
work.

Traffic analysis
and centralized
control.

Chu et al. [63] DDoS attack
detection

Locator/ID
separation
protocol (LISP)
is used to iden-
tify authorized
and malicious
sources.

Small network
with one con-
troller and
two Open-
Flow switches.
Specialized
hardware sim-
ulates DDoS
attacks.

Traffic analysis
and dynamic
rules updating

Liu et al. [64] Covert channel
protection

The controller
uses a second
software node
that filters au-
thorized com-
munication.

Simulation of a
network using
a virtual Open-
Flow switch.

Dynamic rules
updating and
centralized con-
trol.

Yao et al.
(VAVE) [59]

Source address
validation

The controller
analyzes traffic
and calculates
the flow path
to decide if the
source address
is valid.

Simulation of a
network using
a virtual Open-
Flow switch.

Traffic analysis
and dynamic
rules updating.

Jafarian et al.
[65]

Moving target
defense

The controller
periodically as-
signs different
virtual IP ad-
dresses to hosts
to hide the real
IP addresses to
an intruder.

Simulation us-
ing Mininet.

Centralized
control, dy-
namic rules
updating.

Gutz et al. [66] Traffic isolation Network slices
are defined
through a
programming
language in-
stead of using
network-level
techniques.

A tool was
developed to
test whether
traffic isolation
was correct

Centralized
control



32

to manage the VLANs of a campus network. They describe how the number of

VLAN ids is limited and how the configuration tasks are time consuming. In

their approach, the controller analyzes incoming traffic and detects if the commu-

nication should be allowed or not, based on virtual group ids (GID) instead of

VLANs. Using this approach, the number of VLANs limitation is overcome and

the configuration of the network is simplified.

Several authors have addressed how to ensure consistent network updates

using SDN. Reitblatt et al. [68] describe how to provide abstract operations that

allow updating rules across the entire network in one fell swoop. In another

paper, Reitblatt et al. [69] describe how updating network policies can lead to

inconsistencies when packets are processed by both the old and the new policy.

The authors note that achieving per-packet and per-flow consistency is critical to

avoid inconsistencies and they describe techniques to implement both features.

Also, Katta et al. [70] introduce algorithms that trade time against TCAM space in

order to do the updates in an efficient manner. McGeer [71] proposes a network

update protocol as well. His method uses boolean formulas and it ensures that

flows are treated consistently. As an example, if a ruleset 1 is updated to a ruleset

2, the protocol ensures that the packets that were being processed using ruleset 1

are conserved, then the update takes place in all routers and finally the packets are

released and processed by ruleset 2. Finally, Ghorbani et al. [72] propose a method

to migrate virtual machines in a consistent manner and respecting bandwidth

requirements. The authors have implemented an algorithm that outputs the

order in which virtual machines must be migrated in order to ensure that no

inconsistencies occur.

As we described earlier, Casado et al. [52] proposed Ethane, an SDN archi-

tecture explicitly designed to simplify the management of the network in an



33

enterprise. Ethane relies on the idea that the network policy should be known

by the controller and enforced in all switches. The main requirement is that all

communications between two hosts require explicit permission. Instead of creating

configuration files for all the switches in the network, these devices are kept simple

and the rules are managed by the controller. An implementation of an Ethane

switch in hardware is described in [73].

Some common points can be extracted from these studies. We mentioned in

Section II that a user is interested in defining policies and configuring how their

packets are forwarded. Here we notice that the studies by Reitblatt et al. [69] and

by Casado et al. [52] focus on simplifying the creation of policies and hiding how

these policies are implemented underneath. The study by Yamasaki et al. [67]

provides another way of creating VLANs in such a way that the user must not

deal with troublesome configuration files.

2.4.2 Network management

Deploying OpenFlow-based networks has also motivated research on OpenFlow

management infrastructures. These studies aim at simplifying network manage-

ment through OpenFlow. Mattos et al. [74] implemented a user friendly interface

that allows the user to manage the network. Their implementation is based on

NOX. Several applications are developed on top of that network operating system

and a web based interface is provided to the user. Also, a multiagent system is

capable of autonomously perform management.

Gibb et al. [75] propose an architecture in which network appliances (middle-

boxes) are not located at points of the topology that are traversed by plenty of

traffic. They argue that these chokepoints are not suitable for middleboxes, as

performance and correctness issues arise. Instead, they suggest using processing



34

units in waypoints of the network. An OpenFlow switch, located at the choke-

point, is capable of routing to the processing units only the traffic that needs to

be processed by the middlebox. By doing this, less traffic traverses the network

appliances and a much simpler hardware is used at the chokepoint of the network.

Defining and implementing network policies has also been addressed using

OpenFlow. Voellmy et al. [76] propose Procera, a controller architecture and a

high level network control language that can be used to reactively define network

policies. Regarding implementation, Fergusson et al. [77] propose an OpenFlow-

based method to perform policies delegation in SDN networks. Their idea consists

of creating delegation trees, where each path can be managed by different network

administrators. The authors create hierarchical flow tables that can be used to

delegate policies. An incoming packet is matched to these policies and processed

accordingly.

Finally, an innovative way of managing IP multicast in overlay networks was

proposed by Nakagawa et al. [78]. The authors propose using OpenFlow instead of

a more common approach such as Internet Group Management Protocol (IGMP).

Two important contribution of their approach are eliminating periodical join/leave

messages and making use of multipath in the layer-2 network.

Outsourcing network functionality is another interesting innovation to simplify

the network management. Gibb et al. [79] propose Jingling, an architecture

that allows adding functionality to a network in an outsourced manner. Feature

providers can be located anywhere outside the network. Policies defined how

feature providers must be used and a network controller maps the policies to the

feature providers. Following the idea of having services outside the network, the

idea of Networking-as-a-Service (NaaS) has emerged. Raghavendra et al. [80]

propose using OpenFlow to manage networks in such a way that they are ready to



35

user services provided as NaaS.

In this section, we notice that the common trend is to exploit how OpenFlow

can dynamically update the forwarding rules. Having a network-aware controller

allows the network manager to dynamically forward traffic according to specific

needs. Once again, we also note how several studies simplify the creation of

network policies.

2.4.3 Security

OpenFlow has also been used to create applications that provide security to the

network. Table 2.6 compares the problems approached, the solutions proposed

and the infrastructures used to test the implementations.

Methods to detect DDoS using OpenFlow have been proposed recently [62,

58, 63]. Suh et al. [62] proposed a content oriented networking architecture.

This approach relies on creating flows based on the identity of the client and

the type of content requested. A DDoS attack is detected when the server that

provides a given content type receives more requests than expected, based on a

pre-defined range. Chu et al. [63] proposed a method that analyzes the frequency

of traffic. If a threshold is exceeded, then the controller considers that a DDoS

attack is happening and it starts dropping packets. Finally, as we mentioned earlier,

Braga et al. [58] proposed a method that gathers traffic information and uses self

organizing maps to classify the traffic as normal or malicious.

Liu et al. [64] proposed an SDN architecture where nodes with different levels

of security clearance can exchange communication. The OpenFlow controller sets

up the rules so that traffic is authorized only when the requester has a higher

security clearance than the receiver.

Yao et al. proposed VAVE [59], an OpenFlow-based architecture designed to



36

validate the address of all incoming packets. When the switch receives a packet

that does not match any rule, the packet is sent to the controller and the source

address is validated. If spoofing is detected, then a rule is created to stop that

traffic.

Jafarian et al. [65] propose a moving target defense (MTD) technique using

OpenFlow. The proposed defense assigns virtual IP addresses to hosts and the

controller maps virtual addresses to physical addresses. This is performed once

and again, in an unpredictable way such that the attacker cannot identify which

host is behind each IP address.

Finally, traffic isolation has been studied by Gutz et al. [66]. The authors argue

that current traffic isolation techniques such as VLANs increase the complexity of

the network configuration. They propose creating network slices at a higher level.

Under their approach, a network programming language should be able to create

this slices to isolate traffic. This way, slices are defined at a high level and then

forwarding rules are automatically added to the switches.

When it comes to security, we notice how the researchers heavily rely on the

ability of processing data in the controller. In all these publications, some kind

of intelligence is added to the switch through the controller. For example, Braga

et al. [58] use self organizing maps, which could not be implemented on regular

switches. Also, Yao et al. [59] exploit the idea that, since a given packet must

be analyzed by the controller, then a more rigorous address validation can be

performed. Once again, in the study by Gutz et al. [66], we note how more

capability is given to a higher layer. In this case, it is about isolating network traffic

using a programming language. This is a common trend in SDN: how to allow a

user to perform network tasks without needing full access to the network topology.



37

Table 2.7: Comparison of network virtualization applications using OpenFlow.

Publication Problem ap-
proached

Description of the
solution

Implementation

Simeonidou et al.
[81]

Packet and circuit
network integration

An OpenFlow con-
troller is integrated
with a GMPLS con-
troller

No implementation
provided

Das et al. [82] Packet and circuit
network integration

An OpenFlow con-
troller is integrated
with a GMPLS con-
troller

Prototype network
using NetFPGA
switches that
emulates a WAN

Das et al. [83] Packet and circuit
network integration

An OpenFlow con-
troller is integrated
with a GMPLS con-
troller

Fully functional
hardware based
network. Used as a
proof of concept for
a demonstration.

Das et al. [84] Application aware
aggregation and
traffic engineering
in a circuit-packet
network

The capabilities of
SDN are exploited
in a circuit-packet
network to provide
application aware
routing.

Hardware based
network used to
emulate a WAN

Das et al. [85] Complexity of
IP/MPLS control
plane

The MPLS data
plane is controlled
by OpenFlow
instead of the tra-
ditional IP/MPLS
control plane.

Open vSwitch and
Mininet are used to
emulate a WAN

Ferkouss et al. [86] Flexibility of MPLS
nodes

An OpenFlow con-
troller is used to
dynamically modify
MPLS nodes

Hardware imple-
mentation that
exploits the pipelin-
ing of OpenFlow
1.1.0.

Kempf et al. [87] Supporting MPLS
forwarding in
OpenFlow 1.0.0

Additional match
fields are added to
the flow entry for-
mat and MPLS ac-
tions are added to
the OpenFlow 1.0
specification

NetFPGA-
OpenFlow switches

Sharafat et al. [88] MPLS implementa-
tion complexity

The centralized con-
trol capability is ex-
ploited to imple-
ment MPLS-TE and
MPLS-VPN in a
simpler way than
the traditional ap-
proach

Physical and
virtual switches
supporting the
MPLS section of
OpenFlow 1.1 and
simulation using
Mininet

2.4.4 Availability

OpenFlow-based applications have focused on providing availability to the net-

work as well, including load balancing and fault tolerance. Load balancing is



38

a commonly used technique to distribute a working load between two or more

nodes. This improves the availability of a network since the system can support

one or several single failures. Fault tolerance refers to the property of a system to

continue operating when a failure occurs.

Load balancing: Handigol et al. proposed Plug-n-Serve [61], a load balancer

for unstructured networks that attempts to reduce the response time by taking into

consideration the load of the servers and the congestion of the network. The pro-

posed method displays the load of the network in real time. The software running

on the controller takes the load of the network and servers into consideration and

decides where to direct the traffic. Using this solution, it is also possible to add

new servers to the cluster and the software will dynamically detect them and add

them to the load balancing. An improved version of Plug-n-Serve, Aster*x was also

proposed in [89]. Aster*x runs on the Global Environment for Network Innovations

(GENI) infrastructure and it is used at a much larger scale than Plug-n-Serve.

Wang et al. [90] argue that Plug-n-Serve works by reactively creating forwarding

rules for incoming requests. They proposed a proactive approach, based on wild

cards. They divide the entire client address space into different rules. These

rules forward the traffic to specific servers. The controller knows what percentage

of traffic should be handled by each server and it creates the rules so that the

expected loads are respected. We can see that the approach by Wang proactively

creates the rules to make sure that each server handles the required percentage of

connections. This requires a smaller number of rules than the approach used by

Plug-n-Serve, which improves its scalability. On the other hand, Plug-n-Serve takes

into consideration the load of the server and the network and does not require

a specific percentage of traffic for each server and it is more flexible, since each

client can be handled individually.



39

Fault tolerance: Sharma et al. [91] and Staessens et al. [60] have explored fault

tolerance using OpenFlow. In [91], the authors describe how failure recovery can

be implemented using OpenFlow. They explain how the controller can dynamically

change the routing rules when a failure is detected in a link. In [60], experiments

are designed to analyze if an OpenFlow based network can recover from a link

failure. The authors argue that carrier grade networks must be able to recover in

less than 50 ms. The experiments show that restoration is successful but that the

dependency on the centralized controller makes the goal of 50 ms challenging to

achieve.

Another way of ensuring availability is to verify that there are no configuration

errors that might cause a disruption. Khurshid et al. [92] propose VeriFlow to

check network invariants in real time. This includes loops in the routing tables,

unavailable paths and other problems that can be identified before deploying the

network. Moreover, the authors are interested in doing this in real time. VeriFlow

sits between the controller and the switch and monitors the communication be-

tween these two parts. By modelling the network as a graph, network invariants

are checked in the order of hundreds of microseconds.

Porras et al. [93] propose a policy enforcement mechanism that is also based

in analyzing the forwarding rules that are added to or deleted from the flow

table. The author introduce FortNOX and they aim at performing role based

authentication and security constraint enforcement. The application checks for

conflicting rules after every update of the flow table. When two rules incur in a

contradiction, then the rule defined by the user with the highest security clearance

is kept.

These studies have some common trends. First, the capability of dynamically

updating forwarding rules is heavily exploited. Load balancing is performed



40

based on the ability of the controller to alter the forwarding rules. The fact that

the controller is network-aware is also helpful. In the studies by Sharma [91]

and by Staessens [60], finding new paths after a failure occurred is easily done

in a centralized manner, since the topology is known. Traditionally, this kind of

recovery is done by decisions taken by switches that are not network-aware and a

centralized method simplifies this task.

Network virtualization using MPLS and GMPLS: Network virtualization is an-

other research area where OpenFlow has been applied. Circuit and packet switched

networks are typically managed using separate infrastructure and this is costly.

Several authors have proposed OpenFlow-based architectures that could be used

to manage both packet and optical circuit networks using the same infrastruc-

ture [81, 82, 83, 84, 94]. Azodolmolky et al. [94] provide a good explanation on

how OpenFlow and GMPLS can be used together as an integrated control plane.

This approach relies on the fact that packet and optical circuit networks can be

managed as different flows in the switch’s flow table. In order to manage both

flows, a GMPLS controller is integrated to the standard OpenFlow controller. The

OpenFlow controller is responsible for managing the flow table. However, when a

flow corresponds to traffic over an optical circuit, then the GMPLS controller takes

care of the routing decisions and a flow entry containing the forwarding action

and the required wavelength is added to the flow table. This way, switches can

handle two kind of flows, one for circuit networks and one for packet networks.

MPLS and GMPLS have also been used in other applications. Kempf et al.

[87] add an extension to OpenFlow 1.0 that allows a switch to forward MPLS

on the data plane. Das et al. [85] proposed using MPLS in the data plane but

OpenFlow in the control plane instead of the traditional IP/MPLS control plane.

El Ferkouss et al. [86] argue that OpenFlow can be used to “deossify” an MPLS



41

architecture. They show how an MPLS node can play multiple roles for different

MPLS domains, which provides greater flexibility to the nodes. Sharafat et al.

[88] implement MPLS-TE and MPLS-VPN using an OpenFlow controller to show

that centralized control makes the implementation easier. Table 2.7 compares the

different applications that use OpenFlow to virtualize networks using MPLS and

GMPLS. Centralized control, dynamic rules updating and flow abstraction are the

most commonly exploited capabilities for these applications.

The studies that we have mentioned exploit the circuit switching capability

of GMPLS and not the VLAN-switching capability. In summary, the research

direction regarding GMPLS and OpenFlow is to simplify the creation of end-

to-end circuits. Das et al. [95] discuss why GMPLS has not been as successful

as expected in the control plane and how combining it with software defined

networking is a more suitable approach.

Data center virtualization: Similar to network virtualization, virtualizing data

centers using OpenFlow has also been an active research area. SDN architectures

have been considered to meet the requirements of a data center: efficiency, agility,

scalability and simplicity [96]. Al-Fares et al. [97] proposed Hedera, a dynamic

flow scheduling method for data center networks. They proposed an OpenFlow-

based architecture that can dynamically modify the flows according to the traffic

load. The authors argue that this approach achieves a larger network utilization.

Rotsos et al. [98] also use OpenFlow to dynamically virtualize the network. They

argue that VLANs and MPLS can be used to create virtual networks in a static way.

However, the network utilization can be optimised if the network virtualization is

performed according to the traffic load.

Wide area network applications: A majority of studies have deployed their

experiments in local area networks. However, some studies address the possibility



42

of deploying OpenFlow in a wide area network (WAN). First, in [85] the authors

show that OpenFlow could be deployed in a WAN by emulating this kind of

network. Studies such as [82, 84] show that OpenFlow could be used to control

this type of network.

Bennesby et al. [99] propose an inter-domain routing solution using an Open-

Flow architecture running on a NOX controller. The authors explain how the

different autonomous systems (or domains) interact with each other through the

Internet. They propose a routing scheme based on OpenFlow that would allow

autonomous systems to communicate with each other.

Wireless applications: OpenRoads [100] was designed to enable research in

mobile networks. It can be considered as the wireless version of OpenFlow. In

this architecture, a flow visor [51] (as introduced in Section III) controls network

devices through the SNMP protocol. Several controllers can be deployed on top

of the flow visor. Details of the OpenRoads architecture are available in [101]. A

deployment of OpenRoads in the campus of Stanford University is described in

[102]. Other works using OpenRoads include [103, 104].

There are also other wireless applications that do not use OpenRoads. Huang

et al. [105] proposed PhoneNet, an infrastructure which supports group commu-

nication among phones. A group of users can interact using their phones after a

multicast address is created so that it can be accessed by all the members in the

group.

Bansal et al. [106] propose OpenRadio, a design for a programmable wireless

network data plane to automatize how devices’ software is updated. They argue

that software updates have become more frequent (there used to be a release every

few years and now updates are available monthly). OpenRadio aims to providing

an infrastructure to update base stations of wireless systems via software. Without



43

this approach, devices must be collected so that the software can be manually

updated. This frequent hardware collection is expensive and network software

updates are more adequate. As an example, they describe that in an urban

area, there could be one device per block to provide adequate coverage. In this

scenario, collecting the sensors every time an update must be installed would be

prohibitively expensive. OpenRadio enables updating the devices without having

to physically collect them.

Regarding wireless enterprise local area networks (WLAN), Suresh et al. [107]

propose Odin, a prototype SDN architecture that simplifies client management in

a WLAN. The network is given programmability and light virtual access points

are introduced. These access points are managed from an OpenFlow controller.

Other applications: OpenFlow has also been used in other areas not listed

above, such as routing and network congestion control. Liu et al. [108] proposed a

method to control congestion using queuing systems and a centrally controlled

network. Yap et al. [109] also consider network congestion, as well as bandwidth

reservation and multicast. Nascimento et al. [110] proposed QuaqFlow, a Quagga

implementation using OpenFlow. Quagga is a routing package that provides

implementation of TCP/IP routing protocols. RouteFlow [111], an architecture

that provides routing as a service, was proposed as an extended work of Quagga.

Rothenberg et al. [112] proposed an OpenFlow-based approach that allows the

introduction of advanced routing systems. This study was built by extending the

earlier RouteFlow [111]. Egilmez et al. [113] proposed an architecture to provide

routing for video streaming.

In the next section, we focus on larger-scale deployments rather than the

applications themselves.



44

2.5 OpenFlow deployments

Deployments of OpenFlow-based networks mainly include campus networks and

testbeds, as well as deployments undertaken by the industry.

Stanford University has deployed an OpenFlow-based network in one of its

buildings. The network includes production, experimental and demonstration

traffic. It connects approximately fifty switches and around 25 users, both wired

and wireless. Details of the topology can be found at [114]. Other universities have

also deployed OpenFlow-based networks. The full list is available at [18] and it

includes Clemson University [115], Georgia Tech [116], Indiana University [117],

Kansas State University [118], Rutgers University [119], University of Washington

[120], University of Wisconsin [121] and Princeton University [18].

At a larger scale, the Global Environment for Network Innovations (GENI)

[122] provides a research infrastructure where OpenFlow experiments can be

conducted. The OpenFlow core of this network consists of several interconnected

OpenFlow-compliant switches on both Internet2 [123] and National LambdaRail

(NLR) [124] networks. The connection to the NLR network is achieved through

HP6600 switches deployed at Sunnyvale, Seattle, Denver, Chicago, and Atlanta

and through NetFPGA switches in Sunnyvale, Houston, Chicago, and New York

[125]. Internet2 has OpenFlow-compliant switches installed in Los Angeles, New

York, Washington DC, Atlanta [126]. Campus networks can connect to the GENI

deployment to run larger scale experiments.

As of October 2012, Internet2 provides a nationwide 100G software defined

network [127]. The network is currently operational for member institutions

of Internet2. The deployment includes routers of the Brocade MLX family and

related Brocade NetIron platforms, as well as Juniper Networks MX Series routers



45

Figure 2.5: Draft of the planned U.S. UCAN network using the Internet2 100G
deployment. (Source: [2]).

[128]. It also provides a 100G Ethernet network and a 8.8 Terabit per seconds

optical network. Internet2 will operate the U.S UCAN (United States Unified

Community Anchor Network) program [2]. Their goal is to use this software

defined network to provide a platform to interconnect research, educational and

health care institutions. Figure 2.5 shows a draft of the expected deployment.

Figure 2.6: Topology of the ANI OpenFlow testbed.

The Energy Science Network (ESnet) [129] is funded by the Department of

Energy (DOE) and operated at the Lawrence Berkeley National Laboratory. ESnet



46

has also deployed an OpenFlow testbed, originally funded by the Advanced

Networking Initiative (ANI) [130]. ANI was an investment in next-generation

technology infrastructure to speed of scientific discovery. ESnet operates two

testbeds: the Long Island Metropolitan Area Network (LIMAN) and the 100G. The

LIMAN is a 10G testbed. It includes four NEC IP8800 OpenFlow switches [131].

The OpenFlow network operates on the VLAN 101. There are two ways of running

an experiment on the testbed. One option is to connect the controller directly to

the OpenFlow switches through the management VLAN. The second option is to

connect to the flow visor controller and getting a partition of the network to run

the experiments. The first option requires the researches to reserve the testbed

beforehand. The second option does not require any reservation of resources. The

flow visor configuration file has to be sent to the administrator to get connected.

The 100G testbed runs between the DOE Supercomputer centers in Argonne

National Lab (Chicago) and NERSC (California) through a 100G dedicated network

[132]. To deploy experiments using the 100G testbed, researchers must follow a

proposal process that includes writing a 1-2 page proposal and demonstrating

that the experiment is working in a small environment [133]. Figure 2.6 shows the

topology of the ANI OpenFlow testbed.

Figure 2.7: Topology of the ORBIT OpenFlow testbed.



47

Another smaller deployment is the Open Access Research Testbed for Next-

Generation Wireless Networks (ORBIT) testbed [4], which is being developed and

operated by WINLAB, Rutgers University. It is intended to be used to test and

evaluate innovative protocols in real-world settings and it includes an OpenFlow-

based network. The deployment consists of an OpenFlow-compliant switch Pronto

3290 connected to nine nodes. Out of the 9 nodes, 7 of them are connected to one

NetFPGA each. Each of the NetFPGA is connected to the Pronto 3290 OpenFlow

switch through four 3GbE connections. All of the 9 nodes are connected to the

Pronto 3290 OpenFlow switch and they are connected to a control plane through

which the nodes can be accessed through telnet/ssh sessions by the experimenter.

Figure 2.7 shows the topology of the ORBIT OpenFlow testbed.

Similar testbeds have been deployed in Europe and Japan as well. Ofelia

is a project funded by the European Union that provides an OpenFlow-based

network with nodes in Belgium, Switzerland, UK, Spain, Germany, Italy and Brazil

[134]. Also, the Dynamic Network System (DYNES) project [135], funded by the

National Science Foundation (NSF), is exploring technologies such as OpenFlow to

interconnect campus, regional and backbone networks. Other future deployments

also include the Network Development and Deployment Initiative (NDDI) and the

Open Science, Scholarship and Services Exchange (OS3E) [135].

OpenFlow has also been deployed by several companies, as seen in the keynote

lectures of the 2012 Open Networking Summit [136]. As an example, Google has

deployed OpenFlow in the inter-datacenter backbone network that carries all the

traffic between the different datacenters [10]. Currently, this network is completely

OpenFlow based. According to the speaker, adopting OpenFlow has been the most

significant change in networking in the company [137].

By surveying OpenFlow-based applications and deployments, we have iden-



48

tified some challenges faced by OpenFlow-based networks. We discuss these

challenges next.

2.6 Performance of OpenFlow-based networks

We have surveyed different OpenFlow-based applications and deployments. Next

we mention several studies that have designed experiments to evaluate the per-

formance of OpenFlow architectures. We also discuss publications that propose

alternatives to improve the performance of OpenFlow networks.

2.6.1 Measuring and modelling the performance of OpenFlow-based networks

Jarschel et al. [138] model an OpenFlow controller as a M/M/1 queuing system.

This model allows obtaining results regarding the total sojourn time of a packet

through the system. The model also captures the difference in terms of delay

between a packet that is processed by the switch and a packet that must go to

the controller. Also, the probability of dropping a packet because the controller

is under high load is studied. The results show that the sojourn time depends

largely on processing speed of the OpenFlow controller. Also, the authors are able

to conclude that the processing time of the controller lies between 220 and 245

µs. Another interesting result shows that current controllers cannot handle a big

number of flows in 10Gbps links.

Bianco et al. [139] compare the performance of OpenFlow switching, link

layer Ethernet switching and network layer IP routing. Experiments include using

packets of different sizes and comparing the results of single flows against multiple

flows. In all the experiments, OpenFlow achieves good results in comparison to

link layer Ethernet switching and network layer IP routing.



49

Levin et al. [140] address the following question: “How does distributed

SDN state impact the performance of a logically centralized control application?”

[140]. The authors argue that the SDN network control plane cannot be fully

physically centralized because responsiveness, reliability and scalability issues

arise. One possible solution is to have a distributed control plane where a logically

centralized control plane operates. This design faces consistency challenges and

the authors study how much inconsistencies in the global network view affect

the performance of the network. The authors compare two applications: one

is ignorant to possible inconsistencies and the other takes inconsistency into

consideration when operating. This study concludes that optimality is significantly

affected when inconsistencies are not considered and that the robustness of an

application is increased when it is aware of the network state distribution.

Heller et al. [141] address two important questions regarding reliability, scala-

bility and performance. First, they analyze how many controllers are needed in

a network. Second, they discuss where in the topology should these controllers

go. The authors introduce these questions as an important part of the controller

placement problem. Regarding the number of controllers needed, the authors

analyze the latency of different topologies and they observe that one controller is

often enough to keep the latency at a reasonable rate. They also explain that, in

general, adding k controllers reduces the latency by a factor of k. However, they

also show examples where this is not the case and more controllers are required.

Regarding the placement of controllers, they show how this decision can also affect

the latency of the network. They also show that randomly selecting the location of

the controller yields results that are far from optimal.

Finally, the performance of OpenFlow has also been evaluated in the optical

networks domain. Liu et al. [142] evaluate the performance of an OpenFlow-



50

based wavelength path control in transparent optical networks. They study two

different approaches for lightpath setup (sequential and delayed) and two ways

of lightpath release (active and passive). The experimental setup includes four

OF-PXCs connected in a mesh topology, with one OpenFlow switch and one client

node attached to each OF-PXC. A photonic cross-connect (PXC) devices switches

optical signals in an all-optical device. The results show that a path between two

clients (thus traversing two switches) can be provisioned faster using the sequential

approach. Also, releasing a path can be done faster if the active approach.

2.6.2 Improving the performance of OpenFlow-based networks

Several authors have also proposed modifications to OpenFlow or alternative ways

of using it to increase the scalability, reliability or performance of the network.

Yeganeh et al. [143] propose Kandoo, a framework that aims at reducing the

number of events that are received at the control plane of the network. To do

this, two layers of controllers are used. The upper layer maintains the network-

wide state. The bottom layer consists of several controllers that do not know the

network-wide state and that are not interconnected. The bottom layer handles

most of the events and reduces the overhead at the upper layer. This framework

also increases the scalability of an OpenFlow network.

At least two studies have proposed additional ways to take profit of a CPU

being connected to the switch. Mogul et al. [144] propose software defined

counters. Recall that an OpenFlow switch collects statistic data for each flow. The

authors explain that this data is stored in the switch using application specific

integrated circuits (ASIC). The propose keeping and processing information in a

CPU, where more variable and flexible statistics could be processed. The study

does not include implementation or simulation results, but the feasibility of



51

software defined counters is analyzed theoretically.

Lu et al. [145] also propose combining ASIC and CPU processing. The authors

point out two limitations of current switches: a limited size forwarding table

and a limited size packet buffer. They argue that a their approach relaxes these

limitations by using a CPU. A prototype is developed and a 3.9Gb/s software

forwarding throughput is achieved. Also, large TCP traffic bursts are absorbed

without packet losses. The experimental setup consists of sending 50k bidirectional

TCP flows among four servers.

Vanbever et al. [146] propose HotSwap, a system that enables correct and

efficient upgrades of SDN controllers. The goal of HotSwap is to be able to change

from one controller to another (when upgrading the controller is needed) without

disrupting the network. They argue that stopping the old controller and starting

the new one introduces delays and can also create errors in the network. HotSwap

records relevant messages between the switches and the controller and bootstraps

the new controller by replicating previous network events. By the time the new

controller starts operating, the network state is the same as when the previous

controller was operating.

2.7 Challenges of OpenFlow-based networks

OpenFlow deployments face several challenges that must be taken into consider-

ation, including security [147], availability [60], scalability [148], reliability [149],

expenditure [150] and compatibility [151].



52

2.7.1 Security

One principal challenge of an OpenFlow-based network is the dependence on the

controller. The controller becomes a component with a critical knowledge of the

network and a very attractive target for an attacker. Security measures must be

considered to ensure the availability of the controller. At the same time, since

this component has access to all the network, it must be strongly protected from

intruders.

The channel between the controller and the switches can also be vulnerable.

According to the OpenFlow specification, Transport Layer Security (TLS) can be

used to secure the communication. However, this feature is not a requirement and

it is also acceptable to communicate the controller and the switches using plain

text traffic. TLS can then provide security to the channel, but its usage depends on

the design of the network since it is not required.

The flow table is a component that could also present security risks, although

there are no published vulnerabilities yet. It is possible to manage a flow table

from two different controllers, where one of them is a production hardware and

the other one is just experimental. Since the latter one will be subject to lower

security controls, it is important to make sure that the consistency of the flow table

remains and that a malicious update coming from one controller will not tamper

other flow entries. Currently, the flow visor takes care of those considerations but

since OpenFlow is a recent protocol, this needs to be kept in mind.

A centralized software-based controller can also have security advantages. In a

distributed network, many vulnerabilities must be addressed in different protocols

and different devices. Having a software controller outside of the data plane

can simplify how security is enforced, as there is plenty of expertise on securing



53

servers through hardening instead of securing network devices.

2.7.2 Availability

The dependence on the controller is also a challenge regarding availability. An

OpenFlow-compliant switch is capable of forwarding packets using cached rules.

However, the communication with the controller is eventually needed for any

kind of modification of the rules. One advantage of a traditional, distributed

network architecture is that if a switch fails, the availability of the network can be

maintained. In an OpenFlow network, the communication with the controller must

be ensured. As we mentioned in the previous subsection, the controller becomes a

single point of failure.

How to handle the delay needed to create new flows is also a challenge. When

an OpenFlow switch receives a packet that does not match any rule in the flow

table, then the first 200 bytes of the packet are sent to the controller. After this, the

controller can install a new forwarding rule. Therefore, the delay to process the

first packet is larger. If this delay is too large, then the availability requirements of

a network might not be met.

2.7.3 Scalability

The controller can also become a bottleneck. If too many packets must be forwarded

to the controller, then performance issues can occur. A well designed network

should ensure that the most part of the traffic can be handled by the switches

without needing to forward data to the controller. It is also important to assess

whether the controller will become a bottleneck when the number of nodes grows.

As we discussed in Section VII, authors have addressed this challenge while

evaluating the performance of OpenFlow. In particular, Heller et al. show how a



54

single controller is usually enough to keep an acceptable latency. They also show

that introducing k controllers reduces the latency by k [141].

OpenFlow-based architectures also face two important scalability challenges: a

limited flow table size and hardware constraints. First, the number of flows that

can be contained in the flow table is limited. It is still a challenge to handle a

very large number of flows using an OpenFlow-compliant switch. Manipulating

packets at the control plane is slow as well. Therefore, end-to-end traffic control is

hard to implement if many different flows must be manipulated. Second, there

are hardware limitations on the speed at which flows can be added. For these two

reasons, it is still unclear if OpenFlow deployments can be used to control the core

of a network. Currently, OpenFlow is being used at the edge of a network instead.

2.7.4 Survivability

The dependency on the controller also creates reliability issues. One example can

be found in [60]. In this OpenFlow-based network, a link failure is reported to the

controller and a new path is found. According to the results, the network recovers

successfully but not quickly enough. The authors explain that the expected

recovery time is not met because of the time lost contacting the controller. A

common requirement by carriers is to achieve a network recovery in less than 50

seconds. In the study by [60], this goal is not met.

On the other hand, a centralized control also has advantages regarding network

recovery. In a distributed network, recovering from a broken path can be a slow

process. However, an OpenFlow controller is network-aware and it can find the

new path faster.

A multipath proposal for OpenFlow addresses how to recover faster from

failures. This proposal includes a fast reroute support, where backup flows can be



55

installed in advance. If the switch detects that a specific port has lost connectivity,

then the backup flow is installed. This is a proactive way of dealing with link

failures and it has the advantage that the controller does not need to be contacted

immediately after the failure.

2.7.5 CAPEX and OPEX

It has been debated whether OpenFlow can reduce the capital and operational

expenses (CAPEX and OPEX) of an organization.

OpenFlow adopters argue that by moving the complexity to the software-

based controller, network devices become simpler and therefore, cheaper. This

would reduce the CAPEX. However, OpenFlow also has limitations and advanced

hardware is still required to operate a network. It does not seem likely that

network switches and routers will become simple commodities in the short term.

Also, ensuring the availability of the control plane can increase the CAPEX. It is

important that the controller remains reachable even in case of a failure in the data

plane. Achieving this could increase the costs of a deployment.

A similar trade-off occurs for OPEX. We have discussed several studies that

simplify the network configuration and management. Certainly, OpenFlow can

be used to reduce the number of human based configuration tasks that are time

consuming and error prone. This reduces the OPEX. On the other hand, mov-

ing the complexity of the network to the software control plane requires work.

Project administrators, software developers, testers, debuggers and other costs are

examples of expenses that must be incurred in an OpenFlow-based deployment.

Therefore, it is not clear either whether OpenFlow greatly reduces the OPEX.



56

2.7.6 Compatibility

Another important challenge for OpenFlow deployments is that the network oper-

ating systems support specific versions of the OpenFlow specification. Currently,

most of them support OpenFlow 1.0.0. Even though OpenFlow 1.1.0 has been

available for several months, the network operating systems do not support specific

features of the newer version. The challenge is then to upgrade both the OpenFlow

specification and the software of each network operating system.

This compatibility issue also applies to the network devices, whose software

must be updated to meet the requirements of new OpenFlow specifications. For

instance, in the HP ProCurve switches series, modifying the packet header fields

(for example: IPv4 destination address) in the switch hardware is not supported.

But, it is possible to do the same in the switch software which is a slower path for

processing. Therefore, it is likely that switch vendors would fine tune their hard-

ware to support additional features in the switch hardware to improve efficiency.

This updating process must be taken in consideration when new versions become

available.

User developed applications face compatibility issues as well. We have shown

how there are significant differences between specifications 1.0.0 and 1.1.0. Another

example is that version 0.8.9 became deprecated when version 1.0.0 was available.

Therefore, it is important to consider if applications running under version 1.0.0

will still work on version 1.1.0 or if all affected developments must also be updated.

This scenario could occur again in further releases.

Finally, we believe that compatibility among controllers should also be taken

into consideration. Currently, multiple network devices perform switching and

routing in a standardized way. However, if the devices are controlled by software-



57

based controllers, then standardization should be achieved too. Controllers from

different domains should use the same protocols to ensure that the communication

is possible between hosts in different domains.

Next we conclude this chapter by discussing the future research directions in

OpenFlow-based networks.

2.8 Conclusions and future directions

SDN is a promising technology for enabling advanced functionality in pro-

grammable networks. Our survey paper [7] is, in our opinion, the first one to dis-

cuss the capabilities, application, deployments and challenges of SDN/OpenFlow-

based networks. We also explained and compared the OpenFlow specifications.

Below, we identify future research directions in OpenFlow-based networks.

First of all, applications have been developed in areas such as security, ease

of configuration, availability, network and data center virtualization, wireless

applications and others. Currently, a majority of the surveyed applications consist

of small, simple networks with some OpenFlow switches and hosts. Only a

small number of studies demonstrate their work in a WAN. In [85], the authors

emulated an OpenFlow-enabled WAN, but this is an exception to the majority

of studies. Whether OpenFlow can be used in WAN deployments or not is still

an open question. Studies show that OpenFlow could be used to control a WAN

([82, 84, 74]). However, scalability and performance experiments have not been

conducted yet.

Second, we observe that OpenFlow switches have been used as a multi-layer

network device. This technology was first proposed to control Ethernet switches.

However, OpenFlow has also been used in routing ([90, 98, 109, 110]), IP address



58

validation ([59]) and MPLS control ([81, 82, 83, 84, 85, 86, 87, 88]). This shows

that OpenFlow can be used at multiple layers. Future directions include tighter

integration of OpenFlow features with routers and MPLS switches to reduce their

complexity and cost.

Third, we find an open problem in the design of OpenFlow architectures. So

far, mostly all applications and deployments use only one controller to manage

all the switches. Distributed architectures with more than one controller could

be used to address some of the challenges such as availability or reliability [141].

In fact, a vast majority of networks contain duplication as a means to ensure

the availability of the system. We believe that the possibility of communicating

controllers in the OpenFlow 1.2 specification ([34]) is an opportunity to deploy

this kind of architecture. Coordinating tasks across multiple controllers and using

them during normal and failover conditions are tasks for future investigations.

Fourth, we believe that most studies do not involve real hardware but use

virtualization tools such as Mininet [46] and Open vSwitch [45]. Also, the number

of hosts is small in most of the applications. Scenarios such as Ethane [52], where

validation includes real hardware and up to 300 hosts are not very common. Real-

istic hardware simulations would also yield better results regarding the advantages

and disadvantages of using OpenFlow in real networks. Using testbeds such as

those described in this chapter is a good way to strengthen the validation of new

applications.

Finally, it is important to mention that data center virtualization is one of the

active areas that has received a lot of attention in the industry. The deployment

of OpenFlow by Google [136] in one of their backbone networks and active par-

ticipation of the Open Networking Foundation are good examples of the interest

of industry in OpenFlow. Integrating OpenFlow into such large scale real-world



59

applications is an important future direction.

In conclusion, SDN is one of the transformational technologies to affect the

networking vendor community in the last decade and exhibits tremendous scope

for future research and deployment. Since the publication of our survey paper [7],

other surveys on SDN have also appeared [152, 153, 154].

In the next Chapter, we show how SDN and OpenFlow can be used to simplify

campus networks management by proposing OpenSec, a framework that enables

policy-based management at campus scale.



60

Chapter 3

Campus scale: Policy-based security management using OpenSec

3.1 Introduction

With the advent of SDN, efforts to automate and simplify network operation

have become popular [155, 52, 156]. In SDN, the complexity of the network

shifts towards the controller and brings simplicity and abstraction to the network

operator. As we move away from manual configuration at each device, we get

closer to automated implementation of network policies and rules. SDN decouples

the control plane from the data plane and migrates the former to a logically

centralized software-based network controller. More complex network-control

applications can thus be implemented at the controller and exploit the fact that

they are network-aware due to the centralized nature of the control plane.

In this chapter we show how SDN can be used to implement policy-based

security in small networks such as local area networks (LAN) or campus networks.

To this end, we propose OpenSec, an OpenFlow-based network security framework

that allows campus operators to implement security policies across the network.

To motivate this work, suppose a campus operator needs to mirror incoming

web traffic to an intrusion detection system (IDS) and e-mail traffic to a spyware

detection device. Our goal is to leverage SDN to allow the operator to write a high-

level policy to achieve this, instead of having to manually configure each device.



61

Furthermore, suppose the IDS detects malicious traffic and the sender needs to be

blocked from accessing the network. Instead of having the operator configure the

edge router to manually disable access to the source, we are interested in blocking

the sender automatically.

Because OpenSec provides an abstraction of the network, the operators can

focus on specifying simple and human-readable security policies, instead of on

configuring all the devices to achieve the desired security. OpenSec consists of a

software layer running on top of the network controller, as well as multiple external

devices that perform security services (such as firewall, intrusion detection system

(IDS), encryption, spam detection, deep packet inspection (DPI) and others) and

report the results to the controller. The main goal of OpenSec is to allow network

operators to describe security policies for specific flows. The policies include a

description of the flow, a list of security services that apply to the flow and how to

react in case malicious content is found. The reaction can be to alert only, or to

quarantine traffic or even block all packets from a specific source.

We have built OpenSec taking three design requirements into consideration.

First, policies should be human-readable. Simplicity is one of the main goals of our

framework and although current work has focused on creating human-readable

policies [76, 156, 157], we argue that there is still room for improvement to make the

policy languages human readable. Second, data plane traffic should be processed

by the processing units (network devices, middleboxes or any other hardware that

provides security services to the network). When the controller is responsible for

all tasks it becomes a bottleneck and the solution does not scale well. In OpenSec,

the controller is subject to a low workload and is responsible for implementing

policies and modifying forwarding rules based on the security alerts received

from the processing units. Third, the framework should react to security alerts



62

automatically to reduce human intervention when suspicious traffic is detected.

To demonstrate the benefits of using OpenSec, we show two use cases. First,

we demonstrate how OpenSec can be used in a campus network to implement

network control for residential housing. To do this, we meet the requirements of

network usage established by the Carnegie Mellon University campus. Second,

we show how OpenSec can be used in a campus network to deploy a Science

demilitarized zone (DMZ) to enable higher throughput for scientific data transfers.

Our evaluation shows that OpenSec scales well because the delay in reacting

to alerts remains constant when the traffic rate increases. We also show the

benefits of moving the middleboxes away from the data path in terms of achieved

throughput. Finally, we compare OpenSec with existing solutions such as Procera

[76], CloudWatcher [157] and Fresco [158] and show that the performance of the

proposed framework is equal or better than similar works.

Our contributions in this chapter are as follows:

1. We create a simple, human-readable language to automatically implement

network security policies.

2. We give a first step towards automated, policy-based reaction to security

alerts using OpenFlow.

The rest of this chapter is organized as follows. In Section II survey related

work and in Section III we motivate our work. Next, in Section IV we describe

the OpenSec framework and its main components. After that, we describe the

operation of OpenSec in Sections V and VI. In sections VII and VIII we describe

the two use cases. In Section IX we evaluate the framework in terms of scalability

and performance and we compare OpenSec against similar work in Section X.

Finally, we conclude in Section XI.



63

3.2 Related work

3.2.1 Policy-based management without SDN

A significant amount of work has focused on policy specification [159], policy

refinement [160, 161, 162, 163], conflict detection [164, 165] and policy analysis [166]

in networks. Policy-based management (PBM) has also been applied to network

management [167] and security [168].

Agrawal et al. [166] provide an overview of how policy-based management

can be applied to networked systems. In particular, they explain how Policy

Management for Autonomic Computing (PMAC) can be applied to network

management. In a nutshell, PMAC is a generic policy middleware that supports

extensive and flexible policy languages. Also, a Policy Definition Tool (PDT) should

be provided to allow users to create and modify policies. Finally, an automated

manager is responsible for collecting policies and implementing them.

Rubio-Loyola et al. [163] propose a a method to refine policies in policy-based

management systems. Policy refinement allows to derive low-level enforceable

policies from high-level guidelines. The authors provide a list of steps needed

to convert high-level goals into low-level policies and describe a framework that

supports all the required steps.

Charalambides et al. [164] address conflict resolution in PBM, a crucial aspect

when managing a system using policies. Indeed, as the authors point out, when

several policies coexist it is likely to encounter that two or more policies give a

different output for the same input. This study addresses the problem of conflict

resolution when using policies to provide Quality of Service (QoS).

OpenSec is similar to these methods in that it proposes a centralized system

capable of receiving policies as input and analyzing them, checking for conflicts



64

and implementing them. In this work, however, we provide a detailed explanation

of how policies can be converted into OpenFlow messages to update the forwarding

rules dynamically. Also, the policies used in OpenSec are low-level specifications

because they already include a list of OpenFlow matching fields that should be

used. Thus, the main contribution of OpenSec is the automated administration of

processing units and dynamic reaction to security alerts using SDN, as opposed to

deriving low-level policies from high-level goals.

3.2.2 Policy-based network management using SDN

With the advent of SDN, the field of network management has evolved to become

more dynamic [169, 170, 171]. Casado et al. proposed Ethane [52]. In Ethane,

an operator creates a policy using the Flow-based Security Language (FSL) to

create a high-level access control list. Ethane allows an operator to write an access

control policy with good granularity while still using high-level language (for

example, using “testing nodes” instead of a subnet mask). Although OpenSec

does not focus on referring to network objects by name, we do provide a broader

set of security services besides access control. Also, OpenSec includes a reactive

component to security alerts. When anomalous traffic is detected, OpenSec can

modify traffic rules as specified by the policy, which adds a reactive component

missing in Ethane.

Foster et al. propose Frenetic [40], a programming language to program

OpenFlow-based networks. Frenetic provides an interface to query traffic infor-

mation. Frenetic can also be used to create a policy to react to network events. In

our opinion, Frenetic focuses on simplifying how to program network events and

how to retrieve traffic information. OpenSec focuses on hiding such complexity

and allowing a security operator to work at a higher level, since it was designed to



65

implement and enforce security policies, rather than to provide another mechanism

to handle events sent by the network switches.

Finally, Bari et al. [172] proposed PolicyCop, an autonomic QoS policy en-

forcement framework for SDN. This framework allows to specify service level

agreements (SLAs) to implement and enforce QoS in an OpenFlow-based network.

The step-by-step method used by PolicyCop to convert policies into flow rules is

similar to that of OpenSec. However, our focus is on reacting to network security

alerts instead of QoS violations.

3.2.3 Candidate frameworks for comparison against OpenSec

Among the proposed frameworks that convert policies to OpenFlow messages,

three are candidates for comparison against OpenSec: CloudWatcher [157], Fresco [158]

and Procera [76]. We describe these frameworks next and we compare them against

OpenSec in Section 3.10.

Shin et al. proposed CloudWatcher [157], a security monitoring framework

for the cloud that has several similarities with our work. Using CloudWatcher, a

network operator can use a policy to describe a flow and describe which security

services must be applied to it. For example, if traffic within a subnet must be

subject to denial of service attack detection and intrusion detection, then a policy

can be used to describe this. The authors focus on how the controller can find the

optimal route to send the traffic to those processing units and the policy language

is not described in detail. OpenSec goes one step further by allowing the operator

to describe how to react in case malicious traffic is detected. Our focus is more

on how to implement the policies instead of optimal routing decisions to find the

processing units.

Fresco [158] is another OpenFlow-based security framework that exposes se-



66

curity modules to external users, who can in turn define security policies using

such modules. To use Fresco, an operator must define the type, input, the output,

the parameter, the action and the event. Fresco is also similar to Procera and

Frenetic in the sense that it allows manipulating network events and handling

them through pre-defined modules.

Voelli et al. proposed Procera [76], a “functional reactive programming” frame-

work where a user can write a high-level policy to define how to handle network

events. Just like Frenetic, Procera also aims to simplifying how to deal with net-

work events. They have in common that they both seek a simpler interface to

program the network and to react to network events. Also, Procera addresses

an important topic: enforcing network policies. Our approach to enforce the

implementation of security policies is based on the technique proposed in Procera.

One thing that OpenSec does that is not considered in Procera and Frenetic is auto-

mated reaction to security alerts raised by external units. In OpenSec, the network

operator defines a security level and the framework automatically modifies flow

rules when malicious traffic is detected. In Frenetic and Procera, all reaction is

defined by the code written by the operator. In a nutshell, Frenetic and Procera

allow for a more granular control of the flow setup whereas OpenSec hides such

events from the operator and reacts automatically.

Although other studies have addressed policy-based network administration

using OpenFlow, as well as providing security through SDN, OpenSec’s innovative

approach allows operators to customize the security of the network using human-

readable policies and to customize how the controller reacts automatically when

malicious traffic is detected.



67

3.3 Motivation

The main goal of OpenSec is to be a human-friendly, dynamic and automated

security framework. Next we describe three design requirements of our framework:

moving middleboxes away from the main datapath, reacting automatically to

security events and creating a simple policy specification language.

3.3.1 Moving middleboxes away from the main datapath

Sekar et al. show that, in a given enterprise, there are almost as many network

appliances as there are routers [173]. Moreover, they point out how middleboxes

do not favour network innovation, as they are closed system with no room for

experimentation. Indeed, middleboxes are harder to update, upgrade or replace

when compared to standard Ethernet switches.

The first goal of OpenSec is to move the middleboxes away from the choke

points of the topology traversed by all traffic. Instead, these devices should be

located outside of the main path between the LAN and the Internet and should

act as security processing units that are visited only by the traffic that needs

to be processed. Using a smarter OpenFlow-based control plane, the OpenSec

should dynamically create rules to re-route traffic. This is important in terms of

performance and reliability, since a L2 switch is easier to maintain, upgrade or

replace in comparison to specialized hardware. When a specific flow is subject to

deep packet inspection, for example, then the controller adds a rule that forces

such traffic to visit the DPI processing unit.

To allow OpenSec to scale better, the processing units are responsible for ana-

lyzing the traffic and detecting malicious flows. Sampling traffic at the controller

increases the chances of introducing a bottleneck and increases the complexity.



68

Also, the connectivity between switches and controller is usually of low bandwidth.

In contrast, the data plane allows a faster bit rate and the processing units are

optimized to handle big flows. In OpenSec, the controller remains listening to

alerts and reacts to those alerts by deciding how to modify the traffic rules.

3.3.2 Reacting automatically to security events

The second goal of OpenSec is to enable automated reaction to security events.

When a middlebox detects suspicious traffic, it issues a security alert. Traditionally,

these alerts are received by a network operator who then decides how to react.

With OpenSec we aim at automating this reaction so that the framework either

blocks the traffic, or simply alerts the operator of the detected malicious traffic.

The reason why this is feasible is because, in general, an operator can plan ahead

of time how critical a flow is based on the service provided through that flow. In

a production network, for example, an operator would want a denial of service

attack to be stopped as soon as possible. In contrast, a testing environment could

be less critical. Thus, we designed OpenSec to allow the operator to specify ahead

of time what the automated reaction should be, so that in case of malicious traffic,

the human participation is minimized.

3.3.3 Creating a simple policy specification language

The third goal of OpenSec is to provide a simple policy specification language to

allow operators to redirect traffic to the middleboxes and to enable automated

reaction. Among all related work, Procera (see Section 3.2.3) is probably the one

that has focused most on designing human-readable policy definition. However,

we argue that understanding a definition written in Procera is not straightforward.

For example, the following instructions define a rule that allows all traffic:



69

Procera: proc world→ do; returnA: λ req→ allow

This statement still contains symbols that make it complicated to read. Instead, we

aim at statements such as:

OpenSec: Flow: VLAN=192; Service: DPI; React: alert.

This OpenSec sample policy is described in Section 3.4.1. However, note that

three components can easily be identified: the matching pattern, the security units

that must be visited by this flow and the type of automated reaction.

Procera relies on reactive programming and its goal is different from OpenSec.

In Procera, the goal is to program the network using policies and this includes

handling events generated by the switches. In contrast, OpenSec does not com-

municate the network events to the end-user. Instead, they are automatically

processed. This allows us to use a much simpler syntax to describe the flow,

identify one or more services and specify how to react when malicious traffic is

detected. Policies can be defined using the keywords shown in Table 3.1.

3.4 OpenSec components

OpenSec is an SDN framework capable of forwarding flows to security process-

ing units based on policies and to automatically react to events raised by these

middleboxes. Using this framework, security devices such as intrusion detection

middleboxes, firewalls or encryption units can be removed from the main data

path between the LAN and the Internet. OpenSec leverages a smart control plane



70

to allow end-users to direct only part of the traffic to these security units.

Figure 3.1: The OpenSec framework: Security functions are provided by the
processing units; traffic is routed to each processing unit based on requirements
given through security policies; the reaction to security alerts is automated.

In this section we describe the main components of the framework: a policy

specification language, a northbound interface, a policy manager, a set of pro-

cessing units, a security evento processor, an OpenFlow controller and a data

repository. Then, in sections 3.5 and 3.6 we explain how these components interact

with each other to implement the policies and to react to security alerts issued by

the processing units.

3.4.1 Policy specification language

OpenSec’s policy specification language allows to specify a matching pattern, a

list of security units that should be traversed by such traffic and an automated

reaction in case of receiving a notification from a unit (see Table 3.1). The matching

fields correspond to those available in OpenFlow 1.0. The service corresponds to



71

any service ID registered by the processing units manager. Finally, the alert can be

to alert only (via email), to block or to re-route traffic to a quarantine device.

Table 3.1: Syntax to create policies using OpenSec.

Value Description
Flow inPort, VLAN,

etherSrc, etherDst,
ipSrc, ipDst,
TCP-SrcPrt,
TCP-DstPrt

Uses OpenFlow
match fields to
describe a flow

Service Encrypt, IDS, DPI,
spam, DDoS or any

other service
registered

Identifies a security
service that should be

applied to the flow

React alert, quarantine,
block

Determines how to
react if the service
reports malicious

content

To illustrate how this language is used, we explain the example given in Section

3.3.3:

Flow: VLAN=192; Service: DPI; React: alert.

The policy above specifies that all traffic tagged with VLAN 192 should be re-

routed to the DPI unit. Also, if the DPI middlebox informs of a suspicious sender,

OpenSec must only alert the operator via e-mail. Several match fields and several

units can be listed when specifying the policy.

3.4.2 Northbound interface

The current prototype of OpenSec includes a graphical user interface shown in

Fig. 3.2. The list on the left shows all policies currently implemented and the



72

buttons on the left allow for adding or removing a policy. On the right side,

the detailed policy is shown on top and the sources that have been blocked

automatically using that policy are shown below. Finally, the operator can unblock

a source. A similar GUI is provided to the user to show the information of each

registered processing unit, similar to the data shown on table 3.2.

OpenSec should allow external applications to implement network security

policies automatically. As a consequence, there is a need for a northbound Appli-

cation Programming Interface (API) between OpenSec and the applications. The

development of such an API is part of our future work.

Figure 3.2: OpenSec’s graphic user interface. This interface allows the network
operator to add, remove and view policies. It can also be used to re-authorize
blocked sources.

3.4.3 Policy manager

The policy manager is a core component of OpenSec. It is responsible for parsing

new policies sent by the GUI and converting them to OpenSec objects. Next, it

must implement the policy using the southbound interface component (controller).

Finally it must also check periodically that the policy is implemented appropriately.

The operation of the policy manager is explained in detail in Section 3.5.



73

3.4.4 Processing units

OpenSec relies on external processing units (or middleboxes) to analyze traffic.

The units are customized to perform the required security scan, such as a firewall,

an IPS or DPI. When suspicious traffic is detected, the processing unit issues an

alert to the OpenSec controller so that actions can be undertaken based on existing

policies. For this to work, all units must be known to the OpenSec controller.

OpenSec implements a processing units manager that collects all the registra-

tions and creates a list of units and the location in the network where they can be

found. In our current implementation, each unit is mapped to a service id (DPI,

IPS), a switchID, an input port and an output port (see 3.2). This is all the data

needed by OpenSec to manipulate the flow table of the devices in order to re-route

traffic to the processing units.

Note that, if a processing unit is vendor-specific and this automatic registration

cannot be implemented, a network operator can easily complete the information

in the controller manually. In our current implementation, both automatic and

manual registrations are supported.

Table 3.2: Registered security processing units for Fig. 3.1.

Service type Switch ID In-interface Out-interface
DPI 1 25 26

DDoS 2 48 49

Encrypt 3 25 26

3.4.5 Security event processor

One of the most important features of OpenSec is the automatic reaction to security

alerts. Usually, a network operator will react to an alert by either ignoring it or

blocking the source of the suspicious traffic. In OpenSec, the network operator can



74

define such a reaction in advance using three possible choices: alert, quarantine or

block. The security event processor is responsible for collecting the notifications

issued by the processing units and modifying forwarding rules according to the

policies involved. This component is explained in detail in Section 3.6.

3.4.6 OpenFlow controller

OpenSec uses OpenFlow to interface with the switches. To do so, a module running

in the Floodlight controller [39] implements the required interfaces to listen to

network events and communicate with switches. When a request is received from

the policy implementer to push a new rule, this module is responsible for sending

the message to the right switches. A more detailed explanation of how an OpenSec

policy is converted to a list of OpenFlow messages is provided in Section 3.5.

Although the controller of OpenSec is centralized, multiple controllers can

work together to increase the availability of the control plane. In the current

implementation we rely on a single software to do this. However, it has been

proposed to have multiple controllers working in a synchronized way [174, 175,

176, 177]. We do not address the implementation of a distributed control plane in

this dissertation.

3.4.7 Data repository

OpenSec uses a data repository to store several pieces of information. First, all

implemented policies are stored to check for conflicts when new policies are

received, and also to know how to react to security events raised by the processing

units. Similarly, all the information needed to route traffic to the middleboxes

(device id, switch id, input port and output port) is also stored. Finally, OpenSec

also records when hosts are blocked from accessing the network.



75

In the next section we describe how these components interact with each other

to implement security policies.

3.5 Operation of OpenSec: policy implementation

In this section we describe how the policy manager of OpenSec converts a new

policy created through the GUI into forwarding rules in the switches. Figure 3.3

provides an overview of the entire process.

Figure 3.3: Steps needed to implement a policy.

3.5.1 Policy parsing

The policy parser receives the policy definition file from the northbound interface

(GUI) component (as described in Section 3.4.2). Next, it converts it into a Policy

object that can be processed by OpenSec to update flow rules in the switches. First,

the parser builds a Flow object and sets the attributes based on the values given by

the policies. A Flow object is a simple structure where we store the VLAN, MAC

source and destination, IP source and destination and TCP port. Next, the parser



76

queries the processing units manager (described below) to retrieve the switch id

associated to the processing units specified in the policy, as well as the port needed

to send data to those units. This is added as a collection to the Policy object.

Finally, a flag is used to indicate whether the reaction in case of a security event is

to alert, quarantine or block. Algorithm 1 shows how policy definitions are parsed.

Note that we intentionally keep the policy parser OpenFlow-independent. The

fields used to describe a flow are standard and the Policy object can be used by

any other SDN protocol to update the forwarding tables of switches.

Data: new file path path
//Parse new policy from file Policy policy = new Policy( )
lines = readFile(path)
for each line f in lines do

if line starts with ‘Flow’ then
//Create a match based on fields match = createMatch(line);

end
if line starts with ‘Service’ then

//save codes of units (DPI, DoS, ...) servicesCollection = getServices(line);
end
if line starts with ‘React’ then

//Remember expected reaction
reaction = getReaction(line);

end
policy.setMatch(match);
policy.setUnits(units);
policy.setReaction(reaction);
policy.setVlan(getNextVLAN( ) );

end
Algorithm 1: Parsing a file into a policy object.

3.5.2 Policy checking

The policy checker receives a Policy object from the parser and verifies that it

does not conflict with existing ones. Checking for conflicting rules is particularly

challenging in deployments with multiple controllers sharing network control

through a slicing technique such as FlowVisor [51]. In such scenario, the checker



77

should verify that controllers do not use unauthorized resources and do not

override rules pushed by other controllers.

In the context of OpenSec, all rules are pushed by the controller and this

simplifies the task. Our policy checker verifies that the Flow attributes of each

Policy object do not conflict with each other. For example, two identical Flow

objects cannot be part of different policies, since this will become ambiguous when

the rules are pushed to the switches.

The policy checker becomes increasingly important as the north API of OpenSec

becomes more sophisticated. We plan to allow for multiple security applications to

automatically add new policies and the policy checker needs to verify that those

applications do not interfere with each other. However, we do not address this

issue in the current work.

3.5.3 Policy implementation

Once a policy has been parsed and checked for conflicts, the policy implementer

can convert all objects into OpenFlow-compliant rules. The policy implementer is

the only component in OpenSec that is currently tied to the OpenFlow protocol.

It converts the Flow objects created by the policy parser into the specific instance

needed by the OpenFlow controllers (described below) to push new flow rules into

the switches. Note that several rules can be created simultaneously if the policy

specifies multiple security units. Rules will be pushed into the switches attached

to those devices.

When a new rule is pushed to a switch using OpenFlow, the message issued

by the controller must include an input port, a match and a set of actions. Note

that at least one rule will be inserted for each processing unit listed in the policy.

Therefore, for each unit OpenSec first finds the input port where traffic is expected.



78

This is available in the data repository where all existing forwarding rules are

inserted (see Table 3.2). We assume that a rule already existed to carry the traffic

either in our out of the local network and, as a consequence, we expect that

OpenSec will find a rule that matches the pattern given in the policy. Once the

input port has been found, the match is created based on the policy matching

information. Finally, the action is computed as follows. First, an output port must

be added so that traffic reaches the middlebox. Second, a VLAN tag must be added

to uniquely map this traffic to a policy. Indeed, when a processing unit informs the

controller that malicious traffic has been detected, the VLAN id and the source IP

address are provided in the notification. These two fields uniquely map a source

to a policy, allowing OpenSec to react to traffic coming from the identified source

as specified by the policy. This is explained in more detail in Section 3.6. All

the steps described are shown in Algorithm 2. As a result, FlowMod OpenFlow

messages are issued for each middlebox to match on the input port and the policy

matching fields and to mirror traffic to the units through the port retrieved from

the database.

3.5.4 Policy enforcement

One important step of policy-based management is policy enforcement. This

step consists of periodically checking that policies are effectively implemented.

To do so, the controller issues packet in messages that match the fields of each

implemented policy. Next, the controller verifies that the issued packets were

routed appropriately. One possible way to check this is to craft packets that will

actually trigger alerts. Another one is to have the units notifying the controller that

a test message has been received. We are currently working on this component

and therefore do not provide evaluation results yet.



79

Data: Policy policy
//Implement policy in network
servicesCollection = policy.getServicesCollection( );
for each service u in unitsCollection do

//For each service code, find the unit
Unit unit = unitManager.getUnit(service);
//Get DPID, inPort and match to create a flow rule
dpid = unit.getDPID( );
inPort = unit.getInPort( );
match = policy.getMatch( );
//Get input port from existing rule
inputPort = database.findInputPort(match);
//Get next available VLAN tag
vlanTag = database.getNextTagAvailable();
//Update existing rule
writeFlowMod(match on: inputPort and match, actions: add vlan tag, output to
port inPort );

end
Algorithm 2: Implementing a policy.

3.5.5 Step-by-step example

To summarize this section, we provide a step-by-step example of how an operator

can implement a policy using OpenSec. Suppose that we implement the following

policy using the sample network in Fig. 3.1:

Flow: VLAN=192; Service: DPI; React: block.

This policy ensures that traffic tagged with VLAN 192 is mirrored to the DPI

unit. Also, any source sending malicious traffic should be blocked.

To implement the policy:

1. A network admin should write the policy using the GUI shown in Fig. 3.2.

2. OpenSec parses the policy and locates the switch where the DPI unit is

connected, as well as the interface (switch 1, port 25 as shown in Table 3.2).



80

3. OpenSec assumes that one or more rules already exist so that traffic from

VLAN 192 can go through the network.

4. OpenSec finds the rule in switch 1 that matches packets tagged with VLAN

192 to get the appropriate input port.

5. OpenSec also finds the next VLAN tag available to identify traffic from this

policy, assume it’s VLAN 20.

6. OpenSec modifies the rule so that traffic is forwarded as specified by the

original rule, but also forwarded to port 25. Additionally, the VLAN tag 20

is also added.

Once a policy has been implemented, traffic is routed to the processing units

and security alerts might be issued by the middleboxes. Next we describe how

OpenSec reacts to these alerts.

3.6 Operation of OpenSec: reaction to security events

One key feature of OpenSec is the ability to automatically react to security alerts

without involving the network administrator. In this section we describe with

more detail how this process is achieved. The overall process is shown in Fig. 3.4.

Figure 3.4: Steps needed to react to a security event.



81

3.6.1 Configuration of processing units

OpenSec relies on the processing units to perform security scans on incoming

traffic. In the current implementation, each middlebox must be configured by the

network operator to do a specific task. However, enabling automated configuration

by OpenSec is a possible future work direction. To be compatible with OpenSec, a

processing unit must be capable of sending a message to the controller indicating

that a tuplet {VLAN, IP source} is behaving suspiciously. As we described in

Section 3.5.3, OpenSec tags traffic with a VLAN to uniquely map it to a given

policy. Therefore, by sending the VLAN tag and the IP source, the processing unit

identifies the sender but also indicates OpenSec which policy caused this flow to

be routed to the unit.

3.6.2 Reaction to security event

OpenSec listens to notifications from processing units using application layer

sockets. When a new message arrives, a new threat handles it. First, the process

reads the VLAN tag and the IP source of the suspicious node. Next, the process

queries the data repository to get the policy mapped to the received VLAN tag.

Finally, the process retrieves the type of reaction specified in the policy. As a result,

OpenSec now knows if the source must be blocked or sent to quarantine. If the

specified reaction is ‘alert,’ forwarding rules are not modified and the network

administrator is notified by e-mail. Otherwise, we describe next how to modify

the forwarding rules.



82

3.6.3 Creation of new OpenFlow rules

The creation of new rules depends on the reaction type. To quarantine traffic, a

processing unit logging all traffic is attached to one of the switches on a given port.

By default, a rule exists on all switches to forward to the quarantine unit all traffic

tagged with a specific VLAN tag. Therefore, to react to such attack, OpenSec must

simply insert a rule at the edge switch that will tag all incoming traffic from the

suspicious source with the VLAN tag associated to the quarantine unit. Similarly,

if the policy indicates that traffic should be dropped, then OpenSec inserts a rule

at the edge switch to do so.

3.6.4 Step-by-step example

Consider once again the example started in Section 3.5.5 that forwards traffic to a

DPI unit and blocks suspicious sources. Now we describe the steps followed when

an alert is sent by the DPI unit to OpenSec.

1. The DPI processing unit is configured by the administrator to perform some

security scan.

2. The processing unit detects malicious traffic coming from source 174.145.23.3

and sends a notification to the controller: {20, 174.145.23.3} (20 is the VLAN

used in the example started in Section 3.5.5, the IP source is only an example).

3. OpenSec retrieves from the data repository the policy mapped to VLAN tag

20 and the reaction specified by the policy (block).

4. OpenSec issues a flowmod message to the edge switch asking to block all

traffic coming from source 174.145.23.3.



83

Next we describe two use cases that demonstrate the advantages of OpenSec.

First, we show how the framework can be used to enforce network access require-

ments in a campus network in Section 3.7. After that, we show how it can be used

to deploy a scientific demilitarized zone (Science DMZ) in Section 3.8.

3.7 Use case 1: traffic analysis for campus networks

The first use case we consider is a residence hall network where both outgoing and

incoming traffic must be monitored. We describe through emulation the OpenSec

policies implemented and the benefits obtained. First we look at controlling

outgoing traffic and later we focus on incoming messages.

Figure 3.5: Campus topology for housing Internet traffic.

3.7.1 Controlling outgoing traffic using OpenSec

Consider the residence hall network control requirements of the Carnegie Mellon

University (CMU) campus [178]. The campus policy establishes acceptable prac-

tices for residence hall and dedicated remote access network connections. One

of the requirements is that mail bombing, ping flooding, smurf attacks and SYN

flooding are forbidden. Mail bombing consists of sending huge volumes of email



84

to a specific address to overload the mailbox or the mail server. Ping flooding is a

denial of service attack achieved by sending a large amount of ICMP echo requests.

A smurf attack consists of contacting multiple nodes using a forged IP source

address. When the nodes reply, the attacked node is overloaded with messages.

We deployed in GENI [122, 179] a topology as shown in Fig. 3.5 to demonstrate

how OpenSec can be used to enforce the requirements of CMU. All OpenFlow

switches are implemented using virtual machines running Open vSwitch.

The experimental setup of the first scenario is based on traffic collected at the

University of Twente in the Netherlands [180]. A 300 Mbit/s (a trunk of 3 x 100

Mbit/s) Ethernet link has been measured, which connects a residential network

of a university to the core network of this university. On the residential network,

about 2000 students are connected, each having a 100 Mbit/s Ethernet access link.

The residential network itself consists of 100 and 300 Mbit/s links to the various

switches, depending on the aggregation level. The measured link has an average

load of about 60%. Measurements were made in July 2002. This trace ensures that

OpenSec is receiving a realistic traffic load corresponding to an actual campus

residential network. In total, there are 24 GB of data with 14M flows.

We also developed two security units: one for intrusion detection and one for

deep packet inspection. The IDS unit runs Bro [181], an open source network

analysis framework capable of intrusion detection. The DPI unit is built on top of

nDPI [182], an open source DPI tool. nDPI supports all major networking protocols

at any layer, such as IPv4, IPv6, UDP, TCP, HTTP, DNS, SSH, SMTP, Flash and

many others. The IDS unit is configured to detect ping flooding and SYN flooding

attacks by sending an alert when a given source sends more than 25 ICMP echo

requests per second. Similarly, if a node sends multiple TCP handshake requests

and then drops the connection, an alert is also raised. Finally, malicious traffic is



85

generated using nmap [183] and scapy [184].

We use OpenSec to ensure that outgoing traffic tagged with label 15 goes

through the implemented security units. To do so, we deploy the following policy:

Flow: VLAN=15, Service: DPI, IDS, React: block.

0

500

1,000

1,500

2,000

Time (1 minute total)

M
Bp

s

192.168.1.1
192.168.1.2
192.168.1.3

Sender 2 blocked

Sender 3 blocked

Figure 3.6: Automated blocking of sources 192.168.1.2 and 192.168.1.3 after detect-
ing a SYN flood and a Smurf attack. Source 192.168.1.1 remains unblocked.

The focus of the experiment was to demonstrate how OpenSec can detect

traffic that does not adhere to the policy and block a source. We created traffic at

three different nodes inside the residential network. The first sender (IP address

192.168.1.1) generates normal traffic by copying a file from a server on the Internet

side network. However, the second sender (IP address 192.168.1.2) launches a

ping flood attack and a third one (IP address 192.168.1.3) sends a smurf attack by

manually crafting packets using the scapy tool.

Figure 3.6 shows the traffic reaching the Internet coming from the three senders.

First, The traffic from sender 192.168.1.1 remains constant and never gets blocked.



86

Second, the traffic from sender 192.168.1.2 starts constant but then increases

significantly (this corresponds to the time when the ping flood is started). As

soon as this happens, the IDS unit notifies OpenSec that the sender 192.168.1.2 is

sending malicious traffic. The unit also sends the VLAN tag to uniquely identify

this policy. When this happens, OpenSec retrieves the policy using the VLAN tag,

finds the expected automated reaction and blocks the sender. The same happens

when sender 192.168.1.3 starts sending spoofed IP source addresses, as the DPI

unit informs OpenSec and the sender is automatically blocked. As a result, no

more traffic is allowed from senders 2 and 3.

3.7.2 Protecting the residential network from outsider attacks

Next we look at traffic coming from the Internet into the network. To do so, we use

another dataset available at the University of Twente that collected traffic directed

to a honeypot to evaluate OpenSec at a higher scale [185]. The honeypot was

connected to the Internet and ran network services such as SSH, FTP, HTTP and

so on. By design, only suspicious traffic was forwarded to that node. The traffic

trace was also labeled and organized in a database of flows, alerts and alert types.

As a consequence, it is very convenient for experimentation because each flow has

been labeled with one attack type, such as SSH scan, SSH connection, FTP scan,

FTP connection or HTTP connection. Table 3.3 shows a detailed classification of

the dataset.

Table 3.3: Type of traffic in the dataset

Traffic type Number of IP
sources

Number of flows

SSH conn 103,104 13,939,813

FTP conn 5 12

Entire dataset 107,988 14,170,132



87

The experimental setup using the GENI testbed for this scenario is as follows.

We replayed the honeypot traffic dataset from a node in the Internet to replicate

all the messages. To detect suspicious ssh connections, we configured Bro to alert

when a single source attempts more than six connections every five seconds or less.

This decision is based on the traffic received by the honeypot where a majority

of ssh connections were attempted every five seconds in average. Moreover, we

created a policy that mirrors to Bro all incoming traffic destined to port 22.

First we evaluate the detection accuracy of simply alerting when a source

attempts connections every five seconds for at least six times. Since OpenSec will

only issue an alert for one out of six connections, we expect a number close to the

sixth part the total number of flows. However, a close observation of the start and

end times of each connection yields that, out of 1000 connections, an average of 20

will go unnoticed by OpenSec because there is a pause of more than five seconds

between two or more alerts.

Second, we modify the policy to block traffic instead of only issuing an alert.

Table 3.4 shows the number of flows that reach the destination instead of been

blocked, as well as the number of sources blocked. Note that 95.5% of flows are

stopped before reaching the destination and 99% of attacking nodes are blocked

from the network.

Table 3.4: Results of implementing the blocking policy

Total flows Flows
reaching

destination

Total IP
sources

Sources
blocked

13,939,813 628,624 103,104 102,085

In the next Section we describe another campus network scenario and we

describe how to use OpenSec for scientific networking purposes.



88

3.8 Use case 2: Deploying a Science DMZ

In this section, we describe how Science demilitarized zone (DMZ) [186] can be

deployed in a campus network using OpenSec.

Figure 3.7: Science DMZ in a campus network.

3.8.1 Science DMZ

Science networks carry high-speed data transfer flows that need high bandwidth

and are very susceptible to packet loss. Therefore, the goal of a Science DMZ is to

rout traffic through a path with customized controls that ensure an acceptable level

of security while guaranteeing a high-speed loss-free channel. Unlike the Science

DMZ, the traditional DMZ must protect the network against multiple threats.

Figure 3.7 shows how a border router splits traffic into two paths as soon as

data reach the campus network. Inside the Science DMZ, there is an end-host

customized to receive high-rate data. The Science DMZ also contains a perfSONAR

node [187] for performance measurement purposes. Note that packets do not

traverse these monitoring devices; instead, traffic is simply mirrored so that there

is no performance loss.



89

Table 3.5: Syntax to create policies using OpenSec and Procera.

OpenSec Flow: EtherPort =
1

Service: perf-
SONAR, IDS
React: alert
/* Security controls
for the Science
DMZ */

Flow: EtherPort =
1

Service: Firewall
React: alert
/* Firewall for all
traffic going to the
LAN */

Flow: TCP-dp = 25

Service: Spyware
React: block
/* Spyware detection
of incoming mail */

Procera proc world→ do
returnA:
λ req → if Ether-
Port=1 and secu-
rity event already
exists
alert
else
allow � redirect
10.10.1.1 � redirect
10.10.1.2

proc world→ do
returnA:
λ req → if Ether-
Port=1 and secu-
rity event already
exists
alert
else
allow � redirect
10.10.1.3

proc world→ do
returnA:
λ req → if TCP-
dp=25 and secu-
rity event already
exists
deny
else
allow � redirect
10.10.1.4

3.8.2 Deployment of a Science DMZ using OpenSec

10

12

14

16

18

Time (1 minute total)

M
Bp

s

Science DMZ end-host
LAN end-host

Figure 3.8: Number of bytes received by end-hosts in the Science DMZ and the
LAN. The host in the science DMZ receives more traffic because the path between
end-points is faster. For the host in the LAN, security devices such as the firewall
decrease the performance and the traffic rate is lower.



90

0

0.5

1

1.5

2

2.5

Time (1 minute total)

M
Bp

s Firewall
Spyware

Figure 3.9: Number of bytes received by the firewall and the spyware detection
units. The amount of traffic that visits the spyware detection unit is lower because
only traffic with destination port TCP 25 is routed through this unit.

We created the network shown in Fig. 3.7 in GENI. The testing devices (email

senders, data transfer nodes and webserver users) are deployed in the GENI

aggregate located at the University of Illinois. The campus network is deployed in

the University of Utah InstaGENI aggregate. In this experiment, the aggregates

are “stitched” together through a layer-two tunnel. This connectivity is provided

by the GENI testbed.

We also scale up the experiment using a scaling technique provided by GENI

so that there are 50 nodes deployed in the Illinois aggregate. Out of 50 nodes, 10

send scientific data at a high rate, 25 send requests to the web server located in the

LAN and 15 send email traffic.

The first row of Table 3.5 shows the policies used to realize the required

security behavior. On the Science DMZ side, all traffic is mirrored to the IDS and

the perfSONAR units. On the LAN side, all traffic is sent to the firewall and then

forwarded to the LAN once it has been inspected by the firewall. Also, incoming

mail is forwarded to the spyware detection unit.

Note that three simple policies have saved the user from manually adding

multiple rules to individual switches. This is a clear advantage of leveraging SDN



91

to abstract the complexity of the network and show a simple abstraction to the end

user.

In terms of network performance, we run two additional experiments. First,

we send high-rate flows to a host in the Science DMZ and we do the same with

a host in the LAN. Figure 3.8 shows the result of comparing these two transfers.

In both cases we use the secure copy (scp) tool to transfer a large file and we

measure the number of bytes per second received at each host. We observe that

the end-host in the Science DMZ receives a constant number of bytes per second,

whereas the rate of traffic sent to the host in the LAN decreases. The reason for

this decrease is that the path through the campus network is much slower than

the one traversing the Science DMZ and packet loss occurs at the firewall and the

spyware detection units. Thus, the TCP implementation of the sender assumes

that this is due to congestion and lowers the transmission rate. For this reason,

after the initial decrease the throughput becomes stable.

Second, we measure the amount of traffic that traverses the firewall and we

compare it with the amount of data routed to the spyware detection unit. Table

3.5 shows the OpenSec policies in this experiment. Note that the third policy

ensures that only TCP-25 traffic goes to the spyware unit. As a result, Fig. 3.9

shows the difference between the traffic going to the security units. By filtering

mail traffic, we significantly reduce the load of the spyware unit. The second row

of Table 3.5 also shows how the equivalent functionality would be achieved in

Procera. Notice how the syntax is closer to a programming language rather than

a simple list of match fields and security services. While Procera provides other

functionalities, OpenSec’s syntax is sufficient to provide adequate routing of traffic

to the appropriate middleboxes.

The two use cases described show how OpenSec simplifies policy implementa-



92

1 10 50 100 1000

0

200

400

600

Packets per second
R

ea
ct

io
n

de
la

y
(m

s)

Figure 3.10: Time elapsed between the detection of malicious traffic and the
blocking of the source. Independently of the traffic rate, the time needed by
OpenSec to detect malicious traffic and block the sender remains constant.

tion in a campus network. Next, we focus on the performance of the framework

by studying its scalability and gain in throughput.

3.9 Performance evaluation

In this section we evaluate the scalability of OpenSec and we measure the through-

put gain of not having to traverse middleboxes.

3.9.1 Scalability

OpenSec scales well because only the processing units (instead of the controller)

deal with the increasing amount of traffic. In the DPI example, the processing

unit is capable of inspecting traffic at high bit rates, but the load at the controller

remains minimum. As shown in Fig. 3.10, the delay needed to block malicious

traffic remains constant independently of the number of packets per second. This

delay remains constant because it does not depend on the number of attacks

detected or the packet arrival rate. For every alert, the controller simply finds

the matching policy and modifies the forwarding rules as required. Also, if the



93

capabilities of the processing units must be improved, this task is independent of

OpenSec and can be performed without modifying the controller. This framework

is easier to deploy in comparison to when a middlebox is located in the main data

path.

3.9.2 Gain in throughput

Next we show the advantage of removing middleboxes from the main data path

in terms of throughput. There are two factors that impact throughput based on

our experiments: increased latency and packet loss. To show the impact of latency

on the throughput, we first measured how the round-trip delay increases as the

traffic traverses more units placed on the datapath (see Fig. 4.7). The impact of

this increase on the throughput can be observed in Fig. 3.12. In both figures,

we show how the latency and the throughput remain constant when OpenSec is

used to mirror traffic to the units instead of traversing all the middleboxes for

in-line processing. Although this impact is considerable, the packet loss caused

by in-line processing is even more significant. To illustrate this, suppose that a

supercomputing facility wants the IDS to analyze all incoming traffic. However,

security middleboxes such as firewalls and IDS units are not yet capable of dealing

with big data flows without dropping packets. Dart et al. [186] show the TCP

throughput can be reduced by a factor of 9 if a router is losing a very small

percentage of traffic. To verify this, we simulated a DPI unit that is traversed by all

traffic and then sends all data back to the main data path. To evaluate the benefit

of using OpenSec, we compared the throughput achieved using an in-line IDS

with the throughput achieved using OpenSec. We experimented with different

percentages of packet drops and Fig. 3.13 shows how this solution heavily impacts

the TCP throughput between the server and the client. By duplicating the traffic,



94

0 1 2 3 4 5

0

5

10

15

20

Number of units
La

te
nc

y
(m

s)

In-line units
OpenSec

Figure 3.11: Increase in round-trip latency as more middleboxes are traversed by
the traffic.

0 1 2 3 4 5

0

50

100

150

200

Number of units

Th
ro

ug
hp

ut
(M

bp
s) In-line units

OpenSec

Figure 3.12: Decrease in throughput as more middleboxes are traversed by the
traffic. This experiment only considers the decrease due tu an increased latency.
The throughput can be reduced further based on packet loss as shown in Fig. 3.13

OpenSec increases the amount of traffic, but also allows the data to traverse the

network at a faster rate.

3.10 Comparison with existing solutions

In this section we compare OpenSec against CloudWatcher [157], Fresco [158] and

Procera [76], the three similar solutions described in Section 3.2.3.



95

0 1 2 3 4 5
0

2

4

6

8

10

% of packets dropped by DPI
Th

ro
ug

hp
ut

(M
bp

s)

In-line DPI
OpenSec

Figure 3.13: TCP throughput achieved using OpenSec and in-line DPI using a
10Mbps link. The packet loss caused by in-line DPI reduces the throughput
significantly, whereas it remains constant when using OpenSec because the traffic
is only mirrored to the DPI and the packet loss is smaller.

3.10.1 Procera

The main advantage of OpenSec with respect to Procera is simplicity. We showed in

Table 3.5 how OpenSec’s syntax is simpler than Procera’s to deploy a Science DMZ.

Also, the fact that OpenSec does not expose switch events to the end-user simplifies

the network administration. We do not provide a quantitative comparison because

no comparable numerical results are provided in Voelli et al. [76].

3.10.2 CloudWatcher

Next, we compared the time needed by OpenSec to translate policies into OpenFlow

messages with the results achieved by CloudWatcher. The results, shown in

Table 3.6, do not include the time needed to send the message from the controller

to the switch, but only the time needed to translate a policy into a set of OpenFlow

messages. Table 3.6 shows the results when there are one, two or three processing

units involved in the policy. Because CloudWatcher evaluates multiple algorithms,

a range of time is given. In all cases, OpenSec achieves a faster time because we



96

do not consider routing in our proposed solution. However, we do note that times

for both solutions are similar.

Table 3.6: Time needed to create OpenFlow rules in OpenSec and CloudWatcher
for a single policy

One unit Two units Three units
OpenSec 0.07 ms 0.07 ms 0.07 ms

CloudWatcher 0.1-1.1 ms 0.1-1.15 ms 0.1-1.2 ms

3.10.3 Fresco

Table 3.7 compares the time needed to implement the network rules using only

one controller, Fresco or OpenSec. The results show that OpenSec needs less time

to parse the policy and push rules into the switches.

Table 3.7: Time needed to create and push OpenFlow rules in OpenSec and Fresco
for a single policy

NOX/Floodlight Scan detection
Fresco 0.823 ms (using

NOX)
2.461 ms

OpenSec 0.45 ms (using
Floodlight)

0.46 ms

One limitation common to OpenSec and Fresco is that a certain delay exists

between the detection time and the moment when traffic is actually blocked. Due

to the fact that the delay remains constant, the number of packets that bypass the

quarantine unit grows linearly. This behavior is shown in Fig. 3.14. The policy

deployed for this prototype works well to detect attacks that are carried over

multiple packets, such as a denial of service attacks. In such scenarios, reacting to

the attack after a small number of packets have reached the server is acceptable

because the number of packets that go through is too small to effectively launch an



97

0 500 1,000
0

200

400

600

Packets per second
pa

ck
et

s

Figure 3.14: Number of packets that go through after detection of malicious traffic.
As the traffic rate increases, the number of packets that go through while the
blocking is being implemented grows linearly.

attack. However, if the requirement is to detect smaller attacks that are carried over

a small number of packets (SQL injection, for example), then in-line processing is

needed.

OpenSec can also achieve real-time blocking using a a different policy that

sends all traffic to the unit and then receives all traffic back and forwards it. This

allows the processing unit to drop packets. However, we showed in this chapter

how having an in-line processing unit can significantly reduce the throughput of

a flow. Therefore, a trade-off exists between achieving higher performance and

having a faster response time to block suspicious packets.

Finally, one advantage of OpenSec in comparison to other solutions is that the

policy language is simpler. Solutions such as Procera rely on existing languages that

are fairly complex to read and look more like programming languages. OpenSec

provides the simplest way to establish OpenFlow matching fields, a list of security

units and a reaction, in comparison to other solutions.



98

3.11 Conclusion

In this chapter we presented OpenSec, an OpenFlow-based framework that allows

network operators to describe security policies using human-readable language

and to implement them across the network. OpenSec acts as a virtual layer

between the user and the complexity of the OpenFlow controller and automatically

converts security policies into a set of rules that are pushed into network devices.

OpenSec also allows network operators to specify how to automatically react when

malicious traffic is detected. OpenSec allows for automated reaction to security

alerts based on pre-defined network policies. By doing so, it contributes to hiding

the complexity of the network to security operators, who only need to focus on

defining the policies.

Our evaluation shows several advantages of OpenSec. First, moving the anal-

ysis of traffic away from the controller and into the processing units makes our

framework more scalable. Even when the load is high, the controller is not a

bottleneck. Second, OpenSec is a first step towards moving the security controls

away from the core of the network. This is a key requirement in a network that

leverages Cloud security, for example. Instead of controlling every device, the local

network just sends data to the cloud and reacts based on the alerts received by the

cloud service provider. Third, OpenSec fits well in scenarios that require mirroring

of traffic to monitoring devices. This is particularly true for the Science DMZ use

case that we demonstrated, because of the significant throughput gain achieved.

This use case also showed how multiple policies can be combined together to

achieve a campus-wide deployment. Likewise, the use case of residential networks

showed how a simple policy can be used to control network access from housing

networks. Moreover, our scalability results show that OpenSec achieves a constant



99

reaction time for different traffic rates.

Future work includes securing the OpenFlow framework and enforcing policy

implementation. In order to deploy OpenSec at any production level, several

security measures must be taken into consideration, such as switch authentication,

physically distributed control plane and also authenticating the users that are

allowed to add policies to OpenSec. We are also interested in addressing automatic

enforcement of the policies. Likewise, the implementation of some OpenSec’s

features such as the policy enforcer and a more sophisticated northbound API

is left as future work. Finally, we plan to investigate how to speed up in-line

processing using programmable boards such as NetFPGA cards.

The usage of SDN and OpenFlow in datacenters and LAN is widely accepted

by now. However, for larger scale deployments it is still a challenge to identify

the best way of using SDN to provide flexibility to network operators. In the next

Chapter, we describe how SDN can also be used at the WAN scale by proposing a

framework that virtualizes the network and provides bandwidth provisioning to

the WAN tenants.



100

Chapter 4

WAN scale: Dynamic Network Provisioning for SDN Transport Networks

4.1 Introduction

Current science projects rely on large-scale collaboration and data transfers. The

need for high-speed networking has enabled innovation on high-bandwidth, multi-

domain and multi-layer networking. Research and education organizations such as

ESnet and Internet2 are currently capable of transmitting data at 100 gigabits per

second and are aiming at 400 Gbps across their wide area network (WAN) [55, 188].

However, one challenge that continues to exist is building a dynamic end-to-end

circuit. By end-to-end, we refer to a circuit that goes all the way from a scientific

processing unit to another, instead of a circuit that only traverses the WAN. The

difficulty is to go from the WAN to the LAN dynamically and for end-sites to have

control without being exposed to the WAN topological complexity introduced by

slicing architectures [188].

The first contribution of this chapter is to describe the main challenges in

deploying SDN to achieve efficient end-to-end circuit provisioning for science net-

works. Several problems have been identified in the past for any SDN deployment,

such as dependency on the controller or the delay needed to insert forwarding

rules in switches. In this chapter we focus on specific challenges of SDN that

can significantly impact the ability to deploy SDN-based science networks. For



101

example, we describe the challenge in efficiently virtualizing a WAN, optimally

placing controllers to reduce latency or dealing with the interoperability and secu-

rity problems raised when hosting multiple tenants. We also describe the challenge

in achieving multi-domain provisisioning for scientific flows.

The second contribution of this chapter is to propose the eXtensible Traffic

Engineering Framework (XTEF), an SDN-based transport network model capable

of WAN virtualization and on-demand network provisioning for scientific flows.

The two main components of XTEF are OneSwitch [16] and DTS (dynamic tunnel

setup). OneSwitch is a WAN abstraction model that exposes the entire WAN as a

single switch so that external application controllers can dynamically create flows

across the network. DTS is an algorithm used to provision the WAN that reactively

bypasses busy IP routers using WDM tunnels. In this chapter, we provide a

detailed explanation of OneSwitch and DTS.

To evaluate the framework, we first evaluate the performance of OneSwitch

with multi-tenant usage on the GENI testbed. To do so, we measure the delay

introduced by OneSwitch to act as a virtual layer between the physical network and

the end-users OpenFlow controller. We also evaluate the scalability of OneSwitch

by investigating how many tenants can use instances of OneSwitch at the same

time. Next, we emulate a large network using Mininet to evaluate the scalability

of the DTS algorithm. As a result, we compare the network performance with

and without on-demand WDM tunnels and show how 10% additional flows when

using WDM tunnels given that one wavelength per ROADM is available to be

used for a tunnel.

The remainder of this chapter is organized as follows. First, we survey the

related work in Section 4.2. Next, we describe the challenges in using SDN for

scientific networks in Section 4.3. After that, we describe the main components



102

of XTEF in Section 4.4 and we explain the implementation details in Section 4.5.

Next, we describe the experimental setup in Section 4.6 and we evaluate XTEF in

Section 4.7. Finally, we conclude and discuss future work in Section 4.8.

4.2 Related work

This section includes related work on network virtualization using SDN, SDN at

WAN scale and multi-layer bandwidth provisioning using SDN.

4.2.1 Network virtualization using OpenFlow

SDN and OpenFlow have been commonly applied to network virtualization, in

particular at a data-center scale. Casado et al. [189] provide a good explanation of

what does it mean to virtualize the network forwarding plane and how it can be

done. They clarify the difference between providing a logical view of the network

to a software running on top of the virtual layer and just slicing the forwarding

plane to multiplex access to it. They describe an OpenFlow-based prototype

implementation of such virtualization and they discuss possible scenarios.

Matias et al. [190] propose a network virtualization scheme to simulate a data

center’s network. They use virtual switches, links and nodes. A node virtualizes

a VM host and in the physical network, multiple virtual hosts can reside in that

node. Instead of using VLAN tagging to achieve virtualization, the authors suggest

using locally managed mac addresses. They use part of the address to identify a

node.

A whitepaper by NEC [191] proposes ProgrammableFlow, another end-to-end

virtualization scheme that shows the end user virtualized bridges, routers and

nodes. This study focuses on allowing users to create virtual networks using



103

scripts. Internally, ProgrammableFlow uses a topology service, a path mapper

and a flow mapper to translate between the physical network and the virtual one.

ProgrammableFlow supports L3 virtualization as well.

Drutskov et al. [192] propose an implementation of a Big Virtual Switch.

The virtual switch uses OpenFlow to program the physical switches and is also

OpenFlow compliant so that an application controller can program it. The virtual

switch hides the physical topology and presents the user nodes, interfaces and

links. To improve the performance of the mapping, they query a database to do

this.

Finally, Skoldstrom et al. [193] discuss different schemes for a virtual switch in

a WAN. They also point out important requirements that should be met by such a

switch. The authors also mention that the scheme must ensure that tenants use

the bandwidth of the control plane fairly. A compromised application controller

could overload the network by sending a large number of configuration messages

to the virtual switch. The authors mention how virtual separation can be done

through slicing (FlowVisor) or through encapsulation (assign a virtual network

id). They also describe how to separate the flow tables: flow-based partitioning or

table partitioning.

4.2.2 SDN at a WAN scale

There are significantly less SDN-based deployments at a WAN scale. To the best of

our knowledge, only Google and Microsoft have proposed using SDN to control

their WANs [10, 194]. Google has deployed SDN in one of their backbone inter-

datacenter network [10]. The authors describe how SDN allows them to meet

requirements that are very specific to Google. Also, the fact that the number of

end-points is relatively small makes it possible to use SDN. In this scenario, Google



104

controls the WAN as well as the applications running on the end hosts. Having an

end-to-end control of the network simplifies the administration of the WAN.

Microsoft has experimented deploying SWAN (SDN-driven WAN) on a testing

environment that simulates their WAN. They describe the limitations of MPLS

TE to maximize bandwidth utilization and they show how using SDN can highly

increase the bandwidth usage. Services communicate to the SDN controller how

much data they need to send and how sensitive they are to congestion. The

controller computes new paths that guarantee that no congestion occurs for those

services that are sensitive to it. According to the authors, simulations show that

SWAN carries 60% more traffic than the current production network.

4.2.3 Multi-layer bandwidth provisioning using SDN

Bandwidth on-demand is a well studied problem [195, 196]. Doverspike et al. [196]

also proposed using SDN to enable cost-effective bandwidth-on-demand for cloud

services. The novelty of our work consists of combining WDM tunneling with

a WAN abstraction framework and application-driven traffic engineering to en-

sure bandwidth guarantees, while also supporting other requirements such as

maximum latency limits.

4.3 Description of challenges

In this section we describe some of the challenges that must be addressed when

designing SDN-based science networks. Although a majority of these challenges

are inherent to SDN, we highlight aspects that are specific to science networks.



105

4.3.1 WAN virtualization

WAN abstraction is a challenge that has major relevance in the context of science

networks. Indeed, the need for dynamic, on-demand circuits motivates network

providers to allow for network tenants at scientific facilities to easily setup circuits

across the WAN. Naturally, this goes hand-in-hand with network virtualization as

the carrier needs the end-user application controller to program the network to

achieve end-to-end connectivity. However, the provider must also ensure that the

end-user does not have direct access to the network devices. There are different

virtualization models based on the level of virtualization. For example, the entire

WAN can be abstracted as a single switch and the entire path across the WAN is

hidden from the end-user application controller. In contrast, a framework could

also allow the tenant to control a customizable amount of network through a

virtual set of routers and links.

OneSwitch is an example of WAN abstraction framework. However, we do

not describe it in detail here since we do so in Section ??. Other virtualization

models have also been proposed. For instance, Drutskoy et al. [197] propose

a similar virtualization technique where OpenFlow is used to control both the

network devices as well as the virtual routers. This virtualization model allows for

end-users to decide if they want a fully virtualized network or if a finer-grained

control is required.

The choice of the appropriate WAN virtualization model is an important chal-

lenge since it affects the amount of information revealed to the tenants, as well as

the level of control application controllers have on the routing across the WAN. For

instance, a tenant could be interested in having two link-disjoint paths between two

nodes. Such a request cannot be granted in a model such as OneSwitch. However,



106

Table 4.1: Existing network virtualization models

Model type North API South API Abstraction level
OneSwitch [16] OpenFlow OpenFlow Entire WAN as a

single switch
Big Switch [197] OpenFlow OpenFlow Virtual links and

switches
RouteFlow [198] BGP, OSPF and

other standard
protocols

OpenFlow Virtual links and
routers

Programable Flow
[199]

Proprietary API OpenFlow Customized net-
work with routers
and bridges

supporting this feature requires revealing a significant amount of topology infor-

mation. There are other challenges, such as chosing a communication protocol

between the provider and the tenant, ensuring interoperability and efficiently

virtualizing messages. These challenges are described in the following sections.

4.3.2 Scalability

Two requirements are critical in making SDN scientific networks scalable: efficient

WAN virtualization for a large number of tenants and appropriate controller

placement to reduce delays.

First we address the problem of efficient virtualization. Any WAN virtual-

ization model needs to consider the overhead needed to map physical to virtual

resources every time there is interaction with network tenants. This virtualization

includes finding the right tenant based on the VLAN, switch id and ingress port

for incoming messages. Similarly, messages coming from the tenants must be

translated to appropriately insert forwarding rules in the physical network devices.

This overhead becomes significant when the number of tenants increases. Drut-

skoy et al. [197] propose a container-based virtualization technique that consists



107

Table 4.2: Order of priority for short-term deployments

Challenge Rationale
WAN virtualization Virtualization is necessary to allow tenants to pro-

gram the WAN. Without virtualization, manual
operation is required and dynamic, on-demand
circuit reservations are unlikely to be deployed
successfuly.

Multi-layer provisioning Virtualization alone does not provide end-to-end
connectivity and the WAN must be provisioned
efficiently. Integrated management of circuit and
packet networks is necessary to achieve flexible
transport networks.

Scalability Controller placement and efficient virtualization
must accompany WAN virtualization for the so-
lution to be feasible for science networks. How-
ever, designing the WAN virtualization model
and provisioning comes before ensuring scalabil-
ity.

Multi-domain circuits Inter-domain communication between SDN
peers is important but current deployments can
rely on systems such as OSCARS to be deployed.
It is more important to successfuly deploy SDN
at the edge of the network for virtualization,
rather than requiring SDN to control all the path
across domains.

Security An acceptable level of trust is assumed in science
networks scenarios. Although security should
also be a design priority, the items above are
more relevant in order to achieve successful de-
ployments soon.

Interoperability Interoperability will become an important issue
when the number of tenants increases. How-
ever, it is hard to address the topic in the short
term because there is too much variation in the
selection of north and south APIs, and current
deployments are likely to be closely tied with a
specific technology.

of mapping between controller API calls rather than OpenFlow messages. They

combine this with database-driven mapping and show how their virtualization



108

model can scale up to multiple tenants.

Second, we address the problem of efficient controller placement. This problem

needs little motivation, as it has been adequately addressed lately [200, 201, 202,

203]. However, this problem has been less well studied in the specific context

of extreme-scale science infrastructures. Given the requirements for bandwidth,

latency, and rapid provisioning and re-provisioning of resources, the usual two

questions remain: how many controllers are needed and where should they be

in the network? Previous studies have proposed latency metrics such as average

latency or worst-case latency as optimization problems to decide where to place

network controllers. Alternatively, another solution is to place controllers to

maximize the number of nodes within a latency bound. Another decision related

to the controller placement is the number of controllers that should be deployed in

the domain. Heller et al. [200] argue that for most topologies, adding controllers

yields slightly less than proportional reduction; that is, k controllers reduce latency

nearly to 1
k of the baseline latency with one controller.

The problem of dynamically loading controllers in the context of science net-

works is still open. The bursty nature of scientific traffic makes it hard to predict

what is the best location for one or more controllers. Moreover, although studies

have proposed deploying a distributed control plane for SDN, controllers are

placed and loaded manually. A more dynamic deployment is needed to efficiently

place controllers appropriately.

4.3.3 Interoperability

Dealing with multiple tenants results in interoperability challenges for SDN deploy-

ments. In particular, the decision on the appropriate northbound and southbound

APIs is still open. WAN abstraction models face the challenge of choosing an



109

SDN protocol twice. On the one hand, the controller needs to communicate with

network devices. On the other hand, network tenants must use some protocol to

control the WAN.

So far, OpenFlow has been the de-facto standard to deploy SDN networks. This

protocol has been supported by plenty of hardware switches and it is also available

using Open vSwitch, which greatly simplifies low-cost, research deployments.

However, there are reasons to believe that, while SDN is here to stay, OpenFlow is

not. For instance, this protocol faces the problem of either providing a standardized

common denominator only (OpenFlow 1.0), or providing a very complete set of

features that make it hard for vendors to fully comply with the standard (OpenFlow

1.1 and above). The functionality provided by OpenFlow 1.0 is too basic and

constantly necessitates extensions to the protocol, which yields interoperability

problems. The dificulty of fully complying with OpenFlow 1.1 and above makes it

hard to guarantee that an application functioning on a given hardware will also

work on another vendor’s hardware.

As a consequence, network vendors have looked at other options such as XMPP

(Extensible Messaging and Presence Protocol), BGP-LS (Border Gateway Protocol -

Link State) or PCEP (Path Computation Element Protocol). These protocols bring

advantages such as providing a management plane (which is not provided by

OpenFlow) and the ability to support legacy hardware during the transition to

SDN. Network providers with WAN virtualization models need to decide which

protocols are exposed to the tenants, or if a single protocol should be enforced.

4.3.4 Security

When securing a science network, a fine balance between security and efficiency

must be considered. As opposed to a traditional enterprise or campus network, a



110

deployment for transfer of scientific data cannot place a battery of middleboxes

performing functions such as firewall, intrusion detection and spam detection

between the two end-points. Indeed, these security mechanisms create packet

loss and it has been shown that TCP throughput can be reduced by a factor of

9 if a path loses a very small percentage of traffic [186, 204]. This has motivated

the design of the so-called Science DMZ, a section of the deployment between

the WAN and the organization’s network that is optimized for high speed data

transfers [204]. The design of Science DMZs has been extensively discussed by

researchers at ESnet. Therefore, we focus our attention on a less studied problem:

securing a multi-tenant network in the context of science networks.

The challenge when designing a science network with multi-tenancy is achiev-

ing sufficient security while maintaining a network desing that is capable of high

speed data transfers. For example, it is important to decide whether to follow a

model of control plane “partitioning” or a model of full virtualization. By “parti-

tioning” we mean tools such as FlowVisor [51] that allow for tenants to program

some but not all forwarding rules. In full virtualization, instead, a complete trans-

lation occurs between the messages received from the tenants and those sent to the

network devices. Similarly, attention must be given to prevention and detection of

malicious or compromised application controllers. Once again, the delays incurred

by the security mechanisms implemented must still enable efficient data transfers

for science networks.

4.3.5 Multi-domain circuits

Before addressing multi-domain circuit reservation using SDN, we point out

that inter-domain operation is still an open problem for SDN in general. The

limited amount of existing work has focused on how an SDN-based Autonomous



111

System (AS) can co-exist with IP-based ASes ([205]) and on information exchange

mechanism between SDN controllers in different domains ([206]). One work goes

a step further and suggests outsourcing routing decisions to an external party that

will then be responsible for the routing decisions of several domains [207].

In the context of science networks, current solutions such as OSCARS rely

on trust between domains and a path computation engine is allowed to directly

modify the forwarding rules of a device in another domain. For inter-domain

circuit reservation to scale appropriately, a significant amount of work is needed

in the east-west interface between controllers.

4.3.6 Multi-layer provisioning

Finally, SDN-based networks must consider the challenge of multi-layer provision-

ing. Indeed, managing each layer (IP, WDM, OTN) separately greatly reduces the

flexibility of the network and the ability to adjust based on traffic demands. In

traditional networks, when the IP control plane requires additional bandwidth,

then operators of the optical layer must configure new circuits that can later be

used by the IP layer. Because this operation requires human intervention, it is not

feasible to achieve on-demand network provision automatically. In contrast, an

integrated control plane allows for the network controller to optimize how flows

are routed across the network. If the same network controller can orchestrate how

the IP layer and the optical layer interact with each other, then it becomes feasible

to adjust the optical layer capacity in real time based on the needs of the IP layer.

In the next section, we describe how we propose to address the WAN virtual-

ization and multi-layer provisioning challenges using OneSwitch and XTEF.



112

Figure 4.1: The XTEF framework uses the OneSwitch WAN abstraction model, the
DTS provisioning algorithm and the ONOS controller.

4.4 Components of XTEF

The goal of XTEF is to provide application-driven network provisioning to external

applications. To do so, it first relies on OneSwitch to abstract the WAN and

collect traffic engineering requirements from the application controllers. Second,

XTEF uses MPLS the DTS algorithm to provision the network. Third, XTEF uses

wavelength-based routing to route traffic between IP routers. In this section we

describe each of these components.

4.4.1 OneSwitch

OneSwitch [208] abstracts the entire topology of the WAN as a single switch, where

each virtual port is mapped to a physical port of a physical switch at the edge of the

network. OneSwitch provides a virtual switch to each tenant as shown in Fig. 4.1.

Suppose an organization A has access to the WAN through router 1 and port 10.

Also, suppose a scientist in organization A wants to retrieve data from a scientific

laboratory B connected to the WAN through switch 2, port 11. OneSwitch provides

the application controller with a virtual switch that has two virtual ports 1 and

2. By forwarding data from port 1 to port 2, the application controller is actually



113

sending data from organization A to the laboratory B. Internally, OneSwitch is

responsible for translating all messages.

There are several advantages in this model. First, it is simple. An application

controller can forward data across the WAN by simply forwarding packets from

one virtual port to another. Second, it only involves the routers at the edge of the

network and internal topology does not need to be shown to the tenants. Third,

the virtualization layer adds security to the deployment, because all rules issued

by application controllers must first be handled by OneSwitch.

4.4.2 Traffic engineering

OneSwitch is not responsible for provisioning the WAN. Instead, the framework

assumes that there is a path for packets to traverse the network and some way to

tag packets (VLAN tag, WDM wavelength, etc.). XTEF uses MPLS label forwarding

to provision the WAN resources at the IP layer. For each pair of edge routers, at

least two link-disjoint paths are configured. To add variety in our experiments,

we configured the network so that the bandwidth available on both link-disjoint

paths is the same but one path provides a smaller latency (5 ms instead of 25 ms).

The establishment of the paths is not within the scope of this work, so we simply

assign MPLS labels across the network to achieve the connectivity between all

edge routers. At the optical layer, we use up to 80 wavelengths per link between

two ROADMs. Short-range links between IP routers and ROADMs have a capacity

of 100 Gbps. Both networks (IP and optical) are managed by the same controller,

so we combine MPLS labels and wavelength assignment to create two end-to-end

paths between each pair of edge routers. Once the network has been provisioned,

the traffic engineering component informs OneSwitch of the label that must be

used between all pairs of edge routers.



114

4.4.3 Dynamic Tunnel Setup algorithm

As the amount of traffic increases, more flows get aggregated in the network links.

This can lead to congestion on some short-reach links. Next, we propose DTS,

an algorithm that exploits unused wavelengths to temporarily increase network

capacity to deal with traffic increase. DTS creates a bypass at the WDM layer

between the two closest ROADMs before and after busy short-reach links.

DTS works as follows. First, it monitors the load on all short-reach links.

Second, when the load on one of the links is above a threshold (70% in our

implementation described below), the algorithm finds which flow is contributing

the most to the increased load. Third, given the chosen flow and its path, the

two closest ROADM neighbors rn−1 and rn+1 are selected and a WDM two-hop

tunnel is created between them. As a consequence, the flow will not be dropped

at ROADM rn and the load at the busy short-reach link is reduced. Fourth, the

matching rules at the entry point of the WDM tunnel are modified so that, instead

of matching on the MPLS label only, the IP router also matches on the IP source

address of the flow and adds a different lambda for the flows that will be routed

through the bypass. Finally, when the load on the bypass is below a threshold

(10% in our experiments), the tunnel is removed.

4.4.4 ONOS controller

XTEF uses the ONOS controller [209] to control the routers using OpenFlow.

ONOS is an open source SDN controller designed for service providers created

in conjunction by ON.Lab and the Linux Foundation. ONOS provides sample

code to create applications that provision point-to-point circuits at the WDM layer.

This is the main reason why we chose it instead Open Daylight or other similar



115

controllers.

In the following section we describe in detail the implementation of OneSwitch,

DTS and the ONOS application.

Figure 4.2: Message exchanges using OpenFlow or XMPP as northbound API

4.5 Implementation of XTEF

In this section we describe the implementation of OneSwitch, which varies de-

pending on the chosen northbound API. We also explain how the DTS algorithm

monitors link load and how it uses the ONOS app to request for WDM tunnels.

Lastly, we describe how such app is implemented in ONOS.

4.5.1 OneSwitch implementation

OneSwitch is the component responsible for virtualizing the WAN. Therefore, its

main task is to collect network events from the underlying OpenFlow controller,

translate them and forward them to the application controllers. Likewise, when an



116

application controller sends a message to OneSwitch, this component must convert

the message and issue it back to the OpenFlow controller.

As we described earlier, we experimented using two different northbound

API’s: OpenFlow and XMPP. The implementation using OpenFlow was done on

top of the Floodlight controller. In Floodlight (and in other OpenFlow controllers

in general), new applications can be added and registered with the controller.

Next, when the controller loads, the application is loaded automatically. Therefore,

we created a new application that listens to incoming packets (packet in events).

When a new packet is received, OneSwitch inspects the input switch id, port and

VLAN tag. By doing so, the packet can be uniquely mapped to an application

controller. To communicate with application controllers, OneSwitch must act as

an OpenFlow-compliant switch. To do so, OneSwitch uses the Netty java library

to establish an asynchronous channel with every application controller and it

also implements all the OpenFlow messages needed to establish a handshake:

Hello, EchoRequest, EchoReply, FeaturesRequest and FeaturesReply. While this

increases the complexity of the implementation, it does simplify the operation of

application controllers, as they simply need to run an OpenFlow controller to talk

to OneSwitch.

The implementation using XMPP was done on top of the ONOS controller to

leverage existing sample code to create optical circuits between two IP routers.

XMPP was first proposed as a messaging protocol between a provider and a

subscriber. To implement a chat, for example, two or more client applications

would subscribe to the XMPP server to exchange messages. In our case, we use

XMPP for two reasons. First, it provides a standardized way to communicate

between two parties. Second, Juniper is already using XMPP as a northbound API,

which indicates that the protocol is worth being considered. In our implementation,



117

Figure 4.3: Operation of DTS using sFlow and a point-to-point optical intent
application on ONOS

we developed the XMPP server on OneSwitch using Openfire [210], an open source

Java library for XMPP. In this implementation, OneSwitch is also an application of

the ONOS controller that listens to packet in messages and finds the application

controller based on the switch ID, VLAN and input port. However, instead

of forwarding OpenFlow messages, we created a simple syntax to exchange

information between OneSwitch and the application controller. On the one hand,

OneSwitch concatenates the switch ID, the input port and the IP source and

destination addresses. On the other hand, an application controller concatenates

the match fields and the output port.

Figure 4.2 compares how OneSwitch communicates with application controllers

using OpenFlow or XMPP. When using OpenFlow, all messages are standard to

this protocol. Therefore, it is slightly more efficient because OneSwitch only

needs to modify properties of each packet, such as replacing the input port or the

switch id. It is also easier for application controllers to simply use an OpenFlow



118

controller. In contrast, when XMPP is used, all the communication between

OneSwitch and the application controllers is based on XMPP stanzas, which is

the XMPP terminology for messages and this must also be implemented by the

application controllers. However, the XMPP implementation is easier to deploy

because an open source XMPP server is used and there is no need to implement

the communication details, as opposed to when using OpenFlow. Furthermore,

bandwidth and latency requests are only possible using XMPP. To do this with

OpenFlow, protocol extensions are needed.

Using any of the two implementations, OneSwitch is responsible for tagging

incoming packets with the appropriate label to forward flows across the WAN. To

do so, it queries the traffic engineering component for an available route given

the bandwidth and latency requirements. If the request is not feasible, OneSwitch

rejects the flow. Otherwise, it tags packets with an MPLS label and an output port

based on the information provided by the traffic engineering component.

4.5.2 DTS implementation

Figure 4.3 shows the implementation steps of DTS. In step 1, DTS uses sFlow

[211] to monitor the load on each of the short-reach links between IP routers and

ROADMs. The DTS algorithm is triggered when the capacity of one of these links

exceeds 75%. sFlow is installed on all IP routers following these instructions [212].

A central collector is also installed in the same node as the OpenFlow controller.

When a load is higher than 70%, the sFlow component notifies DTS and informs of

the router ID, as well as the source and destination of the flow (step 2 in Fig. 4.3).

DTS is network-aware and knows the path of the identified flow, as well as the

wavelength that is being used for that flow. Therefore, it locates the two closest

ROADMs before and after the busy short-reach link (steps 3 and 4). For example,



119

if r3 is the IP router to be bypassed, then the tunnel is created between o2 and o5

using wavelength l. If the identified flow was using wavelength l1, then o2 must

replace the labels to send the flow through the tunnel and reduce the load at the

short-reach link. In steps 5 and 6, DTS requests the ONOS application to create

such tunnel using wavelength l.

Next we describe how to expose an application through the ONOS web interface

to satisfy tunnel requests issued by DTS.

4.5.3 ONOS application implementation

The ONOS application is responsible for inserting flow rules in the switches to

create the tunnel requested by DTS. For a tunnel between ROADMs r1 and r3 to

bypass r2 using wavelength l, three rules are required (steps 7, 8 and 9). At r1,

the application needs to change the output wavelength. At r2, a new rule must be

issued so that flows with wavelength l are forwarded to the following ROADM

to bypass the IP router connected to r2. To achieve this, the ONOS application

is aware of the topology and ports needed to connect r1 with r3. Finally, at r3,

wavelength l must be replaced with the original wavelength assigned to this flow.

To make this application accessible to external users, we create a user interface

overlay as shown in this tutorial [213]. By doing this, the application can be used

from the ONOS web interface. Therefore, we use a curl command from the DTS

script to request tunnels.

In the next section, we describe the experimental setup used to evaluate the

proposed framework.



120

4.6 Experimental setup

4.6.1 GENI testbed topology

We use two topologies for our experiments. Topology 1 (see Fig. 4.4) is a physically

distributed network on the GENI testbed to experiment with large scale and

realistic delays. This topology is based on Internet2’s network and consists of

nine IP routers distributed across the country. We consider Los Angeles, Seattle,

Washington D. C. and New York as the edge routers that serve as entry points

to LANs. In total, we simulate 50 scientific facilities by deploying 50 nodes

connected to the WAN through one of those edge routers. Furthermore, we deploy

50 application controllers, one for each of those 50 facilities. The application

controllers are deployed on different aggregates on the GENI slice, but they all

have four virtual ports, one for each edge router. Finally, the controller that runs

OneSwitch is hosted on the Houston node, which is the most centralized.

Figure 4.4: Experimental topology emulated in GENI



121

For topology 1, we are only interested in evaluating the performance of

OneSwitch and we do not consider network provisioning. Therefore, we pro-

vision ahead of time end-to-end Ethernet-layer circuits between all pairs of edge

routers. For example, all traffic between Los Angeles and New York is forwarded

through Salt Lake City, Houston and Atlanta. Moreover, each of those circuits is

identified with a VLAN tag. Therefore, when an application controller requests

traffic between Los Angeles and New York, OneSwitch simply adds the appropriate

VLAN tag and the data is delivered to the exit edge router.

4.6.1.1 Scenario 1

Using this topology, we create the first experimental scenario (referred in the

evaluation as Scenario 1). The goal is to gradually increase the number of flows

from one to 50 and measure the time delay added by OneSwitch during the

virtualization. To do so, we measure the average delay needed by OneSwitch to

setup a new flow rule at the edge of the network when receiving 1 Gbps flows

from each sender node. To have a point of comparison, we use a default SDN

learning switch that reacts to incoming packet in messages by pushing new rules

to forward traffic. Therefore, we expect to see a longer delay when OneSwitch is

used, because more processing is done at the controller.

4.6.2 Mininet emulation topology

The motivation to use Mininet is that large-scale, multi-layer networks can easily

be emulated. Indeed, Mininet uses LINC-Switch to emulate reconfigurable optical

add-drop multiplexers (ROADMs). These devices are OpenFlow-compliant and

support three actions which can be added to forwarding rules: add, forward and

drop. The add action adds an output port and a lambda to specify which wavelength



122

must be used. The forward action matches on an input port and a lambda value and

outputs traffic to another optical port. Finally, the drop action forwards the data

through the short-reach link to the IP router. Therefore, ROADMs and IP routers

can both be managed by an OpenFlow controller.

The experimental topology is too large to be drawn, but it consists of 15 IP

routers, 75 ROADMs, 30 hosts, 98 WDM links with 80 wavelengths each, 54 short-

reach links and 100 flow requests. Each wavelength provides a bandwidth of 50

Mbps We also provisioned the network resources statically using MPLS labels

to ensure that two link-disjoint equal cost paths exist between each pair of edge

routers. We consider 5 IP routers as edge nodes. Each IP router is connected to a

ROADM device, but not all ROADMs are connected to an IP router. Finally, each

end-host is assigned a wavelength per end-to-end path. To illustrate this, suppose

that two senders are connected to router 1 and a total of ten paths are available

to another edge router, then router 1 handles twenty different wavelengths. As a

side node, the LINC-Switch emulator does not restrict the maximum amount of

wavelengths.

4.6.2.1 Scenarios 2 and 3

Using topology 2, we create two scenarios. First, we create 10 traffic flows with

latency requests between 5 and 25 milliseconds between the same pair of source

and destination nodes. The network is provisioned to provide two paths: one

with 5ms latency and another one with 25ms latency. We compare using Equal

Cost Multiple Path (ECMP) versus using the proposed XTEF. The scale of this

experiment (scenario 2) is small, but our goal is simply to evaluate if XTEF is

capable of satisfying the latency requirements issued by the application controllers

of all the flows.



123

Second, we created 60 flow requests using iperf to send data at 5 Gbps on

average. The goal of this experiment is to evaluate how much can the DTS

algorithm increase the capacity of the network using WDM tunnels. In this

experiments, flows are added sequentially to the network load.

4.7 Evaluation

In this section, we first evaluate the virtualization delay added by OneSwitch

when new flows enter the WAN. Second, we demonstrate the benefits of having

application-driven traffic engineering as opposed of sending all flows through

equal cost paths. Third, we evaluate how DTS can increase the network capacity

using WDM tunnels. Finally, we evaluate the scalability of the framework.

4.7.1 Virtualization delay and scalability of OneSwitch

Each instance of OneSwitch acts as a virtual layer between the physical devices

of the network provider and the virtual Ethernet switch programmed by the

application controller. Naturally, this virtual layer adds a processing delay when

translating OpenFlow messages coming from the physical switches to similar

messages directed to the application controller. Next, we quantify these delays to

determine how scalable OneSwitch is and what is the impact on the transmission

times of having an intermediate virtual layer. To do so, we use the GENI topology

shown in Fig. 4.4 and experimental scenario 1.

Figure 4.5 shows the round-trip time needed to send packets with and without

using OneSwitch. When OneSwitch is not used, we hardcode the flow rule at

the edge of the WAN so that traffic tagged with a given VLAN is forwarded to

the destination. This is the traditional approach in which a network operator



124

1 2 3 4 5 6 7 8
0

100

200

300

400

Packet number

m
s

With OneSwitch/OpenFlow
Without OneSwitch

With OneSwitch/XMPP

Figure 4.5: Round-trip ping time between Los Angeles and New York for a single
flow.

manually configures the edge switch of the LAN to forward packets to the WAN

with a given VLAN. By using OneSwitch, the application controller can now

automatically control both the LAN edge switch and the WAN edge switch. This

adds a delay which is needed to push the flow rules during the first packets.

However, notice that once the flows have been pushed, the performance is identical

in both cases. Therefore, OneSwitch only adds a delay when the controller needs

to handle packets often. In practice, few packets end up going to the controller

since rules are pushed proactively. We argue that this delay is acceptable given the

great benefit in terms of flexibility offered to the end-user.

Figure 4.5 also shows that the difference in the delay between using OpenFlow

or XMPP as the northbound API is very small. We expected the OpenFlow delay

to be slightly lower because the processing tasks at the controller are slightly faster.

Indeed, when using OpenFlow, OneSwitch simply modifies fields of the already

existing packet in and flow mod objects. In contrast, when XMPP is used, new



125

message objects must be created from scratch. However, this result shows that

both protocols can be used without one of them being significantly better than the

other in terms of processing delay.

10 20 30 40 50
100

120

140

160

180

200

220

Number of simultaneous application controllers

m
s

With OneSwitch/OpenFlow
With OneSwitch/XMPP

Figure 4.6: Delay introduced by OneSwitch for varying number of tenants.

The results in Fig. 4.5 only consider one single packet arriving at the edge of the

WAN. Next we focus on evaluating how OneSwitch handles multiple simultaneous

flows. To this end, Fig. 4.6 shows that the delay added by OneSwitch is almost

constant when the number of application controllers using instances of OneSwitch

increases. OneSwitch handles each end-user application controller using different

threads and is thus capable of handling multiple tenants at the same time. In this

experiment, we increase the number of end-user applications sending data from 5

to 50. The results show that both implementations of OneSwitch handle the load

with only a small increase in the total delay.

4.7.2 Application-driven TE

To demonstrate how XTEF is capable of application-driven TE, we used scenario

2. The network was provisioned to provide two paths: one with 5ms latency



126

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

Flow ID

m
s

Requested latency
Provided latency (ECMP)
Provided latency (XMPP)

Figure 4.7: Latency limits guaranteed for each flow with and without traffic
engineering.

and another one with 25ms latency. We compared using ECMP versus using the

proposed XTEF. Figure 4.7 shows how, using ECMP, flows 1, 3, 7 and 9 do not

receive the required latency using ECMP. In contrast, XTEF is able to satisfy the

requested latency for all flows. This simple proof-of-concept experiment shows

how XTEF can respond to the application controller’s request and forward flows

through the appropriate path.

4.7.3 Network provisioning

Figure 4.8 shows the percentage of flows that received the requested bandwidth

with and without WDM tunnels. Using ECMP, the framework was capable of

satisfying the demands up to 37 flows but started rejecting new flows afterwards.

To compare, we first create a network with sufficient free wavelengths at each

ROADM and show how the demand could be completely satisfied. However, this

is not realistic and we also experimented on how to use a single extra wavelength

per ROADM (i.e. only one tunnel can start, traverse or end at each ROADM). The

results show that the demand can be increased by more than 10% using a single



127

20 30 40 50 60

0

50

100

150

Number of flows

%

No tunnels
1 tunnel per ROADM

Unlimited tunnels

Figure 4.8: Percentage of flows that received the requested bandwidth guarantee.

additional wavelength.

4.8 Conclusion

The XTEF framework is capable of application-driven traffic engineering in a

WAN through the following contributions. First, OneSwitch achieves topology

virtualization and allows end-users to program the network without having access

to the physical devices. By controlling the entire WAN as if it were a single

Ethernet switch, an end-user application controller can create multiple paths

between different locations with simple OpenFlow or XMPP statements.

Second, by replacing OpenFlow with XMPP as the northbound interface be-

tween the WAN controller and the application controllers, we allow for the latter

to specify bandwidth and latency requirements for each flow. Below OneSwitch,

the proposed traffic provisioning algorithm uses MPLS forwarding and ECMP to

satisfy the demands of the application controllers.

Third, the DTS algorithm allows for additional network provisioning when

short-reach links reach a load of 70% of their capacity. This algorithm requests an

ONOS application to create a WDM tunnel between the two closest ROADMs to



128

bypass the busy IP router.

Our evaluation of OneSwitch shows that the delay introduced by the virtual

layer is small. It also shows that OneSwitch can host up to 50 application controllers

simultaneously. Our results also show that XMPP guarantees latency requirements

for all received flows. In contrast, when the application controller does not

specify latency limits and routing is done using ECMP, only 50% of flows receive

satisfactory latency. Finally, our results also show that DTS can increase the

network capacity by more than 10% using a single additional wavelength at each

ROADM.

As future work, we will investigate the following two problems. First, there

is a trade-off in cost between having a wavelength available instead of using

it permanently. We argue that the advantage of using short-term WDM tunnels

allows for the network to adapt to traffic conditions and use the tunnel in a different

way depending on the network load. The second research direction involves the

number of ROADMs to include in the tunnel. In our current implementation, only

two-hops tunnels are created because it allows to aggregate more flows in the

tunnel. Indeed, if the tunnels were longer, it would be less likely to identify more

flows sharing the same path. However, we will experiment with using end-to-end

tunnels as well to compare against two-hop tunnels if a better performance can be

achieved.



129

Chapter 5

Internet scale: Intra-domain cut-through switching in MobilityFirst

5.1 Introduction

Mobile devices are becoming dominant in current networks and significant core

architecture changes have been proposed to support them. Current protocols

such as TCP/IP were not designed with mobility as a key design requirement.

The inferior performance of these protocols in highly mobile networks and the

increasing number of mobile devices has motivated the research community to

design Future Internet architectures (FIA) that consider mobility as a key design

requirement ([3, 214, 215, 216, 217, 218, 219, 220]).

MobilityFirst [3, 13] is a project funded by the NSF FIA and FIA-NP programs

that proposes a mobility-centric architecture for the future internet. MobilityFirst

supports secure identifiers that inherently support mobility and trustworthiness.

These mechanisms greatly enhance the support of mobile devices in the network.

In the MobilityFirst architecture, data is transmitted between adjacent routers in

a hop-by-hop manner. Entire chunks of data are received at the next hop before

being forwarded again. Also, routing decisions are performed at each hop to

ensure proper delivery if a node has disconnected and connected to another point

of the network. However, this process also increases the delay needed to send data

in a hop-by-hop manner [3]. Furthermore, certain segments of the network are



130

stable and allow exceptions to the storage and routing delays. If we know that

a node will remain connected to the same access point for a period of time, we

do not need to make routing decisions at every hop between the source and the

destination. Also, segments within the core of the network are exempt of mobility

requirements. In scenarios like this, it is possible to bypass the routing layer of

MobilityFirst.

In this chapter, we propose an SDN-based control plane to cut-through Mobility-

First routers across a single domain. Such technique can improve the performance

of the network, because the delay of forwarding data at a lower layer is smaller.

Another advantage is that it enables flow aggregation. Multiple data transmis-

sions can be encapsulated in the same flow. To illustrate the advantage of flow

aggregation, imagine a football stadium with 80,000 users accessing resources on

the Internet. Without any bypass, routing decisions will be made at each hop of

the way between the source and the destination for each of the 80,000 users. If

we assume that the users will remain in the stadium for a period of time, we can

bypass the routing layer. It is very likely that the routes between the sources on

the Internet and the destinations in the stadium share more than one MobilityFirst

router. For those sections of the network that are shared, we can forward all the

data using the same rule (informally, we can think of it as “Tag all traffic going

to the stadium with VLAN 1”). Once the data reaches the last hop of the bypass,

each packet is routed to its specific destination accordingly. Therefore, using a

small number of rules, we can forward the traffic intended for all the users in the

stadium.

To realize the cut-through switching capability, we first describe an OpenFlow-

based implementation of intra-domain cut-through switching for MobilityFirst.

OpenFlow is the most commonly deployed Software Defined Networking tech-



131

nology today. SDN decouples the data plane from the control plane in a network

switch, by migrating the latter to a software based component. In an OpenFlow-

based network, the controller can dynamically update the forwarding rules of a

network device. The controller also has a centralized view of the network. Because

of these capabilities, an OpenFlow-based network can be used to create, modify

and delete layer 2 circuits to bypass the routing layer.

To evaluate the performance and scalability of the cut-through mechanism, we

first run experiments on the ORBIT [4] testbed to evaluate the performance of a

file transfer using real hardware. Next, we deploy a MobilityFirst network on the

GENI testbed and we show how a faster transfer time is achieved and how the

number of packets processed by the controller is significantly reduced. Moreover,

we demonstrate the scalability of the solution by exploiting the flow aggregation

capability of the network.

The contributions of this chapter are:

• We describe how the MobilityFirst architecture can be adapted to be deployed

in an SDN/OpenFlow-based network

• We propose a new cut-through technique that, unlike the vast majority

of related work, does not bypass an IP layer but a GUID-based routing

mechanism.

• We address the challenge of a bypassing technique in an inherently mobile

network architecture.

• We show how OpenFlow can be used to aggregate multiple data transfers

using the same flow table rule to achieve higher scalability.



132

The remainder of this chapter is organized as follows. We begin by providing

background information on MobilityFirst and an SDN-based implementation of

MobilityFirst in section 2. In section 3 we survey the related work and in section

4, we describe how to bypass the L3 routing in MobilityFirst using L2 VLAN

switching. In section 5 we explain how OpenFlow can be used to achieve the

bypass using VLAN switching. In section 6, we evaluate the proposed solution

and we conclude in section 7.

5.2 Background and related work

Next we provide an overview of the MobilityFirst architecture. We also describe

the ORBIT testbed that was used to run the experiments.

5.2.1 Overview of MobilityFirst

The MobilityFirst project proposes a clean slate redesign of the Internet architecture

[3]. This design aims at supporting mobile devices and applications as the main

elements of the network. Cisco has predicted that by 2014, wireless devices

will account for more than 60% of IP traffic [221]. The current IP protocol was

not designed for mobile applications and the emergence of such traffic offers an

opportunity to evaluate what should be the purpose of functionality of the network

[3].

Figure 5.1 shows the main building blocks of the MobilityFirst architecture.

MobilityFirst provides three meta-level services: the global name resolution ser-

vice (GNRS), the name-based services and the optional compute layer plug-ins.

MobilityFirst also provides three core transport services: the hybrid GUID/NA

global routing service, the storage aware routing (GSTAR) and the hop-by-hop



133

transport [3]. In this background section we focus on explaining how routing is

performed in MobilityFirst.

Figure 5.1: Basic Protocol Building Blocks in MobilityFirst. Figure was redrawn by
co-authors (Source: Raychaudhuri et al. [3]).

Storage-assisted segmented data transport: MobilityFirst uses generalized storage-

aware routing

(GSTAR) [222]. In Fig. 5.1, suppose that a host wishes to send data to John’s laptop.

First the host should acquire Johns GUID. Then a packet is sent with the GUID

as the destination. A MobilityFirst node resolves the GUID using the GNRS and



134

obtains a list of NAs where the destination is connected to the network. The router

sends a packet containing a destination GUID, a service identifier and a list of

NAs. At each hop, a router will decide if the NA is within its reach or if the data

must be forwarded to another router.

Figure 5.2: Hybrid GUID/NA packet headers in MobilityFirst. Figure was redrawn
by co-authors (Source: Raychaudhuri et al. [3]).

MobilityFirst uses a hybrid name/address based routing to achieve scalability.

The number of GUID objects is expected to be in the order of billions, but network

addresses are expected in the order of millions. By mapping GUIDs to NAs,

routing is greatly simplified [3]. Figure 5.2 shows how GUIDs and NAs are used

during the routing process.

Another important feature of MobilityFirst is that the transmission of data in

a hop-by-hop manner to support mobility. In this architecture, the entire file is

received at each hop before transmitting it to the next one. Using this approach, it



135

is possible to do storage-aware routing and late binding [3].

5.2.2 Software defined networking implementation of MobilityFirst

Next we describe an SDN implementation of MobilityFirst provided by Krish-

namoorthy [223]. Our implementation of the cut-through switching capabilities

are built on top of the prototype described below.

In a MobilityFirst network, data is split into entities called “chunks” before

being transmitted. The size of a chunk can be anything ranging from MTU size

of the link to large values like 64 MB or 128 MB. Each chunk is then made up of

several packets (each packet being of the MTU size, 1500 bytes in case of Ethernet

link). Suppose host1 wants to send a 5 MB file to host2. First, it splits the file into

chunks (let’s assume each chunk is 1 MB). So host1 now has 5 chunks, and each

of those chunks has approximately 700 packets (of 1500 bytes each). When host1

transmits each chunk to MFRouter1, only the first packet of each chunk has the

routing header (as in the destination GUID, service ID, etc.).

In our SDN implementation of MobilityFirst, the network controller is responsi-

ble for finding a path to transmit all the chunks from the source to the destination.

When the first packet of each hop arrives at a switch, there is no forwarding rule

for it. Therefore, the controller must perform several tasks. First, it must use the

destination GUID of the packet to find the destination in the network. Second, it

must compute which switch is the next hop of the path. Third, it must push a rule

into the switch so that all the data of that chunk is forwarded to the next hop. This

process is repeated for each chunk of data.

Finally, we describe briefly the two testing environments: the ORBIT testbed

and the GENI testbed.



136

5.2.3 ORBIT testbed

The Open-Access Research Testbed for Next-Generation Wireless Networks (OR-

BIT) [4] is an emulator/field track network testbed [4]. ORBIT emulates wireless

networks with customizable topologies and channel modes. ORBIT is funded by

the NSF and operated by WINLAB, Rutgers University.

Using ORBIT, different users can share the same testbed. Using an online

scheduler, a user reserves a testbed for a period of time. The user can then create

or load an image into the nodes, execute experiments, save the images and then

release the testbed for another user. The measurements of the experiments are

stored in a database that can be queried after running the experiments.

Figure 5.3: Diagram of the SB9 testbed. Figure was redrawn by co-authors (Source:
ORBIT [4]).

One of the testbeds of ORBIT, the SandBox9 (SB9) is dedicated to experiment

with OpenFlow. Figure 5.3 shows the design of the SB9 testbed. All nodes are

connected to a Pronto 3290 switch and one of the nodes can be used as the



137

OpenFlow controller.

5.2.4 GENI testbed

The Global Environment for Network Innovations (GENI) is an NSF-funded

initiative to enable large-scale network experiments. GENI provides a test bed with

nodes across more than 50 aggregates [179]. Hosts deployed in the GENI testbed

can implement any Layer 3 protocol to communicate, as Layer 2 connectivity

is provided between sites. This greatly simplifies the large-scale deployment of

MobilityFirst using GUID-based routing instead of IP.

Before describing our proposed solution, we first survey related work to moti-

vate the need for a routing layer bypass.

5.2.5 Related work

Previous studies have proposed bypassing the IP routing layer to achieve benefits

such as energy savings, bandwidth protection, cost reduction and better network

performance.

Melle et al. [224] describe an optimization of an IP over WDM network

architecture based on bypassing the IP routing layer to save deployment costs. The

authors show how the cost per interface is cheaper at the WDM layer. They argue

that the number of IP-layer interfaces needed can be reduced by bypassing the

IP routing layer when the capacity of intermediate hops is sufficient to make the

bypass cost-effective. Melle et al. show that a bypassing technique does not make

a significant difference when the traffic volume is low (0.15-0.30Tbps) but can save

up to 30% of costs when the traffic volume increases.

Lui et al. [225] address energy saving in IP over WDM networks through

IP routing bypassing. The authors design an energy-minimized IP over WDM



138

network by combining lightpath bypass and router-card sleeping techniques. They

argue that turning off ports on a port-by-port basis is more complex than turning

off an entire router card (which makes all ports in that card sleep). By creating

bypasses at the WDM layer, it is possible to turn of a router card and the authors

show how the energy consumption can be reduced by 40%.

Karol [226] proposes a distributed algorithm to set up maximal-length circuits

to bypass IP routers. These circuits can be created dynamically or in advance. The

algorithm minimizes the number of IP routers needed, reduces the network energy

requirements and reduces the end-to-end packet latency.

Although MobilityFirst does not use IP as the routing protocol, these studies

show some of the advantages of bypassing the routing layer in terms of cost

and energy saving, as well as performance. Although the related work suggests

implementing the bypass at the optical layer, for convenience we use an electronic

switching-layer approach using OpenFlow. A detailed explanation of the solution

is provided in the next section.

5.3 Bypassing the routing layer

In this section we discuss how to bypass layer 3 routing in MobilityFirst. First we

describe the challenges of a bypassing technique. Next, we explain how to bypass

the routing layer using layer 2 VLAN switching.

5.3.1 Challenges and design goals of a bypassing technique

Several challenges must be considered to bypass the routing layer in MobilityFirst:

when to setup circuits and for how long; how many circuits are needed and their

granularities and how to implement automated circuit creation in the MobilityFirst



139

context.

• Mobility: It is important to keep in mind that nodes are assumed to be

mobile. A circuit reservation solution cannot assume that a node will remain

at the same location.

• Efficiency: The overhead of setting up circuits should be low and the circuits

should significantly improve the performance of end-to-end deliveries.

• Scalability: The MobilityFirst architecture should be able to support a large

number of users. The delay of setting up circuits must remain low for a large

number of users and the number of circuits reserved should be able to scale

as well.

• Reliability: A successful delivery must be ensured, even if a circuit exists and

the node location changes or the link fails.

Figure 5.4: Example of a bypass in MobilityFirst.



140

5.3.2 Bypassing L3 using Layer 2 VLAN switching

One way to bypass Layer 3 routing is to create Layer 2 circuits using VLAN tags.

Recall that MobilityFirst works on a hop-by-hop basis. A MobilityFirst router sends

the data to the next router and this is repeated until the destination is reached.

Using this bypassing technique, a circuit can be created at L2 between the host and

the destination. In order to do this, a path must first be found at the first hop to

the destination. Next, a forwarding rule must be added in all forwarding elements

so that the traffic is automatically forwarded to the next hop.

To identify each flow, a VLAN tag can be used. Since VLAN tagging faces

well known scalability issues, a more scalable solution can be implemented using

Virtual eXtensible Local Area NetworkS (VXLAN) [227]. VXLAN was proposed

to meet an important requirement of virtualized data centers: to have a layer 2

infrastructure that can scale at the datacenter scale [227]. In our implementation

we use VLAN tagging because this is supported by OpenFlow, but extending

the protocol to support VXLAN is an alternative to increase the scalability of the

bypassing functionality.

Figure 5.4 shows an example of a bypass. One source is attached to the

MobilityFirst router 1 and another one is attached to the router 2. Since all

destinations are attached to router 5, then a bypass between routers 3 and 5 can be

created. Once the bypass is pushed, no routing operation is performed at router 4.

The way to create this bypass is to add a forwarding rule to router 4 that forwards

all traffic with a given VLAN from router 3 to router 5. In router 3, when we

forward packets belonging to the bypassed flow (source is S1 or S2 and destination

is D1 or D2), we tag them with the same VLAN number. When the data reaches

router 5, routing decisions are taken based on the destination GUID of each packet.



141

This ensures that different routes are chosen for destinations D1 and D2.

This design enables flow aggregation. In Fig. 5.4, a single rule in router 4

can be used to send data to multiple destinations. In any scenario where many

destination nodes are connected to the same router, this feature is key to ensure

the scalability of the system. In a more realistic topology, it is likely that end users

are connected to edge routers and these devices are interconnected through other

devices across the network. Flow aggregation enables connecting multiple users

connected to the same edge routers using a small number of rules. By reducing

the number of rules needed at each hop, we significantly increase the scalability of

the network.

As discussed earlier, this solution should also take mobility into consideration.

If a circuit exists and a node changes the location, the delivery must still be

guaranteed. If a bypass is in place and a node disconnects from the network, we

must ensure that the current chunk of data is delivered to a MobilityFirst router

that will find a new route. Also, subsequent chunks of data should not be sent

through the bypass. In the example shown in Fig. 5.4, suppose the destination

node D2 disconnects from router 5 and reconnects to router 4. When the data

reaches router 5, it is still possible to locate node D2. By querying the GNRS

about the location of the GUID of D2, we can learn that the location of the node

has changed. Next, we can forward the packets to the next hop and we can also

remove node D2 from the bypass.

This solution should be efficient as well. There is a trade-off between the time

and resources that it takes to create a circuit to bypass L3 and the delay required

at L3 routing. If a circuit is to be created, the time it takes to set it up should be

significantly shorter than the time saved by bypassing L3. Also, the controller

should require an acceptable amount of resources to detect when and how to



142

create circuits. If the controller’s performance is significantly decreased because of

this, then the solution is not acceptable.

Finally, reliability must be taken into consideration. As we mentioned above,

the delivery of the message must be guaranteed. If one of the links that are part of

the bypass path fails, the data must be forwarded to a MobilityFirst router and the

bypass must be deleted.

Another way to implement this traffic engineering technique would be to use

multi-protocol label switching (MPLS) [228]. Using MPLS, the ingress edge router

computes the route from source to destination, communicates this route to all the

routers involved and inserts a label into each packet. Successive hops can then

forward packets based on the label. Note that this technique does not completely

bypass the routing layer, as packets must still be processed by routers. In our

approach, there is no need for the packets to be processed at the routing layer and

all packets can be forwarded by simple L2 switches.

5.3.3 Deciding when to create a bypass

One of the major challenges of this implementation is deciding when to create a

bypass. We envision two alternatives: proactive and reactive bypass creation. A

proactive implementation is easier, but it requires that the nodes provide prior

notice. A MobilityFirst node could notify that a given number of bytes will be

transferred to a destination. If this information is known, the controller can

create a Layer 2 circuit between the sender and the receiver to ensure a faster

communication. The advantage of a proactive approach is that the rules can be

pushed in advance and the network controller does not need to make dynamic

changes once the data starts flowing. However, a proactive solution only works

when the information of the data transfer is known in advance, which is not always



143

the case.

When no previous information is available, the bypass must be created in a

reactive manner. In this case, the controller must dynamically identify for which

flows to create a bypass. One possible approach is for the controller to store

information about the location of devices. If multiple flows for a single destination

are repeatedly forwarded to the same hop, the controller can assume that the node

will not change the location for a period of time. Then, a bypass can be created for

data sent to that device. The advantage of this approach is that it is completely

dynamic and no previous information is required about the characteristics of the

communication. On the other hand, the controller has to do more processing and

this increases the delay. Also, the controller must store additional information and

this can compromise the scalability of the solution.

5.3.4 Deciding when to remove a bypass

We also address how to remove a bypass. Once again, this can be done proac-

tively or reactively. If a bypass was proactively created and we have information

regarding when the data transfer will end, then the controller can automatically

remove the bypass at a given time. However, a reactive solution must exist at any

time, in case a disconnection happens. The controller can monitor which nodes

get disconnected from the network. For each disconnected device, a clean way to

remove the bypass is to maintain the flow rules for the current chunk, so that all

the data of that chunk reaches the destination network device. However, for the

next chunk, the standard data processing is applied and a hop-by-hop route is

used.

In the next section we describe the implementation details of the proposed

solution.



144

5.4 Implementation using OpenFlow

In this section we show how OpenFlow can be used to bypass L3 routing using

L2 VLAN switching. We discuss how to push a circuit using OpenFlow and we

discuss how we address the challenges mentioned in the previous section. This

work is built on top of an existing SDN-based implementation of MobilityFirst

[223]. Our contribution consists of adding the bypass functionality to this code.

We begin by explaining how the existing prototype works and next we explain

how we implemented the bypass technique.

5.4.1 Mapping chunks to VLANs

We first describe some technical details of our OpenFlow-based implementation

of MobilityFirst. In MobilityFirst, data is split in chunks and packets include

information to know which chunk they belong to. For each chunk, the first packet

is forwarded to the controller and a flow is pushed into the switch so that all the

remaining packets of that chunk are forwarded to the next hop. To make this

compatible with OpenFlow, the routing header is introduced in the L3 Source

IP Address field. The controller can then parse the data of the first packet and

use the routing information to compute where to forward all the packets of this

chunk. When the next destination has been decided, a new flow rule is pushed to

forward all the packets in this chunk to the next hop. To match all packets to the

inserted rule, the hop ID is used as a VLAN tag. This hop ID identifies all packets

belonging to one chunk across the link. Coming back to the example, for each of

the five chunks, all the 700 packets will have the same hop ID and this hop ID is

also inserted as a VLAN tag in all the packets. If we use incremental hop IDs, then

in the above scenario, all packets in chunk 1 will have hop ID 1, those in chunk 2



145

will have hop ID 2 and so on. This helps us identify which chunk a specific packet

belongs to (since the packets themselves do not have any such information, except

for the first packet of the chunk).

The key to achieve the bypass is to push a flow rule into all the switches between

the source and the destination instead of only for one hop. In an OpenFlow-based

network, the controller is aware of the topology. Thus, an end-to-end path can be

found and all forwarding devices can be reached from the controller to push a

new flow rule. To find a path between the host and the destination, we need to

know the Layer 2 MAC address and the input and output ports at each hop. Next,

specific flow entry rules can be pushed at each switch. The VLAN tag is the same

for all the switches, but the source and destination MAC addresses and ports are

different.

5.4.2 Bypassing functionality

In the current OpenFlow-based deployment of MobilityFirst, the entire route

between the host and the destination is computed using the service provided by

the Floodlight controller. Krishnamoorthy also implemented a mapper between

GUID numbers and MAC addresses. Given a GUID, the controller can find the

MAC address associated to that node. Therefore, the information on the entire path

is available. To achieve a bypass, we collect the following information for each hop

between source and destination: VLAN ID, destination GUID, in-port and out-port.

The existing prototype pushes a flow rule to the first switch of the path only. To

implement a bypass, the controller pushes a flow rule into each switch using the

proper port values and keeping the same VLAN id and destination GUID. As a

result, all the packets of the current chunk are forwarded at layer 2 until they reach

the final hop. By creating a bypass, we ensure that the intermediate switches know



146

how to handle each packet and do not need to forward data to the controller for

each new chunk.

5.4.3 Discussion: Challenges addressed

We mentioned four key challenges for the bypassing technique: mobility, efficiency,

scalability, reliability.

Next we discuss how our solution addresses those points and what are the chal-

lenges that must still be overcome.

Our solution addresses mobility by routing packets at the end of the bypass. If

a bypass goes from router 3 to router 5, then the data will be received at router 5

and a route will be computed for the GUID or NA. If a node has connected to a

different location of the network, the controller can query the GNRS for the new

NA and find a new route. We expect this to be relatively infrequent since a bypass

should be pushed only when a node is not expected to move. However, if the

device does move, a new route can always be found. One challenge that remains is

to actually be able to push bypasses only when the nodes will remain in the same

location. Otherwise, the delay introduced can become significant.

In terms of efficiency, OpenFlow is a convenient approach to dynamically

manipulate forwarding rules. The application running on the controller can

proactively or reactively modify the flow table of one or more switches. Therefore,

creating or deleting a bypass can be done efficiently. If a bypass is created

proactively, the controller only needs to act at a specific time. If the bypass

is to be created reactively, the controller must incur a delay to process the first

packet of each chunk to decide if a bypass is needed or not. We expect this delay

to be acceptable, as only the first packet of a chunk must be processed. However,

an interesting scenario occurs when there is a failure during the transmission and



147

the distance between the start and end of the bypass is far. In this case, the time to

send the contents again can introduce an important delay. This raises the question

of whether to bypass a large number of hops or if it is more convenient to keep

the number of hops small.

Regarding scalability, we discussed earlier how flow aggregation can help the

network scale. Using OpenFlow, we can easily update any flow entry of a device.

If a bypass already exists, the controller can easily modify the rule so that the

bypass includes a new source or a new destination. If a bypass must be created, it

can be done efficiently too. Also, the fact that the controller has a centralized view

of the network allows the application to be aware of changes in the topology fairly

quickly. This simplifies updating a bypass when necessary. On the other hand, the

limited number of VLANs and the size of the flow table are known limitations

in an OpenFlow-based network. It is important to evaluate if these limitations

significantly impact the scalability of this deployment.

Finally, our solution also addresses reliability because the architecture is still

storage-aware. In MobilityFirst, the data is stored at each hop before being

transmitted. If the controller detects that the data is not properly delivered to the

destination router at the end of the bypass, it can use a hop-by-hop delivery. It is

important to evaluate how often does this occur in real-life scenarios, in order to

measure the impact on the performance of the network.

5.4.4 Discussion: Centralized control plane

One key feature of OpenFlow-based networks is that the control plane is centralized.

The advantage of a centralized control plane is that the controller has a network-

wide knowledge of the network. This simplifies reacting to failures and creating

new paths when necessary. The OpenFlow protocol includes features that allow



148

a controller to listen to switch events and thus learning about broken links and

connected devices. The main drawback of a centralized control plane is the

scalability challenge, as well as becoming a single point of failure. To overcome

this, distributed control plane architectures such as HyperFlow [229] and ONOS

(Open Network Operating System) [209] have been proposed.

Also, although OpenFlow does not provide support for interdomain circuit

creation, recent proposals such as software defined Internet exchange (SDX) [230]

could enable multi-domain bypass functionality. In SDX, exchange points are devices

in the topology where a network owner could grant access to the forwarding table

to an authorized neighbour operator. In this scenario, multiple controllers operated

by different parties can coordinate to enable a wide-scale SDN-based network.

5.4.5 Expected improvements using OpenFlow 1.4

The implementation described in this section could be improved using the recently

released OpenFlow 1.4 specification. First, the scalability issues of using VLAN

tags can be solved using the IPv6 fields to perform GUID-based addressing and

adding the chunk id. The IPv6 source and destination fields allow for a much

larger number than the VLAN tag. They can be used to store a chunk id, a GUID

or a network address. A distributed control plane is also easier to deploy using

OpenFlow 1.4, since a switch can be connected to multiple controllers at the same

time. One of the main challenges of OpenFlow-based deployments is to deal with

a single point of failure (the controller) and having a distributed control plane

mitigates this problem. Although these improvements were already possible using

OpenFlow 1.3, one addition of OpenFlow 1.4 is the ability to control optical ports.

Two new OpenFlow messages have been added to configure and monitor either

Ethernet optical port or optical ports on circuit switches [231]. This allows for a



149

much smarter bypassing technique, capable of deciding whether a bypass is more

efficient at the optical layer or at the Ethernet layer. We expect to explore this in

future work.

In the next section we evaluate the proposed solution in terms of performance

and scalability.

5.5 Results and analysis

In this section we describe two experiments to evaluate the performance of the

bypassing technique. First, we use a simple topology in ORBIT [4] with two nodes

and one single switch and we measure the delays incurred by the controller and

the time it takes to transfer a file en a single-switch topology. Next, we use a

virtual topology in GENI [179] to compare the performance of the network with

and without a bypass.

5.5.1 Single-switch network

We deploy in ORBIT [4] the topology shown in Fig. 5.5. One node acts as the

source and one as the sink. The source node runs a script that sends files of

different sizes using a chunk length of 4MB. Each chunk consists of 4096 packets

and each packet carries a payload of 1024 bytes. A third node acts as the OpenFlow

controller.

Figure 5.6 shows the total transfer time for 20, 100, 400 and 1000 chunks of data.

The transfer time grows linearly at an approximate ratio of 100 chunks per second.

In order to motivate the need for a cut-through technique, we also measure the

total needed by the controller to process the first packet of each chunk. Recall that

the first packet of each chunk goes to the controller and a new flow rule is pushed



150

Figure 5.5: Single-switch topology deployed in ORBIT

into the switch. Therefore, for 20 chunks of data, 20 packets go to the controller

and so on. Also, Figure 5.7 shows the sum of all the time that the controller needs

to process first packets. The results grow linearly for an average delay of 688ms

for every 1000 chunks of data sent.

0 200 400 600 800 1,000

0

2

4

6

8

10

12

Number of chunks

m
s

Figure 5.6: Total transfer time for a varying number of chunks

0 200 400 600 800 1,000

0

200

400

600

800

Number of chunks

m
s

Figure 5.7: Total delay at the controller for a varying number of chunks



151

Now that we measured the delay incurred by the controller, next we move on

to a multi-switch network where a bypass can be implemented.

5.5.2 Multi-switch network

We deploy in GENI [179] the topology shown in Fig. 5.8. In this topology we use

Open vSwitch instances instead of hardware switches. All resources are deployed

in the Kentucky ProtoGENI aggregate and we use emulab-xen images for all nodes

(all nodes use 64-bit CPUs and run Ubuntu version 12.04). The controller and the

Open vSwitch instances communicate using the OpenFlow 1.0 protocol.

5.5.2.1 Reducing the transfer time

In this experiment, we compare the time needed to transfer a file with and without

a bypass. We implement a proactive bypass that includes all switches between the

source and the sink. Figure 5.9 shows the transfer times with and without bypass

between multiple sources and the sink. The transfer time is faster when a bypass

is created between the source and the destination (average improvement of 10%

when sending 1000 chunks of data).

Figure 5.8: Experimental topology deployed in GENI

Another crucial advantage of bypassing the GUID-based routing layer is that

the number of packets received by the controller is significantly reduced. In our



152

experiment, we create a bypass between the first and the fifth switch. By doing

this, we save one packet for each chunk that uses the bypass. Figure 5.10 shows

the reduction in the number of packets received by the controller. The number of

packets decreases because once a bypass is implemented, intermediary switches

do not need to forward the first packet of each chunk to the controller, since the

forwarding rule has already been pushed. To better illustrate this, one can think

that when a bypass is pushed between two switches, then these two devices the

source and the destination of the hop-by-hop transfer and the data travels from

one switch to another without further participation from the controller.

0 200 400 600 800 1,000

0

2

4

6

8

10

Number of chunks

m
s

With bypass
Without bypass

Figure 5.9: Total transfer time with and without bypass. 95% confidence intervals
are shown.

0 200 400 600 800 1,000

0

1,000

2,000

3,000

4,000

5,000

6,000

Number of chunks

m
s

With bypass
Without bypass

Figure 5.10: Number of packet in messages received by the controller with and
without bypass.



153

5.5.2.2 Scaling through flow aggregation

Flow aggregation is key to the scalability of our framework. We explained in

Section 3.2 how a single rule can be used to carry multiple flows. In Figure 5.11,

hosts 1, 2, 3 and 4 send data to the sink. Without flow aggregation, the controller

must push a flow rule for each chunk in each transfer. For example, in Fig. 5.8,

when all hosts send 20 chunks to the sink, then the ovs1 switch needs 20 rules for

the traffic coming from host1, but the ovs2 switch needs 40, the ovs3 switch needs

60 and so on, for a total of 280 flows. In this experiment, however, the controller

knows that all traffic is heading to the sink. Therefore, only 20 rules per switch are

sufficient to carry all traffic.

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·104

Number of chunks

N
um

of
ru

le
s

Without bypass
With bypass

Figure 5.11: Number of flow rules pushed with and without aggregating flows.

5.5.3 Routing and bypassing in a mesh topology

Lastly, we experiment using a mesh topology to show how the implementation

exploits the services provided by the Floodlight controller to find a route between

the source and the destination. Also, we show how traffic coming from more than

one switch can also be aggregated. The topology is shown in Fig. 5.12.



154

Figure 5.12: Experimental mesh topology.

The experiment consists of transferring a file from sources 1 and 3 to the

destination. Our implementation uses the services provided by the Floodlight

controller to find a path between the sender and the receiver. Floodlight finds

that the appropriate routes are: ovs1, ovs2, ovs5, ovs6 to transfer between source

1 and destination, and ovs3, ovs2, ovs5, ovs6 to transfer between source 3 and

destination.

Given that both paths share nodes 2, 5 and 6, next we experiment bypassing

node 5. First, individual bypasses are setup, one for all traffic coming from source

1 and another for all traffic coming from source 3. In this scenario, the gain in

transfer time when the bypass is pushed is similar to the results shown in Fig. 5.9.

Here we focus on analyzing if the number of flows needed can be reduced. In

ovs1, ovs3 and ovs6, the number of flows needed is the same as shown in Fig. 5.11.

However, in ovs2 and ovs5, we achieve a reduction of 50% since the same flows

are used to carry all traffic. Although this topology is small, it clearly shows how

the number of flows can easily be reduced when two paths have more than two



155

hops in common.

5.6 Conclusion

In this chapter we proposed an approach to bypass the routing layer in Mobil-

ityFirst using cut-through switching and OpenFlow. The advantage of such a

bypass is to eliminate the delay introduced at that layer. We discussed how to

use OpenFlow to bypass layer 3 routing in MobilityFirst using layer 2 VLAN

tagging. Instead of pushing a flow rule to one switch only (as would be done

to ensure a hop-by-hop communication), we push rules into all the switches of

the path between the source and the destination. By doing this, we ensure that

all data is forwarded at layer 2. We also discussed how this technique enables

flow aggregation. By managing several data transfers using a small number of

forwarding rules, we increase the scalability of the network.

The evaluation using the ORBIT testbed showed that the controller introduces a

delay of 688 milliseconds for every 1000 chunks of data sent, in average. This delay

is due to the first packet of each chunk having to be processed at the controller. Our

experiments using the GENI testbed show how the number of packets processed by

the controller can be significantly reduced by the cut-through technique proposed

in this chapter. Finally, we show how the flow aggregation capability of SDN-based

networks can be used to make this solution scalable. By aggregating flows from

multiple sources to a single destination using the same flow rules, the number of

rules that must be pushed into the switches is also reduced.

Given the performance gains achieved at intra-domain scale, in the next Chapter

we investigate how to implement inter-domain cut-through switching in Mobility-

First.



156

Chapter 6

Internet scale: Inter-Domain Routing with Cut-Through Switching in Mobili-

tyFirst

6.1 Introduction

In this chapter we investigate how MobilityFirst can benefit from cut-through

switching tunnels across multiple domains, given the benefits of intra-domain

tunnels demonstrated in Chapter 5.

To motivate the need for inter-domain cut-through switching in SDN, we first

model the dynamic creation of inter-domain tunnels as a linear optimization

problem. Particularly, we describe this problem in the context of inter-domain

SDN. The problem minimizes the total transfer time while considering the costs of

creating inter-domain tunnels. Using this problem formulation, we demonstrate

how inter-domain controller latency plays a key role on how tunnels are created.

Indeed, we show how inter-domain tunnels are better when the latency is small,

but intra-domain tunnels are better otherwise. Next, we propose a greedy heuristic

that considers the inter-controller latency to decide how to create tunnels that

scales much better than the optimization problem formulation. To the best of

our knowledge, our work is the first one to formulate and solve the creation of

inter-domain tunnels in SDN.

After that, we propose a routing framework for MobilityFirst that enables



157

dynamic inter-domain cut-through switching. The framework is based on the fol-

lowing design requirements: inter-domain topology visibility, naming the tunnels

as network objects and per-flow traffic engineering. We first describe how Mobility-

First uses aggregated nodes and virtual links to share topology information across

domains using network state packets. Next, we propose a novel technique that

names inter-domain tunnels as network objects to simplify how domain controllers

create and maintain tunnel information. Finally, we incorporate the heuristic into

this routing framework to decide when is it beneficial to create a new inter-domain

cut-through tunnels and which flows should be forwarded through the tunnels.

To evaluate the proposed framework, we developed a prototype for Mobility-

First using the GENI testbed based on the implementation described in Chapter 5.

The results show that in-transit packet in messages can be reduced by 75% using

inter-domain tunnels. Furthermore, naming tunnels as network objects scales

better than current protocols such as label distribution protocol (LDP) to setup

tunnels. Finally, we also demonstrate the scalability of the solution by showing

that incoming packets face a small delay even when the traffic load increases to up

to 1000 flow requests.

The remaining of this chapter is organized as follows. We first survey the

related work in Section 6.2. Next we describe the optimization problem and

heuristic in Section 6.3. Next, we describe the routing framework in Section 6.4.

After that, we describe thes traffic engineering techniques using by the framework

in Section 6.5. Finally, we evaluate our work in Section 6.6 and conclude in Section

6.7.



158

6.2 Background and related work

In this section we include related work on inter-domain routing using SDN, inter-

domain cut-through switching and inter-domain optimization studies. For an

overview of MobilityFirst, please refer to Chapter 5.

6.2.1 Inter-domain routing using SDN

We first describe previous work on inter-domain routing using SDN. Existing

studies include seamless integration of an SDN-based AS [205], outsourcing of

routing [207] and a framework to evaluate the effect of centralization on the BGP

convergence time [232].

Lin et al. [205] propose how an SDN-based AS can co-exist with IP-based ASes.

The authors proposed a fully SDN-based where the controller communicates with

other domains using BGP. Intra-domain is performed based on MAC addresses

and edge switches match incoming packets based on IP prefixes. There are some

differences between the architecture proposed by Lin et al. and our work. First,

their framework exposes an entire AS as a single router that acts as a single hop

in BGP. We aim for sharing more information about each AS (using aNodes and

vLinks). Second, their AS is fully SDN-based, which means that the controller

can program all network devices in the AS. Their results show that it is feasible to

seamlessly integrate an SDN-based AS to the network.

Another paper by Lin et al. [206] proposes an information exchange mechanism

between SDN controllers in different domains. The authors implement an Inter-

domain Path Computation (IDPC) application and a Source-address based Multi-

path Routing (SMR) application. Their work relies on message exchanging between

controllers, whereas our approach attempts to use the GNRS as much as possible



159

to keep the exchange of messages to a minimum.

Konotris et al. [207] go one step further towards centralization. Instead of just

centralizing routing information for a single domain, they argue that the next step

is to outsource routing decisions to an external party. If multiple ASes do this,

then the external party ends up being responsible for the routing mechanisms of

multiple ASes. The authors point out significant advantages of having centralized

control of routing within one or more AS, such as simplified policy enforcement

and security. Although we do not aim at routing outsourcing, collaboration be-

tween ASes is certainly simplified when central entities can exchange information,

as opposed to having multiple routers having to coordinate.

Finally, Gämperli et al. [232] proposed an emulation framework to experiment

with multiple SDN-based ASes. The framework builds on top of Mininet and

incorporates Quagga, a BGP software. As a use case, the authors evaluate the

convergence time of BGP when a centralized control plane is used.

6.2.2 Inter-domain cut-through switching

Next we describe previous work on multi-domain scenarios where a cut-through

switching circuit is created.

Yang et al. [233] present an inter-domain provisioning solution tested over

the Dynamic Resource Allocation via GMPLS Optical Networks (DRAGON) and

the Internet2 Hybrid Optical and Packet Infrastructure (HOPI). This application

provides end users with Ethernet circuits over WDM paths. In the proposed

solution, the negotiation between domains is achieved through network-aware

resource brokers that are also responsible for the path computation. The main

difference with our work is that DRAGON computes paths in a distributed manner,

whereas we have a centralized control plane.



160

Guok et al. [234] propose OSCARS (On-Demand Secure Circuits and Advance

Reservation System) [235], a software developed by the Energy Sciences Net-

work (ESnet) [129] to provide end-to-end circuits for high performance networks.

OSCARS relies on a centralized path computation engine to stitch a bandwidth-

guaranteed path across domains. The amount of information shared by each

domain with the path computation engine depends on each network administrator.

This centralized system offers significant advantages, but at an Internet scale, it is

unlikely to have multiple domains being programmed by a central entity. Hence,

our approach is only centralized at an intra-domain scale, while inter-domain

routing is still performed in a distributed manner across controllers.

6.2.3 Inter-domain optimization

Finally, existing studies have considered inter-domain routing as an optimization

problem [236, 237, 238]. Tomaszewski et al. [236] consider the problem of band-

width reservation on inter-domain links for different traffic classes. Roughan et

al. [237] tackle the problem of traffic engineering with limited information shared

across domain. Finally, Chamania et al. [238] explore how to achieve IP routing

stability through dynamic creation of tunnels at the WDM layer. Our model of

tunnels, described in the next section, is based on the formulation proposed by

this work.

6.3 Dynamic creation of inter-domain tunnels

In this section, we model the dynamic creation of inter-domain tunnels as an

optimization problem. The objective function minimizes the total transfer time,

including control plane delays, while considering the different costs of creating



161

and maintaining inter-domain tunnels.

Figure 6.1: Sample network with two domains and two cut-through tunnels (3-6
and 4-7).

6.3.1 Assumptions

We make the following assumptions in the formulation of this problem. First, we

assume that the computation of the tunnels is being performed by the controller

of one of the domains. Moreover, we assume that such controller has visibility into

the bandwidth of all links, including those belonging to other domains. In the

framework described in Section 6.4 we propose a way to achieve this. Second, we

assume that, when the optimization begins, no tunnels exist and there is no traffic

flowing. We leave studying the steady-state scenario for future work. Third, we

assume that the cost of inter-domain tunnels is computed based on the individual

cost of each link traversed by the tunnel. Fourth, we assume that the flow rate

and duration between each source and destination node are known. Finally, we

assume that only one tunnel can exist between two routers, but the tunnel can

carry more than one flow between different sources and destinations.

6.3.2 Settings

Consider a network of V nodes (OpenFlow-compliant routers) belonging to at

least two different domains. The path between all pairs of nodes is known and the



162

optimization problem explores all combinations of using links individually or in

tunnels.

We consider the following parameters:

• λs,d: Bit rate in Mbps between source s and destination v ∈ V;

• δs,d: Duration in ms of flow between source s and destination v ∈ V;

• ci,j: Capacity in Mbps of link i, j;

• ψ
i,j
x,y: Link i, j ∈ L is used when a tunnel between x, y ∈ L is setup (boolean);

• φ
i,j
s,d: Link i, j ∈ L belongs to the path between s and d ∈ V (boolean);

• bi,j: Time in ms needed to setup inter-domain tunnel when link i, j is used;

• mi,j: Maintenance cost due to inter-domain messages to maintain a tunnel

when link i, j is part of it;

• lx: Latency in ms between switch x ∈ V and the controller it is connected to;

• sx: Time in ms needed by the controller to handle a packet in message sent

by switch x ∈ V;

• ux: Time in ms needed by the initiating domain controller to compute a

tunnel path;

• wx,y: Inter-domain latency in ms between domain controllers to setup a

tunnel between switches x and y ∈ V;

• T: Maximum number of tunnels allowed;

• M: Maximum maintenance cost allowed per domain;



163

• D: A flow duration must be at least D times longer than the time needed to

create a tunnel in order to be routed through that tunnel. This parameter is

used in constraint 6.6 and is explained below in more detail.

Likewise, we consider the following decision variables:

• tx,y: A tunnel between nodes x, y ∈ V is created.

• f s,d
x,y: Flow between s, d ∈ V is routed through a tunnel between nodes

x, y ∈ V.

• ri,j
s,d: Flow between s, d ∈ V is routed through direct link i, j.

We also use two additional parameters to simplify the objective function:

• τx,y: Time needed to setup a tunnel between switches x and y ∈ V. This

parameter is computed as τx,y = ψ
i,j
x,y × lx + ux + wx,y (i.e. the sum of the

switch to link latencies, the inter-domain controller latency and the time

needed by the initiating controller to calculate the path).

• ιi,j: Time needed by the domain controller to handle a packet in message

when a flow is routed through the direct link i, j ∈ V. This parameter is

computed as ιi,j = 2× lj + sj (i.e. the round-trip latency between the switch

and the controller added to the time needed by the controller to handle the

packet in message).

6.3.3 Problem formulation

For each flow, there is a known transfer time δs,d. However, additional delays

happen every time a packet in message is received a rule is inserted in the flow

table of the switch. Similarly, the flow can be delayed if a cut-through tunnel is



164

being created. The goal of this problem is to minimize the total transfer time for

all flows combined with the delays caused by the control plane.

Objective function: minimize

∑
s,d∈V

δs,d + ∑
x,y,i,j∈V

ri,j
s,d × ιi,j + f s,d

x,y × τx,y (6.1)

Subject to:

∀i, j ∈ V, ∑
x,y,s,d∈V

λ× (φ
i,j
s,d × ri,j

s,d + ψ
i,j
x,y × f s,d

x,y) ≤ ci,j (6.2)

∀i, j, s, d ∈ V, φ
i,j
s,d × ri,j

s,d + ∑
x,y∈V

ψ
i,j
x,y × f s,d

x,y = 1 (6.3)

∀x, y, s, d ∈ V, tx,y ≥ f s,d
x,y (6.4)

∀x, y ∈ V, ∑ tx,y ≤ T (6.5)

∀s, d ∈ V, D× ∑
x,y∈V

f s,d
x,y × τx,y ≤ δs,d (6.6)

∀x, y ∈ V, ∑ tx,y( ∑
i,j∈V

mi,j × ψ
i,j
x,y) ≤ M (6.7)

The minimization objective function of this problem (Equation 6.1) uses the τ

and th parameters to take into account all the delays. For each direct link used,

the th delay is considered. Similarly, for each tunnel, the τ delay is counted. By

adding these delays to the duration of each flow δs,d, the problem minimizes the

total transfer time.

Constraint 6.2 ensures that the link capacity limit is enforced for all links in



165

the network. Constraint 6.3 ensures that all the links {i, j} between a source s and

a destination d are used, either as a single link (φi,j
s,d × ri,j

s,d), or as part of a tunnel

that uses that link (ψi,j
x,y × f s,d

x,y). By making the equation equal to one, we also

guarantee that only zero or one bypass using the link can co-exist, thus eliminating

incompatible tunnels.

Constraint 6.4 is used to ensure that tx,y is true if, for any pair of source s and

destination d, the tunnel f s,d
x,y is used at least once. tx,y is then used to keep track of

the maintenance cost of the system, instead of using f values that are specific to

each flow and could thus be duplicated for the same pair of nodes.

Constraint 6.5 guarantees that the number of tunnels created stays below T, the

maximum number of tunnels allowed.

Finally, constraint 6.6 ensures that a flow between source s and destination

d ∈ V only goes through tunnels if the time needed to setup the tunnels is D times

smaller. The goal of this constraint is to avoid tunneling a flow that lasts 5 seconds

if creating a tunnel will take 3 seconds. Instead, a longer flow will benefit more

from the tunnel. Similarly, constraint 6.7 ensures that the maintenance cost of all

tunnels is below the maximum threshold M.

6.3.4 Study of sample topologies

To validate the problem formulation, we ran the optimization for two different

topologies created randomly. Topology 1 is a small topology with 11 nodes, two

domains and 6 flow requests. Topology 2 has 35 nodes, two domains and 15 flow

requests. In our experiments, all flow requests are inter-domain.

First, we note that the inter-domain latency plays a key role in how tunnels are

created. We experimented using Topology 1 for different values of inter-domain

controller latency across domains (w parameter in the optimization problem). The



166

1 3 7 10

20

40

60

80

Inter-controller latency (ms)

%
of

to
ta

lt
un

ne
ls

Inter-domain tunnel
Intra-domain tunnel

Figure 6.2: Distribution of intra-domain and inter-domain tunnels for varying
inter-domain controller latency.

0 10 20 30 40

490

500

510

520

Number of tunnels

Tr
an

sf
er

ti
m

e
(m

s)

Topo 1 (low)
Topo 1 (high)

Figure 6.3: Total delay caused by controller processing with low and high inter-
controller latency for Topology 1.

results in Fig. 6.2 show how the number of inter-domain tunnels created decreases

as the latency increases. Indeed, the benefit of bypassing multiple hops (i.e.

reducing the impact of switch to controller latency at each hop) is only beneficial

as long as the time needed to create a tunnel is reasonable. As a result, for a small

inter-domain latency, the optimization problem tends to create a single tunnel for

each flow. However, when the value increases, the solver tends to create more

edge-to-edge intra-domain tunnels for each domain.



167

0 10 20 30 40

980

1,000

1,020

1,040

Number of tunnels

Tr
an

sf
er

ti
m

e
(m

s)

Topo 2 (low)
Topo 2 (high)

Figure 6.4: Total delay caused by controller processing with low and high inter-
controller latency for Topology 2.

Such a behavior is confirmed in Fig. 6.3 and Fig. 6.4. We made a modification

to Constraint 6.5 to enforce an exact number of tunnels instead of just setting

an upper bound T. As a result, we observe the minimum delays obtained for

topologies 1 and 2, when the inter-domain controller latency is 3 or 10 (low and

high in Fig. 6.2). Notice how, for a low latency, the solver creates approximately

one tunnel per flow. In contrast, for a higher latency, on average two tunnels per

flow are created.

Finally, these experiments also show that the maximum delay is obtained when

there are no tunnels. Likewise, once the minimum has been obtained, the increase

in the delay is slow in comparison to how it decreases before reaching the optimal

value. Therefore, we can conclude that the best way to set up the tunnels depends

on the inter-domain controller latency and also having too many tunnels is better

than not having enough tunnels.



168

6.3.5 Heuristic

The proposed optimization problem has scalability problems when there are more

than one thousand 15-hop flows. Hence, it is not feasible to simply run the

optimization problem at the domain controller. Therefore, we propose a heuristic

that finds near-optimal solutions to the same problem but scales better.

The key parameter of this heuristic is the inter-domain latency. Indeed, we

showed in Figs. 6.2, 6.3 and 6.4 that inter-domain, end-to-end tunnels are pre-

ferred when the latency is small and multiple intra-domain tunnels are preferred

otherwise. For this reason, Alg. 3 compares the inter-domain latency with the

controller-switch latency and decides to create an inter-domain tunnel only when

this ratio is below 30%. Notice also that we consider multiple domain controllers

so that each controller handles the flows that start within its domain.

Figure 6.5: Sample topology used to evaluate the heuristic.

Table 3 compares the performance of the proposed heuristic with the optimal

values found by the ILP solver. For this experiment, we created a larger topology

shown in Fig. 6.5. The results show how the heuristic is capable of finding good

solutions even beyond 800 flows, when the ILP solver starts having scalability

problems.

In a real network, several implementation challenges must be addressed to solve

the problem of inter-domain cut-through switching. For example, we assumed

a known data rate and flow duration, as well as inter-domain link visibility.



169

Data: flows: Collection of flows
Data: controllers: All domain controllers
Result: Output how to route each flow
for each controller c ∈ controllers do

boolean latencyOk = true;
for each flow f ∈ flows do

if flow.source ∈ domain c then
for each controller ic ∈ flow.intermediateControllers do

if latencyBetween(c, ic) > THRESHOLD then
latencyOk = false;

end
end
if ¬ flow.tunnel then

if latencyOK then
Create end-to-end inter-domain tunnel;
flow.tunnel = true; //Mark flow as tunneled so that other
controllers know

end
else

Create intra-domain tunnel;
end

end
end

end
end

Algorithm 3: Greedy heuristic to assign segments.

Table 6.1: Comparison of heuristic against ILP solver

Number of
flows

ILP - transfer
time (s)

Heuristic -
transfer time
(s)

ILP - running
time (s)

Heuristic -
running time
(s)

100 6.9 7.1 0.1 0.05

300 22.3 25.1 0.5 0.07

500 34.1 39.2 4.1 0.1
800 54.6 61.3 21.3 0.11

1000 * 81.7 Out-of-
memory
error

0.12

1200 * 9963 Out-of-
memory
error

0.13



170

Figure 6.6: Steps needed to setup an inter-domain tunnel across multiple ASes

After demonstrating the importance of inter-domain controller latency in this

section, next we propose a routing framework capable of inter-domain cut-through

switching that simplifies how the tunnels are created and maintained. After that,

in Section 6.5 we will explain how to incorporate the proposed heuristic into the

routing framework.

6.4 Routing framework description

In this section, we first motivate using SDN for the proposed routing framework.

Next, we explain how the framework meets three requirements to implement

dynamic creation of inter-domain tunnels. First, domain controllers need to be

aware of at least part of the topology from other domains (we assumed in the

formulation problem that each domain controller was aware of the bandwidth

of all links in the network). Second, the domain controllers must be capable of

exchanging messages with other domains to setup cut-through tunnels across

domains. The problem of deciding when to create a tunnel and which maps to

forward through each tunnel is addressed in Section 6.5.



171

6.4.1 The need for SDN

An SDN-enabled routing framework provides several benefits to the proposed inter-

domain protocol. First, SDN simplifies how to process in-transit traffic within a

single domain. Indeed, managing intra-domain paths from a centralized controller

is simpler than doing it in a distributed manner. For example, finding shortest

paths in a fully known graph is simpler than exchanging topology messages

between routers.

Second, managing the label-based intra-domain table is equally simplified. In

fact, having distributed routers agreeing on multiple labels is possible, but it is

more complex and requires an additional label distribution protocol. Also, the

information at each router is not necessarily complete or up-to-date. Instead,

assigning labeled-paths in a fully known graph becomes a much simpler problem.

Moreover, since the controller is aware of all labels being used across the domain,

it can verify that label-based paths do not collide.

Third, implementing routing policies within a domain is easily implemented

when the controller has full control of routing decisions. Instead of propagating

information across domains, the policies are given to the OpenFlow controller and

they can easily be implemented since the controller is responsible for all routing

decisions. Besides this, the controller can also provide the domain operator with a

human-friendly API where different types of policies can be defined.

Fourth, SDN provides a unique opportunity to perform traffic analysis at the

edge of the network. When the border switch must send data to another domain,

an application running on the controller can use traffic statistics to detect elephant

flows, mice flows or traffic with specific requests by the sender. As a consequence,

SDN allows for fine-grained, per flow analysis that allows the controller to make



172

routing decisions for each flow.

Fifth, SDN also allows the integration of the routing mechanisms with lower

layers such as Optical Transport Networks (OTN) or Wavelength Division Mul-

tiplexing (WDM). An SDN-based, integrated control plane can do multi-layer

provisioning based on the behavior of a flow. In particular, flows with large

bandwidth demand can benefit from being sent across multiple domains through

an optical layer tunnel.

Finally, mobility awareness becomes crucial in a routing framework for Mo-

bilityFirst. SDN provides a way to create routing paths that react to mobility.

Using an OpenFlow controller, we can query the GNRS, realize that the destination

has moved to a different network address and re-define how the flow should be

routed. The ability to create mobility-aware, multi-domain tunnels is significantly

enhanced by using an SDN-based routing framework.

6.4.2 Increased visibility between domains

In MobilityFirst, autonomous systems (ASes) have the flexibility to expose their

internal network characteristics in terms of aggregated nodes (aNodes) and virtual

links (vLinks) (see Fig. 6.7). Each AS has the flexibility to decide on the aggregation

granularity and hence the amount of state it wants to advertise. State is announced

and exchanged in the form of a network state packet (nSP) similar to link state

routing (see Fig. 6.8). Each domain controller is responsible of creating the virtual

topology of aNodes and vLinks and it is also responsible of propagating link

information such as bandwidth, availability, variability and latency. The advantage

of sharing information of aNodes and vLinks through nSPs is two fold. On the

one hand, it allows each domain to customize the topology information to be

shared with other domains. On the other hand, it provides useful information to



173

other domains that can now decide how to route packets to get a given bandwidth,

availability, variability and latency.

aNode 
21

aNode 
22

aNode 
23

aNode 
24

aNode 
25

aNode 
411

Routers aggregated into a virtual aNode 
topology

Transit traffic forwarding
Inter-domain 
forwarding

Intra-domain 
vLink

Inter-domain 
vLink

aNode 
02

AS 2
AS 1

aNode 
411

AS 3

Intra-domain 
forwarding

BR1BR1 R3R3

R4R4 R2R2

Figure 6.7: aNode-vLink topology abstraction for an AS.

Msg_Type Hop_to_Src

Neighbor_aNode#1-vLink<B,V,A,L>
Neighbor_aNode#2-vLink<B,V,A,L>

…
Neighbor_aNode#z-vLink<B,V,A,L>

AS_Num:Source_aNode

Internal Topologies:

aNode#1-vLink<B,V,A,L>-aNode#2
aNode#2-vLink<B,V,A,L>-aNode#3

…
aNode#x-vLink<B,V,A,L>-aNode#y

Neighbor Info:

Figure 6.8: Structure of network state packets propagated across domains.

6.4.3 Dynamic creation of inter-domain tunnels using the GNRS

Next we describe a novel technique to setup cut-through switching tunnels across

multiple domains that leverages the globally available name resolution service

(GNRS). The main advantage of having a globally available entity is that the

number of messages needed to be exchanged between domain controllers is

significantly reduced.



174

To take full advantage of the GNRS, the routing framework names the tunnels.

In other words, every tunnel created in a MobilityFirst network is an object that

can be identified with a GUID (see Fig. 6.6). When a domain controller initiates a

request for a inter-domain tunnel, it contacts other domain controllers with a setup

request. The request includes a label to identify traffic, as well as the GNRS entry

containing information of the tunnel. When a neighbor domain controller accepts

the request to create a tunnel, it creates a GNRS entry that contains information

about the tunnel to be shared with other domain controllers. As a result, once the

tunnel has been created, the domain controller that initiated the request knows the

GUID of all entries needed to collect information about the tunnel.

Although some initial messages are needed to create the tunnel, one advantage

of this technique is that tunnel maintenance and tear-down do not need further

messaging. First, a domain controller can use the GNRS entry to share tunnel

attributes with other domains, such as available bandwidth or expected time before

having to terminate the tunnel. Second, terminating the tunnel is as simple as

deleting the GNRS entry. Fig. 6.6, suppose AS3 deletes the GNRS tunnel (GC)

entry GT3. The initiating domain controller (AS1) notices that the entry has been

deleted and concludes that AS3 is no longer part of the tunnel. Next, it deletes

the GT entry known to all domains members of the tunnel. Finally, AS2 notices

that the GT entry has been deleted. We evaluate the reduction of inter-domain

messages in section 6.6.4.

In this section we described how the framework implements inter-domain

cut-through tunnels (the how). In the following one, we explain how to decide

when to create a tunnel and which flows to forward through each tunnel (the

when).



175

6.5 Traffic engineering techniques used by the framework

In this section we first describe how a domain controller can identify flows that

could benefit from a cut-through tunnel. Second, we describe what is the most

appropriate way to setup a tunnel once a flow has been identified as candidate.

6.5.1 Deciding which flows to forward through a tunnel

The first step consists of analyzing traffic to identify flows that could benefit from

a cut-through tunnel. The first technique detects elephant flows at the edge of

the network. The second takes advantage of the GNRS capabilities and deduces

the mobility of the destination device. The third uses the service type field in a

MobilityFirst packet to allow the sender, or a previous controller, to indicate that a

tunnel should be used.

6.5.1.1 Controller-initiated cut-through based on flow rate and duration

The first technique that we implement and evaluate is a reactive approach. The

decision of whether to send a flow through a tunnel is taken by the domain

controller based on the observed traffic. The goal is to detect large, long duration

flows (also known as elephant flows) that can benefit from cutting through the

MobilityFirst routing mechanisms. The motivation for this technique is that

elephant flows are long enough to benefit from a cut-through tunnel even when a

small overhead is incurred to create the cut-through. Also, elephant flows usually

have a high data rate and reducing the overhead needed to forward data increases

the throughput significantly. Mouse flows (short flows), on the other hand, do not

necessarily benefit from this because the transmission of data could be finished by

the time the bypass is created, or not long enough to actually benefit.



176

Previous studies have addressed elephant flow detection using packet sampling

techniques [239, 240, 241]. Psounis et al. [241] propose SIFT, a detection algorithm

based on biased sampling. The intuition behind the algorithm is to sample with

a low probability. Using this method, when a probability of p = 0.01 is used, all

flows with more than 100 packets are detected and the probability of sampling a

mouse flow is low. We implement the SIFT algorithm to detect elephant flows.

To detect large flows, traffic statistics must be observed. Although the OpenFlow

protocol provides ways to query each switch for traffic statistics, this solution is

too slow (data can only be obtained every five seconds). We use sFlow [211] to

counter this problem and sample traffic every second. sFlow is a packet sampling

tool used to monitor network usage. sFlow agents are deployed in network devices

such as switches or routers and the information gathered is sent to a centralized

collector. sFlow-RT is a monitoring framework that incorporates the sFlow analytic

engine to provide real-time visibility in Software Defined Networking (SDN) [242].

A script running on the domain controller server obtains the metrics collected by

sFlow-RT using the REST API. Using this data, the biased sampling technique

proposed by the SIFT algorithm is used to detect large flows. When a flow has

been labeled as elephant, the script uses the REST API of the Floodlight controller

to find a route between the source and the destination and create a layer-2 circuit.

6.5.1.2 Controller-initiated cut-through based on mobility

The second technique is also reactive and leverages a specific feature of Mobility-

First: the GNRS server. In MobilityFirst, every device connected to the network

should register to the GNRS to notify the current attachment point. This notifica-

tion is achieved through an update message that contains the GUID and the new

set of NAs to which the device is attached. Therefore, the GNRS offers a unique



177

opportunity to track the mobility of all devices attached to a set of NAs.

To implement the controller-initiated cut-through based on mobility, we first

expand the GNRS server so that it also keeps track of the number of updates issued

by each device. With our implementation, when the GNRS receives a query for a

given GUID, the response contains a timestamp of all update messages received

by the GNRS for the given GUID.

Next, we leverage the SDN controller to dynamically process the timestamps

and determine the degree of mobility of the destination device. To measure the

degree of mobility, the controller takes into consideration the number of updates

sent by the device in the last hour. If the device has remained attached to the same

access point for more than an hour, it is considered static and the controller can

initiate a cut-through tunnel for this flow. If the number of updates is larger than

zero, then the node is considered mobile and a tunnel is not created for the flow.

6.5.1.3 Sender-initiated cut-through

The third technique is a proactive approach that can be used by the sender of

data to ask for a cut-through tunnel to be used. Unlike the previous two, this

approach is proactive because the sender device requests the network to use a

cut-through tunnel. Thus, the controller does not react to traffic observations or

GNRS responses but to a request introduced by the sender in the network packets.

This method makes use of the service type field of MobilityFirst packets. This

field encodes the requested processing or delivery service(s). In MobilityFirst,

it was designed to allow the user to request different delivery methods, such as

unicast or multicast. By setting the service type to a specific value, a sender asks

the network to forward all packets in that flow through a tunnel.

Since this decision is based on a notification from the sender, the controller



178

does not actually decide if a bypass should be used or not, it only creates it

assuming that the sender knows why a bypass can be beneficial. Note that this is

an advantage but also a risk. Certainly, this technique is the easiest to achieve by

the controller (no traffic observation or timestamps parsing needed). On the other

hand, the sender assumes all the responsibility of sending data through a bypass

and this could be detrimental if the destination is highly mobile.

6.5.2 Deciding how to setup a tunnel

Once the controller has identified a flow that could benefit from a tunnel using the

described techniques, the next step is to decide what is the best way to setup such

tunnel. To do this, we use the insights learned in Section 6.3 that showed how the

inter-domain latency plays a key role on the optimal creation of tunnels. Therefore,

we incorporate into the framework the ability to create inter-domain tunnels only

if the inter-controller latency is low, and to use intra-domain tunnels otherwise.

6.5.2.1 Combined technique

To consolidate the three techniques and the heuristic, we propose a method that

combines them all. The main goal of this combined technique is to admit a flow

into a tunnel when at least two of three ‘conditions’ exist: long flows, low mobility

or user-requested tunnel. Each flow has candidate points to be accepted in a

bypass tunnel. An elephant flow earns three points and a tunnel request from the

user also earns three points. Finally, a static destination adds four candidate points

to a flow. To ensure low mobility and another condition, this technique works by

creating tunnels only to flows that have at least seven candidate points.

Another feature of the combined technique is that it allows to upgrade or

downgrade flows as candidates for a tunnel. Suppose a flow has been sending



179

high traffic rates for a long time and the destination was static. Therefore, this flow

had seven points and was part of a bypass. Later, if the destination stops being

static or if the data rate is reduced, this flow can be downgraded and removed

from the bypass. Similarly, it can be added again if the conditions change again.

Finally, the combined technique also considers the inter-controller latency to

decide if a single end-to-end tunnel should be created, or if an intra-domain tunnel

should be used instead.

Algorithms 4, 5 and 6 show how the combined traffic engineering technique

operates. First, incoming flows are analyzed to identify the mobility degree

and service type (Algorithm 4). Next, traffic is periodically sampled to identify

elephant flows and update mobility degrees (Algorithm 5). Finally, Algorithm 6 is

responsible for creating the tunnels or mapping flows to existing tunnels.

Data: new flow f
//New flow, check mobility and service type
serviceType = getServiceType();
mobilityDegree = getMobilityDegree();
if serviceType = bypass then

f.candidate += 3;
end
if mobility = low then

f.candidate += 4;
end

Algorithm 4: Combined technique applied to incoming flows.

6.6 Experimental evaluation

We first demonstrate that the framework is capable of detecting elephant flows

and mobile destinations using the combined technique shown in Section 6.5. After

that, we focus on demonstrating how inter-domain tunnels reduce the number of

packets that must be handled by domain controllers. We also compare the number



180

Data: flows: collection of all existing flows
//Monitor rate and mobility of existing flows
for each flow f in flows do

//Update elephant flow status
elephant = isElephantFlow(f);
if f.elephant = false and elephant = true) then

f.elephant = true; //flow becomes elephant
f.candidate += 3;

end
if f.elephant = true and elephant = false) then

f.elephant = false; //flow stops being elephant
f.candidate -= 3;

end
//Update mobility status
mobility = getDestinationMobility(f);
if f.mobility = high and mobility = low) then

f.mobility = low; //destination stopped moving
f.candidate += 3;

end
if f.mobility = low and mobility = high) then

f.mobility = high; //destination started moving
f.candidate -= 3;

end
if f.inBypass = true and f.candidate ¡ 7) then

removeFromBypass(f); f.inBypass = true;
end
if f.inBypass = false and f.candidate ¿ 7) then

addToBypass(f); f.inBypass = true;
end

end
Algorithm 5: Combined technique applied to existing flows.



181

addToBypass (Flow f)
src = f.source;
dst = f.dst;
if tunnel exists between src and dst) then

Add tunnel VLAN tag to f;
end
else

for each controller ic ∈ flow.intermediateControllers do
if latencyBetween(c, ic) > THRESHOLD then

latencyOk = false;
end

end
if latencyOK then

Create end-to-end inter-domain tunnel;
end
else

Create intra-domain tunnel;
end
Add tunnel VLAN tag to f;

end
serviceType = getServiceType();
mobilityDegree = getMobilityDegree();
if serviceType = bypass then

f.candidate += 3;
end
if mobility = low then

f.candidate += 4;
end

Algorithm 6: Combined technique applied to incoming flows.

of messages needed by the framework to create tunnels against a known protocol

such as label distribution protocol (LDP) [243]. To do so, we provide results of the

implementation on the GENI testbed [122] using the parameters shown in Table

6.2 and the topology shown in Fig. 6.12. Finally, we evaluate the scalability of the

framework by emulating a large topology in Mininet.

To generate MobilityFirst traffic, we used the same host stack implementation

as in Chapter 5 to use the ping and file transferring tools. For the Floodlight



182

controller, we worked on top of the implementation described in Chapter 5 and

we added two components. The first one is responsible for creating aNodes and

vLinks for each domain and exchange nSPs between controllers. The second one

is responsible for implementing the traffic engineering techniques described in

Section 6.5.

6.6.1 Elephant flow detection

First, we show how the techniques described can be used to create tunnels within a

domain, taking traffic behavior and mobility into consideration. The experimental

topology (fig. 6.9) was deployed in the GENI testbed. Virtual machines are used for

the GNRS, controller, senders and receiver. OpenFlow switches are implemented

using Open vSwitch instances. In this topology, nodes A, B and C are connected

to the network through intra-domain switch intra 1. To transmit inter-domain

packets, switch intra 1 forwards packets to its default border router, border 1. In

this example, border 1 routes packets to border 2.

In these experiments, we test how the controller chooses between path 1 (going

through intra-domain switch intra 2 or through intra 3. The decision of which

path to use is based on the following policies. First, tag flows as elephant if they

maintain a traffic rate of 100,000bps during at least 10 seconds. Second, use path

2 (through intra 3) for large flows. Third, do not use path 2 if the destination is

highly mobile, regardless of the traffic rate of the flow.

In the first experiment (fig. 6.10), senders A, B and C do the following steps.

At time 5, sender A starts a flow at 608bps. At time 11, sender B starts a flow at

1344bps. At time 18, sender C starts a flow at approx 700,000bps. At time 28, the

controller tags flow C as elephant and sends it through path B. Sender C sends

large amounts of data during 10 secs. At time 37, sender C reduces the rate to



183

Figure 6.9: Experimental topology. Sender nodes are connected to switch intra 1

and the destination device is in another domain.

1	
  

10	
  

100	
  

1000	
  

10000	
  

100000	
  

1000000	
  

1	
   3	
   5	
   7	
   9	
   11	
  13	
  15	
  17	
  19	
  21	
  23	
  25	
  27	
  29	
  31	
  33	
  35	
  37	
  39	
  41	
  43	
  45	
  47	
  49	
  51	
  
Time	
  (s)	
  

Traffic	
  on	
  path	
  1	
  (bps)	
  

Traffic	
  on	
  path	
  2	
  (bps)	
  

Figure 6.10: Detection of a large flow. When sender C starts a large flow, the
controller tags it at elephant. Next it removes the tag when the load is reduced.

688bps.

The results show how flows from senders A and B stay on path 1 as expected.

When the large flow by sender C starts, it stays on path 1 for 10 seconds, as defined

by the policy. After that, the controller tags it as elephant flow and moves it to

path 2. The red, dashed line shows how traffic from sender C is going through

path 2 but the first two flows stay on path 1. When sender C lowers the rate at

time 37, the controller waits for 10 seconds and then removes the elephant flow

tag and traffic is moved to path 1.



184

6.6.2 Mobility-aware routing

In the previous experiment, we did not take the mobility of the destination into

consideration. In the following one, we show how our framework is capable of

mobility-aware tunneling.

The experimental setup is as follows. We start with an elephant flow that has

already been detected and has been routed through path 2, a fast path for large

flows. Meanwhile, another mouse flow is forwarded through path 1. The first

50 seconds of Fig. 6.11 show the two flows on paths 1 and 2. After 45 seconds,

we simulate the mobility of the destination device by sending a message to the

GNRS indicating that the GUID is now attached to a different access router. As a

consequence, the controller detects that the destination is mobile and downgrades

the flow using the combined technique (see Alg. 5). Figure 6.11 shows how traffic

on path 2 stops and the large flow is now routed through path 1.

There are several parameters in this technique that can be customized by the

domain operator. First, the controller needs to query the GNRS to know the

mobility of the destination devices of existing flows. The frequency of such GNRS

lookups can be modified. Second, the threshold to decide that a destination

shows enough mobility to be removed from a path can also be changed. In this

experiment, we removed the flow from a path with a single GNRS update detected.

However, for some scenarios this value could be larger.

Table 6.2: Summary of components and key parameters used in the experiments

Type of switch Open vSwitch version 1.9.3
Controller version Floodlight 1.0

Controller host Ubuntu 12.04 LTS
Controller host processor Intel(R) Xeon(R), 2.67GHz

End-user OS Ubuntu 12.04 LTS
Link bandwidth 100 Mbps



185

1	
  

10	
  

100	
  

1000	
  

10000	
  

100000	
  

1000000	
  

10000000	
  

1	
   6	
   11	
   16	
   21	
   26	
   31	
   36	
   41	
   46	
   51	
   56	
   61	
   66	
  
Time	
  (s)	
  

Traffic	
  on	
  path	
  1	
  (bps)	
  

Traffic	
  on	
  path	
  2	
  (bps)	
  

Figure 6.11: Downgrading a large flow due to destination mobility. When the
destination becomes mobile, the flow is switched to a different path.

Figure 6.12: Experimental topology. Three SDN-based domains are deployed with
end-nodes on ASes 1 and 3 and traffic going through an in-transit domain (AS2).

6.6.3 Inter-domain tunneling and flow aggregation

Next we show how multiple domains agreeing on an inter-domain label-based

tunnel reduces the number of packet in messages received by transit controllers.

Table 6.3 shows in average how many packets must be forwarded to the controller

by the switch when such packet does not match any rule in the flow tables.

The experimental setup is as follows. We create 25 flows originating in AS1

with different destinations in AS3. Since the destination is different for each flow,

then the controller must process the first packets of all flows. Out of these 25 flows,

six send data at rates above 1000000 bps, six at rates above 100000 bps, seven at



186

Table 6.3: Number of packet in messages received by the controller based on the
traffic rate.

Traffic rate Packet in messages per flow
1000000 10

100000 7

10000 3

1000 2

rates above 10000 bps and six transmit data at lower rates. Out of these 25 flows,

18 are sent from AS1 to AS3 through a previously setup tunnel. The remaining

seven flows are forwarded un-labeled between each domain.

0 10 20 30 40 50

0

50

100

Time (1 min total)

N
um

of
m

sg
s

Without tunnels
With tunnels

Figure 6.13: Accumulated number of packet in messages received by the AS2

domain controlle with and without inter-domain tunnels.

Figure 6.13 shows the number of packet in messages received per second by

the controller. When all traffic is forwarded without using an inter-domain cut-

through tunnel, the controller receives a total of 128 messages (top curve). However,

when inter-domain tunnels are created for some of the flows, the total number of

messages is reduced to 33 (bottom curve), for a 75% reduction. These results are

specific to this topology and flow demands, but our goal is just to demonstrate

how the creation of inter-domain tunnels can reduce the control plane delay. In



187

total, 17 flows are being aggregated.

6.6.4 Reduction of label distribution messages

Next we demonstrate how combining SDN with tunnel naming reduces the number

of messages needed to create and maintain inter-domain tunnels. To do this, we

briefly describe how all the functionality of LDP used in MPLS is implemented

by our framework and we compare the number of messages needed to setup

inter-domain tunnels.

3 4 5 6 7 8 9 10

10

20

30

40

50

Number of hops in the tunnel

N
um

of
m

sg
s

LDP
1 domain SDN
2 domains SDN
3 domains SDN

Figure 6.14: Number of messages needed to setup inter-domain tunnels using LDP
or our framework.

Some benefits are due to using SDN. First, note that by using SDN, the num-

ber of intra-domain messages between peers is unnecessary. Instead, the SDN

controller is responsible for pushing forwarding rules to the switches. Therefore,

there is no need for intra-domain discovery messages. Second, session messages

exist between domain controllers as opposed to peering routers. This reduces the

number of messages needed because the only links carrying these messages are



188

those between edge routers of neighbor domains. Third, advertisement messages

are reduced for two reasons. On the one hand, intra-domain advertisement is not

necessary because the domain controller is network aware. On the other hand,

inter-domain advertisement is already achieved using the network state packets

described in Section 6.4.2. For this reason, advertising messages are only needed to

request a new tunnel creation, as described in Section 6.4.3. Table 6.4 summarizes

the key differences between messaging in LDP and the proposed framework.

Table 6.4: Message equivalency between LDP and SDN-GNRS

Message type LDP SDN-GNRS
Discovery Peer-to-peer between

routers
No additional messages
required, since this is
achieved using network
state packets

Session Peer-to-peer between
routers

A session between do-
main controllers is re-
quired regardless of
tunnels. No additional
messages required.

Advertisement Peer-to-peer between
routers

Controller-to-controller
and controller-to-GNRS
messages are required

Notification Peer-to-peer between
routers

Controller-to-controller
messages are required

Flow rule injection Not required Controller-to-switch
messages are needed to
push forwarding rules
to the switches. Figure
6.14 does consider
these messages in the
comparison.

Other benefits are due to naming the tunnels as network objects. First, the

GNRS provides a common platform to exchange information between domain

controllers. In MobilityFirst, the GNRS plays a key role in how packets are routed,



189

so we can assume that it is a highly available entity and a session between each

controller and the GNRS will exist. This reduces the complexity of establishing

sessions between multiple domains. Second, relying on the GNRS reduces the

number of inter-domain messages needed when more than two domains are

involved. Suppose in Fig. 6.12 that AS3 needs to communicate with AS1. There is

no need for AS2 to be involved in the communication and the GNRS provides a

direct way for AS1 and AS3 to exchange information.

These benefits can be appreciated in Fig. 6.14. First, notice how in LDP the

number of messages grows independent of the number of domains traversed by

the tunnel, as it requires three pairs of messages between peering routers in all

cases. In contrast, when using SDN and the GNRS, the major factor for increase in

the number of messages is the number of domains traversed. For a single domain,

there is no need for the GNRS and the plot only includes messages needed to insert

forwarding rules in the forwarding tables of the switches. Next, as the number

of domains increases, we need more controller-to-controller messages as well as

controller-to-GNRS messages. However, notice how the total number of messages

stays below that of LDP for tunnels with four or more hops.

6.6.5 Scalability

Finally, we focus on evaluating the scalability of the proposed framework. To do so,

we emulate in Mininet the same topology (Fig. 6.5) used to evaluate the heuristic

in Section 6.3. To run MobilityFirst traffic on Mininet, we collect traffic traces from

our experiments on the GENI testbed and replay them from the Mininet hosts.

Using the same input as in Section 6.3, we measure the average delay faced by the

first packet of a flow given different traffic demands. In Fig. 6.5, we attach five

hosts to every router in Domain 1 and we randomly select a source attached to



190

router 20 in Domain 4. As a consequence, in this experiment there are 15 hosts

capable of sending packets at different rates and all flows require an inter-domain

data transfer between domains 1 and 4.

0 200 400 600 800 1,000 1,200
2

2.1

2.2

2.3

Total number of flows

D
el

ay
(m

s)

Figure 6.15: Total delay encountered by the first packet of each new flow.

0 200 400 600 800 1,000 1,200
0

200

400

600

800

1,000

1,200

Total number of flows

N
um

be
r

of
tu

nn
el

s Framework
ILP solver

Figure 6.16: Total number of tunnels created by the framework and the ILP solver.

Fig. 6.15 shows the average delay faced by each packet given different traffic

rates. This delay includes the switch-to-controller round-trip latency as well as the

processing time at the controller. Given that the latency remains fairly constant,

the low increase is due to the controller having to process more packet in messages



191

at the same time. However, notice that this delays remain very small, since the

running time of the traffic engineering algorithm is short.

Another interesting finding is that the optimization problem creates more

tunnels than our routing framework, as shown in Fig. 6.16. The reason for this

is because our traffic engineering techniques only pick some flows as candidates

for tunnels and leave others out due to mobility or low bit rate. Although this

increases the total delay in the network, some flows do benefit from hop-by-hop

transmissions to improve content delivery.

6.7 Conclusion

In this chapter we proposed an SDN-based routing framework that enables inter-

domain and intra-domain cut-through switching in the MobilityFirst architecture.

Our framework tackles specific challenges of this FIA network, such as inherent

mobility support and per-flow decision making based on flow behavior. Particu-

larly, three aspects are novel in this framework. First, domain controllers advertise

multiple paths to the same destination, with link information such as bandwidth,

variability, availability and latency for each hop to ensure edge-awareness and

efficient content delivery. Second, our framework provides mobility-aware, cut-

through mechanisms using label-based forwarding at both intra-domain and

inter-domain scale to ensure efficiency in the core network. Third, our framework

implements granular, per-flow decision making to ensure appropriate routing

based on flow behavior and mobility.

Our evaluation results show that the domain controller is capable of routing

elephant flows through a faster path while remaining mobility-aware (flows with

a highly mobile destination are routed through a different path to ensure efficient



192

delivery). We also show how a proactively created cut-through tunnel across three

domains reduces the number of packets that need to be processed by the transit

controller by 75%. Furthermore, we show how the proposed framework scales

better than LDP when creating these tunnels. Finally, we demonstrate that the

framework is scalable and capable of handling up to 1000 flows without adding

any significant delay to incoming packets.

Our work also contributes to the deployment of SDN at Internet-scale by

proposing a novel mechanism to exchange routing information across domains.

Our work differs from other studies that have addressed inter-domain routing

SDN in two aspects: first, our network is designed to inherently support mobility,

a key requirement for the future Internet. Second, our architecture leverages a

centralized name resolution system (GNRS in the specific case of MobilityFirst)

that significantly reduces the complexity of the messages that need to be exchanged

between network controllers to agree on inter-domain cut-through switching.

As future work, we will complete the implementation of the prototype and in-

tegrate it into the MobilityFirst deployment. We also plan to evaluate the proposed

mechanisms on a larger scale using experimental scenarios which incorporate

high-speed optical switching components.



193

Chapter 7

Conclusions and future directions

The frameworks proposed in this dissertation, as well as a plethora of related work,

show how SDN can be used to simplify network management at all scales. By

decoupling the control plane from the data plane, SDN-based networks provide

a clear separation between network applications and the underlying topology

and this benefit has been instrumental in making networks simpler and more

manageable. SDN has renovated research in topics such as multi-layer integration,

network abstraction and network function virtualization. SDN has also been

widely adopted by both vendors and providers. The implementation of SDN is

not standardized yet. However, the adoption of a paradigm where an operation

system stands between the devices and the applications has been accepted as a

new way of deploying both local and wide area networks.

When OpenFlow was proposed in 2008, it triggered a large amount of research

and publications in all areas of networking using SDN. However, OpenFlow was

considered as a hype by some and the challenge was to convince readers of the

advantages of decoupling the control plane from the data plane. Clearly, networks

can be operated without SDN. Therefore, the initial motivation of our work was

to demonstrate how SDN can simplify network management and what are the

advantages of using an SDN centralized controller instead of distributed data



194

plane protocols.

Given that OpenFlow was been proposed for LANs and data centers, in Chapter

3 we proposed OpenSec, an OpenFlow-based security framework that allows a

network security operator to create and implement security policies written in

human-readable language. Using OpenSec, the user can describe a flow in terms of

OpenFlow matching fields, define which security services must be applied to that

flow (deep packet inspection, intrusion detection, spam detection, etc.) and specify

security levels that define how OpenSec reacts if malicious traffic is detected. We

implemented OpenSec on the GENI testbed and demonstrated its functionality

using two use cases applied to campus networks: housing network control and

science demilitarized zone deployment. Our results demonstrate that up to 95%

of attacks in an existing data set can be detected and 99% of malicious source

nodes can be blocked. Likewise, we show that our policy specification language is

simpler while offering fast translation times compared to existing solutions.

Next, we focused on demonstrating the advantages of using SDN in transport

networks. In these networks, two challenges exist that are not as important in

LANs: WAN virtualization and multi-layer provisioning. Network virtualization

has become one of the driving applications of SDN. Providing a virtual software

layer between devices and external applications is hard to achieve using distributed

protocols only. Multi-layer provisioning using SDN, however, is a more challenging

task. Indeed, OpenFlow was designed for standard Ethernet devices and flow-level

management but optical devices are analog and proprietary.

To investigate if SDN could be used to make transport networks more flexible,

in Chapter 4, we proposed XTEF to enable application-driven traffic engineering

and provision transport network resources using on-demand WDM tunnels. XTEF

proposes a solution to the two challenges mentioned above: network virtualization



195

and multi-layer provisioning. First, we used OneSwitch to abstract the entire WAN

as a single virtual switch. By doing this, we proposed a solution to the problem of

allowing external tenants to program paths across the WAN without revealing the

network topology. Second, we proposed the DTS algorithm as a novel technique

to increase network capacity using dynamic, short-term WDM tunnels through

available wavelengths. As a result, we demonstrated how SDN can be used by

network providers to manage a multi-tenant WAN. Our results show that 10%

additional flows can be granted the requested bandwidth using the tunnels and

this is possible without requiring the intervention of a network operator.

To further demonstrate how SDN enables flexible large scale networks, we

investigated how MobilityFirst can benefit from it. This FIA proposes several

techniques to ensure edge-awareness and efficient delivery to mobile devices.

Our contribution to the project consisted on exploring how SDN can be used to

efficiently forward flows that do not require mobility support using cut-through

switching. To this end, we first proposed in Chapter 5 an SDN-based control plane

for MobilityFirst. In this work, we introduced a general bypass capability within

the MobilityFirst architecture that provides better performance and enables both

individual and aggregate flow-level traffic control. Furthermore, we presented an

OpenFlow-based proof-of-concept implementation of the bypass function using

layer 2 VLAN tagging. We also ran experiments on the ORBIT and GENI testbeds

to evaluate the performance and scalability of the solution. By implementing the

bypass functionality, we were able to significantly reduce the number of messages

processed by the controller as well as the number of flow rules that need to be

pushed into the switches.

Given the benefits achieved at intra-domain scale using cut-through switching

in MobilityFirst, in Chapter 6 we investigated how to implement this functionality



196

across multiple domains. First, we proposed and solved an optimization problem

that minimizes the total transfer time using inter-domain tunnels. Second, we

proposed an SDN-based routing framework for the MobilityFirst architecture

capable of dynamically creating such tunnels. The main novelty of this framework

is to name tunnels as network objects to simplify how tunnels are created and

maintained. To validate our framework, we implemented on the GENI testbed a

prototype for the MobilityFirst architecture. Our experiments with the optimization

problem showed that the inter-domain latency between controllers plays a key role

on how tunnels are setup. Furthermore, our implementation experiments showed

that the control plane delay can be reduced by 75% when using inter-domain

tunnels. Finally, we showed how our framework needs fewer messages than

current protocols such as label distribution protocol (LDP) to setup intra-domain

and inter-domain tunnels.

This dissertation addressed and proposed solutions to the following problems

using SDN: policy-based management, network virtualization, multi-layer inte-

gration, WDM tunneling, intra-domain cut-through switching and inter-domain

routing with cut-through switching. All these problems can be solved without

SDN, but we have demonstrated how SDN can simplify the solutions.

While our work proposes solutions for different types of networks, it is reason-

able to think of integrating our contributions as part of the same architecture. For

example, OpenSec can be modified to enable policy-based security across domains

when managing inter-domain cut-through switching. In this scenario, a domain

administrator can implement policies that enable different levels of trust across

domains. Using OpenSec, the operator can specify which domains are allowed to

initiate cut-through switching requests that should be accepted by the controller.

Likewise, a policy could be used to limit the resources available for inter-domain



197

tunnels, such as the number of tunnels or which routes can be used by these

tunnels. Another example would be to integrate XTEF with cut-through switching.

Indeed, we did not address the problem of inter-domain bandwidth provisioning

and the usage of inter-domain cut-through switching is a natural next step in that

direction.

7.1 Future directions

Each chapter of this dissertation provides opportunities for future work. At

campus scale, we would like to pursue two directions. First, OpenSec can be

extended to provide a framework for Cloud-based security, where flow processing

is done in the Cloud instead of locally. Indeed, we foresee security becoming a

routing problem where flows must be sent to the processing units, as proposed

in OpenSec. The advantage of decoupling the control plane and the routing from

the security mechanisms is that exporting the security devices to remote locations

is simpler to deploy. As a consequence of this, we also plan to secure OpenSec

from external attacks to prepare the framework for such a Cloud-based scenario.

In a multi-tenant deployment with devices deployed in the Cloud, a model threat

would include a compromised network application, a data plane attack and other

scenarios that should be considered. Therefore, securing OpenSec from these

attacks is a necessary step before deploying the framework.

In chapter III we described several challenges for scientific networks, such as

WAN virtualization, scalability, multi-domain circuits, security and interoperability

and multi-layer provisioning. In this dissertation we addressed WAN virtualization

and multi-layer control. As future work, we first plan to investigate what is the

most efficient way to achieve inter-domain circuits using SDN domain controllers.



198

While current solutions such as OSCARS already provide multi-domain circuit

reservation, novel techniques must be designed so that circuits can be created

without requiring as much trust among domains as OSCARS does. Secondly, we

plan to investigate the security implications of having a multi-tenant WAN with

automated application controllers programming the network. We are interested in

designing mechanisms to identify compromised application controllers and ensure

separation between tenants.

In chapters IV and V we described a routing framework with cut-through

switching for MobilityFirst. While this framework provides efficient data transfers

across domains, we are interested in better supporting mobility. In our current

mathematical formulation and implementation, the cut-through tunnels created

have static end-points. We are mainly interested in creating mobile tunnels that

adjust the end-points to “follow” the mobile destination nodes. Furthermore, the

problem formulation can be extended into many variations. In particular, we plan

to investigate the steady-state scenario where traffic and tunnels exist when the

optimization problem starts. This adds the additional challenge of having to tear

down tunnels efficiently and measuring its effect on the network performance.

While SDN has been a widely accepted technology, the discussion on the

appropriate southbound API is still open. OpenFlow 1.0 proved to be an excellent

experimentation tool for researchers and for small scale deployments in campus

networks and datacenters. However, larger scale deployments across WANs or

domains have shown how OpenFlow 1.0 lacks of some necessary features such as

path protection, recovery, management plane protocol or support for layers below

L2. Newer versions of the OpenFlow protocol, such as OpenFlow 1.3 attempted to

solve this by adding several features to make the protocol usable in production

networks. The improvements included IPv6 support and Quality of Service (QoS),



199

for example. Also, the usage of multiple flow tables and buckets greatly increases

what switches can do without contacting the controller. The downside of this

innovation is that OpenFlow 1.3 is much harder to comply to in comparison to

OpenFlow 1.0.

As a consequence, interoperability problems arise because deployments work-

ing on a specific hardware usually do not function well on different devices. As

the innovation and implementation of the OpenFlow protocol continues, network

vendors have looked at other options such as XMPP (Extensible Messaging and

Presence Protocol), BGP-LS (Border Gateway Protocol - Link State) or PCEP (Path

Computation Element Protocol). These protocols bring advantages such as provid-

ing a management plane (which is not provided by OpenFlow) and the ability to

support legacy hardware during the transition to SDN. Similarly, different vendors

provide different solutions for the control plane. Although OpenFlow was first

proposed to standardize SDN, in reality vendors are still trying to push their own

hardware combined with their own software.

Finally, the east-west interface between controllers is also at an emergent state

only. We described in the related work of Chapter 6 how very little work has been

done on inter-domain SDN. Although we proposed a framework for inter-domain

routing, this problem is not completely solved yet and is likely to receive major

attention.



200

Bibliography

[1] OpenFlow Switch Specification, Version 1.1.0 Implemented (Wire Protocol

0x02). [Online]. Available: http://www.openflow.org/documents/openflow-

spec-v1.1.0.pdf

[2] United States Unified Community Anchor Network. United States

Unified Community Anchor Network. [Online]. Available: http:

//www.usucan.org/about

[3] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “MobilityFirst: A Ro-

bust and Trustworthy Mobility-centric Architecture for the Future Internet,”

SIGMOBILE Mob. Comput. Commun. Rev., vol. 16, no. 3, pp. 2–13, December

2012.

[4] OpenFlow Experimentation in ORBIT. [Online]. Available: http:

//www.orbit-lab.org/wiki/Documentation/OpenFlow

[5] Cisco. Cisco Visual Networking Index: Global Mobile

Data Traffic Forecast Update, 20142019. [Online]. Avail-

able: http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white paper c11-520862.html

[6] “Large Hadron Collider.” [Online]. Available: http://home.web.cern.ch/

topics/large-hadron-collider



201

[7] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using

OpenFlow: A Survey,” IEEE Communications Surveys and Tutorials, vol. 16,

no. 1, pp. 493–512, 2013.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus

Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,

March 2008.

[9] A. Lara and B. Ramamurthy, “OpenSec: A Framework for Implementing

Security Policies using OpenFlow,” in Proceedings of the IEEE Globecom Con-

ference, December 2014.

[10] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S. Stuart, and A. Vahdat, “B4:

Experience with a Globally-Deployed Software Defined WAN,” in Proceedings

of the ACM SIGCOMM Conference, 2013.

[11] A. Lara and B. Ramamurthy, “Dynamic network provisioning for SDN

transport networks,” in Conference submission, 2016.

[12] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley, C. Pa-

padopoulos, L. Wang, and B. Zhang, “Named data networking,” SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, July 2014.

[13] “MobilityFirst,” http://mobilityfirst.winlab.rutgers.edu/.

[14] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,

M. Freedman, A. Haeberlen, Z. Ives, A. Krishnamurthy, W. Lehr, B. Loo,

D. Mazires, A. Nicolosi, J. Smith, I. Stoica, R. van Renesse, M. Walfish,



202

H. Weatherspoon, and C. Yoo, “The NEBULA Future Internet Architecture,”

in The Future Internet, ser. Lecture Notes in Computer Science, A. Galis and

A. Gavras, Eds. Springer Berlin Heidelberg, 2013, vol. 7858, pp. 16–26.

[15] ChoiceNet: An Economy Plane for the Internet. [Online]. Available:

http://www.ecs.umass.edu/ece/wolf/ChoiceNet/

[16] A. Lara, B. Ramamurthy, E. Pouyoul, and I. Monga, “WAN Virtualization

and Dynamic End-to-End Bandwidth Provisioning Using SDN,” in Optical

Fiber Conference (OFC), 2015.

[17] A. Lara and B. Ramamurthy, “Design Challenges in Using Software-Defined

Networking for Science Networks,” in SDN for Scientific Networking Workshop

at Super Computing, November 2015.

[18] OpenFlow Current Deployments. [Online]. Available: http://www.openflow.

org/wp/current-deployments/

[19] Open Networking Foundation. [Online]. Available: https://www.

opennetworking.org/

[20] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, and

J. Halpern. Forwarding and Control Element Separation (ForCES) Protocol

Specification. [Online]. Available: http://tools.ietf.org/html/rfc5810

[21] J. Zander and R. Forchheimer, “The SOFTNET project: a retrospect,” in 8th

European Conference on Electrotechnics, June 1988, pp. 343 –345.

[22] D. L. Tennenhouse and D. Wetherall, “Towards an active network archi-

tecture,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 2, pp. 5–17, April

1996.



203

[23] J. M. Smith and S. M. Nettles, “Active networking: one view of the past,

present, and future,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C: Applications and Reviews, vol. 34, no. 1, pp. 4 –18, February 2004.

[24] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.

Minden, “A survey of active network research,” IEEE Communications Maga-

zine, vol. 35, no. 1, pp. 80 –86, January 1997.

[25] J. W. Lee, R. Francescangeli, J. Janak, S. Srinivasan, S. A. Baset, H. Schulzrinne,

Z. Despotovic, and W. Kellerer, “NetServ: Active Networking 2.0,” in 2011

IEEE International Conference on Communications Workshops (ICC), June 2011,

pp. 1 –6.

[26] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, “The

SoftRouter Architecture,” in Proceedings of the ACM SIGCOMM Workshop on

Hot Topics in Networking, 2004.

[27] E. Keller and J. Rexford, “The ”Platform as a service” model for networking,”

in Proceedings of the 2010 Internet Network Management Conference on Research

on Enterprise Networking, 2010.

[28] A. A. Lazar. Aurel A. Lazar home page. [Online]. Available: http:

//www.ee.columbia.edu/∼aurel/networking.html

[29] J. Biswas, A. A. Lazar, J. F. Huard, K. S. Lim, S. Mahjoub, L. F. Pau, M. Suzuki,

S. Torstensson, W. Wang, and S. Weinstein, “The IEEE P1520 Standards

Initiative for Programmable Network Interfaces,” in IEEE Communications

Magazine, vol. 36, no. 10, 1998, pp. 64–70.



204

[30] Internet Engineering Task Force (IETF). Proposal: Software Defined

Networking Research Group (SDNRG). [Online]. Available: http:

//trac.tools.ietf.org/group/irtf/trac/wiki/sdnrg

[31] Internet Research Task Force (IRTF). Software Defined Networking

Research Group (SDNRG) - Charter. [Online]. Available: http://www.1-4-

5.net/∼dmm/sdnrg/sdnrg.html

[32] Internet Engineering Task Force (IETF). Analysis of Comparisons between

OpenFlow and ForCES. [Online]. Available: http://tools.ietf.org/html/draft-

wang-forces-compare-openflow-forces-01

[33] OpenFlow Switch Specification, Version 1.0.0 (Wire Protocol 0x01). [Online].

Available: http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

[34] OpenFlow Switch Specification, Version 1.2 (Wire Protocol 0x03). [Online].

Available: https://www.opennetworking.org/images/stories/downloads/

openflow/openflow-spec-v1.2.pdf

[35] OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04). [Online].

Available: https://www.opennetworking.org/images/stories/downloads/

specification/openflow-spec-v1.3.0.pdf

[36] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: towards an operating system for networks,” SIGCOMM

Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, July 2008.

[37] David Erickson. Beacon Home. [Online]. Available: https://openflow.

stanford.edu/display/Beacon/Home/



205

[38] Z. Cai, A. L. Cox, and T. S. Eugene. Maestro: A System for

Scalable OpenFlow Control. [Online]. Available: http://www.cs.rice.edu/

∼eugeneng/papers/TR10-11.pdf

[39] Floodlight. [Online]. Available: http://floodlight.openflowhub.org/

[40] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,

and D. Walker, “Frenetic: a network programming language,” in Proceedings

of the 16th ACM SIGPLAN International Conference on Functional Programming,

2011.

[41] Trema, Full-Stack OpenFlow Framework in Ruby and C. [Online]. Available:

http://trema.github.com/trema/

[42] Node.flow. [Online]. Available: https://github.com/dreamerslab/node.flow

[43] Node.js. [Online]. Available: http://nodejs.org/

[44] B. Pfaff, J. Pettit, K. A. T. Koponen, M. Casado, and S. Shenker, “Extend-

ing networking into the virtualization layer,” in Proceedings of the ACM

SIGCOMM HotNets, 2009.

[45] Open vSwitch. [Online]. Available: http://openvswitch.org/

[46] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid pro-

totyping for software-defined networks,” in Proceedings of the Ninth ACM

SIGCOMM Workshop on Hot Topics in Networks, 2010.

[47] NetFPGA. NetFPGA. [Online]. Available: http://netfpga.org/foswiki/bin/

view/NetFPGA/OneGig/LearnMore



206

[48] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown, “Where

is the debugger for my software-defined network?” in Proceedings of the First

Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[49] NOX. [Online]. Available: http://www.noxrepo.org

[50] Maestro Platform. [Online]. Available: http://code.google.com/p/maestro-

platform/

[51] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.-Y.

Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman, D. Underhill,

T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller, R. Johari, N. McK-

eown, and G. Parulkar, “Carving research slices out of your production

networks with OpenFlow,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,

pp. 129–130, January 2010.

[52] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: taking control of the enterprise,” SIGCOMM Comput. Commun. Rev.,

vol. 37, no. 4, pp. 1–12, October 2007.

[53] IETF. A Path Computation Element (PCE)-Based Architecture. [Online].

Available: http://tools.ietf.org/html/rfc4655

[54] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “OpenFlow and PCE

architectures in Wavelength Switched Optical Networks,” in 16th International

Conference on Optical Network Design and Modeling (ONDM), April 2012.

[55] Energy Sciences Network (ESNet). On-Demand Secure Circuits and Advance

Reservation System. [Online]. Available: http://tools.ietf.org/html/rfc4655



207

[56] V. Vokkarane. Progress report. [Online]. Available: http://www.cis.umassd.

edu/∼vvokkarane/common/reports/Y2Q1report.pdf

[57] K. Nichols, V. Jacobson, and L. Zhan. A Two-bit Differentiated

Services Architecture for the Internet. [Online]. Available: http:

//tools.ietf.org/html/rfc2638

[58] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack

detection using NOX/OpenFlow,” in IEEE 35th Conference on Local Computer

Networks (LCN), October 2010.

[59] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with Open-

Flow/NOX architecture,” in 19th IEEE International Conference on Network

Protocols (ICNP), 2011.

[60] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester, “Software

defined networking: Meeting carrier grade requirements,” in 18th IEEE

Workshop on Local Metropolitan Area Networks (LANMAN), 2011.

[61] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari, “Plug-

n-Serve: Load-balancing web traffic using Open-Flow,” in ACM SIGCOMM

Demo, 2009.

[62] J. Suh, H. Choi, W. Yoon, T. You, T. Kwon, and Y. Choi, “Implementation

of a Content-oriented Networking Architecture (CONA): A Focus on DDoS

Countermeasure,” in European NetFPGA Developers Workshop, September

2010.



208

[63] Y. Chu, M. Tseng, Y. Chen, Y. Chou, and Y. Chen, “A novel design for future

on-demand service and security,” in 12th IEEE International Conference on

Communication Technology (ICCT), 2010.

[64] X. Liu, H. Xue, X. Feng, and Y. Dai, “Design of the multi-level security net-

work switch system which restricts covert channel,” in IEEE 3rd International

Conference on Communication Software and Networks (ICCSN), 2011.

[65] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random host mutation:

transparent moving target defense using software defined networking,” in

Proceedings of the First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.

[66] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: a

slice abstraction for software-defined networks,” in Proceedings of the First

Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[67] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flexible Access

Management System for Campus VLAN Based on OpenFlow,” in IEEE/IPSJ

11th International Symposium on Applications and the Internet (SAINT), 2011.

[68] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstrac-

tions for network update,” in Proceedings of ACM SIGCOMM, 2012.

[69] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates for

software defined networks: change you can believe in!” in Proceedings of the

10th ACM Workshop on Hot Topics in Networks, 2011.

[70] N. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,” in

ACM SIGCOMM HotSDN Workshop, 2013.



209

[71] R. McGeer, “A safe, efficient update protocol for OpenFlow networks,” in

Proceedings of the First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.

[72] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates with

bandwidth guarantees,” in Proceedings of the First Workshop on Hot Topics in

Software Defined Networks (HotSDN), 2012.

[73] J. Luo, J. Pettit, M. Casado, J. Lockwood, and N. McKeown, “Prototyping

Fast, Simple, Secure Switches for Ethane,” in 15th Annual IEEE Symposium

on High-Performance Interconnects, 2007.

[74] D. M. F. Mattos, N. C. Fernandes, V. T. da Costa, L. P. Cardoso, M. E. M.

Campista, L. H. M. K. Costa, and O. Duarte, “OMNI: OpenFlow MaNage-

ment Infrastructure,” in 2011 International Conference on the Network of the

Future (NOF), 2011.

[75] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom network

processing via waypoint services,” in 3rd Workshop on Infrastructures for

Software/Hardware Co-Design, 2011.

[76] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-level

reactive network control,” in Proceedings of the First Workshop on Hot Topics in

Software Defined Networks (HotSDN), 2012.

[77] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,

“Hierarchical policies for software defined networks,” in Proceedings of the

First Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.



210

[78] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of IP

multicast in overlay networks using OpenFlow,” in Proceedings of the First

Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[79] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network functionality,”

in Proceedings of the First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.

[80] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query primitives for

SDN-based cloudnetwork management,” in Proceedings of the First Workshop

on Hot Topics in Software Defined Networks (HotSDN), 2012.

[81] D. Simeonidou, R. Nejabati, and S. Azodolmolky, “Enabling the future

optical Internet with OpenFlow: A paradigm shift in providing intelligent

optical network services,” in 2011 13th International Conference on Transparent

Optical Networks (ICTON), 2011.

[82] S. Das, G. Parulkar, and N. McKeown, “Unifying Packet and Circuit Switched

Networks,” in Proceedings of IEEE GLOBECOM Workshops, 2009.

[83] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong,

“Packet and circuit network convergence with OpenFlow,” in 2010 Conference

on (OFC/NFOEC) Optical Fiber Communication (OFC), collocated National Fiber

Optic Engineers Conference, 2010.

[84] S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and

P. D. Desai, “Application-aware aggregation and traffic engineering in a

converged packet-circuit network,” in Optical Fiber Communication Conference

and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference,

2011.



211

[85] S. Das, A. R. Sharafat, G. Parulkar, and N. McKeown, “MPLS with a simple

OPEN control plane,” in Optical Fiber Communication Conference and Exposition

(OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 2011.

[86] O. El Ferkouss, S. Correia, R. Ben Ali, Y. Lemieux, M. Julien, M. Tatipa-

mula, and O. Cherkaoui, “On the Flexibility of MPLS Applications over

an OpenFlow-Enabled Network,” in 2011 IEEE Global Telecommunications

Conference (GLOBECOM 2011), 2011.

[87] J. Kempf, S. Whyte, J. Ellithorpe, P. Kazemian, M. Haitjema, N. Beheshti,

S. Stuart, and H. Green, “OpenFlow MPLS and the open source label

switched router,” in Proceedings of the 23rd International Teletraffic Congress,

2011.

[88] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE and MPLS

VPNS with OpenFlow,” in Proceedings of the ACM SIGCOMM, 2011.

[89] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown,

G. Parulkar, A. Akella, N. Feamster, R. Clark, A. Krishnamurthy, V. Brajkovic,

and T. Anderson, “Aster*x: Load-Balancing Web Traffic over Wide-Area

Networks,” in Open Networking Summit Demo, 2011.

[90] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load Balanc-

ing Gone Wild,” in Proceedings of the 11th USENIX conference on Hot topics in

management of internet, cloud, and enterprise networks and services, 2011.

[91] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Enabling

fast failure recovery in OpenFlow networks,” in 8th International Workshop on

the Design of Reliable Communication Networks (DRCN), 2011.



212

[92] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: verifying

network-wide invariants in real time,” in Proceedings of the First Workshop on

Hot Topics in Software Defined Networks (HotSDN), 2012.

[93] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A

security enforcement kernel for OpenFlow networks,” in Proceedings of the

First Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[94] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou, and

D. Simeonidou, “Integrated OpenFlow–GMPLS control plane: an overlay

model for software defined packet over optical networks,” Opt. Express,

vol. 19, no. 26, pp. B421–B428, December 2011.

[95] S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN Can Suc-

ceed Where GMPLS Failed,” in European Conference and Exhibition on Optical

Communication. Optical Society of America, 2012, p. Tu.1.D.1.

[96] O. Baldonado. SDN, OpenFlow, and next-generation data center networks.

[Online]. Available: http://www.eetimes.com/design/embedded/4371543/

SDN--OpenFlow--and-next-generation-data-center-networks

[97] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: dynamic flow scheduling for data center networks,” in Proceedings

of the 7th USENIX conference on Networked systems design and implementation,

2010.

[98] C. Rotsos, R. Mortier, A. Madhavapeddy, B. Singh, and A. W.

Moore, “Cost, performance and flexibility in OpenFlow: Pick

three,” Workshop on Software Defined Networks Co-located with the IEEE



213

International Conference on Communications (ICC), 2012. [Online]. Available:

http://www.cs.nott.ac.uk/∼rmm/papers/pdf/iccsdn12-mirageof.pdf

[99] R. Bennesby, P. Fonseca, E. Mota, and A. Passito, “An inter-as routing

component for software-defined networks,” in IEEE Network Operations and

Management Symposium (NOMS), 2012.

[100] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol,

and N. McKeown, “OpenRoads: empowering research in mobile networks,”

SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 125–126, January 2010.

[101] OpenFlow Wireless. [Online]. Available: http://www.openflow.org/wk/

index.php/OpenFlow Wireless

[102] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian, and

N. McKeown, “The Stanford OpenRoads Deployment,” in Proceedings of the

4th ACM International Workshop on Experimental Evaluation and Characterization,

2009.

[103] K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Delivering capacity for

the mobile internet by stitching together networks,” in Proceedings of the 2010

ACM Workshop on Wireless of the Students, by the Students, for the Students,

2010.

[104] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan, N. Handigol,

N. McKeown, and G. Parulkar, “Blueprint for introducing innovation into

wireless mobile networks,” in Proceedings of the Second ACM SIGCOMM

Workshop on Virtualized Infrastructure Systems and Architectures, 2010.



214

[105] T.-Y. Huang, K.-K. Yap, B. Dodson, M. S. Lam, and N. McKeown, “PhoneNet:

a phone-to-phone network for group communication within an adminis-

trative domain,” in Proceedings of the Second ACM SIGCOMM Workshop on

Networking, Systems, and Applications on Mobile Handhelds, 2010.

[106] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: a programmable

wireless dataplane,” in Proceedings of the First Workshop on Hot Topics in

Software Defined Networks (HotSDN), 2012.

[107] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao, “Towards

programmable enterprise WLANS with Odin,” in Proceedings of the First

Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[108] L. Lu, Y. Xiao, and H. Du, “OpenFlow control for cooperating AQM scheme,”

in 2010 IEEE 10th International Conference on Signal Processing (ICSP), 2010.

[109] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and N. McKeown, “Towards

software-friendly networks,” in Proceedings of the First ACM Asia-Pacific

Workshop on Systems, 2010.

[110] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, and M. F. Magalhães,

“QuagFlow: partnering Quagga with OpenFlow,” in Proceedings of the ACM

SIGCOMM 2010 Conference, 2010.

[111] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa, S. C.

de Lucena, and M. F. Magalhães, “Virtual routers as a service: the RouteFlow

approach leveraging software-defined networks,” in Proceedings of the 6th

International Conference on Future Internet Technologies, 2011.



215

[112] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa,

S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control platforms

with the eyes and muscles of software-defined networking,” in Proceedings of

the First Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[113] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable video

streaming over OpenFlow networks: An optimization framework for QoS

routing,” in 18th IEEE International Conference on Image Processing (ICIP), 2011.

[114] OpenFlow Stanford Deployment. [Online]. Available: http://www.openflow.

org/wp/stanford-deployment/

[115] Clemson OpenFlow Agregate. [Online]. Available: http://groups.geni.net/

geni/wiki/GeniAggregate/ClemsonOpenFlow

[116] Georgia Tech OpenFlow Agregate. [Online]. Available: http://groups.geni.

net/geni/wiki/GeniAggregate/GeorgiaTechOpenFlow

[117] Indiana OpenFlow Agregate. [Online]. Available: http://groups.geni.net/

geni/wiki/GeniAggregate/IndianaOpenFlow

[118] KSU Lab OpenFlow Aggregate. [Online]. Available: http://groups.geni.net/

geni/wiki/GeniAggregate/KansasStateOpenFlow

[119] Rutgers OpenFlow Agregate. [Online]. Available: http://groups.geni.net/

geni/wiki/GeniAggregate/RutgersOpenFlow

[120] University of Washington OpenFlow Agregate. [Online]. Available:

http://groups.geni.net/geni/wiki/GeniAggregate/WashingtonOpenFlow

[121] Winsconsin OpenFlow Agregate. [Online]. Available: http://groups.geni.

net/geni/wiki/GeniAggregate/WisconsinOpenFlow



216

[122] GENI, Exploring networks of the future. [Online]. Available: http:

//www.geni.net/

[123] Internet2. [Online]. Available: www.internet2.edu

[124] National LambdaRail. [Online]. Available: http://www.nlr.net

[125] Testbed Networks: Provided by NLR. [Online]. Available: www.nlr.net/

testbeds.php

[126] GENI. GENI OpenFlow Backbone Deployment at Internet2. [Online].

Available: http://groups.geni.net/geni/wiki/OFI2

[127] Internet2. Nation’s First 100G Open, Nationwide, Software-Defined

Network Launches for Education, Research, Industry and Innovators.

[Online]. Available: http://internet2.edu/news/pr/2012.10.01.nations-first-

100g-national-scale-network-launches.html

[128] Internet2. Internet2 Mailing List Service. [Online]. Available: https:

//lists.internet2.edu/sympa/arc/i2-news/2012-07/msg00002.html

[129] “Energy Sciences Network,” https://www.es.net/.

[130] Advanced Networking Initiative (ANI). [Online]. Available: http:

//www.es.net/RandD/advanced-networking-initiative/

[131] IP8800 OpenFlow Networking. [Online]. Available: http://support.necam.

com/pflow/legacy/ip8800/

[132] ESNet. 100G Testbed. [Online]. Available: http://www.es.net/RandD/100g-

testbed/



217

[133] Energy Sciences Network ESNet. Proposal Process. [Online]. Available:

http://www.es.net/RandD/100g-testbed/proposal-process

[134] Ofelia. [Online]. Available: http://www.fp7-ofelia.eu/news-and-events/

press-releases/ofelia-openflow-facility-now-open-for-experiments/

[135] MRI-R2 Consortium: Development of Dynamic Network System (DYNES).

[Online]. Available: http://www.internet2.edu/ion/dynes.html

[136] Open Networking Summit 2012 Program. [Online]. Available: http:

//opennetsummit.org/

[137] S. Levy. Going With the Flow: Google′s Secret Switch to the Next Wave of

Networking. [Online]. Available: http://www.wired.com/wiredenterprise/

2012/04/going-with-the-flow-google/all/1

[138] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,

“Modeling and performance evaluation of an OpenFlow architecture,” in

23rd International Teletraffic Congress (ITC), 2011.

[139] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switching: Data

Plane Performance,” in IEEE International Conference on Communications (ICC),

2010.

[140] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically

centralized?: state distribution trade-offs in software defined networks,” in

Proceedings of the First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.



218

[141] B. Heller, R. Sherwood, and N. McKeown, “The controller placement prob-

lem,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 473–478, Sep.

2012.

[142] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation

and performance evaluation of OpenFlow-based wavelength path control in

transparent optical networks,” Opt. Express, vol. 19, no. 27, pp. 26 578–26 578,

Sep. 2012.

[143] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and

scalable offloading of control applications,” in Proceedings of the First Workshop

on Hot Topics in Software Defined Networks (HotSDN), 2012.

[144] J. C. Mogul and P. Congdon, “Hey, you darned counters!: get off my ASIC!”

in Proceedings of the First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.

[145] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a traffic co-processing

unit in commodity switches,” in Proceedings of the First Workshop on Hot Topics

in Software Defined Networks (HotSDN), 2012.

[146] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “HotSwap: Correct

and efficient controller upgrades for Software-Defined Networks,” in ACM

SIGCOMM HotSDN Workshop, 2013.

[147] A. Akhunzada, E. Ahmed, A. Gani, M. Khan, M. Imran, and S. Guizani,

“Securing software defined networks: taxonomy, requirements, and open

issues,” Communications Magazine, IEEE, vol. 53, no. 4, pp. 36–44, 2015.



219

[148] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-

defined networking,” Communications Magazine, IEEE, vol. 51, no. 2, pp.

136–141, 2013.

[149] X. Guan, B.-Y. Choi, and S. Song, “Reliability and scalability issues in soft-

ware defined network frameworks,” in Research and Educational Experiment

Workshop (GREE), 2013 Second GENI. IEEE, 2013, pp. 102–103.

[150] E. Hernandez-Valencia, S. Izzo, and B. Polonsky, “How will nfv/sdn trans-

form service provider opex?” Network, IEEE, vol. 29, no. 3, pp. 60–67, 2015.

[151] S. Sezer, S. Scott-Hayward, P.-K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation

challenges for software-defined networks,” Communications Magazine, IEEE,

vol. 51, no. 7, pp. 36–43, 2013.

[152] R. Jain and S. Paul, “Network virtualization and software defined networking

for cloud computing: a survey,” Communications Magazine, IEEE, vol. 51,

no. 11, pp. 24–31, 2013.

[153] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti et al., “A

survey of software-defined networking: Past, present, and future of pro-

grammable networks,” Communications Surveys & Tutorials, IEEE, vol. 16,

no. 3, pp. 1617–1634, 2014.

[154] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-

defined networking,” Communications Surveys & Tutorials, IEEE, vol. 17, no. 1,

pp. 27–51, 2014.



220

[155] A. Lara, A. Kolasani, and B. Ramamurthy, “Simplifying network manage-

ment using Software Defined Networking and OpenFlow,” in 2012 IEEE 6th

International Conference on Advanced Networks and Telecommunication Systems

(ANTS), December. 2012, pp. 1 –5.

[156] H. Kim and N. Feamster, “Improving network management with software

defined networking,” Communications Magazine, IEEE, vol. 51, no. 2, pp.

114–119, February 2013.

[157] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using open-

flow in dynamic cloud networks (or: How to provide security monitoring as

a service in clouds?),” in 2012 20th IEEE International Conference on Network

Protocols (ICNP), Austin, Texas, October 2012, pp. 1–6.

[158] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson, “FRESCO:

Modular Composable Security Services for Software-Defined Networks,” in

Internet Society Network and Distributed System Security Symposium (NDSS),

San Diego, California, U.S.A., February 2013.

[159] A. K. Bandara, E. C. Lupu, and A. Russo, “Using event calculus to formalise

policy specification and analysis,” in IEEE Workshop on Policies for Distributed

Systems and Networks, Lake Como, Italy, June 2003.

[160] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A goal-based approach

to policy refinement,” in IEEE Workshop on Policies for Distributed Systems and

Networks, Yorktown Heights, NY, USA, June 2004.

[161] A. K. Bandara, A. Kakas, E. C. Lupu, and A. Russo, “Using argumentation

logic for firewall policy specification and analysis,” in Large Scale Management

of Distributed Systems. Springer, 2006, pp. 185–196.



221

[162] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas et al., “Using linear

temporal model checking for goal-oriented policy refinement frameworks,”

in IEEE Workshop on Policies for Distributed Systems and Networks, Stockholm,

Sweden, June 2005.

[163] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou, “A

methodological approach toward the refinement problem in policy-based

management systems,” IEEE Communications Magazine, vol. 44, no. 10, pp.

60–68, 2006.

[164] M. Charalambides, P. Flegkas, G. Pavlou, A. Bandara et al., “Policy conflict

analysis for quality of service management,” in IEEE International Workshop

on Policies for Distributed Systems and Networks, Stockholm, Sweden, June

2005.

[165] M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola et al., “Dynamic

policy analysis and conflict resolution for diffserv quality of service manage-

ment,” in IEEE/IFIP Network Operations and Management Symposium (NOMS),

Vancouver, Canada, April 2006.

[166] D. Agrawal, K.-W. Lee, and J. Lobo, “Policy-based management of networked

computing systems,” Communications Magazine, IEEE, vol. 43, no. 10, pp.

69–75, October 2005.

[167] R. Bhatia, J. Lobo, and M. Kohli, “Policy evaluation for network management,”

in IEEE INFOCOM, vol. 3, March 2000.

[168] E. Bertino, C. Brodie, S. Calo, L. Cranor, C. Karat et al., “Analysis of privacy

and security policies,” IBM Journal of Research and Development, vol. 53, no. 2,

pp. 3:1–3:18, March 2009.



222

[169] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia et al., “Heuristic approaches to the

controller placement problem in large scale SDN networks,” Network and

Service Management, IEEE Transactions on, vol. 12, no. 1, pp. 4–17, March 2015.

[170] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive resource

management and control in software defined networks,” Network and Service

Management, IEEE Transactions on, vol. 12, no. 1, pp. 18–33, March 2015.

[171] M. Wichtlhuber, R. Reinecke, and D. Hausheer, “An SDN-based CDN/ISP

collaboration architecture for managing high-volume flows,” Network and

Service Management, IEEE Transactions on, vol. 12, no. 1, pp. 48–60, March

2015.

[172] M. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop: An auto-

nomic qos policy enforcement framework for software defined networks,” in

Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, November 2013,

pp. 1–7.

[173] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The middlebox

manifesto: enabling innovation in middlebox deployment,” in Proceedings of

the 10th ACM Workshop on Hot Topics in Networks, 2011.

[174] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an

elastic distributed sdn controller,” SIGCOMM Comput. Commun. Rev., vol. 43,

no. 4, pp. 7–12, August 2013.

[175] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane for

openflow,” in Proceedings of the 2010 Internet Network Management Conference

on Research on Enterprise Networking, ser. INM/WREN’10, 2010.



223

[176] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical

switch architecture for modular data centers,” SIGCOMM Comput. Commun.

Rev., vol. 41, no. 4, August 2010.

[177] F. Yonghong, B. Jun, W. Jianping, C. Ze, W. Ke, and L. Min, “A dormant

multi-controller model for software defined networking,” Communications,

China, vol. 11, no. 3, pp. 45–55, March 2014.

[178] Carnegie Mellon University. Residence Hall and Dedicated Remote Access.

[Online]. Available: http://www.cmu.edu/computing/network/guidelines/

network-res.html

[179] GENI, “GENI Portal,” http://portal.geni.net.

[180] A. Sperotto, R. Sadre, D. F. van Vliet, and A. Pras, “A labeled data set for

flow-based intrusion detection,” in Proceedings of the 9th IEEE International

Workshop on IP Operations and Management, IPOM 2009, Venice, Italy, ser.

Lecture Notes in Computer Science, vol. 5843. Springer Verlag, October

2009, pp. 39–50.

[181] The Bro Network Security Monitor. [Online]. Available: www.bro.org

[182] nDPI: Open and Extensible LGPLv3 Deep Packet Inspection Library.

[Online]. Available: http://www.ntop.org/products/ndpi/

[183] nmap security scanner. [Online]. Available: www.nmap.org

[184] Scapy. [Online]. Available: http://www.secdev.org/projects/scapy/



224

[185] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compromise

Detection using NetFlow/IPFIX,” ACM SIGCOMM Comput. Commun. Rev.,

vol. 44, no. 5, pp. 20–26, 2014.

[186] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The Science

DMZ: A Network Design Pattern for Data-intensive Science,” in Proceedings

of SC13: International Conference for High Performance Computing, Networking,

Storage and Analysis, 2013, pp. 85:1–85:10.

[187] J. Zurawski, S. Balasubramanian, A. Brown, E. Kissel, A. Lake, M. Swany,

B. Tierney, and M. Zekauskas, “perfsonar: On-board diagnostics for big

data,” in Proceedings of the 1st Workshop on Big Data and Science: Infrastructure

and Services Co-located with IEEE International Conference on Big Data 2013, ser.

IEEE BigData 2013, 2013.

[188] Internet2 AL2S. [Online]. Available: http://www.internet2.edu/products-

services/advanced-networking/layer-2-services/

[189] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing

the network forwarding plane,” in Proceedings of the Workshop on

Programmable Routers for Extensible Services of Tomorrow, ser. PRESTO

’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:6. [Online]. Available:

http://doi.acm.org/10.1145/1921151.1921162

[190] J. Matias, E. Jacob, D. Sanchez, and Y. Demchenko, “An OpenFlow Based

Network Virtualization Framework for the Cloud,” in IEEE Third International

Conference on Cloud Computing Technology and Science (CloudCom), 2011, pp.

672–678.



225

[191] NEC. NEC ProgrammableFlow: Redefining Cloud Network Virtualization

with OpenFlow. [Online]. Available: http://www.nec.com/en/global/prod/

pflow/images documents/NEC ProgrammableFlow Redefining Cloud

Network Virtualization with OpenFlow.pdf

[192] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization in

software-defined networks,” Internet Computing, IEEE, vol. 17, no. 2, pp.

20–27, 2013.

[193] P. Skoldstrom and K. Yedavalli, “Network virtualization and resource alloca-

tion in OpenFlow-based wide area networks,” in IEEE International Conference

on Communications (ICC), 2012, pp. 6622–6626.

[194] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and

R. Wattenhofer, “Achieving high utilization with software-driven wan,” SIG-

COMM Comput. Commun. Rev., vol. 43, no. 4, pp. 15–26, August 2013.

[195] A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magill, E. Mavrogiorgis,

J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data

center communication,” in Proceedings of the 10th ACM Workshop on Hot Topics

in Networks. ACM, 2011, p. 24.

[196] R. Doverspike, G. Clapp, P. Douyon, D. M. Freimuth, K. Gullapalli, B. Han,

J. Hartley, A. Mahimkar, E. Mavrogiorgis, J. OConnor et al., “Using SDN

technology to enable cost-effective bandwidth-on-demand for cloud services

[Invited],” Journal of Optical Communications and Networking, vol. 7, no. 2, pp.

A326–A334, 2015.



226

[197] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization in

software-defined networks,” Internet Computing, IEEE, vol. 17, no. 2, pp.

20–27, 2013.

[198] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. Corrêa, S. C.

de Lucena, and M. F. Magalhães, “Virtual routers as a service: the routeflow

approach leveraging software-defined networks,” in Proceedings of the 6th

International Conference on Future Internet Technologies. ACM, 2011.

[199] NEC. NEC ProgrammableFlow: Redefining Cloud Network Virtualization

with OpenFlow. [Online]. Available: http://www.nec.com/en/global/prod/

pflow/images documents/NEC ProgrammableFlow Redefining Cloud

Network Virtualization with OpenFlow.pdf

[200] B. Heller, R. Sherwood, and N. McKeown, “The controller placement prob-

lem,” in Proceedings of the first workshop on Hot topics in software defined networks.

ACM, 2012, pp. 7–12.

[201] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia,

“Pareto-optimal resilient controller placement in SDN-based core networks,”

in IEEE 25th International Teletraffic Congress (ITC), 2013.

[202] Y.-N. Hu, W.-D. Wang, X.-Y. Gong, X.-R. Que, and S.-D. Cheng, “On the

placement of controllers in software-defined networks,” The Journal of China

Universities of Posts and Telecommunications, vol. 19, pp. 92–171, 2012.

[203] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-optimized

controller placement for software-defined networks,” Communications, China,

vol. 11, no. 2, pp. 38–54, 2014.



227

[204] Energy Sciences Network (ESNet). Science DMZ. [Online]. Available:

https://fasterdata.es.net/science-dmz/science-dmz-security/

[205] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi,

K.-C. Wang, and J. Bi, “Seamless Interworking of SDN and IP,” SIGCOMM

Comput. Commun. Rev., vol. 43, no. 4, pp. 475–476, August 2013.

[206] P. Lin, J. Bi, Z. Chen, Y. Wang, H. Hu, and A. Xu, “WE-bridge: West-east

Bridge for SDN Inter-domain Network Peering,” in INFOCOM Workshops,

April 2014.

[207] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the Routing Con-

trol Logic: Better Internet Routing Based on SDN principles,” in ACM

Workshop on Hot Topics in Networks, November 2012.

[208] I. Monga, E. Pouyoul, and C. Guok, “Software Defined Networking for big-

data science: Architectural models from campus to the WAN,” in Proceedings

of the Supercomputing Conference, 2012.

[209] On.Lab, “OpenSource SDN Stack,” http://onlab.us/tools.html.

[210] “Openfire,” http://www.igniterealtime.org/projects/openfire/.

[211] “sFlow,” http://www.sflow.org/.

[212] “Controlling large flows with sFlow,” http://blog.sflow.com/2013/05/

controlling-large-flows-with-openflow.html.

[213] “Basic ONOS tutorial,” https://wiki.onosproject.org/display/ONOS/Basic+

ONOS+Tutorial.



228

[214] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.

Braynard, “Networking named content,” in Proceedings of the 5th international

conference on Emerging networking experiments and technologies, Rome, Italy,

December 2009, pp. 1–12.

[215] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker, “Accountable Internet Protocol (AIP),” in Proc. ACM SIGCOMM,

Seattle, WA, U.S.A., August 2008.

[216] “Host Identity Protocol (HIP),” http://tools.ietf.org/html/rfc5201, 2008.

[217] “New Generation Networks,” http://www2.nict.go.jp/w/w100/index-e.

[218] “Networking Technology and Systems: Future Internet Design (FIND), NSF

program solicitation,” 2007.

[219] M. Lemke, “Position Statement: FIRE, NSF/OECD Workshop on Social and

Economic Factors Shaping the future of the Internet,” January 2007.

[220] “FP7 Information and Communication Technologies: Pervasive and Trusted

Network and Service Infrastructures, European Commission,” 2007.

[221] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2011-2016.”

[222] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: Generalized

Storage-aware Routing for Mobilityfirst in the Future Mobile Internet,” in

Proc. of MobiArch, August 2011.

[223] A. Krishnamoorthy, “Implementation and Evaluation of the MobilityFirst

Protocol Stack on Software-Defined Network Platforms. M. Sc. Thesis, WIN-

LAB, Rutgers University,” http://dx.doi.org/doi:10.7282/T3G44N97.



229

[224] S. Melle, D. Perkins, and C. Villamizar, “Network Cost Savings from Router

Bypass in IP over WDM Core Networks,” in IEEE/OSA Conference on Optical

Fiber Communication/National Fiber Optic Engineers Conference, February 2008.

[225] Y. Lui, G. Shen, and W. Shao, “Design for Energy-efficient IP over WDM

Networks with Joint Lightpath Bypass and Router-card Sleeping Strategies,”

IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 11, pp.

1122–1138, November 2013.

[226] M. Karol, “A Distributed Algorithm for Optimal (Optical) Bypass of IP

Routers to Improve Network Performance and Efficiency,” in IEEE Conference

on Information Sciences and Systems (CISS), March 2011.

[227] Internet Engineering Task Force, “VXLAN: A Framework for Overlaying

Virtualized Layer 2 Networks over Layer 3 Networks.” [Online]. Available:

http://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/

[228] U. Lakshman and L. Lobo, “MPLS Traffic Engineering,” http://www.

ciscopress.com/articles/article.asp?p=426640.

[229] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane

for OpenFlow,” in USENIX Conference on Research on Enterprise Networking

Internet Network Management , April 2010.

[230] N. Feamster, J. Rexford, S. Shenker, R. Clark, R. Hutchins, D. Levin, , and

J. Bailey, “SDX: A Software-Defined Internet Exchange,” in Open Networking

Summit Research Track, April 2013.



230

[231] Open Networking Foundation. OpenFlow Switch Specification 1.4.0. [Online].

Available: https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[232] A. Gämperli, V. Kotronis, and X. Dimitropoulos, “Evaluating the Effect of

Centralization on Routing Convergence on a Hybrid BGP-SDN Emulation

Framework,” in Proceedings of ACM SIGCOMM, August 2014.

[233] X. Yang, C. Tracy, J. Sobieski, and T. Lehman, “GMPLS-Based Dynamic

Provisioning and Traffic Engineering of High-Capacity Ethernet Circuits in

Hybrid Optical/Packet Networks,” in IEEE INFOCOM, April 2006.

[234] C. Guok, “ESnet On-Demand Secure Circuits and Advance Reservation

System (OSCARS),” in Internet2 Joint Techs Workshop, February 2005.

[235] Energy Sciences Network, “OSCARS,” https://www.es.net/engineering-

services/oscars/.

[236] A. Tomaszewski, M. Pióro, and M. Mycek, “Distributed inter-domain link

capacity optimization for inter-domain IP/MPLS routing,” in Proceedings of

IEEE GLOBECOM, 2007.

[237] M. Roughan and Y. Zhang, “GATEway: symbiotic inter-domain traffic engi-

neering,” Telecommunication Systems, vol. 47, no. 1-2, pp. 3–17, 2011.

[238] M. Chamania, M. Caria, and A. Jukan, “Effective usage of dynamic circuits

for IP routing,” in Proceedings of IEEE ICC, 2010.

[239] J. Rivillo, J. Hernandez, and I. Phillips, “On the Efficient Detection of Ele-

phant Flows in Aggregated Network Traffic,” in London Communication

Symposium, September 2005.



231

[240] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying Elephant

Flows Through Periodically Sampled Packets,” in ACM SIGCOMM Conference

on Internet Measurement, August 2004.

[241] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang, “SIFT: A Simple Algorithm

for Tracking Elephant Flows, and Taking Advantage of Power Laws,” in An-

nual Allerton Conference on Control, Communication and Computing, September

2005.

[242] “sFlow-RT,” http://www.inmon.com/products/sFlow-RT.php.

[243] “Label Distribution Protocol RFC,” https://tools.ietf.org/html/rfc5036.

[244] M. Davy, G. Parulkar, J. van Reijendam, D. Schmiedt, R. Clar,

C. Tengi, I. Seskar, P. Christian, I. Cote, and G. China. A

Case for Expanding OpenFlow/SDN Deployments On university

Campuses. [Online]. Available: http://www.openflow.org/wp/wp-

content/uploads/2011/07/GENI-Workshop-Whitepaper.pdf

[245] Software-defined Networking. [Online]. Available: http://www.ieee-

infocom.org/2009/keynotes.html

[246] H. Kim and N. Feamster, “Improving network management with software

defined networking,” Communications Magazine, IEEE, vol. 51, no. 2, pp.

114–119, February 2013.

[247] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-level

reactive network control,” in Proceedings of the First Workshop on Hot Topics in

Software Defined Networks, ser. HotSDN ’12, New York, NY, USA, 2012, pp.

43–48.



232

[248] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable

software-defined networks,” in Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, ser. HotSDN ’13, New

York, NY, USA, 2013.

[249] S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility

study,” 2013, poster presented at HotSDN 2013, Hong Kong.

[250] K. Benton, L. Camp, and C. Small, “Openflow vulnerability assessment,”

2013, poster presented at HotSDN 2013, Hong Kong.

[251] Arachni: A web application security scanner framework. [Online]. Available:

http://www.arachni-scanner.com/

[252] A. J. Bennieston. NMAP - A Stealth Port Scanner. [Online]. Available:

http://nmap.org/bennieston-tutorial/

[253] GENI. GENI Network Stitching Sites. [Online]. Available: http:

//groups.geni.net/geni/wiki/GeniNetworkStitchingSites

[254] GENI. Scaling Up: How to Grow the Topology of an Existing Experiment.

[Online]. Available: http://groups.geni.net/geni/wiki/GEC21Agenda/

ScalingUp/Procedure

[255] H. Rodriguez and I. Monga and A. Sadasivarao and S. Sayed and C. Guok

and E. Pouyoul and C. Liou and T. Rosing, “Traffic Optimization in Multi-

Layered WANs using SDN,” in Proceedings of IEEE Hot Interconnects, 2014.

[256] S. Paul, R. Yates, D. Raychaudhuri, and J. Kurose, “The cache-and-forward

network architecture for efficient mobile content delivery services in the

future internet,” ITU T Kaleidoscope: Innov. in NGN, 2008.



233

[257] “IP mobility support for IPv4,” http://tools.ietf.org/html/rfc3344.

[258] “Mobility support in IPv6,” http://www.ietf.org/rfc/rfc3775.txt.

[259] A. Lara, B. Ramamurthy, K. Nagaraja, A. Krishnamoorthy, and D. Raychaud-

huri, “Using OpenFlow to Provide Cut-Through Switching in MobilityFirst,”

Photonic Network Communications, vol. 28, no. 2, pp. 165–177, 2014.

[260] Y. Wang, I. Avramopoulos, and J. Rexford, “Design for Configurability:

Rethinking Interdomain Routing Policies from the Ground Up,” IEEE Journal

on Selected Areas in Communications, vol. 27, no. 3, pp. 336–348, April 2009.

[261] R. Doverspike, G. Clapp, P. Douyon, D. Freimuth, K. Gullapalli, B. Han,

J. Hartley, A. Mahimkar, E. Mavrogiorgis, J. O’Connor, J. Pastor, K. K. Ramakr-

ishnan, M. Rauch, M. Stadler, A. Von Lehmen, B. Wilson, and S. Woodward,

“Using SDN Technology to Enable Cost-effective Bandwidth-on-demand for

Cloud Services [Invited],” IEEE/OSA Journal of Optical Communications and

Networking, vol. 7, no. 2, pp. A326–A334, February 2015.

[262] S. Van Dongen, “Graph Clustering Via a Discrete Uncoupling Process,” SIAM

Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp. 121–141, 2008.

[263] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (S-BGP),”

IEEE Journal on Selected Areas in Communications, vol. 18, no. 4, pp. 582–592,

2000.

[264] A. Lara, B. Ramamurthy, K. Nagaraja, A. Krishnamoorthy, D. Raychaud-

huri, “Cut-Through Switching Options in a MobilityFirst Network with

OpenFlow,” in IEEE 7th International Conference on Advanced Networks and

Telecommunication Systems (ANTS), December 2013.



234

[265] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin, and

D. Raychaudhuri, “DMap: A Shared Hosting Scheme for Dynamic Identifier

to Locator Mappings in the Global Internet,” in IEEE Distributed Computing

Systems (ICDCS), June 2012.

[266] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and A. Ya-

dav, “A Global Name Service for a Highly Mobile Internetwork,” in ACM

SIGCOMM, August 2014.

[267] N. Feamster, H. Balakrishnan, and J. Rexford, “Some Foundational Prob-

lems in Interdomain Routing,” in ACM Workshop on Hot Topics in Networks,

November 2004.

[268] H. Rodrigues, I. Monga, A. Sadasivarao, S. Syed, C. Guok, E. Pouyoul,

C. Liou, and T. Rosing, “Traffic Optimization in Multi-Layered WANs using

SDN,” in IEEE High-Performance Interconnects (HOTI), August 2014.

[269] A. Sadasivarao, S. Syed, P. Pan, C. Liou, A. Lake, C. Guok, and I. Monga,

“Open transport switch: a software defined networking architecture for

transport networks,” in Proceedings of ACM SIGCOMM Hot SDN, August

2013.

[270] J. Pan, S. Paul, R. Jain, and M. Bowman, “MILSA: A Mobility and Multihom-

ing Supporting Identifier Locator Split Architecture for Naming in the Next

Generation Internet,” in Proceedings of IEEE GLOBECOM, December 2008.

[271] Z. Gao, A. Venkataramani, J. F. Kurose, and S. Heimlicher, “Towards a

Quantitative Comparison of Location-independent Network Architectures,”

in ACM SIGCOMM, August 2014.



235

[272] Z. Fu, P. Zerfos, H. Luo, and S. Lu, “The impact of multihop wireless channel

on TCP throughput and loss,” in IEEE INFOCOM 2003, March 2003.

[273] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,

D. G. Andersen, J. W. Byers et al., “XIA: An Architecture for an Evolvable and

Trustworthy Internet,” in ACM Workshop on Hot Topics in Networks, November

2011.

[274] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A com-

parative analysis of web and peer-to-peer traffic,” in International World Wide

Web Conference, April 2008.

[275] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of popular

destinations,” in ACM SIGCOMM Workshop on Internet measurement, 2002.

[276] F. Bronzino, K. Nagaraja, I. Seskar, and D. Raychaudhuri, “Network Service

Abstractions for a Mobility-centric Future Internet Architecture,” in ACM

international workshop on Mobility in the evolving internet architecture, October

2013.

[277] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host Identity

Protocol,” https://tools.ietf.org/html/rfc5201, 2008.

[278] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, The Locator/ID Separation

Protocol (LISP), https://tools.ietf.org/html/rfc6830, 2013.

[279] Y. Hu, F. Zhang, K. K. Ramakrishnan, and D. Raychaudhuri, “GeoTopo: A

PoP-level Topology Generator for Future Internet Study,” WINALB Technical

Report, Rutgers University, Tech. Rep., 2014.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 12-2015

	Using Software-Defined Networking to Improve Campus, Transport and Future Internet Architectures
	Adrian Lara

	tmp.1449037235.pdf.YLjUD

