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ABSTRACT

This thesis studies the reconstruction of unknown curved surfaces in 3D through contour

tracking. The implementation involves a 2-axis joystick sensor and a 4-DOF Adept robot. The

joystick’s force sensing is combined with the Adept’s high positional accuracy to yield precise

contact measurements.

A surface patch in 3D can be rebuilt by tracking along three concurrent curves on the

surface. These data curves lie in different planes and are acquired via planar contour tracking.

The Darboux frame at the curve intersection is first estimated to reflect the local geometry.

Then polynomial fitting is carried out in this frame. Minimization of the total (absolute)

Gaussian curvature of the surface fit effectively prevents unnecessary folding otherwise expected

to result from the use of touching data. Experiments have demonstrated high accuracy of

reconstruction.
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CHAPTER 1. INTRODUCTION AND RELATED WORK

1.1 Introduction

Reconstruction of objects with curved shapes is important in CAD/CAM. Such shapes

are common in industry and in our daily life, and their visualization can be quite useful. In

geometric modeling, dense 3D point data captured from the surface of an object are converted

into a boundary representation CAD model (1). The first step of surface reconstruction is to

use an appropriate method to capture 3D data with reasonable accuracy.

Data used to reconstruct a surface can be obtained from a camera, a range sensor, or a touch

sensor. The major problem of camera data is occlusion, which makes it difficult to reconstruct

a partially visible object. The occlusion problem also exists for a range sensor though it can

capture 3D data in large scale. In contrast, tactile data do not have this problem because a

touch sensor can reach where the camera or the range sensor cannot see.

With a touch sensor, there are several ways of acquiring geometric information about an

object. One way is to uniformly sample data points over its surface. It is clear that this ap-

proach can control the surface fitting error to be within a threshold in the reconstruction stage.

However, there is a major limitation on efficiency. Multiple probes are time consuming because

the robot finger needs to move up and down repeatedly. Also, this does not help visualize the

object model interactively at an acceptable speed. Therefore, uniform arrangement of tactile

data loses the advantage of tactile data over range data.

In contrast, tracking out a few surface curves is much more efficient. Plus, it mimics moving

the human finger across a surface several times to feel its shape. In (2), we proposed the use

of a joystick sensor for tracking three concurrent curves on a surface and then reconstructing

a local patch by fitting over these curves.
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1.2 Related Work

The paper is about the reconstruction of curved surfaces in 3D. The physical operation

involves tracking with a touch sensor, following strategies based on hybrid control. A surface

patch is generated through fitting over the tracking data in a local frame which is set up

through the estimation of principal curvatures.

1.2.1 Contour tracking

In this type of task, it is favorable to adopt the hybrid position/force control strategy

proposed by Raibert and Craig (3), who combined force and torque information with position

data to satisfy simultaneous position and force trajectory constraints.

Yoshikawa and Sudou (4) later incorporated on-line algorithm which estimates the local

shape of the constrained surface. In this way, they made such dynamic hybrid control more

practical. In (5), Im et al. assumed a frictionless surface and utilized the force/position

control scheme. Their control strategy canceled the nonlinear terms of the projected end

effector dynamics in the position and force controlled directions. The benefit is that the closed

loop system is guaranteed to have uniformly bounded stability.

De Schutter and Van Brussel (6; 7) proposed a strategy for tracking 2D contours. In their

work, orientation errors were detected and compensated based on velocities/forces of two task

frames. A one-dimensional external force control loop was used for the purpose. In later

research (8), for unknown environments, Baeten, Herman et al. proposed to combine visual

servoing and force control.

1.2.2 Shape reconstruction

In CAD/CAM, robotics, and computer vision, polynomials are good enough to describe

a lot of real objects (27). When using polynomial representation, fitting over real data is a

common way for reverse engineering, i.e. shape reconstruction. For tactile data, polynomial

fitting is also prevalent. In (9), Allen and Michelman use superquadric polynomial fitting to

recover shape from touching data by robot hand. When data points’ constraint is insufficient,
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other constraints can be utilized, such as Gaussian Curvature (2). In (20), Ellis and Qin

employed optimization to detect the surface shape from touching data, and they solved the

optimization by Levenberg-Marquardt method.

1.2.3 Curvature Estimation

Methods for principal curvature estimation have been developed mostly for dense range

data. They are not robust when applied on sparse tactile data. In (17), more than three

normal curvatures were used to set up an overdetermined system to be solved for principal

curvatures in a least-squares fashion. However, errors could still be significant because a

circle approximation was used in estimating the normal curvature. A more robust estimation

method (37) constructed a matrix at the point of interest. These two methods were later

enhanced in (24) to better deal with noise.

Analytical methods (22; 25; 35) for curvature estimation generally fit over the range data

in the neighborhood of the point of interest and then obtain the first and second fundamental

forms through differentiation. Discrete methods based on surface triangulation such as in (29)

may suffer from large estimation errors due to loss of differentiability.

Fearing and Binford (21) employed a cylindrical tactile fingertip mounted on the Stan-

ford/JPL hand to estimate principal curvatures on quadric surfaces. In (26), two rounds of

local fitting over tactile data from a 2D shape were applied to robustly estimate the curvature

and its derivative with respect to arc length.

1.2.4 Geometric Modeling

Constructing a CAD model of an object typically consists of several steps (40). The first

step is to capture dense 3D point data using a laser scanner and merge data from different views

— a process refereed to as registration (12; 19). Then triangulation (14; 31; 10) is performed

on the measured data points to reflect their adjacency relationships and the correct topology of

the final model. The next step is to segment the triangulated mesh into meaningful regions (39;

18; 30). Free-form or analytic surfaces are then fit to these regions under constraints such as
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smoothness, tangential continuity, and concentricity (15; 41). Such fitting applies to primary

surfaces as well as feature surfaces with extrusions and of revolution. Finally, the fitting

surfaces are joined together at explicit edges and vertices through intersection of adjacent

surfaces (11).



5

CHAPTER 2. ARCHITRCTURE OF THE SYSTEM

2.1 Overview

The setup in Figure 2.1 is for tracking in the horizontal plane. To track a surface while

constrained in an arbitrary plane, the tip of the joystick needs to be in contact with the object.

Endeffector

Adept
Cobra 600

Joystick

Push
Pin

Figure 2.1 Setup for surface tracking and reconstruction.

The joystick is placed horizontal with a push pin underneath. The front end of the pin is

in a plastic cover in order to easily slide on the tracked surface. In reaction to the contact

force between the pin and the surface, the joystick beam bends slightly upward. The contact

point is located based on the position of the robot’s endeffector with some compensation for

the beam bending (which is assumed to be proportional to the force reading).

We intend to use a hybrid strategy to carry out velocity control in the tangential direction

at the contact while force control in the normal direction. Nevertheless, the Adept does not

allow access to its joint torques, not to mention the control of them. So we implement force
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control based on the readings from the 2-axis joystick. Another difficulty is that the Adept

does not have the freedom of yaw and pitch to orient the push pin normal to the surface at

contact. This has limited tracking mostly to the top portion of an object, where the force

reading from the joystick does not deviate too much from the normal contact force.

2.1.1 Hardware and software

We build our system by a Adept Cobra robot. It has four DOFs. As far as the sensor is

concerned, we use a joystick sensor from Interlink Inc. The Adept Cobra robot communicates

with a host computer by TCP/IP. The joystick sensor communicates with the host computer

by serial port.

2.2 Tracking from 3D to 2D

Our goal is to reconstruct a local surface patch by tracking data points from the object.

Let p be a reference point on the object’s. We need some local geometry description of the

area surrounding the reference point. How to realize this? One solution is to sample data

distributed uniformly in the interested data. But we would like to argue that this method by

touch is slow. Our solution is to track along the intersections of three cutting planes through

p and the surface. The intersections are three space curves, and the tracking data are discrete

points along them.

Figure 2.2 Three curves on surface.

The joystick sensor tracks the surface around the reference point p, while its motion is
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constrained in a plane containing the point p. We call this the plane sampling plane. In this

way, the 3D contour tracking problem is reduced to a 2D planar tracking problem. The three

curves are denoted by α, β, γ.

Figure 2.2 displays a real object with three sampled curves on its surface. Denote by Pα the

sampling plane that contains the curve α. We control the joystick track along the intersection

curve α of Pα and the model. In this way we get one data curve. Similarly, control the sensor

to track along the other two space curves β and γ through the reference point p that lie in the

planes of sampling Pβ and Pγ .



8

CHAPTER 3. SURFACE PATCH RECONSTRUCTION

3.1 Patch on a Surface

In the remainder of this thesis, we will show that local surface patches can be reconstructed

from insufficient data generated by tracking. Let p be a point of interest on the surface of a

curved object. We would like to obtain some geometry of a local patch which surrounds p on the

object’s surface. Planar contour tracking can be used as a subroutine for such reconstruction.

We first let the robot to track along the intersection curves of the surface with several cutting

planes through the reference point p. This is achievable by constraining the tracking motions

to stay in these planes. The above tracking yields data points along multiple plane curves

that are concurrent at p. The tangents at p to these curves can be estimated via local fitting.

Their curvatures can also be reliably estimated. Next, we calculate the principal curvatures

at p and set up a coordinate frame there. Under this frame we hope to generate a polynomial

description of the surface area through controlled fitting over the curves.

3.1.1 Darboux Frame

Let the z-coordinate be represented by a polynomial function of degree d:

z(x, y) =
∑

0≤i+j≤d

aijx
iyj .

That z(0, 0) = 0 immediately implies a00 = 0.

Next, we align the x-y plane with the tangent plane to the surface at p. Choose the direction

of the z-axis to be along its outward normal. The two partial derivatives of σ are tangent to

the surface and therefore lie in the x-y plane:

σx|(0,0,0) = (1, 0, zx)|(0,0,0) = (1, 0, a10);
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σy|(0,0,0) = (0, 1, zy)|(0,0,0) = (0, 1, a01).

The unit surface normal N = (0, 0, 1) at p is parallel to the cross product σx×σy = (−a10,−a01, 1).

Thus the coefficients a10 and a01 are both zero.

Any plane through p that is normal to the tangent plane will intersect the surface σ (at

least locally) at a curve. The curvature κn of this curve at p is the normal curvature of σ

in the tangent direction where the two planes intersect. It is well-known that κn achieves its

minimum and maximum (in case they are not equal) in two orthogonal tangent directions.

These two extrema are the principal curvatures κ1 and κ2, and the corresponding tangent

directions are the principal directions d1 and d2.

We now choose the principal directions as the x- and y-axes so they are represented by

(1, 0, 0) and (0, 1, 0), respectively. Figure 3.1 shows the resulting local coordinate system

referred to as the Darboux frame.

Figure 3.1 Darboux frame at p.

Express the two principal directions in terms of the partial derivatives:

d1 = (1, 0, 0) = 1 · σx|(0,0,0) + 0 · σy|(0,0,0)

d2 = (0, 1, 0) = 0 · σx|(0,0,0) + 1 · σy|(0,0,0).

Gather the coefficients of σx and σy in the above two equations respectively into two vectors

v1 = (1, 0) and v2 = (0, 1).
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Now, we calculate the coefficients in the first fundamental form at p = (0, 0, 0):

E = σx · σx|(0,0,0) = 1,

F = σx · σy|(0,0,0) = 0,

G = σy · σy|(0,0,0) = 1.

We also obtain the coefficients in the second fundamental form:

L = σxx ·N = (0, 0, zxx) · (0, 0, 1)

= zxx|(0,0,0) = 2a20;

M = zxy|(0,0,0) = a11;

N = zyy|(0,0,0) = 2a02.

It follows from differential geometry that

vi(
L M

M N

)vT
j = κivi(

E F

F G

)vT
j =











κi if (i− j) = 0;

0 if (i− j) 6= 0.

The product K = κ1κ2 is the Gaussian curvature at p. Substitute the expressions for E,

F , G, L, M , N , v1, v2 into the above equations. We thus determine three more coefficients in

the function z(x, y):

a20 =
κ1

2
, a02 =

κ2

2
, and a11 = 0.

To summarize what we have done so far, in the Darboux frame at p, the local surface patch

is described as below:

z(x, y) =
1

2

(

κ1x
2 + κ2y

2
)

+
∑

d≥i+j≥3

aijx
iyj . (3.1)

To reconstruct the patch surrounding p, we intend to fit the form (3.1) over data points

obtained by a touch sensor. But how to estimate the principal curvatures and locate the

principal directions?
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3.1.2 Principal Curvatures Estimation

We use a touch sensor to track the surface around the reference point p while constraining

the sensor motion in a plane through the point, which we call the sampling plane. The tracking

data are discrete points along the intersection curve α of the sampling plane and the surface.

The description of α is, of course, unknown just like the shape. For convenience, we identify

these data points with the curve and called them the data curve. Denote the sampling plane

as Πα (see Figure 3.2).

Figure 3.2 Data curve α lies where the sampling plane Πα intersects the
surface.

Figure 3.3 Tangent plane at the reference point p of sampling.

Then we fit over those data points very close to p and estimate the tangent Tα and the

curvature κα at the point. A quadratic polynomial is used in the fitting because locally the

curve resembles the osculating circle of α at p. The curvature (along with its derivative) can

be estimated very accurately this way, as shown in (26).

Similarly, command the sensor to trace out two other surface curves β and γ through p

that lie in different sampling planes Πβ and Πγ , respectively. We also estimate the tangents
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Tβ and Tγ as well as the curvatures κβ and κγ .

The surface normal N at p must be orthogonal to these tangent vectors. We estimate it

through an optimization:

min
‖N‖=1

(N · Tα)2 + (N · Tβ)2 + (N · Tγ)2.

With N known, the tangent plane Π at p is determined. The vectors Tα and N define a normal

plane through p. Let θα be the angle between this normal plane and the sampling plane Πα.

By a result from differential geometry (34, pp. 127-128), the normal curvature in the direction

Tα is κ′
α = κα cos θα. Similarly, we obtain the normal curvatures κ′

β and κ′
γ in the directions

Tβ and Tγ , respectively.

Let us now look at the tangent plane Π as shown in Figure 3.3.

Let θ be the angle from the principal direction d1 to Tα, and θ1 and θ2 be the angles from

Tα to Tβ and Tγ , respectively. We need only consider θ ∈ [0, π
2 ] by a proper choice of d1 (out of

four possibilities). The angles θ1 and θ2 are easily determined from the tangents. The normal

curvatures are then expressed in terms of the two principal curvatures (34, p. 137):

κ′
α = κ1 cos2 θ + κ2 sin2 θ,

κ′
β = κ1 cos2(θ + θ1) + κ2 sin2(θ + θ1), (3.2)

κ′
γ = κ1 cos2(θ + θ2) + κ2 sin2(θ + θ2).

There are three unknowns κ1, κ2, and θ in the above three equations.

Rewrite equations (3.2) into the following:

κ′
α =

κ1 + κ2

2
+ cos(2θ) ·

κ1 − κ2

2
,

κ′
β =

κ1 + κ2

2
+ cos(2θ + 2θ1) ·

κ1 − κ2

2
, (3.3)

κ′
γ =

κ1 + κ2

2
+ cos(2θ + 2θ2) ·

κ1 − κ2

2
.

In the special case that κ′
α = κ′

β = κ′
γ , two possibilities further arise.

(a) κ1 = κ2 So the reference point p is umbilic with constant normal curvature. Every

direction in the tangent plane is a principal direction. We simply choose two orthogonal

directions as d1 and d2.
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(b) κ1 6= κ2 So cos(2θ) = cos(2θ + 2θ1) = cos(2θ + 2θ2), in which case θ1, θ2 = π − 2θ

or 2π − 2θ. No unique solutions of κ1 and κ2 exist as the three equations in (3.3) are

essentially one.

Situation (b) can be avoided by choosing sampling planes that violate the implicit relationship

between θ1 and θ2.

The general case is when κ′
α, κ′

β , and κ′
γ are not all equal. Then one of the curvatures must

be different from the other two. Assume that it is κ′
α. From (3.3) we have the following:

κ′
α − κ′

β =
(

cos(2θ)− cos(2θ + 2θ1)
)

·
κ1 − κ2

2
,

κ′
α − κ′

γ =
(

cos(2θ)− cos(2θ + 2θ2)
)

·
κ1 − κ2

2
.

Divide both sides of the first equation above by those of the second:

κ′
α − κ′

β

κ′
α − κ′

γ

=
cos(2θ)− cos(2θ + 2θ1)

cos(2θ)− cos(2θ + 2θ2)

=
sin(2θ + θ1)

sin(2θ + θ2)
·
sin θ1

sin θ2

=
sin

(

(2θ + θ2) + (θ1 − θ2)
)

sin(2θ + θ2)
·
sin θ1

sin θ2
.

From the last equation above we obtain

tan(2θ + θ2) =
sin(θ1 − θ2)

κ′
α − κ′

β

κ′
α − κ′

γ

·
sin θ2

sin θ1
− cos(θ1 − θ2)

.

So we obtain θ and the principal directions. The Darboux frame is thus determined. Substi-

tuting θ, θ1, and θ2 into the system (3.2) of linear equations, we can solve for the principal

curvatures κ1 and κ2.

Subsequently, we transform the coordinates of all data points to the Darboux frame at p

determined by d1, d2, and N .

3.2 Surface Patch Reconstruction

The three data curves α, β, γ together serve as a “skeleton” for the patch to be recon-

structed. In the newly estimated Darboux frame at p, we fit the z-coordinate polynomial (3.1)
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over all the data points (xi, yi, zi), 1 ≤ i ≤ n, sampled along α, β, and γ. The degree of the

polynomial is set to be d = 4. Quartic polynomials are capable of describing a wide range of

real objects so that several subclasses are commonly used as shape models in computer vision

and robotics. Write a = (a30, a21, . . . , a04) to include the nine polynomial coefficients. They

are determined in a least-squares sense:

min
a

f(a) where f(a) =
n

∑

k=1

(z(xk, yk)− zk)
2
. (3.4)

The term |z(xk, yk)− zk| is an upper bound on the distance from the data point (xk, yk, zk) to

the patch (3.1) defined by a. The function f(a) thus bounds the total squared distance from

the data points to the patch.

(a) (b)

Figure 3.4 A broken plastic bottle and its reconstructed neck region.

We have sampled 57 points (white) along 3 concurrent curves, displayed in (b) in the

figure, inside the marked neck region. These curves are concurrent at the reference point

(marked inside the region), which is parabolic with negative Gaussian curvature. The principal

curvatures are estimated as −0.0424 and 0.0172, respectively. The neck region of the bottle is

reconstructed in the picture (b) according to (3.4).
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We measure the average fitting error as

e =
1

n

n
∑

k=1

∣

∣

∣z(xk, yk)− zk

∣

∣

∣. (3.5)

Although the error is small (0.0459mm) over the n = 57 data points, the reconstructed patch

does not nearly resemble the bottle’s neck region. It has “peaks” and “valleys”. To con-

firm this quantitatively, we use 171 points (black) sampled along 9 extra curves through the

same reference point. The average error (3.5) over these points then rises up dramatically to

13.0042mm.

3.2.1 Constraining the Fitting Surface

Naturally, we would like the reconstructed patch to look “smooth”. That is, it should not

have any “peaks”, “valleys”, or folds unless induced by the three data curves. This patch is

assumed to be a “local” one where any drastic change of geometry between the three data

curves is not expected. From the bottle example it is apparent that three data curves do

not provide enough constraints on fitting. The objective function in (3.4) for fitting needs to

include a term that can measure the “degree of folding” of the surface fit.

There seem to be at least three approaches to dealing with this issue. The first is to derive

more information from the data curves to control the behavior of surface fitting. We could

use directional derivatives estimated at all points along the data curves. The rationale is that

the Monge patch (3.1) incorporates the tangent (first order) and curvature (second order)

information at the reference point, but only the positions (zeroth order) of the other points

are taken into account in the fitting (3.4). The second approach is to generate artificial data

points by, say, interpolation, between the data curves.

After many trials, we have found that neither of these two approaches nor their combination

can generate satisfactory shapes when verified against extra real data. Directional derivatives

simply could not constrain the area of a surface fit between the data curves. Interpolation, on

the other hand, tends to shape the surface fit with a bias imposed by the interpolation scheme

itself. The areas between the three data curves are just too large for interpolation to work

properly.
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Figure 3.5 Gauss map from a patch to a unit sphere.

The third approach makes use of the total Gaussian curvature. It is the integral of the

Gaussian curvature over a surface patch:
∫ ∫

σ K dA. Geometrically, every point q on the

patch maps to some point on the unit sphere that represents the unit surface normal N(q).

This is called the Gauss map as illustrated in Figure 3.5. All the image points constitute a

shaded region R on the unit sphere, whose algebraic area is the total Gaussian curvature of

the patch (33, p. 290).

The flatter the patch, the closer the total Gaussian curvature approaches zero. In the special

case of a planar patch, the total Gaussian curvature becomes zero. The converse, however, is

not necessarily true because Gaussian curvature may change its sign over the patch. When

the sign varies, the Gauss map may fold the patch many times over the region R on the unit

sphere. The total Gaussian curvature thus cannot tell how much the surface patch folds. To

measure the “degree” of folding over R, we integrate the absolute Gaussian curvature over the

patch.

Let D be the domain of the surface fit in the tangent plane at the reference point p (i.e.,

the xy-plane). The total absolute Gaussian curvature is defined as

∫ ∫

D
|K(x, y)| ·

√

1 + z2
x + z2

y dxdy. (3.6)

The more the patch folds, the larger the integral. For example, the reconstructed patch in

Figure 3.4 has total absolute Gaussian curvature 16.3086, which is too big for a small region

on the bottle.

Given the values of the coefficient vector a of the polynomial fit (3.1), we evaluate the total

absolute Gaussian curvature (3.6) numerically. For ease of computation, the patch domain D

is chosen to be the convex hull of the projections of α, β, and γ onto the xy-plane. Discretize
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the domain D into a grid of m points (u1, v1), . . . , (um, vm) with uniform spacing h. The

integral (3.6) is approximated by

g(a) = h2 ·
m

∑

j=1

(

|K(uj , vj)| ·
√

1 + z2
x(uj , vj) + z2

y(uj , vj)
)

. (3.7)

Now, patch reconstruction over the n data points is done through optimizing a new objective

function that incorporates the total absolute Gaussian curvature of the surface fit:

min
a

f(a) + λng(a). (3.8)

This is equivalent to minimizing 1
n
f(a) + λg(a) except numerically more stable. The choice of

the multiplier λ is independent of n. The first term in (3.8) constrains the patch to lie very close

to the sampled points, while the second term prevents it from changing dramatically between

the data curves. By a proper choice of λ, the resulting patch will be spanned “smoothly” by

the three data curves.

3.2.2 Minimization

The nonlinear optimization (3.8) is carried out using the steepest descent method along the

negative gradient of the objective function. Note that g(a) depends on the signs of the Gaussian

curvatures K(uj , vj), 1 ≤ j ≤ m, which may vary from the current coefficient estimate a(l) to

the next one a(l+1). To cope with this issue, at a(l) for every grid point (uj , vj) we define

δj =











1 if K(uj , vj) ≥ 0;

−1 if K(uj , vj) < 0.

Replacing |K(uj , vj)| with δjK(uj , vj) in the definition (3.7) of g(a) yields an equivalent func-

tion ḡ(a) in some neighborhood of a(l) in the coefficient space. Performing the steepest descent

along the negative gradient −∇(f(a) + λnḡ(a)) yields the next estimate a(l+1). If the signs of

all Gaussian curvatures K(uj , vj), 1 ≤ j ≤ m, do not vary from a(l) to a(l+1), we have found

a (local) minimum of (3.8). Otherwise, iteration continues. The minimization procedure is
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detailed below.

1 initialize the coefficients a(0) of the polynomial (3.1)

2 l← 0

3 repeat

4 for j = 1 to m

5 if K(uj , vj) ≥ 0 then δj ← 1

6 else δj ← −1

7 v ← −∇
(

f(a) + λnḡ(a)
)

8 a(l+1) ← steepest descent from a(l) along v

9 l← l + 1

10 until for all 1 ≤ j ≤ m the sign of K(uj , vj) under a(l)

stays the same as that under a(l−1)

The initial value of the coefficients, a(0), is obtained by unconstrained fitting (3.4) over the

data points and some artificial points generated through linear interpolation. These artificial

points are not used in the following optimization steps.

We use the algorithm to reconstruct the neck region of the plastic bottle in Figure 3.4. The

multiplier λ is set to be 0.3. The result is shown in Figure 3.6.

Figure 3.6 New patch reconstructed over the same neck region.

The same 9 data curves (shown in dark dots) from Figure 3.4 are used for verification

purpose. The reconstructed patches in the two figures are compared in the first two rows of

Table 3.1. By incorporating the total absolute Gaussian curvature, the average fitting error

over these extra curves has reduced dramatically from 13.0042mm to 0.0826mm. The slight
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principal average fitting error (3.5) (mm)

reconstructed curvatures total absolute 3 data curves 9 verify. curves

patch (1/mm) Gaussian curvature (57 points) (171 points)

Figure 3.4 (b) −0.0424, 0.0172 16.3026 0.0459 13.0042

Figure 3.6 same as above 0.0083 0.0838 0.0826

other −0.0463, 0.0179 0.0026 0.1078 0.1574

Table 3.1 Statistics of the two reconstructed patches in Figures 3.4 and 3.6,
respectively, and of a third patch derived over different data
curves sampled from the same surface area.

increase in the average error over the 3 original curves is expected because of the extra term

λng(a) in (3.8) to minimize.

To test the robustness of the constrained fitting scheme (3.8), we also arbitrarily pick 3

out of the 9 extra curves for patch reconstruction. And the result is shown in the third row of

Table 3.1. The last entry in this row is determined over points along the remaining 9 curves

that are not used in the new fitting. The resulting patch is not shown because it has hardly

any visual difference from Figure 3.6.

3.3 Experiments

Table 3.2 shows patch reconstruction results over six different shapes.

The first two columns of each row in the table display an object and its corresponding

reconstructed patch. The third column lists the principal curvatures κ1 and κ2 at the marked

reference points and the total absolute Gaussian curvatures (t.a.G.c.) of the reconstructed

patches. The last two columns give the fitting errors defined in (3.5). The reference point is

marked on the object, so is the region that contains the sampled data curves and (roughly)

corresponds to the reconstructed patch. As before, the original data consists of points along

three curves concurrent at the reference point. The extra data for verification consist of points

along three other curves also through the same point.

The reconstructed patches have undergone some rotations for better display. The third

column of each row includes the two estimated principle curvatures κ1 and κ2 at the reference
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κ1, κ2 fit. error (mm)

shape reconstructed (1/mm), original extra

surface patch t.a.G.c. data data

0.0166

0.0231

0.1005

0.2165 0.1196

0.0242

0.0074

0.1004

0.3392 0.3284

−0.0208

−0.0395

0.2702

0.3801 0.5010

0.0305

0.0077

0.0523

0.3815 0.2989

0.0496

0.0079

0.2191

0.2271 0.2812

0.0189

0.0138

0.0087

0.1633 0.2819

Table 3.2 Surface patches reconstructed over the marked areas on a mouse,
a coconut, two shells, and two pebbles, respectively.
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point, and the total absolute Gaussian curvature of the patch. Principal axes at the reference

points are marked on the reconstructed patches. They are recognizable on those of the two

shells and the two pebbles.

3.4 Validations

We first test the accuracy of the sampled data on several freeform objects. First of all, we

sampled data points along three concurrent curves on the surface of each object, whose model

has been generated by NextEngine’s desktop scanner for the purpose of comparison.

Using the method from [5], the intersection point of the three data curves is located from

the 3D model of the freeform object and the curves are registered onto the surface of the model.

So we can display these three curves on the 3D mesh model of each object as shown in Figure

3.7.

Figure 3.7 Five shape models, a dog, a fish, a monkey, a pear, a stone. Data
points sampled along three concurrent curves on each model
surface.

3.4.1 Accuracy of Reconstruction

We have tested the accuracy of the system by superposing the three data curves obtained

from each object onto its mesh model. There is a corresponding point on the mesh that

coincides with the curve intersection point through which the two tangent planes, one to the

three curves and the other to the mesh model, are aligned. Carry out the following steps:

1. Use the common point as the origin. Use the aligned tangent planes as the x-y plane.

Pick two orthogonal tangent directions as the x- and y-axes. As shown in Figure 3.8, we

select the two principal directions in Darboux frame as the x- and y-axes.
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Figure 3.8 Projection of mesh model vertices and sampled curves data
points onto the tangent plane.

2. Transform all mesh vertices into this Darboux frame (black dots as shown in Figure

3.8). The mesh vertices are initially in the global coordinates, we should transform

them into the Darboux frame. This is realized by dot product of space vectors. Project

the three curves onto the x-y plane (red lines as shown in Figure 3.8) to determine its

correspondent vertices. For extracting the mesh vertices that correspond to some points

on the reconstructed patch, we compute the convex hull of the line segments that are the

curve projections, and choose all mesh vertices that project within the convex hull.

3. For every extracted vertex (x, y, z), evaluate the difference between its z coordinate and

the corresponding data point’s z coordinate in the curve. This is the error for the sampled

data points on three curves.

Table 3.3 shows the calculated average errors of the sample data points from five objects.

model name averaged error (mm)

Pear 0.153

Stone 0.169

Monkey 0.367

Fish 0.197

Dog 0.171

Table 3.3 Calculated error
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Figure 3.9 Three shape models, a pebble, a fruit, a stone. Two view of the
reconstructed patch rendered on each model surface.

3.4.2 Local patch reconstruction results

Fig. 9 displays three reconstructed surface patches rendered on the corresponding models.

Here, minimization of the total (absolute) Gaussian curvature of the surface fit effectively pre-

vents unnecessary folding (2). Each row of the figure displays two views of a patch superposed

on the corresponding model. We flip view one to get view two in order to show the good match

of the reconstructed surface patch on the model.
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CHAPTER 4. DISCUSSION AND FUTURE RESEARCH

This thesis investigates how to reconstruct curved shapes in 3D from contours generated

by tracking with a 2-axis force sensor — a joystick. The joystick is mounted on a 4-DOF

Adept Cobra 600 manipulator whose built-in position control is utilized to yield high accuracy

data. Since the Adept robot does not allow direct access to its joint torques, force control is

implemented with the joystick sensing.

The joystick as a touch sensor generates a sequence of points as it moves along the surface

of an object. While the yielded data curves seem too sparse for building surfaces in 3D. We

deal with this issue of insufficient data by choosing an arrangement of tracking trajectories,

and applying some basic techniques in differential geometry. More specifically, the data curves

intersect at a point around which the description of a local patch is simplified. The total

absolute Gaussian curvature provides a solution to reconstruction over insufficient data, at

least locally, as we have demonstrated. Its minimization while data fitting has effectively

prevented unnecessary folding of the resulting patch.

The data curves on the surface do not need to be planar for the reconstruction purpose.

But for space curves, curvature estimation is less reliable, which could affect the estimation of

the principal curvatures and the Darboux frame at the reference point.

Probing a surface at a grid of points could lead to a more robust fitting result than tracking

along three concurrent curves due to the better data arrangement in the former strategy.

However, multiple probes are time consuming because the robot needs to move up and down

repeatedly. In contrast, tracking out a few surface curves is much more efficient. Plus, it

resembles moving the human finger across a surface several times to feel its shape.

The reconstruction procedure is influenced by the accuracies in the estimated principal
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curvatures and directions at the reference point, which are in turn affected by the normal

curvature estimates. Sensing errors occur with the sampled data points. Control errors may

cause the tracking pin to slightly deviate from the sampling plane. However, the final fitting

over all the data points is expected to reduce the influence of such sensing and control errors.

The objective of our work in surfaces constructed over range data are subjected to camera

occlusion and sometimes lack in accuracy in practice. A situation may arise where very fine

details about certain parts of a shape are needed. Tracking with a touch sensor controlled by

a high precision robot poses a good solution.

4.1 Current improvement on Tracking

Due to its lack of two degrees of freedom, the Adept robot cannot orient the tracking tool

normal to a surface everywhere. Thus it is unable to track in an area with steep slope or

facing downward. We have most recently purchased a robotic hand from Barrett Technology,

Inc. with three fingers and 4 DOFs. We are currently building our system by a Adept Cobra

robot and a Barrett Hand. Both Adept Cobra robot and Barrett Hand have four DOFs. We

mounted Barrett Hand on our Adept robot. Thus, we have eight DOFs in total. As far as the

sensor is concerned, we use a joystick sensor from Interlink Inc. We mounted the sensor on one

of the Barrett’s finger. As shown in Figure 4.1, since we want to read in force sensitively, we

use a lever to amplify the force. The Adept Cobra robot communicates with a host computer

by TCP/IP. At the same time, the Barrett Hand communicates with the same host computer

by Serial port. Because we have already used the serial port to communicate the joystick

sensor, therefore we use a serial to USB adapter for the Barrett Hand. The joystick sensor

communicates with the host computer by serial port.

For the software part, we basically have two main programs. Program one controls the

Adept Cobra robot and joystick sensor, program two controls the Barrett hand. The commu-

nication between these two programs is by TCP/IP. After read in the force reading form the

joystick sensor, program one processes the force reading and communicates with program two

to adjust position and orientation of the whole system.



26

Push Pin

Joystick Sensor

Focus

Beam

Figure 4.1 System architecture.

Normal/Tangent
Estimation

Target Position
Calculation

Normal Adjustment

Adept/Barrett
Movement

Joystick Sensor
Reading

Coordinate Output

Figure 4.2 System flow diagram.
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We are currently working on the system as shown in Figure 4.2, in the system, we begins

from the tangent estimation. Then the target position was calculated. This signal was sent to

the Adept robot and Barrett hand. They will do the required action. The force reading was

loaded in from the joystick sensor, the position controller will calculate the position adjustment.

The system iterates this procedure in the process of data sampling.

4.2 From Patches to Surfaces

In geometric modeling, a CAD model usually joins together multiple surfaces which reflect

the correct topology. We can also view a complicated surface as a collection of local patches.

Every patch is described in the Darboux frame at a reference point in its interior. In the future

research, we will merge patches into a whole model. This will allow us to visualize the object

while interacting with it.
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