
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Incorporating product-line engineering techniques
into agent-oriented software engineering for
efficiently building safety-critical, multi-agent
systems
Joshua Jon Dehlinger
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Dehlinger, Joshua Jon, "Incorporating product-line engineering techniques into agent-oriented software engineering for efficiently
building safety-critical, multi-agent systems" (2007). Retrospective Theses and Dissertations. 15529.
https://lib.dr.iastate.edu/rtd/15529

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15529?utm_source=lib.dr.iastate.edu%2Frtd%2F15529&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

 Incorporating product-line engineering techniques into agent-oriented
software engineering for efficiently building safety-critical, multi-agent systems

by

Joshua Jon Dehlinger

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Robyn R. Lutz, Major Professor

Samik Basu
Carl K. Chang

Manimaran Govindarasu
Suraj C. Kothari
Gary T. Leavens

Iowa State University

Ames, Iowa

2007

Copyright © Joshua Jon Dehlinger, 2007. All rights reserved.

UMI Number: 3274890

3274890
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

 ii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES.. vii

LIST OF ACRONYMS AND ABBREVIATIONS .. viii

ACKNOWLEDGEMENTS... ix

ABSTRACT ... xii

CHAPTER 1. INTRODUCTION ...1
1.1 Product-Line Engineering for Agent-Based Systems.................................. 2
1.2 Safety Analysis for Safety-Critical Software Product Lines 6
1.3 Safety Analysis for Multi-Agent System Product Lines 9
1.4 Statement of Thesis.. 13
1.5 Outline ... 15

CHAPTER 2. RELATED WORK..16
2.1 Software Product-Line Engineering .. 16
2.2 Agent-Oriented Software Engineering .. 23
2.3 Software Safety Analysis... 30

CHAPTER 3. CASE STUDY: THE PROSPECTING ASTEROID
MISSION ...36

3.1 The Autonomous Nano-Technology Swam Mission................................. 36
3.2 The Prospecting Asteroid Mission... 39

CHAPTER 4. DEVELOPING MULTI-AGENT SYSTEM PRODUCT
LINES USING THE GAIA-PL METHODOLOGY46

4.1 Integrating Software Product-Line Engineering Principles into the
Gaia Methodology .. 47

4.2 Documenting the Requirements Specifications of a MAS-PL in the
Gaia-PL Methodology .. 57

4.3 Requirements Specifications Reuse in the Gaia-PL Methodology............ 91
4.4 Evaluation of the Gaia-PL Methodology... 100
4.5 Summary.. 108

CHAPTER 5. SAFETY ANALYSIS FOR SAFETY-CRITICAL MULTI-
AGENT SYSTEM PRODUCT LINES110

5.1 Software Safety Analysis for Multi-Agent System Product Lines 111
5.2 Software Failure Modes, Effects and Criticality Analysis for the

Gaia-PL Methodology .. 116
5.3 Product-Line Software Fault Tree Analysis and PLFaultCAT................ 136
5.4 Bi-Directional Safety Analysis for Multi-Agent System Product Lines . 198
5.5 Summary.. 202

CHAPTER 6. CONCLUSION..205
6.1 Support for the Thesis.. 205

 iii

6.2 Summary of Contributions... 210
6.3 Future Work... 213
6.3 Summary.. 216

BIBLIOGRAPHY..218

APPENDIX A. COMMONALITY AND VARIABILITY ANALYSIS229

APPENDIX B. PARAMETERS OF VARIATION ...244

APPENDIX C. FEATURE MODEL..250

APPENDIX D. GAIA-PL ROLE SCHEMAS ...252

APPENDIX E. SOFTWARE FAILURE MODES, EFFECTS AND
CRITICALITY ANALYSIS..302

APPENDIX F. PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS ..322

 iv

LIST OF FIGURES
Figure 1 The Gaia Models and their Relationships (from [93]).................................... 27
Figure 2 The Family of NASA’s Proposed ANTS-Based Missions............................. 37
Figure 3 PAM Spacecraft Exploring the Asteroid Belt (from [76]).............................. 43
Figure 4 An Overview of the Software Engineering Artifacts of Gaia-PL................... 58
Figure 5 Excerpt of the Commonalities from the Commonality and Variability

Analysis for the PAM MAS-PL.. 61
Figure 6 Excerpt of the Variabilities from the Commonality and Variability

Analysis for the PAM MAS-PL.. 62
Figure 7 Documenting the Commonality and Variability Requirements in

DECIMAL .. 65
Figure 8 Documenting the A Variability Requirement and its Parameters of

Variation Using DECIMAL.. 65
Figure 9 Feature Model Derived from the Commonality and Variability Analysis

for the PAM MAS-PL... 68
Figure 10 The Requirements Specifications for the Navigator Role Documented in

a Role Schema... 70
Figure 11 The Role Variation Points Schema for the Self-Optimizer Role 71
Figure 12 The Variation Points Schema for the Core Variation Point of the Self-

Optimizer Role.. 73
Figure 13 The Variation Points Schema for the Leader Variation Point of the Self-

Optimizer Role.. 74
Figure 14 The Variation Points Schema for the Messenger Variation Point of the

Self-Optimizer Role.. 75
Figure 15 The Variation Points Schema for the Worker Variation Point of the Self-

Optimizer Role.. 76
Figure 16 A Portion of the PAM Feature Model to Illustrate Hierarchical Role

Variation Points Schemas ... 79
Figure 17 An Excerpt of the Role Variation Points Schema for the Self-Protector

Role... 81
Figure 18 An Excerpt of the Role Variation Points Schema for the SolarStormWarner

Role... 81
Figure 19 The Variation Points Schema for the Passive Variation Point of the

SolarStormWarner Role.. 82
Figure 20 The Variation Points Schema for the Warm-Spare Variation Point of the

SolarStormWarner Role.. 83
Figure 21 The Variation Points Schema for the Active Variation Point of the

SolarStormWarner Role.. 84
Figure 22 The Variation Points Schema for the SolarStormProtector Variation Point

of the Self-Protector Role ... 85
Figure 23 A Portion of the PAM Feature Model for the SolarStormWarner Role with

only the Passive Variation Point ... 87

 v

Figure 24 Role Deployment Schema for a Configuration of the SolarStormWarner
Role... 88

Figure 25 Role Deployment Schema for a Configuration of the SolarStormWarner
Role... 88

Figure 26 An Excerpt of the Agent Model for the PAM MAS-PL 91
Figure 27 Updated Role Variation Points Schema for the Self-Optimizer Role as

a Result of Evolution .. 98
Figure 28 The New Variation Points Schema for the Scout Variation Point of the

Self-Optimizer Role as a Result of Evolution... 99
Figure 29 Excerpt of the Updated Agent Model to Reflect the Addition of the Scout

Variation Point to the Self-Optimizer Role .. 100
Figure 30 An Overview of the Safety Analyses for MAS-PL in the Gaia-PL

Methodology... 114
Figure 31 The Variation Point Schema for the CollisionProtector Role 117
Figure 32 An Overview of the PL-SFTA Safety Analysis Technique 138
Figure 33 An Overview of DECIMAL and PLFaultCAT’s Role in the Design and

Development of Safety-Critical Product Lines... 140
Figure 34 PLFaultCAT’s Software Architecture... 143
Figure 35 PL-SFTA_CREATE Algorithm .. 148
Figure 36 An Excerpt of an Intermediate Node Tree for the Spacecraft to Asteroid

Collision Hazard ... 149
Figure 37 An Excerpt of an Intermediate Node Tree for the Spacecraft Received

Solar Storm Damage Hazard .. 150
Figure 38 An Intermediate Software Fault Tree for the Spacecraft to Asteroid

Collision Hazard in PLFaultCAT ... 153
Figure 39 An Intermediate Software Fault Tree for the Spacecraft Received Solar

Storm Damage Hazard in PLFaultCAT.. 154
Figure 40 Depicting the Influence of a Commonality for the Spacecraft to Asteroid

Collision Fault Tree in PLFaultCAT .. 155
Figure 41 Depicting the Influence of a Variability for the Spacecraft Received Solar

Damage Fault Tree in PLFaultCAT.. 156
Figure 42 Automatically Linking a Product-Line Requirement to a Software Fault

Tree Node in PLFaultCAT.. 159
Figure 43 A PL-SFTA for the Spacecraft to Asteroid Collision Hazard in

PLFaultCAT.. 162
Figure 44 A PL-SFTA for the Spacecraft Received Solar Damage Hazard in

PLFaultCAT.. 163
Figure 45 A Generic Product-Line Software Fault Tree Analysis 165
Figure 46 Selecting the Depth to Search for the Single-Point Failures of a PL-SFTA . 167
Figure 47 The Single-Point Failure Report Produced by PLFaultCAT......................... 167
Figure 48 Updating the PL-SFTA to Mitigate Against a Single-Point Failure 169
Figure 49 The Variability Contribution Failure Report Produced by PLFaultCAT...... 171
Figure 50 The Variability Selection Window to Prune a PL-SFTA.............................. 174
Figure 51 Pruning the PL-SFTA in PLFaultCAT..177
Figure 52 Pruning for a Product-Line Member Software Fault Tree in PLFaultCAT .. 179

 vi

Figure 53 Resulting Product-Line Member Software Fault Tree after Manual
Pruning.. 182

Figure 54 Depicting the Influence of a Role’s Variation Point for the Spacecraft
Received Solar Damage Fault Tree in PLFaultCAT 186

Figure 55 Variation Point Selection to Derive an Agent’s PL-SFTA in PLFaultCAT . 188

 vii

LIST OF TABLES
Table 1 Types of Specialized Instruments for Worker Spacecraft 41
Table 2 Excerpt of the Parameters of Variation Table for the PAM MAS-PL................ 63
Table 3 A Portion of the SFMECA Event Table for the CollisionProtector

Variation Point of the Self-Protector Role.. 121
Table 4 A Portion of the SFMECA Event Table for the CollisionProtector

Variation Point of the Self-Protector Role.. 122
Table 5 A Portion of the SFMECA Event Table for the CollisionProtector

Variation Point of the Self-Protector Role.. 123
Table 6 A Portion of the SFMECA Data Table for the CollisionProtector

Variation Point of the Self-Protector Role.. 126
Table 7 A Portion of the SFMECA Data Table for the CollisionProtector

Variation Point of the Self-Protector Role.. 127
Table 8 A Portion of the SFMECA Data Table for the CollisionProtector

Variation Point of the Self-Protector Role.. 128
Table 9 Results of the Application of PL-SFTA to the PAM Case Study..................... 190

 viii

LIST OF ACRONYMS AND ABBREVIATIONS

ANTS Autonomous Nano-Technology Swarm

AOSE Agent-Oriented Software Engineering

BDSA Bi-Directional Safety Analysis

CVA Commonality and Variability Analysis

FAST Family-Oriented Abstraction, Specification and Translation

FMEA Failure Modes and Effects Analysis

Gaia-PL Gaia – Product Line

MAS Multi-Agent System

MAS-PL Multi-Agent System Product Line

NASA National Aeronautics and Space Administration

PAM Prospecting Asteroid Mission

PL-SFTA Product-Line Software Fault Tree Analysis

SFMEA Software Failure Modes and Effects Analysis

SFMECA Software Failure Modes, Effects and Criticality Analysis

SFT Software Fault Tree

SFTA Software Fault Tree Analysis

UML Unified Modeling Language

XML Extensible Markup Language

 ix

ACKNOWLEDGEMENTS

Despite my name solely being on the cover of this dissertation, a great many

people have invaluably contributed to its production. I owe my gratitude to those family

members, friends, classmates and professors who have been instrumental to making this

dissertation successful and my graduate student experience memorable.

My deepest gratitude is to my advisor, Dr. Robyn R. Lutz. I have been incredibly

fortunate to have an advisor who simultaneously gave me the freedom to explore research

ideas on my own and guided me towards those problems and ideas that are important.

Robyn’s questions, suggestions and patience have shaped this dissertation and its

research. Her sincere desire to build safer software systems has inspired much of this

research, and her interest in supporting space exploration has renewed my interest in the

same. I am deeply grateful to her for investing the time and energy in me as a graduate

student. I can only aspire to become as effective of a researcher, professor and advisor for

my future students as Robyn was for me.

I would like to thank all the members of my committee: Dr. Samik Basu, Dr. Carl

K. Chang, Dr. Manimaran Govindarasu, Dr. Suraj C. Kothari and Dr. Gary T. Leavens. I

consider myself lucky to have such and exceptional doctoral committee. Their questions,

comments, support and encouragement greatly benefited this dissertation.

In particular, I would like to thank Dr. Gary T. Leavens for providing numerous

and helpful comments on an earlier draft of this dissertation. His suggestions certainly

improved the presentation and clarity of this work.

Qian Feng has provided me with the unwavering love, support and

encouragement needed to survive the tumultuous times of a graduate student. This

dissertation would not have been possible without her.

 x

I am thankful for all of the past and current members of the Laboratory for

Software Safety: Jing (Janet) Liu, Hongyu Sun, Wei Zhang, Kendra Schmid, Lada

Suvorov, Meredith Humphrey, Dingding Lu, Oko Swai, Barbara Nsiah and Miriam

Hauptman. I can’t imagine a better group of people as labmates and friends. Being able to

chat with them, about research or otherwise, while preventing them from doing their

work certainly made the rigors of graduate studies manageable. Also, the occasional ping

pong matches served as much needed breaks and an outlet for stress that comes with

writing a dissertation.

In particular, I am grateful to Janet Liu who has been a close friend, labmate and

collaborator throughout my time at Iowa State University. I am indebted to the time she

spent reviewing my work, asking probing questions and for her thoughtful suggestions

and discussions. I have thoroughly enjoyed the research we have worked on together and

have learned greatly from her.

I was privileged to have worked with two wonderful undergraduate students,

Meredith Humphrey and Lada Suvorov, in the redesign, development and improvement

of DECIMAL. In this work, I’d also like to thank Prasanna Padmanabhan, the original

developer of DECIMAL, for his helpful comments, insights and suggestions.

I enjoyed the three semesters that I spent working with Dr. Simata Mitra as a

teaching assistant. In that time, I learned a lot about what it takes to design, manage and

teach a software engineering class. I will carry these lessons, as well as those lessons I

have learned in observing Dr. Robyn R. Lutz, Dr. Hridesh Rajan and Dr. Gary T.

Leavens, with me as go forward.

I am grateful to Linda Dutton for her assistance in navigating the maze of

administrative paperwork throughout my time as a graduate student. She always greeted

me with a smile, knew the answers to my questions and borrowed me her keys on the

several occasions that I locked myself out of our research lab.

 xi

Most importantly, none of this would have been possible without the love and

support of my family. I thank my parents for instilling in me the work ethic, patience,

dedication and discipline needed to do whatever I undertake well. I am grateful to my

father, Dr. Jonathan Dehlinger, for taking the time to read through many of the papers I

have written while a graduate student and providing helpful comments despite not fully

understanding the work and always providing helpful advice. I am also grateful to my

mother, Sandy Dehlinger, for always worrying about me and encouraging me. My sisters,

Erin and Sara Dehlinger, have given me the glimpses into the joys of the “real world”

that has inspired me to finish this dissertation so that I too can enjoy the fruits of my

education.

Finally, this research was supported through National Science Foundation grants

0204139 “Safety Analysis for Critical Product Lines”, 0205588 “Natural Language in the

Development of High-Confidence Software”, 0541163 “Safety Analysis of Evolving

Product Lines” and by the Iowa Space Grant Consortium grant “A Product-Family

Approach to the Maintenance and Evolution of Constellations”.

 xii

ABSTRACT

Safety-critical, agent-based systems are being developed without mechanisms and

analysis techniques to discover, analyze and verify software requirements and prevent

potential hazards. Agent-oriented, software-based approaches have provided powerful

and natural high-level abstractions in which software developers can understand, model

and develop complex, distributed systems. Yet, the realization of agent-oriented software

development partially depends upon whether agent-based software systems can achieve

reductions in development time and cost similar to other reuse-conscious software

development methods. Further, agent-oriented software engineering (AOSE) currently

does not adequately address: (1) requirements (specification) reuse in a way that is

amenable to the reduction of the development cost by utilizing reusable assets, and (2)

analysis techniques to evaluate safety.

This dissertation offers our AOSE methodology, Gaia-PL (Gaia – Product Line)

for open, agent-based distributed software systems to capture requirements specifications

that can be easily reused. Our methodology uses a product-line perspective to promote

reuse in agent-based, software systems early in the development lifecycle so that software

assets can be reused throughout the development lifecycle and system evolution.

The main contribution of this work is a requirements specification pattern that

captures the dynamically changing design configurations of agents. Reuse is achieved by

adopting a product-line approach into AOSE. Requirements specifications reuse is the

ability to easily use previously defined requirements specifications from an earlier system

and apply them to a new, slightly different system. This can significantly reduce the

development time and cost of building an agent-based system.

 xiii

For safety-critical agent-based systems, this dissertation incorporates reuse-

oriented safety analysis methods for AOSE to allow the discovery of new safety

requirements and the verification that the design satisfies the safety requirements.

Specifically, Product-Line Software Fault Tree Analysis (PL-SFTA) and its automated

tool, PLFaultCAT (Product-L ine Fault Tree Creation and Analysis Tool), have been

created to provide the technique and tool support for the safety analysis of safety-critical

software product lines. The PL-SFTA allows for the identification of new safety

requirements and the analysis of safety-critical requirements and requirement

interactions. An AOSE-adapted Software Failure Modes, Effects and Criticality Analysis

(SFMECA) technique has been created to support the derivation of a safety analysis asset

using the specifications of Gaia-PL allowing for the identification of possible hazard

scenarios and the failure points of specific agent roles. Using the assets generated via PL-

SFTA and SFMECA, Bi-Directional Safety Analysis (BDSA) is shown to aid in the

completeness of PL-SFTA and SFMECA, help verify the safety properties and strengthen

the safety case when safety compliance to safety standards of the multi-agent system is

necessary.

Results from an application to a large, safety-critical, multi-agent system product-

line show that Gaia-PL provides strong reuse capabilities. Evaluation of the Gaia-PL

methodology used in conjunction with the PL-SFTA, SFMECA and BDSA safety

analysis techniques shows that safety analysis of an agent-based software system is

feasible, reusable and efficient.

 1

CHAPTER 1. INTRODUCTION

Safety-critical, agent-based systems are being developed without mechanisms and

analysis techniques to discover, analyze and verify software requirements and prevent

potential hazards. Agent-oriented, software-based approaches have provided powerful

and natural high-level abstractions in which software developers can understand, model

and develop complex, distributed systems. Yet, the realization of agent-oriented software

development partially depends upon whether agent-based software systems can achieve

reductions in development time and cost similar to other reuse-conscious software

development methods. Further, agent-oriented software engineering (AOSE) currently

does not adequately address: (1) requirements (specification) reuse in a way that is

amenable to the reduction of the development cost by utilizing reusable assets, and (2)

analysis techniques to evaluate safety.

This dissertation addresses these problems by developing an AOSE methodology,

Gaia-PL, that can reduce the cost of developing an agent-based system by producing and

utilizing reusable assets during the requirements (specification) phase of design and

development. Further, this dissertation details several product-line oriented, safety

analysis techniques that can evaluate the safety of an agent-based, product-line system in

such a way that: (1) discovers, verifies and analyzes the agent-based systems’

requirements, and (2) produces safety analysis assets that are reusable for other agent-

based systems created within the same product line.

The work presented here is part of a larger effort that investigates how safety

analysis can become a reusable asset of a product line by developing a framework and a

suite of techniques and tools for the safety analysis of product lines. The long-term goal

is to provide verification results for a new system in the product line in a timely and cost-

efficient manner.

 2

This chapter begins with the motivation for this work and an overview of the

contributions of this dissertation. First, software product-line engineering is discussed as

an incentive for its extension to AOSE to develop multi-agent system product lines

(MAS-PL). Next, software safety analysis for safety-critical, software product lines is

discussed as a driving factor for the development of techniques and tools tailored to the

development of reusable safety analysis assets for product lines. Then, motivation for the

inclusion of such product-line safety analysis techniques into the development of MAS-

PL is provided. The introduction concludes by stating my thesis and providing an outline

for the remainder of the dissertation.

1.1 Product-Line Engineering for Agent-Based System s

Reuse is highly desirable in software engineering as a way to reduce the cost of

the design and development of software. Approaches to achieve reuse have been pursued

implicitly and explicitly in the design and development of software systems for many

years [12], [76]. For example, software design patterns have been proposed as a design

template that acts as a repeatable solution for commonly occurring problems in software

design [33]. Object-Oriented Programming has been widely used as an approach to reuse

logical units of software code in several different applications [33].

Implicitly, software programmers commonly copy existing code into a new

application when the functionality is similar [61]. The product family concept was first

introduced by Parnas in [61]. Parnas’s claim is that it is advantageous to study a set of

programs when the programs share many common features. When developing a set of

programs that share common features, Parnas suggested that it is best to initially identify

those features that are common to all the programs and then modify and accommodate

the design. This produces tailored programs as the leaves of a tree structure where the

nodes within the tree represent the design decisions made to arrive at a leaf node.

 3

Software reuse technologies have been a driving force in significantly reducing

both the time and cost of software requirements specification, development, maintenance

and evolution [11], [12], [67], [74], [88]. Industry's continuous demand for shorter

software development cycles and lower software costs encourages software development

methodologies to exploit software reuse principles whenever possible.

Software product-line engineering is one such reuse technology that supports the

systematic development of a set of similar software systems by understanding,

controlling and managing their common, core characteristics and their differing variation

points [12], [67]. Software product-line engineering models provide software engineers

with a reuse-conscious development platform that can contribute to significantly reducing

both the time and cost of software requirements specification, development, maintenance

and evolution [12]. In a product line, the common, managed set of features shared by all

members is the commonalities. The members of a product line may differ from each

other via a set of allowed features not necessarily found in other members of the product

line (i.e., the variabilities). The benefits of the product-line concept come from the reuse

of the common requirements of the product line in the development of a new product-line

member [76]. Software product-line engineering is further discussed in Chapter 2 as

related and background work to the provided in this dissertation.

Agent-oriented, software-based approaches have provided powerful and natural

high-level abstractions in which software developers can understand, model and develop

complex, distributed systems [90], [92], [94]. Yet, the realization of agent-oriented

software development partially depends upon whether agent-based software systems can

achieve reductions in development time and cost similar to other reuse-conscious

software development methods such as object-oriented design, service-oriented

architectures and component based systems [7].

 4

In recent years, several Agent-Oriented Software Engineering (AOSE)

methodologies have been proposed for various agent-based application domains. The

Gaia methodology [92], [94], in particular, offers a comprehensive analysis and design

framework based on organizational abstractions by supplying schemas, models and

diagrams to capture the requirements of an agent-based software system.

The Gaia methodology centers on defining an agent based upon the role(s) that it

can assume during its lifetime [92], [94]. Each role’s requirements specification is

defined by its protocols (i.e., defines how agents interact), activities (i.e., the

computations associated with the role that can be executed without interacting with other

agents), permissions (i.e., the information resources that the role can read, change and

generate) and responsibilities (i.e., the liveness and safety properties the role must

ensure).

However, Gaia has three limitations. First, although Gaia provides a mechanism

to allow the role of an agent to change dynamically, it is unclear how to document agent

requirements specifications during the analysis and design phases when an agent must be

updated to include new functionality. Second, the design of an agent in Gaia is not

hierarchical [42]. That is, the roles of an agent are coarsely defined, allowing little

flexibility (i.e., little opportunity for reuse) for similar, yet slightly different behavior in

the same role in different agents. Third, the Gaia methodology fails to provide a

mechanism by which the requirements specification templates developed during the

analysis phase can be reused to be incorporated into the current system or to build a new,

similar but slightly different system.

This dissertation offers our AOSE methodology, Gaia-PL (Gaia – Product Line)

for open, agent-based distributed software systems to capture requirements specifications

that can be easily reused during the initial requirements phase as well as later if the

software needs to be updated. Our methodology uses a product-line perspective to

 5

promote reuse in agent-based, software systems early in the development lifecycle so that

software assets can be reused in the development lifecycle and during system evolution.

The main contribution of this work is a requirements specification pattern to

capture the dynamically changing design configurations of agents and reuse the

requirement specifications for future similar systems. The ability of the requirements

specifications to accommodate the dynamically changing design configurations of an

agent is important because an agent may need to adapt and reconfigure itself based on

external conditions (e.g., environment conditions, state of the MAS, changing goals, etc.).

This is achieved by adopting a product-line approach into AOSE. Requirements

specifications reuse is the ability to easily use previously defined requirements

specifications from an earlier system and apply them to a new, slightly different system.

This can significantly reduce the development time and cost of building an agent-based

system.

Specifically, the following are contributions of the Gaia-PL methodology work

that will be detailed in this dissertation:

• The inclusion of software product-line engineering principles into the

development of MAS to build MAS product lines (MAS-PL) [19]

• The creation of an AOSE methodology, Gaia-PL, that supports the design and

development of MAS-PL using aspects of Gaia, an established AOSE

methodology, and FAST, an established software product-line engineering

methodology [19], [21]

• The illustration of how our Gaia-PL methodology is amenable to the

development of reusable software engineering assets during the design and

development of MAS-PL and how the reusable assets can be used to develop

systems of the MAS-PL [19], [21]

 6

• An evaluation of our Gaia-PL methodology’s ability to reduce the

development cost of MAS via a case study and comparison to the Gaia

methodology

This dissertation details the development of an agent-based software product line

using our AOSE methodology, Gaia-PL to illustrate its ability to reuse produced software

engineering assets and reduce the effort needed for the development of such a system.

We demonstrate our approach on an agent-based, software product line – NASA’s

Prospecting Asteroid Mission (PAM). Although this dissertation illustrates our Gaia-PL

AOSE methodology using PAM as a case study, our prior work has shown this

methodology applied to another NASA-proposed mission, the TechSAT21 mission [8],

[71], [85], in [18], [19], [21] and [22].

Chapter 4 provides the application of Gaia-PL on the PAM case study. The next

section further motivates the need for safety analysis in AOSE and discusses our

additional work in this area.

1.2 Safety Analysis for Safety-Critical Software Pr oduct Lines

Reusability has transformed entire industries and caused software engineers to

adapt their methods to further this goal. The software product-line engineering approach

supports reuse by developing a suite of products sharing core commonalities [12].

However, the development of safety-critical, software product lines in industry has

emerged ahead of the development of product-line, safety analysis techniques and tools.

This has created a lack of techniques and tools available to software engineers to ensure

the safe reuse of software engineering artifacts throughout a product line [51]. It is only

after a full suite of safety analysis tools and techniques are available to software

engineers to ensure the safety in safety-critical product lines that safety-critical software

 7

product lines will gain organizational and industrial acceptance and assume more

responsibility in everyday safety-critical applications.

Performing safety analysis on software product lines previously entailed

considering each product line member in isolation and applying traditional safety analysis

techniques to them [44]. Yet, this fails to leverage the fact that product-line members

share a common core.

This dissertation offers additional assurance to software engineers by providing a

safety analysis technique applicable to product lines. Specifically, an adaptation of the

Software Fault Tree Analysis (SFTA) technique applied to product lines in order to

derive reusable analysis assets for future systems within the existing product line is

detailed [17]. The product-line SFTA (PL-SFTA) maintains the safety analysis qualities

of traditional SFTA while accommodating the reusable asset objective of the product-line

concept. Traditional SFTA targets the safety analysis of potentially harmful states for one

specific product. A PL-SFTA, however, contributes to the safety analysis for the entire

product line including variabilities among the products. The PL-SFTA can then be reused

as part of the safety analysis for the introduction of new product line members. The

development of the SFTA for the new product is achieved through a pruning method. The

goal is to support the reduction of the safety analysis needed on a new product within the

product line and, ultimately, a less expensive and shorter product development process.

This dissertation provides a detailed process by which a software engineer can

construct a PL-SFTA for the initial product line, derive the new system’s SFTA from the

PL-SFTA and modify the PL-SFTA to accommodate changes in requirements due to

system evolution of a product line. In addition, this research has provided mechanisms

that:

• Aid in discovering additional system safety requirements [17]

• Help in identifying additional product-line dependencies [18]

 8

• Allow for analyses to assess failure points and safety critical requirements [23]

• Complement Software Failure Modes, Effects and Criticality Analysis, Bi-

Directional Safety Analysis and other safety analysis techniques to strengthen a

safety case when system certification is required [22]

To support this technique, a software safety analysis tool, called PLFaultCAT

(Product-L ine Fault Tree Creation and Analysis Tool) has been developed as a part of

this work. This tool builds on a previously developed technique that adopted Software

Fault Tree Analysis (SFTA) to product line safety analysis [17]. PLFaultCAT is an

interactive, partially-automated software support application to aid software engineers

with the visualization and pruning process of a PL-SFTA. Specifically, the tool exploits

the reusability inherent in product-line engineering by deriving reusable safety analysis

assets (i.e., the product-line members' fault trees) for future systems within the existing

product line.

The contribution of this work is to further investigate how and to what extent the

PL-SFTA technique, supported by the PLFaultCAT tool, can be used by software

engineers as a reusable safety analysis. This approach employs Weiss and Lai’s Family-

Oriented Abstraction, Specification, and Translation (FAST) model [88]. This model

employs a two-phase software engineering approach: the domain engineering phase and

the application engineering phase. The domain engineering phase defines the product line

and constructs the PL-SFTA with the aid of the PLFaultCAT tool; the application

engineering phase develops and performs the safety analysis on new product-line

members also using PLFaultCAT.

We first provide a framework for the construction, aided by PLFaultCAT, of a

PL-SFTA during the domain engineering phase and then supply the means for reusing the

PL-SFTA for new members as it is implemented in the PLFaultCAT tool. Within the

 9

application engineering phase we utilize PLFaultCAT to facilitate the derivation of new

product-line members' fault tree(s).

In addition, the main contributions of the PLFaultCAT tool to support our PL-

SFTA safety analysis technique described in this dissertation include:

• Automatically derive all of the product line member SFTAs from PL-SFTAs [24]

• Link product-line requirements to PL-SFTA nodes to aid in traceability [23]

• Search the set of PL-SFTAs to identify single-point failures [18]

• Identify safety-critical requirements by analyzing the set of PL-SFTAs [18], [48]

• Provide a minimum-cut set analysis of a PL-SFTA to identify hazard paths [24]

This dissertation details each of these contributions for an agent-based, software

product line – NASA’s Prospecting Asteroid Mission (PAM). This dissertation illustrates

our PL-SFTA technique using PLFaultCAT for an agent-based system by extending our

prior work which applied this technique and tool to Weiss and Lai’s [88] Floating

Weather Station in [17] and [24], to a pacemaker product line in [45], [47], [48] and to

another NASA-proposed mission, the TechSAT21 mission [8], [71], [85], in [18], [19],

[21] and [22].

Chapter 5 reports on this work, as well as additional safety analysis techniques we

have adopted for the use in our Agent-Oriented Software Engineering (AOSE)

methodology, Gaia-PL (Gaia – Product Line). The next section further motivates the need

for safety analysis in AOSE and discusses our additional work in this area.

1.3 Safety Analysis for Multi-Agent System Product Lines

Safety-critical systems composed of highly similar, semi-autonomous agents are

being developed in several application domains. An example of such a multi-agent

system (MAS) is a swarm of satellites. In swarms of satellites, each satellite is

 10

commonly treated as a distinct autonomous agent that must cooperate to achieve higher-

level goals of the swarm [71].

The emergence of distributed systems (e.g., formation-flying, satellite swarms) as

a viable and reliable architecture for mission-critical domains coupled with the

advantages of adopting an agent-oriented perspective for software development has led to

a number of proposed systems utilizing these two concepts. A MAS is an application

“designed and developed in terms of autonomous software entities that can flexibly

achieve their objectives by interacting with one another in terms of high-level protocols

and languages” [94].

Actual proposed systems including the Terrestrial Planet Finder-I (TPF-I)

spacecraft [81] and the TechSat-21 [8], Sun-Solar System Connection, Search for

Earthlike Planets and Universe Exploration all rely on constellation missions to achieve

their scientific goals [56]. In addition to these examples, there is NASA’s Prospecting

Asteroid Mission [71], [77], [83], [84], the case study used throughout this dissertation

and detailed in Chapter 3. Agent-oriented software engineering (AOSE) appears be an

appropriate software development methodology for such systems [71].

A safety-critical system can directly or indirectly compromise safety by placing a

system into a hazardous state causing the potential loss or damage of life, property,

information, mission or environment [44]. Like other safe-critical software systems (e.g.,

cardiac pacemakers, aircraft flight-control systems, military weapons systems, nuclear

power monitoring systems, etc.) some MAS require extensive safety analysis and,

potentially, safety certification. Although scientific satellite swarms, such as the PAM

case study used in this dissertation, may not directly cause the loss of human life as a

result of an accident, a system-wide failure/accident may result in the loss of an entire

mission, the spacecraft and the millions of dollars of investment.

 11

A challenge to safety analysis of multi-agent distributed systems, such as

constellations of satellites, is the ability of agent-based software systems to dynamically

alter their configurations (for example, from active to passive). A configuration of an

agent in this work is the set of behaviors implemented in an agent’s roles. In addition, we

would like to reuse safety analysis results while ensuring the maintenance of safety. That

is, a tradeoff of higher reuse potential for less safety in the final product is not acceptable.

Certification is a process whereby a certification authority determines if an

applicant provides sufficient evidence concerning the means of production of a candidate

product and the characteristics of the candidate product so that the requirements of the

certifying authority are fulfilled [31], [40], [69], [72]. Software safety analysis

techniques have previously been shown to contribute to the certification of software-

intensive systems in [2]. However, little work has been specifically aimed at software

product lines or MAS. In addition to illustrating our product-line Software Fault Tree

Analysis (PL-SFTA) for a MAS product line (MAS-PL), described in the previous

section, this dissertation adopts and tailors additional safety analysis techniques of our

AOSE methodology, Gaia-PL (Gaia – Product Line), to support the creation of reusable

safety analysis assets; discover, verify and analyze safety requirements; and aid in the

certification of MAS-PL.

The main contribution of this work is to extend Bi-Directional Safety Analysis

(BDSA) to MAS-PL and show how the analysis artifacts thus produced contribute to the

software’s safety case for certification purposes. The product-line approach lets us reuse

portions of the safety analysis assets for multiple, similar agents, significantly reducing

the burden of certification.

First, we further the inclusion of safety analysis techniques into AOSE by

providing a structured process to perform a Software Failure Modes, Effects, Criticality

Analysis (SFMECA) for safety-critical MAS-PL in our Gaia-PL methodology. The

 12

SFMECA is reusable for other agents in the system since our approach incorporates the

product-line vision of a MAS from [21].

Second, we use the safety analysis assets from SFMECA and from our product-

line Software Fault Tree Analysis (PL-SFTA), described in the previous section, to

perform a BDSA on the MAS-PL to contribute to system certification by verifying

software design compliance with robustness and safety standards. The application of

BDSA to a MAS-PL assists in the certification of agent-based software systems by:

• Providing assurances that certain classes of failure modes that might occur in

individual agents will not produce unacceptable effects in the composite system,

strengthening the safety case by demonstrating the compliance of failure-

monitoring and failure mitigation software tasked with the system safety

requirements to safety standards

• Enabling reuse of certification arguments while ensuring that the reuse of the

safety analysis artifacts in the certification arguments accurately reflects the

differences amongst the agents of the system

This dissertation details this work, along with our PL-SFTA safety analysis

technique, as safety analysis techniques for an agent-based, software product line –

NASA’s Prospecting Asteroid Mission (PAM), detailed in Chapter 3. This work has been

previously been demonstrated on another NASA-proposed mission, the TechSAT21

mission [8], [71], [85], in [18], [19], [21] and [22]. However, the application of our safety

analysis techniques for a MAS-PL described in this dissertation is at a much larger scale.

Specifically, the PAM MAS-PL case study discussed in this dissertation consists of 97

high-level requirements, including 47 features allowing the development of 160 unique

spacecraft in the PAM MAS-PL.

Chapter 5 describes this work using our Agent-Oriented Software Engineering

(AOSE) methodology, Gaia-PL (Gaia – Product Line) on the PAM case study.

 13

The next section formally provides this dissertation’s statement of thesis and

provides the contributions of this dissertation to support the thesis.

1.4 Statement of Thesis

The problems addressed in the work described in this dissertation are twofold.

First, Agent-Oriented Software Engineering (AOSE) currently does not adequately

address requirements (specification) reuse in a way that is amenable to reducing the

development costs (i.e., time and money) by developing and utilizing reusable assets.

Second, safety-critical, multi-agent systems (MAS) are being developed without the

mechanisms and analysis techniques and tools in AOSE methodologies to discover,

verify and analyze software requirements and potential safety hazards.

Based on this problem statement, the theses of the work presented in this

dissertation is that an AOSE methodology can be devised to enhance the reuse in the

design and development of a safety-critical MAS by incorporating software product-line

engineering principles to develop reusable software engineering assets in a way that

allows software engineers to take advantage of the reusable assets to create MAS; and

that product-line safety analysis techniques and tools can be developed and adopted to

support the development of a safety-critical MAS by discovering, analyzing and verifying

the MAS’s requirements in a way that produces reusable safety assets that can be used

for future systems of the MAS.

This thesis is supported in this dissertation by:

• Incorporating software product-line engineering principles into the

development of MAS to build MAS product lines (MAS-PL)

• Creating an AOSE methodology, Gaia-PL, that supports the design and

development of MAS-PL using aspects of Gaia, an established AOSE

 14

methodology, and FAST, an established software product-line engineering

methodology

• Illustrating how our Gaia-PL methodology is amenable to the development of

reusable software engineering assets during the design and development of

MAS-PL and how the reusable assets can be used to develop systems of the

MAS-PL

• Evaluating our Gaia-PL methodology’s ability to reduce the development cost

of MAS via a case study and comparison to the Gaia methodology

• Developing the product-line Software Fault Tree Analysis (PL-SFTA)

technique to support the safety analysis of safety-critical software product

lines in a way that the resulting PL-SFTA is reusable for the products in a

product line

• Designing a software tool, PLFaultCAT, to support the creation of a PL-SFTA

and the automatic derivation of a SFTA for the products in a product line

• Evaluating PL-SFTA and PLFaultCAT’s ability to reduce development costs

through the reuse of the PL-SFTA

• Adapting Software Failure Modes, Effects and Criticality Analysis

(SFMECA) into the Gaia-PL AOSE methodology to provide a structured

process in which software engineers can derive a SFMECA directly from the

assets of our Gaia-PL methodology

• Describing how the PL-SFTA and SFMECA can be used with a Bi-

Directional Safety Analysis (BDSA) to discover new/missing safety

requirements, verify the safety analyses and contribute to the safety case of a

safety-critical MAS

These results, as well as additional contributions to support the thesis statements, are

described in the remainder of this dissertation.

 15

1.5 Outline

Chapter 2 reviews related work in software product-line engineering, Agent-

Oriented Software Engineering (AOSE) and software safety analysis to provide the

necessary context and background information. We additionally discuss the differences

of the related work from the work presented here.

Chapter 3 describes the Prospecting Asteroid Mission (PAM) case study that is

used throughout this dissertation to illustrate and evaluate our work. This chapter

provides the background information needed to understand the domain and context of the

case study.

Chapter 4 details our Gaia-PL (Gaia – Product Line) AOSE methodology for

designing and developing multi-agent system product lines (MAS-PL). The methodology

produces reusable software engineering assets so that building systems of the MAS-PL

can be done efficiently, in terms of development cost and time. We evaluate Gaia-PL’s

ability to reduce the development cost of a MAS through its application to the design and

development of a case study, and its comparison to using a different, non-product line,

approach.

Chapter 5 discusses our safety analysis techniques and tools for the analysis of

safety-critical software product lines. Specifically, this chapter describes our product-line

software fault tree analysis technique (PL-SFTA) and its tool, PLFaultCAT We again

provide an evaluation of these safety analysis techniques through an application to our

case study to illustrate their value as reusable safety assets, ability to increase safety by

identifying new and missing safety requirements and potential for reducing development

costs compared to a non-product line safety analysis approach.

Finally, Chapter 6 offers conclusions, a discussion of the research’s contributions

and ideas for future work.

 16

CHAPTER 2. RELATED WORK

The work described in this dissertation builds upon the overlapping areas of

software product-line engineering, agent-oriented software engineering and software

safety analysis. This chapter discusses the background information and related work in

these areas of software engineering and describes related concepts, techniques,

methodologies and tools that are related to the Gaia-PL (Gaia-Product Line) methodology

and product-line software safety techniques developed in this work.

2.1 Software Product-Line Engineering

A software product line is defined as “a set of software-intensive systems sharing

a common managed set of features that satisfy the specific needs of a particular market

segment or mission and that are developed from a common set of core assets in a

prescribed way" [12]. The members of a particular product line differ from each other via

a set of allowed variabilities/variation points.

Software product-line engineering is a proactive and systematic approach for the

design and development of software applications to create an array of similar products

[12]. Software product-line engineering creates a family of products and relies on the

analysis of the commonalities and differences of the members of the family prior to the

design or development of any software engineering artifacts (i.e., during the requirements

engineering phase) [87]. The goal of software product-line engineering is to support the

systematic development of a set of similar software systems through by understanding,

controlling and managing their common, core characteristics and their differing variation

points [12], [67].

Software product-line engineering is a widely accepted and active research field

in academia. Several academic textbooks solely dedicated to software product-

engineering exist including [12], [36], [67] and [88]. In addition, the Software Product

 17

Line Conferences [75], the major conference of software product-line engineering, is

currently in its 11th cycle including more than a half-dozen associated product-line

workshops.

Product-line engineering is also widely accepted and used in industry, and in fact,

has been used for many years. For example, automobiles, airplanes, televisions, cellular

phones, etc. are product lines that people encounter in daily life. Software product lines

have also begun to be adopted by industry. For example, the Software Engineering

Institute (SEI) at Carnegie Mellon University has recognized Hewlett Packard [82],

Nokia [39], Boeing [27], Philips [89], CelsiusTech Systems [12] and others as members

of their Product Line Hall of Fame [68]. These companies, and countless more, have

recognized the advantages of software product-line engineering and have adapted its

approach as their development paradigm to offer customers a wide variety of products

while incurring reduced development effort.

The benefits of the product-line concept come from the reuse of the common

requirements of the product line in the development of a new product-line member [76].

Thus, the assets gained from the initial engineering of the product line, such as the

underlying architecture, requirements and safety analyses and testing artifacts, can be at

least partially applied to any new product-line member. For example, CelsiusTech

Systems claims to have reused up to 90% of their assets in the development of systems in

their shipboard command and control systems product line [12]. In this sense, product

line engineering allows for the amortization of costs in startup development and analysis

of the initial product line members over the development of the entire product line. In

fact, studies suggest that the product-line engineering concept can reduce the

development and production time as well as the overall cost and increase the product

quality by a factor of 10 times or more [74].

 18

The following subsections review the software product-line engineering terms,

techniques and tools relevant to this work.

2.1.1 Commonality and Variability Analysis

The analysis, design and documentation of commonality and variability

requirements play a crucial role in all phases of software product-line engineering [12].

Early in the development of a software product line, a product line’s requirements are

often identified and specified through a Commonality and Variability Analysis (CVA).

The CVA, as detailed by Ardis and Weiss in [1] and Weiss and Lai in [88], provides a

comprehensive definition of the product line that provides a dictionary of terms, a list of

the commonalities, a list of the variabilities and a list of parameters of variation.

Although not a part of the CVA as detailed in [1] and [88], a list of

dependencies/constraints on the variabilities of the product line may also be included.

The CVA technique aids in providing a software engineering artifact that details the

relevant domain definitions, the core set of product traits and the scope of the product

line.

2.1.1.1 Commonalities

Pohl, Böckle and van der Linden define a product line commonality as a

requirement that is identical in each member of a family [67]. Similarly, Weiss and Lai

define a commonality as an “assumption that is true for all members of a family” [88].

Commonalities describe requirements of the entire product line and contribute to the

development of the core assets of the product line that are common to all members of the

product line. An example of a product-line commonality is “All widgets of the

WidgetFamily product line shall have four wheels”. This means that, any product that is

built from the WidgetFamily product line must, without exceptions, have four wheels.

 19

Any product that does not abide by this requirement is, by definition, not a member of the

product line since it does not have this product-line commonality.

2.1.1.2 Variabilities

Weiss and Lai define a product-line variability as “an assumption about how

members of a family may differ from each other” [88]. Variabilities capture optional or

alternative features not contained in every member of the product line and should capture

the anticipated variations of the product-line member over the “foreseeable lifetime of the

product line” [12]. An example product-line variability is “The color of the products in

the WidgetFamily product line may vary”.

Variabilities also frequently have associated "parameters of variation" that detail

the degree to which the variability can occur [88]. The parameters of variation describe

the acceptable range of variation. Weiss and Lai describe the parameters of variation as a

“quantification of a variability, including the decision represented by the variability, the

range of values allowed in making the decision, the time at which the value for the

decision must be fixed, and a default value for the decision” [88].

A variability's parameters of variation within a product line often fall into one of

three categories: Boolean parameters of variation, enumerated parameters of variation, or

range parameters of variation. These categories of parameters of variation get

increasingly more difficult to analyze for safety as the complexity in the number of

choices increases. Boolean parameters of variation are those variabilities that can either

be present within a product-line member or not. An enumerated parameter of variation is

any variability in which the product-line member must choose from a relatively small list

of values for a particular variability.

A simple example of an enumerated parameter of variation is "Widget X can

either be blue, green, red, or yellow". A range parameter of variation are those

 20

variabilities in which the product-line member must have a precise number associated

with the variability, where the number lies within the range of acceptable parameters of

variation specified in a Commonality and Variability Analysis (CVA). For example,

"Widget X may have between 1 and 100 user functions" is a simple range parameter of

variation.

2.1.1.3 Dependencies

A product-line dependency (i.e., constraint) restricts and/or dictates some

combinations of variability subsets from being viable products in the form of "mutual

exclusion" or "requires" variability dependencies [28], [43]. A dependency requirement

can thus take the form "Any product-line member that has Variability A can not also have

Variability B" or in the form "Any product-line member that has Variability C must also

have Variability D". The first example indicates that any member of this product line is

restricted from displaying both behaviors A and B. Alternatively, a dependency may also

be in the form “Any product-line member that has Variability A with a value of ‘a’ can

not also have Variability B with a value of ‘b’”. Dependency requirements can derive

from actual physical limits, undesired or infeasible combinations of behaviors, user

restrictions, or business decisions.

Dependency requirements are especially important for the hazard analysis of a

safety-critical product line and should be explicitly documented. By reducing the subset

of potential viable products stemming from the product-line definition, we reduce the

scope of the needed hazard analysis.

2.1.2 Feature Modeling

An alternative or supplemental approach to defining a software product line is in

terms of its mandatory (i.e., required), optional (i.e., not required) and alternative (i.e.,

one or more from a list of alternatives is required) features [36], [67]. Svahnberg, Gurp

 21

and Bosch define a feature as a “logical unit of behavior that is specified by a set of

functional and quality requirements” [80]. A feature model hierarchically defines the

mandatory, optional and alternative features of a product line by breaking down a single,

high-level feature into its subfeatures. A product of a product line is thus a set of the

mandatory features, a selection amongst the alternative features and the desired optional

features. A child feature can only be present in a product of the product line if its parent

feature is also present.

2.1.3 Product-Line Engineering Phases

Weiss and Lai’s Family-Oriented Abstraction, Specification and Translation

(FAST) approach is an approach for developing product families that was designed and

used at Lucent Technologies [88]. The FAST approach is based on investing resources

proactively in the early design of a set of systems to identify their common and variable

parts [88], as advocated by Parnas in [61]. The FAST approach advocates such a strategy

because they claim that the high investments of resources in the early design stages are

amortized over the set of product-line members that are produced. Similarly, the time-to-

market and variety in the production of new products within the product line will provide

the company with a competitive advantage [88].

The FAST approach for building software product lines utilizes the Commonality

and Variability Analysis (CVA) and partitions the design and development of a product

line into two unique phases: domain engineering and application engineering.

2.1.3.1 Domain Engineering

Pohl, Böckle and van der Linden define domain engineering as “the process in

software product-line engineering in which the commonality and the variability of the

product line are defined and realized” [67]. The goal of the domain engineering phase of

the FAST approach is to define the product-line requirements, design, architecture and

 22

other software engineering assets that pertain to the entire product line, rather than a

single product-line member [88]. This process relies primarily on the knowledge and skill

of domain experts to produce such assets [12], [67]. The purpose to make it possible to

produce members of a product line, during the application engineering phase, using the

assets generated during this phase. This is the investment phase that allows practitioners

to, during the application engineering phase, quickly realize a wide variety of products

within the product line for a competitive advantage.

2.1.3.2 Application Engineering

Pohl, Böckle and van der Linden define application engineering as “the process

of software product-line engineering in which the applications of the product line are

built by reusing domain artifacts and exploring the product-line variability” [67]. The

goal of the application engineering phase of the FAST approach is build an individual

product-line member(s) from the product-line requirements specified during the domain

engineering phase [88]. Building a new product in the product line during this phase

entails selecting values for all the parameters of variation consistent with the

dependencies as detailed in the Commonality and Variability Analysis (CVA).

2.1.4 DECIMAL

Given a product-line’s commonalities, variabilities and dependencies as detailed

in a Commonality and Variability Analysis (CVA), a valid product-line member’s

requirements consists of the commonalities and a selection of variabilities (and their

values) that conform to the dependencies for the product line. To aid in automatically

checking the conformance of a product-line member to a product line’s variabilities and

dependencies, Padmanabhan and Lutz developed DECIMAL (Decision Modeling

Application), a requirements validation tool to certify that a set of requirements for a

proposed product line member does not breach the dependencies of the product line [58],

 23

[59]. In addition, DECIMAL provides requirements engineers with the ability to

document the commonalities, variabilities and dependencies of a product line, define a

variability in terms of its parameters of variation and define a product-line member

through the choice of its variabilities (and their values) [23], [58], [59].

2.1.5 Summary

Software product-line engineering is a rich, established software design and

development field that has been shown be advantageous. This approach relies on the

development of reusable, core assets that can be used in the design of a set of similar, yet

differing, software systems. The use of such reusable, core assets has been shown to

provide significant cost savings (i.e., development time and cost) to the development of a

set of software systems.

The work described in this dissertation integrates the software product-line

engineering approach described in this section to the development of agent-based

software systems, described in the following section. In addition, this dissertation

develops techniques and tools for the safety analysis of software product lines built using

the concepts and approach described in this section.

2.2 Agent-Oriented Software Engineering

The second area of related research that this dissertation draws on is the

increasingly important design and development of distributed, agent-based software

systems. In addition to the increase in complexity [40], the demands and expectation

placed on modern software systems have significantly changed causing a new set of

challenges to be addressed by software engineering [94]. Zambonelli, Jennings and

Wooldridge argue the following new characteristics of today’s software systems:

• By default are concurrent, distributed and expected to interact with

components and services that are dynamically discovered at runtime

 24

• “Always-on” entities that can’t be stopped, maintained or restored in the

traditional ways

• Exist in an open, dynamic environment where new component join, existing

components leave and the operating environmental conditions change in a,

possibly, unpredictable manner

One approach to address and accommodate these new challenges in software

engineering is Agent-Oriented Software Engineering (AOSE) [40], [90], [92], [94]. The

AOSE methodology presented in this dissertation, Gaia-PL (Gaia - Product Line) differs

from Gaia in that we integrate software product-line engineering concepts into the Gaia

methodology allowing for software engineering to capture the reuse potential of a MAS’s

software engineering assets so that future systems can be built quickly and cheaply.

The following subsections review the AOSE terms, techniques and tools relevant

to this work.

2.2.1 Agents and Multi-Agent Systems

Agent-Oriented Software Engineering (AOSE) designs and develops the agents of

a multi-agent system (MAS) to solve a problem. Wooldridge defines an agent as “an

encapsulated computer system that is situated in some environment, and that is capable of

flexible, autonomous action in that environment in order to meet its design objectives”

[90]. Jennings and Wooldridge [40] and Zambonelli, Jennings and Wooldridge [94]

classify several characteristics that comprise an agent’s behavior:

• Problem solving entities that are clearly identifiable, have well-defined

boundaries and interfaces

• Situated in a particular environment where they receive inputs related to the

states of the environment via sensors and may act upon the environment via

their effectors

 25

• Have specific objectives (i.e., roles) to achieve that may be explicitly or

implicitly represented within the agent

• Autonomous in that they have control of their internal state and their own

behavior

• Capable of exhibiting flexible, context-dependent, problem-solving

characteristics

• Able to respond to changes that occur in their environment in a timely manner

so that they can satisfy their objectives (i.e., reactive)

• Able to opportunistically adopt new objectives whenever appropriate and take

the initiative to satisfy their goals (i.e., proactive)

For most problems, a single-agent solution is insufficient and thus requires a

multiple-agent solution [40]. Zambonelli, Jennings and Wooldridge define a multi-agent

system (MAS) as an application that is “designed and developed in terms of autonomous

software entities that can flexibly achieve their objectives by interacting with one another

in terms of high-level protocols and terms” [94]. Thus, AOSE’s objective is to provide

software engineers with the design methodologies to develop the agents of a MAS to

address the solution of a particular problem.

2.2.2 Agent-Oriented Software Engineering Methodol ogies

Agent-oriented software engineering (AOSE) [91] methodologies surfaced in the

late-90's to provide tools and techniques for abstracting, modeling, analyzing and

designing agent-based software systems early in the development lifecycle [79]. Different

methodologies, such as Gaia [6], [92], [94], Tropos [3], [34] and MaSE [25] for example,

use different abstractions and models for agent-oriented software development. Recent

work has produced AOSE methodologies that focus on the reusability of software

engineering assets produced so that future systems can be developed faster and cheaper.

 26

This section briefly details these methodologies in the context of the work presented in

this dissertation.

2.2.2.1 The Tropos and MaSE Methodologies

The Tropos Agent-Oriented Software Engineering (AOSE) methodology covers

all phases of software development (from early requirements engineering to actual

implementation) and is based on the notions that agents have goals and plans [3], [34].

Based on Yu’s i* goal-modeling approach [93], Tropos focuses on developing and

understanding the goals and subgoals of a system and the agents of a system through the

creation of goal model diagrams [3], [34].

The Multiagent Systems Engineering (MaSE) AOSE methodology utilizes

graphically based models derived from standard UML models to analyze the agents of a

software system [25]. Unlike Tropos, MaSE views the development of a multi-agent

system (MAS) as a further abstraction of the object-oriented (OO) paradigm and, thus, it

builds upon known OO techniques and applies them to the design and development of

MAS.

The work described here differs from both Tropos and MaSE previous work in

that our methodology focuses on developing reusable assets rather than understanding

and developing the goals and subgoals of a MAS as in Tropos or adapting UML models

for MAS as in MaSE.

In addition, we adapt the Gaia AOSE methodology (discussed in the next section)

for the development of MAS rather than using Tropos, MaSE or any other AOSE

methodology.

2.2.2.2 The Gaia Methodology

The Gaia Agent-Oriented Software Engineering (AOSE) methodology was the

first methodology proposed in literature to guide the process of designing and developing

 27

a multi-agent system (MAS) from the analysis phase to the design phase [6], [92], [94].

The Gaia methodology adopts a computational organizational metaphor where each agent

within a MAS may play a variety of roles and where the agents cooperate with each other

to accomplish a common organizational goal [6], [94].

Briefly, the analysis phase of the design and development of a MAS in Gaia

methodology, shown in Figure 1 [94], concentrates on specifying the requirements and

specifications of the roles that an agent may participate during its lifetime in a set of Role

Schemas. An Agent Model defines an agent by associating the roles, detailed in the Role

Schemas, that that agent may partake in.

Figure 1 The Gaia Models and their Relationships (from [94])

 28

The Gaia methodology was selected in this work for several reasons. First, it was

the most mature AOSE methodology (i.e., it spans from the analysis phase to the design

phase of agent-based development). Second, it is an established, well-published and

widely accepted methodology in the AOSE community. Finally, the Gaia methodology’s

development process and models best fit with the phases of the software product-line

engineering, described in the previous section.

The AOSE methodology described here, Gaia-PL (Gaia - Product Line) differs

from Gaia in that we integrate software product-line engineering concepts into the Gaia

methodology allowing for software engineering to capture the reuse potential of a MAS’s

software engineering assets so that future systems can be built quickly and cheaply.

Further, Gaia-PL focuses on capturing the reusability of the software engineering assets

developed during the design and development of a MAS using a software product-line

engineering approach so that future systems can be built quickly and easily.

2.2.2.3 Reuse-Oriented Methodologies

From its onset, one of the goals of Agent-Oriented Software Engineering (AOSE)

has been to provide methodologies for reusing and maintaining agent-based software

systems [85]. In spite of this goal, AOSE methodologies have failed to adequately

capture the reuse potential, since many of the developed methodologies center on the

development of specific software applications [34]. A few attempts, including [34] and

[38], have been proposed for reuse in an agent-oriented development environment.

However, in each case, reuse is positioned in the later stages of design and development.

In [34], the Multi-Agent Application Engineering (MaAE) work exploits reuse during the

design phase of a multi-agent software system. Likewise, [38] utilizes reuse principles

from component-based development to reuse components from a previously developed

agent-based component repository.

 29

The work described here differs from previous work in that we present an

approach, based on software product-line engineering, to capture the reuse potential of

distributed, agent-based software systems in the requirements analysis and specification

stage.

2.2.2.4 The MaCMAS Methodology

More recently, Peña, Hinchey, Ruiz-Cortés and Trinidad developed the

Methodology for analyzing Complex Multiagent Systems (MaCMAS) using a software

product-line engineering approach to build multi-agent system product lines(MAS-PL)

[62], [64], [65], [66]. Their AOSE methodology uses UML to model a MAS-PL and

focuses on handling the complexity of MAS-PL and building its core architecture [64].

The MaCMAS methodology, like the Gaia-PL (Gaia-Product Line) methodology

described in this work, utilizes a feature model to document the commonalities and

variabilities of the MAS [64]. In addition, the MaCMAS methodology uses an automatic

algorithm to analyze the features (i.e., commonality and variability requirements) of a

MAS-PL to partition the requirements as either commonalities or variabilities based on

the probability that a feature will appear in a product [64]. This information is then used

to determine which features should be included, using their approach, in the MAS-PL’s

core architecture [64]. For example, a feature that is projected to be present in 60% of the

products of a particular MAS-PL will be included in the MAS-PL’s core architecture.

The MaCMAS methodology incorporates and extends our idea of incorporating

software product-line engineering techniques into AOSE originally reported in [19], [21].

The AOSE methodology, Gaia-PL, presented here extends an established, well-known

AOSE methodology, Gaia [6], [92], [94], by introducing software product-line

engineering concepts from an established, well-known software product-line engineering

approach, FAST [88]. Further, the Gaia-PL methodology presented in this dissertation

 30

and previously presented in [19] and [21] differs from that of MaCMAS in that we focus

on the reusability of the MAS-PL’s requirements, requirements specifications and safety

analysis assets rather than the MAS-PL’s architecture.

2.2.4 Summary

Agent-Oriented Software Engineering (AOSE) is a growing field in software

engineering for the design and development of multi-agent systems (MAS). AOSE

methodologies provide software engineers with the techniques to abstract, analyze and

design of MAS.

The work described in this dissertation integrates software product-line

engineering approach into an AOSE methodology to develop MAS product lines (MAS-

PL). In addition, this dissertation develops and integrates techniques and tools for the

safety analysis of MAS-PL.

 2.3 Software Safety Analysis

A safety-critical system can directly or indirectly compromise safety by placing a

system into a hazardous state causing the potential loss or damage of life, property,

information, mission, or environment [44]. Safety-critical software systems are being

assimilated into our everyday lives in a vast range of domains and markets [51]. Safety-

critical software runs applications such as pacemakers, aircraft flight-control systems,

military weapons systems and nuclear power monitoring systems. Software safety

analysis aims at providing safety and software engineers with the techniques and tools to

ensure the safety of such software applications.

Just as autonomous software products have caused accidents, product-line

software applications have also contributed to catastrophic losses. For example, the

Therac-25 medical system and the Ariane 5 losses were accidents caused, in part, by

product-line engineering mistakes [44], [76]. The work described here is particularly

 31

aimed at providing safety analysis techniques for safety-critical product lines to prevent

such accidents.

The following subsections review software safety and the software safety analysis

techniques relevant to this work.

2.3.1 Software Safety

The aim of software safety is to prevent accidents trough the analysis possible

hazards in the software system. Leveson defines safety in a software system as “freedom

from accident or losses” [44]. An accident is an “undesired and unplanned (but not

necessarily unexpected) event that results in (at least) a specified level of loss” [44]. A

hazard is a “state or set of conditions of a system (or an object) that, together with other

conditions in the environment of the system (or object), will lead inevitably to an

accident (loss event)” [44].

2.3.2 Software Safety Analysis Techniques

Software safety analysis techniques center on the investigation of how software

can jeopardize or contribute to the safety of the system [44]. The following subsections

describe three of the most common safety analysis techniques used by software engineers

on safety-critical software: Software Fault Tree Analysis (SFTA), Software Failure

Modes, Effects and Criticality Analysis (SFMECA) and Bi-Directional Safety Analysis

(BDSA). These safety analysis techniques are used in the work described in this

dissertation and are described next.

2.3.2.1 Software Fault Tree Analysis

Software Fault Tree Analysis (SFTA) is a traditional safety analysis technique

that has proven to be an essential tool for software engineers during the design phase of a

safety-critical software product [37], [44], [53], [60]. SFTA is a tree-based top-down

 32

(deductive), backward search method utilizing Boolean logic to depict the causal event

contributing to an undesirable event (the root node). The analysis begins at the root node

with the engineer specifying a root node event. For safety-critical systems, the root node

of the tree will often represent a system-wide, catastrophic event taken from a preexisting

hazards list [44]. The hazard represented by the root node is hypothesized to have

occurred, and the engineer proceeds to determine the set of necessary preconditions

causing the root node. The set of possible causes are joined to the parent node by

standard logical relations represented via logic gates to describe their contributing

relation. This process continues through each level of the constructed subtree until basic

events are reached or until the level of subsystem detail is achieved [44].

However, traditional SFTA only considers the behavior of a single system rather

than the behaviors of the multiple systems of a product line, as of concern in this work.

Coppit and Sullivan in [13] and Pai and Dugan in [60] examine dynamic SFTA to

represent multiple possible outcomes of a component failure, for example, depending on

whether a cold-spare, warm-spare or hot-spare component is available. However, these

approaches still only describe single-system behavior rather than the product-line

behavior of concern here.

Lu and Lutz presented the Fault Contribution Tree Analysis (FTCA) approach in

[49]. Their approach, closely related to SFTA, analyzes the safety and robustness of

safety-critical product lines in a reusable tree-like structure. Using the FTCA approach,

software engineers can prune the FTCA for specific product-line members. The Product-

Line Software Fault Tree Analysis (PL-SFTA) approach described in this work differs

from the FTCA approach in that we adopt the more familiar SFTA for the use with

product lines and provide a tool in which developers can create PL-SFTA’s and then

automatically derive the product-line members’ SFTA(s).

 33

2.3.2.2 Software Failure Modes, Effects and Criticality Analysis

Failure Modes, Effects and Analysis (FMEA) is a traditional analysis technique

originally developed for reliability engineering to be able to predict equipment reliability

with a goal to establish an overall probability that the product will operate without a

failure for a certain length of time [44]. Software Failure Modes, Effects and Criticality

Analysis (SFMECA) was adopted from FMEA and applied to software-intensive

systems. SFMECA is a tabular (inductive), forward-based search technique that starts

with the failure of a software component or subsystem and then looks at its effect on the

overall system [44]. SFMECA first lists all the components comprising a system and their

associated failure modes. The possible causes of failure are listed and the effects on other

components or subsystems are evaluated and listed along with the consequence on the

system for each component's failure mode(s). Finally, a criticality assessment (e.g.,

minor, major, critical, catastrophic, etc.) is documented to denote the seriousness of the

occurrence of such a failure. Like SFTA, SFMECA is only as good as the domain and

system expertise of the analyst. Note that SFMECA and Software Failure Modes and

Effects Analysis (SFMEA) are identical except that SFMEA does not evaluate and

document the criticality of a failure.

In [53], Lutz and Woodhouse provide a list of generic failure-mode guidewords to

aid in the process of constructing a SFMECA for failures in data communication and

event processing. These guidewords, when applied to the failure of a component or

subsystem, help engineers systematize the process of determining the possible effects of

each failure mode on other components of the system that could lead to a hazard(s). For

data failures, Lutz and Woodhouse propose the following keywords to guide the analysis

to construct a SFMECA table: “incorrect value”, “absent value”, “wrong timing” and

“duplicated value”; likewise, for event failures, Lutz and Woodhouse propose the

 34

following keywords to guide the analysis to construct a SFMECA table: “halt/abnormal

termination”, “omission”, “incorrect logic/event” and “timing/order” [53].

In [32], Feng and Lutz detail the creation of a product-line SFMEA by using the

SFMEA analysis and additionally including an entry to specific which for which product

the current failure mode and its effects are being documented. We follow Feng and Lutz

[32] in this work by partitioning the SFMECA into separate analyses on the data and

events.

 However, the work described here differs in that it provides a structured process

to create and document a SFMECA table for a multi-agent system product line (MAS-

PL) using the Gaia-PL agent-oriented software engineering methodology rather than a

general product line.

2.3.2.3 Bi-Directional Safety Analysis

The results of a forward search, such as a Software Failure Modes Effects and

Criticality Analysis (SFMECA), and a backward search, such as a Software Fault Tree

Analysis (SFTA), will not necessarily be the same, often times both types are utilized in

the safety analysis of a safety-critical system [44]. Lutz and Woodhouse developed the

Bi-Directional Safety Analysis (BDSA) approach to combine the advantages of the

forward and backward search techniques [53]. The forward and backward techniques can

be viewed as complementary since the output of the forward technique (i.e., the potential

system-wide hazards) should match-up with the inputs of the backward technique.

Similarly, the output of the backward technique (i.e., the low-level, local errors that cause

a system-wide hazard) should match-up with the inputs of the forward technique [44].

For example, we can verify the completeness of the SFTA by ensuring that every unique

hazard listed in the SFMECA table with a particular level of criticality or higher (e.g.,

major criticality) is a root node within one of the fault trees of the SFTA.

 35

In [32], Feng and Lutz utilize a BDSA to discover incompleteness in the SFMEA

and SFTA of a safety-critical product line. In [52], Lutz and Gannod specify a telescope

subsystem as a product family and incorporates BDSA to identify additional

requirements. Similarly, in [53], Lutz, Helmer, Moseman, Statezni and Tockey

performed a forward and backward search for hazards on representative members of a

flight instrumentation display product family in hopes of deriving additional safety

requirements.

In this work, however, the BDSA is adapted for the use of multi-agent system

product lines (MAS-PL) to discover incompleteness in the SFMECA and a Product-Line

Software Fault Tree Analysis (PL-SFTA), demonstrate the compliance to safety

standards of a MAS-PL by verifying its safety requirements and enable the reuse of

safety certification arguments for the MAS-PL.

2.3.3 Summary

Software safety analysis techniques provide software engineers with the tools

necessary to identify, analyze and verify the safety requirements of software-critical

software systems. Software safety analysis techniques use different approaches to analyze

the causes of a system accident and possible hazards of a system failure.

The work described in this dissertation develops product-line safety analysis

techniques and tools for safety-critical product lines. In addition, this dissertation

develops and integrates these safety analysis techniques and tools for the safety analysis

of multi-agent system product lines (MAS-PL).

 36

CHAPTER 3. CASE STUDY: THE PROSPECTING ASTEROID

MISSION

The work described in this dissertation is illustrated and evaluated using the

Prospecting Asteroid Mission (PAM), a NASA Autonomous Nano-Technology Swarm

(ANTS) mission [9], [14], [15], [64], [65], [68], [71], [77], [83], [84]. Like the ANTS-

based mission, the PAM spacecraft can be viewed as a multi-agent system product line

(MAS-PL) [64], [65], [66]. From a product-line engineering perspective, the similarities

in requirements that are to be found on every spacecraft of the PAM swarm (e.g., the

navigation and guidance capabilities, the prevention of collisions capability, the ability to

warn other spacecraft of an impending solar storm, etc.) can be viewed as product-line

commonality requirements.

As described in Chapter 4, the application of a product-line engineering approach

to this MAS using our AOSE methodology, Gaia-PL (Gaia – product line) utilizes

reusable, core assets to reduce the development effort required. This chapter introduces

the ANTS mission as well as the PAM mission to provide necessary context and

background information.

3.1 The Autonomous Nano-Technology Swam Mission

The Autonomous Nano-Technology Swarm (ANTS) is a NASA concept mission

in the 2015-2030 timeframe that entails a collection of agents that work cooperatively,

and autonomously to achieve mission goals [68]. The proposed ANTS technology is a

system architecture for scalable, robust and highly distributed systems, and it has been

proposed to be used in an family of missions (each with differing objectives and goals),

shown in Figure 2, to explore our solar system [9], [14], [15], [64], [68], [71], [77], [83],

[84]. For example, the wide range of ANTS-based missions include a swarm of flight-

based spacecraft to orbit Saturn and investigate the composition of Saturn’s rings [10]

 37

and to travel amongst the asteroid belt between Mars and Jupiter to investigate the

composition of asteroids [9], [14], [15], [83], [84] to ground-based spacecraft to look for

ice or volcanic material just beneath the surface on Mars [14]. In addition to the NASA-

proposed, ANTS-based missions, shown in Figure 2, the United States Department of

Defense has shown interest in exploring similar ANTS-based systems using autonomous

technologies for the investigation of extreme environments on Earth and for underwater

exploration [77].

The ANTS architecture will be based on autonomous, self-addressable, self

configuring components that will have the following key aspects [14]:

• Independent, specialized elements

• Multi-level intelligent, autonomous behavior

• Organization via a social insect analogy

Figure 2 The Family of NASA’s Proposed ANTS-Based Missions

 38

Some of the components of the architecture will consist of common subsystems

that all spacecraft must have (e.g., inter-spacecraft communication components, guidance

and navigation components, etc.) and some components specialized to a small subset of

the spacecraft (e.g., X-ray spectrometer components). Thus, the architecture is designed

particularly for highly autonomous spacecraft each specialized to perform a specific

mission function [14], [15], [68].

The autonomy required by ANTS-based missions will require each spacecraft to

have the ability to be self-configuring, self-healing, self-optimizing and self-protecting

[77]. Briefly, self-configuring behavior in ANTS-based missions is needed since the

nature and objectives of the mission may change as time progresses. For example,

new/different science goals may need to be investigated depending on collected data or

the current surrounding environment. Self-healing is needed to allow a spacecraft to

autonomously discover and recover from malfunctions (e.g., the spacecraft’s memory is

corrupted as a result from exposure to solar radiation) and be able to continue to perform

scientific operations. Self-optimization in ANTS-based spacecraft is desired so that

specialized spacecraft (e.g., a spacecraft with a magnetometer) are able to optimize their

abilities to perform their scientific objectives and learn how they can better achieve their

scientific goals through their learning from the past experiences. Finally, self-protection

is needed in each ANTS-based spacecraft so that the spacecraft can prevent itself from

harmful situations (e.g., collisions with other spacecraft, radiation from solar storms,

etc.).

While these behaviors will have many similarities across all ANTS-based

missions (e.g., all ANTS-based spacecraft will be self-protecting by avoiding collisions

with other spacecraft), the specific autonomic properties will very depending on the

specific mission and the specific objective of a spacecraft (e.g., some spacecraft of the

 39

ANTS-based mission to explore Saturn’s rings shall be able to optimize their near-

infrared spectrometer to be able to better characterize the ring’s composition) [77].

The similarities in the characteristics, behavior and requirements amongst the

proposed ANTS-based systems, shown in Figure 2, suggests that adopting a product-line

engineering approach may be advantageous in the systems’ development since portions

of the software engineering assets can be reused across several missions [64], [65], [66].

Using a product-line engineering approach, common components (e.g., the navigation

and guidance components and the collision avoidance components of flight-based ANTS

systems) can be viewed as product-line commonalities. Similarly, components particular

to only some of the ANTS-based spacecraft (e.g., infrared radiometer components for

spacecraft specialized to investigate a planet or asteroid’s Regolith characterization) can

be considered as product-line variabilities. Thus, the family of ANTS-based spacecraft

could be built as a multi-agent systems product-line (MAS-PL), as proposed by Peña,

Hinchey, Ruiz-Cortés and Trinidad [64], [65], [66].

In this work, we concentrate on a single ANTS-based mission, the Prospecting

Asteroid Mission (PAM) [71], [77], [83], [84], as a MAS-PL to illustrate and evaluate our

approach. In the following section, the PAM ANTS-based mission is described to provide

background and context to the examples and case study presented throughout the

remainder of this dissertation.

3.2 The Prospecting Asteroid Mission

The Prospecting Asteroid Mission (PAM) is a currently a 2020-2025 NASA

concept mission lasting 5-10 years based on the Autonomous Nano-Technology Swarm

(ANTS) technology to explore the asteroid belt between Mars and Jupiter [71], [77], [83],

[84]. The proposed PAM mission will consist of up to 1,000 pico-spacecraft (spacecraft

weighing less than 1 kilogram) that will autonomously form subswarms to investigate

 40

asteroids of interest in the asteroid belt. In particular, the PAM spacecraft’s objective is to

search for asteroids that have characteristics indicating that they have resources and

material with astrobiologically relevant origins and features. Except for a spacecraft’s

scientific instrumentation specialties, each PAM spacecraft will have identical hardware.

Each PAM spacecraft will be designated as a leader (sometimes called rulers), a

messenger or a worker [15], [68], [71], [83], [84]. A spacecraft tasked as a leader will

determine the types of asteroids and data the mission is interested in and will coordinate

the efforts of other spacecraft, in particular worker spacecraft, to investigate asteroids to

satisfy mission objectives. A spacecraft designated as a messenger is tasked with

coordinating the communication messages between the worker spacecraft, the leader

spacecraft and the Earth. In addition, the messenger spacecraft will, along with the leader

spacecraft, maintain the position and trajectory data of all spacecraft in the swarm as a

requirement for intra-spacecraft communication. Worker spacecraft will each contain a

single specialized, onboard scientific instrument and be tasked to perform scientific

investigation particular its specialized equipment. Types of specialized, onboard

scientific instruments that worker spacecraft will contain for the PAM mission include

spectrometers, altimeters, magnetometers and infrared radiometers.

Currently, there are nine proposed specialized instruments, shown in Table 1,

each designated with its own unique objective in the exploration of an asteroid [15], [68],

[71], [83], [84]. Of the approximately 1,000 spacecraft proposed for the PAM mission,

approximately 80% will be worker spacecraft and the remaining 20% will be equally

divided amongst the leader and messenger spacecraft. Thus, for each type of spacecraft

there will be a great amount of redundancy since NASA projects that 60%-70% of the

PAM spacecraft will be lost over the duration of the mission due to failures, collisions,

etc.

 41

Table 1 Types of Specialized Instruments for Worker Spacecraft

Worker Specialization Primary Objective
Visible Imager Asteroid detection, 3D modeling, Photogeology

Near-Infrared Spectrometer Mineral abundance mapping

X-ray Spectrometer Major element/volatile abundance mapping

Gamma-ray Spectrometer Heavy element/volatile abundance mapping

Neutron Spectrometer Heavy element/volatile abundance mapping

Altimeter Shape detection, 3D modeling, Topography,
Geomorphology

Radio Science/Magnetometer Gravity/Magnetic fields mapping, Interior
characterization, 3D modeling

Radio Sounder/Infrared
Radiometer

Regolith characterization

Neutral Mass Spectrometer Volatile characterization

To explore the asteroids within the asteroid belt, the PAM spacecraft will

autonomously form subswarms of approximately 100 spacecraft, thus forming around 10

subswarms [15], [68], [71], [83], [84]. Each subswarm will spend approximately one

month investigating a single asteroid and will consist of several leader and messenger

spacecraft, and the majority of the subswarm will be worker spacecraft, of which, several

of each instrument specialization will present in every subswarm. The heterogeneous

spacecraft of a subswarm will work together to form a “virtual instrument” to investigate

an asteroid by combining the data discovered by each of the specialized worker

spacecraft to form a single model of the asteroid to report to mission control on Earth.

A typical scenario of a PAM subswarm to explore an asteroid within the asteroid

belt may be as follows [71]:

 42

The leader spacecraft of a subswarm will contain models of the types of

science that should be performed. Parts of this model are communicated to

messenger spacecraft so that the messenger spacecraft can relay it to the worker

spacecraft of the subswarm. Upon receiving a model of what kind of science shall

be investigated on an asteroid, the worker spacecraft shall take measurements of

the asteroid using whatever specialized onboard instruments they have until the

collected data of the subswarm’s worker spacecraft fulfills the model sent by the

leader spacecraft.

The data will then be sent to a messenger spacecraft which will then relay

it to the leader spacecraft of the subswarm. If this data matches the characteristics

that the leader spacecraft believe should be further investigated, the leader

spacecraft will command some worker spacecraft equipped with imaging

instruments to determine the exact location, size and shape of the asteroid to

create a rough model of the asteroid prior to the arrival of other spacecraft so that

they can have a model for maneuvering around the asteroid and avoid collisions.

Other spacecraft would then work together to finish the model and mapping of the

asteroid. This process is partially illustrated in Figure 3.

From this scenario, the PAM spacecraft can be viewed hierarchically as acting as

a team of teams where some teams last longer than others since the scientific capabilities

of spacecraft differ and because each team is temporarily dedicated to a specific task or

objective [15], [68], [71], [83], [84].

In terms of safety, an ANTS requirement, which must hold for the PAM mission,

calls for no single-point failures [15], [68], [71], [83], [84]. This implies that there must

not be a single, central leader spacecraft that commands the entire swarm, thus the need

for high redundancy in the spacecraft and in the swarm to ensure, for example, that there

is not a single leader spacecraft responsible for commanding the entire swarm.

 43

Figure 3 PAM Spacecraft Exploring the Asteroid Belt (from [77])

Additionally, the extreme conditions of space will necessitate other safety-critical

requirements to be placed on PAM spacecraft to avoid hazardous situations [15], [68],

[71], [83], [84]. One such situation is that the PAM spacecraft will need to protect

themselves from the solar radiation present during a solar storm. To protect the swarm

from solar radiation, some spacecraft will be tasked, in addition to their other objectives,

to monitor the solar disc for an impending solar storm. To meet the no-single point failure

requirement, several spacecraft will be tasked with monitoring the solar disc for an

impending solar storm.

 44

However, not all of these spacecraft will be actively monitoring the solar disc

although they all have the capability. Rather, some spacecraft will switch from not

monitoring the solar disc to actively monitoring the solar disc when it is determined that

the swarm requires additional monitoring spacecraft (e.g., when previous spacecraft

monitoring the solar disc have been lost due to failure, collision, etc.). When a solar

storm is detected, this spacecraft will warn the entire swarm to take protective measures.

A PAM spacecraft receiving such a warning will relay this message to other nearby

spacecraft and may power down its subsystems and use its solar sail as a shield to protect

itself from the harmful effects of solar radiation.

To preserve mission-critical requirements (i.e., the swarm’s ability to pursue

scientific goals and report their findings), additional capabilities will be given to some

spacecraft of the PAM swarm to achieve redundancy at the swarm level. Similar to the

ability that some spacecraft will go from not monitoring the solar disc for impending

solar storms to actively monitoring it, some spacecraft may be able to switch from a

leader spacecraft to a messenger spacecraft or vice versa if conditions of the swarm

determine that additional messenger spacecraft or leader spacecraft, respectfully, are

needed to due the loss or failure of spacecraft [15], [68], [71], [83], [84].

Like the ANTS-based mission, the PAM spacecraft can be viewed as a multi-

agent system product line (MAS-PL) [64], [65], [66]. From a product-line engineering

perspective, the similarities in requirements that are to be found on every spacecraft of

the PAM swarm (e.g., the navigation and guidance capabilities, the prevention of

collisions capability, the ability to warn other spacecraft of an impending solar storm,

etc.) can be viewed as product-line commonality requirements. Similarly, the differences

amongst the spacecraft of the PAM swarm (e.g., the differing requirements between

leader, messenger and worker spacecraft, the ability of some spacecraft to monitor the

solar disc for impending solar storms, the ability of some messenger spacecraft to be

 45

upgraded to a leader spacecraft, etc.) can be considered as product-line variability

requirements.

This work uses NASA’s ANTS-based PAM mission as a case study throughout

the remainder of this dissertation to motivate, illustrate and evaluate our Agent-Oriented

Software Engineering (AOSE) methodology, Gaia-PL (Gaia - Product Line), to construct

a MAS-PL so that its software engineering assets can be reused when building new

systems. Chapter 4 describes the reduction in the development effort required as a result

of the application of a product-line engineering approach using Gaia-PL to this MAS.

Further, we use the PAM mission described in this chapter to motivate, illustrate

and evaluate our product-line safety analysis techniques ability to evaluate and improve

the safety of a MAS-PL in a way that the produced safety analysis assets are reusable for

future systems. Chapter 5 details the product-line safety analysis techniques and tools

ability to identify, analyze and verify the safety requirements of the PAM mission. In

addition, we evaluate safety analyses value as producing reusable safety artifacts and

their ability to reduce development costs compared to a non-product line safety analysis

approach.

 46

CHAPTER 4. DEVELOPING MULTI-AGENT SYSTEM PRODUCT

LINES USING THE GAIA-PL METHODOLOGY 1

Chapter 1 stated as a thesis that an Agent-Oriented Software Engineering (AOSE)

methodology can be devised to enhance the reuse in the design and development of a

safety-critical, multi-agent system (MAS) by incorporating software product-line

engineering principles to develop reusable software engineering assets in a way that

allows software engineers to take advantage of the reusable assets to create a MAS.

Based on the foundation of background information and related research given in

Chapters 1 and 2, this chapter describes our Gaia-PL (Gaia – Product Line) AOSE

methodology to design and develop multi-agent system product lines (MAS-PL)2 using

software product-line principles. This chapter details how to develop reusable

requirement specifications for a MAS-PL and then reuse them for initial system

development as well as during evolution. To illustrate and evaluate our Gaia-PL

methodology, we use the Prospecting Asteroid Mission (PAM) case study described in

Chapter 3.

1 This chapter extends our previous work that has appeared in papers at the 2005 International Conference

on Software Engineering Workshop on Software Engineering for Large-Scale, Multi-Agent Systems

(SELMAS’05), a 2006 chapter in Software Engineering for Multi-Agent Systems IV, Lecture Notes In

Computer Science, co-authored with Robyn R. Lutz as well as a forthcoming book chapter entitled Current

Research in Multi-Agent System Product Lines (MAS-PL), co-authored with Joaquin Peña, Antonio Ruiz-

Cortes, Michael Hinchey and Robyn R. Lutz.
2 The term multi-agent system product line (MAS-PL) was coined by Joaquin Peña, Michael Hinchey,

Antonio Ruiz-Cortes and Pablo Trinidad for what we previously called product-line, multi-agent systems

(PL-MAS).

 47

4.1 Integrating Software Product-Line Engineering Principles

into the Gaia Methodology

This section examines the need for the integration of software product-line

engineering principles into the design and development of MAS and describes our

approach of using an agent’s variation points as a mechanism to include software

product-line engineering principles into our Gaia-PL methodology.

4.1.1 The Need for Reuse in Developing Multi-Agent Systems

Reuse is highly desirable in software engineering as a way to reduce the cost of

the design and development of software. Software reuse technologies have been a driving

force in significantly reducing both the time and cost of software requirements

specification, development, maintenance and evolution. Industry's continuous demand for

shorter software development cycles and lower software costs encourages software

development methodologies to exploit software reuse principles whenever possible.

Agent-Oriented Software Engineering (AOSE) methodologies have provided

software engineers with the mechanisms to understand, model and develop complex

multi-agent systems (MAS). From its onset, one of the goals of AOSE has been to

provide methodologies for reusing and maintaining agent-based software systems [85].

Despite this, no methodology has provided software engineers with the reuse mechanisms

at an early stage in the software development life cycle (i.e., requirement specification

phase). The realization of MAS development partially depends upon whether AOSE can

achieve reductions in development time and cost comparable to other reuse-conscious

software development methods [7].

Software product-line engineering, discussed in Chapter 2, is one such reuse

technology that supports the systematic development of a set of similar software systems

by understanding, controlling and managing their common, core characteristics and their

 48

differing variation points [12], [67]. The benefits of the product-line concept come from

the reuse of the common requirements of the product line in the development of a new

product-line member [76]. Thus, the assets gained from the initial engineering of the

product line can be at least partially applied to any new product-line member.

The Gaia-PL methodology provides a requirements specification pattern to

capture the dynamically changing design configurations of agents and reuse the

requirement specifications for future similar systems. This is achieved by adopting a

product-line approach into AOSE by capturing the dynamically changing design

configurations of agents as product-line variation points and reusing them for future

systems. The use of variation points in Gaia-PL for the design and development of MAS

is discussed in the following section.

4.1.2 Using Variation Points in Multi-Agent System s

The Gaia methodology centers on defining an agent based upon the role(s) that it

can assume during its lifetime [92], [94]. Each role’s requirements specification is

defined by its protocols (i.e., defines how agents interact), activities (i.e., the

computations associated with the role that can be executed without interacting with other

agents), permissions (i.e., the information resources that the role can read, change and

generate) and responsibilities (i.e., the liveness and safety properties the role must

ensure).

However, Gaia has three limitations of interest to the work presented in this

dissertation. First, although Gaia provides a mechanism to allow the role of an agent to

change dynamically, it is unclear how to document agent requirements specifications

during the analysis and design phases when an agent must be updated to include new

functionality. Second, the design of an agent in Gaia is not hierarchical [42]. That is, the

roles of an agent are coarsely defined allowing little flexibility (i.e., little opportunity for

 49

reuse) for similar, yet slightly different behavior in the same role in different agents.

Third, the Gaia methodology fails to provide a mechanism by which the requirements

specification templates developed during the analysis phase can be reused to be

incorporated into the current system or to build a new, similar but slightly different

system.

Gaia-PL addresses these limitations by introducing variation points into the

design and development of MAS. Product-line engineering uses variation points to

capture the allowed differences amongst members belonging to the same product family.

For Gaia-PL, we define the variation points for a specific role of an agent as the differing

protocols, activities, permissions and responsibilities available to that role. Variation

points typically stem from the grouping of the product-line variabilities defined in the

Commonality and Variability Analysis (CVA), discussed in Section 2.1.1, documented as

part of the output of the Requirements Documentation phase of Gaia-PL, discussed in the

next section.

The introduction of variation points in Gaia-PL addresses the limitations of Gaia

by allowing the software engineer to define a role with greater flexibility and partition

some functionality of a role depending on the agent and system’s current configuration.

The variation point notion is important because it aids in capturing the different

arrangements of agents and promotes reuse.

4.1.2.1 Variation Points

Variation points are added with the Gaia characteristics of a role [92], [94]. This

allows Gaia-PL to leverage a product-line-like perspective to maximize reuse among

software products that share a great many similarities amongst each other and differ by

only a few variations. In the following paragraphs, examples of variation points are given

to illustrate this.

 50

From previous work [19] [21], we have shown that an important way to classify

variation points for an agent of a MAS is based on the varying intelligence levels for a

specific role. For example, in the TechSat21 satellite constellation [8], [73], a cancelled

NASA-proposed, agent-based, satellite constellation comparable to the Prospecting

Asteroid Mission (PAM) case study used in this dissertation, variation points for a role

were ordered in terms of increasing intelligence levels, I4 through I1, defined as follows:

• I4: the role is able to receive and execute commands

• I3: the role is able to participate in local planning activities pertinent to the

role as well as receive and execute commands

• I2: the role is able participate in local planning and interaction activities

pertinent to the role, contains partial cluster-knowledge related to the role’s

objective as well as receive and execute commands

• I1: the role is able participate in cluster-level planning and interaction

activities pertinent to the role, contains full cluster-knowledge related to the

role’s objective as well as receive and execute commands

Thus, in this example, as a role in a TechSAT21 satellite is promoted to a higher

intelligence level (from I3 to I2, for example) the configuration of the agent dynamically

changes by incorporating additional protocols, activities, permissions and/or

responsibilities. The reverse occurs when a role is demoted from a higher intelligence

level to a lower intelligence level (from I2 to I3, for example). Using this construct, our

notion of an agent’s role may have one or more variation points.

 The actual decision as to which features to group together and how to classify

each variation point is domain and/or application specific and is not covered in this work.

Rather, we assume that domain experts group the variabilities listed into variation points

so that they can be used during the analysis phase of Gaia-PL. However, in the

application of Gaia-PL to the PAM case study, we found that the variation points were

 51

intuitively identifiable from the functionality described in the variability requirements of

the differing spacecraft.

The variation points will initially be fixed upon deployment of the MAS based

upon the software and hardware facilities available to the agent as well as the role's goal.

At deployment a default variation point for each role is set. During execution, a role may

change its variation point (e.g., intelligence level) based upon its internal state,

commands from external sources or the environment.

Alternatively, within a distributed, agent-based system, it is not likely that the

same set of variation points will be included in any given role throughout the entire MAS

[19]. Thus, from a product-line engineering perspective, we can view the set of roles

containing different role/variation point combinations as a product line. The set of roles

and dynamic variation points an agent contains is its configuration.

For example, in a small case study on the application of an earlier version of

Gaia-PL to the TechSAT21 case study we performed in [19] [21], the intelligence levels

listed above describe the variation points for a role that was tasked to perform allocation

planning for the TechSAT21 satellites to equalize the fuel use across the entire cluster.

Any agent with this role would be assigned a variation point based on the intelligence

level, I4-I1, it is capable of assuming during its lifetime. One agent may be assigned an I4

intelligence level for this variation point. This implies that this specific agent can never

increase its intelligence level (i.e., be upgraded) any higher. However, an agent assigned

with an I2 intelligence level for this role’s variation point has the configuration so that, at

any point in its lifetime, it may be operating at the I4, I3 or I2 intelligence level. This may

be useful for systems that require redundancy. For example, the agent assigned with an I2

intelligence level for this role’s variation point may primarily operate at the I3

intelligence level and only be upgraded to the I2 intelligence level if it is needed to

 52

assume the planning for another agent operating at the I2 level that is failing, has been

damaged or needs replacement.

The intelligence level variation point of this example will not be universal to all

agent-based, distributed systems. Variation points are particular to each application and,

indeed, particular to each role. For example, other variation points could include active,

passive; hot-spare, cold-spare; etc.

For the PAM case study used in this dissertation, several different types of

variation points were identified for the various roles of the spacecraft (i.e., agent). Note

that for the PAM case study, we define an agent at the spacecraft-level. This follows

other work on PAM by Peña, Hinchey, Ruiz-Cortés and Trinidad in [63] [64]. This

additionally follows our previous work in applying Gaia-PL to the TechSAT21 case

study in [19] [21] and other work by Das, Krikorian and Truszkowski in [16] and

Schetter, Campbell and Surka in [73].

In the PAM case study, one of the important variation points we identified for the

roles of an agent as based on whether the spacecraft was to be a leader, messenger or

worker spacecraft for the PAM swarm. For some roles that we identified in the PAM case

study, further described in Section 4.2, functionality will slightly differ depending on

what kind of spacecraft it is (i.e., leader, messenger or worker). However, despite the

slight differences in functionality, a majority of the functionality will be common

regardless of what kind of spacecraft it is. For example, each PAM spacecraft will have a

Self-Optimizer role that is tasked with improving its ability to identify, explore and

communicate data of an asteroid. While some functionality of this role will be common

to all types of PAM spacecraft (e.g., the ability check the spacecraft’s current power

consumption, check the status of the solar sails, calculate the spacecraft’s position and

current velocity, etc.), other functionality of the Self-Optimizer role will be tailored to the

type of spacecraft. For example, a leader spacecraft will additionally require functionality

 53

continuously optimize its ability to decide what kinds of asteroid to investigate past on

recent historical data. Further, a worker spacecraft will additionally require functionality

to be able to optimize the use of its onboard, specialized scientific instrument via

repositioning itself, altering its scientific goal, etc. Finally, a messenger spacecraft will

additionally require functionality in the Self-Optimizer role to be able to optimize its

facilitation of the swarm’s communication network by deciding what messages should be

sent to other spacecraft, repositioning itself to best communicate with other spacecraft,

etc. In this case, all PAM spacecraft will share the common functionalities for the Self-

Optimizer role and will then be further specialized with its appropriate, extended Self-

Optimizer role variation point depending on what type of spacecraft it is. Note that

requirement specifications for the Self-Optimizer role, and all other roles of the PAM case

study, can be found in the Gaia-PL Role Schemas listed in Appendix D.

Besides defining the variation points of a role for a PAM spacecraft based on the

type of spacecraft that it is (i.e., leader, messenger or worker), we found that other

variation points could be defined for other roles. For example, a leader spacecraft of the

PAM swarm will have a role called LeaderPlanner that is tasked with managing,

planning and coordinating the spacecraft of a PAM subswarm so that the subswarm can

effectively pursue and satisfy system-wide and individual scientific goals. For this role,

we identified the variation points as follows:

• Passive: Acts as a backup to verify/double-check the commands and

calculations of a spacecraft with a LeaderPlanner role acting with

the “active” variation point; does not actually command spacecraft,

only calculates, verifies the actions to be performed

• Active: Able to command the spacecraft of a PAM swarm regarding its plan

to coordinate that spacecraft regarding their pursuit of scientific

 54

goals; request from “passive” LeaderPlanners

verification/agreement on its calculated strategy

In this role, a Leader spacecraft’s LeaderPlanner role will be configured as either passive

only or both passive and active. Again, a LeaderPlanner role configured with both the

passive and active variation points may only assume one of the variation points at a time.

This may be useful in the event that a Leader spacecraft acting as a backup (i.e., the

spacecraft’s LeaderPlanner role acting at the “passive” variation point although it is also

capable of the “active” variation point) needs to assume an “active” LeaderPlanner role

if another Leader has failed.

 However, not every role that can be defined for an agent will necessarily have

variation points. For those roles that have no variations amongst the agents of a MAS, no

variation points should be defined. This implies that, for any agent with a role that has no

defined variation points, the functionality will be identical. To accommodate this, Gaia-

PL does not require defined variation points for every role and, rather, follows the Gaia

approach for those roles without identified variation points.

 In the PAM case study, for example, one such role was the Navigator role. This

role is tasked with providing the PAM spacecraft with the functionality to maneuver itself

in space using its solar sail. This functionality is required in all PAM spacecraft

identically regardless of the type of spacecraft (i.e., leader, messenger or worker) or any

other possible variations.

 4.1.2.2 Binding Time in Variation Points

 For every variation point identified, a binding time is associated to it which

defines the time at which the variation point could be assumed by a role. Potential

binding times include design-time, specification-time, configuration-time and run-time.

 55

 In the case of our PAM case study, most of the binding times were at design-time.

For example, the Self-Optimizer role’s variation points of Leader, Messenger or Worker

must be decided for a specific PAM spacecraft while it is being designed. Thus, designers

would have to integrate the functionality associated with the chosen variation point with

the common functionality to the Self-Optimizer role found in all spacecraft.

For the LeaderPlanner role, however, the binding time is not straight forward.

The decision for whether a spacecraft with the LeaderPlanner role should have only the

“passive” variation point or both the “passive” and “active” variation point must be done

at design time. Yet, for those LeaderPlanner roles that have both the “passive” and

“active” variation points, the ability to switch from “passive” to “active” or vice versa,

based on its own decision or on a command received, is done at runtime. Thus, the

decision for the possible configurations of this variation point is decided upon at design-

time, the ability for the spacecraft to alter its configuration for this variation point is at

runtime.

In the application of the Gaia-PL methodology to the PAM case study, we found

that the binding time of a role’s variation point often followed that of the LeaderPlanner

example described above. This is likely a core characteristic of many MAS because of

their need to be autonomous and adapt to the changing situation and environment. For

example, the need for the LeaderPlanner role to be either “passive” or “active” is

primarily due to the need for the PAM swarm to be highly redundant and able to

reconfigure itself in the event of failure.

Identifying the variation points to which a role may dynamically switch, such as

shown in the LeaderPlanner role, allows us to classify at which variation points the

protocols, activities, permissions and/or responsibilities are introduced to the role.

Partitioning the requirements specifications (i.e., the protocols, activities, permissions and

responsibilities) of an agent in this manner will allow us to reuse the requirement

 56

specifications for future systems. Thus, future agents within a domain such as Earth-

orbiting microsatellites can more readily utilize assets that have been specified in such a

way. These future systems employ roles comprising some of the variation points

previously defined as well as new capabilities not found in any of the previous systems.

 4.1.2.3 Gaia and Variation Points

In the beginning of this section, Section 4.1.2, it was stated that the Gaia

methodology [92], [94] has the following limitations:

1. It is unclear how to document an agent’s requirements specifications during

the analysis and design phases when an agent must be updated to include new

functionality particularly when the role of an agent can change dynamically

2. The roles of an agent are coarsely defined allowing little flexibility for similar,

yet slightly different behavior in the same role in different agents because the

design of an agent’s roles in Gaia is flat rather than hierarchical [42]

3. There is no clear mechanism by which the requirements specification

templates developed during the analysis phase can be reused to be

incorporated into the current system or to build a new, similar but slightly

different agent

The ability to define and document variation points in Gaia-PL specifically addresses

these limitations in Gaia to facilitate the reuse of the requirement specifications for

several, similar but slightly different agents.

 For agents that have roles that may dynamically change its functionality during its

lifetime, the ability to partition a role’s varying functionality via its variation points

allows the designer to specify the possible configurations of the role (i.e., the selection of

the variation points that the role may assume during its lifetime) at an early binding time

(i.e., design-time, specification-time). Then, that particular role can assume (or be

 57

commanded by another spacecraft to assume) a particular variation point of the role

during runtime. The LeaderPlanner role of the PAM case study described in Section

4.1.2.2 illustrated this situation. Thus, the variation points provide a mechanism to

capture the functionality of a role that may dynamically change during execution. The

mechanism to document the roles, variation points and binding times for the agents of a

MAS-PL is detailed and illustrated in Section 4.2.

 Partitioning the role of an agent into its common parts and its variable parts (i.e.,

the variation points), Gaia-PL provides software engineers with the ability to define a role

hierarchically. Using this approach, the common functionality of a role is captured and

the variable functionality is captured as the variation points at a level below. The use of a

Feature Model aids in structuring the roles and variation points of an agent hierarchically.

This is further detailed and illustrated in Section 4.2.1.

 Structuring the roles and variation points of an agent in a hierarchical manner and

partitioning the common and variable functionality of a role allows for flexibility and

reuse of the requirements specifications of the roles and variation points. These

requirements specifications can be reused for similar, yet slightly different agents during

the initial development of a MAS as well as during evolution. This is further detailed and

illustrated in Section 4.3 and contrasted with the Gaia methodology in Section 4.4.

4.2 Documenting the Requirements Specifications of a MAS-PL

in the Gaia-PL Methodology

This section describes the Requirements Documentation, Analysis and Design,

and the Detailed Design phases of the Gaia-PL methodology. The process and software

engineering artifacts generated from these phases are illustrated in Figure 4. This figure

illustrates the Gaia-PL methodology in context to the phases of Gaia (i.e., Requirements

Documentation, Analysis and Design, and the Detailed Design) and Weiss and Lai’s

 58

Figure 4 An Overview of the Software Engineering Artifacts of Gaia-PL

 59

 Family-Oriented Abstraction, Specification and Translation (FAST) [88] product-line

engineering approach. For each phase, we describe the documentation process and how

each document will later contribute to the ease of reuse, discussed in Section 4.3.

 Although Gaia-PL is detailed as its own methodology in this chapter to develop

and document the requirements and requirements specifications of a multi-agent system

product line (MAS-PL), Gaia-PL can be applied as an extension to the Gaia methodology

[92], [94], shown in Figure 1. This would entail using the Gaia-PL schemas and

procedure discussed in this chapter for the requirements specifications and other Gaia

methodology’s models and schemas for other parts of an agent-oriented system.

4.2.1 Requirements Documentation Phase

The Requirements Documentation phase of the Gaia-PL methodology involves

identifying and documenting the multi-agent system product line’s (MAS-PL)

commonality and variability requirements. This section describes the Commonality and

Variability Analysis (CVA), the Parameters of Variation Table(s), the Feature Model and

the use of DECIMAL [23], [58], [59] to facilitate the requirements documentation

process.

4.2.1.1 The Commonality and Variability Analysis

Documenting the requirements of a multi-agent system product line (MAS-PL) in

Gaia-PL follows the same principles of software product-line engineering. In the

development of a software product line, requirements are collected and then documented

in a Commonality and Variability Analysis (CVA) as well as a Parameters of Variation

table for the variability requirements [1], [70], [88]. The requirements engineering

process of [1], [70], [88] to gather, identify and document the product-line requirements

in a CVA for a product line can be used in Gaia-PL and is thus not covered here.

 60

Alternative approaches to the CVA in documenting product-line requirements and

performing variability analysis include the goal-oriented [5] or the feature-oriented [43]

approach. Alternatively, the use of domain or application expertise may also suffice in

this process. This work exclusively used the CVA as the medium for variability

documentation and analysis because of our use of the FAST methodology (in which a

CVA is exclusively utilized to document and analyze variabilities). In terms of reuse,

CVA is superior to either goal-oriented or feature-oriented approaches since it clearly

defines those requirements that will be found in every member of a product line (i.e.,

commonalities) and those requirements that will only be found in a subset of the

members of a product line (i.e., variabilities).

In the PAM case study, we identified a total of 35 high-level commonality

requirements and 62 variability requirements to document in the CVA. Excerpts from the

CVA for the PAM MAS-PL are shown in Figure 5 (Commonalities) and Figure 6

(Variabilities). The entire CVA for the PAM case study can be found in Appendix A.

From the CVA’s variabilities, the Parameters of Variation table can be derived to

better define the variabilities listed in the CVA [88]. The Parameters of Variation tables

listed the parameters name, the associated variability requirement (for traceability), a

description of the parameter, the domain of the possible values of the parameter, the

binding time at which the configuration of the parameter must be selected.

In the PAM case study, 48 parameters of variation were found from the 62

variability requirements. Note that several product-line variabilities can constitute a

single parameter of variation. For example, for the variability “A spacecraft performing

subswarm allocation and planning may vary in its role in allocation and planning

activities”, the domain of parameter values for this variability is [passive, active]. Note

that variability corresponds to the LeaderPlanner role discussed in Section 4.1.2.1.

61

COMMONALITIES

General Commonality Requirements
C_G1. The PAM swarm shall have no single point of failure [15].
C_G2. The PAM swarm shall be robust to minor faults and catastrophic failures [14].

Self-Optimization Commonality Requirements
C_SO1. Every spacecraft shall be able to adjust to the surrounding environment [77], [84].
C_SO2. Every spacecraft shall be able to optimize itself through calibrating its instruments [77], [83], [84].
C_SO3. Every spacecraft shall be able to optimize its power consumption [15], [65], [66], [84].
C_SO4. Every spacecraft shall be able to monitor and adjust its relative positions to optimize its scientific exploration [77], [84].

Self-Healing Commonality Requirements
C_SH1. Every spacecraft shall be able to recognize that its memory is corrupted/damaged [64], [65], [66], [84].
C_SH2. Every spacecraft shall be able to request an uncorrupted memory from another spacecraft in the event that it recognizes that its

memory is corrupted [71], [84].
C_SH3. Every spacecraft shall be able to send its uncorrupted memory to another spacecraft upon request [71], [84].

Self-Protection Commonality Requirements
C_SP2. Every spacecraft shall be able to communicate with nearby spacecraft in order to prevent collisions [64], [66], [71], [77], [84].
C_SP3. Every spacecraft shall be responsible for preventing collisions with asteroids [64], [65], [66], [71], [77], [84].
C_SP4. Every spacecraft shall be able to store a 3D map of nearby asteroids in order to prevent collisions [71], [77], [84].
C_SP5. Every spacecraft shall be able to take acceptable risks while attempting to satisfy its scientific goals [71], [77], [84].
C_SP6. Every spacecraft shall be able to deploy its solar sail to use as a shield for protection against solar storms [66], [77], [83], [84].
C_SP7. Every spacecraft shall be able to switch off its subsystems when needed to protect against solar radiation [66], [77], [83], [84].
C_SP8. Every spacecraft shall be able to receive messages from other spacecraft giving advanced warning of an impending solar

storm [65], [66], [77], [84].

Miscellaneous Commonality Requirements
C_M1. Every spacecraft shall have the ability to control its own guidance navigation and control functions [14], [15], [83].
C_M3. Every spacecraft shall be able to use their solar shields as its means of flight [14], [15], [65], [66].

Figure 5 Excerpt of the Commonalities from the Commonality and Variability Analysis for the PAM MAS-P L

62

VARIABILITIES

Self-Optimization Variability Requirements
V_SO1. A spacecraft’s ability to optimize itself via improving their ability to identify asteroids of interest may vary [15], [71], [77],

[83] [84].
V_SO2. A spacecraft’s ability to share its optimization information regarding the identification of asteroids of interest with leader

spacecraft may vary [77], [84].
V_SO3. A spacecraft’s ability to optimize itself through positioning itself appropriately to best facilitate communications with

messenger spacecraft may vary [15], [77], [84].
V_SO4. A spacecraft’s ability to share its optimization information regarding positioning itself appropriately to best facilitate

communications with messenger spacecraft may vary [15], [77].
V_SO5. A spacecraft’s ability to optimize itself via learning through their past experiences to better investigate an asteroid may vary

[15], [77], [84].
V_SO6. A spacecraft’s ability to share its optimization information regarding how to better investigate an asteroid with worker

spacecraft may vary [15], [77], [84].

Self-Protection Variability Requirements
V_SP1. A spacecraft’s ability to be tasked with constantly observing the solar disc to detect signs of an impending solar storm may

vary [65], [66], [77], [84].
V_SP2. A spacecraft’s ability to receive warnings from mission control of an impending solar storm may vary [65], [66], [77], [84].

Leader Spacecraft Variability Requirements
V_L1. A spacecraft’s ability to be in charge of performing subswarm allocation and planning may vary [15], [71], [83], [84].
V_L2. A spacecraft performing subswarm allocation and planning may vary in its role in allocation and planning activities [15].
V_L3. A spacecraft’s ability to be able to assign teams of worker and messenger spacecraft may vary [83].
V_L4. A spacecraft’s ability to direct/coordinate worker spacecraft to investigate a specific asteroid may vary [77], [83], [84].
V_L6. A spacecraft’s ability to be responsible for determining the types of asteroids to investigate may vary [71], [77], [83], [84].

Messenger Spacecraft Variability Requirements
V_M1. A spacecraft’s ability to relay/coordinate messages between worker spacecraft and leader spacecraft may vary [15], [71], [77].
V_M2. A spacecraft’s ability to relay/coordinate messages between leader spacecraft and mission control may vary [15] [71], [77].

Figure 6 Excerpt of the Variabilities from the Commonality and Variability Analysis for the PAM MAS-P L

63

Table 2 Excerpt of the Parameters of Variation Table for the PAM MAS-PL

Parameter Meaning Domain Binding Time Default
GENERAL VARIABILITY REQUIREMENTS

P1: vSpacecraftRole
V_G1

The role that a spacecraft is to initially assume.
[Leader, Messenger,

Worker]
Design Worker

SELF-OPTIMIZATION VARIABILITY REQUIREMENTS

P4: vIdAsteroidsOptimization
V_SO1, V_SO2

The ability of a leader spacecraft to optimize its
ability to identify asteroids of interest and share
this information with other leader spacecraft.

[True, False] Specification False

P5: vCommOptimization
V_SO3, V_SO4

The ability of a spacecraft to optimize its
positioning for communications and sharing this
optimization with other spacecraft.

[True, False] Specification True

P6: vScienceOptimization
V_SO5, V_SO6

The ability to optimize its scientific exploration of
an asteroid and sharing this optimization with
other spacecraft.

[True, False] Specification False

SELF-PROTECTION VARIABILITY REQUIREMENTS

P7: vSolarDiscWatch
V_SP1

The ability of a spacecraft to constantly watch the
solar disc for the signs of an impending solar
storm.

[Passive, Warm-
Spare, Active]

Design Passive

P8: vMissConStormWarn
V_SP2

The ability of a spacecraft to receive messages
from mission control warning of an impending
solar storm.

[True, False] Design False

MESSENGER SPACECRAFT VARIABILITY REQUIREMENTS

P20: vRelayMessagesSwarm
V_M1, V_M4

The ability to relay and coordinate messages
between spacecraft.

[True, False] Specification False

P21: vRelayMessagesMisCon
V_M2

The ability to relay and coordinate messages to
mission control.

[True, False] Specification False

 64

Similarly, for the variability “A spacecraft’s ability to be tasked with constantly

observing the solar disc to detect signs of an impending solar storm may vary” the

domain of parameter values for this variability is [passive, warm-spare, active]. An

excerpt of the Parameters of Variation table, including these two examples, is shown in

Table 2. The entire Parameters of Variation Tables are given in Appendix B. Note that

the CVA shown in Figure 5 and Figure 6 and the Parameters of Variation Table shown in

Table 2 will also be used in Chapter 5 to illustrate the safety analysis of a MAS-PL.

4.2.1.2 Using DECIMAL to Document the Requirements

To document the Commonality and Variability Analysis (CVA) of the, we utilize

the DECIMAL tool [23], [58], [59], shown in Figure 7. Within DECIMAL, the

commonalities and the variabilities, and their associated parameters of variation can be

documented. For example, the variability V_SP1 (from the CVA in Figure 6): “A

spacecraft’s ability to be tasked with constantly observing the solar disc to detect signs of

an impending solar storm may vary” with parameter of variation of [passive, warm-spare,

active] (from the Parameters of Variation Table in Table 2) is shown in Figure 8.

Although DECIMAL only provides a digital medium in which to document the

commonality and variability requirements of a multi-agent system product line (MAS-

PL) in Gaia-PL, we use it for two reasons. First, DECIMAL provides a convenient

mechanism to document and store the requirements of a MAS-PL during Gaia-PL’s

Requirements Documentation Phase as well as providing an automated check to verify

that an agent’s variable requirements abide by the MAS-PL’s dependencies during Gaia-

PL’s Detailed Design Phase, discussed in Section 4.2.3. Second, for safety-critical MAS-

PL, DECIMAL is used in conjunction with the safety analysis techniques and tools we

describe in Chapter 5.

 65

Figure 7 Documenting the Commonality and Variability Requirements in

DECIMAL

Figure 8 Documenting the A Variability Requirement and its Parameters of

Variation Using DECIMAL

 66

4.2.1.3 The Feature Model

A developed and documented Commonality and Variability Analysis (CVA)

during the requirements collection phase may give developers an insight into what roles

might be appropriate for the multi-agent system to be developed. In terms of multi-agent

system (MAS) development, a CVA may assist in the identification of possible roles

since it partitions those requirements that will be found in every future instantiation of a

particular role from those requirements that will only be found in some instantiations of a

particular role.

The actual identification of appropriate roles for a MAS is not discussed here.

Gaia proposes to identify roles through an inspection of the problem (via the division of a

system into organizations and sub-organizations) [92], [94]. Rather, for Gaia-PL we only

claim that documenting a MAS requirements in a CVA may aid in confirming the role

definition and help in the preliminary role model(s).

In the collection of the requirements for the Prospecting Asteroid Mission (PAM)

case study used in this dissertation, we found that it was straightforward to group both the

commonality and variability requirements into logical, functional groups. As detailed in

Chapter 3, the PAM mission relies on four autonomous characteristics to operate: self-

coordination, self-healing, self-optimization and self-protection. Thus, it was natural to

identify and group requirements in such categories for both commonality requirements

and variability requirements. In addition, it was useful to group variable requirements

into groups depending on what type of spacecraft the requirements were targeted for (i.e.,

a Leader, Messenger or Worker spacecraft of the PAM swarm). Such groupings of the

requirements in the CVA for a MAS may also provide guidance to the identification of

the roles for the agents of a MAS, as was the case in our PAM case study.

The variabilities of the CVA will help define the variation points of the product-

line, multi-agent system. Partitioning the variabilities into similar groups provides the

 67

initial requirements for the variation points of a system. For example, from Figure 6 we

can derive the variation points for the Self-Optimizer role, discussed in Section 4.1.2.1.

The variability V_SO2 implies the “leader” variation point, variabilities V_SO3 and

V_SO4 imply the “messenger” variation point and variability V_SO6 implies the

“worker” variation point all for the Self-Optimizer role. Similarly, from Figure 5 we can

derive the common functionality for the Self-Optimizer role from commonalities C_SO1,

C_SO2, C_SO3 and C_SO4.

In addition to a CVA, this work utilized a Feature Model, shown in Figure 9as

well as in Appendix C, to help identify and organize the roles and variation points of the

PAM case study. Using the CVA, requirements can be further refined and detailed

requirements can be derived during the analysis and design phases so that a Feature

Model and more detailed requirements specifications can be created and documented

[43], [67], [80]. Pohl, Böckle and van der Linden have provided a process to derive a

Feature Model from the requirements of a CVA [67]. Thus, we do not cover this process

here.

However, from the Feature Model, shown in Figure 9 and in Appendix C, the

roles and variation points are readily illustrated. For example, the Self-Optimizer role,

discussed in Section 4.1.2.1, is shown as a mandatory feature of a PAM spacecraft in

which only one of the subfeatures (i.e., variation points) “optimization for workers”,

“optimization for messengers” or “optimization for leader” may be selected. For the

LeaderPlanner role, also discussed in Section 4.1.2.1, the Feature Model illustrates this

as the Leader and Planning subfeatures a subfeature of the Swarm Role feature. As

indicated in the Feature Model, of the variation points for this role, “passive” and

“active” at least one must be selected. This follows exactly how the LeaderPlanner role

was described in Section 4.1.2.1.

68

Figure 9 Feature Model Derived from the Commonality and Variability Analysis for the PAM MAS-PL

 69

4.2.2 Analysis and Design Phase

The Analysis and Design Phase of Gaia-PL takes the requirements documented in

the Requirements Documentation Phase and develops and documents the multi-agent

system product line’s (MAS-PL) requirements specifications. Requirements

specifications are documented in three schemas: The Role Schema, The Role Variation

Points Schema and The Variation Point Schema. These schemas serve as a requirements

specification pattern in which requirements can be defined and documented.

This section describes the development and documentation of the roles and

variation points for the Prospecting Asteroid Mission (PAM) from the requirements

discussed in the previous section and documented in the Commonality and Variability

Analysis in Appendix A. Note that the complete set of schemas documenting PAM

mission’s requirements specifications can be found in Appendix D. In this section, we

only show a small set of the schemas to illustrate Gaia-PL.

4.2.2.1 The Role Schema

For those roles that have been identified having no variation points (i.e., the role

will have identical functionality in all agents that have the role), Gaia-PL uses a slightly

modified version of the Role Schema from Gaia [92], [94]. For example, the Navigator

role of the PAM mission, discussed in Section 4.1.2.1, was identified to have no variation

points and thus can be documented in Gaia’s Role Schema, shown in Figure 10.

The process Role Schema used to document the requirements specifications in

Gaia-PL for those roles that have no variation points is identical to Gaia [92], [94] and is

therefore not discussed here. However, Gaia-PL does include additional information into

the requirements specifications schemas. First, we introduce identification numbers to all

schemas for traceability, organization and management purposes. Second, a row is added

to indicate specifically which variation point the requirements specification is describing

 70

(not applicable for a Role Schema, however, since there are no associated variation

points). An “Inherits” row provides which schemas must be included with the schema for

a particular variation point. This will be described further in the following section.

Finally, rows to indicate the Parameters of Variation and Requirements that are related to

the schema are provided also for traceability, organization and management purposes.

Role Schema: Navigator Schema ID: N
 Variation Point: N/A
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_M1, C_M2, C_M3, C_M4, C_M5, C_M6, C_M7, C_M8
 Description:

Provides the functionality to a spacecraft to maneuver itself using its solar sail.
 Activities and Protocols:

AdjustSolarSail, CalculateThrust, CheckOrbit, CheckSolarSailStatus,
CheckSystemStatus, ExtendSolarSail, MoveToPosition, RetractSolarSail

 Permissions:
 Reads -
 currentAttitude // attitude of the spacecraft
 currentOrbit // current orbit of the spacecraft
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 Changes -
 currentAttitude // attitude of the spacecraft
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 Generates -
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 thrustNeeded // calculated thrust needed to move
Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 maneuver the spacecraft to the desired location.
 Safety -

None.

Figure 10 The Requirements Specifications for the Navigator Role

Documented in a Role Schema

 71

Role Variation Points Schema: SelfOptimizer Schemata ID: SO

 Parameters of Variation: P4, P5, P6
 Description:

At the swarm-level, the collection of these roles within all the spacecraft aids in
autonomously and continuously improving the spacecraft’s ability to identify, explore
and communicate the information discovered while investigating asteroids. At the
spacecraft-level, these roles aid in the spacecraft to continuously learn and improve
its specialized abilities and communicate its findings with other similar spacecraft.

 Variation Points:
 Core:

The core elements of a spacecraft to be able to optimize itself in
regard to general spacecraft functions so that it can continuously
learn from the environment and perform better within the swarm.
[SO-Core]

 Leader:

The elements needed in a leader spacecraft to be able to optimize
itself in regards to its ability to best manage, oversee and direct the
swarm to optimize the swarm’s ability to achieve scientific goals.
[SO-Leader]

 Messenger:

The elements needed in a messenger spacecraft to be able to
optimize itself in regards to its ability to best perform the
communication necessary within the swarm so that commands and
information can best be transmitted. [SO-Messenger]

 Worker:

The elements needed in a worker spacecraft to be able to optimize
itself in regards to its ability to best optimize its ability to achieve its
own scientific goals. [SO-Worker]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design
time. However, a spacecraft that may switch it’s operating variation point (i.e.,
P2=True or P3=True) may have this variation point alter at runtime.

Figure 11 The Role Variation Points Schema for the Self-Optimizer Role

4.2.2.2 The Role Variation Points Schema

The Role Variation Schema, shown in Figure 11 for the Self-Optimizer role

discussed in Section 4.1.2.1, defines a role and the variation points that the role can

assume during its lifetime. The Role Variation Point Schema, introduced in Gaia-PL,

describes the role, the role’s variation points and the binding time for the variation points.

The variation points are described for the role and provide the identification tags (e.g.,

SO-Core, SO-Leader, etc.) for the Variation Point Schema, discussed in the next section,

to aid in traceability, organization and management of the requirements, parameters of

variation, roles and variation points of the multi-agent system product line (MAS-PL).

 72

For most roles, one of the variation points listed in the Role Variation Point

Schema will contain the common functionality of the role, denoted in the Role Variation

Point Schema by being underlined. Thus, this variation point will be included for all

agents containing the role in addition to the other selected variation point(s). For

example, the “Core” variation point for the Self-Optimizer role shown in Figure 11

contains the common functionality (i.e., commonality requirements C_SO1, C_SO2,

C_SO3 and C_SO4 from the Commonality and Variability Analysis (CVA)) for the role.

The introduction of the Role Variation Point Schema in Gaia-PL provides

software engineers with the ability to define a role in a hierarchical manner. The common

functionality defined by a variation point (e.g., the “Core” variation point for the Self-

Optimizer role shown in Figure 11) is further refined by the variable variation points.

Thus, the Role Variation Point Schema achieves the hierarchical nature of the

functionality in a role as modeled by the Feature Model, see Figure 9.

4.2.2.3 The Variation Point Schema

The Variation Point Schema, shown in Figure 12, Figure 13, Figure 14 and Figure

15 for the variation points of the Self-Optimizer role, captures the requirements of a role

variation point's capabilities. The Variation Point Schema and the Role Schema,

described in Section 4.2.2.1 are identical; however, the Variation Point Schema will

always have a Role Variation Points Schema associated with it (denoted in the Schema-

ID using the convention of Role Variation Points Schema ID – Variation Point ID).

Some variation points will inherit other variation points, as denoted in the Inherits row.

For example, the Variation Point Schema in Figure 13 denotes that it inherits the SO-

Core variation point, Figure 12, since the SO-Core Variation Point Schema provides the

common functionality of the Self-Optimizer role. This additionally illustrates the

hierarchical nature possible in the definition of a role in the Gaia-Pl methodology.

 73

Role Schema: SelfOptimizer Schema ID: SO-Core
 Variation Point: Core
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SO1, C_SO2, C_SO3, C_SO4, C_M1, C_M2, C_M4, C_M5
 Description:

Provides the spacecraft with the functionality to optimize itself in regards to general
spacecraft functions so that it can continuously learn from the environment and
perform better within the swarm.

 Activities and Protocols:
AdjustToEnviron, CalcNewPosition, CalibrateInstr, CheckSystemStatus,
CheckEnvironStatus, CheckPowerConsump, CheckSolarCellStatus,
EvaluatePositionForGoal, MoveNewPos

 Permissions:
 Reads -
 currentAttitude // current attitude of the spacecraft
 currentGoal // current goal of the spacecraft
 currentPosition // current position of the spacecraft
 currentVelocityIncr // current velocity increment of the
 // spacecraft
 environmentStatus // current status of the detectable parts of
 // the surrounding environment
 powerConsumpLevel // current level of the spacecraft’s power
 // consumption
 riskForSystemFactor // current risk to spacecraft to see if recent
 // solar storm
 systemStatus // current status of the spacecraft
 Changes -
 environmentState // current state that the spacecraft believes
 // its surrounding environment is in
 currentPosition // current position of the spacecraft
 currentAttitude // current attitude of the spacecraft
 currentVelocityIncr // current velocity increment of the
 // spacecraft
 instrCalibValue // vector of the current calibration values
 // for the onboard instruments
 instrVector // vector of all the spacecraft’s onboard
 // instruments
 Generates -
 newEnvironStatus // new status of the detectable parts of the
 // surrounding environment
 newVelocityIncr // calculated new velocity increment for the
 // spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the spacecraft’s ability to perform its given tasks.
 Safety -
 None.

Figure 12 The Variation Points Schema for the Core Variation Point of the Self-

Optimizer Role

 74

Role Schema: SelfOptimizer Schema ID: SO-Leader
 Variation Point: Leader
 Inherits: SO-Core
 Requirements: V_SO1, V_SO2, C_SC1, C_SC2, V_L6, V_L7, V_L8, V_L11
 Parameters of Variation: P4=True
 Description:

Provides the spacecraft with the elements needed in a leader spacecraft to be able
to optimize itself in regard to its ability to manage, oversee and direct the swarm to
optimize the swarm’s ability to achieve scientific goals. Specifically, the ability for a
leader spacecraft to optimize its ability to identify asteroids of interest and share this
information.

 Activities and Protocols:
DeviseNewAsteroidIdRules, EvaluateCurrentAsteroidIdRules, ReviewAsteroidIdHis,
AcceptOptimizationInfo, AcceptOptimizationReq, RequestOptimizationInfo,
ShareOptimizationInfo

 Permissions:
 Reads -
 asteroidIdRules // current vector of rules that is used to
 // identify asteroids of interest given
 // preliminary data points on the asteroid
 asteroidPrelimData // preliminary data points of an asteroid
 asteroidId // identification number of an asteroid
 asteroidIdHistory // the history log kept of the spacecraft’s
 // identification of asteroids of interest
 optimizationInfoRec // message to received after requesting
 // for another spacecraft’s current
 // optimization information
 leaderVector // vector of nearby leader spacecraft
 // to aid in sharing optimization information
 Changes -
 asteroidIdRules // vector of rules that is used to identify
 // asteroids of interest given preliminary
 // data points on the asteroid
 Generates -
 asteroidIdRulesValue // evaluation value of the accuracy of the
 // spacecraft’s current ability to identify
 // asteroids of interest
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to identify asteroids of interests to investigate for all
 leader spacecraft in the swarm.
 Safety -
 None.

 Figure 13 The Variation Points Schema for the Leader Variation Point of

the Self-Optimizer Role

 75

Role Schema: SelfOptimizer Schema ID: SO-Messenger
 Variation Point: Messenger
 Inherits: SO-Core
 Requirements: V_SO3, V_SO4, C_SC1, C_SC2
 Parameters of Variation: P5=True
 Description:

Provides the spacecraft with the elements needed in a messenger spacecraft to be
able to optimize itself in regards to its ability to perform the communication
necessary within the swarm so that commands and information can best be
transmitted. Specifically, the ability of the spacecraft to optimize its positioning for
communications and sharing this information with others.

 Activities and Protocols:
DeviseNewCommStrategy, EvaluateCurrentCommStrategy, EvaluateCurPosition,
ReviewCommHis, AcceptOptimizationInfo, AcceptOptimizationReq,
RequestOptimizationInfo, ShareOptimizationInfo

 Permissions:
 Reads -
 communicationStrategy // current strategy for spacecraft’s
 // communication
 communicationHist // current history log of the spacecraft’s
 // past communication sessions
 optimizationInfoRec // message to received after requesting
 // for another spacecraft’s current
 // optimization information
 messengerVector // vector of nearby messenger spacecraft
 // to aid in sharing optimization information
 Changes -
 communicationStrategy // current strategy for spacecraft’s
 // communication
 Generates -
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 communicationStratVal // evaluation value of the accuracy of the
 // spacecraft’s current ability to
 // communicate with the subswarm
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to communicate for all messenger spacecraft in the
 swarm.
 Safety -
 None.

Figure 14 The Variation Points Schema for the Messenger Variation Point of the

Self-Optimizer Role

 76

Role Schema: SelfOptimizer Schema ID: SO-Worker
 Variation Point: Worker
 Inherits: SO-Core
 Requirements: V_SO5, V_SO6, C_SC1, C_SC2
 Parameters of Variation: P6=True
 Description:

The elements needed in a worker spacecraft to be able to optimize itself in regards
to its ability to best optimize its ability to achieve its own scientific goals.

 Activities and Protocols:
DeviseNewSciExplorStrategy, EvaluateCurrentSciExplorStrategy,
EvaluateCurPosition, ReviewSciExplorHis, AcceptOptimizationInfo,
AcceptOptimizationReq, RequestOptimizationInfo, ShareOptimizationInfo

 Permissions:
 Reads -
 optimizationInfoRec // message to received after requesting
 // for another spacecraft’s current
 // optimization information
 sciExplorationStrategy // current strategy for spacecraft’s
 // science exploration using its specialized
 // onboard equipment
 sciExplorationRules // current rules for the spacecraft to abide
 // by in its scientific exploration
 sciExplorationHist // current history log of the spacecraft’s
 // past science exploration of asteroids
 workerType // the type of worker spacecraft (i.e., based
 // on its specialized onboard equipment
 workerVector // vector of nearby worker spacecraft with
 // the same onboard equipment
 scienceGoal // current scientific goal pursued by the
 // spacecraft
 Changes -
 sciExplorationStrategy // strategy for spacecraft’s science
 // exploration using its specialized onboard
 // equipment
 Generates -
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 sciExplorationStratVal // evaluation value of the accuracy of the
 // spacecraft’s current ability to
 // achieve its scientific goals
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to achieve scientific goals for all similar worker spacecraft
 in the swarm.
 Safety -
 None.

Figure 15 The Variation Points Schema for the Worker Variation Point of the Self-

Optimizer Role

 77

4.2.2.3 Documenting the Roles and Variation Points in Gaia-PL

During the initial development of a multi-agent system product line (MAS-PL)

(the product-line domain engineering phase of the Family-Oriented Abstraction,

Specification and Translation (FAST) product-line methodology [88]), the focus must be

primarily on identifying the overall requirements specifications of the system. It is later

(during the product-line application engineering phase of FAST) that actual members of

the distributed system can be instantiated with some or all of the requirements established

earlier. We consider those initial requirement specifications in the Role Variation Points

Schema and the Variation Point Schema. Note that, the Role Schema is not discussed

here since its documentation follows that of Gaia.

To capture the requirements specifications of the roles and variation points of a

MAS-PL and document them in the two schemas, we use the following procedure:

1. Identify the roles within the system as discussed in Section 4.2.1. Each role

will constitute a new Role Variation Points Schema to be created. If the role

has no identified variation points (see Step 3), then simply create a new

Role Schema and follow Steps 4a – 4c).

2. For each role, provide the role's name, a unique identification, a listing of

the associated parameters of variation, a brief description of the role and the

variation points binding time in the appropriate fields of the Role Variation

Points Schema. In Gaia-PL we follow and advocate the naming and

numbering scheme of Schetter, Campbell and Surka from [73] as shown for

the for the Self-Optimizer role depicted in Figure 11.

3. For each role, identify and define the differing variation points that the role

can adopt during all envisioned execution scenarios of the system as

described in Section 4.2.1. For each variation point, fill in the Variation

 78

Points section of the Role Variation Points Schema by including the name,

a brief description of the variation point and a reference identification

number to the Role Variation Point Schema that gives the detailed

requirements of the variation point (see Step 4a).

4. For each identified variation point (Step 3), create a new Variation Point

Schema. For each Variation Point Schema:

a. Document the name of the role to which the variation point

corresponds as well as the name of the variation points in the

appropriate sections of the Variation Point Schema. Indicate the

variation point identification tag (corresponding to the variation point

identification in Step 3) in the appropriate field in the Role Variation

Points Schema. Further, provide the identification tags of the

associated product-line requirements and parameters of variation as

well as an identification tag to any Variation Point Schema(s) or Role

Schema that the variation point inherits.

b. Identify the protocols, activities, permissions and responsibilities that

are particular to only that variation point. That is, define the protocols,

activities, permissions and responsibilities that are not found in any of

the variation points.

c. Document and define the identified protocols, activities, permissions

and responsibilities in the appropriate sections of the Role Variation

Point. (Note, in accordance with the Gaia conventions, activities are

distinguished from protocols by being underlined in Gaia-PL).

These steps result in a set of Role Variation Points Schemas that have an

associated set of Role Variation Point Schemas. Additionally, these steps conform to the

domain engineering phase of software product-line development in that they define the

 79

MAS-PL’s requirements, design, architecture and other software engineering assets that

pertain to all of the agents, rather than to just a single type of agent [88].

Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 illustrated the Role

Variation Point Schema and the Variation Points Schema for the Self-Optimizer role of

the PAM case study used in this dissertation. The entire PAM case study developed and

documented a total of 11 Role Variation Points Schemas and 39 Variation Points

Schemas that can be found in Appendix A. To further illustrate the Gaia-PL approach to

designing and documenting the requirements specifications of a MAS-PL in the Role

Variation Points Schema and the Variation Points Schema, we provide additional

examples to illustrate some minor differences in the roles and variation points discovered

in the PAM case study. Figure 16 shows a portion of the full Feature Model of the PAM

case study from Figure 9 that describes the Self-Protector role. (Note that the Self-

Protector role additionally includes functionality to prevent collisions that is not

Figure 16 A Portion of the PAM Feature Model to Illustrate Hierarchical Role

Variation Points Schemas

 80

discussed here or shown in Figure 16). Further analysis of the requirements for this role

and feature revealed two additional subroles of the Self-Protector role were required: a

SolarStormWarner role and a SolarStormProtector role. Additionally, the

SolarStormWarner role had three associated variation points.

 To document the requirements specifications for these roles while maintaining the

structure of the Feature Model, the Role Variation Points Schema for the Self-Protector

role was defined with variation points for the SolarStormWarner and

SolarStormProtector roles, shown in Figure 17. Note that these are required roles (i.e.,

variation points) according to the Feature Model. The identification tag given for the

roles, SSW and SSP respectively, identify the Role Variation Points Schema and

Variation Point Schema for the SolarStormWarner and SolarStormProtector roles. The

SolarStormWarner Role Variation Points Schema, shown in Figure 18, then lists the

possible variation points (Figure 19, Figure 20 and Figure 21) for the role similar to the

Self-Optimizer role example shown in Figure 11 and described above. The

SolarStormProtector role (Figure 22), however, does not contain any variation points

(i.e., the functionality listed will be identical for all agents with the SolarStormProtector

role) and, thus, defines the role’s functionality only in a Role Schema similar to the

Navigator role example shown in Figure 10 and described above.

This situation encountered in the PAM case study illustrates the need for the

ability of a software engineer to define a role’s requirements specifications hierarchically,

a feature of Gaia-PL not possible in Gaia. Here, the ability to define the Self-Protector

role hierarchically allows the requirements specifications to more accurately reflect the

MAS-PL’s Feature Model and avoid potential confusion amongst the relationship(s) of

the roles, variation points and requirements of a complex system.

 81

Role Variation Points Schema: SelfProtector Schemata ID: SP

 Parameters of Variation: N/A
 Description:

At the swarm-level, the collection of these roles within all the spacecraft aid in
autonomously maintaining the system’s scientific operations while enduring solar
storms, spacecraft collisions, etc.

 Variation Points:
 SolarStormWarner:

Detects solar storms through monitoring the solar disc and
being able to receive warning messages from mission control
of an impending solar storm. After detecting an impending
solar storm, it measures solar storm risk to determine the best
course of action for the swarm. [SSW]

 SolarStormProtector:

Protects the spacecraft from the solar radiation present during
solar storms by using the solar sail as a shield, powering off
systems and/or moving to a better position. [SSP]

 Binding Time:
 The binding time to decide which variation point(s) a spacecraft has is at design time,

Figure 17 An Excerpt of the Role Variation Points Schema

for the Self-Protector Role

Role Variation Points Schema: SolarStormWarner Schemata ID: SSW

 Parameters of Variation: P7, P8
 Description:

Detects solar storms through monitoring the solar disc and being able to receive
warning messages from mission control of an impending solar storm.

 Variation Points:
 Passive:

The spacecraft does not have the ability to constantly monitor the
solar disc to watch for solar storms but can warn other spacecraft
after itself receiving a warning message. [SSW-Passive]

 Warm-Spare:

The spacecraft has the ability to constantly monitor the solar disc to
watch for solar storms and receive messages from mission control
but is acting in a backup/redundant capacity. [SSW-Warm]

 Active:

The spacecraft is tasked to constantly monitor the solar disc and
receive warning messages from mission control so that it can warn
other spacecraft of an impending solar storm. [SSW-Active]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design time,
however, the spacecraft may switch is operating variation point (e.g., from Warm-
Spare to Active) at runtime. All spacecraft shall have the Passive variation point as a
commonality. Spacecraft with the Warm-Spare variation point shall also include all
functionality of Passive.

Figure 18 An Excerpt of the Role Variation Points Schema for the

SolarStormWarner Role

 82

Role Schema: SolarStormWarner Schema ID: SSW-Passive
 Variation Point: Passive
 Inherits: SP-Core
 Parameters of Variation: P7=Passive; P8=False
 Requirements: C_G1, C_SH4, C_SP5, C_SP8, V_SP1, V_SP2
 Description:

Receives warnings from other spacecraft about impending solar storms and
calculates the risk factor to itself from solar radiation damage. Notifies other nearby
spacecraft of the impending solar storm.

 Activities and Protocols:
CalculateStormRisk, UpgradeToWarm, AcceptUpgrade, AcceptWarnMsg,
RecieveHeartbeat, ReplyHeartBeat, SendSolarStormWarnMsg

 Permissions:
 Reads -
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 curScienceGoalFactor // current spacecraft scientific goal factor
 subswarmVector // vector of nearby spacecraft to warn
 supplied stormType // type of storm supplied by warning
 supplied stormIntensity // storm intensity supplied by warning
 supplied stormVector // storm vector supplied by warning
 Changes -
 riskForSystemFactor // current risk to spacecraft
 Generates -
 stormRiskValue // new value of the risk to the spacecraft of
 // the solar storm
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to satisfy scientific goals while minimizing the risk factor.
 Safety -
 Prevent other spacecraft from being damaged by notifying others.

Figure 19 The Variation Points Schema for the Passive Variation Point of the

SolarStormWarner Role

 83

Role Schema: SolarStormWarner Schema ID: SSW-Warm
 Variation Point: Warm-Spare
 Inherits: SSW-Passive
 Parameters of Variation: P7=Warm-Spare; P8=False
 Requirements: V_SP1, V_SP2
 Description:

Acts as a redundant backup to those spacecraft that are actively monitoring the
solar disc and warning other spacecraft of impending solar storms that may
damage their onboard equipment. With actively monitoring spacecraft, verifies
measurements and other solar storm measurements.

 Activities and Protocols:
CalculateStormDataAccuracy, CompareVerifyStromData, DetectStormData,
DowngradeToPassive, ObserveSolarDisc, UpgradeToActive, AcceptStormData,
AcceptDowngrade, AcceptUpgrade, SendHeartbeat, SendStormData,
VoteStormDataAccuracy

 Permissions:

 Reads -
 supplied prelimStormType // preliminary type of storm supplied by
 // active spacecraft to be verified
 supplied prelimstormIntensity // preliminary intensity of storm supplied by
 // active spacecraft to be verified
 supplied prelimstormVector // preliminary storm vector supplied by
 // active spacecraft to be verified
 Changes -
 stormDataAccuracyValue // current value of the accuracy of the
 // supplied data compared to detected data
 stormRiskValue // current risk value of the storm to the
 // spacecraft
 Generates -
 detectedStormType // type of storm as detected
 detectedStormIntensity // intensity of the storm as detected
 detectedStormVector // storm vector as detected
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will be able to maintain
 heartbeat with other spacecraft monitoring the solar disc.
 Safety -
 Prevent dissemination of false solar storm warnings.

Figure 20 The Variation Points Schema for the Warm-Spare Variation Point of the

SolarStormWarner Role

 84

Role Schema: SolarStormWarner Schema ID: SSW-Active
 Variation Point: Active
 Inherits: SSW-Warm
 Parameters of Variation: P7=Active; P8=True
 Requirements: C_M9, V_SP1, V_SP2
 Description:

Continuously monitors the solar disc for the signs of an impending solar storm
whose solar radiation may damage the swarm’s spacecraft. Upon detecting a solar
storm, it seeks to verify the data and then proceeds to warn the swarm’s spacecraft.
Also able to receive warning messages from mission control of an impending solar
storm.

 Activities and Protocols:
CompareMissionControlData, DowngradeToWarm, AcceptDowngrade,
AcceptMissionControlWarn, AcceptStormDataVote, InitiateStormDataVote,
InitiateStromWarning

 Permissions:
 Reads -
 detectedStormType // type of storm as detected
 detectedStormIntensity // intensity of the storm as detected
 detectedStormVector // storm vector as detected
 supplied MCStormType // type of storm supplied by mission control
 supplied MCStormIntensity // storm intensity supplied by mission
 // control
 supplied MCstormVector // storm vector supplied by mission control
 Changes -
 stormRiskValue // new value of the risk to the spacecraft of
 // the solar storm
 Generates -
 riskForSystemFactor // current risk to spacecraft
 stromWarningConfidence // confidence in the warning provided by
 // mission control
 voteConfidence // confidence in the verification of detected
 // storm data by other spacecraft
 warningMessage // warning message to be sent to other
 // spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 establish a communication connection with mission control.
 Safety -
 Initiate warnings to spacecraft of an impending solar storm.

Figure 21 The Variation Points Schema for the Active Variation Point of the

SolarStormWarner Role

 85

Role Schema: SolarStormProtector Schema ID: SSP
 Variation Point: SolarStormProtector
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SP5, C_SP6, C_SP7
 Description:

Provides the spacecraft with the functionality to autonomously protect itself from the
affects of solar radiation during a solar storm.

 Activities and Protocols:
CheckSolarSailStatus, DeploySolarSailAsShield, EvaluateRiskToGoal,
PowerDownSubsystems, PowerUpSubsystems

 Permissions:
 Reads -
 curScienceGoalFactor // current spacecraft scientific goal factor
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 solarSailStatus // status of the solar sail
 detectedStormType // type of storm as detected
 detectedStormIntensity // intensity of the storm as detected
 detectedStormVector // storm vector as detected
 subsystemsList // vector list of the spacecraft’s subsystems
 Changes -
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 subsystemsStatus // list of the statuses of the spacecraft’s
 // subsystems
 Generates -
 riskForSystemFactor // current risk to spacecraft
 riskToGoalFactor // calculated value of the current risk factor
 // to the advantage of pursuing scientific
 // exploration
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually take the
 steps needed to prevent radiation damage from a solar storm.
 Safety -
 Prevent the solar radiation damage to the spacecraft possible during a solar
 storm.

Figure 22 The Variation Points Schema for the SolarStormProtector Variation

Point of the Self-Protector Role

 86

The Analysis and Design Phase of Gaia-PL takes the requirements documented in

the Requirements Documentation Phase and develops and documents the multi-agent

system product line’s (MAS-PL) requirements specifications. Requirements

specifications are documented in three schemas: The Role Schema, The Role Variation

Points Schema and The Variation Point Schema. These schemas serve as a requirements

specification pattern in which requirements can be defined and documented.

This section describes the development and documentation of the roles and

variation points for the Prospecting Asteroid Mission (PAM) from the requirements

discussed in the previous section and documented in the Commonality and Variability

Analysis in Appendix A. Note that the complete set of schemas documenting PAM

mission’s requirements specifications can be found in Appendix D. In this section, we

only show a small set of the schemas to illustrate Gaia-PL.

4.2.3 Detailed Design Phase

The Detailed Design Phase of Gaia-PL integrates the application engineering

phase of the Weiss and Lai’s Family-Oriented Abstraction, Specification and Translation

(FAST) product-line methodology [88] with Gaia’s Detailed Design Phase [92], [94].

The Detailed Design Phase designs and documents the agents of a multi-agent system

product line (MAS-PL) reusing the requirements specification previous developed.

This section describes the development and documentation of an agent of a MAS-

PL from the roles and variation points developed in the Analysis and Design Phase,

described in Section 4.2.2. We again illustrate this process using the Prospecting Asteroid

Mission (PAM) from the requirements specifications schemas developed in the previous

section and listed in Appendix D. Note that, since the PAM case study used in this

dissertation contains a possibility of 160 unique types of spacecraft (agents), this section

and dissertation only illustrates a small set of the possible agents to illustrate Gaia-PL.

 87

4.2.3.1 Designing and Documenting an Agent in Gaia-PL

Upon completion of the initial requirements analysis and development of multi-

agent system product line (MAS-PL), it will be necessary to utilize the derived

requirements specifications to instantiate a number of members of the system. During this

initial deployment of the agents, it is not necessary that all agents be equipped with equal

capabilities, intelligence or functionality. Since the prior steps have specified all the

possible variation points of the roles in the schemas, we instantiate a new MAS-PL

member (i.e., agent) to be added to the MAS-PL system by specifying each new member

to be deployed in the Role Deployment Schema. Example Role Deployment Schemas for

different configurations of the SolarStormWarner role are shown in Figure 24 and Figure

25 for PAM spacecraft with the Feature Model shown in Figure 16 and Figure 23,

respectively.

Figure 23 A Portion of the PAM Feature Model for the SolarStormWarner Role

with only the Passive Variation Point

 88

Role Deployment Schema: SolarStormWarner System ID: 2, 3, 8-10

Description:
Detects solar storms through monitoring the solar disc and being able to receive
warning messages from mission control of an impending solar storm. After detecting
an impending solar storm, it measures solar storm risk to determine the best course
of action for the swarm. This configuration of the role provides the maximum
functionality for this role to monitor, detect and warn of an impending solar storm.

Variation Points:
Passive:

The spacecraft does not have the ability to constantly monitor the solar
disc to watch for solar storms but can warn other spacecraft after itself
receiving a warning message. [SSW-Passive]

Warm-Spare:

The spacecraft has the ability to constantly monitor the solar disc to watch
for solar storms and receive messages from mission control but is acting in
a backup/redundant capacity. [SSW-Warm]

Active:

The spacecraft is tasked to constantly monitor the solar disc and receive
warning messages from mission control so that it can warn other
spacecraft of an impending solar storm. [SSW-Active]

Figure 24 Role Deployment Schema for a Configuration of the SolarStormWarner

Role

Role Deployment Schema: SolarStormWarner System ID: 1, 4-7

Description:
Detects solar storms through monitoring the solar disc and being able to receive
warning messages from mission control of an impending solar storm. After detecting
an impending solar storm, it measures solar storm risk to determine the best course
of action for the swarm. This configuration of the role provides the minimum
functionality for this role to only warm of an impending solar storm.

Variation Points:
Passive:

The spacecraft does not have the ability to constantly monitor
the solar disc to watch for solar storms but can warn other
spacecraft after itself receiving a warning message. [SSW-
Passive]

Figure 25 Role Deployment Schema for a Configuration of the SolarStormWarner

Role

 89

The process to design and document an agent of a MAS-PL in the Gaia-PL

methodology is as follows:

1. Identify the roles that will constitute the agent to be deployed.

2. For each role identified, create a new Role Deployment Schema and:

a. Provide the role's name, unique system(s) identification and a brief

description of the role specific to this deployment in the appropriate

fields of the Role Deployment Schema. The agent(s) unique

identification, to be placed in the System ID field, identifies the

specific member(s) of the distributed system to be deployed that has

the role configuration described in the particular Role Deployment

Schema. For example, if agents with identification numbers 1, 4-7 are

to employ the SolarStormWarner role in which only variation point

Passive is possible (Figure 25), we denote this in the System(s) ID

field of the Role Deployment Schema. Similarly, if agents with

identification numbers 2, 3, 8-10 are to employ the SolarStormWarner

role in which the variation points Passive, Warm-Spare and Active are

possible (Figure 24), we denote their identification numbers in the

System(s) ID field of the Role Deployment Schema. This avoids

repetitive manual overhead when designing new members to be

deployed in the distributed system and supports traceability,

organization and management activities.

b. Identify all possible variation points that the role can assume during its

lifetime. The set of possible variation points was previously

established when the original Role Variation Points Schema was

developed for the particular role.

 90

c. Identify the variation point in which the role will be deployed and

specify it in the Role Deployment Schema by underlining it. This

variation point represents the default variation point at which the agent

will most commonly operate during normal operations. For example,

Figure 25 denotes the agents that have the SolarStormWarner role in

which the variation points Passive, Warm-Spare and Active are

possible but where the agent is initially configured to operate at the

Warm-Spare variation point level.

These steps in Gaia-PL are repeated for all agents that are to be deployed in the MAS-PL.

These steps produce a set of completed Role Deployment Schemas describing how

different agents of the MAS-PL are to be deployed and how they are initially configured.

4.2.3.2 The Agent Model

We illustrate how an Agent Model, expanded from the Agent Model of Gaia [6],

can be derived in this section. The Agent Model graphically illustrates the assignment of

roles to agents as well as variation points to roles, similar to that of the Feature Model.

The cardinality relationship between agent and role is indicated and all possible variation

points are listed for each role. At runtime, the designer annotates the actual cardinality

and the specific possible variation points of an agent instance (typically a one-to-one

relationship.

In Gaia, the Agent Model defines for each agent the roles that will map to it.

Gaia-PL extends this model to additionally map for each role the variation points that

may map to it. For example, the partial Agent Model shown in Figure 26 illustrates the

Self-Optimizer, Navigator and SolarStormWarner roles used throughout this chapter and

their associated variation points. The Agent Model in Gaia-PL will likely be similar to

that of the Feature Model and may not be necessary.

 91

Figure 26 An Excerpt of the Agent Model for the PAM MAS-PL

4.2.4 Summary

The steps of Gaia-PL described in Section 4.2.1 and Section 4.2.2 conform to the

domain engineering phase of Weiss and Lai’s Family-Oriented Abstraction, Specification

and Translation (FAST) product-line methodology [88] to document the multi-agent

system product line’s (MAS-PL) requirements and requirements specifications. The steps

of Gaia-PL described in Sections 4.2.3 conform to FAST’s application engineering phase

and produce the documentation shown in the detailed design phase shown in Figure 4.

Documenting the requirements specifications in Gaia-PL’s schemas allows easy

reuse when instantiating actual agents of a MAS-PL. We detail how the documentation

created in this section can easily be reused during both initial development and system

evolution using the PAM case study in the next section.

4.3 Requirements Specifications Reuse in the Gaia- PL

Methodology

Requirements specification reuse is using previously defined requirements

specifications from an earlier system and applying them to a new, slightly different

system. Increasing the amount of requirements specification reuse for any given product

may reduce the production time and cost of the software system [12].

 92

Requirements specification reuse for multi-agent system product lines (MAS-PL)

is simplified in our Gaia-PL methodology by our use of variation points to handle the

product-line variabilities in similar systems. The Gaia-PL methodology takes advantage

of how the requirements specifications for an agent's role were partitioned and

documented in the Role Variation Points Schema and Variation Point Schema based on

their variation points.

This section describes how the requirements specifications documentation

detailed in Section 4.2 can be reused during the initial deployment of a MAS-PL as well

as during its evolution (e.g., the inclusion of new agents, roles or variation points to the

MAS-PL).

4.3.1 Reuse During Initial System Development

The members of a distributed system (including a multi-agent system product line

(MAS-PL) often will be heterogeneous in their functional capabilities yet mostly similar

in structure. For example, some of the Prospecting Asteroid Mission (PAM) spacecraft

may have additional scientific imaging software while others may have additional cluster

planning and reconfiguration software.

Heterogeneity may also arise when resources (such as weight limits, memory size,

etc.) are limited and different members of a distributed system must assume different

roles. In the case of MAS-PLs, agents also may be heterogeneous in terms of their

functional capabilities, intelligence levels or other possible variation points (see Section

4.1.2.3). For example, depending on the capability level (e.g., passive, warm-spare or

active) of those spacecraft with the SolarStormWarner role (see Section 4.2.2.3) among

agents, not all agents must support all the possible variation points. That is, not all agents

may be capable of monitoring, detecting and warning other spacecraft of an impending

solar storm. Rather, most spacecraft may simply be capable of relaying a received

 93

warning to other spacecraft. For this reason, initially deployed members of a MAS-PL

will likely contain a role(s) that differs amongst other members in terms of which

variation points it is capable of assuming. Several agents of the MAS-PL will have the

same role but at different levels of intelligence.

Requirements specification reuse can be exploited during the initial development

and deployment of the members of a MAS-PL in Gaia-PL using the Role Deployment

Schema, illustrated in Figure 24 and Figure 25. Rather than repeatedly defining the

requirements of a role for any given agent (as would be necessary in Gaia), the Role

Deployment Schema allows us to define the intelligence levels it can assume. This reuse

is possible because the requirements specifications for each of the levels of intelligence

were documented in the Variation Point Schemas, and because the agents of a distributed

system will be similar.

Thus, to document a particular role for several different heterogeneous members

of a distributed system we must only indicate which variation points it can assume and

give the reference number(s) to the Role Variation Point Schemas. After assigning

variation points to an instance of a role and a role to an instance of an agent, an Agent

Model can be used to illustrate an actual instance of an agent, shown in Figure 26. This

procedure was described in Section 4.2.3.1.

In the application of the Requirements Documentation and Analysis and Design

Phases, described in Sections 4.2.1 and 4.2.2, of Gaia-PL to the PAM case study the 11

Role Variation Point Schemas and 37 Variation Points Schemas (see Appendix D)

constructed from the 97 high-level requirements (35 product-line commonality

requirements and 62 product-line variability requirements) (see Appendix A, 48

parameters of variation (see Appendix B) and 47 features (see Appendix C) are able to be

reused to design and develop 160 unique PAM spacecraft (80 unique Worker spacecraft,

48 unique Leader spacecraft and 32 unique Messenger spacecraft). Thus, the reuse of the

 94

50 schemas developed in Gaia-PL’s Analysis and Design Phase were able to

accommodate the development of a wide range of PAM spacecraft. A further evaluation

of the Gaia-PL approach, compared to that of Gaia, is discussed in Section 4.4.

4.3.2 Reuse During System Evolution

Change is inevitable. Hardware failures or altered mission goals in a deployed

distributed system typically necessitate software updates to one or more members. For

example, a satellite of the constellation may have a malfunctioning planning and control

module that could motivate operators to update that particular satellite's software to erase

it and replace it with updated mission planning software. Alternatively, technology or

mission goals after the initial deployment of a distributed system routinely evolve in such

a way that future deployments of members joining the distributed system will require

additional functionality (i.e., new features requiring new requirements).

In the case of the Prospecting Asteroid Mission (PAM), although 1,000 PAM

spacecraft will be initially deployed to investigate the asteroid belt, additional spacecraft

may have to be deployed if a significant amount of spacecraft are lost due to damage or

failures (e.g., solar radiation, collisions, etc.) [71], [77], [83], [84]. The new PAM

spacecraft deployed to replace the lost spacecraft may contain additional features not

found in previously deployed microsatellites. Examples of the types of evolution

additional PAM spacecraft may undergo include improved scientific equipment, new

scientific software, new communication devices, new strategies for identifying asteroids

of interest, new functionality in existing roles, etc.

A deployed multi-agent system product line (MAS-PL) can evolve in three ways

relevant to this work: 1. new agents may be added to the system; 2. new roles with new

functionality may be created that future agents can employ; and 3. new variation points

may be added to existing roles that future agents can employ. The following subsections

 95

discuss how these types of evolution in a MAS-PL can be accommodated in the Gaia-PL

methodology.

4.3.2.1 New Agent MAS-PL Evolution in Gaia-PL

When a MAS-PL evolves, a new agent (i.e., spacecraft) may be deployed to

replace a destroyed or failing agent. If this update includes functionality previously

defined in the requirements specifications (Role Variation Points Schema and Variation

Point Schemas), it suffices to modify the Role Deployment Schema and, possibly, the

Agent Model to reflect the update.

If the evolution of the MAS-PL involves a new agent to be deployed that includes

additional functionality not previously defined in the requirements specifications (Role

Variation Points Schema and Variation Point Schemas), updates to the MAS-PL’s

requirements specifications is needed. The requirements specifications patterns detailed

in Sections 4.2.1 and 4.2.2 are extensible in that it can accommodate this kind of system

evolution by being able to include a new set of requirements while still reusing the

previously documented requirements. This situation is discussed in Section 4.3.2.2 and

Section 4.3.2.3.

4.3.2.2 New Role MAS-PL Evolution in Gaia-PL

The addition of a new role during evolution within a multi-agent system product

line (MAS-PL) is analogous to the inclusion of a role during initial system development,

as described in Section 4.2. Briefly, we create a new Role Variation Points Schema and a

Variation Point Schema(s) just as during the initial development of a MAS-PL.

Following the creation of a Role Variation Points Schema and a set of Variation Point

Schemas, the process in Gaia-PL’s Detailed Design Phase, outlined in Section 4.2.3, is

used to instantiate a new agent with the new role.

 96

Note that a new role should have new requirements and/or features associated

with it. The new requirements/features that are implemented in the functionality of a role

should additionally be represented in the Commonality and Variability Analysis (see

Section 4.2.1.1), the Parameters of Variation table (see Section 4.2.1.1) if it is a new

product-line variability requirement and the Feature Model (see Section 4.2.1.3). The

inclusion of new requirements to a MAS-PL can be handled as is traditionally done for

the evolution of a software product line. This process is described in [12], [67], [88] and

is not the focus of this research. However, the use of DECIMAL [23], [58], [59] (see

Section 4.2.1.2) in Gaia-PL may ease the inclusion of new requirements as a result of

new roles being added to the MAS-PL because of its ability to automatically verify that

the new role and new agents abide by the MAS-PL’s constraints.

4.3.2.3 New Variation Point MAS-PL Evolution in Gaia-PL

The addition of a new variation point to an existing role during multi-agent

system product line (MAS-PL) evolution, however, requires a modification to existing

Role Variation Points Schema documentation as well as the creation of a new Variation

Point Schema. To describe and illustrate the process of updating Gaia-PL’s requirements

specifications in the event that a new variation point must be added to an existing role as

a result of evolution, we use the following hypothetical situation in the Prospecting

Asteroid Mission (PAM) case study as motivation:

After the initial deployment of the PAM spacecraft, mission engineers

discover that, in addition to the Leader, Messenger and Worker types of

spacecraft already present in the PAM swarm, an additional Scout type of

spacecraft is desired to better investigate the asteroid belt. The Scout spacecraft

would be tasked with working mostly independently to quickly survey asteroids,

assess their relevance to the mission goals and decide which asteroids should be

 97

further explored by a PAM subswarm consisting of Leaders, Messengers and

Workers.

Thus, the new Scout type of PAM spacecraft will include some of the

functionality of the Leader and Worker spacecraft but will additionally include

new functionality. The inclusion of this new type of spacecraft to the PAM MAS-

PL will necessitate the updating of portions of the requirements specifications.

One such update needed is to include a new “Scout” variation point to the Self-

Optimizer role, described in Sections 4.2.2.1 and 4.2.2.3, to include the

functionality that provides the Scout spacecraft with the ability to optimize itself

in order to better satisfy its scientific goals.

To accommodate a new variation point in an existing role for the use in future

deployments of the MAS-PL, as described in the above scenario, using the Gaia-PL

methodology, the following process suffices:

1. Update the Role Variation Points Schema to which the new variation point

corresponds, and add the new variation point, along with a description and

schema reference identification, to the Variation Points section. An

example of this from the scenario described above for the Self-Optimizer

role is shown in Figure 27. Note that the original Role Variation Points

Schema for the Self-Optimizer role is given in Figure 11. Figure 27 expands

the Role Variation Points Schema, from Figure 11 to include the new Scout

variation point.

2. Create a new Variation Point Schema, shown in Figure 28 for the new

variation point giving the role's name, variation point's name and a unique

variation point identifier in the appropriate fields.

 98

Role Variation Points Schema: SelfOptimizer Schemata ID: SO

 Parameters of Variation: P4, P5, P6
 Description:

At the swarm-level, the collection of these roles within all the spacecraft aid in
autonomously and continuously improving the spacecraft’s ability to identify, explore
and communicate the information discovered while investigating asteroids. At the
spacecraft-level, these roles aid in the spacecraft to continuously learn and improve
its specialized abilities and communicate its findings with other similar spacecraft.

 Variation Points:
 Core:

The core elements of a spacecraft to be able to optimize itself in
regards to general spacecraft functions so that it can continuously
learn from the environment and perform better within the swarm.
[SO-Core]

 Leader:

The elements needed in a leader spacecraft to be able to optimize
itself in regards to its ability to best manage, oversee and direct the
swarm to optimize the swarm’s ability to achieve scientific goals.
[SO-Leader]

 Messenger:

The elements needed in a messenger spacecraft to be able to
optimize itself in regards to its ability to best perform the
communication necessary within the swarm so that commands and
information can best be transmitted. [SO-Messenger]

 Scout:

The elements needed in a scout spacecraft to be able to optimize
itself in regards to its ability to independently survey asteroids and
decide which asteroids should be further investigated by a PAM
subswarm. [SO-Scout]

 Worker:

The elements needed in a worker spacecraft to be able to optimize
itself in regards to its ability to best optimize its ability to achieve its
own scientific goals. [SO-Worker]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design
time. However, a spacecraft that may switch is operating variation point (i.e.,
P2=True or P3=True) may have this variation point alter at runtime.

Figure 27 Updated Role Variation Points Schema for the Self-Optimizer Role as a

Result of Evolution

3. Provide any variation points that the new variation point must inherit.

Additionally denote the associated requirements and parameters of variation

in the appropriate fields of the new Variation Point Schema.

4. Document the variation point indicating how the new variation point differs

from previously defined variation points in the Description section.

 99

Role Schema: SelfOptimizer Schema ID: SO-Scout
 Variation Point: Scout
 Inherits: SO-Core
 Requirements: N/A
 Parameters of Variation: N/A
 Description:

The elements needed in a scout spacecraft to be able to optimize itself in regards to
its ability to independently survey asteroids and decide which asteroids should be
further investigated by a PAM subswarm.

 Activities and Protocols:

Calculate EvaluateAsteroidStrategy, SendNewAsteroidData,

 Permissions:
 Reads -
 currentPosition // current position of the spacecraft in the
 // asteroid belt
 messengerVector // vector of nearby messenger spacecraft
 // to aid in sharing optimization information
 scienceGoal // current scientific goal pursued by the
 // spacecraft
 Changes -
 asteroidEvaluationStrategy // strategy for spacecraft’s approach
 // in surveying an asteroid
 asteroidIdRules // vector of rules that is used to identify
 // asteroids of interest given preliminary
 // data points on the asteroid
 surveyedAsteroidHistory // history log of the asteroids surveyed by
 // the scout spacecraft
 Generates -
 asteroidMap // rough map of the asteroids surveyed
 // that have yet to be further explored
 newSurveyRule // new rule devised by the role to use when
 // surveying and evaluating an asteroid
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 sciExplorationStratVal // evaluation value of the accuracy of the
 // spacecraft’s current ability to
 // achieve its scientific goals
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, the role will eventually improve its
 ability to independently survey and identify asteroid of interest that should be
 further explored by a PAM subswarm.
 Safety -
 None.

Figure 28 The New Variation Points Schema for the Scout Variation Point of the

Self-Optimizer Role as a Result of Evolution

 100

Figure 29 Excerpt of the Updated Agent Model to Reflect the Addition of the Scout

Variation Point to the Self-Optimizer Role

5. Identify the protocols, activities, permissions and responsibilities that are

particular to only that variation point. That is, define the protocols,

activities, permissions and responsibilities that are not found in any of the

lower intelligence level variation points and that are not found in any other

variation points.

6. Document and define the identified protocols, activities, permissions and

responsibilities in the appropriate sections of the Variation Point Schema.

7. Update the Agent Model(s) to reflect the inclusion of the new variation

point for the role. The new Scout variation point for Self-Optimizer role is

included in the updated Agent Model in Figure 29.

These steps will produce a new variation point for a role and the accompanying

Variation Point Schema for future versions of members of the system.

4.4 Evaluation of the Gaia-PL Methodology

This section evaluates the Gaia-PL methodology in the context of its application

to the Prospecting Asteroid Mission (PAM) case study. We also provide a comparison of

the Gaia-PL and Gaia methodologies in the context of the PAM case study and a brief

discussion of the results.

 101

4.4.1 The PAM Case Study

The application of the Gaia-PL methodology to the Prospecting Asteroid Mission

(PAM) during the Requirements Documentation Phase documented 97 high-level

product-line requirements in the Commonality and Variability Analysis (CVA), discussed

in Section 4.2.1.1 and shown in Appendix A. The 97 high-level product-line requirements

included 35 commonality requirements and 62 variability requirements. Thus, we found

that approximately one-third of the requirements of the PAM case study were in all

spacecraft regardless of its specialized role (i.e., a leader, messenger or worker designated

spacecraft). The 62 variability requirements were analyzed and grouped into 48

parameters of variation, discussed in Section 4.2.1.1 and shown in Appendix B. Further,

the product-line requirements of the PAM case study were partitioned into 47 features,

discussed in Section 4.2.1.3 and shown in Appendix C.

In the Analysis and Design Phase of Gaia-PL, we identified 13 unique roles for

the PAM case study that were documented in 2 Role Schemas, 11 Role Variation Points

Schemas and 39 Variation Point Schemas, as discussed in Section 4.2.2 and shown in

Appendix D. These requirements specifications schemas can be used to design and

develop 160 unique PAM spacecraft (80 unique Worker spacecraft, 48 unique Leader

spacecraft and 32 unique Messenger spacecraft). Thus, the reuse of the 52 schemas

developed in Gaia-PL’s Analysis and Design Phase was able to accommodate the

development of a wide range of PAM spacecraft.

To measure the impact and ability of the inclusion of variation points into the

roles of an agent in a MAS, this evaluation measured the number of variation points

defined for each role and the number of parameters of variation and requirements

implemented in each variation point. These measurements provide an insight into the

extent of the variable behavior of an agent that can be defined for a role and partly

 102

illustrates the advantage of the inclusion of product-line engineering into the

development of a MAS in Gaia-PL.

The Role Variation Points Schemas developed for the PAM case study during the

Analysis and Design Phase of Gaia-PL had an average of 3.9 variation points where the

minimum number of variation points identified for a role was 2 (e.g., the LeaderPlanner

role, see Appendix D, page 264), and the maximum number of variation points identified

for a role was 10 (e.g., the Worker role, see Appendix D, page 271). Additionally, the

Role Variation Points Schemas represented an average of 4.8 of the parameters of

variation (see Appendix B) where the minimum number of parameters of variation

identified for a role was 1 (e.g., the WorkerCooperation role, see Appendix D, page 282),

and the maximum number of parameters of variation identified for a role was 21 (e.g., the

Worker role, see Appendix D, page 271).

Further, the Role Variation Points Schemas had implemented an average of 4.1

high-level requirements from the CVA where the minimum number of requirements

implemented in a variation point was 1 (e.g., the NIRSpec variation point of the Worker

role, see Appendix D, page 274), and the maximum number of requirements

implemented in a variation point was 14 (e.g., the Core variation point of the Self-

Coordinator role, see Appendix D, page 255). Note that many of the high-level

requirements were implemented in several roles (i.e., were cross-cutting in more than one

role). For example, requirement C_M4 “Every spacecraft shall be able to know its current

position” is needed in multiple roles.

Of the 11 Role Variation Points Schemas identified for the PAM case study, 8

contained a variation point that must be included if the role is included in the agent. For

example, the Messenger role (i.e., a role that not every agent will contain, see the Feature

Mode in Figure 9), shown in Appendix D, page 288, contains two variation points one of

which is required (i.e., the “Core” variation point). For the Messenger role, the “Core”

 103

variation point captures 6 of the 8 requirements that are associated with the functionality

possible in the Messenger role. That is, 6 of the 8 of the requirements were common to all

agents containing the Messenger role while only 2 of the 8 requirements were variable

functionality.

The SolarStormWarner role, discussed (see Section 4.2.2.3) similarly captured a

large portion of the role’s common requirements in its required variation point. However,

unlike the Messenger role, the SolarStormWarner role (see Appendix D, page 296) is

required for all PAM spacecraft (see the Feature Mode in Figure 9). Nevertheless, the

common variation point for the SolarStormWarner role captured 54.5% of the common

requirements in its Variation Point Schema (see Appendix D, page 297).

Among the 8 Role Variation Points Schemas of the PAM case study that

contained a variation point that must be included if the role is included in the agent, an

average of 41% of the requirements were found to be common to the required variation

point of the role. The minimum amount of common requirements for a role was 13% for

the Worker role (see Appendix D, page 271) and the maximum was 75% for the

Messenger role, described above. Thus, using the Role Variation Points Schema in Gaia-

PL captures, at least in the case of the PAM case study, a portion of the requirements that

are common to all agents with a particular role and can be reused to develop agents with

the any allowable combination of the role’s variation points. Further, the ability to

separately capture the common requirements of a role in a variation point avoids the need

to have the common requirements repeated in several role schemas for each of the

variation points, as would be needed using the Gaia methodology (discussed in the next

section).

The design and documentation of the 39 Role Variation Point Schemas for the

PAM case study took approximately 30 minutes each for a total of 19.5 hours. Thus, for

each requirement implemented in a Role Variation Point Schema, it was found in this

 104

case study that an average of 7.3 minutes was needed to document the requirement’s

specification in a Variation Point Schema.

4.4.2 Comparison to the Gaia Methodology

The contribution of the Gaia-PL methodology detailed in this dissertation is to

provide a way to develop software engineering assets that can be readily reused to build

the agents of a multi-agent system product line (MAS-PL). As mentioned in the previous

section, the application of Gaia-PL to the Prospecting Asteroid Mission (PAM) case

study used in this dissertation yielded 39 Variation Point Schemas that can be reused to

build 160 unique agents (i.e., spacecraft) of the PAM swarm.

The mechanism to provide the reusable assets in the Gaia-PL methodology

centers on the identification and separation of the commonalities of the agents and the

agent’s roles and the refinement of the variabilities of the agents and the agent’s roles in

separate software engineering artifacts. The ability to separately capture the common

requirements of a role in a variation point avoids the need to have the common

requirements repeated in several role schemas for each of the variation points. In this

section, we discuss this advantage of Gaia-PL by a comparison to the application of Gaia

to the PAM case study.

The application of the Gaia methodology from the requirements for the PAM case

study listed in the Commonality and Variability Analysis (CVA) given in Appendix A,

yields 48 (a 19% increase compared to Gaia-PL) of Gaia’s Role Schemas (similar to

Gaia-PL’s Variation Point Schemas) to document the same requirements specifications.

To accommodate the requirements of the PAM case study, Gaia needs to implement a

role for each of our variation points where the variable variation points (i.e., non-

required) variation points additionally including the required variation point functionality.

 105

For example, in the SolarStormWarner role, described in Section 4.2.2.3 and

given in Appendix D, page 296, a new Role Schema in Gaia has to be created for the

Passive, Warm-Spare and Active variation points. In addition, the new roles for the

Warm-Spare and Active roles also has to include the functionality (i.e., requirements) of

the Passive variation point. Thus, the Gaia Role Schema for the Warm-Spare and Active

SolarStromWarner roles combine and repeat the functionality of the Passive variation

point.

Although this approach using Gaia accommodates the functionality of the PAM

case study, it does not clearly document an agent’s ability to change from one set of

functionality of a role to another (e.g., from the Warm-Spare to the Active functionality

of the SolarStormWarner role). Rather, Gaia has to combine the functionality from the

variation points into a single role. Yet, this does not keep the modularity of the differing

types of functionality in a role as in Gaia-PL and may confuse developers during coding.

Secondly, the non-hierarchical nature of Gaia is not able to provide any linking

relationships between related roles (e.g., from the Warm-Spare to the Passive

functionality of the SolarStormWarner role) as in Gaia-PL. Lastly, some of the

functionality will be unnecessarily repeated (e.g., the Passive functionality also must be

included in the Warm-Spare and Active roles of a SolarStormWarner).

Although the application of the Gaia methodology to the PAM case study only

increases the number of schemas needed by approximately 19% compared to our Gaia-

PL approach, the number of redundantly implemented requirements further illustrates the

advantage of Gaia-PL. As discussed in Section 4.4.1, we found that an average of 41% of

the requirements implemented in the required variation points of 8 of the 11 Role

Variation Points schemas were common to all variation points of the role. However, since

the redundant requirements need to be documented for each variation point to create a

new role in Gaia, the set of Role Schemas has a 66.5% rate of requirements that have

 106

already be documented in another role. Of these 8 roles identified in Gaia-PL (with 35

variation points), Gaia created 41 roles that contained 33 redundant requirements. Due to

the high number of redundant requirements, the 33 Role Schemas created in Gaia

documented 222 requirements (of which 66.5% or 147 requirements are redundant).

Assuming that it continues to take an average of 7.3 minutes per requirements to

document in a requirements specification, the Gaia approach incurred an additional 17.8

hours to derive and document compared to the Gaia-PL approach discussed in this

chapter.

4.4.3 Discussion

The evaluation of our Gaia-PL methodology using the Prospecting Asteroid

Mission (PAM) case study measures Gaia-PL’s ability to capture the common parts of a

multi-agent system product line (MAS-PL) so that they can be reused along with the

variable parts to design and develop an agents. It was shown in the previous section that

compared to Gaia, an Agent-Oriented Software Engineering (AOSE) methodology that

does not explicitly partition the common and variable parts of a MAS-PL, Gaia-PL’s

ability to reuse the common parts of an agent’s role reduces the work and time required to

design and develop an agent. However, the evaluation of our Gaia-PL methodology does

not come without caveats. In this section, we discuss some of the caveats of our

evaluation.

The PAM case study used in this dissertation had requirements that fit nicely into

adopting a software product-line engineering approach. The requirements gathered for

the PAM case study readily fit into a Commonality and Variability Analysis (CVA)

because the common and variable functionalities of the spacecraft were clear. A

characteristic of the PAM case study aiding its adoption into a product line approach was

its basis on the Autonomous Nano-Technology Swarm (ANTS) concepts. The

 107

requirement that all PAM spacecraft implement the concepts of the ANTS mission

provided a natural mechanism to define the commonalities. In addition, the variability

requirements of the PAM mission partly focused on the differing functionality of the

different types of spacecraft (i.e., Leader, Messenger or Worker). Further, there was

approximately a 2:1 ratio of variable requirements to commonality requirements. These

factors certainly contributed to the clear advantage that Gaia-PL compared to Gaia.

However, for MAS-PL’s with less variability and mostly common functionality among a

role, or for MAS-PL’s in which no variation points for a role can be identified, Gaia-PL

will not provide such clear advantages.

In the case where a MAS-PL has little variability, although Gaia-PL will not

necessarily provide the advantage in reuse described in Section 4.3, it will not incur

enough overhead to be a disadvantageous approach compared to Gaia. Unlike Gaia, Gaia-

PL does require the documentation of variation points (if any) in a Role Variation Points

Schema which will incur additional development time. Yet, for MAS-PL’s that will have

few variation points (and thus few variabilities), the Role Variation Points needed will be

few and require very little development time. Thus, the Gaia-PL approach would still

provide some advantage for those roles which have variation points while not incurring a

large overhead.

This evaluation did not consider design alternatives in our application of Gaia-PL

to the PAM case study. That is, we did not design and evaluate different ways of defining

a role’s variation points nor did we design and evaluate different ways of defining the

roles possible in an agent. Thus, the results obtained from our evaluation might differ if

we had used a different design alternative for the PAM case study.

Although the evaluation of Gaia-PL was performed on a relatively large MAS-PL

case study, the results only report the performance of Gaia-PL on a single case study. The

application of Gaia-PL on different MAS-PL application, in particular applications with a

 108

different profile of variable functionality, will yield different results. Thus, the evaluation

reported in this dissertation should only serve as a proof-of-concept measurement rather

than the results that should be expected in its use on other MAS-PL applications.

Despite these caveats, the evaluation of Gaia-PL indicates its advantages in

designing, developing and documenting MAS-PLs that have some degree of variability.

Gaia-PL’s ability to hierarchically define the roles of an agent, capture the common and

variable functionality of an agent and reuse the common functionality of a role to design

and develop a wide-range of agents of the MAS-PL recommends its use. In particular, the

use of Gaia-PL as an extension of Gaia allows the software developer to take advantage

of the reuse potential in Gaia-PL along with the other models, abstractions and analysis

tools of Gaia to provide the mechanisms to efficiently design and develop a MAS-PL.

4.5 Summary

This chapter detailed the design and development of a multi-agent system product

line (MAS-PL) using our Gaia-PL methodology. The Gaia-PL methodology produces

reusable software engineering assets so that building systems of the MAS-PL can be done

efficiently and with a high-degree of reuse. Software product-line engineering concepts

were integrated into agent-oriented software engineering (AOSE) by identifying, defining

and using variation points to build a MAS-PL. We illustrated the documentation of

MAS-PL requirements in a Commonality and Variability Analysis and a Parameters of

Variation table and detailed the documentation of requirement specifications in Gaia-

PL’s schemas. These schemas partitioned the commonality requirements and variability

requirements into separate schemas for specific roles using a Feature Model as a guide.

Gaia-PL’s schemas were then shown to be reused to build specific types of agents for a

MAS-PL.

 109

This chapter discussed and illustrated the reuse of the requirements specifications

during initial system development of a MAS-PL as well as during system evolution. To

highlight the advantages of Gaia-PL, we differentiated our methodology from previous

work by illustrating Gaia-PL’s ability to capture reuse and avoid the redundant work and

increased development cost (i.e., additional time) needed to develop the agents required

as done in previous MAS work. Finally, an evaluation of our Gaia-PL methodology on

the PAM case study illustrated the development cost savings and other advantages of our

approach.

For safety-critical MAS-PLs, the Gaia-PL methodology described in this chapter

provides no mechanisms to ensure that the MAS-PL being built is indeed safe. Chapter 5

builds upon the Gaia-PL methodology by detailing safety analysis techniques and tools

for the analysis of safety-critical MAS-PLs in the context of Gaia-PL.

 110

CHAPTER 5. SAFETY ANALYSIS FOR SAFETY-CRITICAL

MULTI-AGENT SYSTEM PRODUCT LINES 3

Chapter 4 detailed our Agent-Oriented Software Engineering (AOSE)

methodology, Gaia-PL (Gaia – Product Line) for developing reusable requirement

specifications for a multi-agent system product line (MAS-PL) and then reusing them for

initial system development as well as during evolution. This chapter focuses on the

development of reusable safety analysis artifacts for safety-critical MAS-PL in the

context of our Gaia-PL methodology. The goal is to develop reusable safety analysis

artifacts for a MAS-PL. This chapter describes the product-line safety analysis techniques

and tools we have developed and adapted for the use during the design and development

of safety-critical MAS-PLs. The safety analysis techniques and tools described in this

chapter aim to provide some assurance that core assets defined in the domain engineering

phase are being safely reused during the application engineering phase. We again use the

Prospecting Asteroid Mission (PAM) case study, described in Chapter 3, to illustrate and

evaluate our safety analysis techniques and tools.

3 This chapter extends our previous work that has appeared in papers at 2004 High Assurance Systems

Engineering Conference (HASE’04), 2005 International Symposium on Software Reliability Engineering

(ISSRE’05), 2005 International Conference on Software Engineering’s Workshop on Software Engineering

for Large-Scale, Multi-Agent Systems (SELMAS’05), 2006 Workshop on Innovative Techniques for

Certification of Embedded Systems (ITCES’06), and Automated Software Engineering Journal, 2006 all

co-authored with Robyn R. Lutz; and 2007 International Conference on Software Engineering (ICSE’07),

co-authored with Meredith Humphrey, Lada Suvorov, Prasanna Padmanabhan and Robyn R. Lutz.

 111

5.1 Software Safety Analysis for Multi-Agent System Product

Lines

This section examines the need for safety analysis techniques and tools for multi-

agent system product lines (MAS-PL) and provides an overview of the safety analysis

techniques and tools for MAS-PLs detailed in this chapter.

5.1.1 The Need for Safety Analysis for Developing Multi-Agent

Systems

Multi-agent systems (MAS), like other software systems may be safety-critical. A

safety-critical system is a system that can directly or indirectly compromise safety by

placing a system in to a hazardous state causing the potential loss or damage of life,

property, information, mission or environment [44]. Thus, although the Prospecting

Asteroid Mission (PAM) case study used in this dissertation may not directly cause the

loss of human life, failures in the PAM spacecraft can result in the loss or damage of

property (i.e., the spacecraft), information (i.e., the data gathered on the asteroid belt)

and/or mission. Thus, the PAM case study, and similar agent-based systems, necessitates

safety analysis to ensure that no undesirable behaviors will occur that may compromise

the system’s mission. Further, for some agent-based systems, safety certification may be

required.

However, the safety analysis of a MAS presents challenges not found in other

software systems. In particular, one of the most challenging characteristics of a MAS

preventing the use of traditional software safety analysis techniques and tools is that it is

difficult to verify that the emergent behavior of such systems will be proper and that no

undesirable behaviors will occur. Although the emergent properties of a distributed, MAS

make the systems more powerful and adaptable, they are inherently more difficult to

design and provide assurance that the proper, safe behaviors will emerge. In addition, the

 112

complexity of distributed MAS, such as PAM, in their ability to interact with each other

and dynamically alter their functionality further complicates the safety analysis of such

systems. Unless safety analysis techniques and tools, along with further validation and

verification techniques can assure the correct, safe behavior and interactions of a MAS,

the safety of such software systems can not be assured.

For MAS that consist of a high number of similar yet slightly different agents, as

in the PAM case study, a product-line safety analysis approach is advantageous. Like the

product-line approach described in Chapter 4, a product-line approach to safety analysis

allows the reuse of portions of the safety analysis for multiple agents of the multi-agent

system product line (MAS-PL). The ability to reuse portions of the safety analysis for a

new agent can significantly reduce the burden of safety analysis of the entire system.

Further, reusable safety analysis assets can be used to make a safety case for the software

during the system certification, can aid in verifying the safety requirements of the system

and can discovering safety requirements missed in the initial requirements specification.

Certification is a process whereby a certification authority determines if an

applicant provides sufficient evidence concerning the means of production of a candidate

product and the characteristics of the candidate product so that the requirements of the

certifying authority are fulfilled [31], [40], [69], [72]. Software safety analysis

techniques, similar to those detailed in this chapter, have previously been shown to

contribute to the certification of software-intensive systems in [2], [55]. However, little

work has been specifically aimed at MAS-PLs.

Certification may apply to the development process, the developer or the actual

product [55]. Since it is insufficient to certify the process or developer for the software

of safety-critical systems, building a safety case that provides “an argument accompanied

by evidence that all safety concerns and risks have been correctly identified and

mitigated” [26] aids in the certification of the product. The safety analysis techniques

 113

and tools described in this chapter integrate the reuse potential of safety analysis assets

into the design and development of MAS-PL so that they can be used to better make a

safety case when system certification is required as well as allowing the safety engineer

to verify the safety requirements of the system and can discover missing safety

requirements. These safety analyses provide some assurance that core assets defined in

the domain engineering phase are being safely reused during the application engineering

phase.

The safety analysis techniques and tools presented in this chapter provide safety

analysis techniques for a safety-critical MAS-PL in the context of our Gaia-PL

methodology. In the following section we provide an overview of our safety analysis

techniques and tools in the context of Gaia-PL.

5.1.2 Overview of Our Safety Analysis Techniques f or Developing

Multi-Agent System Product Lines

Figure 30 provides an overview of the safety analysis techniques that we have

developed and adopted for the use in designing and developing safety-critical, multi-

agent system product lines (MAS-PL) in the context of our Gaia-PL methodology. To

provide reusable safety analysis assets for the design and development of safety-critical

MAS-PL, an extended Bi-Directional Safety Analysis (BDSA) approach [32], [54], [55]

was used. BDSA combines a search from potential failure modes to their effects with a

search from possible hazards to the contributing causes of each hazard. The use of a

BDSA approach requires the use of forward and backward safety analyses. In the work

described in this chapter, we use Software Failure Modes, Effects and Criticality Analysis

(SFMECA) and Software Fault Tree Analysis (SFTA) as the forward and backward

search technique, respectively.

114

Figure 30 An Overview of the Safety Analyses for MAS-PL in the Gaia-PL Methodology

 115

The extended SFMECA safety analysis technique presented in Section 5.2

provides a systematic process to derive a forward-based safety analysis asset from the

Variation Point Schemas of a role in our Gaia-PL methodology (see Chapter 4). The

SFMECA tables derived using this approach are directly associated to the variation point

of a role and can be reused for an agent with the specific role and variation point.

The SFTA, discussed in Section 5.3, presents our technique that cleanly extends

SFTA to software product lines. This product-line SFTA (PL-SFTA) can be constructed

for an entire product line and product-line members’ fault trees can be derived from the

PL-SFTA. PLFaultCAT, a graphical tool to construct a product-line SFTA, supports this

technique and then allows users to automatically derive a product-line members’ fault

tree given the variabilities to be included.

BDSA, discussed in Section 5.4, is then used to verify the completeness of the

forward and backward search techniques. The forward and backward techniques can be

viewed as complementary since the output of the forward technique (i.e., the potential

system-wide hazards) should match-up with the inputs of the backward technique.

Similarly, the output of the backward technique (i.e., the low-level, local errors that cause

a system-wide hazard) should match-up with the inputs of the forward technique. Thus,

the BDSA can discover the missing safety requirements can be derived from the

SFMECA and SFTA safety analysis assets and can assist in verifying the adequacy of the

existing safety requirements and design. The resulting MAS-PL safety assets and

verification aid in efficiently assembling a safety case during system certification.

The remainder of this chapter details each of these safety analysis techniques and

tools and illustrates them using the PAM MAS-PL case study.

 116

5.2 Software Failure Modes, Effects and Criticalit y Analysis for

the Gaia-PL Methodology

The forward analysis technique used in this work for the safety analysis of a

safety-critical, multi-agent system product line (MAS-PL) is a Software Failure Modes

Effects and Criticality Analysis (SFMECA). To accommodate the design and

development of a MAS-PL in Gaia-PL, we have adapted the SFMECA technique to

analyze and define a SFMECA tailored to the variation points in our Gaia-PL

methodology to produce a safety analysis technique specific to MAS-PL.

In our Gaia-PL methodology, the requirements specifications of the variation

points of a role are document in a Variation Point Schema (see Section 4.2.2.3). The

Variation Point Schema conveniently partitions a role’s requirements specifications into

events (functionality) that the role can perform and data that the role can access and

generate. In Gaia-PL’s Variation Point Schema, the events that a role or variation point

can perform are the non-underlined methods listed in “Activities and Protocols” section,

and the data that the role or variation point can access and generate are listed in the

“Permissions” section. For example, in the CollisionProtector Variation Point Schema of

the Prospecting Asteroid Mission (PAM) case study used in this dissertation, shown in

Figure 31, the events that this role can perform include Analyze3DModel,

DetectNearbySpacecraft, etc. Similarly, the data that this role can access and generate

include, position, velocityIncrement, etc.

The SFMECA tables created in this work are specific to a variation point. For

example, a separate SFMECA table will be created for the CollisionProtector Variation

Point, shown in Figure 31, so that this safety analysis can be readily reused for all agents

with the CollisionProtector Variation Point. Additionally, like [32] we partition the

SFMECA into separate analyses on the data and events. We use guidewords of [54] to

steer our investigation into the possible failures within a MAS-PL.

 117

Role Schema: CollisionProtector Schema ID: CP
 Variation Point: CollisionProtector
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SP1, C_SP2, C_SP3, C_SP4, C_SP5
 Description:

Provides the spacecraft with the functionality to autonomously protect itself from
colliding with other spacecraft and nearby asteroids.

 Activities and Protocols:
Analyze3DModel, DetectNearbySpacecraft, EvaluateRiskToGoal,
MonitorNearbyAsteroids, MoveToAvoidCollision, AcceptAsteroid3DModel,
AcceptCurrentPosition, AcceptCurrentTrajectory, AcceptSpacecraftLocations,
NegotiateCollisionAvoidance, PingNearbySpacecraft, RequestAsteroidPositions,
RequestCurrentPosition, RequestCurrentTrajectory, RequestSpacecraftLocations

 Permissions:
 Reads -
 curScienceGoalFactor // current spacecraft scientific goal factor
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 supplied asteroid3DModel // 3D model of an asteroid supplied
 supplied asteroidPositions // positions of nearby asteroids
 supplied subswarmVector // vector of nearby spacecraft positions
 supplied spacecraftPos // current position of a nearby spacecraft
 // supplied by a messenger or leader
 supplied spacecraftTraj // current trajectory of a nearby spacecraft
 // supplied by a messenger or leader
 Changes -
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 Generates -
 collisionRiskFactor // derived risk to spacecraft for an
 // impending collision
 riskToGoalFactor // calculated value of the current risk factor
 // to the advantage of pursuing scientific
 // exploration
 nearbyAsteroids // vector of nearby asteroids that must be
 // avoided to prevent a collision
 nearbySpacecraft // vector of nearby spacecraft that must be
 // avoided to prevent a collision
 Responsibilities:
 Liveness -
 None.
 Safety -
 Prevent the collision with other spacecraft and nearby asteroids.

Figure 31 The Variation Point Schema for the CollisionProtector Role

 118

Each activity of a variation point (the non-underlined keywords listed in Gaia-

PL’s Variation Point Schemas under the “Protocols and Activities” section) is essentially

an event (i.e., some functionality) that the variation point can execute. To construct a

SFMECA table for the events that a role’s variation point can execute, as in a standard

SFMECA we use the following keywords to guide our analysis: “halt/abnormal

termination”, “omission”, “incorrect logic/event” and “timing/order”.

Similarly, constructing the SFMECA data table using Gaia-PL’s Variation Point

Schemas, the “Permissions” section lists each datum that the role or variation point can

access, alter or generate. To construct a SFMECA table for the data that a role uses, we

use the following keywords to guide our analysis: “incorrect value”, “absent value”,

“wrong timing” and “duplicated value”.

Since a role definition depends on its variation point(s) in the Variation Point

Schemas of a role, detailed in full in Section 4.2.2.2, the derived SFMECA captures the

possible event and data failures for all the near-identical agents.

In Section 5.2.1 we describe the construction of the SFMECA event table for a

Variation Point Schema and then in Section 5.2.2 the construction of the SFMECA data

table for the CollisionProtector variation point, shown in Figure 31. Note that the

SFMECA creation process described here occurs during the domain engineering phase of

Weiss and Lai’s Family-Oriented Abstraction, Specification, and Translation (FAST)

model. Thus, the SFMECA table represents the possible failures for the entire set of

products in the MAS-PL.

The CollisionProtector variation point is tasked with preventing the spacecraft

from colliding with other spacecraft and nearby asteroids. The failure of this variation

point may lead to the collision and loss of one or more spacecraft and thus warrants

safety analysis. We include a portion of the SFMECA for the CollisionProtector

Variation Point in Table 3, Table 4 and Table 5 as well as in Appendix E.

 119

5.2.1 Constructing a SFMECA Event Table for a Vari ation Point in

Gaia-PL

The procedure to construct a SFMECA table for the events from Gaia-PL’s

Variation Point Schema(s) using the event guidewords consists of the following steps:

1. For each role:

a. Create a new SFMECA event table similar to that shown in Table 3

and fill in the role’s name and its possible variation points.

b. Then, for each of the variation points possible, listed in the role’s Role

Variation Points Schema (see Section 4.2.2.2):

i. For each activity listed in the Protocols and Activities section of

the Variation Point Schema:

c. Provide the event name in the “Event” column.

c. Apply each of the failure mode keywords (i.e.,

“halt/abnormal termination”, “omission”, “incorrect

logic/event” and “timing/order”) to the event. For each

keyword:

i. Provide the event failure mode keyword in the “Failure

Mode” column.

ii. Describe the possible local effect(s) if the keyword

failure happened to the event under consideration in the

“Local Effect(s)” column. The local effect will likely

only affect this role or this agent and its description

should not include the propagation of its failure to other

agents or components of the global system.

iii. Describe the possible system-level effect(s) if the

keyword failure mode occurred in the “System Effect(s)”

 120

column. This column captures the possible emergent

hazardous behavior from the interaction of the agents

(e.g., that a collision could occur between spacecraft if a

spacecraft does not change its position when other

spacecrafts are expecting it to).

iv. Give the criticality (e.g., critical, major, average, minor,

etc.) of this failure as determined by the global effect of

this failure on the system as a whole in the “Criticality”

column.

c. Apply any additional failure modes not captured by the

provided keywords relevant to the current event and fill in

the SFMECA row as appropriate.

The results of the application of the procedure detailed above to the CollisionProtector

variation point’s events listed in its Protocols and Activities section of the Variation Point

Schema are shown in Table 3 Table 4 and Table 5 for the Analyze3DModel,

DetectNearbySpacecraft and MoveToAvoidCollision events.

For example, the SFMECA table for the MoveToAvoidCollision event of the

CollisionProtector variation point of the Prospecting Asteroid Mission (PAM) case

study, shown in Table 5, describes the local and system-wide effects of the

“halt/abnormal termination”, “omission”, “incorrect logic/event” and “timing/order”

failures of the MoveToAvoidCollision event. Each of these failures describe the effect on

the local data and other events of the variation point and how those can propagate to the

system level and potentially cause a collision between spacecraft in the PAM swarm. The

system-wide effects for the failures of this event are classified at a criticality level of

either Major or Critical and will likely require mitigation requirements to ensure that such

failures are not possible in the MAS-PL, as discussed in Section 5.2.3.

121

Table 3 A Portion of the SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector Analyze3DModel Halt/Abnormal
Termination

The position and model of a nearby asteroid
stored in the asteroidPositions,
nearbyAsteroid and collisionRiskFactor data
vector may be incomplete or partially
incorrect. This may affect other events such
as MonitorNearbyAsteroids and
MoveToAvoidCollision.

The spacecraft’s inaccurate
mental model of the nearby
asteroid could cause it to
maneuver itself too close to
the asteroid causing a
collision.

Major

Omission The role fails to analyze the 3D model of a
nearby asteroid potentially causing the
asteroidPositions, nearbyAsteroid and
collisionRiskFactor data to be incomplete or
incorrect. This may affect other events such
as MonitorNearbyAsteroids and
MoveToAvoidCollision.

The failure to analyze the 3D
model provided of a nearby
asteroid(s) may cause the
asteroid to incorrectly
maneuver itself too close to
an asteroid and cause a
collision.

Critical

Incorrect
Logic/Event

The role incorrectly analyzes the 3D model
of a nearby asteroid that may cause the
asteroidPositions, nearbyAsteroid and
collisionRiskFactor data to be incomplete or
incorrect. This may affect other events such
as MonitorNearbyAsteroids and
MoveToAvoidCollision.

The spacecraft uses an
inaccurate 3D model of a
nearby asteroid that my
cause it to maneuver itself
into a nearby spacecraft or
asteroid.

Critical

Timing/Order The role fails to analyze the 3D model of a
nearby asteroid causing the
asteroidPositions, nearbyAsteroid and
collisionRiskFactor data to be outdated. The
riskForSystemFactor data may be inaccurate
since it was calculated based on outdated
data. This may affect other events such as
MonitorNearbyAsteroids,
EvaluateRiskToGoal and
MoveToAvoidCollision.

The spacecraft uses an
outdated 3D model of a
nearby asteroid(s) and may
not be able to react in time to
avoid a collision with an
asteroid if the 3D model is
not updated as expected.

Major

122

Table 4 A Portion of the SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality
Self-Protector

 CollisionProtector DetectNearby
Spacecraft

Halt/Abnormal
Termination

The role fails to complete its analysis of
detecting nearby spacecraft and may not
be aware of all nearby spacecraft. Thus,
the data stored in riskForSystemFactor,
subswarmVector, spacecraftPos,
collisionRiskFactor and neabySpacecraft
may be inaccurate, corrupted or outdated.

The spacecraft does not have a full
knowledge of all nearby spacecraft and
may unknowingly maneuver itself into
another spacecraft causing a collision. The
spacecraft’s ability to negotiate collision
avoidance with another spacecraft using
the NegotiateCollision Avoidance protocol
can not be trusted by other spacecraft since
the spacecraft’s mental model of nearby
spacecraft is not accurate.

Major

Omission The role fails to detect its surrounding for
nearby spacecraft and may not be aware of
all nearby spacecraft. The data stored in
riskForSystemFactor, subswarmVector,
spacecraftPos, collisionRiskFactor and
may be inaccurate or outdated and the
neabySpacecraft may be incorrect or
outdated.

The spacecraft has no knowledge of the
positions of other nearby spacecrafts
possibly causing the spacecraft to
maneuver too close to another spacecraft
causing a collision. The lack of knowledge
of the positions of nearby spacecrafts may
also cause the spacecraft’s ability to avoid
collisions using the Negotiate
CollisionAvoidance protocol is using
incomplete or inaccurate data.

Critical

Incorrect
Logic/Event

The role possible wrongly detects or
miscalculates the positions of nearby
spacecraft. The data stored in
riskForSystemFactor, subswarmVector,
spacecraftPos, collisionRiskFactor and
may be inaccurate or outdated and the
neabySpacecraft may be incorrect or
outdated.

The spacecraft’s belief of the positions of
other nearby spacecraft is inaccurate and it
may collide into nearby spacecraft if
maneuvers itself. The lack of knowledge of
the positions of nearby spacecrafts may
additionally cause the spacecraft’s ability
to avoid collisions using the Negotiate
CollisionAvoidance protocol is using
incomplete or inaccurate data.

Critical

Timing/Order The detection of nearby spacecrafts is
delayed so that the role may not possible
have the accurate locations of nearby
spacecraft when it is expecting it. Because
of this, the data stored in
riskForSystemFactor, spacecraftPos,
collisionRiskFactor and may be inaccurate
or outdated and the neabySpacecraft may
be incorrect or outdated without the role
knowing this.

The spacecraft may believe that the
positions of nearby spacecraft it has stored
in subswarmVector and spacecraftPos is
correct and thus may inadvertently
maneuver too close to another spacecraft
and collide into it. The spacecraft may also
provide inaccurate information to other
spacecraft using the NegotiateCollision
Avoidance protocol that may result in
further collisions of spacecraft.

Major

123

Table 5 A Portion of the SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector MoveToAvoid
Collision

Halt/Abnormal
Termination

The position, velocityIncrement and
collisionRiskFactor data may be
temporarily incorrect since the spacecraft
did not complete moving to its new
position. This could potentially affect other
events such as DetectNearby Spacecraft
EvaluateRiskToGoal, and other protocols
including NegotiateCollisionAvoidance.

The spacecraft will not have
moved to the position expected
by other nearby spacecraft in
the subswarm potentially
causing a collision.

Major

Omission The spacecraft fails to move to its new
assigned position in the subswarm possibly
causing the position, velocityIncrement and
collisionRiskFactor data to be temporarily
incorrect. This could potentially affect
other events such as DetectNearby
Spacecraft EvaluateRiskToGoal, and other
protocols including
NegotiateCollisionAvoidance.

The spacecraft will not have
moved but, rather, maintain its
previous position potentially
causing a collision. Other
spacecraft in the subswarm may
expect the spacecraft to have
moved to a new position which
may cause a collision due to the
discrepancies between actual
and perceived spacecraft
positions.

Critical

Incorrect
Logic/Event

The spacecraft fails to move to the position
it is expecting possibly causing its
position, velocityIncrement and
collisionRiskFactor data to be different
than expected. This could potentially affect
other events such as DetectNearby
Spacecraft EvaluateRiskToGoal, and other
protocols including
NegotiateCollisionAvoidance.

The spacecraft moves to a
position different that what it
expects. Further, other
spacecraft nearby will have
expected the spacecraft to be in
a different location potentially
causing a collision.

Critical

Timing/Order The spacecraft fails to move to the new
position until some later, undetermined
time potentially causing its position,
velocityIncrement and collisionRiskFactor
data to be different than expected. This
could potentially affect other events such
as DetectNearby Spacecraft
EvaluateRiskToGoal, and other protocols
including NegotiateCollisionAvoidance.

The spacecraft fails to move to
the position it indicated to other
spacecraft via the
NegotiateCollisionAvoidance
protocol at the time expected by
the other spacecraft. This may
cause a collision.

Major

 124

5.2.2 Constructing a SFMECA Data Table for a Varia tion Point in

Gaia-PL

Constructing the SCMECA data table for a variation point in Gaia-PL is identical

to that of constructing a SFMECA event table except for the failure mode keywords used.

For completeness, the procedure to construct a SFMECA table for the data from the

Variation Point Schema(s) using the event guidewords consists of the following steps:

1. For each role:

a. Create a new SFMECA data table similar to that shown in Table 6 and

fill in the role’s name and its possible variation points.

b. Then, for each of the variation points possible, listed in the role’s Role

Variation Points Schema (see Section 4.2.2.2):

i. For each of the pieces of data listed in the Permissions section of

the Variation Point Schema:

a. Provide the event name in the “Data” column.

b. Apply each of the failure mode keywords (i.e., “incorrect

value”, “absent value”, “wrong timing” and “duplicated

value”) to the data. For each keyword:

i. Provide the data failure mode keyword in the “Failure

Mode” column.

ii. Describe the possible local effect(s) if the keyword

failure happened to the event under consideration in the

“Local Effect(s)” column. The local effect will likely

only affect this role or this agent and its description

should not include the propagation of its failure to other

agents or components of the global system.

 125

iii. Describe the possible system-level effect(s) if the

keyword failure mode occurred in the “System Effect(s)”

column. This column captures the possible emergent

hazardous behavior from the interaction of the agents

(e.g., that a collision could occur between spacecraft if a

spacecraft does not change its position when other

spacecrafts are expecting it to).

iv. Give the criticality (e.g., critical, major, average, minor,

etc.) of this failure as determined by the global effect of

this failure on the system as a whole in the “Criticality”

column.

c. Apply any additional failure modes not captured by the

provided keywords relevant to the current data and fill in the

SFMECA row as appropriate.

The results of the application of the procedure detailed above to the CollisionProtector

variation point’s data listed in its Permissions section are shown in Table 6, Table 7 and

Table 8 for the nearbyAsteroids, nearbySpacecraft and position data.

For example, the SFMECA table for the position data, shown in Table 8,

describes the local and system-wide effects of the “incorrect value”, “absent value”,

“wrong timing” and “duplicated value” failures of the position data. Each of these

failures describe the effect on the local events and other data of the variation point and

how those can propagate to the system level and potentially cause a collision between

spacecraft and asteroids. The system-wide effects for the failures are classified at a

criticality level of either Major or Critical and will likely require mitigation requirements

to ensure that such failures are not possible in the MAS-PL, as discussed next.

126

Table 6 A Portion of the SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector nearbyAsteroids Incorrect Value The variation point belief of the
positions of nearby asteroids may be
incorrect. The riskForSystemFactor
and collisionRiskFactor data may be
incorrect and the Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the wrong data. The
RequestAsteroidPositions protocol
may provide inaccurate information
upon request.

The spacecraft will use incorrect
values of the locations of nearby
asteroids and may unknowningly
maneuver too close to an asteroid
and collide with it. The spacecraft
may also provide the incorrect
information to other spacecraft
through the RequestAsteroid
Positions protocol causing other
spacecraft to potentially collide into
an asteroid. The incorrect data may
also invalidate the scientific data
collected on the asteroids.

Critical

Absent Value The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or corrupted since no location
values for nearby asteroids were
available. The Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the unavailable data.

The spacecraft will have no
information on the location of
nearby asteroids and will need to
request the locations via the
RequestAsteroidPositions
protocol. May cause a collision
with an asteroid since the locations
are unknown. May corrupt some of
the scientific data collected on the
asteroids or cause the execution of
the variation point to freeze.

Major

Wrong Timing

The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or outdated since the location
of nearby asteroid data is old. The
Analyze3DModel, EvaluateRiskTo
Goal and MoveToAvoidCollision
events may result in outdated output.

The spacecraft may have made
maneuvering decisions based on
outdated information of the
location of nearby asteroids. This
may cause a collision with an
asteroid since the locations are
outdated.

Major

Duplicated Value The Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events may be
uneedingly exectuted twice since the
data was updated twice.

The spacecraft will may have had
to execute the Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events
twice possibly delaying the
response to request from other
spacecraft.

Minor

127

Table 7 A Portion of the SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector nearbySpacecraft Incorrect Value The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or corrupted since no
location values for other nearby
spacecraft are available. The
DetectNearbySpacecraft,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the incorrect.

The spacecraft will use incorrect
values of the locations of nearby
spacecraft and may unknowningly
maneuver too close to another
spacecraft and collide with it. The
spacecraft may also provide the
incorrect information to other
spacecraft through the
RequestSpacecraftLocations
protocol causing other spacecraft to
potentially collide.

Major

Absent Value The riskForSystemFactor and
collisionRiskFactor data may be
missing or corrupted since no
location values for other nearby
spacecraft are available. The
DetectNearbySpacecraft,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the unavailable
data.

The spacecraft will have no
information on the location of
nearby spacecraft and will need to
request the locations via the
RequestSpacecraftLocations
protocol. May cause a collision
with an spacecraft since the
locations are unknown.

Critical

Wrong Timing

The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or outdated since the
location of nearby asteroid data is
old. The DetectNearbySpacecraft,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the outdated data.

The spacecraft may have made
maneuvering decisions based on
outdated information of the
location of nearby spacecraft. This
may cause a collision since the
locations are outdated.

Critical

Duplicated Value The EvaluateRiskToGoal and
MoveToAvoidCollision events may
be uneedingly exectuted twice since
the data was updated twice.

The spacecraft may report to others
that it is malfunctioning since it
received duplicated values.

Minor

128

Table 8 A Portion of the SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector position Incorrect Value The variation point uses the incorrect value
of its current position possibly affecting
the DetectNearbySpacecraft, Evaluate
RiskToGoal, MonitorNearyby Asteroids
and MoveToAvoidCollision events. This
may also cause the variation point to
incorrectly change its riskForSystemFactor
data and generate inaccurate collision
RiskFactor, riskToGoal Factor, nearby
Asteroids and nearbySpacecraft data.

The spacecraft does not know
its actual position and may
report a false position to other
spacecraft via the
RequestSpacecraftLocations
protocol potentially causing a
collision.

Critical

Absent Value The missing or corrupted value of its
current position may affect the
DetectNearbySpacecraft, EvaluateRisk
ToGoal, MonitorNearybyAsteroids and
MoveToAvoidCollision events since the
data is unusable. This may also cause the
variation point to corrupted its
riskForSystemFactor data and generate
corrupted collisionRiskFactor,
riskToGoalFactor, nearbyAsteroids and
nearbySpacecraft data.

The spacecraft does not know
its actual position and may
report a false position to other
spacecraft via the Request
SpacecraftLocations protocol
potentially causing a collision.
Alternatively, the spacecraft
uses the missing or corrupted
value and may collilde into a
nearby spacecraft.

Critical

Wrong Timing

The variation point uses the outdated value
of its current position possibly affecting
the DetectNearbySpacecraft,
EvaluateRiskToGoal,
MonitorNearybyAsteroids and
MoveToAvoidCollision events. This may
also cause the variation point to incorrectly
change its riskForSystem Factor data and
generate outdated collisionRiskFactor,
riskToGoal Factor, nearbyAsteroids and
nearbySpacecraft data.

The spacecraft may have made
maneuvering decisions based
on outdated information of
position potentially causing a
collision.

Major

Duplicated Value The variation point uses the duplicate
position information to execute the
DetectNearbySpacecraft,
EvaluateRiskToGoal,
MonitorNearybyAsteroids and
MoveToAvoidCollision events twice.

The spacecraft may report to
others that it is malfunctioning
since it received duplicated
values of its current position.

Minor

 129

5.2.3 Deriving Safety Requirements from the SFMECA Tables

The development of the Software Failure Modes, Effects and Criticality Analysis

(SFMECA) event and data tables for the variation points of a role identifies the possible

local and system effects of the failure of an event. In addition, the creation of the

SFMECA tables provides the software engineer with the opportunity to identify missing

safety requirements, discover the interactions and relationships between the events and

data and/or verify the system design and requirements specifications.

A SFMECA starts with the failure of a software component or subsystem,

detailed in the “Local Effects” column, and then looks at its effect on the overall system,

documented in the “System Effects” column. Applying the structured procedure to create

the SFMECA for a multi-agent system product line (MAS-PL) in the Gaia-PL

methodology, as described in Sections 5.2.1 and 5.2.2, yields a list of possible accidents

that could compromise the success of the system along with their potential causes. This

analysis may reveal safety requirements that should be added to the variation points of a

role to prevent the propagation of the failure to the system level.

For example, the “omission” failure mode keyword of the MoveToAvoidCollision

event of the CollisionProtector variation point, shown in Table 5, revealed in this case

study that some verification was needed for the spacecraft itself and the nearby spacecraft

that it had indeed maneuvered to the desired position. To achieve this, a

DetermineNewPosition event and a RequestVerifyPosition protocol could be added to

provide the variation point with this needed functionality. This additional functionality,

not included in the original requirements, could better prevent the spacecraft and nearby

spacecraft from incorrectly assuming the location of a spacecraft and may avoid

collisions.

 130

Similarly, the “wrong timing” failure mode keyword of the nearbySpacecraft data

of the CollisionProtector variation point, shown in Table 7, illustrated the need for

timestamps to be included with the position data of nearby spacecraft so that each

spacecraft can assess the freshness of the data. This information, not originally included

in the requirements, may allow the CollisionProtector variation point to better prevent

collisions with nearby spacecraft.

The application of the SFMECA to the requirements specifications of a MAS-PL

in Gaia-PL provides insight into missing requirements that may be needed to prevent the

propagation of the failure from the local level to a system-wide level. It was found that

the missing safety requirements discovered in this process were often not considered

during the development of the requirements specifications of the MAS-PL from its

requirements. Further, the structured process described to derive the SFMCEA for a

safety-critical MAS-PL.

The application of the failure mode keywords to each event and data of a role

variation point requires deep consideration of their possible interaction and effect on the

other data and events. This differs from the development of the original requirements

specifications, described in Section 4.2.2, from the MAS-PL requirements documented in

the Commonality and Variability Analysis (CVA), described in Section 4.2.1, since a

better understanding of the relationships between events and other events as well as

events and data is needed.

Finally, the creation of a SFMECA provides some verification of the design of the

variation points and their requirements specifications in that it further reveals the

interactions of the events and data of a variation point and requires the developer to better

think about the variation point’s functionality and its effect on the entire system. Further,

it allows a software engineer to identify the hazardous states that the MAS-PL may enter

 131

and provide them with the chance to derive requirements to prevent a system failure or

verify that the existing mitigation requirements will avoid the failure. This provides

assurances that certain classes of failure modes that might occur in individual agents will

not produce unacceptable effects in the composite system and demonstrates the ability of

a variation points failure-monitoring and failure mitigation software tasked with the

system safety requirements to safety standards.

The opportunity to derive further safety requirements and better demonstrate the

compliance of the design in handling hazardous situations for a MAS-PL using the

SFMECA generated in this section will be discussed in Section 5.4 as a part of the Bi-

Directional Safety Analysis (BDSA) technique.

5.2.4 Deriving the SFMECA Tables for a Specific Pr oduct in a MAS-PL

Sections 5.2.1 and 5.2.2 described the creation of the SFMECA event and data

tables for the variation point of a role in Gaia-PL. The creation of the SFMECA safety

analysis asset occurs in Gaia-PL’s Analysis and Design Phase, as shown in Figure 30,

and uses Gaia-PL’s Variation Point Schemas. The Analysis and Design Phase of Gaia-PL

occurs within the domain engineering phase of Weiss and Lai’s Family-Oriented

Abstraction, Specification, and Translation (FAST) model [88]. Thus, the SFMECA

derived represents all the roles and variation points possible in any agent of the multi-

agent system product line (MAS-PL).

In Gaia-PL’s Detailed Design Phase (FAST’s application engineering phase), an

agent is designed and developed by selecting the roles and each role’s set of possible

variation points for a specific agent, as described in Section 4.2.3. The SFMECA tables

produced by following the structured procedure of Sections 5.2.1 and 5.2.2 will produce

SFMECA tables not relevant to a specific agent (e.g., the agent does not contain a role or

 132

variation point documented in the SFMECA). Thus, any given agent’s SFMECA safety

analysis artifacts will be a subset of the SFMECA tables.

The partitioning of the SFMECA tables by the roles and variation points,

described in Sections 5.2.1 and 5.2.2 eases the derivation of the created SFEMCA tables

during the design and development of specific agent through reuse. The SFMECA for a

specific agent can be derived by simply including the roles and variation points that are

possible in the agent and discluding the roles and variation points not possible in the

agent. For example, in the Prospecting Asteroid Mission (PAM) case study used in this

dissertation, any agent with the CollisionProtector variation point would include the

SFMECA tables given in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8.

Similarly, any PAM agent not including the CollisionProtector variation point would not

have any of these tables.

This process can provide the SFMECA safety analysis assets for all allowable

configurations of an agent in a MAS-PL (e.g., all 160 possible spacecraft in the PAM

case study).

5.2.5 Accommodating MAS-PL Evolution in the SFMECA in Gaia-PL

In Section 4.3.2, we discussed the evolution of a multi-agent system product line

(MAS-PL) in Gaia-PL. A MAS-PL can evolve in three ways relevant to this work: 1. new

agents may be added to the system; 2. new roles with new functionality may be created

that future agents can employ; and 3. new variation points may be added to existing roles

that future agents can employ. To consider the safety consequences of the new

functionality of the evolved MAS-PL, the Software Failure Modes, Effects and Criticality

Analysis (SFMECA) must be updated.

The addition of a new agent(s) with no new functionality into an already deployed

MAS-PL only necessitates the inclusion of the SFMECA event and data tables for the

 133

roles and the variation points that are included in the agent. The partitioning of the

SFMECA tables by the roles and variation points, described in Sections 5.2.1 and 5.2.2,

allows the specific agent’s safety analysis artifacts to be described by simply selecting the

relevant SFMECA tables, as was discussed in Section 5.2.4.

The inclusion of a new role(s) into a MAS-PL requires the addition of new

functionality not included in the original deployment of the agents in the MAS-PL. The

new roles added to the MAS-PL can then be included in future agents of the system. The

failure to assess the new agents for potential hazards may compromise the entire MAS-

PL. Thus, the inclusion of a new role necessitates the SFMECA safety analysis to be

updated to include the functionality of the new role and the possible system-wide effects

of the functionality of the new role if it fails. The inclusion of a new role into a MAS-PL

will often require the inclusion of new variation points to implement the functionality of

the new role.

To accommodate the inclusion of new role(s) and/or variation points into a MAS-

PL, the SFMECA must be updated to reflect the updates. First, the new Gaia-PL Role

Variation Points Schema(s) and Variation Point Schema(s) must be developed to

document the new requirements specification for the new role(s) and/or variation points,

as described in 4.3.2. After documenting the new functionality, the SFMECA event and

data tables for the new variation points can be derived using the structured process

described in Section 5.2.1 (to create the SFMECA event tables) and Section 5.2.2 (to

create the SFMECA data tables).

These steps will accommodate the types of evolution possible in a MAS-PL so

that the SFMECA safety asset can be updated and used for future versions of agents of

the system.

 134

5.2.5 Discussion

The structured process to derive and document the Software Failure Modes,

Effects and Criticality Analysis (SFMECA) of a multi-agent system product line (MAS-

PL) from Gaia-PL’s Variation Point Schemas inherits the reusability of the Gaia-PL

methodology and can accommodate all allowable configurations of an agent in a MAS-

PL (e.g., all 160 possible spacecraft in the PAM case study).

The partitioning of the SFMECA tables by the roles and variation points of a

MAS-PL similarly associates each variation point with a set of SFMECA event and data

tables. For those roles and variation points that are common in every agent (e.g., the

Navigator role, discussed in Section 4.2.2.1), the SFMECA tables will always be

included as a part of the safety analysis assets of an agent. However, for those roles and

variation points that may or may not be included in an agent (e.g., the “Leader” variation

point of the Self-Optimizer role, discussed in Section 4.2.2.2), the SFMECA tables will

not always be included as a part of the safety analysis assets of an agent. Thus, the

SFMECA safety analysis assets created using the approach described in this section are

reusable for the agents of a MAS-PL in the same way that the Variation Point Schemas,

discussed in Section 4.2, are reusable.

The structured process to derive and document the SFMECA of a MAS-PL from

Gaia-PL’s Variation Point Schemas could be applied, without change, to the Role

Schema used in Gaia. Yet, the inability of Gaia to hierarchically capture the variation

points of a role, as described in Sections 4.1.2.3, and its inability to partition the common

and variable portion of role, as is done in Gaia-PL’s variation points, the SFMECA tables

would create a large amount of redundancy to capture the failure modes and effects of the

redundantly documented functionality, as described in Section 4.4.2. Thus, the reusability

and development cost would be lessened, similarly to that described in Section 4.4.2,

 135

using Gaia-PL and the SFMECA process described in this section compared to if it was

applied to the Role Schema’s in the Gaia methodology.

5.2.6 Summary

This section discussed our adaptation of Software Failure Modes, Effects and

Criticality Analysis (SFMECA) in our Gaia-PL Agent-Oriented Software Engineering

(AOSE) methodology to produce a safety analysis technique specifically for safety-

critical MAS-PL. We provided a structured process to analyze the Variation Point

Schemas produced in the Gaia-PL methodology to discover the ways in which events and

data of an agent can fail and the effects of the failures on the entire system.

The SFMECA captures the propagation of undesirable behavior in the MAS-PL.

That is, the SFMECA process described in this section describes a failure at a local level

(i.e., the role or variation point of a single agent) and details the possible consequences of

the propagation of this failure at a system-wide level (i.e., the collection of agents in a

multi-agent system). It is important to capture such behavior in a MAS-PL so that the

collected behavior of the system is known and precautions can be made to prevent

undesirable behavior.

 The SFMECA can also aid in discovering missing safety requirements, designing

mitigation requirements to prevent failures and verify existing safety requirements.

Finally, we illustrated how the SFMECA safety asset can be reused for a specific agent

given its roles and variation point and how the SFMECA can accommodate the evolution

of a MAS-PL.

The next section describes the backward search, safety analysis technique used in

this work, Product-Line Software Fault Tree Analysis (PL-SFTA) and its tool

PLFaultCAT.

 136

5.3 Product-Line Software Fault Tree Analysis and PLFaultCAT

Section 5.2 discussed our forward-based, safety analysis technique, an adapted

Software Failure Modes, Effects and Criticality Analysis (SFMECA), for a safety-critical

multi-agent system product line (MAS-PL). The SFMECA starts with the failure of a

role’s variation point and then looks at its effect on the overall system. However, the

results of a forward analysis, such as SFMECA, may not cover all possible hazards of a

system and fail to consider the combination of multiple events and their effect on possible

system-wide hazards [44]. For a safety-critical system, it is also often necessary to

perform a backward-based, safety analysis to better ensure that hazardous states and their

causal events are identified and mitigated against.

This section details the backward analysis search technique, product-line software

fault tree analysis (PL-SFTA), and its tool, PLFaultCAT (Product-L ine Fault Tree

Creation and Analysis Tool), that we have developed and used in this work to analyze a

safety-critical MAS-PL. This section offers additional assurance to software engineers

designing and developing a safety-critical MAS-PL by providing a tool-supported

software safety analysis technique. PLFaultCAT is an interactive, partially-automated

software support application to aid software engineers with the visualization and pruning

process of a PL-SFTA. Specifically, the tool exploits the reusability inherent in product-

line engineering by deriving reusable safety analysis assets (i.e., the product-line

members' fault trees) for future systems within the existing product line.

5.3.1 Product-Line Software Fault Tree Analysis Ov erview

The product-line Software Fault Tree Analysis (PL-SFTA) maintains the safety

analysis qualities of traditional Software Fault Tree Analysis (SFTA) while

accommodating reusability in product-line engineering. Traditional SFTA targets the

safety analysis of potentially harmful states for a single product. The PL-SFTA, however,

 137

incorporates the variabilities among the different members of a product line and

contributes to the safety analysis for the entire product line without performing traditional

SFTA serially on each product-line member. A new SFTA for a product line member can

be derived almost automatically with PLFaultCAT using its pruning algorithm. The aim

of this technique and tool is to support the confident reduction of the safety analysis

needed on a new product in the product line and, ultimately, a less expensive and shorter

product development process.

Section 5.3 illustrates how and to what extent the PL-SFTA technique, supported

by the PLFaultCAT tool, can be used by software engineers as a reusable safety analysis

for designing and developing a multi-agent system product line (MAS-PL). Like the

Gaia-PL methodology detailed in Chapter 4 and the SFMECA approach described in

Section 5.2, the PL-SFTA technique employs the Family-Oriented Abstraction,

Specification, and Translation (FAST) model’s domain and application engineering

phases [88]. In the domain engineering phase, the PL-SFTA is constructed with the aid

of the PLFaultCAT tool. The application engineering phase develops and performs the

safety analysis on new product-line members (i.e., the agents of a MAS-PL). The

construction of a PL-SFTA, aided by PLFaultCAT, during the domain engineering phase

provides the means for reusing the PL-SFTA for new members (i.e., agents of a MAS-

PL). Within the application engineering phase we utilize PLFaultCAT to facilitate the

derivation of new product-line members' fault tree(s).

Figure 32 provides an overview of the construction and derivation process of a

PL-SFTA within the two-phased FAST approach. The role of PLFaultCAT in this

framework primarily resides in the application engineering phase. Although

PLFaultCAT can assist in the initial graphical representation of a product-line fault tree,

the chief contribution of the PLFaultCAT tool is to automatically produce the fault tree

artifacts that software engineers desire at the end of the application engineering phase.

138

Figure 32 An Overview of the PL-SFTA Safety Analysis Technique

 139

To assist in the creation of a PL-SFTA, PLFaultCAT can utilize DECIMAL [23],

[58], [59] (described in Section 2.1.4 and used within the Gaia-PL methodology in

Section 4.2.1.2) to aid in:

• Documenting a MAS-PL’s commonalities, variabilities and dependencies

• Defining an agent of a MAS-PL through the selection of variabilities

• Automatically verifying consistency of a new agent with the MAS-PL’s

dependencies

PLFaultCAT can then link to the requirements defined in DECIMAL to associate with a

PL-SFTA’s leaf nodes. The use of DECIMAL in conjunction with PLFaultCAT provides

better management, traceability and automated verification of a product-line’s

requirements as well as the creation, derivation and analysis of a PL-SFTA.

In addition to aiding the creation of a PL-SFTA and the derivation of the SFTA

for a product-line member, PLFaultCAT provides several automated safety analyses to

identify failure points and safety-critical requirements. Figure 33 provides an overview of

these automated safety analysis as well as the overview of DECIMAL and PLFaultCAT’s

role in the design and development of a safety-critical product line. A minimum-cut set

analysis analyzes a single PL-SFTA and identifies the smallest sets of events that must

occur such that the root node accident will occur [44]. A probability report calculates the

probability of occurrence of the root node given the probabilities of all other nodes. A

single-point failure analysis searches the set of SFTAs for single-point failures (i.e., those

hazards connected by a logical OR gate in the SFTA) at user-specified depth [44]. A

variability failure contribution analysis analyzes all the PL-SFTAs to find those

variabilities or combination of variabilities that contribute to a high number of hazards.

The single-point failure analysis and variability failure contribution analyses, in

particular, can aid in identifying latent safety requirements. For example, a single-point

failure found in a product-line SFTA may necessitate new safety requirements (e.g., a

 140

Figure 33 An Overview of DECIMAL and PLFaultCAT’s Role in the Design and

Development of Safety-Critical Product Lines

safety guard) to transform the single-point failure (i.e., an OR gate) into a non single-

point failure (i.e., an AND gate). Similarly, the variability failure contribution analysis

may indicate variabilities that should not be allowed to be present in any product-line

member (i.e., a product-line dependency).

The remainder of Section 5.3 details PLFaultCAT’s software architecture, the

creation of a PL-SFTA for a product line, the derivation of a SFTA for a product-line

member and the additional safety analysis opportunities available using PLFaultCAT

illustrated using the Prospecting Asteroid Mission (PAM) case study.

 141

Note that although the work described in this section illustrates our PL-SFTA

technique and its tool, PLFaultCAT, on a MAS-PL, we describe its application to a

general product line. Section 5.3.6 delineates a specific, alternative approach using PL-

SFTA and PLFaultCAT to perform the safety analysis of a MAS-PL. Except for Section

5.3.6, the work described in Section 5.3 is applicable to any safety-critical software

product line. Our papers in [17], [18], [24], [45], [47], [48] partially illustrate the PL-

SFTA technique using a traditional product line application (i.e., not a MAS-PL).

5.3.2 PLFaultCAT Overview and Software Architectur e

This section introduces and briefly describes the PLFaultCAT tool. PLFaultCAT

is the software tool developed to aid in both the domain engineering phase for initial

product-line software fault tree analysis (PL-SFTA) development and representation as

well as in the application engineering phase for the derivation of product line members'

software fault tree(s) from the PL-SFTA developed in the domain engineering phase. In

this section, we present an overview of the PLFaultCAT tool and give a description of it’s

the software architecture.

5.3.2.1 PLFaultCAT Overview

PLFaultCAT (Product-L ine Fault Tree Creation and Analysis Tool) is a tool-

assisted visualization and pruning application for the creation and analysis of product-line

software fault trees. PLFaultCAT is an extension of the FaultCAT application [4].

FaultCAT is an open-source fault tree creation tool written in Java that is primarily

geared towards analyzing a system for faults to determine how faults can affect other

parts of the system [4]. FaultCAT does this by attaching fault probabilities to each node.

FaultCAT provides a user the ability to graphically construct and represent the nodes and

logic gates of a traditional fault tree. A complete discussion of the construction of a PL-

SFTA using PLFaultCAT is given in Section 5.3.3.

 142

PLFaultCAT internally stores the fault trees in an XML format, making it easy to

manipulate and alter. This is important because product lines routinely evolve, and the

safety analysis must accordingly be updated. PLFaultCAT builds on the existing XML

storage format of a fault tree in FaultCAT. PLFaultCAT utilizes the XML DOM parser to

perform the pruning necessary to generate a product-line member's fault tree(s) from the

PL-SFTA during the pruning process of the application engineering phase. A full

discussion of the pruning algorithm and how it is handled in PLFaultCAT is given in

Section 5.3.5. In addition to the graphical and XML view of the fault tree, PLFaultCAT

presents a textual overview of a fault tree that lists the nodes of a fault tree, the type of a

leaf node (either a commonality or variability) and the value of a leaf node commonality

or variability.

5.3.2.2 PLFaultCAT Software Architecture

The PLFaultCAT software architecture is built directly upon the software

architecture of the original FaultCAT application. Thus, the majority of the PLFaultCAT

tool inherits the base software architecture of FaultCAT. PLFaultCAT enhances

FaultCAT by adding onto the software architecture the functionality needed to

accommodate the creation and analysis of a PL-SFTA. Figure 34 shows the architecture

of the PLFaultCAT application.

PLFaultCAT maintains all the functionality of FaultCAT and can still

accommodate the creation and analysis of a single product software fault tree. To achieve

this, the original FaultCAT software architecture, including the class structures, is

maintained. Any additional functionality added to the already existing classes of

FaultCAT has been tested to ensure that it does not interfere with FaultCAT's intended

functionalities.

 143

Figure 34 PLFaultCAT’s Software Architecture

5.3.2.3 Implementation of PLFaultCAT

 The major contribution to the PLFaultCAT tool is to add the nearly automatic

pruning process of deriving a product-line member's fault tree from the PL-SFTA.

Within PLFaultCAT, this was implemented as additional Java classes not found in

FaultCAT. These Java classes provide the interactive, GUI-driven interface to allow a

user to actively select the variabilities to include in any new product-line member. The

selected variabilities then are used to properly prune the stored PL-SFTA to produce the

derived product-line member's software fault tree.

To facilitate the creation of a PL-SFTA, PLFaultCAT provides the ability to

define a leaf node within a fault tree to be a fault associated with either a commonality

requirement/component or a variability requirement/component. Defining leaf nodes as

either being coupled to a commonality or a variability allows for the pruning process to

determine which branches or subtrees are relevant for a given fault tree and a selected set

of variabilities.

 144

PLFaultCAT provides the ability to specify the value(s) for a particular

commonality or variability comprising the product line. Assigning the value(s) of a

particular commonality or variability to a leaf node within a fault tree provides (1) an

association of the leaf node with specifically what the choice of variability must be in

order to contribute to its parent event node and its associated subtree and (2) a heuristic

for the pruning algorithm to resolve those branches or subtrees that are applicable for a

given fault tree and a selected set of variabilities and their values.

Lastly, PLFaultCAT was originally developed as a tool separate from DECIMAL

(described in Section 2.1.4 and used within the Gaia-PL methodology in Section 4.2.1.2)

as described in [24]. PLFaultCAT and DECIMAL have now been integrated and

extended in order to provide software engineers a single solution to requirements

management and automated software safety analyses across the product-line lifecycle.

The new features included in PLFaultCAT in this integration include:

• Linking product-line requirements and verified product-line members from

DECIMAL to fault tree nodes in PLFaultCAT

• Automating the derivation of the SFTAs of a new product-line member

from the set of product-line SFTAs in PLFaultCAT

• Automating a user-defined, single-point failure analysis for the set of

product-line or product-line member SFTAs

• Automating the analysis and identification of the variability failure

contribution analysis to identify safety-critical requirements for the product

line

These additional features required further functionality, implemented in Java, to be

included in PLFaultCAT that was not originally found in the FaultCAT tool.

 145

5.3.3 Constructing a Product-Line Software Fault T ree

This section details the construction of a product-line Software Fault Tree

Analysis (PL-SFTA) for a safety-critical software product line. The creation of the PL-

SFTA for a software product line occurs during the domain engineering phase of the

Family-Oriented Abstraction, Specification, and Translation (FAST) model [88]. In the

Gaia-PL methodology, shown in Figure 30, the creation of a PL-SFTA for a multi-agent

system product line (MAS-PL) occurs during the Analysis and Design Phase.

In this section, we first discuss the product-line requirements and the list of

possible hazards needed to develop a PL-SFTA. We then provide the steps to construct a

product-line software fault tree in PLFaultCAT.

5.3.3.1 Identifying Hazards for a PL-SFTA

As shown in Figure 32, the safety analysis for the domain engineering phase of

product-line development typically results from a Preliminary Hazard Analysis (PHA).

A PHA identifies the systems' hazards at an early stage of development with the aim of

determining their impact on the system [44]. A domain hazards list will often exist prior

to the development of the product line from historical data or domain expertise. If no

preexisting hazards list is available, procedures exist to establish a workable,

comprehensive list [29]. The creation of the hazards list requires extensive domain

expertise and may be performed in parallel with the documenting of the software

product-line requirements in a Commonality and Variability Analysis (CVA), described

in Section 2.1.1 and detailed in the context of Gaia-PL in Section 4.2.1.1.

Alternatively, states from the "System Effects" column of a Software Failure

Modes, Effects and Criticality Analysis (SFMECA), described in Section 2.3.2.2 and

adopted for the use in Gaia-PL in Section 5.2, can be used as a source of hazards for the

root nodes of the product-line Software Fault Tree Analysis (SFTA) as they represent

 146

states that must be avoided. For example, for the Prospecting Asteroid Mission (PAM)

case study used throughout this dissertation, possible hazards from the SFMECA table

shown in Table 8 could be “A spacecraft to spacecraft collision occurred” and “A

spacecraft to asteroid collision occurred”.

Following the initial product line requirements acquisition in the FAST method, a

precise definition of a product line is achieved through the creation of a CVA, as

described in Section 2.1.1 and detailed in the context of Gaia-PL in Section 4.2.1.1.

Figure 5 and Figure 6 provide a portion of the CVA for the PAM case study that was

used in Chapter for to develop the requirements specifications in the Gaia-PL

methodology and will be used as a running example to illustrate the activities involved in

the domain and application engineering phase use of PLFaultCAT and the PL-SFTA

technique. In particular, Figure 5 and Figure 6 display the commonalities and variabilities

associated with the safety-critical SolarStormWarner (discussed in Section 5.2.1 and

shown in Appendix D, page 296) and CollisionProtector (discussed in Section 4.2.2.3

and shown in Appendix D, page 301) roles and their variation points. Table 2 gives a

portion of the Parameters of Variation document detailing the allowable options for the

variabilities listed in Figure 6.

A SFMECA, described in Section 5.2, searches the failure modes possible in the

product line, determines their potential local effects and establishes their potential effects

on the other members of the system [53]. Excerpts of the SFMECA for the PAM case

study were given in Section 5.2.1. This portion of the SFMECA includes only those

failure modes relevant to the possible collision of a multiple spacecraft or the collision of

a spacecraft with an asteroid. Note that while this particular SFMECA concentrates

mainly on the software failures of the PAM case study, it may also include those

hardware failures (which will typically contribute as leaf nodes) that contribute to the

propagation of software failures.

 147

If a SFMECA exists for a product line, this analysis can produce the necessary

domain knowledge to begin construction of the PL-SFTA using the prescribed steps

detailed in the following section. If a SFMECA does not exist, construction of the PL-

SFTA proceeds directly to Step 2 of Section 5.3.3.2 after assembling an intermediate

node tree without the aid of a SFMECA. The following section describes our steps to

construct a PL-SFTA for a safety-critical product line using the PAM MAS-PL case

study.

5.3.3.2 Constructing a PL-SFTA for a Hazard

The construction of the product-line SFTA using PLFaultCAT proceeds through

three basic steps:

Step 1. Determine the root node and generate the intermediate node tree. As

explained previously and shown in Figure 32, the root node hazard of any SFTA often

derives from a preexisting hazards list or a list generated during the Preliminary Hazard

Analysis (PHA) phase, possibly from a Software Failure Modes, Effects and Criticality

Analysis (SFMECA).

Causal events can be viewed as contributing events to the root node and are

derived from the SFMECA or equivalent domain expertise. The SFMECA provides the

causal events in the "Cause of Failure" or “Local Effect(s)” column as well as the

potential contributing nodes leading to the causal event. (Note that some work, including

[17], [24] and [44], has used a “Cause of Failure” column in place of a “Local Effect(s)

column to describe the origin of the failure mode. In this work, and our previous work in

[22], we use the “Local Effect(s)” column to better indicate that the failure is originating

from a role or variation point of an agent. However, the information contained in these

columns is essentially identical.) Gathering the causal events, we construct an

intermediate node tree to establish the cause-event hierarchy. The intermediate node tree,

 148

while not necessary in the construction of a PL-SFTA, aids in jump-starting the

organization and analysis of the PL-SFTA. Essentially, the intermediate node tree

represents a typical fault tree without the Boolean logic gate relationships between causal

events and effects. To determine the intermediate node tree using this process, we use

the PL-SFTA_CREATE algorithm, shown in Figure 35, starting with the root node event

as the initial event.

PL-SFTA_CREATE(event):

STEP 1 Create node in tree for event

STEP 2 If node is not root node then

STEP 2.1 Attach node to parent node

STEP 3 Scan SFMECA "Possible Effect(s)" column for event

STEP 4 For each row with event found do

STEP 4.1 event = event listed in "Local Effect(s)" column

STEP 4.2 PL-SFTA_CREATE (event)

Figure 35 PL-SFTA_CREATE Algorithm

Following the PL-SFTA_CREATE algorithm, an intermediate node tree is

created. Note that this intermediate node tree does not contain any Boolean logic gates,

nor does it include any information associating the product line’s commonality variability

requirements to the hazard. Applying this algorithm for the root node "A spacecraft to

asteroid collision occurred" using the SFMECA tables from Section 5.2.1 yields the tree

depicted in Figure 36 as one of the subtrees that could potentially cause the root node

hazard. Additionally, Figure 37 illustrates a portion of the intermediate node tree for the

root node “A spacecraft received solar radiation damage”. We will use these as examples

to illustrate the steps throughout this section.

 149

Figure 36 An Excerpt of an Intermediate Node Tree for the Spacecraft to Asteroid

Collision Hazard

PLFaultCAT offers no distinct functionality to aid in completion of this step of

the product-line software fault tree creation. In fact, PLFaultCAT cannot graphically

construct a tree as shown in Figure 36 and Figure 37 without Boolean logic gates relating

causal events to the affected events (this is a result from inheriting the software

architecture and functionality of the original FaultCAT tool). Rather, the intermediate

node tree, constructed manually, acts as an input to PLFaultCAT.

150

Figure 37 An Excerpt of an Intermediate Node Tree for the Spacecraft Received Solar Storm Damage Hazard

 151

Step 2. Refine the intermediate node tree and input into PLFaultCAT. The

intermediate node tree produced in Step 1 can contain nodes that do not reflect the level

of detail needed. A single node could actually be the effect of a combination of causes

not captured in the SFMECA since a SFMECA typically cannot capture a series of causes

leading to a failure event. Thus, domain expertise is needed to analyze the tree for

completeness, capture additional events leading to a failure (e.g., events from the

environment) and to refine nodes as needed. Using our intermediate node tree shown in

Figure 37 for example, it may be desirable to further detail the causes of the node

"Spacecraft failed to use its solar sail as a shield" or, if possible, reference a separate fault

tree for this failure that details the causal factors.

Depending on the level of detail presented in the SFMECA, it may provide insight

into what kind of logic gate should be applied to join children event nodes to their

parents. Traditionally, SFMECA only considers a single failure at a time, thus implying

logical OR gates throughout a PL-SFTA. This is even more evident when the SFMECA

distinguishes the variabilities from each individual failed Item/Event. However, our

experience has shown that some detailed SFMECAs provided enough causal information

to warrant a logical AND gate. For example, using our SFMECA, shown in Table 4, as

well as the intermediate node tree, shown in Figure 36, we can infer that the nodes

"Spacecraft failed to correct corrupted memory" and "Spacecraft did not backup

memory" must be joined by a logical AND gate in order to cause the "Spacecraft’s

memory is corrupted" node. Intuitively, this makes sense. Because of the advanced error

trappings inherent in a PAM spacecraft, the software will only incur corrupt memory if

there indeed has been a memory failure and the PAM spacecraft has failed to recognize a

memory failure.

The caveat to this approach is that the SFMECA should only be used as a

heuristic guide aided by domain knowledge and experts to produce the ultimate logic gate

 152

represented in the PL-SFTA. Thus, the SFMECA should be mined to extract as much

relevant information as possible to assist the construction of the PL-SFTA.

Note that a PL-SFTA can be constructed using other methods as input. For

example, Leveson asserts that other safety analysis techniques such as a Cause-

Consequence Diagram, an Event Tree Analysis, a Hazards and Operability Analysis

(HAZOP) and/or a State Machine Model can be used to help guide the construction of a

SFTA [44]. We illustrated the use of a SFMECA as a guide to constructing the PL-SFTA

since we used it in Section 5.2 and it had not been described in this manner prior to our

work in [17].

In addition to refining each node, we apply domain knowledge to determine the

necessary logical combination of the children nodes to cause the parent node. This is a

similar process to traditional fault tree analysis. Using the PLFaultCAT tool and applying

Step 2 to the intermediate node trees found in Figure 36 and Figure 37 yields the

intermediate software fault trees depicted in Figure 38 and Figure 39, respectively.

Aside from allowing the user to graphically construct a fault tree, PLFaultCAT

allows an annotated description of each node so that the user can attach further details.

This is especially advantageous in that it provides traceability to the hazard analysis. It

also can be used to cross-check the completeness of the SFMECA by ensuring that all

hazard events in the SFTA map to a cause or effect in the SFMECA (i.e., one-way

traceability). We illustrated the completeness checking of a SFMECA and a PL-SFTA in

Section 5.4 when detailing the Bi-Directional Safety Analysis (BDSA) for a safety-

critical multi-agent system product line (MAS-PL) using the SFMECA developed in

Section 5.2.

153

Figure 38 An Intermediate Software Fault Tree for the Spacecraft to Asteroid Collision Hazard in PLFaultCAT

154

Figure 39 An Intermediate Software Fault Tree for the Spacecraft Received Solar Storm Damage Hazard in PLFaultCAT

 155

Step 3. Consider the influence of variabilities on all leaf nodes and tag each

node accordingly. This is the crux of the product-line construction. In this step we

employ a bottom-up approach to analyze each leaf node and determine which

commonalities and/or variabilities contribute to causing the root node event to occur. In

doing this, we associate the range of commonality and variability choices for any

individual product-line member with how it might influence a particular hazard. Not

every commonality or variability will have an influence or appear within any given fault

tree. However, every leaf event node should have an associated commonality, variability,

and/or basic (primary) event (e.g., an environment or user input).

Figure 40 Depicting the Influence of a Commonality for the Spacecraft to Asteroid

Collision Fault Tree in PLFaultCAT

 156

Figure 41 Depicting the Influence of a Variability for the Spacecraft Received Solar

Damage Fault Tree in PLFaultCAT

When considering a variability's influence on a particular leaf node, we consider

the parameters of variation allowed. While many variabilities are features that are simply

present or not present in a product (e.g., a PAM spacecraft will either be able to or not

able to receive messages from mission control warning of an impending solar storm, see

V_SP2 in Figure 41), some variabilities represent an allowable numerical or enumerated

 157

range for a particular feature (e.g., a PAM spacecraft tasked with monitoring the solar

disc to detect an impending solar storm can either assume a passive, warm-spare or active

role, see V_SP1 in Figure 41). Considering the influence of a present or absent variability

on an event is straightforward; we analyze the influence of the variability being present

within the product and not functioning as designed.

If, however, we need to consider an enumerated or range type of variability, we

must consider the various possibilities within the variability and their influence on fault

tree events. For large ranges, safety analysis on each potential variability choice would be

infeasible. Thus, class ranges are used to determine how different ranges could affect

contributing events [76].

For example, looking at the node "Detection Failure" in our example, shown in

Figure 39, and consulting the CVA, shown in Figure 5 and Figure 6 as well as the

Parameters of Variation table given in Table 2, we conclude that this failure node can

only occur if the PAM spacecraft has the feature (variability) that it is to constantly

monitor the solar disc for impending solar storms using the “active” variation point.

Thus, we annotate this node accordingly to indicate that the node "Detection Failure" can

only occur when either one of the variabilities (Warm-Spare or Active) is present in a

product line member. The representation of this is shown in Figure 41.

If, however, the node relates to a commonality rather than a variability, we link

the fault tree’s leaf node with the appropriate commonality. For example, looking at the

node "Position Data" in our example, shown in Figure 38, and consulting the CVA,

shown in Figure 5 and Figure 6 as well as the Parameters of Variation table given in

Table 2, we conclude that this failure node occurs for all PAM spacecraft since all

spacecraft will be able to know its position information. Thus, we annotate this node

accordingly to indicate that the node "Position Data" failure may occur in every product

line member since it is a commonality. The representation of this is shown in Figure 40.

 158

Using PLFaultCAT makes associating a commonality and/or variability with a

failure node straightforward. The PLFaultCAT interface allows you to label the "Basic

Event" nodes, depicted as circles, as a Commonality (shown in Figure 40 under the

heading "PrimaryEvent type") or as a Variability (shown in Figure 41 under the heading

"PrimaryEvent type") as well as defining a label or ID for the variability (the textbox

under the heading "Variability ID"). In the example, in Figure 41, the variability (feature)

has the label "V_SP1" to correspond with the requirement number listed in the CVA. The

"Variability ID" describes the variability (feature) so that it will be recognizable later

when selecting the variabilities to include in a new product line member. For this

example, we simply annotate "SolarStorm = Active" to indicate that a product line

member may or may not have this variability (feature).

The consideration of numerical ranges or values is particularly important because

often not all values of a variability will contribute to a failure. Applying equivalence class

partitioning and boundary value analysis concentrates on the fringe numbers and other

frequently error-prone ranges to improve coverage of possible vulnerabilities. Although

this situation was not encountered in the PAM case study used in this dissertation, we had

encountered it in previous cases. For example, a previous product line had a numerical

range variability that the number of sensors that a product may have varies between 1 and

5 sensors. In this case, when we encounter the situation where the variability of multiple

wind sensors can cause a failure node and the commonality of having one wind sensor

will not, PLFaultCAT can accommodate this case by specifying the variability by

labeling it a "Variability" PrimaryEvent Type and specifying in the "Variability ID" field

a label indicating that multiple sensors must be present in the product line member to

cause the parent failure node. This same approach would be utilized for any enumerated

variability.

 159

If the product-line commonalities and variabilities were previously defined using

DECIMAL (described in Section 2.1.4 and used within the Gaia-PL methodology in

Section 4.2.1.2) [23], [58], [59], the association of a requirement with the leaf node of a

fault tree is much easier. Using PLFaultCAT, we can link a fault tree to the DECIMAL

XML file for the product line and then select the appropriate requirement using the “Link

to Requirement” button. This will bring up a table, shown in

Figure 42, to automatically link the requirement to the leaf node and fill in the

details of the requirement in the appropriate text fields.

Figure 42 Automatically Linking a Product-Line Requirement to a Software Fault

Tree Node in PLFaultCAT

 160

5.3.3.3 Discussion

Throughout the development and construction of the product-line Software Fault

Tree Analysis (PL-SFTA) we associate commonalities and/or variabilities with each leaf

node in the intermediate node tree developed in Step 2 of Section 5.3.3.2. This process

may yield both a commonality and variability being associated with a single failure node.

In this case, intuition may suggest disregarding consideration of the variability since the

causal event will always be present due to the presence of the associated commonality

node. However, the risk of failure posed by the commonality may be mitigated while the

risk posed by the variability remains. Hence, the variability must be retained to aid in the

analysis of the product line, especially as the product line evolves.

Neither the construction of a PL-SFTA nor PLFaultCAT captures product-line

dependencies. This is because the role of the product-line SFTA is to give as complete an

account as possible of potential contributing causes to the root node. Note that the PL-

SFTA does not enforce existing product-line dependencies. Instead, it represents all

possible permutations of choices of values of product-line members and relies on

dependency enforcement prior to the application engineering phase. We discuss this issue

using DECIMAL as a tool to enforce product-line dependencies in Section 5.3.5.

Since SFTA adopts a slightly different perspective when viewing the product line,

it is not uncommon to discover missing requirements. The construction of the product-

line SFTA in PLFaultCAT may have some feedback effect on the CVA in terms of

discovering previously unidentified dependencies. Similarly, missing commonalities and

variabilities, or incorrect parameters of variation may sometimes be identified via this

process. We discuss this issue using the automated safety analysis tools in PLFaultCAT

in Section 5.3.4.

It is interesting to note that the influence of variabilities on hazards will not

necessarily “sink to the bottom” of the fault tree but can instead be dispersed throughout

 161

the tree. Variabilities are commonly thought of as refinements of commonalities so the

expectation is that they will only influence the root node from the lowest levels of the

fault tree [49]. However, we found that this was not always the case. Variabilities,

especially in software, are sometimes add-on features to the system rather than

refinements of a commonality. Feature-oriented variabilities can spawn refinement

variabilities of their own. Situations like this can lead to a PL-SFTA where variabilities

are spread throughout the levels of the tree rather than clustered at the bottom.

It is important to note that the method outlined in Steps 1-3 of Section 5.3.3.2 is

an iterative process that is repeated for all hazards in the hazards list. This will produce a

set of product-line software fault trees.

5.3.3.4 Creating the PL-SFTA for the PAM Case Study Examples

Applying this step to the Prospecting Asteroid Mission (PAM) case study used in

this dissertation for the “A spacecraft to asteroid collision occurred” root node, discussed

in Section 5.3.3.2 yielded a 143-node product line Software Fault Tree Analysis (PL-

SFTA), as partially shown in Figure 43. Specifically, the fault tree consisted of 82 failure

nodes and 61 commonality/variability nodes (of which 54 were for product-line

commonalities and 7 were for product-line variabilities). Similarly, applying this step for

the “A spacecraft received solar radiation damage” root node, discussed in Section

5.3.3.2 yielded a 137-node PL-SFTA. Specifically, the fault tree consisted of 87 failure

nodes and 50 commonality/variability nodes (of which 30 were for product-line

commonalities and 20 were for product-line variabilities). In these two cases, for

example, approximately 76% of the product-line requirements associated to the leaf

nodes of the fault trees were product-line commonalities (i.e., leaf nodes that will be

found in all configurations of the PAM spacecraft for this particular hazard). A full set of

the PL-SFTA hazards for the PAM case study are given in Appendix F.

162

 Figure 43 A PL-SFTA for the Spacecraft to Asteroid Collision Hazard in PLFaultCAT

163

 Figure 44 A PL-SFTA for the Spacecraft Received Solar Damage Hazard in PLFaultCAT

 164

5.3.4 Deriving Additional Safety Requirements from the Product-Line

Software Fault Tree Analysis

After the creation of a product-line software fault tree analysis (PL-SFTA) for a

safety critical product line, PLFaultCAT provides software engineers with the

opportunity to further analyze the system for safety. Figure 33 provides an overview of

the safety analyses possible using a PL-SFTA created in PLFaultCAT. In this section, we

detail how new product-line safety requirements can be derived from the PL-SFTA, how

PLFaultCAT can automatically identify single-point failures and how PLFaultCAT can

identify safety-critical requirements and safety-critical interactions. We also discuss other

analyses that can contribute to the safety analysis of a product line.

5.3.4.1 Deriving New Product-Line Constraints

The product-line Software Fault Tree Analysis (PL-SFTA), described in Section

5.3.3, can aid in the discovery of latent safety requirements by identifying high-risk

variabilities and common causes and by identifying new constraints. The PL-SFTA

construction process produces a set of fault trees with the corresponding contributing

commonalities and variabilities attached to the appropriate leaf nodes. Using this set of

software fault trees, we can identify or even tabulate the most frequent variabilities that

contribute to the root node hazards. If certain variabilities contribute to root node hazards,

additional safety requirements and/or hazard analysis may be warranted to mitigate their

contribution to hazard nodes.

Any high-level event node within a PL-SFTA that has two or more variabilities

connected by an AND gate may warrant a new constraint. Introducing a new product-line

constraint limiting the variability combinations in this situation can preclude occurrence

of this event node and potentially rid the PL-SFTA from this hazard altogether. However,

 165

Figure 45 A Generic Product-Line Software Fault Tree Analysis

care must be taken in deriving new product-line dependencies so that the product line is

not too limited. The hazard severity as well as the existence of alternative preventive

measures must be weighed against the addition of product-line dependencies.

Figure 45 shows a generic example of the derivation of a new product-line

constraint from a logical AND gate connecting two variabilities. This example shows that

we can mitigate the "Causal Event" node by restricting a system in the product line from

having both V1 and V2 features. If this is found to be an acceptable solution, the PL-

SFTA then retains the "Causal Event" subtree for completeness, but the occurrence of the

subtree becomes essentially impossible.

Imposing additional safety requirements in the domain engineering phase

improves the product-line specifications and reduces rework in the application

engineering phase. The safety requirements and/or product-line dependencies derived

from the PL-SFTA can reduce the analysis needed and reduce time-to-market for new

products.

 166

5.3.4.2 Identifying Single-Point Failures In PLFaultCAT

An advantage of a traditional Software Fault Tree Analysis (SFTA) as a safety

analysis technique is the ability to quickly determine the presence of single-point failures

of a single system (i.e., a root node in the SFTA followed by a logical OR gate). A

product-line SFTA (PL-SFTA) allows for the quick identification of single-point failures

over the entire product-line. An example product-line single-point failure for the

Prospecting Asteroid Mission (PAM) case study is shown in Figure 38 and Figure 39.

In the case of a multi-agent system product line (MAS-PL), identifying a single-

point failure in a PL-SFTA provides the ability to pinpoint possible single-point failures

for every possible instantiation of an agent (adhering to the commonalities and variation

points allowed within the MAS-PL). This is advantageous over the traditional application

of a SFTA to a MAS-PL because it is not necessary to manually create each SFTA for

each possible instantiation of an agent and then manually inspect each SFTA for a single-

point failure.

To aid in the identification of single-point failures of a PL-SFTA, PLFaultCAT

provides a single-point failure analysis to automate this process. A single-point failure

analysis searches the set of fault trees in a PL-SFTA for single-point failures (i.e., those

hazards connected by a logical OR gate in the SFTA) at user-specified depth, as shown in

Figure 46. Since a safety-critical product line will typically have several, large fault trees

(e.g., the PL-SFTA for only two of the fault trees for the PAM case study had nearly 250

nodes), the automation of identifying single-point failure will lessen the burden placed on

a safety engineer to manually go through this process. In most cases, a safety engineer

may only be interested in a single-point failure for the causal events directly leading to

the root node failure (i.e., level 1 in PLFaultCAT), PLFaultCAT allows the user to supply

the depth for situations when a deeper analysis is desired or required.

 167

Figure 46 Selecting the Depth to Search for the Single-Point Failures of a PL-SFTA

PLFaultCAT searches the set of fault trees of a PL-SFTA for a product line and

provides the details of the discovered single-point failures, as shown in Figure 47, for the

“Spacecraft to Asteroid Collision” root node, to aid in developing a new safety

requirement (if needed) to mitigate against the single-point failure(s). Upon the

identification of a single-point failure, engineers have the opportunity to take mitigating

steps to improve the safety, dependability and/or reliability of the system. Further, since

SFTA is constructed early in the development lifecycle, mitigating steps can be taken

quite early in software product line’s design and development.

Figure 47 The Single-Point Failure Report Produced by PLFaultCAT

 168

The mitigation of a single-point failure within the PL-SFTA can be done by

introducing additional requirements, architectural components, guard conditions,

operating rules or other counteractions into the design. For example, using PLFaultCAT

to identify the single-point failures for the “Spacecraft to Asteroid Collision” root node of

the PAM case study, shown in Figure 47, a mitigation requirement can be introduced to

turn the subtree rooted at the “Maneuver Failure” into a non-single-point failure, shown

in Figure 43. This node represents the event that spacecraft’s actions to maneuver itself to

prevent a collision with the asteroid did not suffice. Using the information provided in

PLFaultCAT’s single-point failure report, shown in Figure 47, we can understand that

there are three contributing events that can cause this event: 1. the spacecraft’s position

data (i.e., current position, current velocity, current orbit, etc.) may be incorrect; 2. the

spacecraft’s data on the asteroid (i.e., position, shape, 3D model, gravitational field, etc.)

may be incorrect; and 3. the spacecraft’s navigation and guidance functionality (i.e.,

calculating the thrust needed, utilizing the solar sail for navigation, etc.) may have failed.

Each of these events contributes to the spacecraft devising a course that fails to maneuver

away from the asteroid to prevent a collision. Thus, the action that a spacecraft takes to

prevent a collision with an asteroid is individual. If however, a requirement is introduced

to oblige a spacecraft to get a confirmation of its planned course of action to avoid the

asteroid (i.e., an independent spacecraft to devise a course based on its data of the

requesting spacecraft’s positioning data, asteroid data and navigation and guidance

functionality). Using this approach, the spacecraft and another spacecraft would

independently and redundantly calculate how to avoid an asteroid and both spacecraft’s

calculations would have to fail for the “Maneuver Failure” node rooted at this subtree to

occur. Introducing this requirement into the PAM MAS-PL’s Commonality and

Variability Analysis (CVA) and updating the PL-SFTA accordingly will yield the fault

tree shown in Figure 48.

169

Figure 48 Updating the PL-SFTA to Mitigate Against a Single-Point Failure

 170

Note that the uppermost single-point failure (i.e., level 1 in Figure 47) could not

be mitigated against since an asteroid has the ability to assume some risks of a collision

with an asteroid if the potential scientific outcome outweighs the risk (see requirement

C_SP5 in the CVA in Appendix A, page 235). Thus, the collision of a spacecraft and an

asteroid is not always a hazard that can be prevented.

5.3.4.3 Identifying Safety-Critical Requirements in PLFaultCAT

Using a product-line Software Fault Tree Analysis (PL-SFTA) for a safety-critical

product line also allows for the identification of product-line variability requirements or

combinations of variability requirements that disproportionately contribute to hazards.

Scanning the leaf nodes (where commonalities and variation points are associated to low-

level hazards) of the PL-SFTA can lead to the discovery that a particular variability or set

of variation points can contribute to high number of hazards within the set of fault trees

of a PL-SFTA. This information proves valuable if engineers determine that the hazard

risk of leaving the product line’s design unchanged is unacceptable from a safety,

dependability and/or reliability standpoint.

The variability failure contribution analysis in PLFaultCAT analyzes all the PL-

SFTAs to find those variabilities or combination of variabilities that contribute to a high

number of hazards. PLFaultCAT performs this analysis and provides a user with an

ordered list of the most frequently cited product-line commonality and variability in the

set of fault trees of a PL-SFTA, as shown in Figure 49. The requirements value tries to

measure its impact on the leaf node failures in the PL-SFTA. For each leaf node where a

requirement is the sole requirement or the requirement forms a disjunction with other

requirements (i.e., joined by a Boolean OR gate), the requirements value is increased by

one since it solely can contribute to the leaf node failure. If, however, the requirement

forms a conjunction with other requirements (i.e., joined by a Boolean AND gate)

 171

associated to a leaf node, each requirement’s value is increased by its proportion of the

conjunction (i.e., one divided by the number of requirements in the conjunction). In

addition, the variability failure contribution report provides a listing of the groups of

requirements that were found to contribute to a high number of leaf node hazards. For

example, in the PAM case study, it was found that the requirements related to a

spacecraft correctly knowing its positioning information (i.e., current location, current

velocity, current orbit, etc.) as well as having an accurate 3D model of nearby asteroids

are the most safety-critical requirements related to the “Spacecraft to Asteroid Collision”

fault tree.

Figure 49 The Variability Contribution Failure Report Produced by PLFaultCAT

 172

A mitigation strategy for combinations of product-line variabilities can be to add

dependencies, as described in Section 5.3.4.3. For those combinations of product-line

variabilities that contribute to a disproportionately high number of leaf node failures, it

may be necessary to restrict the combinations of these features, via product-line

dependencies, to achieve safety. The inclusion of product-line dependencies in this case

would preclude a product-line member from having this combination of features and

prevent the possible leaf node hazards caused by the interaction of these features modeled

in the fault tree.

Alternatively, a similar strategy for mitigating single point failures can be

adopted, as described above, to limit the impact that the combinations of these

variabilities can have on the safety of the system.

This analysis, in particular, has been found to be useful to help guide another

safety analysis technique, briefly discussed in Section 5.3.8, that investigates feature

interactions. Although a PL-SFTA models a failure statically, a combination of

requirements that leads to a disproportionately high number of leaf node failures may act

as a guide for a dynamic approach to further investigate the interaction of the

requirements’ behaviors. In our experience, the variability failure contribution analysis

helps to scope the feature interactions that should be examined more deeply.

5.3.4.4 Additional Safety Analyses in PLFaultCAT

In addition to the single-point failure analysis and the variability failure

contribution analysis, PLFaultCAT provides additional analysis tools that may be useful

when assessing the safety or reliability of a product line. The minimum-cut set analysis

analyzes a single fault tree of a PL-SFTA and identifies the smallest sets of events that

must occur such that the root node accident will occur. The probability report calculates

the probability of occurrence of the root node given the probabilities of all other nodes.

 173

Although this may not apply for software since failure probabilities for software are

difficult to obtain, this calculation may be helpful when hardware is included in a PL-

SFTA.

5.3.5 Reusing the Product-Line Software Fault Tree Analysis to

Derive the Software Fault Tree Analysis for a Produ ct-Line Member

In Section 5.3.3, we detailed the construction of a product-line Software Fault

Tree Analysis (PL-SFTA) in PLFaultCAT. In this section, we describe the reuse of the

PL-SFTA to derive the software fault trees for new product-line members. The derivation

of the software fault trees for new product-line members from the PL-SFTA occurs

during the application engineering phase of the Weiss and Lai’s Family-Oriented

Abstraction, Specification, and Translation (FAST) model [88]. In the Gaia-PL

methodology, shown in Figure 30, the derivation of the software fault trees for new agent

of a multi-agent system product line (MAS-PL) from the PL-SFTA occurs during the

Analysis and Design Phase.

In this section, we first describe how to define a new product-line member within

the context of the previously defined product-line commonalities and variabilities. Then

we describe how to prune the PL-SFTA, aided by PLFaultCAT, so that the previously

performed safety analysis is be reused. Finally, this section also discusses the flexibility

of the product-line SFTA in supporting product-line evolution as well as limits on reuse.

5.3.5.1 Pruning the PL-SFTA for a New Product-Line Member

In product-line Software Fault Tree Analysis (PL-SFTA) we use a pruning

process followed by a structured inquiry to develop a new product-line member’s

Software Fault Tree Analysis (SFTA) from the PL-SFTA. Figure 43 shows a PL-SFTA

for the Prospecting Asteroid Mission (PAM) case study for the “A spacecraft to asteroid

collision occurred” root node. The reuse of the PL-SFTA performed using PLFaultCAT

 174

Figure 50 The Variability Selection Window to Prune a PL-SFTA

for a new system in the product line has three basic steps: selecting the variabilities for a

new product line member, deriving the product-line member SFTA and applying domain

knowledge, each of which are described below.

Step 1. Select the variabilities for new the product-line member. Producing a

product-line member entails a selection of which variabilities or features to include. This

process can include an ordering of variability selection (e.g., according to domain model

techniques in [88]) or can leave the selection process to the system engineers.

PLFaultCAT facilitates the selection of product-line member's variabilities

through a checkbox window that presents all possible variabilities, shown in Figure 50

for some of the variation points possible in the PAM case study.

A product-line member is created by selecting the variabilities that it will contain

and defining the values of the variabilities. Typically, the selection of a set of variabilities

does not guarantee a legal product-line member. Rather, the choice of variabilities must

satisfy the previously established product-line dependencies and constraints. Thus,

verification must then show that the set of variabilities do not violate any of the defined

product-line dependencies. This is an easy verification check to perform manually on a

 175

small product line but requires automated support as the number of variabilities and

dependencies increase.

PLFaultCAT does not enforce nor check the dependencies prescribed in the

Commonality and Variability Analysis (CVA). Instead, other tools are capable of

enforcing the dependencies and constraints detailed in the CVA for large, complex

product lines [58], [59]. PLFaultCAT is used after the choice of variabilities has been

determined to be legal.

To assist in the definition of a product-line member, DECIMAL (described in

Section 2.1.4 and used within the Gaia-PL methodology in Section 4.2.1.2) [23], [58],

[59] allows a user the flexibility to select the variabilities for a new product-line member

and then define the values for each variability. To make this approach scalable,

DECIMAL automatically verifies that the proposed new product-line member’s set of

variabilities does not violate the defined dependencies. Further, DECIMAL verifies that

all values of the variabilities fall within the allowed ranges. If any violations are

discovered, DECIMAL flags them so that the developer can rectify the problem.

If DECIMAL is used in this manner, PLFaultCAT can read the verified product-

line member(s) from DECIMAL and automatically derive the product-line members’

SFTAs from the PL-SFTA, as described in Step 2. Using this approach, the user chooses

the verified product-line members within PLFaultCAT rather than the variabilities to

include, as described above, before PLFaultCAT will prune the PL-SFTA to derive the

product-line members’ fault trees.

For illustration purposes, we consider a leader PAM spacecraft for the fault tree

with a root node of “Spacecraft to Asteroid Collision”. The variation points of this

spacecraft are not all included in this particular fault tree since the leader PAM spacecraft

are not tasked with detecting, reporting or archiving the 3D model of an asteroid, an

important variability requirement associated to many of the leaf nodes in the fault tree

 176

(see Section 5.3.4.3). Thus, the resulting fault tree using the pruning algorithm described

in Step 2 should only include those parts of the fault tree that are associated to product-

line requirements. The resulting pruned fault tree, for this spacecraft, also represents the

core of the fault tree that will be present for any members of the PAM MAS-PL and

provides a measurement of the reuse potential of the PL-SFTA.

Step 2. Derive the product-line member SFTA. After establishing and

verifying a product-line member, we prune the product-line SFTA to create a baseline

SFTA for the new system. The pruning process first uses a depth-first search to

automatically remove the subtrees that have no impact on the product-line member being

considered and then relies on a small amount of domain knowledge to further collapse

and prune the SFTA. For each verified product-line member, the algorithm starts with the

root node as node and proceeds as follows:

 PL-SFTA_SEARCH (node):

 STEP 1 If node is not a commonality or a selected variability then

 STEP 1.1 Perform DFS for a selected variability or commonality node

 STEP 1.2 If DFS returns true

 STEP 1.2.1 For each child node do

 STEP 1.2.1.1 PL-SFTA_SEARCH(node)

 STEP 1.3 If search returns false then

 STEP 1.3.1 Remove subtree rooted at node

 STEP 2 Else if node is an unselected variability then

 STEP 2.1 Remove subtree rooted at node

A “selected variability” in our algorithm is an optional feature that is required in

the new system. That is, it is a variability requirement that has been included in the

 177

definition of a new product-line member. For example, a select set of worker PAM

spacecraft equipped with a visible imager may be tasked to detect the size, shape and

location of an asteroid and construct a 3D model of the asteroid so that other PAM

spacecraft can use the 3D model to avoid a collision. An unselected variability, however,

is an optional feature or a value of a variability not present in the new system.

Figure 51 Pruning the PL-SFTA in PLFaultCAT

 178

With multiple SFTAs and many nodes in each SFTA, this pruning is not scalable

or practical in an industrial setting without such tool support. PLFaultCAT implements

this algorithm using the variabilities specified to include in the product-line member, as

in Step 1. The tool processes the PL-SFTA XML file to create a new fault tree including

only those nodes associated with the commonalities and chosen variabilities for the new

system. In Step 3 of the domain engineering phase, described in Section 5.3.3.2, a label

was attached to every variability by giving a variability name in the "Variability ID"

textbox. Alternatively, the leaf node could have been directly associated to a variability

defined in DECIMAL, as shown in Figure 42, using PLFaultCAT’s “Link to

Requirement” button automatically filling in the required information into the

"Variability ID" textbox. It is this label, for the chosen variabilities, that is searched for in

the XML file to decide whether a variability node should be retained. Upon completion

of the PL-SFTA_SEARCH logic implemented in PLFaultCAT, the set of fault trees for

the new product-line members are stored in an XML format.

The subtree of the “Spacecraft to Asteroid Collision” fault tree shown in Figure

51 illustrates how the pruning algorithm executes within PLFaultCAT to remove

irrelevant subtrees. Using the PL-SFTA_SEARCH algorithm for a PAM leader

spacecraft, we see that the subtree rooted at “Asteroid Detection” contains neither a

failure node associated with a commonality or with a selected variability. Intuitively, this

implies that this particular spacecraft does not have any functionality related to the

detection of the characteristics of an asteroid, which is true in this case. Thus, the PL-

SFTA_SEARCH algorithm used in PLFaultCAT will remove this entire subtree since it

can have no influence on any of the parent failure nodes of this subtree, shown in Figure

52. If, however, we consider a PAM worker spacecraft equipped with a visible imager

and tasked with detecting the shape characteristics of an asteroid for the subtree

179

Figure 52 Pruning for a Product-Line Member Software Fault Tree in PLFaultCAT

 180

illustrated in Figure 51, we see that the entire subtree should be retained since the

selected variabilities all can have an influence on the failure nodes in each path of the

subtree. PLFaultCAT uses this logic in a depth-first fashion over the entire PL-SFTA to

derive the product-line member's fault tree based on the selected variabilities.

For example, using the 143-node PL-SFTA constructed in Section 5.3.3 on the

hazard “A spacecraft to asteroid collision occurred”, PLFaultCAT was used to

automatically derive the fault trees for a PAM leader spacecraft that has no functionality

to detect the shape characteristics of an asteroid, as described above. The initial execution

of PLFaultCAT reduced the number of failure nodes by approximately to 69 of the

original 82 nodes (i.e., approximately 16%) and is partially shown in Figure 52.

The PL-SFTA_SEARCH algorithm errs on the side of caution since it only marks

the subtrees that can be removed without review and does not actually do any pruning.

This is advantageous from a safety perspective because the application of the algorithm

simply indicates those subtrees where neither commonalities nor selected variabilities can

be found in the subsequent children nodes. This algorithm then defers the actual pruning

to the domain experts, as described in the next step.

3. Apply domain knowledge. After removing the subtrees that had no bearing on

the product-line member under consideration, the tree may be able to be further pruned

and/or collapsed within PLFaultCAT. However, this step requires domain knowledge.

This also illustrates the limit to completely automated product-line Software Fault Tree

Analysis (PL-SFTA) reuse. Removal of subtrees will often lead to orphaned logic gates

or other opportunities to safely simplify the fault trees of a new product-line member,

shown in Figure 52 for the subtree rooted at “Detection Error” discussed in Step 2.

Collapsing orphaned OR gates are trivial. If there is only one causal event

remaining, we collapse the lower event into the parent event. If there is only one

commonality or variability leaf node remaining, we attach it to the parent event and

 181

remove the OR gate. When AND gates are involved, we need to be more cautious.

Intuitively, if at least one input line to an AND gate is removed, the output event is

impossible. However, it was found that this is not always the case and thus each removal

of and AND gate warrants further scrutiny.

 The clean up of the derived fault trees for the new product-line member(s)

presented in this step is a manual process and must be pursued with utmost care. Enough

information should be retained within the product-line member's fault tree to provide

ample information for future hazard analysis and mitigation strategies. It is in this light

that the subtree shown in Figure 52 reduces to the subtree shown in Figure 53 by

removing the useless logic gates and connecting the failure nodes. In this example,

manual pruning further reduced the number of nodes for a PAM leader spacecraft for the

“A spacecraft to asteroid collision occurred” fault tree to 64 of the original 82 nodes.

The application of domain knowledge to the fault tree resulting from Step 2a is

beneficial step in the derivation of the fault trees for a new product-line member(s)

because it removes the extraneous nodes and focuses attention on nodes that can

potentially contribute to failures in a specific product-line member.

Note that, as shown in Figure 33, the set of fault trees for the new product-line members

can additionally utilize the safety analyses provided by PLFaultCAT, detailed in Section

5.3.4 to further verify the safety of the product-line member’s SFTA. After the pruning of

the PL-SFTA to derive the fault trees for a new product-line member, it may be the case

that single-point failures that were not present in the PL-SFTA are now present a specific

product. Thus, further safety analysis of the SFTA for a product-line member should be

considered. Since the SFTA for a product-line member is simply a traditional SFTA,

traditional software safety analysis techniques not covered in this dissertation may be

useful.

182

 Figure 53 Resulting Product-Line Member Software Fault Tree after Manual Pruning

 183

5.3.5.2 Pruning the PL-SFTA for the PAM Case Study Examples

Looking back, the “A spacecraft to asteroid collision occurred” fault tree for a

Prospecting Asteroid Mission (PAM) leader spacecraft, the clean up process described in

Step 3 removed an additional five nodes. Thus, the number of nodes in the fault tree for a

leader spacecraft of PAM multi-agent system product line (MAS-PL) was reduced by

over 22% from the number of failure nodes from the original PL-SFTA. Since the

product-line member considered in this case, a leader spacecraft of PAM MAS-PL,

contained none of the variabilities of this particular fault tree, the pruned fault tree

represents the common parts of the fault tree that will remain for all member of this

product line. Thus, specifically for this PL-SFTA, approximately 78% of the fault tree

can be reused for all 160 unique types of spacecraft for the PAM MAS-PL. Further,

PLFaultCAT was able to accomplish most of the work automatically. In this case,

PLFaultCAT did 72% of the pruning of a PL-SFTA possible and only required a 28% of

the effort to be done manually.

Similarly, for the “A spacecraft received solar radiation damage” fault tree,

discussed in Section 5.3.3.2, it was found that approximately 60% of the tree was

common to all 160 unique types of spacecraft for the PAM MAS-PL and that

PLFaultCAT was able to automatically do 72% of the pruning. A further discussion on

the results of the application of the PL-SFTA technique described in this section and its

impact on reusability and safety are provided in Section 5.3.8.

5.3.6 Accommodating Evolution in the Product-Line Software Fault

Tree Analysis

It is often the case that additional variabilities are added as features to the initial

product line (e.g., new scientific goals are desired in the PAM case study requiring new

onboard scientific equipment and software functionality). To safely include the new

 184

variabilities, we must perform a limited amount of domain engineering and hazard

analysis to incorporate the new variabilities in order to ensure that future systems are

safe. In particular, new variabilities as well as new values for existing variabilities must

iterate the relevant steps in the two-phase framework illustrated in Figure 32 and Figure

33. This includes modifications to the requirements specification (as needed), as well as

to the Commonality Analysis (CVA) and Software Failure Modes, Effects and Criticality

Analysis (SFMECA) if they are affected.

In addition, the PL-SFTA is updated to incorporate the changes. If an SFMECA

was constructed, the addition of variabilities can add new rows to the SFMECA table(s)

or change the failures or effects in already existing rows in the SFMECA table(s). The

PL-SFTA_CREATE algorithm, as detailed in Section 5.3.3.2, analyzes the new

SFMECA rows and any additions to the preexisting SFMECA rows that can be

influenced by the inclusion of the new variabilities. Following this process incorporates

the new variabilities into the PL-SFTA by including their causal event nodes into the

fault trees. The graphical view of the fault tree that PLFaultCAT provides makes

updating the PL-SFTA to incorporate new variabilities (features) and to derive a new

product-line member's SFTA efficient enough for it to be practical for projects to

maintain the fault tree as a current product-line artifact.

5.3.7 An Alternative Approach for Product-Line Sof tware Fault Tree

Analysis Specific to Multi-Agent System Product Lin es

In Section 5.3.3.2, a general approach was provided to construct a product-line

software fault tree analysis (PL-SFTA) for a safety-critical product line. In this approach,

product-line requirements were associated with the leaf nodes (see Section 5.3.3.2) of a

fault tree so that product-line member’s fault tree can be derived from its set of

 185

variabilities (see Section 5.3.5). This is a rather fine-grained approach since it uses the

requirements to relate a product to the nodes of a fault tree.

In the design and development of a multi-agent system product line (MAS-PL),

described in Chapter 4, the product-line requirements are refined and implemented in the

roles and variation points possible in an agent (see Section 4.2). Since an agent (i.e., a

product-line member of the MAS-PL) is defined by the roles and the variation points

possible in its roles, it may desirable to associate the leaf nodes of a fault tree with the

variation points rather than the requirements [19]. This a coarser-grained approach since

it uses the roles and variation points, typically composed of a set of requirements, to

relate a product to the nodes of a fault tree.

In the previous sections, we illustrated the construction of the PL-SFTA for the

Prospecting Asteroid Mission (PAM) MAS-PL by associating the requirements of the

MAS-PL with the leaf nodes of a fault tree. In this section, we provide our approach to

construct a PL-SFTA specifically for a MAS-PL associating the variation points to the

leaf nodes of a fault tree rather than the requirements. Note that many of the steps

provided here are similar to those discussed previously. Yet, to highlight the differences

and provide completeness for our PL-SFTA for safety-critical product lines and MAS-

PL, we briefly discuss the steps here. In [19], we have found that using the variation

points with the leaf nodes of a fault tree is useful when describing a MAS.

To build a PL-SFTA for any given role and its associated variation points, the

following steps should be taken:

1. Determine the root node of the fault tree. The root node is a hazard of

concern in the system. It may come directly from a negation of one of the

safety properties listed in the Safety Properties section of one of the Role

Schema or the Variation Point Schema (see Section 4.2) or from a

previously determined domain-specific hazards list.

 186

2. Repeatedly generate a list of causes for each failure event starting at the

root node. This process continues until the desired granularity is achieved.

This process heavily relies on domain knowledge, previous experience and

in-depth requirements analysis. The causes for each failure may come from

requirements of any, all or a combination of a role's variation points.

Alternatively, a Software Failure Modes, Effects and Criticality Analysis

(SFMECA) can be constructed from the Variation Point Schema (see

Section 5.2) and can be used to aid this step (see Section 5.2).

Figure 54 Depicting the Influence of a Role’s Variation Point for the Spacecraft

Received Solar Damage Fault Tree in PLFaultCAT

 187

3. From the list of failures and causes generated in the previous step, construct

a tree connecting the causes of a failure to a failure by logical AND or OR

gates. This tree should now resemble a traditional software fault tree [44].

4. Input the constructed software fault tree to the PLFaultCAT tool.

5. For each of the leaf nodes of the resulting software fault tree in

PLFaultCAT, consider which role's variation points are the source of the

fault and tag the node accordingly. As shown in Figure 54, to tag the leaf

node so that it is associated with a variation point, we again use a circular

node in PLFaultCAT and document the name of the variation point that can

cause the leaf-node failure. Note that this is the same fault tree as shown in

Figure 41 but associating a variation point rather than a requirement to the

fault tree’s leaf node. It is possible that more than one variation point is

tagged to one leaf-node failure. In this case, the tags representing a

variation point should be connected to the leaf node via an OR gate (since

for any given role only one variation point can be active at any given time).

These steps yield a PL-SFTA in which every leaf node is associated with one or more of

the role's variation points or an external event.

After constructing and inputting a PL-SFTA of a MAS-PL using the Variation

Point Schema requirements specification template, we can automatically generate the

software fault tree for a particular role regardless of which variation points it contains for

any given member of a MAS-PL. Using PLFaultCAT, we specify which variation points

a member has, shown in Figure 55, and PLFaultCAT automatically trims the PL-SFTA to

produce a fault tree specific to the combination of variation points selected just as

described in Section 5.3.5.

 188

Figure 55 Variation Point Selection to Derive an Agent’s PL-SFTA in PLFaultCAT

This mechanism of PL-SFTA construction and PLFaultCAT utilization provides

an initial safety analysis of an agent's role (including its variation points). This approach

also allows for reuse of some of the safety analysis artifacts in that the PL-SFTA can then

be automatically derived for any agent employing the same role and a combination of the

role's possible variation points:

1. Determine how the new variation point can contribute to the root node

hazard and each non-leaf node of the fault tree.

2. Repeatedly generate a list of causes for each new failure event created from

the previous step.

3. From the new list of failures and causes, add the new nodes in PLFaultCAT

to the previously constructed fault tree.

4. For each leaf node of the updated fault tree, consider whether the new

variation point can contribute to the fault. Those leaf nodes that can be

caused by the new variation point are tagged in a similar manner as when

the fault tree was originally created.

This process produces an updated PL-SFTA within PLFaultCAT such that fault trees can

be automatically generated using the new variation point and the previously documented

variation points.

 189

The use of a SFT in this manner provides software engineers some assurance that

the system requirements are safe (i.e., will not contribute to the hazards). In the PAM

MAS-PL case study, a PL-SFTA for the possibility of the failure "A spacecraft received

solar radiation damage", also discussed in Section 5.3.3.2, for the role

"SolarStormWarner", described in Sections 4.2.2.3 and 5.3.3.2 for the variation points

(Passive, Warm-Spare and Active) may provide some assurance that the mission-critical

system is not vulnerable to this single-point failure. Using PLFaultCAT as described in

Section 5.3.2 and 5.3.4, designers can quickly generate software fault trees for all

variation point combinations of the SolarStormWarner role after the initial construction

of the PL-SFTA. This is both more efficient and more effective than serially constructing

all the trees from scratch for the power set of the variation points (Passive, Warm-Spare

and Active) for the SolarStormWarner role.

5.3.8 Evaluation and Discussion

In the domain engineering phase PLFaultCAT did not provide any significant

advantages over other fault tree representation tools beyond providing the analyst with an

additional opportunity to embed textual hazard analysis information into the fault tree.

This allows a cross-check of the information provided in the fault tree with previously

derived safety requirements, the Software Failure Modes Effects and Criticality Analysis

(SFMECA) and other hazard analysis documents.

In the domain engineering phase, the application of the Product-Line Software

Fault Tree Analysis (PLSFTA) to the Prospecting Asteroid Mission (PAM) case study

developed four fault trees, given in Appendix F, to analyze the safety-critical hazards

indicated by the requirements. This PLSFTA included 85.7% of the PAM’s commonality

requirements and 72.5% of its variability requirements. That is, 85.7% and 72.5% of the

 190

Table 9 Results of the Application of PL-SFTA to the PAM Case Study

Hazard
Total

Failure
Nodes

Common
Failure
Nodes

% Commonality
Requirements

Core
Reuse

PLFaultCAT
Automation

Spacecraft to Asteroid Collision 82 64 88.5% 78.0% 72.2%

Spacecraft to Spacecraft Collision 84 61 63.8% 72.0% 82.1%

Spacecraft Solar Storm Damage 87 52 60.0% 59.8% 72.2%

Failure to Detect Solar Storm 91 13 6.7% 14.3% 93.8%

PAM requirements, respectively, were associated to at least one of the leaf nodes in the

set of fault trees of the PAM’s PLSFTA.

In the application engineering phase, however, PLFaultCAT provided significant

advantages from a reuse perspective by exercising the pruning method outlined in

Sections 5.3.5. In the PL-SFTA considered for the PAM case study considered in this

dissertation, the PL-SFTA was found to contain approximately 54% failure nodes that

would be common to all 160 unique spacecraft of the PAM multi-agent system product

line (MAS-PL). That is, the minimum expected reuse of the PL-SFTA for any given

PAM spacecraft would be 54%. This calculation and the specific data leading to this

result are described next.

Table 9 provides the results for each of the hazards examined using PL-SFTA for

the PAM case study. The “Hazard” column represents the root node hazard of a fault tree

in the PL-SFTA (see Appendix F, page 311); the “Total Failure Nodes” column

represents the total number of failure nodes of a fault tree as build in Steps 1-3 described

in Section 5.3.3.2; the “Common Failure Nodes” column represents the number of failure

nodes that will be common to all product-line members of the PAM MAS-PL (i.e.,

pruning the PL-SFTA for all variabilities); the “% Commonality Requirements”

represents the percentage of the requirements associated to the leaf nodes of a fault tree

that are product-line commonality requirements; the “Core Reuse” column represents the

percentage of the failure nodes that are common to all product-line members of the PAM

 191

MAS-PL (i.e., the common failure nodes of a fault tree divided by the total number of

failure nodes of a fault tree); and, finally, the “PLFaultCAT Automation” column

represents the percentage of the nodes that could be safely and automatically pruned from

the PL-SFTA using PLFaultCAT.

Although the overall reuse of the PL-SFTA for any spacecraft of the PAM MAS-

PL developed in this dissertation is approximately 54%, in most cases the reuse potential

of a fault tree in the PL-SFTA for a specific PAM spacecraft was in the 60%-80% range.

The only exception was the “Failure to Detect a Solar Storm” fault tree which only had a

minimum of a 14% reuse potential.

The contributing factor of a lower reuse potential of the PL-SFTA is its relation to

the commonality and variability requirements. For example, the “Spacecraft to Asteroid

Collision”, “Spacecraft to Spacecraft Collision” and the “Spacecraft Solar Storm

Damage” fault trees (see Table 9) all had root nodes directly related to the C_SP3, C_SP1

and C_SP6, respectively product-line commonalities of the PAM MAS-PL (see

Appendix A, page 234). Since each of these requirements necessitates a PAM spacecraft

to prevent the hazards outlined in these fault trees, all PAM spacecraft will be equipped

with the functionality to prevent the hazard. Thus, the reuse of these fault trees in the PL-

SFTA is great. However, for a hazard that stems from a product-line variability, such as

the “Failure to Detect Solar Storm” hazard, the reuse potential is much less since the

failure of the product-line variability to mitigate against the hazard is only found in a

subset of the product line’s members. Note that, however, this particular fault tree’s reuse

would be significantly higher (i.e., in the 80%-100% range) for those spacecraft that have

the capability to monitor the solar disc for impending solar storms (i.e., the

SolarStormWarner role’s Warm-Spare or Active variation point, see Appendix C, page

298).

 192

Further, this case study found that, of failure nodes that could be safely pruned

from a PL-SFTA to derive the fault trees for a new product-line member, PLFaultCAT

was able to automatically perform a minimum of 72% of the trimming without losing

necessary information according to the PL-SFTA_SEARCH algorithm. Thus, 28% of the

work was left to be done manually by an engineer. This metric reflects the effort saved in

reuse of the PL-SFTA.

The automation that PLFaultCAT can provide when pruning a PL-SFTA for a

specific member(s), is sensitive to the number of Boolean AND gates in the fault tree. As

a result of the conservative pruning approach of the PL_SEARCH algorithm described in

Step 2 of Section 5.3.5.1, PLFaultCAT will not automatically remove the AND gates as a

safety precaution. Thus, PLFaultCAT will provide a larger amount of automated pruning

for those fault trees of a PL-SFTA with fewer AND gates. Despite this, in the PAM case

study we found that the automation to manual effort was at least a 3:1 ratio.

These results compare to those of a previous case study we performed in [24] on

Weiss and Lai’s Floating Weather Station (FWS) product line. This case study, unlike the

PAM case study presented in this dissertation, was for a smaller, traditional software

product line (i.e., not agent-based). In the FWS study, it was found that a smaller portion

of the PL-SFTA, 45%, was common to all products of the product line. However, like the

PAM case study, this case study found that PLFaultCAT was able to automatically prune

70% of the nodes that could safely be pruned.

The difference in the amount of common failure nodes in a PL-SFTA to all

product-line members (i.e., 45% common in the FWS study, 54% common in the PAM

study) is likely due to the type of application used in this case study. In the FWS study

[24], the results reported in the FWS study reflect the application of PL-SFTA to a single

fault tree for a case study consisting of fewer than 20 requirements evenly split between

 193

commonalities and variabilities. More importantly however, is that the product-line

members of the FWS did not share the same safety concerns as in the PAM study.

In the PAM study, every spacecraft had to be concerned with collisions with

asteroids, collisions with other spacecraft and damage from the solar radiation present

during a solar storm. These common safety concerns are thus reflected in the associated

product-line commonality requirements. Thus, the PL-SFTA for the “Spacecraft to

asteroid collision”, “Spacecraft to spacecraft collision” and “A spacecraft received solar

radiation damage” fault trees had similar causes that could, for the most part, originate to

the commonalities of the PAM MAS-PL. As a result, a large portion of the PL-SFTA

could be reused regardless of the specific configuration of the spacecraft.

The agent characteristics of the PAM case study as well as the types of

variabilities that were present in the case study had a large impact on this result. The

spacecraft of the PAM case study had the inherent onus to be responsible for protecting

and healing itself from the possible dangers of space exploration. For this reason, each

spacecraft is to be equipped with the behavior to protect itself from the types of hazards

modeled in the PL-SFTA. Further, the variabilities of the PAM MAS-PL concerned the

differing types of scientific exploration possible in the spacecraft and had only a minor

impact on the leaf nodes of the PL-SFTA.

The implication of this result is that a PL-SFTA may best suit a MAS-PL

compared to a traditional product line since the agents of a MAS-PL will typically also

include self-protecting and self-healing characteristics as commonalities and may have

variabilities that are less likely to be safety-critical. However, for those traditional

product lines that have few variabilities that will impact the safety of a system, a PL-

SFTA can be applied and achieve the results found in the PAM study. Yet, even for those

traditional product lines that may have a large number of variabilities that will impact the

safety of a system, such as the FWS case study, the reusable part of the PL-SFTA is

 194

modest and likely advantageous compared to the alternative of individually constructing

the safety analysis for each different member.

A concern for performing safety analysis on safety-critical product lines is

whether the technique is scalable as the product line grows more complex by

incorporating more variabilities and product-line members. From the experience of

applying the PL-SFTA to the PAM case study in this dissertation, it appears that our

method and tool will scale adequately as the product line grows more complex. This is

because most of the added complexity in a large product line lies in the domain

engineering phase when the PL-SFTA is constructed. In Chapter 4 we provided a

structured process to construct the SFMECA for a MAS-PL from the Variation Point

Schemas using the Gaia-PL methodology. Since, the construction of the PL-SFTA

described in Section 5.3.2 relies heavily on the aid of a SFMECA, the scalability is at

least as robust as that of the SFMECA. Additionally, it should be clear that the reuse of

the product-line fault tree approach is far more efficient especially for large product lines

than to serially construct SFTAs for each of the desired product-line members of a

product line.

The communicability of a PL-SFTA created in PLFaultCAT with other

applications is high since PLFaultCAT provides a user with three different views of any

given fault tree: a standard graphical fault tree view, an XML file view and a text-based

view. This variety of PL-SFTA views should allow PLFaultCAT's integration into other

safety analysis techniques and tools. The XML output file utilized in PLFaultCAT

supports straightforward linking with existing static analysis tools. For example, the use

of a PL-SFTA created in PLFaultCAT with other applications (such as Relex or Galileo)

would at most only require a translation program to mediate the format of the XML file.

Finally, it should be noted that the reliance on domain expertise and knowledge of

the proposed system to construct the PL-SFTA only guarantees that the PL-SFTA is only

 195

as good as the engineer creating it. Thus, although this chapter provides a set of

structured steps to guide the construction of a PL-SFTA using a SFMECA, the

responsibility of the accuracy and completeness of the fault trees of a PL-SFTA lies on

the software engineers rather than the PL-SFTA. However, Section 5.4 describes how the

SFMECA and PL-SFTA can be used in a Bi-Directional Safety Analysis (BDSA) to aid

in the completeness checking of the PL-SFTA.

5.3.9 Using the Product-Line Software Fault Tree A nalysis to Aid

Other Safety Analysis Techniques

In addition to the safety analysis opportunities that the product-line Software

Fault Tree Analysis (PL-SFTA) offers in PLFaultCAT, discussed in Section 5.3.4, PL-

SFTA and PLFaultCAT can be used to support and guide other safety analysis techniques

for safety-critical product lines. In particular, PL-SFTA and PLFaultCAT have been

shown to be useful in providing guidance for the safety analysis for software product

lines using a state-based modeling approach [45], [46], [47], [48]. This approach provides

software engineers with a structured way to build state-based models for a safety-critical

product line, systematically explores the relationships between the software’s behavioral

variations and potential hazardous states and supports the automated verification of safety

properties across a product line.

To support the state-based modeling approach, a PL-SFTA was used to derive the

required scenarios (i.e., those scenarios that enforce a safety property) and forbidden

scenarios (i.e., those scenarios that emulate a hazard) to exercise against a state model. In

addition, PLFaultCAT aids in identifying the safety-critical feature interactions by

searching for those product-line requirements that frequently contribute to the possible

causes of the fault tree’s failure nodes. PLFaultCAT can automatically identify those

product-line requirements and combination of product-line variabilities (i.e., features)

 196

that contribute to the most potential failures as defined in the PL-SFTA, as was described

in Section 5.3.4.

This analysis provides a prioritized list of those product-line requirements and

feature interactions that warrant further scrutiny using an executable state-based model.

That is, those product-line requirements and feature interactions that are deemed to

contribute to the most fault tree failure nodes are more likely to have unsafe interactions

with existing product-line requirements and should have their behaviors modeled in order

to determine the safe/unsafe behaviors using a dynamic analysis.

The use of a state-based modeling approach for safety analysis is advantageous

because it can both build on and extend the PL-SFTA. Unlike a PL-SFTA, an executable

state-based model can analyze and model the timing/ordering of failure events to

determine their possible safety implications. In addition, we found that because the SFTA

is a static asset, it lacks the ability to animate and explicitly show how a safety property

may be violated [45], [48]. The use of an executable state-based model, however, allows

the simulation of the behaviors described by the requirements in the fault tree to illustrate

the violation of a safety property.

Moreover, the executable state-based model, unlike the PL-SFTA, can explore

multiple solutions to come up with a reliable and easy-to-implement mitigation strategy.

This then drives the updating of the product line’s requirements to include the new safety

requirements. Such feedback is impossible to ensure using the PL-SFTA alone. Thus, the

inclusion of a state-based modeling safety analysis approach may improve the safety case

that a safety-critical product line must make when requiring certification from an outside

governing body.

The use of the PL-SFTA technique and its tool, PLFaultCAT, in concert with the

state-based provides software engineers with a set of tools to best assess the safety of a

software system and make it more practical for software engineers to check the behavior

 197

of product variations for potential safety consequences as well as enhancing the models

reusability as a safety asset for new products. Note that this line of research is not the

primary work of this author and thus is not the focus of this dissertation. A full

description of the safety analysis for software product lines using a state-based modeling

approach is provided in [45], [46], [47], [48].

Although we have only demonstrated the state-based modeling safety analysis

techniques on a traditional product line (i.e., not an agent-based system), their application

towards a multi-agent system product line (MAS-PL) should be straightforward and

would further provide safety analysis techniques that can both analyze a MAS-PL and

provide reusable safety analysis assets for future systems. Section 6.2 further details this

approach as Future Work.

5.3.10 Summary

This section detailed and illustrated our extension of the traditional Software Fault

Tree Analysis (SFTA) technique to an entire product line with the support of a software

tool, PLFaultCAT on a safety-critical multi-agent system product line (MAS-PL). This

extension supports the construction of a product-line SFTA (PL-SFTA) in PLFaultCAT

from common hazard analysis assets during the domain engineering phase of software

product-line engineering. We showed how new safety requirements can be discovered

and mitigations to possible hazards can be introduced through the introduction of new

product-line requirements or constraints. This section also presented the pruning

technique developed and implemented in PLFaultCAT during the application engineering

phase to derive the SFTA for single product members of the product line.

The Software Failure Modes, Effects and Criticality Analysis (SFMECA),

described in Section 5.2, and the Product-Line Software Fault Tree Analysis (PL-SFTA),

described in this section, can be viewed as complementary since the output of the

 198

SFMECA (i.e., the potential system-wide hazards) should match-up with the inputs of the

PL-SFTA. Similarly, the output of the PL-SFTA (i.e., the low-level, local errors that

cause a system-wide hazard) should match-up with the inputs of the SFMECA. The

comparison of a SFMECA, a forward analysis technique, and a PL-SFTA, a backward

analysis technique, is used in a Bi-Directional Safety Analysis to help ensure consistency

and completeness. The next section describes the BDSA for a MAS-PL using the

SFMECA developed in Section 5.2 and the PL-SFTA developed in Section 5.3.

5.4 Bi-Directional Safety Analysis for Multi-Agent System

Product Lines

The development of a forward and backward safety analysis technique for a

safety-critical, multi-agent system product line (MAS-PL) was partly motivated by the

opportunity to perform a Bi-Directional Safety Analysis (BDSA) on the design of a

MAS-PL to better provide assurance of its safety. The results of a forward search, such as

the Software Failure Modes Effects and Criticality Analysis (SFMECA) described in

Section 5.2, and a backward search, such as a product-line Software Fault Tree Analysis

(PL-SFTA), will not necessarily be the same, often times both types are utilized in the

safety analysis of a safety-critical system [44].

The SFMECA and PL-SFTA techniques developed in this work can be viewed as

complementary since the output of the SFMECA (i.e., the potential system-wide hazards)

should match-up with the inputs (i.e., high-level or root nodes) of the PL-SFTA. Indeed,

in Section 5.3.3.1 it was mentioned that one source of the hazards to model as a root node

of a PL-SFTA can be the SFMECA tables. Similarly, the output of the PL-SFTA (i.e., the

low-level, leaf node failures of a fault tree) should match-up with the inputs (i.e., local

effects column) of the SFMECA. For example, we can verify the completeness of the

SFTA by ensuring that every unique hazard listed in the SFMECA table with a particular

 199

level of criticality or higher (e.g., major criticality) is a root node within one of the fault

trees of the SFTA. Thus, BDSA helps to ensure that the safety analyses used for the

forward and backward search techniques are consistent for a safety-critical software

product line.

This section details a structured process to perform a BDSA tailored to the

requirements specification of a safety-critical MAS-PL generated from the Gaia-PL

methodology (see Chapter 4) using the SFMECA (see Section 5.2) and PL-SFTA (see

Section 5.3).

5.4.1 Assessing Gaia-PL’s Requirements Specificati ons using Bi-

Directional Safety Analysis

To assess and derive safety requirements of the Role Schemas and the Variation

Schemas from Gaia-PL using the SFMECA, the following steps suffice:

1. For each Role Schema and Variation Point Schema:

a. For each data/event listed in the Data/Event column of the SFMECA

for the role represented in the Role Schema / Variation Point Schema:

i. Decide at which level of criticality (i.e., critical, major, etc.) the

role must provide mitigating requirements to ensure safety. This

may correspond to what level of system certification is required

of the system.

ii. For each listed data/event failure mode listed in the Failure Mode

column of the SFMECA with a criticality of at least the minimum

criticality level needed for analysis (from Step i):

a. Consult the local effect of the failure mode in the Local

Effect(s) column of the SFMECA. Assure that the software

mitigates the local effect. For data, the mitigating

 200

requirement could be some sanity check (i.e., checking some

other piece of data or monitoring that the data is reasonable

given the software’s current state). For events, the

mitigation requirement could be some guard to ensure that

the event is occurring under the right conditions and at the

appropriate time given the software’s current condition.

b. Check to make sure that the MAS-PL software will prevent

the hazard described in the Possible Hazard column of the

SFMECA from occurring in the PL-SFTA. That is, check

that the hazard is mitigated in both the SFMECA and PL-

SFTA.

c. If the mitigation does not suffice to prevent the local effect,

the software may not be compliant with system safety

requirements.

For example, applying this process to the Prospecting Asteroid Mission (PAM)

case study used in this dissertation identified several new mitigation requirements to

prevent the hazard of a “spacecraft to asteroid collision” that were then added to the

Variation Point Schema. For the “halt/abnormal termination” failure mode for the

SFMECA given in Table 5, the mitigation requirement was that the

MoveToAvoidCollision activity be atomic (either it executes completely or not at all).

Alternatively, a new NotifyFinishMoveNewPos protocol could be introduced to have the

spacecraft notify nearby spacecraft (or the leader spacecraft in charge of the subswarm)

of the completion (or non-completion) of the MoveToAvoidCollision activity.

Additionally, a mitigation requirement for the “timing/order” failure mode could be to

assign a timestamp deadline by which each MoveToAvoidCollision activity must

 201

complete before. Without the BDSA and SFMECA process detailed above, safety

requirements such as these could be overlooked.

5.4.2 Bi-Directional Safety Analysis’s Role in Str engthening the

Safety Case of a Multi-Agent System Product Line

For the multi-agent system product line (MAS-PL) applications of the future,

safety certification may be desired or required before the system can be deployed.

Certification is a process whereby a certification authority determines if an applicant

provides sufficient evidence concerning the means of production of a candidate product

and the characteristics of the candidate product so that the requirements of the certifying

authority are fulfilled [31], [40], [69], [72]. Certification may apply to the development

process, the developer or the actual product [55]. Since it is insufficient to certify the

process or developer for the software of safety-critical systems, building a safety case that

provides “an argument accompanied by evidence that all safety concerns and risks have

been correctly identified and mitigated” [26] aids in the certification of the product.

The safety analysis techniques and tools described in this chapter integrate the

reuse potential of safety analysis assets into the design and development of a safety-

critical MAS-PL so that they can be used to better make a safety case when system

certification is required as well as allowing the safety engineer to verify the safety

requirements of the system and can discover missing safety requirements. These safety

analyses provide some assurance that core assets defined in the domain engineering phase

are being safely reused during the application engineering phase.

In addition to strengthening the safety case of a MAS-PL using the process

described in Section 5.4.1, the BDSA can contribute to the certification of a safety-

critical MAS-PL. Specifically, the use of BDSA can assist in certification of MAS-

PL in two ways:

 202

• Demonstration of compliance. The use of BDSA provides assurances that

certain classes of failure modes that might occur in the individual agents

will not produce unacceptable effects in the composite system (e.g., the

constellation, or fleet). The artifacts produced in this investigation

(SFMECA tables, PL-SFTAs, and the Role Schemas and Variation Point

Schemas responsibility statements) help demonstrate compliance of the

failure-monitoring and failure-mitigation software tasked with the system

safety requirements.

• Enabling reuse of certification arguments. The use of product BDSA can

reduce the burden of certification for systems composed of identical or

near-identical units (e.g., the Prospecting Asteroid Mission (PAM) case

study used in this dissertation). In systems where each agent is a member

of a product line, the similarities can be leveraged for efficient reuse of the

safety analysis artifacts. At the same time, the use of Role Schemas and

Variation Point Schemas captures any variations among the roles that the

agents may assume. The Role Schemas and Variation Point Schemas thus

help ensure that the reuse of the artifacts in the certification arguments

accurately reflects any differences among the agents.

Thus, the use of BDSA can greatly improve the effectiveness of the safety analysis

artifacts of a safety-critical MAS-PL.

5.5 Summary

This chapter detailed our safety analysis techniques and tools for the analysis of

safety-critical multi-agent system product lines (MAS-PL). We detailed three safety

analysis techniques: product-line Software Fault Tree Analysis (PL-SFTA), Software

 203

Failure Modes, Effects and Criticality Analysis (SFMECA) and Bi-Directional Safety-

Analysis (BDSA).

PL-SFTA and its tool, PLFaultCAT, provide the capability to construct a software

fault tree for a product line and then reuse the PL-SFTA to automatically derive the fault

trees for individual product-line members. We detailed how to build a product-line fault

tree by associating the leaf nodes of a fault tree to the related product-line requirements.

For a PL-SFTA, we showed how PLFaultCAT can automatically analyze the set of PL-

SFTAs for single-point failures and automatically identify safety-critical requirements

and requirement interactions using PLFaultCAT.

The SFMECA safety analysis technique was incorporated into our Gaia-PL

methodology to produce a safety analysis technique specifically for a safety-critical

MAS-PL. We provided a structured process to analyze the Variation Point Schemas

produced in the Gaia-PL methodology to discover the ways in which the agents of the

MAS-PL can fail and the effects of the failures on the entire system. The information

generated here can aid in discovering missing safety requirements, designing mitigation

requirements to prevent failures and verify existing safety requirements.

Finally, we detailed how the SFMECA derived from the Gaia-PL assets and the

PL-SFTA can be used together to perform a BDSA on the safety analysis assets of a

MAS-PL improves the SFMECA and PL-SFTA by identifying incompleteness in both

safety analyses. This aids in strengthening the safety analyses of the MAS-PL and

provides further opportunities to discover missing safety requirements. Further, the

BDSA process described additionally contributes to system certification by verifying

software design compliance with reliability, robustness and safety standards by

strengthening the safety case when the demonstration of the compliance of failure-

monitoring and failure mitigation software tasked with the safety requirements to safety

standards in the MAS-PL is necessary.

 204

This chapter’s objective was to be able to provide safety analysis artifacts for a

new system in MAS-PL in a timely, cost-effective and safe manner. The safety analysis

techniques and tools presented in this chapter should provide software engineers with a

set of instruments to help build safety-critical MAS-PL in such a way that the safety

analyses assets can be reused for future systems.

 205

CHAPTER 6. CONCLUSION

Chapter 1 presented the following thesis statements for the work presented in this

dissertation: an AOSE methodology can be devised to enhance the reuse in the design and

development of a safety-critical MAS by incorporating software product-line engineering

principles to develop reusable software engineering assets in a way that allows software

engineers to take advantage of the reusable assets to create MAS; and that product-line

safety analysis techniques and tools can be developed and adopted to support the

development of a safety-critical MAS by discovering, analyzing and verifying the MAS’s

requirements in a way that produces reusable safety assets that can be used for future

systems of the MAS.

This chapter concludes this dissertation with a discussion of how this work

supports the two claims of the thesis and a summary of the contributions. Future avenues

of research stemming from this dissertation are presented and, finally, concluding

remarks are provided reflecting on the motivation, contributions and application of this

research.

6.1 Support for the Thesis

Chapter 2 first presented the background information and related research that lay

the foundation for the AOSE methodology, Gaia-PL (Gaia – Product Line), presented

here. Software product-line engineering is an established approach to reusing software

development assets as a mechanism to reduce the development cost of software systems

developed within a software product line. AOSE is an emerging software engineering

field to design and develop highly distributed, intelligent software systems. Gaia-PL

introduces and incorporates ideas from software product-line engineering into AOSE so

that agent-based systems can take advantage of the reuse inherent in software product-

line engineering to achieve a reduction in development cost. This chapter also discussed

 206

the related approaches in these areas to identify the differences of previous work from the

Gaia-PL approach described in Chapter 3.

Chapter 2 also discussed software safety analysis techniques and tools in the

context of software product lines. Software safety analysis techniques, including

Software Fault Tree Analysis (SFTA), Software Failure Modes, Effects and Criticality

Analysis (SFMECA) and Bi-Directional Safety Analysis (BDSA), provide the

groundwork for the product-line SFTA (PL-SFTA) technique, and its associated tool,

PLFaultCAT, developed in this work. In addition, these safety analysis techniques were

specifically adapted and included into our Gaia-PL AOSE methodology to aid in the

safety analysis of MAS product lines (MAS-PL) in a way that is partially reusable.

Next, Chapter 4 detailed the design and development of a MAS-PL using our

Gaia-PL AOSE methodology on the PAM case study. The Gaia-PL methodology

produces reusable software engineering assets so that building systems of the MAS-PL

can be done efficiently, in terms of development cost and time. First, we described how

we adopted software product-line engineering concepts into AOSE by identifying,

defining and using variation points to build MAS. We then illustrated the adaptation of

software product-line engineering’s Domain Engineering phase into Gaia’s Requirement

Documentation and Analysis and Design phases. In these phases, we illustrated the

documentation of MAS-PL requirements in a Commonality and Variability Analysis and

a Parameters of Variation table.

We detailed the documentation of requirement specifications in the Role and Role

Variation Point Schemas. These schemas partitioned the commonality requirements and

variability requirements into separate schemas for specific roles using a Feature Model as

a guide. We described the adaptation of software product-line engineering’s Application

Engineering phase into Gaia’s Detailed Design phase. In this phase, we illustrated the

 207

reuse of the Role and Role Variation Point Schemas to build specific types of agents for a

MAS-PL.

We then discussed and illustrated the reuse of the requirements specifications

during initial system development of a MAS-PL as well as during system evolution. To

highlight the advantages of Gaia-PL, we differentiated our methodology from previous

work by illustrating Gaia-PL’s ability to capture reuse and avoid the redundant work and

increased development cost (in the additional time required) necessitated to accommodate

the development of the agents as done in previous work. Finally, Chapter 4 concluded by

providing an evaluation of our Gaia-PL methodology on the PAM case study to illustrate

the reusability, development cost savings and other advantages of our approach.

Chapter 5 discussed our safety analysis techniques and tools for the analysis of

safety-critical software product lines and MAS-PL. First, we discussed our adaptation of

Software Failure Modes, Effects and Criticality Analysis (SFMECA) in our Gaia-PL

AOSE methodology to produce a safety analysis technique specifically for safety-critical

MAS-PL. We provided a structured process to analyze the Variation Point Schemas

produced in the Gaia-PL methodology to discover the ways in which the agents of the

MAS-PL can fail and the effects of the failures on the entire system. The information

generated here can aid in discovering missing safety requirements, designing mitigation

requirements to prevent failures and verify existing safety requirements.

Next, our product-line Software Fault Tree Analysis technique (PL-SFTA) and its

tool, PLFaultCAT were discussed. After detailing PLFaultCAT’s software architecture,

the construction of a PL-SFTA was discussed during software product-line engineering’s

Domain Engineering phase using PLFaultCAT. We illustrated how to build a product-

line fault tree, link the leaf nodes to a product-line requirement documented in

DECIMAL, automatically analyze the set of PL-SFTAs for single-point failures and

 208

automatically identify safety-critical requirements and requirement interactions using

PLFaultCAT.

For software product-line engineering’s Application Engineering phase, we

detailed the partially-automated pruning of the set of product-line fault trees to produce

the set of fault trees for a member of a product line. PLFaultCAT takes the product-line

requirements of a product documented in DECIMAL to automatically prune the branches

of a PL-SFTA that can be safely removed for that specific product. That is, the branches

of the PL-SFTA that are not relevant to a product because they involve requirements (i.e.,

variabilities) or values of variabilities that are not present or could not possibly present in

the product are pruned from the fault tree. Thus, reuse in the safety analysis is achieved

by reusing the PL-SFTA developed in the Domain Engineering phase for the derivation

of SFTAs for the product-line members created during the Application Engineering

phase.

PLFaultCAT takes a conservative approach to the pruning by only pruning those

nodes of a PL-SFTA that can be safely removed. Because of this, additional manual

pruning of PL-SFTA nodes may be needed to be performed by a safety engineer to derive

the product-line member’s SFTA. Despite this, our case study has shown that

PLFaultCAT can automatically prune about 70% of the PL-SFTA nodes that can be

safely removed for any given member of a product line.

It was also shown how our PL-SFTA approach can accommodate evolution of the

software product line. We illustrated the process to handle the addition of product-line

requirements in the PL-SFTA.

An evaluation of our PL-SFTA technique and the PLFaultCAT tool was also

provided using the PAM case study to illustrate PL-SFTA’s value as a reusable asset and

PLFaultCAT’s ability to automatically derive the SFTAs for a product-line member. This

evaluation shows how a PL-SFTA can capture the common parts of a SFTA and reuse

 209

them for the members of a product line avoiding the cost that would be incurred if

producing the same products serially (i.e., using the traditional SFTA approach rather

than our PL-SFTA approach). The application of PL-SFTA to the case study used

throughout this dissertation illustrated that an average of 54% of the PL-SFTA can be

reused for the product-line members. Further, we showed PLFaultCAT’s capability to

increase the safety of a product line by identifying new and missing safety requirements

by utilizing PLFaultCAT’s novel features to analyze the PL-SFTA.

Next, we detailed how the SFMECA derived from the Gaia-PL assets and PL-

SFTA can be used together to perform a Bi-Directional Safety Analysis. Performing a

BDSA on the safety analysis assets of a MAS-PL improves the SFMECA and PL-SFTA

by identifying incompleteness in both safety analyses. This improves the safety analyses

of the MAS-PL and provides further opportunities to discover missing safety

requirements.

The BDSA process described additionally contributes to system certification by

verifying software design compliance with reliability, robustness and safety standards.

The application of BDSA to a MAS-PL can assist in the certification by providing

assurances that classes of failure modes that could occur in individual agents will not

produce unacceptable effects in the entire MAS. This aids in strengthening the safety case

when the demonstration of the compliance of failure-monitoring and failure mitigation

software tasked with the safety requirements to safety standards in the MAS-PL is

necessary. Further, the BSDA process described in Chapter 5 was shown to enable the

reuse of safety certification arguments while ensuring that the reuse of the safety analysis

artifacts in the certification argument accurately reflect the differences amongst the

agents of the MAS-PL.

 210

6.2 Summary of Contributions

This dissertation makes contributions in three key areas. First, the Gaia-PL

methodology provides Agent-Oriented Software Engineering (AOSE) with a design and

development methodology for agent-based systems that can reduce the development cost

by taking advantage of the reuse principles of software product-line engineering. Second,

the product-line Software Fault Tree Analysis (PL-SFTA) technique and its tool

PLFaultCAT provide software engineers developing a safety-critical product line with a

tool-supported technique to create a PL-SFTA and automatically derive the product-line

members’ SFTA. Third, the integration of Software Failure Modes, Effects and

Criticality Analysis (SFMECA) and Bi-Directional Safety Analysis (BDSA) into Gaia-

PL, along with the demonstration of PL-SFTA for MAS-PL, aids in system certification

and the discovery, analysis and verification of a MAS-PL’s safety requirements.

The Gaia-PL methodology was initially described at the 2005 International

Conference on Software Engineering’s Workshop on Software Engineering for Large-

Scale, Multi-Agent Systems [19]. It was expanded in a 2006 edition of Lecture Notes in

Computer Science [21] as well as in a chapter in a forthcoming book entitled Agent-

Oriented Software Engineering [62].

This dissertation has further expanded the Gaia-PL methodology from the

previously published work by including a Feature Model to aid in the identification of

variation points of a role, expanded its applicability to MAS-PL by introducing a more

hierarchical approach and by fully evaluating the approach for its ability to decrease

development cost through reuse. The specific contributions of Gaia-PL include:

• The inclusion of software product-line engineering principles into the

development of MAS to build MAS-PL

 211

• An AOSE methodology that supports the design and development of MAS-PL

using aspects of Gaia, an established AOSE methodology, and FAST, an

established software product-line engineering methodology

• The illustration of how Gaia-PL is amenable to the development of reusable

software engineering assets during the design and development of MAS-PL

and how the reusable assets can be used to develop systems of the MAS-PL

• An evaluation of Gaia-PL methodology’s ability to reduce the development

cost of MAS via a case study and comparison to the Gaia methodology

Our PL-SFTA safety analysis technique and the PLFaultCAT tool were initially

described at the 2004 High Assurance Systems Engineering Conference [17]. A short

paper appeared at the 2005 International Symposium on Software Reliability Engineering

[18] and additional papers at the 2005 International Conference on Software

Engineering’s Workshop on Software Engineering for Large-Scale, Multi-Agent Systems

[19], at the 2006 Workshop on Innovative Techniques for Certification of Embedded

Systems [22], in a 2006 article in the Automated Software Engineering Journal [24] and

in a research demonstration at the 2007 International Conference on Software

Engineering [23].

This dissertation has further extended this work to the application of a safety-

critical MAS-PL and extensively evaluated the technique and tool using the PAM case

study.

The specific contributions of PL-SFTA software safety analysis technique and the

PLFaultCAT tool include:

• Develops fault trees for a software product line in a way that the resulting PL-

SFTA is reusable for the products in a product line

• Aids in discovering additional system safety requirements for a product line

• Helps in identifying additional product-line dependencies

 212

• Allows for an analyses to assess failure points and safety-critical requirements

of a software product line

• Complements SFMECA, BDSA and other safety analysis techniques to

strengthen a safety case when system certification is required

• Automatically derives all of the product line member SFTAs from PL-SFTAs

• Links product-line requirements to PL-SFTA nodes to aid in traceability

• Searches the set of PL-SFTAs to identify single-point failures

• Identifies safety-critical requirements of the entire product line by analyzing

the set of PL-SFTAs

• Provides a minimum-cut set analysis of a PL-SFTA to identify hazard paths

In addition, this technique and tool have been used in collaboration with Jing Liu

and Robyn Lutz as guidance for another product-line safety analysis technique that

appeared at the 2005 International Symposium on Software Reliability Engineering [47],

at the 2007 Workshop on Model-Based Development [48] and in a forthcoming article in

the Journal of Systems and Software [45].

The inclusion of safety analysis techniques (i.e., PL-SFTA, SFMECA and BDSA)

into the Gaia-PL methodology to perform safety analysis on MAS-PL was initially

reported at the 2005 International Conference on Software Engineering’s Workshop on

Software Engineering for Large-Scale, Multi-Agent Systems [19], in a short paper at the

2005 International Symposium on Software Reliability Engineering [18], at the 2006

Workshop on Innovative Techniques for Certification of Embedded Systems [22] and in a

chapter in a forthcoming book tentatively entitled Agent-Oriented Software Engineering

[62].

This dissertation has further extended this work to the application of a safety-

critical MAS-PL and extensively evaluated these techniques using the PAM case study.

 213

The specific contributions of the inclusion of safety analysis techniques into the

Gaia-PL methodology for designing and developing safety-critical MAS-PL include:

• Extending BDSA to MAS-PL and showing how the analysis artifacts contribute

to the software’s safety case for certification purposes

• Supplying a structured process to perform SFMECA in the Gaia-PL methodology

• Providing assurances that certain classes of failure modes that might occur in

individual agents will not produce unacceptable effects in the composite system,

demonstrating the compliance of failure-monitoring and failure mitigation

software tasked with the system safety requirements to safety standards

• Enabling reuse of certification arguments while ensuring that the reuse of the

safety analysis artifacts in the certification arguments accurately reflect the

differences amongst the agents of the system

6.3 Future Work

There are several avenues for future research and development based on the work

and results of this dissertation, some of which involve expanding the less

detailed/unexplored portions of our AOSE methodology that integrates software product-

line engineering concepts, Gaia-PL. These avenues of research include (but are not

limited to) the following:

• Expansion and application of Gaia-PL into the other parts of Gaia to cover a

broader selection of the models and phases in the development of multi-agent

system product lines (MAS-PL)

• Comparison and evaluation of our contributions to aid in the certification of

agent-based software systems of our approach to others’ work

• Inclusion of additional product-line safety analysis techniques into the design

and development of MAS-PL

 214

• Integration of reliability engineering techniques into our safety analysis

techniques to provide reliability assurances to MAS-PL

• Adaptation of our safety analysis techniques to analyzing and verifying the

security properties of a MAS-PL

• Investigation of the Gaia-PL methodology to the design and development of

sensor nodes in a sensor network

The Gaia-PL AOSE methodology described in this dissertation primarily focused

on the documentation and reuse of requirement specifications for a MAS-PL. This work

made the initial strides into integrating software product-line engineering concepts into

the design and development of agent-based software systems. To achieve this, we solely

concentrated on portions of the Gaia methodology and the inclusion of reuse principles

into some of its models. Thus, our Gaia-PL methodology chiefly focuses on capturing the

commonalities of agents in a MAS-PL rather than providing a full suite of models and

abstraction mechanisms for all phases in the design and development of a MAS-PL.

Although the Gaia-PL methodology can seamlessly be integrated as a part of the Gaia

methodology (i.e., using Gaia-PL’s Role and Role Variation Point Schemas for the

requirements and the remaining Gaia models to design and develop other parts of the

MAS-PL), further work can be done to adopt other models of Gaia into Gaia-PL by

further including the product line ideas discussed in this dissertation.

Alternatively, the Gaia-PL methodology may better benefit from working with

other MAS-PL AOSE methodologies that have followed our work in [19], [21]. The

MaCMAS AOSE methodology for designing and developing MAS-PL uses UML to

model a MAS-PL and focuses on handling the complexity of MAS-PL and building its

core architecture [62], [64], [65]. Thus, the use of Gaia-PL for the requirements and early

design phases along with the use of MaCMAS to derive the MAS-PL’s core architecture

may be a natural and advantageous approach.

 215

The initial results from an application of our safety analysis techniques (i.e.,

product-line Software Fault Tree Analysis (PL-SFTA), Software Failure Modes, Effects

and Criticality Analysis (SFMCEA) and Bi-Directional Safety Analysis (BDSA), to the

PAM MAS-PL case study, described in Chapter 5, suggests that these technologies can

reduce the effort involved in certifying the safety of new systems within a MAS-PL. Yet,

further investigation into the ways in which software certification can be reduced through

the use of reusable safety analysis assets may be warranted. An empirical study into this

as well as a comparison to similar approaches, if they exist, would benefit the AOSE

community.

Other product line safety analysis techniques [45], [47], [48] developed by this

author in collaboration with Jing Liu and Robyn Lutz have been shown to be effective in

constructing the behavioral model of a product line’s safety-critical variability

requirements in order to support the automated verification of safety properties across a

product line. Although we have only demonstrated these techniques on a cardiac

pacemaker product line (i.e., not an agent-based system), their application towards a

MAS-PL should be straightforward and would further provide AOSE with the safety

analysis techniques that can both analyze a MAS-PL and provide reusable safety analysis

assets for future systems.

Safety analysis and reliability engineering are both facets of software

dependability engineering. Other approaches, such as Galileo [30], [60], [78], directly

integrate reliability data (e.g., failure probability rates) into safety analysis techniques.

The certification of some systems (e.g., aircraft, pacemakers, etc.) frequently requires

calculated failure rates (i.e., 10-9 probability of failure for aircraft). The inclusion of

reliability engineering techniques and models into the safety analysis techniques and

tools described in this dissertation would further strengthen the safety case needed for the

certification of a MAS-PL. However, the challenge in this would be to enhance the

 216

autonomous (e.g., unpredictable) nature of an agent with the predictability needed by

many reliability engineering techniques.

In some cases, the safety requirements and properties of interest to this

dissertation have similarities to the type of security properties that would be of interest to

the designers and developers of a MAS-PL. The exploration into how the safety analysis

techniques developed in this dissertation, as well as other techniques, can contribute to

the validation of MAS-PL’s security properties as well as derive reusable assets for

verifying future product line members’ security properties is a natural extension of this

work.

Like agent-based systems, sensor networks typically consist of similar nodes that

could benefit from reuse and safety analysis mechanisms in their design and development

phases. The investigation and application of the ideas developed in this dissertation for

the design and development of agent-based systems may apply to the design and

development of sensor networks. This avenue of research may be of great interest to the

sensor network community as it would further bring the possibility of reuse, in both

hardware and software, into the design and development of the nodes of a sensor node

product line in order to reduce their development cost.

6.3 Summary

This dissertation offered our AOSE methodology, Gaia-PL (Gaia – Product Line)

for the design and development of agent-based, distributed software systems. Gaia-PL

captures requirements specifications by using a product-line perspective to promote reuse

in agent-based, software systems early in the development lifecycle. This allows software

engineers to be able to reuse some software engineering assets during the initial system

development as well as during system evolution.

 217

For safety-critical agent-based systems, this dissertation developed and

incorporated reuse-oriented safety analysis methods for the Gaia-PL methodology to

allow the discovery of new safety requirements and the verification that the design

satisfies the safety requirements. Specifically, Product-Line Software Fault Tree Analysis

(PL-SFTA) and its automated tool, PLFaultCAT (Product-L ine Fault Tree Creation and

Analysis Tool) have been created to provide the technique and tool support for the safety

analysis of safety-critical software product lines and allow for the identification of new

safety requirements and the analysis of safety-critical requirements and requirement

interactions. An AOSE-adapted Software Failure Modes, Effects and Criticality Analysis

(SFMECA) technique was created to support the derivation of a safety analysis asset

using the specifications of Gaia-PL allowing for the identification of possible hazard

scenarios and the failure points of specific agent roles. Using the assets generated via PL-

SFTA and SFMECA, Bi-Directional Safety Analysis (BDSA) is shown to aid in the

completeness of PL-SFTA and SFMECA, help verify the safety properties and strengthen

the safety case when compliance to safety standards of the multi-agent system is

necessary.

The goal of this work was to be able to provide safety verification results for a

new system in the product line in a timely, cost-effective and safe manner. It is hoped that

the contributions of the work presented in this dissertation provide software engineers

with an AOSE methodology to build safety-critical, agent-based systems so that the

safety analysis assets as well as the requirements analysis and design can be reused for

future systems.

 218

BIBLIOGRAPHY

[1] Ardis, M.A. and Weiss, D.M. 1997. Defining Families: The Commonality

Analysis. Proceedings 19th International Conference on Software Engineering,

Boston, MA, pp. 649-650.

[2] Arkusinski, A. 2005. A Method to Increase the Design Assurance Level of

Software by Means of FMEA. Proceedings 24th Digital Avionics Systems

Conference, 2:10.D.5-1-10.D.5-11.

[3] Bresciani, P., Giorgini, P., Guinchiglia, F. and Perini, A. 2004 TROPOS: An

Agent-Oriented Software Development Methodology. Journal of Autonomous

Agents and Multi-Agent Systems, 8(1):203-236.

[4] Burgess, M. 2003. Fault Tree Creation and Analysis Tool: User Manual.

http://www.iu.hio.no/FaultCat (Accessed May 2007).

[5] Castro, J., Kolp, M. and Myopoulos, J. 2002. Towards Requirements-Driven

Information Systems Engineering: The Tropos Project. Information Systems

27(6):365-389.

[6] Cernuzzi, L., Juan, T., Sterling, L. and Zambonelli, F. 2004. The Gaia

Methodology: Basic Concepts and Extensions. Methodologies and Software

Engineering for Agent Systems-The Agent-Oriented Software Engineering

Handbook Series: Multiagent Systems, Artificial Societies, and Simulated

Organizations, 11:69-88.

[7] Chan, K. and Sterling L. 2003. Specifying Roles within Agent-Oriented Software

Engineering. Proceedings 10th Asia-Pacific Software Engineering Conference, pp.

390-395.

[8] Chien, S., Sherwood, R., Rabideau, G., Castano, R., Davies, A., Burl, M., Knight,

R., Stough, T., Roden, J., Zetocha, P., Wainwright, R., Klupar, P., Van Gaasbeck,

 219

J. Cappelaere, P. and Oswald, D. 2002. The TechSat-21 Autonomous Space

Science Agent. Proceedings 1st International Conference on Autonomous Agents,

pp. 570-577.

[9] Clark, P., Curtis, S. and Rilee, M. 2002. ANTS: Applying a New Paradigm to

Lunar and Planetary Exploration. Proceedings Solar System Remote Sensing

Symposium, Pittsburgh, PA, pp. 15-16.

[10] Clark, P. E., Rilee, M. L., Curtis, S.A. and Cheung, C. 2004. In Situ Surveying of

Saturn’s Rings. Proceedings 35th Lunar and Planetary Science Conference, League

City, Texas.

[11] Clements, P. 2002. Being Proactive Pays Off. IEEE Software, 19(4):28, 30.

[12] Clements, P. and Northrop, L. 2002. Software Product Lines. Boston: Addison-

Wesley.

[13] Coppit, D. and Sullivan, K.J. 2003. Sound Methods and Effective Tools for

Engineering Modeling and Analysis. Proceedings 25th International Conference on

Software Engineering, Portland, OR, pp. 198-207.

[14] Curtis, S., Truszkowski, W., Rilee, M. and Clark, P. 2003. ANTS for the Human

Exploration and Development of Space. Proceedings IEEE Aerospace Conference,

Big Sky, MT.

[15] Curtis, S., Rilee, M., Clark, P. and Marr, G. 2003. Use of Swarm Intelligence in

Spacecraft Constellations for the Resource Exploration of the Asteroid Belt.

Proceedings 3rd International Workshop on Satellite Constellations and Formation

Flying, Pisa, Italy.

[16] Das, S., Krikorian, R. and Truskowski, W. 1999. Disributed Planning and

Scheduling for Enhancing Spacecraft Autonomy. Proceedings 3rd Conference on

Autonomous Agents, Seattle, WA, pp. 422-423.

 220

[17] Dehlinger, J. and Lutz, R. R. 2004. Software Fault Tree Analysis for Product Lines.

Proceedings 8th IEEE International Symposium on High Assurance Systems

Engineering, Tampa, FL, pp. 12-21.

[18] Dehlinger, J. and Lutz, R. R. 2005. Applying Product-Line Fault Tree Analysis to

Build Safer Multi-Agent Systems. Fast Abstract, 16th IEEE International

Symposium on Software Reliability Engineering, Chicago, IL.

[19] Dehlinger, J. and Lutz, R. R. 2005. A Product-Line Approach to Safe Reuse in

Multi-Agent Systems. Proceedings 4th International Workshop on Software

Engineering Large-Scale Multi-Agent Systems, St. Louis, MO, pp. 83-89.

[20] Dehlinger, J., Feng, Q. and Hu, L. 2006. SSVChecker: Unifying Static Security

Vulnerability Detection Tools in an Eclipse Plug-In. Proceedings 2006 OOPSLA

Workshop Eclipse Technology Exchange Workshop at OOPSLA 2006, Portland,

OR, pp. 30-34.

[21] Dehlinger, J. and Lutz, R. R. 2006. A Product-Line Approach to Promote Asset

Reuse in Multi-Agent Systems. Software Engineering for Multi-Agent Systems IV,

Lecture Notes in Computer Science 3914, pp. 161-178.

[22] Dehlinger, J. and Lutz, R. R. 2006. Bi-Directional Safety Analysis for Product-

Line, Multi-Agent Systems. ACM SIGBED Review: Special Issues on Workshop

Innovative Techniques for Certification of Embedded Systems, 3(4).

[23] Dehlinger, J., Humphrey, M., Padmanabahn, P. and Lutz, R. R. 2007. Decimal and

PLFaultCAT: From Product-Line Requirements to Product-Line Member Software

Fault Trees. Proceedings 29th International Conference on Software Engineering,

Minneapolis, MN, pp. 49-50.

[24] Dehlinger, J. and Lutz, R. R. 2006. PLFaultCAT: A Product-Line Software Fault

Tree Analysis Tool. Automated Software Engineering Journal, 13(1):169-193.

 221

[25] DeLoach, S. A. 2004. The MaSE Methodology. Methodologies and Software

Engineering for Agent Systems-The Agent-Oriented Software Engineering

Handbook Series: Multiagent Systems, Artificial Societies, and Simulated

Organizations, 11:107-125.

[26] Despotou, G. and Kelly, T. 2004. Extending the Safety Case Concept to Address

Dependability. Proceedings 22nd International System Safety Conference, pp. 645-

654.

[27] Doerr, B. and Sharp, D. 2000. Freeing Product Line Architectures from Execution

Dependencies. P. Donohoe ed., Proceedings Software Product-Line Engineering

Conference, Kluwer Academic Publishers.

[28] Doerr, J. 2002. Requirements Engineering for Product Lines: Guidelines for

Inspecting Domain Model Relationships. Diploma Thesis, University of

Kaiserslautern.

[29] Douglass, B. P. 1999. Doing Hard Time: Developing Real-Time Systems with

UML Objects, Frameworks and Patterns. Boston: Addison-Wesley.

[30] Dugan, J. B. 2000. Galileo: A Tool for Dynamic Fault Tree Analysis. Proceedings

11th International Conference Computer Performance Evaluation: Modelling

Technique and Tools, Schaumburg, IL, pp. 328-331.

[31] European Cooperation for Space Standardization (ECSS). 2002. Space Engineering

– Software, ECSS-E-40B (draft 1). http://esamultimedia.esa.int/docs/industry/

SME/2003/software_engineering/materials/ecss-e-40b_draft1.pdf (Accessed June

2007).

[32] Feng, Q. and Lutz, R. R. 2005. Bi-Directional Safety Analysis of Product Lines.

Journal of Systems and Software, 78(2):111-127.

[33] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley.

 222

[34] Giorgini, P., Kolp, M., Mylopoulos, J. and Pistore, M. 2004. The Tropos

Methodology. Methodologies and Software Engineering for Agent Systems-The

Agent-Oriented Software Engineering Handbook Series: Multiagent Systems,

Artificial Societies, and Simulated Organizations, 11:89-106.

[35] Girardi, R. 2002. Reuse in Agent-based Application Development. Proceedings 1st

International Workshop on Software Engineering for Large-Scale Multi-Agent

Systems, Orlando, FL.

[36] Gomaa, H. 2005. Designing Software Product Lines with UML: From Use Cases

to Pattern-Based Software Architecture. Addison-Wesley.

[37] Hansen, K.M., Ravn, A.P. and Stavridou, V. 1998. From Safety Analysis to

Software Requirements. IEEE Transactions on Software Engineering, 24(7):573-

584.

[38] Hara, H., Fujita, S. and Sugawara, K. 2000. Reusable Software Components Based

on an Agent Model. Proceedings Workshop on Parallel and Distributed Systems,

Iwate, Japan, pp. 447-452.

[39] Heie, A. 2002. Global Software Product Lines and Infinite Diverstiy.

http://www.sei.cmu.edu/SPLC2/keynote_slides/keynote_1.htm (Accessed May

2007).

[40] Hollow, P., McDermid, J. and Nicholson, M. 2000. Approaches to Certification of

Reconfigurable IMA Systems. Proeedings 5th International Symposium of the

International Council on Systems Engineering.

[41] Jennings, N. and Wooldridge, M. 2000. On Agent-Oriented Software Engineering.

Artificial Intelligence, 117(2):277-296.

[42] Juan, T. and Sterling, L. 2003. ROADMAP: Extending the Gaia Methodology for

Complex Open Systems. Proceedings 1st International Joint Conference

Autonomous Agents and Multi-Agent Systems, Bologna, Italy, pp. 3-10.

 223

[43] Kang, K.C., Kim, S., Lee, J. and Lee, K. 1999. Feature-Oriented Engineering of

PBX Software for Adaptability and Reusability. Software Practice and Experience,

29(10):167-177.

[44] Leveson, N.G. 1995. Safeware: System Safety and Computers. Boston: Addison-

Wesley.

[45] Liu, J. 2007. Safety-Related Feature Interaction in Safety-Critical Product Lines.

Proceedings 29th International Conference Software Engineering Companion,

Minneapolis, MN, pp. 85-86.

[46] Liu, J., Dehlinger, J. and Lutz, R. 2007. Safety Analysis of Software Product Lines

Using State-Based Modeling. Journal of Systems and Software, to appear.

[47] Liu, J., Dehlinger, J. and Lutz, R. 2005. Safety Analysis of Software Product Lines

Using State-Based Modeling. Proceedings 16th IEEE International Symposium on

Software Reliability Engineering, Chicago, IL, pp. 21-30.

[48] Liu, J., Dehlinger, J., Sun, H. and Lutz, R. R. 2007. State-Based Modeling to

Support the Evolution and Maintenance of Safety-Critical Software Product Lines.

Proceedings 14th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, Tucson, AZ, pp. 596-608.

[49] Lu, D. and Lutz, R.R. 2002. Fault Contribution Trees for Product Families.

Proceedings 13th International Symposium on Software Reliability Engineering,

Annapolis, MD, pp. 231-242.

[50] Lutz, R. R. 2000. Extending the Product Family Approach to Support Safe Reuse.

Journal of Systems and Software, 53(3):207-217.

[51] Lutz, R. R. 2000. Software Engineering for Safety: A Roadmap. In A. Finkelstein,

editor, The Future of Software Engineering, ACM Press.

 224

[52] Lutz, R. R. and Gannod, G. 2003. Analysis of a Software Product Line

Architecture: An Experience Report. The Journal of Systems and Software.

66(3):253-267.

[53] Lutz, R. R., Helmer, G. G., Moseman, M. M., Statezni, D. E. and Tockey, S. R.

1998. Safety Analysis of Requirements for a Product Family. Proceedings 3rd

International Conference on Requirements Engineering, Colorado Springs, CO, pp.

24-31.

[54] Lutz, R. R. and Woodhouse, R. M. 1999. Bi-Directional Analysis for Certification

of Safety Critical Software. Proceedings 1st International Software Assurance

Certification Conference.

[55] Lutz, R. R. and Woodhouse, R.M. 1997. Requirements Analysis Using Forward

and Backward Search. Annals of Software Engineering, 3:459-474.

[56] NASA Strategic Roadmaps. NASA – APIO: Strategic Roadmaps - Overview,

http://www.nasa.gov/about/strategic_roadmaps.html (Accessed May 2007).

[57] Northrop, L. A Framework for Product Line Practice. Software Engineering

Institute, http://www.sei.cmu.edu/productlines/framework.html (Accessed May

2007).

[58] Padmanabhan, P. and Lutz, R.R. 2002. DECIMAL: A Requirements Engineering

Tool for Product Families. Proceedings 2002 International Symposium Software

Reliability Engineering for Product Lines, Essen, Germany, pp. 45-50.

[59] Padmanabhan, P. and Lutz, R. R. 2005. Tool-Supported Verification of Product

Line Requirements. Automated Software Engineering Journal, 12(4):447-465.

[60] Pai, G. J. and Dugan, J. B. 2002. Automatic Synthesis of Dynamic Fault Trees

from UML System Models. Proceedings 13th International Symposium on

Software Reliability Engineering, Annapolis, MD, pp. 243-254.

 225

[61] Parnas, D. L. 1976. On the Design and Development of Program Families. IEEE

Transactions on Software Engineering, 2(1):193-213.

[62] Pena, J., Dehlinger, J., Ruiz-Cortes, A., Hinchey, M. and Lutz, R. R. In press.

Current Research in Multiagent System Product Lines (MAS-PL). Agent-Oriented

Software Engineering.

[63] Peña, J., Hinchey, M. and Cortés, A. 2006. Multi-Agent System Product Lines:

Challenges and Benefits. Communications of the ACM, 49(12):82-84.

[64] Peña, J., Hinchey, M., Cortés, A. and Trinidad, P. 2006. Building the Core

Architecture of a NASA Multiagent System Product Line. Proceedings 7th

International ACM Workshop on Agent Oriented Software Engineering, Hakodate,

Japan, pp. 13-24.

[65] Peña, J., Hinchey, M., Resinas, M., Sterritt, R. and Rash, J. 2006. Managing the

Evolution of an Enterprise Architecture Using a MAS-Product-Line Approach.

Proceedings International Workshop on System/Software Architectures, Las

Vegas, NV, pp. 995-1001.

[66] Peña, J., Hinchey, M. and Sterritt, R. 2006. Towards Modeling, Specifying and

Deploying Policies in Autonomous and Autonomic Systems Using an AOSE

Methodology. Proceedings 3rd IEEE International Workshop on Engineering of

Autonomic and Autonomous Systems, Columbia, MD, pp. 37-46.

[67] Pohl, K., Bockle, G. and van der Linden, F. 2005. Software Product-Line

Engineering. Berlin: Springer-Verlag.

[68] Product Line Hall of Fame. Software Engineering Institute.

http://www.sei.cmu.edu/productlines/plp_hof.html (Accessed May 2007).

[69] Radio Technical Commission for Aeronautics, RTCA/DO-178B: Software

Considerations in Airborne Systems and Equipment Certification, 1992.

 226

[70] Rilee, M. and Stufflebeam, R. 2005. ANTS: Autonomous Nanotechnological

Swarm. http://www.mind.ilstu.edu/curriculum/ants_nasa/ants_pam.php (Accessed

May 2007).

[71] Rouff, C., Hinchey, M., Rash, J., Truszkowski, W. and Sterritt, R. 2005. Towards

Autonomic Management of NASA Missions. Proceedings 11th International

Conference on Parallel and Distributed Systems, Fukuoka, Japan, pp. 473-477.

[72] SAE, Aerospace Recommended Practice: Guidelines and Methods for Conducting

the Safety Assessment Process on Civil Airborne Systems and Equipment,

ARP4761, 1996.

[73] Schetter, T., Campbell, M. and Surka, D. 2000. Multiple Agent-Based Autonomy

for Satellite Constellations. Proceedings 2nd International Symposium on Agent

Systems and Applications, Zurich, Switzerland, pp. 147-180

[74] Schmid, K. and Verlage, M. 2002. The Economic Impact of Product Line Adoption

and Evolution. IEEE Software, 19(4):50-57.

[75] Software Product Line Conferences. http://www.splc.net/ (Accessed May 2007).

[76] Sommerville, I. 2004. Software Engineering. Boston: Pearson Addison-Wesley.

[77] Sterritt, R., Rouff, C., Rash, J., Truszkowski, W. and Hinchey, M. 2005. Self*-

Properties in NASA Mission. Proceedings 2005 International Conference Software

Engineering Research and Practice, Las Vegas, NV, pp. 66-72.

[78] Sullivan, K. J., Dugan, J. B. and Coppit, D. 1999. The Galileo Fault Tree Analysis

Tool. Proceedings 29th Annual International Symposium on Fault-Tolerant

Computing, Madison, WI, pp. 232-235.

[79] Sutandiyo, W., Chhetri, M. B., Krishnaswamy, S. and Loke, S. W. 2004.

Experiences with Software Engineering of Mobile Agent Applications.

Proceedings 2004 Australian Software Engineering Conference, pp. 339-349.

 227

[80] Svanberg, M., Gurp, J. and Bosch, J. 2005. A Taxonomy of Variability Realization

Techniques. Software – Practice & Experience, 35(8):705-754.

[81] Terrestrial Planet Finder Project. Planet Quest: Missions – Terrestrial Planet

Finder. http://planetquest.jpl.nasa.gov/TPF/tpf_index.cfm (Accessed May 2007).

[82] Toft, P., Coleman, D. and Ohta, J. 2000. A Cooperative Model for Cross-

Divisional Product Development for a Software Product Line. In P. Donohoe ed.,

Proceedings Software Product-Line Conference, Kluwer Academic Publishers.

[83] Truszkowski, W. F., Hinchey, M. G., Rash, J. L. and Rouff, C. A. 2006.

Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration

Missions. IEEE Transactions on Systems, Man and Cybernetics – Part C:

Applications and Reviews, 36(3):279-291.

[84] Truszkowski, W., Rash, J., Rouff, C. and Hinchey, M. 2004. Asteroid Exploration

with Autonomic Systems. Proceedings 11th IEEE International Conference and

Workshop Engineering of Computer-Based Systems, Brno, Czech Republic, pp.

484-489.

[85] Tveit, A. 2001. A Survey of Agent-Oriented Software Engineering. NTNU

Computer Science Graduate Student Conference.

[86] United States Department of Defense, Draft DoD Software Technology Strategy,

Office of the Director, Defense Research & Engineering, DRAFT: December 1991.

[87] van Ommering, R. 2005. Software Reuse in Product Populations. IEEE

Transactions on Software Engineering, 31(7):537-550.

[88] Weiss, D.M. and Lai, C. T. R. 1999. Software Product Line Engineering: A

Family-Based Software Development Process. Boston: Addison-Wesley.

[89] Wijinstra, J. 2002, Critical Factors for a Successful Platform-Based Product Family

Approach. G. Chastek ed., Proceedings Software Product-Line Engineering

Conference, Springer LNCS 2379.

 228

[90] Wooldridge, M. 1997. Agent-Based Software Engineering. IEEE Proceedings on

Software Engineering, 144(1):26-37.

[91] Wooldridge, M. and Jennings, N. 1994. Agent Theories, Architectures and

Languages: A Survey. Proceedings ECAI Workshop on Agent Theories,

Architectures, pp. 1-32.

[92] Wooldridge, M., Jennings, N. and Kinny, D. 2000. The Gaia Methodology for

Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-

Agent Systems, 3(3): 285-312.

[93] Yu, E. 1995. Modeling Strategic Relationships for Process Engineering. Ph.D.

Thesis, University of Toronto.

[94] Zambonelli, F., Jennings, R. and Wooldridge, M. 2003. Developing Multiagent

Systems: The Gaia Methodology. ACM Transactions on Software Engineering and

Methodology, 12(3): 317-370.

 229

APPENDIX A. COMMONALITY AND VARIABILITY ANALYSIS

This appendix provides the full Commonality and Variabillity Analysis (CVA) for

the Prospecting Asteroid Mission (PAM) multi-agent system product line (MAS-PL) case

study used throughout this dissertation. The CVA provides a dictionary of relevant

domain terms followed by the PAM case study’s product-line commonality requirements

and variability requirements.

 230

DICTIONARY OF TERMS

Agent In the case of PAM spacecraft, an agent is at the spacecraft-level

comprising of all the roles that the spacecraft must perform.

Altimeter Scientific instrument onboard some PAM spacecraft with a primary task to

obtain an asteroid’s shape, 3D model, topography and geomorphology

[68].

ANTS The Autonomous Nano-Technology Swarm is a NASA concept mission

that entails a grouping of agents that work cooperatively, autonomously

and is adaptable to achieve mission goals [14], [15], [71], [83].

AU Astronomical Unit, the approximate distance from the Sun to the Earth.

Autonomous Systems that operate on their own to the maximum extent possible and

require little to no human intervention or guidance [83].

Cooperation The ability for spacecraft to work together to achieve mission goals [1],

[14], [15], [59].

Environment The surrounding space and conditions as well as the other PAM

spacecraft.

Formation Flying The necessity to orbit an asteroid in specified relative positions (in

relation to the asteroid as well as other spacecraft) to obtain ideal

conditions to perform scientific, communication and decision-making

activities [1], [14], [15], [83], [84].

Gamma-Ray Spectrometer Scientific instrument onboard some PAM spacecraft with

a primary task to obtain an asteroid’s heavy element makeup and volatile

characterization [68].

Geomorphology The study of the landforms present on an asteroid including the

landforms possible origin and evolution.

 231

Lagrange Point Special regions of space where the gravity of the Moon, the Earth and

the Sun balance such that a spacecraft can be parked there at the cost of

using a relatively small amount of fuel [68].

Near-Infrared Spectrometer Scientific instrument onboard some PAM spacecraft with

a primary task to obtain an asteroid’s mineral abundance mapping [68].

Neutral Mass Spectrometer Scientific instrument onboard some PAM spacecraft with

a primary task to obtain an asteroid’s volatile characterization [68].

Neutron Spectrometer Scientific instrument onboard some PAM spacecraft with a

primary task to obtain an asteroid’s heavy element makeup and volatile

characterization [68].

PAM The Prospecting Asteroid M ission. A 2020-2025 proposed NASA sub-

mission lasting 5-10 years based on the ANTS technology with a goal of

exploring the asteroid belt between Mars and Jupiter.

Photogeology The geologic interpretation of landforms on an asteroid via imaging.

Radio Science/Magnetometer Scientific instrument onboard some PAM spacecraft

with a primary task to obtain an asteroid’s gravity and magnetic fields,

interior makeup and 3D model [68].

Radio Sounder/Infrared Radiometer Scientific instrument onboard some PAM

spacecraft with a primary task to obtain an asteroid’s Regolith

characterization [68].

Regolith Characterization The characterization of the heterogeneous material

covering the solid body of an asteroid.

Self-Coordination The ability of a PAM spacecraft, at both the system and individual

level, to automously decide upon, assign and pursue scientific goals [83].

 232

Self-Healing The ability of a PAM spacecraft, at both the system and individual level,

to autonomously recover from damage due either to solar storms or

collisions with an asteroid or other spacecraft [77].

Self-Optimization The ability of a PAM spacecraft, at both the system and individual

level, to autonomously improve its ability to identify and explore asteroids

through learning and experience. At the system level, optimization

propagates upwards from the self-optimization of individuals [77].

Self-Protection The ability of a PAM spacecraft, at both the system and individual

level, to autonomously protect itself from solar storms or collisions with

an asteroid or other spacecraft [77].

Solar Storm Solar events that cause a large amount of solar radiation to be expelled

from the Sun into space.

Subswarm A subset of PAM spacecraft.

Swarm The collection of all PAM spacecraft.

Visible Imager Scientific instrument onboard some PAM spacecraft with a primary

task to obtain a target asteroids detection, 3D model and photogeology [68].

Volatile Characterization The characterization of the volatile elements, those

elements that vaporize at a relatively low temperature, present on an

asteroid.

X-ray Spectrometer Scientific instrument onboard some PAM spacecraft with a

primary task to obtain an asteroid’s major element abundance mapping

[68].

 233

COMMONALITIES

General Commonality Requirements

C_G1. The PAM swarm shall have no single point of failure [15].

C_G2. The PAM swarm shall be robust to minor faults and catastrophic failures

[14].

Self-Coordination Commonality Requirements

C_SC1. Every spacecraft shall work cooperatively (in a hierarchical, social

manner) with other spacecraft to achieve mission goals [64], [65], [66],

[77], [83], [84].

C_SC2. Every spacecraft shall be able to coordinate its own science operations

while simultaneously maximizing the resource utilization [77].

C_SC3. Every spacecraft shall have the ability to coordinate its own orbits and

trajectories with others to avoid collisions [15], [71], [84].

C_SC4. Every spacecraft shall have the capability of performing various kinds of

formation flying [15].

C_SC5. Every spacecraft shall be able to form subswarms under the control of a

leader spacecraft [77], [83], [84].

Self-Healing Commonality Requirements

C_SH1. Every spacecraft shall be able to recognize that its memory is

corrupted/damaged (i.e., as a result from exposure to solar radiation) [64],

[65], [66], [84].

C_SH2. Every spacecraft shall be able to request an uncorrupted memory from

another spacecraft in the event that it recognizes that its memory is

corrupted [71], [84].

 234

C_SH3. Every spacecraft shall be able to send its uncorrupted memory to another

spacecraft upon request [71], [84].

C_SH4. Every spacecraft shall be able to request to be replaced by another

spacecraft in the event that it recognizes that its memory has failed beyond

repair [71], [84].

C_SH5. Every spacecraft shall be able to be killed off by a leader in the event of a

loss of power [77], [84].

Self-Optimization Commonality Requirements

C_SO1. Every spacecraft shall be able to adjust to the surrounding environment

(i.e., deteriorated/failing science instrumentation, when batteries/solar

cells are deteriorating, etc.) [77], [84].

C_SO2. Every spacecraft shall be able to optimize itself through calibrating its

instruments [77], [83], [84].

C_SO3. Every spacecraft shall be able to optimize its power consumption [15],

[65], [66], [84].

C_SO4. Every spacecraft shall be able to monitor and adjust its relative positions

to optimize its scientific exploration [77], [84].

Self-Protection Commonality Requirements

C_SP1. Every spacecraft shall be responsible for preventing collisions with other

spacecraft [64], [65], [66], [71], [77], [84].

C_SP2. Every spacecraft shall be able to communicate with nearby spacecraft in

order to prevent collisions [64], [65], [66], [71], [77], [84].

C_SP3. Every spacecraft shall be responsible for preventing collisions with

asteroids [64], [65], [66], [71], [77], [84].

 235

C_SP4. Every spacecraft shall be able to store a 3D map of nearby asteroids in

order to prevent collisions [71], [77], [84].

C_SP5. Every spacecraft shall be able to take acceptable risks (i.e., collision with

asteroids or other spacecraft) while attempting to satisfy its scientific goals

[71], [77], [84].

C_SP6. Every spacecraft shall be able to deploy its solar sail to use as a shield for

protection against solar storms [65], [66], [77], [83], [84].

C_SP7. Every spacecraft shall be able to switch off its subsystems when needed to

protect against solar radiation [65], [66], [77], [83], [84].

C_SP8. Every spacecraft shall be able to receive messages from other spacecraft

giving advanced warning of an impending solar storm [65], [66], [77],

[84].

Miscellaneous Commonality Requirements

C_M1. Every spacecraft shall have the ability to control its own guidance

navigation and control functions [14], [15], [83].

C_M2. Every spacecraft shall have the ability to control its own attitude [14],

[15].

C_M3. Every spacecraft shall be able to use their solar shields as its means of

flight [14], [15], [65], [66].

C_M4. Every spacecraft shall be able to know its current position [15], [65], [66].

C_M5. Every spacecraft shall be able to know its current velocity increment [15],

[66].

C_M6. Every spacecraft shall be able to adjust its position/orbit [15], [65], [66].

C_M7. Every spacecraft shall be able to change its velocity increment [15], [65],

[66].

 236

C_M8. Every spacecraft shall be able to calculate the thrust needed to power its

solar sails needed to maneuver [15], [65], [66].

C_M9. Every spacecraft shall be able to verify/check each other’s results via a

voting process (e.g., Byzantine voting schemes such as a 4-way or more

may be needed) [15].

VARIABILITIES

General Variability Requirements

V_G1. Every spacecraft shall be initially defined by one of the roles it’s to

assume in the PAM swarm [14], [65], [66], [77], [83], [84].

Self-Coordination Variability Requirements

* Self-coordination variability requirements are listed under the Leader, Messenger

and/or Worker Variability Requirements, respectively.

Self-Healing Variability Requirements

V_SH1. A messenger spacecraft’s ability to be upgraded to that of a leader’s role

may vary [77].

V_SH2. A leader spacecraft’s ability to be upgraded to that of a messenger’s role if

a messenger is destroyed may vary [77].

V_SH3. A worker spacecraft’s ability to be upgraded to that of a messenger’s role

if a messenger is destroyed may vary [77].

Self-Optimization Variability Requirements

V_SO1. A spacecraft’s ability to optimize itself via improving their ability to

identify asteroids of interest may vary [15], [71], [77], [83] [84].

 237

V_SO2. A spacecraft’s ability to share its optimization information regarding the

identification of asteroids of interest with leader spacecraft may vary [77],

[84].

V_SO3. A spacecraft’s ability to optimize itself through positioning itself

appropriately to best facilitate communications with messenger spacecraft

may vary [15], [77], [84].

V_SO4. A spacecraft’s ability to share its optimization information regarding

positioning itself appropriately to best facilitate communications with

messenger spacecraft may vary [15], [77].

V_SO5. A spacecraft’s ability to optimize itself via learning through their past

experiences to better investigate an asteroid may vary [15], [77], [84].

V_SO6. A spacecraft’s ability to share its optimization information regarding how

to better investigate an asteroid with worker spacecraft may vary [15],

[77], [84].

Self-Protection Variability Requirements

V_SP1. A spacecraft’s ability to be tasked with constantly observing the solar disc

to detect signs of an impending solar storm may vary [65], [66], [77], [84].

V_SP2. A spacecraft’s ability to receive warnings from mission control of an

impending solar storm may vary [65], [66], [77], [84].

Leader Spacecraft Variability Requirements

V_L1. A spacecraft’s ability to be in charge of performing subswarm allocation

and planning may vary [15], [71], [83], [84].

V_L2. A spacecraft performing subswarm allocation and planning may vary in its

role in allocation and planning activities [15].

 238

V_L3. A spacecraft’s ability to be able to assign teams of worker and messenger

spacecraft may vary [83].

V_L4. A spacecraft’s ability to direct/coordinate worker spacecraft to investigate

a specific asteroid may vary [77], [83], [84].

V_L5. A spacecraft’s ability to redistribute/realign duties to worker spacecraft to

ensure sufficient coverage of instrument roles may vary [83].

V_L6. A spacecraft’s ability to be responsible for determining the types of

asteroids to investigate may vary [15], [71], [77], [83], [84].

V_L7. A spacecraft’s ability to contain the rules that decide the types of asteroids

to investigate may vary [77], [83].

V_L8. A spacecraft’s ability to be responsible for determining the types of data to

gather from an asteroid may vary [77], [83].

V_L9. A spacecraft’s ability to be able to decide amongst other leaders present in

a subswarm which shall take the lead and control the subswarm may vary

[15], [83].

V_L10. A spacecraft’s ability to oversee the data flow from worker spacecraft to

messenger spacecraft may vary [15].

V_L11. A spacecraft’s ability to contain models of the types of science they want

to have performed on a targeted asteroid may vary [15], [83].

V_L12. A spacecraft’s ability to communicate to messenger spacecraft parts of the

model of the science to be performed on a targeted asteroid may vary [15].

V_L13. A spacecraft’s ability to form the communications layer to maintain the

position, trajectory and orbital insertion data of every spacecraft in the

swarm may vary [15], [83].

V_L14. A spacecraft’s knowledge of the swarm may vary [15].

 239

V_L15. A spacecraft’s ability to receive and accept change in velocity bids from

other members during subswarm reconfiguration may vary [15].

V_L16. A spacecraft’s ability to issue a request to members of the subswarm for

change in velocity bids may vary [15].

V_L17. A spacecraft’s ability to issue a move to new position message to

spacecraft of the subswarm during subswarm reconfiguration may vary

[15].

Messenger Spacecraft Variability Requirements

V_M1. A spacecraft’s ability to relay/coordinate messages between worker

spacecraft and leader spacecraft may vary [15], [71], [77], [83], [84].

V_M2. A spacecraft’s ability to relay/coordinate messages between leader

spacecraft and mission control may vary [15] [71], [77].

V_M3. A spacecraft’s ability to provide up to ~0.1 AU communication across the

swarm may vary [15].

V_M4. A spacecraft’s ability to receive asteroid data from worker spacecraft may

vary [15], [71].

V_M5. A spacecraft’s ability to archive data received from worker spacecraft

regarding the discovered information of a targeted asteroid may vary [15].

V_M6. A spacecraft’s ability to travel to a terrestrial Lagrange point (or other

communication nodes) to communicate the discovered information may

vary [14], [15], [83], [84].

V_M7. A spacecraft’s ability to relay the parts of the model that a leader

spacecraft wants worker spacecraft to carry out on a targeted asteroid to

worker spacecraft may vary [15].

 240

V_M8. A spacecraft’s ability form the communications layer to maintain the

position, trajectory and orbital insertion data of every spacecraft in the

swarm may vary [14], [15], [83], [84].

Worker Spacecraft Variability Requirements

V_W1. A spacecraft’s single onboard specialized scientific instrumentation may

vary [1], [15], [65], [66], [68], [71], [77], [83], [84].

V_W2. A spacecraft’s ability to communicate the data they have found regarding

a targeted asteroid to the messengers may vary [77], [84].

V_W3. A spacecraft’s ability to send asteroid data to a messenger spacecraft to be

archived may vary [15].

V_W4. A spacecraft’s ability to, when an opportunity presents itself, investigate a

nearby asteroid to collect preliminary data so that it can be evaluated by a

leader as to the level of interest the swarm should have for that particular

asteroid may vary [1], [15], [68], [71], [83].

V_W5. A spacecraft’s ability to work alone to evaluate potential asteroids to

investigate may vary [15].

V_W6. A spacecraft equipped with visible imager instrumentation may vary in its

field scope [15].

V_W7. A spacecraft equipped with visible imager instrumentation and containing

the functionality to gather data related to asteroid target detection may

vary [1], [15], [68], [71], [77], [83].

V_W8. A spacecraft equipped with visible imager instrumentation and containing

the functionality to gather data in order to construction a 3D model of the

target asteroid may vary [1], [15], [68], [71], [83].

 241

V_W9. A spacecraft equipped with visible imager instrumentation and containing

the functionality to gather data pertaining to the asteroid’s photogeology

may vary [1], [15], [68], [71], [83].

V_W10. A spacecraft equipped with visible imager instrumentation and containing

the functionality to ascertain the exact location of a target asteroid may

vary [1], [15], [68], [71], [83].

V_W11. A spacecraft equipped with visible imager instrumentation and containing

the functionality to create a rough model of a target asteroid to be used by

other worker spacecraft for maneuvering around the asteroid may vary [1],

[15], [68], [71], [83].

V_W12. A spacecraft equipped with near-infrared spectrometer instrumentation

and containing the functionality to gather data pertaining to the target

asteroid’s mineral abundance mapping may vary [1], [15], [68], [71], [83].

V_W13. A spacecraft specialized with X-ray spectrometer instrumentation and

containing the functionality to gather data pertaining to the target

asteroid’s major element abundance mapping may vary [1], [15], [68],

[71], [83].

V_W14. A spacecraft equipped with Gamma-ray instrumentation and containing

the functionality to gather data pertaining to the target asteroid’s heavy

element abundance mapping may vary [1], [15], [68], [71], [83].

V_W15. A spacecraft specialized with Neutron spectrometer instrumentation and

containing the functionality to gather data pertaining to the target

asteroid’s volatile abundance mapping may vary [1], [15], [68], [71], [83].

V_W16. A spacecraft equipped with altimeter instrumentation and containing the

functionality to gather data pertaining to the target asteroid’s shape may

vary [1], [15], [68], [71], [83].

 242

V_W17. A spacecraft specialized with altimeter instrumentation and containing the

functionality to gather data pertaining to the target asteroid’s 3D model

construction may vary [1], [15], [68], [71], [83].

V_W18. A spacecraft specialized with altimeter instrumentation and containing the

functionality to gather data pertaining to the target asteroid’s topography

may vary [1], [15], [68], [71], [83].

V_W19. A spacecraft specialized with altimeter instrumentation and containing the

functionality to gather data pertaining to the target asteroid’s

geomorphology may vary [1], [15], [68], [71], [83].

V_W20. A spacecraft specialized with radio science/magnetometer instrumentation

and containing the functionality to gather data pertaining to the target

asteroid’s gravity fields may vary [1], [15], [68], [71], [83].

V_W21. A spacecraft specialized with radio science/magnetometer instrumentation

and containing the functionality to gather data pertaining to the target

asteroid’s magnetic fields may vary [1], [15], [68], [71], [83].

V_W22. A spacecraft specialized with radio science/magnetometer instrumentation

and containing the functionality to gather data pertaining to the target

asteroid’s interior makeup may vary [1], [15], [68], [71], [83].

V_W23. A spacecraft specialized with radio science/magnetometer instrumentation

and containing the functionality to gather data pertaining to the target

asteroid’s 3D model construction may vary [1], [15], [68], [71], [83].

V_W24. A spacecraft specialized with radio sounder/infrared radiometer

instrumentation and containing the functionality to gather data pertaining

to the target asteroid’s Regolith characterization may vary [1], [15], [68],

[71], [83].

 243

V_W25. A spacecraft specialized with neutral mass spectrometer instrumentation

and containing the functionality to gather data pertaining to the target

asteroid’s volatile characterization may vary [1], [15], [68], [71], [83].

 244

APPENDIX B. PARAMETERS OF VARIATION

This appendix provides the Parameters of Variation tables for the Prospecting

Asteroid Mission (PAM) multi-agent system product line (MAS-PL) case study used

throughout this dissertation. The Parameters of Variation tables further define the

product-line variability requirements detailed in the Commonality and Variability

Analysis (CVA).

245

Parameter Meaning Domain Binding Time Default
GENERAL VARIABILITY REQUIREMENTS

P1: vSpacecraftRole
V_G1

The role that a spacecraft is to initially
assume.

[Leader, Messenger,
Worker]

Design Worker

SELF-HEALING VARIABILITY REQUIREMENTS

P2: vUpgradeToLeader
V_SH1

The ability of a messenger spacecraft
to be upgraded to assume the role of a

leader.
[True, False] Specification False

P3: vUpgradeToMessenger
V_SH2, V_SH3

The ability of a leader or a worker
spacecraft to be upgraded to assume

the role of a messenger.
[True, False] Specification False

SELF-OPTIMIZATION VARIABILITY REQUIREMENTS

P4: vIdAsteroidsOptimization
V_SO1, V_SO2

The ability of a leader spacecraft to
optimize its ability to identify asteroids
of interest and share this information

with other leader spacecraft.

[True, False] Specification False

P5: vCommOptimization
V_SO3, V_SO4

The ability of a spacecraft to optimize
its positioning for communications and

sharing this optimization with other
spacecraft.

[True, False] Specification True

P6: vScienceOptimization
V_SO5, V_SO6

The ability to optimize its scientific
exploration of an asteroid and sharing
this optimization with other spacecraft.

[True, False] Specification False

SELF-PROTECTION VARIABILITY REQUIREMENTS

P7: vSolarDiscWatch
V_SP1

The ability of a spacecraft to
constantly watch the solar disc for the

signs of an impending solar storm.

[Passive, Warm-Spare,
Active]

Design Passive

P8: vMissConStormWarn
V_SP2

The ability of a spacecraft to receive
messages from mission control

warning of an impending solar storm.
[True, False] Design False

246

Parameter Meaning Domain Binding Time Default
LEADER SPACECRAFT VARIABILITY REQUIREMENTS

P9: vAllocPlanAbility
V_L1

The ability of a spacecraft to perform
subswarm allocation and planning.

[True, False] Specification False

P10: vAllocPlanRole
V_L2

The role of a spacecraft participating
in subswarm allocation and planning.

[Passive, Active] Runtime Passive

P11: vAssignTeamsAbility
V_L3

The ability to assign teams of worker
and messenger spacecraft.

[True, False] Specification False

P12: vRedistribRolesAbility
V_L4, V_L5

The ability to redistribute roles to
worker spacecraft.

[True, False] Specification False

P13: vIdAsteroidAbility
V_L6, V_L7, V_L8

The ability to be responsible for
identifying which asteroids should be

investigated by a subswarm.
[True, False] Specification False

P14: vDecideLeaderAbility
V_L9

The ability to decide which leader
should take lead control of a

subswarm.
[True, False] Specification False

P15: vOverseeDataFlow
V_L10

The ability to oversee the data flow
from worker spacecraft to messenger

spacecraft.
[True, False] Specification False

P16: vTargetAsteroidModel
V_L11, V_L12

The ability to contain a model of the
profile of the types of asteroids that
should be explored and the ability to
communicate this model with other

spacecraft.

[True, False] Specification False

P17: vPosTrajOrbitDataHolder
V_L13, V_M8

The ability to maintain the position,
trajectory and orbital insertion data of

every spacecraft in the subswarm.
[True, False] Specification False

P18: vLeaderSwarmKnow
V_L14

The amount of knowledge that a
spacecraft has about the entire swarm.

[Subswarm knowledge,
Partial-swarm

knowledge, Full-swarm
knowledge]

Runtime
Subswarm
knowledge

P19: vIdAsteroidsOptimization
V_L15, V_L16, V_L17

The ability to facilitate and coordinate
spacecraft during subswarm

reconfiguration.
[True, False] Specification False

247

Parameter Meaning Domain Binding Time Default
MESSENGER SPACECRAFT VARIABILITY REQUIREMENTS

P20: vRelayMessagesSwarm
V_M1, V_M4

The ability to relay and coordinate
messages between spacecraft.

[True, False] Specification False

P21: vRelayMessagesMisCon
V_M2

The ability to relay and coordinate
messages to mission control.

[True, False] Specification False

P22: vCommunicationRange
V_M3

The range that a spacecraft can
reliably communicate (in AU).

[0…0.1 AU] Design 0.05 AU

P23: vArchiveAsteroidInfo
V_M5

The ability to archive received data
regarding the discovered information

of a targeted asteroid.
[True, False] Specification False

P24: vTravelToLagrangePnt
V_M6

The ability to travel to a Lagrange
point to communicate with mission

control.
[True, False] Specification False

P25: vRelayAsteroidModel
V_M7

The ability to relay parts of the science
model to carry out on a targeted
asteroid to a worker spacecraft.

[True, False] Specification False

WORKER SPACECRAFT VARIABILITY REQUIREMENTS

P26: vWorkerInstrument
V_W1

The specialized scientific
instrumentation that a spacecraft has

onboard.

[Visible Imager, Near-
Infrared Spectrometer, X-

Ray Spectrometer,
Gamma-Ray

Spectrometer, Neutron
Spectrometer, Altimeter,

Radio
Science/Magnetometer,
Radio Sounder/Infrared

Radiometer, Neutral Mass
Spectrometer]

Design
Visible
Imager

P27: vCommAsteroidData
V_W2, V_W3

The ability to communicate data found
regarding a targeted asteroid.

[True, False] Specification True

P28: vPreAsteroidInvestigate
V_W4

The ability to preliminarily investigate
a nearby asteroid for initial data when

the opportunity presents itself.
[True, False] Specification True

248

Parameter Meaning Domain Binding Time Default
WORKER SPACECRAFT VARIABILITY REQUIREMENTS (continued)

P29: vWorkAloneAbility
V_W5

The ability for worker spacecraft to
work alone rather than within a

subswarm.
[True, False] Specification False

P30: vVisibleImagerScope
V_W6

The field scope of a visible imager
instrumentation.

[Narrow-Scope,
Wide-Scope]

Design
Narrow-
Scope

P31: vImagerGatherData
V_W7

The ability of a spacecraft with a visible
imager to gather data related to asteroid

target detection.
[True, False] Specification False

P32: vImagerMake3DModel
V_W8

The ability of a spacecraft with a visible
imager to construct a 3D model of the

target asteroid.
[True, False] Specification False

P33: vImagerPhotogeology
V_W9

The ability of a spacecraft with a visible
imager to gather data related to

asteroid’s photogeology.
[True, False] Specification False

P34: vImagerLocation
V_W10

The ability of a spacecraft with a visible
imager to determine location of an

asteroid.
[True, False] Specification False

P35: vImagerManeuverModel
V_W11

The ability of a spacecraft with a visible
imager to create a model used for other

spacecraft to maneuver around an
asteroid.

[True, False] Specification False

P36: vNearInfSpecGatherData
V_W12

The ability of a spacecraft with a near-
infrared spectrometer to gather data
pertaining to the target asteroid’s

mineral abundance mapping.

[True, False] Specification False

P37: vXRaySpecGatherData
V_W13

The ability of a spacecraft with a X-ray
spectrometer to gather data pertaining to

the target asteroid’s major element
abundance mapping.

[True, False] Specification False

P38: vGammaRayGatherData
V_W14

The ability of a spacecraft with a
Gamma-ray instrument to gather data

pertaining to the target asteroid’s heavy
element abundance mapping.

[True, False] Specification False

249

Parameter Meaning Domain Binding Time Default
WORKER SPACECRAFT VARIABILITY REQUIREMENTS (continued)

P39: vNeutronSpecGatherData
V_W15

The ability of a spacecraft with a
Neutron spectrometer the target

asteroid’s volatile abundance mapping.
[True, False] Specification False

P40: vAltimeterGatherData
V_W16

The ability of a spacecraft with an
altimeter to gather data pertaining to

the target asteroid’s shape.
[True, False] Specification False

P41: vAltimeter3DModel
V_W17

The ability of a spacecraft with an
altimeter to construct a 3D model of

the target asteroid.
[True, False] Specification False

P42: vAltimeterTopography
V_W18

The ability of a spacecraft with an
altimeter to gather data pertaining to

the target asteroid’s topography.
[True, False] Specification False

P43: vAltimeterGeomorphology
V_W19

The ability of a spacecraft with an
altimeter to gather data pertaining to
the target asteroid’s geomorphology.

[True, False] Specification False

P44: vRadScienceGatherData
V_W20, V_W21

The ability of a spacecraft with a radio
science/magnetometer to gather data

pertaining to the target asteroid’s
gravity and magnetic fields.

[True, False] Specification False

P45: vRadScienceInterior
V_W22

The ability of a spacecraft with a radio
science/magnetometer to gather data

regarding the asteroid’s interior.
[True, False] Specification False

P46: vRadScience3DModel
V_W23

The ability of a spacecraft with a radio
science/magnetometer to gather data
regarding the asteroid’s 3D model.

[True, False] Specification False

P47: vRadSounderGatherData
V_W24

The ability of a spacecraft with a radio
sounder/infrared radiometer to gather
data pertaining to the target asteroid’s

Regolith characterization.

[True, False] Specification False

P48: vNeutMassSpecGatherData
V_W25

The ability of a spacecraft with a
neutral mass spectrometer to gather

data pertaining to the target asteroid’s
volatile characterization.

[True, False] Specification False

250

APPENDIX C. FEATURE MODEL

This appendix provides the full Feature Model for the Prospecting Asteroid

Mission (PAM) multi-agent system product line (MAS-PL) case study used throughout

this dissertation. The Feature Model illustrates the required and optional features of a

PAM spacecraft based on the product-line commonality and variability requirements

documented in the Commonality and Variability Analysis (CVA).

251

 252

APPENDIX D. GAIA-PL ROLE SCHEMAS

This appendix provides the full set of Gaia-PL requirements specifications

schemas for the Prospecting Asteroid Mission (PAM) multi-agent system product line

(MAS-PL) case study used throughout this dissertation. The requirements specifications

schemas further define the product-line commonality and variability requirements

documented in the Commonality and Variability Analysis (CVA) and in the Parameters

of Variation table.

 253

Role Schema: Navigator Schema ID: N
 Variation Point: N/A
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_M1, C_M2, C_M3, C_M4, C_M5, C_M6, C_M7, C_M8
 Description:

Provides the functionality to a spacecraft to maneuver itself using its solar sail.
 Activities and Protocols:

AdjustSolarSail, CalculateThrust, CheckOrbit, CheckSolarSailStatus,
CheckSystemStatus, ExtendSolarSail, MoveToPosition, RetractSolarSail

 Permissions:
 Reads -
 currentAttitude // attitude of the spacecraft
 currentOrbit // current orbit of the spacecraft
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 Changes -
 currentAttitude // attitude of the spacecraft
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment

 Generates -
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 thrustNeeded // calculated thrust needed to move
Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 maneuver the spacecraft to the desired location.
 Safety -

None.

Navigator Role Schema

 254

Role Variation Points Schema: SelfCoordinator Schemata ID: SC

 Parameters of Variation: P9, P14, PP19, P20, P21
 Description:

At the swarm-level, the collection of this role within all the spacecraft aid in
autonomously coordinating the scientific pursuits of the spacecraft in the swarm. At
the spacecraft-level, these roles aid in the spacecraft to individually decide the best
way to achieve its given scientific goals and to communicate with nearby spacecraft
to cooperate in achieving these goals.

 Variation Points:
 Core:

The core elements of a spacecraft to be able to autonomously
coordinate itself and its surrounding spacecraft to decide upon,
assign and pursue scientific goals. [SC-Core]

 Leader:

The elements needed in a leader spacecraft to be able to coordinate
the subswarm spacecraft to pursue scientific goals. This includes
coordinating with other leader spacecraft and coordinating all
subswarm spacecraft during times of subswarm reconfiguration. [SC-
Leader]

 Messenger:

The elements needed in a messenger spacecraft to be able to
coordinate the communication network needed in a subswarm while
pursing scientific goals. [SC-Messenger]

 Worker:

The elements needed in a worker spacecraft to be able to coordinate
the pursuit of science goals for a given asteroid. [SO-Worker]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design time.
However, a spacecraft that may switch is operating variation point (i.e., P2=True or
P3=True) may have this variation point alter at runtime.

Self-Coordinator Role Variation Points Schema

 255

Role Schema: SelfCoordinator Schema ID: SC-Core
 Variation Point: Core
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SC1, C_SC2, C_SC3, C_SC4, C_SC5, C_SP1, C_SP2, C_M1,

C_M2, C_M4, C_M5, C_M6, C_M7, C_M8
 Description:

Provides the spacecraft with the functionality to autonomously coordinate itself and
its surrounding spacecraft to decide upon, assign and pursue scientific goals.

 Activities and Protocols:
CalcOrbit, CalcPostion, CalcResourceUtil, CalcTrajectory, EvaluateCurrentGoal,
JoinSubswarm, MoveNewPosition, PerformFormationFly, AcceptFormFlyReq,
AcceptSubswarmJoinReq, CoordinateOrbit, CoordinatePosition,
CoordinateTrajectory, RejectFormFlyReq, RejectSubswarmJoinReq

 Permissions:
 Reads -
 spacecraftID // spacecraft ID to send to other spacecraft
 // when requesting clean memory
 systemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft to see if recent
 // solar storm
 systemGoal // current goal of the spacecraft
 currentAttitude // current attitude of the spacecraft
 currentGoal // current goal of the spacecraft
 currentPosition // current position of the spacecraft
 currentVelocityIncr // velocity increment of the spacecraft
 environmentStatus // current status of the detectable parts of
 // the surrounding environment
 Changes -
 currentAttitude // attitude of the spacecraft
 currentPosition // position of the spacecraft
 currentVelocityIncr // velocity increment of the spacecraft
 subswarmID // identification of newly joined subswarm
 subswarmSpacecraft // vector of other spacecraft in the newly
 // joined subswarm
 Generates -
 newSystemGoal // new goal of the spacecraft
 subswarmAcceptMsg // message to be sent accepting the
 // request to join a subswarm
 subswarmRejectMsg // message to be sent rejecting the
 // request to join a subswarm
 resourceUtilizationVal // calculated resource utilization level in
 // order to maximize science operations
 // and resource utilization
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will be able to coordinate its
 science operations and maximize its resource utilization.
 Safety -
 Avoiding collisions during formation flying via coordination.

Core Variation Point Schema for the Self-Coordinator Role

 256

Role Schema: SelfCoordinator Schema ID: SC-Leader
 Variation Point: Leader
 Inherits: SC-Core
 Parameters of Variation: P15=True; P16=True; P17=True; P18=Subswarm;

P19=True
 Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17
 Description:

Provides the core elements of a leader spacecraft to be able to facilitate the
management and coordination of its subswarm.

 Activities and Protocols:
CalculatePartModel, OverseeSubSwarmDataFlow, PerformSubswarmReconfig,
AcceptSubswarmChangeVelocityBid, MoveNewPositionCom, ReqDataFlow,
ReqSubswarmVelocityBids, SendModelPartMessenger,
SendSubswarmVelocityBidConfirm

 Permissions:
 Reads -
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 subswarmSpacecraftPos // vector of the all the spacecrafts current

 // positions in the subswarm
 leaderSpacecraft // vector of the leader spacecraft in the

 // subswarm
 supplied velocityBidRec // vector of received change of velocity bid
 Changes -
 asteroidModel // current model of an asteroid to send
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 subswarmSpacecraftPos // vector of the all thespacecrafts positions

 // in the subswarm
 leaderSpacecraft // vector of the leader spacecraft in the

 // subswarm
 Generates -
 partialAsteroidModel // derived partial model to send to a

 // messenger so that spacecraft can avoid
 // collisions with asteroids
 Responsibilities:

 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to

 optimize the configuration and plans of the subswarm to achieve subswarm
 goals.

 Safety -
Avoiding collisions by maintaining and coordinating spacecraft positions and
movements.

Leader Variation Point Schema for the Self-Coordinator Role

 257

Role Schema: SelfCoordinator Schema ID: SC-Messenger
 Variation Point: Messenger
 Inherits: SC-Core
 Requirements: V_M1, V_M2, V_M4,
 Parameters of Variation: P20=True; P21=True
 Description:

Provides the spacecraft with the elements needed in a messenger spacecraft to be
able to coordinate the communication network needed in a subswarm while pursing
scientific goals.

 Activities and Protocols:
CoordinateLeadToWorkMsg,CoordinateWorkToLeadMsg, AcceptLeaderMsg,
AcceptWorkerMsg, SendLeaderMsg, SendMsgMisCon, SendWorkerMsg

 Permissions:
 Reads -
 leaderSpacecraft // vector of the leader spacecraft in the
 // subswarm
 workerSpacecraft // vector of the worker spacecraft in the
 // subswarm
 Changes -
 currentGoal // current goal of the spacecraft
 Generates -
 missionControlMsg // message to be sent to mission control
 // on behalf of a leader spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure the timely delivery of a message to be sent throughout the
 subswarm.
 Safety -
 None.

Messenger Variation Point Schema for the Self-Coordinator Role

 258

Role Schema: SelfCoordinator Schema ID: SC-Worker
 Variation Point: Worker
 Inherits: SC-Core
 Requirements: V_W2, V_W3
 Parameters of Variation: P27=True
 Description:

The elements needed in a worker spacecraft to be able to coordinate the pursuit of
science goals for a given asteroid.

 Activities and Protocols:
CoordinateWorkerGoals, AcceptAsteroidData, SendArchiveData,
SendAsteroidData

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 asteriodData // current collected data of an asteroid
 currentGoal // current goal of the spacecraft
 workerSpacecraft // vector of the worker spacecraft in the
 // subswarm
 likeWorkerSpacecraft // vector of the worker spacecraft in the
 // subswarm with the same specialized
 // instrumentation
 Changes -
 asteriodData // collected data of an asteroid
 Generates -
 asteroidArchiveDataMsg // message to be sent containing the
 // data of an asteroid to be archived by a
 // messenger spacecraft
 asteriodDataMsg // message to be sent containing the
 // current collected data of an asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 report the data collected of a specific asteroid.
 Safety -
 None.

Worker Variation Point Schema for the Self-Coordinator Role

 259

Role Variation Points Schema: SelfOptimizer Schemata ID: SO

 Parameters of Variation: P4, P5, P6
 Description:

At the swarm-level, the collection of these roles within all the spacecraft aid in
autonomously and continuously improving the spacecraft’s ability to identify, explore
and communicate the information discovered while investigating asteroids. At the
spacecraft-level, these roles aid in the spacecraft to continuously learn and improve
its specialized abilities and communicate its findings with other similar spacecraft.

 Variation Points:
 Core:

The core elements of a spacecraft to be able to optimize itself in
regards to general spacecraft functions so that it can continuously
learn from the environment and perform better within the swarm.
[SO-Core]

 Leader:

The elements needed in a leader spacecraft to be able to optimize
itself in regards to its ability to best manage, oversee and direct the
swarm to optimize the swarm’s ability to achieve scientific goals.
[SO-Leader]

 Messenger:

The elements needed in a messenger spacecraft to be able to
optimize itself in regards to its ability to best perform the
communication necessary within the swarm so that commands and
information can best be transmitted. [SO-Messenger]

 Worker:

The elements needed in a worker spacecraft to be able to optimize
itself in regards to its ability to best optimize its ability to achieve its
own scientific goals. [SO-Worker]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design
time. However, a spacecraft that may switch is operating variation point (i.e.,
P2=True or P3=True) may have this variation point alter at runtime.

Self-Optimizer Role Variation Points Schema

 260

Role Schema: SelfOptimizer Schema ID: SO-Core
 Variation Point: Core
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SO1, C_SO2, C_SO3, C_SO4, C_M1, C_M2, C_M4, C_M5
 Description:

Provides the spacecraft with the functionality to optimize itself in regards to general
spacecraft functions so that it can continuously learn from the environment and
perform better within the swarm.

 Activities and Protocols:
AdjustToEnviron, CalcNewPosition, CalibrateInstr, CheckSystemStatus,
CheckEnvironStatus, CheckPowerConsump, CheckSolarCellStatus,
EvaluatePositionForGoal, MoveNewPos

 Permissions:
 Reads -
 currentAttitude // current attitude of the spacecraft
 currentGoal // current goal of the spacecraft
 currentPosition // current position of the spacecraft
 currentVelocityIncr // current velocity increment of the
 // spacecraft
 environmentStatus // current status of the detectable parts of
 // the surrounding environment
 powerConsumpLevel // current level of the spacecraft’s power
 // consumption
 riskForSystemFactor // current risk to spacecraft to see if recent
 // solar storm
 solarCellLevel // current status level of the spacecraft’s
 // solar cells
 systemStatus // current status of the spacecraft
 Changes -
 environmentState // current state that the spacecraft believes
 // its surrounding environment is in
 currentPosition // current position of the spacecraft
 currentAttitude // current attitude of the spacecraft
 instrCalibValue // vector of the current calibration values
 // for the onboard instruments
 instrVector // vector of all the spacecraft’s onboard
 // instruments
 Generates -
 newEnvironStatus // new status of the detectable parts of the
 // surrounding environment
 newVelocityIncr // calculated new velocity increment for the
 // spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the spacecraft’s ability to perform its given tasks.
 Safety -
 None.

Core Variation Point Schema for the Self-Optimizer Role

 261

Role Schema: SelfOptimizer Schema ID: SO-Leader
 Variation Point: Leader
 Inherits: SO-Core
 Requirements: V_SO1, V_SO2, C_SC1, C_SC2, V_L6, V_L7, V_L8, V_L11
 Parameters of Variation: P4=True
 Description:

Provides the spacecraft with the he elements needed in a leader spacecraft to be
able to optimize itself in regards to its ability to best manage, oversee and direct the
swarm to optimize the swarm’s ability to achieve scientific goals. Specifically, the
ability for a leader spacecraft to optimize its ability to identify asteroids of interest
and share this information.

 Activities and Protocols:
DeviseNewAsteroidIdRules, EvaluateCurrentAsteroidIdRules, ReviewAsteroidIdHis,
AcceptOptimizationInfo, AcceptOptimizationReq, RequestOptimizationInfo,
ShareOptimizationInfo

 Permissions:
 Reads -
 asteroidIdRules // current vector of rules that is used to
 // identify asteroids of interest given
 // preliminary data points on the asteroid
 asteroidPrelimData // preliminary data points of an asteroid
 asteroidId // identification number of an asteroid
 asteroidIdHistory // the history log kept of the spacecraft’s
 // identification of asteroids of interest
 optimizationInfoRec // message to received after requesting
 // for another spacecraft’s current
 // optimization information
 leaderVector // vector of nearby leader spacecraft
 // to aid in sharing optimization information
 Changes -
 asteroidIdRules // vector of rules that is used to identify
 // asteroids of interest given preliminary
 // data points on the asteroid
 Generates -
 asteroidIdRulesValue // evaluation value of the accuracy of the
 // spacecraft’s current ability to identify
 // asteroids of interest
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to identify asteroids of interests to investigate for all
 leader spacecraft in the swarm.
 Safety -
 None.

 Leader Variation Point Schema for the Self-Optimizer Role

 262

Role Schema: SelfOptimizer Schema ID: SO-Messenger
 Variation Point: Messenger
 Inherits: SO-Core
 Requirements: V_SO3, V_SO4, C_SC1, C_SC2
 Parameters of Variation: P5=True
 Description:

Provides the spacecraft with the elements needed in a messenger spacecraft to be
able to optimize itself in regards to its ability to best perform the communication
necessary within the swarm so that commands and information can best be
transmitted. Specifically, the ability of the spacecraft to optimize its positioning for
communications and sharing this information with others.

 Activities and Protocols:
DeviseNewCommStrategy, EvaluateCurrentCommStrategy, EvaluateCurPosition,
ReviewCommHis, AcceptOptimizationInfo, AcceptOptimizationReq,
RequestOptimizationInfo, ShareOptimizationInfo

 Permissions:
 Reads -
 communicationStrategy // current strategy for spacecraft’s
 // communication
 communicationHist // current history log of the spacecraft’s
 // past communication sessions
 optimizationInfoRec // message to received after requesting
 // for another spacecraft’s current
 // optimization information
 messengerVector // vector of nearby messenger spacecraft
 // to aid in sharing optimization information
 Changes -
 communicationStrategy // current strategy for spacecraft’s
 // communication
 Generates -
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 communicationStratVal // evaluation value of the accuracy of the
 // spacecraft’s current ability to
 // communicate with the subswarm
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to communicate for all messenger spacecraft in the
 swarm.
 Safety -
 None.

Messenger Variation Point Schema for the Self-Optimizer Role

 263

Role Schema: SelfOptimizer Schema ID: SO-Worker
 Variation Point: Worker
 Inherits: SO-Core
 Requirements: V_SO5, V_SO6, C_SC1, C_SC2
 Parameters of Variation: P6=True
 Description:

The elements needed in a worker spacecraft to be able to optimize itself in regards
to its ability to best optimize its ability to achieve its own scientific goals.

 Activities and Protocols:
DeviseNewSciExplorStrategy, EvaluateCurrentSciExplorStrategy,
EvaluateCurPosition, ReviewSciExplorHis, AcceptOptimizationInfo,
AcceptOptimizationReq, RequestOptimizationInfo, ShareOptimizationInfo

 Permissions:
 Reads -
 optimizationInfoRec // message to received after requesting
 // for another spacecraft’s current
 // optimization information
 sciExplorationStrategy // current strategy for spacecraft’s
 // science exploration using its specialized
 // onboard equipment
 sciExplorationRules // current rules for the spacecraft to abide
 // by in its scientific exploration
 sciExplorationHist // current history log of the spacecraft’s
 // past science exploration of asteroids
 workerType // the type of worker spacecraft (i.e., based
 // on its specialized onboard equipment
 workerVector // vector of nearby worker spacecraft with
 // the same onboard equipment
 scienceGoal // current scientific goal pursued by the
 // spacecraft
 Changes -
 sciExplorationStrategy // strategy for spacecraft’s science
 // exploration using its specialized onboard
 // equipment
 Generates -
 optimizationInfoMsg // message to deliver upon receiving a
 // request for spacecraft’s current
 // optimization information
 sciExplorationStratVal // evaluation value of the accuracy of the
 // spacecraft’s current ability to
 // achieve its scientific goals
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to achieve scientific goals for all similar worker spacecraft
 in the swarm.
 Safety -
 None.

Worker Variation Point Schema for the Self-Optimizer Role

 264

Role Variation Points Schema: LeaderPlanner Schemata ID: LP

 Parameters of Variation: P20, P21, P22, P23, P24, P25
 Description:

Provides the leader spacecraft with the functionality to be able to manage, plan and
coordinate the spacecraft of a subswarm to pursue and satisfy system-wide and
individual scientific goals.

 Variation Points:
 Passive:

The elements of a passive leader spacecraft (i.e., a spacecraft
acting as a backup to double-check all commands and calculations
pertaining to the planning for the subswarm) to be able to manage,
plan and coordinate the spacecraft of a subswarm. [LP-Passive]

 Active:

The elements of an active leader spacecraft (i.e., a spacecraft
actively in charge) to be able to manage, plan and coordinate the
spacecraft of a subswarm. [LP-Active]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design time.
All spacecraft shall have the Passive variation point as a commonality. Spacecraft
with the Active variation point shall also include all functionality of Passive and may
switch its variation point at runtime.

Leader Planner Role Variation Points Schema

 265

Role Schema: LeaderPlanner Schema ID: LP- Passive
 Variation Point: LeaderPlanner
 Inherits: SC-Core
 Parameters of Variation: P9=True; P10=Passive; P11=True; P12=True; P13=True;

P14=True
 Requirements: V_L1, V_L2, V_L3, V_L4, V_L5, V_L6, V_L7, V_L8, V_L9, V_L11
 Description:

Provides the spacecraft with the he elements needed in a leader spacecraft to be
able to be able to passively (i.e., act as a backup) coordinate/plan the subswarm
spacecraft to pursue scientific goals.

 Activities and Protocols:
CheckDecideDataToGather, CheckSubswarmAlloc, CheckSubswarmPlan,
AcceptPlanToCheck, VoteLeaderElection

 Permissions:
 Reads -
 leaderSpacecraft // vector of the leader spacecraft in the
 // subswarm
 supplied allocationStrategy // supplied allocation strategy for the sub-
 // swarm to perform scientific exploration
 supplied scienceRules // supplied rules used to investigate the
 // types of asteroids to explore
 suppliled plan // supplied plan for the subswarm to
 // achieve system-wide scientific goals
 Changes -
 allocationStrategy // allocation strategy for the subswarm to
 // perform scientific exploration
 plan // plan for the subswarm to achieve
 // system-wide scientific goals
 scienceRules // rules used to investigate the types of
 // asteroids to explore
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 leaderSpacecraft // vector of the leader spacecraft in the
 // subswarm
 Generates -
 allocationStratMsg // newly devised subswarm allocation
 // strategy message to be sent out to
 // leader agreeing with or disagreeing with
 // the newly devised allocation strategy
 planMsg // newly devised subswarm plan to achieve
 // system-wide scientific goals
 leaderElecVoteMsg // message to be sent to vote for the ruler
 // of the leader spacecraft for a subswarm
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure the correctness of the planning done by a leader spacecraft through
 redundant checking and agreement voting.
 Safety -
 None.

Passive Variation Point Schema for the Leader Planner Role

 266

Role Schema: LeaderPlanner Schema ID: LP- Active
 Variation Point: Active
 Inherits: SC-Core, LP-Passive
 Parameters of Variation: P9=True; P10=Active; P11=True; P12=True; P13=True;

P14=True
 Requirements: V_L1, V_L2, V_L3, V_L4, V_L5, V_L6, V_L7, V_L8, V_L9, V_L11
 Description:

Provides the elements of an active leader spacecraft (i.e., a spacecraft actively in
charge) to be able to manage, plan and coordinate the spacecraft of a subswarm.

 Activities and Protocols:
CoordinateLeaderElection, DecideDataToGather, PerformSubswarmAlloc,
PerformSubswarmPlan, AssignTeams, ComSwitchToActive, DirectWorker,
GetConfirmFromPassive, InitLeaderElection, SendNewAllocationStrat,
SendNewPlan, RedistributeDuties, VoteLeaderElection

 Permissions:
 Reads -
 allocationStrategy // current allocation strategy for the sub-
 // swarm to perform scientific exploration
 scienceRules // current rules used to investigate the
 // types of asteroids to explore
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 subswarmSpacecraftPos // vector of the all the spacecrafts current
 // positions in the subswarm
 leaderSpacecraft // vector of the leaders in the subswarm
 plan // current plan for the subswarm to achieve
 // system-wide scientific goals
 currentGoal // current goal of the spacecraft
 Changes -
 allocationStrategy // allocation strategy for the subswarm to
 // perform scientific exploration
 plan // plan for the subswarm to achieve
 // system-wide scientific goals
 scienceRules // rules used to investigate the types of
 // asteroids to explore
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 leaderSpacecraft // vector of the leaders in the subswarm
 Generates -
 newAllocationStratMsg // newly devised subswarm allocation
 // strategy message to be sent out to
 // spacecraft in a subswarm
 newPlanMsg // newly devised subswarm plan to achieve
 // system-wide scientific goals
 leaderElecVoteMsg // message to be sent to vote for the ruler
 // of the leader spacecraft for a subswarm
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the configuration and plans of the subswarm to achieve system-
 wide goals.
 Safety -

None.

Active Variation Point Schema for the Leader Planner Role

 267

Role Variation Points Schema: LeaderKnowledgeLevel Schemata ID: LKL

 Parameters of Variation: P15, P16, P17, P18, P19
 Description:

Provides the messenger spacecraft with the functionality to be able to facilitate the
communication network of the subswarm and the ability to travel to a destination
point so that the spacecraft can relay the discovered information back to mission
control.

 Variation Points:
 Subswarm:

The core elements of a leader spacecraft to be able to facilitate the
management and coordination of its subswarm. [LKL-Subswarm]

 Partial:

The functionality of a leader spacecraft to manage and coordinate
several subswarms. [LKL-Partial]

 Full:

The functionality of a leader spacecraft to manage and coordinate
the entire swarms. [LKL-Full]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design time,
however the spacecraft may switch is operating variation point (e.g., from Subswarm
to Partial-Swarm) at runtime. All leader spacecraft shall have the Subswarm variation
point as a commonality. Leader spacecraft with the Partial-Swarm variation point
shall also include all functionality of Subswarm. Likewise, all leader spacecraft with
the Partial-Swarm variation point shall have the functionality of the Full-Swarm.

Leader Knowledge Role Variation Points Schema

 268

Role Schema: LeaderKnowledgeLevel Schema ID: LKL-Subswarm
 Variation Point: Subswarm
 Inherits: SC-Core
 Parameters of Variation: P15=True; P16=True; P17=True; P18=Subswarm;

P19=True
 Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17
 Description:

Provides the core elements of a leader spacecraft to be able to facilitate the
management and coordination of its subswarm.

 Activities and Protocols:
CalculatePartModel, OverseeSubSwarmDataFlow, PerformSubswarmReconfig,
AcceptSubswarmChangeVelocityBid, MoveNewPositionCom, ReqDataFlow,
ReqSubswarmVelocityBids, SendModelPartMessenger,
SendSubswarmVelocityBidConfirm

 Permissions:
 Reads -
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 subswarmSpacecraftPos // vector of the all the spacecrafts current
 // positions in the subswarm
 leaderSpacecraft // vector of the leader spacecraft in the
 // subswarm
 supplied velocityBidRec // vector of received change of velocity bid
 Changes -
 asteroidModel // current model of an asteroid to send
 subswarmSpacecraft // vector of the spacecraft in the subswarm
 subswarmSpacecraftPos // vector of the all thespacecrafts positions
 // in the subswarm
 leaderSpacecraft // vector of the leader spacecraft in the
 // subswarm
 Generates -
 partialAsteroidModel // derived partial model to send to a
 // messenger so that spacecraft can avoid
 // collisions with asteroids
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the configuration and plans of the subswarm to achieve subswarm
 goals.
 Safety -

Avoiding collisions by maintaining and coordinating spacecraft positions and
movements.

Subswarm Knowledge Variation Point Schema for the Leader Knowledge Role

 269

Role Schema: LeaderKnowledgeLevel Schema ID: LKL-Partial
 Variation Point: Parial
 Inherits: LKL=Subswarm
 Parameters of Variation: P15=True; P16=True; P17=True; P18=Partial-Subswarm;

P19=True
 Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17
 Description:

Provides the functionality of a leader spacecraft to manage and coordinate several
subswarms

 Activities and Protocols:
CoordinateReconfigs, CoordinateSubswarms, OverseePartSwarmDataFlow,
PerformPartSwarmReconfig, AcceptPartSwarmChangeVelocityBid,
ComSubswarmsReconfig, MoveNewPositionCom, ReqPartSwarmVelocityBids,
SendModelPartMessenger, SendPartswarmVelocityBidConfirm

 Permissions:
 Reads -
 subswarmsPos // positions of several subswarms to
 // coordinate
 subswarmsLeaders // vector of the leader spacecraft in charge
 // of different subswarms
 Changes -
 subswarmsPos // positions of several subswarms to
 // coordinate
 Generates -
 subswarmReconfigMsg // message to be sent to the leaders of
 // multiple subswarms to reconfigure
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the configuration and plans of several subswarms to achieve
 system-wide goals.
 Safety -

Avoiding collisions by maintaining and coordinating spacecraft positions and
movements of several subswarm’s spacecraft.

Partial-Swarm Knowledge Variation Point Schema for the Leader Knowledge Role

 270

Role Schema: LeaderKnowledgeLevel Schema ID: LKL-Full
 Variation Point: Full
 Inherits: LKL-Partial
 Parameters of Variation: P15=True; P16=True; P17=True; P18=Full-Swarm;

P19=True
 Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17
 Description:

Provides the functionality of a leader spacecraft to manage and coordinate the
entire swarms

 Activities and Protocols:
CoordinateReconfigs, CoordinateSwarm, ManageSwarm OverseeSwarmDataFlow,
PerformSwarmReconfig, AcceptSwarmChangeVelocityBid, ComSwarmsReconfig,
MoveNewPositionCom, ReqPartSwarmVelocityBids,
SendSwarmVelocityBidConfirm

 Permissions:
 Reads -
 subswarmsPos // positions of several subswarms to
 // coordinate
 subswarmsLeaders // vector of the leader spacecraft in charge
 // of different subswarms
 supplied subswarmGoals // current scientific goals of all the
 // subswarms
 Changes -
 subswarmsPos // positions of all subswarms to coordinate
 Generates -
 swarmNotifyMsg // message to be sent to all messengers of
 // the swarm
 swarmReconfigMsg // message to be sent to the leaders of
 // all subswarms to reconfigure
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the configuration and plans of the swarm to achieve system-
 wide goals.
 Safety -

Avoiding collisions by maintaining and coordinating spacecraft positions and
movements of all spacecraft in the swarm.

Full-Swarm Knowledge Variation Point Schema for the Leader Knowledge Role

 271

Role Variation Points Schema: Worker Schemata ID: W

Parameters of Variation: P26, P28, P30, P31, P32, P33, P34, P35, P36, P37, P38, P39,

P40, P41, P42, P43, P44, P45, P46, P47, P48
 Description:

This role and its variation points comprise the specialized functionality for the worker
spacecraft of the swarm and each of the specialized instrumentations of the worker
spacecraft.

 Variation Points:
 Core:

The core elements of a worker spacecraft to be able to explore the
asteroid belt and pursue and satisfy scientific exploration goals. [W-
Core]

 Imager:

The functionality required of those worker spacecraft equipped with a
visible imager to pursue and satisfy scientific exploration goals
specific to its specialized onboard equipment. [W-Imager]

 NIRSpec:

The functionality required of those worker spacecraft equipped with a
near-infrared spectrometer to pursue and satisfy scientific exploration
goals specific to its specialized onboard equipment. [W-NIRSpec]

 XRaySpec:

The functionality required of those worker spacecraft equipped with
an X-ray spectrometer to pursue and satisfy scientific exploration
goals specific to its specialized onboard equipment. [W- XRaySpec]

 GRaySpec:

The functionality required of those worker spacecraft equipped with a
Gamma-ray spectrometer to pursue and satisfy scientific exploration
goals specific to its specialized onboard equipment. [W-GRaySpec]

 NeuSpec:

The functionality required of those worker spacecraft equipped with a
Neutron spectrometer to pursue and satisfy scientific exploration
goals specific to its specialized onboard equipment. [W-NeuSpec]

 Altimeter:

The functionality required of those worker spacecraft equipped with
an altimeter to pursue and satisfy scientific exploration goals specific
to its specialized onboard equipment. [W-Altimeter]

 Magneto:

The functionality required of those worker spacecraft equipped with a
radio science/magnetometer to pursue and satisfy scientific
exploration goals specific to its specialized onboard equipment. [W-
Magneto]

 Radiometer:

The functionality required of those worker spacecraft equipped with a
radio sounder/infrared radiometer to pursue and satisfy scientific
exploration goals specific to its specialized onboard equipment. [W-
Radiometer]

 NMSpec:

The functionality required of those worker spacecraft equipped with a
netural mass spectrometer to pursue and satisfy scientific exploration
goals specific to its specialized onboard equipment. [W-NMSpec]

 Binding Time:
 The binding time to decide which variation point(s) a spacecraft has is at design time.

Worker Role Variation Point Schema

 272

Role Schema: Worker Schema ID: W-Core
 Variation Point: Core
 Inherits: None
 Parameters of Variation: N/A
 Requirements: V_W2, V_W3, V_W4,
 Description:

Provides the worker spacecraft with the functionality to be able to explore the
asteroid belt and pursue and satisfy scientific exploration goals.

 Activities and Protocols:
CheckStatus, CollectPrelimAsteroidData, EvaluateOpportunity,
EvaluateScienceGoals, AcceptAsteroidData, SendArchiveData, SendAsteroidData,
SendPrelimAsteroidData

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 asteriodData // current collected data of an asteroid
 currentGoal // current goal of the spacecraft
 workerSpacecraft // vector of the workers in the subswarm
 likeWorkerSpacecraft // vector of the worker spacecraft in the
 // subswarm with the same specialized
 // instrumentation
 systemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 curScienceGoalFactor // current spacecraft scientific goal factor
 subswarmVector // vector of nearby spacecraft
 Changes -
 asteriodData // collected data of an asteroid
 asteroidID // identification of the current asteroid
 // under exploration
 currentGoal // current goal of the spacecraft
 systemStatus // current status of the spacecraft
 Generates -
 asteriodDataMsg // message to be sent containing the
 // current collected data of an asteroid
 prelimAsteriodDataMsg // message to be sent to a leader contain-
 // ing preliminary data of an asteroid
 prelimAsteroidData // collected preliminary data of an asteroid
 scienceGoalsEval // spacecraft’s evaluation of its current
 // science goals and the advantage of the
 // opportunity to explore an asteroid for
 // preliminary data
 Responsibilities:
 Liveness -

If the spacecraft is functioning properly, this role will eventually be able to
optimize the scientific exploration of the swarm by taking advantage of
opportunities for scientific exploration when they are presented.

 Safety -
 None.

Core Variation Point Schema for the Worker Role

 273

Role Schema: Worker Schema ID: W-Imager
 Variation Point: Imager
 Inherits: W-Core
 Parameters of Variation: P30=Narrow-Scope OR Wide-Scope; P31=True; P32=True;

P33=True; P34=True; P35=True
 Requirements: V_W6, V_W7, V_W8, V_W9, V_W10, V_W11
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
visible imager to pursue and satisfy scientific exploration goals.

 Activities and Protocols:
CalculateAsteroidLocation, CheckMemoryStatus, Construct3DModel,
DetectAsteroid, GatherImagingData, GatherModelData, GatherPhotogeologyData,
GenerateRoughModel, PerformPhotogeolgy, TakeAsteroidImages,
Accept3DModel, CollaborateOn3DModel, Send3DModel, SendAsteroidLocation,
SendAsteroidImages, SendPhotogeologyData, SendRoughModel

 Permissions:
 Reads -
 altimeterSpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an altimeter
 imagerSpacecraft // vector of other nearby worker spacecraft
 // equipped with a visible imager
 magnetoSpacecraft // vector of other nearby worker spacecraft
 // equipped with a visible imager
 memoryStatus // status of the spacecraft’s memory to
 // ensure sufficient space for data
 workerSpacecraft // vector of other nearby worker spacecraft
 supplied asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 Changes -
 asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 memoryStatus // status of the spacecraft’s memory to
 // ensure sufficient space for data
 Generates -
 asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 asteroidData // asteroid data collected
 asteroidImages // vector of images taken of an asteroid
 asteroidLocation // derived location of an asteroid
 asteroidRoughModel // a rough model of the asteroid to send to
 // other asteroid for navigation purposes
 photogeologyData // photogeology data generated by the
 // spacecraft of an asteroid
 Responsibilities:
 Liveness -

If the spacecraft is functioning properly, this role will eventually be able to
ensuring the satisfaction of science goals pertaining to the visible imager
onboard instrumentation.

 Safety -
 Accuracy of the asteroid model to be sent to other spacecraft to prevent
 spacecraft-asteroid collisions.

Visible Imager Variation Point Schema for the Worker Role

 274

Role Schema: Worker Schema ID: W-NIRSpec
 Variation Point: NIRSpec
 Inherits: W-Core
 Parameters of Variation: P36=True
 Requirements: V_W12
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
near-infrared spectrometer to pursue and satisfy scientific exploration goals related
to detecting an asteroids mineral abundance mapping.

 Activities and Protocols:
CalculateAbundanceMapping, DetectMineralAbudance, PerformNISpectrometry,
SendAbundanceMapping

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 niSpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with a near-infrared
 // spectrometer
 workerSpacecraft // vector of other nearby worker spacecraft
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 Generates -
 asteroidMinAbundanceMap // calculated mineral abundance mapping
 // of an asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the near-infrared
 spectrometer onboard instrumentation.
 Safety -
 None.

Near-Infrared Spectrometer Variation Point Schema for the Worker Role

 275

Role Schema: Worker Schema ID: W-XRaySpec
 Variation Point: XRaySpec
 Inherits: W_Core
 Parameters of Variation: P37=True
 Requirements: V_W13
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
X-ray spectrometer to pursue and satisfy scientific exploration goals related to
detecting an asteroid’s major element abundance mapping.

 Activities and Protocols:
CalculateMajorEleMapping, CheckDetectedElements, DetectMajorEleAbudance,
PerformXraySpectrometry, SendMajorEleMapping

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 majorElementList // list of the characterization of the major
 // elements to detect
 xraySpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an x-ray spectrometer
 workerSpacecraft // vector of other nearby worker spacecraft
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 Generates -
 asteroidMajorEleMap // calculated major element abundance
 // mapping of an asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the X-ray
 spectrometer onboard instrumentation.
 Safety -
 None.

X-Ray Spectrometer Variation Point Schema for the Worker Role

 276

Role Schema: Worker Schema ID: W-GRaySpec
 Variation Point: GRaySpec
 Inherits: W-Core
 Parameters of Variation: P38=True
 Requirements: V_W14
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
Gamma-ray spectrometer to pursue and satisfy scientific exploration goals related
to detecting an asteroid’s heavy element abundance mapping.

 Activities and Protocols:
CalculateHeavyEleMapping, CheckDetectedElements, DetectHeavyEleAbudance,
PerformGammaRaySpectrometry, SendHeavyEleMapping

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 heavyElementList // list of the characterization of the heavy
 // elements to detect
 gammaRaySpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an Gamma-ray
 // spectrometer
 workerSpacecraft // vector of other nearby worker spacecraft
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 Generates -
 asteroidMajorEleMap // calculated heavy element abundance
 // mapping of an asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the Gamma-ray
 spectrometer onboard instrumentation.
 Safety -
 None.

Gamma-Ray Spectrometer Variation Point Schema for the Worker Role

 277

Role Schema: Worker Schema ID: W-NeuSpec
 Variation Point: NeuSpec
 Inherits: W-Core
 Parameters of Variation: P39=True
 Requirements: V_W15
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
Neutron spectrometer to pursue and satisfy scientific exploration goals related to
detecting an asteroid’s volatile abundance mapping.

 Activities and Protocols:
CalculateVolatileEleMapping, CheckDetectedElements,
DetectVolatileEleAbudance, PerformNeturonSpectrometry, SendNetronEleMapping

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 volatileElementList // list of the characterization of the volatile
 // elements to detect
 neutronSpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an Neutron
 // spectrometer
 workerSpacecraft // vector of other nearby worker spacecraft
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 Generates -
 volatileEleMap // calculated volatile element abundance
 // mapping of an asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the Neutron
 spectrometer onboard instrumentation.
 Safety -
 None.

Neutron Spectrometer Variation Point Schema for the Worker Role

 278

Role Schema: Worker Schema ID: W-Altimeter
 Variation Point: Altimeter
 Inherits: W-Core
 Parameters of Variation: P40=True; P41=True; P42=True; P43=True;
 Requirements: V_W16, V_W17, V_W18, V_W19
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
altimeter to pursue and satisfy scientific exploration goals related to detecting an
asteroid’s topographic and geomorphic characteristics.

 Activities and Protocols:
CalculateAsteroidShape, CalculateAsteroidTopography, Construct3DModel,
DetectAsteroidShape, GatherGeomorphData, GatherModelData,
GatherTopographyData, Accept3DModel, CollaborateOn3DModel, Send3DModel,
SendAsteroidShapeData, SendAsteroidTopograpy

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 altimeterSpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an altimeter spectrometer
 imagerSpacecraft // vector of other nearby worker spacecraft
 // equipped with a visible imager
 workerSpacecraft // vector of other nearby worker spacecraft
 supplied asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 Changes -
 asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 asteroidData // data collected by the spacecraft of an
 // asteroid
 asteroidShapeData // calculated shape data of an asteroid

 Generates -
 asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 asteroidShapeData // calculated shape data of an asteroid
 asteroidTopographyData // calculated topography data of an
 // asteroid
 asteroidGeomorphData // calculated geomorphology data of an
 // asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the altimeter onboard
 instrumentation.
 Safety -
 Accuracy of the asteroid model to be sent to other spacecraft to prevent
 spacecraft-asteroid collisions.

Altimeter Variation Point Schema for the Worker Role

 279

Role Schema: Worker Schema ID: W-Magneto
 Variation Point: Magneto
 Inherits: W-Core
 Parameters of Variation: P44=True; P45=True; P46=True
 Requirements: V_W20, V_W21, V_W22 V_W23
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
radio science/magnetometer instrumentation to pursue and satisfy scientific
exploration goals related to detecting an asteroid’s gravity and magnetic fields.

 Activities and Protocols:
CalculateInteriorMakeup, DetectGravityField, DetectMagneticField,
GatherModelData, MeasureAsteroidInterior, MeasureGravityField,
MeasureMagneticField, CollaborateOn3DModel, Send3DModel,
SendGravityFieldData, SendMagneticFieldData

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 magnetoSpacecraft // vector of other nearby worker spacecraft
 // equipped with a radio
 // science/magnetometer
 altimeterSpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an altimeter spectrometer
 imagerSpacecraft // vector of other nearby worker spacecraft
 // equipped with a visible imager
 workerSpacecraft // vector of other nearby worker spacecraft
 supplied asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 Generates -
 asteroid3DModel // 3D model of an asteroid based on the
 // collected data
 asteroidGravityFieldData // calculated gravity field data of an
 // asteroid
 asteroidMagneticFieldData // calculated magnetic field data of an
 // asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the radio
 science/magnetometer onboard instrumentation.
 Safety -
 Accuracy of the asteroid model to be sent to other spacecraft to prevent
 spacecraft-asteroid collisions.

Radio Science/Magnetometer Variation Point Schema for the Worker Role

 280

Role Schema: Worker Schema ID: W-Radiometer
 Variation Point: Radiometer
 Inherits: W-Core
 Parameters of Variation: P47=True
 Requirements: V_W24
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
radio sounder/infrared radiometer instrumentation to pursue and satisfy scientific
exploration goals related to detecting an asteroid’s Regolith characterization.

 Activities and Protocols:
CalculateRegolithChar, GatherRegolithData, MeasureAsteroidRegolith,
SendRegolithData

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 radiometerSpacecraft // vector of other nearby worker spacecraft
 // equipped with a radio sounder/infrared
 // radiometer
 workerSpacecraft // vector of other nearby worker spacecraft
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 Generates -
 asteroidRegolithData // the gathered Regolith characterization of
 // the asteroid’s surfuce
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the radio/sounder
 infrared radiometer onboard instrumentation.
 Safety -
 None.

Radio Sounder/Infrared Radiometer Variation Point Schema for the Worker Role

 281

Role Schema: Worker Schema ID: W-NMSpec
 Variation Point: NmSpec
 Inherits: W-Core
 Parameters of Variation: P48=True
 Requirements: V_W25
 Description:

Provides the worker spacecraft with the functionality to be able to utilize its onboard
neutral mass spectrometer to pursue and satisfy scientific exploration goals related
to detecting an asteroid’s volatile characterization.

 Activities and Protocols:
CalculateVolatileCharacterization, CheckDetectedElements,
DetectVolatileEleAbudance, PerformNeutralMassSpectrometry,
SendVolatileCharacterization

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 volatileElementList // list of the characterization of the volatile
 // elements to detect
 neutronSpecSpacecraft // vector of other nearby worker spacecraft
 // equipped with an Neutron
 // spectrometer
 workerSpacecraft // vector of other nearby worker spacecraft
 Changes -
 asteroidData // data collected by the spacecraft of an
 // asteroid
 Generates -
 volatileCharacterization // calculated volatile characterization of an
 // asteroid
 volatileEleMap // calculated volatile element abundance
 // mapping of an asteroid
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the neutral mass
 spectrometer onboard instrumentation.
 Safety -
 None.

Neutral Mass Spectrometer Variation Point Schema for the Worker Role

 282

Role Variation Points Schema: WorkerCooperationLevel Schemata ID: WCL

 Parameters of Variation: P29
 Description:

Provides the worker spacecraft with the functionality to be able to either work within
the context of a subswarm to collect data on a targeted asteroid or the ability to work
as in individual to gather scientific data on an asteroid without the need to collaborate
with other worker spacecraft.

 Variation Points:
 WorkInTeam:

The functionality of a worker spacecraft to work within the context
of a subswarm to form virtual instruments to achieve scientific
goals. [WCL-Team]

 WorkSolo:

The functionality of a worker spacecraft to work as an individual to
achieve scientific goals. Particularly used to gather preliminary data
on an asteroid so that a leader spacecraft can then decide whether
an asteroid is interesting enough to send an entire subswarm to
explore it in detail. [WCL-Solo]

 Binding Time:
 The binding time to decide which variation point(s) a spacecraft has is at design time.

Worker Cooperation Level Role Variation Point Schema

 283

Role Schema: WorkerCooperationLevel Schema ID: WIS-Team
 Variation Point: WorkInTeam
 Inherits: W-Core
 Parameters of Variation: P29=False
 Requirements: V_W5
 Description:

Provides the functionality of a worker spacecraft to work within the context of a
subswarm to form virtual instruments to achieve scientific goals

 Activities and Protocols:
DecideNewGoal, CheckGoalStatus, MoveToJoinSubswarm, AcceptJoinSubswarm,
NotifySubswarmLeader, RejectJoinSubswarm, RequestNewGoal

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 asteriodData // current collected data of an asteroid
 currentGoal // current goal of the spacecraft
 workerSpacecraft // vector of the worker spacecraft in the
 // subswarm
 messengerSpacecraft // vector of the worker spacecraft in the
 // subswarm
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 likeWorkerSpacecraft // vector of the worker spacecraft in the
 // subswarm with the same specialized
 // instrumentation
 subswarmID // identification of the subswarm it belongs
 systemStatus // current status of the spacecraft
 Changes -
 asteriodData // collected data of an asteroid
 asteroidID // identification of the current asteroid
 // under exploration
 currentGoal // current goal of the spacecraft
 systemStatus // current status of the spacecraft
 Generates -
 scienceGoalsEval // spacecraft’s evaluation of its current
 // science goals and the advantage of the
 // opportunity to explore an asteroid for
 // preliminary data
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 achieve the scientific goals of the subswarm.
 Safety -
 None.

Work in a Subswarm Variation Point Schema for the Worker Cooperation Level

Role

 284

Role Schema: WorkerCooperationLevel Schema ID: WIS-Solo
 Variation Point: WorkSolo
 Inherits: W-Core
 Parameters of Variation: P29=True
 Requirements: V_W5
 Description:

Provides the functionality of a worker spacecraft to work as an individual to achieve
scientific goals. Particularly used to gather preliminary data on an asteroid so that a
leader spacecraft can then decide whether an asteroid is interesting enough to
send an entire subswarm to explore it in detail.

 Activities and Protocols:
DecideNewGoal, EvaluateCurrentAsteroid, MoveToNewAsteroid,
SendPrelimAsteroidData

 Permissions:
 Reads -
 asteroidID // identification of the current asteroid
 // under exploration
 asteriodData // current collected data of an asteroid
 currentGoal // current goal of the spacecraft
 messengerSpacecraft // vector of the worker spacecraft in the
 // subswarm
 messengerSpacecraft // vector of the leader spacecraft in the
 // subswarm
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 likeWorkerSpacecraft // vector of the worker spacecraft in the
 // subswarm with the same specialized
 // instrumentation
 subswarmID // identification of the subswarm it belongs
 systemStatus // current status of the spacecraft
 Changes -
 prelimAsteroidData // collected preliminary data of an asteroid
 asteriodData // current collected data of an asteroid
 currentGoal // current goal of the spacecraft
 Generates -
 prelimAsteriodDataMsg // message to be sent to a leader
 // containing preliminary data of an
 // asteroid
 prelimAsteroidData // collected preliminary data of an asteroid

 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 achieve its own scientific goals and communicate the findings to a leader
 spacecraft.
 Safety -
 None.

Work Individually Variation Point Schema for the Worker Cooperation Level Role

 285

Role Variation Points Schema: WorkerImagerScope Schemata ID: WIS

 Parameters of Variation: P30
 Description:

Provides the messenger spacecraft with the functionality to be able to facilitate the
communication network of the subswarm and the ability to travel to a destination
point so that the spacecraft can relay the discovered information back to mission
control.

 Variation Points:
 Wide-Scope:

The functionality of a worker spacecraft with a visible imager to
operate its wide-scope visible imager onboard instrumentation.
[WIS-Wide]

 Narrow-Scope:

The functionality of a worker spacecraft with a visible imager to
operate its narrow-scope visible imager onboard instrumentation.
[WIS-Narrow]

 Binding Time:
 The binding time to decide which variation point(s) a spacecraft has is at design time.

Worker Visible Imager Scope Role Variation Point Schema

 286

Role Schema: WorkerImagerScope Schema ID: WIS-Wide
 Variation Point: Wide-Scope
 Inherits: W-Imager
 Parameters of Variation: P30=Wide-Scope
 Requirements: V_W6
 Description:

Provides a worker spacecraft with a visible imager to operate its wide-scope visible
imager onboard instrumentation to perform scientific exploration and satisfy its
scientific goals.

 Activities and Protocols:
AnalyzeWideImage, CheckImagerScope, FocusWideImager,
IdentifyTargetAsteroids, TakeWideScopeImage, WideImagerScopeShutdown,
NotifyWideImagerFailure, SendWideImagerToLeader

 Permissions:
 Reads -
 imagerSpacecraft // vector of all other imager worker
 // spacecraft in the subswarm
 imagerStatus // current status of the wide-scoped
 // imager
 wideImagerSpacecraft // vector of all other wide-scoped imager
 // worker spacecraft in the subswarm
 wideImagerFocusVal // value of the focus of the imager
 Changes -
 asteroidData // collected and derived data of an asteroid
 imagerStatus // current status of the wide-scoped
 // imager
 wideImagerFocusVal // value of the focus of the imager
 Generates -
 asteroidImageData // data generated from the analysis of an
 // image taken with a wide-scoped visible
 // imager
 wideImagerFailureMsg // message to be sent to other wide-
 // scoped imager worker spacecraft
 // notifying of a hardware failure
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the visible imager
 onboard instrumentation.
 Safety -
 None.

Wide-Scope Imager Variation Point Schema for the Worker Visible Imager Role

 287

Role Schema: WorkerImagerScope Schema ID: WIS-Narrow
 Variation Point: Narrow-Scope
 Inherits: W-Imager
 Parameters of Variation: P30=Narrow-Scope
 Requirements: V_W6
 Description:

Provides a worker spacecraft with a visible imager to operate its narrow-scope
visible imager onboard instrumentation to perform scientific exploration and satisfy
its scientific goals.

 Activities and Protocols:
AnalyzeNarrowImage, CheckImagerScope, FocusNarrowImager,
GetAsteroidDetailsFromImage, NarrowImagerScopeShutdown,
TakeNarrowScopeImage, NotifyNarrowImagerFailure

 Permissions:
 Reads -
 imagerSpacecraft // vector of all other imager worker
 // spacecraft in the subswarm
 imagerStatus // current status of the narrow-scoped
 // imager
 narrowImagerSpacecraft // vector of all other narrow-scoped imager
 // worker spacecraft in the subswarm
 wideImagerFocusVal // value of the focus of the imager
 Changes -
 asteroidData // collected and derived data of an asteroid
 imagerStatus // current status of the narrow-scoped
 // imager
 narrowImagerFocusVal // value of the focus of the imager
 Generates -
 asteroidImageData // data generated from the analysis of an
 // image taken with a narrow-scoped
 // visible imager
 narrowImagerFailureMsg // message to be sent to other narrow-
 // scoped imager worker spacecraft
 // notifying of a hardware failure
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensuring the satisfaction of science goals pertaining to the visible imager
 onboard instrumentation.
 Safety -
 None.

Narrow-Scope Imager Variation Point Schema for the Worker Visible Imager Role

 288

Role Variation Points Schema: Messenger Schemata ID: M

 Parameters of Variation: P20, P21, P22, P23, P24, P25
 Description:

Provides the messenger spacecraft with the functionality to be able to facilitate the
communication network of the subswarm and the ability to travel to a destination point
so that the spacecraft can relay the discovered information back to mission control.

 Variation Points:
 Core:

The core elements of a messenger spacecraft to be able to facilitate
the communication network of the swarm. [M-Core]

 LagrangeTravel:

The functionality of a messenger spacecraft to additionally be able
to travel to a Lagrange point and communicate the results of
asteroid exploration to mission control and other spacecraft. [M-
LagrangeTravel]

 Binding Time:
 The binding time to decide which variation point(s) a spacecraft has is at design time.

Messenger Role Variation Points Schema

 289

Role Schema: Messenger Schema ID: M-Core
 Variation Point: Core
 Inherits: None
 Parameters of Variation: P20=True; P22=dc; P23=True; P25=True
 Requirements: V_M1, V_M3, V_M4, V_M5, V_M7, V_M8
 Description:

Provides the spacecraft with the functionality to facilitate the communication
network of the subswarm by relaying and coordinating the messages and data
discovered through scientific exploration.

 Activities and Protocols:
ArchiveData, CheckMemoryStatus, MaintainSpacecraftPosData,
AcceptArchiveData, AcceptAsteroidModel, AcceptLeaderMsg,
AcceptMessengerMsg, AcceptWorkerMsg, CoordinateMessagesLeader,
CoordinateMessageWorker, RelayAsteroidModel, RelayMessageToLeader,
RelayMessageToWorker,

 Permissions:
 Reads -
 leaderSpacecraft // vector of the leaders in the subswarm
 messengerSpacecraft // vector of the workers in the subswarm
 memoryStatus // current status (i.e., functioning or mal-
 // functioning) of the spacecraft’s memory
 // system
 systemStatus // current status of the spacecraft
 spacecraftOrbitData // vector of the orbital insertion data of all
 // subswarm spacecraft
 spacecraftTrajectoryData // vector of the trajectory data of all
 // subswarm spacecraft
 workerSpacecraft // vector of the workers in the subswarm
 supplied fromSpacecraftID // spacecraft identification number that
 // sent a message to be relayed
 supplied toSpacecraftID // spacecraft identification number that
 // is to received a relayed message
 supplied messageRec // the message received to be relayed
 Changes -
 messageRec // the message received to be relayed
 messageHistory // history log of the messages sent
 memoryStatus // current status (i.e., functioning or mal-
 // functioning) of the spacecraft’s memory
 spacecraftOrbitData // vector of the orbital insertion data of all
 // subswarm spacecraft
 spacecraftTrajectoryData // vector of the trajectory data of all
 // subswarm spacecraft
 Generates -
 messageHistory // history log of the messages sent
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure the timely delivery of message throughout the subswarm.
 Safety -
 Ensure the accuracy of spacecraft orbital and trajectory insertion data to
 prevent spacecraft collisions.

Core Variation Point Schema for the Messenger Role

 290

Role Schema: Messenger Schema ID: M-LagrangeTravel
 Variation Point: Lagrange-Travel
 Inherits: M-Core
 Parameters of Variation: P21=True; P24=True
 Requirements: V_M2, V_M6
 Description:

Provides the spacecraft with the ability to travel to the Lagrange point and
communicate and with mission control in order to relay the data collected from
scientific exploration.

 Activities and Protocols:
CheckSystemStatus, GetArchiveData, PrepareCommToMisControl,
TravelToLagrange, AcceptMisConotrolConfirm, SendDataToMisControl

 Permissions:
 Reads -
 systemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft to see if recent
 // solar storm
 lagrangePointLocation // position of the Lagrange point to travel to
 solarSailStatus // current status of the solar sail
 Changes -
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 Generates -
 asteroidDataMsg // message to send to mission control
 // containing the asteroid data collected
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure the successful delivery of data to mission control.
 Safety -
 None.

Lagrange Traveler Variation Point Schema for the Messenger Role

 291

Role Variation Points Schema: SelfHealer Schemata ID: SH

 Parameters of Variation: P2, P3
 Description:

At the swarm-level, the collection of these roles within all the spacecraft aid in
autonomously maintaining the system’s scientific operations while enduring solar
storms, spacecraft collisions, etc. At the spacecraft-level, detecting subsystem
malfunctions and failures and autonomously reconfigure itself or requesting help to
heal its damaged components.

 Variation Points:
 Core:

The spacecraft does not have the ability to alter its role (i.e.,
worker, leader or messenger) and only has the core functionality in
regards to its self-healing ability. [SH-Core]

 UpToLeader:

The spacecraft has the ability to change from its current role,
either worker or messenger, to that of a leader as a mechanism for
swarm-level self-healing in the case that the swarm or subswarm
needs to replace a lost or failing leader. [SSW-UpToLeader]

 UpToMessenger:

The spacecraft has the ability to change from its current role,
either worker or leader, to that of a messenger as a mechanism for
swarm-level self-healing in the case that the swarm or subswarm
needs to replace a lost or failing messenger. [SSW-
UpToMessenger]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design time,
however, the spacecraft may switch is operating variation point (e.g., the UpToLeader
variation point) may be enacted at runtime. All spacecraft shall have the Basic
variation point as a commonality.

Self-Healer Role Variation Point Schema

 292

Role Schema: SelfHealer Schema ID: SH-Core
 Variation Point: Core
 Inherits: None
 Parameters of Variation: P2=False; P3=False
 Requirements: C_G1, C_G2, C_SH1, C_SH2, C_SH3, C_SH4, C_SH5
 Description:

Provides the spacecraft with the functionality to detect system damage and
malfunctions and reconfigure itself so that it can continue pursuing its goals.

 Activities and Protocols:
CheckMemoryStatus, CheckMemConfiguration, ReconfigMemory, RepairMemory,
AcceptNewMemory, AcceptKillCommand, ReceiveNewMemoryReq,
RequestNewMemory, SendNewMemory

 Permissions:
 Reads -
 spacecraftID // spacecraft ID to send to other spacecraft
 // when requesting clean memory
 memoryStatus // current status (i.e., functioning or mal-
 // functioning) of the spacecraft’s memory
 // system
 systemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft to see if recent
 // solar storm
 Changes -
 memoryCorrupted // Boolean value indicating if the spacecraft
 // believes its memory is corrupted
 Generates -

 memoryStatusReport // report containing information related to
 // the spacecraft’s current memory status

 memoryCorruptedMsg // message indicating to other spacecraft
 // that its memory is damaged and needs
 // to reconfigure
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure that undamaged system memory is being used during scientific
 exploration.
 Safety -
 Preventing the spacecraft from using corrupted/damaged system memory
 and sending corrupted data to other spacecraft.

Core Variation Point Schema for the Self-Healer Role

 293

Role Schema: SelfHealer Schema ID: SH-UpToLeader
 Variation Point: UpToLeader
 Inherits: SH-Core
 Parameters of Variation: P2=True
 Requirements: C_G1, C_G2, V_SH1
 Description:

Provides the spacecraft with the functionalities needed to change itself from its
current role, either a messenger or worker, to the role of a leader. This role change
may be needed if too many leader spacecraft have been lost (e.g., due to collisions
with other spacecraft or asteroids or due to solar storm damage) or are
malfunctioning.

 Activities and Protocols:
CheckSystemStatus, EvaluateUpgradeReq, UpgradeToLeader,
AcceptUpgradeToLeader, ReceiveUpgradeRequest

 Permissions:
 Reads -
 systemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft
 supplied upgradeGoal // goal provided to address the reason to
 // upgrade to leader
 supplied leadersVector // vector of other nearby leaders
 Changes -
 newSystemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft
 systemGoal // current goal of the spacecraft
 Generates -
 newSystemGoal // new goal of the spacecraft
 newSystemRole // new role for the spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure that the current goal is satisfied or can be satisfied prior to upgrading
 to a new spacecraft role.
 Safety -
 Ensure that the subswarm has an adequate number of leader spacecraft.

Promote to Leader Role Variation Point Schema for the Self-Healer Role

 294

Role Schema: SelfHealer Schema ID: SH-UpToMessenger
 Variation Point: UpToMessenger
 Inherits: SH-Core
 Parameters of Variation: P3=True
 Requirements: C_G1, C_G2, V_SH2, V_SH3
 Description:

Provides the spacecraft with the functionalities needed to change itself from its
current role, either a messenger or worker, to the role of a leader. This role change
may be needed if too many leader spacecraft have been lost (e.g., due to collisions
with other spacecraft or asteroids or due to solar storm damage) or are
malfunctioning.

 Activities and Protocols:
CheckSystemStatus, EvaluateUpgradeReq, UpgradeToMessenger,
AcceptUpgradeToMessenger, ReceiveUpgradeRequest

 Permissions:
 Reads -
 systemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft
 supplied upgradeGoal // goal provided to address the reason to
 // upgrade to leader
 supplied messengersVector // vector of other nearby messengers
 Changes -
 newSystemStatus // current status of the spacecraft
 riskForSystemFactor // current risk to spacecraft
 systemGoal // current goal of the spacecraft
 Generates -
 newSystemGoal // new goal of the spacecraft
 newSystemRole // new role for the spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 ensure that the current goal is satisfied or can be satisfied prior to upgrading
 to a new spacecraft role.
 Safety -
 Ensure that the subswarm has an adequate number of messenger
 spacecraft.

Promote to Messenger Role Variation Point Schema for the Self-Healer Role

 295

Role Variation Points Schema: SelfProtector Schemata ID: SP

 Parameters of Variation: N/A
 Description:

At the swarm-level, the collection of these roles within all the spacecraft aid in
autonomously maintaining the system’s scientific operations while enduring solar
storms, spacecraft collisions, etc. At the spacecraft-level, detecting subsystem
malfunctions and failures and autonomously reconfigure itself or requesting help to
heal its damaged components.

 Variation Points:
 SolarStormWarner:

Detects solar storms through monitoring the solar disc and
being able to receive warning messages from mission control
of an impending solar storm. After detecting an impending
solar storm, it measures solar storm risk to determine the best
course of action for the swarm. [SSW]

 SolarStormProtector:

Protects the spacecraft from the solar radiation present during
solar storms by using the solar sail as a shield, powering off
systems and/or moving to a better position. [SSP]

CollisionProtector: Prevents the spacecraft from colliding with other spacecraft in

the swarm and with nearby asteroids. [CP]
 Binding Time:
 The binding time to decide which variation point(s) a spacecraft has is at design time,

Self-Protector Role Variation Point Schema

 296

Role Variation Points Schema: SolarStormWarner Schemata ID: SSW

 Parameters of Variation: P7, P8
 Description:

Detects solar storms through monitoring the solar disc and being able to receive
warning messages from mission control of an impending solar storm. After detecting
an impending solar storm, it measures solar storm risk to determine the best course
of action for the swarm.

 Variation Points:
 Passive:

The spacecraft does not have the ability to constantly monitor the
solar disc to watch for solar storms but can warn other spacecraft
after itself receiving a warning message. [SSW-Passive]

 Warm-Spare:

The spacecraft has the ability to constantly monitor the solar disc to
watch for solar storms and receive messages from mission control
but is acting in a backup/redundant capacity. [SSW-Warm]

 Active:

The spacecraft is tasked to constantly monitor the solar disc and
receive warning messages from mission control so that it can warn
other spacecraft of an impending solar storm. [SSW-Active]

 Binding Time:

The binding time to decide which variation point(s) a spacecraft has is at design time,
however, the spacecraft may switch is operating variation point (e.g., from Warm-
Spare to Active) at runtime. All spacecraft shall have the Passive variation point as a
commonality. Spacecraft with the Warm-Spare variation point shall also include all
functionality of Passive. Likewise, all spacecraft with the Active variation point shall
have the functionality of the Warm-Spare.

Self-Protector Solar Storm Warner Role Variation Point Schema

 297

Role Schema: SolarStormWarner Schema ID: SSW-Passive
 Variation Point: Passive
 Inherits: SP-Core
 Parameters of Variation: P7=Passive; P8=False
 Requirements: C_G1, C_SH4, C_SP5, C_SP8, V_SP1, V_SP2
 Description:

Receives warnings from other spacecraft about impending solar storms and
calculates the risk factor to itself from solar radiation damage. Notifies other nearby
spacecraft of the impending solar storm.

 Activities and Protocols:
CalculateStormRisk, UpgradeToWarm, AcceptUpgrade, AcceptWarnMsg,
RecieveHeartbeat, ReplyHeartBeat, SendSolarStormWarnMsg

 Permissions:
 Reads -
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 curScienceGoalFactor // current spacecraft scientific goal factor
 subswarmVector // vector of nearby spacecraft to warn
 supplied stormType // type of storm supplied by warning
 supplied stormIntensity // storm intensity supplied by warning
 supplied stormVector // storm vector supplied by warning
 Changes -
 riskForSystemFactor // current risk to spacecraft
 Generates -
 stormRiskValue // new value of the risk to the spacecraft of
 // the solar storm
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 optimize the ability to satisfy scientific goals while minimizing the risk factor.
 Safety -
 Prevent other spacecraft from being damaged by notifying others.

Passive Variation Point Schema for the Solar Storm Warner Role

 298

Role Schema: SolarStormWarner Schema ID: SSW-Warm
 Variation Point: Warm-Spare
 Inherits: SSW-Passive
 Parameters of Variation: P7=Warm-Spare; P8=False
 Requirements: V_SP1, V_SP2
 Description:

Acts as a redundant backup to those spacecraft that are actively monitoring the
solar disc and warning other spacecraft of impending solar storms that may
damage their onboard equipment. With actively monitoring spacecraft, verifies
measurements and other solar storm measurements.

 Activities and Protocols:
CalculateStormDataAccuracy, CompareVerifyStromData, DetectStormData,
DowngradeToPassive, ObserveSolarDisc, UpgradeToActive, AcceptStormData,
AcceptDowngrade, AcceptUpgrade, SendHeartbeat, SendStormData,
VoteStormDataAccuracy

 Permissions:

 Reads -
 supplied prelimStormType // preliminary type of storm supplied by
 // active spacecraft to be verified
 supplied prelimstormIntensity // preliminary intensity of storm supplied by
 // active spacecraft to be verified
 supplied prelimstormVector // preliminary storm vector supplied by
 // active spacecraft to be verified
 Changes -
 stormDataAccuracyValue // current value of the accuracy of the
 // supplied data compared to detected data
 stormRiskValue // current risk value of the storm to the
 // spacecraft
 Generates -
 detectedStormType // type of storm as detected
 detectedStormIntensity // intensity of the storm as detected
 detectedStormVector // storm vector as detected
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 maintain heartbeat with other spacecraft monitoring the solar disc.
 Safety -
 Prevent dissemination of false solar storm warnings.

Warm-Spare Variation Point Schema for the Solar Storm Warner Role

 299

Role Schema: SolarStormWarner Schema ID: SSW-Active
 Variation Point: Active
 Inherits: SSW-Passive, SSW-Warm
 Parameters of Variation: P7=Active; P8=True
 Requirements: C_M9, V_SP1, V_SP2
 Description:

Continuously monitors the solar disc for the signs of an impending solar storm
whose solar radiation may damage the swarm’s spacecraft. Upon detecting a solar
storm, it seeks to verify the data and then proceeds to warn the swarm’s spacecraft.
Also able to receive warning messages from mission control of an impending solar
storm.

 Activities and Protocols:
CompareMissionControlData, DowngradeToWarm, AcceptDowngrade,
AcceptMissionControlWarn, AcceptStormDataVote, InitiateStormDataVote,
InitiateStromWarning

 Permissions:
 Reads -
 detectedStormType // type of storm as detected
 detectedStormIntensity // intensity of the storm as detected
 detectedStormVector // storm vector as detected
 supplied MCStormType // type of storm supplied by mission control
 supplied MCStormIntensity // storm intensity supplied by mission
 // control
 supplied MCstormVector // storm vector supplied by mission control
 Changes -
 stormRiskValue // new value of the risk to the spacecraft of
 // the solar storm
 Generates -
 riskForSystemFactor // current risk to spacecraft
 stromWarningConfidence // confidence in the warning provided by
 // mission control
 voteConfidence // confidence in the verification of detected
 // storm data by other spacecraft
 warningMessage // warning message to be sent to other
 // spacecraft
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually be able to
 maintain communication connection with mission control.
 Safety -
 Initiate warnings to spacecraft of an impending solar storm.

Active Variation Point Schema for the Solar Storm Warner Role

 300

Role Schema: SolarStormProtector Schema ID: SSP
 Variation Point: SolarStormProtector
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SP5, C_SP6, C_SP7
 Description:

Provides the spacecraft with the functionality to autonomously protect itself from the
affects of solar radiation during a solar storm.

 Activities and Protocols:
CheckSolarSailStatus, DeploySolarSailAsShield, EvaluateRiskToGoal,
PowerDownSubsystems, PowerUpSubsystems

 Permissions:
 Reads -
 curScienceGoalFactor // current spacecraft scientific goal factor
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 solarSailStatus // status of the solar sail
 detectedStormType // type of storm as detected
 detectedStormIntensity // intensity of the storm as detected
 detectedStormVector // storm vector as detected
 subsystemsList // vector list of the spacecraft’s subsystems
 Changes -
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 systemStatus // status of the spacecraft
 solarSailStatus // status of the solar sail
 subsystemsStatus // list of the statuses of the spacecraft’s
 // subsystems
 Generates -
 riskForSystemFactor // current risk to spacecraft
 riskToGoalFactor // calculated value of the current risk factor
 // to the advantage of pursuing scientific
 // exploration
 Responsibilities:
 Liveness -
 If the spacecraft is functioning properly, this role will eventually take the
 steps needed to prevent radiation damage from a solar storm.
 Safety -
 Prevent the solar radiation damage to the spacecraft possible during a solar
 storm.

Protect from Solar Storms Role Variation Point Schema for the Self-Protector Role

 301

Role Schema: CollisionProtector Schema ID: CP
 Variation Point: CollisionProtector
 Inherits: None
 Parameters of Variation: N/A
 Requirements: C_SP1, C_SP2, C_SP3, C_SP4, C_SP5
 Description:

Provides the spacecraft with the functionality to autonomously protect itself from
colliding with other spacecraft and nearby asteroids.

 Activities and Protocols:
Analyze3DModel, DetectNearbySpacecraft, EvaluateRiskToGoal,
MonitorNearbyAsteroids, MonitorNearbySpacecraft, MoveToAvoidCollision,
AcceptAsteroid3DModel, AcceptCurrentPosition, AcceptCurrentTrajectory,
AcceptSpacecraftLocations, NegotiateCollisionAvoidance, PingNearbySpacecraft,
RequestAsteroidPositions, RequestCurrentPosition, RequestCurrentTrajectory,
RequestSpacecraftLocations

 Permissions:
 Reads -
 curScienceGoalFactor // current spacecraft scientific goal factor
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 supplied asteroid3DModel // 3D model of an asteroid supplied
 supplied asteroidPositions // positions of nearby asteroids
 supplied subswarmVector // vector of nearby spacecraft positions
 supplied spacecraftPos // current position of a nearby spacecraft
 // supplied by a messenger or leader
 supplied spacecraftTraj // current trajectory of a nearby spacecraft
 // supplied by a messenger or leader
 Changes -
 position // current spacecraft position
 velocityIncrement // current spacecraft velocity increment
 riskForSystemFactor // current risk to spacecraft
 Generates -
 collisionRiskFactor // derived risk to spacecraft for an
 // impending collision
 riskToGoalFactor // calculated value of the current risk factor
 // to the advantage of pursuing scientific
 // exploration
 nearbyAsteroid // vector of nearby asteroids that must be
 // avoided to prevent a collision
 nearbySpacecraft // vector of nearby spacecraft that must be
 // avoided to prevent a collision
 Responsibilities:
 Liveness -
 None.
 Safety -
 Prevent the collision with other spacecraft and nearby asteroids.

Protect from Collisions Role Variation Point Schema for the Self-Protector Role

302

APPENDIX E. SOFTWARE FAILURE MODES, EFFECTS AND

CRITICALITY ANALYSIS

This appendix provides the full set of Software Failure Modes, Effects and

Criticality Analysis (SFMECA) tables for the Prospecting Asteroid Mission (PAM)

multi-agent system product line (MAS-PL) case study used throughout this dissertation.

The SFMECA tables are derived using the Gaia-PL requirements specifications schemas.

303

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector Analyze3DModel Halt/Abnormal
Termination

The position and model of a nearby asteroid
stored in the asteroidPositions,
nearbyAsteroid and collisionRiskFactor data
vector may be incomplete or partially
incorrect. This may affect other events such
as MonitorNearbyAsteroids and
MoveToAvoidCollision.

The spacecraft’s inaccurate
mental model of the nearby
asteroid could cause it to
maneuver itself too close to
the asteroid causing a
collision.

Major

Omission The role fails to analyze the 3D model of a
nearby asteroid potentially causing the
asteroidPositions, nearbyAsteroid and
collisionRiskFactor data to be incomplete or
incorrect. This may affect other events such
as MonitorNearbyAsteroids and
MoveToAvoidCollision.

The failure to analyze the 3D
model provided of a nearby
asteroid(s) may cause the
asteroid to incorrectly
maneuver itself too close to
an asteroid and cause a
collision.

Critical

Incorrect
Logic/Event

The role incorrectly analyzes the 3D model
of a nearby asteroid that may cause the
asteroidPositions, nearbyAsteroid and
collisionRiskFactor data to be incomplete or
incorrect. This may affect other events such
as MonitorNearbyAsteroids and
MoveToAvoidCollision.

The spacecraft uses an
inaccurate 3D model of a
nearby asteroid that my
cause it to maneuver itself
into a nearby spacecraft or
asteroid.

Critical

Timing/Order The role fails to analyze the 3D model of a
nearby asteroid causing the
asteroidPositions, nearbyAsteroid and
collisionRiskFactor data to be outdated. The
riskForSystemFactor data may be inaccurate
since it was calculated based on outdated
data. This may affect other events such as
MonitorNearbyAsteroids,
EvaluateRiskToGoal and
MoveToAvoidCollision.

The spacecraft uses an
outdated 3D model of a
nearby asteroid(s) and may
not be able to react in time to
avoid a collision with an
asteroid if the 3D model is
not updated as expected.

Major

SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role

304

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality
Self-Protector

 CollisionProtector DetectNearby
Spacecraft

Halt/Abnormal
Termination

The role fails to complete its analysis of
detecting nearby spacecraft and may not
be aware of all nearby spacecraft. Thus,
the data stored in riskForSystemFactor,
subswarmVector, spacecraftPos,
collisionRiskFactor and neabySpacecraft
may be inaccurate, corrupted or outdated.

The spacecraft does not have a full
knowledge of all nearby spacecraft and
may unknowingly maneuver itself into
another spacecraft causing a collision. The
spacecraft’s ability to negotiate collision
avoidance with another spacecraft using
the NegotiateCollision Avoidance protocol
can not be trusted by other spacecraft since
the spacecraft’s mental model of nearby
spacecraft is not accurate.

Major

Omission The role fails to detect its surrounding for
nearby spacecraft and may not be aware of
all nearby spacecraft. The data stored in
riskForSystemFactor, subswarmVector,
spacecraftPos, collisionRiskFactor and
may be inaccurate or outdated and the
neabySpacecraft may be incorrect or
outdated.

The spacecraft has no knowledge of the
positions of other nearby spacecrafts
possibly causing the spacecraft to
maneuver too close to another spacecraft
causing a collision. The lack of knowledge
of the positions of nearby spacecrafts may
also cause the spacecraft’s ability to avoid
collisions using the Negotiate
CollisionAvoidance protocol is using
incomplete or inaccurate data.

Critical

Incorrect
Logic/Event

The role possible wrongly detects or
miscalculates the positions of nearby
spacecraft. The data stored in
riskForSystemFactor, subswarmVector,
spacecraftPos, collisionRiskFactor and
may be inaccurate or outdated and the
neabySpacecraft may be incorrect or
outdated.

The spacecraft’s belief of the positions of
other nearby spacecraft is inaccurate and it
may collide into nearby spacecraft if
maneuvers itself. The lack of knowledge of
the positions of nearby spacecrafts may
additionally cause the spacecraft’s ability
to avoid collisions using the Negotiate
CollisionAvoidance protocol is using
incomplete or inaccurate data.

Critical

Timing/Order The detection of nearby spacecrafts is
delayed so that the role may not possible
have the accurate locations of nearby
spacecraft when it is expecting it. Because
of this, the data stored in
riskForSystemFactor, spacecraftPos,
collisionRiskFactor and may be inaccurate
or outdated and the neabySpacecraft may
be incorrect or outdated without the role
knowing this.

The spacecraft may believe that the
positions of nearby spacecraft it has stored
in subswarmVector and spacecraftPos is
correct and thus may inadvertently
maneuver too close to another spacecraft
and collide into it. The spacecraft may also
provide inaccurate information to other
spacecraft using the NegotiateCollision
Avoidance protocol that may result in
further collisions of spacecraft.

Major

SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role

305

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector MoveToAvoid
Collision

Halt/Abnormal
Termination

The position, velocityIncrement and
collisionRiskFactor data may be
temporarily incorrect since the spacecraft
did not complete moving to its new
position. This could potentially affect other
events such as DetectNearby Spacecraft
EvaluateRiskToGoal, and other protocols
including NegotiateCollisionAvoidance.

The spacecraft will not have
moved to the position expected
by other nearby spacecraft in
the subswarm potentially
causing a collision.

Major

Omission The spacecraft fails to move to its new
assigned position in the subswarm possibly
causing the position, velocityIncrement and
collisionRiskFactor data to be temporarily
incorrect. This could potentially affect
other events such as DetectNearby
Spacecraft EvaluateRiskToGoal, and other
protocols including
NegotiateCollisionAvoidance.

The spacecraft will not have
moved but, rather, maintain its
previous position potentially
causing a collision. Other
spacecraft in the subswarm may
expect the spacecraft to have
moved to a new position which
may cause a collision due to the
discrepancies between actual
and perceived spacecraft
positions.

Critical

Incorrect
Logic/Event

The spacecraft fails to move to the position
it is expecting possibly causing its
position, velocityIncrement and
collisionRiskFactor data to be different
than expected. This could potentially affect
other events such as DetectNearby
Spacecraft EvaluateRiskToGoal, and other
protocols including
NegotiateCollisionAvoidance.

The spacecraft moves to a
position different that what it
expects. Further, other
spacecraft nearby will have
expected the spacecraft to be in
a different location potentially
causing a collision.

Critical

Timing/Order The spacecraft fails to move to the new
position until some later, undetermined
time potentially causing its position,
velocityIncrement and collisionRiskFactor
data to be different than expected. This
could potentially affect other events such
as DetectNearby Spacecraft
EvaluateRiskToGoal, and other protocols
including NegotiateCollisionAvoidance.

The spacecraft fails to move to
the position it indicated to other
spacecraft via the
NegotiateCollisionAvoidance
protocol at the time expected by
the other spacecraft. This may
cause a collision.

Major

SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role

306

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector nearbyAsteroids Incorrect Value The variation point belief of the
positions of nearby asteroids may be
incorrect. The riskForSystemFactor
and collisionRiskFactor data may be
incorrect and the Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the wrong data. The
RequestAsteroidPositions protocol
may provide inaccurate information
upon request.

The spacecraft will use incorrect
values of the locations of nearby
asteroids and may unknowningly
maneuver too close to an asteroid
and collide with it. The spacecraft
may also provide the incorrect
information to other spacecraft
through the RequestAsteroid
Positions protocol causing other
spacecraft to potentially collide into
an asteroid. The incorrect data may
also invalidate the scientific data
collected on the asteroids.

Critical

Absent Value The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or corrupted since no location
values for nearby asteroids were
available. The Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the unavailable data.

The spacecraft will have no
information on the location of
nearby asteroids and will need to
request the locations via the
RequestAsteroidPositions
protocol. May cause a collision
with an asteroid since the locations
are unknown. May corrupt some of
the scientific data collected on the
asteroids or cause the execution of
the variation point to freeze.

Major

Wrong Timing

The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or outdated since the location
of nearby asteroid data is old. The
Analyze3DModel, EvaluateRiskTo
Goal and MoveToAvoidCollision
events may result in outdated output.

The spacecraft may have made
maneuvering decisions based on
outdated information of the
location of nearby asteroids. This
may cause a collision with an
asteroid since the locations are
outdated.

Major

Duplicated Value The Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events may be
uneedingly exectuted twice since the
data was updated twice.

The spacecraft will may have had
to execute the Analyze3DModel,
EvaluateRiskToGoal and
MoveToAvoidCollision events
twice possibly delaying the
response to request from other
spacecraft.

Minor

SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role

307

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector nearbySpacecraft Incorrect Value The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or corrupted since no
location values for other nearby
spacecraft are available. The
DetectNearbySpacecraft,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the incorrect.

The spacecraft will use incorrect
values of the locations of nearby
spacecraft and may unknowningly
maneuver too close to another
spacecraft and collide with it. The
spacecraft may also provide the
incorrect information to other
spacecraft through the
RequestSpacecraftLocations
protocol causing other spacecraft to
potentially collide.

Major

Absent Value The riskForSystemFactor and
collisionRiskFactor data may be
missing or corrupted since no
location values for other nearby
spacecraft are available. The
DetectNearbySpacecraft,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the unavailable
data.

The spacecraft will have no
information on the location of
nearby spacecraft and will need to
request the locations via the
RequestSpacecraftLocations
protocol. May cause a collision
with an spacecraft since the
locations are unknown.

Critical

Wrong Timing

The riskForSystemFactor and
collisionRiskFactor data may be
incorrect or outdated since the
location of nearby asteroid data is
old. The DetectNearbySpacecraft,
EvaluateRiskToGoal and
MoveToAvoidCollision events may
make wrong decisions or incorrect
analysis based on the outdated data.

The spacecraft may have made
maneuvering decisions based on
outdated information of the
location of nearby spacecraft. This
may cause a collision since the
locations are outdated.

Critical

Duplicated Value The EvaluateRiskToGoal and
MoveToAvoidCollision events may
be uneedingly exectuted twice since
the data was updated twice.

The spacecraft may report to others
that it is malfunctioning since it
received duplicated values.

Minor

SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role

308

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

Self-Protector

 CollisionProtector position Incorrect Value The variation point uses the incorrect value
of its current position possibly affecting
the DetectNearbySpacecraft, Evaluate
RiskToGoal, MonitorNearyby Asteroids
and MoveToAvoidCollision events. This
may also cause the variation point to
incorrectly change its riskForSystemFactor
data and generate inaccurate collision
RiskFactor, riskToGoal Factor, nearby
Asteroids and nearbySpacecraft data.

The spacecraft does not know
its actual position and may
report a false position to other
spacecraft via the
RequestSpacecraftLocations
protocol potentially causing a
collision.

Major

Absent Value The missing or corrupted value of its
current position may affect the
DetectNearbySpacecraft, EvaluateRisk
ToGoal, MonitorNearybyAsteroids and
MoveToAvoidCollision events since the
data is unusable. This may also cause the
variation point to corrupted its
riskForSystemFactor data and generate
corrupted collisionRiskFactor,
riskToGoalFactor, nearbyAsteroids and
nearbySpacecraft data.

The spacecraft does not know
its actual position and may
report a false position to other
spacecraft via the Request
SpacecraftLocations protocol
potentially causing a collision.
Alternatively, the spacecraft
uses the missing or corrupted
value and may collilde into a
nearby spacecraft.

Major

Wrong Timing

The variation point uses the outdated value
of its current position possibly affecting
the DetectNearbySpacecraft,
EvaluateRiskToGoal,
MonitorNearybyAsteroids and
MoveToAvoidCollision events. This may
also cause the variation point to incorrectly
change its riskForSystem Factor data and
generate outdated collisionRiskFactor,
riskToGoal Factor, nearbyAsteroids and
nearbySpacecraft data.

The spacecraft may have made
maneuvering decisions based
on outdated information of
position potentially causing a
collision.

Major

Duplicated Value The variation point uses the duplicate
position information to execute the
DetectNearbySpacecraft,
EvaluateRiskToGoal,
MonitorNearybyAsteroids and
MoveToAvoidCollision events twice.

The spacecraft may report to
others that it is malfunctioning
since it received duplicated
values of its current position.

Minor

SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role

309

Role Variation Point Event
Failure
Mode

Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Passive CalculateStorm
Risk

Halt/Abnormal
Termination

The stormRiskValue and the
riskForSystemFactor data values
may be incorrect or outdated
since the role did not finish
calculating the risk to the system
of the impending solar storm.

The spacecraft may not take self-
protection measure to guard against the
solar radition from the impending solar
storm. Alternatively, the spacecraft may
take self-protection actions to guard
again an impending solar storm when the
actual risk to the spacecraft did not
warrant such actions. This may
unnecessarily consume power and/or
increase the risk of collision.

Major

Omission The stormRiskValue and the
riskForSystemFactor data values
will not have been updated to
reflect the receieved information
of an impending solar storm.

The spacecraft may not take self-
protection measure to guard against the
solar radition from the impending solar
storm.

Major

Incorrect
Logic/Event

The stormRiskValue and the
riskForSystemFactor data values
may be incorrect or corrupted
since method of calculating them
using the newly received
information of an impending
solar storm is incorrect.

The spacecraft may not take self-
protection measure to guard against the
solar radition from the impending solar
storm. Alternatively, the spacecraft may
take self-protection actions to guard
again an impending solar storm when the
actual risk to the spacecraft did not
warrant such actions. This may
unnecessarily consume power and/or
increase the risk of collision.

Major

Timing/Order The stormRiskValue and the
riskForSystemFactor data values
may be outdated since the method
of calculating them may not have
executed before the impending
solar storm arrived.

The spacecraft may not take self-
protection actions in time to guard
against the solar radition from the
impending solar storm. Alternatively, the
spacecraft may take self-protection
actions to guard again an impending
solar storm earlier than needed. This may
unnecessarily consume power and/or
increase the risk of collision.

Major

SFMECA Event Table for the Passive Variation Point of the SolarStormWarner Role

310

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Passive position Incorrect Value The variation point uses the
incorrect value of its current
position possibly affecting the
CalculateStormRisk events. This
may also cause the variation point
to incorrectly change its
riskForSystemFactor and
stormRiskValue data.

The spacecraft may believe that, given its
incorrect position, it is not at risk to an
impending solar storm and may not take
self-protection measure to guard against
the solar radition from the impending
solar storm. This may cause the
spacecraft’s memory to be corrupted and
the data and/or the entire spacecraft to be
lost to the swarm.

Major

Absent Value The variation point does not have a
value for its current position
possibly affecting the
CalculateStormRisk events. This
may also cause the variation point
to corrupt its riskForSystemFactor
and stormRiskValue data values.

The spacecraft may not know its current
risk to an impending solar storm and may
not take self-protection measure to guard
against the solar radition from the
impending solar storm. This may cause
the spacecraft’s memory to be corrupted
and the data and/or the entire spacecraft
to be lost to the swarm.

Major

Wrong Timing

The variation point uses an
outdated value of its current
position possibly affecting the
CalculateStormRisk events. This
may also cause the variation point
to incorrectly change or use
outdated values to calculate its
riskForSystemFactor and
stormRiskValue data.

The spacecraft will have used an
outdated position to calculate its risk and
may not take self-protection measure to
guard against the solar radition from a
impending solar storm. This may cause
the spacecraft’s memory to be corrupted
and the data and/or the entire spacecraft
to be lost to the swarm. Alternatively, the
spacecraft may take self-protection
actions to guard again an impending
solar storm when the actual risk to the
spacecraft did not warrant such actions.
This may unnecessarily consume power
and/or increase the risk of collision.

Major

Duplicated Value The variation point may use the
duplicated position information to
execute the CalculateStormRisk
activity twice.

The spacecraft may have unnecessarily
consume power or resources to execute
activities twice.

Minor

SFMECA Data Table for the Passive Variation Point of the SolarStormWarner Role

311

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Passive stormIntensity Incorrect Value The variation point uses the
incorrect value of the
sotrmIntensity data that it received
from another spacecraft as a part of
the AcceptWarnMsg protocol. This
may affect the CalculateStormRisk
activity and can, in turn, incorrectly
change the riskForSystemFactor
and the stormRiskValue data as
well as the
SendSolarStormWarnMsg protocol.

The spacecraft calculates its risk to the
impending solar storm incorrectly and may
not take self-protection measure to guard
against the solar radition from the
impending solar storm. This may cause the
spacecraft’s memory to be corrupted and
the data and/or the entire spacecraft to be
lost to the swarm. Additionally, the
spacecraft may relay the incorrect data
using SendSolarStormWarnMsg protocol
to other spacecraft.

Critical

Absent Value The variation point receives a
missing value the sotrmIntensity
data that it received from another
spacecraft as a part of the
AcceptWarnMsg protocol
potentially affecting the
riskForSystemFactor and
stormRiskValue data as well as the
SendSolarStormWarnMsg protocol.

The spacecraft calculates its risk to the
impending solar storm incorrectly and may
not take self-protection measure to guard
against the solar radition from the
impending solar storm. This may cause the
spacecraft’s memory to be corrupted and
the data and/or the entire spacecraft to be
lost to the swarm. Additionally, the
spacecraft may relay the missing data
using SendSolarStormWarnMsg protocol
to other spacecraft.

Critical

Wrong Timing

The variation point receives the
sotrmIntensity data from another
spacecraft via the AcceptWarnMsg
protocol late. This may affect the
calculation of the the
CalculateStormRisk activity and
can, in turn, may not be able to
update the riskForSystemFactor
and the stormRiskValue data in a
timely manner.

The spacecraft may not calculate its risk of
the impending solar storm in time to take
self-protection measure to guard against
the solar radition from the impending solar
storm. This may cause the spacecraft’s
memory to be corrupted and the data
and/or the entire spacecraft to be lost to the
swarm. Additionally, the spacecraft might
not relay the missing data using
SendSolarStormWarnMsg protocol to
other spacecraft.

Major

Duplicated Value The variation point receives the
sotrmIntensity data from another
spacecraft via the AcceptWarnMsg
protocol multiple times possible
causing the variation point to
execute the CalculateStormRisk
activity multiple times.

The spacecraft might relay the warning
message using SendSolarStormWarnMsg
protocol to other spacecraft multiple times.

Minor

SFMECA Data Table for the Passive Variation Point of the SolarStormWarner Role

312

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Passive stormVector Incorrect Value The variation point uses the incorrect
value of the stormVector data that it
received from another spacecraft as a
part of the AcceptWarnMsg protocol.
This may affect the
CalculateStormRisk activity and can,
in turn, incorrectly change the
riskForSystemFactor and the
stormRiskValue data as well as the
SendSolarStormWarnMsg protocol.

The spacecraft calculates its risk to the
impending solar storm incorrectly and
may not take self-protection measure to
guard against the solar radition from the
impending solar storm. This may cause
the spacecraft’s memory to be corrupted
and the data and/or the entire spacecraft
to be lost to the swarm. Additionally, the
spacecraft may relay the incorrect data
using SendSolarStormWarnMsg protocol
to other spacecraft.

Critical

Absent Value The variation point receives a missing
value the stormVector data that it
received from another spacecraft as a
part of the AcceptWarnMsg protocol
potentially affecting the
riskForSystemFactor and
stormRiskValue data as well as the
SendSolarStormWarnMsg protocol.

The spacecraft calculates its risk to the
impending solar storm incorrectly and
may not take self-protection measure to
guard against the solar radition from the
impending solar storm. This may cause
the spacecraft’s memory to be corrupted
and the data and/or the entire spacecraft
to be lost to the swarm. Additionally, the
spacecraft may relay the missing data
using SendSolarStormWarnMsg protocol
to other spacecraft.

Critical

Wrong Timing

The variation point receives the
stormVector data from another
spacecraft via the AcceptWarnMsg
protocol late. This may affect the
calculation of the the
CalculateStormRisk activity and can,
in turn, may not be able to update the
riskForSystemFactor and the
stormRiskValue data in a timely
manner.

The spacecraft may not calculate its risk
of the impending solar storm in time to
take self-protection measure to guard
against the solar radition from the
impending solar storm. This may cause
the spacecraft’s memory to be corrupted
and the data and/or the entire spacecraft
to be lost to the swarm. Additionally, the
spacecraft might not relay the missing
data using SendSolarStormWarnMsg
protocol to other spacecraft.

Major

Duplicated Value The variation point receives the
stormVector data from another
spacecraft via the AcceptWarnMsg
protocol multiple times possible
causing the variation point to execute
the CalculateStormRisk activity
multiple times.

The spacecraft might relay the warning
message using SendSolarStormWarnMsg
protocol to other spacecraft multiple
times. Minor

SFMECA Data Table for the Passive Variation Point of the SolarStormWarner Role

313

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Warm-Spare CalculateStom
DataAccuracy

Halt/Abnormal
Termination

The variation point does not finish executing
the CalculateStormDataAccuracy to determine
if its detected data and another spacecraft’s
detected data regarding an impending solar
storm are accurate. This may affect the storm
DataAccuracy Value and the stormRiskValue
data. This may also affect the information sent
in the VoteStormDataAccuracy protocol.

The spacecraft fails to vote or votes with
inaccurate information as to whether it
agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

Omission The variation point does not execute the
CalculateStorm DataAccuracy activity to
determine if its detected data and another
spacecraft’s detected data regarding an
impending solar storm are accurate. This may
affect the stormDataAccuracyValue and the
stormRiskValue data by rendering them
incorrect, outdated or corrupted. This may also
affect the information sent in the
VoteStormDataAccuracy protocol.

The spacecraft fails to vote or votes with
inaccurate information as to whether it
agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

Incorrect
Logic/Event

The variation point incorectly executes the
CalculateStorm DataAccuracy activity to
determine if its detected data and another
spacecraft’s detected data regarding an
impending solar storm are accurate. This may
affect the storm DataAccuracyValue and the
stormRisk Value data by rendering them
incorrect. This may also affect the information
sent in the VoteStormDataAccuracy protocol.

The spacecraft votes with inaccurate
information as to whether it agrees with
the solar storm information detected by
another spacecraft. This may delay or
prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.
Alernatively, this may cause the
spacecraft to agree with the information
when it shouldn’t which may cause an
inadvertent warning message to be sent to
the swarm.

Critical

Timing/Order The variation point the CalculateStorm
DataAccuracy activity to determine if its
detected data and another spacecraft’s detected
data regarding an impending solar storm are
accurate not in a timely manner. This may
affect the stormDataAccuracy Value and the
stormRiskValue data by rendering them
incorrect. This may also affect the information
sent in the VoteStormData Accuracy protocol.

The spacecraft votes too late as to whether
it agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

SFMECA Event Table for the Warm-Spare Variation Point of the SolarStormWarner Role

314

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Warm-Spare DetectStormData Halt/Abnormal
Termination

The variation point halts its detection
of the solar storm data. This may
affect the stormData AccuracyValue,
stormRiskValue, prelimStormType,
prelimStorm Intensity and prelimStom
Vector data rendering it incomplete,
outdated or inaccurate. This may also
affect the information sent in the Vote
StormDataAccuracy protocol.

The spacecraft fails to vote or votes with
inaccurate information as to whether it
agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

Omission The variation point fails to detect the
solar storm data. This may affect the
stormDataAccuracy Value,
stormRiskValue, prelim StormType,
prelimStorm Intensity and prelimStom
Vector data ren-dering it incomplete,
outdated or inaccurate. This may also
affect the information sent in the Vote
StormDataAccuracy protocol.

The spacecraft fails to vote or votes with
inaccurate information as to whether it
agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

Incorrect
Logic/Event

The variation point uses incorrect
logic to detect the solar storm data.
This may affect the stormData
AccuracyValue, storm RiskValue,
prelimStorm Type, prelimStorm
Intensity and prelimStom Vector data
rendering it in-accurate. This may also
affect the information sent in the
VoteStormDataAccuracy protocol.

The spacecraft votes with inaccurate
information as to whether it agrees with
the solar storm information detected by
another spacecraft. This may delay or
prevent a warning message to be generated
and sent to the swarm warning of an
impending solar storm which may result in
the loss of spacecraft. Alernatively, this
may cause the spacecraft to agree with the
information when it shouldn’t which may
cause an inadvertent warning message to
be sent to the swarm.

Critical

Timing/Order The variation point detects the solar
storm data not in a timely manner.
This may affect the stormData
AccuracyValue, stormRiskValue,
prelimStorm Type, prelimStorm
Intensity and prelimStomVector data
rendering it inaccurate. This may also
affect the information sent in the Vote
StormDataAccuracy protocol.

The spacecraft votes too late as to whether
it agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

SFMECA Event Table for the Warm-Spare Variation Point of the SolarStormWarner Role

315

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Warm-Spare ObserveSolarDisc Halt/Abnormal
Termination

The variation point halts its observation
of the solar disc. This may affect the
stormData AccuracyValue,
stormRiskValue, prelimStormType,
prelimStorm Intensity and prelimStom
Vector data rendering it incomplete,
outdated or inaccurate. This may also
affect the information sent in the Vote
StormDataAccuracy protocol.

The spacecraft fails to vote or votes with
inaccurate information as to whether it
agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

Omission The fails to observe the solar disc. This
may affect the stormDataAccuracy
Value, stormRiskValue, prelim
StormType, prelimStorm Intensity and
prelimStom Vector data ren-dering it
incomplete, outdated or inaccurate. This
may also affect the information sent in
the Vote StormDataAccuracy protocol.

The spacecraft fails to vote or votes with
inaccurate information as to whether it
agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

Incorrect
Logic/Event

The variation point uses incorrect logic
to observe the solar disc. This may
affect the stormData AccuracyValue,
storm RiskValue, prelimStorm Type,
prelimStorm Intensity and prelimStom
Vector data rendering it in-accurate.
This may also affect the information
sent in the VoteStormDataAccuracy
protocol.

The spacecraft votes with inaccurate
information as to whether it agrees with
the solar storm information detected by
another spacecraft. This may delay or
prevent a warning message to be generated
and sent to the swarm warning of an
impending solar storm which may result in
the loss of spacecraft. Alernatively, this
may cause the spacecraft to agree with the
information when it shouldn’t which may
cause an inadvertent warning message to
be sent to the swarm.

Critical

Timing/Order The fails to observe the solar disc when
it should. This may affect the stormData
AccuracyValue, stormRiskValue,
prelimStorm Type, prelimStormIntensity
and prelimStomVector data rendering it
inaccurate. This may also affect the
information sent in the VoteStormData
Accuracy protocol.

The spacecraft votes too late as to whether
it agrees with the solar storm information
detected by another spacecraft. This may
delay or prevent a warning message to be
generated and sent to the swarm warning
of an impending solar storm which may
result in the loss of spacecraft.

Critical

SFMECA Event Table for the Warm-Spare Variation Point of the SolarStormWarner Role

316

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Warm-Spare prelimStorm
Intensity

Incorrect Value The variation point uses an incorrect
value for the prelimStormIntensity data
supplied by another spacecraft possibly
affecting its calculations in the
CalculateStormDataAccuracy,
CompareVeryifyStormData,
DetectStormData, ObserveSolarDisc
activities. Further, this may affect the
information it sends using the
VoteStormDataAccuracy protocol.

The spacecraft may incorrectly judge the
information provided as not an
impending solar storm and thus not agree
with sending out a warning. This may
cause no warnings to be sent to the
spacecraft of the swarm causing
spacecraft to be lost due to the
impending solar storm’s radiation.

Critical

Absent Value The prelimStormIntensity data supplied
by another spacecraft is missing which
could possibly affecti the variation
point’s calculations in the Calculate
StormDataAccuracy, CompareVeryify
StormData, DetectStormData, Observe
SolarDisc activities. Further, this may
affect the information it sends using the
VoteStormDataAccuracy protocol.

The spacecraft may incorrectly judge the
information provided as not an
impending solar storm and thus not agree
with sending out a warning. This may
cause no warnings to be sent to the
spacecraft of the swarm causing
spacecraft to be lost due to the
impending solar storm’s radiation.

Critical

Wrong Timing

The variation point uses the value for
the prelimStormIntensity data supplied
by another spacecraft at the wrong time
possibly affecting its calculations in the
CalculateStormDataAccuracy,
CompareVeryifyStormData, Detect
StormData, ObserveSolarDisc
activities. Further, this may affect the
information it sends using the
VoteStormDataAccuracy protocol.

The spacecraft may incorrectly judge the
information provided as not an
impending solar storm and thus not agree
with sending out a warning. This may
cause a delay or no warnings to be sent
to the spacecraft of the swarm causing
spacecraft to be lost due to the
impending solar storm’s radiation.

Critical

Duplicated Value The prelimStormIntensity data supplied
by another spacecraft possibly is used
twice possibly affecting its calculations
in the CalculateStormDataAccuracy,
CompareVeryifyStormData, Detect
StormData, ObserveSolarDisc
activities. Further, this may affect the
information it sends using the
VoteStormDataAccuracy protocol by
possibly sending redundant messages.

The spacecraft may redundantly reply to
the message from the spacecraft giving
its agreement or disagreement to the
solar storm information.

Minor

SFMECA Data Table for the Warm-Spare Variation Point of the SolarStormWarner Role

317

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Warm-Spare prelimStorm
Vector

Incorrect Value The variation point uses an incorrect
value for the prelimStormVector data
supplied by another spacecraft possibly
affecting its calculations in the
CalculateStormDataAccuracy,
CompareVeryifyStormData,
DetectStormData, ObserveSolarDisc
activities. Further, this may affect the
information it sends using the
VoteStormDataAccuracy protocol.

The spacecraft may incorrectly judge the
information provided as not an
impending solar storm and thus not agree
with sending out a warning. This may
cause no warnings to be sent to the
spacecraft of the swarm causing
spacecraft to be lost due to the
impending solar storm’s radiation.

Critical

Absent Value The prelimStormVector data supplied
by another spacecraft is missing which
could possibly affecti the variation
point’s calculations in the Calculate
StormDataAccuracy, CompareVeryify
StormData, DetectStormData, Observe
SolarDisc activities. Further, this may
affect the information it sends using the
VoteStormDataAccuracy protocol.

The spacecraft may incorrectly judge the
information provided as not an
impending solar storm and thus not agree
with sending out a warning. This may
cause no warnings to be sent to the
spacecraft of the swarm causing
spacecraft to be lost due to the
impending solar storm’s radiation.

Critical

Wrong Timing

The variation point uses the value for
the prelimStormVector data supplied
by another spacecraft at the wrong time
possibly affecting its calculations in the
CalculateStormDataAccuracy,
CompareVeryifyStormData, Detect
StormData, ObserveSolarDisc
activities. Further, this may affect the
information it sends using the
VoteStormDataAccuracy protocol.

The spacecraft may incorrectly judge the
information provided as not an
impending solar storm and thus not agree
with sending out a warning. This may
cause a delay or no warnings to be sent
to the spacecraft of the swarm causing
spacecraft to be lost due to the
impending solar storm’s radiation.

Critical

Duplicated Value The prelimStormVector data supplied
by another spacecraft possibly is used
twice possibly affecting its calculations
in the CalculateStormDataAccuracy,
CompareVeryifyStormData, Detect
StormData, ObserveSolarDisc
activities. Further, this may affect the
information it sends using the
VoteStormDataAccuracy protocol by
possibly sending redundant messages.

The spacecraft may redundantly reply to
the message from the spacecraft giving
its agreement or disagreement to the
solar storm information.

Minor

SFMECA Data Table for the Warm-Spare Variation Point of the SolarStormWarner Role

318

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Active CompareMission
ControlData

Halt/Abnormal
Termination

The variation point does not finish executing the
CompareMissionControlData to determine if its
detected data and another spacecraft’s detected
data regarding an impending solar storm are
accurate. This may affect the stormWarning
Confidence, voteConfidence, and the stormRisk
Value data. This may also affect the information
sent in the IniateStormDataVote and
InitiateStormWarning protocols.

The spacecraft fails to vote or votes
with inaccurate information as to
whether it agrees with the
information sent by mission control.
This may delay or prevent a warning
message to be generated and sent to
the swarm warning of an impending
solar storm which may result in the
loss of spacecraft.

Critical

Omission The variation point does not execute the Compare
MissionControlData activity to determine if its
detected data and another spacecraft’s detected
data regarding an impending solar storm are
accurate. This may affect the stormWarning
Confidence, vote Confidence, and the stormRisk
Value data. This may also affect the information
sent in the IniateStorm DataVote and
InitiateStormWarning protocols.

The spacecraft fails to vote or votes
with inaccurate information as to
whether it agrees with the
information detected by mission
control. This may delay or prevent a
warning message to be generated and
sent to the swarm warning of an
impending solar storm which may
result in the loss of spacecraft.

Critical

Incorrect
Logic/Event

The variation point incorectly executes the
CompareMissionControlData activity to determine
if its detected data and another spacecraft’s
detected data regarding an impending solar storm
are accurate. This may affect the
stormWarningConfidence, voteConfidence, and
the stormRiskValue data. This may also affect the
information sent in the IniateStormDataVote and
InitiateStormWarning protocols.

The spacecraft votes with inaccurate
information as to whether it agrees
with the inform-ation detected by
mission control. This may delay or
prevent a warn-ing message to be
generated and sent to the swarm
warning of an impending solar storm
which may result in the loss of
spacecraft. Alernatively, this may
cause the spacecraft to agree with the
inform-ation when it shouldn’t which
may cause an inadvertent warning
message to be sent to the swarm.

Critical

Timing/Order The variation point the CompareMissionControl
Data activity to determine if its detected data and
another spacecraft’s detected data regarding an
impending solar storm are accurate not in a timely
manner. This may affect the stormWarning
Confidence, voteConfidence, and the stormRisk
Value data. This may also affect the information
sent in the IniateStormDataVote and
InitiateStormWarning protocols.

The spacecraft votes too late as to
whether it agrees with the
information detected by mission
control. This may delay or prevent a
warning message to be generated and
sent to the swarm warning of an
impending solar storm which may
result in the loss of spacecraft.

Critical

SFMECA Event Table for the Active Variation Point of the SolarStormWarner Role

319

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Active detectedStorm
Intensity

Incorrect Value The variation point uses an incorrect value for the
detectedStormIntensity data detected by the
spacecraft and used to send to other spacecraft for
verification. This may affect the
stormWarningConfidence, voteConfidence,
warningMessage, and the stormRisk Value data as
well as the CompareMissionControl Data activity.
This may also affect the information sent in the
IniateStormDataVote and InitiateStormWarning
protocols.

The spacecraft may provide the
incorrect data to other spacecraft
monitoring the solar disc potentially
leading to the failure to issue a warn-
ing to the spacecraft of the subwarm
of an impending solar storm. This
may cause the loss of several space-
craft as a result of solar radiation
damage. Alternatively, the incorrect
data could lead to issuing a storm
warning when one is not needed.

Critical

Absent Value The variation point uses missing value for the
detectedStormIntensity data detected by the
spacecraft and used to send to other spacecraft for
verification. This may affect the stormWarning
Confidence, vote Confidence, warningMessage,
and the stormRisk Value data by corrupting them
or rendering them inaccurate as well as the
CompareMission Control Data activity. This may
also affect the information sent in the IniateStorm
DataVote and InitiateStormWarning protocols.

The spacecraft may provide the miss-
ing data to other spacecraft monitor-
ing the solar disc potentially leading
to the failure to issue a warning to the
spacecraft of the subwarm of an im-
pending storm. This may cause the
loss of several spacecraft as a result
of radiation damage. Or, the missing
data could lead to issuing a solar
storm warning when it is not needed.

Critical

Wrong Timing

The variation point uses the detectedStorm
Intensity data detected by the spacecraft at the
wrong time to send to other spacecraft for veri-
fication. This may affect the stormWarning
Confidence, voteConfidence, warningMessage,
and the stormRisk Value data as well as the
CompareMissionControl Data activity. This may
also affect the information sent in the IniateStorm
DataVote and InitiateStormWarning protocols.

The spacecraft may fail to issue a
warning message to the swarm of an
impending solar storm in time to
allow the spacecraft to take
appropriate self-protection actions.
This may cause the loss of several
spacecraft as a result of solar
radiation damage.

Critical

Duplicated Value The variation point uses duplicated value for the
detectedStormIntensity data detected by the
spacecraft and used to send to other spacecraft for
verification. This may affect the stormWarning
Confidence, vote Confidence, warningMessage,
and the stormRisk Value data as well as the
CompareMissionControlData activity by
executing or defining it multiple times. This may
also affect the information sent in the IniateStorm
DataVote and InitiateStormWarning protocols.

The spacecraft may redundantly issue
a message to other spacecraft
monitoring the solar disc seeking
confirmation of the data they
detected.

Minor

SFMECA Data Table for the Active Variation Point of the SolarStormWarner Role

320

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Active detectedStorm
Vector

Incorrect Value The variation point uses an incorrect value for the
detectedStormVector data detected by the
spacecraft and used to send to other spacecraft for
verification. This may affect the stormWarning
Confidence, vote Confidence, warning Message,
and the storm RiskValue data as well as the
Compare MissionControl Data activity. This may
also affect the information sent in the Iniate
StormDataVote and InitiateStormWarning
protocols.

The spacecraft may provide the
incorrect data to other spacecraft
monitoring the solar disc potentially
leading to the failure to issue a warning
to the space-craft of the subwarm of an
impending solar storm. This may cause
the loss of several spacecraft as a result
of solar radiation damage. Or, the
incorrect data could lead to issuing a
storm warning when one is not needed.

Critical

Absent Value The variation point uses missing value for the
detectedStormVector data detected by the
spacecraft and used to send to other spacecraft for
verification. This may affect the storm Warning
Confidence, vote Confidence, warningMessage,
and the stormRisk Value data by corrupting them
or rendering them inaccurate as well as the
CompareMission Control Data activity. This may
also affect the information sent in the IniateStorm
DataVote and InitiateStormWarning protocols.

The spacecraft may provide the miss-
ing data to other spacecraft monitor-ing
the solar disc potentially leading to the
failure to issue a warning to the
spacecraft of the subwarm of an im-
pending storm. This may cause the loss
of several spacecraft as a result of
radiation damage. Or, the missing data
could lead to issuing a solar storm
warning when it is not needed.

Critical

Wrong Timing

The variation point uses the detectedStormVector
data detected by the spacecraft at the wrong time
to send to other spacecraft for veri-fication. This
may affect the stormWarningConfidence, vote
Confidence, warningMessage, and the storm Risk
Value data as well as the Compare MissionControl
Data activity. This may also affect the information
sent in the IniateStorm DataVote and
InitiateStormWarning protocols.

The spacecraft may fail to issue a
warning message to the swarm of an
impending solar storm in time to allow
the spacecraft to take appropriate self-
protection actions. This may cause the
loss of several spacecraft as a result of
solar radiation damage.

Critical

Duplicated Value The variation point uses duplicated value for the
detectedStormVector data detected by the space-
craft and used to send to other spacecraft for
verification. This may affect the storm Warning
Confidence, vote Confidence, warningMessage,
and the stormRisk Value data as well as the
CompareMissionControl Data activity by
executing or defining it multiple times. This may
also affect the information sent in the Iniate Storm
DataVote and InitiateStormWarning protocols.

The spacecraft may redundantly issue a
message to other spacecraft monitoring
the solar disc seeking confirmation of
the data they detected.

Minor

SFMECA Data Table for the Active Variation Point of the SolarStormWarner Role

321

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality

SolarStormWarner

 Active warning
Message

Incorrect Value The variation point uses an incorrect value for
the warningMessage data generated by the
spacecraft and used to send to other spacecraft
as a warning of an impending solar storm. This
may affect the storm Warning Confidence, vote
Confidence, warningMessage, and the
stormRisk Value data. This may also affect the
information sent in the Iniate Storm DataVote
and InitiateStormWarning protocols.

The spacecraft monitoring the solar disc
issues a warning message to the
spacecraft of the swarm containing
incorrect information. This may cause
spacecraft to not take self-protection
actions to protect from an impending
solar storm when it should. This may
cause the loss of several spacecraft as a
result of radiation damage. Alternatively,
it may cause spapcecraft to take self-
protection actions when not needed.

Critical

Absent Value The variation point uses an empty value for the
warningMessage data generated by the
spacecraft and used to send to other spacecraft
as a warning of an impending solar storm. This
may affect the storm Warning Confidence, vote
Confidence, warningMessage, and the
stormRisk Value data. This may also affect the
information sent in the Iniate Storm DataVote
and InitiateStormWarning protocols.

The spacecraft monitoring the solar disc
issues a warning message to the
spacecraft of the swarm containing
missing information. This may cause
spacecraft to not take self-protection
actions to protect from an impending
solar storm when it should. This may
cause the loss of several spacecraft as a
result of radiation damage. Alternatively,
it may cause spapcecraft to take self-
protection actions when not needed.

Critical

Wrong Timing

The variation point issues the warningMessage
generated by the spacecraft and used to send to
other spacecraft as a warning of an impending
solar storm not at the appropriate time. This
may affect the storm Warning Confidence, vote
Confidence, warningMessage, and the
stormRisk Value data. This may also affect the
information sent in the Iniate Storm DataVote
and InitiateStormWarning protocols.

The spacecraft monitoring the solar disc
issues a warning message to the
spacecraft of the swarm not in a timely
manner. This may cause spacecraft to not
take self-protection actions to protect
from an impending solar storm when it
should. This may cause the loss of
several spacecraft as a result of radiation
damage.

Critical

Duplicated Value The variation point generates multiple,
redundant warningMessage message to send to
other spacecraft as a warning of an impending
solar storm. This may affect the storm Warning
Confidence, vote Confidence, warningMessage,
and the stormRisk Value data. This may also
affect the information sent in the Iniate Storm
DataVote and InitiateStormWarning protocols.

The spacecraft monitoring the solar disc
issues multiple warning message to the
spacecraft of the swarm.

Minor

SFMECA Data Table for the Active Variation Point of the SolarStormWarner Role

322

APPENDIX F. PRODUCT-LINE SOFTWARE FAULT TREE

ANALYSIS

This appendix provides screenshots of the Product-Line Software Fault Tree

Analysis (PL-SFTA) constructed in PLFaultCAT for the Prospecting Asteroid Mission

(PAM) multi-agent system product line (MAS-PL) case study used throughout this

dissertation. The leaf nodes of the PL-SFTA fault trees associate to the product-line

commonality and/or variability requirements descrived in the Commonality and

Variability Analysis (CVA).

323

PL-SFTA for the Spacecraft to Spacecraft Collision Hazard

324

PL-SFTA for the Spacecraft to Asteroid Collision Hazard

325

PL-SFTA for the Spacecraft to Received Solar Storm Damage Hazard

326

PL-SFTA for the Failure to Detect Impending Solar Storm Hazard

	2007
	Incorporating product-line engineering techniques into agent-oriented software engineering for efficiently building safety-critical, multi-agent systems
	Joshua Jon Dehlinger
	Recommended Citation

	dissertation071707

