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ABSTRACT 

 

Safety-critical, agent-based systems are being developed without mechanisms and 

analysis techniques to discover, analyze and verify software requirements and prevent 

potential hazards. Agent-oriented, software-based approaches have provided powerful 

and natural high-level abstractions in which software developers can understand, model 

and develop complex, distributed systems. Yet, the realization of agent-oriented software 

development partially depends upon whether agent-based software systems can achieve 

reductions in development time and cost similar to other reuse-conscious software 

development methods. Further, agent-oriented software engineering (AOSE) currently 

does not adequately address: (1) requirements (specification) reuse in a way that is 

amenable to the reduction of the development cost by utilizing reusable assets, and (2) 

analysis techniques to evaluate safety.  

This dissertation offers our AOSE methodology, Gaia-PL (Gaia – Product Line) 

for open, agent-based distributed software systems to capture requirements specifications 

that can be easily reused. Our methodology uses a product-line perspective to promote 

reuse in agent-based, software systems early in the development lifecycle so that software 

assets can be reused throughout the development lifecycle and system evolution.  

The main contribution of this work is a requirements specification pattern that 

captures the dynamically changing design configurations of agents. Reuse is achieved by 

adopting a product-line approach into AOSE. Requirements specifications reuse is the 

ability to easily use previously defined requirements specifications from an earlier system 

and apply them to a new, slightly different system. This can significantly reduce the 

development time and cost of building an agent-based system. 



 xiii  

 

For safety-critical agent-based systems, this dissertation incorporates reuse-

oriented safety analysis methods for AOSE to allow the discovery of new safety 

requirements and the verification that the design satisfies the safety requirements. 

Specifically, Product-Line Software Fault Tree Analysis (PL-SFTA) and its automated 

tool, PLFaultCAT (Product-L ine Fault Tree Creation and Analysis Tool), have been 

created to provide the technique and tool support for the safety analysis of safety-critical 

software product lines. The PL-SFTA allows for the identification of new safety 

requirements and the analysis of safety-critical requirements and requirement 

interactions. An AOSE-adapted Software Failure Modes, Effects and Criticality Analysis 

(SFMECA) technique has been created to support the derivation of a safety analysis asset 

using the specifications of Gaia-PL allowing for the identification of possible hazard 

scenarios and the failure points of specific agent roles. Using the assets generated via PL-

SFTA and SFMECA, Bi-Directional Safety Analysis (BDSA) is shown to aid in the 

completeness of PL-SFTA and SFMECA, help verify the safety properties and strengthen 

the safety case when safety compliance to safety standards of the multi-agent system is 

necessary.  

Results from an application to a large, safety-critical, multi-agent system product-

line show that Gaia-PL provides strong reuse capabilities. Evaluation of the Gaia-PL 

methodology used in conjunction with the PL-SFTA, SFMECA and BDSA safety 

analysis techniques shows that safety analysis of an agent-based software system is 

feasible, reusable and efficient.  
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CHAPTER 1.  INTRODUCTION 

Safety-critical, agent-based systems are being developed without mechanisms and 

analysis techniques to discover, analyze and verify software requirements and prevent 

potential hazards. Agent-oriented, software-based approaches have provided powerful 

and natural high-level abstractions in which software developers can understand, model 

and develop complex, distributed systems. Yet, the realization of agent-oriented software 

development partially depends upon whether agent-based software systems can achieve 

reductions in development time and cost similar to other reuse-conscious software 

development methods. Further, agent-oriented software engineering (AOSE) currently 

does not adequately address: (1) requirements (specification) reuse in a way that is 

amenable to the reduction of the development cost by utilizing reusable assets, and (2) 

analysis techniques to evaluate safety.   

This dissertation addresses these problems by developing an AOSE methodology, 

Gaia-PL, that can reduce the cost of developing an agent-based system by producing and 

utilizing reusable assets during the requirements (specification) phase of design and 

development. Further, this dissertation details several product-line oriented, safety 

analysis techniques that can evaluate the safety of an agent-based, product-line system in 

such a way that: (1) discovers, verifies and analyzes the agent-based systems’ 

requirements, and (2) produces safety analysis assets that are reusable for other agent-

based systems created within the same product line.  

The work presented here is part of a larger effort that investigates how safety 

analysis can become a reusable asset of a product line by developing a framework and a 

suite of techniques and tools for the safety analysis of product lines. The long-term goal 

is to provide verification results for a new system in the product line in a timely and cost-

efficient manner. 
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This chapter begins with the motivation for this work and an overview of the 

contributions of this dissertation. First, software product-line engineering is discussed as 

an incentive for its extension to AOSE to develop multi-agent system product lines 

(MAS-PL). Next, software safety analysis for safety-critical, software product lines is 

discussed as a driving factor for the development of techniques and tools tailored to the 

development of reusable safety analysis assets for product lines. Then, motivation for the 

inclusion of such product-line safety analysis techniques into the development of MAS-

PL is provided. The introduction concludes by stating my thesis and providing an outline 

for the remainder of the dissertation.   

1.1 Product-Line Engineering for Agent-Based System s  

Reuse is highly desirable in software engineering as a way to reduce the cost of 

the design and development of software. Approaches to achieve reuse have been pursued 

implicitly and explicitly in the design and development of software systems for many 

years [12], [76]. For example, software design patterns have been proposed as a design 

template that acts as a repeatable solution for commonly occurring problems in software 

design [33]. Object-Oriented Programming has been widely used as an approach to reuse 

logical units of software code in several different applications [33].  

Implicitly, software programmers commonly copy existing code into a new 

application when the functionality is similar [61]. The product family concept was first 

introduced by Parnas in [61]. Parnas’s claim is that it is advantageous to study a set of 

programs when the programs share many common features. When developing a set of 

programs that share common features, Parnas suggested that it is best to initially identify 

those features that are common to all the programs and then modify and accommodate 

the design. This produces tailored programs as the leaves of a tree structure where the 

nodes within the tree represent the design decisions made to arrive at a leaf node.  
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Software reuse technologies have been a driving force in significantly reducing 

both the time and cost of software requirements specification, development, maintenance 

and evolution [11], [12], [67], [74], [88]. Industry's continuous demand for shorter 

software development cycles and lower software costs encourages software development 

methodologies to exploit software reuse principles whenever possible.  

Software product-line engineering is one such reuse technology that supports the 

systematic development of a set of similar software systems by understanding, 

controlling and managing their common, core characteristics and their differing variation 

points [12], [67]. Software product-line engineering models provide software engineers 

with a reuse-conscious development platform that can contribute to significantly reducing 

both the time and cost of software requirements specification, development, maintenance 

and evolution [12].  In a product line, the common, managed set of features shared by all 

members is the commonalities.  The members of a product line may differ from each 

other via a set of allowed features not necessarily found in other members of the product 

line (i.e., the variabilities). The benefits of the product-line concept come from the reuse 

of the common requirements of the product line in the development of a new product-line 

member [76]. Software product-line engineering is further discussed in Chapter 2 as 

related and background work to the provided in this dissertation.     

Agent-oriented, software-based approaches have provided powerful and natural 

high-level abstractions in which software developers can understand, model and develop 

complex, distributed systems [90], [92], [94]. Yet, the realization of agent-oriented 

software development partially depends upon whether agent-based software systems can 

achieve reductions in development time and cost similar to other reuse-conscious 

software development methods such as object-oriented design, service-oriented 

architectures and component based systems [7]. 
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In recent years, several Agent-Oriented Software Engineering (AOSE) 

methodologies have been proposed for various agent-based application domains. The 

Gaia methodology [92], [94], in particular, offers a comprehensive analysis and design 

framework based on organizational abstractions by supplying schemas, models and 

diagrams to capture the requirements of an agent-based software system. 

The Gaia methodology centers on defining an agent based upon the role(s) that it 

can assume during its lifetime [92], [94].  Each role’s requirements specification is 

defined by its protocols (i.e., defines how agents interact), activities (i.e., the 

computations associated with the role that can be executed without interacting with other 

agents), permissions (i.e., the information resources that the role can read, change and 

generate) and responsibilities (i.e., the liveness and safety properties the role must 

ensure).    

However, Gaia has three limitations. First, although Gaia provides a mechanism 

to allow the role of an agent to change dynamically, it is unclear how to document agent 

requirements specifications during the analysis and design phases when an agent must be 

updated to include new functionality. Second, the design of an agent in Gaia is not 

hierarchical [42]. That is, the roles of an agent are coarsely defined, allowing little 

flexibility (i.e., little opportunity for reuse) for similar, yet slightly different behavior in 

the same role in different agents. Third, the Gaia methodology fails to provide a 

mechanism by which the requirements specification templates developed during the 

analysis phase can be reused to be incorporated into the current system or to build a new, 

similar but slightly different system. 

This dissertation offers our AOSE methodology, Gaia-PL (Gaia – Product Line) 

for open, agent-based distributed software systems to capture requirements specifications 

that can be easily reused during the initial requirements phase as well as later if the 

software needs to be updated. Our methodology uses a product-line perspective to 
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promote reuse in agent-based, software systems early in the development lifecycle so that 

software assets can be reused in the development lifecycle and during system evolution.  

The main contribution of this work is a requirements specification pattern to 

capture the dynamically changing design configurations of agents and reuse the 

requirement specifications for future similar systems. The ability of the requirements 

specifications to accommodate the dynamically changing design configurations of an 

agent is important because an agent may need to adapt and reconfigure itself based on 

external conditions (e.g., environment conditions, state of the MAS, changing goals, etc.). 

This is achieved by adopting a product-line approach into AOSE. Requirements 

specifications reuse is the ability to easily use previously defined requirements 

specifications from an earlier system and apply them to a new, slightly different system. 

This can significantly reduce the development time and cost of building an agent-based 

system. 

Specifically, the following are contributions of the Gaia-PL methodology work 

that will be detailed in this dissertation: 

• The inclusion of software product-line engineering principles into the 

development of MAS to build MAS product lines (MAS-PL) [19] 

• The creation of an AOSE methodology, Gaia-PL, that supports the design and 

development of MAS-PL using aspects of Gaia, an established AOSE 

methodology, and FAST, an established software product-line engineering 

methodology [19], [21]    

• The illustration of how our Gaia-PL methodology is amenable to the 

development of reusable software engineering assets during the design and 

development of MAS-PL and how the reusable assets can be used to develop 

systems of the MAS-PL [19], [21] 
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• An evaluation of our Gaia-PL methodology’s ability to reduce the 

development cost of MAS via a case study and comparison to the Gaia 

methodology 

This dissertation details the development of an agent-based software product line 

using our AOSE methodology, Gaia-PL to illustrate its ability to reuse produced software 

engineering assets and reduce the effort needed for the development of such a system. 

We demonstrate our approach on an agent-based, software product line – NASA’s 

Prospecting Asteroid Mission (PAM). Although this dissertation illustrates our Gaia-PL 

AOSE methodology using PAM as a case study, our prior work has shown this 

methodology applied to another NASA-proposed mission, the TechSAT21 mission [8], 

[71], [85], in [18], [19], [21] and [22].  

Chapter 4 provides the application of Gaia-PL on the PAM case study. The next 

section further motivates the need for safety analysis in AOSE and discusses our 

additional work in this area. 

1.2 Safety Analysis for Safety-Critical Software Pr oduct Lines 

Reusability has transformed entire industries and caused software engineers to 

adapt their methods to further this goal. The software product-line engineering approach 

supports reuse by developing a suite of products sharing core commonalities [12]. 

However, the development of safety-critical, software product lines in industry has 

emerged ahead of the development of product-line, safety analysis techniques and tools. 

This has created a lack of techniques and tools available to software engineers to ensure 

the safe reuse of software engineering artifacts throughout a product line [51]. It is only 

after a full suite of safety analysis tools and techniques are available to software 

engineers to ensure the safety in safety-critical product lines that safety-critical software 
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product lines will gain organizational and industrial acceptance and assume more 

responsibility in everyday safety-critical applications. 

Performing safety analysis on software product lines previously entailed 

considering each product line member in isolation and applying traditional safety analysis 

techniques to them [44]. Yet, this fails to leverage the fact that product-line members 

share a common core. 

This dissertation offers additional assurance to software engineers by providing a 

safety analysis technique applicable to product lines. Specifically, an adaptation of the 

Software Fault Tree Analysis (SFTA) technique applied to product lines in order to 

derive reusable analysis assets for future systems within the existing product line is 

detailed [17]. The product-line SFTA (PL-SFTA) maintains the safety analysis qualities 

of traditional SFTA while accommodating the reusable asset objective of the product-line 

concept. Traditional SFTA targets the safety analysis of potentially harmful states for one 

specific product. A PL-SFTA, however, contributes to the safety analysis for the entire 

product line including variabilities among the products. The PL-SFTA can then be reused 

as part of the safety analysis for the introduction of new product line members. The 

development of the SFTA for the new product is achieved through a pruning method. The 

goal is to support the reduction of the safety analysis needed on a new product within the 

product line and, ultimately, a less expensive and shorter product development process. 

This dissertation provides a detailed process by which a software engineer can 

construct a PL-SFTA for the initial product line, derive the new system’s SFTA from the 

PL-SFTA and modify the PL-SFTA to accommodate changes in requirements due to 

system evolution of a product line. In addition, this research has provided mechanisms 

that:  

• Aid in discovering additional system safety requirements [17] 

• Help in identifying additional product-line dependencies [18] 
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• Allow for analyses to assess failure points and safety critical requirements [23] 

• Complement Software Failure Modes, Effects and Criticality Analysis, Bi-

Directional Safety Analysis and other safety analysis techniques to strengthen a 

safety case when system certification is required [22] 

To support this technique, a software safety analysis tool, called PLFaultCAT 

(Product-L ine Fault Tree Creation and Analysis Tool) has been developed as a part of 

this work.  This tool builds on a previously developed technique that adopted Software 

Fault Tree Analysis (SFTA) to product line safety analysis [17]. PLFaultCAT is an 

interactive, partially-automated software support application to aid software engineers 

with the visualization and pruning process of a PL-SFTA. Specifically, the tool exploits 

the reusability inherent in product-line engineering by deriving reusable safety analysis 

assets (i.e., the product-line members' fault trees) for future systems within the existing 

product line.  

The contribution of this work is to further investigate how and to what extent the 

PL-SFTA technique, supported by the PLFaultCAT tool, can be used by software 

engineers as a reusable safety analysis. This approach employs Weiss and Lai’s Family-

Oriented Abstraction, Specification, and Translation (FAST) model [88]. This model 

employs a two-phase software engineering approach: the domain engineering phase and 

the application engineering phase. The domain engineering phase defines the product line 

and constructs the PL-SFTA with the aid of the PLFaultCAT tool; the application 

engineering phase develops and performs the safety analysis on new product-line 

members also using PLFaultCAT.   

We first provide a framework for the construction, aided by PLFaultCAT, of a 

PL-SFTA during the domain engineering phase and then supply the means for reusing the 

PL-SFTA for new members as it is implemented in the PLFaultCAT tool. Within the 
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application engineering phase we utilize PLFaultCAT to facilitate the derivation of new 

product-line members' fault tree(s). 

In addition, the main contributions of the PLFaultCAT tool to support our PL-

SFTA safety analysis technique described in this dissertation include: 

• Automatically derive all of the product line member SFTAs from PL-SFTAs [24] 

• Link product-line requirements to PL-SFTA nodes to aid in traceability [23] 

• Search the set of PL-SFTAs to identify single-point failures [18] 

• Identify safety-critical requirements by analyzing the set of PL-SFTAs [18], [48]  

• Provide a minimum-cut set analysis of a PL-SFTA to identify hazard paths [24] 

This dissertation details each of these contributions for an agent-based, software 

product line – NASA’s Prospecting Asteroid Mission (PAM). This dissertation illustrates 

our PL-SFTA technique using PLFaultCAT for an agent-based system by extending our 

prior work which applied this technique and tool to Weiss and Lai’s [88] Floating 

Weather Station in [17] and [24], to a pacemaker product line in [45], [47], [48] and to 

another NASA-proposed mission, the TechSAT21 mission [8], [71], [85], in [18], [19], 

[21] and [22].  

Chapter 5 reports on this work, as well as additional safety analysis techniques we 

have adopted for the use in our Agent-Oriented Software Engineering (AOSE) 

methodology, Gaia-PL (Gaia – Product Line). The next section further motivates the need 

for safety analysis in AOSE and discusses our additional work in this area.    

1.3 Safety Analysis for Multi-Agent System Product Lines 

Safety-critical systems composed of highly similar, semi-autonomous agents are 

being developed in several application domains.  An example of such a multi-agent 

system (MAS) is a swarm of satellites.  In swarms of satellites, each satellite is 
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commonly treated as a distinct autonomous agent that must cooperate to achieve higher-

level goals of the swarm [71].  

The emergence of distributed systems (e.g., formation-flying, satellite swarms) as 

a viable and reliable architecture for mission-critical domains coupled with the 

advantages of adopting an agent-oriented perspective for software development has led to 

a number of proposed systems utilizing these two concepts. A MAS is an application 

“designed and developed in terms of autonomous software entities that can flexibly 

achieve their objectives by interacting with one another in terms of high-level protocols 

and languages” [94].  

Actual proposed systems including the Terrestrial Planet Finder-I (TPF-I) 

spacecraft [81] and the TechSat-21 [8], Sun-Solar System Connection, Search for 

Earthlike Planets and Universe Exploration all rely on constellation missions to achieve 

their scientific goals [56]. In addition to these examples, there is NASA’s Prospecting 

Asteroid Mission [71], [77], [83], [84], the case study used throughout this dissertation 

and detailed in Chapter 3. Agent-oriented software engineering (AOSE) appears be an 

appropriate software development methodology for such systems [71].  

A safety-critical system can directly or indirectly compromise safety by placing a 

system into a hazardous state causing the potential loss or damage of life, property, 

information, mission or environment [44].  Like other safe-critical software systems (e.g., 

cardiac pacemakers, aircraft flight-control systems, military weapons systems, nuclear 

power monitoring systems, etc.) some MAS require extensive safety analysis and, 

potentially, safety certification. Although scientific satellite swarms, such as the PAM 

case study used in this dissertation, may not directly cause the loss of human life as a 

result of an accident, a system-wide failure/accident may result in the loss of an entire 

mission, the spacecraft and the millions of dollars of investment.       
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A challenge to safety analysis of multi-agent distributed systems, such as 

constellations of satellites, is the ability of agent-based software systems to dynamically 

alter their configurations (for example, from active to passive). A configuration of an 

agent in this work is the set of behaviors implemented in an agent’s roles. In addition, we 

would like to reuse safety analysis results while ensuring the maintenance of safety. That 

is, a tradeoff of higher reuse potential for less safety in the final product is not acceptable. 

Certification is a process whereby a certification authority determines if an 

applicant provides sufficient evidence concerning the means of production of a candidate 

product and the characteristics of the candidate product so that the requirements of the 

certifying authority are fulfilled [31], [40], [69], [72].  Software safety analysis 

techniques have previously been shown to contribute to the certification of software-

intensive systems in [2].  However, little work has been specifically aimed at software 

product lines or MAS. In addition to illustrating our product-line Software Fault Tree 

Analysis (PL-SFTA) for a MAS product line (MAS-PL), described in the previous 

section, this dissertation adopts and tailors additional safety analysis techniques of our 

AOSE methodology, Gaia-PL (Gaia – Product Line), to support the creation of reusable 

safety analysis assets; discover, verify and analyze safety requirements; and aid in the 

certification of MAS-PL. 

The main contribution of this work is to extend Bi-Directional Safety Analysis 

(BDSA) to MAS-PL and show how the analysis artifacts thus produced contribute to the 

software’s safety case for certification purposes.  The product-line approach lets us reuse 

portions of the safety analysis assets for multiple, similar agents, significantly reducing 

the burden of certification.   

First, we further the inclusion of safety analysis techniques into AOSE by 

providing a structured process to perform a Software Failure Modes, Effects, Criticality 

Analysis (SFMECA) for safety-critical MAS-PL in our Gaia-PL methodology.  The 
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SFMECA is reusable for other agents in the system since our approach incorporates the 

product-line vision of a MAS from [21].   

Second, we use the safety analysis assets from SFMECA and from our product-

line Software Fault Tree Analysis (PL-SFTA), described in the previous section, to 

perform a BDSA on the MAS-PL to contribute to system certification by verifying 

software design compliance with robustness and safety standards. The application of 

BDSA to a MAS-PL assists in the certification of agent-based software systems by: 

• Providing assurances that certain classes of failure modes that might occur in 

individual agents will not produce unacceptable effects in the composite system, 

strengthening the safety case by demonstrating the compliance of failure-

monitoring and failure mitigation software tasked with the system safety 

requirements to safety standards 

• Enabling reuse of certification arguments while ensuring that the reuse of the 

safety analysis artifacts in the certification arguments accurately reflects the 

differences amongst the agents of the system   

This dissertation details this work, along with our PL-SFTA safety analysis 

technique, as safety analysis techniques for an agent-based, software product line – 

NASA’s Prospecting Asteroid Mission (PAM), detailed in Chapter 3. This work has been 

previously been demonstrated on another NASA-proposed mission, the TechSAT21 

mission [8], [71], [85], in [18], [19], [21] and [22]. However, the application of our safety 

analysis techniques for a MAS-PL described in this dissertation is at a much larger scale. 

Specifically, the PAM MAS-PL case study discussed in this dissertation consists of 97 

high-level requirements, including 47 features allowing the development of 160 unique 

spacecraft in the PAM MAS-PL.   

Chapter 5 describes this work using our Agent-Oriented Software Engineering 

(AOSE) methodology, Gaia-PL (Gaia – Product Line) on the PAM case study.  
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The next section formally provides this dissertation’s statement of thesis and 

provides the contributions of this dissertation to support the thesis.    

1.4  Statement of Thesis 

The problems addressed in the work described in this dissertation are twofold. 

First, Agent-Oriented Software Engineering (AOSE) currently does not adequately 

address requirements (specification) reuse in a way that is amenable to reducing the 

development costs (i.e., time and money) by developing and utilizing reusable assets. 

Second, safety-critical, multi-agent systems (MAS) are being developed without the 

mechanisms and analysis techniques and tools in AOSE methodologies to discover, 

verify and analyze software requirements and potential safety hazards.   

Based on this problem statement, the theses of the work presented in this 

dissertation is that an AOSE methodology can be devised to enhance the reuse in the 

design and development of a safety-critical MAS by incorporating software product-line 

engineering principles to develop reusable software engineering assets in a way that 

allows software engineers to take advantage of the reusable assets to create MAS; and 

that product-line safety analysis techniques and tools can be developed and adopted to 

support the development of a safety-critical MAS by discovering, analyzing and verifying 

the MAS’s requirements in a way that produces reusable safety assets that can be used 

for future systems of the MAS.  

This thesis is supported in this dissertation by: 

• Incorporating software product-line engineering principles into the 

development of MAS to build MAS product lines (MAS-PL) 

• Creating an AOSE methodology, Gaia-PL, that supports the design and 

development of MAS-PL using aspects of Gaia, an established AOSE 
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methodology, and FAST, an established software product-line engineering 

methodology    

• Illustrating how our Gaia-PL methodology is amenable to the development of 

reusable software engineering assets during the design and development of 

MAS-PL and how the reusable assets can be used to develop systems of the 

MAS-PL 

• Evaluating our Gaia-PL methodology’s ability to reduce the development cost 

of MAS via a case study and comparison to the Gaia methodology 

• Developing the product-line Software Fault Tree Analysis (PL-SFTA) 

technique to support the safety analysis of safety-critical software product 

lines in a way that the resulting PL-SFTA is reusable for the products in a 

product line 

• Designing a software tool, PLFaultCAT, to support the creation of a PL-SFTA 

and the automatic derivation of a SFTA for the products in a product line 

• Evaluating PL-SFTA and PLFaultCAT’s ability to reduce development costs 

through the reuse of the PL-SFTA 

• Adapting Software Failure Modes, Effects and Criticality Analysis 

(SFMECA) into the Gaia-PL AOSE methodology to provide a structured 

process in which software engineers can derive a SFMECA directly from the 

assets of our Gaia-PL methodology 

• Describing how the PL-SFTA and SFMECA can be used with a Bi-

Directional Safety Analysis (BDSA) to discover new/missing safety 

requirements, verify the safety analyses and contribute to the safety case of a 

safety-critical MAS 

These results, as well as additional contributions to support the thesis statements, are 

described in the remainder of this dissertation.  
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1.5  Outline  

Chapter 2 reviews related work in software product-line engineering, Agent-

Oriented Software Engineering (AOSE) and software safety analysis to provide the 

necessary context and background information. We additionally discuss the differences 

of the related work from the work presented here.  

Chapter 3 describes the Prospecting Asteroid Mission (PAM) case study that is 

used throughout this dissertation to illustrate and evaluate our work. This chapter 

provides the background information needed to understand the domain and context of the 

case study. 

Chapter 4 details our Gaia-PL (Gaia – Product Line) AOSE methodology for 

designing and developing multi-agent system product lines (MAS-PL). The methodology 

produces reusable software engineering assets so that building systems of the MAS-PL 

can be done efficiently, in terms of development cost and time. We evaluate Gaia-PL’s 

ability to reduce the development cost of a MAS through its application to the design and 

development of a case study, and its comparison to using a different, non-product line, 

approach.  

Chapter 5 discusses our safety analysis techniques and tools for the analysis of 

safety-critical software product lines. Specifically, this chapter describes our product-line 

software fault tree analysis technique (PL-SFTA) and its tool, PLFaultCAT We again 

provide an evaluation of these safety analysis techniques through an application to our 

case study to illustrate their value as reusable safety assets, ability to increase safety by 

identifying new and missing safety requirements and potential for reducing development 

costs compared to a non-product line safety analysis approach.       

Finally, Chapter 6 offers conclusions, a discussion of the research’s contributions 

and ideas for future work.     
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CHAPTER 2.  RELATED WORK 

The work described in this dissertation builds upon the overlapping areas of 

software product-line engineering, agent-oriented software engineering and software 

safety analysis. This chapter discusses the background information and related work in 

these areas of software engineering and describes related concepts, techniques, 

methodologies and tools that are related to the Gaia-PL (Gaia-Product Line) methodology 

and product-line software safety techniques developed in this work.  

2.1  Software Product-Line Engineering 

A software product line is defined as “a set of software-intensive systems sharing 

a common managed set of features that satisfy the specific needs of a particular market 

segment or mission and that are developed from a common set of core assets in a 

prescribed way" [12]. The members of a particular product line differ from each other via 

a set of allowed variabilities/variation points. 

Software product-line engineering is a proactive and systematic approach for the 

design and development of software applications to create an array of similar products 

[12]. Software product-line engineering creates a family of products and relies on the 

analysis of the commonalities and differences of the members of the family prior to the 

design or development of any software engineering artifacts (i.e., during the requirements 

engineering phase) [87]. The goal of software product-line engineering is to support the 

systematic development of a set of similar software systems through by understanding, 

controlling and managing their common, core characteristics and their differing variation 

points [12], [67].   

Software product-line engineering is a widely accepted and active research field 

in academia. Several academic textbooks solely dedicated to software product-

engineering exist including [12], [36], [67] and [88]. In addition, the Software Product 
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Line Conferences [75], the major conference of software product-line engineering, is 

currently in its 11th cycle including more than a half-dozen associated product-line 

workshops.   

Product-line engineering is also widely accepted and used in industry, and in fact, 

has been used for many years. For example, automobiles, airplanes, televisions, cellular 

phones, etc. are product lines that people encounter in daily life. Software product lines 

have also begun to be adopted by industry. For example, the Software Engineering 

Institute (SEI) at Carnegie Mellon University has recognized Hewlett Packard [82], 

Nokia [39], Boeing [27], Philips [89], CelsiusTech Systems [12] and others as members 

of their Product Line Hall of Fame [68]. These companies, and countless more, have 

recognized the advantages of software product-line engineering and have adapted its 

approach as their development paradigm to offer customers a wide variety of products 

while incurring reduced development effort.   

The benefits of the product-line concept come from the reuse of the common 

requirements of the product line in the development of a new product-line member [76]. 

Thus, the assets gained from the initial engineering of the product line, such as the 

underlying architecture, requirements and safety analyses and testing artifacts, can be at 

least partially applied to any new product-line member. For example, CelsiusTech 

Systems claims to have reused up to 90% of their assets in the development of systems in 

their shipboard command and control systems product line [12]. In this sense, product 

line engineering allows for the amortization of costs in startup development and analysis 

of the initial product line members over the development of the entire product line. In 

fact, studies suggest that the product-line engineering concept can reduce the 

development and production time as well as the overall cost and increase the product 

quality by a factor of 10 times or more [74]. 
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The following subsections review the software product-line engineering terms, 

techniques and tools relevant to this work.  

2.1.1  Commonality and Variability Analysis 

The analysis, design and documentation of commonality and variability 

requirements play a crucial role in all phases of software product-line engineering [12]. 

Early in the development of a software product line, a product line’s requirements are 

often identified and specified through a Commonality and Variability Analysis (CVA). 

The CVA, as detailed by Ardis and Weiss in [1] and Weiss and Lai in [88], provides a 

comprehensive definition of the product line that provides a dictionary of terms, a list of 

the commonalities, a list of the variabilities and a list of parameters of variation. 

Although not a part of the CVA as detailed in [1] and [88], a list of 

dependencies/constraints on the variabilities of the product line may also be included. 

The CVA technique aids in providing a software engineering artifact that details the 

relevant domain definitions, the core set of product traits and the scope of the product 

line.  

2.1.1.1  Commonalities 

Pohl, Böckle and van der Linden define a product line commonality as a 

requirement that is identical in each member of a family [67]. Similarly, Weiss and Lai 

define a commonality as an “assumption that is true for all members of a family” [88]. 

Commonalities describe requirements of the entire product line and contribute to the 

development of the core assets of the product line that are common to all members of the 

product line. An example of a product-line commonality is “All widgets of the 

WidgetFamily product line shall have four wheels”. This means that, any product that is 

built from the WidgetFamily product line must, without exceptions, have four wheels. 
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Any product that does not abide by this requirement is, by definition, not a member of the 

product line since it does not have this product-line commonality.   

2.1.1.2  Variabilities 

Weiss and Lai define a product-line variability as “an assumption about how 

members of a family may differ from each other” [88]. Variabilities capture optional or 

alternative features not contained in every member of the product line and should capture 

the anticipated variations of the product-line member over the “foreseeable lifetime of the 

product line” [12]. An example product-line variability is “The color of the products in 

the WidgetFamily product line may vary”.  

Variabilities also frequently have associated "parameters of variation" that detail 

the degree to which the variability can occur [88].  The parameters of variation describe 

the acceptable range of variation. Weiss and Lai describe the parameters of variation as a 

“quantification of a variability, including the decision represented by the variability, the 

range of values allowed in making the decision, the time at which the value for the 

decision must be fixed, and a default value for the decision” [88].   

A variability's  parameters of variation within a product line often fall into one of 

three categories: Boolean parameters of variation, enumerated parameters of variation, or 

range parameters of variation. These categories of parameters of variation get 

increasingly more difficult to analyze for safety as the complexity in the number of 

choices increases.  Boolean parameters of variation are those variabilities that can either 

be present within a product-line member or not. An enumerated parameter of variation is 

any variability in which the product-line member must choose from a relatively small list 

of values for a particular variability.  

A simple example of an enumerated parameter of variation is "Widget X can 

either be blue, green, red, or yellow". A range parameter of variation are those 
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variabilities in which the product-line member must have a precise number associated 

with the variability, where the number lies within the range of acceptable parameters of 

variation specified in a Commonality and Variability Analysis (CVA). For example, 

"Widget X may have between 1 and 100 user functions" is a simple range parameter of 

variation. 

2.1.1.3  Dependencies 

A product-line dependency (i.e., constraint) restricts and/or dictates some 

combinations of variability subsets from being viable products in the form of "mutual 

exclusion" or "requires" variability dependencies [28], [43]. A dependency requirement 

can thus take the form "Any product-line member that has Variability A can not also have 

Variability B" or in the form "Any product-line member that has Variability C must also 

have Variability D". The first example indicates that any member of this product line is 

restricted from displaying both behaviors A and B. Alternatively, a dependency may also 

be in the form “Any product-line member that has Variability A with a value of ‘a’ can 

not also have Variability B with a value of ‘b’”. Dependency requirements can derive 

from actual physical limits, undesired or infeasible combinations of behaviors, user 

restrictions, or business decisions.  

Dependency requirements are especially important for the hazard analysis of a 

safety-critical product line and should be explicitly documented. By reducing the subset 

of potential viable products stemming from the product-line definition, we reduce the 

scope of the needed hazard analysis.  

2.1.2  Feature Modeling 

An alternative or supplemental approach to defining a software product line is in 

terms of its mandatory (i.e., required), optional (i.e., not required) and alternative (i.e., 

one or more from a list of alternatives is required) features [36], [67]. Svahnberg, Gurp 
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and Bosch define a feature as a “logical unit of behavior that is specified by a set of 

functional and quality requirements” [80]. A feature model hierarchically defines the 

mandatory, optional and alternative features of a product line by breaking down a single, 

high-level feature into its subfeatures. A product of a product line is thus a set of the 

mandatory features, a selection amongst the alternative features and the desired optional 

features. A child feature can only be present in a product of the product line if its parent 

feature is also present.    

2.1.3  Product-Line Engineering Phases 

Weiss and Lai’s Family-Oriented Abstraction, Specification and Translation 

(FAST) approach is an approach for developing product families that was designed and 

used at Lucent Technologies [88]. The FAST approach is based on investing resources 

proactively in the early design of a set of systems to identify their common and variable 

parts [88], as advocated by Parnas in [61]. The FAST approach advocates such a strategy 

because they claim that the high investments of resources in the early design stages are 

amortized over the set of product-line members that are produced. Similarly, the time-to-

market and variety in the production of new products within the product line will provide 

the company with a competitive advantage [88].  

The FAST approach for building software product lines utilizes the Commonality 

and Variability Analysis (CVA) and partitions the design and development of a product 

line into two unique phases: domain engineering and application engineering.  

2.1.3.1  Domain Engineering 

Pohl, Böckle and van der Linden define domain engineering as “the process in 

software product-line engineering in which the commonality and the variability of the 

product line are defined and realized” [67]. The goal of the domain engineering phase of 

the FAST approach is to define the product-line requirements, design, architecture and 
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other software engineering assets that pertain to the entire product line, rather than a 

single product-line member [88]. This process relies primarily on the knowledge and skill 

of domain experts to produce such assets [12], [67]. The purpose to make it possible to 

produce members of a product line, during the application engineering phase, using the 

assets generated during this phase. This is the investment phase that allows practitioners 

to, during the application engineering phase, quickly realize a wide variety of products 

within the product line for a competitive advantage.    

2.1.3.2  Application Engineering 

Pohl, Böckle and van der Linden define application engineering as “the process 

of software product-line engineering in which the applications of the product line are 

built by reusing domain artifacts and exploring the product-line variability” [67]. The 

goal of the application engineering phase of the FAST approach is build an individual 

product-line member(s) from the product-line requirements specified during the domain 

engineering phase [88]. Building a new product in the product line during this phase 

entails selecting values for all the parameters of variation consistent with the 

dependencies as detailed in the Commonality and Variability Analysis (CVA).    

2.1.4  DECIMAL 

Given a product-line’s commonalities, variabilities and dependencies as detailed 

in a Commonality and Variability Analysis (CVA), a valid product-line member’s 

requirements consists of the commonalities and a selection of variabilities (and their 

values) that conform to the dependencies for the product line. To aid in automatically 

checking the conformance of a product-line member to a product line’s variabilities and 

dependencies, Padmanabhan and Lutz developed DECIMAL (Decision Modeling 

Application), a requirements validation tool to certify that a set of requirements for a 

proposed product line member does not breach the dependencies of the product line [58], 



 23  

 

[59]. In addition, DECIMAL provides requirements engineers with the ability to 

document the commonalities, variabilities and dependencies of a product line, define a 

variability in terms of its parameters of variation and define a product-line member 

through the choice of its variabilities (and their values) [23], [58], [59]. 

2.1.5  Summary 

Software product-line engineering is a rich, established software design and 

development field that has been shown be advantageous.  This approach relies on the 

development of reusable, core assets that can be used in the design of a set of similar, yet 

differing, software systems. The use of such reusable, core assets has been shown to 

provide significant cost savings (i.e., development time and cost) to the development of a 

set of software systems.  

The work described in this dissertation integrates the software product-line 

engineering approach described in this section to the development of agent-based 

software systems, described in the following section. In addition, this dissertation 

develops techniques and tools for the safety analysis of software product lines built using 

the concepts and approach described in this section. 

2.2  Agent-Oriented Software Engineering 

The second area of related research that this dissertation draws on is the 

increasingly important design and development of distributed, agent-based software 

systems. In addition to the increase in complexity [40], the demands and expectation 

placed on modern software systems have significantly changed causing a new set of 

challenges to be addressed by software engineering [94]. Zambonelli, Jennings and 

Wooldridge argue the following new characteristics of today’s software systems: 

• By default are concurrent, distributed and expected to interact with 

components and services that are dynamically discovered at runtime 
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• “Always-on” entities that can’t be stopped, maintained or restored in the 

traditional ways 

• Exist in an open, dynamic environment where new component join, existing 

components leave and the operating environmental conditions change in a, 

possibly, unpredictable manner 

One approach to address and accommodate these new challenges in software 

engineering is Agent-Oriented Software Engineering (AOSE) [40], [90], [92], [94]. The 

AOSE methodology presented in this dissertation, Gaia-PL (Gaia - Product Line) differs 

from Gaia in that we integrate software product-line engineering concepts into the Gaia 

methodology allowing for software engineering to capture the reuse potential of a MAS’s 

software engineering assets so that future systems can be built quickly and cheaply.  

The following subsections review the AOSE terms, techniques and tools relevant 

to this work.  

2.2.1  Agents and Multi-Agent Systems 

Agent-Oriented Software Engineering (AOSE) designs and develops the agents of 

a multi-agent system (MAS) to solve a problem. Wooldridge defines an agent as “an 

encapsulated computer system that is situated in some environment, and that is capable of 

flexible, autonomous action in that environment in order to meet its design objectives” 

[90]. Jennings and Wooldridge [40] and Zambonelli, Jennings and Wooldridge [94] 

classify several characteristics that comprise an agent’s behavior: 

• Problem solving entities that are clearly identifiable, have well-defined 

boundaries and interfaces 

• Situated in a particular environment where they receive inputs related to the 

states of the environment via sensors and may act upon the environment via 

their effectors 
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• Have specific objectives (i.e., roles) to achieve that may be explicitly or 

implicitly represented within the agent 

• Autonomous in that they have control of their internal state and their own 

behavior 

• Capable of exhibiting flexible, context-dependent, problem-solving 

characteristics 

• Able to respond to changes that occur in their environment in a timely manner 

so that they can satisfy their objectives (i.e., reactive) 

• Able to opportunistically adopt new objectives whenever appropriate and take 

the initiative to satisfy their goals (i.e., proactive) 

For most problems, a single-agent solution is insufficient and thus requires a 

multiple-agent solution [40]. Zambonelli, Jennings and Wooldridge define a multi-agent 

system (MAS) as an application that is “designed and developed in terms of autonomous 

software entities that can flexibly achieve their objectives by interacting with one another 

in terms of high-level protocols and terms” [94]. Thus, AOSE’s objective is to provide 

software engineers with the design methodologies to develop the agents of a MAS to 

address the solution of a particular problem.   

2.2.2  Agent-Oriented Software Engineering Methodol ogies 

Agent-oriented software engineering (AOSE) [91] methodologies surfaced in the 

late-90's to provide tools and techniques for abstracting, modeling, analyzing and 

designing agent-based software systems early in the development lifecycle [79]. Different 

methodologies, such as Gaia [6], [92], [94], Tropos [3], [34] and MaSE [25] for example, 

use different abstractions and models for agent-oriented software development. Recent 

work has produced AOSE methodologies that focus on the reusability of software 

engineering assets produced so that future systems can be developed faster and cheaper. 
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This section briefly details these methodologies in the context of the work presented in 

this dissertation.   

2.2.2.1  The Tropos and MaSE Methodologies 

The Tropos Agent-Oriented Software Engineering (AOSE) methodology covers 

all phases of software development (from early requirements engineering to actual 

implementation) and is based on the notions that agents have goals and plans [3], [34]. 

Based on Yu’s i*  goal-modeling approach [93], Tropos focuses on developing and 

understanding the goals and subgoals of a system and the agents of a system through the 

creation of goal model diagrams [3], [34].   

The Multiagent Systems Engineering (MaSE) AOSE methodology utilizes 

graphically based models derived from standard UML models to analyze the agents of a 

software system [25]. Unlike Tropos, MaSE views the development of a multi-agent 

system (MAS) as a further abstraction of the object-oriented (OO) paradigm and, thus, it 

builds upon known OO techniques and applies them to the design and development of 

MAS.    

The work described here differs from both Tropos and MaSE previous work in 

that our methodology focuses on developing reusable assets rather than understanding 

and developing the goals and subgoals of a MAS as in Tropos or adapting UML models 

for MAS as in MaSE.  

In addition, we adapt the Gaia AOSE methodology (discussed in the next section) 

for the development of MAS rather than using Tropos, MaSE or any other AOSE 

methodology.  

2.2.2.2  The Gaia Methodology 

The Gaia Agent-Oriented Software Engineering (AOSE) methodology was the 

first methodology proposed in literature to guide the process of designing and developing 
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a multi-agent system (MAS) from the analysis phase to the design phase [6], [92], [94]. 

The Gaia methodology adopts a computational organizational metaphor where each agent 

within a MAS may play a variety of roles and where the agents cooperate with each other 

to accomplish a common organizational goal [6], [94].  

Briefly, the analysis phase of the design and development of a MAS in Gaia 

methodology, shown in Figure 1 [94], concentrates on specifying the requirements and 

specifications of the roles that an agent may participate during its lifetime in a set of Role 

Schemas. An Agent Model defines an agent by associating the roles, detailed in the Role 

Schemas, that that agent may partake in.  

 

 

Figure 1  The Gaia Models and their Relationships (from [94]) 
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The Gaia methodology was selected in this work for several reasons. First, it was 

the most mature AOSE methodology (i.e., it spans from the analysis phase to the design 

phase of agent-based development). Second, it is an established, well-published and 

widely accepted methodology in the AOSE community. Finally, the Gaia methodology’s 

development process and models best fit with the phases of the software product-line 

engineering, described in the previous section.   

The AOSE methodology described here, Gaia-PL (Gaia - Product Line) differs 

from Gaia in that we integrate software product-line engineering concepts into the Gaia 

methodology allowing for software engineering to capture the reuse potential of a MAS’s 

software engineering assets so that future systems can be built quickly and cheaply. 

Further, Gaia-PL focuses on capturing the reusability of the software engineering assets 

developed during the design and development of a MAS using a software product-line 

engineering approach so that future systems can be built quickly and easily. 

2.2.2.3  Reuse-Oriented Methodologies 

From its onset, one of the goals of Agent-Oriented Software Engineering (AOSE) 

has been to provide methodologies for reusing and maintaining agent-based software 

systems [85]. In spite of this goal, AOSE methodologies have failed to adequately 

capture the reuse potential, since many of the developed methodologies center on the 

development of specific software applications [34]. A few attempts, including [34] and 

[38], have been proposed for reuse in an agent-oriented development environment. 

However, in each case, reuse is positioned in the later stages of design and development. 

In [34], the Multi-Agent Application Engineering (MaAE) work exploits reuse during the 

design phase of a multi-agent software system. Likewise, [38] utilizes reuse principles 

from component-based development to reuse components from a previously developed 

agent-based component repository.  
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The work described here differs from previous work in that we present an 

approach, based on software product-line engineering, to capture the reuse potential of 

distributed, agent-based software systems in the requirements analysis and specification 

stage. 

2.2.2.4  The MaCMAS Methodology 

More recently, Peña, Hinchey, Ruiz-Cortés and Trinidad developed the 

Methodology for analyzing Complex Multiagent Systems (MaCMAS) using a software 

product-line engineering approach to build multi-agent system product lines(MAS-PL) 

[62], [64], [65], [66]. Their AOSE methodology uses UML to model a MAS-PL and 

focuses on handling the complexity of MAS-PL and building its core architecture [64].   

The MaCMAS methodology, like the Gaia-PL (Gaia-Product Line) methodology 

described in this work, utilizes a feature model to document the commonalities and 

variabilities of the MAS [64]. In addition, the MaCMAS methodology uses an automatic 

algorithm to analyze the features (i.e., commonality and variability requirements) of a 

MAS-PL to partition the requirements as either commonalities or variabilities based on 

the probability that a feature will appear in a product [64]. This information is then used 

to determine which features should be included, using their approach, in the MAS-PL’s 

core architecture [64]. For example, a feature that is projected to be present in 60% of the 

products of a particular MAS-PL will be included in the MAS-PL’s core architecture.  

The MaCMAS methodology incorporates and extends our idea of incorporating 

software product-line engineering techniques into AOSE originally reported in [19], [21]. 

The AOSE methodology, Gaia-PL, presented here extends an established, well-known 

AOSE methodology, Gaia [6], [92], [94], by introducing software product-line 

engineering concepts from an established, well-known software product-line engineering 

approach, FAST [88]. Further, the Gaia-PL methodology presented in this dissertation 
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and previously presented in [19] and [21] differs from that of MaCMAS in that we focus 

on the reusability of the MAS-PL’s requirements, requirements specifications and safety 

analysis assets rather than the MAS-PL’s architecture.  

2.2.4  Summary 

Agent-Oriented Software Engineering (AOSE) is a growing field in software 

engineering for the design and development of multi-agent systems (MAS). AOSE 

methodologies provide software engineers with the techniques to abstract, analyze and 

design of MAS.  

The work described in this dissertation integrates software product-line 

engineering approach into an AOSE methodology to develop MAS product lines (MAS-

PL). In addition, this dissertation develops and integrates techniques and tools for the 

safety analysis of MAS-PL.  

 2.3  Software Safety Analysis 

A safety-critical system can directly or indirectly compromise safety by placing a 

system into a hazardous state causing the potential loss or damage of life, property, 

information, mission, or environment [44].  Safety-critical software systems are being 

assimilated into our everyday lives in a vast range of domains and markets [51].  Safety-

critical software runs applications such as pacemakers, aircraft flight-control systems, 

military weapons systems and nuclear power monitoring systems. Software safety 

analysis aims at providing safety and software engineers with the techniques and tools to 

ensure the safety of such software applications.  

Just as autonomous software products have caused accidents, product-line 

software applications have also contributed to catastrophic losses.  For example, the 

Therac-25 medical system and the Ariane 5 losses were accidents caused, in part, by 

product-line engineering mistakes [44], [76]. The work described here is particularly 
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aimed at providing safety analysis techniques for safety-critical product lines to prevent 

such accidents.     

The following subsections review software safety and the software safety analysis 

techniques relevant to this work.  

2.3.1  Software Safety 

The aim of software safety is to prevent accidents trough the analysis possible 

hazards in the software system. Leveson defines safety in a software system as “freedom 

from accident or losses” [44]. An accident is an “undesired and unplanned (but not 

necessarily unexpected) event that results in (at least) a specified level of loss” [44]. A 

hazard is a “state or set of conditions of a system (or an object) that, together with other 

conditions in the environment of the system (or object), will lead inevitably to an 

accident (loss event)” [44].       

2.3.2  Software Safety Analysis Techniques 

Software safety analysis techniques center on the investigation of how software 

can jeopardize or contribute to the safety of the system [44]. The following subsections 

describe three of the most common safety analysis techniques used by software engineers 

on safety-critical software: Software Fault Tree Analysis (SFTA), Software Failure 

Modes, Effects and Criticality Analysis (SFMECA) and Bi-Directional Safety Analysis 

(BDSA). These safety analysis techniques are used in the work described in this 

dissertation and are described next.   

2.3.2.1  Software Fault Tree Analysis 

Software Fault Tree Analysis (SFTA) is a traditional safety analysis technique 

that has proven to be an essential tool for software engineers during the design phase of a 

safety-critical software product [37], [44], [53], [60]. SFTA is a tree-based top-down 
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(deductive), backward search method utilizing Boolean logic to depict the causal event 

contributing to an undesirable event (the root node). The analysis begins at the root node 

with the engineer specifying a root node event. For safety-critical systems, the root node 

of the tree will often represent a system-wide, catastrophic event taken from a preexisting 

hazards list [44]. The hazard represented by the root node is hypothesized to have 

occurred, and the engineer proceeds to determine the set of necessary preconditions 

causing the root node.  The set of possible causes are joined to the parent node by 

standard logical relations represented via logic gates to describe their contributing 

relation. This process continues through each level of the constructed subtree until basic 

events are reached or until the level of subsystem detail is achieved [44]. 

However, traditional SFTA only considers the behavior of a single system rather 

than the behaviors of the multiple systems of a product line, as of concern in this work. 

Coppit and Sullivan in [13] and Pai and Dugan in [60] examine dynamic SFTA to 

represent multiple possible outcomes of a component failure, for example, depending on 

whether a cold-spare, warm-spare or hot-spare component is available.  However, these 

approaches still only describe single-system behavior rather than the product-line 

behavior of concern here. 

Lu and Lutz presented the Fault Contribution Tree Analysis (FTCA) approach in 

[49]. Their approach, closely related to SFTA, analyzes the safety and robustness of 

safety-critical product lines in a reusable tree-like structure. Using the FTCA approach, 

software engineers can prune the FTCA for specific product-line members. The Product-

Line Software Fault Tree Analysis (PL-SFTA) approach described in this work differs 

from the FTCA approach in that we adopt the more familiar SFTA for the use with 

product lines and provide a tool in which developers can create PL-SFTA’s and then 

automatically derive the product-line members’ SFTA(s).  
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2.3.2.2  Software Failure Modes, Effects and Criticality Analysis 

Failure Modes, Effects and Analysis (FMEA) is a traditional analysis technique 

originally developed for reliability engineering to be able to predict equipment reliability 

with a goal to establish an overall probability that the product will operate without a 

failure for a certain length of time [44]. Software Failure Modes, Effects and Criticality 

Analysis (SFMECA) was adopted from FMEA and applied to software-intensive 

systems. SFMECA is a tabular (inductive), forward-based search technique that starts 

with the failure of a software component or subsystem and then looks at its effect on the 

overall system [44]. SFMECA first lists all the components comprising a system and their 

associated failure modes. The possible causes of failure are listed and the effects on other 

components or subsystems are evaluated and listed along with the consequence on the 

system for each component's failure mode(s). Finally, a criticality assessment (e.g., 

minor, major, critical, catastrophic, etc.) is documented to denote the seriousness of the 

occurrence of such a failure. Like SFTA, SFMECA is only as good as the domain and 

system expertise of the analyst. Note that SFMECA and Software Failure Modes and 

Effects Analysis (SFMEA) are identical except that SFMEA does not evaluate and 

document the criticality of a failure.  

In [53], Lutz and Woodhouse provide a list of generic failure-mode guidewords to 

aid in the process of constructing a SFMECA for failures in data communication and 

event processing.  These guidewords, when applied to the failure of a component or 

subsystem, help engineers systematize the process of determining the possible effects of 

each failure mode on other components of the system that could lead to a hazard(s). For 

data failures, Lutz and Woodhouse propose the following keywords to guide the analysis 

to construct a SFMECA table: “incorrect value”, “absent value”, “wrong timing” and 

“duplicated value”; likewise, for event failures, Lutz and Woodhouse propose the 
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following keywords to guide the analysis to construct a SFMECA table: “halt/abnormal 

termination”, “omission”, “incorrect logic/event” and “timing/order” [53].    

In [32], Feng and Lutz detail the creation of a product-line SFMEA by using the 

SFMEA analysis and additionally including an entry to specific which for which product 

the current failure mode and its effects are being documented. We follow Feng and Lutz 

[32] in this work by partitioning the SFMECA into separate analyses on the data and 

events.  

 However, the work described here differs in that it provides a structured process 

to create and document a SFMECA table for a multi-agent system product line (MAS-

PL) using the Gaia-PL agent-oriented software engineering methodology rather than a 

general product line.    

2.3.2.3  Bi-Directional Safety Analysis 

The results of a forward search, such as a Software Failure Modes Effects and 

Criticality Analysis (SFMECA), and a backward search, such as a Software Fault Tree 

Analysis (SFTA), will not necessarily be the same, often times both types are utilized in 

the safety analysis of a safety-critical system [44]. Lutz and Woodhouse developed the 

Bi-Directional Safety Analysis (BDSA) approach to combine the advantages of the 

forward and backward search techniques [53].  The forward and backward techniques can 

be viewed as complementary since the output of the forward technique (i.e., the potential 

system-wide hazards) should match-up with the inputs of the backward technique.  

Similarly, the output of the backward technique (i.e., the low-level, local errors that cause 

a system-wide hazard) should match-up with the inputs of the forward technique [44].  

For example, we can verify the completeness of the SFTA by ensuring that every unique 

hazard listed in the SFMECA table with a particular level of criticality or higher (e.g., 

major criticality) is a root node within one of the fault trees of the SFTA. 
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In [32], Feng and Lutz utilize a BDSA to discover incompleteness in the SFMEA 

and SFTA of a safety-critical product line. In [52], Lutz and Gannod specify a telescope 

subsystem as a product family and incorporates BDSA to identify additional 

requirements.  Similarly, in [53], Lutz, Helmer, Moseman, Statezni and Tockey 

performed a forward and backward search for hazards on representative members of a 

flight instrumentation display product family in hopes of deriving additional safety 

requirements. 

In this work, however, the BDSA is adapted for the use of multi-agent system 

product lines (MAS-PL) to discover incompleteness in the SFMECA and a Product-Line 

Software Fault Tree Analysis (PL-SFTA), demonstrate the compliance to safety 

standards of a MAS-PL by verifying its safety requirements and enable the reuse of 

safety certification arguments for the MAS-PL.   

2.3.3  Summary 

Software safety analysis techniques provide software engineers with the tools 

necessary to identify, analyze and verify the safety requirements of software-critical 

software systems. Software safety analysis techniques use different approaches to analyze 

the causes of a system accident and possible hazards of a system failure.  

The work described in this dissertation develops product-line safety analysis 

techniques and tools for safety-critical product lines. In addition, this dissertation 

develops and integrates these safety analysis techniques and tools for the safety analysis 

of multi-agent system product lines (MAS-PL).  
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CHAPTER 3.  CASE STUDY: THE PROSPECTING ASTEROID 

MISSION 

The work described in this dissertation is illustrated and evaluated using the 

Prospecting Asteroid Mission (PAM), a NASA Autonomous Nano-Technology Swarm 

(ANTS) mission [9], [14], [15], [64], [65], [68], [71], [77], [83], [84]. Like the ANTS-

based mission, the PAM spacecraft can be viewed as a multi-agent system product line 

(MAS-PL) [64], [65], [66]. From a product-line engineering perspective, the similarities 

in requirements that are to be found on every spacecraft of the PAM swarm (e.g., the 

navigation and guidance capabilities, the prevention of collisions capability, the ability to 

warn other spacecraft of an impending solar storm, etc.) can be viewed as product-line 

commonality requirements.  

As described in Chapter 4, the application of a product-line engineering approach 

to this MAS using our AOSE methodology, Gaia-PL (Gaia – product line) utilizes 

reusable, core assets to reduce the development effort required. This chapter introduces 

the ANTS mission as well as the PAM mission to provide necessary context and 

background information.   

3.1  The Autonomous Nano-Technology Swam Mission 

The Autonomous Nano-Technology Swarm (ANTS) is a NASA concept mission 

in the 2015-2030 timeframe that entails a collection of agents that work cooperatively, 

and autonomously to achieve mission goals [68]. The proposed ANTS technology is a 

system architecture for scalable, robust and highly distributed systems, and it has been 

proposed to be used in an family of missions (each with differing objectives and goals), 

shown in Figure 2, to explore our solar system [9], [14], [15], [64], [68], [71], [77], [83], 

[84]. For example, the wide range of ANTS-based missions include a swarm of flight-

based spacecraft to orbit Saturn and investigate the composition of Saturn’s rings [10] 
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and to travel amongst the asteroid belt between Mars and Jupiter to investigate the 

composition of asteroids [9], [14], [15], [83], [84] to ground-based spacecraft to look for 

ice or volcanic material just beneath the surface on Mars [14]. In addition to the NASA-

proposed, ANTS-based missions, shown in Figure 2, the United States Department of 

Defense has shown interest in exploring similar ANTS-based systems using autonomous 

technologies for the investigation of extreme environments on Earth and for underwater 

exploration [77].    

The ANTS architecture will be based on autonomous, self-addressable, self 

configuring components that will have the following key aspects [14]: 

• Independent, specialized elements 

• Multi-level intelligent, autonomous behavior 

• Organization via a social insect analogy  

 

 

Figure 2  The Family of NASA’s Proposed ANTS-Based Missions 
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Some of the components of the architecture will consist of common subsystems 

that all spacecraft must have (e.g., inter-spacecraft communication components, guidance 

and navigation components, etc.) and some components specialized to a small subset of 

the spacecraft (e.g., X-ray spectrometer components). Thus, the architecture is designed 

particularly for highly autonomous spacecraft each specialized to perform a specific 

mission function [14], [15], [68].    

The autonomy required by ANTS-based missions will require each spacecraft to 

have the ability to be self-configuring, self-healing, self-optimizing and self-protecting 

[77]. Briefly, self-configuring behavior in ANTS-based missions is needed since the 

nature and objectives of the mission may change as time progresses. For example, 

new/different science goals may need to be investigated depending on collected data or 

the current surrounding environment. Self-healing is needed to allow a spacecraft to 

autonomously discover and recover from malfunctions (e.g., the spacecraft’s memory is 

corrupted as a result from exposure to solar radiation) and be able to continue to perform 

scientific operations. Self-optimization in ANTS-based spacecraft is desired so that 

specialized spacecraft (e.g., a spacecraft with a magnetometer) are able to optimize their 

abilities to perform their scientific objectives and learn how they can better achieve their 

scientific goals through their learning from the past experiences. Finally, self-protection 

is needed in each ANTS-based spacecraft so that the spacecraft can prevent itself from 

harmful situations (e.g., collisions with other spacecraft, radiation from solar storms, 

etc.).  

While these behaviors will have many similarities across all ANTS-based 

missions (e.g., all ANTS-based spacecraft will be self-protecting by avoiding collisions 

with other spacecraft), the specific autonomic properties will very depending on the 

specific mission and the specific objective of a spacecraft (e.g., some spacecraft of the 
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ANTS-based mission to explore Saturn’s rings shall be able to optimize their near-

infrared spectrometer to be able to better characterize the ring’s composition) [77].      

The similarities in the characteristics, behavior and requirements amongst the 

proposed ANTS-based systems, shown in Figure 2, suggests that adopting a product-line 

engineering approach may be advantageous in the systems’ development since portions 

of the software engineering assets can be reused across several missions [64], [65], [66]. 

Using a product-line engineering approach, common components (e.g., the navigation 

and guidance components and the collision avoidance components of flight-based ANTS 

systems) can be viewed as product-line commonalities. Similarly, components particular 

to only some of the ANTS-based spacecraft (e.g., infrared radiometer components for 

spacecraft specialized to investigate a planet or asteroid’s Regolith characterization) can 

be considered as product-line variabilities. Thus, the family of ANTS-based spacecraft 

could be built as a multi-agent systems product-line (MAS-PL), as proposed by Peña, 

Hinchey, Ruiz-Cortés and Trinidad [64], [65], [66].  

In this work, we concentrate on a single ANTS-based mission, the Prospecting 

Asteroid Mission (PAM) [71], [77], [83], [84], as a MAS-PL to illustrate and evaluate our 

approach. In the following section, the PAM ANTS-based mission is described to provide 

background and context to the examples and case study presented throughout the 

remainder of this dissertation.  

3.2  The Prospecting Asteroid Mission 

The Prospecting Asteroid Mission (PAM) is a currently a 2020-2025 NASA 

concept mission lasting 5-10 years based on the Autonomous Nano-Technology Swarm 

(ANTS) technology to explore the asteroid belt between Mars and Jupiter [71], [77], [83], 

[84]. The proposed PAM mission will consist of up to 1,000 pico-spacecraft (spacecraft 

weighing less than 1 kilogram) that will autonomously form subswarms to investigate 
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asteroids of interest in the asteroid belt. In particular, the PAM spacecraft’s objective is to 

search for asteroids that have characteristics indicating that they have resources and 

material with astrobiologically relevant origins and features. Except for a spacecraft’s 

scientific instrumentation specialties, each PAM spacecraft will have identical hardware. 

Each PAM spacecraft will be designated as a leader (sometimes called rulers), a 

messenger or a worker [15], [68], [71], [83], [84]. A spacecraft tasked as a leader will 

determine the types of asteroids and data the mission is interested in and will coordinate 

the efforts of other spacecraft, in particular worker spacecraft, to investigate asteroids to 

satisfy mission objectives. A spacecraft designated as a messenger is tasked with 

coordinating the communication messages between the worker spacecraft, the leader 

spacecraft and the Earth. In addition, the messenger spacecraft will, along with the leader 

spacecraft, maintain the position and trajectory data of all spacecraft in the swarm as a 

requirement for intra-spacecraft communication. Worker spacecraft will each contain a 

single specialized, onboard scientific instrument and be tasked to perform scientific 

investigation particular its specialized equipment. Types of specialized, onboard 

scientific instruments that worker spacecraft will contain for the PAM mission include 

spectrometers, altimeters, magnetometers and infrared radiometers.  

Currently, there are nine proposed specialized instruments, shown in Table 1, 

each designated with its own unique objective in the exploration of an asteroid [15], [68], 

[71], [83], [84]. Of the approximately 1,000 spacecraft proposed for the PAM mission, 

approximately 80% will be worker spacecraft and the remaining 20% will be equally 

divided amongst the leader and messenger spacecraft. Thus, for each type of spacecraft 

there will be a great amount of redundancy since NASA projects that 60%-70% of the 

PAM spacecraft will be lost over the duration of the mission due to failures, collisions, 

etc.  

 



 41  

 

Table 1  Types of Specialized Instruments for Worker Spacecraft 
 

Worker Specialization Primary Objective 
Visible Imager Asteroid detection, 3D modeling, Photogeology 

Near-Infrared Spectrometer Mineral abundance mapping 

X-ray Spectrometer Major element/volatile abundance mapping 

Gamma-ray Spectrometer Heavy element/volatile abundance mapping 

Neutron Spectrometer Heavy element/volatile abundance mapping 

Altimeter Shape detection, 3D modeling, Topography, 
Geomorphology 

Radio Science/Magnetometer Gravity/Magnetic fields mapping, Interior 
characterization, 3D modeling 

Radio Sounder/Infrared 
Radiometer 

Regolith characterization 

Neutral Mass Spectrometer Volatile characterization 

 

To explore the asteroids within the asteroid belt, the PAM spacecraft will 

autonomously form subswarms of approximately 100 spacecraft, thus forming around 10 

subswarms [15], [68], [71], [83], [84]. Each subswarm will spend approximately one 

month investigating a single asteroid and will consist of several leader and messenger 

spacecraft, and the majority of the subswarm will be worker spacecraft, of which, several 

of each instrument specialization will present in every subswarm. The heterogeneous 

spacecraft of a subswarm will work together to form a “virtual instrument” to investigate 

an asteroid by combining the data discovered by each of the specialized worker 

spacecraft to form a single model of the asteroid to report to mission control on Earth.    

A typical scenario of a PAM subswarm to explore an asteroid within the asteroid 

belt may be as follows [71]:  
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The leader spacecraft of a subswarm will contain models of the types of 

science that should be performed. Parts of this model are communicated to 

messenger spacecraft so that the messenger spacecraft can relay it to the worker 

spacecraft of the subswarm. Upon receiving a model of what kind of science shall 

be investigated on an asteroid, the worker spacecraft shall take measurements of 

the asteroid using whatever specialized onboard instruments they have until the 

collected data of the subswarm’s worker spacecraft fulfills the model sent by the 

leader spacecraft. 

The data will then be sent to a messenger spacecraft which will then relay 

it to the leader spacecraft of the subswarm. If this data matches the characteristics 

that the leader spacecraft believe should be further investigated, the leader 

spacecraft will command some worker spacecraft equipped with imaging 

instruments to determine the exact location, size and shape of the asteroid to 

create a rough model of the asteroid prior to the arrival of other spacecraft so that 

they can have a model for maneuvering around the asteroid and avoid collisions. 

Other spacecraft would then work together to finish the model and mapping of the 

asteroid. This process is partially illustrated in Figure 3. 

From this scenario, the PAM spacecraft can be viewed hierarchically as acting as 

a team of teams where some teams last longer than others since the scientific capabilities 

of spacecraft differ and because each team is temporarily dedicated to a specific task or 

objective [15], [68], [71], [83], [84].   

In terms of safety, an ANTS requirement, which must hold for the PAM mission, 

calls for no single-point failures [15], [68], [71], [83], [84]. This implies that there must 

not be a single, central leader spacecraft that commands the entire swarm, thus the need 

for high redundancy in the spacecraft and in the swarm to ensure, for example, that there 

is not a single leader spacecraft responsible for commanding the entire swarm.  
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Figure 3  PAM Spacecraft Exploring the Asteroid Belt (from [77]) 

 

Additionally, the extreme conditions of space will necessitate other safety-critical 

requirements to be placed on PAM spacecraft to avoid hazardous situations [15], [68], 

[71], [83], [84]. One such situation is that the PAM spacecraft will need to protect 

themselves from the solar radiation present during a solar storm. To protect the swarm 

from solar radiation, some spacecraft will be tasked, in addition to their other objectives, 

to monitor the solar disc for an impending solar storm. To meet the no-single point failure 

requirement, several spacecraft will be tasked with monitoring the solar disc for an 

impending solar storm.  
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However, not all of these spacecraft will be actively monitoring the solar disc 

although they all have the capability. Rather, some spacecraft will switch from not 

monitoring the solar disc to actively monitoring the solar disc when it is determined that 

the swarm requires additional monitoring spacecraft (e.g., when previous spacecraft 

monitoring the solar disc have been lost due to failure, collision, etc.). When a solar 

storm is detected, this spacecraft will warn the entire swarm to take protective measures. 

A PAM spacecraft receiving such a warning will relay this message to other nearby 

spacecraft and may power down its subsystems and use its solar sail as a shield to protect 

itself from the harmful effects of solar radiation.  

To preserve mission-critical requirements (i.e., the swarm’s ability to pursue 

scientific goals and report their findings), additional capabilities will be given to some 

spacecraft of the PAM swarm to achieve redundancy at the swarm level. Similar to the 

ability that some spacecraft will go from not monitoring the solar disc for impending 

solar storms to actively monitoring it, some spacecraft may be able to switch from a 

leader spacecraft to a messenger spacecraft or vice versa if conditions of the swarm 

determine that additional messenger spacecraft or leader spacecraft, respectfully, are 

needed to due the loss or failure of spacecraft [15], [68], [71], [83], [84].  

Like the ANTS-based mission, the PAM spacecraft can be viewed as a multi-

agent system product line (MAS-PL) [64], [65], [66]. From a product-line engineering 

perspective, the similarities in requirements that are to be found on every spacecraft of 

the PAM swarm (e.g., the navigation and guidance capabilities, the prevention of 

collisions capability, the ability to warn other spacecraft of an impending solar storm, 

etc.) can be viewed as product-line commonality requirements. Similarly, the differences 

amongst the spacecraft of the PAM swarm (e.g., the differing requirements between 

leader, messenger and worker spacecraft, the ability of some spacecraft to monitor the 

solar disc for impending solar storms, the ability of some messenger spacecraft to be 
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upgraded to a leader spacecraft, etc.) can be considered as product-line variability 

requirements.  

This work uses NASA’s ANTS-based PAM mission as a case study throughout 

the remainder of this dissertation to motivate, illustrate and evaluate our Agent-Oriented 

Software Engineering (AOSE) methodology, Gaia-PL (Gaia - Product Line), to construct  

a MAS-PL so that its software engineering assets can be reused when building new 

systems. Chapter 4 describes the reduction in the development effort required as a result 

of the application of a product-line engineering approach using Gaia-PL to this MAS.  

Further, we use the PAM mission described in this chapter to motivate, illustrate 

and evaluate our product-line safety analysis techniques ability to evaluate and improve 

the safety of a MAS-PL in a way that the produced safety analysis assets are reusable for 

future systems. Chapter 5 details the product-line safety analysis techniques and tools 

ability to identify, analyze and verify the safety requirements of the PAM mission. In 

addition, we evaluate safety analyses value as producing reusable safety artifacts and 

their ability to reduce development costs compared to a non-product line safety analysis 

approach. 
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CHAPTER 4.  DEVELOPING MULTI-AGENT SYSTEM PRODUCT 

LINES USING THE GAIA-PL METHODOLOGY 1 

Chapter 1 stated as a thesis that an Agent-Oriented Software Engineering (AOSE) 

methodology can be devised to enhance the reuse in the design and development of a 

safety-critical, multi-agent system (MAS) by incorporating software product-line 

engineering principles to develop reusable software engineering assets in a way that 

allows software engineers to take advantage of the reusable assets to create a MAS. 

Based on the foundation of background information and related research given in 

Chapters 1 and 2, this chapter describes our Gaia-PL (Gaia – Product Line) AOSE 

methodology to design and develop multi-agent system product lines (MAS-PL)2 using 

software product-line principles. This chapter details how to develop reusable 

requirement specifications for a MAS-PL and then reuse them for initial system 

development as well as during evolution. To illustrate and evaluate our Gaia-PL 

methodology, we use the Prospecting Asteroid Mission (PAM) case study described in 

Chapter 3.  

                                                 
1 This chapter extends our previous work that has appeared in papers at the 2005 International Conference 

on Software Engineering Workshop on Software Engineering for Large-Scale, Multi-Agent Systems 

(SELMAS’05), a 2006 chapter in Software Engineering for Multi-Agent Systems IV, Lecture Notes In 

Computer Science, co-authored with Robyn R. Lutz as well as a forthcoming book chapter entitled Current 

Research in Multi-Agent System Product Lines (MAS-PL), co-authored with Joaquin Peña, Antonio Ruiz-

Cortes, Michael Hinchey and Robyn R. Lutz. 
2 The term multi-agent system product line (MAS-PL) was coined by Joaquin Peña, Michael Hinchey, 

Antonio Ruiz-Cortes and Pablo Trinidad for what we previously called product-line, multi-agent systems 

(PL-MAS).  
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4.1  Integrating Software Product-Line Engineering Principles 

into the Gaia Methodology 

This section examines the need for the integration of software product-line 

engineering principles into the design and development of MAS and describes our 

approach of using an agent’s variation points as a mechanism to include software 

product-line engineering principles into our Gaia-PL methodology.  

4.1.1  The Need for Reuse in Developing Multi-Agent  Systems 

Reuse is highly desirable in software engineering as a way to reduce the cost of 

the design and development of software. Software reuse technologies have been a driving 

force in significantly reducing both the time and cost of software requirements 

specification, development, maintenance and evolution. Industry's continuous demand for 

shorter software development cycles and lower software costs encourages software 

development methodologies to exploit software reuse principles whenever possible.  

Agent-Oriented Software Engineering (AOSE) methodologies have provided 

software engineers with the mechanisms to understand, model and develop complex 

multi-agent systems (MAS). From its onset, one of the goals of AOSE has been to 

provide methodologies for reusing and maintaining agent-based software systems [85]. 

Despite this, no methodology has provided software engineers with the reuse mechanisms 

at an early stage in the software development life cycle (i.e., requirement specification 

phase). The realization of MAS development partially depends upon whether AOSE can 

achieve reductions in development time and cost comparable to other reuse-conscious 

software development methods [7].   

Software product-line engineering, discussed in Chapter 2, is one such reuse 

technology that supports the systematic development of a set of similar software systems 

by understanding, controlling and managing their common, core characteristics and their 
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differing variation points [12], [67]. The benefits of the product-line concept come from 

the reuse of the common requirements of the product line in the development of a new 

product-line member [76]. Thus, the assets gained from the initial engineering of the 

product line can be at least partially applied to any new product-line member. 

The Gaia-PL methodology provides a requirements specification pattern to 

capture the dynamically changing design configurations of agents and reuse the 

requirement specifications for future similar systems. This is achieved by adopting a 

product-line approach into AOSE by capturing the dynamically changing design 

configurations of agents as product-line variation points and reusing them for future 

systems. The use of variation points in Gaia-PL for the design and development of MAS 

is discussed in the following section.  

4.1.2  Using Variation Points in Multi-Agent System s 

The Gaia methodology centers on defining an agent based upon the role(s) that it 

can assume during its lifetime [92], [94].  Each role’s requirements specification is 

defined by its protocols (i.e., defines how agents interact), activities (i.e., the 

computations associated with the role that can be executed without interacting with other 

agents), permissions (i.e., the information resources that the role can read, change and 

generate) and responsibilities (i.e., the liveness and safety properties the role must 

ensure).    

However, Gaia has three limitations of interest to the work presented in this 

dissertation. First, although Gaia provides a mechanism to allow the role of an agent to 

change dynamically, it is unclear how to document agent requirements specifications 

during the analysis and design phases when an agent must be updated to include new 

functionality. Second, the design of an agent in Gaia is not hierarchical [42]. That is, the 

roles of an agent are coarsely defined allowing little flexibility (i.e., little opportunity for 
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reuse) for similar, yet slightly different behavior in the same role in different agents. 

Third, the Gaia methodology fails to provide a mechanism by which the requirements 

specification templates developed during the analysis phase can be reused to be 

incorporated into the current system or to build a new, similar but slightly different 

system. 

Gaia-PL addresses these limitations by introducing variation points into the 

design and development of MAS. Product-line engineering uses variation points to 

capture the allowed differences amongst members belonging to the same product family. 

For Gaia-PL, we define the variation points for a specific role of an agent as the differing 

protocols, activities, permissions and responsibilities available to that role. Variation 

points typically stem from the grouping of the product-line variabilities defined in the 

Commonality and Variability Analysis (CVA), discussed in Section 2.1.1, documented as 

part of the output of the Requirements Documentation phase of Gaia-PL, discussed in the 

next section.  

The introduction of variation points in Gaia-PL addresses the limitations of Gaia 

by allowing the software engineer to define a role with greater flexibility and partition 

some functionality of a role depending on the agent and system’s current configuration. 

The variation point notion is important because it aids in capturing the different 

arrangements of agents and promotes reuse. 

4.1.2.1  Variation Points 

Variation points are added with the Gaia characteristics of a role [92], [94]. This 

allows Gaia-PL to leverage a product-line-like perspective to maximize reuse among 

software products that share a great many similarities amongst each other and differ by 

only a few variations. In the following paragraphs, examples of variation points are given 

to illustrate this.  
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From previous work [19] [21], we have shown that an important way to classify 

variation points for an agent of a MAS is based on the varying intelligence levels for a 

specific role. For example, in the TechSat21 satellite constellation [8], [73], a cancelled 

NASA-proposed, agent-based, satellite constellation comparable to the Prospecting 

Asteroid Mission (PAM) case study used in this dissertation, variation points for a role 

were ordered in terms of increasing intelligence levels, I4 through I1, defined as follows: 

• I4: the role is able to receive and execute commands 

• I3: the role is able to participate in local planning activities pertinent to the 

role as well as receive and execute commands 

• I2: the role is able participate in local planning and interaction activities 

pertinent to the role, contains partial cluster-knowledge related to the role’s 

objective as well as receive and execute commands 

• I1: the role is able participate in cluster-level planning and interaction 

activities pertinent to the role, contains full cluster-knowledge related to the 

role’s objective as well as receive and execute commands 

Thus, in this example, as a role in a TechSAT21 satellite is promoted to a higher 

intelligence level (from I3 to I2, for example) the configuration of the agent dynamically 

changes by incorporating additional protocols, activities, permissions and/or 

responsibilities. The reverse occurs when a role is demoted from a higher intelligence 

level to a lower intelligence level (from I2 to I3, for example). Using this construct, our 

notion of an agent’s role may have one or more variation points.  

 The actual decision as to which features to group together and how to classify 

each variation point is domain and/or application specific and is not covered in this work. 

Rather, we assume that domain experts group the variabilities listed into variation points 

so that they can be used during the analysis phase of Gaia-PL. However, in the 

application of Gaia-PL to the PAM case study, we found that the variation points were 
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intuitively identifiable from the functionality described in the variability requirements of 

the differing spacecraft.    

The variation points will initially be fixed upon deployment of the MAS based 

upon the software and hardware facilities available to the agent as well as the role's goal. 

At deployment a default variation point for each role is set. During execution, a role may 

change its variation point (e.g., intelligence level) based upon its internal state, 

commands from external sources or the environment.  

Alternatively, within a distributed, agent-based system, it is not likely that the 

same set of variation points will be included in any given role throughout the entire MAS 

[19]. Thus, from a product-line engineering perspective, we can view the set of roles 

containing different role/variation point combinations as a product line. The set of roles 

and dynamic variation points an agent contains is its configuration.  

For example, in a small case study on the application of an earlier version of 

Gaia-PL to the TechSAT21 case study we performed in [19] [21], the intelligence levels 

listed above describe the variation points for a role that was tasked to perform allocation 

planning for the TechSAT21 satellites to equalize the fuel use across the entire cluster. 

Any agent with this role would be assigned a variation point based on the intelligence 

level, I4-I1, it is capable of assuming during its lifetime. One agent may be assigned an I4 

intelligence level for this variation point. This implies that this specific agent can never 

increase its intelligence level (i.e., be upgraded) any higher.  However, an agent assigned 

with an I2 intelligence level for this role’s variation point has the configuration so that, at 

any point in its lifetime, it may be operating at the I4, I3 or I2 intelligence level. This may 

be useful for systems that require redundancy. For example, the agent assigned with an I2 

intelligence level for this role’s variation point may primarily operate at the I3 

intelligence level and only be upgraded to the I2 intelligence level if it is needed to 
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assume the planning for another agent operating at the I2 level that is failing, has been 

damaged or needs replacement.      

The intelligence level variation point of this example will not be universal to all 

agent-based, distributed systems. Variation points are particular to each application and, 

indeed, particular to each role. For example, other variation points could include active, 

passive; hot-spare, cold-spare; etc. 

For the PAM case study used in this dissertation, several different types of 

variation points were identified for the various roles of the spacecraft (i.e., agent). Note 

that for the PAM case study, we define an agent at the spacecraft-level. This follows 

other work on PAM by Peña, Hinchey, Ruiz-Cortés and Trinidad in [63] [64]. This 

additionally follows our previous work in applying Gaia-PL to the TechSAT21 case 

study in [19] [21] and other work by Das, Krikorian and Truszkowski in [16] and 

Schetter, Campbell and Surka in [73].  

In the PAM case study, one of the important variation points we identified for the 

roles of an agent as based on whether the spacecraft was to be a leader, messenger or 

worker spacecraft for the PAM swarm. For some roles that we identified in the PAM case 

study, further described in Section 4.2, functionality will slightly differ depending on 

what kind of spacecraft it is (i.e., leader, messenger or worker). However, despite the 

slight differences in functionality, a majority of the functionality will be common 

regardless of what kind of spacecraft it is. For example, each PAM spacecraft will have a 

Self-Optimizer role that is tasked with improving its ability to identify, explore and 

communicate data of an asteroid. While some functionality of this role will be common 

to all types of PAM spacecraft (e.g., the ability check the spacecraft’s current power 

consumption, check the status of the solar sails, calculate the spacecraft’s position and 

current velocity, etc.), other functionality of the Self-Optimizer role will be tailored to the 

type of spacecraft. For example, a leader spacecraft will additionally require functionality 



 53  

 

continuously optimize its ability to decide what kinds of asteroid to investigate past on 

recent historical data. Further, a worker spacecraft will additionally require functionality 

to be able to optimize the use of its onboard, specialized scientific instrument via 

repositioning itself, altering its scientific goal, etc. Finally, a messenger spacecraft will 

additionally require functionality in the Self-Optimizer role to be able to optimize its 

facilitation of the swarm’s communication network by deciding what messages should be 

sent to other spacecraft, repositioning itself to best communicate with other spacecraft, 

etc. In this case, all PAM spacecraft will share the common functionalities for the Self-

Optimizer role and will then be further specialized with its appropriate, extended Self-

Optimizer role variation point depending on what type of spacecraft it is. Note that 

requirement specifications for the Self-Optimizer role, and all other roles of the PAM case 

study, can be found in the Gaia-PL Role Schemas listed in Appendix D.  

Besides defining the variation points of a role for a PAM spacecraft based on the 

type of spacecraft that it is (i.e., leader, messenger or worker), we found that other 

variation points could be defined for other roles. For example, a leader spacecraft of the 

PAM swarm will have a role called LeaderPlanner that is tasked with managing, 

planning and coordinating the spacecraft of a PAM subswarm so that the subswarm can 

effectively pursue and satisfy system-wide and individual scientific goals. For this role, 

we identified the variation points as follows: 

• Passive: Acts as a backup to verify/double-check the commands and 

calculations of a spacecraft with a LeaderPlanner role acting with 

the “active” variation point; does not actually command spacecraft, 

only calculates, verifies the actions to be performed  

• Active:   Able to command the spacecraft of a PAM swarm regarding its plan 

to coordinate that spacecraft regarding their pursuit of scientific 
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goals; request from “passive” LeaderPlanners 

verification/agreement on its calculated strategy 

In this role, a Leader spacecraft’s LeaderPlanner role will be configured as either passive 

only or both passive and active. Again, a LeaderPlanner role configured with both the 

passive and active variation points may only assume one of the variation points at a time. 

This may be useful in the event that a Leader spacecraft acting as a backup (i.e., the 

spacecraft’s LeaderPlanner role acting at the “passive” variation point although it is also 

capable of the “active” variation point) needs to assume an “active” LeaderPlanner role 

if another Leader has failed.   

 However, not every role that can be defined for an agent will necessarily have 

variation points. For those roles that have no variations amongst the agents of a MAS, no 

variation points should be defined. This implies that, for any agent with a role that has no 

defined variation points, the functionality will be identical. To accommodate this, Gaia-

PL does not require defined variation points for every role and, rather, follows the Gaia 

approach for those roles without identified variation points.   

 In the PAM case study, for example, one such role was the Navigator role.  This 

role is tasked with providing the PAM spacecraft with the functionality to maneuver itself 

in space using its solar sail. This functionality is required in all PAM spacecraft 

identically regardless of the type of spacecraft (i.e., leader, messenger or worker) or any 

other possible variations.   

 4.1.2.2  Binding Time in Variation Points 

 For every variation point identified, a binding time is associated to it which 

defines the time at which the variation point could be assumed by a role. Potential 

binding times include design-time, specification-time, configuration-time and run-time.  
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 In the case of our PAM case study, most of the binding times were at design-time. 

For example, the Self-Optimizer role’s variation points of Leader, Messenger or Worker 

must be decided for a specific PAM spacecraft while it is being designed. Thus, designers 

would have to integrate the functionality associated with the chosen variation point with 

the common functionality to the Self-Optimizer role found in all spacecraft.   

For the LeaderPlanner role, however, the binding time is not straight forward. 

The decision for whether a spacecraft with the LeaderPlanner role should have only the 

“passive” variation point or both the “passive” and “active” variation point must be done 

at design time. Yet, for those LeaderPlanner roles that have both the “passive” and 

“active” variation points, the ability to switch from “passive” to “active” or vice versa, 

based on its own decision or on a command received, is done at runtime. Thus, the 

decision for the possible configurations of this variation point is decided upon at design-

time, the ability for the spacecraft to alter its configuration for this variation point is at 

runtime.  

In the application of the Gaia-PL methodology to the PAM case study, we found 

that the binding time of a role’s variation point often followed that of the LeaderPlanner 

example described above. This is likely a core characteristic of many MAS because of 

their need to be autonomous and adapt to the changing situation and environment. For 

example, the need for the LeaderPlanner role to be either “passive” or “active” is 

primarily due to the need for the PAM swarm to be highly redundant and able to 

reconfigure itself in the event of failure.  

Identifying the variation points to which a role may dynamically switch, such as 

shown in the LeaderPlanner role, allows us to classify at which variation points the 

protocols, activities, permissions and/or responsibilities are introduced to the role. 

Partitioning the requirements specifications (i.e., the protocols, activities, permissions and 

responsibilities) of an agent in this manner will allow us to reuse the requirement 
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specifications for future systems. Thus, future agents within a domain such as Earth-

orbiting microsatellites can more readily utilize assets that have been specified in such a 

way. These future systems employ roles comprising some of the variation points 

previously defined as well as new capabilities not found in any of the previous systems.  

 4.1.2.3  Gaia and Variation Points 

In the beginning of this section, Section 4.1.2, it was stated that the Gaia 

methodology [92], [94] has the following limitations: 

1. It is unclear how to document an agent’s requirements specifications during 

the analysis and design phases when an agent must be updated to include new 

functionality particularly when the role of an agent can change dynamically 

2. The roles of an agent are coarsely defined allowing little flexibility for similar, 

yet slightly different behavior in the same role in different agents because the 

design of an agent’s roles in Gaia is flat rather than hierarchical [42] 

3. There is no clear mechanism by which the requirements specification 

templates developed during the analysis phase can be reused to be 

incorporated into the current system or to build a new, similar but slightly 

different agent 

The ability to define and document variation points in Gaia-PL specifically addresses 

these limitations in Gaia to facilitate the reuse of the requirement specifications for 

several, similar but slightly different agents.  

 For agents that have roles that may dynamically change its functionality during its 

lifetime, the ability to partition a role’s varying functionality via its variation points 

allows the designer to specify the possible configurations of the role (i.e., the selection of 

the variation points that the role may assume during its lifetime) at an early binding time 

(i.e., design-time, specification-time). Then, that particular role can assume (or be 
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commanded by another spacecraft to assume) a particular variation point of the role 

during runtime. The LeaderPlanner role of the PAM case study described in Section 

4.1.2.2 illustrated this situation. Thus, the variation points provide a mechanism to 

capture the functionality of a role that may dynamically change during execution. The 

mechanism to document the roles, variation points and binding times for the agents of a 

MAS-PL is detailed and illustrated in Section 4.2.  

 Partitioning the role of an agent into its common parts and its variable parts (i.e., 

the variation points), Gaia-PL provides software engineers with the ability to define a role 

hierarchically. Using this approach, the common functionality of a role is captured and 

the variable functionality is captured as the variation points at a level below. The use of a 

Feature Model aids in structuring the roles and variation points of an agent hierarchically. 

This is further detailed and illustrated in Section 4.2.1. 

 Structuring the roles and variation points of an agent in a hierarchical manner and 

partitioning the common and variable functionality of a role allows for flexibility and 

reuse of the requirements specifications of the roles and variation points. These 

requirements specifications can be reused for similar, yet slightly different agents during 

the initial development of a MAS as well as during evolution. This is further detailed and 

illustrated in Section 4.3 and contrasted with the Gaia methodology in Section 4.4.    

4.2  Documenting the Requirements Specifications of  a MAS-PL 

in the Gaia-PL Methodology 

This section describes the Requirements Documentation, Analysis and Design, 

and the Detailed Design phases of the Gaia-PL methodology. The process and software 

engineering artifacts generated from these phases are illustrated in Figure 4. This figure 

illustrates the Gaia-PL methodology in context to the phases of Gaia (i.e., Requirements 

Documentation, Analysis and Design, and the Detailed Design) and Weiss and Lai’s 
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Figure 4  An Overview of the Software Engineering Artifacts of Gaia-PL  
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 Family-Oriented Abstraction, Specification and Translation (FAST) [88] product-line 

engineering approach. For each phase, we describe the documentation process and how 

each document will later contribute to the ease of reuse, discussed in Section 4.3.  

 Although Gaia-PL is detailed as its own methodology in this chapter to develop 

and document the requirements and requirements specifications of a multi-agent system 

product line (MAS-PL), Gaia-PL can be applied as an extension to the Gaia methodology 

[92], [94], shown in Figure 1. This would entail using the Gaia-PL schemas and 

procedure discussed in this chapter for the requirements specifications and other Gaia 

methodology’s models and schemas for other parts of an agent-oriented system.  

4.2.1  Requirements Documentation Phase 

The Requirements Documentation phase of the Gaia-PL methodology involves 

identifying and documenting the multi-agent system product line’s (MAS-PL) 

commonality and variability requirements. This section describes the Commonality and 

Variability Analysis (CVA), the Parameters of Variation Table(s), the Feature Model and 

the use of DECIMAL [23], [58], [59] to facilitate the requirements documentation 

process.      

4.2.1.1  The Commonality and Variability Analysis  

Documenting the requirements of a multi-agent system product line (MAS-PL) in 

Gaia-PL follows the same principles of software product-line engineering. In the 

development of a software product line, requirements are collected and then documented 

in a Commonality and Variability Analysis (CVA) as well as a Parameters of Variation 

table for the variability requirements [1], [70], [88]. The requirements engineering 

process of [1], [70], [88] to gather, identify and document the product-line requirements 

in a CVA for a product line can be used in Gaia-PL and is thus not covered here.  
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Alternative approaches to the CVA in documenting product-line requirements and 

performing variability analysis include the goal-oriented [5] or the feature-oriented [43] 

approach. Alternatively, the use of domain or application expertise may also suffice in 

this process. This work exclusively used the CVA as the medium for variability 

documentation and analysis because of our use of the FAST methodology (in which a 

CVA is exclusively utilized to document and analyze variabilities). In terms of reuse, 

CVA is superior to either goal-oriented or feature-oriented approaches since it clearly 

defines those requirements that will be found in every member of a product line (i.e., 

commonalities) and those requirements that will only be found in a subset of the 

members of a product line (i.e., variabilities). 

In the PAM case study, we identified a total of 35 high-level commonality 

requirements and 62 variability requirements to document in the CVA. Excerpts from the 

CVA for the PAM MAS-PL are shown in Figure 5 (Commonalities) and Figure 6 

(Variabilities). The entire CVA for the PAM case study can be found in Appendix A.  

From the CVA’s variabilities, the Parameters of Variation table can be derived to 

better define the variabilities listed in the CVA [88]. The Parameters of Variation tables 

listed the parameters name, the associated variability requirement (for traceability), a 

description of the parameter, the domain of the possible values of the parameter, the 

binding time at which the configuration of the parameter must be selected.  

In the PAM case study, 48 parameters of variation were found from the 62 

variability requirements. Note that several product-line variabilities can constitute a 

single parameter of variation. For example, for the variability “A spacecraft performing 

subswarm allocation and planning may vary in its role in allocation and planning 

activities”, the domain of parameter values for this variability is [passive, active]. Note 

that variability corresponds to the LeaderPlanner role discussed in Section 4.1.2.1. 
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COMMONALITIES 
 
General Commonality Requirements 
C_G1.  The PAM swarm shall have no single point of failure [15]. 
C_G2.  The PAM swarm shall be robust to minor faults and catastrophic failures [14]. 
 
Self-Optimization Commonality Requirements 
C_SO1.  Every spacecraft shall be able to adjust to the surrounding environment [77], [84]. 
C_SO2.  Every spacecraft shall be able to optimize itself through calibrating its instruments [77], [83], [84]. 
C_SO3.  Every spacecraft shall be able to optimize its power consumption [15], [65], [66], [84]. 
C_SO4.  Every spacecraft shall be able to monitor and adjust its relative positions to optimize its scientific exploration [77], [84]. 
 
Self-Healing Commonality Requirements 
C_SH1.  Every spacecraft shall be able to recognize that its memory is corrupted/damaged [64], [65], [66], [84]. 
C_SH2.  Every spacecraft shall be able to request an uncorrupted memory from another spacecraft in the event that it recognizes that its 

memory is corrupted [71], [84]. 
C_SH3.  Every spacecraft shall be able to send its uncorrupted memory to another spacecraft upon request [71], [84]. 
 
Self-Protection Commonality Requirements 
C_SP2.  Every spacecraft shall be able to communicate with nearby spacecraft in order to prevent collisions [64], [66], [71], [77], [84]. 
C_SP3.  Every spacecraft shall be responsible for preventing collisions with asteroids [64], [65], [66], [71], [77], [84]. 
C_SP4.  Every spacecraft shall be able to store a 3D map of nearby asteroids in order to prevent collisions [71], [77], [84]. 
C_SP5.  Every spacecraft shall be able to take acceptable risks while attempting to satisfy its scientific goals [71], [77], [84]. 
C_SP6.  Every spacecraft shall be able to deploy its solar sail to use as a shield for protection against solar storms [66], [77], [83], [84]. 
C_SP7.  Every spacecraft shall be able to switch off its subsystems when needed to protect against solar radiation [66], [77], [83], [84]. 
C_SP8.  Every spacecraft shall be able to receive messages from other spacecraft giving advanced warning of an impending solar 

storm [65], [66], [77], [84]. 
 
Miscellaneous Commonality Requirements 
C_M1.  Every spacecraft shall have the ability to control its own guidance navigation and control functions [14], [15], [83]. 
C_M3.  Every spacecraft shall be able to use their solar shields as its means of flight [14], [15], [65], [66]. 

Figure 5  Excerpt of the Commonalities from the Commonality and Variability Analysis for the PAM MAS-P L  
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VARIABILITIES  
 
Self-Optimization Variability Requirements 
V_SO1.  A spacecraft’s ability to optimize itself via improving their ability to identify asteroids of interest may vary [15], [71], [77], 

[83] [84]. 
V_SO2.  A spacecraft’s ability to share its optimization information regarding the identification of asteroids of interest with leader 

spacecraft may vary [77], [84]. 
V_SO3.  A spacecraft’s ability to optimize itself through positioning itself appropriately to best facilitate communications with 

messenger spacecraft may vary [15], [77], [84]. 
V_SO4.  A spacecraft’s ability to share its optimization information regarding positioning itself appropriately to best facilitate 

communications with messenger spacecraft may vary [15], [77].  
V_SO5.  A spacecraft’s ability to optimize itself via learning through their past experiences to better investigate an asteroid may vary 

[15], [77], [84].  
V_SO6.  A spacecraft’s ability to share its optimization information regarding how to better investigate an asteroid with worker 

spacecraft may vary [15], [77], [84]. 
 
Self-Protection Variability Requirements 
V_SP1.  A spacecraft’s ability to be tasked with constantly observing the solar disc to detect signs of an impending solar storm may 

vary [65], [66], [77], [84]. 
V_SP2.  A spacecraft’s ability to receive warnings from mission control of an impending solar storm may vary [65], [66], [77], [84].  
 
Leader Spacecraft Variability Requirements 
V_L1.  A spacecraft’s ability to be in charge of performing subswarm allocation and planning may vary [15], [71], [83], [84].  
V_L2.  A spacecraft performing subswarm allocation and planning may vary in its role in allocation and planning activities [15]. 
V_L3.  A spacecraft’s ability to be able to assign teams of worker and messenger spacecraft may vary [83].  
V_L4.  A spacecraft’s ability to direct/coordinate worker spacecraft to investigate a specific asteroid may vary [77], [83], [84]. 
V_L6.  A spacecraft’s ability to be responsible for determining the types of asteroids to investigate may vary  [71], [77], [83], [84]. 
 
Messenger Spacecraft Variability Requirements 
V_M1.  A spacecraft’s ability to relay/coordinate messages between worker spacecraft and leader spacecraft may vary [15], [71], [77]. 
V_M2.  A spacecraft’s ability to relay/coordinate messages between leader spacecraft and mission control may vary [15] [71], [77]. 

Figure 6  Excerpt of the Variabilities from the Commonality and Variability Analysis for the PAM MAS-P L  
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Table 2  Excerpt of the Parameters of Variation Table for the PAM MAS-PL 
 

Parameter Meaning Domain Binding Time Default 
GENERAL VARIABILITY REQUIREMENTS 

P1: vSpacecraftRole 
V_G1 

The role that a spacecraft is to initially assume. 
[Leader, Messenger, 

Worker] 
Design Worker 

SELF-OPTIMIZATION VARIABILITY REQUIREMENTS 

P4: vIdAsteroidsOptimization 
V_SO1, V_SO2 

The ability of a leader spacecraft to optimize its 
ability to identify asteroids of interest and share 
this information with other leader spacecraft. 

[True, False] Specification False 

P5: vCommOptimization 
V_SO3, V_SO4 

The ability of a spacecraft to optimize its 
positioning for communications and sharing this 
optimization with other spacecraft. 

[True, False] Specification True 

P6: vScienceOptimization 
V_SO5, V_SO6 

The ability to optimize its scientific exploration of 
an asteroid and sharing this optimization with 
other spacecraft. 

[True, False] Specification False 

SELF-PROTECTION VARIABILITY REQUIREMENTS 

P7: vSolarDiscWatch 
V_SP1 

The ability of a spacecraft to constantly watch the 
solar disc for the signs of an impending solar 
storm. 

[Passive, Warm-
Spare, Active] 

Design Passive 

P8: vMissConStormWarn 
V_SP2 

The ability of a spacecraft to receive messages 
from mission control warning of an impending 
solar storm. 

[True, False] Design False 

MESSENGER SPACECRAFT VARIABILITY REQUIREMENTS 

P20: vRelayMessagesSwarm 
V_M1, V_M4 

The ability to relay and coordinate messages 
between spacecraft. 

[True, False] Specification False 

P21: vRelayMessagesMisCon 
V_M2 

The ability to relay and coordinate messages to 
mission control. 

[True, False] Specification False 
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Similarly, for the variability “A spacecraft’s ability to be tasked with constantly 

observing the solar disc to detect signs of an impending solar storm may vary” the 

domain of parameter values for this variability is [passive, warm-spare, active]. An 

excerpt of the Parameters of Variation table, including these two examples, is shown in 

Table 2. The entire Parameters of Variation Tables are given in Appendix B. Note that 

the CVA shown in Figure 5 and Figure 6 and the Parameters of Variation Table shown in 

Table 2 will also be used in Chapter 5 to illustrate the safety analysis of a MAS-PL. 

4.2.1.2  Using DECIMAL to Document the Requirements  

To document the Commonality and Variability Analysis (CVA) of the, we utilize 

the DECIMAL tool [23], [58], [59], shown in Figure 7. Within DECIMAL, the 

commonalities and the variabilities, and their associated parameters of variation can be 

documented. For example, the variability V_SP1 (from the CVA in Figure 6): “A 

spacecraft’s ability to be tasked with constantly observing the solar disc to detect signs of 

an impending solar storm may vary” with parameter of variation of [passive, warm-spare, 

active] (from the Parameters of Variation Table in Table 2) is shown in Figure 8.  

Although DECIMAL only provides a digital medium in which to document the 

commonality and variability requirements of a multi-agent system product line (MAS-

PL) in Gaia-PL, we use it for two reasons. First, DECIMAL provides a convenient 

mechanism to document and store the requirements of a MAS-PL during Gaia-PL’s 

Requirements Documentation Phase as well as providing an automated check to verify 

that an agent’s variable requirements abide by the MAS-PL’s dependencies during Gaia-

PL’s Detailed Design Phase, discussed in Section 4.2.3. Second, for safety-critical MAS-

PL, DECIMAL is used in conjunction with the safety analysis techniques and tools we 

describe in Chapter 5.  
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Figure 7  Documenting the Commonality and Variability Requirements in 

DECIMAL  

 

Figure 8  Documenting the A Variability Requirement and its Parameters of 

Variation Using DECIMAL  
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4.2.1.3  The Feature Model  

A developed and documented Commonality and Variability Analysis (CVA) 

during the requirements collection phase may give developers an insight into what roles 

might be appropriate for the multi-agent system to be developed. In terms of multi-agent 

system (MAS) development, a CVA may assist in the identification of possible roles 

since it partitions those requirements that will be found in every future instantiation of a 

particular role from those requirements that will only be found in some instantiations of a 

particular role. 

The actual identification of appropriate roles for a MAS is not discussed here. 

Gaia proposes to identify roles through an inspection of the problem (via the division of a 

system into organizations and sub-organizations) [92], [94]. Rather, for Gaia-PL we only 

claim that documenting a MAS requirements in a CVA may aid in confirming the role 

definition and help in the preliminary role model(s). 

In the collection of the requirements for the Prospecting Asteroid Mission (PAM) 

case study used in this dissertation, we found that it was straightforward to group both the 

commonality and variability requirements into logical, functional groups. As detailed in 

Chapter 3, the PAM mission relies on four autonomous characteristics to operate: self-

coordination, self-healing, self-optimization and self-protection. Thus, it was natural to 

identify and group requirements in such categories for both commonality requirements 

and variability requirements. In addition, it was useful to group variable requirements 

into groups depending on what type of spacecraft the requirements were targeted for (i.e., 

a Leader, Messenger or Worker spacecraft of the PAM swarm). Such groupings of the 

requirements in the CVA for a MAS may also provide guidance to the identification of 

the roles for the agents of a MAS, as was the case in our PAM case study.        

The variabilities of the CVA will help define the variation points of the product-

line, multi-agent system.  Partitioning the variabilities into similar groups provides the 
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initial requirements for the variation points of a system. For example, from Figure 6 we 

can derive the variation points for the Self-Optimizer role, discussed in Section 4.1.2.1. 

The variability V_SO2 implies the “leader” variation point, variabilities V_SO3 and 

V_SO4 imply the “messenger” variation point and variability V_SO6 implies the 

“worker” variation point all for the Self-Optimizer role. Similarly, from Figure 5 we can 

derive the common functionality for the Self-Optimizer role from commonalities C_SO1, 

C_SO2, C_SO3 and C_SO4.    

In addition to a CVA, this work utilized a Feature Model, shown in Figure 9as 

well as in Appendix C, to help identify and organize the roles and variation points of the 

PAM case study. Using the CVA, requirements can be further refined and detailed 

requirements can be derived during the analysis and design phases so that a Feature 

Model and more detailed requirements specifications can be created and documented 

[43], [67], [80]. Pohl, Böckle and van der Linden have provided a process to derive a 

Feature Model from the requirements of a CVA [67]. Thus, we do not cover this process 

here.  

However, from the Feature Model, shown in Figure 9 and in Appendix C, the 

roles and variation points are readily illustrated. For example, the Self-Optimizer role, 

discussed in Section 4.1.2.1, is shown as a mandatory feature of a PAM spacecraft in 

which only one of the subfeatures (i.e., variation points) “optimization for workers”, 

“optimization for messengers” or “optimization for leader” may be selected. For the 

LeaderPlanner role, also discussed in Section 4.1.2.1, the Feature Model illustrates this 

as the Leader and Planning subfeatures a subfeature of the Swarm Role feature. As 

indicated in the Feature Model, of the variation points for this role, “passive” and 

“active” at least one must be selected. This follows exactly how the LeaderPlanner role 

was described in Section 4.1.2.1.  
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Figure 9  Feature Model Derived from the Commonality and Variability Analysis for the PAM MAS-PL 
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4.2.2  Analysis and Design Phase 

The Analysis and Design Phase of Gaia-PL takes the requirements documented in 

the Requirements Documentation Phase and develops and documents the multi-agent 

system product line’s (MAS-PL) requirements specifications. Requirements 

specifications are documented in three schemas: The Role Schema, The Role Variation 

Points Schema and The Variation Point Schema. These schemas serve as a requirements 

specification pattern in which requirements can be defined and documented.  

This section describes the development and documentation of the roles and 

variation points for the Prospecting Asteroid Mission (PAM) from the requirements 

discussed in the previous section and documented in the Commonality and Variability 

Analysis in Appendix A. Note that the complete set of schemas documenting PAM 

mission’s requirements specifications can be found in Appendix D. In this section, we 

only show a small set of the schemas to illustrate Gaia-PL.  

4.2.2.1  The Role Schema  

For those roles that have been identified having no variation points (i.e., the role 

will have identical functionality in all agents that have the role), Gaia-PL uses a slightly 

modified version of the Role Schema from Gaia [92], [94]. For example, the Navigator 

role of the PAM mission, discussed in Section 4.1.2.1, was identified to have no variation 

points and thus can be documented in Gaia’s Role Schema, shown in Figure 10.      

The process Role Schema used to document the requirements specifications in 

Gaia-PL for those roles that have no variation points is identical to Gaia [92], [94] and is 

therefore not discussed here. However, Gaia-PL does include additional information into 

the requirements specifications schemas. First, we introduce identification numbers to all 

schemas for traceability, organization and management purposes. Second, a row is added 

to indicate specifically which variation point the requirements specification is describing 
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(not applicable for a Role Schema, however, since there are no associated variation 

points). An “Inherits” row provides which schemas must be included with the schema for 

a particular variation point. This will be described further in the following section. 

Finally, rows to indicate the Parameters of Variation and Requirements that are related to 

the schema are provided also for traceability, organization and management purposes. 

 
Role Schema:  Navigator                                                              Schema ID: N 
      Variation Point: N/A 
      Inherits: None 
 Parameters of Variation: N/A  
 Requirements: C_M1, C_M2, C_M3, C_M4, C_M5, C_M6, C_M7, C_M8   
      Description:  

Provides the functionality to a spacecraft to maneuver itself using its solar sail.  
   Activities and Protocols:   

AdjustSolarSail, CalculateThrust, CheckOrbit, CheckSolarSailStatus, 
CheckSystemStatus, ExtendSolarSail, MoveToPosition, RetractSolarSail 

   Permissions:   
          Reads - 
  currentAttitude    // attitude of the spacecraft 
  currentOrbit    // current orbit of the spacecraft 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  systemStatus     // status of the spacecraft 
  solarSailStatus     // status of the solar sail 
          Changes -  
  currentAttitude    // attitude of the spacecraft 
  position               // current spacecraft position  
               velocityIncrement    // current spacecraft velocity increment  
          Generates -  
  systemStatus     // status of the spacecraft 
  solarSailStatus   // status of the solar sail 
  thrustNeeded   // calculated thrust needed to move 
Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  maneuver the spacecraft to the desired location.  
          Safety -  

None. 

Figure 10  The Requirements Specifications for the Navigator Role 

Documented in a Role Schema 
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Role Variation Points Schema:  SelfOptimizer Schemata ID: SO 

  Parameters of Variation:  P4, P5, P6     
  Description:     

  

At the swarm-level, the collection of these roles within all the spacecraft aids in 
autonomously and continuously improving the spacecraft’s ability to identify, explore 
and communicate the information discovered while investigating asteroids. At the 
spacecraft-level, these roles aid in the spacecraft to continuously learn and improve 
its specialized abilities and communicate its findings with other similar spacecraft.  

  Variation Points: 
  Core: 
   

   

The core elements of a spacecraft to be able to optimize itself in 
regard to general spacecraft functions so that it can continuously 
learn from the environment and perform better within the swarm. 
[SO-Core] 

  Leader: 
   

   

The elements needed in a leader spacecraft to be able to optimize 
itself in regards to its ability to best manage, oversee and direct the 
swarm to optimize the swarm’s ability to achieve scientific goals. 
[SO-Leader] 

  Messenger: 
   

  

The elements needed in a messenger spacecraft to be able to 
optimize itself in regards to its ability to best perform the 
communication necessary within the swarm so that commands and 
information can best be transmitted. [SO-Messenger] 

  Worker: 
   
   

The elements needed in a worker spacecraft to be able to optimize 
itself in regards to its ability to best optimize its ability to achieve its 
own scientific goals. [SO-Worker] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design 
time. However, a spacecraft that may switch it’s operating variation point (i.e., 
P2=True or P3=True) may have this variation point alter at runtime.   

Figure 11  The Role Variation Points Schema for the Self-Optimizer Role 
 

4.2.2.2  The Role Variation Points Schema 

The Role Variation Schema, shown in Figure 11 for the Self-Optimizer role 

discussed in Section 4.1.2.1, defines a role and the variation points that the role can 

assume during its lifetime. The Role Variation Point Schema, introduced in Gaia-PL, 

describes the role, the role’s variation points and the binding time for the variation points. 

The variation points are described for the role and provide the identification tags (e.g., 

SO-Core, SO-Leader, etc.) for the Variation Point Schema, discussed in the next section, 

to aid in traceability, organization and management of the requirements, parameters of 

variation, roles and variation points of the multi-agent system product line (MAS-PL). 
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For most roles, one of the variation points listed in the Role Variation Point 

Schema will contain the common functionality of the role, denoted in the Role Variation 

Point Schema by being underlined. Thus, this variation point will be included for all 

agents containing the role in addition to the other selected variation point(s). For 

example, the “Core” variation point for the Self-Optimizer role shown in Figure 11 

contains the common functionality (i.e., commonality requirements C_SO1, C_SO2, 

C_SO3 and C_SO4 from the Commonality and Variability Analysis (CVA)) for the role.  

The introduction of the Role Variation Point Schema in Gaia-PL provides 

software engineers with the ability to define a role in a hierarchical manner. The common 

functionality defined by a variation point (e.g., the “Core” variation point for the Self-

Optimizer role shown in Figure 11) is further refined by the variable variation points. 

Thus, the Role Variation Point Schema achieves the hierarchical nature of the 

functionality in a role as modeled by the Feature Model, see Figure 9.  

4.2.2.3  The Variation Point Schema 

The Variation Point Schema, shown in Figure 12, Figure 13, Figure 14 and Figure 

15 for the variation points of the Self-Optimizer role, captures the requirements of a role 

variation point's capabilities. The Variation Point Schema and the Role Schema, 

described in Section 4.2.2.1 are identical; however, the Variation Point Schema will 

always have a Role Variation Points Schema associated with it (denoted in the Schema-

ID using the convention of Role Variation Points Schema ID – Variation Point ID).  

Some variation points will inherit other variation points, as denoted in the Inherits row. 

For example, the Variation Point Schema in Figure 13 denotes that it inherits the SO-

Core variation point, Figure 12, since the SO-Core Variation Point Schema provides the 

common functionality of the Self-Optimizer role. This additionally illustrates the 

hierarchical nature possible in the definition of a role in the Gaia-Pl methodology.    
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Role Schema:  SelfOptimizer                                                   Schema ID: SO-Core 
      Variation Point: Core 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SO1, C_SO2, C_SO3, C_SO4, C_M1, C_M2, C_M4, C_M5  
      Description:  

Provides the spacecraft with the functionality to optimize itself in regards to general 
spacecraft functions so that it can continuously learn from the environment and 
perform better within the swarm.    

 Activities and Protocols:   
AdjustToEnviron, CalcNewPosition, CalibrateInstr, CheckSystemStatus, 
CheckEnvironStatus, CheckPowerConsump, CheckSolarCellStatus, 
EvaluatePositionForGoal, MoveNewPos 

 Permissions:   
          Reads - 
  currentAttitude    // current attitude of the spacecraft 
  currentGoal    // current goal of the spacecraft 
  currentPosition    // current position of the spacecraft 
  currentVelocityIncr   // current velocity increment of the  
      // spacecraft 
  environmentStatus    // current status of the detectable parts of 
      // the surrounding environment 
  powerConsumpLevel // current level of the spacecraft’s power  
      // consumption 
  riskForSystemFactor                // current risk to spacecraft to see if recent 
      // solar storm 
  systemStatus    // current status of the spacecraft  
          Changes -  
               environmentState                // current state that the spacecraft believes 
   // its surrounding environment is in 
  currentPosition    // current position of the spacecraft 
  currentAttitude    // current attitude of the spacecraft 
  currentVelocityIncr  // current velocity increment of the  
    // spacecraft  
  instrCalibValue // vector of the current calibration values  
   // for the onboard instruments   
  instrVector // vector of all the spacecraft’s onboard  
    // instruments               
          Generates -  
       newEnvironStatus  // new status of the detectable parts of the 
    // surrounding environment 
  newVelocityIncr  // calculated new velocity increment for the 
    // spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the spacecraft’s ability to perform its given tasks.  
          Safety -  
  None. 

Figure 12  The Variation Points Schema for the Core Variation Point of the Self-

Optimizer Role 
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Role Schema:  SelfOptimizer                                                Schema ID: SO-Leader 
      Variation Point: Leader 
      Inherits: SO-Core 
      Requirements: V_SO1, V_SO2, C_SC1, C_SC2, V_L6, V_L7, V_L8, V_L11 
      Parameters of Variation: P4=True 
      Description:  

Provides the spacecraft with the elements needed in a leader spacecraft to be able 
to optimize itself in regard to its ability to manage, oversee and direct the swarm to 
optimize the swarm’s ability to achieve scientific goals. Specifically, the ability for a 
leader spacecraft to optimize its ability to identify asteroids of interest and share this 
information.  

   Activities and Protocols:   
DeviseNewAsteroidIdRules, EvaluateCurrentAsteroidIdRules, ReviewAsteroidIdHis, 
AcceptOptimizationInfo, AcceptOptimizationReq, RequestOptimizationInfo, 
ShareOptimizationInfo  

   Permissions:   
          Reads - 
  asteroidIdRules     // current vector of rules that is used to  
       // identify asteroids of interest given  
       // preliminary data points on the asteroid 
  asteroidPrelimData    // preliminary data points of an asteroid 
  asteroidId     // identification number of an asteroid 
  asteroidIdHistory    // the history log kept of the spacecraft’s  
       // identification of asteroids of interest 
  optimizationInfoRec   // message to received after requesting 
       // for another spacecraft’s current  
       // optimization information 
  leaderVector     // vector of nearby leader spacecraft  
       // to aid in sharing optimization information 
          Changes -  
  asteroidIdRules     // vector of rules that is used to identify  
       // asteroids of interest given preliminary 
       // data points on the asteroid 
          Generates -  
  asteroidIdRulesValue  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to identify  
     // asteroids of interest 
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to identify asteroids of interests to investigate for all  
  leader spacecraft in the swarm.  
          Safety -  
  None. 

 Figure 13  The Variation Points Schema for the Leader Variation Point of 

the Self-Optimizer Role 
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Role Schema:  SelfOptimizer                                         Schema ID: SO-Messenger 
      Variation Point: Messenger 
      Inherits: SO-Core 
      Requirements: V_SO3, V_SO4, C_SC1, C_SC2 
      Parameters of Variation: P5=True 
      Description:  

Provides the spacecraft with the elements needed in a messenger spacecraft to be 
able to optimize itself in regards to its ability to perform the communication 
necessary within the swarm so that commands and information can best be 
transmitted. Specifically, the ability of the spacecraft to optimize its positioning for 
communications and sharing this information with others. 

   Activities and Protocols:   
DeviseNewCommStrategy, EvaluateCurrentCommStrategy, EvaluateCurPosition, 
ReviewCommHis, AcceptOptimizationInfo, AcceptOptimizationReq,  
RequestOptimizationInfo, ShareOptimizationInfo 

   Permissions:   
          Reads - 
           communicationStrategy  // current strategy for spacecraft’s  
       // communication 
  communicationHist    // current history log of the spacecraft’s  
       // past communication sessions 
  optimizationInfoRec   // message to received after requesting 
       // for another spacecraft’s current  
       // optimization information 
  messengerVector    // vector of nearby messenger spacecraft 
       // to aid in sharing optimization information 
          Changes -  
   communicationStrategy  // current strategy for spacecraft’s  
       // communication 
          Generates -  
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
  communicationStratVal  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to   
     // communicate with the subswarm  
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to communicate for all messenger spacecraft in the  
  swarm. 
          Safety -  
  None. 

Figure 14  The Variation Points Schema for the Messenger Variation Point of the 

Self-Optimizer Role 
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Role Schema:  SelfOptimizer                                               Schema ID: SO-Worker 
      Variation Point: Worker 
      Inherits: SO-Core 
      Requirements: V_SO5, V_SO6, C_SC1, C_SC2 
      Parameters of Variation: P6=True 
      Description:  

The elements needed in a worker spacecraft to be able to optimize itself in regards 
to its ability to best optimize its ability to achieve its own scientific goals.  

   Activities and Protocols:   
DeviseNewSciExplorStrategy, EvaluateCurrentSciExplorStrategy, 
EvaluateCurPosition, ReviewSciExplorHis, AcceptOptimizationInfo, 
AcceptOptimizationReq,  RequestOptimizationInfo, ShareOptimizationInfo 

   Permissions:   
          Reads - 
            optimizationInfoRec  // message to received after requesting 
       // for another spacecraft’s current  
       // optimization information  
  sciExplorationStrategy  // current strategy for spacecraft’s  
       // science exploration using its specialized 
       // onboard equipment 
  sciExplorationRules   // current rules for the spacecraft to abide 
       // by in its scientific exploration 
  sciExplorationHist    // current history log of the spacecraft’s  
       // past science exploration of asteroids 
  workerType     // the type of worker spacecraft (i.e., based 
       // on its specialized onboard equipment 
  workerVector     // vector of nearby worker spacecraft with 
       // the same onboard equipment 
  scienceGoal     // current scientific goal pursued by the  
       // spacecraft 
          Changes -  
   sciExplorationStrategy  // strategy for spacecraft’s science  
       // exploration using its specialized onboard 
       // equipment 
          Generates -  
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
  sciExplorationStratVal  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to   
     // achieve its scientific goals 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to achieve scientific goals for all similar worker spacecraft  
  in the swarm. 
          Safety -  
  None. 

Figure 15  The Variation Points Schema for the Worker Variation Point of the Self-

Optimizer Role 
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4.2.2.3  Documenting the Roles and Variation Points in Gaia-PL 

During the initial development of a multi-agent system product line (MAS-PL) 

(the product-line domain engineering phase of the Family-Oriented Abstraction, 

Specification and Translation (FAST) product-line methodology [88]), the focus must be 

primarily on identifying the overall requirements specifications of the system. It is later 

(during the product-line application engineering phase of FAST) that actual members of 

the distributed system can be instantiated with some or all of the requirements established 

earlier. We consider those initial requirement specifications in the Role Variation Points 

Schema and the Variation Point Schema. Note that, the Role Schema is not discussed 

here since its documentation follows that of Gaia.  

To capture the requirements specifications of the roles and variation points of a 

MAS-PL and document them in the two schemas, we use the following procedure: 

1. Identify the roles within the system as discussed in Section 4.2.1. Each role 

will constitute a new Role Variation Points Schema to be created. If the role 

has no identified variation points (see Step 3), then simply create a new 

Role Schema and follow Steps 4a – 4c).  

2. For each role, provide the role's name, a unique identification, a listing of 

the associated parameters of variation, a brief description of the role and the 

variation points binding time in the appropriate fields of the Role Variation 

Points Schema. In Gaia-PL we follow and advocate the naming and 

numbering scheme of Schetter, Campbell and Surka from [73] as shown for 

the for the Self-Optimizer role depicted in Figure 11.   

3. For each role, identify and define the differing variation points that the role 

can adopt during all envisioned execution scenarios of the system as 

described in Section 4.2.1. For each variation point, fill in the Variation 
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Points section of the Role Variation Points Schema by including the name, 

a brief description of the variation point and a reference identification 

number to the Role Variation Point Schema that gives the detailed 

requirements of the variation point (see Step 4a).    

4. For each identified variation point (Step 3), create a new Variation Point 

Schema. For each Variation Point Schema: 

a. Document the name of the role to which the variation point 

corresponds as well as the name of the variation points in the 

appropriate sections of the Variation Point Schema. Indicate the 

variation point identification tag (corresponding to the variation point 

identification in Step 3) in the appropriate field in the Role Variation 

Points Schema. Further, provide the identification tags of the 

associated product-line requirements and parameters of variation as 

well as an identification tag to any Variation Point Schema(s) or Role 

Schema that the variation point inherits.  

b. Identify the protocols, activities, permissions and responsibilities that 

are particular to only that variation point. That is, define the protocols, 

activities, permissions and responsibilities that are not found in any of 

the variation points.   

c. Document and define the identified protocols, activities, permissions 

and responsibilities in the appropriate sections of the Role Variation 

Point. (Note, in accordance with the Gaia conventions, activities are 

distinguished from protocols by being underlined in Gaia-PL). 

These steps result in a set of Role Variation Points Schemas that have an 

associated set of Role Variation Point Schemas. Additionally, these steps conform to the 

domain engineering phase of software product-line development in that they define the 
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MAS-PL’s requirements, design, architecture and other software engineering assets that 

pertain to all of the agents, rather than to just a single type of agent [88].  

Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 illustrated the Role 

Variation Point Schema and the Variation Points Schema for the Self-Optimizer role of 

the PAM case study used in this dissertation. The entire PAM case study developed and 

documented a total of 11 Role Variation Points Schemas and 39 Variation Points 

Schemas that can be found in Appendix A. To further illustrate the Gaia-PL approach to 

designing and documenting the requirements specifications of a MAS-PL in the Role 

Variation Points Schema and the Variation Points Schema, we provide additional 

examples to illustrate some minor differences in the roles and variation points discovered 

in the PAM case study. Figure 16 shows a portion of the full Feature Model of the PAM 

case study from Figure 9 that describes the Self-Protector role. (Note that the Self-

Protector role additionally includes functionality to prevent collisions that is not 

  

 

 

    

 

 

 

 

 

 

Figure 16  A Portion of the PAM Feature Model to Illustrate Hierarchical Role 

Variation Points Schemas 
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discussed here or shown in Figure 16). Further analysis of the requirements for this role 

and feature revealed two additional subroles of the Self-Protector role were required: a 

SolarStormWarner role and a SolarStormProtector role. Additionally, the 

SolarStormWarner role had three associated variation points. 

 To document the requirements specifications for these roles while maintaining the 

structure of the Feature Model, the Role Variation Points Schema for the Self-Protector 

role was defined with variation points for the SolarStormWarner and 

SolarStormProtector roles, shown in Figure 17. Note that these are required roles (i.e., 

variation points) according to the Feature Model. The identification tag given for the 

roles, SSW and SSP respectively, identify the Role Variation Points Schema and 

Variation Point Schema for the SolarStormWarner and SolarStormProtector roles. The 

SolarStormWarner Role Variation Points Schema, shown in Figure 18, then lists the 

possible variation points (Figure 19, Figure 20 and Figure 21) for the role similar to the 

Self-Optimizer role example shown in Figure 11 and described above. The 

SolarStormProtector role (Figure 22), however, does not contain any variation points 

(i.e., the functionality listed will be identical for all agents with the SolarStormProtector 

role) and, thus, defines the role’s functionality only in a Role Schema similar to the 

Navigator role example shown in Figure 10 and described above.      

This situation encountered in the PAM case study illustrates the need for the 

ability of a software engineer to define a role’s requirements specifications hierarchically, 

a feature of Gaia-PL not possible in Gaia. Here, the ability to define the Self-Protector 

role hierarchically allows the requirements specifications to more accurately reflect the 

MAS-PL’s Feature Model and avoid potential confusion amongst the relationship(s) of 

the roles, variation points and requirements of a complex system.  
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Role Variation Points Schema:  SelfProtector Schemata ID: SP 

  Parameters of Variation:  N/A     
  Description:     

  

At the swarm-level, the collection of these roles within all the spacecraft aid in 
autonomously maintaining the system’s scientific operations while enduring solar 
storms, spacecraft collisions, etc.  

  Variation Points: 
  SolarStormWarner: 
   

   

Detects solar storms through monitoring the solar disc and 
being able to receive warning messages from mission control 
of an impending solar storm. After detecting an impending 
solar storm, it measures solar storm risk to determine the best 
course of action for the swarm.  [SSW] 

  SolarStormProtector: 
   
   

Protects the spacecraft from the solar radiation present during 
solar storms by using the solar sail as a shield, powering off 
systems and/or moving to a better position.  [SSP] 

  Binding Time:     
  The binding time to decide which variation point(s) a spacecraft has is at design time,  

Figure 17  An Excerpt of the Role Variation Points Schema  

for the Self-Protector Role 

 
Role Variation Points Schema:  SolarStormWarner Schemata ID: SSW 

  Parameters of Variation:  P7, P8     
  Description:     

  
Detects solar storms through monitoring the solar disc and being able to receive 
warning messages from mission control of an impending solar storm.  

  Variation Points: 
  Passive: 
   
   

The spacecraft does not have the ability to constantly monitor the 
solar disc to watch for solar storms but can warn other spacecraft 
after itself receiving a warning message.  [SSW-Passive] 

  Warm-Spare: 
   
   

The spacecraft has the ability to constantly monitor the solar disc to 
watch for solar storms and receive messages from mission control 
but is acting in a backup/redundant capacity. [SSW-Warm] 

  Active: 
   
  

The spacecraft is tasked to constantly monitor the solar disc and 
receive warning messages from mission control so that it can warn 
other spacecraft of an impending solar storm.  [SSW-Active] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design time, 
however, the spacecraft may switch is operating variation point (e.g., from Warm-
Spare to Active) at runtime. All spacecraft shall have the Passive variation point as a 
commonality. Spacecraft with the Warm-Spare variation point shall also include all 
functionality of Passive.  

Figure 18  An Excerpt of the Role Variation Points Schema for the 

SolarStormWarner Role 
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Role Schema:  SolarStormWarner                                   Schema ID: SSW-Passive 
 Variation Point: Passive 
      Inherits: SP-Core 
      Parameters of Variation: P7=Passive; P8=False 
      Requirements: C_G1, C_SH4, C_SP5, C_SP8, V_SP1, V_SP2 
      Description:  

Receives warnings from other spacecraft about impending solar storms and 
calculates the risk factor to itself from solar radiation damage. Notifies other nearby 
spacecraft of the impending solar storm.          

 Activities and Protocols:   
CalculateStormRisk, UpgradeToWarm, AcceptUpgrade, AcceptWarnMsg, 
RecieveHeartbeat, ReplyHeartBeat, SendSolarStormWarnMsg    

 Permissions:   
          Reads - 
           position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
   subswarmVector    // vector of nearby spacecraft to warn 
                supplied stormType     // type of storm supplied by warning  
                supplied stormIntensity   // storm intensity supplied by warning 
  supplied stormVector  // storm vector supplied by warning 
          Changes -  
               riskForSystemFactor                // current risk to spacecraft                
          Generates -  
               stormRiskValue                       // new value of the risk to the spacecraft of  
     // the solar storm 
 Responsibilities:   
          Liveness -  
                If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to satisfy scientific goals while minimizing the risk factor.  
          Safety -  
                Prevent other spacecraft from being damaged by notifying others.  

Figure 19  The Variation Points Schema for the Passive Variation Point of the 

SolarStormWarner Role 
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Role Schema:  SolarStormWarner                                      Schema ID: SSW-Warm 
      Variation Point: Warm-Spare 
      Inherits: SSW-Passive 
      Parameters of Variation: P7=Warm-Spare; P8=False 
      Requirements: V_SP1, V_SP2 
      Description:  

Acts as a redundant backup to those spacecraft that are actively monitoring the 
solar disc and warning other spacecraft of impending solar storms that may 
damage their onboard equipment. With actively monitoring spacecraft, verifies 
measurements and other solar storm measurements.  

 Activities and Protocols:   
CalculateStormDataAccuracy, CompareVerifyStromData, DetectStormData, 
DowngradeToPassive, ObserveSolarDisc, UpgradeToActive, AcceptStormData, 
AcceptDowngrade, AcceptUpgrade, SendHeartbeat, SendStormData, 
VoteStormDataAccuracy 

 Permissions:   

          Reads - 
           supplied prelimStormType   // preliminary type of storm supplied by  
       // active spacecraft to be verified  
                supplied prelimstormIntensity   // preliminary intensity of storm supplied by 
       // active spacecraft to be verified 
  supplied prelimstormVector // preliminary storm vector supplied by  
       // active spacecraft to be verified  
          Changes -  
               stormDataAccuracyValue  // current value of the accuracy of the  
       // supplied data compared to detected data 
  stormRiskValue             // current risk value of the storm to the  
       // spacecraft                
          Generates -  
               detectedStormType   // type of storm as detected 
  detectedStormIntensity  // intensity of the storm as detected 
  detectedStormVector  // storm vector as detected 
 Responsibilities:   
          Liveness -  
                If the spacecraft is functioning properly, this role will be able to maintain  
  heartbeat with other spacecraft monitoring the solar disc.  
          Safety -  
                Prevent dissemination of false solar storm warnings.   

Figure 20  The Variation Points Schema for the Warm-Spare Variation Point of the 

SolarStormWarner Role 
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Role Schema:  SolarStormWarner                                      Schema ID: SSW-Active 
      Variation Point: Active 
 Inherits: SSW-Warm 
 Parameters of Variation: P7=Active; P8=True 
      Requirements: C_M9, V_SP1, V_SP2 
      Description:  

Continuously monitors the solar disc for the signs of an impending solar storm 
whose solar radiation may damage the swarm’s spacecraft. Upon detecting a solar 
storm, it seeks to verify the data and then proceeds to warn the swarm’s spacecraft. 
Also able to receive warning messages from mission control of an impending solar 
storm.  

 Activities and Protocols:   
CompareMissionControlData, DowngradeToWarm, AcceptDowngrade, 
AcceptMissionControlWarn, AcceptStormDataVote, InitiateStormDataVote, 
InitiateStromWarning 

 Permissions:   
          Reads - 
           detectedStormType   // type of storm as detected 
  detectedStormIntensity  // intensity of the storm as detected 
  detectedStormVector  // storm vector as detected 
  supplied MCStormType    // type of storm supplied by mission control  
                supplied MCStormIntensity   // storm intensity supplied by mission  
      // control 
  supplied MCstormVector // storm vector supplied by mission control 
          Changes -  
               stormRiskValue                       // new value of the risk to the spacecraft of  
      // the solar storm     
          Generates -  
              riskForSystemFactor                // current risk to spacecraft 
   stromWarningConfidence  // confidence in the warning provided by  
        // mission control 
                 voteConfidence   // confidence in the verification of detected 
        // storm data by other spacecraft 
   warningMessage   // warning message to be sent to other  
        // spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  establish a communication connection with mission control. 
          Safety -  
                Initiate warnings to spacecraft of an impending solar storm.   

Figure 21  The Variation Points Schema for the Active Variation Point of the 

SolarStormWarner Role 
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Role Schema:  SolarStormProtector                                               Schema ID: SSP 
      Variation Point: SolarStormProtector 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SP5, C_SP6, C_SP7 
      Description:  

Provides the spacecraft with the functionality to autonomously protect itself from the 
affects of solar radiation during a solar storm.  

 Activities and Protocols:   
CheckSolarSailStatus, DeploySolarSailAsShield, EvaluateRiskToGoal, 
PowerDownSubsystems, PowerUpSubsystems 

 Permissions:   
          Reads - 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft 
  solarSailStatus    // status of the solar sail 
  detectedStormType   // type of storm as detected 
  detectedStormIntensity  // intensity of the storm as detected 
  detectedStormVector  // storm vector as detected 
  subsystemsList    // vector list of the spacecraft’s subsystems     
          Changes -  
   position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft 
  systemStatus     // status of the spacecraft 
  solarSailStatus  // status of the solar sail 
  subsystemsStatus  // list of the statuses of the spacecraft’s  
    // subsystems       
          Generates -  
   riskForSystemFactor                // current risk to spacecraft 
  riskToGoalFactor  // calculated value of the current risk factor 
    // to the advantage of pursuing scientific  
    // exploration    
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually take the  
  steps needed to prevent radiation damage from a solar storm. 
          Safety -  
  Prevent the solar radiation damage to the spacecraft possible during a solar 
  storm. 

Figure 22  The Variation Points Schema for the SolarStormProtector Variation 

Point of the Self-Protector Role 

  

 

 



 86  

 

The Analysis and Design Phase of Gaia-PL takes the requirements documented in 

the Requirements Documentation Phase and develops and documents the multi-agent 

system product line’s (MAS-PL) requirements specifications. Requirements 

specifications are documented in three schemas: The Role Schema, The Role Variation 

Points Schema and The Variation Point Schema. These schemas serve as a requirements 

specification pattern in which requirements can be defined and documented.  

This section describes the development and documentation of the roles and 

variation points for the Prospecting Asteroid Mission (PAM) from the requirements 

discussed in the previous section and documented in the Commonality and Variability 

Analysis in Appendix A. Note that the complete set of schemas documenting PAM 

mission’s requirements specifications can be found in Appendix D. In this section, we 

only show a small set of the schemas to illustrate Gaia-PL.  

4.2.3  Detailed Design Phase 

The Detailed Design Phase of Gaia-PL integrates the application engineering 

phase of the Weiss and Lai’s Family-Oriented Abstraction, Specification and Translation 

(FAST) product-line methodology [88] with Gaia’s Detailed Design Phase [92], [94]. 

The Detailed Design Phase designs and documents the agents of a multi-agent system 

product line (MAS-PL) reusing the requirements specification previous developed.  

This section describes the development and documentation of an agent of a MAS-

PL from the roles and variation points developed in the Analysis and Design Phase, 

described in Section 4.2.2. We again illustrate this process using the Prospecting Asteroid 

Mission (PAM) from the requirements specifications schemas developed in the previous 

section and listed in Appendix D. Note that, since the PAM case study used in this 

dissertation contains a possibility of 160 unique types of spacecraft (agents), this section 

and dissertation only illustrates a small set of the possible agents to illustrate Gaia-PL.  
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4.2.3.1  Designing and Documenting an Agent in Gaia-PL 

Upon completion of the initial requirements analysis and development of multi-

agent system product line (MAS-PL), it will be necessary to utilize the derived 

requirements specifications to instantiate a number of members of the system. During this 

initial deployment of the agents, it is not necessary that all agents be equipped with equal 

capabilities, intelligence or functionality. Since the prior steps have specified all the 

possible variation points of the roles in the schemas, we instantiate a new MAS-PL 

member (i.e., agent) to be added to the MAS-PL system by specifying each new member 

to be deployed in the Role Deployment Schema. Example Role Deployment Schemas for 

different configurations of the SolarStormWarner role are shown in Figure 24 and Figure 

25 for PAM spacecraft with the Feature Model shown in Figure 16 and Figure 23, 

respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 23  A Portion of the PAM Feature Model for the SolarStormWarner Role 

with only the Passive Variation Point 
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Role Deployment Schema:  SolarStormWarner System ID: 2, 3, 8-10 

Description:     
Detects solar storms through monitoring the solar disc and being able to receive 
warning messages from mission control of an impending solar storm. After detecting 
an impending solar storm, it measures solar storm risk to determine the best course 
of action for the swarm. This configuration of the role provides the maximum 
functionality for this role to monitor, detect and warn of an impending solar storm. 

Variation Points: 
Passive: 

 
 

The spacecraft does not have the ability to constantly monitor the solar 
disc to watch for solar storms but can warn other spacecraft after itself 
receiving a warning message.  [SSW-Passive] 

Warm-Spare: 
 
 

The spacecraft has the ability to constantly monitor the solar disc to watch 
for solar storms and receive messages from mission control but is acting in 
a backup/redundant capacity. [SSW-Warm] 

Active: 
 
 

The spacecraft is tasked to constantly monitor the solar disc and receive 
warning messages from mission control so that it can warn other 
spacecraft of an impending solar storm.  [SSW-Active] 

Figure 24  Role Deployment Schema for a Configuration of the SolarStormWarner 

Role 

 

 

 
Role Deployment Schema:  SolarStormWarner System ID: 1, 4-7 

Description:     
Detects solar storms through monitoring the solar disc and being able to receive 
warning messages from mission control of an impending solar storm. After detecting 
an impending solar storm, it measures solar storm risk to determine the best course 
of action for the swarm. This configuration of the role provides the minimum 
functionality for this role to only warm of an impending solar storm.  

Variation Points: 
Passive: 
 

 

The spacecraft does not have the ability to constantly monitor 
the solar disc to watch for solar storms but can warn other 
spacecraft after itself receiving a warning message.  [SSW-
Passive] 

Figure 25  Role Deployment Schema for a Configuration of the SolarStormWarner 

Role 
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The process to design and document an agent of a MAS-PL in the Gaia-PL 

methodology is as follows: 

1. Identify the roles that will constitute the agent to be deployed. 

2. For each role identified, create a new Role Deployment Schema and: 

a. Provide the role's name, unique system(s) identification and a brief 

description of the role specific to this deployment in the appropriate 

fields of the Role Deployment Schema. The agent(s) unique 

identification, to be placed in the System ID field, identifies the 

specific member(s) of the distributed system to be deployed that has 

the role configuration described in the particular Role Deployment 

Schema. For example, if agents with identification numbers 1, 4-7 are 

to employ the SolarStormWarner role in which only variation point 

Passive is possible (Figure 25), we denote this in the System(s) ID 

field of the Role Deployment Schema. Similarly, if agents with 

identification numbers 2, 3, 8-10 are to employ the SolarStormWarner 

role in which the variation points Passive, Warm-Spare and Active are 

possible (Figure 24), we denote their identification numbers in the 

System(s) ID field of the Role Deployment Schema. This avoids 

repetitive manual overhead when designing new members to be 

deployed in the distributed system and supports traceability, 

organization and management activities. 

b. Identify all possible variation points that the role can assume during its 

lifetime. The set of possible variation points was previously 

established when the original Role Variation Points Schema was 

developed for the particular role. 
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c. Identify the variation point in which the role will be deployed and 

specify it in the Role Deployment Schema by underlining it. This 

variation point represents the default variation point at which the agent 

will most commonly operate during normal operations. For example, 

Figure 25 denotes the agents that have the SolarStormWarner role in 

which the variation points Passive, Warm-Spare and Active are 

possible but where the agent is initially configured to operate at the 

Warm-Spare variation point level.    

These steps in Gaia-PL are repeated for all agents that are to be deployed in the MAS-PL. 

These steps produce a set of completed Role Deployment Schemas describing how 

different agents of the MAS-PL are to be deployed and how they are initially configured.  

4.2.3.2  The Agent Model 

We illustrate how an Agent Model, expanded from the Agent Model of Gaia [6], 

can be derived in this section. The Agent Model graphically illustrates the assignment of 

roles to agents as well as variation points to roles, similar to that of the Feature Model. 

The cardinality relationship between agent and role is indicated and all possible variation 

points are listed for each role. At runtime, the designer annotates the actual cardinality 

and the specific possible variation points of an agent instance (typically a one-to-one 

relationship. 

In Gaia, the Agent Model defines for each agent the roles that will map to it. 

Gaia-PL extends this model to additionally map for each role the variation points that 

may map to it. For example, the partial Agent Model shown in Figure 26 illustrates the 

Self-Optimizer, Navigator and SolarStormWarner roles used throughout this chapter and 

their associated variation points. The Agent Model in Gaia-PL will likely be similar to 

that of the Feature Model and may not be necessary. 
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Figure 26  An Excerpt of the Agent Model for the PAM MAS-PL 

4.2.4  Summary 

The steps of Gaia-PL described in Section 4.2.1 and Section 4.2.2 conform to the 

domain engineering phase of Weiss and Lai’s Family-Oriented Abstraction, Specification 

and Translation (FAST) product-line methodology [88] to document the multi-agent 

system product line’s (MAS-PL) requirements and requirements specifications. The steps 

of Gaia-PL described in Sections 4.2.3 conform to FAST’s application engineering phase 

and produce the documentation shown in the detailed design phase shown in Figure 4.  

Documenting the requirements specifications in Gaia-PL’s schemas allows easy 

reuse when instantiating actual agents of a MAS-PL. We detail how the documentation 

created in this section can easily be reused during both initial development and system 

evolution using the PAM case study in the next section. 

4.3  Requirements Specifications Reuse in the Gaia- PL 

Methodology 

Requirements specification reuse is using previously defined requirements 

specifications from an earlier system and applying them to a new, slightly different 

system. Increasing the amount of requirements specification reuse for any given product 

may reduce the production time and cost of the software system [12].  
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Requirements specification reuse for multi-agent system product lines (MAS-PL) 

is simplified in our Gaia-PL methodology by our use of variation points to handle the 

product-line variabilities in similar systems. The Gaia-PL methodology takes advantage 

of how the requirements specifications for an agent's role were partitioned and 

documented in the Role Variation Points Schema and Variation Point Schema based on 

their variation points.  

This section describes how the requirements specifications documentation 

detailed in Section 4.2 can be reused during the initial deployment of a MAS-PL as well 

as during its evolution (e.g., the inclusion of new agents, roles or variation points to the 

MAS-PL).  

4.3.1  Reuse During Initial System Development 

The members of a distributed system (including a multi-agent system product line 

(MAS-PL) often will be heterogeneous in their functional capabilities yet mostly similar 

in structure. For example, some of the Prospecting Asteroid Mission (PAM) spacecraft 

may have additional scientific imaging software while others may have additional cluster 

planning and reconfiguration software.  

Heterogeneity may also arise when resources (such as weight limits, memory size, 

etc.) are limited and different members of a distributed system must assume different 

roles. In the case of MAS-PLs, agents also may be heterogeneous in terms of their 

functional capabilities, intelligence levels or other possible variation points (see Section 

4.1.2.3). For example, depending on the capability level (e.g., passive, warm-spare or 

active) of those spacecraft with the SolarStormWarner role (see Section 4.2.2.3) among 

agents, not all agents must support all the possible variation points. That is, not all agents 

may be capable of monitoring, detecting and warning other spacecraft of an impending 

solar storm. Rather, most spacecraft may simply be capable of relaying a received 
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warning to other spacecraft. For this reason, initially deployed members of a MAS-PL 

will likely contain a role(s) that differs amongst other members in terms of which 

variation points it is capable of assuming. Several agents of the MAS-PL will have the 

same role but at different levels of intelligence.    

Requirements specification reuse can be exploited during the initial development 

and deployment of the members of a MAS-PL in Gaia-PL using the Role Deployment 

Schema, illustrated in Figure 24 and Figure 25. Rather than repeatedly defining the 

requirements of a role for any given agent (as would be necessary in Gaia), the Role 

Deployment Schema allows us to define the intelligence levels it can assume. This reuse 

is possible because the requirements specifications for each of the levels of intelligence 

were documented in the Variation Point Schemas, and because the agents of a distributed 

system will be similar.  

Thus, to document a particular role for several different heterogeneous members 

of a distributed system we must only indicate which variation points it can assume and 

give the reference number(s) to the Role Variation Point Schemas. After assigning 

variation points to an instance of a role and a role to an instance of an agent, an Agent 

Model can be used to illustrate an actual instance of an agent, shown in Figure 26. This 

procedure was described in Section 4.2.3.1.  

In the application of the Requirements Documentation and Analysis and Design 

Phases, described in Sections 4.2.1 and 4.2.2, of Gaia-PL to the PAM case study the 11 

Role Variation Point Schemas and 37 Variation Points Schemas (see Appendix D) 

constructed from the 97 high-level requirements (35 product-line commonality 

requirements and 62 product-line variability requirements) (see Appendix A, 48 

parameters of variation (see Appendix B) and 47 features (see Appendix C) are able to be 

reused to design and develop 160 unique PAM spacecraft (80 unique Worker spacecraft, 

48 unique Leader spacecraft and 32 unique Messenger spacecraft). Thus, the reuse of the 
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50 schemas developed in Gaia-PL’s Analysis and Design Phase were able to 

accommodate the development of a wide range of PAM spacecraft. A further evaluation 

of the Gaia-PL approach, compared to that of Gaia, is discussed in Section 4.4.  

4.3.2  Reuse During System Evolution 

Change is inevitable. Hardware failures or altered mission goals in a deployed 

distributed system typically necessitate software updates to one or more members. For 

example, a satellite of the constellation may have a malfunctioning planning and control 

module that could motivate operators to update that particular satellite's software to erase 

it and replace it with updated mission planning software. Alternatively, technology or 

mission goals after the initial deployment of a distributed system routinely evolve in such 

a way that future deployments of members joining the distributed system will require 

additional functionality (i.e., new features requiring new requirements).  

In the case of the Prospecting Asteroid Mission (PAM), although 1,000 PAM 

spacecraft will be initially deployed to investigate the asteroid belt, additional spacecraft 

may have to be deployed if a significant amount of spacecraft are lost due to damage or 

failures (e.g., solar radiation, collisions, etc.) [71], [77], [83], [84]. The new PAM 

spacecraft deployed to replace the lost spacecraft may contain additional features not 

found in previously deployed microsatellites. Examples of the types of evolution 

additional PAM spacecraft may undergo include improved scientific equipment, new 

scientific software, new communication devices, new strategies for identifying asteroids 

of interest, new functionality in existing roles, etc.  

A deployed multi-agent system product line (MAS-PL) can evolve in three ways 

relevant to this work: 1. new agents may be added to the system; 2. new roles with new 

functionality may be created that future agents can employ; and 3. new variation points 

may be added to existing roles that future agents can employ. The following subsections 
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discuss how these types of evolution in a MAS-PL can be accommodated in the Gaia-PL 

methodology.    

4.3.2.1  New Agent MAS-PL Evolution in Gaia-PL 

When a MAS-PL evolves, a new agent (i.e., spacecraft) may be deployed to 

replace a destroyed or failing agent. If this update includes functionality previously 

defined in the requirements specifications (Role Variation Points Schema and Variation 

Point Schemas), it suffices to modify the Role Deployment Schema and, possibly, the 

Agent Model to reflect the update.    

If the evolution of the MAS-PL involves a new agent to be deployed that includes 

additional functionality not previously defined in the requirements specifications (Role 

Variation Points Schema and Variation Point Schemas), updates to the MAS-PL’s 

requirements specifications is needed. The requirements specifications patterns detailed 

in Sections 4.2.1 and 4.2.2 are extensible in that it can accommodate this kind of system 

evolution by being able to include a new set of requirements while still reusing the 

previously documented requirements. This situation is discussed in Section 4.3.2.2 and 

Section 4.3.2.3.  

4.3.2.2  New Role MAS-PL Evolution in Gaia-PL 

The addition of a new role during evolution within a multi-agent system product 

line (MAS-PL) is analogous to the inclusion of a role during initial system development, 

as described in Section 4.2. Briefly, we create a new Role Variation Points Schema and a 

Variation Point Schema(s) just as during the initial development of a MAS-PL. 

Following the creation of a Role Variation Points Schema and a set of Variation Point 

Schemas, the process in Gaia-PL’s Detailed Design Phase, outlined in Section 4.2.3, is 

used to instantiate a new agent with the new role.  
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Note that a new role should have new requirements and/or features associated 

with it. The new requirements/features that are implemented in the functionality of a role 

should additionally be represented in the Commonality and Variability Analysis (see 

Section 4.2.1.1), the Parameters of Variation table (see Section 4.2.1.1) if it is a new 

product-line variability requirement and the Feature Model (see Section 4.2.1.3). The 

inclusion of new requirements to a MAS-PL can be handled as is traditionally done for 

the evolution of a software product line. This process is described in [12], [67], [88] and 

is not the focus of this research. However, the use of DECIMAL [23], [58], [59] (see 

Section 4.2.1.2) in Gaia-PL may ease the inclusion of new requirements as a result of 

new roles being added to the MAS-PL because of its ability to automatically verify that 

the new role and new agents abide by the MAS-PL’s constraints.   

4.3.2.3  New Variation Point MAS-PL Evolution in Gaia-PL          

The addition of a new variation point to an existing role during multi-agent 

system product line (MAS-PL) evolution, however, requires a modification to existing 

Role Variation Points Schema documentation as well as the creation of a new Variation 

Point Schema. To describe and illustrate the process of updating Gaia-PL’s requirements 

specifications in the event that a new variation point must be added to an existing role as 

a result of evolution, we use the following hypothetical situation in the Prospecting 

Asteroid Mission (PAM) case study as motivation: 

After the initial deployment of the PAM spacecraft, mission engineers 

discover that, in addition to the Leader, Messenger and Worker types of 

spacecraft already present in the PAM swarm, an additional Scout type of 

spacecraft is desired to better investigate the asteroid belt. The Scout spacecraft 

would be tasked with working mostly independently to quickly survey asteroids, 

assess their relevance to the mission goals and decide which asteroids should be 
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further explored by a PAM subswarm consisting of Leaders, Messengers and 

Workers.  

Thus, the new Scout type of PAM spacecraft will include some of the 

functionality of the Leader and Worker spacecraft but will additionally include 

new functionality. The inclusion of this new type of spacecraft to the PAM MAS-

PL will necessitate the updating of portions of the requirements specifications. 

One such update needed is to include a new “Scout” variation point to the Self-

Optimizer role, described in Sections 4.2.2.1 and 4.2.2.3, to include the 

functionality that provides the Scout spacecraft with the ability to optimize itself 

in order to better satisfy its scientific goals.  

To accommodate a new variation point in an existing role for the use in future 

deployments of the MAS-PL, as described in the above scenario, using the Gaia-PL 

methodology, the following process suffices: 

1. Update the Role Variation Points Schema to which the new variation point 

corresponds, and add the new variation point, along with a description and 

schema reference identification, to the Variation Points section. An 

example of this from the scenario described above for the Self-Optimizer 

role is shown in Figure 27. Note that the original Role Variation Points 

Schema for the Self-Optimizer role is given in Figure 11. Figure 27 expands 

the Role Variation Points Schema, from Figure 11 to include the new Scout 

variation point.     

2. Create a new Variation Point Schema, shown in Figure 28 for the new 

variation point giving the role's name, variation point's name and a unique 

variation point identifier in the appropriate fields. 
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Role Variation Points Schema:  SelfOptimizer Schemata ID: SO 

  Parameters of Variation:  P4, P5, P6     
  Description:     

  

At the swarm-level, the collection of these roles within all the spacecraft aid in 
autonomously and continuously improving the spacecraft’s ability to identify, explore 
and communicate the information discovered while investigating asteroids. At the 
spacecraft-level, these roles aid in the spacecraft to continuously learn and improve 
its specialized abilities and communicate its findings with other similar spacecraft.  

  Variation Points: 
  Core: 
   

   

The core elements of a spacecraft to be able to optimize itself in 
regards to general spacecraft functions so that it can continuously 
learn from the environment and perform better within the swarm. 
[SO-Core] 

  Leader: 
   

   

The elements needed in a leader spacecraft to be able to optimize 
itself in regards to its ability to best manage, oversee and direct the 
swarm to optimize the swarm’s ability to achieve scientific goals. 
[SO-Leader] 

  Messenger: 
   

  

The elements needed in a messenger spacecraft to be able to 
optimize itself in regards to its ability to best perform the 
communication necessary within the swarm so that commands and 
information can best be transmitted. [SO-Messenger] 

  Scout: 
   

   

The elements needed in a scout spacecraft to be able to optimize 
itself in regards to its ability to independently survey asteroids and 
decide which asteroids should be further investigated by a PAM 
subswarm. [SO-Scout] 

  Worker: 
   
   

The elements needed in a worker spacecraft to be able to optimize 
itself in regards to its ability to best optimize its ability to achieve its 
own scientific goals. [SO-Worker] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design 
time. However, a spacecraft that may switch is operating variation point (i.e., 
P2=True or P3=True) may have this variation point alter at runtime.   

Figure 27  Updated Role Variation Points Schema for the Self-Optimizer Role as a 

Result of Evolution 

3. Provide any variation points that the new variation point must inherit. 

Additionally denote the associated requirements and parameters of variation 

in the appropriate fields of the new Variation Point Schema.  

4. Document the variation point indicating how the new variation point differs 

from previously defined variation points in the Description section. 
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Role Schema:  SelfOptimizer                                                  Schema ID: SO-Scout 
      Variation Point: Scout 
      Inherits: SO-Core 
      Requirements: N/A 
      Parameters of Variation: N/A 
      Description:  

The elements needed in a scout spacecraft to be able to optimize itself in regards to 
its ability to independently survey asteroids and decide which asteroids should be 
further investigated by a PAM subswarm. 

   Activities and Protocols:   

Calculate EvaluateAsteroidStrategy, SendNewAsteroidData,  

   Permissions:   
          Reads - 
  currentPosition     // current position of the spacecraft in the 
       // asteroid belt 
           messengerVector    // vector of nearby messenger spacecraft 
       // to aid in sharing optimization information  
  scienceGoal     // current scientific goal pursued by the  
       // spacecraft 
          Changes -  
   asteroidEvaluationStrategy // strategy for spacecraft’s approach  
       // in surveying an asteroid 
  asteroidIdRules   // vector of rules that is used to identify  
       // asteroids of interest given preliminary 
       // data points on the asteroid 
  surveyedAsteroidHistory  // history log of the asteroids surveyed by 
       // the scout spacecraft 
          Generates -  
  asteroidMap   // rough map of the asteroids surveyed  
     // that have yet to be further explored 
  newSurveyRule   // new rule devised by the role to use when 
     // surveying and evaluating an asteroid 
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
  sciExplorationStratVal  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to   
     // achieve its scientific goals 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, the role will eventually improve its  
  ability to independently survey and identify asteroid of interest that should be  
  further explored by a PAM subswarm. 
          Safety -  
  None. 

Figure 28  The New Variation Points Schema for the Scout Variation Point of the 

Self-Optimizer Role as a Result of Evolution 
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Figure 29  Excerpt of the Updated Agent Model to Reflect the Addition of the Scout 

Variation Point to the Self-Optimizer Role 

 

5. Identify the protocols, activities, permissions and responsibilities that are 

particular to only that variation point. That is, define the protocols, 

activities, permissions and responsibilities that are not found in any of the 

lower intelligence level variation points and that are not found in any other 

variation points. 

6. Document and define the identified protocols, activities, permissions and 

responsibilities in the appropriate sections of the Variation Point Schema. 

7. Update the Agent Model(s) to reflect the inclusion of the new variation 

point for the role. The new Scout variation point for Self-Optimizer role is 

included in the updated Agent Model in Figure 29.  

These steps will produce a new variation point for a role and the accompanying 

Variation Point Schema for future versions of members of the system. 

4.4  Evaluation of the Gaia-PL Methodology  

This section evaluates the Gaia-PL methodology in the context of its application 

to the Prospecting Asteroid Mission (PAM) case study. We also provide a comparison of 

the Gaia-PL and Gaia methodologies in the context of the PAM case study and a brief 

discussion of the results. 
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4.4.1  The PAM Case Study 

The application of the Gaia-PL methodology to the Prospecting Asteroid Mission 

(PAM) during the Requirements Documentation Phase documented 97 high-level 

product-line requirements in the Commonality and Variability Analysis (CVA), discussed 

in Section 4.2.1.1 and shown in Appendix A. The 97 high-level product-line requirements 

included 35 commonality requirements and 62 variability requirements. Thus, we found 

that approximately one-third of the requirements of the PAM case study were in all 

spacecraft regardless of its specialized role (i.e., a leader, messenger or worker designated 

spacecraft). The 62 variability requirements were analyzed and grouped into 48 

parameters of variation, discussed in Section 4.2.1.1 and shown in Appendix B. Further, 

the product-line requirements of the PAM case study were partitioned into 47 features, 

discussed in Section 4.2.1.3 and shown in Appendix C.  

In the Analysis and Design Phase of Gaia-PL, we identified 13 unique roles for 

the PAM case study that were documented in 2 Role Schemas, 11 Role Variation Points 

Schemas and 39 Variation Point Schemas, as discussed in Section 4.2.2 and shown in 

Appendix D. These requirements specifications schemas can be used to design and 

develop 160 unique PAM spacecraft (80 unique Worker spacecraft, 48 unique Leader 

spacecraft and 32 unique Messenger spacecraft). Thus, the reuse of the 52 schemas 

developed in Gaia-PL’s Analysis and Design Phase was able to accommodate the 

development of a wide range of PAM spacecraft. 

To measure the impact and ability of the inclusion of variation points into the 

roles of an agent in a MAS, this evaluation measured the number of variation points 

defined for each role and the number of parameters of variation and requirements 

implemented in each variation point. These measurements provide an insight into the 

extent of the variable behavior of an agent that can be defined for a role and partly 
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illustrates the advantage of the inclusion of product-line engineering into the 

development of a MAS in Gaia-PL.  

The Role Variation Points Schemas developed for the PAM case study during the 

Analysis and Design Phase of Gaia-PL had an average of 3.9 variation points where the 

minimum number of variation points identified for a role was 2 (e.g., the LeaderPlanner 

role, see Appendix D, page 264 ), and the maximum number of variation points identified 

for a role was 10 (e.g., the Worker role, see Appendix D, page 271). Additionally, the 

Role Variation Points Schemas represented an average of 4.8 of the parameters of 

variation (see Appendix B) where the minimum number of parameters of variation 

identified for a role was 1 (e.g., the WorkerCooperation role, see Appendix D, page 282), 

and the maximum number of parameters of variation identified for a role was 21 (e.g., the 

Worker role, see Appendix D, page 271).  

Further, the Role Variation Points Schemas had implemented an average of 4.1 

high-level requirements from the CVA where the minimum number of requirements 

implemented in a variation point was 1 (e.g., the NIRSpec variation point of the Worker 

role, see Appendix D, page 274), and the maximum number of requirements 

implemented in a variation point was 14 (e.g., the Core variation point of the Self-

Coordinator role, see Appendix D, page 255). Note that many of the high-level 

requirements were implemented in several roles (i.e., were cross-cutting in more than one 

role). For example, requirement C_M4 “Every spacecraft shall be able to know its current 

position” is needed in multiple roles.   

Of the 11 Role Variation Points Schemas identified for the PAM case study, 8 

contained a variation point that must be included if the role is included in the agent. For 

example, the Messenger role (i.e., a role that not every agent will contain, see the Feature 

Mode in Figure 9), shown in Appendix D, page 288, contains two variation points one of 

which is required (i.e., the “Core” variation point). For the Messenger role, the “Core” 
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variation point captures 6 of the 8 requirements that are associated with the functionality 

possible in the Messenger role. That is, 6 of the 8 of the requirements were common to all 

agents containing the Messenger role while only 2 of the 8 requirements were variable 

functionality.  

The SolarStormWarner role, discussed (see Section 4.2.2.3) similarly captured a 

large portion of the role’s common requirements in its required variation point. However, 

unlike the Messenger role, the SolarStormWarner role (see Appendix D, page 296) is 

required for all PAM spacecraft (see the Feature Mode in Figure 9). Nevertheless, the 

common variation point for the SolarStormWarner role captured 54.5% of the common 

requirements in its Variation Point Schema (see Appendix D, page 297).  

Among the 8 Role Variation Points Schemas of the PAM case study that 

contained a variation point that must be included if the role is included in the agent, an 

average of 41% of the requirements were found to be common to the required variation 

point of the role. The minimum amount of common requirements for a role was 13% for 

the Worker role (see Appendix D, page 271) and the maximum was 75% for the 

Messenger role, described above. Thus, using the Role Variation Points Schema in Gaia-

PL captures, at least in the case of the PAM case study, a portion of the requirements that 

are common to all agents with a particular role and can be reused to develop agents with 

the any allowable combination of the role’s variation points. Further, the ability to 

separately capture the common requirements of a role in a variation point avoids the need 

to have the common requirements repeated in several role schemas for each of the 

variation points, as would be needed using the Gaia methodology (discussed in the next 

section).  

The design and documentation of the 39 Role Variation Point Schemas for the 

PAM case study took approximately 30 minutes each for a total of 19.5 hours. Thus, for 

each requirement implemented in a Role Variation Point Schema, it was found in this 
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case study that an average of 7.3 minutes was needed to document the requirement’s 

specification in a Variation Point Schema.  

4.4.2  Comparison to the Gaia Methodology 

The contribution of the Gaia-PL methodology detailed in this dissertation is to 

provide a way to develop software engineering assets that can be readily reused to build 

the agents of a multi-agent system product line (MAS-PL). As mentioned in the previous 

section, the application of Gaia-PL to the Prospecting Asteroid Mission (PAM) case 

study used in this dissertation yielded 39 Variation Point Schemas that can be reused to 

build 160 unique agents (i.e., spacecraft) of the PAM swarm.  

The mechanism to provide the reusable assets in the Gaia-PL methodology 

centers on the identification and separation of the commonalities of the agents and the 

agent’s roles and the refinement of the variabilities of the agents and the agent’s roles in 

separate software engineering artifacts. The ability to separately capture the common 

requirements of a role in a variation point avoids the need to have the common 

requirements repeated in several role schemas for each of the variation points. In this 

section, we discuss this advantage of Gaia-PL by a comparison to the application of Gaia 

to the PAM case study.   

The application of the Gaia methodology from the requirements for the PAM case 

study listed in the Commonality and Variability Analysis (CVA) given in Appendix A, 

yields 48 (a 19% increase compared to Gaia-PL) of Gaia’s Role Schemas (similar to 

Gaia-PL’s Variation Point Schemas) to document the same requirements specifications. 

To accommodate the requirements of the PAM case study, Gaia needs to implement a 

role for each of our variation points where the variable variation points (i.e., non-

required) variation points additionally including the required variation point functionality.  
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For example, in the SolarStormWarner role, described in Section 4.2.2.3 and 

given in Appendix D, page 296, a new Role Schema in Gaia has to be created for the 

Passive, Warm-Spare and Active variation points. In addition, the new roles for the 

Warm-Spare and Active roles also has to include the functionality (i.e., requirements) of 

the Passive variation point. Thus, the Gaia Role Schema for the Warm-Spare and Active 

SolarStromWarner roles combine and repeat the functionality of the Passive variation 

point.  

Although this approach using Gaia accommodates the functionality of the PAM 

case study, it does not clearly document an agent’s ability to change from one set of 

functionality of a role to another (e.g., from the Warm-Spare to the Active functionality 

of the SolarStormWarner role). Rather, Gaia has to combine the functionality from the 

variation points into a single role. Yet, this does not keep the modularity of the differing 

types of functionality in a role as in Gaia-PL and may confuse developers during coding. 

Secondly, the non-hierarchical nature of Gaia is not able to provide any linking 

relationships between related roles (e.g., from the Warm-Spare to the Passive 

functionality of the SolarStormWarner role) as in Gaia-PL. Lastly, some of the 

functionality will be unnecessarily repeated (e.g., the Passive functionality also must be 

included in the Warm-Spare and Active roles of a SolarStormWarner).   

Although the application of the Gaia methodology to the PAM case study only 

increases the number of schemas needed by approximately 19% compared to our Gaia-

PL approach, the number of redundantly implemented requirements further illustrates the 

advantage of Gaia-PL. As discussed in Section 4.4.1, we found that an average of 41% of 

the requirements implemented in the required variation points of 8 of the 11 Role 

Variation Points schemas were common to all variation points of the role. However, since 

the redundant requirements need to be documented for each variation point to create a 

new role in Gaia, the set of Role Schemas has a 66.5% rate of requirements that have 



 106  

 

already be documented in another role. Of these 8 roles identified in Gaia-PL (with 35 

variation points), Gaia created 41 roles that contained 33 redundant requirements. Due to 

the high number of redundant requirements, the 33 Role Schemas created in Gaia 

documented 222 requirements (of which 66.5% or 147 requirements are redundant). 

Assuming that it continues to take an average of 7.3 minutes per requirements to 

document in a requirements specification, the Gaia approach incurred an additional 17.8 

hours to derive and document compared to the Gaia-PL approach discussed in this 

chapter.  

4.4.3  Discussion 

The evaluation of our Gaia-PL methodology using the Prospecting Asteroid 

Mission (PAM) case study measures Gaia-PL’s ability to capture the common parts of a 

multi-agent system product line (MAS-PL) so that they can be reused along with the 

variable parts to design and develop an agents. It was shown in the previous section that 

compared to Gaia, an Agent-Oriented Software Engineering (AOSE) methodology that 

does not explicitly partition the common and variable parts of a MAS-PL, Gaia-PL’s 

ability to reuse the common parts of an agent’s role reduces the work and time required to 

design and develop an agent. However, the evaluation of our Gaia-PL methodology does 

not come without caveats. In this section, we discuss some of the caveats of our 

evaluation.  

The PAM case study used in this dissertation had requirements that fit nicely into 

adopting a software product-line engineering approach. The requirements gathered for 

the PAM case study readily fit into a Commonality and Variability Analysis (CVA) 

because the common and variable functionalities of the spacecraft were clear. A 

characteristic of the PAM case study aiding its adoption into a product line approach was 

its basis on the Autonomous Nano-Technology Swarm (ANTS) concepts. The 
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requirement that all PAM spacecraft implement the concepts of the ANTS mission 

provided a natural mechanism to define the commonalities. In addition, the variability 

requirements of the PAM mission partly focused on the differing functionality of the 

different types of spacecraft (i.e., Leader, Messenger or Worker). Further, there was 

approximately a 2:1 ratio of variable requirements to commonality requirements. These 

factors certainly contributed to the clear advantage that Gaia-PL compared to Gaia. 

However, for MAS-PL’s with less variability and mostly common functionality among a 

role, or for MAS-PL’s in which no variation points for a role can be identified, Gaia-PL 

will not provide such clear advantages.  

In the case where a MAS-PL has little variability, although Gaia-PL will not 

necessarily provide the advantage in reuse described in Section 4.3, it will not incur 

enough overhead to be a disadvantageous approach compared to Gaia. Unlike Gaia, Gaia-

PL does require the documentation of variation points (if any) in a Role Variation Points 

Schema which will incur additional development time. Yet, for MAS-PL’s that will have 

few variation points (and thus few variabilities), the Role Variation Points needed will be 

few and require very little development time. Thus, the Gaia-PL approach would still 

provide some advantage for those roles which have variation points while not incurring a 

large overhead.   

This evaluation did not consider design alternatives in our application of Gaia-PL 

to the PAM case study. That is, we did not design and evaluate different ways of defining 

a role’s variation points nor did we design and evaluate different ways of defining the 

roles possible in an agent. Thus, the results obtained from our evaluation might differ if 

we had used a different design alternative for the PAM case study.   

Although the evaluation of Gaia-PL was performed on a relatively large MAS-PL 

case study, the results only report the performance of Gaia-PL on a single case study. The 

application of Gaia-PL on different MAS-PL application, in particular applications with a 
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different profile of variable functionality, will yield different results. Thus, the evaluation 

reported in this dissertation should only serve as a proof-of-concept measurement rather 

than the results that should be expected in its use on other MAS-PL applications.  

Despite these caveats, the evaluation of Gaia-PL indicates its advantages in 

designing, developing and documenting MAS-PLs that have some degree of variability. 

Gaia-PL’s ability to hierarchically define the roles of an agent, capture the common and 

variable functionality of an agent and reuse the common functionality of a role to design 

and develop a wide-range of agents of the MAS-PL recommends its use. In particular, the 

use of Gaia-PL as an extension of Gaia allows the software developer to take advantage 

of the reuse potential in Gaia-PL along with the other models, abstractions and analysis 

tools of Gaia to provide the mechanisms to efficiently design and develop a MAS-PL.  

4.5  Summary 

This chapter detailed the design and development of a multi-agent system product 

line (MAS-PL) using our Gaia-PL methodology. The Gaia-PL methodology produces 

reusable software engineering assets so that building systems of the MAS-PL can be done 

efficiently and with a high-degree of reuse. Software product-line engineering concepts 

were integrated into agent-oriented software engineering (AOSE) by identifying, defining 

and using variation points to build a MAS-PL. We illustrated the documentation of 

MAS-PL requirements in a Commonality and Variability Analysis and a Parameters of 

Variation table and detailed the documentation of requirement specifications in Gaia-

PL’s schemas. These schemas partitioned the commonality requirements and variability 

requirements into separate schemas for specific roles using a Feature Model as a guide. 

Gaia-PL’s schemas were then shown to be reused to build specific types of agents for a 

MAS-PL.  
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This chapter discussed and illustrated the reuse of the requirements specifications 

during initial system development of a MAS-PL as well as during system evolution. To 

highlight the advantages of Gaia-PL, we differentiated our methodology from previous 

work by illustrating Gaia-PL’s ability to capture reuse and avoid the redundant work and 

increased development cost (i.e., additional time) needed to develop the agents required 

as done in previous MAS work. Finally, an evaluation of our Gaia-PL methodology on 

the PAM case study illustrated the development cost savings and other advantages of our 

approach. 

For safety-critical MAS-PLs, the Gaia-PL methodology described in this chapter 

provides no mechanisms to ensure that the MAS-PL being built is indeed safe. Chapter 5 

builds upon the Gaia-PL methodology by detailing safety analysis techniques and tools 

for the analysis of safety-critical MAS-PLs in the context of Gaia-PL.  
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CHAPTER 5.  SAFETY ANALYSIS FOR SAFETY-CRITICAL 

MULTI-AGENT SYSTEM PRODUCT LINES 3 

Chapter 4 detailed our Agent-Oriented Software Engineering (AOSE) 

methodology, Gaia-PL (Gaia – Product Line) for developing reusable requirement 

specifications for a multi-agent system product line (MAS-PL) and then reusing them for 

initial system development as well as during evolution. This chapter focuses on the 

development of reusable safety analysis artifacts for safety-critical MAS-PL in the 

context of our Gaia-PL methodology. The goal is to develop reusable safety analysis 

artifacts for a MAS-PL. This chapter describes the product-line safety analysis techniques 

and tools we have developed and adapted for the use during the design and development 

of safety-critical MAS-PLs. The safety analysis techniques and tools described in this 

chapter aim to provide some assurance that core assets defined in the domain engineering 

phase are being safely reused during the application engineering phase. We again use the 

Prospecting Asteroid Mission (PAM) case study, described in Chapter 3, to illustrate and 

evaluate our safety analysis techniques and tools.  

                                                 

3 This chapter extends our previous work that has appeared in papers at 2004 High Assurance Systems 

Engineering Conference (HASE’04), 2005 International Symposium on Software Reliability Engineering 

(ISSRE’05), 2005 International Conference on Software Engineering’s Workshop on Software Engineering 

for Large-Scale, Multi-Agent Systems (SELMAS’05), 2006 Workshop on Innovative Techniques for 

Certification of Embedded Systems (ITCES’06), and Automated Software Engineering Journal, 2006 all 

co-authored with Robyn R. Lutz; and 2007 International Conference on Software Engineering (ICSE’07), 

co-authored with Meredith Humphrey, Lada Suvorov, Prasanna Padmanabhan and Robyn R. Lutz.  
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5.1 Software Safety Analysis for Multi-Agent System  Product 

Lines 

This section examines the need for safety analysis techniques and tools for multi-

agent system product lines (MAS-PL) and provides an overview of the safety analysis 

techniques and tools for MAS-PLs detailed in this chapter.  

5.1.1  The Need for Safety Analysis for Developing Multi-Agent 

Systems 

Multi-agent systems (MAS), like other software systems may be safety-critical. A 

safety-critical system is a system that can directly or indirectly compromise safety by 

placing a system in to a hazardous state causing the potential loss or damage of life, 

property, information, mission or environment [44]. Thus, although the Prospecting 

Asteroid Mission (PAM) case study used in this dissertation may not directly cause the 

loss of human life, failures in the PAM spacecraft can result in the loss or damage of 

property (i.e., the spacecraft), information (i.e., the data gathered on the asteroid belt) 

and/or mission. Thus, the PAM case study, and similar agent-based systems, necessitates 

safety analysis to ensure that no undesirable behaviors will occur that may compromise 

the system’s mission. Further, for some agent-based systems, safety certification may be 

required.  

However, the safety analysis of a MAS presents challenges not found in other 

software systems. In particular, one of the most challenging characteristics of a MAS 

preventing the use of traditional software safety analysis techniques and tools is that it is 

difficult to verify that the emergent behavior of such systems will be proper and that no 

undesirable behaviors will occur. Although the emergent properties of a distributed, MAS 

make the systems more powerful and adaptable, they are inherently more difficult to 

design and provide assurance that the proper, safe behaviors will emerge. In addition, the 
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complexity of distributed MAS, such as PAM, in their ability to interact with each other 

and dynamically alter their functionality further complicates the safety analysis of such 

systems. Unless safety analysis techniques and tools, along with further validation and 

verification techniques can assure the correct, safe behavior and interactions of a MAS, 

the safety of such software systems can not be assured.  

For MAS that consist of a high number of similar yet slightly different agents, as 

in the PAM case study, a product-line safety analysis approach is advantageous. Like the 

product-line approach described in Chapter 4, a product-line approach to safety analysis 

allows the reuse of portions of the safety analysis for multiple agents of the multi-agent 

system product line (MAS-PL). The ability to reuse portions of the safety analysis for a 

new agent can significantly reduce the burden of safety analysis of the entire system. 

Further, reusable safety analysis assets can be used to make a safety case for the software 

during the system certification, can aid in verifying the safety requirements of the system 

and can discovering safety requirements missed in the initial requirements specification.   

Certification is a process whereby a certification authority determines if an 

applicant provides sufficient evidence concerning the means of production of a candidate 

product and the characteristics of the candidate product so that the requirements of the 

certifying authority are fulfilled [31], [40], [69], [72].  Software safety analysis 

techniques, similar to those detailed in this chapter, have previously been shown to 

contribute to the certification of software-intensive systems in [2], [55].  However, little 

work has been specifically aimed at MAS-PLs. 

Certification may apply to the development process, the developer or the actual 

product [55].  Since it is insufficient to certify the process or developer for the software 

of safety-critical systems, building a safety case that provides “an argument accompanied 

by evidence that all safety concerns and risks have been correctly identified and 

mitigated” [26] aids in the certification of the product.  The safety analysis techniques 
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and tools described in this chapter integrate the reuse potential of safety analysis assets 

into the design and development of MAS-PL so that they can be used to better make a 

safety case when system certification is required as well as allowing the safety engineer 

to verify the safety requirements of the system and can discover missing safety 

requirements. These safety analyses provide some assurance that core assets defined in 

the domain engineering phase are being safely reused during the application engineering 

phase.    

The safety analysis techniques and tools presented in this chapter provide safety 

analysis techniques for a safety-critical MAS-PL in the context of our Gaia-PL 

methodology. In the following section we provide an overview of our safety analysis 

techniques and tools in the context of Gaia-PL. 

5.1.2  Overview of Our Safety Analysis Techniques f or Developing 

Multi-Agent System Product Lines 

Figure 30 provides an overview of the safety analysis techniques that we have 

developed and adopted for the use in designing and developing safety-critical, multi-

agent system product lines (MAS-PL) in the context of our Gaia-PL methodology. To 

provide reusable safety analysis assets for the design and development of safety-critical 

MAS-PL, an extended Bi-Directional Safety Analysis (BDSA) approach [32], [54], [55] 

was used. BDSA combines a search from potential failure modes to their effects with a 

search from possible hazards to the contributing causes of each hazard. The use of a 

BDSA approach requires the use of forward and backward safety analyses.  In the work 

described in this chapter, we use Software Failure Modes, Effects and Criticality Analysis 

(SFMECA) and Software Fault Tree Analysis (SFTA) as the forward and backward 

search technique, respectively.   
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Figure 30  An Overview of the Safety Analyses for MAS-PL in the Gaia-PL Methodology 



 115  

 

The extended SFMECA safety analysis technique presented in Section 5.2 

provides a systematic process to derive a forward-based safety analysis asset from the 

Variation Point Schemas of a role in our Gaia-PL methodology (see Chapter 4).  The 

SFMECA tables derived using this approach are directly associated to the variation point 

of a role and can be reused for an agent with the specific role and variation point. 

The SFTA, discussed in Section 5.3, presents our technique that cleanly extends 

SFTA to software product lines. This product-line SFTA (PL-SFTA) can be constructed 

for an entire product line and product-line members’ fault trees can be derived from the 

PL-SFTA.  PLFaultCAT, a graphical tool to construct a product-line SFTA, supports this 

technique and then allows users to automatically derive a product-line members’ fault 

tree given the variabilities to be included.  

BDSA, discussed in Section 5.4, is then used to verify the completeness of the 

forward and backward search techniques.  The forward and backward techniques can be 

viewed as complementary since the output of the forward technique (i.e., the potential 

system-wide hazards) should match-up with the inputs of the backward technique.  

Similarly, the output of the backward technique (i.e., the low-level, local errors that cause 

a system-wide hazard) should match-up with the inputs of the forward technique. Thus, 

the BDSA can discover the missing safety requirements can be derived from the 

SFMECA and SFTA safety analysis assets and can assist in verifying the adequacy of the 

existing safety requirements and design.  The resulting MAS-PL safety assets and 

verification aid in efficiently assembling a safety case during system certification.  

The remainder of this chapter details each of these safety analysis techniques and 

tools and illustrates them using the PAM MAS-PL case study.  
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5.2  Software Failure Modes, Effects and Criticalit y Analysis for 

the Gaia-PL Methodology 

The forward analysis technique used in this work for the safety analysis of a 

safety-critical, multi-agent system product line (MAS-PL) is a Software Failure Modes 

Effects and Criticality Analysis (SFMECA). To accommodate the design and 

development of a MAS-PL in Gaia-PL, we have adapted the SFMECA technique to 

analyze and define a SFMECA tailored to the variation points in our Gaia-PL 

methodology to produce a safety analysis technique specific to MAS-PL.  

In our Gaia-PL methodology, the requirements specifications of the variation 

points of a role are document in a Variation Point Schema (see Section 4.2.2.3). The 

Variation Point Schema conveniently partitions a role’s requirements specifications into 

events (functionality) that the role can perform and data that the role can access and 

generate. In Gaia-PL’s Variation Point Schema, the events that a role or variation point 

can perform are the non-underlined methods listed in “Activities and Protocols” section, 

and the data that the role or variation point can access and generate are listed in the 

“Permissions” section.  For example, in the CollisionProtector Variation Point Schema of 

the Prospecting Asteroid Mission (PAM) case study used in this dissertation, shown in 

Figure 31, the events that this role can perform include Analyze3DModel, 

DetectNearbySpacecraft, etc. Similarly, the data that this role can access and generate 

include, position, velocityIncrement, etc.  

The SFMECA tables created in this work are specific to a variation point. For 

example, a separate SFMECA table will be created for the CollisionProtector Variation 

Point, shown in Figure 31, so that this safety analysis can be readily reused for all agents 

with the CollisionProtector Variation Point. Additionally, like [32] we partition the 

SFMECA into separate analyses on the data and events.  We use guidewords of [54] to 

steer our investigation into the possible failures within a MAS-PL.   
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Role Schema:  CollisionProtector                                                      Schema ID: CP 
      Variation Point: CollisionProtector 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SP1, C_SP2, C_SP3, C_SP4, C_SP5 
      Description:  

Provides the spacecraft with the functionality to autonomously protect itself from 
colliding with other spacecraft and nearby asteroids.  

 Activities and Protocols:   
Analyze3DModel, DetectNearbySpacecraft, EvaluateRiskToGoal, 
MonitorNearbyAsteroids, MoveToAvoidCollision, AcceptAsteroid3DModel, 
AcceptCurrentPosition, AcceptCurrentTrajectory, AcceptSpacecraftLocations, 
NegotiateCollisionAvoidance, PingNearbySpacecraft, RequestAsteroidPositions, 
RequestCurrentPosition, RequestCurrentTrajectory, RequestSpacecraftLocations 

 Permissions:   
          Reads - 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft 
  supplied asteroid3DModel // 3D model of an asteroid supplied 
  supplied asteroidPositions // positions of nearby asteroids 
  supplied subswarmVector // vector of nearby spacecraft positions 
  supplied spacecraftPos // current position of a nearby spacecraft 
      // supplied by a messenger or leader 
  supplied spacecraftTraj // current trajectory of a nearby spacecraft 
      // supplied by a messenger or leader  
          Changes -  
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft      
          Generates -  
       collisionRiskFactor  // derived risk to spacecraft for an  
    // impending collision 
  riskToGoalFactor  // calculated value of the current risk factor 
    // to the advantage of pursuing scientific  
    // exploration    
  nearbyAsteroids  // vector of nearby asteroids that must be 
    // avoided to prevent a collision 
  nearbySpacecraft  // vector of nearby spacecraft that must be 
    // avoided to prevent a collision 
 Responsibilities:   
          Liveness -  
  None. 
          Safety -  
  Prevent the collision with other spacecraft and nearby asteroids.  

Figure 31  The Variation Point Schema for the CollisionProtector Role 
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Each activity of a variation point (the non-underlined keywords listed in Gaia-

PL’s Variation Point Schemas under the “Protocols and Activities” section) is essentially 

an event (i.e., some functionality) that the variation point can execute.  To construct a 

SFMECA table for the events that a role’s variation point can execute, as in a standard 

SFMECA we use the following keywords to guide our analysis: “halt/abnormal 

termination”, “omission”, “incorrect logic/event” and “timing/order”.   

Similarly, constructing the SFMECA data table using Gaia-PL’s Variation Point 

Schemas, the “Permissions” section lists each datum that the role or variation point can 

access, alter or generate.  To construct a SFMECA table for the data that a role uses, we 

use the following keywords to guide our analysis: “incorrect value”, “absent value”, 

“wrong timing” and “duplicated value”. 

Since a role definition depends on its variation point(s) in the Variation Point 

Schemas of a role, detailed in full in Section 4.2.2.2, the derived SFMECA captures the 

possible event and data failures for all the near-identical agents.   

In Section 5.2.1 we describe the construction of the SFMECA event table for a 

Variation Point Schema and then in Section 5.2.2 the construction of the SFMECA data 

table for the CollisionProtector variation point, shown in Figure 31. Note that the 

SFMECA creation process described here occurs during the domain engineering phase of 

Weiss and Lai’s Family-Oriented Abstraction, Specification, and Translation (FAST) 

model. Thus, the SFMECA table represents the possible failures for the entire set of 

products in the MAS-PL.   

The CollisionProtector variation point is tasked with preventing the spacecraft 

from colliding with other spacecraft and nearby asteroids. The failure of this variation 

point may lead to the collision and loss of one or more spacecraft and thus warrants 

safety analysis. We include a portion of the SFMECA for the CollisionProtector 

Variation Point in Table 3, Table 4 and Table 5 as well as in Appendix E.  
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5.2.1  Constructing a SFMECA Event Table for a Vari ation Point in 

Gaia-PL 

The procedure to construct a SFMECA table for the events from Gaia-PL’s 

Variation Point Schema(s) using the event guidewords consists of the following steps: 

1. For each role: 

a. Create a new SFMECA event table similar to that shown in Table 3 

and fill in the role’s name and its possible variation points. 

b. Then, for each of the variation points possible, listed in the role’s Role 

Variation Points Schema (see Section 4.2.2.2): 

i. For each activity listed in the Protocols and Activities section of 

the Variation Point Schema:  

c. Provide the event name in the “Event” column.   

c. Apply each of the failure mode keywords (i.e., 

“halt/abnormal termination”, “omission”, “incorrect 

logic/event” and “timing/order”) to the event.  For each 

keyword: 

i. Provide the event failure mode keyword in the “Failure 

Mode” column.  

ii.  Describe the possible local effect(s) if the keyword 

failure happened to the event under consideration in the 

“Local Effect(s)” column.  The local effect will likely 

only affect this role or this agent and its description 

should not include the propagation of its failure to other 

agents or components of the global system.   

iii.  Describe the possible system-level effect(s) if the 

keyword failure mode occurred in the “System Effect(s)” 
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column.  This column captures the possible emergent 

hazardous behavior from the interaction of the agents 

(e.g., that a collision could occur between spacecraft if a 

spacecraft does not change its position when other 

spacecrafts are expecting it to).    

iv. Give the criticality (e.g., critical, major, average, minor, 

etc.) of this failure as determined by the global effect of 

this failure on the system as a whole in the “Criticality” 

column.   

c. Apply any additional failure modes not captured by the 

provided keywords relevant to the current event and fill in 

the SFMECA row as appropriate.    

The results of the application of the procedure detailed above to the CollisionProtector 

variation point’s events listed in its Protocols and Activities section of the Variation Point 

Schema are shown in Table 3 Table 4 and Table 5 for the Analyze3DModel, 

DetectNearbySpacecraft and MoveToAvoidCollision events.  

For example, the SFMECA table for the MoveToAvoidCollision event of the 

CollisionProtector variation point of the Prospecting Asteroid Mission (PAM) case 

study, shown in Table 5, describes the local and system-wide effects of the 

“halt/abnormal termination”, “omission”, “incorrect logic/event” and “timing/order” 

failures of the MoveToAvoidCollision event. Each of these failures describe the effect on 

the local data and other events of the variation point and how those can propagate to the 

system level and potentially cause a collision between spacecraft in the PAM swarm. The 

system-wide effects for the failures of this event are classified at a criticality level of 

either Major or Critical and will likely require mitigation requirements to ensure that such 

failures are not possible in the MAS-PL, as discussed in Section 5.2.3.  
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Table 3  A Portion of the SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role 

 
Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector Analyze3DModel Halt/Abnormal 
Termination 

The position and model of a nearby asteroid 
stored in the asteroidPositions, 
nearbyAsteroid and collisionRiskFactor data 
vector may be incomplete or partially 
incorrect. This may affect other events such 
as MonitorNearbyAsteroids and 
MoveToAvoidCollision. 

The spacecraft’s inaccurate 
mental model of the nearby 
asteroid could cause it to 
maneuver itself too close to 
the asteroid causing a 
collision.  

Major 

  

 

Omission The role fails to analyze the 3D model of a 
nearby asteroid potentially causing the 
asteroidPositions, nearbyAsteroid and 
collisionRiskFactor data to be incomplete or 
incorrect. This may affect other events such 
as MonitorNearbyAsteroids and 
MoveToAvoidCollision. 

The failure to analyze the 3D 
model provided of a nearby 
asteroid(s) may cause the 
asteroid to incorrectly 
maneuver itself too close to 
an asteroid and cause a 
collision. 

 
 
 

Critical 

  

 

Incorrect 
Logic/Event 

The role incorrectly analyzes the 3D model 
of a nearby asteroid that may cause the 
asteroidPositions, nearbyAsteroid and 
collisionRiskFactor data to be incomplete or 
incorrect. This may affect other events such 
as MonitorNearbyAsteroids and 
MoveToAvoidCollision. 

The spacecraft uses an 
inaccurate 3D model of a 
nearby asteroid that my 
cause it to maneuver itself 
into a nearby spacecraft or 
asteroid.  

Critical 

  

 

Timing/Order The role fails to analyze the 3D model of a 
nearby asteroid causing the 
asteroidPositions, nearbyAsteroid and 
collisionRiskFactor data to be outdated. The 
riskForSystemFactor data may be inaccurate 
since it was calculated based on outdated 
data. This may affect other events such as 
MonitorNearbyAsteroids, 
EvaluateRiskToGoal and 
MoveToAvoidCollision.  

The spacecraft uses an 
outdated 3D model of a 
nearby asteroid(s) and may 
not be able to react in time to 
avoid a collision with an 
asteroid if the 3D model is 
not updated as expected. 

Major 
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Table 4  A Portion of the SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role 
 

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 
Self-Protector 

 CollisionProtector DetectNearby 
Spacecraft 

Halt/Abnormal 
Termination 

The role fails to complete its analysis of 
detecting nearby spacecraft and may not 
be aware of all nearby spacecraft. Thus, 
the data stored in riskForSystemFactor, 
subswarmVector, spacecraftPos, 
collisionRiskFactor and neabySpacecraft 
may be inaccurate, corrupted or outdated.    

The spacecraft does not have a full 
knowledge of all nearby spacecraft and 
may unknowingly maneuver itself into 
another spacecraft causing a collision. The 
spacecraft’s ability to negotiate collision 
avoidance with another spacecraft using 
the NegotiateCollision Avoidance protocol 
can not be trusted by other spacecraft since 
the spacecraft’s mental model of nearby 
spacecraft is not accurate.  

Major 

  

 

Omission The role fails to detect its surrounding for 
nearby spacecraft and may not be aware of 
all nearby spacecraft. The data stored in 
riskForSystemFactor, subswarmVector, 
spacecraftPos, collisionRiskFactor and 
may be inaccurate or outdated and the 
neabySpacecraft may be incorrect or 
outdated.  

The spacecraft has no knowledge of the 
positions of other nearby spacecrafts 
possibly causing the spacecraft to 
maneuver too close to another spacecraft 
causing a collision. The lack of knowledge 
of the positions of nearby spacecrafts may 
also cause the spacecraft’s ability to avoid 
collisions using the Negotiate 
CollisionAvoidance protocol is using 
incomplete or inaccurate data.   

 
 
 
 

Critical 

  

 

Incorrect 
Logic/Event 
 

The role possible wrongly detects or 
miscalculates the positions of nearby 
spacecraft. The data stored in 
riskForSystemFactor, subswarmVector, 
spacecraftPos, collisionRiskFactor and 
may be inaccurate or outdated and the 
neabySpacecraft may be incorrect or 
outdated. 

The spacecraft’s belief of the positions of 
other nearby spacecraft is inaccurate and it 
may collide into nearby spacecraft if 
maneuvers itself. The lack of knowledge of 
the positions of nearby spacecrafts may 
additionally cause the spacecraft’s ability 
to avoid collisions using the Negotiate 
CollisionAvoidance protocol is using 
incomplete or inaccurate data.  

Critical 

  

 

Timing/Order The detection of nearby spacecrafts is 
delayed so that the role may not possible 
have the accurate locations of nearby 
spacecraft when it is expecting it. Because 
of this, the data stored in 
riskForSystemFactor, spacecraftPos, 
collisionRiskFactor and may be inaccurate 
or outdated and the neabySpacecraft may 
be incorrect or outdated without the role 
knowing this.  

The spacecraft may believe that the 
positions of nearby spacecraft it has stored 
in subswarmVector and spacecraftPos is 
correct and thus may inadvertently 
maneuver too close to another spacecraft 
and collide into it. The spacecraft may also 
provide inaccurate information to other 
spacecraft using the NegotiateCollision 
Avoidance protocol that may result in 
further collisions of spacecraft. 

Major 
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Table 5  A Portion of the SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role 
 

Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector MoveToAvoid
Collision 

Halt/Abnormal 
Termination 

The position, velocityIncrement and 
collisionRiskFactor data may be 
temporarily incorrect since the spacecraft 
did not complete moving to its new 
position. This could potentially affect other 
events such as DetectNearby Spacecraft 
EvaluateRiskToGoal, and other protocols 
including NegotiateCollisionAvoidance. 

The spacecraft will not have 
moved to the position expected 
by other nearby spacecraft in 
the subswarm potentially 
causing a collision. 

Major 

  

 

Omission The spacecraft fails to move to its new 
assigned position in the subswarm possibly 
causing the position, velocityIncrement and 
collisionRiskFactor data to be temporarily 
incorrect. This could potentially affect 
other events such as DetectNearby 
Spacecraft EvaluateRiskToGoal, and other 
protocols including 
NegotiateCollisionAvoidance.  

The spacecraft will not have 
moved but, rather, maintain its 
previous position potentially 
causing a collision. Other 
spacecraft in the subswarm may 
expect the spacecraft to have 
moved to a new position which 
may cause a collision due to the 
discrepancies between actual 
and perceived spacecraft 
positions.  

Critical 

  

 

Incorrect 
Logic/Event 
 

The spacecraft fails to move to the position 
it is expecting possibly causing its 
position, velocityIncrement and 
collisionRiskFactor data to be different 
than expected. This could potentially affect 
other events such as DetectNearby 
Spacecraft EvaluateRiskToGoal, and other 
protocols including 
NegotiateCollisionAvoidance. 

The spacecraft moves to a 
position different that what it 
expects. Further, other 
spacecraft nearby will have 
expected the spacecraft to be in 
a different location potentially 
causing a collision.  

Critical 

  

 

Timing/Order The spacecraft fails to move to the new 
position until some later, undetermined 
time potentially causing its position, 
velocityIncrement and collisionRiskFactor 
data to be different than expected. This 
could potentially affect other events such 
as DetectNearby Spacecraft 
EvaluateRiskToGoal, and other protocols 
including NegotiateCollisionAvoidance. 

The spacecraft fails to move to 
the position it indicated to other 
spacecraft via the 
NegotiateCollisionAvoidance 
protocol at the time expected by 
the other spacecraft. This may 
cause a collision.  

Major 
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5.2.2  Constructing a SFMECA Data Table for a Varia tion Point in 

Gaia-PL 

Constructing the SCMECA data table for a variation point in Gaia-PL is identical 

to that of constructing a SFMECA event table except for the failure mode keywords used. 

For completeness, the procedure to construct a SFMECA table for the data from the 

Variation Point Schema(s) using the event guidewords consists of the following steps: 

1. For each role: 

a. Create a new SFMECA data table similar to that shown in Table 6 and 

fill in the role’s name and its possible variation points. 

b. Then, for each of the variation points possible, listed in the role’s Role 

Variation Points Schema (see Section 4.2.2.2): 

i. For each of the pieces of data listed in the Permissions section of 

the Variation Point Schema:  

a. Provide the event name in the “Data” column.   

b. Apply each of the failure mode keywords (i.e., “incorrect 

value”, “absent value”, “wrong timing” and “duplicated 

value”) to the data.  For each keyword: 

i. Provide the data failure mode keyword in the “Failure 

Mode” column.  

ii.  Describe the possible local effect(s) if the keyword 

failure happened to the event under consideration in the 

“Local Effect(s)” column.  The local effect will likely 

only affect this role or this agent and its description 

should not include the propagation of its failure to other 

agents or components of the global system.   
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iii.  Describe the possible system-level effect(s) if the 

keyword failure mode occurred in the “System Effect(s)” 

column.  This column captures the possible emergent 

hazardous behavior from the interaction of the agents 

(e.g., that a collision could occur between spacecraft if a 

spacecraft does not change its position when other 

spacecrafts are expecting it to).    

iv. Give the criticality (e.g., critical, major, average, minor, 

etc.) of this failure as determined by the global effect of 

this failure on the system as a whole in the “Criticality” 

column.   

c. Apply any additional failure modes not captured by the 

provided keywords relevant to the current data and fill in the 

SFMECA row as appropriate. 

The results of the application of the procedure detailed above to the CollisionProtector 

variation point’s data listed in its Permissions section are shown in Table 6, Table 7 and 

Table 8 for the nearbyAsteroids, nearbySpacecraft and position data. 

For example, the SFMECA table for the position data, shown in Table 8, 

describes the local and system-wide effects of the “incorrect value”, “absent value”, 

“wrong timing” and “duplicated value” failures of the position data. Each of these 

failures describe the effect on the local events and other data of the variation point and 

how those can propagate to the system level and potentially cause a collision between 

spacecraft and asteroids. The system-wide effects for the failures are classified at a 

criticality level of either Major or Critical and will likely require mitigation requirements 

to ensure that such failures are not possible in the MAS-PL, as discussed next. 
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Table 6  A Portion of the SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role 
  

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector nearbyAsteroids Incorrect Value The variation point belief of the 
positions of nearby asteroids may be 
incorrect. The riskForSystemFactor 
and collisionRiskFactor data may be 
incorrect and the Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the wrong data. The 
RequestAsteroidPositions  protocol 
may provide inaccurate information 
upon request.   

The spacecraft will use incorrect 
values of the locations of nearby 
asteroids and may unknowningly 
maneuver too close to an asteroid 
and collide with it. The spacecraft 
may also provide the incorrect 
information to other spacecraft 
through the RequestAsteroid 
Positions protocol causing other 
spacecraft to potentially collide into 
an asteroid. The incorrect data may 
also invalidate the scientific data 
collected on the asteroids.    

Critical 

  

 

Absent Value The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or corrupted since no location 
values for nearby asteroids were 
available. The Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the unavailable data.  

The spacecraft will have no 
information on the location of 
nearby asteroids and will need to 
request the locations via the 
RequestAsteroidPositions  
protocol. May cause a collision 
with an asteroid since the locations 
are unknown. May corrupt some of 
the scientific data collected on the 
asteroids or cause the execution of 
the variation point to freeze.   

Major 

  

 

Wrong Timing 
 

The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or outdated since the location 
of nearby asteroid data is old. The 
Analyze3DModel, EvaluateRiskTo 
Goal and MoveToAvoidCollision 
events may result in outdated output. 

The spacecraft may have made 
maneuvering decisions based on 
outdated information of the 
location of nearby asteroids. This 
may cause a collision with an 
asteroid since the locations are 
outdated.  

Major 

  

 

Duplicated Value The Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may be 
uneedingly exectuted twice since the 
data was updated twice.  

The spacecraft will may have had 
to execute the Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events 
twice possibly delaying the 
response to request from other 
spacecraft. 

Minor 
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Table 7  A Portion of the SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role 
 

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector nearbySpacecraft Incorrect Value The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or corrupted since no 
location values for other nearby 
spacecraft are available. The 
DetectNearbySpacecraft, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the incorrect. 

The spacecraft will use incorrect 
values of the locations of nearby 
spacecraft and may unknowningly 
maneuver too close to another 
spacecraft and collide with it. The 
spacecraft may also provide the 
incorrect information to other 
spacecraft through the 
RequestSpacecraftLocations 
protocol causing other spacecraft to 
potentially collide.  

Major 

  

 

Absent Value The riskForSystemFactor and 
collisionRiskFactor data may be 
missing or corrupted since no 
location values for other nearby 
spacecraft are available. The 
DetectNearbySpacecraft, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the unavailable 
data. 

The spacecraft will have no 
information on the location of 
nearby spacecraft and will need to 
request the locations via the 
RequestSpacecraftLocations  
protocol. May cause a collision 
with an spacecraft since the 
locations are unknown. 

Critical 

  

 

Wrong Timing 
 

The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or outdated since the 
location of nearby asteroid data is 
old. The DetectNearbySpacecraft, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the outdated data. 

The spacecraft may have made 
maneuvering decisions based on 
outdated information of the 
location of nearby spacecraft. This 
may cause a collision since the 
locations are outdated. 

Critical 

  

 

Duplicated Value The EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
be uneedingly exectuted twice since 
the data was updated twice. 

The spacecraft may report to others 
that it is malfunctioning since it 
received duplicated values.  

Minor 
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Table 8  A Portion of the SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role 
 

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector position Incorrect Value The variation point uses the incorrect value 
of its current position possibly affecting 
the DetectNearbySpacecraft, Evaluate 
RiskToGoal, MonitorNearyby Asteroids 
and MoveToAvoidCollision events. This 
may also cause the variation point to 
incorrectly change its riskForSystemFactor 
data and generate inaccurate collision 
RiskFactor, riskToGoal Factor, nearby 
Asteroids and nearbySpacecraft data.  

The spacecraft does not know 
its actual position and may 
report a false position to other 
spacecraft via the 
RequestSpacecraftLocations 
protocol potentially causing a 
collision. 
 

Critical 

  

 

Absent Value The missing or corrupted value of its 
current position may affect the 
DetectNearbySpacecraft, EvaluateRisk 
ToGoal, MonitorNearybyAsteroids and 
MoveToAvoidCollision events since  the 
data is unusable. This may also cause the 
variation point to corrupted its 
riskForSystemFactor data and generate 
corrupted collisionRiskFactor, 
riskToGoalFactor, nearbyAsteroids and 
nearbySpacecraft data. 

The spacecraft does not know 
its actual position and may 
report a false position to other 
spacecraft via the Request 
SpacecraftLocations protocol 
potentially causing a collision. 
Alternatively, the spacecraft 
uses the missing or corrupted 
value and may collilde into a 
nearby spacecraft.  
 

Critical 

  

 

Wrong Timing 
 

The variation point uses the outdated value 
of its current position possibly affecting 
the DetectNearbySpacecraft, 
EvaluateRiskToGoal, 
MonitorNearybyAsteroids and 
MoveToAvoidCollision events. This may 
also cause the variation point to incorrectly 
change its riskForSystem Factor data and 
generate outdated collisionRiskFactor, 
riskToGoal Factor, nearbyAsteroids and 
nearbySpacecraft data. 

The spacecraft may have made 
maneuvering decisions based 
on outdated information of 
position potentially causing a 
collision. 

Major 

  

 

Duplicated Value The variation point uses the duplicate 
position information to execute the 
DetectNearbySpacecraft, 
EvaluateRiskToGoal, 
MonitorNearybyAsteroids and 
MoveToAvoidCollision events twice.  

The spacecraft may report to 
others that it is malfunctioning 
since it received duplicated 
values of its current position. 

Minor 
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5.2.3  Deriving Safety Requirements from the SFMECA  Tables 

The development of the Software Failure Modes, Effects and Criticality Analysis 

(SFMECA) event and data tables for the variation points of a role identifies the possible 

local and system effects of the failure of an event. In addition, the creation of the 

SFMECA tables provides the software engineer with the opportunity to identify missing 

safety requirements, discover the interactions and relationships between the events and 

data and/or verify the system design and requirements specifications.   

A SFMECA starts with the failure of a software component or subsystem, 

detailed in the “Local Effects” column, and then looks at its effect on the overall system, 

documented in the “System Effects” column. Applying the structured procedure to create 

the SFMECA for a multi-agent system product line (MAS-PL) in the Gaia-PL 

methodology, as described in Sections 5.2.1 and 5.2.2, yields a list of possible accidents 

that could compromise the success of the system along with their potential causes. This 

analysis may reveal safety requirements that should be added to the variation points of a 

role to prevent the propagation of the failure to the system level.  

For example, the “omission” failure mode keyword of the MoveToAvoidCollision 

event of the CollisionProtector variation point, shown in Table 5, revealed in this case 

study that some verification was needed for the spacecraft itself and the nearby spacecraft 

that it had indeed maneuvered to the desired position. To achieve this, a 

DetermineNewPosition event and a RequestVerifyPosition protocol could be added to 

provide the variation point with this needed functionality. This additional functionality, 

not included in the original requirements, could better prevent the spacecraft and nearby 

spacecraft from incorrectly assuming the location of a spacecraft and may avoid 

collisions.   
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Similarly, the “wrong timing” failure mode keyword of the nearbySpacecraft data 

of the CollisionProtector variation point, shown in Table 7, illustrated the need for 

timestamps to be included with the position data of nearby spacecraft so that each 

spacecraft can assess the freshness of the data. This information, not originally included 

in the requirements, may allow the CollisionProtector variation point to better prevent 

collisions with nearby spacecraft.  

The application of the SFMECA to the requirements specifications of a MAS-PL 

in Gaia-PL provides insight into missing requirements that may be needed to prevent the 

propagation of the failure from the local level to a system-wide level. It was found that 

the missing safety requirements discovered in this process were often not considered 

during the development of the requirements specifications of the MAS-PL from its 

requirements. Further, the structured process described to derive the SFMCEA for a 

safety-critical MAS-PL.   

The application of the failure mode keywords to each event and data of a role 

variation point requires deep consideration of their possible interaction and effect on the 

other data and events. This differs from the development of the original requirements 

specifications, described in Section 4.2.2, from the MAS-PL requirements documented in 

the Commonality and Variability Analysis (CVA), described in Section 4.2.1, since a 

better understanding of the relationships between events and other events as well as 

events and data is needed.  

Finally, the creation of a SFMECA provides some verification of the design of the 

variation points and their requirements specifications in that it further reveals the 

interactions of the events and data of a variation point and requires the developer to better 

think about the variation point’s functionality and its effect on the entire system. Further, 

it allows a software engineer to identify the hazardous states that the MAS-PL may enter 
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and provide them with the chance to derive requirements to prevent a system failure or 

verify that the existing mitigation requirements will avoid the failure. This provides 

assurances that certain classes of failure modes that might occur in individual agents will 

not produce unacceptable effects in the composite system and demonstrates the ability of 

a variation points failure-monitoring and failure mitigation software tasked with the 

system safety requirements to safety standards.  

The opportunity to derive further safety requirements and better demonstrate the 

compliance of the design in handling hazardous situations for a MAS-PL using the 

SFMECA generated in this section will be discussed in Section 5.4 as a part of the Bi-

Directional Safety Analysis (BDSA) technique.  

5.2.4  Deriving the SFMECA Tables for a Specific Pr oduct in a MAS-PL 

Sections 5.2.1 and 5.2.2 described the creation of the SFMECA event and data 

tables for the variation point of a role in Gaia-PL. The creation of the SFMECA safety 

analysis asset occurs in Gaia-PL’s Analysis and Design Phase, as shown in Figure 30, 

and uses Gaia-PL’s Variation Point Schemas. The Analysis and Design Phase of Gaia-PL 

occurs within the domain engineering phase of Weiss and Lai’s Family-Oriented 

Abstraction, Specification, and Translation (FAST) model [88]. Thus, the SFMECA 

derived represents all the roles and variation points possible in any agent of the multi-

agent system product line (MAS-PL).  

In Gaia-PL’s Detailed Design Phase (FAST’s application engineering phase), an 

agent is designed and developed by selecting the roles and each role’s set of possible 

variation points for a specific agent, as described in Section 4.2.3. The SFMECA tables 

produced by following the structured procedure of Sections 5.2.1 and 5.2.2 will produce 

SFMECA tables not relevant to a specific agent (e.g., the agent does not contain a role or 
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variation point documented in the SFMECA). Thus, any given agent’s SFMECA safety 

analysis artifacts will be a subset of the SFMECA tables.  

The partitioning of the SFMECA tables by the roles and variation points, 

described in Sections 5.2.1 and 5.2.2 eases the derivation of the created SFEMCA tables 

during the design and development of specific agent through reuse. The SFMECA for a 

specific agent can be derived by simply including the roles and variation points that are 

possible in the agent and discluding the roles and variation points not possible in the 

agent. For example, in the Prospecting Asteroid Mission (PAM) case study used in this 

dissertation, any agent with the CollisionProtector variation point would include the 

SFMECA tables given in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. 

Similarly, any PAM agent not including the CollisionProtector variation point would not 

have any of these tables.   

This process can provide the SFMECA safety analysis assets for all allowable 

configurations of an agent in a MAS-PL (e.g., all 160 possible spacecraft in the PAM 

case study).    

5.2.5  Accommodating MAS-PL Evolution in the SFMECA  in Gaia-PL  

In Section 4.3.2, we discussed the evolution of a multi-agent system product line 

(MAS-PL) in Gaia-PL. A MAS-PL can evolve in three ways relevant to this work: 1. new 

agents may be added to the system; 2. new roles with new functionality may be created 

that future agents can employ; and 3. new variation points may be added to existing roles 

that future agents can employ. To consider the safety consequences of the new 

functionality of the evolved MAS-PL, the Software Failure Modes, Effects and Criticality 

Analysis (SFMECA) must be updated.  

The addition of a new agent(s) with no new functionality into an already deployed 

MAS-PL only necessitates the inclusion of the SFMECA event and data tables for the 
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roles and the variation points that are included in the agent. The partitioning of the 

SFMECA tables by the roles and variation points, described in Sections 5.2.1 and 5.2.2, 

allows the specific agent’s safety analysis artifacts to be described by simply selecting the 

relevant SFMECA tables, as was discussed in Section 5.2.4.  

The inclusion of a new role(s) into a MAS-PL requires the addition of new 

functionality not included in the original deployment of the agents in the MAS-PL. The 

new roles added to the MAS-PL can then be included in future agents of the system. The 

failure to assess the new agents for potential hazards may compromise the entire MAS-

PL. Thus, the inclusion of a new role necessitates the SFMECA safety analysis to be 

updated to include the functionality of the new role and the possible system-wide effects 

of the functionality of the new role if it fails. The inclusion of a new role into a MAS-PL 

will often require the inclusion of new variation points to implement the functionality of 

the new role. 

To accommodate the inclusion of new role(s) and/or variation points into a MAS-

PL, the SFMECA must be updated to reflect the updates. First, the new Gaia-PL Role 

Variation Points Schema(s) and Variation Point Schema(s) must be developed to 

document the new requirements specification for the new role(s) and/or variation points, 

as described in 4.3.2. After documenting the new functionality, the SFMECA event and 

data tables for the new variation points can be derived using the structured process 

described in Section 5.2.1 (to create the SFMECA event tables) and Section 5.2.2 (to 

create the SFMECA data tables).    

These steps will accommodate the types of evolution possible in a MAS-PL so 

that the SFMECA safety asset can be updated and used for future versions of agents of 

the system. 
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5.2.5  Discussion 

The structured process to derive and document the Software Failure Modes, 

Effects and Criticality Analysis (SFMECA) of a multi-agent system product line (MAS-

PL) from Gaia-PL’s Variation Point Schemas inherits the reusability of the Gaia-PL 

methodology and can accommodate all allowable configurations of an agent in a MAS-

PL (e.g., all 160 possible spacecraft in the PAM case study).  

The partitioning of the SFMECA tables by the roles and variation points of a 

MAS-PL similarly associates each variation point with a set of SFMECA event and data 

tables. For those roles and variation points that are common in every agent (e.g., the 

Navigator role, discussed in Section 4.2.2.1), the SFMECA tables will always be 

included as a part of the safety analysis assets of an agent. However, for those roles and 

variation points that may or may not be included in an agent (e.g., the “Leader” variation 

point of the Self-Optimizer role, discussed in Section 4.2.2.2), the SFMECA tables will 

not always be included as a part of the safety analysis assets of an agent. Thus, the 

SFMECA safety analysis assets created using the approach described in this section are 

reusable for the agents of a MAS-PL in the same way that the Variation Point Schemas, 

discussed in Section 4.2, are reusable.  

The structured process to derive and document the SFMECA of a MAS-PL from 

Gaia-PL’s Variation Point Schemas could be applied, without change, to the Role 

Schema used in Gaia. Yet, the inability of Gaia to hierarchically capture the variation 

points of a role, as described in Sections 4.1.2.3, and its inability to partition the common 

and variable portion of role, as is done in Gaia-PL’s variation points, the SFMECA tables 

would create a large amount of redundancy to capture the failure modes and effects of the 

redundantly documented functionality, as described in Section 4.4.2. Thus, the reusability 

and development cost would be lessened, similarly to that described in Section 4.4.2, 
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using Gaia-PL and the SFMECA process described in this section compared to if it was 

applied to the Role Schema’s in the Gaia methodology.     

5.2.6  Summary 

This section discussed our adaptation of Software Failure Modes, Effects and 

Criticality Analysis (SFMECA) in our Gaia-PL Agent-Oriented Software Engineering 

(AOSE) methodology to produce a safety analysis technique specifically for safety-

critical MAS-PL. We provided a structured process to analyze the Variation Point 

Schemas produced in the Gaia-PL methodology to discover the ways in which events and 

data of an agent can fail and the effects of the failures on the entire system.  

The SFMECA captures the propagation of undesirable behavior in the MAS-PL. 

That is, the SFMECA process described in this section describes a failure at a local level 

(i.e., the role or variation point of a single agent) and details the possible consequences of 

the propagation of this failure at a system-wide level (i.e., the collection of agents in a 

multi-agent system). It is important to capture such behavior in a MAS-PL so that the 

collected behavior of the system is known and precautions can be made to prevent 

undesirable behavior.   

 The SFMECA can also aid in discovering missing safety requirements, designing 

mitigation requirements to prevent failures and verify existing safety requirements. 

Finally, we illustrated how the SFMECA safety asset can be reused for a specific agent 

given its roles and variation point and how the SFMECA can accommodate the evolution 

of a MAS-PL.  

The next section describes the backward search, safety analysis technique used in 

this work, Product-Line Software Fault Tree Analysis (PL-SFTA) and its tool 

PLFaultCAT.  
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5.3  Product-Line Software Fault Tree Analysis and PLFaultCAT  

Section 5.2 discussed our forward-based, safety analysis technique, an adapted 

Software Failure Modes, Effects and Criticality Analysis (SFMECA), for a safety-critical 

multi-agent system product line (MAS-PL). The SFMECA starts with the failure of a 

role’s variation point and then looks at its effect on the overall system. However, the 

results of a forward analysis, such as SFMECA, may not cover all possible hazards of a 

system and fail to consider the combination of multiple events and their effect on possible 

system-wide hazards [44]. For a safety-critical system, it is also often necessary to 

perform a backward-based, safety analysis to better ensure that hazardous states and their 

causal events are identified and mitigated against.      

This section details the backward analysis search technique, product-line software 

fault tree analysis (PL-SFTA), and its tool, PLFaultCAT (Product-L ine Fault Tree 

Creation and Analysis Tool), that we have developed and used in this work to analyze a 

safety-critical MAS-PL. This section offers additional assurance to software engineers 

designing and developing a safety-critical MAS-PL by providing a tool-supported 

software safety analysis technique. PLFaultCAT is an interactive, partially-automated 

software support application to aid software engineers with the visualization and pruning 

process of a PL-SFTA. Specifically, the tool exploits the reusability inherent in product-

line engineering by deriving reusable safety analysis assets (i.e., the product-line 

members' fault trees) for future systems within the existing product line.  

5.3.1  Product-Line Software Fault Tree Analysis Ov erview  

The product-line Software Fault Tree Analysis (PL-SFTA) maintains the safety 

analysis qualities of traditional Software Fault Tree Analysis (SFTA) while 

accommodating reusability in product-line engineering. Traditional SFTA targets the 

safety analysis of potentially harmful states for a single product. The PL-SFTA, however, 
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incorporates the variabilities among the different members of a product line and 

contributes to the safety analysis for the entire product line without performing traditional 

SFTA serially on each product-line member. A new SFTA for a product line member can 

be derived almost automatically with PLFaultCAT using its pruning algorithm. The aim 

of this technique and tool is to support the confident reduction of the safety analysis 

needed on a new product in the product line and, ultimately, a less expensive and shorter 

product development process. 

Section 5.3 illustrates how and to what extent the PL-SFTA technique, supported 

by the PLFaultCAT tool, can be used by software engineers as a reusable safety analysis 

for designing and developing a multi-agent system product line (MAS-PL). Like the 

Gaia-PL methodology detailed in Chapter 4 and the SFMECA approach described in 

Section 5.2, the PL-SFTA technique employs the Family-Oriented Abstraction, 

Specification, and Translation (FAST) model’s domain and application engineering 

phases [88].  In the domain engineering phase, the PL-SFTA is constructed with the aid 

of the PLFaultCAT tool. The application engineering phase develops and performs the 

safety analysis on new product-line members (i.e., the agents of a MAS-PL). The 

construction of a PL-SFTA, aided by PLFaultCAT, during the domain engineering phase 

provides the means for reusing the PL-SFTA for new members (i.e., agents of a MAS-

PL).  Within the application engineering phase we utilize PLFaultCAT to facilitate the 

derivation of new product-line members' fault tree(s).  

Figure 32 provides an overview of the construction and derivation process of a 

PL-SFTA within the two-phased FAST approach.  The role of PLFaultCAT in this 

framework primarily resides in the application engineering phase.  Although 

PLFaultCAT can assist in the initial graphical representation of a product-line fault tree, 

the chief contribution of the PLFaultCAT tool is to automatically produce the fault tree 

artifacts that software engineers desire at the end of the application engineering phase. 
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Figure 32  An Overview of the PL-SFTA Safety Analysis Technique 
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To assist in the creation of a PL-SFTA, PLFaultCAT can utilize DECIMAL [23], 

[58], [59] (described in Section 2.1.4 and used within the Gaia-PL methodology in 

Section 4.2.1.2) to aid in: 

• Documenting a MAS-PL’s commonalities, variabilities and dependencies  

• Defining an agent of a MAS-PL through the selection of variabilities 

• Automatically verifying consistency of a new agent with the MAS-PL’s 

dependencies 

PLFaultCAT can then link to the requirements defined in DECIMAL to associate with a 

PL-SFTA’s leaf nodes. The use of DECIMAL in conjunction with PLFaultCAT provides 

better management, traceability and automated verification of a product-line’s 

requirements as well as the creation, derivation and analysis of a PL-SFTA.  

In addition to aiding the creation of a PL-SFTA and the derivation of the SFTA 

for a product-line member, PLFaultCAT provides several automated safety analyses to 

identify failure points and safety-critical requirements. Figure 33 provides an overview of 

these automated safety analysis as well as the overview of DECIMAL and PLFaultCAT’s 

role in the design and development of a safety-critical product line. A minimum-cut set 

analysis analyzes a single PL-SFTA and identifies the smallest sets of events that must 

occur such that the root node accident will occur [44]. A probability report calculates the 

probability of occurrence of the root node given the probabilities of all other nodes. A 

single-point failure analysis searches the set of SFTAs for single-point failures (i.e., those 

hazards connected by a logical OR gate in the SFTA) at user-specified depth [44]. A 

variability failure contribution analysis analyzes all the PL-SFTAs to find those 

variabilities or combination of variabilities that contribute to a high number of hazards.  

The single-point failure analysis and variability failure contribution analyses, in 

particular, can aid in identifying latent safety requirements. For example, a single-point 

failure found in a product-line SFTA may necessitate new safety requirements (e.g., a  
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Figure 33  An Overview of DECIMAL and PLFaultCAT’s Role in the Design and 

Development of Safety-Critical Product Lines 

 

safety guard) to transform the single-point failure (i.e., an OR gate) into a non single-

point failure (i.e., an AND gate). Similarly, the variability failure contribution analysis 

may indicate variabilities that should not be allowed to be present in any product-line 

member (i.e., a product-line dependency).   

The remainder of Section 5.3 details PLFaultCAT’s software architecture, the 

creation of a PL-SFTA for a product line, the derivation of a SFTA for a product-line 

member and the additional safety analysis opportunities available using PLFaultCAT 

illustrated using the Prospecting Asteroid Mission (PAM) case study.  
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Note that although the work described in this section illustrates our PL-SFTA 

technique and its tool, PLFaultCAT, on a MAS-PL, we describe its application to a 

general product line. Section 5.3.6 delineates a specific, alternative approach using PL-

SFTA and PLFaultCAT to perform the safety analysis of a MAS-PL. Except for Section 

5.3.6, the work described in Section 5.3 is applicable to any safety-critical software 

product line. Our papers in [17], [18], [24], [45], [47], [48] partially illustrate the PL-

SFTA technique using a traditional product line application (i.e., not a MAS-PL).    

5.3.2  PLFaultCAT Overview and Software Architectur e  

This section introduces and briefly describes the PLFaultCAT tool. PLFaultCAT 

is the software tool developed to aid in both the domain engineering phase for initial 

product-line software fault tree analysis (PL-SFTA) development and representation as 

well as in the application engineering phase for the derivation of product line members' 

software fault tree(s) from the PL-SFTA developed in the domain engineering phase. In 

this section, we present an overview of the PLFaultCAT tool and give a description of it’s 

the software architecture.    

5.3.2.1  PLFaultCAT Overview 

PLFaultCAT (Product-L ine Fault Tree Creation and Analysis Tool) is a tool-

assisted visualization and pruning application for the creation and analysis of product-line 

software fault trees. PLFaultCAT is an extension of the FaultCAT application [4].  

FaultCAT is an open-source fault tree creation tool written in Java that is primarily 

geared towards analyzing a system for faults to determine how faults can affect other 

parts of the system [4]. FaultCAT does this by attaching fault probabilities to each node.  

FaultCAT provides a user the ability to graphically construct and represent the nodes and 

logic gates of a traditional fault tree. A complete discussion of the construction of a PL-

SFTA using PLFaultCAT is given in Section 5.3.3.   
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PLFaultCAT internally stores the fault trees in an XML format, making it easy to 

manipulate and alter. This is important because product lines routinely evolve, and the 

safety analysis must accordingly be updated. PLFaultCAT builds on the existing XML 

storage format of a fault tree in FaultCAT. PLFaultCAT utilizes the XML DOM parser to 

perform the pruning necessary to generate a product-line member's fault tree(s) from the 

PL-SFTA during the pruning process of the application engineering phase.  A full 

discussion of the pruning algorithm and how it is handled in PLFaultCAT is given in 

Section 5.3.5. In addition to the graphical and XML view of the fault tree, PLFaultCAT 

presents a textual overview of a fault tree that lists the nodes of a fault tree, the type of a 

leaf node (either a commonality or variability) and the value of a leaf node commonality 

or variability.           

5.3.2.2  PLFaultCAT Software Architecture 

The PLFaultCAT software architecture is built directly upon the software 

architecture of the original FaultCAT application. Thus, the majority of the PLFaultCAT 

tool inherits the base software architecture of FaultCAT. PLFaultCAT enhances 

FaultCAT by adding onto the software architecture the functionality needed to 

accommodate the creation and analysis of a PL-SFTA. Figure 34 shows the architecture 

of the PLFaultCAT application. 

PLFaultCAT maintains all the functionality of FaultCAT and can still 

accommodate the creation and analysis of a single product software fault tree. To achieve 

this, the original FaultCAT software architecture, including the class structures, is 

maintained. Any additional functionality added to the already existing classes of 

FaultCAT has been tested to ensure that it does not interfere with FaultCAT's intended 

functionalities.  
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Figure 34  PLFaultCAT’s Software Architecture 

5.3.2.3  Implementation of PLFaultCAT 

 The major contribution to the PLFaultCAT tool is to add the nearly automatic 

pruning process of deriving a product-line member's fault tree from the PL-SFTA.  

Within PLFaultCAT, this was implemented as additional Java classes not found in 

FaultCAT. These Java classes provide the interactive, GUI-driven interface to allow a 

user to actively select the variabilities to include in any new product-line member. The 

selected variabilities then are used to properly prune the stored PL-SFTA to produce the 

derived product-line member's software fault tree.   

To facilitate the creation of a PL-SFTA, PLFaultCAT provides the ability to 

define a leaf node within a fault tree to be a fault associated with either a commonality 

requirement/component or a variability requirement/component. Defining leaf nodes as 

either being coupled to a commonality or a variability allows for the pruning process to 

determine which branches or subtrees are relevant for a given fault tree and a selected set 

of variabilities.   
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PLFaultCAT provides the ability to specify the value(s) for a particular 

commonality or variability comprising the product line. Assigning the value(s) of a 

particular commonality or variability to a leaf node within a fault tree provides (1) an 

association of the leaf node with specifically what the choice of variability must be in 

order to contribute to its parent event node and its associated subtree and (2) a heuristic 

for the pruning algorithm to resolve those branches or subtrees that are applicable for a 

given fault tree and a selected set of variabilities and their values. 

Lastly, PLFaultCAT was originally developed as a tool separate from DECIMAL 

(described in Section 2.1.4 and used within the Gaia-PL methodology in Section 4.2.1.2) 

as described in [24]. PLFaultCAT and DECIMAL have now been integrated and 

extended in order to provide software engineers a single solution to requirements 

management and automated software safety analyses across the product-line lifecycle. 

The new features included in PLFaultCAT in this integration include: 

• Linking product-line requirements and verified product-line members from 

DECIMAL to fault tree nodes in PLFaultCAT 

• Automating the derivation of the SFTAs of a new product-line member 

from the set of product-line SFTAs in PLFaultCAT 

• Automating a user-defined, single-point failure analysis for the set of 

product-line or product-line member SFTAs 

• Automating the analysis and identification of the variability failure 

contribution analysis to identify safety-critical requirements for the product 

line   

These additional features required further functionality, implemented in Java, to be 

included in PLFaultCAT that was not originally found in the FaultCAT tool.  
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5.3.3  Constructing a Product-Line Software Fault T ree  

This section details the construction of a product-line Software Fault Tree 

Analysis (PL-SFTA) for a safety-critical software product line. The creation of the PL-

SFTA for a software product line occurs during the domain engineering phase of the 

Family-Oriented Abstraction, Specification, and Translation (FAST) model [88]. In the 

Gaia-PL methodology, shown in Figure 30, the creation of a PL-SFTA for a multi-agent 

system product line (MAS-PL) occurs during the Analysis and Design Phase.  

In this section, we first discuss the product-line requirements and the list of 

possible hazards needed to develop a PL-SFTA. We then provide the steps to construct a 

product-line software fault tree in PLFaultCAT.  

5.3.3.1  Identifying Hazards for a PL-SFTA 

As shown in Figure 32, the safety analysis for the domain engineering phase of 

product-line development typically results from a Preliminary Hazard Analysis (PHA).  

A PHA identifies the systems' hazards at an early stage of development with the aim of 

determining their impact on the system [44]. A domain hazards list will often exist prior 

to the development of the product line from historical data or domain expertise. If no 

preexisting hazards list is available, procedures exist to establish a workable, 

comprehensive list [29]. The creation of the hazards list requires extensive domain 

expertise and may be performed in parallel with the documenting of the software 

product-line requirements in a Commonality and Variability Analysis (CVA), described 

in Section 2.1.1 and detailed in the context of Gaia-PL in Section 4.2.1.1.   

Alternatively, states from the "System Effects" column of a Software Failure 

Modes, Effects and Criticality Analysis (SFMECA), described in Section 2.3.2.2 and 

adopted for the use in Gaia-PL in Section 5.2, can be used as a source of hazards for the 

root nodes of the product-line Software Fault Tree Analysis (SFTA) as they represent 
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states that must be avoided. For example, for the Prospecting Asteroid Mission (PAM) 

case study used throughout this dissertation, possible hazards from the SFMECA table 

shown in Table 8 could be “A spacecraft to spacecraft collision occurred” and “A 

spacecraft to asteroid collision occurred”.  

Following the initial product line requirements acquisition in the FAST method, a 

precise definition of a product line is achieved through the creation of a CVA, as 

described in Section 2.1.1 and detailed in the context of Gaia-PL in Section 4.2.1.1. 

Figure 5 and Figure 6 provide a portion of the CVA for the PAM case study that was 

used in Chapter for to develop the requirements specifications in the Gaia-PL 

methodology and will be used as a running example to illustrate the activities involved in 

the domain and application engineering phase use of PLFaultCAT and the PL-SFTA 

technique. In particular, Figure 5 and Figure 6 display the commonalities and variabilities 

associated with the safety-critical SolarStormWarner (discussed in Section 5.2.1 and 

shown in Appendix D, page 296) and CollisionProtector (discussed in Section 4.2.2.3 

and shown in Appendix D, page 301) roles and their variation points. Table 2 gives a 

portion of the Parameters of Variation document detailing the allowable options for the 

variabilities listed in Figure 6.             

A SFMECA, described in Section 5.2, searches the failure modes possible in the 

product line, determines their potential local effects and establishes their potential effects 

on the other members of the system [53]. Excerpts of the SFMECA for the PAM case 

study were given in Section 5.2.1. This portion of the SFMECA includes only those 

failure modes relevant to the possible collision of a multiple spacecraft or the collision of 

a spacecraft with an asteroid. Note that while this particular SFMECA concentrates 

mainly on the software failures of the PAM case study, it may also include those 

hardware failures (which will typically contribute as leaf nodes) that contribute to the 

propagation of software failures.   
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If a SFMECA exists for a product line, this analysis can produce the necessary 

domain knowledge to begin construction of the PL-SFTA using the prescribed steps 

detailed in the following section. If a SFMECA does not exist, construction of the PL-

SFTA proceeds directly to Step 2 of Section 5.3.3.2 after assembling an intermediate 

node tree without the aid of a SFMECA. The following section describes our steps to 

construct a PL-SFTA for a safety-critical product line using the PAM MAS-PL case 

study.  

5.3.3.2  Constructing a PL-SFTA for a Hazard 

The construction of the product-line SFTA using PLFaultCAT proceeds through 

three basic steps: 

Step 1. Determine the root node and generate the intermediate node tree.  As 

explained previously and shown in Figure 32, the root node hazard of any SFTA often 

derives from a preexisting hazards list or a list generated during the Preliminary Hazard 

Analysis (PHA) phase, possibly from a Software Failure Modes, Effects and Criticality 

Analysis (SFMECA).   

Causal events can be viewed as contributing events to the root node and are 

derived from the SFMECA or equivalent domain expertise.  The SFMECA provides the 

causal events in the "Cause of Failure" or “Local Effect(s)” column as well as the 

potential contributing nodes leading to the causal event. (Note that some work, including 

[17], [24] and [44], has used a “Cause of Failure” column in place of a “Local Effect(s) 

column to describe the origin of the failure mode. In this work, and our previous work in 

[22], we use the “Local Effect(s)” column to better indicate that the failure is originating 

from a role or variation point of an agent. However, the information contained in these 

columns is essentially identical.) Gathering the causal events, we construct an 

intermediate node tree to establish the cause-event hierarchy. The intermediate node tree, 
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while not necessary in the construction of a PL-SFTA, aids in jump-starting the 

organization and analysis of the PL-SFTA.  Essentially, the intermediate node tree 

represents a typical fault tree without the Boolean logic gate relationships between causal 

events and effects.  To determine the intermediate node tree using this process, we use 

the PL-SFTA_CREATE algorithm, shown in Figure 35, starting with the root node event 

as the initial event. 
  

PL-SFTA_CREATE(event): 

STEP 1 Create node in tree for event 

STEP 2 If node is not root node then 

STEP 2.1 Attach node to parent node 

STEP 3 Scan SFMECA "Possible Effect(s)" column for event 

STEP 4 For each row with event found do 

STEP 4.1 event = event listed in "Local Effect(s)" column 

STEP 4.2 PL-SFTA_CREATE   (event)   

Figure 35  PL-SFTA_CREATE Algorithm  
  

Following the PL-SFTA_CREATE algorithm, an intermediate node tree is 

created.  Note that this intermediate node tree does not contain any Boolean logic gates, 

nor does it include any information associating the product line’s commonality variability 

requirements to the hazard.  Applying this algorithm for the root node "A spacecraft to 

asteroid collision occurred" using the SFMECA tables from Section 5.2.1 yields the tree 

depicted in Figure 36 as one of the subtrees that could potentially cause the root node 

hazard. Additionally, Figure 37 illustrates a portion of the intermediate node tree for the 

root node “A spacecraft received solar radiation damage”. We will use these as examples 

to illustrate the steps throughout this section.  
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Figure 36  An Excerpt of an Intermediate Node Tree for the Spacecraft to Asteroid 

Collision Hazard  

 

PLFaultCAT offers no distinct functionality to aid in completion of this step of 

the product-line software fault tree creation.  In fact, PLFaultCAT cannot graphically 

construct a tree as shown in Figure 36 and Figure 37 without Boolean logic gates relating 

causal events to the affected events (this is a result from inheriting the software 

architecture and functionality of the original FaultCAT tool).  Rather, the intermediate 

node tree, constructed manually, acts as an input to PLFaultCAT.    
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Figure 37  An Excerpt of an Intermediate Node Tree for the Spacecraft Received Solar Storm Damage Hazard 



 151 

 

 

Step 2. Refine the intermediate node tree and input into PLFaultCAT.  The 

intermediate node tree produced in Step 1 can contain nodes that do not reflect the level 

of detail needed. A single node could actually be the effect of a combination of causes 

not captured in the SFMECA since a SFMECA typically cannot capture a series of causes 

leading to a failure event. Thus, domain expertise is needed to analyze the tree for 

completeness, capture additional events leading to a failure (e.g., events from the 

environment) and to refine nodes as needed. Using our intermediate node tree shown in 

Figure 37 for example, it may be desirable to further detail the causes of the node 

"Spacecraft failed to use its solar sail as a shield" or, if possible, reference a separate fault 

tree for this failure that details the causal factors.   

Depending on the level of detail presented in the SFMECA, it may provide insight 

into what kind of logic gate should be applied to join children event nodes to their 

parents. Traditionally, SFMECA only considers a single failure at a time, thus implying 

logical OR gates throughout a PL-SFTA. This is even more evident when the SFMECA 

distinguishes the variabilities from each individual failed Item/Event. However, our 

experience has shown that some detailed SFMECAs provided enough causal information 

to warrant a logical AND gate. For example, using our SFMECA, shown in Table 4, as 

well as the intermediate node tree, shown in Figure 36, we can infer that the nodes 

"Spacecraft failed to correct corrupted memory" and "Spacecraft did not backup 

memory" must be joined by a logical AND gate in order to cause the "Spacecraft’s 

memory is corrupted" node. Intuitively, this makes sense. Because of the advanced error 

trappings inherent in a PAM spacecraft, the software will only incur corrupt memory if 

there indeed has been a memory failure and the PAM spacecraft has failed to recognize a 

memory failure.  

The caveat to this approach is that the SFMECA should only be used as a 

heuristic guide aided by domain knowledge and experts to produce the ultimate logic gate 
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represented in the PL-SFTA. Thus, the SFMECA should be mined to extract as much 

relevant information as possible to assist the construction of the PL-SFTA.  

Note that a PL-SFTA can be constructed using other methods as input. For 

example, Leveson asserts that other safety analysis techniques such as a Cause-

Consequence Diagram, an Event Tree Analysis, a Hazards and Operability Analysis 

(HAZOP) and/or a State Machine Model can be used to help guide the construction of a 

SFTA [44]. We illustrated the use of a SFMECA as a guide to constructing the PL-SFTA 

since we used it in Section 5.2 and it had not been described in this manner prior to our 

work in [17].   

In addition to refining each node, we apply domain knowledge to determine the 

necessary logical combination of the children nodes to cause the parent node. This is a 

similar process to traditional fault tree analysis. Using the PLFaultCAT tool and applying 

Step 2 to the intermediate node trees found in Figure 36 and Figure 37 yields the 

intermediate software fault trees depicted in Figure 38 and Figure 39, respectively.    

Aside from allowing the user to graphically construct a fault tree, PLFaultCAT 

allows an annotated description of each node so that the user can attach further details. 

This is especially advantageous in that it provides traceability to the hazard analysis. It 

also can be used to cross-check the completeness of the SFMECA by ensuring that all 

hazard events in the SFTA map to a cause or effect in the SFMECA (i.e., one-way 

traceability). We illustrated the completeness checking of a SFMECA and a PL-SFTA in 

Section 5.4 when detailing the Bi-Directional Safety Analysis (BDSA) for a safety-

critical multi-agent system product line (MAS-PL) using the SFMECA developed in 

Section 5.2.    
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Figure 38  An Intermediate Software Fault Tree for the Spacecraft to Asteroid Collision Hazard in PLFaultCAT 
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Figure 39  An Intermediate Software Fault Tree for the Spacecraft Received Solar Storm Damage Hazard in PLFaultCAT
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Step 3. Consider the influence of variabilities on all leaf nodes and tag each 

node accordingly.  This is the crux of the product-line construction. In this step we 

employ a bottom-up approach to analyze each leaf node and determine which 

commonalities and/or variabilities contribute to causing the root node event to occur. In 

doing this, we associate the range of commonality and variability choices for any 

individual product-line member with how it might influence a particular hazard. Not 

every commonality or variability will have an influence or appear within any given fault 

tree. However, every leaf event node should have an associated commonality, variability, 

and/or basic (primary) event (e.g., an environment or user input).   
   

 

Figure 40  Depicting the Influence of a Commonality for the Spacecraft to Asteroid 

Collision Fault Tree in PLFaultCAT 
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Figure 41  Depicting the Influence of a Variability for the Spacecraft Received Solar 

Damage Fault Tree in PLFaultCAT 

 

When considering a variability's influence on a particular leaf node, we consider 

the parameters of variation allowed. While many variabilities are features that are simply 

present or not present in a product (e.g., a PAM spacecraft will either be able to or not 

able to receive messages from mission control warning of an impending solar storm, see 

V_SP2 in Figure 41), some variabilities represent an allowable numerical or enumerated 
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range for a particular feature (e.g., a PAM spacecraft tasked with monitoring the solar 

disc to detect an impending solar storm can either assume a passive, warm-spare or active 

role, see V_SP1 in Figure 41). Considering the influence of a present or absent variability 

on an event is straightforward; we analyze the influence of the variability being present 

within the product and not functioning as designed.   

If, however, we need to consider an enumerated or range type of variability, we 

must consider the various possibilities within the variability and their influence on fault 

tree events. For large ranges, safety analysis on each potential variability choice would be 

infeasible. Thus, class ranges are used to determine how different ranges could affect 

contributing events [76].  

For example, looking at the node "Detection Failure" in our example, shown in 

Figure 39, and consulting the CVA, shown in Figure 5 and Figure 6 as well as the 

Parameters of Variation table given in Table 2, we conclude that this failure node can 

only occur if the PAM spacecraft has the feature (variability) that it is to constantly 

monitor the solar disc for impending solar storms using the “active” variation point. 

Thus, we annotate this node accordingly to indicate that the node "Detection Failure" can 

only occur when either one of the variabilities (Warm-Spare or Active) is present in a 

product line member. The representation of this is shown in Figure 41.  

If, however, the node relates to a commonality rather than a variability, we link 

the fault tree’s leaf node with the appropriate commonality. For example, looking at the 

node "Position Data" in our example, shown in Figure 38, and consulting the CVA, 

shown in Figure 5 and Figure 6 as well as the Parameters of Variation table given in 

Table 2, we conclude that this failure node occurs for all PAM spacecraft since all 

spacecraft will be able to know its position information. Thus, we annotate this node 

accordingly to indicate that the node "Position Data" failure may occur in every product 

line member since it is a commonality. The representation of this is shown in Figure 40.  
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Using PLFaultCAT makes associating a commonality and/or variability with a 

failure node straightforward. The PLFaultCAT interface allows you to label the "Basic 

Event" nodes, depicted as circles, as a Commonality (shown in Figure 40 under the 

heading "PrimaryEvent type") or as a Variability (shown in Figure 41 under the heading 

"PrimaryEvent type") as well as defining a label or ID for the variability (the textbox 

under the heading "Variability ID"). In the example, in Figure 41, the variability (feature) 

has the label "V_SP1" to correspond with the requirement number listed in the CVA. The 

"Variability ID" describes the variability (feature) so that it will be recognizable later 

when selecting the variabilities to include in a new product line member. For this 

example, we simply annotate "SolarStorm = Active" to indicate that a product line 

member may or may not have this variability (feature).   

The consideration of numerical ranges or values is particularly important because 

often not all values of a variability will contribute to a failure. Applying equivalence class 

partitioning and boundary value analysis concentrates on the fringe numbers and other 

frequently error-prone ranges to improve coverage of possible vulnerabilities. Although 

this situation was not encountered in the PAM case study used in this dissertation, we had 

encountered it in previous cases. For example, a previous product line had a numerical 

range variability that the number of sensors that a product may have varies between 1 and 

5 sensors. In this case, when we encounter the situation where the variability of multiple 

wind sensors can cause a failure node and the commonality of having one wind sensor 

will not, PLFaultCAT can accommodate this case by specifying the variability by 

labeling it a "Variability" PrimaryEvent Type and specifying in the "Variability ID" field 

a label indicating that multiple sensors must be present in the product line member to 

cause the parent failure node. This same approach would be utilized for any enumerated 

variability.   
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If the product-line commonalities and variabilities were previously defined using 

DECIMAL (described in Section 2.1.4 and used within the Gaia-PL methodology in 

Section 4.2.1.2) [23], [58], [59], the association of a requirement with the leaf node of a 

fault tree is much easier. Using PLFaultCAT, we can link a fault tree to the DECIMAL 

XML file for the product line and then select the appropriate requirement using the “Link 

to Requirement” button. This will bring up a table, shown in  

Figure 42, to automatically link the requirement to the leaf node and fill in the 

details of the requirement in the appropriate text fields.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42  Automatically Linking a Product-Line Requirement to a Software Fault 

Tree Node in PLFaultCAT 
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5.3.3.3  Discussion 

Throughout the development and construction of the product-line Software Fault 

Tree Analysis (PL-SFTA) we associate commonalities and/or variabilities with each leaf 

node in the intermediate node tree developed in Step 2 of Section 5.3.3.2. This process 

may yield both a commonality and variability being associated with a single failure node. 

In this case, intuition may suggest disregarding consideration of the variability since the 

causal event will always be present due to the presence of the associated commonality 

node. However, the risk of failure posed by the commonality may be mitigated while the 

risk posed by the variability remains. Hence, the variability must be retained to aid in the 

analysis of the product line, especially as the product line evolves.   

Neither the construction of a PL-SFTA nor PLFaultCAT captures product-line 

dependencies. This is because the role of the product-line SFTA is to give as complete an 

account as possible of potential contributing causes to the root node. Note that the PL-

SFTA does not enforce existing product-line dependencies. Instead, it represents all 

possible permutations of choices of values of product-line members and relies on 

dependency enforcement prior to the application engineering phase. We discuss this issue 

using DECIMAL as a tool to enforce product-line dependencies in Section 5.3.5. 

Since SFTA adopts a slightly different perspective when viewing the product line, 

it is not uncommon to discover missing requirements. The construction of the product-

line SFTA in PLFaultCAT may have some feedback effect on the CVA in terms of 

discovering previously unidentified dependencies. Similarly, missing commonalities and 

variabilities, or incorrect parameters of variation may sometimes be identified via this 

process. We discuss this issue using the automated safety analysis tools in PLFaultCAT 

in Section 5.3.4.  

It is interesting to note that the influence of variabilities on hazards will not 

necessarily “sink to the bottom” of the fault tree but can instead be dispersed throughout 
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the tree. Variabilities are commonly thought of as refinements of commonalities so the 

expectation is that they will only influence the root node from the lowest levels of the 

fault tree [49]. However, we found that this was not always the case. Variabilities, 

especially in software, are sometimes add-on features to the system rather than 

refinements of a commonality. Feature-oriented variabilities can spawn refinement 

variabilities of their own. Situations like this can lead to a PL-SFTA where variabilities 

are spread throughout the levels of the tree rather than clustered at the bottom.    

It is important to note that the method outlined in Steps 1-3 of Section 5.3.3.2 is 

an iterative process that is repeated for all hazards in the hazards list. This will produce a 

set of product-line software fault trees.  

5.3.3.4  Creating the PL-SFTA for the PAM Case Study Examples 

Applying this step to the Prospecting Asteroid Mission (PAM) case study used in 

this dissertation for the “A spacecraft to asteroid collision occurred” root node, discussed 

in Section 5.3.3.2 yielded a 143-node product line Software Fault Tree Analysis (PL-

SFTA), as partially shown in Figure 43. Specifically, the fault tree consisted of 82 failure 

nodes and 61 commonality/variability nodes (of which 54 were for product-line 

commonalities and 7 were for product-line variabilities). Similarly, applying this step for 

the “A spacecraft received solar radiation damage” root node, discussed in Section 

5.3.3.2 yielded a 137-node PL-SFTA. Specifically, the fault tree consisted of 87 failure 

nodes and 50 commonality/variability nodes (of which 30 were for product-line 

commonalities and 20 were for product-line variabilities). In these two cases, for 

example, approximately 76% of the product-line requirements associated to the leaf 

nodes of the fault trees were product-line commonalities (i.e., leaf nodes that will be 

found in all configurations of the PAM spacecraft for this particular hazard). A full set of 

the PL-SFTA hazards for the PAM case study are given in Appendix F.  
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 Figure 43  A PL-SFTA for the Spacecraft to Asteroid Collision Hazard in PLFaultCAT 
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  Figure 44  A PL-SFTA for the Spacecraft Received Solar Damage Hazard in PLFaultCAT 
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5.3.4  Deriving Additional Safety Requirements from  the Product-Line 

Software Fault Tree Analysis 

After the creation of a product-line software fault tree analysis (PL-SFTA) for a 

safety critical product line, PLFaultCAT provides software engineers with the 

opportunity to further analyze the system for safety. Figure 33 provides an overview of 

the safety analyses possible using a PL-SFTA created in PLFaultCAT. In this section, we 

detail how new product-line safety requirements can be derived from the PL-SFTA, how 

PLFaultCAT can automatically identify single-point failures and how PLFaultCAT can 

identify safety-critical requirements and safety-critical interactions. We also discuss other 

analyses that can contribute to the safety analysis of a product line.  

5.3.4.1  Deriving New Product-Line Constraints 

The product-line Software Fault Tree Analysis (PL-SFTA), described in Section 

5.3.3, can aid in the discovery of latent safety requirements by identifying high-risk 

variabilities and common causes and by identifying new constraints. The PL-SFTA 

construction process produces a set of fault trees with the corresponding contributing 

commonalities and variabilities attached to the appropriate leaf nodes. Using this set of 

software fault trees, we can identify or even tabulate the most frequent variabilities that 

contribute to the root node hazards. If certain variabilities contribute to root node hazards, 

additional safety requirements and/or hazard analysis may be warranted to mitigate their 

contribution to hazard nodes.  

Any high-level event node within a PL-SFTA that has two or more variabilities 

connected by an AND gate may warrant a new constraint. Introducing a new product-line 

constraint limiting the variability combinations in this situation can preclude occurrence 

of this event node and potentially rid the PL-SFTA from this hazard altogether. However,  
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Figure 45  A Generic Product-Line Software Fault Tree Analysis 

 

care must be taken in deriving new product-line dependencies so that the product line is  

not too limited. The hazard severity as well as the existence of alternative preventive 

measures must be weighed against the addition of product-line dependencies.  

Figure 45 shows a generic example of the derivation of a new product-line 

constraint from a logical AND gate connecting two variabilities. This example shows that 

we can mitigate the "Causal Event" node by restricting a system in the product line from 

having both V1 and V2 features. If this is found to be an acceptable solution, the PL-

SFTA then retains the "Causal Event" subtree for completeness, but the occurrence of the 

subtree becomes essentially impossible. 

Imposing additional safety requirements in the domain engineering phase 

improves the product-line specifications and reduces rework in the application 

engineering phase. The safety requirements and/or product-line dependencies derived 

from the PL-SFTA can reduce the analysis needed and reduce time-to-market for new 

products.  
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5.3.4.2  Identifying Single-Point Failures In PLFaultCAT 

An advantage of a traditional Software Fault Tree Analysis (SFTA) as a safety 

analysis technique is the ability to quickly determine the presence of single-point failures 

of a single system (i.e., a root node in the SFTA followed by a logical OR gate). A 

product-line SFTA (PL-SFTA) allows for the quick identification of single-point failures 

over the entire product-line. An example product-line single-point failure for the 

Prospecting Asteroid Mission (PAM) case study is shown in Figure 38 and Figure 39.  

In the case of a multi-agent system product line (MAS-PL), identifying a single-

point failure in a PL-SFTA provides the ability to pinpoint possible single-point failures 

for every possible instantiation of an agent (adhering to the commonalities and variation 

points allowed within the MAS-PL). This is advantageous over the traditional application 

of a SFTA to a MAS-PL because it is not necessary to manually create each SFTA for 

each possible instantiation of an agent and then manually inspect each SFTA for a single-

point failure.    

To aid in the identification of single-point failures of a PL-SFTA, PLFaultCAT 

provides a single-point failure analysis to automate this process. A single-point failure 

analysis searches the set of fault trees in a PL-SFTA for single-point failures (i.e., those 

hazards connected by a logical OR gate in the SFTA) at user-specified depth, as shown in 

Figure 46. Since a safety-critical product line will typically have several, large fault trees 

(e.g., the PL-SFTA for only two of the fault trees for the PAM case study had nearly 250 

nodes), the automation of identifying single-point failure will lessen the burden placed on 

a safety engineer to manually go through this process. In most cases, a safety engineer 

may only be interested in a single-point failure for the causal events directly leading to 

the root node failure (i.e., level 1 in PLFaultCAT), PLFaultCAT allows the user to supply 

the depth for situations when a deeper analysis is desired or required.  
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Figure 46  Selecting the Depth to Search for the Single-Point Failures of a PL-SFTA  

 

PLFaultCAT searches the set of fault trees of a PL-SFTA for a product line and 

provides the details of the discovered single-point failures, as shown in Figure 47, for the 

“Spacecraft to Asteroid Collision” root node, to aid in developing a new safety 

requirement (if needed) to mitigate against the single-point failure(s). Upon the 

identification of a single-point failure, engineers have the opportunity to take mitigating 

steps to improve the safety, dependability and/or reliability of the system. Further, since 

SFTA is constructed early in the development lifecycle, mitigating steps can be taken 

quite early in software product line’s design and development. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47  The Single-Point Failure Report Produced by PLFaultCAT  
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The mitigation of a single-point failure within the PL-SFTA can be done by 

introducing additional requirements, architectural components, guard conditions, 

operating rules or other counteractions into the design. For example, using PLFaultCAT 

to identify the single-point failures for the “Spacecraft to Asteroid Collision” root node of 

the PAM case study, shown in Figure 47, a mitigation requirement can be introduced to 

turn the subtree rooted at the “Maneuver Failure” into a non-single-point failure, shown 

in Figure 43. This node represents the event that spacecraft’s actions to maneuver itself to 

prevent a collision with the asteroid did not suffice. Using the information provided in 

PLFaultCAT’s single-point failure report, shown in Figure 47, we can understand that 

there are three contributing events that can cause this event: 1. the spacecraft’s position 

data (i.e., current position, current velocity, current orbit, etc.) may be incorrect; 2. the 

spacecraft’s data on the asteroid (i.e., position, shape, 3D model, gravitational field, etc.) 

may be incorrect; and 3. the spacecraft’s navigation and guidance functionality (i.e., 

calculating the thrust needed, utilizing the solar sail for navigation, etc.) may have failed. 

Each of these events contributes to the spacecraft devising a course that fails to maneuver 

away from the asteroid to prevent a collision. Thus, the action that a spacecraft takes to 

prevent a collision with an asteroid is individual. If however, a requirement is introduced 

to oblige a spacecraft to get a confirmation of its planned course of action to avoid the 

asteroid (i.e., an independent spacecraft to devise a course based on its data of the 

requesting spacecraft’s positioning data, asteroid data and navigation and guidance 

functionality). Using this approach, the spacecraft and another spacecraft would 

independently and redundantly calculate how to avoid an asteroid and both spacecraft’s 

calculations would have to fail for the “Maneuver Failure” node rooted at this subtree to 

occur. Introducing this requirement into the PAM MAS-PL’s Commonality and 

Variability Analysis (CVA) and updating the PL-SFTA accordingly will yield the fault 

tree shown in Figure 48.  
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Figure 48  Updating the PL-SFTA to Mitigate Against a Single-Point Failure 
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Note that the uppermost single-point failure (i.e., level 1 in Figure 47) could not 

be mitigated against since an asteroid has the ability to assume some risks of a collision 

with an asteroid if the potential scientific outcome outweighs the risk (see requirement 

C_SP5 in the CVA in Appendix A, page 235). Thus, the collision of a spacecraft and an 

asteroid is not always a hazard that can be prevented.   

5.3.4.3  Identifying Safety-Critical Requirements in PLFaultCAT 

Using a product-line Software Fault Tree Analysis (PL-SFTA) for a safety-critical 

product line also allows for the identification of product-line variability requirements or 

combinations of variability requirements that disproportionately contribute to hazards. 

Scanning the leaf nodes (where commonalities and variation points are associated to low-

level hazards) of the PL-SFTA can lead to the discovery that a particular variability or set 

of variation points can contribute to high number of hazards within the set of fault trees 

of a PL-SFTA. This information proves valuable if engineers determine that the hazard 

risk of leaving the product line’s design unchanged is unacceptable from a safety, 

dependability and/or reliability standpoint.  

The variability failure contribution analysis in PLFaultCAT analyzes all the PL-

SFTAs to find those variabilities or combination of variabilities that contribute to a high 

number of hazards. PLFaultCAT performs this analysis and provides a user with an 

ordered list of the most frequently cited product-line commonality and variability in the 

set of fault trees of a PL-SFTA, as shown in Figure 49. The requirements value tries to 

measure its impact on the leaf node failures in the PL-SFTA. For each leaf node where a 

requirement is the sole requirement or the requirement forms a disjunction with other 

requirements (i.e., joined by a Boolean OR gate), the requirements value is increased by 

one since it solely can contribute to the leaf node failure. If, however, the requirement 

forms a conjunction with other requirements (i.e., joined by a Boolean AND gate) 
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associated to a leaf node, each requirement’s value is increased by its proportion of the 

conjunction (i.e., one divided by the number of requirements in the conjunction). In 

addition, the variability failure contribution report provides a listing of the groups of 

requirements that were found to contribute to a high number of leaf node hazards. For 

example, in the PAM case study, it was found that the requirements related to a 

spacecraft correctly knowing its positioning information (i.e., current location, current 

velocity, current orbit, etc.) as well as having an accurate 3D model of nearby asteroids 

are the most safety-critical requirements related to the “Spacecraft to Asteroid Collision” 

fault tree.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49  The Variability Contribution Failure Report Produced by PLFaultCAT  
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A mitigation strategy for combinations of product-line variabilities can be to add 

dependencies, as described in Section 5.3.4.3. For those combinations of product-line 

variabilities that contribute to a disproportionately high number of leaf node failures, it 

may be necessary to restrict the combinations of these features, via product-line 

dependencies, to achieve safety. The inclusion of product-line dependencies in this case 

would preclude a product-line member from having this combination of features and 

prevent the possible leaf node hazards caused by the interaction of these features modeled 

in the fault tree. 

Alternatively, a similar strategy for mitigating single point failures can be 

adopted, as described above, to limit the impact that the combinations of these 

variabilities can have on the safety of the system. 

This analysis, in particular, has been found to be useful to help guide another 

safety analysis technique, briefly discussed in Section 5.3.8, that investigates feature 

interactions. Although a PL-SFTA models a failure statically, a combination of 

requirements that leads to a disproportionately high number of leaf node failures may act 

as a guide for a dynamic approach to further investigate the interaction of the 

requirements’ behaviors. In our experience, the variability failure contribution analysis 

helps to scope the feature interactions that should be examined more deeply.      

5.3.4.4  Additional Safety Analyses in PLFaultCAT 

In addition to the single-point failure analysis and the variability failure 

contribution analysis, PLFaultCAT provides additional analysis tools that may be useful 

when assessing the safety or reliability of a product line. The minimum-cut set analysis 

analyzes a single fault tree of a PL-SFTA and identifies the smallest sets of events that 

must occur such that the root node accident will occur. The probability report calculates 

the probability of occurrence of the root node given the probabilities of all other nodes. 
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Although this may not apply for software since failure probabilities for software are 

difficult to obtain, this calculation may be helpful when hardware is included in a PL-

SFTA.  

5.3.5  Reusing the Product-Line Software Fault Tree  Analysis to 

Derive the Software Fault Tree Analysis for a Produ ct-Line Member 

In Section 5.3.3, we detailed the construction of a product-line Software Fault 

Tree Analysis (PL-SFTA) in PLFaultCAT. In this section, we describe the reuse of the 

PL-SFTA to derive the software fault trees for new product-line members. The derivation 

of the software fault trees for new product-line members from the PL-SFTA occurs 

during the application engineering phase of the Weiss and Lai’s Family-Oriented 

Abstraction, Specification, and Translation (FAST) model [88]. In the Gaia-PL 

methodology, shown in Figure 30, the derivation of the software fault trees for new agent 

of a multi-agent system product line (MAS-PL) from the PL-SFTA occurs during the 

Analysis and Design Phase.  

In this section, we first describe how to define a new product-line member within 

the context of the previously defined product-line commonalities and variabilities. Then 

we describe how to prune the PL-SFTA, aided by PLFaultCAT, so that the previously 

performed safety analysis is be reused.  Finally, this section also discusses the flexibility 

of the product-line SFTA in supporting product-line evolution as well as limits on reuse. 

5.3.5.1  Pruning the PL-SFTA for a New Product-Line Member 

In product-line Software Fault Tree Analysis (PL-SFTA) we use a pruning 

process followed by a structured inquiry to develop a new product-line member’s 

Software Fault Tree Analysis (SFTA) from the PL-SFTA. Figure 43 shows a PL-SFTA 

for the Prospecting Asteroid Mission (PAM) case study for the “A spacecraft to asteroid 

collision occurred” root node. The reuse of the PL-SFTA performed using PLFaultCAT  
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Figure 50  The Variability Selection Window to Prune a PL-SFTA 

 

for a new system in the product line has three basic steps: selecting the variabilities for a 

new product line member, deriving the product-line member SFTA and applying domain 

knowledge, each of which are described below.     

Step 1. Select the variabilities for new the product-line member.  Producing a 

product-line member entails a selection of which variabilities or features to include. This 

process can include an ordering of variability selection (e.g., according to domain model 

techniques in [88]) or can leave the selection process to the system engineers. 

PLFaultCAT facilitates the selection of product-line member's variabilities 

through a checkbox window that presents all possible variabilities, shown in Figure 50 

for some of the variation points possible in the PAM case study. 

A product-line member is created by selecting the variabilities that it will contain 

and defining the values of the variabilities. Typically, the selection of a set of variabilities 

does not guarantee a legal product-line member. Rather, the choice of variabilities must 

satisfy the previously established product-line dependencies and constraints. Thus, 

verification must then show that the set of variabilities do not violate any of the defined 

product-line dependencies. This is an easy verification check to perform manually on a 
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small product line but requires automated support as the number of variabilities and 

dependencies increase.  

PLFaultCAT does not enforce nor check the dependencies prescribed in the 

Commonality and Variability Analysis (CVA). Instead, other tools are capable of 

enforcing the dependencies and constraints detailed in the CVA for large, complex 

product lines [58], [59]. PLFaultCAT is used after the choice of variabilities has been 

determined to be legal. 

To assist in the definition of a product-line member, DECIMAL (described in 

Section 2.1.4 and used within the Gaia-PL methodology in Section 4.2.1.2) [23], [58], 

[59] allows a user the flexibility to select the variabilities for a new product-line member 

and then define the values for each variability. To make this approach scalable, 

DECIMAL automatically verifies that the proposed new product-line member’s set of 

variabilities does not violate the defined dependencies. Further, DECIMAL verifies that 

all values of the variabilities fall within the allowed ranges. If any violations are 

discovered, DECIMAL flags them so that the developer can rectify the problem.  

If DECIMAL is used in this manner, PLFaultCAT can read the verified product-

line member(s) from DECIMAL and automatically derive the product-line members’ 

SFTAs from the PL-SFTA, as described in Step 2. Using this approach, the user chooses 

the verified product-line members within PLFaultCAT rather than the variabilities to 

include, as described above, before PLFaultCAT will prune the PL-SFTA to derive the 

product-line members’ fault trees.  

For illustration purposes, we consider a leader PAM spacecraft for the fault tree 

with a root node of “Spacecraft to Asteroid Collision”. The variation points of this 

spacecraft are not all included in this particular fault tree since the leader PAM spacecraft 

are not tasked with detecting, reporting or archiving the 3D model of an asteroid, an 

important variability requirement associated to many of the leaf nodes in the fault tree 
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(see Section 5.3.4.3). Thus, the resulting fault tree using the pruning algorithm described 

in Step 2 should only include those parts of the fault tree that are associated to product-

line requirements. The resulting pruned fault tree, for this spacecraft, also represents the 

core of the fault tree that will be present for any members of the PAM MAS-PL and 

provides a measurement of the reuse potential of the PL-SFTA.  

Step 2. Derive the product-line member SFTA.  After establishing and 

verifying a product-line member, we prune the product-line SFTA to create a baseline 

SFTA for the new system. The pruning process first uses a depth-first search to 

automatically remove the subtrees that have no impact on the product-line member being 

considered and then relies on a small amount of domain knowledge to further collapse 

and prune the SFTA. For each verified product-line member, the algorithm starts with the 

root node as node and proceeds as follows: 

 

  PL-SFTA_SEARCH (node): 

    STEP 1 If node is not a commonality or a selected variability then   

   STEP 1.1 Perform DFS for a selected variability or commonality node 

   STEP 1.2 If DFS returns true  

     STEP 1.2.1 For each child node do  

      STEP 1.2.1.1 PL-SFTA_SEARCH(node) 

   STEP 1.3 If search returns false then 

     STEP 1.3.1 Remove subtree rooted at  node 

    STEP 2 Else if node is an unselected variability then 

     STEP 2.1 Remove subtree rooted at  node 

 

A “selected variability” in our algorithm is an optional feature that is required in 

the new system. That is, it is a variability requirement that has been included in the 



 177  

 

definition of a new product-line member. For example, a select set of worker PAM 

spacecraft equipped with a visible imager may be tasked to detect the size, shape and 

location of an asteroid and construct a 3D model of the asteroid so that other PAM 

spacecraft can use the 3D model to avoid a collision. An unselected variability, however, 

is an optional feature or a value of a variability not present in the new system. 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51  Pruning the PL-SFTA in PLFaultCAT 
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With multiple SFTAs and many nodes in each SFTA, this pruning is not scalable 

or practical in an industrial setting without such tool support. PLFaultCAT implements 

this algorithm using the variabilities specified to include in the product-line member, as 

in Step 1. The tool processes the PL-SFTA XML file to create a new fault tree including 

only those nodes associated with the commonalities and chosen variabilities for the new 

system. In Step 3 of the domain engineering phase, described in Section 5.3.3.2, a label 

was attached to every variability by giving a variability name in the "Variability ID" 

textbox. Alternatively, the leaf node could have been directly associated to a variability 

defined in DECIMAL, as shown in Figure 42, using PLFaultCAT’s “Link to 

Requirement” button automatically filling in the required information into the 

"Variability ID" textbox. It is this label, for the chosen variabilities, that is searched for in 

the XML file to decide whether a variability node should be retained. Upon completion 

of the PL-SFTA_SEARCH logic implemented in PLFaultCAT, the set of fault trees for 

the new product-line members are stored in an XML format.  

The subtree of the “Spacecraft to Asteroid Collision” fault tree shown in Figure 

51 illustrates how the pruning algorithm executes within PLFaultCAT to remove 

irrelevant subtrees. Using the PL-SFTA_SEARCH algorithm for a PAM leader 

spacecraft, we see that the subtree rooted at “Asteroid Detection” contains neither a 

failure node associated with a commonality or with a selected variability. Intuitively, this 

implies that this particular spacecraft does not have any functionality related to the 

detection of the characteristics of an asteroid, which is true in this case. Thus, the PL-

SFTA_SEARCH algorithm used in PLFaultCAT will remove this entire subtree since it 

can have no influence on any of the parent failure nodes of this subtree, shown in Figure 

52. If, however, we consider a PAM worker spacecraft equipped with a visible imager 

and tasked with detecting the shape characteristics of an asteroid for the subtree 
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Figure 52  Pruning for a Product-Line Member Software Fault Tree in PLFaultCAT  
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illustrated in Figure 51, we see that the entire subtree should be retained since the 

selected variabilities all can have an influence on the failure nodes in each path of the 

subtree. PLFaultCAT uses this logic in a depth-first fashion over the entire PL-SFTA to 

derive the product-line member's fault tree based on the selected variabilities. 

For example, using the 143-node PL-SFTA constructed in Section 5.3.3 on the 

hazard “A spacecraft to asteroid collision occurred”, PLFaultCAT was used to 

automatically derive the fault trees for a PAM leader spacecraft that has no functionality 

to detect the shape characteristics of an asteroid, as described above. The initial execution 

of PLFaultCAT reduced the number of failure nodes by approximately to 69 of the 

original 82 nodes (i.e., approximately 16%) and is partially shown in Figure 52. 

The PL-SFTA_SEARCH algorithm errs on the side of caution since it only marks 

the subtrees that can be removed without review and does not actually do any pruning.  

This is advantageous from a safety perspective because the application of the algorithm 

simply indicates those subtrees where neither commonalities nor selected variabilities can 

be found in the subsequent children nodes. This algorithm then defers the actual pruning 

to the domain experts, as described in the next step. 

3. Apply domain knowledge. After removing the subtrees that had no bearing on 

the product-line member under consideration, the tree may be able to be further pruned 

and/or collapsed within PLFaultCAT. However, this step requires domain knowledge. 

This also illustrates the limit to completely automated product-line Software Fault Tree 

Analysis (PL-SFTA) reuse. Removal of subtrees will often lead to orphaned logic gates 

or other opportunities to safely simplify the fault trees of a new product-line member, 

shown in Figure 52 for the subtree rooted at “Detection Error” discussed in Step 2.  

Collapsing orphaned OR gates are trivial. If there is only one causal event 

remaining, we collapse the lower event into the parent event. If there is only one 

commonality or variability leaf node remaining, we attach it to the parent event and 
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remove the OR gate. When AND gates are involved, we need to be more cautious. 

Intuitively, if at least one input line to an AND gate is removed, the output event is 

impossible. However, it was found that this is not always the case and thus each removal 

of and AND gate warrants further scrutiny. 

  The clean up of the derived fault trees for the new product-line member(s) 

presented in this step is a manual process and must be pursued with utmost care. Enough 

information should be retained within the product-line member's fault tree to provide 

ample information for future hazard analysis and mitigation strategies. It is in this light 

that the subtree shown in Figure 52 reduces to the subtree shown in Figure 53 by 

removing the useless logic gates and connecting the failure nodes. In this example, 

manual pruning further reduced the number of nodes for a PAM leader spacecraft for the 

“A spacecraft to asteroid collision occurred” fault tree to 64 of the original 82 nodes.    

The application of domain knowledge to the fault tree resulting from Step 2a is 

beneficial step in the derivation of the fault trees for a new product-line member(s) 

because it removes the extraneous nodes and focuses attention on nodes that can 

potentially contribute to failures in a specific product-line member.    

Note that, as shown in Figure 33, the set of fault trees for the new product-line members 

can additionally utilize the safety analyses provided by PLFaultCAT, detailed in Section 

5.3.4 to further verify the safety of the product-line member’s SFTA. After the pruning of 

the PL-SFTA to derive the fault trees for a new product-line member, it may be the case 

that single-point failures that were not present in the PL-SFTA are now present a specific 

product. Thus, further safety analysis of the SFTA for a product-line member should be 

considered. Since the SFTA for a product-line member is simply a traditional SFTA, 

traditional software safety analysis techniques not covered in this dissertation may be 

useful.   
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 Figure 53  Resulting Product-Line Member Software Fault Tree after Manual Pruning 



 183  

 

5.3.5.2  Pruning the PL-SFTA for the PAM Case Study Examples 

Looking back, the “A spacecraft to asteroid collision occurred” fault tree for a 

Prospecting Asteroid Mission (PAM) leader spacecraft, the clean up process described in 

Step 3 removed an additional five nodes. Thus, the number of nodes in the fault tree for a 

leader spacecraft of PAM multi-agent system product line (MAS-PL) was reduced by 

over 22% from the number of failure nodes from the original PL-SFTA. Since the 

product-line member considered in this case, a leader spacecraft of PAM MAS-PL, 

contained none of the variabilities of this particular fault tree, the pruned fault tree 

represents the common parts of the fault tree that will remain for all member of this 

product line. Thus, specifically for this PL-SFTA, approximately 78% of the fault tree 

can be reused for all 160 unique types of spacecraft for the PAM MAS-PL. Further, 

PLFaultCAT was able to accomplish most of the work automatically. In this case, 

PLFaultCAT did 72% of the pruning of a PL-SFTA possible and only required a 28% of 

the effort to be done manually.  

Similarly, for the “A spacecraft received solar radiation damage” fault tree, 

discussed in Section 5.3.3.2, it was found that approximately 60% of the tree was 

common to all 160 unique types of spacecraft for the PAM MAS-PL and that 

PLFaultCAT was able to automatically do 72% of the pruning. A further discussion on 

the results of the application of the PL-SFTA technique described in this section and its 

impact on reusability and safety are provided in Section 5.3.8. 

5.3.6  Accommodating Evolution in the Product-Line Software Fault 

Tree Analysis 

It is often the case that additional variabilities are added as features to the initial 

product line (e.g., new scientific goals are desired in the PAM case study requiring new 

onboard scientific equipment and software functionality). To safely include the new 
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variabilities, we must perform a limited amount of domain engineering and hazard 

analysis to incorporate the new variabilities in order to ensure that future systems are 

safe. In particular, new variabilities as well as new values for existing variabilities must 

iterate the relevant steps in the two-phase framework illustrated in Figure 32 and Figure 

33. This includes modifications to the requirements specification (as needed), as well as 

to the Commonality Analysis (CVA) and Software Failure Modes, Effects and Criticality 

Analysis (SFMECA) if they are affected.  

In addition, the PL-SFTA is updated to incorporate the changes. If an SFMECA 

was constructed, the addition of variabilities can add new rows to the SFMECA table(s) 

or change the failures or effects in already existing rows in the SFMECA table(s). The 

PL-SFTA_CREATE algorithm, as detailed in Section 5.3.3.2, analyzes the new 

SFMECA rows and any additions to the preexisting SFMECA rows that can be 

influenced by the inclusion of the new variabilities. Following this process incorporates 

the new variabilities into the PL-SFTA by including their causal event nodes into the 

fault trees. The graphical view of the fault tree that PLFaultCAT provides makes 

updating the PL-SFTA to incorporate new variabilities (features) and to derive a new 

product-line member's SFTA efficient enough for it to be practical for projects to 

maintain the fault tree as a current product-line artifact.   

5.3.7  An Alternative Approach for Product-Line Sof tware Fault Tree 

Analysis Specific to Multi-Agent System Product Lin es   

In Section 5.3.3.2, a general approach was provided to construct a product-line 

software fault tree analysis (PL-SFTA) for a safety-critical product line. In this approach, 

product-line requirements were associated with the leaf nodes (see Section 5.3.3.2) of a 

fault tree so that product-line member’s fault tree can be derived from its set of 
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variabilities (see Section 5.3.5). This is a rather fine-grained approach since it uses the 

requirements to relate a product to the nodes of a fault tree. 

In the design and development of a multi-agent system product line (MAS-PL), 

described in Chapter 4, the product-line requirements are refined and implemented in the 

roles and variation points possible in an agent (see Section 4.2). Since an agent (i.e., a 

product-line member of the MAS-PL) is defined by the roles and the variation points 

possible in its roles, it may desirable to associate the leaf nodes of a fault tree with the 

variation points rather than the requirements [19]. This a coarser-grained approach since 

it uses the roles and variation points, typically composed of a set of requirements, to 

relate a product to the nodes of a fault tree.  

In the previous sections, we illustrated the construction of the PL-SFTA for the 

Prospecting Asteroid Mission (PAM) MAS-PL by associating the requirements of the 

MAS-PL with the leaf nodes of a fault tree. In this section, we provide our approach to 

construct a PL-SFTA specifically for a MAS-PL associating the variation points to the 

leaf nodes of a fault tree rather than the requirements. Note that many of the steps 

provided here are similar to those discussed previously. Yet, to highlight the differences 

and provide completeness for our PL-SFTA for safety-critical product lines and MAS-

PL, we briefly discuss the steps here. In [19], we have found that using the variation 

points with the leaf nodes of a fault tree is useful when describing a MAS.      

To build a PL-SFTA for any given role and its associated variation points, the 

following steps should be taken:  

1. Determine the root node of the fault tree. The root node is a hazard of 

concern in the system. It may come directly from a negation of one of the 

safety properties listed in the Safety Properties section of one of the Role 

Schema or the Variation Point Schema (see Section 4.2) or from a 

previously determined domain-specific hazards list. 
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2. Repeatedly generate a list of causes for each failure event starting at the 

root node. This process continues until the desired granularity is achieved. 

This process heavily relies on domain knowledge, previous experience and 

in-depth requirements analysis. The causes for each failure may come from 

requirements of any, all or a combination of a role's variation points. 

Alternatively, a Software Failure Modes, Effects and Criticality Analysis 

(SFMECA) can be constructed from the Variation Point Schema (see 

Section 5.2) and can be used to aid this step (see Section 5.2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54  Depicting the Influence of a Role’s Variation Point for the Spacecraft 

Received Solar Damage Fault Tree in PLFaultCAT 
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3. From the list of failures and causes generated in the previous step, construct 

a tree connecting the causes of a failure to a failure by logical AND or OR 

gates. This tree should now resemble a traditional software fault tree [44].  

4. Input the constructed software fault tree to the PLFaultCAT tool. 

5. For each of the leaf nodes of the resulting software fault tree in 

PLFaultCAT, consider which role's variation points are the source of the 

fault and tag the node accordingly. As shown in Figure 54, to tag the leaf 

node so that it is associated with a variation point, we again use a circular 

node in PLFaultCAT and document the name of the variation point that can 

cause the leaf-node failure. Note that this is the same fault tree as shown in 

Figure 41 but associating a variation point rather than a requirement to the 

fault tree’s leaf node. It is possible that more than one variation point is 

tagged to one leaf-node failure. In this case, the tags representing a 

variation point should be connected to the leaf node via an OR gate (since 

for any given role only one variation point can be active at any given time). 

These steps yield a PL-SFTA in which every leaf node is associated with one or more of 

the role's variation points or an external event.  

After constructing and inputting a PL-SFTA of a MAS-PL using the Variation 

Point Schema requirements specification template, we can automatically generate the 

software fault tree for a particular role regardless of which variation points it contains for 

any given member of a MAS-PL. Using PLFaultCAT, we specify which variation points 

a member has, shown in Figure 55, and PLFaultCAT automatically trims the PL-SFTA to 

produce a fault tree specific to the combination of variation points selected just as 

described in Section 5.3.5.  
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Figure 55  Variation Point Selection to Derive an Agent’s PL-SFTA in PLFaultCAT 

 

This mechanism of PL-SFTA construction and PLFaultCAT utilization provides 

an initial safety analysis of an agent's role (including its variation points). This approach 

also allows for reuse of some of the safety analysis artifacts in that the PL-SFTA can then 

be automatically derived for any agent employing the same role and a combination of the 

role's possible variation points: 

1. Determine how the new variation point can contribute to the root node 

hazard and each non-leaf node of the fault tree.  

2. Repeatedly generate a list of causes for each new failure event created from 

the previous step.  

3. From the new list of failures and causes, add the new nodes in PLFaultCAT 

to the previously constructed fault tree.  

4. For each leaf node of the updated fault tree, consider whether the new 

variation point can contribute to the fault. Those leaf nodes that can be 

caused by the new variation point are tagged in a similar manner as when 

the fault tree was originally created.  

This process produces an updated PL-SFTA within PLFaultCAT such that fault trees can 

be automatically generated using the new variation point and the previously documented 

variation points.  
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The use of a SFT in this manner provides software engineers some assurance that 

the system requirements are safe (i.e., will not contribute to the hazards). In the PAM 

MAS-PL case study, a PL-SFTA for the possibility of the failure "A spacecraft received 

solar radiation damage", also discussed in Section 5.3.3.2, for the role 

"SolarStormWarner", described in Sections 4.2.2.3 and 5.3.3.2  for the variation points 

(Passive, Warm-Spare and Active) may provide some assurance that the mission-critical 

system is not vulnerable to this single-point failure. Using PLFaultCAT as described in 

Section 5.3.2 and 5.3.4, designers can quickly generate software fault trees for all 

variation point combinations of the SolarStormWarner role after the initial construction 

of the PL-SFTA. This is both more efficient and more effective than serially constructing 

all the trees from scratch for the power set of the variation points (Passive, Warm-Spare 

and Active) for the SolarStormWarner role. 

5.3.8  Evaluation and Discussion 

In the domain engineering phase PLFaultCAT did not provide any significant 

advantages over other fault tree representation tools beyond providing the analyst with an 

additional opportunity to embed textual hazard analysis information into the fault tree. 

This allows a cross-check of the information provided in the fault tree with previously 

derived safety requirements, the Software Failure Modes Effects and Criticality Analysis 

(SFMECA) and other hazard analysis documents. 

In the domain engineering phase, the application of the Product-Line Software 

Fault Tree Analysis (PLSFTA) to the Prospecting Asteroid Mission (PAM) case study 

developed four fault trees, given in Appendix F, to analyze the safety-critical hazards 

indicated by the requirements. This PLSFTA included 85.7% of the PAM’s commonality 

requirements and 72.5% of its variability requirements. That is, 85.7% and 72.5% of the 
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Table 9  Results of the Application of PL-SFTA to the PAM Case Study 
 

Hazard 
Total  

Failure 
Nodes 

Common 
Failure 
Nodes 

% Commonality 
Requirements 

Core 
Reuse 

PLFaultCAT 
Automation 

Spacecraft to Asteroid Collision 82 64 88.5% 78.0% 72.2% 

Spacecraft to Spacecraft Collision 84 61 63.8% 72.0% 82.1% 

Spacecraft Solar Storm Damage 87 52 60.0% 59.8% 72.2% 

Failure to Detect Solar Storm 91 13 6.7% 14.3% 93.8% 

 

PAM requirements, respectively, were associated to at least one of the leaf nodes in the 

set of fault trees of the PAM’s PLSFTA. 

In the application engineering phase, however, PLFaultCAT provided significant 

advantages from a reuse perspective by exercising the pruning method outlined in 

Sections 5.3.5. In the PL-SFTA considered for the PAM case study considered in this 

dissertation, the PL-SFTA was found to contain approximately 54% failure nodes that 

would be common to all 160 unique spacecraft of the PAM multi-agent system product 

line (MAS-PL). That is, the minimum expected reuse of the PL-SFTA for any given 

PAM spacecraft would be 54%. This calculation and the specific data leading to this 

result are described next.  

Table 9 provides the results for each of the hazards examined using PL-SFTA for 

the PAM case study. The “Hazard” column represents the root node hazard of a fault tree 

in the PL-SFTA (see Appendix F, page 311); the “Total Failure Nodes” column 

represents the total number of failure nodes of a fault tree as build in Steps 1-3 described 

in Section 5.3.3.2; the “Common Failure Nodes” column represents the number of failure 

nodes that will be common to all product-line members of the PAM MAS-PL (i.e., 

pruning the PL-SFTA for all variabilities); the “% Commonality Requirements” 

represents the percentage of the requirements associated to the leaf nodes of a fault tree 

that are product-line commonality requirements; the “Core Reuse” column represents the 

percentage of the failure nodes that are common to all product-line members of the PAM 
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MAS-PL (i.e., the common failure nodes of a fault tree divided by the total number of 

failure nodes of a fault tree); and, finally, the “PLFaultCAT Automation” column 

represents the percentage of the nodes that could be safely and automatically pruned from 

the PL-SFTA using PLFaultCAT.  

Although the overall reuse of the PL-SFTA for any spacecraft of the PAM MAS-

PL developed in this dissertation is approximately 54%, in most cases the reuse potential 

of a fault tree in the PL-SFTA for a specific PAM spacecraft was in the 60%-80% range. 

The only exception was the “Failure to Detect a Solar Storm” fault tree which only had a 

minimum of a 14% reuse potential.  

The contributing factor of a lower reuse potential of the PL-SFTA is its relation to 

the commonality and variability requirements. For example, the “Spacecraft to Asteroid 

Collision”, “Spacecraft to Spacecraft Collision” and the “Spacecraft Solar Storm 

Damage” fault trees (see Table 9) all had root nodes directly related to the C_SP3, C_SP1 

and C_SP6, respectively product-line commonalities of the PAM MAS-PL (see 

Appendix A, page 234). Since each of these requirements necessitates a PAM spacecraft 

to prevent the hazards outlined in these fault trees, all PAM spacecraft will be equipped 

with the functionality to prevent the hazard. Thus, the reuse of these fault trees in the PL-

SFTA is great. However, for a hazard that stems from a product-line variability, such as 

the “Failure to Detect Solar Storm” hazard, the reuse potential is much less since the 

failure of the product-line variability to mitigate against the hazard is only found in a 

subset of the product line’s members. Note that, however, this particular fault tree’s reuse 

would be significantly higher (i.e., in the 80%-100% range) for those spacecraft that have 

the capability to monitor the solar disc for impending solar storms (i.e., the 

SolarStormWarner role’s Warm-Spare or Active variation point, see Appendix C, page 

298).  



 192  

 

Further, this case study found that, of failure nodes that could be safely pruned 

from a PL-SFTA to derive the fault trees for a new product-line member, PLFaultCAT 

was able to automatically perform a minimum of 72% of the trimming without losing 

necessary information according to the PL-SFTA_SEARCH algorithm. Thus, 28% of the 

work was left to be done manually by an engineer. This metric reflects the effort saved in 

reuse of the PL-SFTA.     

The automation that PLFaultCAT can provide when pruning a PL-SFTA for a 

specific member(s), is sensitive to the number of Boolean AND gates in the fault tree. As 

a result of the conservative pruning approach of the PL_SEARCH algorithm described in 

Step 2 of Section 5.3.5.1, PLFaultCAT will not automatically remove the AND gates as a 

safety precaution. Thus, PLFaultCAT will provide a larger amount of automated pruning 

for those fault trees of a PL-SFTA with fewer AND gates. Despite this, in the PAM case 

study we found that the automation to manual effort was at least a 3:1 ratio.  

These results compare to those of a previous case study we performed in [24] on 

Weiss and Lai’s Floating Weather Station (FWS) product line. This case study, unlike the 

PAM case study presented in this dissertation, was for a smaller, traditional software 

product line (i.e., not agent-based). In the FWS study, it was found that a smaller portion 

of the PL-SFTA, 45%, was common to all products of the product line. However, like the 

PAM case study, this case study found that PLFaultCAT was able to automatically prune 

70% of the nodes that could safely be pruned.    

The difference in the amount of common failure nodes in a PL-SFTA to all 

product-line members (i.e., 45% common in the FWS study, 54% common in the PAM 

study) is likely due to the type of application used in this case study. In the FWS study 

[24], the results reported in the FWS study reflect the application of PL-SFTA to a single 

fault tree for a case study consisting of fewer than 20 requirements evenly split between 



 193  

 

commonalities and variabilities. More importantly however, is that the product-line 

members of the FWS did not share the same safety concerns as in the PAM study.  

In the PAM study, every spacecraft had to be concerned with collisions with 

asteroids, collisions with other spacecraft and damage from the solar radiation present 

during a solar storm. These common safety concerns are thus reflected in the associated 

product-line commonality requirements. Thus, the PL-SFTA for the “Spacecraft to 

asteroid collision”, “Spacecraft to spacecraft collision” and “A spacecraft received solar 

radiation damage” fault trees had similar causes that could, for the most part, originate to 

the commonalities of the PAM MAS-PL. As a result, a large portion of the PL-SFTA 

could be reused regardless of the specific configuration of the spacecraft.  

The agent characteristics of the PAM case study as well as the types of 

variabilities that were present in the case study had a large impact on this result. The 

spacecraft of the PAM case study had the inherent onus to be responsible for protecting 

and healing itself from the possible dangers of space exploration. For this reason, each 

spacecraft is to be equipped with the behavior to protect itself from the types of hazards 

modeled in the PL-SFTA. Further, the variabilities of the PAM MAS-PL concerned the 

differing types of scientific exploration possible in the spacecraft and had only a minor 

impact on the leaf nodes of the PL-SFTA.  

The implication of this result is that a PL-SFTA may best suit a MAS-PL 

compared to a traditional product line since the agents of a MAS-PL will typically also 

include self-protecting and self-healing characteristics as commonalities and may have 

variabilities that are less likely to be safety-critical. However, for those traditional 

product lines that have few variabilities that will impact the safety of a system, a PL-

SFTA can be applied and achieve the results found in the PAM study. Yet, even for those 

traditional product lines that may have a large number of variabilities that will impact the 

safety of a system, such as the FWS case study, the reusable part of the PL-SFTA is 
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modest and likely advantageous compared to the alternative of individually constructing 

the safety analysis for each different member.  

A concern for performing safety analysis on safety-critical product lines is 

whether the technique is scalable as the product line grows more complex by 

incorporating more variabilities and product-line members. From the experience of 

applying the PL-SFTA to the PAM case study in this dissertation, it appears that our 

method and tool will scale adequately as the product line grows more complex. This is 

because most of the added complexity in a large product line lies in the domain 

engineering phase when the PL-SFTA is constructed. In Chapter 4 we provided a 

structured process to construct the SFMECA for a MAS-PL from the Variation Point 

Schemas using the Gaia-PL methodology. Since, the construction of the PL-SFTA 

described in Section 5.3.2 relies heavily on the aid of a SFMECA, the scalability is at 

least as robust as that of the SFMECA. Additionally, it should be clear that the reuse of 

the product-line fault tree approach is far more efficient especially for large product lines 

than to serially construct SFTAs for each of the desired product-line members of a 

product line.  

The communicability of a PL-SFTA created in PLFaultCAT with other 

applications is high since PLFaultCAT provides a user with three different views of any 

given fault tree: a standard graphical fault tree view, an XML file view and a text-based 

view. This variety of PL-SFTA views should allow PLFaultCAT's integration into other 

safety analysis techniques and tools. The XML output file utilized in PLFaultCAT 

supports straightforward linking with existing static analysis tools. For example, the use 

of a PL-SFTA created in PLFaultCAT with other applications (such as Relex or Galileo) 

would at most only require a translation program to mediate the format of the XML file.    

Finally, it should be noted that the reliance on domain expertise and knowledge of 

the proposed system to construct the PL-SFTA only guarantees that the PL-SFTA is only 



 195  

 

as good as the engineer creating it. Thus, although this chapter provides a set of 

structured steps to guide the construction of a PL-SFTA using a SFMECA, the 

responsibility of the accuracy and completeness of the fault trees of a PL-SFTA lies on 

the software engineers rather than the PL-SFTA. However, Section 5.4 describes how the 

SFMECA and PL-SFTA can be used in a Bi-Directional Safety Analysis (BDSA) to aid 

in the completeness checking of the PL-SFTA. 

5.3.9  Using the Product-Line Software Fault Tree A nalysis to Aid 

Other Safety Analysis Techniques 

In addition to the safety analysis opportunities that the product-line Software 

Fault Tree Analysis (PL-SFTA) offers in PLFaultCAT, discussed in Section 5.3.4, PL-

SFTA and PLFaultCAT can be used to support and guide other safety analysis techniques 

for safety-critical product lines. In particular, PL-SFTA and PLFaultCAT have been 

shown to be useful in providing guidance for the safety analysis for software product 

lines using a state-based modeling approach [45], [46], [47], [48]. This approach provides 

software engineers with a structured way to build state-based models for a safety-critical 

product line, systematically explores the relationships between the software’s behavioral 

variations and potential hazardous states and supports the automated verification of safety 

properties across a product line. 

To support the state-based modeling approach, a PL-SFTA was used to derive the 

required scenarios (i.e., those scenarios that enforce a safety property) and forbidden 

scenarios (i.e., those scenarios that emulate a hazard) to exercise against a state model. In 

addition, PLFaultCAT aids in identifying the safety-critical feature interactions by 

searching for those product-line requirements that frequently contribute to the possible 

causes of the fault tree’s failure nodes. PLFaultCAT can automatically identify those 

product-line requirements and combination of product-line variabilities (i.e., features) 
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that contribute to the most potential failures as defined in the PL-SFTA, as was described 

in Section 5.3.4.  

This analysis provides a prioritized list of those product-line requirements and 

feature interactions that warrant further scrutiny using an executable state-based model. 

That is, those product-line requirements and feature interactions that are deemed to 

contribute to the most fault tree failure nodes are more likely to have unsafe interactions 

with existing product-line requirements and should have their behaviors modeled in order 

to determine the safe/unsafe behaviors using a dynamic analysis.     

The use of a state-based modeling approach for safety analysis is advantageous 

because it can both build on and extend the PL-SFTA. Unlike a PL-SFTA, an executable 

state-based model can analyze and model the timing/ordering of failure events to 

determine their possible safety implications. In addition, we found that because the SFTA 

is a static asset, it lacks the ability to animate and explicitly show how a safety property 

may be violated [45], [48]. The use of an executable state-based model, however, allows 

the simulation of the behaviors described by the requirements in the fault tree to illustrate 

the violation of a safety property. 

Moreover, the executable state-based model, unlike the PL-SFTA, can explore 

multiple solutions to come up with a reliable and easy-to-implement mitigation strategy. 

This then drives the updating of the product line’s requirements to include the new safety 

requirements. Such feedback is impossible to ensure using the PL-SFTA alone. Thus, the 

inclusion of a state-based modeling safety analysis approach may improve the safety case 

that a safety-critical product line must make when requiring certification from an outside 

governing body.    

The use of the PL-SFTA technique and its tool, PLFaultCAT, in concert with the 

state-based provides software engineers with a set of tools to best assess the safety of a 

software system and make it more practical for software engineers to check the behavior 



 197  

 

of product variations for potential safety consequences as well as enhancing the models 

reusability as a safety asset for new products. Note that this line of research is not the 

primary work of this author and thus is not the focus of this dissertation. A full 

description of the safety analysis for software product lines using a state-based modeling 

approach is provided in [45], [46], [47], [48].  

Although we have only demonstrated the state-based modeling safety analysis 

techniques on a traditional product line (i.e., not an agent-based system), their application 

towards a multi-agent system product line (MAS-PL) should be straightforward and 

would further provide safety analysis techniques that can both analyze a MAS-PL and 

provide reusable safety analysis assets for future systems. Section 6.2 further details this 

approach as Future Work.    

5.3.10  Summary 

This section detailed and illustrated our extension of the traditional Software Fault 

Tree Analysis (SFTA) technique to an entire product line with the support of a software 

tool, PLFaultCAT on a safety-critical multi-agent system product line (MAS-PL). This 

extension supports the construction of a product-line SFTA (PL-SFTA) in PLFaultCAT 

from common hazard analysis assets during the domain engineering phase of software 

product-line engineering. We showed how new safety requirements can be discovered 

and mitigations to possible hazards can be introduced through the introduction of new 

product-line requirements or constraints.  This section also presented the pruning 

technique developed and implemented in PLFaultCAT during the application engineering 

phase to derive the SFTA for single product members of the product line. 

The Software Failure Modes, Effects and Criticality Analysis (SFMECA), 

described in Section 5.2, and the Product-Line Software Fault Tree Analysis (PL-SFTA), 

described in this section, can be viewed as complementary since the output of the 
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SFMECA (i.e., the potential system-wide hazards) should match-up with the inputs of the 

PL-SFTA.  Similarly, the output of the PL-SFTA (i.e., the low-level, local errors that 

cause a system-wide hazard) should match-up with the inputs of the SFMECA. The 

comparison of a SFMECA, a forward analysis technique, and a PL-SFTA, a backward 

analysis technique, is used in a Bi-Directional Safety Analysis to help ensure consistency 

and completeness. The next section describes the BDSA for a MAS-PL using the 

SFMECA developed in Section 5.2 and the PL-SFTA developed in Section 5.3.                

5.4  Bi-Directional Safety Analysis for Multi-Agent  System 

Product Lines 

The development of a forward and backward safety analysis technique for a 

safety-critical, multi-agent system product line (MAS-PL) was partly motivated by the 

opportunity to perform a Bi-Directional Safety Analysis (BDSA) on the design of a 

MAS-PL to better provide assurance of its safety. The results of a forward search, such as 

the Software Failure Modes Effects and Criticality Analysis (SFMECA) described in 

Section 5.2, and a backward search, such as a product-line Software Fault Tree Analysis 

(PL-SFTA), will not necessarily be the same, often times both types are utilized in the 

safety analysis of a safety-critical system [44]. 

The SFMECA and PL-SFTA techniques developed in this work can be viewed as 

complementary since the output of the SFMECA (i.e., the potential system-wide hazards) 

should match-up with the inputs (i.e., high-level or root nodes) of the PL-SFTA. Indeed, 

in Section 5.3.3.1 it was mentioned that one source of the hazards to model as a root node 

of a PL-SFTA can be the SFMECA tables. Similarly, the output of the PL-SFTA (i.e., the 

low-level, leaf node failures of a fault tree) should match-up with the inputs (i.e., local 

effects column) of the SFMECA.  For example, we can verify the completeness of the 

SFTA by ensuring that every unique hazard listed in the SFMECA table with a particular 
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level of criticality or higher (e.g., major criticality) is a root node within one of the fault 

trees of the SFTA. Thus, BDSA helps to ensure that the safety analyses used for the 

forward and backward search techniques are consistent for a safety-critical software 

product line.   

This section details a structured process to perform a BDSA tailored to the 

requirements specification of a safety-critical MAS-PL generated from the Gaia-PL 

methodology (see Chapter 4) using the SFMECA (see Section 5.2) and PL-SFTA (see 

Section 5.3). 

5.4.1  Assessing Gaia-PL’s Requirements Specificati ons using Bi-

Directional Safety Analysis   

To assess and derive safety requirements of the Role Schemas and the Variation 

Schemas from Gaia-PL using the SFMECA, the following steps suffice:  

1. For each Role Schema and Variation Point Schema:   

a. For each data/event listed in the Data/Event column of the SFMECA 

for the role represented in the Role Schema / Variation Point Schema: 

i. Decide at which level of criticality (i.e., critical, major, etc.) the 

role must provide mitigating requirements to ensure safety.  This 

may correspond to what level of system certification is required 

of the system.    

ii.  For each listed data/event failure mode listed in the Failure Mode 

column of the SFMECA with a criticality of at least the minimum 

criticality level needed for analysis (from Step i): 

a. Consult the local effect of the failure mode in the Local 

Effect(s) column of the SFMECA.  Assure that the software 

mitigates the local effect.  For data, the mitigating 
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requirement could be some sanity check (i.e., checking some 

other piece of data or monitoring that the data is reasonable 

given the software’s current state).  For events, the 

mitigation requirement could be some guard to ensure that 

the event is occurring under the right conditions and at the 

appropriate time given the software’s current condition.   

b. Check to make sure that the MAS-PL software will prevent 

the hazard described in the Possible Hazard column of the 

SFMECA from occurring in the PL-SFTA.  That is, check 

that the hazard is mitigated in both the SFMECA and PL-

SFTA.   

c. If the mitigation does not suffice to prevent the local effect, 

the software may not be compliant with system safety 

requirements.   

For example, applying this process to the Prospecting Asteroid Mission (PAM) 

case study used in this dissertation identified several new mitigation requirements to 

prevent the hazard of a “spacecraft to asteroid collision” that were then added to the 

Variation Point Schema.  For the “halt/abnormal termination” failure mode for the 

SFMECA given in Table 5, the mitigation requirement was that the 

MoveToAvoidCollision activity be atomic (either it executes completely or not at all).  

Alternatively, a new NotifyFinishMoveNewPos protocol could be introduced to have the 

spacecraft notify nearby spacecraft (or the leader spacecraft in charge of the subswarm) 

of the completion (or non-completion) of the MoveToAvoidCollision activity. 

Additionally, a mitigation requirement for the “timing/order” failure mode could be to 

assign a timestamp deadline by which each MoveToAvoidCollision activity must 
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complete before. Without the BDSA and SFMECA process detailed above, safety 

requirements such as these could be overlooked.       

5.4.2  Bi-Directional Safety Analysis’s Role in Str engthening the 

Safety Case of a Multi-Agent System Product Line 

For the multi-agent system product line (MAS-PL) applications of the future, 

safety certification may be desired or required before the system can be deployed. 

Certification is a process whereby a certification authority determines if an applicant 

provides sufficient evidence concerning the means of production of a candidate product 

and the characteristics of the candidate product so that the requirements of the certifying 

authority are fulfilled [31], [40], [69], [72]. Certification may apply to the development 

process, the developer or the actual product [55]. Since it is insufficient to certify the 

process or developer for the software of safety-critical systems, building a safety case that 

provides “an argument accompanied by evidence that all safety concerns and risks have 

been correctly identified and mitigated” [26] aids in the certification of the product.   

The safety analysis techniques and tools described in this chapter integrate the 

reuse potential of safety analysis assets into the design and development of a safety-

critical MAS-PL so that they can be used to better make a safety case when system 

certification is required as well as allowing the safety engineer to verify the safety 

requirements of the system and can discover missing safety requirements. These safety 

analyses provide some assurance that core assets defined in the domain engineering phase 

are being safely reused during the application engineering phase.    

In addition to strengthening the safety case of a MAS-PL using the process 

described in Section 5.4.1, the BDSA can contribute to the certification of a safety-

critical MAS-PL. Specifically, the use of BDSA can assist in certification of MAS- 

PL in two ways: 
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• Demonstration of compliance.  The use of BDSA provides assurances that 

certain classes of failure modes that might occur in the individual agents 

will not produce unacceptable effects in the composite system (e.g., the 

constellation, or fleet).  The artifacts produced in this investigation 

(SFMECA tables, PL-SFTAs, and the Role Schemas and Variation Point 

Schemas responsibility statements) help demonstrate compliance of the 

failure-monitoring and failure-mitigation software tasked with the system 

safety requirements. 

• Enabling reuse of certification arguments.  The use of product BDSA can 

reduce the burden of certification for systems composed of identical or 

near-identical units (e.g., the Prospecting Asteroid Mission (PAM) case 

study used in this dissertation).  In systems where each agent is a member 

of a product line, the similarities can be leveraged for efficient reuse of the 

safety analysis artifacts.  At the same time, the use of Role Schemas and 

Variation Point Schemas captures any variations among the roles that the 

agents may assume.  The Role Schemas and Variation Point Schemas thus 

help ensure that the reuse of the artifacts in the certification arguments 

accurately reflects any differences among the agents.        

Thus, the use of BDSA can greatly improve the effectiveness of the safety analysis 

artifacts of a safety-critical MAS-PL.                    

5.5  Summary 

This chapter detailed our safety analysis techniques and tools for the analysis of 

safety-critical multi-agent system product lines (MAS-PL). We detailed three safety 

analysis techniques: product-line Software Fault Tree Analysis (PL-SFTA), Software 
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Failure Modes, Effects and Criticality Analysis (SFMECA) and Bi-Directional Safety-

Analysis (BDSA).   

PL-SFTA and its tool, PLFaultCAT, provide the capability to construct a software 

fault tree for a product line and then reuse the PL-SFTA to automatically derive the fault 

trees for individual product-line members. We detailed how to build a product-line fault 

tree by associating the leaf nodes of a fault tree to the related product-line requirements. 

For a PL-SFTA, we showed how PLFaultCAT can automatically analyze the set of PL-

SFTAs for single-point failures and automatically identify safety-critical requirements 

and requirement interactions using PLFaultCAT.  

The SFMECA safety analysis technique was incorporated into our Gaia-PL 

methodology to produce a safety analysis technique specifically for a safety-critical 

MAS-PL. We provided a structured process to analyze the Variation Point Schemas 

produced in the Gaia-PL methodology to discover the ways in which the agents of the 

MAS-PL can fail and the effects of the failures on the entire system. The information 

generated here can aid in discovering missing safety requirements, designing mitigation 

requirements to prevent failures and verify existing safety requirements.  

Finally, we detailed how the SFMECA derived from the Gaia-PL assets and the 

PL-SFTA can be used together to perform a BDSA on the safety analysis assets of a 

MAS-PL improves the SFMECA and PL-SFTA by identifying incompleteness in both 

safety analyses. This aids in strengthening the safety analyses of the MAS-PL and 

provides further opportunities to discover missing safety requirements. Further, the 

BDSA process described additionally contributes to system certification by verifying 

software design compliance with reliability, robustness and safety standards by 

strengthening the safety case when the demonstration of the compliance of failure-

monitoring and failure mitigation software tasked with the safety requirements to safety 

standards in the MAS-PL is necessary.  
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This chapter’s objective was to be able to provide safety analysis artifacts for a 

new system in MAS-PL in a timely, cost-effective and safe manner. The safety analysis 

techniques and tools presented in this chapter should provide software engineers with a 

set of instruments to help build safety-critical MAS-PL in such a way that the safety 

analyses assets can be reused for future systems.     
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CHAPTER 6.  CONCLUSION 

Chapter 1 presented the following thesis statements for the work presented in this 

dissertation: an AOSE methodology can be devised to enhance the reuse in the design and 

development of a safety-critical MAS by incorporating software product-line engineering 

principles to develop reusable software engineering assets in a way that allows software 

engineers to take advantage of the reusable assets to create MAS; and that product-line 

safety analysis techniques and tools can be developed and adopted to support the 

development of a safety-critical MAS by discovering, analyzing and verifying the MAS’s 

requirements in a way that produces reusable safety assets that can be used for future 

systems of the  MAS. 

This chapter concludes this dissertation with a discussion of how this work 

supports the two claims of the thesis and a summary of the contributions. Future avenues 

of research stemming from this dissertation are presented and, finally, concluding 

remarks are provided reflecting on the motivation, contributions and application of this 

research.  

6.1  Support for the Thesis  

Chapter 2 first presented the background information and related research that lay 

the foundation for the AOSE methodology, Gaia-PL (Gaia – Product Line), presented 

here. Software product-line engineering is an established approach to reusing software 

development assets as a mechanism to reduce the development cost of software systems 

developed within a software product line. AOSE is an emerging software engineering 

field to design and develop highly distributed, intelligent software systems. Gaia-PL 

introduces and incorporates ideas from software product-line engineering into AOSE so 

that agent-based systems can take advantage of the reuse inherent in software product-

line engineering to achieve a reduction in development cost. This chapter also discussed 
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the related approaches in these areas to identify the differences of previous work from the 

Gaia-PL approach described in Chapter 3.  

Chapter 2 also discussed software safety analysis techniques and tools in the 

context of software product lines. Software safety analysis techniques, including 

Software Fault Tree Analysis (SFTA), Software Failure Modes, Effects and Criticality 

Analysis (SFMECA) and Bi-Directional Safety Analysis (BDSA), provide the 

groundwork for the product-line SFTA (PL-SFTA) technique, and its associated tool, 

PLFaultCAT, developed in this work. In addition, these safety analysis techniques were 

specifically adapted and included into our Gaia-PL AOSE methodology to aid in the 

safety analysis of MAS product lines (MAS-PL) in a way that is partially reusable.    

Next, Chapter 4 detailed the design and development of a MAS-PL using our 

Gaia-PL AOSE methodology on the PAM case study. The Gaia-PL methodology 

produces reusable software engineering assets so that building systems of the MAS-PL 

can be done efficiently, in terms of development cost and time. First, we described how 

we adopted software product-line engineering concepts into AOSE by identifying, 

defining and using variation points to build MAS. We then illustrated the adaptation of 

software product-line engineering’s Domain Engineering phase into Gaia’s Requirement 

Documentation and Analysis and Design phases. In these phases, we illustrated the 

documentation of MAS-PL requirements in a Commonality and Variability Analysis and 

a Parameters of Variation table.  

We detailed the documentation of requirement specifications in the Role and Role 

Variation Point Schemas. These schemas partitioned the commonality requirements and 

variability requirements into separate schemas for specific roles using a Feature Model as 

a guide. We described the adaptation of software product-line engineering’s Application 

Engineering phase into Gaia’s Detailed Design phase. In this phase, we illustrated the 
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reuse of the Role and Role Variation Point Schemas to build specific types of agents for a 

MAS-PL.  

We then discussed and illustrated the reuse of the requirements specifications 

during initial system development of a MAS-PL as well as during system evolution. To 

highlight the advantages of Gaia-PL, we differentiated our methodology from previous 

work by illustrating Gaia-PL’s ability to capture reuse and avoid the redundant work and 

increased development cost (in the additional time required) necessitated to accommodate 

the development of the agents as done in previous work. Finally, Chapter 4 concluded by 

providing an evaluation of our Gaia-PL methodology on the PAM case study to illustrate 

the reusability, development cost savings and other advantages of our approach.   

Chapter 5 discussed our safety analysis techniques and tools for the analysis of 

safety-critical software product lines and MAS-PL. First, we discussed our adaptation of 

Software Failure Modes, Effects and Criticality Analysis (SFMECA) in our Gaia-PL 

AOSE methodology to produce a safety analysis technique specifically for safety-critical 

MAS-PL. We provided a structured process to analyze the Variation Point Schemas 

produced in the Gaia-PL methodology to discover the ways in which the agents of the 

MAS-PL can fail and the effects of the failures on the entire system. The information 

generated here can aid in discovering missing safety requirements, designing mitigation 

requirements to prevent failures and verify existing safety requirements.  

Next, our product-line Software Fault Tree Analysis technique (PL-SFTA) and its 

tool, PLFaultCAT were discussed. After detailing PLFaultCAT’s software architecture, 

the construction of a PL-SFTA was discussed during software product-line engineering’s 

Domain Engineering phase using PLFaultCAT. We illustrated how to build a product-

line fault tree, link the leaf nodes to a product-line requirement documented in 

DECIMAL, automatically analyze the set of PL-SFTAs for single-point failures and 
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automatically identify safety-critical requirements and requirement interactions using 

PLFaultCAT.  

For software product-line engineering’s Application Engineering phase, we 

detailed the partially-automated pruning of the set of product-line fault trees to produce 

the set of fault trees for a member of a product line. PLFaultCAT takes the product-line 

requirements of a product documented in DECIMAL to automatically prune the branches 

of a PL-SFTA that can be safely removed for that specific product. That is, the branches 

of the PL-SFTA that are not relevant to a product because they involve requirements (i.e., 

variabilities) or values of variabilities that are not present or could not possibly present in 

the product are pruned from the fault tree.  Thus, reuse in the safety analysis is achieved 

by reusing the PL-SFTA developed in the Domain Engineering phase for the derivation 

of SFTAs for the product-line members created during the Application Engineering 

phase.  

PLFaultCAT takes a conservative approach to the pruning by only pruning those 

nodes of a PL-SFTA that can be safely removed. Because of this, additional manual 

pruning of PL-SFTA nodes may be needed to be performed by a safety engineer to derive 

the product-line member’s SFTA. Despite this, our case study has shown that 

PLFaultCAT can automatically prune about 70% of the PL-SFTA nodes that can be 

safely removed for any given member of a product line.  

It was also shown how our PL-SFTA approach can accommodate evolution of the 

software product line. We illustrated the process to handle the addition of product-line 

requirements in the PL-SFTA.   

An evaluation of our PL-SFTA technique and the PLFaultCAT tool was also 

provided using the PAM case study to illustrate PL-SFTA’s value as a reusable asset and 

PLFaultCAT’s ability to automatically derive the SFTAs for a product-line member. This 

evaluation shows how a PL-SFTA can capture the common parts of a SFTA and reuse 
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them for the members of a product line avoiding the cost that would be incurred if 

producing the same products serially (i.e., using the traditional SFTA approach rather 

than our PL-SFTA approach). The application of PL-SFTA to the case study used 

throughout this dissertation illustrated that an average of 54% of the PL-SFTA can be 

reused for the product-line members. Further, we showed PLFaultCAT’s capability to 

increase the safety of a product line by identifying new and missing safety requirements 

by utilizing PLFaultCAT’s novel features to analyze the PL-SFTA.       

Next, we detailed how the SFMECA derived from the Gaia-PL assets and PL-

SFTA can be used together to perform a Bi-Directional Safety Analysis. Performing a 

BDSA on the safety analysis assets of a MAS-PL improves the SFMECA and PL-SFTA 

by identifying incompleteness in both safety analyses. This improves the safety analyses 

of the MAS-PL and provides further opportunities to discover missing safety 

requirements.  

The BDSA process described additionally contributes to system certification by 

verifying software design compliance with reliability, robustness and safety standards. 

The application of BDSA to a MAS-PL can assist in the certification by providing 

assurances that classes of failure modes that could occur in individual agents will not 

produce unacceptable effects in the entire MAS. This aids in strengthening the safety case 

when the demonstration of the compliance of failure-monitoring and failure mitigation 

software tasked with the safety requirements to safety standards in the MAS-PL is 

necessary. Further, the BSDA process described in Chapter 5 was shown to enable the 

reuse of safety certification arguments while ensuring that the reuse of the safety analysis 

artifacts in the certification argument accurately reflect the differences amongst the 

agents of the MAS-PL.  
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6.2  Summary of Contributions 

This dissertation makes contributions in three key areas. First, the Gaia-PL 

methodology provides Agent-Oriented Software Engineering (AOSE) with a design and 

development methodology for agent-based systems that can reduce the development cost 

by taking advantage of the reuse principles of software product-line engineering. Second, 

the product-line Software Fault Tree Analysis (PL-SFTA) technique and its tool 

PLFaultCAT provide software engineers developing a safety-critical product line with a 

tool-supported technique to create a PL-SFTA and automatically derive the product-line 

members’ SFTA. Third, the integration of Software Failure Modes, Effects and 

Criticality Analysis (SFMECA) and Bi-Directional Safety Analysis (BDSA) into Gaia-

PL, along with the demonstration of PL-SFTA for MAS-PL, aids in system certification 

and the discovery, analysis and verification of a MAS-PL’s safety requirements.  

The Gaia-PL methodology was initially described at the 2005 International 

Conference on Software Engineering’s Workshop on Software Engineering for Large-

Scale, Multi-Agent Systems [19]. It was expanded in a 2006 edition of Lecture Notes in 

Computer Science [21] as well as in a chapter in a forthcoming book entitled Agent-

Oriented Software Engineering [62].  

This dissertation has further expanded the Gaia-PL methodology from the 

previously published work by including a Feature Model to aid in the identification of 

variation points of a role, expanded its applicability to MAS-PL by introducing a more 

hierarchical approach and by fully evaluating the approach for its ability to decrease 

development cost through reuse. The specific contributions of Gaia-PL include: 

• The inclusion of software product-line engineering principles into the 

development of MAS to build MAS-PL 



 211  

 

• An AOSE methodology that supports the design and development of MAS-PL 

using aspects of Gaia, an established AOSE methodology, and FAST, an 

established software product-line engineering methodology 

• The illustration of how Gaia-PL is amenable to the development of reusable 

software engineering assets during the design and development of MAS-PL 

and how the reusable assets can be used to develop systems of the MAS-PL 

• An evaluation of Gaia-PL methodology’s ability to reduce the development 

cost of MAS via a case study and comparison to the Gaia methodology 

Our PL-SFTA safety analysis technique and the PLFaultCAT tool were initially 

described at the 2004 High Assurance Systems Engineering Conference [17]. A short 

paper appeared at the 2005 International Symposium on Software Reliability Engineering 

[18] and additional papers at the 2005 International Conference on Software 

Engineering’s Workshop on Software Engineering for Large-Scale, Multi-Agent Systems 

[19], at the 2006 Workshop on Innovative Techniques for Certification of Embedded 

Systems [22], in a 2006 article in the Automated Software Engineering Journal [24] and 

in a research demonstration at the 2007 International Conference on Software 

Engineering [23].  

This dissertation has further extended this work to the application of a safety-

critical MAS-PL and extensively evaluated the technique and tool using the PAM case 

study.  

The specific contributions of PL-SFTA software safety analysis technique and the 

PLFaultCAT tool include: 

• Develops fault trees for a software product line in a way that the resulting PL-

SFTA is reusable for the products in a product line 

• Aids in discovering additional system safety requirements for a product line 

• Helps in identifying additional product-line dependencies 
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• Allows for an analyses to assess failure points and safety-critical requirements 

of a software product line 

• Complements SFMECA, BDSA and other safety analysis techniques to 

strengthen a safety case when system certification is required 

• Automatically derives all of the product line member SFTAs from PL-SFTAs 

• Links product-line requirements to PL-SFTA nodes to aid in traceability 

• Searches the set of PL-SFTAs to identify single-point failures 

• Identifies safety-critical requirements of the entire product line by analyzing 

the set of PL-SFTAs 

• Provides a minimum-cut set analysis of a PL-SFTA to identify hazard paths  

In addition, this technique and tool have been used in collaboration with Jing Liu 

and Robyn Lutz as guidance for another product-line safety analysis technique that 

appeared at the 2005 International Symposium on Software Reliability Engineering [47], 

at the 2007 Workshop on Model-Based Development [48] and in a forthcoming article in 

the Journal of Systems and Software [45].   

The inclusion of safety analysis techniques (i.e., PL-SFTA, SFMECA and BDSA) 

into the Gaia-PL methodology to perform safety analysis on MAS-PL was initially 

reported at the 2005 International Conference on Software Engineering’s Workshop on 

Software Engineering for Large-Scale, Multi-Agent Systems [19], in a short paper at the 

2005 International Symposium on Software Reliability Engineering [18], at the 2006 

Workshop on Innovative Techniques for Certification of Embedded Systems [22] and in a 

chapter in a forthcoming book tentatively entitled Agent-Oriented Software Engineering 

[62]. 

This dissertation has further extended this work to the application of a safety-

critical MAS-PL and extensively evaluated these techniques using the PAM case study.  
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The specific contributions of the inclusion of safety analysis techniques into the 

Gaia-PL methodology for designing and developing safety-critical MAS-PL include: 

• Extending BDSA to MAS-PL and showing how the analysis artifacts contribute 

to the software’s safety case for certification purposes 

• Supplying a structured process to perform SFMECA in the Gaia-PL methodology 

• Providing assurances that certain classes of failure modes that might occur in 

individual agents will not produce unacceptable effects in the composite system, 

demonstrating the compliance of failure-monitoring and failure mitigation 

software tasked with the system safety requirements to safety standards 

• Enabling reuse of certification arguments while ensuring that the reuse of the 

safety analysis artifacts in the certification arguments accurately reflect the 

differences amongst the agents of the system   

6.3  Future Work 

There are several avenues for future research and development based on the work 

and results of this dissertation, some of which involve expanding the less 

detailed/unexplored portions of our AOSE methodology that integrates software product-

line engineering concepts, Gaia-PL. These avenues of research include (but are not 

limited to) the following: 

• Expansion and application of Gaia-PL into the other parts of Gaia to cover a 

broader selection of the models and phases in the development of multi-agent 

system product lines (MAS-PL) 

• Comparison and evaluation of our contributions to aid in the certification of 

agent-based software systems of our approach to others’ work 

• Inclusion of additional product-line safety analysis techniques into the design 

and development of MAS-PL 
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• Integration of reliability engineering techniques into our safety analysis 

techniques to provide reliability assurances to MAS-PL 

• Adaptation of our safety analysis techniques to analyzing and verifying the 

security properties of a MAS-PL  

• Investigation of the Gaia-PL methodology to the design and development of 

sensor nodes in a sensor network 

The Gaia-PL AOSE methodology described in this dissertation primarily focused 

on the documentation and reuse of requirement specifications for a MAS-PL. This work 

made the initial strides into integrating software product-line engineering concepts into 

the design and development of agent-based software systems. To achieve this, we solely 

concentrated on portions of the Gaia methodology and the inclusion of reuse principles 

into some of its models. Thus, our Gaia-PL methodology chiefly focuses on capturing the 

commonalities of agents in a MAS-PL rather than providing a full suite of models and 

abstraction mechanisms for all phases in the design and development of a MAS-PL. 

Although the Gaia-PL methodology can seamlessly be integrated as a part of the Gaia 

methodology (i.e., using Gaia-PL’s Role and Role Variation Point Schemas for the 

requirements and the remaining Gaia models to design and develop other parts of the 

MAS-PL), further work can be done to adopt other models of Gaia into Gaia-PL by 

further including the product line ideas discussed in this dissertation.  

Alternatively, the Gaia-PL methodology may better benefit from working with 

other MAS-PL AOSE methodologies that have followed our work in [19], [21]. The 

MaCMAS AOSE methodology for designing and developing MAS-PL uses UML to 

model a MAS-PL and focuses on handling the complexity of MAS-PL and building its 

core architecture [62], [64], [65]. Thus, the use of Gaia-PL for the requirements and early 

design phases along with the use of MaCMAS to derive the MAS-PL’s core architecture 

may be a natural and advantageous approach.  
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The initial results from an application of our safety analysis techniques (i.e., 

product-line Software Fault Tree Analysis (PL-SFTA), Software Failure Modes, Effects 

and Criticality Analysis (SFMCEA) and Bi-Directional Safety Analysis (BDSA), to the 

PAM MAS-PL case study, described in Chapter 5, suggests that these technologies can 

reduce the effort involved in certifying the safety of new systems within a MAS-PL. Yet, 

further investigation into the ways in which software certification can be reduced through 

the use of reusable safety analysis assets may be warranted. An empirical study into this 

as well as a comparison to similar approaches, if they exist, would benefit the AOSE 

community.      

Other product line safety analysis techniques [45], [47], [48] developed by this 

author in collaboration with Jing Liu and Robyn Lutz have been shown to be effective in 

constructing the behavioral model of a product line’s safety-critical variability 

requirements in order to support the automated verification of safety properties across a 

product line. Although we have only demonstrated these techniques on a cardiac 

pacemaker product line (i.e., not an agent-based system), their application towards a 

MAS-PL should be straightforward and would further provide AOSE with the safety 

analysis techniques that can both analyze a MAS-PL and provide reusable safety analysis 

assets for future systems.   

Safety analysis and reliability engineering are both facets of software 

dependability engineering. Other approaches, such as Galileo [30], [60], [78], directly 

integrate reliability data (e.g., failure probability rates) into safety analysis techniques. 

The certification of some systems (e.g., aircraft, pacemakers, etc.) frequently requires 

calculated failure rates (i.e., 10-9 probability of failure for aircraft). The inclusion of 

reliability engineering techniques and models into the safety analysis techniques and 

tools described in this dissertation would further strengthen the safety case needed for the 

certification of a MAS-PL. However, the challenge in this would be to enhance the 
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autonomous (e.g., unpredictable) nature of an agent with the predictability needed by 

many reliability engineering techniques.   

In some cases, the safety requirements and properties of interest to this 

dissertation have similarities to the type of security properties that would be of interest to 

the designers and developers of a MAS-PL. The exploration into how the safety analysis 

techniques developed in this dissertation, as well as other techniques, can contribute to 

the validation of MAS-PL’s security properties as well as derive reusable assets for 

verifying future product line members’ security properties is a natural extension of this 

work.   

Like agent-based systems, sensor networks typically consist of similar nodes that 

could benefit from reuse and safety analysis mechanisms in their design and development 

phases. The investigation and application of the ideas developed in this dissertation for 

the design and development of agent-based systems may apply to the design and 

development of sensor networks. This avenue of research may be of great interest to the 

sensor network community as it would further bring the possibility of reuse, in both 

hardware and software, into the design and development of the nodes of a sensor node 

product line in order to reduce their development cost.       

6.3  Summary 

This dissertation offered our AOSE methodology, Gaia-PL (Gaia – Product Line) 

for the design and development of agent-based, distributed software systems. Gaia-PL 

captures requirements specifications by using a product-line perspective to promote reuse 

in agent-based, software systems early in the development lifecycle. This allows software 

engineers to be able to reuse some software engineering assets during the initial system 

development as well as during system evolution.  
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For safety-critical agent-based systems, this dissertation developed and 

incorporated reuse-oriented safety analysis methods for the Gaia-PL methodology to 

allow the discovery of new safety requirements and the verification that the design 

satisfies the safety requirements. Specifically, Product-Line Software Fault Tree Analysis 

(PL-SFTA) and its automated tool, PLFaultCAT (Product-L ine Fault Tree Creation and 

Analysis Tool) have been created to provide the technique and tool support for the safety 

analysis of safety-critical software product lines and allow for the identification of new 

safety requirements and the analysis of safety-critical requirements and requirement 

interactions. An AOSE-adapted Software Failure Modes, Effects and Criticality Analysis 

(SFMECA) technique was created to support the derivation of a safety analysis asset 

using the specifications of Gaia-PL allowing for the identification of possible hazard 

scenarios and the failure points of specific agent roles. Using the assets generated via PL-

SFTA and SFMECA, Bi-Directional Safety Analysis (BDSA) is shown to aid in the 

completeness of PL-SFTA and SFMECA, help verify the safety properties and strengthen 

the safety case when compliance to safety standards of the multi-agent system is 

necessary. 

The goal of this work was to be able to provide safety verification results for a 

new system in the product line in a timely, cost-effective and safe manner. It is hoped that 

the contributions of the work presented in this dissertation provide software engineers 

with an AOSE methodology to build safety-critical, agent-based systems so that the 

safety analysis assets as well as the requirements analysis and design can be reused for 

future systems.     
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APPENDIX A.  COMMONALITY AND VARIABILITY ANALYSIS 

This appendix provides the full Commonality and Variabillity Analysis (CVA) for 

the Prospecting Asteroid Mission (PAM) multi-agent system product line (MAS-PL) case 

study used throughout this dissertation. The CVA provides a dictionary of relevant 

domain terms followed by the PAM case study’s product-line commonality requirements 

and variability requirements.  
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DICTIONARY OF TERMS  

Agent In the case of PAM spacecraft, an agent is at the spacecraft-level 

comprising of all the roles that the spacecraft must perform.  

Altimeter Scientific instrument onboard some PAM spacecraft with a primary task to 

obtain an asteroid’s shape, 3D model, topography and geomorphology 

[68]. 

ANTS The Autonomous Nano-Technology Swarm is a NASA concept mission 

that entails a grouping of agents that work cooperatively, autonomously 

and is adaptable to achieve mission goals [14], [15], [71], [83].  

AU   Astronomical Unit, the approximate distance from the Sun to the Earth.   

Autonomous  Systems that operate on their own to the maximum extent possible and 

require little to no human intervention or guidance [83]. 

Cooperation  The ability for spacecraft to work together to achieve mission goals [1], 

[14], [15], [59].  

Environment  The surrounding space and conditions as well as the other PAM 

spacecraft. 

Formation Flying  The necessity to orbit an asteroid in specified relative positions (in 

relation to the asteroid as well as other spacecraft) to obtain ideal 

conditions to perform scientific, communication and decision-making 

activities [1], [14], [15], [83], [84].  

Gamma-Ray Spectrometer   Scientific instrument onboard some PAM spacecraft with 

a primary task to obtain an asteroid’s heavy element makeup and volatile 

characterization [68].  

Geomorphology  The study of the landforms present on an asteroid including the 

landforms possible origin and evolution. 
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Lagrange Point  Special regions of space where the gravity of the Moon, the Earth and 

the Sun balance such that a spacecraft can be parked there at the cost of 

using a relatively small amount of fuel [68].   

Near-Infrared Spectrometer  Scientific instrument onboard some PAM spacecraft with 

a primary task to obtain an asteroid’s mineral abundance mapping [68]. 

Neutral Mass Spectrometer  Scientific instrument onboard some PAM spacecraft with 

a primary task to obtain an asteroid’s volatile characterization [68]. 

Neutron Spectrometer  Scientific instrument onboard some PAM spacecraft with a 

primary task to obtain an asteroid’s heavy element makeup and volatile 

characterization [68]. 

PAM The Prospecting Asteroid M ission. A 2020-2025 proposed NASA sub-

mission lasting 5-10 years based on the ANTS technology with a goal of 

exploring the asteroid belt between Mars and Jupiter.  

Photogeology  The geologic interpretation of landforms on an asteroid via imaging.  

Radio Science/Magnetometer  Scientific instrument onboard some PAM spacecraft 

with a primary task to obtain an asteroid’s gravity and magnetic fields, 

interior makeup and 3D model [68]. 

Radio Sounder/Infrared Radiometer  Scientific instrument onboard some PAM 

spacecraft with a primary task to obtain an asteroid’s Regolith 

characterization [68]. 

Regolith Characterization  The characterization of the heterogeneous material 

covering the solid body of an asteroid.  

Self-Coordination  The ability of a PAM spacecraft, at both the system and individual 

level, to automously decide upon, assign and pursue scientific goals [83].  
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Self-Healing  The ability of a PAM spacecraft, at both the system and individual level, 

to autonomously recover from damage due either to solar storms or 

collisions with an asteroid or other spacecraft [77]. 

Self-Optimization  The ability of a PAM spacecraft, at both the system and individual 

level, to autonomously improve its ability to identify and explore asteroids 

through learning and experience. At the system level, optimization 

propagates upwards from the self-optimization of individuals [77].  

Self-Protection  The ability of a PAM spacecraft, at both the system and individual 

level, to autonomously protect itself from solar storms or collisions with 

an asteroid or other spacecraft [77]. 

Solar Storm   Solar events that cause a large amount of solar radiation to be expelled 

from the Sun into space.  

Subswarm A subset of PAM spacecraft.  

Swarm The collection of all PAM spacecraft.  

Visible Imager  Scientific instrument onboard some PAM spacecraft with a primary 

task to obtain a target asteroids detection, 3D model and photogeology [68]. 

Volatile Characterization  The characterization of the volatile elements, those 

elements that vaporize at a relatively low temperature, present on an 

asteroid. 

X-ray Spectrometer  Scientific instrument onboard some PAM spacecraft with a 

primary task to obtain an asteroid’s major element abundance mapping 

[68]. 
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COMMONALITIES 

General Commonality Requirements 

C_G1.  The PAM swarm shall have no single point of failure [15]. 

C_G2.  The PAM swarm shall be robust to minor faults and catastrophic failures 

[14]. 

 

Self-Coordination Commonality Requirements 

C_SC1.  Every spacecraft shall work cooperatively (in a hierarchical, social 

manner) with other spacecraft to achieve mission goals [64], [65], [66], 

[77], [83], [84]. 

C_SC2.  Every spacecraft shall be able to coordinate its own science operations 

while simultaneously maximizing the resource utilization [77]. 

C_SC3.  Every spacecraft shall have the ability to coordinate its own orbits and 

trajectories with others to avoid collisions [15], [71], [84].  

C_SC4.  Every spacecraft shall have the capability of performing various kinds of 

formation flying [15].  

C_SC5.  Every spacecraft shall be able to form subswarms under the control of a 

leader spacecraft [77], [83], [84]. 

 

Self-Healing Commonality Requirements 

C_SH1.  Every spacecraft shall be able to recognize that its memory is 

corrupted/damaged (i.e., as a result from exposure to solar radiation) [64], 

[65], [66], [84]. 

C_SH2.  Every spacecraft shall be able to request an uncorrupted memory from 

another spacecraft in the event that it recognizes that its memory is 

corrupted [71], [84]. 
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C_SH3.  Every spacecraft shall be able to send its uncorrupted memory to another 

spacecraft upon request [71], [84]. 

C_SH4.  Every spacecraft shall be able to request to be replaced by another 

spacecraft in the event that it recognizes that its memory has failed beyond 

repair [71], [84]. 

C_SH5.  Every spacecraft shall be able to be killed off by a leader in the event of a 

loss of power [77], [84]. 

 

Self-Optimization Commonality Requirements 

C_SO1.  Every spacecraft shall be able to adjust to the surrounding environment 

(i.e., deteriorated/failing science instrumentation, when batteries/solar 

cells are deteriorating, etc.) [77], [84]. 

C_SO2.  Every spacecraft shall be able to optimize itself through calibrating its 

instruments [77], [83], [84]. 

C_SO3.  Every spacecraft shall be able to optimize its power consumption [15], 

[65], [66], [84]. 

C_SO4.  Every spacecraft shall be able to monitor and adjust its relative positions 

to optimize its scientific exploration [77], [84]. 

 

Self-Protection Commonality Requirements 

C_SP1.  Every spacecraft shall be responsible for preventing collisions with other 

spacecraft [64], [65], [66], [71], [77], [84]. 

C_SP2.  Every spacecraft shall be able to communicate with nearby spacecraft in 

order to prevent collisions [64], [65], [66], [71], [77], [84]. 

C_SP3.  Every spacecraft shall be responsible for preventing collisions with 

asteroids [64], [65], [66], [71], [77], [84]. 



 235  

 

C_SP4.  Every spacecraft shall be able to store a 3D map of nearby asteroids in 

order to prevent collisions [71], [77], [84]. 

C_SP5.  Every spacecraft shall be able to take acceptable risks (i.e., collision with 

asteroids or other spacecraft) while attempting to satisfy its scientific goals 

[71], [77], [84]. 

C_SP6.  Every spacecraft shall be able to deploy its solar sail to use as a shield for 

protection against solar storms [65], [66], [77], [83], [84]. 

C_SP7.  Every spacecraft shall be able to switch off its subsystems when needed to 

protect against solar radiation [65], [66], [77], [83], [84]. 

C_SP8.  Every spacecraft shall be able to receive messages from other spacecraft 

giving advanced warning of an impending solar storm [65], [66], [77], 

[84]. 

  

Miscellaneous Commonality Requirements 

C_M1.  Every spacecraft shall have the ability to control its own guidance 

navigation and control functions [14], [15], [83]. 

C_M2. Every spacecraft shall have the ability to control its own attitude [14], 

[15]. 

C_M3.  Every spacecraft shall be able to use their solar shields as its means of 

flight [14], [15], [65], [66]. 

C_M4.  Every spacecraft shall be able to know its current position [15], [65], [66]. 

C_M5.  Every spacecraft shall be able to know its current velocity increment [15], 

[66]. 

C_M6.  Every spacecraft shall be able to adjust its position/orbit [15], [65], [66]. 

C_M7.  Every spacecraft shall be able to change its velocity increment [15], [65], 

[66]. 
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C_M8.  Every spacecraft shall be able to calculate the thrust needed to power its 

solar sails needed to maneuver [15], [65], [66]. 

C_M9.  Every spacecraft shall be able to verify/check each other’s results via a 

voting process (e.g., Byzantine voting schemes such as a 4-way or more 

may be needed) [15]. 

 

VARIABILITIES 

General Variability Requirements 

V_G1.  Every spacecraft shall be initially defined by one of the roles it’s to 

assume in the PAM swarm [14], [65], [66], [77], [83], [84]. 

 

Self-Coordination Variability Requirements 

* Self-coordination variability requirements are listed under the Leader, Messenger 

and/or Worker Variability Requirements, respectively.  

 

Self-Healing Variability Requirements 

V_SH1.  A messenger spacecraft’s ability to be upgraded to that of a leader’s role 

may vary [77]. 

V_SH2.  A leader spacecraft’s ability to be upgraded to that of a messenger’s role if 

a messenger is destroyed may vary [77]. 

V_SH3.  A worker spacecraft’s ability to be upgraded to that of a messenger’s role 

if a messenger is destroyed may vary [77].  

 

Self-Optimization Variability Requirements 

V_SO1.  A spacecraft’s ability to optimize itself via improving their ability to 

identify asteroids of interest may vary [15], [71], [77], [83] [84]. 
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V_SO2.  A spacecraft’s ability to share its optimization information regarding the 

identification of asteroids of interest with leader spacecraft may vary [77], 

[84]. 

V_SO3.  A spacecraft’s ability to optimize itself through positioning itself 

appropriately to best facilitate communications with messenger spacecraft 

may vary [15], [77], [84]. 

V_SO4.  A spacecraft’s ability to share its optimization information regarding 

positioning itself appropriately to best facilitate communications with 

messenger spacecraft may vary [15], [77].  

V_SO5.  A spacecraft’s ability to optimize itself via learning through their past 

experiences to better investigate an asteroid may vary [15], [77], [84].  

V_SO6.  A spacecraft’s ability to share its optimization information regarding how 

to better investigate an asteroid with worker spacecraft may vary [15], 

[77], [84]. 

 

Self-Protection Variability Requirements 

V_SP1.  A spacecraft’s ability to be tasked with constantly observing the solar disc 

to detect signs of an impending solar storm may vary [65], [66], [77], [84]. 

V_SP2.  A spacecraft’s ability to receive warnings from mission control of an 

impending solar storm may vary [65], [66], [77], [84].  

 

Leader Spacecraft Variability Requirements 

V_L1.  A spacecraft’s ability to be in charge of performing subswarm allocation 

and planning may vary [15], [71], [83], [84].  

V_L2.  A spacecraft performing subswarm allocation and planning may vary in its 

role in allocation and planning activities [15]. 
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V_L3.  A spacecraft’s ability to be able to assign teams of worker and messenger 

spacecraft may vary [83].  

V_L4.  A spacecraft’s ability to direct/coordinate worker spacecraft to investigate 

a specific asteroid may vary [77], [83], [84]. 

V_L5.  A spacecraft’s ability to redistribute/realign duties to worker spacecraft to 

ensure sufficient coverage of instrument roles may vary [83]. 

V_L6.  A spacecraft’s ability to be responsible for determining the types of 

asteroids to investigate may vary [15], [71], [77], [83], [84]. 

V_L7.  A spacecraft’s ability to contain the rules that decide the types of asteroids 

to investigate may vary [77], [83]. 

V_L8.  A spacecraft’s ability to be responsible for determining the types of data to 

gather from an asteroid may vary [77], [83]. 

V_L9.  A spacecraft’s ability to be able to decide amongst other leaders present in 

a subswarm which shall take the lead and control the subswarm may vary 

[15], [83]. 

V_L10.  A spacecraft’s ability to oversee the data flow from worker spacecraft to 

messenger spacecraft may vary [15]. 

V_L11.  A spacecraft’s ability to contain models of the types of science they want 

to have performed on a targeted asteroid may vary [15], [83]. 

V_L12.  A spacecraft’s ability to communicate to messenger spacecraft parts of the 

model of the science to be performed on a targeted asteroid may vary [15]. 

V_L13.  A spacecraft’s ability to form the communications layer to maintain the 

position, trajectory and orbital insertion data of every spacecraft in the 

swarm may vary [15], [83]. 

V_L14. A spacecraft’s knowledge of the swarm may vary [15].  
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V_L15.  A spacecraft’s ability to receive and accept change in velocity bids from 

other members during subswarm reconfiguration may vary [15]. 

V_L16.  A spacecraft’s ability to issue a request to members of the subswarm for 

change in velocity bids may vary [15]. 

V_L17.  A spacecraft’s ability to issue a move to new position message to 

spacecraft of the subswarm during subswarm reconfiguration may vary 

[15]. 

 

Messenger Spacecraft Variability Requirements 

V_M1.  A spacecraft’s ability to relay/coordinate messages between worker 

spacecraft and leader spacecraft may vary [15], [71], [77], [83], [84]. 

V_M2.  A spacecraft’s ability to relay/coordinate messages between leader 

spacecraft and mission control may vary [15] [71], [77]. 

V_M3.  A spacecraft’s ability to provide up to ~0.1 AU communication across the 

swarm may vary [15].  

V_M4.  A spacecraft’s ability to receive asteroid data from worker spacecraft may 

vary [15], [71]. 

V_M5.  A spacecraft’s ability to archive data received from worker spacecraft 

regarding the discovered information of a targeted asteroid may vary [15]. 

V_M6.  A spacecraft’s ability to travel to a terrestrial Lagrange point (or other 

communication nodes) to communicate the discovered information may 

vary [14], [15], [83], [84].  

V_M7.  A spacecraft’s ability to relay the parts of the model that a leader 

spacecraft wants worker spacecraft to carry out on a targeted asteroid to 

worker spacecraft may vary [15]. 
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V_M8.  A spacecraft’s ability form the communications layer to maintain the 

position, trajectory and orbital insertion data of every spacecraft in the 

swarm may vary [14], [15], [83], [84]. 

 

Worker Spacecraft Variability Requirements 

V_W1. A spacecraft’s single onboard specialized scientific instrumentation may 

vary [1], [15], [65], [66], [68], [71], [77], [83], [84]. 

V_W2.  A spacecraft’s ability to communicate the data they have found regarding 

a targeted asteroid to the messengers may vary [77], [84]. 

V_W3.  A spacecraft’s ability to send asteroid data to a messenger spacecraft to be 

archived may vary [15]. 

V_W4.  A spacecraft’s ability to, when an opportunity presents itself, investigate a 

nearby asteroid to collect preliminary data so that it can be evaluated by a 

leader as to the level of interest the swarm should have for that particular 

asteroid may vary [1], [15], [68], [71], [83]. 

V_W5.  A spacecraft’s ability to work alone to evaluate potential asteroids to 

investigate may vary [15]. 

V_W6.  A spacecraft equipped with visible imager instrumentation may vary in its 

field scope [15]. 

V_W7.  A spacecraft equipped with visible imager instrumentation and containing 

the functionality to gather data related to asteroid target detection may 

vary [1], [15], [68], [71], [77], [83]. 

V_W8.  A spacecraft equipped with visible imager instrumentation and containing 

the functionality to gather data in order to construction a 3D model of the 

target asteroid may vary [1], [15], [68], [71], [83]. 
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V_W9.  A spacecraft equipped with visible imager instrumentation and containing 

the functionality to gather data pertaining to the asteroid’s photogeology 

may vary [1], [15], [68], [71], [83]. 

V_W10.  A spacecraft equipped with visible imager instrumentation and containing 

the functionality to ascertain the exact location of a target asteroid may 

vary [1], [15], [68], [71], [83]. 

V_W11.  A spacecraft equipped with visible imager instrumentation and containing 

the functionality to create a rough model of a target asteroid to be used by 

other worker spacecraft for maneuvering around the asteroid may vary [1], 

[15], [68], [71], [83]. 

V_W12.  A spacecraft equipped with near-infrared spectrometer instrumentation 

and containing the functionality to gather data pertaining to the target 

asteroid’s mineral abundance mapping may vary [1], [15], [68], [71], [83].  

V_W13.  A spacecraft specialized with X-ray spectrometer instrumentation and 

containing the functionality to gather data pertaining to the target 

asteroid’s major element abundance mapping may vary [1], [15], [68], 

[71], [83]. 

V_W14.  A spacecraft equipped with Gamma-ray instrumentation and containing 

the functionality to gather data pertaining to the target asteroid’s heavy 

element abundance mapping may vary [1], [15], [68], [71], [83]. 

V_W15.  A spacecraft specialized with Neutron spectrometer instrumentation and 

containing the functionality to gather data pertaining to the target 

asteroid’s volatile abundance mapping may vary [1], [15], [68], [71], [83]. 

V_W16.  A spacecraft equipped with altimeter instrumentation and containing the 

functionality to gather data pertaining to the target asteroid’s shape may 

vary [1], [15], [68], [71], [83]. 



 242  

 

V_W17.  A spacecraft specialized with altimeter instrumentation and containing the 

functionality to gather data pertaining to the target asteroid’s 3D model 

construction may vary [1], [15], [68], [71], [83]. 

V_W18.  A spacecraft specialized with altimeter instrumentation and containing the 

functionality to gather data pertaining to the target asteroid’s topography 

may vary [1], [15], [68], [71], [83]. 

V_W19.  A spacecraft specialized with altimeter instrumentation and containing the 

functionality to gather data pertaining to the target asteroid’s 

geomorphology may vary [1], [15], [68], [71], [83]. 

V_W20.  A spacecraft specialized with radio science/magnetometer instrumentation 

and containing the functionality to gather data pertaining to the target 

asteroid’s gravity fields may vary [1], [15], [68], [71], [83]. 

V_W21.  A spacecraft specialized with radio science/magnetometer instrumentation 

and containing the functionality to gather data pertaining to the target 

asteroid’s magnetic fields may vary [1], [15], [68], [71], [83]. 

V_W22.  A spacecraft specialized with radio science/magnetometer instrumentation 

and containing the functionality to gather data pertaining to the target 

asteroid’s interior makeup may vary [1], [15], [68], [71], [83]. 

V_W23.  A spacecraft specialized with radio science/magnetometer instrumentation 

and containing the functionality to gather data pertaining to the target 

asteroid’s 3D model construction may vary [1], [15], [68], [71], [83]. 

V_W24.  A spacecraft specialized with radio sounder/infrared radiometer 

instrumentation and containing the functionality to gather data pertaining 

to the target asteroid’s Regolith characterization may vary [1], [15], [68], 

[71], [83]. 
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V_W25.  A spacecraft specialized with neutral mass spectrometer instrumentation 

and containing the functionality to gather data pertaining to the target 

asteroid’s volatile characterization may vary [1], [15], [68], [71], [83]. 
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APPENDIX B.  PARAMETERS OF VARIATION 

This appendix provides the Parameters of Variation tables for the Prospecting 

Asteroid Mission (PAM) multi-agent system product line (MAS-PL) case study used 

throughout this dissertation. The Parameters of Variation tables further define the 

product-line variability requirements detailed in the Commonality and Variability 

Analysis (CVA). 
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Parameter Meaning Domain Binding Time Default 
GENERAL VARIABILITY REQUIREMENTS 

P1: vSpacecraftRole 
V_G1 

The role that a spacecraft is to initially 
assume. 

[Leader, Messenger, 
Worker] 

Design Worker 

SELF-HEALING VARIABILITY REQUIREMENTS 

P2: vUpgradeToLeader 
V_SH1 

The ability of a messenger spacecraft 
to be upgraded to assume the role of a 

leader. 
[True, False]  Specification False 

P3: vUpgradeToMessenger 
V_SH2, V_SH3 

The ability of a leader or a worker 
spacecraft to be upgraded to assume 

the role of a messenger. 
[True, False]  Specification False 

SELF-OPTIMIZATION VARIABILITY REQUIREMENTS 

P4: vIdAsteroidsOptimization 
V_SO1, V_SO2 

The ability of a leader spacecraft to 
optimize its ability to identify asteroids 
of interest and share this information 

with other leader spacecraft. 

[True, False] Specification False 

P5: vCommOptimization 
V_SO3, V_SO4 

The ability of a spacecraft to optimize 
its positioning for communications and 

sharing this optimization with other 
spacecraft. 

[True, False] Specification True 

P6: vScienceOptimization 
V_SO5, V_SO6 

The ability to optimize its scientific 
exploration of an asteroid and sharing 
this optimization with other spacecraft. 

[True, False] Specification False 

SELF-PROTECTION VARIABILITY REQUIREMENTS 

P7: vSolarDiscWatch 
V_SP1 

The ability of a spacecraft to 
constantly watch the solar disc for the 

signs of an impending solar storm. 

[Passive, Warm-Spare, 
Active] 

Design Passive 

P8: vMissConStormWarn 
V_SP2 

The ability of a spacecraft to receive 
messages from mission control 

warning of an impending solar storm. 
[True, False] Design False 
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Parameter Meaning Domain Binding Time  Default 
LEADER SPACECRAFT VARIABILITY REQUIREMENTS 

P9: vAllocPlanAbility 
V_L1 

The ability of a spacecraft to perform 
subswarm allocation and planning. 

[True, False]  Specification False 

P10: vAllocPlanRole 
V_L2 

The role of a spacecraft participating 
in subswarm allocation and planning. 

[Passive, Active]  Runtime Passive 

P11: vAssignTeamsAbility 
V_L3 

The ability to assign teams of worker 
and messenger spacecraft. 

[True, False]  Specification False 

P12: vRedistribRolesAbility 
V_L4, V_L5 

The ability to redistribute roles to 
worker spacecraft. 

[True, False]  Specification False 

P13: vIdAsteroidAbility 
V_L6, V_L7, V_L8 

The ability to be responsible for 
identifying which asteroids should be 

investigated by a subswarm. 
[True, False]  Specification False 

P14: vDecideLeaderAbility 
V_L9 

The ability to decide which leader 
should take lead control of a 

subswarm. 
[True, False] Specification False 

P15: vOverseeDataFlow 
V_L10 

The ability to oversee the data flow 
from worker spacecraft to messenger 

spacecraft. 
[True, False] Specification False 

P16: vTargetAsteroidModel 
V_L11, V_L12 

The ability to contain a model of the 
profile of the types of asteroids that 
should be explored and the ability to 
communicate this model with other 

spacecraft. 

[True, False] Specification False 

P17: vPosTrajOrbitDataHolder 
V_L13, V_M8 

The ability to maintain the position, 
trajectory and orbital insertion data of 

every spacecraft in the subswarm. 
[True, False] Specification False 

P18: vLeaderSwarmKnow 
V_L14 

The amount of knowledge that a 
spacecraft has about the entire swarm. 

[Subswarm knowledge, 
Partial-swarm 

knowledge, Full-swarm 
knowledge] 

Runtime 
Subswarm 
knowledge 

P19: vIdAsteroidsOptimization 
V_L15, V_L16, V_L17 

The ability to facilitate and coordinate 
spacecraft during subswarm 

reconfiguration. 
[True, False] Specification False 
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Parameter Meaning Domain Binding Time  Default 
MESSENGER SPACECRAFT VARIABILITY REQUIREMENTS 

P20: vRelayMessagesSwarm 
V_M1, V_M4 

The ability to relay and coordinate 
messages between spacecraft. 

[True, False] Specification False 

P21: vRelayMessagesMisCon 
V_M2 

The ability to relay and coordinate 
messages to mission control. 

[True, False] Specification False 

P22: vCommunicationRange 
V_M3 

The range that a spacecraft can 
reliably communicate (in AU). 

[0…0.1 AU] Design 0.05 AU 

P23: vArchiveAsteroidInfo 
V_M5 

The ability to archive received data 
regarding the discovered information 

of a targeted asteroid. 
[True, False] Specification False 

P24: vTravelToLagrangePnt 
V_M6 

The ability to travel to a Lagrange 
point to communicate with mission 

control. 
[True, False] Specification False 

P25: vRelayAsteroidModel 
V_M7 

The ability to relay parts of the science 
model to carry out on a targeted 
asteroid to a worker spacecraft. 

[True, False] Specification False 

WORKER SPACECRAFT VARIABILITY REQUIREMENTS 

P26: vWorkerInstrument 
V_W1 

The specialized scientific 
instrumentation that a spacecraft has 

onboard. 

[Visible Imager, Near-
Infrared Spectrometer, X-

Ray Spectrometer, 
Gamma-Ray 

Spectrometer, Neutron 
Spectrometer, Altimeter, 

Radio 
Science/Magnetometer, 
Radio Sounder/Infrared 

Radiometer, Neutral Mass 
Spectrometer]  

Design 
Visible 
Imager 

P27: vCommAsteroidData 
V_W2, V_W3 

The ability to communicate data found 
regarding a targeted asteroid. 

[True, False]  Specification True 

P28: vPreAsteroidInvestigate 
V_W4 

The ability to preliminarily investigate 
a nearby asteroid for initial data when 

the opportunity presents itself. 
[True, False]  Specification True 
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Parameter Meaning Domain Binding Time  Default 
WORKER SPACECRAFT VARIABILITY REQUIREMENTS (continued) 

P29: vWorkAloneAbility 
V_W5 

The ability for worker spacecraft to 
work alone rather than within a 

subswarm. 
[True, False]  Specification False 

P30: vVisibleImagerScope 
V_W6 

The field scope of a visible imager 
instrumentation. 

[Narrow-Scope,  
Wide-Scope]  

Design 
Narrow-
Scope 

P31: vImagerGatherData 
V_W7 

The ability of a spacecraft with a visible 
imager to gather data related to asteroid 

target detection. 
[True, False] Specification False 

P32: vImagerMake3DModel 
V_W8 

The ability of a spacecraft with a visible 
imager to construct a 3D model of the 

target asteroid. 
[True, False] Specification False 

P33: vImagerPhotogeology 
V_W9 

The ability of a spacecraft with a visible 
imager to gather data related to 

asteroid’s photogeology. 
[True, False] Specification False 

P34: vImagerLocation 
V_W10 

The ability of a spacecraft with a visible 
imager to determine location of an 

asteroid. 
[True, False] Specification False 

P35: vImagerManeuverModel 
V_W11 

The ability of a spacecraft with a visible 
imager to create a model used for other 

spacecraft to maneuver around an 
asteroid. 

[True, False] Specification False 

P36: vNearInfSpecGatherData 
V_W12 

The ability of a spacecraft with a near-
infrared spectrometer to gather data 
pertaining to the target asteroid’s 

mineral abundance mapping. 

[True, False] Specification False 

P37: vXRaySpecGatherData 
V_W13 

The ability of a spacecraft with a X-ray 
spectrometer to gather data pertaining to 

the target asteroid’s major element 
abundance mapping. 

[True, False] Specification False 

P38: vGammaRayGatherData 
V_W14 

The ability of a spacecraft with a 
Gamma-ray instrument to gather data 

pertaining to the target asteroid’s heavy 
element abundance mapping. 

[True, False] Specification False 
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Parameter Meaning Domain Binding Time Default 
WORKER SPACECRAFT VARIABILITY REQUIREMENTS (continued) 

P39: vNeutronSpecGatherData 
V_W15 

The ability of a spacecraft with a 
Neutron spectrometer the target 

asteroid’s volatile abundance mapping. 
[True, False] Specification False 

P40: vAltimeterGatherData 
V_W16 

The ability of a spacecraft with an 
altimeter to gather data pertaining to 

the target asteroid’s shape. 
[True, False]  Specification False 

P41: vAltimeter3DModel 
V_W17 

The ability of a spacecraft with an 
altimeter to construct a 3D model of 

the target asteroid. 
[True, False] Specification False 

P42: vAltimeterTopography 
V_W18 

The ability of a spacecraft with an 
altimeter to gather data pertaining to 

the target asteroid’s topography. 
[True, False] Specification False 

P43: vAltimeterGeomorphology 
V_W19 

The ability of a spacecraft with an 
altimeter to gather data pertaining to 
the target asteroid’s geomorphology. 

[True, False] Specification False 

P44: vRadScienceGatherData 
V_W20, V_W21 

The ability of a spacecraft with a radio 
science/magnetometer to gather data 

pertaining to the target asteroid’s 
gravity and magnetic fields. 

[True, False] Specification False 

P45: vRadScienceInterior 
V_W22 

The ability of a spacecraft with a radio 
science/magnetometer to gather data 

regarding the asteroid’s interior. 
[True, False] Specification False 

P46: vRadScience3DModel 
V_W23 

The ability of a spacecraft with a radio 
science/magnetometer to gather data 
regarding the asteroid’s 3D model. 

[True, False] Specification False 

P47: vRadSounderGatherData 
V_W24 

The ability of a spacecraft with a radio 
sounder/infrared radiometer to gather 
data pertaining to the target asteroid’s 

Regolith characterization. 

[True, False] Specification False 

P48: vNeutMassSpecGatherData 
V_W25 

The ability of a spacecraft with a 
neutral mass spectrometer to gather 

data pertaining to the target asteroid’s 
volatile characterization. 

[True, False] Specification False 
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APPENDIX C.  FEATURE MODEL 

This appendix provides the full Feature Model for the Prospecting Asteroid 

Mission (PAM) multi-agent system product line (MAS-PL) case study used throughout 

this dissertation. The Feature Model illustrates the required and optional features of a 

PAM spacecraft based on the product-line commonality and variability requirements 

documented in the Commonality and Variability Analysis (CVA).  
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APPENDIX D.  GAIA-PL ROLE SCHEMAS 

This appendix provides the full set of Gaia-PL requirements specifications 

schemas for the Prospecting Asteroid Mission (PAM) multi-agent system product line 

(MAS-PL) case study used throughout this dissertation. The requirements specifications 

schemas further define the product-line commonality and variability requirements 

documented in the Commonality and Variability Analysis (CVA) and in the Parameters 

of Variation table.   
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Role Schema:  Navigator                                                              Schema ID: N 
      Variation Point: N/A 
      Inherits: None 
 Parameters of Variation: N/A  
 Requirements: C_M1, C_M2, C_M3, C_M4, C_M5, C_M6, C_M7, C_M8   
      Description:  

Provides the functionality to a spacecraft to maneuver itself using its solar sail.  
   Activities and Protocols:   

AdjustSolarSail, CalculateThrust, CheckOrbit, CheckSolarSailStatus, 
CheckSystemStatus, ExtendSolarSail, MoveToPosition, RetractSolarSail 

   Permissions:   
          Reads - 
  currentAttitude    // attitude of the spacecraft 
  currentOrbit    // current orbit of the spacecraft 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  systemStatus     // status of the spacecraft 
  solarSailStatus     // status of the solar sail 
          Changes -  
  currentAttitude    // attitude of the spacecraft 
  position               // current spacecraft position  
               velocityIncrement    // current spacecraft velocity increment 
   
          Generates -  
  systemStatus     // status of the spacecraft 
  solarSailStatus   // status of the solar sail 
  thrustNeeded   // calculated thrust needed to move 
Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  maneuver the spacecraft to the desired location. 
          Safety -  

None. 

Navigator Role Schema 
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Role Variation Points Schema:  SelfCoordinator Schemata ID: SC 

  Parameters of Variation:  P9, P14, PP19, P20, P21     
  Description:     

  

At the swarm-level, the collection of this role within all the spacecraft aid in 
autonomously coordinating the scientific pursuits of the spacecraft in the swarm. At 
the spacecraft-level, these roles aid in the spacecraft to individually decide the best 
way to achieve its given scientific goals and to communicate with nearby spacecraft 
to cooperate in achieving these goals. 

  Variation Points: 
  Core: 
   
   

The core elements of a spacecraft to be able to autonomously 
coordinate itself and its surrounding spacecraft to decide upon, 
assign and pursue scientific goals. [SC-Core] 

  Leader: 
   

   

The elements needed in a leader spacecraft to be able to coordinate 
the subswarm spacecraft to pursue scientific goals. This includes 
coordinating with other leader spacecraft and coordinating all 
subswarm spacecraft during times of subswarm reconfiguration. [SC-
Leader] 

  Messenger: 
   
  

The elements needed in a messenger spacecraft to be able to 
coordinate the communication network needed in a subswarm while 
pursing scientific goals. [SC-Messenger] 

  Worker: 
   
   

The elements needed in a worker spacecraft to be able to coordinate 
the pursuit of science goals for a given asteroid. [SO-Worker] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design time. 
However, a spacecraft that may switch is operating variation point (i.e., P2=True or 
P3=True) may have this variation point alter at runtime.   

Self-Coordinator Role Variation Points Schema 
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Role Schema:  SelfCoordinator                                                Schema ID: SC-Core 
      Variation Point: Core 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SC1, C_SC2, C_SC3, C_SC4, C_SC5, C_SP1, C_SP2, C_M1,           

C_M2, C_M4, C_M5, C_M6, C_M7, C_M8   
      Description:  

Provides the spacecraft with the functionality to autonomously coordinate itself and 
its surrounding spacecraft to decide upon, assign and pursue scientific goals.    

 Activities and Protocols:   
CalcOrbit, CalcPostion, CalcResourceUtil, CalcTrajectory, EvaluateCurrentGoal, 
JoinSubswarm, MoveNewPosition, PerformFormationFly, AcceptFormFlyReq,  
AcceptSubswarmJoinReq, CoordinateOrbit, CoordinatePosition, 
CoordinateTrajectory, RejectFormFlyReq, RejectSubswarmJoinReq 

 Permissions:   
          Reads - 
  spacecraftID    // spacecraft ID to send to other spacecraft 
      // when requesting clean memory 
  systemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft to see if recent 
      // solar storm   
  systemGoal    // current goal of the spacecraft 
  currentAttitude    // current attitude of the spacecraft 
  currentGoal    // current goal of the spacecraft 
  currentPosition    // current position of the spacecraft 
  currentVelocityIncr   // velocity increment of the spacecraft  
  environmentStatus    // current status of the detectable parts of 
      // the surrounding environment 
          Changes -  
  currentAttitude    // attitude of the spacecraft 
  currentPosition    // position of the spacecraft 
  currentVelocityIncr   // velocity increment of the spacecraft 
  subswarmID    // identification of newly joined subswarm 
  subswarmSpacecraft // vector of other spacecraft in the newly  
      // joined subswarm 
          Generates -  
    newSystemGoal   // new goal of the spacecraft 
  subswarmAcceptMsg  // message to be sent accepting the  
     // request to join a subswarm 
  subswarmRejectMsg  // message to be sent rejecting the   
     // request to join a subswarm 
  resourceUtilizationVal  // calculated resource utilization level in  
     // order to maximize science operations  
     // and resource utilization 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will be able to coordinate its  
  science operations and maximize its resource utilization.  
          Safety -  
  Avoiding collisions during formation flying via coordination.  

Core Variation Point Schema for the Self-Coordinator Role 
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Role Schema:  SelfCoordinator                                             Schema ID: SC-Leader 
 Variation Point: Leader 
 Inherits: SC-Core 
      Parameters of Variation: P15=True; P16=True; P17=True; P18=Subswarm; 

P19=True  
      Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17   
 Description:  

Provides the core elements of a leader spacecraft to be able to facilitate the 
management and coordination of its subswarm.  

   Activities and Protocols:   
CalculatePartModel, OverseeSubSwarmDataFlow, PerformSubswarmReconfig, 
AcceptSubswarmChangeVelocityBid, MoveNewPositionCom, ReqDataFlow, 
ReqSubswarmVelocityBids, SendModelPartMessenger, 
SendSubswarmVelocityBidConfirm 

   Permissions:   
          Reads - 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  subswarmSpacecraftPos  // vector of the all the spacecrafts current 

       // positions in the subswarm 
  leaderSpacecraft    // vector of the leader spacecraft in the  

       // subswarm 
  supplied velocityBidRec  // vector of received change of velocity bid 
          Changes -  
  asteroidModel     // current model of an asteroid to send 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  subswarmSpacecraftPos  // vector of the all thespacecrafts positions 

       // in the subswarm 
  leaderSpacecraft    // vector of the leader spacecraft in the  

       // subswarm 
          Generates -  
  partialAsteroidModel  // derived partial model to send to a  

     // messenger so that spacecraft can avoid 
     // collisions with asteroids 
 Responsibilities:   

          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to   

  optimize the configuration and plans of the subswarm to achieve subswarm
  goals. 

          Safety -  
Avoiding collisions by maintaining and coordinating spacecraft positions and 
movements.  

Leader Variation Point Schema for the Self-Coordinator Role 
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Role Schema:  SelfCoordinator                                      Schema ID: SC-Messenger 
      Variation Point: Messenger 
      Inherits: SC-Core 
      Requirements: V_M1, V_M2, V_M4,  
      Parameters of Variation: P20=True; P21=True 
      Description:  

Provides the spacecraft with the elements needed in a messenger spacecraft to be 
able to coordinate the communication network needed in a subswarm while pursing 
scientific goals. 

   Activities and Protocols:   
CoordinateLeadToWorkMsg,CoordinateWorkToLeadMsg, AcceptLeaderMsg, 
AcceptWorkerMsg, SendLeaderMsg, SendMsgMisCon, SendWorkerMsg 

   Permissions:   
          Reads - 
  leaderSpacecraft    // vector of the leader spacecraft in the  
       // subswarm 
  workerSpacecraft    // vector of the worker spacecraft in the  
       // subswarm 
          Changes -  
  currentGoal   // current goal of the spacecraft 
          Generates -  
   missionControlMsg   // message to be sent to mission control  
     // on behalf of a leader spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure the timely delivery of a message to be sent throughout the   
  subswarm. 
          Safety -  
  None. 

Messenger Variation Point Schema for the Self-Coordinator Role 
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Role Schema:  SelfCoordinator                                           Schema ID: SC-Worker 
      Variation Point: Worker 
      Inherits: SC-Core 
      Requirements: V_W2, V_W3 
      Parameters of Variation: P27=True 
      Description:  

The elements needed in a worker spacecraft to be able to coordinate the pursuit of 
science goals for a given asteroid.  

   Activities and Protocols:   
CoordinateWorkerGoals, AcceptAsteroidData, SendArchiveData, 
SendAsteroidData 

   Permissions:   
          Reads - 
           asteroidID     // identification of the current asteroid  
       // under exploration 
  asteriodData     // current collected data of an asteroid 
  currentGoal     // current goal of the spacecraft 
  workerSpacecraft    // vector of the worker spacecraft in the  
       // subswarm 
  likeWorkerSpacecraft  // vector of the worker spacecraft in the  
       // subswarm with the same specialized  
       // instrumentation 
          Changes -  
  asteriodData     // collected data of an asteroid 
          Generates -  
  asteroidArchiveDataMsg  // message to be sent containing the  
       // data of an asteroid to be archived by a  
       // messenger spacecraft 
  asteriodDataMsg    // message to be sent containing the  
       // current collected data of an asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  report the data collected of a specific asteroid.  
          Safety -  
  None. 

Worker Variation Point Schema for the Self-Coordinator Role 
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Role Variation Points Schema:  SelfOptimizer Schemata ID: SO 

  Parameters of Variation:  P4, P5, P6     
  Description:     

  

At the swarm-level, the collection of these roles within all the spacecraft aid in 
autonomously and continuously improving the spacecraft’s ability to identify, explore 
and communicate the information discovered while investigating asteroids. At the 
spacecraft-level, these roles aid in the spacecraft to continuously learn and improve 
its specialized abilities and communicate its findings with other similar spacecraft.  

  Variation Points: 
  Core: 
   

   

The core elements of a spacecraft to be able to optimize itself in 
regards to general spacecraft functions so that it can continuously 
learn from the environment and perform better within the swarm. 
[SO-Core] 

  Leader: 
   

   

The elements needed in a leader spacecraft to be able to optimize 
itself in regards to its ability to best manage, oversee and direct the 
swarm to optimize the swarm’s ability to achieve scientific goals. 
[SO-Leader] 

  Messenger: 
   

  

The elements needed in a messenger spacecraft to be able to 
optimize itself in regards to its ability to best perform the 
communication necessary within the swarm so that commands and 
information can best be transmitted. [SO-Messenger] 

  Worker: 
   
   

The elements needed in a worker spacecraft to be able to optimize 
itself in regards to its ability to best optimize its ability to achieve its 
own scientific goals. [SO-Worker] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design 
time. However, a spacecraft that may switch is operating variation point (i.e., 
P2=True or P3=True) may have this variation point alter at runtime.   

Self-Optimizer Role Variation Points Schema 
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Role Schema:  SelfOptimizer                                                   Schema ID: SO-Core 
      Variation Point: Core 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SO1, C_SO2, C_SO3, C_SO4, C_M1, C_M2, C_M4, C_M5  
      Description:  

Provides the spacecraft with the functionality to optimize itself in regards to general 
spacecraft functions so that it can continuously learn from the environment and 
perform better within the swarm.    

 Activities and Protocols:   
AdjustToEnviron, CalcNewPosition, CalibrateInstr, CheckSystemStatus, 
CheckEnvironStatus, CheckPowerConsump, CheckSolarCellStatus, 
EvaluatePositionForGoal, MoveNewPos 

 Permissions:   
          Reads - 
  currentAttitude    // current attitude of the spacecraft 
  currentGoal    // current goal of the spacecraft 
  currentPosition    // current position of the spacecraft 
  currentVelocityIncr   // current velocity increment of the  
      // spacecraft 
  environmentStatus    // current status of the detectable parts of 
      // the surrounding environment 
  powerConsumpLevel // current level of the spacecraft’s power  
      // consumption 
  riskForSystemFactor                // current risk to spacecraft to see if recent 
      // solar storm 
  solarCellLevel    // current status level of the spacecraft’s  
      // solar cells 
  systemStatus    // current status of the spacecraft  
          Changes -  
               environmentState                // current state that the spacecraft believes 
   // its surrounding environment is in 
  currentPosition    // current position of the spacecraft 
  currentAttitude    // current attitude of the spacecraft 
  instrCalibValue // vector of the current calibration values  
   // for the onboard instruments   
  instrVector // vector of all the spacecraft’s onboard  
    // instruments               
          Generates -  
       newEnvironStatus  // new status of the detectable parts of the 
    // surrounding environment 
  newVelocityIncr  // calculated new velocity increment for the 
    // spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the spacecraft’s ability to perform its given tasks.  
          Safety -  
  None. 

Core Variation Point Schema for the Self-Optimizer Role 
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Role Schema:  SelfOptimizer                                                Schema ID: SO-Leader 
      Variation Point: Leader 
      Inherits: SO-Core 
      Requirements: V_SO1, V_SO2, C_SC1, C_SC2, V_L6, V_L7, V_L8, V_L11 
      Parameters of Variation: P4=True 
      Description:  

Provides the spacecraft with the he elements needed in a leader spacecraft to be 
able to optimize itself in regards to its ability to best manage, oversee and direct the 
swarm to optimize the swarm’s ability to achieve scientific goals. Specifically, the 
ability for a leader spacecraft to optimize its ability to identify asteroids of interest 
and share this information.  

   Activities and Protocols:   
DeviseNewAsteroidIdRules, EvaluateCurrentAsteroidIdRules, ReviewAsteroidIdHis, 
AcceptOptimizationInfo, AcceptOptimizationReq, RequestOptimizationInfo, 
ShareOptimizationInfo  

   Permissions:   
          Reads - 
  asteroidIdRules     // current vector of rules that is used to  
       // identify asteroids of interest given  
       // preliminary data points on the asteroid 
  asteroidPrelimData    // preliminary data points of an asteroid 
  asteroidId     // identification number of an asteroid 
  asteroidIdHistory    // the history log kept of the spacecraft’s  
       // identification of asteroids of interest 
  optimizationInfoRec   // message to received after requesting 
       // for another spacecraft’s current  
       // optimization information 
  leaderVector     // vector of nearby leader spacecraft  
       // to aid in sharing optimization information 
          Changes -  
  asteroidIdRules     // vector of rules that is used to identify  
       // asteroids of interest given preliminary 
       // data points on the asteroid 
          Generates -  
  asteroidIdRulesValue  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to identify  
     // asteroids of interest 
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to identify asteroids of interests to investigate for all  
  leader spacecraft in the swarm.  
          Safety -  
  None. 

 Leader Variation Point Schema for the Self-Optimizer Role 
 
 
 



 262 

 

Role Schema:  SelfOptimizer                                         Schema ID: SO-Messenger 
      Variation Point: Messenger 
      Inherits: SO-Core 
      Requirements: V_SO3, V_SO4, C_SC1, C_SC2 
      Parameters of Variation: P5=True 
      Description:  

Provides the spacecraft with the elements needed in a messenger spacecraft to be 
able to optimize itself in regards to its ability to best perform the communication 
necessary within the swarm so that commands and information can best be 
transmitted. Specifically, the ability of the spacecraft to optimize its positioning for 
communications and sharing this information with others. 

   Activities and Protocols:   
DeviseNewCommStrategy, EvaluateCurrentCommStrategy, EvaluateCurPosition, 
ReviewCommHis, AcceptOptimizationInfo, AcceptOptimizationReq,  
RequestOptimizationInfo, ShareOptimizationInfo 

   Permissions:   
          Reads - 
           communicationStrategy  // current strategy for spacecraft’s  
       // communication 
  communicationHist    // current history log of the spacecraft’s  
       // past communication sessions 
  optimizationInfoRec   // message to received after requesting 
       // for another spacecraft’s current  
       // optimization information 
  messengerVector    // vector of nearby messenger spacecraft 
       // to aid in sharing optimization information 
          Changes -  
   communicationStrategy  // current strategy for spacecraft’s  
       // communication 
          Generates -  
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
  communicationStratVal  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to   
     // communicate with the subswarm  
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to communicate for all messenger spacecraft in the  
  swarm. 
          Safety -  
  None. 

Messenger Variation Point Schema for the Self-Optimizer Role 
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Role Schema:  SelfOptimizer                                               Schema ID: SO-Worker 
      Variation Point: Worker 
      Inherits: SO-Core 
      Requirements: V_SO5, V_SO6, C_SC1, C_SC2 
      Parameters of Variation: P6=True 
      Description:  

The elements needed in a worker spacecraft to be able to optimize itself in regards 
to its ability to best optimize its ability to achieve its own scientific goals.  

   Activities and Protocols:   
DeviseNewSciExplorStrategy, EvaluateCurrentSciExplorStrategy, 
EvaluateCurPosition, ReviewSciExplorHis, AcceptOptimizationInfo, 
AcceptOptimizationReq,  RequestOptimizationInfo, ShareOptimizationInfo 

   Permissions:   
          Reads - 
            optimizationInfoRec  // message to received after requesting 
       // for another spacecraft’s current  
       // optimization information  
  sciExplorationStrategy  // current strategy for spacecraft’s  
       // science exploration using its specialized 
       // onboard equipment 
  sciExplorationRules   // current rules for the spacecraft to abide 
       // by in its scientific exploration 
  sciExplorationHist    // current history log of the spacecraft’s  
       // past science exploration of asteroids 
  workerType     // the type of worker spacecraft (i.e., based 
       // on its specialized onboard equipment 
  workerVector     // vector of nearby worker spacecraft with 
       // the same onboard equipment 
  scienceGoal     // current scientific goal pursued by the  
       // spacecraft 
          Changes -  
   sciExplorationStrategy  // strategy for spacecraft’s science  
       // exploration using its specialized onboard 
       // equipment 
          Generates -  
  optimizationInfoMsg  // message to deliver upon receiving a  
     // request for spacecraft’s current  
     // optimization information 
  sciExplorationStratVal  // evaluation value of the accuracy of the 
     // spacecraft’s current ability to   
     // achieve its scientific goals 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to achieve scientific goals for all similar worker spacecraft  
  in the swarm. 
          Safety -  
  None. 

Worker Variation Point Schema for the Self-Optimizer Role 
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Role Variation Points Schema:  LeaderPlanner Schemata ID: LP 

  Parameters of Variation:  P20, P21, P22, P23, P24, P25     
  Description:     

  

Provides the leader spacecraft with the functionality to be able to manage, plan and 
coordinate the spacecraft of a subswarm to pursue and satisfy system-wide and 
individual scientific goals. 

  Variation Points: 
  Passive: 
   

   

The elements of a passive leader spacecraft (i.e., a spacecraft 
acting as a backup to double-check all commands and calculations 
pertaining to the planning for the subswarm) to be able to manage, 
plan and coordinate the spacecraft of a subswarm. [LP-Passive] 

  Active: 
   
   

The elements of an active leader spacecraft (i.e., a spacecraft 
actively in charge) to be able to manage, plan and coordinate the 
spacecraft of a subswarm. [LP-Active] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design time. 
All spacecraft shall have the Passive variation point as a commonality. Spacecraft 
with the Active variation point shall also include all functionality of Passive and may 
switch its variation point at runtime.  

Leader Planner Role Variation Points Schema 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 265 

 

Role Schema:  LeaderPlanner                                            Schema ID: LP- Passive 
      Variation Point: LeaderPlanner 
      Inherits: SC-Core 
      Parameters of Variation: P9=True; P10=Passive; P11=True; P12=True; P13=True; 

P14=True  
      Requirements: V_L1, V_L2, V_L3, V_L4, V_L5, V_L6, V_L7, V_L8, V_L9, V_L11   
      Description:  

Provides the spacecraft with the he elements needed in a leader spacecraft to be 
able to be able to passively (i.e., act as a backup) coordinate/plan the subswarm 
spacecraft to pursue scientific goals.  

   Activities and Protocols:   
CheckDecideDataToGather, CheckSubswarmAlloc, CheckSubswarmPlan, 
AcceptPlanToCheck, VoteLeaderElection 

   Permissions:   
          Reads - 
  leaderSpacecraft    // vector of the leader spacecraft in the  
       // subswarm 
  supplied allocationStrategy // supplied allocation strategy for the  sub-
       // swarm to perform scientific exploration  
  supplied scienceRules  // supplied rules used to investigate the  
       // types of asteroids to explore 
  suppliled plan     // supplied plan for the subswarm to  
       // achieve system-wide scientific goals 
          Changes -  
  allocationStrategy    // allocation strategy for the subswarm to 
       // perform scientific exploration 
  plan     // plan for the subswarm to achieve  
       // system-wide scientific goals 
  scienceRules     // rules used to investigate the types of 
       // asteroids to explore 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  leaderSpacecraft    // vector of the leader spacecraft in the  
       // subswarm 
          Generates -  
  allocationStratMsg   // newly devised subswarm allocation  
     // strategy message to be sent out to  
     // leader agreeing with or disagreeing with 
     // the newly devised allocation strategy 
  planMsg   // newly devised subswarm plan to achieve 
     // system-wide scientific goals 
  leaderElecVoteMsg   // message to be sent to vote for the ruler 
     // of the leader spacecraft for a subswarm 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure the correctness of the planning done by a leader spacecraft through 
  redundant checking and agreement voting. 
          Safety -  
  None. 

Passive Variation Point Schema for the Leader Planner Role 
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Role Schema:  LeaderPlanner                                            Schema ID: LP- Active 
      Variation Point: Active 
      Inherits: SC-Core, LP-Passive 
      Parameters of Variation: P9=True; P10=Active; P11=True; P12=True; P13=True; 

P14=True 
      Requirements: V_L1, V_L2, V_L3, V_L4, V_L5, V_L6, V_L7, V_L8, V_L9, V_L11   
      Description:  

Provides the elements of an active leader spacecraft (i.e., a spacecraft actively in 
charge) to be able to manage, plan and coordinate the spacecraft of a subswarm.  

   Activities and Protocols:   
CoordinateLeaderElection, DecideDataToGather, PerformSubswarmAlloc, 
PerformSubswarmPlan, AssignTeams, ComSwitchToActive, DirectWorker, 
GetConfirmFromPassive, InitLeaderElection, SendNewAllocationStrat, 
SendNewPlan, RedistributeDuties, VoteLeaderElection 

   Permissions:   
          Reads - 
  allocationStrategy    // current allocation strategy for the  sub- 
       // swarm to perform scientific exploration  
  scienceRules     // current rules used to investigate the  
       // types of asteroids to explore 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  subswarmSpacecraftPos  // vector of the all the spacecrafts current 
       // positions in the subswarm 
  leaderSpacecraft    // vector of the leaders in the subswarm  
  plan     // current plan for the subswarm to achieve 
       // system-wide scientific goals 
  currentGoal     // current goal of the spacecraft 
          Changes -  
  allocationStrategy    // allocation strategy for the subswarm to 
       // perform scientific exploration 
  plan     // plan for the subswarm to achieve  
       // system-wide scientific goals 
  scienceRules     // rules used to investigate the types of 
       // asteroids to explore 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  leaderSpacecraft    // vector of the leaders in the subswarm   
          Generates -  
  newAllocationStratMsg  // newly devised subswarm allocation  
     // strategy message to be sent out to  
     // spacecraft in a subswarm 
  newPlanMsg   // newly devised subswarm plan to achieve 
     // system-wide scientific goals 
  leaderElecVoteMsg   // message to be sent to vote for the ruler 
     // of the leader spacecraft for a subswarm 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the configuration and plans of the subswarm to achieve system- 
  wide goals. 
          Safety -  

None.  

Active Variation Point Schema for the Leader Planner Role 
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Role Variation Points Schema:  LeaderKnowledgeLevel Schemata ID: LKL 

  Parameters of Variation:  P15, P16, P17, P18, P19     
  Description:     

  

Provides the messenger spacecraft with the functionality to be able to facilitate the 
communication network of the subswarm and the ability to travel to a destination 
point so that the spacecraft can relay the discovered information back to mission 
control. 

  Variation Points: 
  Subswarm: 
   
   

The core elements of a leader spacecraft to be able to facilitate the 
management and coordination of its subswarm. [LKL-Subswarm] 

  Partial: 
   
   

The functionality of a leader spacecraft to manage and coordinate 
several subswarms. [LKL-Partial] 

  Full: 
   
   

The functionality of a leader spacecraft to manage and coordinate 
the entire swarms. [LKL-Full] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design time, 
however the spacecraft may switch is operating variation point (e.g., from Subswarm 
to Partial-Swarm) at runtime. All leader spacecraft shall have the Subswarm variation 
point as a commonality. Leader spacecraft with the Partial-Swarm variation point 
shall also include all functionality of Subswarm. Likewise, all leader spacecraft with 
the Partial-Swarm variation point shall have the functionality of the Full-Swarm. 

Leader Knowledge Role Variation Points Schema 
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Role Schema:  LeaderKnowledgeLevel                         Schema ID: LKL-Subswarm 
      Variation Point: Subswarm 
      Inherits: SC-Core 
      Parameters of Variation: P15=True; P16=True; P17=True; P18=Subswarm; 

P19=True  
      Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17   
      Description:  

Provides the core elements of a leader spacecraft to be able to facilitate the 
management and coordination of its subswarm.  

   Activities and Protocols:   
CalculatePartModel, OverseeSubSwarmDataFlow, PerformSubswarmReconfig, 
AcceptSubswarmChangeVelocityBid, MoveNewPositionCom, ReqDataFlow, 
ReqSubswarmVelocityBids, SendModelPartMessenger, 
SendSubswarmVelocityBidConfirm 

   Permissions:   
          Reads - 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  subswarmSpacecraftPos  // vector of the all the spacecrafts current 
       // positions in the subswarm 
  leaderSpacecraft    // vector of the leader spacecraft in the  
       // subswarm 
  supplied velocityBidRec  // vector of received change of velocity bid 
          Changes -  
  asteroidModel     // current model of an asteroid to send 
  subswarmSpacecraft  // vector of the spacecraft in the subswarm 
  subswarmSpacecraftPos  // vector of the all thespacecrafts positions 
       // in the subswarm 
  leaderSpacecraft    // vector of the leader spacecraft in the  
       // subswarm 
          Generates -  
  partialAsteroidModel  // derived partial model to send to a  
     // messenger so that spacecraft can avoid 
     // collisions with asteroids 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the configuration and plans of the subswarm to achieve subswarm
  goals. 
          Safety -  

Avoiding collisions by maintaining and coordinating spacecraft positions and 
movements.  

Subswarm Knowledge Variation Point Schema for the Leader Knowledge Role 
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Role Schema:  LeaderKnowledgeLevel                                Schema ID: LKL-Partial 
      Variation Point: Parial 
      Inherits: LKL=Subswarm 
      Parameters of Variation: P15=True; P16=True; P17=True; P18=Partial-Subswarm; 

P19=True  
      Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17   
      Description:  

Provides the functionality of a leader spacecraft to manage and coordinate several 
subswarms 

   Activities and Protocols:   
CoordinateReconfigs, CoordinateSubswarms, OverseePartSwarmDataFlow, 
PerformPartSwarmReconfig, AcceptPartSwarmChangeVelocityBid, 
ComSubswarmsReconfig, MoveNewPositionCom, ReqPartSwarmVelocityBids, 
SendModelPartMessenger, SendPartswarmVelocityBidConfirm 

   Permissions:   
          Reads - 
  subswarmsPos     // positions of several subswarms to  
       // coordinate 
  subswarmsLeaders    // vector of the leader spacecraft in charge 
       // of different subswarms 
          Changes -  
  subswarmsPos     // positions of several subswarms to  
       // coordinate 
          Generates -  
  subswarmReconfigMsg  // message to be sent to the leaders of  
     // multiple subswarms to reconfigure 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the configuration and plans of several subswarms to achieve  
  system-wide goals. 
          Safety -  

Avoiding collisions by maintaining and coordinating spacecraft positions and 
movements of several subswarm’s spacecraft.  

Partial-Swarm Knowledge Variation Point Schema for the Leader Knowledge Role 
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Role Schema:  LeaderKnowledgeLevel                                    Schema ID: LKL-Full 
      Variation Point: Full 
      Inherits: LKL-Partial 
      Parameters of Variation: P15=True; P16=True; P17=True; P18=Full-Swarm; 

P19=True  
      Requirements: V_L10, V_L12, V_L13, V_L14, V_L15, V_L16, V_L17   
      Description:  

Provides the functionality of a leader spacecraft to manage and coordinate the 
entire swarms 

   Activities and Protocols:   
CoordinateReconfigs, CoordinateSwarm, ManageSwarm OverseeSwarmDataFlow, 
PerformSwarmReconfig, AcceptSwarmChangeVelocityBid, ComSwarmsReconfig, 
MoveNewPositionCom, ReqPartSwarmVelocityBids, 
SendSwarmVelocityBidConfirm 

   Permissions:   
          Reads - 
  subswarmsPos     // positions of several subswarms to  
       // coordinate 
  subswarmsLeaders    // vector of the leader spacecraft in charge 
       // of different subswarms 
  supplied subswarmGoals  // current scientific goals of all the  
       // subswarms 
          Changes -  
  subswarmsPos     // positions of all subswarms to coordinate 
          Generates -  
  swarmNotifyMsg   // message to be sent to all messengers of 
     // the swarm 
  swarmReconfigMsg   // message to be sent to the leaders of  
     // all subswarms to reconfigure 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the configuration and plans of the swarm to achieve system- 
  wide goals. 
          Safety -  

Avoiding collisions by maintaining and coordinating spacecraft positions and 
movements of all spacecraft in the swarm.  

Full-Swarm Knowledge Variation Point Schema for the Leader Knowledge Role 
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Role Variation Points Schema:  Worker Schemata ID: W 

  
Parameters of Variation:  P26, P28, P30, P31, P32, P33, P34, P35, P36, P37, P38, P39, 

P40, P41, P42, P43, P44, P45, P46, P47, P48  
  Description:     

  

This role and its variation points comprise the specialized functionality for the worker 
spacecraft of the swarm and each of the specialized instrumentations of the worker 
spacecraft.  

  Variation Points: 
  Core: 
   
   

The core elements of a worker spacecraft to be able to explore the 
asteroid belt and pursue and satisfy scientific exploration goals. [W-
Core] 

  Imager: 
   
   

The functionality required of those worker spacecraft equipped with a 
visible imager to pursue and satisfy scientific exploration goals 
specific to its specialized onboard equipment. [W-Imager] 

  NIRSpec: 
   
  

The functionality required of those worker spacecraft equipped with a 
near-infrared spectrometer to pursue and satisfy scientific exploration 
goals specific to its specialized onboard equipment. [W-NIRSpec] 

  XRaySpec: 
   
  

The functionality required of those worker spacecraft equipped with 
an X-ray spectrometer to pursue and satisfy scientific exploration 
goals specific to its specialized onboard equipment. [W- XRaySpec] 

  GRaySpec: 
   
   

The functionality required of those worker spacecraft equipped with a 
Gamma-ray spectrometer to pursue and satisfy scientific exploration 
goals specific to its specialized onboard equipment. [W-GRaySpec] 

  NeuSpec: 
   
   

The functionality required of those worker spacecraft equipped with a 
Neutron spectrometer to pursue and satisfy scientific exploration 
goals specific to its specialized onboard equipment. [W-NeuSpec] 

  Altimeter: 
   
   

The functionality required of those worker spacecraft equipped with 
an altimeter to pursue and satisfy scientific exploration goals specific 
to its specialized onboard equipment. [W-Altimeter] 

  Magneto: 
   

   

The functionality required of those worker spacecraft equipped with a 
radio science/magnetometer to pursue and satisfy scientific 
exploration goals specific to its specialized onboard equipment. [W-
Magneto] 

  Radiometer: 
   

   

The functionality required of those worker spacecraft equipped with a 
radio sounder/infrared radiometer to pursue and satisfy scientific 
exploration goals specific to its specialized onboard equipment. [W-
Radiometer] 

  NMSpec: 
   
   

The functionality required of those worker spacecraft equipped with a 
netural mass spectrometer to pursue and satisfy scientific exploration 
goals specific to its specialized onboard equipment. [W-NMSpec] 

  Binding Time:     
  The binding time to decide which variation point(s) a spacecraft has is at design time.  

Worker Role Variation Point Schema 
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Role Schema:  Worker                                                               Schema ID: W-Core 
      Variation Point: Core 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: V_W2, V_W3, V_W4,  
      Description:  

Provides the worker spacecraft with the functionality to be able to explore the 
asteroid belt and pursue and satisfy scientific exploration goals. 

 Activities and Protocols:   
CheckStatus, CollectPrelimAsteroidData, EvaluateOpportunity, 
EvaluateScienceGoals, AcceptAsteroidData, SendArchiveData, SendAsteroidData, 
SendPrelimAsteroidData 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  asteriodData     // current collected data of an asteroid 
  currentGoal     // current goal of the spacecraft 
  workerSpacecraft    // vector of the workers in the subswarm   
  likeWorkerSpacecraft  // vector of the worker spacecraft in the  
       // subswarm with the same specialized  
       // instrumentation 
  systemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft  
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
   subswarmVector    // vector of nearby spacecraft    
          Changes -  
  asteriodData  // collected data of an asteroid      
  asteroidID     // identification of the current asteroid  
       // under exploration 
  currentGoal     // current goal of the spacecraft 
  systemStatus  // current status of the spacecraft            
          Generates -  
  asteriodDataMsg   // message to be sent containing the  
     // current collected data of an asteroid 
   prelimAsteriodDataMsg  // message to be sent to a leader contain- 
       // ing preliminary data of an asteroid   
  prelimAsteroidData     // collected preliminary data of an asteroid     
  scienceGoalsEval    // spacecraft’s evaluation of its current  
       // science goals and the advantage of the 
       // opportunity to explore an asteroid for  
       // preliminary data 
 Responsibilities:   
          Liveness -  

If the spacecraft is functioning properly, this role will eventually be able to 
optimize the scientific exploration of the swarm by taking advantage of 
opportunities for scientific exploration when they are presented. 

          Safety -  
  None. 

Core Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                            Schema ID: W-Imager 
      Variation Point: Imager 
      Inherits: W-Core 
      Parameters of Variation: P30=Narrow-Scope OR Wide-Scope; P31=True; P32=True; 

P33=True; P34=True; P35=True 
      Requirements: V_W6, V_W7, V_W8, V_W9, V_W10, V_W11 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
visible imager to pursue and satisfy scientific exploration goals.  

 Activities and Protocols:   
CalculateAsteroidLocation, CheckMemoryStatus, Construct3DModel, 
DetectAsteroid, GatherImagingData, GatherModelData, GatherPhotogeologyData, 
GenerateRoughModel, PerformPhotogeolgy, TakeAsteroidImages, 
Accept3DModel, CollaborateOn3DModel, Send3DModel, SendAsteroidLocation, 
SendAsteroidImages, SendPhotogeologyData, SendRoughModel 

 Permissions:   
          Reads - 
  altimeterSpecSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with an altimeter 
  imagerSpacecraft    // vector of other nearby worker spacecraft 
       // equipped with a visible imager 
  magnetoSpacecraft    // vector of other nearby worker spacecraft 
       // equipped with a visible imager 
  memoryStatus     // status of the spacecraft’s memory to  
       // ensure sufficient space for data   
  workerSpacecraft    // vector of other nearby worker spacecraft 
  supplied asteroid3DModel // 3D model of an asteroid based on the  
       // collected data 
          Changes -  
  asteroid3DModel   // 3D model of an asteroid based on the  
     // collected data 
   memoryStatus     // status of the spacecraft’s memory to  
       // ensure sufficient space for data     
          Generates -  
  asteroid3DModel   // 3D model of an asteroid based on the  
     // collected data 
  asteroidData   // asteroid data collected  
    asteroidImages   // vector of images taken of an asteroid 
  asteroidLocation   // derived location of an asteroid 
  asteroidRoughModel  // a rough model of the asteroid to send to 
     // other asteroid for navigation purposes 
  photogeologyData   // photogeology data generated by the  
     // spacecraft of an asteroid 
 Responsibilities:   
          Liveness -  

If the spacecraft is functioning properly, this role will eventually be able to 
ensuring the satisfaction of science goals pertaining to the visible imager 
onboard instrumentation. 

          Safety -  
  Accuracy of the asteroid model to be sent to other spacecraft to prevent  
  spacecraft-asteroid collisions. 

Visible Imager Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                        Schema ID: W-NIRSpec 
      Variation Point: NIRSpec 
      Inherits: W-Core 
      Parameters of Variation: P36=True 
      Requirements: V_W12 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
near-infrared spectrometer to pursue and satisfy scientific exploration goals related 
to detecting an asteroids mineral abundance mapping. 

 Activities and Protocols:   
CalculateAbundanceMapping, DetectMineralAbudance, PerformNISpectrometry, 
SendAbundanceMapping  

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  niSpecSpacecraft    // vector of other nearby worker spacecraft 
       // equipped with a near-infrared   
       // spectrometer 
  workerSpacecraft    // vector of other nearby worker spacecraft 
          Changes -  
   asteroidData   // data collected by the spacecraft of an  
     // asteroid 
          Generates -  
    asteroidMinAbundanceMap // calculated mineral abundance mapping 
     // of an asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the near-infrared  
  spectrometer onboard instrumentation. 
          Safety -  
  None. 

Near-Infrared Spectrometer Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                      Schema ID: W-XRaySpec 
      Variation Point: XRaySpec 
      Inherits: W_Core 
      Parameters of Variation: P37=True 
      Requirements: V_W13 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
X-ray spectrometer to pursue and satisfy scientific exploration goals related to 
detecting an asteroid’s major element abundance mapping. 

 Activities and Protocols:   
CalculateMajorEleMapping, CheckDetectedElements, DetectMajorEleAbudance, 
PerformXraySpectrometry, SendMajorEleMapping 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  majorElementList    // list of the characterization of the major 
       // elements to detect 
  xraySpecSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with an x-ray spectrometer 
  workerSpacecraft    // vector of other nearby worker spacecraft 
          Changes -  
  asteroidData  // data collected by the spacecraft of an  
    // asteroid                  
          Generates -  
    asteroidMajorEleMap  // calculated major element abundance  
     // mapping of an asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the X-ray   
  spectrometer onboard instrumentation. 
          Safety -  
  None. 

X-Ray Spectrometer Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                     Schema ID: W-GRaySpec 
      Variation Point: GRaySpec 
      Inherits: W-Core 
      Parameters of Variation: P38=True 
      Requirements: V_W14 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
Gamma-ray spectrometer to pursue and satisfy scientific exploration goals related 
to detecting an asteroid’s heavy element abundance mapping. 

 Activities and Protocols:   
CalculateHeavyEleMapping, CheckDetectedElements, DetectHeavyEleAbudance, 
PerformGammaRaySpectrometry, SendHeavyEleMapping 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  heavyElementList    // list of the characterization of the heavy 
       // elements to detect 
  gammaRaySpecSpacecraft // vector of other nearby worker spacecraft 
       // equipped with an Gamma-ray   
       // spectrometer 
  workerSpacecraft    // vector of other nearby worker spacecraft 
          Changes -  
  asteroidData  // data collected by the spacecraft of an  
    // asteroid                  
          Generates -  
    asteroidMajorEleMap  // calculated heavy element abundance  
     // mapping of an asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the Gamma-ray  
  spectrometer onboard instrumentation. 
          Safety -  
  None. 

Gamma-Ray Spectrometer Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                        Schema ID: W-NeuSpec 
      Variation Point: NeuSpec 
      Inherits: W-Core 
      Parameters of Variation: P39=True 
      Requirements: V_W15 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
Neutron spectrometer to pursue and satisfy scientific exploration goals related to 
detecting an asteroid’s volatile abundance mapping. 

 Activities and Protocols:   
CalculateVolatileEleMapping, CheckDetectedElements, 
DetectVolatileEleAbudance, PerformNeturonSpectrometry, SendNetronEleMapping 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  volatileElementList    // list of the characterization of the volatile 
       // elements to detect 
  neutronSpecSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with an Neutron   
       // spectrometer 
  workerSpacecraft    // vector of other nearby worker spacecraft 
          Changes -  
  asteroidData  // data collected by the spacecraft of an  
    // asteroid                  
          Generates -  
    volatileEleMap   // calculated volatile element abundance 
     // mapping of an asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the Neutron 
  spectrometer onboard instrumentation. 
          Safety -  
  None. 

Neutron Spectrometer Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                         Schema ID: W-Altimeter 
      Variation Point: Altimeter 
      Inherits: W-Core 
      Parameters of Variation: P40=True; P41=True; P42=True; P43=True; 
      Requirements: V_W16, V_W17, V_W18, V_W19 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
altimeter to pursue and satisfy scientific exploration goals related to detecting an 
asteroid’s topographic and geomorphic characteristics. 

 Activities and Protocols:   
CalculateAsteroidShape, CalculateAsteroidTopography, Construct3DModel, 
DetectAsteroidShape, GatherGeomorphData, GatherModelData, 
GatherTopographyData, Accept3DModel, CollaborateOn3DModel, Send3DModel, 
SendAsteroidShapeData, SendAsteroidTopograpy 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  altimeterSpecSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with an altimeter spectrometer 
  imagerSpacecraft    // vector of other nearby worker spacecraft 
       // equipped with a visible imager  
  workerSpacecraft    // vector of other nearby worker spacecraft 
  supplied asteroid3DModel  // 3D model of an asteroid based on the  
      // collected data    
          Changes -  
  asteroid3DModel   // 3D model of an asteroid based on the  
     // collected data 
  asteroidData  // data collected by the spacecraft of an  
    // asteroid                  
  asteroidShapeData   // calculated shape data of an asteroid 
   
          Generates -  
  asteroid3DModel   // 3D model of an asteroid based on the  
     // collected data  
  asteroidShapeData   // calculated shape data of an asteroid 
  asteroidTopographyData  // calculated topography data of an  
      // asteroid 
  asteroidGeomorphData  // calculated geomorphology data of an  
      // asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the altimeter onboard 
  instrumentation. 
          Safety -  
  Accuracy of the asteroid model to be sent to other spacecraft to prevent  
  spacecraft-asteroid collisions. 

Altimeter Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                         Schema ID: W-Magneto 
      Variation Point: Magneto 
      Inherits: W-Core 
      Parameters of Variation: P44=True; P45=True; P46=True 
      Requirements: V_W20, V_W21, V_W22 V_W23 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
radio science/magnetometer instrumentation to pursue and satisfy scientific 
exploration goals related to detecting an asteroid’s gravity and magnetic fields. 

 Activities and Protocols:   
CalculateInteriorMakeup, DetectGravityField, DetectMagneticField, 
GatherModelData, MeasureAsteroidInterior, MeasureGravityField, 
MeasureMagneticField, CollaborateOn3DModel, Send3DModel, 
SendGravityFieldData, SendMagneticFieldData 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  magnetoSpacecraft    // vector of other nearby worker spacecraft 
       // equipped with a radio    
       // science/magnetometer 
  altimeterSpecSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with an altimeter spectrometer 
  imagerSpacecraft    // vector of other nearby worker spacecraft 
       // equipped with a visible imager  
  workerSpacecraft    // vector of other nearby worker spacecraft 
  supplied asteroid3DModel  // 3D model of an asteroid based on the  
      // collected data    
          Changes -  
   asteroidData  // data collected by the spacecraft of an  
    // asteroid   
  asteroid3DModel   // 3D model of an asteroid based on the  
     // collected data                                 
          Generates -  
  asteroid3DModel   // 3D model of an asteroid based on the  
     // collected data  
    asteroidGravityFieldData  // calculated gravity field data of an  
     // asteroid 
    asteroidMagneticFieldData // calculated magnetic field data of an  
     // asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the radio   
  science/magnetometer onboard instrumentation. 
          Safety -  
  Accuracy of the asteroid model to be sent to other spacecraft to prevent  
  spacecraft-asteroid collisions. 

Radio Science/Magnetometer Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                    Schema ID: W-Radiometer 
      Variation Point: Radiometer 
      Inherits: W-Core 
      Parameters of Variation: P47=True 
      Requirements: V_W24 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
radio sounder/infrared radiometer instrumentation to pursue and satisfy scientific 
exploration goals related to detecting an asteroid’s Regolith characterization. 

 Activities and Protocols:   
CalculateRegolithChar, GatherRegolithData, MeasureAsteroidRegolith, 
SendRegolithData 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  radiometerSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with a radio sounder/infrared 
       // radiometer 
  workerSpacecraft    // vector of other nearby worker spacecraft 
          Changes -  
   asteroidData  // data collected by the spacecraft of an  
    // asteroid                   
          Generates -  
    asteroidRegolithData  // the gathered Regolith characterization of 
     // the asteroid’s surfuce 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the radio/sounder  
  infrared radiometer onboard instrumentation. 
          Safety -  
  None. 

Radio Sounder/Infrared Radiometer Variation Point Schema for the Worker Role 
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Role Schema:  Worker                                                         Schema ID: W-NMSpec 
      Variation Point: NmSpec 
      Inherits: W-Core 
      Parameters of Variation: P48=True 
      Requirements: V_W25 
      Description:  

Provides the worker spacecraft with the functionality to be able to utilize its onboard 
neutral mass spectrometer to pursue and satisfy scientific exploration goals related 
to detecting an asteroid’s volatile characterization. 

 Activities and Protocols:   
CalculateVolatileCharacterization, CheckDetectedElements, 
DetectVolatileEleAbudance, PerformNeutralMassSpectrometry, 
SendVolatileCharacterization 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  volatileElementList    // list of the characterization of the volatile 
       // elements to detect 
  neutronSpecSpacecraft  // vector of other nearby worker spacecraft 
       // equipped with an Neutron   
       // spectrometer 
  workerSpacecraft    // vector of other nearby worker spacecraft 
          Changes -  
  asteroidData  // data collected by the spacecraft of an  
    // asteroid                  
          Generates -  
  volatileCharacterization  // calculated volatile characterization of an 
     // asteroid 
    volatileEleMap   // calculated volatile element abundance 
     // mapping of an asteroid 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the neutral mass  
  spectrometer onboard instrumentation. 
          Safety -  
  None. 

Neutral Mass Spectrometer Variation Point Schema for the Worker Role 
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Role Variation Points Schema:  WorkerCooperationLevel Schemata ID: WCL 

  Parameters of Variation:  P29     
  Description:     

  

Provides the worker spacecraft with the functionality to be able to either work within 
the context of a subswarm to collect data on a targeted asteroid or the ability to work 
as in individual to gather scientific data on an asteroid without the need to collaborate 
with other worker spacecraft. 

  Variation Points: 
  WorkInTeam: 
   
   

The functionality of a worker spacecraft to work within the context 
of a subswarm to form virtual instruments to achieve scientific 
goals. [WCL-Team] 

  WorkSolo: 
   

   

The functionality of a worker spacecraft to work as an individual to 
achieve scientific goals. Particularly used to gather preliminary data 
on an asteroid so that a leader spacecraft can then decide whether 
an asteroid is interesting enough to send an entire subswarm to 
explore it in detail. [WCL-Solo] 

  Binding Time:     
  The binding time to decide which variation point(s) a spacecraft has is at design time.  

Worker Cooperation Level Role Variation Point Schema 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 283 

 

Role Schema:  WorkerCooperationLevel                              Schema ID: WIS-Team 
      Variation Point: WorkInTeam 
      Inherits: W-Core 
      Parameters of Variation: P29=False 
      Requirements: V_W5    
      Description:  

Provides the functionality of a worker spacecraft to work within the context of a 
subswarm to form virtual instruments to achieve scientific goals 

 Activities and Protocols:   
DecideNewGoal, CheckGoalStatus, MoveToJoinSubswarm, AcceptJoinSubswarm, 
NotifySubswarmLeader, RejectJoinSubswarm, RequestNewGoal 

 Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  asteriodData     // current collected data of an asteroid 
  currentGoal     // current goal of the spacecraft 
  workerSpacecraft    // vector of the worker spacecraft in the  
       // subswarm 
  messengerSpacecraft  // vector of the worker spacecraft in the  
       // subswarm 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  likeWorkerSpacecraft  // vector of the worker spacecraft in the  
       // subswarm with the same specialized  
       // instrumentation 
  subswarmID    // identification of the subswarm it belongs 
  systemStatus    // current status of the spacecraft  
          Changes -  
  asteriodData  // collected data of an asteroid      
  asteroidID     // identification of the current asteroid  
       // under exploration 
  currentGoal     // current goal of the spacecraft 
  systemStatus  // current status of the spacecraft 
          Generates -  
  scienceGoalsEval   // spacecraft’s evaluation of its current  
     // science goals and the advantage of the 
     // opportunity to explore an asteroid for  
     // preliminary data 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  achieve the scientific goals of the subswarm. 
          Safety -  
  None. 

Work in a Subswarm Variation Point Schema for the Worker Cooperation Level 

Role 
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Role Schema:  WorkerCooperationLevel                                Schema ID: WIS-Solo 
      Variation Point: WorkSolo 
      Inherits: W-Core 
      Parameters of Variation: P29=True 
      Requirements: V_W5    
      Description:  

Provides the functionality of a worker spacecraft to work as an individual to achieve 
scientific goals. Particularly used to gather preliminary data on an asteroid so that a 
leader spacecraft can then decide whether an asteroid is interesting enough to 
send an entire subswarm to explore it in detail.  

   Activities and Protocols:   
DecideNewGoal, EvaluateCurrentAsteroid, MoveToNewAsteroid, 
SendPrelimAsteroidData 

   Permissions:   
          Reads - 
  asteroidID     // identification of the current asteroid  
       // under exploration 
  asteriodData     // current collected data of an asteroid 
  currentGoal     // current goal of the spacecraft 
  messengerSpacecraft  // vector of the worker spacecraft in the  
       // subswarm 
  messengerSpacecraft  // vector of the leader spacecraft in the  
       // subswarm 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  likeWorkerSpacecraft  // vector of the worker spacecraft in the  
       // subswarm with the same specialized  
       // instrumentation 
  subswarmID    // identification of the subswarm it belongs 
  systemStatus    // current status of the spacecraft  
          Changes -  
  prelimAsteroidData   // collected preliminary data of an asteroid 
  asteriodData     // current collected data of an asteroid 
  currentGoal     // current goal of the spacecraft 
          Generates -  
  prelimAsteriodDataMsg  // message to be sent to a leader   
       // containing preliminary data of an  
       // asteroid 
  prelimAsteroidData     // collected preliminary data of an asteroid     
 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  achieve its own scientific goals and communicate the findings to a leader  
  spacecraft. 
          Safety -  
  None. 

Work Individually Variation Point Schema for the Worker Cooperation Level Role 
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Role Variation Points Schema:  WorkerImagerScope Schemata ID: WIS 

  Parameters of Variation:  P30     
  Description:     

  

Provides the messenger spacecraft with the functionality to be able to facilitate the 
communication network of the subswarm and the ability to travel to a destination 
point so that the spacecraft can relay the discovered information back to mission 
control. 

  Variation Points: 
  Wide-Scope: 
   
   

The functionality of a worker spacecraft with a visible imager to 
operate its wide-scope visible imager onboard instrumentation. 
[WIS-Wide] 

  Narrow-Scope: 
   
   

The functionality of a worker spacecraft with a visible imager to 
operate its narrow-scope visible imager onboard instrumentation. 
[WIS-Narrow] 

  Binding Time:     
  The binding time to decide which variation point(s) a spacecraft has is at design time.  

Worker Visible Imager Scope Role Variation Point Schema 
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Role Schema:  WorkerImagerScope                                      Schema ID: WIS-Wide 
      Variation Point: Wide-Scope 
      Inherits: W-Imager 
      Parameters of Variation: P30=Wide-Scope 
 Requirements: V_W6    
      Description:  

Provides a worker spacecraft with a visible imager to operate its wide-scope visible 
imager onboard instrumentation to perform scientific exploration and satisfy its 
scientific goals. 

 Activities and Protocols:   
AnalyzeWideImage, CheckImagerScope, FocusWideImager, 
IdentifyTargetAsteroids, TakeWideScopeImage, WideImagerScopeShutdown, 
NotifyWideImagerFailure, SendWideImagerToLeader 

 Permissions:   
          Reads - 
  imagerSpacecraft   // vector of all other imager worker  
      // spacecraft in the subswarm 
  imagerStatus    // current status of the wide-scoped  
      // imager 
  wideImagerSpacecraft  // vector of all other wide-scoped imager  
      // worker spacecraft in the subswarm 
  wideImagerFocusVal // value of the focus of the imager 
          Changes -  
  asteroidData  // collected and derived data of an asteroid 
  imagerStatus    // current status of the wide-scoped  
      // imager 
  wideImagerFocusVal // value of the focus of the imager 
          Generates -  
  asteroidImageData   // data generated from the analysis of an 
     // image taken with a wide-scoped visible 
     // imager 
  wideImagerFailureMsg  // message to be sent to other wide- 
     // scoped imager worker spacecraft  
     // notifying of a hardware failure 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the visible imager  
  onboard instrumentation. 
          Safety -  
  None. 

Wide-Scope Imager Variation Point Schema for the Worker Visible Imager Role 
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Role Schema:  WorkerImagerScope                                  Schema ID: WIS-Narrow 
      Variation Point: Narrow-Scope 
      Inherits: W-Imager 
      Parameters of Variation: P30=Narrow-Scope 
      Requirements: V_W6    
      Description:  

Provides a worker spacecraft with a visible imager to operate its narrow-scope 
visible imager onboard instrumentation to perform scientific exploration and satisfy 
its scientific goals.  

   Activities and Protocols:   
AnalyzeNarrowImage, CheckImagerScope, FocusNarrowImager, 
GetAsteroidDetailsFromImage, NarrowImagerScopeShutdown, 
TakeNarrowScopeImage, NotifyNarrowImagerFailure 

   Permissions:   
          Reads - 
  imagerSpacecraft   // vector of all other imager worker  
      // spacecraft in the subswarm 
  imagerStatus    // current status of the narrow-scoped  
      // imager 
  narrowImagerSpacecraft  // vector of all other narrow-scoped imager  
      // worker spacecraft in the subswarm 
  wideImagerFocusVal // value of the focus of the imager 
          Changes -  
  asteroidData  // collected and derived data of an asteroid 
  imagerStatus    // current status of the narrow-scoped  
      // imager 
  narrowImagerFocusVal // value of the focus of the imager 
          Generates -  
  asteroidImageData   // data generated from the analysis of an 
     // image taken with a narrow-scoped  
     // visible imager 
  narrowImagerFailureMsg  // message to be sent to other narrow- 
     // scoped imager worker spacecraft  
     // notifying of a hardware failure 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensuring the satisfaction of science goals pertaining to the visible imager  
  onboard instrumentation. 
          Safety -  
  None. 

Narrow-Scope Imager Variation Point Schema for the Worker Visible Imager Role 
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Role Variation Points Schema:  Messenger Schemata ID: M 

  Parameters of Variation:  P20, P21, P22, P23, P24, P25     
  Description:     

  

Provides the messenger spacecraft with the functionality to be able to facilitate the 
communication network of the subswarm and the ability to travel to a destination point 
so that the spacecraft can relay the discovered information back to mission control. 

  Variation Points: 
  Core: 
   
   

The core elements of a messenger spacecraft to be able to facilitate 
the communication network of the swarm. [M-Core] 

  LagrangeTravel: 
   

   

The functionality of a messenger spacecraft to additionally be able 
to travel to a Lagrange point and communicate the results of 
asteroid exploration to mission control and other spacecraft. [M-
LagrangeTravel] 

  Binding Time:     
  The binding time to decide which variation point(s) a spacecraft has is at design time.  

Messenger Role Variation Points Schema 
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Role Schema:  Messenger                                                         Schema ID: M-Core 
      Variation Point: Core 
      Inherits: None 
      Parameters of Variation: P20=True; P22=dc; P23=True; P25=True 
      Requirements: V_M1, V_M3, V_M4, V_M5, V_M7, V_M8    
      Description:  

Provides the spacecraft with the functionality to facilitate the communication 
network of the subswarm by relaying and coordinating the messages and data 
discovered through scientific exploration.    

 Activities and Protocols:   
ArchiveData, CheckMemoryStatus, MaintainSpacecraftPosData, 
AcceptArchiveData, AcceptAsteroidModel, AcceptLeaderMsg, 
AcceptMessengerMsg, AcceptWorkerMsg, CoordinateMessagesLeader, 
CoordinateMessageWorker, RelayAsteroidModel, RelayMessageToLeader, 
RelayMessageToWorker, 

 Permissions:   
          Reads - 
  leaderSpacecraft    // vector of the leaders in the subswarm   
  messengerSpacecraft  // vector of the workers in the subswarm   
  memoryStatus    // current status (i.e., functioning or mal- 
      // functioning) of the spacecraft’s memory 
      // system 
  systemStatus    // current status of the spacecraft 
  spacecraftOrbitData // vector of the orbital insertion data of all 
      // subswarm spacecraft 
  spacecraftTrajectoryData  // vector of the trajectory data of all  
      // subswarm spacecraft 
  workerSpacecraft    // vector of the workers in the subswarm   
  supplied fromSpacecraftID  // spacecraft identification number that  
      // sent a message to be relayed  
  supplied toSpacecraftID  // spacecraft identification number that  
      // is to received a relayed message 
  supplied messageRec // the message received to be relayed 
          Changes -  
  messageRec // the message received to be relayed 
  messageHistory // history log of the messages sent 
  memoryStatus  // current status (i.e., functioning or mal- 
    // functioning) of the spacecraft’s memory  
  spacecraftOrbitData // vector of the orbital insertion data of all 
      // subswarm spacecraft 
  spacecraftTrajectoryData  // vector of the trajectory data of all  
    // subswarm spacecraft 
          Generates -  
  messageHistory   // history log of the messages sent 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure the timely delivery of message throughout the subswarm.  
          Safety -  
  Ensure the accuracy of spacecraft orbital and trajectory insertion data to  
  prevent spacecraft collisions. 

Core Variation Point Schema for the Messenger Role 
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Role Schema:  Messenger                                        Schema ID: M-LagrangeTravel 
      Variation Point: Lagrange-Travel 
      Inherits: M-Core 
      Parameters of Variation: P21=True; P24=True 
      Requirements: V_M2, V_M6 
      Description:  

Provides the spacecraft with the ability to travel to the Lagrange point and 
communicate and with mission control in order to relay the data collected from 
scientific exploration.  

   Activities and Protocols:   
CheckSystemStatus, GetArchiveData, PrepareCommToMisControl, 
TravelToLagrange, AcceptMisConotrolConfirm, SendDataToMisControl 

   Permissions:   
          Reads - 
  systemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft to see if recent 
       // solar storm 
  lagrangePointLocation  // position of the Lagrange point to travel to 
  solarSailStatus     // current status of the solar sail 
          Changes -  
  systemStatus     // status of the spacecraft 
  solarSailStatus     // status of the solar sail 
          Generates -  
  asteroidDataMsg   // message to send to mission control  
     // containing the asteroid data collected 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure the successful delivery of data to mission control. 
          Safety -  
  None. 

Lagrange Traveler Variation Point Schema for the Messenger Role 
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Role Variation Points Schema:  SelfHealer Schemata ID: SH 

  Parameters of Variation:  P2, P3     
  Description:     

  

At the swarm-level, the collection of these roles within all the spacecraft aid in 
autonomously maintaining the system’s scientific operations while enduring solar 
storms, spacecraft collisions, etc. At the spacecraft-level, detecting subsystem 
malfunctions and failures and autonomously reconfigure itself or requesting help to 
heal its damaged components.  

  Variation Points: 
  Core: 
   
   

The spacecraft does not have the ability to alter its role (i.e., 
worker, leader or messenger) and only has the core functionality in 
regards to its self-healing ability.  [SH-Core] 

  UpToLeader: 
   

   

The spacecraft has the ability to change from its current role, 
either worker or messenger, to that of a leader as a mechanism for 
swarm-level self-healing in the case that the swarm or subswarm 
needs to replace a lost or failing leader. [SSW-UpToLeader] 

  UpToMessenger: 
   

  

The spacecraft has the ability to change from its current role, 
either worker or leader, to that of a messenger as a mechanism for 
swarm-level self-healing in the case that the swarm or subswarm 
needs to replace a lost or failing messenger. [SSW-
UpToMessenger] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design time, 
however, the spacecraft may switch is operating variation point (e.g., the UpToLeader 
variation point) may be enacted at runtime. All spacecraft shall have the Basic 
variation point as a commonality.   

Self-Healer Role Variation Point Schema 
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Role Schema:  SelfHealer                                                       Schema ID: SH-Core 
      Variation Point: Core 
      Inherits: None 
      Parameters of Variation: P2=False; P3=False 
      Requirements: C_G1, C_G2, C_SH1, C_SH2, C_SH3, C_SH4, C_SH5 
      Description:  

Provides the spacecraft with the functionality to detect system damage and 
malfunctions and reconfigure itself so that it can continue pursuing its goals.  

 Activities and Protocols:   
CheckMemoryStatus, CheckMemConfiguration, ReconfigMemory, RepairMemory, 
AcceptNewMemory, AcceptKillCommand, ReceiveNewMemoryReq, 
RequestNewMemory, SendNewMemory 

 Permissions:   
          Reads - 
  spacecraftID    // spacecraft ID to send to other spacecraft 
      // when requesting clean memory 
  memoryStatus    // current status (i.e., functioning or mal- 
      // functioning) of the spacecraft’s memory 
      // system 
  systemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft to see if recent 
      // solar storm 
          Changes -  
               memoryCorrupted                // Boolean value indicating if the spacecraft 
   // believes its memory is corrupted                
          Generates -  

      memoryStatusReport // report containing information related to 
    // the spacecraft’s current memory status 

  memoryCorruptedMsg  // message indicating to other spacecraft 
    // that its memory is damaged and needs 
    // to reconfigure 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure that undamaged system memory is being used during scientific  
  exploration. 
          Safety -  
  Preventing the spacecraft from using corrupted/damaged system memory  
  and sending corrupted data to other spacecraft. 

Core Variation Point Schema for the Self-Healer Role 
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Role Schema:  SelfHealer                                            Schema ID: SH-UpToLeader 
      Variation Point: UpToLeader 
      Inherits: SH-Core 
      Parameters of Variation: P2=True 
      Requirements: C_G1, C_G2, V_SH1 
      Description:  

Provides the spacecraft with the functionalities needed to change itself from its 
current role, either a messenger or worker, to the role of a leader. This role change 
may be needed if too many leader spacecraft have been lost (e.g., due to collisions 
with other spacecraft or asteroids or due to solar storm damage) or are 
malfunctioning.  

   Activities and Protocols:   
CheckSystemStatus, EvaluateUpgradeReq, UpgradeToLeader, 
AcceptUpgradeToLeader, ReceiveUpgradeRequest 

   Permissions:   
          Reads - 
  systemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft 
  supplied upgradeGoal    // goal provided to address the reason to 
       // upgrade to leader 
  supplied leadersVector  // vector of other nearby leaders 
          Changes -  
  newSystemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft 
  systemGoal   // current goal of the spacecraft 
          Generates -  
               newSystemGoal   // new goal of the spacecraft 
  newSystemRole   // new role for the spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure that the current goal is satisfied or can be satisfied prior to upgrading 
  to a new spacecraft role. 
          Safety -  
  Ensure that the subswarm has an adequate number of leader spacecraft. 

Promote to Leader Role Variation Point Schema for the Self-Healer Role 
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Role Schema:  SelfHealer                                     Schema ID: SH-UpToMessenger 
      Variation Point: UpToMessenger 
      Inherits: SH-Core 
      Parameters of Variation: P3=True 
      Requirements: C_G1, C_G2, V_SH2, V_SH3 
      Description:  

Provides the spacecraft with the functionalities needed to change itself from its 
current role, either a messenger or worker, to the role of a leader. This role change 
may be needed if too many leader spacecraft have been lost (e.g., due to collisions 
with other spacecraft or asteroids or due to solar storm damage) or are 
malfunctioning. 

   Activities and Protocols:   
CheckSystemStatus, EvaluateUpgradeReq, UpgradeToMessenger, 
AcceptUpgradeToMessenger, ReceiveUpgradeRequest 

   Permissions:   
          Reads - 
           systemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft 
  supplied upgradeGoal    // goal provided to address the reason to 
       // upgrade to leader 
  supplied messengersVector // vector of other nearby messengers  
          Changes -  
  newSystemStatus    // current status of the spacecraft  
  riskForSystemFactor                // current risk to spacecraft 
  systemGoal   // current goal of the spacecraft   
          Generates -  
               newSystemGoal   // new goal of the spacecraft 
  newSystemRole   // new role for the spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  ensure that the current goal is satisfied or can be satisfied prior to upgrading 
  to a new spacecraft role. 
          Safety -  
  Ensure that the subswarm has an adequate number of messenger  
  spacecraft. 

Promote to Messenger Role Variation Point Schema for the Self-Healer Role 
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Role Variation Points Schema:  SelfProtector Schemata ID: SP 

  Parameters of Variation:  N/A     
  Description:     

  

At the swarm-level, the collection of these roles within all the spacecraft aid in 
autonomously maintaining the system’s scientific operations while enduring solar 
storms, spacecraft collisions, etc. At the spacecraft-level, detecting subsystem 
malfunctions and failures and autonomously reconfigure itself or requesting help to 
heal its damaged components.  

  Variation Points: 
  SolarStormWarner: 
   

   

Detects solar storms through monitoring the solar disc and 
being able to receive warning messages from mission control 
of an impending solar storm. After detecting an impending 
solar storm, it measures solar storm risk to determine the best 
course of action for the swarm.  [SSW] 

  SolarStormProtector: 
   
   

Protects the spacecraft from the solar radiation present during 
solar storms by using the solar sail as a shield, powering off 
systems and/or moving to a better position.  [SSP] 

  
CollisionProtector: Prevents the spacecraft from colliding with other spacecraft in 

the swarm and with nearby asteroids.  [CP] 
  Binding Time:     
  The binding time to decide which variation point(s) a spacecraft has is at design time,  

Self-Protector Role Variation Point Schema 
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Role Variation Points Schema:  SolarStormWarner Schemata ID: SSW 

  Parameters of Variation:  P7, P8     
  Description:     

  

Detects solar storms through monitoring the solar disc and being able to receive 
warning messages from mission control of an impending solar storm. After detecting 
an impending solar storm, it measures solar storm risk to determine the best course 
of action for the swarm. 

  Variation Points: 
  Passive: 
   
   

The spacecraft does not have the ability to constantly monitor the 
solar disc to watch for solar storms but can warn other spacecraft 
after itself receiving a warning message.  [SSW-Passive] 

  Warm-Spare: 
   
   

The spacecraft has the ability to constantly monitor the solar disc to 
watch for solar storms and receive messages from mission control 
but is acting in a backup/redundant capacity. [SSW-Warm] 

  Active: 
   
  

The spacecraft is tasked to constantly monitor the solar disc and 
receive warning messages from mission control so that it can warn 
other spacecraft of an impending solar storm.  [SSW-Active] 

  Binding Time:     

  

The binding time to decide which variation point(s) a spacecraft has is at design time, 
however, the spacecraft may switch is operating variation point (e.g., from Warm-
Spare to Active) at runtime. All spacecraft shall have the Passive variation point as a 
commonality. Spacecraft with the Warm-Spare variation point shall also include all 
functionality of Passive. Likewise, all spacecraft with the Active variation point shall 
have the functionality of the Warm-Spare.  

Self-Protector Solar Storm Warner Role Variation Point Schema 
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Role Schema:  SolarStormWarner                                   Schema ID: SSW-Passive 
 Variation Point: Passive 
      Inherits: SP-Core 
      Parameters of Variation: P7=Passive; P8=False 
      Requirements: C_G1, C_SH4, C_SP5, C_SP8, V_SP1, V_SP2 
      Description:  

Receives warnings from other spacecraft about impending solar storms and 
calculates the risk factor to itself from solar radiation damage. Notifies other nearby 
spacecraft of the impending solar storm.          

 Activities and Protocols:   
CalculateStormRisk, UpgradeToWarm, AcceptUpgrade, AcceptWarnMsg, 
RecieveHeartbeat, ReplyHeartBeat, SendSolarStormWarnMsg    

 Permissions:   
          Reads - 
           position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
   subswarmVector    // vector of nearby spacecraft to warn 
                supplied stormType     // type of storm supplied by warning  
                supplied stormIntensity   // storm intensity supplied by warning 
  supplied stormVector  // storm vector supplied by warning 
          Changes -  
               riskForSystemFactor                // current risk to spacecraft                
          Generates -  
               stormRiskValue                       // new value of the risk to the spacecraft of  
     // the solar storm 
 Responsibilities:   
          Liveness -  
                If the spacecraft is functioning properly, this role will eventually be able to  
  optimize the ability to satisfy scientific goals while minimizing the risk factor.  
          Safety -  
                Prevent other spacecraft from being damaged by notifying others.  

Passive Variation Point Schema for the Solar Storm Warner Role 
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Role Schema:  SolarStormWarner                                      Schema ID: SSW-Warm 
      Variation Point: Warm-Spare 
      Inherits: SSW-Passive 
      Parameters of Variation: P7=Warm-Spare; P8=False 
      Requirements: V_SP1, V_SP2 
      Description:  

Acts as a redundant backup to those spacecraft that are actively monitoring the 
solar disc and warning other spacecraft of impending solar storms that may 
damage their onboard equipment. With actively monitoring spacecraft, verifies 
measurements and other solar storm measurements.  

 Activities and Protocols:   
CalculateStormDataAccuracy, CompareVerifyStromData, DetectStormData, 
DowngradeToPassive, ObserveSolarDisc, UpgradeToActive, AcceptStormData, 
AcceptDowngrade, AcceptUpgrade, SendHeartbeat, SendStormData, 
VoteStormDataAccuracy 

 Permissions:   

          Reads - 
           supplied prelimStormType   // preliminary type of storm supplied by  
       // active spacecraft to be verified  
                supplied prelimstormIntensity   // preliminary intensity of storm supplied by 
       // active spacecraft to be verified 
  supplied prelimstormVector // preliminary storm vector supplied by  
       // active spacecraft to be verified  
          Changes -  
               stormDataAccuracyValue  // current value of the accuracy of the  
       // supplied data compared to detected data 
  stormRiskValue             // current risk value of the storm to the  
       // spacecraft                
          Generates -  
               detectedStormType   // type of storm as detected 
  detectedStormIntensity  // intensity of the storm as detected 
  detectedStormVector  // storm vector as detected 
 Responsibilities:   
          Liveness -  
                If the spacecraft is functioning properly, this role will eventually be able to  
  maintain heartbeat with other spacecraft monitoring the solar disc.  
          Safety -  
                Prevent dissemination of false solar storm warnings.   

Warm-Spare Variation Point Schema for the Solar Storm Warner Role 
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Role Schema:  SolarStormWarner                                      Schema ID: SSW-Active 
      Variation Point: Active 
 Inherits: SSW-Passive, SSW-Warm 
 Parameters of Variation: P7=Active; P8=True 
      Requirements: C_M9, V_SP1, V_SP2 
      Description:  

Continuously monitors the solar disc for the signs of an impending solar storm 
whose solar radiation may damage the swarm’s spacecraft. Upon detecting a solar 
storm, it seeks to verify the data and then proceeds to warn the swarm’s spacecraft. 
Also able to receive warning messages from mission control of an impending solar 
storm.  

 Activities and Protocols:   
CompareMissionControlData, DowngradeToWarm, AcceptDowngrade, 
AcceptMissionControlWarn, AcceptStormDataVote, InitiateStormDataVote, 
InitiateStromWarning 

 Permissions:   
          Reads - 
           detectedStormType   // type of storm as detected 
  detectedStormIntensity  // intensity of the storm as detected 
  detectedStormVector  // storm vector as detected 
  supplied MCStormType    // type of storm supplied by mission control  
                supplied MCStormIntensity   // storm intensity supplied by mission  
      // control 
  supplied MCstormVector // storm vector supplied by mission control 
          Changes -  
               stormRiskValue                       // new value of the risk to the spacecraft of  
      // the solar storm     
          Generates -  
              riskForSystemFactor                // current risk to spacecraft 
   stromWarningConfidence  // confidence in the warning provided by  
        // mission control 
                 voteConfidence   // confidence in the verification of detected 
        // storm data by other spacecraft 
   warningMessage   // warning message to be sent to other  
        // spacecraft 
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually be able to  
  maintain communication connection with mission control. 
          Safety -  
                Initiate warnings to spacecraft of an impending solar storm.   

Active Variation Point Schema for the Solar Storm Warner Role 
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Role Schema:  SolarStormProtector                                               Schema ID: SSP 
      Variation Point: SolarStormProtector 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SP5, C_SP6, C_SP7 
      Description:  

Provides the spacecraft with the functionality to autonomously protect itself from the 
affects of solar radiation during a solar storm.  

 Activities and Protocols:   
CheckSolarSailStatus, DeploySolarSailAsShield, EvaluateRiskToGoal, 
PowerDownSubsystems, PowerUpSubsystems 

 Permissions:   
          Reads - 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft 
  solarSailStatus    // status of the solar sail 
  detectedStormType   // type of storm as detected 
  detectedStormIntensity  // intensity of the storm as detected 
  detectedStormVector  // storm vector as detected 
  subsystemsList    // vector list of the spacecraft’s subsystems     
          Changes -  
   position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft 
  systemStatus     // status of the spacecraft 
  solarSailStatus  // status of the solar sail 
  subsystemsStatus  // list of the statuses of the spacecraft’s  
    // subsystems       
          Generates -  
   riskForSystemFactor                // current risk to spacecraft 
  riskToGoalFactor  // calculated value of the current risk factor 
    // to the advantage of pursuing scientific  
    // exploration    
 Responsibilities:   
          Liveness -  
  If the spacecraft is functioning properly, this role will eventually take the  
  steps needed to prevent radiation damage from a solar storm. 
          Safety -  
  Prevent the solar radiation damage to the spacecraft possible during a solar 
  storm. 

Protect from Solar Storms Role Variation Point Schema for the Self-Protector Role 
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Role Schema:  CollisionProtector                                                      Schema ID: CP 
      Variation Point: CollisionProtector 
      Inherits: None 
      Parameters of Variation: N/A 
      Requirements: C_SP1, C_SP2, C_SP3, C_SP4, C_SP5 
      Description:  

Provides the spacecraft with the functionality to autonomously protect itself from 
colliding with other spacecraft and nearby asteroids.  

 Activities and Protocols:   
Analyze3DModel, DetectNearbySpacecraft, EvaluateRiskToGoal, 
MonitorNearbyAsteroids, MonitorNearbySpacecraft, MoveToAvoidCollision, 
AcceptAsteroid3DModel, AcceptCurrentPosition, AcceptCurrentTrajectory, 
AcceptSpacecraftLocations, NegotiateCollisionAvoidance, PingNearbySpacecraft, 
RequestAsteroidPositions, RequestCurrentPosition, RequestCurrentTrajectory, 
RequestSpacecraftLocations 

 Permissions:   
          Reads - 
  curScienceGoalFactor  // current spacecraft scientific goal factor 
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft 
  supplied asteroid3DModel // 3D model of an asteroid supplied 
  supplied asteroidPositions // positions of nearby asteroids 
  supplied subswarmVector // vector of nearby spacecraft positions 
  supplied spacecraftPos // current position of a nearby spacecraft 
      // supplied by a messenger or leader 
  supplied spacecraftTraj // current trajectory of a nearby spacecraft 
      // supplied by a messenger or leader  
          Changes -  
  position              // current spacecraft position  
               velocityIncrement   // current spacecraft velocity increment 
               riskForSystemFactor                // current risk to spacecraft      
          Generates -  
       collisionRiskFactor  // derived risk to spacecraft for an  
    // impending collision 
  riskToGoalFactor  // calculated value of the current risk factor 
    // to the advantage of pursuing scientific  
    // exploration    
  nearbyAsteroid  // vector of nearby asteroids that must be 
    // avoided to prevent a collision 
  nearbySpacecraft  // vector of nearby spacecraft that must be 
    // avoided to prevent a collision 
 Responsibilities:   
          Liveness -  
  None. 
          Safety -  
  Prevent the collision with other spacecraft and nearby asteroids.  

Protect from Collisions Role Variation Point Schema for the Self-Protector Role 
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APPENDIX E.  SOFTWARE FAILURE MODES, EFFECTS AND 

CRITICALITY ANALYSIS 

This appendix provides the full set of Software Failure Modes, Effects and 

Criticality Analysis (SFMECA) tables for the Prospecting Asteroid Mission (PAM) 

multi-agent system product line (MAS-PL) case study used throughout this dissertation. 

The SFMECA tables are derived using the Gaia-PL requirements specifications schemas.     
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector Analyze3DModel Halt/Abnormal 
Termination 

The position and model of a nearby asteroid 
stored in the asteroidPositions, 
nearbyAsteroid and collisionRiskFactor data 
vector may be incomplete or partially 
incorrect. This may affect other events such 
as MonitorNearbyAsteroids and 
MoveToAvoidCollision. 

The spacecraft’s inaccurate 
mental model of the nearby 
asteroid could cause it to 
maneuver itself too close to 
the asteroid causing a 
collision.  

Major 

  

 

Omission The role fails to analyze the 3D model of a 
nearby asteroid potentially causing the 
asteroidPositions, nearbyAsteroid and 
collisionRiskFactor data to be incomplete or 
incorrect. This may affect other events such 
as MonitorNearbyAsteroids and 
MoveToAvoidCollision. 

The failure to analyze the 3D 
model provided of a nearby 
asteroid(s) may cause the 
asteroid to incorrectly 
maneuver itself too close to 
an asteroid and cause a 
collision. 

 
 
 

Critical 

  

 

Incorrect 
Logic/Event 

The role incorrectly analyzes the 3D model 
of a nearby asteroid that may cause the 
asteroidPositions, nearbyAsteroid and 
collisionRiskFactor data to be incomplete or 
incorrect. This may affect other events such 
as MonitorNearbyAsteroids and 
MoveToAvoidCollision. 

The spacecraft uses an 
inaccurate 3D model of a 
nearby asteroid that my 
cause it to maneuver itself 
into a nearby spacecraft or 
asteroid.  

Critical 

  

 

Timing/Order The role fails to analyze the 3D model of a 
nearby asteroid causing the 
asteroidPositions, nearbyAsteroid and 
collisionRiskFactor data to be outdated. The 
riskForSystemFactor data may be inaccurate 
since it was calculated based on outdated 
data. This may affect other events such as 
MonitorNearbyAsteroids, 
EvaluateRiskToGoal and 
MoveToAvoidCollision.  

The spacecraft uses an 
outdated 3D model of a 
nearby asteroid(s) and may 
not be able to react in time to 
avoid a collision with an 
asteroid if the 3D model is 
not updated as expected. 

Major 

SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role 
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 
Self-Protector 

 CollisionProtector DetectNearby 
Spacecraft 

Halt/Abnormal 
Termination 

The role fails to complete its analysis of 
detecting nearby spacecraft and may not 
be aware of all nearby spacecraft. Thus, 
the data stored in riskForSystemFactor, 
subswarmVector, spacecraftPos, 
collisionRiskFactor and neabySpacecraft 
may be inaccurate, corrupted or outdated.    

The spacecraft does not have a full 
knowledge of all nearby spacecraft and 
may unknowingly maneuver itself into 
another spacecraft causing a collision. The 
spacecraft’s ability to negotiate collision 
avoidance with another spacecraft using 
the NegotiateCollision Avoidance protocol 
can not be trusted by other spacecraft since 
the spacecraft’s mental model of nearby 
spacecraft is not accurate.  

Major 

  

 

Omission The role fails to detect its surrounding for 
nearby spacecraft and may not be aware of 
all nearby spacecraft. The data stored in 
riskForSystemFactor, subswarmVector, 
spacecraftPos, collisionRiskFactor and 
may be inaccurate or outdated and the 
neabySpacecraft may be incorrect or 
outdated.  

The spacecraft has no knowledge of the 
positions of other nearby spacecrafts 
possibly causing the spacecraft to 
maneuver too close to another spacecraft 
causing a collision. The lack of knowledge 
of the positions of nearby spacecrafts may 
also cause the spacecraft’s ability to avoid 
collisions using the Negotiate 
CollisionAvoidance protocol is using 
incomplete or inaccurate data.   

 
 
 
 

Critical 

  

 

Incorrect 
Logic/Event 
 

The role possible wrongly detects or 
miscalculates the positions of nearby 
spacecraft. The data stored in 
riskForSystemFactor, subswarmVector, 
spacecraftPos, collisionRiskFactor and 
may be inaccurate or outdated and the 
neabySpacecraft may be incorrect or 
outdated. 

The spacecraft’s belief of the positions of 
other nearby spacecraft is inaccurate and it 
may collide into nearby spacecraft if 
maneuvers itself. The lack of knowledge of 
the positions of nearby spacecrafts may 
additionally cause the spacecraft’s ability 
to avoid collisions using the Negotiate 
CollisionAvoidance protocol is using 
incomplete or inaccurate data.  

Critical 

  

 

Timing/Order The detection of nearby spacecrafts is 
delayed so that the role may not possible 
have the accurate locations of nearby 
spacecraft when it is expecting it. Because 
of this, the data stored in 
riskForSystemFactor, spacecraftPos, 
collisionRiskFactor and may be inaccurate 
or outdated and the neabySpacecraft may 
be incorrect or outdated without the role 
knowing this.  

The spacecraft may believe that the 
positions of nearby spacecraft it has stored 
in subswarmVector and spacecraftPos is 
correct and thus may inadvertently 
maneuver too close to another spacecraft 
and collide into it. The spacecraft may also 
provide inaccurate information to other 
spacecraft using the NegotiateCollision 
Avoidance protocol that may result in 
further collisions of spacecraft. 

Major 

SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector MoveToAvoid
Collision 

Halt/Abnormal 
Termination 

The position, velocityIncrement and 
collisionRiskFactor data may be 
temporarily incorrect since the spacecraft 
did not complete moving to its new 
position. This could potentially affect other 
events such as DetectNearby Spacecraft 
EvaluateRiskToGoal, and other protocols 
including NegotiateCollisionAvoidance. 

The spacecraft will not have 
moved to the position expected 
by other nearby spacecraft in 
the subswarm potentially 
causing a collision. 

Major 

  

 

Omission The spacecraft fails to move to its new 
assigned position in the subswarm possibly 
causing the position, velocityIncrement and 
collisionRiskFactor data to be temporarily 
incorrect. This could potentially affect 
other events such as DetectNearby 
Spacecraft EvaluateRiskToGoal, and other 
protocols including 
NegotiateCollisionAvoidance.  

The spacecraft will not have 
moved but, rather, maintain its 
previous position potentially 
causing a collision. Other 
spacecraft in the subswarm may 
expect the spacecraft to have 
moved to a new position which 
may cause a collision due to the 
discrepancies between actual 
and perceived spacecraft 
positions.  

Critical 

  

 

Incorrect 
Logic/Event 
 

The spacecraft fails to move to the position 
it is expecting possibly causing its 
position, velocityIncrement and 
collisionRiskFactor data to be different 
than expected. This could potentially affect 
other events such as DetectNearby 
Spacecraft EvaluateRiskToGoal, and other 
protocols including 
NegotiateCollisionAvoidance. 

The spacecraft moves to a 
position different that what it 
expects. Further, other 
spacecraft nearby will have 
expected the spacecraft to be in 
a different location potentially 
causing a collision.  

Critical 

  

 

Timing/Order The spacecraft fails to move to the new 
position until some later, undetermined 
time potentially causing its position, 
velocityIncrement and collisionRiskFactor 
data to be different than expected. This 
could potentially affect other events such 
as DetectNearby Spacecraft 
EvaluateRiskToGoal, and other protocols 
including NegotiateCollisionAvoidance. 

The spacecraft fails to move to 
the position it indicated to other 
spacecraft via the 
NegotiateCollisionAvoidance 
protocol at the time expected by 
the other spacecraft. This may 
cause a collision.  

Major 

SFMECA Event Table for the CollisionProtector Variation Point of the Self-Protector Role 
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector nearbyAsteroids Incorrect Value The variation point belief of the 
positions of nearby asteroids may be 
incorrect. The riskForSystemFactor 
and collisionRiskFactor data may be 
incorrect and the Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the wrong data. The 
RequestAsteroidPositions  protocol 
may provide inaccurate information 
upon request.   

The spacecraft will use incorrect 
values of the locations of nearby 
asteroids and may unknowningly 
maneuver too close to an asteroid 
and collide with it. The spacecraft 
may also provide the incorrect 
information to other spacecraft 
through the RequestAsteroid 
Positions protocol causing other 
spacecraft to potentially collide into 
an asteroid. The incorrect data may 
also invalidate the scientific data 
collected on the asteroids.    

Critical 

  

 

Absent Value The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or corrupted since no location 
values for nearby asteroids were 
available. The Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the unavailable data.  

The spacecraft will have no 
information on the location of 
nearby asteroids and will need to 
request the locations via the 
RequestAsteroidPositions  
protocol. May cause a collision 
with an asteroid since the locations 
are unknown. May corrupt some of 
the scientific data collected on the 
asteroids or cause the execution of 
the variation point to freeze.   

Major 

  

 

Wrong Timing 
 

The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or outdated since the location 
of nearby asteroid data is old. The 
Analyze3DModel, EvaluateRiskTo 
Goal and MoveToAvoidCollision 
events may result in outdated output. 

The spacecraft may have made 
maneuvering decisions based on 
outdated information of the 
location of nearby asteroids. This 
may cause a collision with an 
asteroid since the locations are 
outdated.  

Major 

  

 

Duplicated Value The Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may be 
uneedingly exectuted twice since the 
data was updated twice.  

The spacecraft will may have had 
to execute the Analyze3DModel, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events 
twice possibly delaying the 
response to request from other 
spacecraft. 

Minor 

SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role 
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector nearbySpacecraft Incorrect Value The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or corrupted since no 
location values for other nearby 
spacecraft are available. The 
DetectNearbySpacecraft, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the incorrect. 

The spacecraft will use incorrect 
values of the locations of nearby 
spacecraft and may unknowningly 
maneuver too close to another 
spacecraft and collide with it. The 
spacecraft may also provide the 
incorrect information to other 
spacecraft through the 
RequestSpacecraftLocations 
protocol causing other spacecraft to 
potentially collide.  

Major 

  

 

Absent Value The riskForSystemFactor and 
collisionRiskFactor data may be 
missing or corrupted since no 
location values for other nearby 
spacecraft are available. The 
DetectNearbySpacecraft, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the unavailable 
data. 

The spacecraft will have no 
information on the location of 
nearby spacecraft and will need to 
request the locations via the 
RequestSpacecraftLocations  
protocol. May cause a collision 
with an spacecraft since the 
locations are unknown. 

Critical 

  

 

Wrong Timing 
 

The riskForSystemFactor and 
collisionRiskFactor data may be 
incorrect or outdated since the 
location of nearby asteroid data is 
old. The DetectNearbySpacecraft, 
EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
make wrong decisions or incorrect 
analysis based on the outdated data. 

The spacecraft may have made 
maneuvering decisions based on 
outdated information of the 
location of nearby spacecraft. This 
may cause a collision since the 
locations are outdated. 

Critical 

  

 

Duplicated Value The EvaluateRiskToGoal and 
MoveToAvoidCollision events may 
be uneedingly exectuted twice since 
the data was updated twice. 

The spacecraft may report to others 
that it is malfunctioning since it 
received duplicated values.  

Minor 

SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role 
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

Self-Protector 

 CollisionProtector position Incorrect Value The variation point uses the incorrect value 
of its current position possibly affecting 
the DetectNearbySpacecraft, Evaluate 
RiskToGoal, MonitorNearyby Asteroids 
and MoveToAvoidCollision events. This 
may also cause the variation point to 
incorrectly change its riskForSystemFactor 
data and generate inaccurate collision 
RiskFactor, riskToGoal Factor, nearby 
Asteroids and nearbySpacecraft data.  

The spacecraft does not know 
its actual position and may 
report a false position to other 
spacecraft via the 
RequestSpacecraftLocations 
protocol potentially causing a 
collision. 
 

Major 

  

 

Absent Value The missing or corrupted value of its 
current position may affect the 
DetectNearbySpacecraft, EvaluateRisk 
ToGoal, MonitorNearybyAsteroids and 
MoveToAvoidCollision events since  the 
data is unusable. This may also cause the 
variation point to corrupted its 
riskForSystemFactor data and generate 
corrupted collisionRiskFactor, 
riskToGoalFactor, nearbyAsteroids and 
nearbySpacecraft data. 

The spacecraft does not know 
its actual position and may 
report a false position to other 
spacecraft via the Request 
SpacecraftLocations protocol 
potentially causing a collision. 
Alternatively, the spacecraft 
uses the missing or corrupted 
value and may collilde into a 
nearby spacecraft.  
 

Major 

  

 

Wrong Timing 
 

The variation point uses the outdated value 
of its current position possibly affecting 
the DetectNearbySpacecraft, 
EvaluateRiskToGoal, 
MonitorNearybyAsteroids and 
MoveToAvoidCollision events. This may 
also cause the variation point to incorrectly 
change its riskForSystem Factor data and 
generate outdated collisionRiskFactor, 
riskToGoal Factor, nearbyAsteroids and 
nearbySpacecraft data. 

The spacecraft may have made 
maneuvering decisions based 
on outdated information of 
position potentially causing a 
collision. 

Major 

  

 

Duplicated Value The variation point uses the duplicate 
position information to execute the 
DetectNearbySpacecraft, 
EvaluateRiskToGoal, 
MonitorNearybyAsteroids and 
MoveToAvoidCollision events twice.  

The spacecraft may report to 
others that it is malfunctioning 
since it received duplicated 
values of its current position. 

Minor 

SFMECA Data Table for the CollisionProtector Variation Point of the Self-Protector Role  
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Role Variation Point Event 
Failure 
Mode 

Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Passive CalculateStorm
Risk 

Halt/Abnormal 
Termination 

The stormRiskValue and the 
riskForSystemFactor data values 
may be incorrect or outdated 
since the role did not finish 
calculating the risk to the system 
of the impending solar storm.  

The spacecraft may not take self-
protection measure to guard against the 
solar radition from the impending solar 
storm. Alternatively, the spacecraft may 
take self-protection actions to guard 
again an impending solar storm when the 
actual risk to the spacecraft did not 
warrant such actions. This may 
unnecessarily consume power and/or 
increase the risk of collision. 

Major 

  

 

Omission The stormRiskValue and the 
riskForSystemFactor data values 
will not have been updated to 
reflect the receieved information 
of an impending solar storm.  

The spacecraft may not take self-
protection measure to guard against the 
solar radition from the impending solar 
storm. 

Major 

  

 

Incorrect 
Logic/Event 
 

The stormRiskValue and the 
riskForSystemFactor data values 
may be incorrect or corrupted 
since method of calculating them 
using the newly received 
information of an impending 
solar storm is incorrect.  

The spacecraft may not take self-
protection measure to guard against the 
solar radition from the impending solar 
storm. Alternatively, the spacecraft may 
take self-protection actions to guard 
again an impending solar storm when the 
actual risk to the spacecraft did not 
warrant such actions. This may 
unnecessarily consume power and/or 
increase the risk of collision. 

Major 

  

 

Timing/Order The stormRiskValue and the 
riskForSystemFactor data values 
may be outdated since the method 
of calculating them may not have 
executed before the impending 
solar storm arrived.  

The spacecraft may not take self-
protection actions in time to guard 
against the solar radition from the 
impending solar storm. Alternatively, the 
spacecraft may take self-protection 
actions to guard again an impending 
solar storm earlier than needed. This may 
unnecessarily consume power and/or 
increase the risk of collision. 

Major 

SFMECA Event Table for the Passive Variation Point of the SolarStormWarner Role 

 

 



 

 

310

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Passive position Incorrect Value The variation point uses the 
incorrect value of its current 
position possibly affecting the 
CalculateStormRisk events. This 
may also cause the variation point 
to incorrectly change its 
riskForSystemFactor and 
stormRiskValue data.  

The spacecraft may believe that, given its 
incorrect position, it is not at risk to an 
impending solar storm and may not take 
self-protection measure to guard against 
the solar radition from the impending 
solar storm. This may cause the 
spacecraft’s memory to be corrupted and 
the data and/or the entire spacecraft to be 
lost to the swarm.    

Major 

  

 

Absent Value The variation point does not have a 
value for its current position 
possibly affecting the 
CalculateStormRisk events. This 
may also cause the variation point 
to corrupt its riskForSystemFactor 
and stormRiskValue data values.  

The spacecraft may not know its current 
risk to an impending solar storm and may 
not take self-protection measure to guard 
against the solar radition from the 
impending solar storm. This may cause 
the spacecraft’s memory to be corrupted 
and the data and/or the entire spacecraft 
to be lost to the swarm.     

Major 

  

 

Wrong Timing 
  

The variation point uses an 
outdated value of its current 
position possibly affecting the 
CalculateStormRisk events. This 
may also cause the variation point 
to incorrectly change or use 
outdated values to calculate its 
riskForSystemFactor and 
stormRiskValue data.  

The spacecraft will have used an 
outdated position to calculate its risk and 
may not take self-protection measure to 
guard against the solar radition from a 
impending solar storm. This may cause 
the spacecraft’s memory to be corrupted 
and the data and/or the entire spacecraft 
to be lost to the swarm. Alternatively, the 
spacecraft may take self-protection 
actions to guard again an impending 
solar storm when the actual risk to the 
spacecraft did not warrant such actions. 
This may unnecessarily consume power 
and/or increase the risk of collision.    

Major 

  

 

Duplicated Value The variation point may use the 
duplicated position information to 
execute the CalculateStormRisk 
activity twice.  

The spacecraft may have unnecessarily 
consume power or resources to execute 
activities twice.  

Minor 

SFMECA Data Table for the Passive Variation Point of the SolarStormWarner Role  

 

 



 

 

311

Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Passive stormIntensity Incorrect Value The variation point uses the 
incorrect value of the 
sotrmIntensity data that it received 
from another spacecraft as a part of 
the AcceptWarnMsg protocol. This 
may affect the CalculateStormRisk 
activity and can, in turn, incorrectly 
change the riskForSystemFactor 
and the stormRiskValue data as 
well as the 
SendSolarStormWarnMsg protocol.   

The spacecraft calculates its risk to the 
impending solar storm incorrectly and may 
not take self-protection measure to guard 
against the solar radition from the 
impending solar storm. This may cause the 
spacecraft’s memory to be corrupted and 
the data and/or the entire spacecraft to be 
lost to the swarm. Additionally, the 
spacecraft may relay the incorrect data 
using SendSolarStormWarnMsg protocol 
to other spacecraft. 

Critical 

  

 

Absent Value The variation point receives a 
missing value the sotrmIntensity 
data that it received from another 
spacecraft as a part of the 
AcceptWarnMsg protocol 
potentially affecting the 
riskForSystemFactor and 
stormRiskValue data as well as the 
SendSolarStormWarnMsg protocol. 

The spacecraft calculates its risk to the 
impending solar storm incorrectly and may 
not take self-protection measure to guard 
against the solar radition from the 
impending solar storm. This may cause the 
spacecraft’s memory to be corrupted and 
the data and/or the entire spacecraft to be 
lost to the swarm. Additionally, the 
spacecraft may relay the missing data 
using SendSolarStormWarnMsg protocol 
to other spacecraft. 

Critical 

  

 

Wrong Timing 
  

The variation point receives the 
sotrmIntensity data from another 
spacecraft via the AcceptWarnMsg 
protocol late. This may affect the 
calculation of the the 
CalculateStormRisk activity and 
can, in turn, may not be able to 
update the riskForSystemFactor 
and the stormRiskValue data in a 
timely manner.  

The spacecraft may not calculate its risk of 
the impending solar storm in time to take 
self-protection measure to guard against 
the solar radition from the impending solar 
storm. This may cause the spacecraft’s 
memory to be corrupted and the data 
and/or the entire spacecraft to be lost to the 
swarm. Additionally, the spacecraft might 
not relay the missing data using 
SendSolarStormWarnMsg protocol to 
other spacecraft. 

Major 

  

 

Duplicated Value The variation point receives the 
sotrmIntensity data from another 
spacecraft via the AcceptWarnMsg 
protocol multiple times possible 
causing the variation point to 
execute the CalculateStormRisk 
activity multiple times. 

The spacecraft might relay the warning 
message using SendSolarStormWarnMsg 
protocol to other spacecraft multiple times. 

Minor 

SFMECA Data Table for the Passive Variation Point of the SolarStormWarner Role  
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Passive stormVector Incorrect Value The variation point uses the incorrect 
value of the stormVector data that it 
received from another spacecraft as a 
part of the AcceptWarnMsg protocol. 
This may affect the 
CalculateStormRisk activity and can, 
in turn, incorrectly change the 
riskForSystemFactor and the 
stormRiskValue data as well as the 
SendSolarStormWarnMsg protocol.     

The spacecraft calculates its risk to the 
impending solar storm incorrectly and 
may not take self-protection measure to 
guard against the solar radition from the 
impending solar storm. This may cause 
the spacecraft’s memory to be corrupted 
and the data and/or the entire spacecraft 
to be lost to the swarm. Additionally, the 
spacecraft may relay the incorrect data 
using SendSolarStormWarnMsg protocol 
to other spacecraft. 

Critical 

  

 

Absent Value The variation point receives a missing 
value the stormVector data that it 
received from another spacecraft as a 
part of the AcceptWarnMsg protocol 
potentially affecting the 
riskForSystemFactor and 
stormRiskValue data as well as the 
SendSolarStormWarnMsg protocol. 

The spacecraft calculates its risk to the 
impending solar storm incorrectly and 
may not take self-protection measure to 
guard against the solar radition from the 
impending solar storm. This may cause 
the spacecraft’s memory to be corrupted 
and the data and/or the entire spacecraft 
to be lost to the swarm. Additionally, the 
spacecraft may relay the missing data 
using SendSolarStormWarnMsg protocol 
to other spacecraft. 

Critical 

  

 

Wrong Timing 
 

The variation point receives the 
stormVector data from another 
spacecraft via the AcceptWarnMsg 
protocol late. This may affect the 
calculation of the the 
CalculateStormRisk activity and can, 
in turn, may not be able to update the 
riskForSystemFactor and the 
stormRiskValue data in a timely 
manner.  

The spacecraft may not calculate its risk 
of the impending solar storm in time to 
take self-protection measure to guard 
against the solar radition from the 
impending solar storm. This may cause 
the spacecraft’s memory to be corrupted 
and the data and/or the entire spacecraft 
to be lost to the swarm. Additionally, the 
spacecraft might not relay the missing 
data using SendSolarStormWarnMsg 
protocol to other spacecraft. 

Major 

  

 

Duplicated Value The variation point receives the 
stormVector data from another 
spacecraft via the AcceptWarnMsg 
protocol multiple times possible 
causing the variation point to execute 
the CalculateStormRisk activity 
multiple times. 

The spacecraft might relay the warning 
message using SendSolarStormWarnMsg 
protocol to other spacecraft multiple 
times. Minor 

SFMECA Data Table for the Passive Variation Point of the SolarStormWarner Role  
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Warm-Spare CalculateStom 
DataAccuracy 

Halt/Abnormal 
Termination 

The variation point does not finish executing 
the CalculateStormDataAccuracy to determine 
if its detected data and another spacecraft’s 
detected data regarding an impending solar 
storm are accurate. This may affect the storm 
DataAccuracy Value and the stormRiskValue 
data. This may also affect the information sent 
in the VoteStormDataAccuracy protocol.  

The spacecraft fails to vote or votes with 
inaccurate information as to whether it 
agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Omission The variation point does not execute the 
CalculateStorm DataAccuracy activity to 
determine if its detected data and another 
spacecraft’s detected data regarding an 
impending solar storm are accurate. This may 
affect the stormDataAccuracyValue and the 
stormRiskValue data by rendering them 
incorrect, outdated or corrupted. This may also 
affect the information sent in the 
VoteStormDataAccuracy protocol. 

The spacecraft fails to vote or votes with 
inaccurate information as to whether it 
agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Incorrect 
Logic/Event 
 

The variation point incorectly executes the 
CalculateStorm DataAccuracy activity to 
determine if its detected data and another 
spacecraft’s detected data regarding an 
impending solar storm are accurate. This may 
affect the storm DataAccuracyValue and the 
stormRisk Value data by rendering them 
incorrect. This may also affect the information 
sent in the VoteStormDataAccuracy protocol. 

The spacecraft votes with inaccurate 
information as to whether it agrees with 
the solar storm information detected by 
another spacecraft. This may delay or 
prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft. 
Alernatively, this may cause the 
spacecraft to agree with the information 
when it shouldn’t which may cause an 
inadvertent warning message to be sent to 
the swarm.    

Critical 

  

 

Timing/Order The variation point the CalculateStorm 
DataAccuracy activity to determine if its 
detected data and another spacecraft’s detected 
data regarding an impending solar storm are 
accurate not in a timely manner. This may 
affect the stormDataAccuracy Value and the 
stormRiskValue data by rendering them 
incorrect. This may also affect the information 
sent in the VoteStormData Accuracy protocol. 

The spacecraft votes too late as to whether 
it agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

SFMECA Event Table for the Warm-Spare Variation Point of the SolarStormWarner Role 
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Warm-Spare DetectStormData Halt/Abnormal 
Termination 

The variation point halts its detection 
of the solar storm data. This may 
affect the stormData AccuracyValue, 
stormRiskValue, prelimStormType, 
prelimStorm Intensity and prelimStom 
Vector data rendering it incomplete, 
outdated or inaccurate. This may also 
affect the information sent in the Vote 
StormDataAccuracy protocol.   

The spacecraft fails to vote or votes with 
inaccurate information as to whether it 
agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Omission The variation point fails to detect the 
solar storm data. This may affect the 
stormDataAccuracy Value, 
stormRiskValue, prelim StormType, 
prelimStorm Intensity and prelimStom 
Vector data ren-dering it incomplete, 
outdated or inaccurate. This may also 
affect the information sent in the Vote 
StormDataAccuracy protocol.   

The spacecraft fails to vote or votes with 
inaccurate information as to whether it 
agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Incorrect 
Logic/Event 
 

The variation point uses incorrect 
logic to detect the solar storm data. 
This may affect the stormData 
AccuracyValue, storm RiskValue, 
prelimStorm Type, prelimStorm 
Intensity and prelimStom Vector data 
rendering it in-accurate. This may also 
affect the information sent in the 
VoteStormDataAccuracy protocol.    

The spacecraft votes with inaccurate 
information as to whether it agrees with 
the solar storm information detected by 
another spacecraft. This may delay or 
prevent a warning message to be generated 
and sent to the swarm warning of an 
impending solar storm which may result in 
the loss of spacecraft. Alernatively, this 
may cause the spacecraft to agree with the 
information when it shouldn’t which may 
cause an inadvertent warning message to 
be sent to the swarm.    

Critical 

  

 

Timing/Order The variation point detects the solar 
storm data not in a timely manner. 
This may affect the stormData 
AccuracyValue, stormRiskValue, 
prelimStorm Type, prelimStorm 
Intensity and prelimStomVector  data 
rendering it inaccurate. This may also 
affect the information sent in the Vote 
StormDataAccuracy protocol.    

The spacecraft votes too late as to whether 
it agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

SFMECA Event Table for the Warm-Spare Variation Point of the SolarStormWarner Role 
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Warm-Spare ObserveSolarDisc Halt/Abnormal 
Termination 

The variation point halts its observation 
of the solar disc. This may affect the 
stormData AccuracyValue, 
stormRiskValue, prelimStormType, 
prelimStorm Intensity and prelimStom 
Vector data rendering it incomplete, 
outdated or inaccurate. This may also 
affect the information sent in the Vote 
StormDataAccuracy protocol.   

The spacecraft fails to vote or votes with 
inaccurate information as to whether it 
agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Omission The fails to observe the solar disc. This 
may affect the stormDataAccuracy 
Value, stormRiskValue, prelim 
StormType, prelimStorm Intensity and 
prelimStom Vector data ren-dering it 
incomplete, outdated or inaccurate. This 
may also affect the information sent in 
the Vote StormDataAccuracy protocol.   

The spacecraft fails to vote or votes with 
inaccurate information as to whether it 
agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Incorrect 
Logic/Event 
 

The variation point uses incorrect logic 
to observe the solar disc. This may 
affect the stormData AccuracyValue, 
storm RiskValue, prelimStorm Type, 
prelimStorm Intensity and prelimStom 
Vector data rendering it in-accurate. 
This may also affect the information 
sent in the VoteStormDataAccuracy 
protocol.    

The spacecraft votes with inaccurate 
information as to whether it agrees with 
the solar storm information detected by 
another spacecraft. This may delay or 
prevent a warning message to be generated 
and sent to the swarm warning of an 
impending solar storm which may result in 
the loss of spacecraft. Alernatively, this 
may cause the spacecraft to agree with the 
information when it shouldn’t which may 
cause an inadvertent warning message to 
be sent to the swarm.    

Critical 

  

 

Timing/Order The fails to observe the solar disc when 
it should. This may affect the stormData 
AccuracyValue, stormRiskValue, 
prelimStorm Type, prelimStormIntensity 
and prelimStomVector data rendering it 
inaccurate. This may also affect the 
information sent in the VoteStormData 
Accuracy protocol.    

The spacecraft votes too late as to whether 
it agrees with the solar storm information 
detected by another spacecraft. This may 
delay or prevent a warning message to be 
generated and sent to the swarm warning 
of an impending solar storm which may 
result in the loss of spacecraft.   

Critical 

SFMECA Event Table for the Warm-Spare Variation Point of the SolarStormWarner Role 
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Warm-Spare prelimStorm 
Intensity 

Incorrect Value The variation point uses an incorrect 
value for the prelimStormIntensity data 
supplied by another spacecraft possibly 
affecting its calculations in the 
CalculateStormDataAccuracy, 
CompareVeryifyStormData, 
DetectStormData, ObserveSolarDisc 
activities. Further, this may affect the 
information it sends using the 
VoteStormDataAccuracy protocol. 

The spacecraft may incorrectly judge the 
information provided as not an 
impending solar storm and thus not agree 
with sending out a warning. This may 
cause no warnings to be sent to the 
spacecraft of the swarm causing 
spacecraft to be lost due to the 
impending solar storm’s radiation. 

Critical 

  

 

Absent Value The prelimStormIntensity data supplied 
by another spacecraft is missing which 
could possibly affecti the variation 
point’s calculations in the Calculate 
StormDataAccuracy, CompareVeryify 
StormData, DetectStormData, Observe 
SolarDisc activities. Further, this may 
affect the information it sends using the 
VoteStormDataAccuracy protocol. 

The spacecraft may incorrectly judge the 
information provided as not an 
impending solar storm and thus not agree 
with sending out a warning. This may 
cause no warnings to be sent to the 
spacecraft of the swarm causing 
spacecraft to be lost due to the 
impending solar storm’s radiation. 

Critical 

  

 

Wrong Timing 
 

The variation point uses the value for 
the prelimStormIntensity data supplied 
by another spacecraft at the wrong time 
possibly affecting its calculations in the 
CalculateStormDataAccuracy, 
CompareVeryifyStormData, Detect 
StormData, ObserveSolarDisc 
activities. Further, this may affect the 
information it sends using the 
VoteStormDataAccuracy protocol. 

The spacecraft may incorrectly judge the 
information provided as not an 
impending solar storm and thus not agree 
with sending out a warning. This may 
cause a delay or no warnings to be sent 
to the spacecraft of the swarm causing 
spacecraft to be lost due to the 
impending solar storm’s radiation. 

Critical 

  

 

Duplicated Value The prelimStormIntensity data supplied 
by another spacecraft possibly is used 
twice possibly affecting its calculations 
in the CalculateStormDataAccuracy, 
CompareVeryifyStormData, Detect 
StormData, ObserveSolarDisc 
activities. Further, this may affect the 
information it sends using the 
VoteStormDataAccuracy protocol by 
possibly sending redundant messages. 

The spacecraft may redundantly reply to 
the message from the spacecraft giving 
its agreement or disagreement to the 
solar storm information.  

Minor 

SFMECA Data Table for the Warm-Spare Variation Point of the SolarStormWarner Role  
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Warm-Spare prelimStorm 
Vector 

Incorrect Value The variation point uses an incorrect 
value for the prelimStormVector data 
supplied by another spacecraft possibly 
affecting its calculations in the 
CalculateStormDataAccuracy, 
CompareVeryifyStormData, 
DetectStormData, ObserveSolarDisc 
activities. Further, this may affect the 
information it sends using the 
VoteStormDataAccuracy protocol. 

The spacecraft may incorrectly judge the 
information provided as not an 
impending solar storm and thus not agree 
with sending out a warning. This may 
cause no warnings to be sent to the 
spacecraft of the swarm causing 
spacecraft to be lost due to the 
impending solar storm’s radiation. 

Critical 

  

 

Absent Value The prelimStormVector data supplied 
by another spacecraft is missing which 
could possibly affecti the variation 
point’s calculations in the Calculate 
StormDataAccuracy, CompareVeryify 
StormData, DetectStormData, Observe 
SolarDisc activities. Further, this may 
affect the information it sends using the 
VoteStormDataAccuracy protocol. 

The spacecraft may incorrectly judge the 
information provided as not an 
impending solar storm and thus not agree 
with sending out a warning. This may 
cause no warnings to be sent to the 
spacecraft of the swarm causing 
spacecraft to be lost due to the 
impending solar storm’s radiation. 

Critical 

  

 

Wrong Timing 
 

The variation point uses the value for 
the prelimStormVector data supplied 
by another spacecraft at the wrong time 
possibly affecting its calculations in the 
CalculateStormDataAccuracy, 
CompareVeryifyStormData, Detect 
StormData, ObserveSolarDisc 
activities. Further, this may affect the 
information it sends using the 
VoteStormDataAccuracy protocol. 

The spacecraft may incorrectly judge the 
information provided as not an 
impending solar storm and thus not agree 
with sending out a warning. This may 
cause a delay or no warnings to be sent 
to the spacecraft of the swarm causing 
spacecraft to be lost due to the 
impending solar storm’s radiation. 

Critical 

  

 

Duplicated Value The prelimStormVector data supplied 
by another spacecraft possibly is used 
twice possibly affecting its calculations 
in the CalculateStormDataAccuracy, 
CompareVeryifyStormData, Detect 
StormData, ObserveSolarDisc 
activities. Further, this may affect the 
information it sends using the 
VoteStormDataAccuracy protocol by 
possibly sending redundant messages. 

The spacecraft may redundantly reply to 
the message from the spacecraft giving 
its agreement or disagreement to the 
solar storm information.  

Minor 

SFMECA Data Table for the Warm-Spare Variation Point of the SolarStormWarner Role  
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Role Variation Point Event Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Active CompareMission
ControlData 

Halt/Abnormal 
Termination 

The variation point does not finish executing the 
CompareMissionControlData to determine if its 
detected data and another spacecraft’s detected 
data regarding an impending solar storm are 
accurate. This may affect the stormWarning 
Confidence, voteConfidence, and the stormRisk 
Value data. This may also affect the information 
sent in the IniateStormDataVote and 
InitiateStormWarning protocols.  

The spacecraft fails to vote or votes 
with inaccurate information as to 
whether it agrees with the 
information sent by mission control. 
This may delay or prevent a warning 
message to be generated and sent to 
the swarm warning of an impending 
solar storm which may result in the 
loss of spacecraft.   

Critical 

  

 

Omission The variation point does not execute the Compare 
MissionControlData activity to determine if its 
detected data and another spacecraft’s detected 
data regarding an impending solar storm are 
accurate. This may affect the stormWarning 
Confidence, vote Confidence, and the stormRisk 
Value data. This may also affect the information 
sent in the IniateStorm DataVote and 
InitiateStormWarning protocols. 

The spacecraft fails to vote or votes 
with inaccurate information as to 
whether it agrees with the 
information detected by mission 
control. This may delay or prevent a 
warning message to be generated and 
sent to the swarm warning of an 
impending solar storm which may 
result in the loss of spacecraft.   

Critical 

  

 

Incorrect 
Logic/Event 
 

The variation point incorectly executes the 
CompareMissionControlData activity to determine 
if its detected data and another spacecraft’s 
detected data regarding an impending solar storm 
are accurate. This may affect the 
stormWarningConfidence, voteConfidence, and 
the stormRiskValue data. This may also affect the 
information sent in the IniateStormDataVote and 
InitiateStormWarning protocols. 

The spacecraft votes with inaccurate 
information as to whether it agrees 
with the inform-ation detected by 
mission control. This may delay or 
prevent a warn-ing message to be 
generated and sent to the swarm 
warning of an impending solar storm 
which may result in the loss of 
spacecraft. Alernatively, this may 
cause the spacecraft to agree with the 
inform-ation when it shouldn’t which 
may cause an inadvertent warning 
message to be sent to the swarm.    

Critical 

  

 

Timing/Order The variation point the CompareMissionControl 
Data activity to determine if its detected data and 
another spacecraft’s detected data regarding an 
impending solar storm are accurate not in a timely 
manner. This may affect the stormWarning 
Confidence, voteConfidence, and the stormRisk 
Value data. This may also affect the information 
sent in the IniateStormDataVote and 
InitiateStormWarning protocols. 

The spacecraft votes too late as to 
whether it agrees with the 
information detected by mission 
control. This may delay or prevent a 
warning message to be generated and 
sent to the swarm warning of an 
impending solar storm which may 
result in the loss of spacecraft.   

Critical 

SFMECA Event Table for the Active Variation Point of the SolarStormWarner Role 
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Active detectedStorm 
Intensity 

Incorrect Value The variation point uses an incorrect value for the 
detectedStormIntensity data detected by the 
spacecraft and used to send to other spacecraft for 
verification. This may affect the 
stormWarningConfidence, voteConfidence, 
warningMessage, and the stormRisk Value data as 
well as the CompareMissionControl Data activity. 
This may also affect the information sent in the 
IniateStormDataVote and InitiateStormWarning 
protocols. 

The spacecraft may provide the 
incorrect data to other spacecraft 
monitoring the solar disc potentially 
leading to the failure to issue a warn-
ing to the spacecraft of the subwarm 
of an impending solar storm. This 
may cause the loss of several space-
craft as a result of solar radiation 
damage. Alternatively, the incorrect 
data could lead to issuing a storm 
warning when one is not needed.  

Critical 

  

 

Absent Value The variation point uses missing value for the 
detectedStormIntensity data detected by the 
spacecraft and used to send to other spacecraft for 
verification. This may affect the stormWarning 
Confidence, vote Confidence, warningMessage, 
and the stormRisk Value data by corrupting them 
or rendering them inaccurate as well as the 
CompareMission Control Data activity. This may 
also affect the information sent in the IniateStorm 
DataVote and InitiateStormWarning protocols. 

The spacecraft may provide the miss-
ing data to other spacecraft monitor-
ing the solar disc potentially leading 
to the failure to issue a warning to the 
spacecraft of the subwarm of an im-
pending storm. This may cause the 
loss of several spacecraft as a result 
of radiation damage. Or, the missing 
data could lead to issuing a solar 
storm warning when it is not needed.  

Critical 

  

 

Wrong Timing 
 

The variation point uses the detectedStorm 
Intensity data detected by the spacecraft at the 
wrong time to send to other spacecraft for veri-
fication. This may affect the stormWarning 
Confidence, voteConfidence, warningMessage, 
and the stormRisk Value data as well as the 
CompareMissionControl Data activity. This may 
also affect the information sent in the IniateStorm 
DataVote and InitiateStormWarning protocols. 

The spacecraft may fail to issue a 
warning message to the swarm of an 
impending solar storm in time to 
allow the spacecraft to take 
appropriate self-protection actions. 
This may cause the loss of several 
spacecraft as a result of solar 
radiation damage.   

Critical 

  

 

Duplicated Value The variation point uses duplicated value for the 
detectedStormIntensity data detected by the 
spacecraft and used to send to other spacecraft for 
verification. This may affect the stormWarning 
Confidence, vote Confidence, warningMessage, 
and the stormRisk Value data as well as the 
CompareMissionControlData activity by 
executing or defining it multiple times. This may 
also affect the information sent in the IniateStorm 
DataVote and InitiateStormWarning protocols. 

The spacecraft may redundantly issue 
a message to other spacecraft 
monitoring the solar disc seeking 
confirmation of the data they 
detected.  

Minor 

SFMECA Data Table for the Active Variation Point of the SolarStormWarner Role  
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Active detectedStorm
Vector 

Incorrect Value The variation point uses an incorrect value for the 
detectedStormVector data detected by the 
spacecraft and used to send to other spacecraft for 
verification. This may affect the stormWarning 
Confidence, vote Confidence, warning Message, 
and the storm RiskValue data as well as the 
Compare MissionControl Data activity. This may 
also affect the information sent in the Iniate 
StormDataVote and InitiateStormWarning 
protocols. 

The spacecraft may provide the 
incorrect data to other spacecraft 
monitoring the solar disc potentially 
leading to the failure to issue a warning 
to the space-craft of the subwarm of an 
impending solar storm. This may cause 
the loss of several spacecraft as a result 
of solar radiation damage. Or, the 
incorrect data could lead to issuing a 
storm warning when one is not needed.  

Critical 

  

 

Absent Value The variation point uses missing value for the 
detectedStormVector data detected by the 
spacecraft and used to send to other spacecraft for 
verification. This may affect the storm Warning 
Confidence, vote Confidence, warningMessage, 
and the stormRisk Value data by corrupting them 
or rendering them inaccurate as well as the 
CompareMission Control Data activity. This may 
also affect the information sent in the IniateStorm 
DataVote and InitiateStormWarning protocols. 

The spacecraft may provide the miss-
ing data to other spacecraft monitor-ing 
the solar disc potentially leading to the 
failure to issue a warning to the 
spacecraft of the subwarm of an im-
pending storm. This may cause the loss 
of several spacecraft as a result of 
radiation damage. Or, the missing data 
could lead to issuing a solar storm 
warning when it is not needed.  

Critical 

  

 

Wrong Timing 
 

The variation point uses the detectedStormVector 
data detected by the spacecraft at the wrong time 
to send to other spacecraft for veri-fication. This 
may affect the stormWarningConfidence, vote 
Confidence, warningMessage, and the storm Risk 
Value data as well as the Compare MissionControl 
Data activity. This may also affect the information 
sent in the IniateStorm DataVote and 
InitiateStormWarning protocols. 

The spacecraft may fail to issue a 
warning message to the swarm of an 
impending solar storm in time to allow 
the spacecraft to take appropriate self-
protection actions. This may cause the 
loss of several spacecraft as a result of 
solar radiation damage.   

Critical 

  

 

Duplicated Value The variation point uses duplicated value for the 
detectedStormVector data detected by the space-
craft and used to send to other spacecraft for 
verification. This may affect the storm Warning 
Confidence, vote Confidence, warningMessage, 
and the stormRisk Value data as well as the 
CompareMissionControl Data activity by 
executing or defining it multiple times. This may 
also affect the information sent in the Iniate Storm 
DataVote and InitiateStormWarning protocols. 

The spacecraft may redundantly issue a 
message to other spacecraft monitoring 
the solar disc seeking confirmation of 
the data they detected.  

Minor 

SFMECA Data Table for the Active Variation Point of the SolarStormWarner Role  
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Role Variation Point Data Failure Mode Local Effect(s) System Effect(s) Criticality 

SolarStormWarner 

 Active warning
Message 

Incorrect Value The variation point uses an incorrect value for 
the warningMessage data generated by the 
spacecraft and used to send to other spacecraft 
as a warning of an impending solar storm. This 
may affect the storm Warning Confidence, vote 
Confidence, warningMessage, and the 
stormRisk Value data. This may also affect the 
information sent in the Iniate Storm DataVote 
and InitiateStormWarning protocols.  

The spacecraft monitoring the solar disc 
issues a warning message to the 
spacecraft of the swarm containing 
incorrect information. This may cause 
spacecraft to not take self-protection 
actions to protect from an impending 
solar storm when it should. This may 
cause the loss of several spacecraft as a 
result of radiation damage. Alternatively, 
it may cause spapcecraft to take self-
protection actions when not needed.  

Critical 

  

 

Absent Value The variation point uses an empty value for the 
warningMessage data generated by the 
spacecraft and used to send to other spacecraft 
as a warning of an impending solar storm. This 
may affect the storm Warning Confidence, vote 
Confidence, warningMessage, and the 
stormRisk Value data. This may also affect the 
information sent in the Iniate Storm DataVote 
and InitiateStormWarning protocols. 

The spacecraft monitoring the solar disc 
issues a warning message to the 
spacecraft of the swarm containing 
missing information. This may cause 
spacecraft to not take self-protection 
actions to protect from an impending 
solar storm when it should. This may 
cause the loss of several spacecraft as a 
result of radiation damage. Alternatively, 
it may cause spapcecraft to take self-
protection actions when not needed. 

Critical 

  

 

Wrong Timing 
 

The variation point issues the warningMessage 
generated by the spacecraft and used to send to 
other spacecraft as a warning of an impending 
solar storm not at the appropriate time. This 
may affect the storm Warning Confidence, vote 
Confidence, warningMessage, and the 
stormRisk Value data. This may also affect the 
information sent in the Iniate Storm DataVote 
and InitiateStormWarning protocols. 

The spacecraft monitoring the solar disc 
issues a warning message to the 
spacecraft of the swarm not in a timely 
manner. This may cause spacecraft to not 
take self-protection actions to protect 
from an impending solar storm when it 
should. This may cause the loss of 
several spacecraft as a result of radiation 
damage.  

Critical 

  

 

Duplicated Value The variation point generates multiple, 
redundant warningMessage message to send to 
other spacecraft as a warning of an impending 
solar storm. This may affect the storm Warning 
Confidence, vote Confidence, warningMessage, 
and the stormRisk Value data. This may also 
affect the information sent in the Iniate Storm 
DataVote and InitiateStormWarning protocols.  

The spacecraft monitoring the solar disc 
issues multiple warning message to the 
spacecraft of the swarm.  

Minor 

SFMECA Data Table for the Active Variation Point of the SolarStormWarner Role  
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APPENDIX F.  PRODUCT-LINE SOFTWARE FAULT TREE 

ANALYSIS 

This appendix provides screenshots of the Product-Line Software Fault Tree 

Analysis (PL-SFTA) constructed in PLFaultCAT for the Prospecting Asteroid Mission 

(PAM) multi-agent system product line (MAS-PL) case study used throughout this 

dissertation. The leaf nodes of the PL-SFTA fault trees associate to the product-line 

commonality and/or variability requirements descrived in the Commonality and 

Variability Analysis (CVA).   
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PL-SFTA for the Spacecraft to Spacecraft Collision Hazard   
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PL-SFTA for the Spacecraft to Asteroid Collision Hazard   
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PL-SFTA for the Spacecraft to Received Solar Storm Damage Hazard   
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PL-SFTA for the Failure to Detect Impending Solar Storm Hazard   
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