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ABSTRACT 

 

Three major high performance quantum chemistry computational packages, 

NWChem, GAMESS and MPQC have been developed by different research efforts 

following different design patterns. The goal is to achieve interoperability among these 

packages by overcoming the challenges caused by the different communication patterns and 

software design of each of these packages. A chemistry algorithm is hard to develop as well 

as being a time consuming process; integration of large quantum chemistry packages will 

allow resource sharing and thus avoid reinvention of the wheel. Creating connections 

between these incompatible packages is the major motivation of the proposed work. This 

interoperability is achieved by bringing the benefits of Component Based Software 

Engineering through a plug-and-play component framework called Common Component 

Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two 

widely used and important computational chemistry methodologies: Quantum Mechanics and 

Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and 

Analysis Utility (TAU) has been coupled with NWChem code and its CCA components 

Results show that the overhead is negligible when compared to the ease and potential of 

organizing and coping with large-scale software applications.  
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CHAPTER 1.  INTRODUCTION 

Software reuse is the process of building systems using existing software rather than 

building the systems from scratch. Quantum Chemistry packages like NWChem [1,2], 

GAMESS [3] and MPQC [4] are developed to perform high-performance scientific 

simulations. These packages are developed and maintained by different research scientists. It 

is difficult for a single research group to effectively develop solutions for all of the methods 

one would desire. Also, since each research group needs some similar capability, it leads to 

duplication of efforts. When a new capability is to be added to a package, it is nice to have a 

gateway via which packages can reuse existing tested capabilities.  Additionally, research 

groups often optimize their software for a particular hardware. Thus, the different algorithms 

for the same functionality may run better on different platforms. Being able to use the best 

algorithm for a particular platform increases the overall throughput of the science. 

This leads to the potential usage of component software engineering. Commercial component 

based software engineering practices such as COM [5], EJB [6] and CORBA [7] exists in the 

market, which present an approach for managing the increasing complexity of business 

packages. In this research work, I use a similar framework known as the Common 

Component Architecture (CCA) [8], which is targeted at high-performance scientific 

development. CCA allows research scientists to create components, which can be used by 

different research groups through well-defined interfaces. As a result of this synergy, rapid 

development is possible while avoiding redundant efforts. 
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 The remainder of this thesis is structured as follows: chapter 2 discusses the three 

computational packages, NWChem, GAMESS and MPQC. Also included in chapter 2 is a 

brief introduction of Quantum Mechanics and Molecular Mechanics (QM/MM) and CCA – 

one of the pillars of this research work. Chapter 3 describes the design and implementation 

details of the QM/MM component model. Also the potential use of interoperability and 

reusability are discussed in this chapter. Chapter 4 gives a review of performance analysis of 

the QM/MM component model using TAU [9]. Finally, chapter 5 states a summary of the 

proposed work and current research issues. 
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CHAPTER 2.  BACKGROUND 

In this chapter, a broad overview of the quantum computational packages involved in 

this project is provided. Then I will briefly describe the important concepts required for 

understanding the work done as part of this research.  

2.1 Overview of Computational Packages 

Three of the world’s most significant and widely used computational chemistry 

software codes developed under the US Department of Energy are: NWChem, MPQC and 

GAMESS. To provide interoperability between these three packages is the ultimate research 

computer science goal. The focus is to collaborate with another package to provide needed 

functionality instead of creating it “in-house”. The collaboration among these packages is 

possible by bringing the best practices of Software Engineering into the field of quantum 

chemistry.  

 

Figure 1. US Department of Energy’s three computational quantum packages 
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As part of my thesis work, I will majorly focus on using the NWChem scientific 

package to create the underlying components for a very important functionality called 

combined Quantum Mechanics and Molecular Mechanics (QM/MM). It is important to study 

the overall architecture of NWChem before actual creation of components. It is equally 

important to know about the communication mechanics used in other packages involved in 

the collaboration since the goal is to provide interoperability between all three packages. 

2.1.1 NWChem 

NWChem (NorthWest Chemistry) developed and supported by the Pacific 

Northwest National Laboratory (PNNL) is designed to run on high-performance parallel 

supercomputers as well as standard HPC clusters. The application is built on object-oriented 

principles and implemented using Fortran, C and Python. The code is used to compute the 

properties of molecular and periodic systems using standard quantum mechanical 

descriptions. The code also allows molecular dynamics and free energy simulations, 

Gaussian Density Functional Theory (DFT), planewave based DFT and many body 

perturbation theory. Classical and quantum approaches are used together to perform hybrid 

quantum mechanics and molecular mechanics simulations. 

NWChem is Non-Uniform Memory Access (NUMA) aware in order to scale to 

massively parallel computer architectures in all dimensions including CPU, memory and 

disk. Memory access is possible by using the message-passing capability provided by the 

portable Aggregate Remote Memory Copy Interface (ARMCI) [10]. ARMCI is a standalone 

system that is used to support user-level libraries and applications in a message-passing 
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model. NWChem has a five-tiered modular architecture as shown in Figure 2. The five tiers 

are as follows: 

1. Generic task interface: 

This is an interface between the user and the chemistry modules where NWChem 

processes the input, sets up the parallel environment and performs initializations 

needed for the desired calculations. This interface also determines the task to be 

accomplished and transfers control to the different modules in the second tier. 

 

Figure 2. Five-tiered NWChem Architecture 
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2. Molecular calculation modules:  

These high-level programming modules accomplish computational tasks based on the 

input theories specified by the user and uses toolkits and routines that reside in the 

lower levels of the architecture and are theory specific. Various modules at this level 

communicate with each other via an information repository called the run time 

database or through well-defined disk files. 

3. Molecular modeling toolkit: 

This tier contains tools that provide basic chemical functionality such as symmetry, 

basis sets, grids, geometry and integrals that are used by many of the molecular 

calculation modules. 

4. Software development toolkit: 

This level forms the foundation of the architecture and allows development of object-

oriented code mainly in Fortran 77. This tier consists of five tools and each of these 

tools provides an interface between the chemistry specific part of the program and the 

hardware. 

• Run Time DataBase (RTDB) : 

The RTDB is an information repository, which is used by various modules to 

share data. 

• Memory Allocator (MA): 

The MA tool allows the programmer to allocate memory that is local to the 

calling process - data not being shared with other processes. MA provides 
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both heap as well as stack memory management disciplines. Since Fortran 77 

doesn’t support dynamic memory allocation, MA plays an important role in 

the NWChem code.  

• Global Arrays (GA) : 

GA [11, 12, 13] toolkit provides an efficient and portable “shared memory” 

programming interface for distributed memory computers. Using this toolkit, 

a programmer can take advantages of both shared memory and message 

passing paradigms in the same program. 

• ChemIO 

ChemIO is a high performance parallel I/O API and is used to create files that 

are either local to the process, distributed among the file systems or on shared 

disk spaces. This allows the developer to perform parallel I/O in the most 

efficient way for a particular algorithm or for a particular hardware. 

5. Utility routines: 

This tier provides various functionalities such as input processing, output processing, 

timing and printing that most of the higher tiers require. 

2.1.2 MPQC 

MPQC (Massively parallel Quantum Chemistry) developed and maintained at 

Sandia National Laboratory uses an object oriented design paradigm and is implemented 

using C++ (with a few C functions). The MPQC package provides parallel implementation of 

Hartree-Fock, Density Functional, second order many body perturbation theory, MP2 and 
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optimization methods. MPQC uses MPI as the message-passing layer to support parallel 

execution and is able to run on a wide range of architectures such as individual workstations, 

symmetric multiprocessors and massively parallel computers. 

2.1.3 GAMESS 

GAMESS (General Atomic and Molecular Electronic Structure System) 

developed and maintained at Iowa State University, is mainly implemented using Fortran 77. 

It performs various calculations including Hartree-Fock, Density Functional Theory, many 

body perturbation theory (MP2 and different coupled cluster methods), Generalized Valence 

Bond, and Multi-configurational self-consistent field. GAMESS uses the Data Distributed 

Interface (DDI) to obtain high parallel efficiency, which relies either on TCP/IP sockets or 

MPI. 

All these packages have their strengths and weaknesses. The goal of this research is 

to provide an easy way to utilize the best of all the packages without imposing significant 

performance penalty 

 

2.2 Quantum Mechanics and Molecular Mechanics 

  The rapid increase in computer speed and hardware technology advancement has 

made quantum chemistry a practical tool for chemists in different branches of chemistry, 

such as organic, inorganic, analytical, and physical. However, while Quantum Mechanical 

(QM) methods can treat chemical reactions accurately since they treat the atoms and the 
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electrons using ab initio electronic structure, they are quite expensive for very large 

molecules. On the other hand, Molecular Mechanics (MM) methods can treat very large 

molecules since they are based on ignoring electrons and treating the atoms classically but 

are not well suited for chemical reactions. To deal with the chemical reactions in very large 

systems, a combined QM/MM method is used where a quantum mechanics calculation is 

embedded in a molecular mechanics model. In this, quantum mechanics can be used to treat 

the part of the system affected by the reaction, and molecular mechanics to treat the rest of 

the chemical environment [14]. For example, for a reaction in solution, one treats the reacting 

solute molecules and the first solvent shell using QM and the surrounding solvent molecules 

using MM.  

 

Figure 3. Regions involved in QM/MM calculation of tripeptide alanine-serine-alanine 
 

 The challenge is to find an appropriate boundary region between the QM and MM 

regions and to accurately describe the physics of the boundary region. This is critical because 

a selection of an inappropriate boundary will produce poor end results. There are many 

choices for the physics of the boundary conditions.  This work will focus on two models.  
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The first is a model where molecules are weakly interacting with one another (i.e. not bonded 

to one another) and only the charges or electrostatics of the MM region need to be taken into 

account in the QM calculation.  In the second model, the border contains atoms that are 

bonded to one another. Figure 3 shows both QM and MM regions of the tripeptide alanine-

serine-alanine.  In this model, the quantum region will need to substitute the rest of the MM 

region by hydrogen or fluorine like caps as well as the electrostatic charges.  In both models, 

the electrostatic interactions are included in the QM computation so that the QM wave 

function feels the effects of the environment of the MM atoms allowing the reaction to be 

modified based on the environment. Overall, the QM/MM approach combines the strength of 

both QM (accuracy) and MM (speed) packages. 

  2.3 Common Component Architecture 

 The Common Component Architecture specification helps in managing software 

complexity by bringing the benefits of a lightweight component system to high performance 

science. CCA is built on object-oriented principles such as encapsulation, abstraction, data 

hiding, interfaces and modularization and adds the flexibility of building applications in a 

plug-and-play fashion. 

 CCA enables communication between software packages that are written in different 

languages by using a tool called BABEL [15]. In order to support this multi-language 

interoperability, BABEL relies on the specifications of interfaces in Scientific Interface 

Definition Language (SIDL). A CCA component is a SIDL class that implements the 

gov.cca.Component interface and other user-defined interfaces. CCA employs the notions of 
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ports that define the interaction between different components. CCA supports two types of 

ports: provide  and use, to specify functionality provided by a component and to access 

functionality of other components (that provide the matching port type).  Additionally, 

Parameter Ports are designed as provides ports for components that need run time settings 

for their computations. 

 A CCA framework is responsible for component management including dynamic 

loading, component instantiation, connection and disconnection of the matching ports. A 

range of CCA frameworks are available such as XCAT-C++ [16], XCAT-Java [17], DCA 

[18], DECAFE [19], CCAIN [20], Ccafffiene [21]. In the proposed work, I have used the 

Ccaffiene framework [13] that supports both Single Program Multiple Data (SPMD) and 

Multiple Program Multiple Data (MPMD) parallel models. It is possible to use components 

that rely on different communication systems under the same framework. This is a very 

useful feature that will be harnessed to provide interoperability between three quantum 

chemistry packages of this work: NWChem, MPQC and GAMESS. 

In chapter 3, an overall description of how the CCA framework is used to create 

components from a legacy package is given. Also, I will focus on the crux of 

componentization approach i.e. providing interoperability between incompatible packages.  

 

2.4 Literature Review 

CBSE emerged from the failure of object-oriented development to support reuse. In 

object-oriented development, reuse is supported in the form of inheritance. Inheritance is a 
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poor form of reuse because it requires familiarity with the internal details of the base class 

implementation. Component-based development allows reuse of existing components 

without knowing its internal details as long as the component complies with the set of 

interfaces [22]. To support CBSE, various component architectures such as COM, CORBA, 

and EJB came into existence and employed by millions of users. Unfortunately, these 

technologies focus exclusively on local and distributed computing and do not support the 

concept of parallelism. These technologies are often platform or language-specific. These 

issues have limited adoption in the HPC community and this led to the formation of the CCA 

forum in 1998. Collaboration among chemists and computational scientists to solve 

computational chemistry problems became possible using CCA. CCA project encouraged 

collaboration among three major research groups, NWChem, GAMESS and MPQC under 

USDOE.  

In 2004, components were developed for MPQC and NWChem to perform geometry 

optimizations by integrating Toolkit for Advanced Optimization (TAO) [23]. TAO provides 

optimization software for the solution of scientific applications on high performance 

architectures. Efficient backtracking line search algorithm was implemented in TAO and was 

made available to quantum packages through the adoption of the CCA. This laid the 

groundwork for further integration between multiple codes. This optimization work 

encouraged GAMESS to have the same high level interfaces. 

In 2005, for the very first time CCA along with GA tool were deployed to exploit 

variable concurrency in the field of computational chemistry in the form of multi-level 
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parallelism on a high performance computer [24]. This was found to give substantial 

improvements in parallel scalability. Results showed that the numerical hessian calculation 

using three levels of parallelism outperformed the original NWChem code based on single 

level parallelism by a factor of 90% on 256 processors.  

In 2006, low-level components were developed that enable the one and two electron 

integrals computed by MPQC package to be used by another package. MPQC implements 

the two-electron integrals needed for explicitly correlated methods which NWChem and 

GAMESS lack [25].  

Both GAMESS and NWChem parallelize the integral computations instead of 

parallelizing the integral computation itself. In 2007, GAMESS components were developed 

with load balancing mechanism that allows the integrals to be distributed among processes 

evenly [26, 27].  

These packages usually provide more than one method for a computation to be used 

under different circumstances. For Computational Quality of Service (CQoS), a performance 

database is created which stores the computational time, cache utilization, communication 

latency, etc. Chemists can use this data to select the component that meets his/her 

performance needs [28].  

A remarkable new development is that these projects are transitioning to employ 

BOCCA [29], a comprehensive suite of CCA tools that provide project management and an 

environment for creating and managing applications made of CCA components. 
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CHAPTER 3.  COMPONENTIZING NWCHEM 

In this chapter, I will describe the overall process of componentizing a legacy 

package starting with designing interfaces for developing components to form a complete 

interoperable application. At the end of this chapter, I will discuss reusability and 

interoperability of these components in detail. 

 

  3.1 QM/MM component design 

In this section, I will describe the process of wrapping legacy NWChem code as CCA 

components, i.e. componentizing NWChem. The focus will be on componentizing the 

QM/MM code without modifying the legacy code, but the general technique can be applied 

to produce components for other legacy codes. Componentizing QM/MM (or for that matter 

any other component model) is an iterative and over-lapping four-step process: 

1. Deciding the flow and the information passed between different pieces of the 

QM/MM code. 

2. Designing generic interfaces using SIDL specifications. 

3. Implementing interfaces in the form of classes or components and writing wrappers to 

the native library functions. 

4. Writing a driver component that uses all of the other components and classes in the 

repository to accomplish the calculation of interest, providing and using ports inside 

the components so as to enable the communication between components. 
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These steps will be discussed in further details in the following sections. 

3.1.1 Information flow in the legacy QM/MM code 

The QM/MM code in NWChem is written using a combination of Fortran and C 

languages. In this section, the details of the communication between different modules and 

control of the QM/MM execution are laid out. The flow of control proceeds in the following 

steps (with more details for each step provided below): 

1. Initialize the parallel environment 

2.  Open the input NWChem file and scan it for memory directives  

3. Complete the parallel and memory initialization process. 

4. Process start-up directives 

5. Summarize start-up directives and write to an output file 

6. Open the runtime database with the appropriate mode. 

7. Set the quantum related information such as basis set and theory type in the rtdb. 

8. Process and execute the prepare block. This step basically reads a PDB [30] file and 

generates topology and reset files specifying the quantum piece, if any, in the 

topology file. 

9. Process and execute the MD block, which mainly sets up molecular mechanics 

parameters and calculates classical energy. 

10. Process and execute QM/MM block, which is mainly responsible for defining the 

interface parameters between the QM and MM regions and for calculation of 

QM/MM energy of a system. 
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11. Finally closing the database, cleaning up GA and killing the parallel processes 

terminate the execution process. 

 

In the first step, the parallel environment is set up by calling the ARMCI wrapper 

routine pbeginf(). This creates the parallel processes and provides basic message passing 

capabilities. In the second step, the input file is opened by process 0 to obtain user specified 

memory parameters, which are passed on to all other nodes. In the third step, the GA library 

and local memory allocator are initialized. At the end of this step, the parallel environment is 

fully initialized.  

In the fourth step, the startup directories given in the input file are scanned and 

processed. In the fifth step, this information is summarized to an output file. In the sixth step, 

process 0 opens the runtime database with the appropriate mode (empty for startup, old for 

restart or continue). At the end of this step, all the startup directives have been processed. 

After this, each input line is processed, and data is inserted into the rtdb for later 

usage. Only process zero is involved in the input module: reading input or putting data into 

the rtdb.  For this purpose, the database is switched into sequential mode at the beginning of 

the input module, and back to parallel at the end. 

Once a task directive is processed and entered into the rtdb, control is returned to the 

main program so that the task can be carried out. The main program initiates the execution of 

the task by calling the routine task(). On successful completion of the task, the main program 

invokes the input module once again. 
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Parameters defined for the QM region in the input file such as basis and theory, which 

are input into the database in the seventh step and used further in the QM/MM calculation. 

 In a QM/MM calculation, mainly three blocks (and corresponding three task 

directives) are encountered in the input file, which are covered in the steps 8-10. The prepare 

module, step 8 specifies the location of the input Protein Data Bank (PDB) file (described in 

detail in Appendix C), the force field to be used (AMBER95 or CHARMM22) and the 

location of the force field database files. The quantum region in the QM/MM calculation is 

specified by the ‘modify atom’ directive in the prepare block. Prepare is mainly responsible 

for generation of three files: 

• Sequence (.seq) 

This file is generated after analyzing the supplied coordinates from a PDB-

formatted file. It contains the description of the system in terms of basic 

building blocks found as fragment (.frg) or segment (.sgm) in the database 

directories for the force field used. A fragment contains the list of atoms with 

their force field dependent atom types, partial atomic charges calculated from 

a Hartree Fock calculation for the fragment, followed by a restrained 

electrostatic potential fit, and a connectivity list. Based on the information in 

this fragment file, the lists of all bonded interactions are generated, and the 

complete lists are written to a segment file. 

• Topology (.top) 
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Based on the generated sequence file and the force field specific segment 

database files, the compiled lists of atoms, bonded interactions, excluded 

pairs, and substituted force field parameters are stored in the topology file. 

The quantum region information in the QM/MM calculation as specified by 

the ‘modify atom’ directive is also stored in the topology file. 

• Restart (.rst) 

Based on the coordinates specified in the PDB file and the topology file for 

the chemical system, a restart file is generated for the system with coordinates, 

velocities and other dynamic information. It may also include solvation of the 

chemical system and periodic boundary conditions. The restart and topology 

files contain information about the classical force field as well as the 

coordinates of the QM and MM regions.  This information is used in a MM 

simulation as well as in a QM/MM simulation.  

In the ninth step, the MD block is executed. The molecular mechanics parameters are 

specified in the MD input block, which is required for the QM/MM simulations. It specifies 

the restart and topology file (points to the restart and topology files created in the prepare 

step) that will be used in the calculation. It also contains information relevant to the 

calculation of the classical region (e.g. cutoff distances, constraints, optimization and 

dynamics parameters) in the system. It is possible to set fixed atom constraints on both 

classical and quantum atoms inside this MD block.  
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In the tenth step, the interaction parameters between the QM and MM regions are 

specified inside the QM/MM block. The following are a few directives that can be specified 

in the QM/MM block: 

• eatoms: This specifies the zero of energy for the QM module in QM/MM 

calculation. This is necessary because quantum calculations include atomic 

energies that are not included in force fields. The zero of energy for the MM 

system is the separated atom energy. The zero of energy for QM systems is 

the vacuum. This imbalance can be rectified by well-defined eatoms value.  

• cutoff : This directive defines the radius of the zone around the quantum 

region where classical atoms will be allowed to interact with the quantum 

region. 

• mm_charges: This directive controls the treatment of classical point (MM) 

charges (Bq charges) that are interacting with QM region. 

Thus the overall QM/MM calculation can be divided into three major parts  

• specification of the molecular mechanics parameters for the classical region 

• specification of the quantum mechanical method for the quantum region 

• specification of the interaction between quantum and classical methods 

The third specification is the most critical part in the QM/MM calculation. Interfaces 

and flow of data should be well defined so as to allow interaction between the QM and MM 

regions. 
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In the final step, step 11, the execution is terminated by closing the database, cleaning 

GA and gracefully killing parallel processes. 

3.1.2 Defining generic interfaces 

The second step in componentizing is writing interfaces in accordance with the flow 

and pieces involved in a QM/MM calculation. The interface definitions are written in the 

cca-chem-generic package. Defining interfaces in this package will allow each chemistry 

package (e.g. NWChem, MPQC and GAMESS) to implement the interfaces and create 

chemistry components and classes. Interfaces will be implemented either by a class or 

component. The agreed upon standard in writing interfaces for the chemistry community is 

that factories will be used to provide a general component capability. Thus the naming 

convention is that the interface for a component ends with ‘FactoryInterface’ whereas for a 

class, it ends with ‘Interface’, both having a common prefix in their names. The key 

distinction between a class and a component is that a class cannot provide or use ports 

whereas a component can. So keeping in mind which functionalities are to be exposed to 

components and which functionalities are needed only inside components, the following 

interfaces have been written: 

1. Chemistry.MoleculeInterface and Chemistry.MoleculeFactoryInterface 

The Chemistry.MoleculeInterface declares a variety of functions related to a molecule 

in the chemical system, such as setting/getting Cartesian coordinates, atoms and units. 

As discussed earlier, the QM molecule now needs to know about the external charges 

from the MM region and so functions are declared for setting/getting the point charge 
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values and coordinates. The Chemistry.MoleculeFactoryInterface declares functions 

to instantiate and get a copy of a Molecule class. 

2. Chemistry.ModelInterface  

Chemistry.ModelInterface is the basic interface that can be extended by quantum, 

classical as well as combined QM/MM ModelInterfaces. It provides functionalities 

such as calculation of molecular energy, gradient and Hessian. 

3. Chemistry.QC.ModelInterface and Chemistry.QC.ModelFactoryInterface 

These interfaces are meant for pure quantum calculation as well for quantum zone 

calculations in QM/MM simulation. Chemistry.QC.ModelInterface extends the 

Chemistry.ModelInterface and provides additional functionalities related to setting up 

of a model along with evaluation of quantum energy, gradient and Hessian of a 

molecule. The Chemistry.QC.ModelFactoryInterface is used to instantiate and get a 

copy of a QC Model class. It is also used for setting up the quantum information such 

as theory and basis type. 

4. Chemistry.MM.ModelInterface and Chemistry.MM.ModelFactoryInterface 

These interfaces are meant for pure molecular mechanics simulation as well as for 

MM zone calculations in combined QM/MM calculation. The 

Chemistry.MM.ModelInterface extends the Chemistry.ModelInterface and provides 

additional functionalities for setting up of the MM zone including creation of restart 

and topology files and defining the QM zone in QM/MM calculations, along with 

evaluation of molecular mechanics energy, gradient and hessian of a molecule. The 
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Chemistry.MM.ModelFactoryInterface is used to instantiate and get a copy of a MM 

Model class. 

5. Chemistry.QMMM.ModelInterface and 

Chemistry.QMMM.ModelFactoryInterface 

These interfaces are used to provide communication between the QM and MM 

regions in combined QM/MM calculations. Chemistry.QMMM.ModelInterface 

extends the Chemistry.ModelInterface and provides additional functionalities for 

setting up the interaction between quantum and classical regions in QM/MM 

calculations along with evaluation of QM/MM energy, gradient and Hessian of a 

system. The Chemistry.QMMM.ModelFactoryInterface is used to instantiate and get 

a copy of a QMMM Model class. It also sets up references of QM and MM model 

instances inside a QMMM model. 

6. Database.ModelInterface and Database.ModelFactoryInterface 

Database interfaces are used to provide a storage place for quantum zone information 

during QM and MM zone interactions. It also stores the QM and the MM energies. 

Database.ModelInterface defines functionalities related to database like connecting 

and disconnecting a database, opening and closing a database, insertion and retrieval 

of quantum coordinates, point charges, etc of a molecule. The 

Database.ModelFactory declares functions to instantiate and get a copy of Database 

Model class. 
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 The first two steps are critical in the design phase.  Writing interfaces 

involves a lot of assessment since the goal is to make them as generic as possible so 

that all packages are able to implement the same set of interfaces irrespective of their 

unique implementation details.  This entails not only deciding on the important 

components, but it also means determining the important data (and the data layout) 

that must be available to the different components.  Information is passed between 

different components and classes to achieve the correct flow for the chemistry 

calculations. For example, the molecule should be set before its energy is calculated, 

which means the molecule object must be passed to the energy calculation model.  

This is also the point where classes and components are defined. The key 

distinguishing feature between class and component is that a class cannot provide or 

use ports whereas a component can. So the developer needs to decide which 

functionalities are to be exposed to components and which functionalities are needed 

only inside components. In this work, I have designed components that interact with  

 

Figure 4. Ccaffiene framework and the wrappers of the underlying computational 
packages 
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classes and other components (sometimes with wrappers functions) whereas classes interact 

only with wrapper functions (Figure 4). 

3.1.3 Implementation of interfaces 

In this step, wrapper functions for the components/classes are developed. In the 

NWChem-CCA project, a wrapper function acts a bridge between the CCA components and 

the underlying computational package. This is not a strict requirement if the components are 

written in the native language but they are necessary if the components are written in 

different language or if a more generic interface to the package is required for non-CCA 

purposes. In this case, wrappers act as a middle layer for the function calls in the component 

language and native NWChem language. Wrappers are useful in making the CCA interfaces 

simple and in writing high-level routines in the native code that can be used for other 

purposes. For QM/MM calculations, wrapper functions are written in accordance with the 

flow described in the “Information flow in QM/MM” section. In accordance with the flow 

discussed in section 3.1.1, I wrote the corresponding wrappers and the one-to-one mapping 

for the same is shown in Figure 5. Wrapper functions provides the following advantages: 

• It is possible to write a stub that can call wrapper functions to test the implementation 

without involving CCA components. 

• When functionalities are added/edited in the native code, we can update the wrappers 

accordingly without modifying the CCA components. 
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• Code looks cleaner and follows the modularity principle. Code becomes easier to 

manage with the introduction of a wrapper layer because we don’t embed significant 

amounts of NWChem code in the CCA implementation files. 

 

Figure 5. Mapping from legacy QM/MM code to underlying wrappers  
Once the interfaces and wrapper functions are written, the next step is to generate the 

glue code through Babel in the form of implementation files. The following are the 

classes/components involved in QM/MM calculation: 
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1. Chemistry.Molecule and Chemistry.MoleculeFactory 

Chemistry.Molecule is a class that implements the Chemistry.MoleculeInterface and 

Chemistry.MoleculeFactory is a component that implements the 

Chemistry.MoleculeFactoryInterface and is able to return an instance of a Molecule 

class. Both are implemented in the cca-chem-generic package. 

2. NWChem.QM.Model and NWChem.QM.ModelFactory 

NWChem.QM.Model is a class that implements the Chemistry.QC.ModelInterface 

and NWChem.QM.ModelFactory is a component that implements the 

Chemistry.QC.ModelFactoryInterface and is able to return an instance of 

NWChem.QM.Model class. NWChem.QM.Model class interacts with the wrapper 

functions to set up the theory and basis set, and calculates quantum energy, gradient, 

hessian of a molecule. 

3. NWChem.MM.Model and NWChem.MM.ModelFactory 

NWChem.MM.Model is a class that implements Chemistry.MM.ModelInterface and 

NWChem.MM.ModelFactory is a component that implements the 

Chemistry.MM.ModelFactoryInterface and is able to return an instance of the 

NWChem.MM.Model class. NWChem.MM.Model class interacts with the wrapper 

functions to set up the molecular mechanics parameters and generate topology and 

restart files, extract quantum information and store it in a database component 

(described later) if it is a QM/MM calculation, and finally calculate classical energy, 

gradient, Hessian of a molecule. 
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4. NWChem.QMMM.Model and NWChem.QMMM.ModelFactory 

NWChem.QMMM.Model is a class that implements the 

Chemistry.QMMM.ModelInterface and NWChem.QMMM.ModelFactory is a 

component that implements the Chemistry.QMMM.ModelFactoryInterface and is 

able to return an instance of the NWChem.QMMM.Model class. 

NWChem.QMMM.Model class interacts with the wrapper functions to set up the 

interaction parameters between quantum and classical zones in a QM/MM calculation 

and calculate the combined QM/MM energy of a system. 

 

5. NWChem.Database.Model and NWChem.Database.ModelFactory 

NWChem.Database.Model is a class that implements the Database.ModelInterface 

and Database.ModelFactory is a component that implements the 

NWChem.Database.ModelFactoryInterface and is able to return an instance of 

Database.Model class. Database.Model class is used to set up a database and allows 

retrieval and storage of quantum information passed between the QM and MM 

regions. 

 

Note that a component is also a class that must implement the 

gov.cca.Component interface and also gov.cca.Port interface. In addition, if 
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components wish to take inputs from the user via parameter ports then it should 

additionally implement the gov.cca.ports.BasicParameterPort interface. 

 

Figure 6. Quantum Chemistry component model 
For the QM/MM model, we initially need a QM model, which should be able to 

calculate a molecular energy based on the molecule definition, theory level, and basis set 

provided by the user. The design of the QM model has been discussed in [10] and is shown 

in Figure 6. This was implemented using the same process as discussed above. However, the 

need to calculate the point charges from the environment was something that the original 

design did not take into account.  Therefore, this has been added to the previous 

implementation. The interfaces are designed in such a way that this model can be used 

independently to calculate a purely quantum energy as well as in combination with MM to 

calculate the energy of the quantum region. A generic interface is the key to reusability. 

The next step is to have a MM component model, which will calculate the MM 

energy based on the inputs given by the user such as the force field, cut-off distances and 

other constraints, related to the classical region. The input for the molecule is read in through 

a PDB file in this implementation, the MM input also identifies the MM and QM molecular 
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zones. This is quite common in QM/MM implementations since the MM region is usually 

quite large compared to the QM region. To enable the interaction between the MM and QM 

regions, I introduce another component called the Database to store and retrieve the 

intermediate quantum zone information and energies. We also introduce a QM/MM Model 

and Model Factory to handle the flow and interaction between the QM and MM regions. The 

QM component gets the quantum information from the database component inserted 

previously by the MM component (after identifying the quantum zone in QM/MM). 

 

Figure 7.  QM/MM component model 
 

 I have meticulously developed a thin interface, which is required between the QM and 

MM regions in such a way that the moment the relevant information about the quantum zone 

is set by the MM component, the QM component uses the information to contribute its part 

towards the QM/MM energy. Defining the thin interface was a challenging task because final 
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energy calculations are mostly dependent on the interface between QM and MM regions. The 

design layout is shown in Figure 7. 

3.1.4 Implementation of Driver and provision/usage of ports 

Driver component is different from other components as it provides a starting point in 

the entire application run (similar to main() in C programming) by means of a GoPort. The 

driver component binds the other components in the framework and drives the entire 

calculation. The driver component also implements gov.cca.Component and 

gov.cca.ports.GoPort interfaces. 

 

Figure 8. UML sequence diagram for QM/MM calculation depicting the interactions 
between different components over time. 
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A  QMMMDriver component is written that orchestrates the different components 

defined previously to perform combined QM/MM calculation. It gets the reference of the 

QMMM Model class (through QMMM ModelFactory) and then it uses this reference to 

calculate the QMMM energy.  

 The sequencing diagram in Figure 8 depicts the sequence of data flow between 

different components and the following connections can be observed: 

1. The Driver component communicates with the QM/MM component, i.e. driver uses 

functionalities of QM/MM Model and ModelFactory.  

2. The QM/MM component communicates with the Molecule, QM, MM and Database 

components i.e. i.e. driver uses functionalities of Molecule (to set the molecule 

information such as coordinates and point charges), QM (to get the quantum energy), 

MM (to get the classical energy and obtain quantum information), and Database (for 

retrieval of intermediate quantum information) Models and ModelFactories. 

3. The MM component communicates with the database component to store 

intermediate quantum information extracted from the topology file. 

 

At this point, I know which components interact with each other. Accordingly, I made 

connections between them via CCA ports as shown in Table 1. As is true for much of 

software development, it is often true that the design needs to be revisited as the 

implementation is taking place since complicating factors often only surface during the 
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implementation. So the design and the implementation often evolve together, as was the case 

for the QM/MM design. 

 

Component uses port provides port 

Driver QMMMFactoryInterface Go 

Molecule - MoleculeFactoryInterface 

QM - QMFactoryInterface 

MM DatabaseFactoryInterface MMFactoryInterface 

QMMM 

MoleculeFactoryInterface, 

QMFactoryInterface, 

MMFactoryInterface, 

DatabaseFactoryInterface, 

QMMMFactoryInterface 

Database - DatabaseFactoryInterface 

Table 1. CCA compliant components involved in QM/MM calculation 
and the corresponding ports they provide and/or use. 

 

3.2 Reusability and Interoperability  

Interoperability and reusability call for high-quality interfaces and components, 

classifications and retrieval mechanisms, sufficient and proper documentation of 

components, a flexible means of combining components and a means of adapting 

components to specific needs. In this section, I will formally about how the components 
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developed are reusable and then I will show how NWChem components are able to 

interoperate with other quantum packages. 

3.2.1 Reusability 

Software design is a challenging task due to the numerous complexities involved in 

the process. These days, this complexity is increasing to levels in which reuse of previous 

software designs are needed to reduce the development time and efforts. Reusability is the 

process of adapting a generalized component to various contexts of use. The main intention 

of this research is to encourage reusability and I have focused on three flavors of reusability 

in this work [31]: 

1. Black-Box Reuse:  

Using a component as a black box means using it without seeing, knowing or 

modifying any of its internals. In this type of reuse, one can see the SIDL interfaces 

and not the implementation of the component. The interface contains the function 

definitions and documentation explaining the requirements and restrictions of the 

interface. The previous implementation of the interface can be changed without any 

effects on new implementations. In the proposed QM/MM component Model, the 

‘Chemistry.QC.ModelInterface’ is implemented by all three quantum computational 

packages, NWChem, GAMESS and MPQC without seeing each other’s 

implementations.  
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2. Glass-Box Reuse: - 

Using a component as a glass box is similar to that of a black box with the addition 

that the internals can be seen from the outside. This type of reuse gives information 

about the working of a component but it doesn’t provide ability to change the 

internals of the component. In QM/MM component model, I have used the previously 

implemented quantum components and developed few more components to provide 

the complete QM/MM CCA application. Also, the new components developed in the 

process can be reused or plug and played by MPQC and GAMESS (discussed in 

detail in the next section). 

3. White-Box Reuse:  

Using a component as a white box means it is possible to see and change the inside of 

the box (component) as well as the interface. The new component can choose to 

retain or change its previous functionality. During the process of creation of QM/MM 

component model, I reused the existing component ‘Chemistry.MoleculeFactory’ and 

added the functionality of creation of molecules via user specified input parameters in 

the interface and implemented the functionality in the component (missing in the 

previous implementations). 

 

The proposed componentization approach is flexible enough to support all the above 

types of reusability. 
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3.2.2 Interoperability 

The term component interoperability can be defined as the ability of components to 

provide services and to accept services from other components and to use the services 

exchanged to enable an effective operation together. The ultimate goal of this research is to 

provide interoperability between components written in different languages to be connected 

together.  

Section 3.1 described the components developed for the NWChem Package. The 

design was then tested using the QM and MM component models developed within the 

underlying NWChem package. It should be ideally possible for other packages having 

quantum chemistry components to use the NWChem-based molecular mechanics and 

combined QMMM components for calculation of QM/MM energies. The next obvious test 

was to check if it is possible to use QM/MM component model with other quantum packages 

like MPQC.  Theoretically speaking, end users shouldn’t need to understand the underlying 

design and communication patterns. This is a challenging task if the components are 

developed from a legacy code. The proposed model achieves this interoperability by means 

of well-defined generic interfaces and high-quality component implementations. As shown in 

Figure 9, we need to load the QM components of the respective packages and other 

component in the QM/MM model of the NWChem package in the Ccaffiene framework. 

Proposed model flawlessly calculates the QM/MM energy by hiding the internal details from 

the end users and overcoming language barriers, input formats and underlying message-

passing libraries used by each package. 
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Following are the steps to show interoperability between MPQC and NWChem 

Components in the Ccaffiene framework: 

1> Instantiate all the components: NWChem.QMMMDriver and 

NWChem.QMMM.ModelFactory, NWChem.MM.ModelFactory, 

NWChem.DatabaseFactory and Chemistry.MoleculeFactory 

MPQC.QM.ModelFactory in the framework. 

2> QMMM.ModelFactory asks for an instance of NWChem.MM.Model class through 

NWChem.MM.ModelFactory. 

3> NWChem.MM.ModelFactory reads the PDB file and molecular mechanics input 

parameters, initializes NWChem, generates topology and restart files, gets an instance 

of the NWChem.DatabaseModel and store quantum information in the database. 

4> NWChem.QMMM.ModelFactory then retrieves the quantum zone information from 

NWChem.Database Model class and sets up a molecule via 

Chemistry.MoleculeFactory and gets an instance of the MPQC.Model class via 

MPQC.ModelFactory. 

5> MPQC.ModelFactory reads the quantum input parameters and associates 

Chemistry.Molecule class instance with MPQC.Model class instance. 

6> NWChem.QMMM.ModelFactory then reads the QM/MM interface parameters and 
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Figure 9.  Usage  of QM/MM component model by three different packages.  The first is 
all with NWChem, the second uses NWChem for the MM and QM/MM Factories and 
GAMESS for the QM Factory and the third uses NWChem for the MM and QM/MM 

Factories and MPQC for the QM Factory 
 

asks for quantum and classical energies using MPQC.Model class instance and 

NWChem.MM.Model class instance respectively. 

7> NWChem.QMMM.ModelFactory then computes the QM/MM energy 

8>  Last step is to destroy all class instances and components. 

 

Using the NWChem-based QM/MM CCA component model, MPQC (and GAMESS) 

need not write its own piece of computational code for Molecular Mechanics and the 

combined Quantum Mechanics and Molecular Mechanics calculations which otherwise 

would have called for large development efforts by various scientists. In addition, theories 

that are unique to MPQC or GAMESS can be used to model the reactive part of the chemical 

system. 
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CHAPTER 4.  PERFORMANCE MEASUREMENT AND ANALYSIS 

 In this chapter, I will discuss the overhead of using componentizing approach for a 

QM/MM calculation. Also comparison is done between the execution time needed to 

calculate QM/MM energy in a legacy code and time needed by using CCA components. To 

evaluate the execution time of the functions called in a legacy code as well as in CCA 

components, TAU is used. TAU allows capturing of information at the node/context/thread 

levels. Using TAU, I perform source level code instrumentation by using interface calls at 

function entry and exit points. I have integrated the CCA components with TAU 

Performance component (Figure 10). Performance component provides MeasurementPort 

interface via which we are able to use the measurement capabilities provided by TAU in 

Ccaffiene framework. Both serial and parallel executions are possible using Ccaffiene 

framework.  

 

Figure 10. TAU QM/MM component 
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I have specifically used the timer capability provided by the MeasurementPort to 

calculate the execution time of a function. For testing, I chose two molecules: the tripeptide 

alanine-serine-alanine and ethane.  Table 2 shows the execution time for calculation of the 

QM/MM energy using plain NWChem program. 

 
Molecule Basis set No of basis 

function 
NWChem 
(seconds) 

NWChem CCA 
Components 

(seconds) 
tripeptide 
alanine-
serine-
alanine 

sto-3g 14 0.93  1.085 

tripeptide 
alanine-
serine-
alanine 

aug-cc-
pVTZ 

210 325 374 

ethane sto-3g 16 1.36 1.571 
ethane aug-cc-

pVTZ 
260 1015 1122 

Table 2. Execution time for calculating QM/MM energy using QM/MM component 
model 

 
 Also, it shows the execution time taken by the component model of QM/MM for the 

same molecules and basis sets. These tests were performed on a SMP cluster of 4 nodes. 

Each node has a dual core Xeon 2 GHz CPU with 8GB of RAM with Red Hat Linux as the 

operating system. 

ParaProf [32], a tool for analyzing the profiles generated by TAU is used to observe the 

profiling output. Thus, by using profiling, the best-known method for observing the 
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performance of software, it can be seen that the overhead of componentization decreases as 

 

Figure 11. Performance overhead of QM/MM component model 
 

larger molecules are simulated. For sto-3g basis set, overhead is 16% and for aug-cc-pVTZ, 

it is 11%. Thus, it can be observed from Figure 11 that the overhead reduces as the number of 

basis functions increases.  
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CHAPTER 5.  SUMMARY AND DISCUSSION 

In this thesis, I outlined the process of creation of scientific components from legacy 

software using CCA specifications and discussed how to make these components truly 

interoperable with other components. I also discussed about the overhead of 

componentization and concluded that the overhead is negligible when compared to the 

overall calculation time. The main motive of this research work is to minimize the 

programming efforts of the scientists and at the same time not to impose a significant 

overhead as a result of componentization. The success of the proposed QM/MM component 

model will encourage further research and implementation of component engineering 

methods. 

5.1 Lessons learned 

Component development should not be monolithic thus allowing different component 

developers to incrementally develop the application. This allows development using different 

previously built and tested components without implementing the entire model at once. In 

this work, I have used the components previously developed for quantum calculations and 

modified them as per the requirements (while maintaining their original intent of usage) for 

combined quantum mechanics and molecular mechanics calculations. 

Throughout the development process, object oriented principles should be wisely 

used so program development will not lead to creation of monolithic applications. I have 

used object-oriented principles such as writing generic interfaces and implementation of 
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interfaces by classes thus avoiding the unpleasant effects of multiple inheritance. Data and 

methods are tied together in the form of a class and message passing is possible via objects in 

the CCA-compliant application, thus utilizing the advantages of encapsulation and data 

hiding.  

A variety of tools, libraries, compilers and frameworks are involved in component 

development; it is worthwhile checking with different versions if errors pop up in the 

development process. It might be the case that a bug in a tool or compiler for instance 

traverses down to your application. This can be a very time consuming process, but is 

necessary part of debugging the component applications. 

Application development should be split into different parts, which can be modified 

independently, and unit tested from the rest of the application. 

Design is the most important part of the componentization approach. Team discussion 

is very necessary to discuss and resolve design issues and come up with generic flexible 

interfaces. 

Componentizing a legacy code so that components are interoperable with different 

packages is critical since we do not want to revamp the original legacy code.  Special care 

should be taken while writing wrappers so that when components are loaded and 

interoperated in different environments and frameworks, they still perform their intended 

task. 
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Portability is a major issue in application development; the developer should not 

assume that an application would always run on the same operating system and use the same 

compiler (versions). 

An application can always be optimized. Ideally, optimization should be done at the 

end of the development stage and the components should be developed in a way that 

optimized pieces of it are easily glued with the rest of the application. 

 

5.2 Potential reusable results 

Given the broad scope of the componentizing approach discussed in this thesis, it is 

worthwhile mentioning the results of this research that can be applied to other projects: 

Throughout the different stages of the component life cycle starting with requirements 

gathering, design, and development to testing, the main focus was on building 

components that can be used in a plug and play manner with other packages. This avoids 

functionality to be reimplemented by other packages. The issues faced throughout the 

process can be taken as a guiding tool by different application developers interested in 

componentizing their packages. In this thesis, I also discussed the overall process of 

enabling componentization in a legacy code. Different application scientists/ developers 

can use these guidelines to use the CCA tool with their legacy codes.  

In specific, the Model and Model Factories generated and discussed for QM/MM are 

generic enough to be used in a “plug and play fashion” by different chemistry packages. 
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Performance is always an issue in software world. In this research, I have used 

lightweight tools to bring componentization into a legacy code and the results show that 

there is not a significant overhead. Significant efforts are needed during the 

componentization process; but in the end the result is worthwhile as there is a significant 

saving of programming effort and time by not reinventing the “same software” by 

different application scientists.  

5.3 Open issues  

Componentizing a large-scale high performance legacy package is a challenging task. 

A variety of tools are used in combination such as CCA, BABEL, Ccaffiene framework, 

TAU, CCA-Chem Generic, MPICH, C++ and Fortran compilers that are often being updated. 

To provide consistency, it is required to recompile the packages and test them to ensure 

stability. The rebuilding process is time consuming and if errors or bug pops up, it is very 

difficult to locate the source of the error because of the various packages involved and to 

conclude which particular combination of packages may conflict. 

Application decomposition into components is equally critical. There are no hard-

coded rules for decomposing a legacy code in components and for determining their level of 

granularity. It can be said that the smaller the granularity of the components, the more the 

application is flexible since selective components can be replaced. At the same time, the 

larger the number of components, the more invariants each component has to respect. In 

addition, the overall overhead will increase for applications. So taking into consideration the 

pros and cons, one should wisely develop scientific components. 
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Performance of the interoperable components will vary with different packages 

because of the underlying message passing libraries, memory access and coding schemes the 

different packages use. For example, MPQC uses MPI as the message-passing layer whereas 

NWChem uses ARMCI and GAMESS uses DDI or MPI.  

 

5.4 Future work 

Some directions for future work in this area would be to explore a few more 

important calculations of various packages and extend this work to develop high performance 

interoperable components for these important computations. Following are the potential 

possibilities for future work:  

1> Develop components for Dynamical Nucleation Theory –Monte Carlo Method. 

2> Develop one-body operator implementations, for example, potential, kinetic, overlap, 

and density. 

3> Construction of a multi-level parallel component model on different processors. 

4> Incremental progress in the design and implementation of CQoS, increasing the level 

of automation and making it more generally applicable to component applications. 

 

This research is certainly very exciting as after the object oriented paradigm, 

component based software development in a high performance computational environment is 

the next big thing due to the numerous potentialities of component based applications. High 
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performance component based development can skyrocket by demonstrating the benefits of 

component-based development to real life projects of significant size. 
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 APPENDIX A. INCORPORATING CCA IN NWCHEM 

A variety of packages and tools are involved to bring componentization in a legacy 

package. For the NWChem computational code following are the prerequisites: 

• Install C/C++ and Fortran compilers and MPICH library then configure your login 

environment to use them. 

• Download and install CCA tools (Cccafiene and BABEL) and configure your login 

environment to use them. 

• Download and install CCA-Chem-generic2. 

• Download a copy of the NWChem Package. 

• Download and install TAU for performance. 

 

Figure 12 shows a variety of tools/packages involved in a component based chemistry 

project. GNU build system (autoconf and libtool) is used to incorporate CCA inside 

NWChem. It allows us to write cross-platform software for Unix-like systems. Since 

autoconf and libtool are important in the building and maintenance of the CCA components, 

desriptions of these tools and how they are used in NWChem are given next. 

autoconf is a gnu tool used for producing shell scripts that automatically configure 

source code packages to many kinds of UNIX-like systems. A shell script wrapper around a 

macro language, m4, forms the basis of autoconf. m4 is a preprocessor which besides just 

macro expansion has built-in functions for: 

• file inclusion 
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Figure 12. Packages/tools involved in componentization a chemistry package 
 

• string manipulation  

• conditional evaluation 

• performing arithmetic expressions and recursion 

• running shell commands 

In the NWChem-CCA base directory, there is a file called ‘aclocal.m4’ which is a 

series of m4 commands. It is used to set up configuration variables and relies on some 

predefined variables. There is a function called ‘AC_CHECK_CCA’ which detects the CCA 

tools environment (checks for BABEL libtool, BABEL C/C++/Fortran compilers, mpi 

configuration, python configuration, cca-specs). 

Another important file is ‘configure.in’ which is basically a series of m4 commands. 

Here are some useful macros that autoconf uses in the ‘configure.in’ file: 
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1. AC_INIT (package, version, [bug-report], [tarname]) 

Processes any command-line arguments and some initialization. 

Sets the name of the package and version. 

2. AC_OUPTUT 

Generates and runs config.status, which creates the makefiles and other files 

with the suffix .in in the directory structure. 

Called once at the end of the configure.in and is basically a list of all of the 

files that need to be generated by configure. 

3. AC_ARG_WITH (package, help-string, [action-if-given], [action-if-not-

given]) 

This is how you pick up the variables defined in the configure with 

--with-package or --without-package.  The variable withval holds the value 

given on the right side of the = when the package is configured. 

4. AC_ARG_ENABLE(feature, help-strong,[action-if-given], [action-if-not-

given]) 

This is how you "turn on" optional features using the --enable-feature option 

in configure.  For example, you can pick to compile the F90 components 

instead of just the C++ components.  The idea here is that you should not use 

this feature to swap features, but to add them. The variable enableval holds the 

value given on the right side of the = when the package is configured.  If no 

option is given on the --enable-feature line, then enableval is yes. 
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5. AC_SUBST(variable,[value]) 

These are variables that will be substituted in the ".in" files when configure is 

run. 

6. AC_DEFUN(macro-name, macro-body) 

Allow the developers to define their own macros.  The NWChem aclocal.m4 

has quite a few of these. 

7. AC_PROG_INSTALL 

Finds the location of the install-sh script.  In my case it is in the 

$NWCHEM_TOP/src/cca directory. 

Next, a configure file  is generated from the configure.in and aclocal.m4 files through 

the autoconf tool with no arguments. autoconf processes ‘configure.in’ to produce a 

configure shell script.  'configure’ is a portable shell script which examines the build 

environment to determine which libraries are available, which features the platform has, 

where libraries and headers are located, and so on. Based on this information, it modifies 

compiler flags, generates makefiles, and/or outputs the file ‘config.h’ with appropriate 

preprocessor symbols defined.  

Typing ‘configure’ configures the package to adapt to different systems. The 

following are a few options that can be used with configure: 

• --prefix=PREFIX         install architecture-independent files in PREFIX [/usr/local] 
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• --disable-FEATURE       do not include FEATURE (same as --enable-

FEATURE=no) 

• --enable-FEATURE[=ARG]  include FEATURE [ARG=yes] 

• --with-PACKAGE[=ARG]    use PACKAGE [ARG=yes] 

• --without-PACKAGE       do not use PACKAGE (same as --with-PACKAGE=no) 

 

For example, to configure CCA within NWChem, use: 

configure  --prefix=$HOME/NWChem/src/cca/obj --enable-f90 --with-nwchem-

dir=$HOME/NWChem --with-cca-chem-config=$HOME/CCA-Chem-Generic2-

Install/bin/cca-chem-config --with-nwchem-target=LINUX64 

Currently, this allows the user to configure the value variables using values of --with-

nwchem-dir and --with-nwchem-target to set the environment variables NWCHEM_TOP and 

NWCHEM_TARGET needed by NWChem for compilation.  These varibales get exported 

for use in configure by the AC_SUBST command so the variables can be used in the builds.  

It also sets the location of the cca-chem-config script that sets a group of other environment 

variables such as CCA_CHEM_INCLUDE, CCA_CHEM_LIB, CCA_CHEM_REPO, 

CCA_CHEM_BIN, CCA_CHEM_CONFIG, CCA_CHEM_PREFIX and CCAFE_CONFIG 

that are needed for compiling with CCA and incorporating CCA-Chem-generic. Configure 

also checks the CCA environment to make sure that everything is operational. Whenever, the 

behavior of the configure program needs to be changed, configure.in file should be modified 

and autoconf should be run to get a new configure script. When run, configure also creates 
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several files, replacing configuration parameters in them with appropriate values. The files 

that configure creates are: 

• Each subdirectory that contains something to be compiled or installed contains 

files such as ‘Makefile.in’. configure performs a simple variable substitution, 

replacing occurrences of `@variable@' in `Makefile.in' with the value that 

configure has determined for that variable and produces a ‘Makefile’. 

configure processes all files with a ‘.in’ extension replacing variables and 

producing a file without the ‘.in’ extension. 

• a shell script called `config.status' that, when run, will recreate the files (i.e. 

reruns config with the options that you gave it). 

• a file called `config.log' containing any messages produced by the compiler 

for debugging if configure failed.  

 

There are several files residing in the $NWCHEM_TOP/src/cca/lib directory that get 

used by the other makefiles in the code. 

•  ‘MakeVars.in’ which configure uses to generate ‘MakeVars’.  This is 

essentially an expanded list of all of the variables that will be used in the 

makefiles.  If a new variable is to be added, ‘MakeVars.in’ should be modified 

and then configure should be run again. The variable definitions are not all 

static, some of them are dependent on other variables that are in the Makefiles 

in the subdirectories. For example the value of CLIENT_OR_SERVER is 
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used in the $NWCHEM_TOP/src/cca/Chemistry/server/cxx/Makefile has an 

effect on the variables that are used in the compile. Also, CLIENT_OBJDIRS 

and SERVER_OBJDIRS set in this ‘MakeVars’ is used by Makefile.libs in 

the same directory. 

• ’Makefile.objs’ holds all the compiling rules for the whole makefile 

structure. For example, it gives the rules for creating the .d files and for 

compiling the .c files to .lo files.  Some of the variables in this file come from 

the MakeVars file mentioned above. This is also the Makefile that has the 

commands to run the Babel commands to generate the *Impl*, etc. files. It is 

only included in the 

$NWCHEM_TOP/src/cca/Chemistry/server/cxx/Makefile. 

•  ‘Makefile.libs’ holds all of the information for linking the objects together 

to create libraries. Here, libtools is used through the LTLINK variable to 

create dynamically linked objects. This is included in the 

$NWCHEM_TOP/src/cca/lib/Makefile that does the linking of everything 

together. 

•  $NWCHEM_TOP/src/cca/lib/Makefile.in sets a few environment variables 

and does the linking step. 

• Makefile.babel sets up the XML repository. It is used to make the BABEL 

process the .sidl files and update the XML repository. 
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• ’components.cca.in’  is used to generate the components.cca file by configure. 

It internally points to the actual libraries that comprise the component. 

Ccaffeine uses a “path” to determine where it should look for CCA 

components (specifically the .cca files) If you make a new component, you 

will need to update the components.cca.in file and run configure again. 

The Makefile.in at the $NWCHEM_TOP/src/cca level (and many of the other 

Makefiles in the subdirectories), include lib/MakeVars to get the list of all of the variables.  

This is the makefile that makes sure that all of the subdirectories get built and linked.  It does 

some of the BABEL preparation work of creating the repository of xml (.babel-stamp target) 

and then compiles the chemistry server code (.chemistry-stamp target) by calling the 

makefile in the $NWCHEM_TOP/src/cca/Chemistry/server/f90 directory.  This is also the 

makefile that takes care of the cleaning and the installation. 

The Makefile.in in the $NWCHEM_TOP/src/cca/Chemistry/server/f90 directory 

defines the source directory that we are working in, the BABEL_TARGETS (note that these 

should coincide with the classes in the $NWCHEM_TOP/src/cca/lib/components.cca file), 

and defines if we are using the client or the server code. It also includes the 

$NWCHEM_TOP/src/cca/lib/Makefile.objs file that gives the rules to generate the object 

files.  

The overall GNU build is shown in Figure 13. The final important discussion is 

related to the ability of CCA components to interact with NWChem routines. This is possible 
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by means of creating shared libraries i.e libraries which can be shared among programs. 

Creation of a shared library is a two-step process: 

 

 

Figure 13. GNU build system 
 

1. First, create the object files that will go into the shared library using the  –fPIC 

option associated with the compiler (e.g. gcc, ifort). The -fPIC option is 

essential to produce Position-Independent Code (i.e. to generate code that can 

be loaded anywhere in the process space of a process). It is also very 

important for a shared object. By using this option, a number of relocations 

that have to be performed are cut down to the very minimum. On loading a 

shared object that is used by an executable, some space has to be allocated for 

it and the text and data sections have to be allocated some locations. If they 
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are not built in a position-independent way, then a fair amount of relocations 

have to be done by the program loading the shared object, thus impacting 

performance adversely. 

2. The second step is to create a shared library using gcc with the –shared option. 

A shared object called ‘libnwchem-sumo.so’ is created which links the 

different object files and libraries like Global Arrays, Memory Allocator, 

ARMCI, etc. CCA then uses this single large shared object file to make 

NWChem components. A single shared object files is important since there 

are various dependencies at run-time and cannot be split into various shared 

object files. 

Once, NWChem is compiled and shared object file (libnwchem-sumo.so) is 

generated, the next step is to write interface definitions and develop NWChem based CCA 

application by implementing those interfaces. 
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APPENDIX B.  QM/MM INTERFACES 

package Chemistry version 0.4.0 { 
/** The Chemistry.Model interface provides energies and 
       gradients for a Molecule.  This interface provides the 
          primary functionality of a  chemistry code and can be 
          extended  by QC, MM and combined QM/MM interfaces. 
        */ 
 
   interface ModelInterface 
 { 
 
     /// Returns the energy. 
          double get_energy(); 
 
          /** Sets the accuracy for subsequent energy calculations. 
              @param acc The new accuracy. */ 
          void set_energy_accuracy(in double acc); 
 
          /** Returns the accuracy to which the energy is already computed. 
              The result is undefined if the energy has not already 
              been computed. 
              @return The energy accuracy. */ 
          double get_energy_accuracy(); 
 
          /** This allows a programmer to request that if any result 
              is computed, 
              then the energy is computed too.  This allows, say, for a request 
              for a gradient to cause the energy to be computed.  This computed 
              energy is cached and returned when the get_energy() member 
              is called. 
              @param doit Whether or not to compute the energy. 
            */ 
          void set_do_energy(in bool doit); 
/** Returns the Cartesian gradient.  */ 
          array<double,1> get_gradient(); 
 
          /** Sets the accuracy for subsequent gradient calculations 
              @param acc The new accuracy for gradients. */ 
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          void set_gradient_accuracy(in double acc); 
 
          /** Returns the accuracy to which the gradient is already computed. 
              The result is undefined if the gradient has not already 
              been computed. 
              @return The current gradient accuracy. */ 
          double get_gradient_accuracy(); 
 
          /** Returns the Cartesian Hessian. @return The Hessian. */ 
          array<double,2> get_hessian(); 
 
          /** Sets the accuracy for subsequent Hessian calculations. 
              @param acc The new accuracy for Hessians. */ 
          void set_hessian_accuracy(in double acc); 
 
          /** Returns the accuracy to which the Hessian is already computed. 
              The result is undefined if the Hessian has not already 
              been computed. */ 
          double get_hessian_accuracy(); 
 
          /** Returns a Cartesian guess Hessian. */ 
          array<double,2> get_guess_hessian(); 
 
          /** Sets the accuracy for subsequent guess Hessian calculations. 
              @param acc The new accuracy for guess Hessians. */ 
          void set_guess_hessian_accuracy(in double acc); 
 
          /** Returns the accuracy to which the guess Hessian is 
already computed.  The result is undefined if the guess Hessian 
              has not already been computed. 
              @return The guess hessian accuracy.  */ 
          double get_guess_hessian_accuracy(); 
 
          /** This should be called when the object is no longer needed. 
              No other members may be called after finalize. */ 
          int finalize(); 
 }; 
 
 
        interface ModelFactoryInterface extends gov.cca.Port { 
 
        ModelInterface get_model(); 
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}; 
 
 
 /** The Molecule interface provides a collection of atoms. 
 
      Each atom is associated with a charge, an atomic number, a Cartesian 
      coordinate, and an optional label. 
 
      Ghost atoms (atoms do not contribute a charge) have the appropriate 
      atomic number but a zero charge.  Point charges have an atomic number 
      of zero, but have a nonzero charge. 
 
   */ 
  interface MoleculeInterface { 
 
      /** Initialize a molecule. 
          @param natom The number of atoms. 
          @param npcharge The number of point charges. 
          @param unitname The name of the units ("angstroms" or "bohr"). 
*/ 
      void initialize(in long natom, in long npcharge, in string unitname); 
 
      /** Returns a units object that corresponds to the units that are used 
          by get_cart_coor or set_cart_coor. 
          @return The units of the coordinates. 
       */ 
      Physics.UnitsInterface get_units(); 
 
      /** Returns the number of atoms. 
          @return The number of atoms. 
        */ 
      long get_n_atom(); 
 
      /** Returns the number of point charges. 
          @return The number of point charges. 
        */ 
      long get_n_pcharge(); 
 
      /** Returns the atomic number of an atom 
          @param atomnum The number of the atom. 
          @return The atomic number. 
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        */ 
      int get_atomic_number(in long atomnum); 
 
      /** Sets atomic number of an atom. 
          @param atomnum The number of the atom. 
          @param atomic_number The atom's new atomic number. 
        */ 
      void set_atomic_number(in long atomnum, in int atomic_number); 
 
      /** Returns net charge of the molecule. 
          @return The net charge. 
*/ 
      double get_net_charge(); 
 
      /** Sets the net charge of the molecule. 
          @parm charge The new net charge. 
        */ 
      void set_net_charge(in double charge); 
 
      /** Returns charge at an atom. 
          @param atomnum The number of the atom. 
          @return The charge on the atom. 
        */ 
      double get_charge(in long atomnum); 
 
      /** Sets charge of an atom. 
          set_net_charge must called as well to ensure internal consistency. 
          @param atomnum The number of the atom. 
       */ 
      void set_charge(in long atomnum, in double charge); 
 
      /** Returns point charge value. 
          @param atomnum The number of the point charge. 
          @return The point charge value. 
        */ 
      double get_point_charge(in long pchargenum); 
 
      /** Sets point charge value 
          @param atomnum The number of the point charge. 
          @param charge  The point charge value. 
       */ 
void set_point_charge(in long pchargenum, in double pcharge); 
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          /** Returns point charge array. 
          @return An array with all the point charge values. 
        */ 
 
        array<double,1> get_all_point_charge(); 
 
  /** Gets  Cartesian coordinates for point charges. 
          @return The Cartesian coordinate array. 
        */ 
 
       array<double,1> get_pcharge_coor(); 
 
      /** Returns the Cartesian coordinate array. 
          @return An array with all Cartesian coordinates. 
        */ 
      array<double,1> get_coor(); 
 
      /** Sets the Cartesian coordinates. 
          @param x The new coordinates. 
        */ 
      void set_coor(in array<double,1> x); 
 
      /** Gets individual Cartesian coordinate. 
@param atomnum The atom number. 
          @param xyz Give 0 for x, 1 for y, and 2 for z. 
          @return The Cartesian coordinate. 
        */ 
      double get_cart_coor(in long atomnum, in int xyz); 
 
      /** Sets individual Cartesian coordinate. 
          @param atomnum The atom number. 
          @param xyz Give 0 for x, 1 for y, and 2 for z. 
          @param val The new Cartesian coordinate. 
        */ 
      void set_cart_coor(in long atomnum, in int xyz, in double val); 
 
      /** Gets individual Cartesian coordinate for point charge. 
          @param pchargenum The point charge number. 
          @param xyz Give 0 for x, 1 for y, and 2 for z. 
          @return The Cartesian coordinate. 
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        */ 
      double get_pcharge_cart_coor(in long pchargenum, in int xyz); 
 
      /** Sets individual Cartesian coordinate for point charge. 
          @param pchargenum The point charge number. 
          @param xyz Give 0 for x, 1 for y, and 2 for z. 
          @param val The new Cartesian coordinate. 
        */ 
      void set_pcharge_cart_coor(in long pchargenum, in int xyz, in double val); 
 
      /** Returns label for atom @param atomnum */ 
      string get_atomic_label(in long atomnum); 
 
      /** Sets label for atom @param atomnum. */ 
      void set_atomic_label(in long atomnum, in string label); 
 
  }; 
/** The MoleculeFactory is used to create Molecule objects. 
      A filename is given to MoleculeFactory which contains 
      the data that is used to generated a Molecule. 
    */ 
  interface MoleculeFactoryInterface extends gov.cca.Port { 
 
      /** Set the containing the Molecule data. 
          @param filename The filename. */ 
      void set_molecule_filename(in string filename); 
 
      /** Return the a Molecule object. 
          @return A new instances of Molecule. */ 
      Chemistry.MoleculeInterface get_molecule(); 
 
        /** Return a  Molecule object. 
                @return A new instance of Molecule. 
                @param unitname unit name 
                @param atomic_nums atomic numbers 
                @param coords geometry coordinates 
                @param pcharge_coords point charge coordinates 
                @param pcharge_vals point charge values 
                 */ 
          Chemistry.MoleculeInterface get_molecule[_qm](in string unitname, in 

array<int,1> atomic_nums, in array<double,1> coords,  in array<double,1> pcharge_coords, 
in array<double,1> pcharge_vals); 
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      /** This should be called when the object is no longer needed. 
          No other members may be called after finalize. */ 
      int finalize(); 
  } 
 
     package MM { 
 
     interface ModelInterface extends Chemistry.ModelInterface{}; 
     interface ModelFactoryInterface extends gov.cca.Port { 
 
          /** Returns a newly created MM Model. 
              @return The new Model instance. 
       */ 
 
      Chemistry.MM.ModelInterface get_model(); 
     }; 
}; 
 
      package QMMM { 
     interface ModelInterface extends Chemistry.ModelInterface{ 
        /** Sets a refernce of an instance of a MM  Model 
                for combined QMMM calculation. 
            @param mm_model MM Model instance 
        */ 
        void set_mm_model(in Chemistry.MM.ModelInterface mm_model); 
 
         /** Gets a refernce of an instance of a MM  Model 
                for combined QMMM calculation. 
            @return The refernce of a QM Model instance 
        */ 
 
        Chemistry.MM.ModelInterface get_mm_model(); 
 
        /** Sets a refernce of an instance of a QC(a.k.a QM)  Model 
                for combined QMMM calculation. 
            @param qm_model QM Model instance 
        */ 
 
        void set_qm_model(in Chemistry.QC.ModelInterface qm_model); 
        /** Gets a refernce of an instance of a QM (a.ka. QC  Model 
                for combined QMMM calculation. 
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            @return The reference of a QM Model instance 
        */ 
 
        Chemistry.QC.ModelInterface get_qm_model(); 
        }; 
 
     interface ModelFactoryInterface extends gov.cca.Port { 
          /** Returns a newly created QMMM Model. 
              @return The new Model instance. 
   */ 
 
      Chemistry.QMMM.ModelInterface get_model(); 
     }; 
}; 
 
/* 
Database acts as a storage model for geometry, point charge coordinates, energies, 
etc. 
*/ 
 
package Database version 0.1 
 
{ 
/* 
  The Model interface provides the storage space for geometry coordinates, 
  point charges and energies 
 
*/ 
interface ModelInterface 
{ 
 /* Connect to the database 
   @param  mode : can take values like  read or write 
   @return handle to control the database 
 */ 
int connect(in string mode); 
 
/* 
 Disconnect from the database 
 @param handle database handle created by connect method 
 @return returns a flag value about the status of the termination 
*/ 
int disconnect(in int handle); 
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/* 
   insert cartesian coordinates in the database 
   @param coords cartesian coordinates 
*/ 
int insertCoords(in array<double,1> coords); 
/* 
   insert atomic numbers in the database 
   @param atomic_nums atomic numbers 
*/ 
 
int insertAtomicNums(in array<int,1> atomic_nums); 
/* 
   insert point charges in the database 
   @param pcharges pcharges 
*/ 
 
int insertPCharges(in array<double,1> pcharges); 
 
/* 
   insert cartesian coordinates for point charges in the database 
   @param coords cartesian coordinates for point charges 
*/ 
int insertPChargeCoords(in array<double,1> pcharge_coords); 
/* 
   insert units of the coordinates in the database 
   @param units units of the coordinates 
*/ 
int insertUnits(in string units); 
/* 
  insert energy of a particular region 
  @param region region which can be either QM, MM or QMMM 
  @param energy energy value of the specified region 
*/ 
  int insertEnergy(in string region, in double energy); 
/* 
   return the carteisan coordinates stored in the database 
   @return cartesian coordinates 
*/ 
array<double,1> retrieveCoords(); 
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APPENDIX C.  PROTIEN DATA BANK (PDB) FILE FORMAT 

The prepare module in NWChem analyses the coordinates specified in PDB 

formatted file. The typical extension for a PDB file is .pdb. The PDB format is generally 

used for proteins but it can be used for other molecules as well. PDB file contains 

information about the molecules in the form of 3D structures.  

The PDB file can be viewed as collection of records. All the records must appear in a 

defined order. Mandatory records are present in all the entries. HEADER, TITLE, REMARK 

and CRYST1 are some of the mandatory records present in a PDB file. There is another 

record type called ATOM, which is critical in QM/MM calculation. The ATOM records 

present the atomic coordinates in angstroms. They also present the occupancy and 

temperature factor for each atom. The record format is  

ATOM      1  N   ALA     1       0.046   0.148  -5.010        0.00     N 

where first column is the record name or type (in this case ATOM), second column denotes 

the atom serial number, third column denotes the atom, fourth denotes the structure, fifth  is 

the alternate location indicator. Columns sixth, seventh and eight define X, Y and Z 

orthogonal coordinates respectively in angstroms. The last two columns specify the charge 

on the atom and the atom name. 

An example of PDB file of tripeptide alanine-serine-alanine is shown in Figure 14. 
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Figure 14. Sample PDB file for tripeptide alanine-serine-alanine 
 

The national PDB format is extremely complex and contains much more information. 

I have extracted the information from the point of view of a QM/MM calculation. 
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