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Abstract

As technological advances further increase the amount of memory and computing

power available to mobile robots, we are seeing an unprecedented explosion in the

utilization of deployable robots for various tasks. The speed at which robots begin to

enter various domains is largely dependent on the availability of robust and efficient

algorithms that are capable of solving the complex planning problems inherent to

the given domain. One such domain which is experiencing unprecedented growth in

recent years requires a robot to detect and/or track a mobile agent or group of agents.

In these scenarios, there are typically two players with diametrically opposed

goals. For matters of security, we have a guard and an intruder. The guard’s goal is

to ensure that if an intruder enters the premises they are caught in a timely manner.

Analogously, the intruder wishes to evade detection for as long as possible. Search

and rescue operations are often framed as a two-player game between rescuers and

survivors. Though the survivors are unlikely to behave antagonistically, an agnostic

model is useful for the rescuers to guarantee that the survivors are found, regardless

of their movements. Both of these tasks, are at their core, pursuit-evasion problems.

There are many variants of the pursuit-evasion problem, the common theme

amongst them is that one group of agents, the “pursuers”, attempts to track mem-

bers of another group, the “evaders”. Geometric formulations of the pursuit-evasion

problem require a pursuer(s) to systematically search an environment to locate one

or more evaders ensuring that all evaders will be captured by the pursuer(s) in a

finite time. The visibility-based pursuit-evasion problem is a geometric variant of the

pursuit-evasion problem that defines a visibility-region which corresponds to the re-
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gion of the environment that the pursuer(s) can actively perceive. If an evader lies

within this visibility region then it is captured (detected).

This thesis contains four novel contributions that solve various visibility-based

pursuit-evasion problems. The first contribution is an algorithm that computes the

optimal (minimal path length) pursuer trajectory for a single pursuer. The sec-

ond contribution is an algorithm that generates a joint motion strategy for multiple

pursuers. Motivated by the result of the second contribution, the third result is a

sampling-based algorithm for the multiple pursuer scenario. The fourth contribution

is a complete algorithm that computes a trajectory for a pursuer that has a very

limited sensor footprint.
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Chapter 1

Introduction

One of the ultimate goals in Robotics is the creation of an autonomous system that

is capable of converting high-level task specifications from humans into low-level

descriptions detailing how to accomplish the task. Planning algorithms are instru-

mental in creating autonomous systems. A planning algorithm autonomously decides

the sequence of actions necessary to perform a task given an initial configuration, a

collection of goal configurations, and a collection of sensors. This may appear to be

a relatively straightforward process, but challenges such as effectively modelling the

planning problem and designing and implementing efficient algorithms complicate the

process.

The motion planning problem is a refinement of the planning problem. At the

highest level, the motion planning problem asks the following question; “How can a

robot decide what motions to perform in order to achieve its goal while operating

in the physical world?” In the context of Robotics, the motion planning problem

appears in such problems as: navigation, coverage, localization, manipulation, and

pursuit-evasion.

In this thesis we focus on the pursuit-evasion problem. Although there are many

variants of the pursuit-evasion problem, the common theme amongst them is that

one group of agents, the pursuers, attempts to systematically locate the members

of another group, the evaders. Pursuit-evasion problems are of particular interest

because surveillance, evasion/detection, and search and rescue (SAR) are, at their

heart, pursuit-evasion problems. The following scenarios demonstrate how the above

1



mentioned problems can be interpreted as pursuit-evasion problems.

• In a surveillance problem such as the Art Gallery Problem1 [64], the guards can

be represented as mobile robots equipped with a camera and tracking software.

• An evasion/detection problem where one agent wants to remain hidden/undetected

from another adversarial agent can also be adapted to incorporate a robot. A

robot similar to the one used in the hypothetical surveillance scenario can act

as the adversary in this instance.

• Another scenario that benefits from deployable robots are search and rescue

operations during a disaster. Rather than exacerbate the situation by placing

the rescuers in harm’s way, an alternative strategy exists where a team of au-

tonomous search and rescue robots conduct the rescue operation. By framing

the scenario in the context of a pursuit-evasion game where the evaders are

the survivors and the pursuers are the robots, we can utilize the algorithms

developed to solve pursuit-evasion problems to aid in rescue operations.

This is but a small sample of potential scenarios that illustrate the presence of pursuit-

evasion problems in the real world. It is imperative that we find effective ways in

which to tackle these problems.

The remainder of this introductory chapter is organized into two parts. The first is

a brief overview of motion planning (Section 1.1), and the second contains a preview

of the primary results and overall structure of the thesis (Section 1.2).

1The art gallery problem is a computational geometry problem that considers the minimum
number of guards who together have the ability to observe the entire “gallery”.
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1.1 Motion Planning

This section is not designed to be a comprehensive guide to motion planning. Indeed,

entire books [17, 46, 47] have been written on the subject. Instead, this section aims

to provide enough details so that the reader is left with a clear understanding of what

entails a motion planning problem, and the general tools/mechanisms used to tackle

these kinds of problems.

1.1.1 Basic Ingredients of Planning

This section contains several basic ingredients that appear in motion planning. Al-

though this thesis focuses on the pursuit-evasion problem, the following apply to

nearly all motion planning problems regardless of topic.

States

A crucial idea that is the foundation of any motion planning problem is the concept

of a state.

Definition 1. A state is the collection of all aspects of the robot and the environment

that can have an impact on the future.

The state is a complete description of the robot’s physical situation in the environ-

ment. A single state represents just one possible representation of the robot. The set

of all possibles states is called the robot’s state space. The notation x ∈ X is often

used to denote a specific state in the robot’s state space.

Actions and Transitions

Robots interact with and move through the environment by changing their state,

such changes are brought about by executing actions.

3



Definition 2. An action, also known as inputs or controls in control theory, is any

physical interaction that causes a change to the robot’s state.

An action in this case is a robot initiated physical interaction. The set of all possible

actions that the robot can take is called the robot’s action space. A robot action is

typically denoted as u ∈ U , where u is a single action belonging to the robot’s action

space, U .

Equipped with a formal way to represent a robot’s situation in the environment

and a set of possible ways in which the robot can act upon the environment we can

formally discuss how a robot goes about changing its state through the use of a state

transition function.

Definition 3. A state transition function is a function whose input is a state xk and

an action uk and outputs a state xk+1 for any time k ≥ 0.

In its simplest form, the state transition function is a mathematical representation

detailing how a robot updates its state during execution by “transitioning” from one

state to another until a goal state is reached. Mathematically, the state transition

function appears as

f : X × U → X

xk+1 = f(xk, uk).
(1.1)

Observations

A central idea in Robotics is the ability for a robot to infer knowledge about itself

and/or its surroundings through the use of sensors. The key idea is that any infor-

mation that we want to utilize to influence the control of the robot must come from

sensors. In a perfect scenario, a sensor provides complete information. This involves

avoiding ambiguity by yielding complete information, utilizing noiseless sensors, and

using simple enough sensors that they are easy to model. Often times sensors provide

incomplete information, are noisy, and are difficult to model completely.
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For this thesis, we will focus on how to represent a robot’s available sensory data

in the context of the models discussed in this section.

Definition 4. An observation is all of the current available sensor information that

the robot has access to.

At its core, the observation provides the robot with a “hint” about what the current

state is. An observation is typically denoted as y ∈ Y , where y is a single observation

from the observation space. Since the observation is dependent on the robot’s current

state, the observation function appears as

h : X → Y

y = h(x).
(1.2)

Note that the robot need not necessarily know the state used to generate a particular

observation.

Representing the Passage of Time

There are a number of ways to represent the passage of time, the following three

representations are the most prevalent: continuous time, discrete time with a fixed

length, and discrete stage with variable length. The choice of model is often dependent

on the application. We focus on the continuous time and discrete stage models in

this thesis.

In the continuous time model, time is represented by a real number t. The robot

can potentially change its action at any instant in time, thus the robot’s actions

can be expressed as a function u(t) of time. The state transition function in the

continuous time domain takes the derivative of the state with respect to time and

appears as dx
dt

= f(x, u) or alternatively ẋ = f(x, u). The new state can then be

computed via integration x(t) =
t
∫

0
f

(

x(s), u(s)
)

ds.

In the discrete stage time model, time progresses in a series of discrete stages, that

need not be of equal duration. This model differs from the continuous model in that
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time is represented by a stage counter k rather than a physical time. This higher level

model allows for more abstract actions in the sense that you can perform an action

u for any desired duration. The transition function for the discrete stage model is

essentially the same one introduced in Equation 1.1, that is xk+1 = f(xk, uk).

Representing Uncertainty

In this context uncertainty refers to the situation where the robot is unsure of its

current state. Uncertainty in a system can be attributed to several factors; uncer-

tain actions, uncertain sensing, and initial uncertainty. We model this ambiguity by

introducing an adversary called “nature” which interferes with the robot by adding

noise to the system. In this way we can adapt the models used up to this point by

introducing nature actions and observations to account for any uncertainty that may

exist in our system. Nature actions are denoted as θ ∈ Θ, where Θ is the nature

action space. The introduction of nature actions requires the following modification

to our state transition function in Equation 1.1:

f : X × U ×Θ→ X

xk+1 = f(xk, uk, θk).
(1.3)

Two reasonable models for interpreting the value of θ that nature chooses are nonde-

terministic and probabilistic models. The nondeterministic model can be viewed as

the worst-case scenario model where we don’t know anything about how θ is chosen,

whereas the probabilistic model assumes that nature chooses θ according to some

probability distribution.

We can also assume that nature interferes with our robot’s observations as well.

Nature observations are denoted as ψ ∈ Ψ, where Ψ is the nature observation space.

Similar to nature actions, nature observations require modifying the observation func-
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tion in Equation 1.2 to:

h : X ×Ψ→ Y

y = h(x, ψ)
(1.4)

Our time models can be adapted to account for the effects of nature. The action

errors cause the continuous time state transition function to become ẋ = f(x, u, θ)

and the discrete stage state transition function to become xk+1 = f(xk, uk, θk). Simi-

larly, sensing errors require a modification to the observation functions. The contin-

uous time observation function becomes y(t) = h
(

x(t), ψ(t)
)

and the discrete stage

observation function becomes yk = h(xk, ψk).

Configuration Spaces

This section provides a high level introduction to configuration spaces. The key idea is

that we want to represent the robot as a single point in the appropriate space, and by

extension seek a mapping that transforms obstacles into an appropriate representation

in this space. This space is called the robot’s configuration space, also commonly

referred to as the C-space. A configuration is a single point in the configuration

space.

Definition 5. A configuration is a complete specification of the position of every

point in the system.

By considering a problem in the robot’s C-space, we can transform the problem

of planning the motion of a spatial object into the problem of planning the motion

of a point. At its core, the C-space is just a special kind of state space.

Now we attempt to provide some intuition concerning the transformation of a

general path planning problem into a problem in the robot’s C-space. Informally,

we want to shrink the robot down to a point and expand the obstacles by the same

amount. In this way we can ensure that if the point representing our robot stays out
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qG

qI

Cfree

Cobs

Cobs

Cobs

Figure 1.1: The basic motion planning problem visualized using the concept of con-
figuration space. The task is to find a collision free path in Cfree from qI to qG.

of the expanded obstacle region in the C-space, then the corresponding spatial robot

will stay out of the real workspace obstacles.

The C-space is just a collection of possible configurations that our robot could

occupy. However, similar to the physical domain there are areas of the C-space called

obstacle configurations that we want to restrict the robot from entering. An obstacle

configuration is a configuration in which the robot is in collision with an object in the

environment. The set of obstacle configurations is denoted by Cobst. Everything else

in the C-space is considered a free configuration and is denoted by Cfree = C − Cobst.

Informally Cfree are areas corresponding to “safe” configurations for the robot.

Using the C-space formalization, the basic motion planning problem takes as

input a starting configuration qI, a goal configuration/region qG ∈ Cgoal ⊆ Cfree and

outputs a collision free path through Cfree from the starting configuration to the goal

configuration/region. An illustrative example of this concept appears in Figure 1.1.

For a more mathematically rigorous definition of the configuration space we refer

the reader to Chapter 4 of LaValle’s text on Planning Algorithms [47].
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Information Spaces

This section provides the reader with a high level understanding of information spaces.

The key idea, is that in the presence of state uncertainty where the robot’s true state

is hidden, we want to create some representation based on the information available

to the robot. Fundamentally, information spaces can be viewed as a special kind of

state space.

What information is available to the robot? In some scenarios, initial conditions

may be specified in such a way that the initial state may be known, but in general a

robot has access only to the history of past actions and the sensor observations it has

received. The space of past histories is called the robot’s history information space

and is denoted by Ihist and defined as

Ihist =
∞
⋃

i=0

(U × Y )i. (1.5)

After k stages, the robot’s history information state is the following sequence of

action-observation pairs

ηk+1 = (u1, y1, . . . , uk, yk) ∈ Ihist. (1.6)

The history I-space provides a way of storing and maintaining the action-observation

histories, but does not provide any insight into how the robot might make use of this

information. It typically is not feasible to deal with history I-states explicitly because

the length of a history I-state grows linearly with the number of stages. Instead, we

consider information mappings (I-maps) of the form

κ : Ihist → I (1.7)

that consolidate the history I-states into a new target space I called a derived in-

formation space. Informally, κ can be viewed as the mechanism that the robot uses

to interpret its sensor information. Naturally the usefulness of a derived I-space is

dependent on the mapping’s ability to capture relevant information.
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For the purpose of reasoning about planning problems, we consider a special class

of I-maps called sufficient I-maps. Given an I-map κ : Ihist → I, κ is a sufficient

I-map if there exists an information transition function

fI : I × U × Y → I (1.8)

such that

fI

(

κ(ηk), uk, yk

)

= κ(ηk, uk, yk) (1.9)

for any ηk ∈ Ihist, uk ∈ U, yk ∈ Y . The intuition is that the I-states derived by κ are

sufficient to determine future derived I-states. This is very similar to the idea of a

sufficient statistic [13, 90] in Statistics. In this sense the current derived I-state is as

powerful as having the complete action-observation history when computing future

derived I-states. So we are able to reason about the problem in the derived I-space

rather than the history I-space.

It remains to show what a solution to a planning problem looks like in an infor-

mation space. First, consider how the goal region in an information space differs from

that of a typical state space. A goal region in a state space is the set of terminating

configurations that the robot could be in when it satisfies its task, whereas a goal

region in an information space must account for all of the potential action-observation

pairs that could cause the robot to enter into a configuration that accomplishes the

task. So naturally we can represent the goal region, IG as a subset of the history

I-space.

The last piece of information that we need is a mechanism that guides our search

through the I-space to the goal region. In essence we want a mapping

π : I → U (1.10)

that, given an I-state, selects the next action the robot will take. Such a mapping is

called a policy over a derived I-space, and if repeated applications of π produces an

I-state in IG then π is a solution to the problem.
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1.1.2 Properties of Planners

This section introduces several different properties of planners focusing on the quality

of the solution they provide. In particular we focus on optimality and varying degrees

of completeness. We use the following definition to define what it means for a planner

to be optimal.

Definition 6. A planner is optimal if it finds motions that optimize some parameter

such as length, execution time, or energy consumption.

This definition places the onus on the author to clearly specify the parameter(s) being

optimized. This often aids the reader by providing some insight about the problem

and/or the robot model. The following example demonstrates this idea.

Example:
A planner that generates a minimal cost (Euclidean

distance) path.

False

Assump-

tion:

The minimal cost path will also be the path that

minimizes the robot’s execution time to follow the

aforementioned path.

Scenario:

This case often arises when the path requires the

robot to spend a large amount of time rotating as

opposed to translating.

We use the following definition to define what it means for a planner to be com-

plete.

Definition 7. A planner is complete if it will always find a solution to the motion

planning problem when one exists, or indicate failure in finite time if no solution

exists.
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1. Introduction

2. Problem
Statement

3. Related Work

4. GL3M

5. Single Pursuer
Optimal

6. Multi-Pursuers
Complete

7. Multi-Pursuer
Sampling Based

8. Single Pursuer
Fixed Beams

9. Conclusion

Figure 1.2: Organization of this thesis with arrows indicating dependencies. Novel
results are denoted by the shaded blocks.

While complete algorithms are desirable, they become intractable as the degree

of the configuration space gets larger [11]. Therefore we often seek weaker forms of

completeness such as resolution completeness or probabilistic completeness.

Definition 8. A planner is resolution complete if a solution exists at a given level of

discretization. A planner is probabilistically complete if the probability of finding a

solution tends to 1 as time goes to infinity.

1.2 Thesis Organization

We conclude this introductory chapter with a preview of the remainder of this thesis.

A formal problem statement appears in Chapter 2. A literature review appears in

Chapter 3. Chapter 4 contains an overview of the Guibas, Latombe, LaValle, Lin, and
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Motwani (GL3M) algorithm that influenced the four novel contributions that appear

in Chapters 5, 6, 7, and 8. Concluding remarks and some potential avenues for future

work appear in Chapter 9. The structure and dependencies between chapters are

shown in Figure 1.2. This thesis presents four novel results for various visibility-based

pursuit-evasion problems: an optimal search strategy for a single pursuer, a complete

algorithm for multiple pursuers, a randomized algorithm for multiple pursuers, and

a complete algorithm for a single pursuer with limited sensing capabilities.

1.2.1 Single Pursuer - Shortest Path

The first result (Chapter 5) considers an instance of the visibility-based pursuit-

evasion problem that utilizes a single pursuer to search the environment for potential

evaders. The main contribution is a complete algorithm whose goal is to compute a

minimal-cost pursuer trajectory that ensures that the evaders are captured in a finite

time, or reports that no finite time pursuer trajectory exists. This result improves

upon the known algorithm of Guibas, Latombe, LaValle, Lin, and Motwani, which

is complete but makes no claims as to the quality of the solution. The central idea

is that by carefully decomposing the two-dimensional polygonal environment into

combinatorially equivalent convex regions, we can exploit the structure of the problem

by considering a simpler subproblem that is equivalent to computing the minimal-cost

pursuer trajectory.

1.2.2 Multiple Pursuers - Complete Solution

The second result (Chapter 6) considers an instance of the visibility-based pursuit-

evasion problem that utilizes multiple pursuers to search an environment. We present

a centralized algorithm that searches the pursuers’ joint configuration space for a joint

strategy for the pursuers that will satisfy the capture conditions of the pursuit-evasion

problem. The main idea is to construct a Cylindrical Algebraic Decomposition(CAD)
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of the pursuers’ joint configuration space by using polynomials that capture where

critical changes can occur to the region of the environment hidden from the pursuers.

After computing the adjacency graph for the CAD, we construct a Pursuit-Evasion

Graph(PEG) induced by the adjacency graph. A search through the PEG can produce

one of the following outcomes; the search can reach a vertex where the pursuers’

motions up to this point ensures that the evader has been captured, or the search

terminates without finding a solution and produces a statement recognizing that no

solution exists.

1.2.3 Multiple Pursuers - Probabilistically Complete

Sampling-Based Solution

Motivated by the complexity of the previous result, our third result (Chapter 7) intro-

duces a probabilistically-complete sampling-based algorithm for solving a visibility-

based pursuit-evasion problem that utilizes multiple pursuers. This technique con-

structs a Sample-Generated Pursuit-Evasion Graph (SG-PEG) that utilizes an ab-

stract sample generator to search the pursuers’ joint configuration space for a search

strategy that captures the evaders, or reports that no such strategy exists under the

current constraints.

1.2.4 Single Pursuer - Fixed Beams

The final result (Chapter 8) considers an instance of the visibility-based pursuit-

evasion problem where a single pursuer is equipped with a finite collection of single-

direction sensors, with the goal of locating an adversarial evader within the line-

of-sight of one of those sensors. The novel contribution is a complete and efficient

algorithm for solving this fixed-beam pursuit-evasion problem. The intuition of the

algorithm is to decompose the environment into a collection of convex conservative
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regions, within which the evader cannot “sneak” between any pair of adjacent sensors.

This decomposition induces a graph we call the Fixed-Beam Pursuit-Evasion Graph

(FB-PEG), such that any correct solution strategy can be expressed as a path through

the FB-PEG.
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Chapter 2

Problem Statement

This chapter formalizes the visibility-based pursuit-evasion problem considered in

this thesis. We begin by describing the model used to represent the environment,

evaders, and pursuers (Section 2.1) and then give a formal definition for the area of

the environment not visible to the pursuers, called shadows (Section 2.2).

2.1 Representing the environment, evaders, and

pursuers

The environment is a polygonal free-space, defined as a closed and bounded set

W ⊆ R2, with a polygonal boundary ∂W . The boundary of the environment is

composed of m vertices.

The evader is modeled as a point that can translate within the environment. Let

e(t) ∈W denote the position of the evader at time t ≥ 0. The path e is a continuous

function e : [0,∞) → W , in which the evader is capable of moving arbitrarily fast

(i.e. a finite, unbounded speed) within W . The evader trajectory e is unknown to

the pursuers. Without loss of generality we can assume that there is a single evader.

If the pursuers can guarantee the capture of a single evader, then the same strategy

can locate multiple evaders, or confirm that no evaders exist.

A collection of n identical pursuers cooperatively move to locate the evader. We as-

sume that the pursuers know W , and that they are centrally coordinated. Therefore,
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from a given collection of starting positions, the pursuers’ motions can be described

by a continuous function p : [0,∞) → W n, so that p(t) ∈ W n denotes the joint

configuration of the pursuers at time t ≥ 0. The function p is called a joint motion

strategy for the pursuers. We use the notation pi(t) ∈ W to refer to the position

of pursuer i at time t. Likewise, xi(t) and yi(t) denote the horizontal and vertical

coordinates of pi(t). Without loss of generality, we assume that the pursuers move

with maximum speed 1.

Each pursuer carries a sensor that can detect the evader. The sensor is omnidi-

rectional and has unlimited range, but cannot see through obstacles. For any point

q ∈ W , let V (q) denote the visibility region at point q, which consists of the set of

all points in W that are visible from point q. That is, V (q) contains every point that

can be connected to q by a line segment in W . Note that V (q) is a closed set.

When considering the maximal path-connected component of V (q), the edges of

its boundary are either along ∂W or belong to an occlusion ray.

Definition 9. An occlusion ray, −→qr, is a ray starting at a pursuer position q tangent

to a visible environment reflex vertex r.

Informally, an occlusion ray originating at point q is a ray that acts as a boundary

separating a visible and non-visible portion of W .

The time of capture for an evader following trajectory e and a group of pursuers

executing the joint motion strategy p is denoted as:

tc(p, e) = min

{

t ≥ 0 | e(t) ∈
⋃

i

V
(

pi(t)
)

}

(2.1)

The pursuers’ goal is to capture the evader regardless of the evader’s trajectory.

Definition 10. A pursuer joint motion strategy p is a solution strategy if there exists

a finite time of capture, denoted tc(e) and defined as

tc(p) = max
e

tc(p, e). (2.2)
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p1
p2

Figure 2.1: An environment with two pursuers (red circles) and three shadows (filled
path-connected regions).

The time tc(e) is the least upper bound for the time of capture over all valid evader

trajectories when the pursuers follow the joint motion strategy p.

2.2 Shadows

The key difficulty in locating the evader is that the pursuers cannot, in general, see

the entire environment at once. This section contains some definitions for describing

and reasoning about the portion of the environment that is not visible to the pursuers

at any particular time.

Definition 11. The portion of the environment not visible to the pursuers at time t

is called the shadow region S(t), and defined as

S(t) = W −
⋃

i=1,...,n

V
(

pi(t)
)

.

Note that the shadow region may contain zero or more nonempty path-connected

components, as seen in Figure 2.1.

Definition 12. A shadow is a maximal path-connected component of the shadow

region.
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Notice that S(t) is the union of the shadows at time t. The important idea is that

the evader, if it has not been captured, is always contained in exactly one shadow, in

which it can move freely.

As the pursuers move, the shadows can change in any of five ways, called shadow

events.

• Appear : A new shadow can appear, when a previously visible part of the envi-

ronment becomes hidden.

• Disappear : An existing shadow can disappear, when one or more pursuers move

to locations from which that region is visible.

• Split: A shadow can split into multiple shadows, when the pursuers move in

such a way that a given shadow is no longer path-connected.

• Merge: Multiple existing shadows can merge into a single shadow, when previ-

ously disconnected shadows become path-connected.

• Push: An existing shadow can be pushed between pairs of neighboring environ-

ment reflex vertices, when the pursuer’s motion changes the cardinality of the

set of visible environment reflex vertices.

These events were originally enumerated in the context of the single-pursuer version

of this problem [27] and examined more generally by Yu and LaValle [96].

2.2.1 Shadow Labels

For our pursuit-evasion problem, the crucial piece of information about each shadow

is whether or not the evader might be hiding within it.

Definition 13. A shadow s is called cleared at time t if, based on the pursuers’

motions up to time t, it is not possible for the evader to be within s without having

been captured.
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Definition 14. A shadow is called contaminated if it is not clear. That is, a con-

taminated shadow is one in which the evader may be hiding.

We can assign a binary label to each shadow corresponding to the cleared/contaminated

status of the shadow. A label of 0 means that the shadow is cleared and similarly

a label of 1 means that the shadow is contaminated. Notice that, since the evader

can move arbitrarily quickly, the pursuers cannot draw any more detailed conclu-

sion about each shadow than its clear/contaminated status; if any part of a shadow

might contain the evader, then the entire shadow is contaminated. Using this worst-

case reasoning, we can completely represent the I-state given the pursuers’ current

configuration and the current shadow labels.

Comparison Operators: Equal (=) and Not Equal (6=)

This section describes two comparison operators for shadow labels that test for equal-

ity. Consider two shadow labels S = (s1s2 . . . sk) and S ′ =
(

s
′

1s
′

2 . . . s
′

k

)

.

Definition 15. Two shadow labels S and S ′ are equal to(=) one another if the

following holds:

∀i 1 ≤ i ≤ k : si = s
′

i.

The intuition behind the (=) relation is that if a shadow appears as cleared in S

then it must also be cleared in S ′. Similarly, if a shadow is contaminated in S then

it must also be contaminated in S ′.

Definition 16. Two shadow labels S and S ′ are not equal to one another if the

following holds:

∃i 1 ≤ i ≤ k : si 6= s
′

i.

20



The intuition behind the (6=) relation is that there must exist at least one shadow

whose label is dissimilar between S and S ′. The not equal relation is the logical

negation of the equal to relation.

Binary Relation: Dominates (≫)

This sections describes a dominance binary relation over shadow labels. Consider two

shadow labels S = (s1s2 . . . sk) and S ′ =
(

s
′

1s
′

2 . . . s
′

k

)

.

Definition 17. A shadow label S dominates a shadow label S ′ if the following holds:

∀i 1 ≤ i ≤ k : si ≤ s
′

i.

Informally, S dominates S ′ if for every shadow that is cleared in S ′, the correspond-

ing shadow in S is also cleared. The intuition is that S provides at least as much

information as S ′, and can potentially contain more information in the case where

si = 0 and s
′

i = 1.

Definition 18. A shadow label S strictly dominates (≫) a shadow label S ′ if

S ≫ S ′ and S 6= S ′. (2.3)

2.2.2 Label Update Rules

Each time a shadow event occurs, the labels can be updated based on worst case

reasoning. Below we describe the update rules for a shadow’s label according to the

visibility event that has occurred. Each rule describes how a label preceding the

visibility event is updated immediately following a given visibility event.

• Appear : New shadows are formed from regions that had just been visible, so

they are assigned a clear label.
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Event Before After

Appear

Disappear

Figure 2.2: An appear event increases the number of shadows by one, and the new
shadow is labelled clear (green region). A disappear event decreases the number of
shadows, its label is discarded.

• Disappear : When a shadow disappears, its label is discarded.

• Split: When a shadow splits, the new shadows inherit the same label as the

original.

• Merge: When shadows merge, the new shadow is assigned the worst label of

any of the original shadows’ labels. That is, a shadow formed by a merge event

is labeled clear if and only if all of the original shadows were also clear.

• Push: When a shadow is pushed, it maintains its current label.

Figures 2.2, 2.3, and 2.4 illustrate the shadow label update rules where cleared shad-

ows are represented as the filled path-connected green regions and contaminated

shadows are represented as the filled path-connected purple regions.
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Event Before After

Split

Merge

Figure 2.3: When a shadow splits into multiple shadows, they inherit the same label
as the original shadow. When a merge event occurs the new shadow is clear if and
only if all of the original shadows are also clear.

2.3 Reformulating the Objective

We can incorporate this idea of reasoning about evaders via shadows to reformulate

the pursuer’s goal in terms of shadows rather than evader positions. Recall the

definition of solution strategy from Definition 10 where the pursuers’ goal was stated as

computing a finite time of capture for each evader over all possible evader trajectories.

Using the definitions of cleared and contaminated from above to describe a shadow’s

current status, we know that in the event that all of the shadows in the shadow region

are cleared, then we can be certain the evader has been seen at some point. The result

of this reasoning is that we can connect the shadow labels to our goal of finding a

solution strategy.

Definition 19. A pursuer joint motion strategy is a solution strategy if and only if it
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Event Before After

Push

Figure 2.4: A push event occurs when a shadow gets pushed between neighboring
pairs of environment reflex vertices.

reaches a pursuer configuration in finite time in which all of the shadows are cleared.

We now have two unique but equivalent definitions of a solution strategy.
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Chapter 3

Related Work

Pursuit-evasion problems are often classified under the vast umbrella of target track-

ing, security, and monitoring and surveillance problems. For brevity, this thesis will

use the term target tracking to refer to this collection of similar problems. Target

tracking problems typically require the system to ascertain some information about

a target (environmental feature and/or a mobile agent). Target tracking problems

span multiple disciplines and can be found in game theory [70,78], computational ge-

ometry [12,15,16,53], wireless networks [14,25,28], and mobile robotics [4,33]. In this

chapter we provide a brief overview of the target tracking problem (Section 3.1) fol-

lowed by a more focused literature review of Pursuit-Evasion problems (Section 3.2).

3.1 Target Tracking

As mentioned above, target tracking is a problem that spans multiple disciplines.

This thesis focuses on those works most closely related to mobile robotics. In the

most general case the objective for these problems is to maintain visibility between

the target and the tracker. Algorithms are known for planning the tracker’s motions

using dynamic programming [48], sampling-based methods [57], Partially Observable

Markov Decision Process (POMDP) [30], and reactive approaches [55]. The target

tracking task can be further complicated by additional constraints such as avoiding

detection [4], maintaining the target’s privacy [60], and bounded observer speed [54].

The remainder of this section focuses on two related target tracking problems.
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The first problem is wireless sensor network assisted target tracking (Section 3.1.1)

and the second problem is monitoring and surveillance (Section 3.1.2). This is a small

sample of the various tasks and approaches encompassed within target tracking.

3.1.1 Wireless Sensor Network Target Tracking

As mentioned above, wireless sensor networks (WSNs), have been one approach used

to track a moving target(s). This target could be a human [14,80], a moving vehicle

[26, 28, 97], or other moving target [3, 40, 79]. WSNs have been used in conjunction

with mobile robots [33, 62] to tackle the target tracking problem. Typically, the

mobile robots are used during sensor deployment with the goal of achieving good

sensor coverage [5,6]. However, their has been work done that focuses on the tracking

application after the deployment has occurred [63].

3.1.2 Monitoring and Surveillance

Monitoring and surveillance are two terms that are often used interchangeably. The

key distinction is that monitoring is a passive task that does not result in any direct

action on the agent’s part. The monitoring task typically charges the agent with

using its sensory information to detect a change in its environment. Surveillance

tasks are often seen as the active version of the monitoring problem where an agent

is tasked with actively searching its environment in an effort to detect some change

in the environment.

Persistent monitoring and surveillance tasks are variations on the traditional moni-

toring and surveillance tasks that require a tracker or team of trackers to perform their

monitoring/surveillance task in perpetuity. The “perpetuity” aspect is what makes

these problems well-suited to be carried out by a robot or robot team. Visibility-

based monitoring problems commonly occur in many applications such as security and

surveillance [91], infrastructure inspection [65], and environmental monitoring [81].
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The increased availability of mobile robots capable of performing these tasks has led

to increased interest [45,51,82] in recent years.

3.2 Pursuit-Evasion

This section examines existing literature in the field of pursuit-evasion. Although

this thesis presents results for a visibility-based pursuit-evasion problem, we discuss

the evolution of the pursuit-evasion problem from differential games (Section 3.2.1)

to a graph-based formulation (Section 3.2.2) and finally to a geometric formulation

(Section 3.2.3).

3.2.1 Differential Games

The pursuit-evasion problem was originally posed in the context of differential games

[29,31] and has produced a variety of different problems with small variations. In the

lion and man game, a lion tries to capture a man who is trying to escape [37, 58, 59,

77, 93]. In game theory, the homicidal chauffeur is a pursuit evasion problem which

pits a slowly moving but highly maneuverable runner against the driver of a vehicle,

which is faster but less maneuverable, who is attempting to run him over [31, 74].

Bounds for this problem that require the pursuer to physically capture the evader

suggests the number of pursuers required to satisfy this capture condition exceeds

that needed for the visibility-based pursuit-evasion problem [41].

3.2.2 Graph-Based Formulation

Pursuit-evasion on a graph can be traced back to the independent work done by

Parsons and Petrov. The motivation behind the Parsons’ problem was the desire for

a graphical model to represent the problem of finding an explorer who is lost in a

complicated system of dark caves. The idea behind the Parsons’ problem [67], also
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known as the edge-searching problem, is to determine a sequence of moves for the

pursuers that can detect all intruders in a graph using the least number of robots. A

move consists of either placing or removing a robot on a vertex, or sliding it along

an edge. A vertex is considered guarded as long as it has at least one robot on it,

and any intruder located therein or attempting to pass through will be detected. A

sliding move detects any intruder on an edge.

The Parsons’ problem and some of its results were later independently rediscovered

by Petrov [68] using slightly different motivating problems. Petrov’s formulation

considered the cossacks and the robber game [69] and the princess and the monster

problem [31]. Golovach showed that both problems considered an equivalent discrete

game on graphs [23].

There are variations of graph-based pursuit-evasion that consider both edge guard-

ing and node guarding. One such formulation that differs from edge-searching (where

searchers move across edges and guard vertices) that has a direct application to

Robotics is the Graph-Clear problem [44]. Graph-Clear is a pursuit-evasion problem

on graphs that models the detection of intruders in an environment by robot teams

with limited sensing capabilities.

This is but a small sample of the existing literature surrounding the graph-based

pursuit-evasion problem. We have placed an emphasis on the inception of the problem

and briefly touched on some recent results. For a more comprehensive review of

recent results in graph-based pursuit-evasion we direct the reader to the following

surveys [1, 9, 10,21,89].

3.2.3 Geometric Formulation

The visibility-based pursuit-evasion problem and the surveillance/tracking problem

are various types of pursuit-evasion problems that use a geometric formulation.

The first visibility-based pursuit-evasion problem was proposed by Suzuki and
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Yamashita [88] as an extension of the watchman route problem1 [16] and is a geometric

formulation of the traditional graph-based pursuit-evasion problem. Research on the

visibility-based pursuit-evasion has produced numerous results for both the single

pursuer and multiple pursuer variants of the problem.

Single Pursuer Visibility-Based Pursuit-Evasion

There are many interesting results for the single pursuer visibility-based pursuit-

evasion problem. A complete solution [27], a randomized solution [32], and an optimal

shortest path solution have been found.

The capture condition for the general visibility-based pursuit-evasion problem

is defined as having an evader lie within the pursuer’s capture region. There has

been substantial research focused how the visibility-based pursuit-evasion problem

changes when a robot has different capture regions. The k-searcher is a pursuer with

k visibility beams [50, 88], the ∞-searcher is a pursuer with omni-directional field of

view [27,66], and the φ-searcher is a pursuer whose field-of-view [22] is limited to an

angle φ ∈ (0, 2π]. Note that all of these approaches consider evaders with unbounded

speed.

Others have studied scenarios where there are additional constraints, such as the

case of curved environments [49], an unknown environment [75], a maximum bounded

speed for the pursuer [92], or constraints on the pursuer similar to those of a typical

bug2 algorithm [73].

1The objective of the watchman route problem is to compute the shortest path that a guard
should take to patrol an entire area populated with obstacles, given only a map of the area.

2Bug algorithms assume only local knowledge of the environment and a global goal. The behav-
iors typically available to a “bug” include wall following and straight line motions toward the goal.
Most instances of bug algorithms lack a map and the ability to construct a map and may account
for imperfect navigation.
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Multiple Pursuer Visibility-Based Pursuit-Evasion

As a result of the problem complexity, there is a wide range of literature with differing

techniques attempting to solve the multi-robot visibility-based pursuit-evasion prob-

lem. Some recent results involve using some of the pursuers as stationary sentinels

while other pursuers continue with the search [43]. Another approach involves main-

taining complete coverage of the frontier [20]. There are other variants of the pursuit-

evasion problem where the pursuers are teams of unmanned aerial vehicles [42].
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Chapter 4

GL3M Algorithm

The prior work of Guibas, Latombe, LaValle, Lin, and Motwani is integral in un-

derstanding some of the techniques that contribute to the results in this thesis. As

such, it is necessary to summarize the work of Guibas, Latombe, LaValle, Lin, and

Motwani [27] that presents a complete solution to the visibility-based pursuit-evasion

problem that utilizes a single pursuer.

4.1 Overview

The authors’ main contribution is a way to change the continuous problem of finding

a pursuer trajectory into a simpler discrete problem. Initially, the problem requires

a pursuer trajectory that solves the single pursuer visibility-based pursuit-evasion

problem. But by considering the areas of the environment that induce changes to

the shadow region we can ask the following equivalent question. What areas of the

environment does the pursuer have to visit to guarantee that the evader is captured?

Once a valid sequence has been found, returning a trajectory is trivial.

In the remainder of this chapter we investigate how certain pursuer motions can

force a critical information change within the shadow region (Section 4.2), and de-

scribe a graph structure and algorithm for solving the single pursuer visibility-based

pursuit-evasion problem (Section 4.3).
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Figure 4.1: An illustration of the concept of conservative regions.

4.2 Critical Information Changes

During the execution of a strategy, the pursuer must identify the contaminated shad-

ows in the shadow region. This piece of information is dependent upon the initial

position of the pursuer and the pursuer’s history of past positions, up to the current

time. As the pursuer moves, this information changes continuously; however, to de-

velop a complete algorithm, the authors need only be interested in tracking times in

which the pursuer’s information changes combinatorially. That is, we are only con-

cerned with pursuer movements that generate shadow events, as seen in Figure 4.1.

Definition 20. A region R ⊆ W n is a conservative region if any path that remains

within R generates no shadow events.

By definition a conservative region has the following information-conservative prop-

erty: while the pursuer remains within a conservative region the pursuer’s shadow

labels will not change.

The original paper describes a visibility cell decomposition of the environment that

captures where the critical changes to the pursuer’s I-state occur. The decomposition
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Figure 4.2: Ray shooting is performed for three general cases to form the conservative
regions.

of the environment into conservative regions works by extending rays from inflection

points in the environment, and extending rays outwards from pairs of mutually visible

environment vertices. The inflection and bitangent ray extensions represent where

the pursuer’s shadow labels change.

There are five events that can occur at a critical event boundary that cause a

change in the pursuer’s shadow labels as it traverses between conservative regions.

These events (appear, disappear, split, merge, and push) were mentioned earlier in

Section 2.2.

The procedure used in creating the ray extensions provides the following informa-

tion about what type of event takes place along the boundary of the extension:

(a) Ray extensions caused by an inflection at a single endpoint of an environment

edge cause appear and disappear events.

(b) Ray extensions caused by a pair of mutually visible environment vertices (where

the vertices are not part of the same environment edge) cause split and merge

events.

(c) Ray extensions caused by inflections at both endpoints of an environment edge

cause push events.

Figure 4.2 illustrates the various partitioning operations.
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Figure 4.3: An example of the Pursuit Evasion Graph for a given environment.

4.3 The Pursuit-Evasion Graph

With this information, the complete Pursuit-Evasion Graph (PEG) can be con-

structed as shown in Figure 4.3. The PEG is a directed graph composed of nodes

that contain a shadow labeling and a reference to a conservative region, where a node

exists for each possible shadow label combination for every conservative region. Its

edges are the set of critical events that occur from crossing an event boundary from

one conservative region to another. The algorithm starts at the PEG-node that con-

tains p(0) with a shadow label of 1 · · · 1. Using this node as the root of a graph search,

the algorithm uses breadth-first search to find a path to a node with a shadow label

of 0 · · · 0. This path through the PEG provides a sequence of conservative regions to
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visit. The algorithm then constructs a path through W by moving to the centroid of

each conservative region that appears in the sequence.
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Chapter 5

An Optimal Strategy for a Single Pursuer

The specific problem we consider in this chapter is a variation on the visibility-based

pursuit-evasion problem in which a single pursuer moving through a simply-connected

polygonal environment seeks to locate an unknown number of evaders, each of which

may move arbitrarily fast. The pursuer has an omni-directional field-of-view that

extends to the environment boundary.

The goal is to compute a pursuer strategy such that all evaders in the environment

lie within the pursuer’s field-of-view at some finite time as the pursuer carries out

its search strategy, or to identify when no such strategy exists. Guibas, Latombe,

LaValle, Lin, and Motwani presented a complete algorithm for this problem [27], the

details of which appear in Chapter 4. However, the authors consider only feasibility

and do not attempt to compute optimal strategies. We build upon this work by

developing an algorithm that solves the visibility-based pursuit-evasion problem by

returning a solution strategy that is optimal in the sense that it minimizes the distance

travelled by the pursuer.

We use the same decomposition and Pursuit-Evasion Graph (PEG) discussed in

Section 4.2 and Section 4.3, but our algorithm must simultaneously consider multiple

paths to each node. Each of these paths can be viewed as a tour that travels through

an ordered sequence of cell boundaries. We introduce a pruning operation to elimi-

nate suboptimal paths, and a forward search algorithm whose termination condition

guarantees that an optimal solution will be found.

The contribution of this work is a complete algorithm to generate a solution strat-
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egy that minimizes the distance traveled by the pursuer. We present simulations that

demonstrate that this algorithm succeeds in providing optimal solution strategies.

The remainder of this chapter is structure as follows. Section 5.1 formalizes the

objective. Section 5.2 introduces an algorithm for computing the shortest path that

visits a given sequence of segments in order. Section 5.3 describes an algorithm that

either returns the optimal pursuer solution strategy or is able to recognize that no

such strategy exists. Section 5.4 presents our simulations of this algorithm and a

quantitative illustration of its effectiveness.

A preliminary version of this work appears in [84].

5.1 Formalizing the Objective

For clarity we will explicitly define the time of capture for a single pursuer. Note

that Equation 5.1 is just a special case of Equation 2.1 when there is only a single

pursuer.

Definition 21. The time of capture for an individual evader following trajectory e

and a single pursuer following trajectory p is denoted as

tc(p, e) = min
{

t ≥ 0 | e(t) ∈ V
(

p(t)
)

}

. (5.1)

The pursuer’s goal is to capture the evader regardless of the evader’s trajectory.

Definition 22. A pursuer trajectory p is a solution strategy if there exists a finite

time of capture, denoted tc(p) and defined as

tc(p) = max
e

tc(p, e). (5.2)

The time tc(p) is the least upper bound for the time of capture over all valid evader

trajectories when a pursuer follows trajectory p. Let p∗ denote a solution strategy
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that minimizes this capture time:

p∗ = argmin
p

(

tc(p)
)

.

Our goal is to compute this optimal pursuer strategy p∗.

5.2 Optimal Tours of Segments

This section describes the subroutine we use to solve the subproblem of computing

the shortest path that traverses a sequence of conservative regions. This problem

requires us to do the following:

Given: A point p, and a sequence of conservative regions (c1, . . . , cn).

Compute: The shortest path that starts at p and visits the conservative

regions (c1, . . . , cn) in order.

Using the decomposition described in Section 4.2 we are guaranteed to have a

partitioning of the environment into convex conservative regions. So the subproblem

is equivalent to solving a Tour of Polygons problem where the polygons are the

conservative regions. The problem can be simplified even further by taking advantage

of one of the properties of our decomposition, namely the fact that each conservative

region boundary edge is shared with only a single corresponding conservative region.

Informally, this means that there exists only a single edge belonging to any pair of

neighboring conservative regions. This means that we can restate the problem as:
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Given: A point p, and an ordered collection of segments (s1, . . . , sn−1).

Compute: The shortest path that starts at p and visits the segments

(s1, . . . , sn−1) in order.

12
3

This is a simpler version of the Tour of Polygons problem known as a Tour of

Segments.

Definition 23. Given a point p and an ordered collection of segments (s1, . . . , sn),

the shortest path that starts at p and visits the segments (s1, . . . , sn) in order is called

a Tour of Segments (TOS).

Dror, Efrat, Lubiw, and Mitchell showed how to compute such paths in a more

general case in which the intermediate steps are polygons rather than segments [19].

We adapt this approach for the specific case of a sequence of segments.

The algorithm proceeds in two basic steps. First, we construct a series of data

structures called Shortest Path Maps (SPMs) that allow us to classify the combina-

torial structure of shortest paths that visit each segment in the tour. Second, we use

a series of point location queries on these SPMs to extract the optimal tour.

5.2.1 Shortest Path Maps

A Shortest Path Map (SPM) is a data structure used to perform shortest path queries

with the requirement that the path visit a segment s along the way. Given a start
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point p and a segment s, a SPM can be constructed which subdivides the plane

into four 2-dimensional cells, five 1-dimensional cells, and two 0-dimensional cells.

Figure 5.1 shows an example. The key idea is that all shortest paths starting from p

to all points in one of the aforementioned cells will have an equivalent combinatorial

structure.

SPM: 0-dimensional cells The two 0-d cells in a SPM correspond to the two

endpoints of segment s, left(s) and right(s).

SPM: 1-dimensional cells There are five 1-d cells in a SPM denoted as A, B,

C, D, and E. The 1-d cells are constructed from segment s and the start point p.

One of these 1-d cells is an open line segment and corresponds to s (excluding the

endpoints) whereas the four remaining 1-cells are all open rays, two originating from

left(s) and two originating from right(s). The following describe each of the 1-d cells:

line segment A segment s

ray B

Upper Left Ray

a ray originating from left(s) (the left endpoint of s) in the

direction left(s)− p

ray C

Lower Left Ray
a reflection of ray B over the line segment s

ray D

Upper Right Ray

a ray originating from right(s) (the right endpoint of s) in

the direction right(s)− p

ray E

Lower Right Ray
a reflection of ray D over the line segment s

SPM: 2-dimensional cells There are four 2-d cells in a SPM that are separated

by the 1-d cells. The following describes which 1-cells form the boundary of our 2-cells.
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Figure 5.1: A single Shortest Path Map. These four rays and one segment subdivide
the plane into regions with combinatorially equivalent shortest paths.

region R1
is the region of the plane between ray B, left(s), and ray

C.

region R2
is the region of the plane between ray B, left(s), segment

A, right(s), and ray D.

region R3
is the region of the plane between ray D, right(s), and ray

E.

region R4
is the region of the plane between ray C, left(s), segment

A, right(s), and ray E.

5.2.2 Queries in a Shortest Path Map

Using this structure, and given a query point q, we can compute the shortest path from

p to q via s, as shown in Figure 5.2. There are four general cases which correspond

to the 2-d cells in of our SPM.

(a) If q is in region R1, then the shortest path from p to q via s is a “left turn” at

the left endpoint of s.

(b) If q is in region R2, then the shortest path from p to q via s is to go “through” s

directly to q.
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Figure 5.2: The SPM for the first segment s divides the plane according to the
combinatorial structure of the shortest path from p to s to a query point q.

(c) If q is in region R3, then the shortest path from p to q via s is a “right turn” at

the right endpoint of s.

(d) If q is in region R4, then the shortest path from p to q via s is to “bounce” off of

s.

We have described the procedure for creating an single SPM, however when com-

puting multiple SPMs for a sequence of segments we will need a more general con-

struction that has two start points pL and pR which are determined by point location

queries in the previous SPMs, as shown in Figure 5.3a. The construction is similar

to the construction of a single SPM as described above, except that rays B and C

are constructed using pL, whereas rays D and E are constructed using pR.

Algorithm 1 shows the process for selecting these two start points. Throughout

we use a point-location subroutine called Locate that takes as input the index of a
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specific SPM and a query point q, and returns the k-d cell containing q in that SPM.

The idea is to recurse backward through the previously constructed SPMs until we

reach a left or right turn. The intuition is that these left and right turns are points

that are known with certainty to lie on the ToS; in contrast, for through or bounce

steps, additional segments may change that portion of the ToS. Figure 5.3b illustrates

this process.

Algorithm 1 SelectStartPoint(i, q)

Input: An index i for a specific SPM and a query point q

1: if i = 0 then
2: return p
3: end if

4: r ←Locate(i− 1, q)
5: switch ( r )
6: case R1: B : C :
7: return left(si−1)

8: case R2: A : left(s) : right(s) :
9: return SelectStartPoint(i− 1, q)

10: case R3: D : E :
11: return right(si−1)

12: case R4 :

13: return SelectStartPoint
(

i− 1, Reflect(q, si−1)
)

14: end switch

5.2.3 Extracting the Optimal Tour of Segments

The final step of our ToS algorithm is to extract the complete optimal tour using the

SPMs described above. The algorithm begins by computing the set of intersection

points between sn and all of the SPMs. This produces a subdivision of sn into a col-

lection of O(n) subsegments. Note that, due to our construction of the subsegments,

each subsegment is fully contained in a single region of each SPM. For each subseg-

ment we locate the largest i for which the subsegment is in either the left or right
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Figure 5.3: Computing the Shortest Path Map for segment si depends on the Shortest
Path Map for segment si−1.

region of the SPM for si. Then we construct the complete path by executing Ex-

tractPath(i− 1, left(si)) or ExtractPath(i− 1, right(si)) respectively, appended

with the shortest direct path from that point to the subsegment, with appropriate

reflections for bounce regions along the way from si to the subsegment of sn. If there

is no such i, the technique is similar, but uses the start point p instead, treating it

as a degenerate segment. Pseudocode for the path extraction for each candidate can

be found in Algorithm 2; the intuition is to traverse backward through the SPMs to

p, adding a new edge to the path at each left, right, and bounce event. In this way,

each subsegment generates a candidate path, and the ToS algorithm simply selects

the shortest from among these candidate paths.

5.3 Algorithm Description

This section introduces our algorithm for optimal VBPE. We begin with a cell decom-

position of the environment into conservative regions to compute the entire PEG (Sec-

tion 5.3.1). We than provide a characterization of solution strategies (Section 5.3.2)

before we introduce our algorithm. Starting from an empty sequence, we maintain

a priority queue which stores sequences of PEG-nodes. The priority queue orders
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Algorithm 2 ExtractPath(i, q)

Input: A SPM index i, and a query point q
Data: A list tour which stores points along our the optimal tour

1: if i = 0 then
2: tour .insert(startpt)
3: return tour
4: end if

5: r ← Locate
(

i, q
)

6: switch ( r )
7: case R1: B : C :

8: tour ← ExtractPath
(

i− 1, left(si)
)

9: return tour .insert
(

left(si−1)
)

10: case R2: A : left(s) : right(s) :

11: tour ← ExtractPath
(

i− 1, q
)

12: case R3: D : E :

13: tour ← ExtractPath
(

i− 1, right(si)
)

14: return tour .insert
(

right(si−1)
)

15: case R4 :
16: reflectpt ← Reflect(q, si) ⊲ reflect point across segment

17: tour ← ExtractPath
(

i− 1, r
)

18:

19: ⊲ calculate “bounce” point
20: bouncept ← LineIntersection(si, (r, tour .back())
21: return tour .insert(bouncept)

22: end switch
23:

24: return tour

the sequences by the length of the tour of segments. Using this priority queue, the

algorithm performs a forward search to construct a complete solution strategy. Sec-

tion 5.3.3 presents the details of this forward search. As the search progresses, it

becomes necessary to perform a pruning operation. The details of the pruning oper-

ation(s) and an accompanying dominance relation appear in Section 5.3.4.
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5.3.1 Cell Decomposition and Pursuit-Evasion Graph

We use the technique of Guibas, Latombe, LaValle, Lin, and Motwani [27], described

in Chapter 4, to perform a cell decomposition of W into conservative regions. Atop

this decomposition, we compute the PEG, which has one node for each unique se-

quence of gap labels at each conservative region.

5.3.2 Solution Sequences

In this section, we characterize solution strategies in terms of the sequences of con-

servative region boundary edges that are crossed. Using this characterization our

algorithm will be able to discard many suboptimal sequences.

First, we can make a connection between the concept of a solution strategy for the

pursuer and the sequence of conservative region edges crossed by the pursuer while

executing that strategy.

Theorem 1. Let γ denote a solution strategy, and let (s1, . . . , sn) denote the sequence

of conservative region boundary edges crossed by γ. Then any other pursuer trajectory

γ′ that crosses (s1, . . . , sn) in the same order without crossing any other boundaries

is also a solution strategy.

Proof. Notice that γ and γ′ must traverse same sequence of conservative regions. But

because those regions are conservative, the gap labels achieved by γ and γ′ remain

identical at each conservative region in the sequence. Therefore γ′ reaches, as does

γ, a PEG-node whose shadow labels are all 0, and γ′ is a solution strategy.

Because of the connection between solution strategies and segment sequences es-

tablished by Theorem 1, our algorithm maintains, for each PEG-node N , a collection

of segment sequences known to reach N .

Note the pursuer can only follow such a segment sequence if each successive pair

of segments lies on a single conservative region. Specifically, we require that for any
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Algorithm 3 ForwardSearch(p)

Input: a start point p, a pruning unary operator prune
Data: a priority queue pq for sequences of PEG-nodes ordered by length of the ToS
Data: segment sequences are denoted as ŝ = (s1, . . . , sn)

1: pq.insert
(

GetRoot(p)
)

⊲ start with single contaminated node
2: while not pq.empty() do
3: ŝ ← pq.top() ⊲ top sequence in the pq

4: sn ← last(ŝ) ⊲ PEG-node reached by following sequence
5: if label(sn) = 0 · · · 0 then ⊲ test for a solution
6: return ŝ

7: end if

8:

9: ⊲ Outgoing directed edges from PEG-node
10: for each out in OutgoingNodes(sn) do

11: newseq ← AppendToSequence(ŝ, out) ⊲ append sequence
12: if not Prunable(newSeq) then

13: pq.insert(newSeq) ⊲ add new PEG-node sequence to pq

14: end if

15: end for
16: end while
17:

18: return NO SOLUTION

sequence (s1, . . . , sn) stored at a PEG-node N , we have that si and si+1 lie on the

same conservative region, for each i = 1, . . . , n − 1, and sn lies in the conservative

region corresponding to the node N . We call such a sequence a valid sequence for N .

If there exists a solution strategy that passes through a valid sequence, we call this

sequence a solution sequence.

5.3.3 The Forward Search

Our planner to compute an optimal solution strategy uses a forward search ap-

proach [47]. We maintain a priority queue that stores sequences of PEG-nodes that

correspond to a path through the PEG, ordered by the length of the ToS. Initially

the priority queue is empty, but as we begin our search we can execute a query called
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GetRoot that returns the PEG-node which corresponds to the pursuer’s initial

state. This node will have a shadow label that corresponds to being fully contam-

inated (1 · · · 1). We use the node returned by the GetRoot query as the root of

our search (Algorithm 3 Line 1). Once our search is rooted (root node added to the

priority queue) we can begin our search in earnest. At each iteration, the sequence

ŝ = (s1, . . . , sn) at the head of the priority queue will correspond to a path from the

root PEG-node to the current PEG-node sn. New sequences are generated by iter-

ating over all of sn’s outgoing directed edges (Algorithm 3 Line 10) and appending

the target of the directed edge to the current sequence (Algorithm 3 Line 11). If the

resulting sequence is not Prunable then it is added to the priority queue and the

search continues.

The termination conditions for our algorithm are twofold. First, if the priority

queue becomes empty, the search terminates and reports that “No Solution” exists.

Second, if the head of our priority queue ever corresponds to a PEG sequence that

reaches a PEG-node whose shadow label is “all clear” (0 · · · 0), then we know that

no additional node expansions will generate a shorter solution strategy, so the search

terminates successfully.

We know that the returned solution is an optimal solution strategy because the

termination condition for the search behaves in such a way that once a PEG sequence

which corresponds to a solution strategy appears at the top of the priority queue we

return immediately. Since the priority queue is ordered according to the sequences

ToS’s we are assured that there does not exist another PEG sequence that also corre-

sponds to a solution strategy whose tour is shorter. A detailed example that employs

our algorithm appears in Appendix B.

Up to this point, we have been purposefully vague as to the implementation of

the Prunable operation from Algorithm 3 Line 12. The next section goes into

more detail about this operation and presents a dominance relation for sequences of
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PEG-nodes that can be utilized to prune suboptimal paths during the forward search.

5.3.4 Pruning and Path Dominance

This section delves more deeply into the details surrounding the Prunable operation

which determines whether a PEG sequence is added to our priority queue during

the forward search. We discuss five different pruning strategies that can be used

independently or in conjunction with one another to form the Prunable operation

found in Algorithm 3.

Naïve approach – No pruning

The naïve approach to implementing the forward search is to ignore the concept of

pruning altogether and to just add any PEG sequence to the priority queue. The

UnavailingPruning pruning strategy which appears in Algorithm 4 behaves in

this manner. However, this approach has the critical downfall of not progressing

beyond the first conservative region boundary edge. The following claim and the

accompanying discussion illustrate why this occurs.

Claim 1. If Prunable is equivalent to UnavailingPruning, then the forward

search will never progress beyond the first encountered conservative region boundary

edge.

Proof. Suppose we have the following: a forward search which begins in PEG-node

q at point p. PEG-node q corresponds to a convex conservative region with k sides

where k ≥ 3. Without loss of generality we say that edge e1 is a distance of 1 away

from point p and edges e2 . . . ek are a distance of at least 1 + ǫ away from p where

ǫ > 0, as seen in Figure 5.4. When the single element sequence q is expanded there

are k new sequences added to the priority queue. The next sequence to appear at

the front of the priority queue will be r̂ = (q, r), where r is a PEG-node reached by
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1

p

critical boundary Sequences of even length Sequences of odd length

Figure 5.4: The scenario that occurs when the UnavailingPruning strategy is
used. Initially the pursuer must travel to the closest critical boundary edge. Then
for sequences of even length the pursuer will be in the blue conservative region. For
sequences of odd length, the pursuer will be in the green conservative region.

Algorithm 4 UnavailingPruning

Input: a sequence of PEG-nodes S = {s1 . . . sk}

1: function prunable(S)
2: return false
3: end function

travelling from q and crossing the critical boundary associated with e1. This sequence

has a cost of 1. Similar to node q, node r corresponds to a convex conservative region

with j sides where j ≥ 3. We already know that the cost of getting to node r via

edge e1 is 1. The cost to reach any other edge will be some positive value greater

than 1. So during the expansion phase a three element sequence will be generated

ŝ = (q, r, s) that has a cost of 1 which is smaller than all of the preexisting two-element

sequences and the newly generated three-element sequences. This sequence is unique

because the conservative region that corresponds to q is the same conservative region

that corresponds to s. At this point it is fairly straightforward to show that at each

successive iteration the sequence that appears at the top of the priority queue will

reside either in the conservative region corresponding to q (odd length sequences) or

the conservative region corresponding to r (even length sequences) and will have a

cost of 1.
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Algorithm 5 CycleCheckPruning

Input: a sequence of PEG-nodes S = {s1 . . . sk}

1: function prunable(S)
2: for each si ∈ S , i 6= k do
3: if label(si) = label(sk) then

4: return true
5: end if

6: end for

7: return false
8: end function

Algorithm 6 RegressPruning

Input: a sequence of PEG-nodes S = {s1 . . . sk}

1: function prunable(S)
2: for each si ∈ S , i 6= k do
3: if label(si) ≫ label(sk) then

4: return true
5: end if

6: end for

7: return false
8: end function

Minimal pruning

The previous section demonstrated the potential pitfall that can occur if PEG se-

quences aren’t pruned. This section details some pruning strategies that ensures

progress is made during the forward search. Recall the oscillatory behavior that was

shown to occur when a pursuer reaches a critical boundary edge. The simple act of

oscillating between a boundary segment is not in and of itself enough to prune a se-

quence as it may legitimately lead to previously unencountered PEG-nodes. However,

we can show that after at most three consecutive crossings (Tables 5.1, 5.2, and 5.3)

the sequence will begin to revisit PEG-nodes that have appeared earlier in the se-

quence. This essentially boils down to checking for a cycle within the PEG sequence.

A pruning strategy that performs this task appears in Algorithm 5. This pruning
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Table 5.1: Table that corresponds to a pursuer making repeated crossings over an
Appear/Disappear event boundary. Scenarios 1 and 2 consider when a disappear
event occurs first whereas Scenario 3 describes what occurs when an appear event
occurs first.

Scenario 1
(Initially Contaminated)

Scenario 2
(Initially Clear)

Scenario 3
(Initially Empty)

Initial 1 0 empty

Action Disappear Disappear Appear
Label empty empty 1
Action Appear Appear Disappear
Label 0 0 empty
Action Disappear
Label empty

technique can be extended one step further by not only checking for cycles, but also

checking to make sure the search is not regressing by visiting a PEG-node whose

shadow label is dominated (Section 2.2.1) by a PEG-node that appears earlier in

the sequence. A pruning strategy that performs this task appears in Algorithm 6,

The general idea is that if by following a path that corresponds to the current PEG

sequence we end up “losing” information, then a suboptimal decision on expansion

was made at some previous point in the construction of the sequence.

Aggressive Pruning – Removing Suboptimal paths

Notice that there are an infinite number of PEG sequences which correspond to valid

segment sequences. To account for this, we introduce a notion of sequence dominance

that we use to construct more aggressive pruning strategies in order to expedite the

forward search due to pruning suboptimal paths.
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Table 5.2: Table that corresponds to a pursuer making repeated crossings over a
Split/Merge event boundary. Scenarios 4-7 detail the various PEG-nodes that are
visited when the merge event occurs first.

Scenario 4
Clear
Clear

Scenario 5
Clear

Contaminated

Scenario 6
Contaminated

Clear

Scenario 7
Contaminated
Contaminated

Start 00 01 10 11

Action Merge Merge Merge Merge
Label 0 1 1 1
Action Split Split Split Split
Label 00 11 11 11
Action Merge Merge
Label 1 1

Table 5.3: Table that corresponds to a pursuer making repeated crossings over a
Split/Merge event boundary. Scenarios 8 and 9 consider when a merge event occurs
first.

Scenario 8
(Initially Contaminated)

Scenario 9
(Initially Clear)

Start 1 0

Action Split Split
Label 11 00
Action Merge Merge
Label 1 0

Definition 24. A segment sequence r̂ = (r1, . . . , rm) dominates a segment sequence

ŝ = (s1, . . . , sn) if:

(a) The tours of segments from the start point p through r̂, and from the start point

p through ŝ both terminate in the same conservative region.

(b) For any segment sequence â = a1, . . . , ak for which (r̂, â) and (ŝ, â) are valid

sequences, we have

ℓ
(

ToS(r̂, â)
)

≤ ℓ
(

ToS(ŝ, â)
)

,

in which ℓ denotes the length of a path.
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(c) The shadow label of the PEG-node reached by r̂ dominates the shadow label of

the PEG-node reached by ŝ.

A conservative condition for stating that part (b) of Definition 24 is satisfied for

segment sequences r̂ = (r1, . . . , rm) and ŝ = (s1, . . . , sn) is to show that

ℓ
(

ToS(r̂)
)

+ MaxDistance(rm, sn) ≤ ℓ
(

ToS(ŝ)
)

.

This condition is conservative because MaxDistance(rm, sn) returns the maximum

distance between two segments rm and sn, so the above inequality tests for worst-case

behavior where the ToS for r̂ arrives at rm at a maximal distance from sn which is

the entry point for ŝ into the conservative region. This pruning strategy appears in

Algorithm 7.

Algorithm 7 ConservativePruning

Input: a sequence of PEG-nodes S = {s1 . . . sk}
Data: a data structure nd that maintains a list of non-dominated sequences that

reach a given conservative region

1: function prunable(S)
2: for each R ∈ getSequences(nd, sk) do ⊲ R = {r1 . . . rj}

3: costR ← TourOfSegments(R)
4: dist ← maxDistance(rj , sk)
5: costS ← TourOfSegments(S)
6: if label(rj)≫ label(sk) then ⊲ R dominates S

7: if costR + dist < costS then ⊲ Path through R is always preferable
8: return true
9: end if

10: else if label(sk)≫ label(rj) then ⊲ S strictly dominates R

11: if costS + dist < costR then ⊲ Path through S is always preferable
12: nd.remove(R) ⊲ Remove R from the “non-dominated” list
13: end if

14: end if

15: end for

16: return false
17: end function

54



A less conservative (and therefore more “Medial” in terms of pruning potential)

condition for stating that part (b) of Definition 24 is satisfied for segment sequences

r̂ = (r1, . . . , rm) and ŝ = (s1, . . . , sn) is to show that

ℓ(ToS
(

r̂, sn, â)
)

≤ ℓ
(

ToS(ŝ, â)
)

.

which is equivalent to

ℓ
(

ToSToPoint(r̂, left(sn)
)

≤ ℓ
(

ToS(ŝ)
)

and

ℓ
(

ToSToPoint(r̂, right(sn)
)

≤ ℓ
(

ToS(ŝ)
)

.

The intuition is that by performing the TosToPoint subroutine at the endpoints of

sn we can find the farthest point on s from which to perform our shortest path query.

This occurs because the farthest distance between a point and a line segment occurs

at one of the endpoints. An implementation of this strategy appears in Algorithm 8.

A more Aggressive (in terms of pruning potential) strategy can be achieved by

adhering to a more strict application of the condition stated in part (b) of Defini-

tion 24. Recall, that if part (a) of Definition 24 is satisfied then rm and sn are known

to be boundary segments of the same conservative region. It follows that any future

sequence of segments â = (a1, . . . , ak) must begin in same conservative region that

r̂ and ŝ terminate in. This effectively means that rm, sn, and a1 are all boundary

edges of the same conservative region. Therefore, we can use the following relations

to satisfy the necessary condition in part (b) of Definition 24 to test for dominance

between segment sequences r̂ = (r1, . . . , rm) and ŝ = (s1, . . . , sn)

ℓ
(

ToSToPoint(r̂, left(a1)
)

≤ ℓ
(

ToSToPoint(ŝ, left(a1))
)

and

ℓ
(

ToSToPoint(r̂, right(a1)
)

≤ ℓ
(

ToSToPoint(ŝ, right(a1))
)

.
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Algorithm 8 MedialPruning

Input: a sequence of PEG-nodes S = {s1 . . . sk}
Data: a data structure nd that maintains a list of non-dominated sequences that

reach a given conservative region

1: function prunable(S)
2: for each R ∈ getSequences(nd, sk) do ⊲ R = {r1 . . . rj}
3: if label(rj)≫ label(sk) then ⊲ R dominates S

4: seg ← BoundarySegment(sk−1 , sk) ⊲ segment between sk−1 with sk

5: rcostp1 ← TourOfSegmentsToPoint(R, seg.p1 )
6: rcostp2 ← TourOfSegmentsToPoint(R, seq.p2 )
7: costS ← TourOfSegments(S)
8:

9: ⊲ Path through R is always preferable
10: if

(

(rcostp1 < costS) and (rcostp2 < costS)
)

then

11: return true
12: end if

13: else if label(sk)≫ label(rj) then ⊲ S strictly dominates R

14: seg ← BoundarySegment(rj−1 , rj) ⊲ segment between rj−1 with rj

15: scostp1 ← TourOfSegmentsToPoint(S , seg.p1 )
16: scostp2 ← TourOfSegmentsToPoint(S , seq.p2 )
17: costR ← TourOfSegments(R)
18:

19: ⊲ Path through S is always preferable
20: if

(

(scostp1 < costR) and (scostp2 < costR)
)

then

21: nd.remove(R) ⊲ Remove R from the “non-dominated” list
22: end if

23: end if

24: end for

25: return false
26: end function

56



The intuition is that by performing the TosToPoint subroutine on every potential

future segment a, we can test to see if sequence r̂ will always be preferred to sequence

ŝ. Similar to the reasoning behind the Medial Pruning, we check both endpoints

because the farthest distance between a point and a line segment occurs at one of

the endpoints. This effectively means that sequence r̂ must have a shorter tour to

both endpoints of any potential future segment a for it to dominate sequence ŝ. An

implementation of this strategy appears in Algorithm 9.

The following observation establishes a connection between this dominance rela-

tion and optimal solution sequences.

Observation 1. Let r̂ = (r1, . . . , rm), â = (a1, . . . , ak), ŝ = (s1, . . . , sn), such that

(r̂, â) and (ŝ, â) are valid solution sequences. If r̂ dominates ŝ, then (ŝ, â) is not the

optimal solution strategy.

As a result of this observation, our algorithm prunes any dominated sequence that

is generated during the course of the search. The pruning operation is called when

a new sequence is generated during node expansion. For a sequence to be added, it

must not be dominated by any sequence belonging to a PEG-node that satisfies part

(c) of Definition 24.

5.4 Results

In this section, we provide simulated results for our algorithm and compare them to

the complete algorithm presented by GL3M and a version of the GL3M strategy that

undergoes post-processing smoothing (Tour of Segments). We ran our simulations in
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Algorithm 9 AggressivePruning

Input: a sequence of PEG-nodes S = {s1 . . . sk}
Data: a data structure nd that maintains a list of non-dominated sequences that

reach a given conservative region

1: function prunable(S)
2: for each R ∈ getSequences(nd, sk) do ⊲ R = {r1 . . . rj}
3: if label(rj)≫ label(sk) then ⊲ R dominates S
4: for each seg ∈ CRBoundarySegments(sk) do

5: rcostp1 ← TourOfSegmentsToPoint(R, seg.p1 )
6: rcostp2 ← TourOfSegmentsToPoint(R, seq.p2 )
7: scostp1 ← TourOfSegmentsToPoint(S , seg.p1 )
8: scostp2 ← TourOfSegmentsToPoint(S , seq.p2 )
9: ⊲ Path through R is not preferable for all potential segments

10: if
(

(rcostp1 > scostp1 ) or (rcostp2 > scostp2 )
)

then

11: Continue to next R

12: end if

13: end for

14: ⊲ Path through R is always preferable
15: return true
16: else if label(sk)≫ label(rj) then ⊲ S strictly dominates R

17: for each seg ∈ CRBoundarySegments(sk) do

18: rcostp1 ← TourOfSegmentsToPoint(R, seg.p1 )
19: rcostp2 ← TourOfSegmentsToPoint(R, seq.p2 )
20: scostp1 ← TourOfSegmentsToPoint(S , seg.p1 )
21: scostp2 ← TourOfSegmentsToPoint(S , seq.p2 )
22: ⊲ Path through S is not preferable for all potential segments
23: if

(

(scostp1 > rcostp1 ) or (scostp2 > rcostp2 )
)

then

24: Continue to next R

25: end if

26: end for

27: ⊲ Path through S is always preferable
28: nd.remove(R) ⊲ Remove R from the “non-dominated” list
29: end if

30: end for

31: return false
32: end function
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three separate environments:

Figure 5.5

This environment has 57 conservative regions, with a total of 21, 806

PEG-nodes. The number of shadows per conservative region is at

most 11.

Figure 5.6

This environment has 213 conservative regions, with a total of

26, 620 PEG-nodes. The number of shadows per conservative re-

gion is at most 11.

Figure 5.7

This environment has 125 conservative regions, with a total of

35, 530 PEG-nodes. The number of shadows per conservative re-

gion is at most 10.

Table 5.4 shows the results of these simulations. A valuable resource that does not

show up in Table 5.4 is computation time. The runtime of our simulations is domi-

nated by the visibility cell decomposition and construction of the PEG. In our simu-

lations the optimal strategy took slightly longer (handful of seconds) to generate the

optimal strategy compared to the original GL3M algorithm and the GL3M algorithm

with the Tour of Segments post-processing. Each of our simulations took less than a

minute for cell decomposition, PEG construction, and the search.

For the environment that appears in Figure 5.5, the pursuer motion strategy

returned by our algorithm bounces off of the rightmost diagonal and then heads

toward the nook in the top-left corner. The motion strategy returned by the GL3M

algorithm gravitates towards the southern portion of the environment to escape the

complex conservative region cells in the interior of the environment. There are a large

amount of cells that have a visibility event along four boundary edges. There are a few

larger cells under the tooth closest to the nook. These large cells with fewer transitions

explain the difference between the two paths. The ToS subroutine improves upon the

jaggedness that exists in the GL3M strategy, but does not completely account for the

difference that exists with the optimal path.
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Table 5.4: The simulation results for the GL3M algorithm, GL3M with post-
processing ToS path smoothing, and our optimal algorithm.

Environment
GL3M

path length
(raw)

GL3M
path length

(ToS)

Optimal
path length

Figure 5.5 34.3705 22.3838 15.7671

Figure 5.6 47.9996 34.1259 31.3484

Figure 5.7 26.8714 24.066 17.8706

For the environment that appears in Figure 5.6, the pursuer motion strategy

returned by our algorithm initially seems very similar to both the raw and smooth

GL3M strategies. However, in this case the Tour of Segments subroutine drastically

improved the quality of the solution from the raw strategy. This environment has the

largest disparity in runtime ( 8 seconds) between the GL3M algorithm and our optimal

strategy. It’s apparent that the large number of very small conservative regions on

the interior has an effect on the runtime of our algorithm. This leads to interesting

questions about the ability to provide some kind of approximation guarantees with

the benefit of decreased runtime at the expense of optimality.

The environment in Figure 5.7 demonstrates how poorly the GL3M algorithm can

perform as it goes about expanding according to a Breadth-First Search strategy.

The post-processing smoothing subroutine does very little to improve the quality of

the solution and it is apparent (triangle inequality) that the strategy returned by our

algorithm is far superior to both incarnations of the GL3M algorithm.

5.5 Concluding Remarks

While the algorithm presented by Guibas, Latombe, LaValle, Lin, and Motwani min-

imizes the number of PEG-nodes visited in a solution strategy, this is not a sufficient

condition for generating optimal solution strategies. For comparison we compared our

solution strategies against not only the solution strategies from the GL3M algorithm,

60



but also to the solution strategies from the GL3M algorithm when applied with a

post-processing step to compute the optimal strategy that visits the same sequence

of conservative regions. Our simulation results clearly indicate that the optimal solu-

tion strategy is not necessarily a solution strategy that visits the fewest PEG-nodes.

As mentioned above in Section 5.4 more work into approximation algorithms that

relax the optimality guarantee but require fewer computation cycles is an excellent

avenue for future work.
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(a) Visibility Cell Decomposition (b) Optimal Strategy

(c) GL3M strategy (d) ToS optimized GL3M

Figure 5.5: An environment (5.5a) where the optimal pursuer strategy (5.5b) returned
by our algorithm looks vastly different from both the original GL3M strategy (5.5c)
and the GL3M strategy optimized using a ToS (5.5d).
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(a) Visibility Cell Decomposition (b) Optimal Strategy

(c) GL3M strategy (d) ToS optimized GL3M

Figure 5.6: An environment (5.6a) where the optimal pursuer strategy (5.6b) returned
by our algorithm looks fairly similar to both the original GL3M strategy (5.6c) and
the GL3M strategy optimized using a ToS (5.6d).
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(a) Visibility Cell Decomposition (b) Optimal Strategy

(c) GL3M strategy (d) ToS optimized GL3M

Figure 5.7: An environment (5.7a) where the optimal pursuer strategy (5.7b) returned
by our algorithm looks vastly different from both the original GL3M strategy (5.7c)
and the GL3M strategy optimized using a ToS (5.7d).
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Chapter 6

A Complete Algorithm for Multiple

Pursuers

In this chapter we consider a variation on the visibility-based pursuit-evasion problem

presented in [27] that utilizes a team of pursuers, as seen in Figure 6.1. The pur-

suers move through a polygonal environment seeking to locate an unknown number

of evaders, each of which may move arbitrarily fast. The pursuers have an omni-

directional field-of-view that extends to the environment boundary. The goal is to

compute a joint strategy for the pursuers, or identify when such a strategy does not

exist.

The main contribution of this work is a complete algorithm for multiple pursuer

visibility-based pursuit-evasion that generates a solution strategy in the pursuers’

joint configuration space. Our algorithm is a generalization of the previously-known

complete algorithm for the case of a single pursuer (Chapter 4). Our algorithm iden-

tifies the different critical boundaries that occur when multiple pursuers are used

during the search. Figure 6.1 demonstrates that a direct application of the decom-

position used by GL3M is insufficient because it does not account for the interaction

amongst pursuers.

Similar to the GL3M algorithm for a single pursuer, we start by decomposing the

pursuers’ joint configuration space into conservative regions. This decomposition of

the pursuers’ joint configuration space reduces the problem of finding a joint pursuer

solution strategy to a discrete graph search. This decomposition is based on an
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Figure 6.1: A configuration of three robots searching an environment. The shaded
regions represent areas hidden to the pursuers.

analysis of the critical boundaries (Section 6.1) that occur when multiple pursuers are

utilized in the search. We then provide an algorithm that uses Cylindrical Algebraic

Decomposition (Appendix A) over these critical boundaries to produce a solution, or

to conclude that no solution exists (Section 6.2).

A preliminary version of this work appears in [85].

6.1 Critical Boundaries

In this section, we provide a foundation for dividing W n into conservative regions—

within which shadow events cannot occur—by describing a complete set of critical

boundaries at which such events can occur. Specifically, we examine the four different

types of vertices that can compose the boundary of a shadow and establish critical

boundaries where those vertices can change. The key idea is that each shadow can

be characterized by its set of vertices, and that no shadow events can occur if the

vertex set of every shadow region remains unchanged.

The vertices of every shadow can be classified into four types, as shown in Fig-

ure 6.2, which we call Types I, II, III, and IV.

• Type I vertices are environment vertices for which the adjacent edges in the
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Figure 6.2: An environment with two pursuers illustrating the different types of
shadow vertices.

shadow boundary lie along ∂W . Informally, these are vertices of the environ-

ment that no pursuer can see.

• Type II vertices are environment vertices, at which one of the two adjacent edges

in the shadow boundary lies along ∂W and the other lies along an occlusion

ray. Informally, these are vertices that are visible to some pursuer, but that

block that pursuer’s view of some other part of W .

• Type III vertices are the endpoints of occlusion rays. Each lies on the interior

of an edge of ∂W .

• Type IV vertices occur at intersections between occlusion rays.

We use the definition of conservative region from Section 4.2 to argue that just

by thinking about when two shadow vertices can merge—and the inverse split events

where a shadow vertex can split into two shadow vertices—we have identified all

the ways in which a shadow can change. By definition, a region is conservative if it

generates no shadow events, which means that the cardinality for the vertex set of the

shadow stays the same. It follows that a shadow can only gain or lose shadow vertices

when a pursuer crosses the boundary between conservative regions. By describing an

exhaustive list of how two shadow vertices can merge at these critical boundaries, we
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Table 6.1: The ten possible shadow vertex merges can be grouped into four general
cases.

Event Types Critical boundary occurs when. . . Details

I-III, II-III, II-IV pursuer colinear with two ∂W vertices Sec. 6.1.1

III-III, III-IV occlusion rays intersect on ∂W Sec. 6.1.2

IV-IV three occlusion rays share an intersection Sec. 6.1.3

I-I, I-II, II-II, I-IV never Sec. 6.1.4

p

I

III

Before

p

At critical boundary

p

III

After

Figure 6.3: Type I and Type III vertices merge into a Type III vertex.

have identified all the ways in which a shadow can lose vertices. A inverse method of

gaining vertices is the result of split events. Note that when a shadow has less than

three shadow vertices, the shadow disappears. Likewise, a shadow appears when

there are at least three shadow vertices.

The next step is to characterize the sets of joint configurations at which such

vertex merges can occur. Considering all pairs of vertex types, there are ten distinct

possible types of merges. We’ll consider each of these ten cases. Fortunately, the

ten cases can be grouped into four general categories that can be analyzed in similar

ways. Table 6.1 summarizes the merge types.

6.1.1 Merges Resulting from Pursuers Colinear with a Pair

of Environment Vertices

First, we argue that merge types I-III, II-III, and II-IV occur only when some pursuer

is colinear with some pair of environment vertices.
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Figure 6.4: A Type II vertex merges with a Type III vertex, eliminating the shadow.

I-III merges

Consider the case in which a Type I and Type III vertex merge. This situation

requires a vertex of ∂W to be coincident with the endpoint of an occlusion ray ∂W .

Figure 6.3 shows how this can occur. On one side of this boundary, the shadow has

a Type I vertex adjacent to a Type III vertex; on the other side, those vertices are

replaced with a single Type III vertex.

Specifically, for a Type I vertex at u = (xu, yu) and a Type III vertex owned by

pursuer p = (xp, yp) and induced by occlusion vertex v = (xv, yv), this kind of event

occurs when
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xp yp 1

xu yu 1

xv yv 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (6.1)

Treating xu, yu, xv, and yv as constants, this equation expands to a polynomial of

degree 1 in the variables xp and yp. To form the complete set of critical boundaries

of this type, we must iterate over all n choices of pursuers, and all
(

m

2

)

choices for

u = (xu, yu) and v = (xv, yv).

II-III merges

For a Type II vertex to merge with a Type III vertex, we must have an occlusion ray

of one pursuer colinear with an occluding vertex of another pursuer, as illustrated in

Figure 6.4. This requires a pursuer p to be colinear with the two occluding vertices
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Figure 6.5: A Type II vertex merges with a Type IV vertex, creating a Type III
vertex.

u = (xu, yu) and v = (xv, yv). Thus, the critical boundary polynomial is identical

to Equation 6.1; the only difference is that, in this case, both u = (xu, yu) and

v = (xv, yv) must be reflex (i.e. non-convex) vertices.

II-IV merges

Likewise, for a Type II vertex to merge with a Type IV vertex, two occlusion rays

from two different pursuers must intersect at the occluding vertex of one of those rays.

See Figure 6.5. As in the previous two cases, this can occur only when a pursuer p

is colinear with two vertices u = (xu, yu) and v = (xv, yv) of ∂W , and Equation 6.1

defines the critical boundary.

Number of Polynomials

For a fixed pursuer, the total number of critical event polynomials for these three

merge types is at most
(

m

2

)

, yielding a maximum of
(

n

1

)(

m

2

)

polynomials across all n

pursuers.

6.1.2 Merges Resulting from Two Occlusion Rays Intersect-

ing on ∂W

Next we consider merge types III-III and III-IV, and argue that these events occur

when occlusion rays from two distinct pursuers meet precisely on the environment

boundary.
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Figure 6.6: A Type III vertex merges with a Type III vertex creating a Type IV
vertex.

p q

IIIIII
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Before

p q

At critical boundary

p q

III III

After

Figure 6.7: A Type III vertex merges with a Type IV vertex, creating a Type III
vertex.

III-III merges

For a Type III vertex to merge with another Type III vertex, these two vertices must

occupy the same location along an edge of ∂W . Let p and q denote the pursuers that

own these two vertices, and let u and v denote the respective occlusion vertices that

generate the two Type III vertices. Finally, let w and z denote the endpoints of the

environment edge on which the two Type III vertices lie. Figure 6.6 illustrates this

situation.

These two vertices merge when the lines ←→pu , ←→qv , and ←→wz all share an intersection

point. This triple intersection occurs when
∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

yu − yp xp − xu xuyp − xpyu

yv − yq xq − xv xvyq − xqyv

yz − yw xw − xz xzyw − xwyz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (6.2)

The equation expands to a polynomial of degree 2 in four variables—namely xp, yp,

xq, and yq—and 8 constants.
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Figure 6.8: A Type IV vertex merging with a Type IV vertex with 2-robots.

III-IV merges

For a Type III vertex to merge with a Type IV vertex, again we need two occlusion

rays to meet on ∂W . This situation is the same as the III-III case above, except that

we are approaching from the opposite side; see Figure 6.7. As with the III-III case,

this requires three lines (two occlusion rays and one environment edge) to meet a

single point. As a result, Equation 6.2 describes the III-IV critical boundary as well.

Number of Polynomials

These types of critical boundaries are defined by a pair of mutually visible environ-

ment vertices, along with an additional environment boundary edge. Therefore, for

a fixed pair of pursuers, it can be instantiated at most
(

m

3

)

different ways. It also

depends on the positions of two different pursuers, of which there are
(

n

2

)

unique com-

binations. Therefore, in total—across both III-III and III-IV—this type of critical

boundary yields a maximum of
(

n

2

)(

m

3

)

polynomials.

6.1.3 Merges Resulting from Three Occlusion Rays Meeting

a Single Point

The final plausible merge type we consider is IV-IV. For two Type IV vertices to meet,

we must have at least three occlusion rays that share a single intersection point.

Claim 2. Two pursuers are not sufficient to produce a IV-IV merge event.
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Figure 6.9: A Type IV vertex merging with a Type IV vertex requires multiple robots
and creates a single Type IV vertex.

Proof. Assume that two-pursuers are sufficient for a IV-IV merge to occur, as il-

lustrated in Figure 6.8. For two Type IV vertices to be adjacent, the shadow edge

connecting them must be part of an occlusion ray, and without loss of generality we

say that pursuer p1 owns that occlusion ray. By definition a Type IV vertex has edges

that are occlusion rays. So p2 is the owner of two occlusion rays that intersect with

the occlusion ray of p1 creating two Type IV vertices. For a merge event to occur

the three occlusion rays must be concurrent. However the two distinct occlusion rays

originating from p2 intersect only at p2 and nowhere else. Thus two pursuers are

incapable of causing a IV-IV merge.

Thus, a IV-IV merge can occur when three distinct pursuers have occlusion rays

that meet at a single point (Figure 6.9). This is, in principle, similar to the situation

from Section 6.1.2, except that the pursuers’ movements can move all three relevant

lines (occlusion vertices for p, q, and r are denoted by u, v, and w respectively):
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= 0.

In this equation, the x and y coordinates for each of the three relevant pursuers form 6

total variables, and the coordinates of their three occlusion vertices form 6 constants.

The expanded polynomial has degree 3.

73



p

II

p

II

I

(a) (b)

p q

I

IV

p q

II II

(c) (d)

Figure 6.10: Merge events that never occur: (a) I-I (b) I-II (c) I-IV (d) II-II.

This scenario requires three unique environment vertices to induce occlusion rays

from the pursuers, there are at most
(

m

3

)

places where this can occur. This type of

merge also requires three pursuers and there are
(

n

3

)

unique combinations of pursuers.

In total this critical boundary yields a maximum of
(

n

3

)(

m

3

)

polynomials.

6.1.4 Merges That Never Occur

Finally, we argue that the remaining four merge types can never occur.

• Merges that involve only environment vertices—that is, merges of types I-I,

I-II, and II-II—cannot occur because environment vertices do not move, and

therefore never merge with one another.

• Merges of type I-IV cannot occur because Type I and Type IV vertices are

never adjacent. Notice that, in a shadow polygon, a Type I vertex is incident to

two edges along ∂W , whereas a Type IV vertex is incident to two edges in the

interior of W . Therefore, there always exists at least one other vertex between

any Type I and Type IV pair.

74



Because these merges cannot occur, they do not generate any critical boundary poly-

nomials.

6.2 Algorithm

Armed with this complete description of the critical boundaries in W n, we can finally

describe our algorithm for multiple-pursuer visibility-based pursuit-evasion in detail.

The basic process is to use the critical boundaries to form a partition of W n into

conservative regions, to compute an adjacency graph of the full-dimensional cells in

that partition, and then to search for a sequence of adjacent conservative regions that

causes all of the shadows to be cleared.

6.2.1 Partitioning W n via Cylindrical Algebraic Decomposi-

tion

The first step of our algorithm is to compute each of the critical boundary polynomials

described in Section 6.1. This results in a collection P of O (n3m3) polynomials in the

2n variables x1, . . . , xn and y1, . . . , yn. Each of these polynomials can be constructed

in constant time, so this step takes time O (n3m3).

We then use these polynomials as input to the standard cylindrical algebraic

decomposition (CAD) algorithm [18], which generates a partition of R2n into cells

with dimensions ranging from 0 to 2n. The CAD algorithm guarantees that, within

each cell of the decomposition, the sign of each polynomial in P remains constant.

In particular, because P includes every critical boundary curve, this implies that

every cell of dimension 2n is either a conservative region of the joint free space, or an

obstacle portion of the joint configuration space.

Moreover, each cell of dimension 2n − 1 separates a pair of adjacent cells of

dimension 2n. Each (2n − 1)-cell may correspond to a shadow event, but may also
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p

Figure 6.11: An example of a critical boundary(bitangent) polynomial passing
through obstacles. Because the pursuer motion shown crosses this boundary, it moves
to a new CAD cell, even though no shadow event occurs.

exist because of the CAD algorithm’s need to form cells that are cylindrical, or may

occur due to extensions of the critical boundaries—which, in the CAD algorithm, are

treated as polynomials that do not stop at the environment boundary—beyond the

portion of the free space in which they are relevant. See Figure 6.11.

6.2.2 Computing the Adjacency Graph of the Conservative

Regions

Next, our algorithm forms an adjacency graph describing how the pursuers can move

through those conservative regions.

• Each vertex of the adjacency graph corresponds to a 2n-dimensional cell of the

CAD within the joint free space.

• Edges of the adjacency graph correspond to 2n− 1-dimensional CAD cells, and

connect vertices corresponding to conservative regions that share a portion of

their boundaries.

There are two different approaches to the construction and search of the adjacency

graph. The first [2, 46] has a multiply-exponential dependence on 2n, whereas the

second [76] takes doubly-exponential time in 2n. The exact construction and search

of the adjacency graph is beyond the scope of this dissertation, and the authors refer

the reader to the original text.
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In addition, we label each edge of the adjacency graph with the shadow events,

if any, that occur when the pursuers move between the corresponding conservative

regions. By examining the shadows before and after we can retroactively assign labels

to 2n− 1 cells that represent critical boundaries.

6.2.3 Path Generation

Finally, we can use the adjacency graph to search for a solution strategy for the

pursuers. The intuition is to search through the Multi-Pursuer Pursuit-Evasion Graph

(MP-PEG) induced by the adjacency graph.

1. Specifically, given a vertex v of the adjacency graph, let k(v) denote the number

of shadows that exist when the pursuers are within the conservative region

corresponding to v. The MP-PEG contains 2k(v) vertices for each adjacency

graph vertex v. Each such vertex is labeled with a unique binary string of

length k(v), representing one possible combination of clear and contaminated

shadow labels. The total number of MP-PEG vertices is
∑

v 2k(v).

2. A pair of MP-PEG vertices (u, v) is connected by a directed edge u→ v if

a) the adjacency graph vertices underlying u and v are connected in that

graph, and

b) the changes in shadow labels between u and v are correct, according to

the rules introduced in Section 2.2.

The intuition is that each vertex of the MP-PEG fully describes one discrete

information state that the pursuers might reach—including both their positions and

the clear/contaminated status of each shadow—and that the edges represent “actions”

that the pursuers can take to change those shadow labels.

Therefore, the final step of the algorithm is a forward search through the MP-

PEG. The search starts from the pursuers’ initial position with all of the shadows
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labeled as contaminated, and terminates at a MP-PEG vertex with all of the shadows

are labeled clear.

The forward search is done using a Breadth-first search(BFS) algorithm. The

search takes time O (V + E) where V is the number of vertices in the MP-PEG and

E is the number of edges. Since the MP-PEG is induced by the adjacency graph,

any sequence of visited MP-PEG nodes can be mapped back to the original CAD,

and the process of generating a continuous path is similar to extracting a path from

the original CAD as done in the standard Schwartz and Sharir algorithm [76]. If

the search fails to find a path, we know that a solution does not exist because BFS

performs an exhaustive search. Since by definition a MP-PEG vertex describes one

discrete information state that the pursuers might reach, the union of all MP-PEG

vertices completely describes all possible information states for the pursuers. By

conducting an exhaustive search of MP-PEG without finding a solution we conclude

that there is no possible sequence of actions that the pursuers can take through the

joint configuration space that guarantees the capture of the evader.

6.2.4 Algorithm Analysis

We begin the analysis of our algorithm by examining the individual steps of the

algorithm. The dimension of the joint configuration space is 2n. The number of

polynomials in P—which is used as input into the CAD algorithm—is the sum of the

critical boundaries and is O (n3m3). The maximum degree among the polynomials in

P is 3 (which occurs for the IV-IV merge event.)

The total running time [47] for the construction and adjacency test on our CAD

is bounded by (3 ·n3m3)O(1)n

where O (·) means that there exists c ∈ [0,∞] such that

the running time is bounded by (3·n3m3)cn

[47]. The number of cells [18,76] produced

by our CAD is O (66n+1 · (n3m3)4n) . The running time for the entire algorithm is

dominated by the the construction and adjacency test on the CAD.
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Chapter 7

A Sampling Based Algorithm for Multiple

Pursuers

Motivated by the complexity of the complete algorithm for multiple pursuer visibility-

based pursuit-evasion in Chapter 6, this chapter presents a more practical solution.

Once again we have a team of pursuers in a polygonal environment seeking to locate

an unknown number of evaders, each of which may move arbitrarily fast. The pursuers

have an omni-directional field-of-view that extends to the environment boundary. The

goal is to compute a joint strategy for the pursuers, or identify when such a strategy

does not exist.

The main contribution of this work is a probabilistically complete algorithm for

multiple pursuer visibility-based pursuit-evasion that generates a solution strategy

for the pursuers to execute (Figure 7.1) through the joint configuration space. Our

algorithm creates a graph that maintains the pursuers’ information state, and utilizes

a sample generator that we treat as a “black box” to reason about unexplored areas

in the pursuers’ joint configuration space. Our algorithm has some similarity to

the Probabilistic Road Map (PRM) algorithm [39], but differs in that our algorithm

maintains information concerning the areas of the environment where the evader

might be. The need for this additional information complicates both the update

operations for the graph and the selection of samples.

This remainder of this chapter is structured as follows. Section 7.1 introduces

a data structure that maintains a representation of the pursuers’ joint information
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Figure 7.1: A pursuer strategy generated by our algorithm. Filled circles represent
the pursuers’ initial positions and open circles represent their goal positions.

state. Section 7.2 presents an algorithm that uses the aforementioned data structure

to search for a pursuer solution strategy. Simulation results appear in Section 7.3

that show our algorithms ability to generate solution strategies for various sample

generators.

A preliminary version of this work appears in [86].

7.1 Sample-Generated Pursuit-Evasion Graph

This section introduces the primary data structure used in our algorithm. We begin by

describing the graph’s structure and also elaborate on a non-trivial graph operation.
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7.1.1 Graph Structure

The Sample-Generated Pursuit-Evasion Graph (SG-PEG) is a rooted directed graph

whose vertices represent joint pursuer configurations. A vertex in the SG-PEG con-

tains the following data:

• a joint pursuer configuration, and

• the set of non-dominated shadow labels reachable by following a path from the

root, through the graph, to that configuration.

For an edge to exist between any two vertices in the SG-PEG there must be a line

segment in W n that connects the joint pursuer configuration at the source vertex with

the joint pursuer configuration at the target vertex. Given an arc of the SG-PEG,

e = (x, y), the edge stores a mapping from the reachable shadow labels in x to the

corresponding shadow labels in y. Figure 7.2 offers a snapshot of how the SG-PEG

tracks potential evader positions between configurations (dashed lines).

The operations available to a SG-PEG graph are AddVertex and AddEdge.

These operations differ from the same operations on a standard graph because of the

book-keeping needed to keep track of the reachable shadow labels. The AddVertex

operation is trivial, but details concerning the AddEdge operation appear in the

next section.

7.1.2 Edge Creation

When a new connection is established between a source and target vertex in the SG-

PEG, the source’s reachable shadow labels are used to update the target’s reachable

labels (Algorithm 10). In this section we discuss the shadow label update criterion,

the update label subroutine, and the process of adding a new reachable label to a

vertex.
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Figure 7.2: A snapshot of the SG-PEG. Dashed red lines indicate a unique joint
pursuer configuration.

Computing a New Label

In Section 6.1, we provided a family of polynomials that identify the critical bound-

aries that indicate a change in a shadow’s composition. Although complete, the

quantity and complexity of the polynomials in this family makes the task of analyt-

ically identifying where these changes occur computationally expensive. Instead, we

update the shadow labels numerically.

The general idea is that if we partition the line segment connecting any two

joint pursuer configurations in W n into a collection of evenly spaced joint pursuer

configurations we can incrementally track the shadow changes. To ensure that all of

the shadow events are captured there must be at least one sample capable of capturing

each successive shadow event while traversing along the segment.
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Algorithm 10 AddEdge(s, t)

Input: a source vertex s and a target vertex t

1: for each label in s’s reachable set do
2: newlabel ← Update(s.jpc, label, t.jpc)
3: AddReachable(t, newlabel)
4: end for

Before During After

Figure 7.3: An illustration of the update step. Initially there are two contaminated
shadows (purple). During the Update a new label appears. At the conclusion
of the Update method, there are two shadows: a cleared shadow (green) and a
contaminated shadow (purple).

The computation of a new shadow label (Algorithm 11) takes as input two joint

pursuer configurations, a source and target, and a shadow label corresponding to the

shadow region at the source configuration. The output is the shadow label that results

from the pursuers moving from the source configuration to the target configuration

given the initial shadow label. Figure 7.3 illustrates this process. Initially, there

are two contaminated shadows. As the pursuers move to the target configuration, a

shadow appears as the pursuers move to the right (a cleared shadow). As the pursuers

reach the target configuration, the central shadow disappears.

We begin by partitioning (Algorithm 11 line 2) the segment connecting the source

and target configurations in F n into a finite collection of evenly spaced joint pursuer

configurations. We then loop through this collection of joint pursuer configurations,

updating the shadow label along the way, returning the final label of the sequence.

The process of computing the new shadow labels for our discretized segments

appears in Algorithm 11 lines 5-15. The process starts by computing the shadow
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Algorithm 11 ComputeLabel(p, l, p′)

Input: a starting configuration p, starting label l, and
a goal configuration p′

Output: the label that results when travelling from p to p′ starting from label l

1: label ← l
2: < p1, . . . , pk > ← Discretize(p, p′)
3:

4: for each pi, pi+1 where i < k do
5: oldshadows ← ShadowRegion(p)
6: newshadows ← ShadowRegion(p′)
7: newlabel ← 0 · · · 0 ⊲ initially all cleared
8: for each s′ in newshadows do

9: for each s in oldshadows do

10: if labels = 1 and s′ intersects s then

11: newlabels′ ← 1
12: end if

13: end for

14: end for

15: label ← newlabel
16: end for
17: return label

regions of both the source and target configurations. We initialize the label corre-

sponding to the target configuration as all cleared. We check all of the shadows in

the shadow region of the goal configuration for an intersection with contaminated

shadows belonging to the shadow region of the source configuration. If an intersec-

tion with a contaminated shadow occurs then the corresponding shadow in the target

configuration is also labelled as contaminated.

Adding a Reachable Label

The final step involves adding the newly computed shadow label to the target vertex

(Algorithm 12). It may also be the case that the individual shadows of the new

label are all “cleared”, in which case a solution has been found. If the target vertex

contains a shadow label in its set of reachable labels that dominates the new shadow
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Algorithm 12 AddReachable(v, l)

Input: a SG-PEG vertex v and a label l

1: if v contains a label that dominates l then return
2: end if
3:

4: add l to v as a reachable label
5: delete labels in v dominated by l
6: if AllClear(l) then
7: Output Solution v ⊲ Is l a solution?
8: end if
9:

10: for each out in Neighbors(v) do
11: newlabel ← ComputeLabel(v.jpc, l, out.jpc)
12: AddReachable(out, newlabel)
13: end for

label, then the new label does not contribute any new information and we return.

Similarly, if there are labels in the vertex’s set of reachable labels that are dominated

by the new shadow label, then those labels are removed. If the new shadow label is

not dominated and is not a solution strategy then we add the new shadow label to

the vertex’s reachable set. This label now permeates the graph recursively via the

vertex’s outgoing edges. A label is calculated for each of the vertex’s neighbors, and

if this label is added to the neighbors reachable set, then the process repeats itself.

The process ends when no additional reachable labels are found.

Note that if a vertex does not belong to the same connected component as the

root vertex then its set of reachable labels is empty. Because of the recursive nature

of Algorithm 12, a vertex that serves as a bridge between the connected component

containing the root vertex and another connected component will cause the reachable

data to permeate through the SG-PEG.
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Algorithm 13 Solve(p,W,A)

Input: a starting configuration p, an environment W , and
an abstract sampler A

1: AddVertex(p, {0 · · · 0})
2: while a solution has not been found do
3: s ← A.GetSample()
4: x ← AddVertex(s)
5:

6: for each y in SG-PEG vertices do

7: if (xy ⊂ W n) and
length(x, y) < maxlength and
cycleLength(x, y) > mincycle then

8: AddEdge(x, y) ⊲ Digraph edge
9: AddEdge(y, x) ⊲ Digraph edge

10: end if

11: end for
12: end while
13: return ExtractSolution(solution)

7.2 Algorithm

In this section we detail how our algorithm uses a SG-PEG to search for a pursuer

solution strategy. Our algorithm (Algorithm 13) begins by creating a SG-PEG vertex.

This vertex’s joint pursuer configuration is the initial joint pursuer configuration

supplied to our algorithm and it’s set of reachable shadow labels contains only a

single label whose shadows are all contaminated. This is the root vertex of our

SG-PEG. We then proceed by obtaining samples in W n, checking these samples for

potential connections with existing vertices in the SG-PEG graph, and update the

SG-PEG where necessary when edges are created.

7.2.1 Abstract Sampler

Our main search algorithm uses an abstract sampler to return a joint pursuer config-

uration (Algorithm 13 line 3).
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Definition 25. An abstract sampler is a joint probability density function whose

continuous random variables are the pursuers’ positions in W .

The only functionality that we require an abstract sampler to have is the ability

to generate a point in W n. The benefit of using an abstract sampler is that our

algorithm is not dependent on a specific sampler to generate a solution strategy.

This allows us to choose samplers that efficiently explore W n. Note that the goal of

catching the evaders means that the best sampling strategies may differ from those

used in traditional motion planning algorithms. However, for our algorithm to be

probabilistically complete, the abstract sampler must have a support equal to W n

(Section 7.2.4).

We demonstrate the feasibility of using an abstract sample generator in our al-

gorithm by providing simulation results that utilize various sample generators (Sec-

tion 7.3).

7.2.2 Constraints

In this section we discuss the constraints used in our main algorithm that determine

whether a connection should be made between two vertices (Algorithm 13 line 7).

The three constraints can be categorized as visibility, connection distance, and cycle

distance constraints. The visibility constraint is required for correctness, whereas

the connection and cycle distance constraints aim to reduce the time it takes for the

algorithm to produce a feasible joint motion strategy.

Visibility Condition

The visibility condition states that for two vertices to share a pair of directed edges,

the vertices corresponding joint pursuer configurations must be mutually visible to

one another. This corresponds to the ith pursuer of one configuration residing within

the visibility region of the ith pursuer in a neighboring configuration. Another way
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X X

Figure 7.4: By considering only straight line motions that do not intersect the envi-
ronment we ensure the generation of collision free strategies.

X X

Figure 7.5: Multiple intermediary vertices are preferred to a single long connection.

of interpreting this constraint is that only straight line motions are permitted be-

tween corresponding pursuers in neighboring vertices. This constraint prevents the

generation of strategies in which the pursuers collide with obstacles.

Edge Length

To limit the amount of time spent computing the reachable data when an edge is

added in the SG-PEG we place a constraint on the length of the segment connecting

the vertices joint pursuer configurations in W n. The idea is that given two joint

configurations that are far apart, requiring multiple intermediary vertices as opposed
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Figure 7.6: A collection of dense samples is problematic since cycles can occupy a
large amount of computing resources. To combat this we can require all cycles to be
a minimum length.

to a single long connection is preferred. The intermediary vertices provide additional

opportunities for any potential subsequent samples to become connected.

Minimum Cycle Length

To avoid an oversaturation of edges we enforce a minimum cycle length in the SG-

PEG. The intuition is that if a large number of samples in W n that are relatively

close together, a large amount of resources could potentially be used computing all

of the nearby transitions without necessarily revealing any new information. This

optimization is aimed at minimizing the number of samples between which no shadow

events occur.

7.2.3 Search for a Solution Strategy

The intuition is that given an initial joint pursuer configuration, we assume that all

the shadows in the shadow region are contaminated, yielding a fully contaminated

shadow label. We then build a SG-PEG using a Sample Generator to select new

points in W n.

Since we maintain the reachable shadow labels during the construction of the SG-

PEG, we know that a solution strategy exists if we encounter a reachable shadow
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label that is completely cleared. At that point we use the reachable data stored in

the vertices and the shadow label mappings stored in the edges to recover a solution.

This solution should appear as a collection of vertices in the SG-PEG. Using the joint

pursuer configurations stored in the vertices as intermediary steps that the pursuers

need to reach, we will have generated a joint motion strategy that is also a solution

strategy.

7.2.4 Probabilistic Completeness

Finally, we argue that under certain conditions Algorithm 13 is probabilistically com-

plete.

Theorem 2. If the abstract sampler has a support equal to W n, and there are no

constraints on the edge length and cycle length, then our algorithm is probabilistically

complete. That is, the probability of our algorithm finding a solution, if one exists,

tends to 1 as the number of samples goes to infinity.

Proof. The argument proceeds in the same fashion as the probabilistic completeness

proof for PRM presented by Kavraki, Kolountzakis, and Latombe [38]. The only

significant difference is that, instead of considering the clearance between a solution

strategy and the obstacle boundaries, we must consider the clearance from the critical

boundaries at which shadow events that are not part of the final solution strategy

would occur.

Note that for our algorithm to maintain its probabilistic completeness, it may be

necessary to relax the minimum cycle length constraint when deciding whether to

insert an edge.
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(a) Brick environment. (b) “H” environment. (c) Office room environment.

Figure 7.7: Environments used in our simulations.

7.3 Simulation Results

We implemented our algorithm in simulation and provide some results for three dif-

ferent environments, using three different sample generators, and three different cycle

constraints. The environments (Figure 7.7) all require at least two pursuers to gener-

ate a solution strategy. As such we have deployed two pursuers to test our algorithm.

The three different sample generators have the following behavior:

• SG1 - Returns a uniform sample in W n. This is a baseline sample generator that

produces independent and identically distributed samples in F n. This sample

generator satisfies the completeness constraint.

• SG2 - Selects a uniform random point in W for p1. Each successive pursuer j

is assigned a uniform random point in W −
⋃

i<j
V (pi), such that no two pursuers

are mutually visible. If W −
⋃

i<j
V (pi) = ∅ then the entire environment is

viewable and any subsequent pursuers are assigned a random point in W . By

ensuring that the pursuers cannot see one another, we maximize exploration by

generating samples where the pursuers’ visibility regions don’t overlap. Note

that this sample generator does not satisfy the completeness constraint.

• SG3 - Selects an existing SG-PEG vertex, and for each pursuer selects a new
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target position from the pursuer’s current visibility region. This is a local

randomized sampler. By sampling within an existing SG-PEG vertex’s field-

of-view, we are essentially causing the search to “bloom” from the root vertex.

This sample generator satisfies the completeness constraint.

For each combination of environment, sample generator, and cycle constraints

we ran 10 trials, each with a unique starting position. Each simulation was given

a maximum computation time limit of 1200 seconds. If the algorithm could not

generate a solution strategy within the allotted time, we assumed that it failed.

The cycle constraints represent the extremes and one intermediary constraint.

By not allowing any cycles, the SG-PEG has a tree structure, and may encounter

environments where this limitation prevents our algorithm from generating a solution

strategy until a sufficiently dense collection of samples are added to the SG-PEG. The

other extreme has no constraint on potential cycles. This means that if the samples

are close together, then our algorithm will spend a lot of time computing reachable

shadow labels as opposed to exploring. However, this is a necessary condition for

probabilistic completeness.

We report a number of statistics (Tables 7.1, 7.2, and 7.3) for each scenario. The

first item that we report is the number of successes (was a solution strategy found)

across all trials. For the following we report both the mean and standard deviation:

the computation time in seconds, the number of SG-PEG vertices created, the number

of reachable labels computed, and the total distance travelled by the pursuers.

All of the sample generators were able to produce solution strategies for the brick

environment and had a success rate of 100% with sample generator SG2 having the

least number of vertices, reachable labels, solution distance, and minimum computa-

tion time.

In the “H” environment sample generator SG3 performed very poorly. It had

only a 70% success rate when no cycles were permitted, 10% success rate for the
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intermediary cycle constraint, and was unable to find a solution in any of the trials

when there were no cycle constraints.

In the “office room” environment sample generator SG1 and SG2 finally had some

failures, while SG3 continued to struggle. In this environment our algorithm was

unable to generate a single solution strategy in the allotted time when no constraints

were placed on the cycle length.

There are two main conclusions that we can draw from our simulations. The

first is the effect the cycle length constraint has on all of the metrics that appear in

Tables 7.1, 7.2, and 7.3. When cycles were not allowed, the algorithm was able to

generate a solution faster, requiring the pursuers to travel a shorter distance, often

with a negligible increase in the number of vertices and reachable labels. When

no constraints were placed on the cycle length, there was a noticeable decrease in

performance. None of the samplers were able to generate a solution to the “office

room” environment within the allotted time without the cycle length constraint.

The second conclusion we can draw from the simulations is the effect various

samplers have on our algorithm’s ability to generate a solution. The local randomized

sampler (SG3) performed poorly across all environments compared to the uniform

sampler (SG1) and the non-mutually-visible sampler (SG2). In future work, this

disparity should serve as motivation for determining what sampling strategy is most

appropriate for the visibility-based pursuit-evasion problem.
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Table 7.1: Simulation Results for the brick environment.

No Cycles

SG1 SG2 SG3

success rate 100% 100% 100%

mean std mean std mean std

computation time (sec) 4.63 3.77 2.28 2.31 12.84 11.19

vertices 33.90 16.78 26.90 13.01 50.80 44.75

reachable labels 23.50 16.91 12.20 9.87 56.60 46.08

solution distance (m) 78.30 32.77 55.27 22.58 58.34 20.37

Cycle Length> 15

SG1 SG2 SG3

success rate 100% 100% 100%

mean std mean std mean std

computation time (sec) 8.76 10.13 4.46 5.55 54.14 80.72

vertices 31.10 15.60 26.90 13.01 33.80 34.46

reachable labels 22.00 16.07 12.70 10.54 43.30 39.75

solution distance (m) 99.79 74.21 61.41 37.92 78.98 62.97

No Constraints

SG1 SG2 SG3

success rate 100% 100% 100%

mean std mean std mean std

computation time (sec) 9.51 11.83 4.83 6.26 72.17 116.21

vertices 31.10 15.60 26.90 13.01 32.90 34.83

reachable labels 21.20 16.05 12.80 10.78 43.00 40.33

solution distance (m) 88.07 50.64 60.79 36.18 80.14 76.18

94



Table 7.2: Simulation Results for the H environment.

No Cycles

SG1 SG2 SG3

success rate 100% 100% 70%

mean std mean std mean std

computation time (sec) 57.64 30.00 141.99 290.43 411.55 354.69

vertices 96.90 47.91 380.90 777.73 276.29 198.23

reachable labels 106.30 39.37 143.20 176.06 449.71 218.49

solution distance (m) 231.57 45.19 165.58 43.94 142.24 21.96

Cycle Length> 15

SG1 SG2 SG3

success rate 100% 100% 10%

mean std mean std mean std

computation time (sec) 145.44 76.80 209.16 318.14 685.19 0.00

vertices 95.70 48.27 380.90 777.73 75.00 0.00

reachable labels 132.10 43.82 99.00 48.61 161.00 0.00

solution distance (m) 511.61 329.79 473.10 569.87 144.42 0.00

No Constraints

SG1 SG2

success rate 100% 100%

mean std mean std

computation time (sec) 177.91 120.23 182.42 114.42

vertices 95.70 48.27 380.90 777.73

reachable labels 120.60 45.78 91.60 39.56

solution distance (m) 543.08 373.22 362.73 348.46
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Table 7.3: Simulation Results for the room environment.

Cycle Length> 15

SG1 SG2 SG3

success rate 80% 90% 20%

mean std mean std mean std

computation time (sec) 540.06 365.80 421.60 252.18 813.89 11.61

vertices 75.12 26.86 72.11 18.91 37.00 11.31

reachable labels 136.12 68.73 117.22 66.25 89.00 1.41

solution distance (m) 326.52 156.00 437.35 316.35 151.22 20.30

No Cycles

SG1 SG2 SG3

success rate 100% 100% 30%

mean std mean std mean std

computation time (sec) 507.59 299.96 380.35 277.18 621.78 511.67

vertices 104.90 58.38 77.40 24.45 58.33 37.81

reachable labels 162.40 89.15 126.60 81.80 139.00 98.75

solution distance (m) 272.33 132.78 279.56 112.25 176.12 38.40
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Chapter 8

Pursuit Evasion for a Single Pursuer with

Fixed Beams

This chapter considers the problem of planning motions for a mobile robot equipped

with a finite collection of single-direction sensors, with the goal of locating an ad-

versarial evader within the line-of-sight of one of those sensors. This problem can

viewed as a restricted version of several others in the literature, including the Guibas,

Latombe, LaValle, Lin, and Motwani algorithm found in Chapter 4 (in which the

robot has an omnidirectional sensor); Gerkey, Thrun, and Gordon [22] (in which

the robot has an angle-bounded but continuous and rotatable field of view); and

Kameda, Yamashita, and Suzuki [34] (in which the robot, called a 1-searcher, has a

single rotatable beam sensor).

The unique restriction that we consider here is that the directions of the sensor,

expressed in world coordinates, are fixed. The pursuer robot cannot rotate to aim

its sensors in its search for the evader; it must locate the evader using only transla-

tions. The new contribution of this paper is a complete and efficient algorithm for

solving this fixed-beam pursuit-evasion problem. We also present an implementation

of this algorithm, and show computed examples demonstrating its correctness and

effectiveness.

Figure 8.1 shows an example pursuit plan generated by our algorithm. In this

instance, the pursuer has four beams, oriented in up, down, left, and right positions.

(Our algorithm works for arbitrary collections of beams, not just orthogonal ones.)
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Figure 8.1: A pursuit plan (left) computed by our algorithm. The pursuer uses four
orthogonal beams (right) to capture the evader, regardless of the evader’s path or
velocity. The pursuer starts on the bottom boundary of the top-center corridor, and
travels first to the left and then to the right.

Starting from the bottom of the middle section of the spiral, the pursuer travels left

to the end, then back around to the center of the spiral. In several cases, the robot

moves to the boundary of the environment, which is necessary in this problem to

ensure that an evader is captured. If the area between two beams has non-zero area,

then it is possible for the evader to hide there indefinitely. Our algorithm is complete,

in the sense that if a path exists to clear the given environment with the given beams,

we are certain to find it. If no such path exists, the algorithm terminates with a failure

result.

Our work on this problem is motivated by several related factors. First, and

most importantly, it provides another data point for understanding the computa-

tional, sensing, and movement requirements that underlie the problem of searching

for evaders. There is an obvious connection between the pursuer’s sensing and move-

ment capabilities and the existence of a solution. Any instance that can be solved
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with weak sensors can also be solved with relatively stronger sensors [61]. The re-

lationship between sensing capabilities and the computation needed for planning is

less obvious. For example, compared to the existing algorithm for omnidirectional

sensing [27], the computation time is increased (due to an additional dimension of

the underlying C-space) by a restriction to a rotatable range of sensing angle [22],

but decreased (down to constant memory and constant time to compute the next

movement) by a further restriction of that range to a single rotatable direction. Our

results, which include an algorithm whose run time is polynomial in the complexity of

the environment but exponential in the number of sensors, suggest that the compu-

tational difficulty of these kinds of problems is governed not just by the informative

value of the sensors, but also by the complexity of that sensor model, measured in-

formally by the non-trivial relationships between information that is observable and

information that is unobserved.

We also suspect that there may be some direct value to studying restricted ver-

sions of planning problems, as an algorithmic tool for solving the original, unrestricted

problems. The idea draws inspiration from the Miller-Rabin primality-testing algo-

rithm [52,72], which employs a probabilistic test that determines, with a known suc-

cess probability, whether a given number is ‘definitely composite’ or ‘possibly prime’.

The algorithm works by iterating this test, until the input integer is demonstrated to

be composite, or until its probability of being composite in spite of repeatedly passing

the test becomes acceptably small. We are likewise interested in planning algorithms

that attack challenging problems by attempting to solve a randomly-generated series

of restricted, but efficiently-solvable, related instances. Under the right conditions,

we can ensure that if any of those restricted instances has a solution, the solution

applies to the original problem as well. The algorithm proposed here is a first step

toward applying that strategy to the full omnidirectional visibility-based pursuit eva-

sion problem.
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The remainder of this chapter is laid out as follows. Section 8.1 revisits the

problem formulation initially introduced in Chapter 2 to address the changes to the

sensor footprint due to the robot’s fixed beam sensors. The algorithm details appear

in Section 8.2. Section 8.3 describes our implementation and presents some computed

examples. Concluding remarks appear in Section 8.4.

A preliminary version of this work is to appear in [87].

8.1 Problem Formulation: Fixed Beams

As opposed to revisiting the entire problem formulation from Chapter 2, this section

will focus specifically on the fixed-beam sensor model and will reframe the capture

condition to account for the change in sensor model.

The pursuer is equipped with a set B of m beam sensors, each of which can

detect the evader by line-of-sight in a single, fixed direction. We represent these

directions as a collection of unit vectors B = {b1, . . . , bm}. These directions remain

constant as the pursuer moves; the pursuer cannot rotate them. A beam sensor

bi ∈ B detects the evader at time t if there exists a non-negative scalar a such that

e(t) = p(t) + abi and the line segment connecting p(t) and e(t) is fully contained in

W , that is, if p(t)e(t) ⊂ W .

The inputs to our algorithm are an environmentW , a set of beamsB = {b1, . . . , bm},

and a starting pursuer position p(0) ∈ W . The goal is to compute a continuous finite-

length path p : [0, T ] → W for the pursuer that guarantees that at least one beam

will detect the evader, or report that no such path exists. That is, the algorithm

should generate a path p starting from the given p(0), and a termination time T ,

such that for any continuous evader path e, there exists some time t ≤ T and some

beam bi ∈ B such that beam bi detects the evader at time t.
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8.2 Description of Algorithm

This section describes an algorithm for the pursuit-evasion problem introduced in

Section 8.1. Although, at a very high level, the structure of the algorithm follows

the same form as existing algorithms for related problems [22,27, 85], this algorithm

differs substantially in its important details. The intuition is to keep track, using

a small collection of boolean labels, of which portions of the environment might

contain the evader if it has not yet been detected. We partition the environment

into a finite set of regions called conservative regions, within each of which the labels

remain constant, and track how the labels change as the robot moves between those

conservative regions. This induces a graph, through which the algorithm searches for

a path from the node representing the initial condition to one in which the evader

has certainly been captured. The remainder of this section describes the details.

8.2.1 Gaps

In general, the pursuer’s m beam sensors divide the environment into a collection of m

regions, called gaps, that are not currently detectable by any of those beams. More

precisely, a gap is a maximal path-connected component of the environment that

does not cross any of the beams. A gap in this context is synonymous to the concept

of a shadow that was introduced in Section 2.2 for pursuer(s) with omnidirectional

sensing capabilities.

Note that, if the pursuer is in the interior of W , then each gap includes two beams

on its boundary. We write gij to denote the gap whose boundary includes bi and bj.

Figure 8.2 illustrates the above notation.

The important idea is that the evader, if it has not been captured, is always

contained in exactly one gap, in which it can move freely. Although the pursuer does

not know the evader’s position, it can infer, based on its prior movements, whether
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Figure 8.2: A robot with four fixed beam sensors. In this example gap g12 is shaded
green.

an evader could potentially reside within each gap.

A gap gij is cleared at time t if, based on the pursuers’ motions up to time t, it

is not possible for the evader to be within gij without having been captured. A gap

is contaminated if it is not clear. That is, a contaminated gap is one in which the

evader may possibly reside. We assign a binary label to each gap corresponding to

its cleared/contaminated status. A label of 0 means that the gap is cleared; a label

of 1 means that the gap is contaminated.

Notice that, since the evader can move arbitrarily quickly, the pursuer cannot draw

any more detailed conclusion about each gap other than its clear/contaminated status;

if any part of a gap can contain the evader, then the entire gap is contaminated. As a

result, we can encapsulate all of the information available to the pursuer by tracking

only the pursuer’s current configuration and the current gap labels.

8.2.2 Decomposition into Convex Conservative Regions

The algorithm begins by decomposing the environment into a collection of convex

conservative regions. A region R ⊂ W is conservative if the gap labels (clear or

contaminated) remain unchanged as the pursuer moves within R.

First, we partition the environment into conservative regions by identifying seg-

ments in the interior of W at which changes to the gap labels can occur. For a given
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Figure 8.3: An illustration to detect when a Left event occurs. An illustration to
detect when a Right event occurs.
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Figure 8.4: An illustration that demonstrates when an event does not occur at a
reflex vertex. An illustration that demonstrates when an event does not occur at a
convex vertex.

beam bi ∈ B, the crucial locations for the pursuer are positions p(t) at which the ray

extension p(t) + abi within W ends at a vertex v of W . At such points, the distance

observed by the beam can change discontinuously, potentially allowing the evader to

transit from one gap to another.

There are three distinct cases, of which only two can cause a change in the pur-

suer’s gap labels (Figure 8.3), and one is safely ignored (Figure 8.4). We distinguish

these cases via clockwise (cw) and counterclockwise (ccw) tests involving the vertex

103



v and its immediate predecessor u and successor w (in clockwise order) along ∂W .

1. A left event occurs when the following condition is satisfied:

cw(v, v + bi, u) and cw(v, v + bi,w).

That is, left events are generated when the boundary curve at v is on the left

side of v + bi.

2. A right event occurs when the following condition is satisfied:

ccw(v, v + bi, u) and ccw(v, v + bi,w).

Right events occur when the boundary curve at v is on the right side of v + bi.

3. The case in which u and w are on opposite sides of a beam does not generate

any change to the gap labels because bi changes continuously at this point,

regardless of whether v is a convex or reflex vertex.

For each vertex v ∈ W and bi ∈ B, the set of pursuer positions that generate such

events can be found by extending a ray within W , starting at v, in direction −bi.

If we additionally know the direction (that is, forward or backward) with which

the pursuer crosses this critical event, we can classify the event further.

• If the pursuer is moving so that the endpoint of bi sweeps across uv before

reaching v, then after crossing v, the beam will extend (or “embiggen”) to a

new environment edge.

• Conversely, if bi crosses v in the opposite direction, the beam will retract (or

“unembiggen”) to environment edge uv.

By performing these ray extensions, the algorithm forms a decomposition of the

environment into conservative regions. See Figure 8.5. We represent this decomposi-

tion as a doubly-connected edge list (DCEL). Each interior half-edge in the DCEL is
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Figure 8.5: Decomposition of a simple environment into conservative regions by ray
extensions.

labeled with the event type (left or right; extend or retract) and the generating beam

bi.

Note in particular that, although this decomposition generates regions that are

conservative, those conservative regions are not necessarily convex. To enable straight-

forward generation of a path from a sequence of adjacent regions (which will be the

final step of the algorithm; see below), we refine the partition via trapezoidal decom-

position, ensuring that every region is convex. Figure 8.6 shows an example of the

final decomposition. Half-edges added at this stage are not labeled with any events.

8.2.3 Fixed-Beam Pursuit-Evasion Graph

In this section, we describe our algorithm which utilizes the convex conservative de-

composition to construct its primary data structure, called the Fixed-Beam Pursuit-

Evasion Graph (FB-PEG). This section describes the vertices and edges the FB-PEG.

The basic idea is that each node of the FB-PEG corresponds to one element of the

convex conservative decomposition including interior faces and the edges and vertices

that surround each face, with a few important exceptions.

• The unbounded face of the DCEL, which represents the obstacle region R2−W ,
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Figure 8.6: Refinement of the decomposition from Figure 8.5 by vertical ray exten-
sions upward and downward from each vertex. The resulting cells are convex.

does not generate any FB-PEG nodes.

• The halfedges and vertices created during the decomposition do not generate

FB-PEG nodes, because many of these correspond to positions at which the gaps

are changing. For clarity, we instead include FB-PEG edges that transition

directly between the associated faces (resp. edges) without stopping at the

dividing half-edge (resp. vertex).

All other elements of the DCEL generate FB-PEG nodes. This detail is important,

because without coming into contact with the boundary of W , the pursuer can never

clear any gaps.

Along with a specific convex conservative region, each FB-PEG node is also asso-

ciated with a unique set of clear/contaminated labels for each of the gaps that exist

in that region. (Note that, because these regions are conservative, the set of gaps

is the same for every point within a given region.) Thus, each bounded face in the

DCEL generates 2m nodes in the FB-PEG; depending on the directions of the beams

and the environment boundary, there will be between 2 and 2m+1 FB-PEG nodes

associated with each edge and vertex represented in the graph.
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Figure 8.7: An illustration of the Left Extend/Retract events.
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Figure 8.8: An illustration of the Right Extend/Retract events.

To compute the edges of the FB-PEG, we iterate over each FB-PEG node (which

is already associated with gap labels) and consider each of its neighbors in the DCEL.

It remains only to determine which FB-PEG node for that region the directed edge

should connect to. We can categorize the gap update rules that occur when tran-

sitioning between a source FB-PEG node and a target FB-PEG node into one of

five cases, based on the dimension—that is, face (F), edge (E), or vertex (V)—of the

source and target nodes.
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F → F and E → E transitions

When the pursuer transitions from a face to an adjacent face (skipping a ray exten-

sion in the interior of W ) or from an edge to an adjacent edge (skipping the endpoint

of such a ray extension), we must update the clear/contaminated labels for the ap-

propriate gaps. These transitions occur at the Left and Right events described in

Section 8.2.2. There are four different event types leading to two different kinds of

update rules.

1. At a Left-Extend event, the evader can hide behind the obstacle touched by bi

until after the beam has passed, and then contaminate the gap to the left of

bi. At a Right-Retract event the same effect occurs in reverse. Thus when the

pursuer passes a Left-Extend or Right-Retract event from beam bi, we assign:

gi−1 ← (gi−1 or gi).

All other gaps retain the same labels.

2. For Left-Retract and Right-Extend events, the cross contamination occurs in

the opposite direction, so instead we assign:

gi ← (gi or gi−1).

Again, the other gaps do not change at this transition, so their gap labels remain

unchanged.

Figures 8.7 and 8.8 illustrate these update rules.

F → E and E → F transitions

A second class of transitions moves from the interior of W to a boundary edge, or

back again. Such movements can change the set of gaps in a variety of ways:
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Figure 8.9: A scenario where gap edges can appear/disappear and shrink/grow. When
travelling from the interior to the boundary edge g01 and g40 disappear, g12 and g34

shrink to ge2 and g3e, and g23 remains the same. Conversely, when travelling from
the boundary edge to the interior gap edges appear, grow, and remain the same.

• A gap can appear or disappear (when both of its incident beams are aimed

directly into the wall).

• A gap can shrink or grow (when only part of the gap is pressed against the

wall).

• A gap can split into multiple gaps (when a wide gap is separated into two parts

by coming into contact with the environment boundary).

• Multiple gaps can merge into a single gap (when a gap is re-joined with itself

after leaving the environment boundary).

To handle all of these cases in a clean and compact way, we use a series of gap con-

tainment tests that determine whether the interior of one gap overlaps the interior

of another. Such tests can be performed in constant time using a series of cw and

ccw tests on the beam vectors. Then each gap in the target FB-PEG node is marked

as contaminated if and only if it overlaps at least on contaminated gap for the source

node. Figure 8.9 illustrates one of these transitions.
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Figure 8.10: An illustration of the split and merge events that occur when transi-
tioning between an edge of the region graph and an environment vertex.

V → E and E → V transitions

Transitions from an edge to a vertex or from a vertex to an edge can be handled iden-

tically to the F → E and E → F cases, with one important exception: If the vertex

is a reflex vertex, then it is possible that some beams will emerge from (or disappear

into) the environment instantaneously (rather than the gradual appear/disappear

changes that occur for F/E transitions).

To handle this case properly, we must introduce an intermediate step, in which

the gaps are computed at the reflex vertex, but only for beams which do not extend

into the environment boundary in both the source and target regions. Figure 8.10

illustrates one of these transitions, for which the intermediate step is computed at the

environment vertex. We use a series of gap overlap tests to propagate contamination

forward from the source FB-PEG node, correctly allowing the move past beams that

are blocked by the edge (whether it is the source or target node). We then use the

clear/contaminated labels from these intermediate gaps to populate the labels in the

target node.

F → V and V → F transitions

Our algorithm omits direct transitions between faces and vertices for simplicity. Par-

ticularly for the case of reflex vertices, the correct assignment of gap labels is non-
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trivial, because the algorithm must correctly identify which events to apply. This

omission does not impact the correctness nor completeness of the algorithm, because

any solution that traverses directly between a vertex and face can achieve the same

result indirectly via the corresponding edge. (This does, of course, potentially make

some of the final paths slightly longer.)

V → V transitions

The final of the nine cases is V → V , which cannot occur because vertices are never

adjacent in a DCEL.

Taken together, this set of nodes and edges fully captures the possibilities for the

evader’s location as a function of the pursuer’s movements across the conservative

regions.

8.2.4 Path Generation

The final step of the algorithm is a forward search through the FB-PEG. The search

starts from the pursuer’s initial position with all of the gaps labeled as contaminated,

and terminates when it reaches a FB-PEG node in which all of the gaps are labeled

clear. We use breadth-first search, though any graph search would be suitable.

Given a path from all-contaminated to all-clear, we generate the pursuer’s final

path in the usual way for cell-decomposition-based planning: We chain together the

centroids of each region visited along the FB-PEG path. The only complication is

that, for F → F transitions, we must also include the midpoint of the edge separating

those faces. The resulting path is guaranteed to locate the evader. Since the regions

are all convex, the resulting path is guaranteed to stay within W , and to visit the

FB-PEG nodes in the correct order. Figure 8.11 completes the running example from

Figures 8.5 and 8.6, illustrating a plan that correctly locates the evader.
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Figure 8.11: The final generated plan for the example shown in Figures 8.5 and 8.6.
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Figure 8.12: A plan generated by our algorithm for the above environment.

112



Finally, because we know that the sequence of conservative regions is sufficient to

characterize a solution, we know that if the FB-PEG does not contain a path from

the start node to an all-clear node, then the underlying pursuit-evasion problem has

no solution.

8.2.5 Runtime analysis

The run time of this algorithm is dominated by the time needed to search the FB-

PEG, which has O(2mn2) nodes and O(2mn2) total edges. Therefore, the algorithm

takes time O(|V | + |E|) = O(2mn2). Note that this runtime is polynomial in the

complexity of the environment.

8.3 Simulation Results

This section presents some example pursuit strategies computed by our implementa-

tion of this algorithm. Three examples appear in Figure 8.1, 8.11, and 8.12. With

this implementation, which uses C++, a machine utilizing a single core of an Intel

i5 processor and running the Gnu/Linux operating system was able to solve each of

these instances in less than 0.1 seconds.

8.4 Conclusion

In this chapter we present a complete algorithm for solving a pursuit-evasion problem

in a simply-connected two-dimensional environment, for the case of a single pursuer

equipped with fixed beam sensors. The algorithm constructs a DCEL by decomposing

the environment based on critical gap events and further refines the partition by em-

ploying a trapezoidal decomposition to ensure a convex conservative decomposition.

The decomposition induces a FB-PEG, which is exhaustively searched and returns
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either a path through the FB-PEG which corresponds to a pursuer motion strategy

through the environment which is guaranteed to capture an evader, or reports failure

for the current beam configuration.
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Chapter 9

Discussion and Conclusion

This thesis began by contending that the rate at which robots and other autonomous

agents are adopted into various application domains hinges upon the availability of

robust and efficient algorithms that are capable of solving the complex planning prob-

lems inherent to the given domain. We have shown that there are a wide array of

tasks that can be framed as pursuit-evasion problems such as surveillance [8,56],search

and rescue [24, 83], and missile-guidance systems [36, 71]. This thesis provides sev-

eral theoretical results which can hopefully be used to expedite the procurement of

robust planners and algorithms for use on physical systems that would enable them

to operate in application domains that have previously had little use for autonomous

systems due to the task complexity.

The remainder of this chapter contains some discussion which is meant to place

the results of this thesis into context as well as some interesting open problems.

Section 9.1 revisits the family of visibility-based pursuit-evasion problems found in

this thesis and highlights the contributions, limitations, and open problems that

remain to be solved. We conclude in Section 9.2 with a discussion of possible future

directions.
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9.1 Contributions, Limitations, and

Open Questions

In this section we put the results of this thesis into perspective by taking a chrono-

logical look at the novel contributions, limitations, and remaining open questions for

each of the visibility-based pursuit-evasion problems found in the text.

The three unique visibility-based pursuit-evasion problems for which we provide

novel results are:

• A Single Pursuer with an omni-directional sensor that extends to the polygonal

boundary (Chapter 5).

• Multiple Pursuers with an omni-directional sensor that extends to the polygonal

boundary (Chapters 6 and 7).

• A Single Pursuer whose sensors are comprised of a finite collection of fixed

beams (Chapter 8).

Single Pursuer - Optimal This result improves upon the known result of Guibas,

Latombe, LaValle, Lin, and Motwani that returns a feasible solution strategy for a

single pursuer in a simply-connected polygonal environment by solving for the min-

imal cost solution strategy. Ample effort has already been put towards identifying

necessary and sufficient pruning of suboptimal paths when conducting the forward

search. Due to the exponential nature of the graph, it is reasonable to expect problem

instances where the number of candidate sequences to consider will begin to make the

problem computationally intractable. Under these circumstances, it would be ben-

eficial to investigate how an approximation algorithm [94, 95] could be harnessed to

provide some semblance of performance guarantees. The general idea behind an ap-

proximation algorithm is that it produces solutions that remain within some constant
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factor of the optimal solution while typically requiring reduced computation expense.

The potential performance gains are enough of an incentive to at least motivate dis-

cussion of the applicability of approximation algorithms in solving visibility-based

pursuit-evasion problems.

Multiple Pursuers This thesis provided two novel results for the multi-pursuer

visibility-based pursuit-evasion problem. The first result was a complete algorithm

(Chapter 6) that identified the critical visibility events that can occur when a group of

pursuers move within a 2-dimensional polygonal environment. The major drawback

of this work is that it suffers from the “curse of dimensionality” [7] since the complete

algorithm is doubly-exponential. The second result in this line of research is able to

overcome this problem by sampling from the pursuers’ joint configuration space. The

result is a sampling-based algorithm (Chapter 7) that is capable of generating a joint

motion strategy for the pursuers that captures an evader.

The most immediate candidate for improving the existing algorithm is to investi-

gate how the algorithm updates shadow labels when travelling from one joint pursuer

configuration to another. Currently, the algorithm updates the shadow labels nu-

merically (Algorithm 2). An alternative approach is to solve for the critical events

analytically. The initial and goal configurations are known so it should be possible

to parameterize the equations, with time as the parameter, and solve for the critical

events analytically.

The more far-reaching problem is the development of robust sampling strategies

for the visibility-based pursuit-evasion1 domain, which poses more difficulty than

other domains because it is a complex configuration space that has restrictive con-

straints (capture guarantees). Typically, the ability to both draw a random sample in

1To the author’s knowledge there hasn’t been any work specifically focused on sampling in the
visibility-based pursuit-evasion domain. There has been nominal research done that utilizes sampling
techniques to consider the differential game variant of the pursuit-evasion problem [35].

117



the configuration space and perform any connections to the underlying data structure

are both relatively cheap operations. However, in the visibility-based pursuit-evasion

problem, the “connection” phase takes substantially longer than the sampling phase

due to the additional complexity which motivates the question: “What makes one

configuration more preferable to another?” Any insight gained by answering this

question could be useful when considering other planning problems that currently

can not be solved using a straightforward application of traditional sampling-based

planners.

Single Pursuer - Fixed Beam The third problem for which we have a result is the

fixed-beam visibility-based pursuit-evasion problem. Recall, the fixed-beam variation

of the pursuit-evasion problem is a restricted formulation where the directions of the

pursuers’ sensors, expressed in world coordinates, are fixed. The pursuer robot cannot

rotate to aim its sensors in its search for the evader; it must locate the evader using

only translations. We designed an algorithm that is capable of solving the fixed-beam

pursuit-evasion problem.

It remains to show if there are any benefits to using restricted versions of plan-

ning problems as an algorithmic tool for solving the original unrestricted problems.

The idea, which draws inspiration from the Miller-Rabin primality testing algorithm,

seems like a promising avenue for those that study motion planning problems. Cur-

rent algorithms seem ill-suited to this level of exploitation since the computational

difficulty for the visibility-based pursuit-evasion problem has been shown to be not

just reliant on the informative value of the sensors, but also on the complexity of the

sensor model.
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9.2 Future Directions

There are two major obstacles that are currently hindering the application of visibility-

based pursuit-evasion algorithms on physical systems. The first is the strong sensing

requirements that are required to carry out the search. The second is a lack of algo-

rithms that are robust to sensor failure. These problems independently pose enough

of a hurdle to make the visibility-based pursuit-evasion problem more difficult, but

when considering a physical system both problems will need to be addressed.

Sensing Requirements As alluded to in the Introduction to Chapter 8, the Robotics

community still does not have a firm grasp as to the sensing requirements that un-

derlie the search task. Many current algorithms assume a sensing model where the

pursuer has an omnidirectional field-of-view which extends to a polygonal boundary.

This model may be practical in indoor environments where some combination of cam-

era system and Lidar is able to replicate this model. However, even the most state

of the art Lidar sensors will have trouble aspiring to this sensor model in outdoor

environments because of the sensors range limitations.

Sensor Failures A common assumption in visibility-based pursuit-evasion is that

the sensors used to detect evaders are perfectly reliable. The sensor model assumes

that if the evader is within view of any pursuer for any positive time interval then it

will be detected during that entire interval. This assumption is extremely problematic

because, when implemented on real sensors systems, such plans cannot account for

the possibility of short-term false negative errors in evader detection. Depending on

the evader model that the algorithm employs, the introduction of even the smallest

of sensing errors can render the algorithm useless (the case when evaders have finite

unbounded speed).
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Appendix A

Cylindrical algebraic decomposition

Definition 26. A cylindrical decomposition of Rn is a partition of the space into

cells that are constructible sets, such that the cells in the partition are cylindrically

arranged.

This means the projection of any two cells onto any lower dimensional space are

either equal or disjoint.

Definition 27. A semi-algebraic decomposition is a partition of Rn over a set of

polynomials into a finite set of disjoint connected regions that are each sign invariant.1

Figure A.1 shows a sample environment and the corresponding semi-algebraic

decomposition.

Definition 28. A cylindrical algebraic decomposition (CAD) [18] is a cylindrical

semi-algebraic decomposition.

Collins [18] is the original developer of CAD, and provided an algorithm that takes

as input a collection of polynomials in Q[x1 . . . xn] and constructs a sign invariant

CAD of Rn.

CAD was originally designed to solve the quantifier elimination problem, but with

the advent of a cell adjacency test [2], CAD could be effectively used in other domains,

1 This means that inside each region, the sign for each polynomial remains constant (negative,
zero, positive).
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notably motion planning [46, 47, 76]. Figure A.2 shows the CAD and accompanying

adjacency graph for the Gingerbread Face from Figure A.1.

(-1,1,1,1)

(-1,1,1,-1)

(1,1,1,1)

(-1,1,0,1)(-1,0,1,1)

(-1,1,1,0)
(0,1,1,1)

(-1,-1,1,1) (-1,1,-1,1)

Gingerbread Face Semi-algebraic decomposition

Steve LaValle, Planning Algorithms, 2006.

Figure A.1: An environment described by four polynomials and it’s semi-algebraic
decomposition.

CAD Adjacency Graph

Steve LaValle, Planning Algorithms, 2006.

Figure A.2: The CAD of the gingerbread face and the adjacency graph corresponding
to the transitions that exists between cells.
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Appendix B

Single Pursuer - Optimal Shortest Path

Forward Search Example

This appendix presents a detailed execution example for Algorithm 3. The intent is

to illustrate, step by step, how the forward search progresses from a start node to a

goal node (and by extension a motion strategy for the pursuer). At each iteration the

contents of the priority queue are displayed at the top of the page. The expansion of

the head node occurs in the center of the page. The list of non-dominated sequences

appears at the bottom of the page.

12

3

4

5

6
7
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Start Node

Region 6 - Fully Contaminated

1 1

Non-dominated sequences
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–Priority Queue–

Sequence
1 1

Cost 0

–Expansion(s)–

Sequence
1

1 1 1
1 1

Tour
1

1

Cost .5 .707

Action Add Add

–Non-dominated Sequences–
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–Priority Queue–

Sequence 1

1 1 1
1 1

Cost .5 .707

–Expansion(s)–

Sequence
1 1

1

1 1

Tour
1

Cost .5

Action Prunable – Omit

Non-dominated Sequences

0 1 1
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–Priority Queue–

Sequence
1

1 1

Cost .707

–Expansion(s)–

Sequence
1 0 1

1 1 1 0
1

1 1

Tour 1 12

Cost .707 1.581

Action Add Add

Non-dominated Sequences

.5
1

1 1

0 1 1
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–Priority Queue–

Sequence
1 0 1

1 1 1 0
1

1 1

Cost .707 1.581

–Expansion(s)–

Sequence
1

1 0 1
1 1

1

1 0 1
1 1

Tour 1

2

1

Cost .707 1.581

Action Prunable – Omit Prunable – Omit

Non-dominated Sequences

.707 1
1 1

.5
1

1 1

0 1 1
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–Priority Queue–

Sequence
1 0

1
1 1

Cost 1.581

–Expansion(s)–

Sequence
1 1 0

1
1 1 0 1 0

1
1 1

Tour 12 123

Cost 1.581 3.5

Action Prunable – Omit Add

Non-dominated Sequences

.707 1
1 1

.5
1

1 1

0 1 1 .707 1 0 1
1 1
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–Priority Queue–

Sequence
0 1 0

1
1 1

Cost 3.5

Solution Found!!!

123

Non-dominated Sequences

.707 1
1 1

.5
1

1 1

0 1 1 .707 1 0 1
1 1

1.581 1 0
1

1 1
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